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Preface

This volume of Springer’s Lecture Notes in Computer Science series comprises
the scientific proceedings of the 10th International Workshop on Digital
Mammography (IWDM), which was held June 16–18, 2010 in Girona, Catalo-
nia. The IWDM meetings traditionally bring together a diverse set of researchers
(physicists, mathematicians, computer scientists, engineers), clinicians (radiol-
ogists, surgeons) and representatives of industry, who are jointly committed to
developing technology, not just for its own sake, but to support clinicians in
the early detection and subsequent patient management of breast cancer. The
IWDM conference series was initiated at a 1993 meeting of the SPIE Medical
Imaging Symposium in San Jose, CA, with subsequent meetings hosted every
two years by researchers around the world. Former workshops were held in York,
England (1994), Chicago, IL USA (1996), Nijmegen, The Netherlands (1998),
Toronto, Canada (2000), Bremen, Germany (2002), Durham, NC, USA (2004),
Manchester, UK (2006) and Tucson, AZ USA (2008). Each of these scientific
events was combined with very successful and focused industrial and research
exhibits, which demonstrated the milestones of digital mammography over the
years.

A total number of 141 paper submissions from 21 countries were received.
Each of these four-page abstract submissions was reviewed in a blind process by
at least two members of the Scientific Committee, which led to a final selection
of 46 oral presentations and 57 posters during the two and one-half days of
scientific sessions. At this point I would like to acknowledge the excellent work
of the Scientific Committee in guaranteeing scientific significance by means of
providing feedback to the authors for the final papers. Thus, the 103 final papers
included in this proceedings volume (LNCS 6136) constitute a comprehensive
state of the art in breast imaging today.

As in the previous meetings, the 2010 IWDM program reflects not only the
major challenges over the past that still remain active (CAD, lesion detection,
image segmentation, image registration, risk assessment), but also the current
trends and efforts being made to improve digital mammography for the early de-
tection of breast cancer, paying special attention to volumetric imaging and dig-
ital breast tomosynthesis. We were also very honored to have as keynote speak-
ers such internationally recognized researchers as Melcior Sent́ıs, from UDIAT,
Spain, who discussed the “Transition to Digital Mammography: Challenges and
Future Trends,” Ingvar Andersson from Malmö University Hospital, who raised
the question “Breast Tomosynthesis: Mammography of the Future?,” and Sir
Michael Brady from the University of Oxford, UK, who spoke on “Information
from Breast Images.” The three keynote speakers provided a window to give us
a glance at the future in breast imaging by means of understanding the past and
current achievements.
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The 10th IWDM also took advantage of the participation of industrial part-
ners who both exhibited at the meeting and provided sponsorship of various con-
ference events, thus adding considerable quality and visibility to the meeting.

Organizing an event like the IWDM meeting is not feasible without a bunch
of active people working behind the scenes. Among them, Laura Batlle, who
worked many hours to recruit the industrial partners and helped during the
registration process; Àric Monterde, responsible of all the 2010 IWDM designs,
including the logos and poster; Xavier Lladó, who took care of all the details
related to the conference center; Jordi Freixenet, in front of the social events;
Arnau Oliver, who timely produced the final version of the proceedings; and
Joseta Roca, always in search of financial support. The contribution of Robert
Mart́ı as scientific and technical advisor became essential when planning and
executing the phases of the meeting. Many thanks also to Reyer Zwiggelaar,
who conveniently pushed me to apply for the organization of the conference
during my research stay at Aberystwyth University (Wales) in 2008.

June 2010 Joan Mart́ı
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Abstract. The cost-effectiveness of single reading with CAD as an alternative 
to double reading was assessed in a national screening programme using CAD 
with full field digital mammography. The impact of CAD on the time taken to 
read screening films (n=5710) and on the proportion of films referred for arbi-
tration and for assessment was measured (n=3064). No evidence was found of a 
change in the time taken to read films and no evidence of a change in rates of 
referral or recall. Estimates of the cost implications were made under three dif-
ferent scenarios for screening units. We conclude that single reading with CAD 
is likely to be a cost-effective alternative to double reading in terms of radiolo-
gist time. Published data however shows increased recall rates using CAD and 
no significant increase in sensitivity for CAD use over single reading. Any de-
cision to introduce CAD instead of double reading should take into account the 
impact of sensitivity and specificity on women attending for screening. 

Keywords: cost analysis, workflow, CAD, screening. 

1   Introduction 

Computer aided detection (CAD) systems for mammography are widely used in the 
United States to improve cancer detection by a single reader. In Europe, however, 
where double reading is more common, the argument commonly made for CAD is 
that it could allow a single reader to achieve a sensitivity equivalent to that of double 
reading. This would be desirable either if some screening centres are, in practice, 
unable to perform double reading or if replacing double reading by single reading 
with CAD would save money.   

Existing research has concentrated on the sensitivity of CAD and relatively little is 
known about its cost-effectiveness or its impact on workflow. We have previously 
conducted an economic assessment of CAD as part of an early study of its impact on 
sensitivity and specificity.[1] That study failed to show an improvement in decision-
making with CAD, so inevitably the economic assessment was that CAD was cost-
increasing. Lindfors et al. use a Markov model simulation to show that adding CAD 
to a mammographic screening programme based on single reading resulted in a mean 
cost per years of life saved of $19,058, which we would regard as an encouraging 
estimate for CAD.[2] Their model, however, includes an assumption that the impact 
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of CAD is to reduce false negatives by 77%, a figure taken from a study by Warren 
Burhenne et al. which showed that CAD prompted 77% of previously missed can-
cers.[3] However prompted cancers may still be missed by radiologists and this figure 
should be interpreted as the maximum potential impact of that CAD implementation. 
The Centre for Evidence-based Purchasing recently published an ‘Economic Report’ 
on CAD which concluded that double reading was cheaper than single reading with 
CAD.[4] Their study relied on estimates of reading time that were obtained using 
analogue film. Mammography is in the process of adopting digital technology, which 
dramatically simplifies the provision of CAD. The purpose of our evaluation was 
therefore to assess the impact on workflow and cost of using CAD with Full Field 
Digital Mammography (FFDM). The evaluation was performed in a UK screening 
unit that uses a protocol of double reading with arbitration in which any film that 
either reader considers suspicious is referred for arbitration by two film readers. The 
unit employs a mix of film readers, all of whom have specialist training in screening 
mammography. Some are consultant radiologists, others are radiographers (techni-
cians) who have elected to specialize in mammography and train as screening film 
readers.  

2   Impact on Workload 

2.1   Method 

For the purposes of the study a Hologic Selenium FFDM with CAD was installed in 
the South West London Breast Screening Unit in August 2007. Initially the system 
was used without CAD to allow readers to become familiar with the technology. 
Problems with the reliability of the system led to the machine being removed. A 
newer version of the Selenium was installed in November 2008. Data was initially 
collected again without using CAD. CAD was used from December 2008 to March 
2009. Prior to CAD use readers received the following training:  

1. Manufacturer’s standard training (one session with an applications specialist and 
an e package of instructions was available) 

2. A training roller consisting of a set of cancer cases with CAD prompts and feed-
back of radiological findings at screen reading, assessment and definitive patho-
logical findings at surgical treatment. 

The South West London Screening Unit uses an automated data entry system, inte-
grated with a national information system, for analogue screening. Since this system 
was not integrated with the FFDM system, readers used paper forms to record the 
outcomes of digital films, rather than attempt to use two different computerized sys-
tems for a single task.     

Data were collected to assess the impact of CAD on (a) reading times and (b) the 
percentage of cases sent to arbitration and assessment. Data were collected in two 
time periods. Seventy-three sessions were observed between 22nd August 2007 and 
4th Jan 2008. Each session was double-read giving a total of 146 observed sessions. 
There was missing data on timing in 30 of these, leaving a total of 116 measurements. 
During this period film readers used the FFDM machine without CAD.  Seventy 
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seven sessions were observed between 21st October 2008 and 14th March 2009, mak-
ing 154 observations. Sixteen film readers participated, including 11 consultant radi-
ologists and five film-reading radiographers (technicians). 

Twenty-one sessions had missing data on reading times, 14 were not considered 
because fewer than 5 sets of films were read (the time per case is unlikely to be meas-
ured accurately in these cases) and four were considered outliers. (274 of the sessions 
in this study were read at under 1 minute 45 seconds per film, four were read at be-
tween 2 minutes 20 seconds and 3 minutes 55 seconds per film. It was assumed that 
either that the timing data were recorded incorrectly in these four sessions or that 
some additional activity had taken place during the sessions.) Of the four outliers, one 
was read with CAD, three without. Of the included observations, 25 did not use CAD, 
91 did.  

In addition to comparing timing data for readers with and without CAD, we com-
pared timing data for radiologists and film-reading radiographers, for first and second 
readers and for readers in the earlier and later phases of the study.  

2.2   Results 

The times taken by radiographers and by radiologists to read films were compared in 
the pre-CAD phase. The mean time per case for a radiologist (n=11) was 67 seconds 
(CI: 55-80), compared to 84 seconds (CI: 55-113) for a radiographer (n=5), suggest-
ing that there was no significant difference between time taken by a radiologist or by 
a radiographer. However, the mean time per film for a radiographer-read session 
(n=23) was 74 seconds (CI: 61-88), compared to 56 seconds (CI: 52-61) for a radiolo-
gist-led session (n= 96). Plotting the number of sessions read against the time taken 
per case for each reader (Figure 1) suggested that this is because a small number of 
readers who read large numbers of films on FFDM were much faster, and that more 
of these readers were radiologists.  

 

Fig. 1. Plot of reading speed against volumes read with FFDM for film-reading radiographers 
and radiologists 
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Timing data for the two periods is summarised in Table 1. None of the observable 
comparisons (with CAD vs without CAD, first reader vs second reader, 2007-8 vs 
2008-9) are statistically significant, and none of the interactions are significant.  

Table 1. Timing data for cases read with and without CAD in the two periods, 2007-8 and 
2008-9. Data are presented for first and second readers separately. 

Reader 
 

Period Protocol No. of Cases Mean time per case 
(secs) 

First 2007-8 Without CAD 1711 62 

 2008-9 Without CAD 185 63 

 2008-9 With CAD 849 60 

Second 2007-8 Without CAD 1871 57 

 2008-9 Without CAD 216 53 

 2008-9 With CAD 878 54 

 
 

Outcomes for these cases are summarised in Table 2. Analysis of the data on 
screening outcomes for cases handled with FFDM during the study period was carried 
out excluding some clinics where CAD was used by one reader and not the other. No 
statistical differences were detected on comparison of clinics read with and without 
CAD for any of the outcomes measured (referral to arbitration, referral to assessment 
or cancers detected). It should be noted that this was not a trial of the sensitivity of 
CAD: the numbers assessed for recall from screening and detected cancer are small 
and the proportions are not a reliable assessment of overall performance.  

Table 2. Outcomes for women handled using FFDM during the study period 

Period Protocol No. of 
cases 

Proportion sent 
to arbitration 

(per 1000 cases) 

Proportion sent to 
assessment 

(per 1000 cases) 

Cancers 
detected 
(per 1000 

cases) 
2007-8 Without CAD 2087 156.7 49.3 6.2 

2008-9 Without CAD 174 137.9 74.7 11.5 

2008-9 With CAD 803 130.7 43.6 10 

3   Impact on Cost-effectiveness 

3.1   Methods 

Calculations of cost effectiveness are based on the balance of cost of radiologist time 
saved or spent in screening and post-screening assessment by using CAD with single 
reading instead of double reading and the cost of CAD workstations. To estimate the 
cost implications of using CAD, we considered the possible impact on three hypo-
thetical screening centres, chosen as the lower quartile, median and top quartile in 
terms of numbers of women screened in 2007/08.[5] We used the median national 
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value for initial recall rate, 4.5%, in that year for all three centres. We calculated the 
amount of time that would be saved in moving from double reading to single reading 
with CAD, assuming CAD has no impact on time taken to read films (59 seconds) 
and no impact on the number of cases sent to arbitration. 

Estimates of recall rate vary, we consider three estimates from a recent multi-centre 
randomized controlled trial in the UK comparing double reading to single reading 
with CAD: the highest and the lowest figures from the centres studied, and the 
mean.[6] Since estimates of the cost implication of additional recalls also vary, we 
calculated impact under three different assumptions: assuming each additional recall 
for assessment required 20, 40 or 60 minutes of radiologist time. 

All costs are calculated assuming a time horizon of 7 years, assuming this to be a 
reasonable lifetime for this kind of system, taking the Treasury target rate of 2% as an 
estimate for inflation and using the recommended discount rate for future expenditure 
of 3.5%1. [7] Figures are presented as the average annual cost over the seven years. 
Figures for radiologist costs (£163 per hour in 2007/08) were obtained from a stan-
dard reference source. We assume all films are read by consultant radiologists and 
that there are no other costs associated with double reading or with additional recalls. 
Cost quotes for R2 licenses and maintenance were provided by Medical Imaging 
Systems Ltd.[9] The costs include three elements: cost of a licence for a CAD work-
station, cost of an additional licence allowing CAD to be read on an additional  
softcopy workstation and cost of maintenance. The costs of the two licences vary 
according to the number of licences purchased. We present costs for a range of con-
figurations, factoring in the cost of a all-inclusive maintenance contract. Again we 
assume no additional costs implied by CAD other than the initial purchase and a 
maintenance contract covering upgrades.  

3.2   Results 

Potential cost reductions are shown in Table 3 for a small, medium and large 
screening unit, on the assumption of a 3%, 15% and 37% increase in recall to as-
sessment and assuming 20, 40 and 60 minute appointments for assessment. A minus 
sign indicates a negative saving, i.e. a cost increase. CAD may be cost-effective as 
an alternative to double reading if the mean annual cost is less than the amount 
saved through the reduced use of radiologist time. Table 4 shows the mean annual 
cost for a variety of possible configurations. A comparison of the Tables 3 and 4 
shows under what circumstances a CAD installation will be cost-effective. No in-
stallation will be effective if the impact on recall rate is high and recall appoint-
ments are long. If, for example, 8 workstations are required to handle throughput in 
a large screening unit, then the average annual cost will be £41,374. For there to be 
a saving, either the appointments will have to average less than 40 minutes, or the 
impact on recall rate will have to be no more than 15%. There is scope for a cost-
effective use of CAD. 

                                                           
1 Discounting is a technique used in economic assessments to take account of the fact that, all 

other things being equal, one would prefer to defer payments. Therefore future costs are ‘dis-
counted’ at a rate intended to reflect the strength of that preference.  
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Table 3. Mean annual reduction in radiologist salary costs achieved by moving from double 
reading to single reading 

Time taken per patient at assessment 
 

Size of unit  Relative increase in 
recall rate 

20 mins 40 mins 60 min 
3% 31,516 30,701 29,910 

15% 28,002 23,567 19,262 

Small 
(12,000 films 

p.a.) 

37% 21,522 10,410 -375 

3% 47,350 46,126 44,937 

15% 42,071 35,407 28,940 

Medium 
(19,000 films 

p.a.) 

37% 32,335 15,641 -563 

3% 68,937 67,154 65,423 

15% 61,251 51,549 42,133 

Large 
( 27,000 films 

p.a.) 

37% 47,077 22,771 -820 

Table 4. Mean annual costs of purchase plus maintenance for possible CAD installations. Note 
each CAD machine supports one acquisition system by default but can be configured, on the 
purchase of additional licences, to support up to three additional acquisition systems. 

  Number of base CAD systems purchased 
  1 2 3 4 

0 7,201 12,740 18,279 23,818 

1 10,780 19,898 29,017 38,135 

2 14,359 27,057 39,755 52,452 

Licenses for 
additional  

workstations  
per base system 

3 21,518 41,374 61,230 81,085 

4   Discussion and Conclusions 

The evaluation reported here found that CAD slows readers down or encourages them 
to recall more women for arbitration or for referral. All cases in this study were dou-
ble read and the knowledge that another reader would also look at the case may have 
influenced readers’ response to CAD. It is possible that a reader single reading with 
CAD would take longer than the readers in this study. 

It is clear that using CAD with FFDM is a much more straightforward proposition 
than using CAD with analogue films. This is because the digitization step is not re-
quired and no modification of the usual display technology is required. There is no 
discernable effect on reading time. In an earlier study of CAD by this group, using 
analogue films, reading time was 25 seconds without CAD and 45 seconds with CAD 
so there was very little time saved by using CAD rather than double reading. In fact 
extra time was consumed since there were extra recalls. Although the timings ob-
tained from that study cannot be compared to the timings in this study, since the re-
cording processes were different, we can conclude that the negative impact of CAD 
on reading times observed in that study, was not observed now.  
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In addition, in this study, there was no evidence of an increase in recall rates. If this 
finding were robust, this would suggest that overall film reader time would be saved 
by replacing double reading by single reading with CAD. However the evidence on 
recall rates from this study should be considered in conjunction with that from other 
studies - such as the Gilbert et al. study and the Taylor and Potts systematic review of 
published studies up to 2008 - both of which suggest that CAD significantly increases 
recall rates.[6,10] That said, there is sufficient heterogeneity in the observed results in 
both those studies to suggest that some centres are able to introduce CAD while con-
trolling the impact on recall rates. 

The impact of CAD on cancer detection also remains uncertain with conflicting 
evidence from the Taylor and Potts review, which showed a non significant increase 
(odds ratio 1.04, CI 0.96-1.13) and Gilbert et al. showing equivalence to double read-
ing on a single multicentre study. The study reported here lacked the statistical power 
to show an impact on cancer detection rates and the cost-effectiveness calculation has 
been based on the assumption that single reading with CAD and double reading 
would detect equal numbers of cancers. 

CAD seems to save radiologist time and costs, unless the impact on recall rates is 
at the higher end of that identified in the studies seen so far, and if the additional re-
calls are especially expensive in terms of radiologist time. Our calculations - and our 
conclusions - differ from those of the Centre for Evidence-based Purchasing.[4] They 
use a figure of £72 an hour for radiologist time, based on a published figure for annual 
salary and an assumption of a 40 hour week. We took a figure of £163 an hour from 
thea standard reference source.[8] This figure includes not just salary but on-costs 
(employer’s health insurance) and other overheads including the investment in pre-
registration training, annuitized over the consultant’s expected working life. The fig-
ure is also calculated so that the cost of the time spent on direct patient-related activity 
reflects the normal ratio of such activity to other tasks. We feel that this figure pro-
vides a more realistic assessment of the true costs of radiologists’ time. However, we 
accept that this takes a broader perspective on the issue than some decision-makers 
might want. The Centre for Evidence-based Purchasing also base their assessment of 
the time taken to read films on the data from Khoo et al. study which used digitized 
analogue films, an ergonomically different task from that of reading FFDM films with 
or without CAD.[11]  

Our calculation assumes that the only extra cost incurred if additional women are 
recalled for assessment is the cost of the radiologist’s time. The NHS Purchasing and 
Supply Agency, however, include elements for the cost of consumables and the time 
of other staff, including administrators and radiographers. This is a sounder basis on 
which to cost recall rates. The final estimate of the cost of an assessment visit is £125. 
Note that they estimate the cost of double reading to be £1 per case, and the cost of 
single reading with CAD to be £0.92, based on very different timing figures to those 
used here (25 seconds per case without CAD, 45 seconds with CAD). Given these 
figures, even a moderate increase in rate of recall to assessment would obliterate any 
possible savings from replacing double reading with single reading with CAD. 

For the purposes of the cost-effectiveness calculation, we have assumed that all 
films are read by radiologists. In fact, 21% of the films in our study were read by 
film-reading radiographers. The Personal Social Services Research Unit’s Unit Costs 
of Health and Social Care 2008 estimates that the cost per hour of patient related 
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activity - allowing for on-costs, overheads and the annuitized cost of the investment in 
training - is £48 for a radiographer, 29% of the cost of a consultant radiologist. The 
evidence of this study is that the time taken to read films was a function of experience 
with FFDM rather than professional qualification. Other studies report that radiogra-
phers are able to read screening mammograms at least as well as radiologists.[12] The 
use of radiographers in double reading clearly reduces the savings that might be ob-
tained by moving to single reading with CAD and may well be a more cost-effective 
alternative. 

The decision to move from double reading to single reading with CAD should be 
made on an analysis not just of the costs in radiologist time, but of the impact on the 
women attending screening on sensitivity and specificity for cancer detection. 

 
Acknowledgments. The assistance of staff at the South West London Screening Cen-
tre is gratefully acknowledged. Medical Imaging Systems provided cost data at the 
request of Dr Maureen Gillan from the University of Aberdeen. The work was carried 
out as part of an evaluation supported by NHS Breast Screening Programme. 

References 

1. Taylor, P., Champness, J., Given-Wilson, R., et al.: Impact of computer-aided detection 
prompts on the sensitivity and specificity of screening mammography. Health Technol. 
Assess. 9(6), iii (2005) 

2. Lindfors, K.K., McGahan, M.C., Rosenquist, C.J., Hurlock, G.S.: Computer-aided detec-
tion of breast cancer: a cost-effectiveness study. Radiol. 239(3), 710–717 (2006) 

3. Warren Burhenne, L., Wood, S., D’Orsi, C., et al.: Potential contribution of computer-
aided detection to the sensitivity of screening mammography. Radiol. 215, 554–562 (2000) 

4. Centre for Evidence-based Purchasing Economic report: Computer-aided detection in 
mammography CEPP09040 (February 2009), NHS Purchasing and Supply Agency, 
http://www.pasa.nhs.uk/pasa/Doc.aspx?Path=%5BMN%5D%5BSP%5D/N
HSprocurement/CEP/CEP09040.pdf 

5. NHSBSP Breast Screening Programme, England 2007-08 The Health and Social Care In-
formation Centre, http://www.cancerscreening.nhs.uk 

6. Gilbert, F.J., Astley, S.M., Gillan, M.G., et al.: Single reading with computer-aided detec-
tion for screening mammography. N. Engl. J. Med. 359(16), 1675–1684 

7. HM Treasury The Green Book: Appraisal and Evaluation in Central Government, 
http://www.hm-treasury.gov.uk/data_greenbook_index.htm 

8. Personal Social Services Research Unit Unit Costs of Health and Social Care (2008), 
http://www.pssru.ac.uk/pdf/uc/uc2008/uc2008.pdf 

9. Medical Imaging Systems personal communication 
10. Taylor, P., Potts, H.W.: Computer aids and human second reading as interventions in 

screening mammography: two systematic reviews to compare effects on cancer detection 
and recall rate. Eur. J. Cancer. 44(6), 798–807 (2008) 

11. Khoo, L., Taylor, P., Given-Wilson, R.: Computer-aided detection in the UK National 
Breast Screening Programme: prospective study. Radiol. 237, 444–449 (2005) 

12. Wivell, G., Denton, E.R., Eve, C.B., et al.: Can radiographers read screening mammo-
grams? Clin. Radiol. 58(1), 63–67 (2003) 



 

J. Martí et al. (Eds.): IWDM 2010, LNCS 6136, pp. 9–14, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Performance of Triple-Modality CADx on Breast Cancer 
Diagnostic Classification 

Neha Bhooshan, Maryellen L. Giger, Karen Drukker, Yading Yuan,  
Hui Li, Stephanie McCann, Gillian Newstead, and Charlene Sennett 

Department of Radiology, The University of Chicago 
5841 South Maryland Avenue, Chicago, Illinois 60637 

bhooshan@uchicago.edu 

Abstract. The purpose of this study is to evaluate the potential of computer-
aided diagnosis (CADx) methods utilizing three breast imaging modalities: 
full-field digital mammography (FFDM), sonography, and dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) for breast lesion classifi-
cation. Three separate databases for each modality were retrospectively  
organized: FFDM (255 malignant lesions, 177 benign lesions), ultrasound 
(968 malignant lesions, 158 benign lesions), and DCE-MRI (347 malignant 
lesions, 129 benign lesions). From these single-modality databases, three 
dual-modality databases were constructed as well as a triple-modality data-
base (31 malignant lesions, 17 benign lesions). Our computerized analysis 
methods consisted of several steps: (1) automatic lesion segmentation; (2) 
automatic feature extraction; (3) automatic feature selection; (4) merging of 
selected features into a probability of malignancy. Stepwise linear discrimi-
nant analysis using a Wilks lambda cost function in a leave-one-lesion-out 
method was used for feature selection. The selected features were merged us-
ing a Bayesian artificial neural network (BANN) with a leave-one-lesion-out 
method. The classification performance was assessed using receiver-
operating characteristics (ROC) analysis. Results showed that the computer-
ized analysis of breast lesions using image information from all three  
modalities yielded an AUC of 0.95±0.03.  The observed trend of increasing 
performance as information from more modalities is included in the classifier 
indicates that the use of all three modalities can potentially improve the diag-
nostic classification of CADx.  

Keywords: computer-aided diagnosis, mammography, ultrasound, DCE-MRI, 
multi-modality. 

1   Introduction 

Breast cancer is the most common cancer and the second leading cause of cancer 
death in women in Western countries[1]. Imaging has become a key part of a patient’s 
workup for diagnosis, treatment decisions, and therapy monitoring. Although mam-
mography is the primary breast imaging modality, sonography and DCE-MRI have 
emerged as complementary modalities. Different modalities have different strengths 
and weaknesses, and radiologists have found that using all three modalities helps in 
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their interpretation task. In addition, computer-aided diagnosis (CADx) schemes have 
been developed to further aid radiologists in analyzing images [2]. 

We have previously developed and reported on single-modality [3-9] and dual-
modality [10,11] CADx for breast lesions.  The purpose of this current study is to 
combine computer-extracted features from all three modalities (mammograms, sono-
grams, and MRI images) to generate a single computer-estimated probability of ma-
lignancy and evaluate its performance and potential role in distinguishing malignant 
from benign lesions. 

2   Materials and Methods 

2.1   Database 

All images (mammography, sonography, MRI) were acquired at the University of 
Chicago Medical Center (UCMC) between 2002 and 2006 and retrospectively  
collected under institutional review board (IRB) approved protocols with HIPAA 
compliance. 

The full-field digital mammogram (FFDM) database consisted of 255 malignant 
lesions and 177 benign lesions. The number of images per lesion ranged from 1 to 3 
including standard and special views. All images were acquired on a GE Senographe 
2000D system (GE Medical System, Milwaukee, WI) at 12-bit quantization with pixel 
size of 100μm. The ultrasound database contained 968 malignant and 158 benign  
lesions, and all images were obtained from a Philips HDI 3000 scanner (Philips, An-
dover, MA). The DCE-MRI database consisted of 347 malignant and 129 benign le-
sions. The images were acquired with a T1-weighted spoiled gradient echo sequence 
using Gd-DTPA on a 1.5T GE Signa MRI scanner (GE Medical System, Milwaukee, 
WI). Each case had one precontrast and three to five postcontrast series at intervals of 
68 seconds, and each series contained 60 coronal slices. 

In previous studies, we created three dual-modality databases (mammography-
ultrasound, ultrasound-MRI, mammography-MRI) from the single-modality data-
bases. The mammography-ultrasound database contained 40 malignant and 60 benign 
lesions while the ultrasound-MRI database had 56 malignant and 33 benign cases. 
The mammography-MRI database contained 168 malignant and 45 benign lesions. 
The triple-modality database had 31 malignant and 17 benign lesions. It should be 
noted that the number of cases decrease due to the criteria that the lesion be imaged 
by either both or all three modalities. 

2.2   Computerized Analysis and Performance Evaluation 

Our computerized analysis method consisted of several steps: (1) automatic lesion 
segmentation; (2) automatic feature extraction in terms of mathematical descriptors; 
(3) automatic feature selection; (4) merging of selected features into a probability of 
malignancy [3-9]. For each type of image, a different segmentation algorithm was 
used and different features were calculated. For the mammograms, a dual-
segmentation based on the active contour model was used to segment the lesion 
from the surrounding parenchyma, and then fifteen features are extracted. Similarly, 
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the lesion on each ultrasound was segmented and forty features describing shape, 
margin, texture, and posterior acoustic behavior were calculated. Fuzzy c-means 
(FCM) was used to automatically segment the lesion in the DCE-MR image and 
then to extract the lesion’s characteristic kinetic curve. Thirty-one features includ-
ing textural, morphological, kinetic, and spatial enhancement variance features were 
generated. 

Stepwise linear discriminant analysis using a Wilks lambda cost function [12] in a 
leave-one-lesion-out (LOLO) method was used for feature selection. Feature selec-
tion was initially performed on each of the large single-modality databases as well as 
on the dual-modality databases. Due to the small size of the triple-modality database, 
only the features selected from the single-modality databases were input to the multi-
modality feature selection process. The selected features were merged using a Bayes-
ian artificial neural network (BANN) [13] with a leave-one-lesion-out method, to 
generate a probability of malignancy. The classification performance was assessed 
using receiver-operating characteristics (ROC) analysis [14]. 

3   Results 

We have already completed previous studies on single-modality and dual-modality 
CADx using mammography, sonography, and DCE-MRI.  To summarize, we 
achieved AUC values of 0.75±0.04, 0.88±0.01, and 0.79±0.04 for mammography, 
ultrasound, and MRI, respectively.  For the dual-modality databases, we achieved 
higher AUC values of 0.87±0.03, 0.92±0.03, and 0.93±0.04 for mammography-MRI, 
mammography-ultrasound, and ultrasound-MRI, respectively.  These performances as 
well as the associated selected features are shown in Figure 1. 

For the triple-modality database, feature selection yielded features from all three mo-
dalities: two ultrasound features (texture and ratio in average gray in/rim), one mam-
mography feature (spiculation based on region of interest (ROI)), and one MRI feature 
(time to peak). The LOLO cross-validation using a BANN to merge the selected fea-
tures yielded an AUC of 0.95±0.03.  These results are also tabulated in Figure 1. An 
example lesion from the triple-modality database with corresponding mammogram, 
ultrasound, and DCE-MRI images is shown in Figure 2. 

In order to perform LOLO for each combination of modalities within the same da-
tabase, we repeated the LOLO on the single-modality and dual-modality using only 
the cases in the triple-modality cases (31 malignant, 17 benign). As shown in Table 1, 
we achieved AUC values of 0.76 ± 0.07, 0.81 ± 0.06, and 0.73 ± 0.07 for mammogra-
phy, ultrasound, and MRI, respectively.  For the dual-modality classification, we 
achieved AUC values of 0.89 ± 0.05, 0.85 ± 0.06, and 0.87 ± 0.05 for mammography-
MRI, mammography-ultrasound, and ultrasound-MRI, respectively. 

It is important to note that due to the limited size of the triple-modality database at 
this time, one can only assess trends in performance as more modalities are added to 
the classification, and not perform statistical analyses. 
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Ultrasound (US) 
Lesions 968 Malignant 

158 Benign 
Features • Texture 

• Depth-Width 
ratio 

• Ratio in avg 
gray in/rim 

• Posterior 
acoustic 
signature 

AUC±SE 0.88±0.01 

DCE-MRI 
Lesions 347 Malignant 

129 Benign 
Features • Irregularity 

• Time to peak 
• Variance in 

time to peak 
• Maximum 

variance 
enhancement 

AUC±SE 0.79±0.04 

Mammography - US 
Lesions 40 Malignant 

60 Benign 
Features • Posterior 

acoustic 
signature (US) 

• Depth-Width 
ratio (US) 

• RGI (US) 
• Gradient 

texture 
(mammo) 

AUC±SE 0.92±0.03 

US - MRI 
Lesions 56 Malignant 

33 Benign 
Features • Sum Entropy 

(MRI) 
• Average 

gradient 
strength (US) 

• Circularity 
(US) 

• Average gray 
rim (US) 

AUC±SE 0.93±0.04 

Mammography 
Lesions 255 Malignant 

177 Benign 
Features • Diameter 

• Gray level 
• Contrast 
• Spiculation 

ROI 
• Spiculation 

margin 

AUC±SE 0.75±0.04 

Mammography – US - MRI 
Lesions 31 Malignant 

17 Benign 
Features • Texture (US) 

• Ratio in average gray in/rim (US) 
• Spiculation ROI (mammo) 
• TTP (MRI) 

AUC±SE 0.95±0.03 

Mammography - MRI 
Lesions 168 Malignant 

45 Benign 
Features • Spiculation 

ROI 
(mammo) 

• Curve 
Shape Index 
(MRI) 

• Time to 
Peak (MRI) 

AUC±SE 0.87±0.03 

 

Fig. 1. Database, selected features, and preliminary performance for single-modality, dual-
modality, and triple-modality CADx for breast lesion diagnostic classification in the task of 
distinguishing between malignant and benign breast lesions.  Due to limited database size, fea-
ture selection for the triple-modality CADx included only features previously selected by the 
single-modality analyses.  AUC=area under the ROC curve, SE=standard error. 
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(a) Mammography (b) Ultrasound (c) DCE-MRI 

Fig. 2. Example lesion in triple-modality database: (a) mammography, (b) ultrasound, and (c) 
DCE-MRI images of the same lesion 

Table 1. Performance of single-modality, dual-modality, and triple-modality classification only 
within the triple-modality database (31 malignant, 17 benign lesions). AUC=area under the 
ROC curve, SE=standard error. 

Database Selected Features AUC ± SE 
Single Mammography Contrast (mammo) 

Average Gray Level (mammo) 
Spiculation Margin (mammo) 

0.76 ± 0.07 

Single US Ratio in average gray in/rim (US) 
Posterior Acoustic Signature (US) 

0.81 ± 0.06 

Single DCE-MRI Curve Shape Index (MRI) 
Variance in Margin Sharpness (MRI) 

0.73 ± 0.07 

Dual Mammography-MRI Variance in Margin Sharpness (MRI) 
Spiculation ROI (Mammo) 

0.89 ± 0.05 

Dual Mammography-US Ratio in average gray in/rim (US) 
Texture (US) 
Spiculation ROI (Mammo) 

0.87 ± 0.05 

Dual US-MRI Posterior Acoustic Signature (US) 
Texture (US) 
Curve Shape Index (MRI) 

0.85 ± 0.06 

Triple Mammography-US-MRI Texture (US) 
Ratio in average gray in/rim (US) 
Spiculation ROI (mammo) 
TTP (MRI) 

0.95 ± 0.03 

4   Summary 

In this study, we evaluated our automatic computerized methods in the task of breast 
lesion classification using computer-extracted features from three modalities: full-
field digital mammography, ultrasound, and DCE-MRI.  Features from all three mo-
dalities were selected as the most effective features for distinguishing malignant from 
benign lesions in the triple-modality database, and the resulting performance of our 
CADx method yielded an AUC of 0.95±0.03. 

A limitation of the study is the small sizes of the dual-modality and triple-modality 
databases.  However, we believe this preliminary study shows a promising trend in 



14 N. Bhooshan et al. 

 

the improvement in diagnostic classification of breast lesions from single-modality 
and dual-modality CADx to triple-modality CADx.  We are currently collecting a 
larger triple-modality database to validate these observed trends. 
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Abstract. Needle insertion planning for breast biopsy has the potential to im-
prove patient comfort and intervention safety. However, this is a challenging 
task because of the infinite possibilities of insertion points and the breast tissue 
deformations during the procedure. In this paper, we present a novel approach 
that couples probabilistic motion planning methods with Finite Element Simula-
tion in order to find an optimal path taking breast deformation into account. 
This method reduces the error (i.e. the distance between the needle tip and the 
lesion) meanly by 80% and the proposed planner divides the planning time by 5 
in comparison to a classic Rapidly-Exploring Random Tree planning method. 

1   Background 

In stereotactic biopsy procedures, the radiologist chooses the needle insertion point 
according to the lesion position into a breast quadrant and tries to minimize the path 
length in order to limit risks of infections and haematomas. Deurloo et al. [1] showed 
that displacements of breast tissue and needle deviation during this type of interven-
tions cause an error of 2.4 mm, limiting the achievable diagnostic accuracy. 

The introduction of digital breast tomosynthesis (DBT) modality can offer new 
possibilities for screening and diagnosis [2] but also for needle biopsy procedures. 
DBT gives access to spatial coordinates of any voxel in the reconstructed volume of 
the breast instead of having only the 3D coordinates of the target with the classic 
stereotaxy procedure. Using the reconstructed volume, a 3D model of the breast  
can be established and some specific zones to be preserved, such as vessels, can be 
segmented. 

Therefore, DBT biopsy can be considered as a searching problem for needle paths 
avoiding forbidden zones. It can be then formulated as a motion-planning problem for 
a needle progressing into deformable tissue where vessels are the obstacles. Breast 
needle path planning is intrinsically a challenging problem because of the infinity of 
possible insertion points and because of the mutual dependence between the final 
position of the lesion and the needle insertion point (respectively final and initial 
configuration in the motion planning formalism). 

Combining motion-planning techniques with the simulation of soft tissue deforma-
tions to determine a needle trajectory has already been proposed in the literature, 
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often applied to brachytherapy [3]. Nevertheless the authors are restricted to 2D envi-
ronments [3][4] or to biopsy guidance devices with 2 degrees of freedom [5]: a trans-
lation and a rotation along the needle axis, which is not the case for breast biopsy 
guidance devices at the moment (only one translation). Dehghan et al. have presented 
in [6] a 3D planning method in the case of brachytherapy taking soft tissue deforma-
tions into account. Nevertheless, even if there is an infinity of possible needle inser-
tion points as in our case, their optimization method is only well-suited to aim at 3 (or 
more) quasi-aligned targets. 

2   Method 

The aim of the proposed approach is to find an optimal insertion point and an optimal 
needle path constrained regarding the application specificities: the needle orientation 
is fixed during its insertion, there is no real-time image feedback that could be used in 
visual servoing architecture and breast deformation should be taken into account. 

Traditionally, motion-planning algorithms were based either on exact and complete 
methods (the planner always produces a feasible path, when one exists), or on heuris-
tic methods. The complexity of the first techniques, in particular regarding high di-
mension systems, has limited their use. The second ones are not complete. Recently, 
non-deterministic approaches were proposed in the literature, some of them are based 
on the exploration of the admissible configurations space (CS); the others try to catch 
the connectivity of CS. These techniques, called probabilistic methods, overcome the 
exponential complexity of the problem (in terms of degree of freedom) and they also 
verify probabilistic completeness propriety (the probability that they will produce a 
solution approaches 1 as more time is spent). These probabilistic methods are less 
sensible to the dimension of the research space and turns out to be very efficient [7]. 

In addition, two types of physical deformation models are used to analyze defor-
mations of anatomical parts: mass-spring model and Finite Element (FE) method. The 
FE method produces realistic deformations for a continuum compared to the discrete 
mass-spring model, whose stiffness coefficients are often difficult to determine [8]. 

Therefore, in this paper, we present a hybrid method combining probabilistic mo-
tion planning techniques with Finite Element (FE) simulation to solve our problem. 

First, the radiologist selects in a slice of the DBT reconstructed volume, the lesion 
(s)he wants to biopsy. The coordinates of the target in the planning system, noted 
L=(XL, YL, ZL), are calculated from the selected pixel and the reconstruction scale 
factors. To perform an accurate puncture, the slice should be selected so that the tar-
get is in focus. To guaranty a precision of 1 mm, a 0.5 mm sampling in depth dimen-
sion is done (Shannon criterion).  

From the DBT volume, a triangular mesh of the patient breast surface BS and a pa-
tient-specific tetrahedric mesh M of the breast are generated using VTK [9], as shown 
in Figure 1. This mesh M is remeshed in order to have one node corresponding to the 
target. Knowing the geometry of the biopsy device, a subset of BS, BS', is defined 
corresponding to the surface of the breast where the needle can be inserted. In Figure 
1, BS' is represented in pink. Synthetic vessels (obstacles) are added to the environ-
ment in red, as well as the detector and compression paddle. 
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Fig. 1. Up: Simulator graphic environment. Down: Tetrahedric mesh of the breast M and the 
remeshing process. 

The proposed planning approach is articulated in four steps: 

• Generation of a low-cost path P’ with relaxed constraints 
• Needle insertion simulation along P’ and ZP’ definition 
• Family FP’ of optimal candidate paths generation   
• Optimal path P* selection 

Each step will be detailed next. 
 

• Step 1: Generation of a low-cost path P’ with relaxed constraints 
 
Without taking breast deformations into account, N free needle paths (meaning paths 
presenting no collision with any forbidden zones) are computed using probabilistic 
planning techniques. The path generation algorithms used are described below. 

Then, a cost function C is defined. C depends on the radiologist preferences: length 
of the path, distance to the chest wall, … For each path, P, the cost c is computed:  

)L( ) - (1Obst)),(d(min Pα  ni  -  α  C(P) P  ni ×+×= ∈  

where ni are the nodes of the path P, d is a metric measuring the distance between the 
nodes and the obstacles, L is the length of the path and α, a weighting factor.  

The free needle path with the lower cost, noted P’, is selected. 
Figure 2 illustrates the generation of the free needle paths and the selection of the 

lower cost path P’. 

 

Fig. 2. Left: N free paths are generated. Right: the lower cost path P’ is selected. The breast is 
seen from the back. 

In this paper, we focus on a new path generation algorithms used for this first step. 
In our previous work [10], we first extended to our problem a technique developed for 
prostate treatment: a Rapidly Exploring Random Tree (RRT) method [11] with back-
chaining [12] has been adapted. The contribution of this paper is a novel approach to 
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find a free path going from the lesion L to BS'. Instead of sampling randomly from the 
configuration space, we proposed to bias the sampling toward the initial surface BS'. 

Initial Surface Biased Algorithm: a point S ∈ BS' is randomly selected. As the plan-
ning problem is holonomic, the optimal value for the input u applied to the tree root L, 
can be easily chosen by the calculation of a parametric equation of the trajectory go-
ing through L and S.  

In our application, two types of needle trajectories are generated. A symmetric-tip 
needle exerts forces on the tissue equally in all directions so it follows a straight line 
when it is inserted into homogeneous tissue. A bevel-tip needle exerts forces asym-
metrically and bends in the direction of the bevel. It follows an arc of circle [13] 

whose curvature depends on the needle itself and tissue characteristics. Figure 3 illus-
trates the different types of needle trajectories. 

 

Fig. 3. Trajectories generated by non-steerable needles (orientation fixed). Left: a symmetric 
rigid needle follows a straight line. Right: a bevel-tip flexible needle follows an arc of circle. 

Therefore, two types of parametric equation have to be calculated. If L = (XL, YL, 
ZL) and S = (XS, YS, ZS), for symmetric stiff needles, the parametric equation of the 
path is:   
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For bevel-tip needles, the parametric equation of the path is: 
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and M the middle of [SL]. The coordinates of C can be calculated from the equations: 
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When the path is generated, the collision detector checks that it is at a certain dis-
tance D from the obstacles. D is defined by the user and can be adjusted to take into 
account the needle diameter. 

This new initial surface based algorithm generates free paths going from the lesion 
L to a breast surface point S.  
 

• Step 2: Needle insertion simulation along P’ and ZP’ definition  
 

The needle insertion along P’ is simulated using FE analysis and a zone ZP’ around 
the final target position is defined. The technique used for needle insertion simula-
tions is described in step 4. Figure 4 illustrates the displacement of the target. The 
needle is represented in red, the initial position of the target is in dark red (needle tip) 
and the final position of the target taking into account breast deformations is brighter 
and is the center of the illustrated cubic zone ZP’. 

 

               

Fig. 4. Left: Displacement of the target. Right: zoom on the target final position and definition 
of ZP’. 

 
• Step 3: Family of optimal candidate paths generation 

A family of optimal candidate paths FP’ is generated from the lower-cost path P’ and 
the previous defined zone ZP’. Therefore, an orientation constraint is added to the 
previous path generation algorithm in order to obtain a family of paths similar to P’ 
arriving in ZP’. Figure 5 illustrates the candidate path generation.  
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Fig. 5. Optimal path candidates generated from P’ (in black) 

• Step 4: Optimal path P* selection 
 

Finally, the needle insertions along the paths of the family FP’ are simulated using the 
breast deformation model in order to select P*, the one that minimizes the positioning 
error, i.e. the Euclidean distance between the target and the needle tip final positions. 

P* = min P∈FP’ 
(e) 

Figure 6 illustrates the mesh deformation. The error, e, is represented in the right 
zoom image. The initial target position is shown in white. 

                    

Fig. 6. Left: Needle insertion simulation along a path P. Right: zoom on the target.  

For step 2 and 4 of our planning method, we used Finite Element (FE) method to 
simulate breast tissue deformations during the needle insertion. We modified Artis-
jokke simulator [14] to simulate needle insertion and to have a patient specific appli-
cation. Forces resulting from the needle insertion deform the mesh M and make the 
lesion move.  We constraint the nodes linked to the detector and the compression 
paddle to be motionless. We considered a homogeneous, linear and isotropic elasticity 
model. Young’s modulus describing the biomechanical properties of the tissue has 
been found in the literature [15]. 

We finally proposed a complete approach providing a solution to our problem: we 
first find a low cost path with relaxed constraints P’, then we generate a family Fp’ of 

multiple optimal candidate paths and test them using the simulator. Finally we select 
the best path P*

 that minimizes the final distance between the needle tip and the target. 
This optimal path has an orientation that is not a priori known. Therefore, we can 
imagine that the future needle guidance device should be poly-articulated. 

3   Results 

The proposed planning method has been validated on 12 targets in a breast biopsy 
phantom (CIRS-Stereotactic Needle Biopsy Training Phantom).  

e 
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We first made a DBT acquisition of the phantom and located the position of the 
targets in the volume. The breast mesh M has been constructed and our planning algo-
rithm has been run to find an optimal insertion point and an optimal path. 

The efficiency of the planning has been evaluated by comparing: 

- the error computed for P', the lower cost path found without taking breast defor-
mation into account and noted error’  

- and the error obtained for the optimal path, P*, finally found by the planning algo-
rithm and noted error*.  

The simulation results show that the algorithm reduces the error, i.e. the Euclidean 
distance between the needle tip and the target, by 80% with a standard deviation of 
13% for both trajectory types. Table 1 presents the results calculated for bevel-tip 
needles.  

Table 1. General Algorithm Evaluation for Bevel-tip Needles 

Lesion  
number 

1 2 3 4 5 6 7 8 9 10 11 12 

error’ (mm) 2.32 1.28 0.41 1.13 1.76 2.56 3.16 2.44 0.98 1.44 2.40 1.66 
error* (mm) 0.09 0.06 0.12 0.10 0.23 0.72 0.17 0.22 0.11 0.21 0.15 0.13 

The planning computation time has been also compared between our first path gen-
eration algorithm based on RRT and the novel approach. 1000 paths in various clut-
tered environments were generated using both methods. Our initial surface biased 
approach divides the planning time by about 5, as shown in Table 2. 

Table 2. Path Generation Algorithm Evaluation (Environment n°24) 

 Symetric-tip needle Bevel-tip needle 
 Tmin Tmax Tmean Tstdev Tmin Tmax Tmean Tstdev 

RRT method (ms) 0.0 590.0 35.6 40.0 0.0 250.0 29.2 28.8 
BS’ biased approach (ms) 0.0 30.0 4.9 5.3 0.0 20.0 5.2 5.2 

4   Discussion 

We have proposed a novel method combining motion-planning algorithm with Finite 
Element (FE) analysis to find an optimal insertion point and an optimal needle path in 
a 3D environment. The proposed approach takes soft tissue deformations into ac-
count. In addition, the DBT acquisition is used to create a patient-specific application. 

We have shown that this method reduces the error meanly by 80%. In addition, the 
novel paths generation algorithm accelerates path research step by a factor of 5. 

Part of our perspective work is to evaluate the simulation accuracy. We plan to 
compare the simulation results with the deformations obtained on an anthropomorphic 
biopsy phantom. We also plan to evaluate our method with a breast deformation 
model taking into account breast inhomogeneity.  
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Up to now, we only used 3D synthetic vessels but work is going to automatically 
segment the vessels from the DBT slices in order to get realistic and patient-specific 
obstacles. 

Acknowlegments. This work has been partially funded by ANRT under CIFRE grant 
n°1035/2008. 
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Abstract. Registration of MR volumes to X-ray mammograms is a
clinically valuable task, as each modality provides complementary in-
formation on normal and abnormal breast tissue structure and function.
We propose an intensity-based technique with a 3D volume-preserving
affine transformation. An important part of our framework is the use of
an Expectation-Maximization (EM) algorithm, with a Markov Random
Field (MRF) regularization, that is used for breast tissue classification
and subsequently the mapping of the MR intensities to X-ray attenu-
ation. Initially, the proposed framework was tested on simulated X-ray
data, where the goal was to register the original undeformed MRI to
a simulated X-ray that was produced using a real compression image,
acquired from volunteers in the MR scanner (8 cases). Since the ground
truth in this case can be estimated from individually defined landmarks,
we have evaluated the mean reprojection error, which was 3.83mm. The
algorithm was then applied and evaluated visually on 5 cases that had
both X-ray mammograms and MRIs.

Keywords: multimodal registration, 2D – 3D registration, breast tissue
classification.

1 Introduction

X-ray – MRI registration has the potential to aid radiologists in the diagnosis,
staging and surgical planning of breast cancer. However, little work has been
reported on this task ([1], [2], [3]). The authors in [1] and [2] follow a feature-
based registration approach. These techniques, although they do not require long
computational time, are usually less robust, as they fail in cases where the se-
lected features are not visible in both images and also when one or more features
are mismatched. The third technique [3] uses a subject-specific Finite Element
Method (FEM) for modeling, to simulate the deformation of the breast during
mammography. The large variability in meshing techniques and the material
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properties used, makes breast FEM modeling a user-dependent, time-consuming
task that is not practical in clinics. In this paper we describe an extension of
our previous work [5] that aims to overcome the above problems, while provid-
ing clinically useful accuracy (less than 10mm). Intensity-based techniques were
widely used for rigid 2D-3D registration tasks in the past, mainly confined to
rigid body orthopaedic or vascular applications, achieving good results ([7], [8]).

A key contribution of this paper is the use of realistic X-ray simulations from
the MR volume, due to improved breast tissue classification. The techniques in-
troduced in the literature for this task aim mainly to segment the fibroglandular
tissue to provide breast density estimation from the MRI. To our knowledge
these classify the MR voxels based on the intensity information only, using ei-
ther manual thresholding [9] or a fuzzy c-means technique [10]. The EM-MRF
approach combines both intensity and spatial information and was initially in-
troduced for classification of brain tissue types. The implementation that we use
is similar to the one proposed by Van Leemput et al. [4], with a modification
that incorporates anatomical information.

Another difference to our previous work is the use of a volume-preservation
constraint, to avoid the breast volume expansion previously observed.

The next section describes in detail our methodology and more specifically
the tissue classification approach (section 2.1) and the registration framework
(section 2.2). Experiments and results are discussed in section 3. Finally, section
4 contains the conclusions and future work.

2 Methodology

Our registration technique requires the simulation of an X-ray image using the
MR volume, in order to directly compare it with the real mammogram in 2D
and drive the registration. The volume is projected iteratively in the registra-
tion framework using the updated transformation parameters. These simulated
images use the projection of the X-ray attenuation values instead of the MR
intensities to provide a realistic X-ray image.

The mapping of the MRI to an X-ray attenuation volume is done off-line,
before registration and requires first the classification of the voxels into breast
tissue categories (glandular and fat). We can then calculate the new volume in-
tensities by weighting these classes with different factors in order to simulate the
difference in X-ray attenuation. The intensity of voxel i in the X-ray attenuation
volume is given by: (wG · P i

G + wF · P i
F ), where wclass are the weights of each

tissue type and P i
class is the classification result for voxel i, for each one of the

classes (0 ≤ P i
class ≤ 1). The choice of the most appropriate weights was per-

formed empirically. The goal was to produce simulations with similar contrast
to digitized film mammograms. The classification method is described below.

2.1 Breast Tissue Classification Using an EM-MRF Approach

As in [4], our method integrates an intensity model, a spatial regularization
scheme and bias field inhomogeneity correction in the same framework.
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The incorporation of spatial information has been shown to improve classifi-
cation results in the past as it provides robustness to noise and it allows the use
of anatomical information. Specifically for the breast tissue classification, the
MRF regularization is considered an appropriate choice due to the anatomy of
the fibroglandular tissue. Since this is connected in a tree-like structure inside
the breast, our hypothesis is that the voxels containing glandular tissue are more
likely to appear connected to other glandular voxels rather than isolated inside
the fat (and similarly for fat voxels).

The intensity model assumes three classes (for glandular, fat tissue and back-
ground) and the bias field is modeled using a third order polynomial basis func-
tion. Instead of considering Gaussian distributed intensities corrupted by a mul-
tiplicative bias field, log-transformed intensities are used to make the bias field
additive. For K classes let θk = {μk, σk} denote the normal probability distri-
bution with mean μk and variance σ2

k of a voxel belonging to class k and let
zi = ek be the tissue type of voxel i, where ek is the unit vector with the k-th
component equal to 1 and the others equal to zero. For J basis functions φj(x),
C = {c1...cJ} denotes the bias field parameters. The probability density for voxel
i, with intensity yi, given it belongs to class k is:

f(yi|zi = ek, Φy) = Gσk
(yi − μk −

∑
j

cjφj(xi)), (1)

where Φy = {θ1, ..., θk, C} is the intensity model parameters and Gσ() is a normal
distribution with mean zero and standard deviation σ. The model parameters
are optimized using an EM algorithm under a Maximum Likelihood formulation.
Due to the large variation of glandular structures in the breast across the pop-
ulation, there are no anatomical priors available. If m is the iteration number,
then the ML estimation gives:

μ
(m+1)
k =

∑n
i=1 p

(m+1)
ik (yi −

∑J
j=1 c

(m)
j φ(xi))∑n

i=1 p
(m+1)
ik

(2)

(σ(m+1)
k )2 =

∑n
i=1 p

(m+1)
ik (yi − μ

(m+1)
k − ∑J

j=1 c
(m)
j φ(xi))2∑n

i=1 p
(m+1)
ik

, (3)

where

p
(m+1)
ik =

f(yi|zi = ek, Φ
(m)
y )f(zi = ek)∑K

j=1 f(yi|zi = ej , Φ
(m)
y )f(zi = ej)

. (4)

The intensity model alone can only give accurate results when the different
distributions are well separated. This is not the case for the glandular and fat
tissue due to many voxels containing both tissue types (partial volume effect).
The use of an MRF regularization scheme improves the overall robustness of the
model parameter estimation and provides spatial consistency. Voxels are thus
classified based also on the current classification of the neighboring voxels. In
this case, equations 2 and 3 remain the same, while 4 is now given by:
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p
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ik =

f(yi|zi = ek, Φ
(m)
y )f(zi = ek|p(m)

Ni
, Φ
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(m)
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, (5)

where

f(zi = ek|p(m)
Ni

, Φ(m)
z ) =

e
−βUmrf (ek|p(m)

Ni
Φ(m)

z )

∑K
j=1 e

−βUmrf (ej |p(m)
Ni

Φ
(m)
z )

, (6)

with Φz = {G, H} the MRF model parameters and Umrf(z|Φz) the energy func-
tion that depends on Φz . G and H are K×K matrices that define the transition
energy between classes. Further details of the bias field parameter estimation
and detailed explanations of the other equations can be found in [4].

The above regularization makes the classification more robust to noise and to
isolated misclassified voxels (e.g. isolated voxels classified as fat and surrounded
by glandular tissue). Instead of estimating the MRF parameters from the im-
age as in [4], we use a two-level MRF with its parameters derived from the
anatomical properties of the breast. In the first level, the interclass MRF energy
is the same for all classes, thus the MRF only adds global spatial consistency
and robustness in the parameter estimation. In the second stage, after the EM
converges, the MRF energy matrices (G and H) are altered in order to include
more anatomical knowledge (e.g. the cost of having glandular tissue next to the
background is higher than having fat next to the background) and the classifica-
tion is restarted again until convergence. This modification allows an unbiased
and robust parameter estimation in the first step followed by a second step that
enforces more anatomical knowledge and topological constraints. The values of
the MRF energy matrix are chosen empirically, in order to produce realistic
X-ray mammogram simulations.

2.2 2D – 3D Registration Framework

For registration, we use a 3D volume-preserving affine transformation to approx-
imate the deformation of the breast during mammography. At each iteration of
the algorithm, the similarity measure is calculated in 2D between the real X-ray
mammogram (target) and the perspective projection of the X-ray attenuation
volume (source). The value is then passed to the optimizer which updates the
parameters of a 3D affine transformation. In all the experiments we have used
the Normalized Cross Correlation (NCC) as similarity measure. This has been
tested before for suitability in 2D-3D registration tasks and was shown to work
best [5].

An advantage of the affine transformation is that it can be implemented di-
rectly in the ray-cast projection function, avoiding the additional computation
of transforming and interpolating the 3D volume at each iteration. To avoid
non-physical expansion of the volume (for CC views in the superior-inferior and
also in the posterior-anterior direction) we have included a volume-preservation
constraint, by ensuring that the product of all scaling factors across the 3 di-
mensions is unity (sx ·sy ·sz = 1). This is done by constraining the scaling on the
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direction of the projection (superior-inferior for a CC view) to be sz = 1/(sx ·sy).
This removes one degree of freedom from the optimization process, reducing the
size of the search space and potentially enhancing the robustness of the registra-
tion. Our previous results have shown that without this constraint, the volume
increases in a physically unrealistic way [5].

3 Experiments

3.1 EM-MRF Classification Results

Figure 1 shows the results of the EM-MRF algorithm, as opposed to a histogram-
based classification that uses manual thresholding ([5],[6]). We can see that the
proposed method contains more details of the glandular tissue. It is also fully
automated and gives reproducible results. The only requirement is that the pec-
toral muscle is segmented from the volume. In our semi-automated method the
user defines landmarks on the boundary between the pectoral muscle and the
breast through which a parametric surface is fitted. Intensity-based techniques
are more prone to errors for this task, as this boundary is not well-defined in
many cases, especially when the glandular tissue is very close to the chest wall,
or when organs with intensities similar to fat (such as the liver) are attached to
the rib cage.

Fig. 1. (a) Original MRI, (b) X-ray attenuation volume using manual thresholding and
histogram-based classification, (c) using the EM-MRF algorithm, (d) Simulated X-ray
mammogram from the undeformed volume using manual thresholding, (e) using EM-
MRF. The two rows correspond to two patients. The red cross indicates the position
of a corresponding coordinate in each image.
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Fig. 2. Coronal slices of the data used for evaluation for 3 volunteers (a)-(c). From left
to right in each image: volume before and after compression.

Fig. 3. Registration results on real data (5 cases/rows). From left to right: projection
of the source volume before registration, after registration and real X-ray mammogram.
The red cross indicates the position of a corresponding coordinate in each image.

3.2 Registration Results

In all registration experiments we have used as source image the 3D X-ray at-
tenuation volume that was calculated using the pre-contrast MRI. The proposed
algorithm was tested on two sets of data. The first set used simulated mammo-
grams for evaluation, while the second set, containing real MR and X-ray data,
provided a visual assessment of the algorithm’s performance.
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Evaluation. For evaluation, we used only simulated X-rays and a series of real
MR compressions of the breast from 8 volunteers [11] in the lateral to medial
direction. Figure 2 shows some examples of these compression images (volume
sizes: 1mm×1mm×2.5mm). The goal was to register the uncompressed volume
to the simulated X-ray that was produced from the compressed MRI. The ground
truth of the correspondences in this case was estimated, by manually picking
3D landmarks between the undeformed and the compressed MRI. The mean
reprojection error [8] for these experiments was reduced to 3.83mm (with a
standard deviation of 1.59mm) after registration, from an initial 11.58mm (std
6.65mm) misalignment.

Experiments on Real X-ray Data. After validating our algorithm on sim-
ulated mammograms, we tested it on real X-ray (CC views) and MRIs from a
different population. We have used 5 cases and the results were evaluated visually
as estimating 2D-3D ground truth correspondences is not a straight-forward task.
Figure 3 shows the registration results. We can see that the similarity between
the real mammogram and the projection of the source volume after registration
is greatly improved, with the breast volume expanding to the medial and lateral
direction.

4 Conclusions

We have presented a new framework for X-ray mammography – MRI registra-
tion, using a volume preserving affine transformation. We have also shown an
improvement in X-ray simulations, which is a prerequisite for visual correlation
of MR with X-ray structures and may improve registration performance. The
results on real compression data show that this is a promising technique that can
give clinically valuable accuracy, while the low number of degrees of freedom and
the lack of FEM or feature extraction makes this approach potentially robust,
accurate and reproducible.

An essential part of future work is the use of a radiologist’s annotations to
evaluate the results on real X-ray mammograms. Establishing ground truth X-
ray/MRI correspondence on normal cases is not always possible, but can be done
for datasets that include lesions (benign or malignant) or cysts. Another part of
our framework that we plan to evaluate is the breast tissue classification. It is
particularly difficult to provide quantitative validation for this task, as there is no
ground truth available. Furthermore, we will investigate and assess the benefit
of incorporating spatial information in the classification technique. Finally, a
natural future step is the use of a non-rigid transformation model, with more
degrees of freedom than the affine.
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Abstract. Manufacturers of digital mammography systems include pro-
prietary and unique post-processing algorithms to enhance the image
contrast for diagnostic presentation. We use a wavelet-based enhance-
ment method to both automatically and interactively adjust the con-
trast of these previously processed mammograms. Apart from enhancing
small but relevant structures in dense breast tissue, this method allows
for the automatic homogenization of cross-vendor contrast appearance,
supporting current-prior comparison tasks in the screening and diagnos-
tic setting when different systems were used for acquisition. An optional
smooth crossfading between originally processed and enhanced images
can be used interactively to adapt the presentation view to individual
situations, for example to facilitate the detection or interpretation of
mammographic features in dense breast tissue. A user preference study
with experienced readers revealed that our work might positively impact
prior-current comparisons and the diagnosis of mammographic images.

1 Background

Mammography is considered the most important modality in breast cancer
screening and diagnosis. In dense breasts, however, the process of detecting sub-
tle signs of cancer such as architectural distortions, masses and asymmetries is
hampered by their reduced contrast in dense breast tissue. Additionally, it has
been observed that an increased density of the breast is linked to a higher risk
of developing breast cancer [1]. There has been significant work on the field of
mammographic image enhancement [2,3,4,5] and it has been shown that these
techniques can improve the detectability of important features in mammographic
screening.

Nowadays, manufacturers of digital mammography systems include their
proprietary post-processing algorithms to enhance digital mammograms for di-
agnostic presentation, which gives these processed mammograms an unique ap-
pearance and contrast. In [6] Chen et al. compared the diagnostic abilities of two
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post-processing methods provided by the GE Senographe DS System, premium
view (PV) and tissue equalization (TE). Their study showed that PV provided
better diagnostic information compared to TE, particularly for patients with
malignancy in dense breast.

During screening or therapy, patients frequently undergo examinations with
mammography systems of different manufacturers. In the process of screening,
a patient’s current mammograms are compared to the prior mammograms in
order to aid detecting changes in breast morphology, which can be an indication
of a growing lesion. Snoeren and Karssemeijer [7] presented a gray-scale and
geometric registration of full-field digital “for processing”mammograms to film-
screen mammograms based on a parametric model of the acquisition aspects.
However, in a clinical setting the availability of “for processing”images is not
always granted for a number of reasons including system restrictions and external
image acquisition. Our work presents methods and an initial assessment for
the homogenization of “for presentation”mammograms acquired with different
machines and treated with different post-processing methods. We aim to ease
diagnostic assessment of those prior-current mammogram pairs.

2 Method

Wavelet based multi-scale analysis has formerly been applied to our task [3], but
we will attempt a simpler and faster multi-scale approach here.

2.1 Interactive Multi-scale Analysis

A schematic view of the method utilized is shown in Fig. 1. Each decomposi-
tion step consists of constructing an approximation/low-pass image LPn and
a detail/high-pass image HPn from the input image. The first approximation
image LP1 is obtained by convolving the input image two times with a Gaus-
sian 3 × 3 filter kernel and subtracting it from the input image yields the detail
image HP1. The detail image contains the high-frequency spatial information
suppressed by the blur filter. This difference of Gaussians approximates the
mexican hat wavelet. This method is numerically equivalent to a wavelet trans-
form for the scales and datatypes we used in the implementation. Note that the
approximation image is not subsampled but retains its size. The decomposition
is repeated in step 2 by constructing LP2 and HP2 from LP1. The filter kernel
size is increased in every decomposition step n to 2n+1 to cover a different image
frequency. By repeating the decomposition N times we obtain a set of N detail
images at different scales and a final approximation image LPN . Following, each
of the N detail images HPn are multiplied with a weight factor εn to adjust their
strength, while a offset value δN is added to the approximation image LPN to
adjust the mean gray-value of the whole image. After the enhancement step, the
final image is reconstructed by adding all weighted detail images HPn∗ to the
adjusted approximation image LPN∗. A mask covering only foreground pixel
corresponding to the breast is derived from the original image and applied to
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Fig. 1. The input image is divided through N steps into a final approximation/low-
pass image LPN and N detail/high-pass images HPn. Before reconstruction, each
detail image can be weighted separately with a multiplicative factor εn to adjust its
influence on the overall image contrast characteristics. Additionally, the approximation
image LPN can be adjusted with the additive value δN to lower or raise the mean gray
value of the output image.

the output image such that background values corresponding to air remain un-
changed. This method allows for the interactive adjustment of the values εn and
δN and the reconstruction of the enhanced image in real time and thus allows
to quickly adapt the image contrast to individual tasks like the enhancement
of dense tissue contrast. Additionally, we included a tool to smoothly change
from the original to the enhanced image via mouse interaction. This crossfad-
ing between images should give the user the ability to the control the overall
adjustment by one scalar value mapped to one dimensional mouse movements.

2.2 Automatic Homogenization of Current-Prior Mammograms

We implemented an automatic homogenization method, which adjusts the con-
trast characteristics of a prior mammogram (source) to a current mammogram
(target). Above decomposition is applied to both mammograms to compare their
detail and approximation images. For each detail image HPn of target and source
mammograms the mean of absolute values excluding background is calculated
as well as the mean gray value for both approximation images LPN . Following,
the respective ratio between a detail image pair of the same level n is used as
weight factor εn, while the difference between both approximation images’ mean
gray value is used as additive offset value δN . By this simple adjustment the
frequency strengths of the source mammogram should be adjusted to those of
the target mammogram.
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2.3 Pre-processing of the Digital Mammograms

The set of digital mammograms was acquired at Boca Raton Community Hospi-
tal with a Senographe DS system from GE Medical Systems and a Hologic LO-
RAD Selenia system. The available post-processing methods for the Senographe
DS were “proc 1”(P1) and “premium view”(PV), while there was only one post-
processing (HP) available for the Hologic images. The set featured 50 mammo-
grams of eight patients, who underwent annual screenings. Five patients were
scanned with a GE system with P1 and PV post-processing, while three patients
additionally had scans on a Hologic system.

As the detectors of mammography systems differ in size and number of de-
tector elements the digital mammograms will be different in their pixel sizes
(Hologic: 0, 072 mm2 and GE: 0, 0942 mm2) and image size (Hologic: 3310×2728
pixel and GE: 1914 × 2294 pixel). As a result the breast and its morphology
is displayed in a higher resolution and thus by more pixel in the Hologic im-
ages. As the above automatic method compares both images frequency wise, it
is important for the morphology in both images to be at comparable pixel sizes.
For the automatic calculation of the adjustment values εn and δN , the current
mammogram was resampled by using Lanczos interpolation to fit the pixel size
of the prior mammogram. Note that for viewing, the current mammogram was
not resampled.

Often, the appearance of the mammograms’ gray values is changed for the
presentation on the screen by applying a sigmoid LUT on the graphic card. The
DICOM tags of GE (P1 and PV) mammograms feature sigmoid representation
with different options (softer, normal, harder), while the Hologic pixel values
seem to be post-processed already in this fashion and are displayed in a linear
LUT. We applied the LUT information of the “normal”sigmoid found in the
DICOM tags to the gray values of both GE image types to take into account
the way the images should be displayed based on the DICOM informations.

2.4 Design of the User Preference Study

We conducted a user preference study to evaluate the automatic adjustment
of current-prior mammograms on the one hand and the smooth transition be-
tween the originally processed and the enhanced mammograms on the other
hand. We started displaying both current and prior mammograms in original
“for presentation”view, i.e. as they would be seen in any digital mammography
reading station. The prior could be switched via mouse click from original to the
adjusted image and back again. After viewing a current-prior pair, the reader
had to decide whether to view the prior mammogram of the next pair either
in its original or the adjusted representation. Crossfading between original and
enhanced images was achieved via replacing the original mammogram on the
graphic card between 0 and 100% with the enhanced image. This crossfading
could be handled manually via mouse interaction. Note that this study was not
held in a clinical setting, the room was not darkened and we used a standard
23”TFT color monitor for viewing. However, it was possible to view the mam-
mograms in full resolution mode and to zoom into and out of the images.
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3 Results

The automatic adjustment was evaluated by four experienced readers (two US
american, two European) for a series of current-prior mammogram pairs of dif-
ferent post-processing types or systems. After viewing the first current-prior pair
in both original and adjusted setting, all readers preferred to start viewing the
next pair with the adjusted prior. Two readers stated that it would be enough
to see the priors only in the adjusted mode, while the two others wished for the
option to change back to original view. The Fig. 2 and 3 show the results of
the automatic adjustment of prior to current mammograms. Window and level
settings for the original and adjusted images are accordant to the DICOM tags.

The crossfading between original and enhanced image was also evaluated by
the four readers. While the enhancement of dense areas was appreciated, the
main aim was to evaluate the value of an interactive tool to continuously change
the degree of enhancement. The reduction to one parameter was especially appre-
ciated as a possible alternative to the two dimensional window/level interaction.
Figure 4 shows some steps in the smooth transition from an original GE PV
mammogram to the fully enhanced image.

(a) P1 originals (b) PV originals (c) P1 adjusted to PV

(d) P1 original (e) PV original (f) P1 adjusted to PV

Fig. 2. The upper row shows the automatic homogenization between original GE P1
prior (a) and GE PV current (b) MLO pairs. Image (c) shows the results of the auto-
matic adjustment of the contrast characteristics of the prior P1 mammograms to the
current PV mammograms. The lower row features close ups of an original GE P1 prior
(d) and a GE PV current (e) and again the result (f) of the automatic adjustment of
the contrast characteristics is shown.
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(a) P1 original (b) HP original (c) P1 adjusted to HP

(d) P1 adjusted to PV (e) HP adjusted to PV (f) PV original

Fig. 3. These six images display three original mammograms of the same breast and
the results of three different homogenizations of the contrast appearances between
these current-prior mammograms. All three original mammograms feature a different
original post-processing and were acquired during annual screening starting with the
GE “proc 1”(P1) and followed by the Hologic (HP) and the GE “premium view”(PV)
mammograms. Image (c) shows the result of the automatic adjustment of the contrast
characteristics of the P1 prior (a) to the HP follow up (b), while images (d) and (e)
show the automatic adjustment of the original P1 (a) and HP (b) mammograms to the
PV (f) current mammogram. Note that the window/level settings for all originals are
accordant to their DICOM tags.
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(a) PV original (b) Enhanced 33% (c) Enhanced 66% (d) Enhanced 100%

Fig. 4. Four different steps in the smooth transition from original GE PV mammogram
(a) to the fully enhanced result (d). Images (b) and (c) show the enhancement strength
of 33% and 66%. The transition is handled interactively via mouse interaction.

4 Discussion

We have described a fast multi-scale enhancement method which allows for the
adjustment of the contrast appearance of mammograms to those post-processed
with different algorithms or acquired on different systems. One advantage of such
homogenization is a possible facilitation of the current-prior comparison of dif-
ferently processed mammograms. Besides this homogenization, the adjustment
can also be used interactively to enhance the contrast of certain image features,
which might be especially beneficial in dense breast tissue. Another aspect of
our application is the interactive smooth transition between the original input
image and the enhanced image. During the process of crossfading between these
contrast settings the change of luminance is strongest in those image structures,
which are changed the most by the adjustment. This possibly can assist the de-
tection of features and due to the smooth transition there is no abrupt change
of the image. The reduction to one dimensional interaction can be considered as
an advantage above the common window/level handling with well-defined lower
and upper limits for the parameter range.

It is noteworthy that this method does not yet include any acquisition param-
eters or knowledge of the manufacturers post-processing and that the automatic
adjustment relies on simple statistical values. In some cases, we experienced
saturation effect induced by the automatic adjustment, as we reduce the gray
value range to the original 0 and 4095. This cutting of higher values has to be
addressed in future improvements, as it can lead to some small flat image parts
which destroys information. However, as the adjustment is only done for priors
which are used for comparison with the currents, this problem was rated as bear-
able by the readers compared to the advantages of the adjustment. Furthermore
this method does not include the different skin enhancement processing applied
by the manufactures and the positioning of the breast during scan. Differences
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between the amount of pectoralis imaged in current and prior for example will
lead to different image statistics. Further research and modifications will include
a possible geometric registration and a more sophisticated statistical comparison
for the automatic adjustment as well as an inclusion of different enhancement
functions. Currently we are planning for another observer study with cases from
a larger set of different manufacturers and an evaluation using phantom images.
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Abstract. Sonography is gainingpopularity as an adjunct screening tech-
nique for assessing abnormalities in the breast. This is particularly true in
cases where the subject has dense breast tissue, wherein widespread tech-
niques like Digital Mammography (DM) fail to produce reliable outcomes.
This article proposes anovel and fully automaticmethodology for breast le-
sion segmentation in B-mode Ultra-Sound (US) images by utilizing region,
boundary and shape information to cope up with the inherent artifacts
present in US images. The proposed approach has been evaluated using
a set of sonographic images with accompanying expert-provided ground
truth.

Keywords: ultrasound, breast cancer, segmentation, segmentation
evaluation.

1 Introduction

Breast cancer is one of the leading causes of death for women in developed
countries and is most effectively treated when detected at an early stage [5].

Considering this, DM is, and remains the major screening tool for breast
cancer [3]. However, in the recent past, studies [6,7] have shown that US images
of the breast can help supplement mammography by detecting breast cancers
that may not be visible in a traditional mammogram. This is particularly true in
the cases where the subjects have dense glandular breast tissue, which tends to
shield the presence of a tumor in a mammogram. In addition, US images are non-
invasive with no side effects, rendering sonography as an attractive adjunct to
digital mammography and heading a re-emergence of interest in understanding
how to do image segmentation applied to ultrasound data [4].

This reserach proposes a novel and fully automatic technique to segment
breast lesions for conventional B-mode US images, by utilizing region, bound-
ary and shape information to cope with the inherent artifacts present in these
images.
� We gratefully acknowledge the help of Dr. Gururajan and Dr. Sari-Sarraf from Texas

Tech University. This research was partially supported by the Spanish Government
MEC grant nb. TIN2007-60553 and the University of Girona BR grant nb. 09/22.
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Fig. 1. Block diagram of the proposed methodology. When user interaction is used
(only for semi-automatic segmentation), it overwrites the previous input.

The performance evaluation of the presented segmentation approach is con-
ducted using a set of sonographic breast images that have accompanying ground
truth provided by multiple experts. In this regard, this paper also presents a
modified version of the Simultaneous Truth and Performance Level Estimation
(STAPLE) [8] algorithm that is employed to extract the gold-standard for an
image that has been delineated by multiple experts.

2 Proposed Approach

In this paper, a new segmentation procedure for breast lesions US images is
proposed, allowing different levels of user-interaction, and ultimately leading
automation of the entire approach. The block diagram of the proposed approach
is shown in Fig. 1. The primary step involved in this process is the Gaussian
Constraining Segmentation (GCS), which is a boundary-based technique whose
key input is a multivariate Gaussian function that describes the shape, position
and orientation of the lesion, derived from the one proposed by Horsch et al.[1]
This Gaussian function is determined by fitting an ellipse to the R(x, y) blob.
This R(x, y) preliminar segmentation of the lesion can be an interactive segmen-
tation input or it can be determined by a fuzzy region growing from a seed region
R0(x, y). Such region initialization R0(x, y), can also be a given input or it can
be automatically determined by the seed placement procedure (a simplification
to the seed placement proposed by Madabhushi and Metaxas [2]) leading to a
fully automatic segmentation procedure.

The GCS step (see Fig. 2), outputs a binary mask in accordance with Eq. (1)
and this mask corresponds to the final segmentation result. The GCS con-
sists of two steps: (a) finding Ψ(x, y) which is an intensity dependent function
( f(I(x, y)) ) constrained by a Gaussian ( GμΣ(x, y) ) that best represents the
lesion, and (b) selecting the proper threshold for Ψ(x, y) to segment the lesion.

St(x, y) = threshold(Ψ(x, y), t) where Ψ(x, y) = f(I(x, y)) ·GμΣ(x, y) (1)
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Fig. 2. Gaussian Constraining Segmentation (GCS) outline: (a) block diagram (b)
graphical representation for the GCS. The figure shows a 3D representation of the
lesion shaped potential funcion Ψ(x, y), and its projection on the sonogram obtained
by thresholding Ψ(x, y). (c) threshold selection upon the minimization of the global
disparity measure.

For a given dataset, threshold t can either be manually tuned up for the whole
set, or dynamically determined for each image based on its characteristics. When
a dynamic thresholding is used, the threshold t is selected from a set {t1, .., tn}
as the best candidate accordingly to equation 3.

t = min
t

( Disparity(I(xu, yu)) + Disparity(I(xd, yd)) ) (2)

where (xu, yu) ∈ {(X, Y ) | Ψ(x, y) ≥ t}
(xd, yd) ∈ {(X, Y ) | Ψ(x, y) < t}

Figure 2(c) illustrates how the disparity measure varies along the different thresh-
olds. The optimal threshold for each image given the lesion shaped potential
function Ψ(x, y) corresponds to the minimum global disparity.

The main advantage of the proposed method over that presented by Horsch et
al.[1] is: (a) fully automatic capability without any information of the lesion, (b)
better lesion description and delineation. Lastly the advantage over the reserarch
done by Madabhushi and Metaxas [2], is the incorporation of a faster lesion
refinement step after the region growing.

3 Experiment Description

In order to evaluate the proposed approach, a set of 25 sonograms were ac-
quired in the Hospital Dr. Josep Trueta of Girona. Each image has seven ground
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truth delineations provided by different radiology experts. In the first step, the
STAPLE algorithm [8] is used to obtain the underlying ground truth from the
multiple expert delineations. STAPLE states that the ground truth and perfor-
mance levels of the experts can be estimated by formulating the scenario as a
missing-data problem , which can be subsequently solved using an Expectation
Maximization (EM) algorithm. The EM algorithm, after convergence, provides
the Hidden Ground Truth (HGT) estimation that has been inferred from the
segmentations provided by the experts.

The proposed segmentation approach is evaluated as follows. For a given im-
age, the segmentations produced by the evaluated methods and STAPLE on
the ith pixel can be denoted as Si and Gi respectively. Within this framework,
we propose a performance coefficient based on the True-Positive Ratio (TPR)
or Jaccard coefficient weighting its numerator by the HGT. Such coefficient is
calculated accordingly to Eq. (3), where pi is the HGT probability of each pixel.

coeff =
∑

(Si ∩ Gi) · pi∑
(Si ∪ Gi)

(3)

For evaluation purposes, the results obtained by applying the proposed approach
(on its three user interaction levels: no user input, given a seed region R0(x, y),
and, given a blob R(x, y)) have been compared to the results obtained by apply-
ing other techniques: Horsch et al.[1] (on its partially automatic version which
needs the lesion center and the four corners), Madabhushi and Metaxas [2]. The
proposed approach has been tested both with dynamic and manually tuned-up
threshold selection.

4 Results

The results and dicussion will focus on the performance of the proposed segmen-
tation technique versus that presented in [1,2] over the entire dataset.

Figure 3 shows the segmentation results on four sonograms from the dataset.
In the figure, the white dashed line indicates the delineation of the lesion after
the segmentation, while the different Ψ(x, y) isolines are represented by means
of colored curves.

Previous to the segmentation procedure, a rank value filtering method is ap-
plied by means of a 3× 3 median filter, in order to reduce the impact of speckle
noise.

To quantitatively assess the segmentation approach, the metric proposed in
equation 3 is used to compare the agreement between the gold-standard and the
obtained segmentation. This is done for all the user interaction levels available in
our proposal and for the whole dataset. The distribution of the dataset segmen-
tation performance or agreement reward, is illustrated as a box-plot in figure 4.
The first six entries represent our method results, differentiating manual tune
up thresholding from dynamic selection thresholding for each level of user in-
teraction level. The last two entries, plot the performance of the bibliographic
methods [1,2].
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(a) (b)

(c) (d)

Fig. 3. Lesion segmentation results for 3 different images from the used dataset. Dif-
ferent level slices of the Ψ(x, y) function are represented by different colour. The white
dashed line indicates the lesion segmentation.
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Fig. 4. Box-plot representation of the tested methods performance for the current
dataset
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Fig. 5. Segmentation difficulties: (a) shadowing problem, (b) non-lesion structures seg-
mentation

The results show that the segmentations obtained by the proposed method fit
the gold-standard up to 85% in some cases, while the average values are around
60%. Figure 4 shows that there is less variability when a manually tuned-up
threshold is selected. However, the mean values for the segmentation results are
higher when thresholding is dynamic.

While comparing the proposed method with the methods from the bibliogra-
phy [1,2], our method performs slightly better than the one proposed by Mad-
abhushi and Metaxas [2]. On the other hand, although the method proposed by
Horsch et al.[1] shows better performance when considering the mean value, our
method behaves better in terms of variability.

The quantitative comparison has been performed using the metric proposed
in equation 3. Notice that the obtained results are lower than the expected
ones when using a TPR metric, because the metric used penalizes or rewards
depending on which part of the segmentation S overlaps the gold-standard G.
The metric used only behaves as TPR when all the elements of the overlapping
area have probability 1 of being lesion (see eq. 4).∑

(Si ∩ Gi) · pi∑
(Si ∪ Gi)

= TPR if and only if pi = 1 ∀i (4)

5 Discussion

The shadowing problem, as shadow being part of the lesion, is not particularly
addressed or treated here. However, as long as the region growing output does
not contain the shadow, the proposed method does not consider that shadow as
a part of the lesion by means of the multivariate attenuation of the gaussian.
Figure 5(a) illustrates how the shadow gets included as a part of the lesion for a
seed guided segmentation.

This misdelineation is explained by the region growing initialization R0(x, y)
(supplied by the user) since it has lead to grown up region R(x, y) containing the
shadow. Subsequently this region R(x, y) has lead to a wrongly fitted gaussian
(GμΣ(x, y) ) that misdescribes the lesion.
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In the same way, the proposed method does not explicitly address the problem
of segmenting other non-lesion structures present in the sonogram (like glandular
or fatty tissue) as a lesion. Our does not address a situation where the seed
region is misplaced on a structure that has some similarities to the lesions. For
the present experiment, this only has happened in one image of the dataset.
Figure 5(b) shows the sonogram where the automatic seed placement misplace
the initial region for the region growing. Hence, the obtained segmentation by
using the fully automatic version of the method results in a muscular region being
extracted as a lesion. However, in most of the cases the seed region is correctly
placed, so the method does not segment structures other than the lesions.

This research has presented and tested a breast lesion segmentation frame-
work or methodology applied to ultrasound images. Although the results are
satisfactory, further research of all the variable elements of the proposed method
should be done to improve the results. For the testing, the same experiment can
be done with a larger dataset to achieve more reliable conclusions.
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Abstract. As mammography moves towards completely digital and pro-
duces prohibitive amounts of data, compression plays an increasingly
important role. Although current lossless compression methods provide
very high-quality images, their compression ratios are very low. On the
other hand, several lossy compression methods provide very high com-
pression ratios but come with considerable loss of quality. In this work,
we describe a novel compression method that consists of downsampling
the mammograms before applying the encoding procedure, and apply-
ing super-resolution techniques after the decoding procedure to recover
the original resolution image. In our experiments, we examine the trade-
offs between compression ratio and image quality using this scheme, and
show it provides significant improvements over conventional methods.

1 Background

As mammography moves towards completely digital, technological advances in
data storage and transmission have not kept up with the tremendous growth of
digital data. This creates serious challenges for long-term storage and efficient
transmission of mammograms. For example, a typical mammogram can be 4500×
4500 pixels. If stored in uncompressed 16-bit per pixel (bpp) format, it would take
about 40 MB for storage and approximately half an hour for transmission using
a high-speed modem [12]. Thus compression will play an increasingly important
role in Picture Archiving and Communication Systems (PACS) to reduce file
sizes while maintaining relevant diagnostic information.

In recent years, there has been discussion about which type of compression
techniques, lossy or lossless, is better for mammogram compression. Although
current lossless compression methods provide very high quality images, the com-
pression ratios are very low, typically from 1.5:1 to 3:1. On the other hand, several
lossy compression methods provide acceptable compression ratios but come with
considerable loss of image quality and diagnostic information [3,4,5,6,7,8,12].

In this work we describe a novel lossy compression method that consists of
downsampling the mammograms before applying the encoding procedure, and
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applying super-resolution techniques after the decoding procedure to recover the
original resolution image.

2 Methods

Incorporating super-resolution into compression aims to maximize compression
ratio while maintaining relatively high-quality images. The flowchart of the
proposed method is shown in figure 1. The method first downsamples a high-
resolution image HR(x) to a low-resolution one LR(x), then it uses an algorithm
similar to JPEG to encode it. The decompression process first decodes the stored
low resolution image to obtain LR′(x) and then applies a super-resolution algo-
rithm to produce HR′(x).

Fig. 1. Flowchart of the method

In the pre-processing stage, we downsample the mammograms using bilin-
ear downsampling. In the post-processing stage, the super-resolution algorithm
generates high-resolution mammograms from low-resolution decoded mammo-
grams with no manual registration. The super-resolution algorithm consists of
four main steps. The first step consists of automatically aligning the breasts to a
standardized position. The second step uses a process called eigentransformation
to infer a global model representing the low-frequency information in the image.
In eigentransformation, Principal Component Analysis (PCA) is used to fit the
input images as a linear combination of the low resolution images in the training
set. The HR images are then inferred by replacing the LR training images with
HR ones, while retaining the same combination coefficients. In the third step,
a patch-based one-pass algorithm generates the high-frequency contents of the
HR images. The fourth step remaps the breasts back to their original position.

2.1 Automatic Alignment

Image alignment is the key to the success of our automatic mammogram super-
resolution algorithm. In practice, we cannot assume that any low-resolution
mammogram has been accurately aligned, even though the approximate po-
sitions of the breasts in mammograms are given by mammography sensors.
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Therefore, in preprocessing, we automatically align the mammograms to make
sure each breast is exactly in the same position, and then perform the super-
resolution. The automatic alignment process consists of two parts, segmentation-
based initialization and 2-pass mesh warping [11].

The 2-pass mesh warping algorithm accepts a source image and two 2-D ar-
rays of coordinates. The first array, S, specifies the coordinates of control points
in the source image. The second array, D, specifies their corresponding positions
in the destination image. The first pass is responsible for resampling each row
independently. It maps all (u, v) points to their (x, v) coordinates in the inter-
mediate image I. For each pixel P in intermediate image I, the value of P is
evaluated as a weighted sum from the left most boundaries of P in S, x0, and
the rightmost boundaries of P in S, x1.

P =

∑x1
x=x0

kxSx

x1 − x0

where kx is the scale factor of source pixel Sx, and the subscript x denotes the
index that lies between floor(x0) and ceil(x1). The scale factor kx is defined as

kx =

⎧⎨
⎩

ceil(x) − x0 if floor(x) < x0
1 if x0 ≤ x < x1
x1 − floor(x) if ceil(x) > x1

The second pass then resamples each column in I, mapping every (x, v) point
to its final (x, y) position. This process is virtually identical to the first pass; we
just need to substitute (x, v) for (u, v), and substitute (x, y) for (x, v) [11].

The key to apply 2-pass mesh warping is to build the 2-D arrays of coor-
dinates. The segmentation-based initialization builds the 2-D arrays of coordi-
nates automatically. The initialization for 2-pass mesh warping consists of 5 steps
(Figure 2):

1. Convert the input image to binary image.
2. Use erosion to remove the labels on the binary image.
3. Convert the binary image to a gradient image to find the edge.
4. Use skeletonization to reduce the edge to a single line.
5. Sample points on the line and make the 2D- array of coordinates for 2-pass

mesh warping automatically.

2.2 Global Modeling

In global modeling we use an algorithm called eigentransformation, which was
originally introduced by Wang [9]. The eigentransformation is a simple and pow-
erful technique for image enhancement based on principal component analysis
(PCA). It assumes that we have a training set of pairs of images 〈(L1, H1), . . .,
(Ln, Hn)〉, where each pair (Li, Hi) contains a low resolution image Li and its
corresponding high-resolution counterpart Hi. The eigentransformation allows
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(a) (b) (c) (d) (e) (f)

Fig. 2. Automatic registration: (a) Original image. (b) Converting the original image
to a binary image. (c) Using erosion to remove the labels in the binary image. (d) Con-
verting the binary image to gradient image to find the edge. (e) Using skeletonization
to reduce the edge to a single line. (f) Sampling points on the line and making the
mesh.

any image to be represented as a linear combination of images in the train-
ing set. When given a low resolution image L, it finds the vector of coefficients
[c1, . . . , cn] so that

L = Σn
i=1ciLi + μL

where μL is the mean low-resolution images.
Given the vector [c1, . . . , cn], the approximate high resolution image H can

be computed by

H = Σn
i=1ciHi + μH

where μH is the mean high-resolution image.
Because the coefficients are not computed from HR training data, some noise-

like distortion may be introduced. To reduce distortion, we apply constraints by
bounding the projection onto each eigenvector by its corresponding eigenvalue,
then the synthesized image is reconstructed from these constrained coefficients.

2.3 Local Modeling

Given a global model, to construct the corresponding local model, we first filter
the global model with a Gaussian high-pass filter, and then subdivide the filtered
global model into patches, which we call the low-frequency patches of the high-
resolution (HR) images, by scanning a window across the image in raster-scan
order. Similarly, we also filter and subdivide the HR images in the training set
into patches which we call high-frequency patches of the training HR images.

To construct a local model, for each low-frequency patch, a high-frequency
patch of the training HR image is selected by a nearest neighbor search from
the training set based on local low-frequency details and adjacent HR patches
previously determined. The selected high-frequency patch should not only come
from a location in the training images that has a similar corresponding low-
frequency appearance, but also agrees with the overlapping pixels, which we call
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high-frequency overlap, at the edges of its previously determined high-frequency
neighbors. This ensures that the high-frequency patches are compatible with
those of the neighboring high-frequency patches.

In this work we compute the local model with an algorithm similar to Free-
man’s [1][2] one-pass algorithm. We first concatenate the pixels in the low-
frequency patch and the high-frequency overlap to form a search vector. The
training set also contains a set of such vectors. Then we search for a match by
finding the nearest neighbor in the training set. When we find a match we ex-
tract the corresponding high-frequency patch from the training data set and add
it to the initial global model to obtain the output image.

Mathematically, this process can be described as follows. Suppose we have a
training data set

{(x(i,j,k), y(i,j,k), z(i,j,k)),

i = 1, 2, . . . , l; j = 1, 2, . . . , m; k = 1, 2, . . . , n}
where x(i,j,k) is the low-frequency patch at the ith row and jth column of the
kth training HR image, y(i,j,k) is the corresponding high-frequency overlap and
z(i,j,k) is the corresponding high-frequency patch of the training HR image, l is
the number of rows of patches in a training image, m is the number of columns
of patches in a training image and n is the number of training images.

Given an input LR patch x, we need to find an HR patch z(i′,j′,k′) such that

z(i′,j′,k′) = min
i,j,k

(d(x, x(i,j,k)) + α ∗ (d(y(i,j,k), y
(i,j,k)
N )))

where d(x, y) is the Euclidean distance between x and y, y
(i,j,k)
N is the overlap of

z(i,j,k) with the adjacent, previously determined high-frequency patches, which
are the patches above and to the left of the current high-frequency patch in the
local model, α is a user-controlled weighting factor, and z(i′,j′,k′) is the selected
high-frequency patch.

3 Experimental Results

We use DDSM (Digital Database for Screening Mammography) for our exper-
iments. DDSM is a standard dataset used by mammography image analysis
research community. The database has about 2,500 cases. Each case includes
two images of each breast, along with some associated patient and image infor-
mation. In this work, we use 100 normal left Mediolateral Oblique (MLO) images
from DDSM for training and 10 normal left MLO images images for testing.

In this paper, the quality of a super-resolution image is defined as the similar-
ity of the decompressed image with the original high-resolution image. We use
Peak Signal-to-Noise Ratio (PSNR) and Mean Structural Similarity (MSSIM)
index to measure the quality of results.

Let X and Y be two images to be compared. The PSNR, which is most
commonly used as a measure of quality of reconstruction, is defined as
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PSNR(X, Y ) = 20 × log10
255

RMSE(X, Y )

where RMSE is the root mean square error between the two images.
The structural similarity (SSIM) index [10] is an implementation of the idea

of structural similarity, from an image formation point of view, which takes into
account contrast, luminance, and structure to determine similarity between two
images. SSIM is defined as

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
,

σxy =
1

T − 1

T∑
i=1

(xi − μx)(yi − μy)

where x and y are subimages of X and Y , T is the total number of pixels in
each subimage, μx is the average of x, μy is the average of y, σx is the standard
deviation of x, σy is the standard deviation of y. C1 = (k1L)2 and C2 = (k2L)2

are two variables to stabilize the division with small denominators, L is the
dynamic range of the pixel values (typically this is 255), k1 = 0.01 and k2 = 0.03
by default. The mean SSIM (MSSIM) is then simply the mean of the SSIMs for
all subimages. A value of MSSIM of 1 indicates perfect similarity [10].

Figures 3 and 4 show the image quality measures for our algorithm. The
downsample factors in this experiment are 4, 8, 16, and the number of Discrete
Cosine Transform (DCT) coefficients used in an 8 × 8 block for JPEG encoding
are 1, 2, 3, 5, 10, and 15. Table 1 compares the results of our method (downsam-
ple factor = 16, 15 DCT coefficients) with the results of JPEG2000 and lossless
JPEG. Sample results of different resolutions are reported in Figure 5.

Table 1. Average compression results for 10 mammograms

Compression methods PSNR Compression ratio
JPEG2000 41.95 80:1

Lossless JPEG lossless 3:1
Our method 35.9023 20480:1

4 Discussion

From figures 3 and 4, we can see that when we just use 1 or 2 DCT co-
efficients, which results in very blocky images, we get a PSNR of 33.458 af-
ter super-resolution of this kind of blocky images. These results indicate that
super-resolution can also attenuate the JPEG compression artifacts when the
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Fig. 3. PSNR of the decompressed images after super-resolution

Fig. 4. MSSIM of the decompressed images after super-resolution

Fig. 5. (a) Original image. (b) The decompressed images after super-resolution (Co-
effs=1,2,3,5,10,15; downsample factor=4).(c) The decompressed images after super-
resolution (Coeffs=1,2,3,5,10,15; downsample factor=8).(d) The decompressed images
after super-resolution (Coeffs=1,2,3,5,10,15; downsample factor=16).
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compression ratio is high. From Table 1, we can see that compared with the
results of JPEG2000 and lossless JPEG, the compression ratio of our method
is thousands of times higher than lossless JPEG, and hundreds of times higher
than JPEG2000 with a slightly lower PSNR. However, some details of the de-
compressed images are different from the original images. Current work by our
group consists of determining whether super-resolution affects clinical diagnostic
performance, by both humans and computers.

For future work, we will study a hybrid scheme that is appropriate for accurate
compression of mammograms. We will use lossless compression in the region of
interest, and lossy compression with super-resolution in the other regions. This
strategy has the potential to achieve high compression ratios without reducing
the diagnostic quality of the mammograms.
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Abstract. In the investigation of emerging tomographic breast imaging meth-
ods using flat-panel detectors (FPDs), digital breast object models are useful 
tools. These models are also commonly referred to as digital phantoms. We 
have created an ensemble of digital breast object phantoms based on CT scans 
of surgical mastectomy specimens. Early versions of the phantoms have been 
used in our published research. Recently we have improved some of our proc-
essing tools such as the use of 3-D anisotropic diffusion filtering (ADF) prior to 
segmentation, and we have evaluated breast object models generated with dif-
ferent methods including power spectral analysis, ROI statistics and an observa-
tion study. 

Keywords: Flat-panel detector (FPD), anisotropic diffusion filter (ADF),  
Digital Breast Object Model. 

1   Introduction 

A recent report on breast screening from the U.S. Preventative Service Task Force 
gained wide attention [1]. The recommendation against universal mammographic 
screening for women aged 40-49 without known risk was based on evidence that this 
screening method for this age range has a high rate of false-positives [2]. This rec-
ommendation emphasized that despite the past success of mammographic screening, 
improved breast imaging techniques would be beneficial. With this goal in mind, a 
number of institutions are actively investigating breast tomosynthesis (BT) and dedi-
cated breast computed tomography (BCT) [3-8].    

Although these new breast imaging modalities are promising, further studies need 
to be performed to assure that they are operating with optimal performance. In pursuit 
of this goal, one topic of interest is the development of breast object models. As sug-
gested by Barrett and Myers [9], any meaningful approach to optimizing an imaging 
system must include a definition of; 1) the specific task to be performed, 2) the ob-
server, 3) an object model representing the objects to be imaged, and 4) a measure of 
performance used to evaluate task performance. This paper focuses on the third item, 
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or more specifically the development of a methodology for generating a breast object 
model. A number of 3D breast object phantoms have been previously proposed  
[10-15]. All of these proposed breast object models have useful properties; yet, their 
realism compared to actual patient tomographic breast reconstructions is somewhat 
lacking.    

In order to produce realistic 3D breast objects, we began work to use high resolution, 
low noise CT images of surgical mastectomy specimens acquired on a bench-top CT 
breast imaging prototype. The first report of this work was made in early 2008 [16]. In 
that same conference session another research group reported work with a similar goal 
to produce a 3-D breast phantom based on breast CT data acquired from patients during 
a clinical trial [17]. These same researchers in a subsequent conference announced a 
future goal to incorporate geometric shapes into their imaged-based model [18]. Their 
method is more fully described in a recent publication [19]. We have also further de-
scribed our work [20]. Subsequently, we have resolved methodology issues and have 
continued to produce an ensemble of digital breast object phantoms.   

2   Methods 

Under an approved institutional review board (IRB) protocol [21] and with informed 
patient consent, fresh mastectomy specimens were obtained immediately following 
surgery and prior to tissue gross pathology. Using a previously described prototype 
system [22], each specimen was imaged by placing it in an appropriate sized holder 
suitable for either of two basic positions; 1) uncompressed, modeling the pendant 
position proposed for dedicated CT breast imaging (CTBI) systems or 2) upright 
compressed, modeling the breast position used for tomosynthesis and/or mammogra-
phy. While various techniques have been used, typical acquisition parameters were 
300 projections over a single 360o trajectory with five projections taken at each angu-
lar step with an x-ray technique of 40kVp, .5mAs. The projection set was software 
flat field corrected and then averaged at each angle with pixels binned two-by-two.  
The projection set was then reconstructed using previously described simulation soft-
ware [23] which implements the filtered back-projection (FPB) algorithm by Feld-
kamp, Davis and Kress (FDK) [24]. Post-reconstruction processing steps typically 
performed were: 1) remove the specimen holder from reconstructed volume; 2) apply 
corrections to reconstruction voxel values (values are in units of un-calibrated linear 
attenuation coefficients (μ)); 3) apply a 3D anisotropic diffusion filter to the recon-
structed volume and 4) segment the filtered reconstruction volume into a breast ob-
ject. Removal of the specimen holder was threshold-based and, as needed, utilized a 
prior holder-only reconstruction. Correction for intra-slice voxel variation was fol-
lowed by inter-slice correction using the method of Altunbas et al. [25] (Note: varia-
tions are caused by scatter, beam-hardening, and insufficient angular sampling with 
circular orbit cone-beam reconstruction). The classic Perona & Malik anisotropic 
diffusion filter (ADF) [26] was implemented for a 3-D volume using the National 
Library of Medicine’s Insight Segmentation and Registration Toolkit (ITK) [27].  
Using prior knowledge of the tissue histogram for each slice, the filtered recon-
structed volume was segmented into a tissue density phantom. In some instances, 
after segmentation, the breast object phantom was multiplied by a shape template in 
order to produce a more realistic shape.  



56 J.M. O’Connor et al. 

 

Two phantom model types were considered. The first model generates phantoms 
with only two discrete voxel values, one for adipose tissue density and the second for 
glandular tissue density. The second model allows for a range of tissue densities be-
tween peak adipose and peak glandular densities. The first phantom type will be 
called the binary model and the second phantom model type will be referred to as the 
multi-value model. While both types of models appear to give good results, the multi-
value phantom has been selected as the standard. This selection was made after 
evaluation of three factors: 1) comparison of Regions of Interest (ROI) statistics, 2) 
evaluating the slope of a power law spectrum, similar to that described by Metheany 
et al. [28], and 3) an observation similarity study. The ROI methodology was de-
scribed in the previous IWDM conference [20]. Using a previously described com-
puter simulation of breast CT [23], 12 reconstructed volumes were generated from 
both phantom models. ROI’s of 25 x 25 pixels were randomly positioned within ap-
proximately uniform adipose or fibroglandular regions of simulated reconstructions 
from both phantom models, as well as within the original specimen reconstruction. 
Measurements of ROI contrast and fractional standard deviation in both homogeneous 
adipose ROIs and homogeneous glandular ROIs were computed. The second evalua-
tion was based on analysis of CT slice frequency spectrum as recently described in 
Metheany’s research [28]. Her technique is an extension of classical work by Burgess 
et al. [29] which showed that mammogram projections follow a power-law spectrum 
over a certain scale and fractal dimension. The power law describes isotropic, Gaus-
sian noise with a power spectrum for a frequency (f) spectrum defined by the equation 

P( f ) =
α
f β  where α is signal magnitude and β is the power-law exponent.  

Metheany et al. developed the framework for applying this same power-law analysis 
to CT breast slices. Power spectrum analysis was used to evaluate and compare the 
two phantom models. 

The final evaluation was a subjective four observer preference study to evaluate 
similarity between simulated reconstructed slices and the original specimen CT slice.  
The simulation parameters were chosen to be as close as possible to the measurement 
technique used in the original specimen acquisition. Observers were given three 
guideline criteria. Those criteria were 1) edge evaluation, 2) tissue texture and 3) 
preservation of fine structure in the simulated reconstruction. 

3   Results 

The ultimate goal of this work is to produce useful phantoms for observer studies that 
use breast simulations therefore evaluation of the two model types was made with 
respect to original reconstructed specimens. As a general question we wanted to know 
how similar is a simulation to the original specimen upon which the phantom was 
based. The specimen was corrected for intra-slice and inter-slice variation. The simu-
lations were made with parameters similar to the original specimen acquisition. No 
additional filtering was performed on either specimen or simulations. Several objec-
tive metrics were determined and one subjective study was performed.  
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The first objective examination was fractal or β evaluation. This was an assessment 
of the image power spectrum of the specimen in comparison with the image power 
spectrum of simulated reconstructions based on the two phantom types (binary and 
multi-value). The aim was to see if one could predict better similarity by an observer 
by using fractal analysis as a figure of merit. In this work β is simply a proxy for 
fractal dimension and is used as that figure of merit, where β is the absolute value of 
the slope of the power law spectra or simply the power-law exponent. This value is 
determined by the fit to the log-log plot of power over the frequency range .1 to .45 
cycles/mm. β values for twenty uncompressed specimens were compared with both 
the corresponding reconstructions based on the binary phantom and the reconstruc-
tions based on the multi-value phantom. For those twenty cases, β values for the 
specimen reconstruction were close to β values of the reconstructions based on multi-
value phantoms as well as to the β values for the simulations based on the binary 
phantoms. The average β for all specimen reconstructions was 2.32 (standard devia-
tion .42). The average absolute difference between the reconstructed specimens and 
the reconstructions based on the multi-value phantoms was 0.42 while the average 
absolute difference between the specimen reconstructions and the simulations based 
on the binary phantoms was .25.  

The second objective examination was an evaluation of ROIs. In this analysis a 
comparison was made between homogeneous regions in the original specimen with 
corresponding homogeneous regions in reconstructions based on binary models and 
regions in reconstructions based on multi-value models. To determine homogeneous 
ROIs twevle multi-value phantoms were automatically scanned for 252 pixel regions 
that were either glandular homogeneous or adipose homogeneous. The ROI area was 
5mm2. In all twevle phantoms over 30,000 ROIs were determined (11,910 glandular 
ROIs and 21,218 adipose ROIs). In the selection, care was taken not to select con-
tiguous regions (i.e. there was a minimum gap of 2mm between ROIs). While the 
selection is based on the multi-value phantom, when comparing ROIs in the simulated 
reconstructions, the corresponding ROI in the specimen was checked to ensure that 
the region did not have values that would indicate that the ROI contains non-tissue 
values (i.e. air or metal or micro-calcifications).  As stated, one cannot see a signifi-
cant difference between similar homogeneous ROIs in simulated reconstructions 
based on either phantom type. For comparison the figures of merit were Contrast and 
Fractional Standard Deviation. Contrast here is defined as (Glandular Mean – Adi-
pose Mean)/Adipose Mean. Fractional Standard Deviation is the Standard Devia-
tion/Mean.  The mean contrast for all ROIs in all twelve specimens is .409 with  
standard deviation of 0.061. The mean contrast for simulations based on the multi-
value phantoms was 0.347 with standard deviation of 0.025. The mean contrast for 
simulations based on the binary phantoms was 0.351 with standard deviation of 0.024. 
The contrast of the specimen does not differ significantly from simulations based on 
either of the two phantom types and there is little difference between the contrast in 
the two simulations. For the Fractional Standard Deviations the average for all regions 
in all twelve specimens and reconstructions is provided in Table 1. There are small 
differences between the specimen regions and either of the two simulation cases. 
Fractional Standard Deviations for both simulation types are close.  
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Table 1. Fractional Standard Deviation: MEAN is the average fractional standard deviation for 
all ROIs in all twelve cases. STDev is the average standard deviation of the fractional standard 
deviation for all ROIs in all cases. 

Tissue Type SPEC SPEC MULTI. MULTI. BIN. BIN 
 MEAN STDev MEAN STDev MEAN STDev 
ADIPOSE 0.063 0.034 0.059 0.025 0.060 0.026 
GLANDULAR 0.052 0.022 0.045 0.021 0.045 0.021 

A subjective image preference study was also performed to compare different 
phantom models. In this study twenty slices from each of twenty specimens were 
selected for a total of four hundred CT slices. The corresponding slices from both the 
simulated reconstruction based on the binary phantom and the simulated reconstruc-
tion based on multi-value phantom were placed in a matching set. Four observers 
were randomly presented sets of simulations and asked to indicate which one of the 
set was most similar to the specimen reconstruction based on similarity of edges and 
apparent tissue texture as well as which one best preserved the fine structures from 
the original specimen CT slice. In one hundred responses the observers selected the 
simulation based on the multi-value model in eighty-five cases. In thirteen cases ob-
servers found no difference. In only two cases was the reconstruction based on the 
binary model selected. In consideration of the selection criteria, in fifty of the eighty-
five cases in which the multi-value model was selected, the observer indicated that the 
multi-value was superior in all criteria. In none of the cases was simulation based on 
the binary phantom deemed to be best for all three criteria. In eight of one hundred 
instances the binary model was marked with better texture. In seven cases the binary 
model was judged as having better edges. In only one case of the hundred was the 
simulated reconstruction based on the binary model thought to be superior for the 
preservation of fine structure. This study does decidedly favor the multi-value phan-
tom over the binary phantom. It also suggests the major shortcoming of the binary 
phantom, which is that it does not preserve fine structure as well as the multi-value 
phantom. 

Since 2006 over 70 patients have consented to having their mastectomies imaged 
on our prototype CT breast imaging system. While the majority of studies were mul-
tiple images made using one mastectomy specimen, some were bi-lateral specimens 
from one patient. Most mastectomies were suspected of having cancer; some were 
removed for prophylactic treatment and thought to be disease free. The current en-
semble of breast phantoms includes twenty uncompressed phantoms and numerous 
compressed phantoms (more phantoms will have been developed by the time of the 
conference). Within the ensemble are a variety of sizes and tissue densities. Figure 1 
shows sagittal and coronal CT slices from; A&D) a reconstruction of the mastectomy 
specimen, B&E) the resultant object model generated using this specimen, and C&F) 
simulated reconstructed images made by inputting the breast object model to the 
computer simulation software to make simulated projections, and then subsequently 
to reconstruct these projections using Feldkamp filtered backprojection (FBP). Figure 
2 shows sagittal, coronal and transverse slices of a compressed breast phantom, as 
well as a simulated mammogram using this breast phantom. 
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Fig. 1. Specimen 47 A (sagittal) & D (coronal) slices from a mastectomy specimen reconstruc-
tion (basis for digital phantom). B & E corresponding slices from resultant digital phantom 
(multi-value model). C & F slices from a computer simulation made using this digital phantom 
(i.e., generating simulated projections followed by FBP reconstruction). The simulation  
technique used was: 40kVp, 4mGy mean glandular dose for 300 simulated projections with 
simulated detector characteristics similar to prototype detector. Note the similarity between 
simulated reconstructions (C&F) and the original specimen reconstruction (A&D). A post 
reconstruction ADF was applied to the simulation. [Note: display window not uniform]. 

 

Fig. 2. Specimen 52 A,B,C are coronal, axial and sagittal slices respectively of a compressed 
phantom. The phantom here is displayed as a ‘negative’ (adipose tissue values light and glandu-
lar values dark). D is a simulated mammogram using this compressed phantom. The simulation 
technique used here was Mo/Mo 30kVp spectra at 1.5mGy mean glandular dose with simulated 
detector characteristics of 100 micron2 pixel  and CsI thickness of 100 microns.  
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4   Discussion 

There is similarity between this approach to generate digital breast object models 
based on images of mastectomy specimens and the previously mentioned approach by 
another research team that uses clinical breast CT images to generate models [19].   
There are advantages and disadvantages of using mastectomy specimens to develop 
breast object models versus using actual clinical breast CT images. Using mastectomy 
specimens might have the benefit of improved spatial resolution, lower noise and 
improved image quality because the x-ray technique is not constrained by patient 
safety dose limitations. Of course using clinical breast CT images to generate breast 
object models has the advantage that the breast is intact; therefore the chest wall re-
gion should have better anatomical fidelity.   

We have created an ensemble of digital breast object models that can be useful for 
evaluating and optimizing tomographic breast imaging systems. We believe that both 
phantom types, binary and multi-value, give good results. This is confirmed in that 
objective analysis shows similar results in comparison of simulations based on either 
phantom type with specimen. However, the multi-value phantom appears to generate 
more realistic simulated projections with better similarity to the original specimen 
based on an observer study. We believe this observer evaluation is the reason for 
favoring the multi-value as an observer model in future studies. 
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Abstract. The geometric accuracy of a digital breast tomosynthesis (DBT) re-
construction algorithm was assessed using an anthropomorphic software breast 
phantom with simulated fiducial markers. The locations of the fiducial markers 
were measured from supersampled images reconstructed to sub-pixel precision. 
The measured locations were compared with the known ground truth positions 
of the simulated markers. The fiducial markers simulate small, attenuating ob-
jects within the software phantom. Using reconstructed images with resolution 
of 0.115 mm, and a total of twelve fiducial markers at three different depths, we 
determined an average difference of 0.105 mm (st. dev. 0.086 mm) between the 
estimated and true marker locations.   

Keywords: Anthropomorphic breast phantom, tomosynthesis, tomographic  
reconstruction algorithms, geometric accuracy of tomographic reconstruction. 

1   Introduction 

DBT is an investigational imaging modality that offers improved visualization of 
breast tissue by eliminating tissue overlap. Early clinical studies have shown that 
DBT has increased sensitivity and specificity compared to digital mammography 
(DM), the current gold standard in breast cancer screening. With a radiation dose 
comparable to DM, DBT has the potential to replace DM as the standard breast cancer 
screening modality.   

Methods for analyzing DBT systems using physical test objects have been  
described in the literature; these methods use physical test objects, such as a slanted 
wire [1], or custom-made calibration phantoms [2]. Currently, however, no generally 
accepted standards exist for testing DBT acquisition and reconstruction. The three-
dimensional nature of DBT limits the use of existing tools for mammography (e.g., 
mammographic accreditation phantom [3]). Similarly, the limited angular range of 
DBT acquisition prevents the use of most clinical CT tools. In this paper, we describe 
preliminary results of estimating the geometric accuracy of a DBT reconstruction 
algorithm using an anthropomorphic software breast phantom with fiducial markers 
simulated at known positions. 
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2   Materials and Methods 

We used an anthropomorphic breast phantom described previously [4,5]. The phan-
tom simulates both a realistic breast outline typical of the geometric extent of the 
breast, and internal tissue structures (glandular tissue, adipose compartments and 
Cooper’s ligaments). The design of the phantom is flexible, covering anatomical 
variations in breast composition and size. The phantom deformation during clinical 
breast compression is simulated using a finite element tissue model.   

In this study, the breast phantom was simulated with an isotropic resolution of 200 
microns. The phantom volume was 450 ml with a compressed thickness of 5 cm and 
an overall glandularity of 40%. The fiducial markers simulated small, attenuating 
objects with a size of one voxel (200 microns) and a linear x-ray attenuation 30 times 
larger than the attenuation of fibroglandular breast tissue. Four fiducial markers were 
simulated at three different distances from the breast support (6.4 mm, 25.6 mm and 
44.8 mm). At each depth, the four markers were positioned in a 20 mm square.  
Fig. 1 illustrates simulated fiducial markers at different distances from the breast 
support.   

 

Fig. 1. Cross-sections of the software breast phantom at 6.4 mm (left), 25.6 mm (center), and 
44.8 mm (right) from the breast support, containing fiducial markers (in red/white). The mark-
ers are shown as magnified 20-fold relative to their simulated size.  
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Tomosynthesis image acquisition was simulated assuming a monoenergetic x-ray 
beam without scatter and an ideal x-ray detector. Ray tracing was used to calculate the 
x-ray attenuation through the phantom. The resolution of the projection images was 
100 microns, consistent with the GE Senographe DS tomosynthesis prototype (GE 
Healthcare, Chalfont St. Giles, UK). The simulated acquisition geometry included 15 
projection acquired over a 40 degree arc corresponding to the acquisition protocol of 
the GE prototype. A commercial back-projection filtered DBT reconstruction algo-
rithm developed by Real Time Tomography, LLC (Villanova, PA) was used. Fig. 2 
shows details of a simulated DBT phantom projection (acquired perpendicular to the 
detector plane) and the reconstructed image plane corresponding to a depth 25.6 mm 
measured from the breast support.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A detail of a simulated DBT projection image (left) and the reconstructed image plane 
corresponding to a depth 25.6 mm from the breast support (right) showing four fiducial markers  

The reconstruction algorithm used allows us to specify the geometry of the recon-
struction plane with arbitrary precision. To measure geometric accuracy, we recon-
structed a series of images with sub-pixel shifts within the plane of reconstruction.  
These images were combined to form a supersampled image. In the current work, 10-
fold supersampling was performed in the y-axis (scanning direction) only. In future 
work, supersampling in the x- and y-axes will be performed. Fig. 3 shows a surface 
plot of a supersampled image of a fiducial marker.   

For our analysis, images of the software phantom with the fiducial markers were 
reconstructed at a spatial resolution of 0.115 mm, selected to allow display of a 
230.4 mm × 192.0 mm reconstructed field-of-view on a 2048×1536 monitor. Image 
planes were reconstructed every 0.2 mm. For each of the 12 fiducial markers, we 
identified the distance zC from the breast support to the reconstructed image plane in 
which the spatial extent of the objects was smallest.  In this plane, we calculated the 
centroid, i.e., the center of mass, (xC, yC) of the marker to determine its location more 
precisely. The centroid was calculated in a thresholded image of the supersampled 
objects. The threshold was selected as half of the maximum reconstructed voxel in-
tensity in the region of interest of the fiducial marker. 
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Fig. 3. A surface plot of a supersampled image of a fiducial marker used for estimating the 
marker location in the reconstructed space with a subpixel precision 

The coordinates (xC, yC, zC) were considered as the position of the marker in the 
three-dimensional reconstructed image space. This position was compared with the 
known ground truth marker location in the phantom (xT, yT, zT). We defined the error 
in the position of the fiducial markers EP as the Euclidean distance between the meas-
ured and the true marker position:  
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In addition, we also calculated the error in the distance between a pair of recon-
structed fiducial markers, defined as ED = dR - dT, where 
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and indices C1 and C2 denote the measured and T1 and T2 the true locations for a pair 
of markers. 

Using the supersampled images, we also calculated the relative error in estimating 
marker size from images reconstructed at a given distance from the plane in which the 
object is in focus. The estimated marker size was calculated as the full width at half 
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maximum (FWHM) of the reconstructed marker profile. The relative error in marker 
size was defined as 100%×[F(z) - Fmin]/Fmin, where F(z) and Fmin represent the FWHM 
estimated at the reconstructed depth z, and the minimum FWHM estimated at the 
plane of focus, respectively. 

3   Results 

Fig. 4 shows the error in the measured marker positions EP as a function of the recon-
structed plane depth (i.e., the distance from the breast support). Also shown are the 
errors calculated separately for each of the three marker coordinates: perpendicular to 
the chest wall (xC-xT), parallel to the chest wall (yC-yT), and perpendicular to the detec-
tor (zC-zT). The overall error EP averaged over all 12 fiducial markers was 
0.105±0.086 mm (average ± st.dev). For the markers located 6.4 mm from the breast 
support the error EP was 0.126±0.088 mm; for the markers at 25.6 mm, EP was 
0.073±0.085 mm, and for the markers at 44.8 mm, EP was 0.116±0.101 mm.   
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Fig. 4. Average error in the measured 3D position of reconstructed fiducial markers (EP) as a 
function of the reconstructed plane depth. (Error bars represent one standard deviation.) Shown 
also are the errors calculated separately for each marker coordinate.  

Fig. 5 shows the error in the reconstructed distance between pairs of fiducial mark-
ers ED. The simulated distance between the markers in the phantom was 20 mm. The 
distance error is calculated separately for distances measured along the x- and y-axes.  
The total error ED averaged over 12 pairs of markers along the two axes was 
0.017±0.020 mm. For the markers at a 6.4 mm from the breast support the error ED 
was 0.013±0.009 mm; at 25.6 mm, ED was 0.009±0.007 mm, and at 44.8 mm, ED was 
0.029±0.021 mm. 
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Fig. 5. Error in the reconstructed distance between pairs of fiducial markers (ED) plotted as a 
function of the reconstructed plane depth. ED values were averaged separately over distance 
measured along the y-axis parallel with tube motion (*) and the x-axis perpendicular to tube 
motion (○). Error bars represent one standard deviation. Note that supersampling was per-
formed along the y-axis only.   

Fig. 6. Relative error in the estimation of the object size at a given distance from the plane of 
focus, averaged over the fiducial markers positioned at different reconstructed plane depths 
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Fig. 6 shows the relative error in estimating marker size from images reconstructed 
at a given distance from the plane of focus. Plotted are the relative errors averaged 
over the four markers positioned at the same depth. Averaged over all 12 markers, the 
relative error in estimating marker size at a distance of 0.6 mm away from the plane 
of focus is equal to 50%; while at a distance of 1.0 mm, the relative error is 116%.  
The error increases with distance from the detector. 

4   Discussion and Conclusions 

We have developed a method to assess geometric accuracy with sub-pixel precision.  
In the example presented, we observed very little dependence of the geometric accu-
racy on the reconstructed plane; the errors in the measured marker positions EP were 
comparable at different distances from the detector.  As shown in Fig. 4, the EP values 
are on the order of the size of 1 pixel. This is as expected for a well-designed recon-
struction system.  Note that the error in the z-axis is worst; this arises from the limited 
angular range of the DBT acquisition geometry. 

The observed error in measuring the distance between pairs of fiducial markers ED, 
shown in Fig. 5, was a fraction of the pixel size. The ED values were smaller for dis-
tances measured along the y-axis than the x-axis because we performed supersam-
pling along the y-axis only. We plan to extend the presented approach to the analysis 
of images supersampled in both in-plane directions. The error in distance measure-
ment does not show a strong dependence on the reconstruction plane.   

These results have importance for developers of DBT-guided biopsy systems.  
Based on these data, biopsy systems should be able to localize objects to within one 
voxel in 3-dimensions, thus providing targeting accuracy comparable to stereotactic 
biopsy systems. 

The presented approach also allowed us to estimate the unsharpness of each object 
when reconstructed at a given depth from the plane of focus. As shown in Fig. 6, the 
FWHM error at a distance of 1.0 mm is about twice as large (116% vs. 50%) as at a 
distance of 0.6 mm. This result is of practical importance as it elucidates limitations 
of DBT reconstruction in visualizing objects located at a position between two planes 
of reconstruction. As the analyzed fiducial objects were of size 1-voxel in the phan-
tom, the reconstructed supersampled images of these objects could also be used to 
calculate spatial dependence of the point spread function.   

We are currently performing verification of the presented assessment methodology 
by analyzing images reconstructed at different magnification. Fig. 7 shows a fiducial 
marker supersampled 10-times in the y-axis (scan direction), and the same marker 
from an image reconstructed at 10-times magnification. The images are substantially 
equivalent; however, accurate side-by-side comparison will require supersampling in 
both the x- and y-axes, and application of reconstruction filters that are matched in the 
two magnifications. 

In order to validate the effects of simulated image acquisition of the observer accu-
racy, we also plan to extend the presented approach to include the analysis of physical 
phantom images. The combined analysis of simulated and physical phantom images 
offers more flexibility in assessing the impact of the acquisition geometry and system 
components (e.g., focal spot blurring, scatter, step-and-shoot vs. continuous tube 
motion, etc.). 
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(a)        (b) 

Fig. 7. The same fiducial marker shown in (a) an image supersampled in the (vertical) direction 
along the chest wall and (b) a 10 times magnified image 

In summary, while physical phantoms can exactly measure individual imaging sys-
tems, software phantoms offer an advantage of repeated and potentially automated 
analysis of a large number of acquisition and reconstruction parameter combinations.  
Moreover, software breast phantoms include simulated anatomical noise.  This is 
particularly relevant in DBT systems, where the reconstruction algorithm must suc-
cessfully blur out-of-plane objects while preserving in-plane features. 
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Abstract. Results of a dose survey carried out at BreastCheck, the Irish Breast 
Screening Program are presented. The survey includes 12,529 images acquired 
with GE Essential, Hologic Selenia and Sectra MDM digital mammography 
systems. 

The  average MGD per examination was 2.74±0.04mGy, the average com-
pressed breast thickness was 61.4±0.53mm and the average compression force 
was 10.9±0.7daN. Results for the three different systems are reported and the 
distribution of the most utilised target/filter combinations are also included. 

The results from this survey of a completely digital screening programme 
reveal a complete reversal of trend in target/filter selection with Mo/Mo usage 
at 0.3% and Rh/Rh selection at 36.6%. Indeed, the predominant use of novel 
target/filter combinations is evident from this survey. 

A DRL value of 1.75mGy has been established by calculating the 95th per-
centile of the average MGD for compressed breast thicknesses ranging from 
55mm–65mm. 

Keywords: Digital Mammography, Breast Screening, Mean Glandular Dose, 
Dose Reference Level. 

1   Introduction 

In Ireland, breast cancer is the second most common form of cancer. According to fig-
ures from the National Cancer Registry of Ireland [1], breast cancer accounts for 28% of 
all cancers in women in Ireland, with an average of 1,726 new diagnoses each year.  

Mammography is a well-established screening tool and screening has been shown 
to reduce breast cancer mortality due to earlier detection. As for all practices involv-
ing exposure to diagnostic x-rays, mammography should be subject to clinical audit 
including patient dose measurement at regular intervals.  

In order to comply with the European council directive 97/43/Euratom and conse-
quent Irish legislation [S.I.478(2002)], we have measured the Mean Glandular Dose 
(MGD) to the breast for a representative series of breast examinations and for each 
mammographic system in service at the national screening program. 

Much information can be drawn from a dose audit of this nature. Results were used 
to define the Dose Reference Level (DRL) and to determine a number of other key 
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parameters such as the overall MGD used within the breast screening program, the 
MGD as a function of the breast thickness and as a function of the breast view as well 
as the distribution of the breast thickness. 

2   Method 

Approximately one-hundred patient examinations were acquired for each of the 28 
digital systems in operation at the Irish breast screening program. Each examination 
contains 4 images: a mediolateral oblique (OB) view and a craniocaudal (CC) view 
for each breast.   

The digital systems included in this survey were: 11 GE Essential, 10 Hologic Se-
lenia, and 7 Sectra MDM L30. The three types of systems differ with regard to the 
target/filter combinations used as well as detector technology and operation of the 
AEC system. 

The GE Essential has a dual track anode composed of Molybdenum (Mo) and Rho-
dium (Rh) targets in combination with Mo or Rh filters. The GE Essential has an  
indirect conversion detector which consists of a flat panel amorphous silicon detector 
with a Cesium Iodide (CsI) needle structure scintillator The system uses a feature 
called automatic optimisation of parameters (AOP) to optimise image quality under 
the constraints of breast MGD, exposure time and other technical limitations. It uses a 
pre-exposure to determine the radiological thickness at the most glandular part of the 
breast and from this, along with the mechanical compressed breast thickness, the 
breast composition is estimated. Based on the radiological thickness, composition and 
system configuration, the final exposure parameters (target, filter, kV and detector 
dose) are chosen from a pre-computed AOP table. Finally, the mAs value necessary to 
reach the required detector dose is computed and used to control the exposure [2]. 
There are three fully automated exposure modes available on the GE Essential; Con-
trast, Standard and Dose AOP modes.   

The Hologic Selenia system is equipped with a Tungsten (W) anode and a choice 
of Rhodium (Rh) or Silver (Ag) filtration. The detector used in the Selenia is a flat-
panel amorphous-Selenium detector which performs a direct conversion of x-rays to a 
digital signal. It is comprised of a 200μm layer of amorphous selenium bonded to a 
thin film transistor (TFT) array. The Selenia has four modes of automatic exposure 
control: Auto-Filter, Auto-kV, Auto-Time and thickness equivalent control (TEC). 
All the systems included in this survey are operated in the Auto-Filter mode. In this 
mode the compressed breast thickness is used to determine the kV and filter selection 
and the required exposure is determined from a pre-exposure of between 2mAs and 
10mAs depending on the breast thickness (Hologic, Personal Communication). There 
are four selectable operating dose levels on the Selenia and all units in the Breast-
Check program are operated at the Standard Screening Dose setting.  

The Sectra MDM L30 is a multiple slit scanning photon counting system with a 
W/Al anode-filter combination. It has a pixel pitch of 50μm and field size of 24cm x 
26cm. The MDM L30 uses the compressed breast thickness to set the kV and the initial 
scan speed to select a specific exposure. It then utilises a form of exposure control called 
SmartAEC™ which continuously adjusts the exposure and optimizes the dose level to 
the local density of the breast throughout the scan. The AEC attempts to maintain, as far 
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as possible, a constant contrast-to-noise ratio (CNR) [3]. There are three dose operating 
levels on the MDM: C120, C100 and C70 and all units at the national breast screening 
program are set to the C120 level. 

All x-ray units in the BreastCheck screening programme are operated using auto-
mated selection of exposure factors. The control mode used depends on the system 
used and all system types are operated in the same mode.  Thus the GE Essential 
systems are set to STD mode, the Hologic Selenia systems are set to Auto-Filter mode 
and the Sectra systems operate in its unique automatic exposure control mode. 

All of the systems were subject to routine medical physics QA during the period of 
the survey in accordance with the recommendations of the European guidelines [4] 
and were found to conform to the specified image quality standards. 

Selected examinations for each system were transferred from the PACS archive, 
the parameters were extracted from the DICOM headers using a locally developed 
MATLAB routine (Mathworks, Cambridge, UK) and transferred to a Microsoft® 
Office Excel spreadsheet for further analysis. The parameters extracted from the 
header for this survey included the patient identification, age, compressed breast 
thickness, compression force, view position, laterality, exposure kVp, exposure mAs, 
target material, filter material, organ dose and pre-exposure factors where appropriate.  

Dose calculation was carried out according to the method of Dance et al [5] using 
software developed by KC Young for the National Health Service Breast Screening 
Program (NHSBSP) [6] with some modification made to take into account new c-, g- 
and s- factors for HVL values associated with the spectral data for new mammogra-
phy systems. Further modifications were made to the dose calculations to account for 
the larger HVL found in the new mammography systems. The s-factor values used in 
dose calculations with tungsten/aluminum target/filter combinations were obtained 
from a table of s-factors provided by Dance et al [5]. 

To determine the dose reference level, the MGD of OB mammograms for breasts 
with a compressed thickness of 60±5mm was selected for each mammography sys-
tem. The choice of this thickness was based on the measurement of average com-
pressed breast thickness in this survey. The 95th percentile of the distribution of the 
MGD was used as DRL.  

The dose data from distinct units were then compared to the DRL. The MGD of a 
particular unit is considered significantly greater than DRL if the MGD, increased by 
twice the SEM, is higher than the DRL. 

3   Results 

Data collected from the 28 mammographic systems include 3,016 patients, which 
result in a total of 12,529 images. The age of the majority (99.7%) of the women was 
within the standard screening age range with an average age of 57.4 years.  

The overall average MGD per examination was 2.74±0.04mGy, the average thick-
ness was 61.4±0.53mm and the average compression force was 10.9±0.7daN. These 
data are presented in the first column of Table 1 together with average dose, com-
pressed breast thickness and compression force for the OB and CC view.  
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Table 1. Average MGD, thickness and compression force for the 2 views : CC and OB 

  Overall 
Results GE Hologic Sectra 

Exam Average MGD for exam (mGy) 2.74 ± 0.04  3.03 ± 0.05 2.91 ± 0.06  1.98 ± 0.04 

 Average thickness (mm) 61.4 ± 0.53 59.2 ± 0.53 62.5 ± 0.58 64.7 ± 0.64 

 Average compression force (daN) 10.9 ± 0.7  10.7 ± 0.1  11.0 ± 0.14 10.9 ± 0.3  

CC 
view  

Average MGD for image (mGy)1.27± 0.01 1.40 ± 0.01 1.36 ± 0.02 0.96 ± 0.01  

 Average thickness (mm) 60.0± 0.3  57.1 ± 0.48 61.6 ± 0.53 64.5 ± 0.6 

 Average compression force (daN) 10.0± 0.6 10.0 ± 0.09  10.0 ± 0.11 10.2 ± 0.16  

OB 
view  

Average MGD for image (mGy)1.35± 0.01 1.52 ± 0.02 1.44 ± 0.02 0.93 ± 0.01 

 Average thickness (mm) 62.5± 0.4 61.3 ± 0.59 63.4 ± 0.62 65 ± 0.7 

 Average compression force (daN) 11.9± 0.9 11.8 ± 0.11 11.9 ± 0.15 12.3 ± 0.2 

Because of the variation of MGD between systems, we have also reported the re-
sults for each of the individual system types included in this survey.  

The GE systems, despite having the lowest compressed breast thickness, exhibit an 
average MGD per exam of 3.03mGy. The Hologic systems had a MGD of 2.91mGy 
and an average compressed breast thickness of 62.5mm. The Sectra systems had an 
average MGD of 1.98mGy and an average compressed breast thickness of 64.7mm. 
The distribution of the MGD for the overall survey and the three types of system are 
shown in Figure 1. 
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Fig. 1. Distribution of the calculated MGD for examination 
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Table 2 shows the distribution of target/filter combinations selected in the survey.  
Rh/Rh (36.6%) is the most commonly used while the Mo/Mo target/filter combination 
was selected in only 0.3% of cases.  

The variation of dose with compressed breast thickness for the overall survey and 
for the different mammography systems is shown in Figure 2 for the OB view (CC 
view distribution presents the same trend but is not reported here). Compressed breast 
thicknesses <40mm and >85mm were neglected as they did not contain a statistically 
significant number of images.  

Finally, Figure 3 shows the MGD calculated for breast thickness between 55mm 
and 65mm for the OB view images for the 28 systems. The 95th percentile of the aver-
age MGD was calculated and reported on the graph to indicate the DRL. This value of 
1.75mGy was set as DRL. 

Table 2. Proportion of exposures using the different target/filter combinations 

Target/filter combination Proportion of  
exposures 

Mo/Mo 0.3% 
Mo/Rh 4.3% 
Rh/Rh 36.6% 
W/Rh 23.5% 
W/Ag 11.2% 
W/Al 24.1% 
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Fig. 2. Average MGD per image main Oblique (OB) as a function of compressed breast  
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Fig. 3. Distribution of MGD values for OB view images for 55-65 mm thick breasts. Systems 
1-7 are Sectra, 8-18 are GE and 19-28 are Hologic. The error bars represent the Standard Error 
of the Mean (SEM). 

4   Discussion 

The average MGD per CC view was 6% lower than that of the corresponding OB 
view. This difference can be accounted for by the equivalent difference in the com-
pressed breast thickness (60mm for the CC view and 62.5mm for the OB view) and 
the inclusion of denser parts such as the pectoral muscle in the OB view, which can 
cause an increase in the exposure. The presence of the pectoral muscle in the OB view 
is also responsible of the higher compression force (11.9daN for the OB view and 
10daN for the CC view). 

The results from this survey reveal a complete reversal of trend in target/filter se-
lection with Mo/Mo usage at 0.3% and Rh/Rh at 36.6%. Indeed the predominance of 
new target/filter combinations is evident from this survey (W/Al at 24.1% and W/Rh 
at 23.5%). 

In particular, for the Hologic systems, the W/Rh combination was selected for breast 
thicknesses less than 70mm and W/Ag was selected for greater breast thicknesses. The 
selected voltage increased with thickness and ranged between 26kV and 32kV for the 
W/Rh combination and between 27kV and 36kV for the W/Ag combination.  

The majority of exposures on the Sectra units were performed at 35kV (76.7%). 
For smaller (<45mm) breast thicknesses, 32kV (7.8%) was selected and for the larger 
(>70mm) breast thicknesses, 38kV (15.3%) was selected. 

For the GE systems, most exposures occurred at the single target/filter combination 
and voltage selection of Rh/Rh 29 kV (71.7%). These factors were selected for breast 
thicknesses ranging between 30mm and 84mm. The remaining exposures were one of 
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three predominant exposure combinations:  27kV Mo/Rh (8.5%), 30kV Rh/Rh (7%) 
or 31kV (9.7%). 

Regarding the relationship between MGD and breast thickness, as would be ex-
pected, the average MGD increases with thickness for all systems included in the 
survey. The Sectra systems exhibit a significantly lower dose compared with the other 
two models. Of the other two systems, the Selenia appears to provide a dose advan-
tage, certainly for smaller breasts but less so for larger breasts. The rate of increase in 
dose appears to be similar for the GE Essential and the Sectra units but the dose level 
exhibits a plateau for breast thickness >60mm on the Sectra system.  

Our results can be compared with results of similar surveys carried on in different 
countries. In 2001, the results of an Australian survey including 6,000 women was 
published [7]. The average MGD per view was 2.6mGy and the compressed breast 
thickness was 5.1cm. In 2003 Jamal et al [8] published results of a small study involv-
ing 300 women where the MGD and the compressed thickness were 1.54mGy and 
37mm respectively for the CC view and 1.82mGy and 44mm for the OB view. The 
paper by Young et al [9] reviews a large representative sample of dose measurements 
collected in the UK screening programme. The MGD was 2.23mGy for the OB view 
and 1.96mGy for the CC view and the average compressed breast thicknesses were 
54.3mm and 51.5mm for the two views respectively. Smans et al [10] in 2006 pre-
sented results of a Belgian audit involving 27 centers where the average MGD was 
1.76mGy. 

Compared with results of previous surveys, the MGD for mammography in the 
BresatCheck screening programme is low. This is because all imaging equipment in 
the screening program is digital and 25% of the mammography systems used are low 
dose systems.  

We also compare the DRL value established in this work with those published 
elsewhere. In particular, the DRL value is significantly lower than the comparative 
UK value of 3.5mGy [9] and Belgian value of 2.46mGy [10]. 

Three units were found to have a measured dose slightly higher than the DRL; 2 
GE and 1 Hologic system. These systems are currently under investigation to estab-
lish the cause of these higher dose measurements. 

Acknowledgement. This study was supported by the Eccles Brest Cancer Research 
Fund. 
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Abstract. The purpose of this study is to evaluate the effect of sim-
ulated dose reduction using CDMAM and mastectomy images acquired
on two digital mammography systems. High dose images have been arti-
ficially degraded to reduced dose levels by systematically adding filtered
noise. Automated scoring has been carried out on the degraded CDMAM
images and on experimental CDMAM images, taken at the same corre-
sponding reduced doses. Contrast-detail curves were derived for both, at
all doses, and compared. Relative difference in the contrast-detail curves
was approximately 5% overall for all four doses.

For the mastectomy images noise power spectra were obtained and
the ratio of experimental to synthetic low dose NPS profiles averaged for
all doses at 1.04. The largest differences in the NPS profiles were found
at the high spatial frequencies, corresponding with the differences in the
small discs in the contrast-detail curves.

Keywords: Digital mammography, simulation, CDMAM phantom,
validation, mastectomy, dose reduction.

1 Introduction

There is a growing interest in image simulation in digital radiography, and in
mammography in particular[1,2,3,4,5,6]. Image simulation provides a means to
optimise digital mammography systems for improved breast cancer detection.
Image simulation studies could make clinical trials more targeted as simulation
studies can be used to study some effects in advance.

Recently, there has been focus on the effect of reducing dose levels in digital
mammography images upon detection of mammographic lesions[1,2]. Results
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indicate that dose could be reduced with little detriment to the detection of
masses. However, the task of microcalcification detection appeared to have sig-
nificantly greater dependence on the increased relative noise in the images. This
is because breast structure noise dominates when trying to detect relatively large
objects such as masses but detector noise is important for the detection of small
details such as microcalcifications. In contrast-detail tasks such as scoring of
images of the CDMAM phantom, there is a direct link between increasing dose
and the detection of small details[7]. This study aimed to validate a method to
simulate reduced radiation dose in digital mammograms. The same methodol-
ogy is applied to mastectomy images for further analysis with use of spectral
analysis[8,9].

2 Methodology

2.1 Materials

Sixteen images of the CDMAM (version 3.4) were acquired at each of five doses
using the Hologic Selenia system with the CDMAM phantom placed between
two slabs of PMMA 2cm thick. The images acquired at the highest dose (31kVp
Mo/Rh, 5.91mGy mean glandular dose) were used as the reference images for
the subsequent synthesised low dose images (0.34, 0.80, 1.48, 2.95mGy MGD).
Flat field images for 5cm of PMMA were acquired at the same beam quality,
exposure settings and setup as the CDMAM images. Detector response and NPS
measurements were carried out on these flat field images and used for the dose
reduction methodology.

Four sets of mastectomy images were acquired on the Siemens Novation sys-
tem. Each mastectomy sample was placed on the breast support and compressed.
The mastectomy sample was exposed with the tube voltage held constant whilst
the tube current time product was varied. Care was taken not to move the mas-
tectomy sample after each exposure. The highest dose mastectomy image was
used as the reference image for synthesizing subsequent lowered dose images. Ta-
ble 1 shows the doses used for each mastectomy set as well as their compressed
thicknesses. Flat field images using three and five centimetres of PMMA was
used in the same setup as the mastectomy samples for detector response and
NPS measurements to be used with the dose reduction methodology. Note that
all images used in this study are raw and unprocessed.

2.2 Dose Reduction

B̊ath et al’s methodology[10], which had been previously applied to chest X-ray
images, has now been implemented for the first time to degrade the following ex-
perimentally acquired mammography images: CDMAM and mastectomy images.
Furthermore, the NPS was modelled to three noise sources: electronic, quantum
and structural. Firstly, the linearised pixel intensity values of the original image,
Io(x, y), were scaled by a ratio of the dose to be simulated, Dsim, to the original
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Table 1. Beam quality (W = Tungsten, Rh = Rhodium, Mo = Molybdenum), Tube
current time product and mean glandular dose settings for each mastectomy sample
set. Doses in brackets denote the highest dose image from which the other low dose
images were derived.

Set Beam Quality Tube Current time
product (mAs)

Mean Glandular
Dose (mGy)

Compressed
Breast
Thickness (mm)

1 29 W/Rh 28, 57, 110 (220) 0.3, 0.7, 1.4 (2.7) 50
2 29 W/Rh 10, 20, 50, (68) 0.1, 0.2, 0.4 (0.8) 50
3 25 Mo/Rh 10 (61) 0.2 (1.3) 30
4 25 Mo/Rh 20, 34, 45 (199) 0.4, 0.7, 1.0 (4.3) 30

dose of the image, Do, to give the original scaled image, Io,sc. NPS was measured
for each dose level and fitted to each point in the NPS array against detector air
kerma, K:

NPStot(u, v) = NPSe(u, v) + NPSq(u, v).K + NPSs(u, v).K2 (1)

where NPStot, NPSe, NPSq and NPSs are the total, electronic, quantum and
structure noise sources, respectively.

Structural noise scales with the dose correction, therefore only electronic and
quantum noise images were created. Noise images were created to account for
the difference in noise level and frequency content between the Io,sc and that
expected for a lower dose image, Dsim. This was undertaken through the use
of a frequency-based noise transfer function, NTF , equal to the square root of
the difference of the NPS between the two images, Isim and Io,sc, for each noise
source and applied to Gaussian noise images.

IN (x, y) = FT−1(NTF (u, v).(FT (IG(x, y)))) (2)

where

NTF (u, v) =

√
NPSsim(u, v) − NPSo,sc(u, v)
NPSsim(0, 0) − NPSo,sc(0, 0)

(3)

For the quantum noise, the difference in NPSq for the Io, sc and Isim was applied
to equation 2. Both noise sources were scaled on a pixel-by-pixel basis as shown:

Isim(x, y) = Io,sc(x, y) +
[
ke.IN,e(x, y).

(
1 − (Dsim/Dorig)

2
)]

+ [kQ.(Io,sc(x, y))n.IN,Q(x, y)] (4)

where ke, kQ and n are coefficients to be fitted. n was found to be 0.5± 0.03 for
both systems and settings implemented in this study.

This method was then applied to derive synthetically dose-reduced CD-
MAM and mastectomy images. For degrading CDMAM images the highest
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dose (5.91mGy MGD) CDMAM image was used as the reference image from
which low dose images (0.34, 0.80, 1.48, 2.95mGy MGD) were subsequently
obtained. All experimentally acquired CDMAM images were scored with an au-
tomated scoring tool (CDCOM[11]) and contrast-detail curves derived for each
dose as outlined in [12]. The same procedure was repeated for the synthesized
dose reduced CDMAM images and compared with the experimentally acquired
counterparts.

The dose reduced mastectomy images were compared, quantitatively and vi-
sually, with their experimentally acquired counterparts. In addition, noise power
spectra[8,9] were measured in the same region of interest for each dose for the
simulated and experimental mastectomy images and the profiles compared. To
ensure the same region was analysed in each image and that results were not
affected by any slight movement of the mastectomy sample, the mastectomy
images were checked for alignment. In addition, NPS analysis was undertaken
within the central portion of the mastectomy samples to ensure uniform thick-
ness was maintained in the region of interest.

3 Results

Figure 1 show the normalised NPS profiles of high dose flat-field images and the
dose reduced flat-field images for the Hologic and Siemens Novation systems.
For the Hologic system, there was a relative difference between the experimental
and synthetic low dose shown of approximately 4.7% averaged across the radial
averaged NNPS. For the Siemens Novation system, there was a relative difference
between the experimental and sythetic low dose shown of 2.7%.

(a) (b)

Fig. 1. (a)Normalised NPS profiles for Hologic system. NNPS curves are given for
(from top down) 0.34, 0.80, 1.48, 2.95 and 5.91mGy MGD. (b) NNPS profiles for the
Siemens Novation. NNPS curves are given for (from top down) 0.2, 0.4, 0.7, 1.0, 1.3
and 4.3mGy MGD. Experimental data is shown in solid blue whilst the synthetic data
is shown in the dashed red curve.
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(a) (b)

Fig. 2. (a)Contrast detail curves obtained from experimentally acquired CDMAM im-
ages at different doses (solid curves) and the simulated reduced dose CDMAM images
(dashed curves). Four doses (0.34, 0.80, 1.48, 2.95mGy MGD, from top down) were sim-
ulated from the highest dose of 5.91mGy. Error bars denote two standard error means.

3.1 CDMAM Images

Figure 2 shows the contrast detail curves obtained for the experimental and dose-
reduced CDMAM images. The dashed curves denote the fitted predicted human
threshold contrasts[12] for the synthetic data. The noise added synthetically
have led to the contrast details curves to maintain the gradient of the original
high dose result, whilst shifting up with increasing relative noise in the image as
expected. All the synthetic data curves are similar to that of the experimentally
acquired and error bars indicate they are within range of each other. A ratio
of the experimental to synthetic results were found to be, across all discs, on
average 0.97 for all doses as shown in Figure 2b. This shows that noise may
have been overestimated in the synthetic images compared to the experimental
CDMAM images.

3.2 Mastectomy Images

Figure 3 shows a region of one set of mastectomy images at 4.3 and 1.0mGy MGD
for the experimental (Figure 3b) and synthetic (Figure 3c images, respectively.
The appearance of the lesion (a mass with microcalcifications) in the region
shown degrades dramatically as the dose was reduced down to one quarter of
the high dose image. A profile of the experimental and synthetic images is also
shown in Figure 3d, a difference of 1% was found between the profiles. Figure
4 shows the radially averaged noise power spectra for four mastectomy images
sets, the settings of which are shown in Table 1. As the dose increased, the
system noise increased as expected. NPS of the mastectomy images lead to a
relative difference of 7% on average across all doses. The difference increased as
the difference between the original dose and the dose to be simulated became
greater. The largest difference between experimental and synthetic NPS was
found at the higher spatial frequencies.
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(a) (b) (c)

(d)

Fig. 3. (a) and (b) show the same cropped region of a mass with microcalcifications
in a mastectomy sample acquired at 4.3 and 1.0mGy (MGD), respectively. (c) shows
the mastectomy sample synthetically dose reduced from 4.3 to 1.0mGy. (d) shows the
profiles taken across (b) and (c) to compare the experimentally acquired low dose image
with the simulated low dose image.

4 Discussion

The contrast detail curves of the simulated dose reduced CDMAM images match
well to that of the experimentally acquired images. The detection of smaller discs
were inferior for the CDMAM images simulated at a very low dose compared with
the CDMAM images experimentally acquired at the low dose. This suggests there
may have been some overestimation of the noise to be added as the difference
between the original and simulated doses increased.

For the mastectomy work, the simulation has visibly degraded the appearance
of the lesions in the mastectomy images, similar to that acquired at lower doses.
The noise power spectra measurement of the mastectomy samples at different
doses have shown how the system noise increases whilst the shape of the under-
lying anatomical noise power remained. Larger discrepancies were found in the



84 M. Yip et al.

(a) (b)

(c) (d)

Fig. 4. (a – d) Radially averaged noise power spectra of a region in sets 1 – 4, respec-
tively, of mastectomy images acquired at different doses and their synthetic counter-
parts. The dark curve represents the highest dose image from which the other low dose
images were degraded from. Red dashed curves illustrates the NPS of synthetically
degraded images whilst the blue solid curves show the NPS of their experimentally
acquired counterparts.

higher spatial frequencies which corresponds to the poorer detection rates for
the small discs in.

Despite reducing the dose to one quarter of the highest dose, the microcal-
cifications were still visible. However, the very fine calcifications became harder
to discern as the relative noise increased in the low dose images. The work pre-
sented here shows raw images, thus affects from image processing packages have
not been taken into account. Comparison of unprocessed and processed exper-
imentally acquired mastectomy images showed a great difference in the image
quality of microcalcifications for the high dose and low dose images. Further
application of an image processing package on the synthetic images for further
observer studies may be carried out in the future.

In conclusion, this work has validated a method to simulate reduced dose in
mammography images, developing on B̊ath et al’s work to incorporate other
noise components. Such a method could be applied to study the effect of dose
reduction on mass and/or microcalcification detection in clinical mammograms
where optimal X-ray exposure factors may be deduced. This work could be
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developed further to assess the effects of applying alternative beam qualities or
even acquiring images of the same mastectomy sample with different detectors.

Acknowledgements. This work is part of the OPTIMAM project and is sup-
ported by the CR-UK & EPSRC Cancer Imaging Programme in Surrey, in as-
sociation with the MRC and Department of Health (England).
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Abstract. The results of a dose survey of digital x-ray imaging equipment in a 
breast screening programme have been used to compare the measured dose val-
ues to the dose values displayed by the mammography systems. A total of 
12,104 images were used in the survey, acquired on three types of digital 
mammography system: GE Essential, Hologic Selenia and Sectra MDM L30. 
The results reveal that estimates of the MGD were largely similar between 
measured and displayed dose for all models in the survey. It was found that 
large discrepancies could occur on individual systems which may be attribut-
able to various factors including inaccurate QA measurement data and poorly 
calibrated mammography systems. 

Keywords: Digital Mammography, Radiation Dose, Mean Glandular Dose, 
Quality Assurance. 

1   Introduction 

Estimation of the breast Mean Glandular Dose (MGD) is a standard feature on mod-
ern full field digital mammography (FFDM) systems [1]. In general the MGD associ-
ated with an exposure is displayed on the console and stored in the Organ Dose field 
of the image DICOM header. An indication of the breast dose is valuable because it 
provides information about the radiographic technique, the variation in dose with 
breast size and composition encountered in a given population of screened women 
and the performance of the imaging system. The breast MGD cannot be measured 
directly but can be calculated from the breast entrance surface air kerma (ESAK), the 
compressed breast thickness and x-ray spectral information using appropriate conver-
sion factors [2-4]. Other commonly used conversion factors in modern FFDM sys-
tems include those published by Wu et al [5, 6].  

Compliance with European and National patient protection legislation requires a 
regular dose survey of x-ray equipment in the screening programme. The approach 
currently adopted by our group is automatic extraction of the exposure data from the 
DICOM image headers and calculation of the breast dose using software which is 
based on conversion factors compiled by Dance et al [2-4]. The organ dose value 
stored in the DICOM header presents an alternative approach for the extraction and 
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compilation of the dose survey data. There are errors common to both approaches 
arising from errors in breast composition (∼10%), breast thickness measurement 
(∼5%), dosimeter calibration (∼3%), HVL measurement (∼2%) and dosimeter posi-
tioning (∼ 1%) which can result in an overall approximate error of 12% in a patient 
dose calculation [7]. Both approaches also have their own sources of error. For exam-
ple, one digital mammography system does not include the pre-exposure contribution 
with the main exposure factors which can be a source of discrepancy. Equally, the 
organ dose accuracy of a particular system is dependent on accurate field calibration 
by the manufacturer/service vendor. 

There are three types of digital mammography system in use in the Irish National 
Breast Screening Programme (BreastCheck): General Electric (GE) Essential, 
Hologic Selenia and Sectra MicroDose L30. The aim of this study was to compare the 
MGD results obtained by measurement with the organ dose values for each type of 
system using data collected for a BreastCheck dose survey. This involved comparison 
of the average MGD per view and the MGD performance over a range of compressed 
breast thicknesses. Satisfactory comparison would provide assurance of the accuracy 
of organ dose estimation by digital mammography systems and raise the possibility of 
its use in future dose surveys. 

2   Method 

The survey included 28 x-ray systems composed of 11 GE Essential units, 10 Hologic 
units and 7 Sectra MDM L30 units. The images of at least 100 examinations from 
each digital mammography system acquired over a three month period between July 
and September 2009 were used. Each examination contains 4 images: a mediolateral 
oblique (OB) view and a craniocaudal (CC) view for each breast. Examinations for 
each system were transferred from the PACS archive, the parameters were extracted 
from the DICOM headers using a locally developed MATLAB routine (Mathworks, 
Cambridge, UK) and transferred to a Microsoft® Office Excel spreadsheet for further 
analysis. The parameters extracted from the header for this survey included the patient 
identification, age, compressed breast thickness, compression force, view position, 
laterality, exposure kVp, exposure mAs, target material, filter material, organ dose 
and pre-exposure factors where appropriate.  

The Mean Glandular Dose (MGD) for each acquired image was calculated accord-
ing to Dance et al [2-4] using the formula: 

KgcsMGD = .                                                        (1) 

where K is the Entrance Surface Air Kerma (ESAK) at the upper surface of the breast 
and g, c and s depend on both x-ray beam and breast characteristics. In particular, the 
factor s corrects for any difference due to the use of an x-ray spectrum different from 
Mo/Mo. K was calculated from the tube output a fixed distance above the detector, 
the tube current exposure time (mAs), the source-to-detector distance and the thick-
ness of the compressed breast.  Values for K and the Half Value Layer (HVL) for 
each unit in the survey were obtained from medical physics quality assurance test 
results contemporaneous with the survey period. Once the acquisition parameters 
were extracted from the DICOM header file, dose calculation was carried out using 
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software developed by KC Young for the National Health Service Breast Screening 
Program (NHSBSP) [8] with some modification made to take into account new c-, g- 
and s- factors for HVL values associated with the spectral data for new mammogra-
phy systems.  Further modifications were made to the dose calculations to account for 
the larger HVL found in the new mammography systems. The s-factor values used in 
dose calculations with tungsten/aluminum target/filter combinations were obtained 
from a table of s-factors provided by Dance et al [4].  

All x-ray units in BreastCheck are operated in fully automatic mode. In the systems 
which use a pre-exposure, the pre-exposure dose contribution is included in the organ 
dose estimate. For the Hologic Selenia, the exposure factors stored in the DICOM 
header include the pre-exposure contribution. For the GE Essential, the pre-exposure 
factors are not included with the main exposure factors but are stored in a separate 
field in the DICOM header. The accuracy of GE Essential dose calculations were 
improved by extraction of the pre-exposure factors, calculation of the pre-exposure 
dose and adding this to exposure dose for each image acquired. 

The accuracy and reproducibility of the breast compressed thickness, tube voltage, 
x-ray tube outputs and half-value layer measurements for clinical kVp settings and 
target/filter combinations were periodically checked as part of a routine QA protocol 
according to European recommendations [9]. 

3   Results 

A total of 2910 examinations were included in the survey. Including extra images, this 
amounted to 6047 CC and 6057 OB views. The overall average breast thickness was 
60.5mm and 63mm, and the median breast thickness was 61mm and 63mm for the 
CC and OB views respectively. Table 1 shows the average MGD dose obtained by 
measurement, the average MGD obtained from the organ dose values and the percent-
age difference, according to model of imaging system. Table 1 demonstrates good 
correspondence for the GE Essential and Hologic Selenia systems but a larger differ-
ence for the Sectra L30 systems. Closer inspection of the results for individual Sectra 
systems revealed that two systems had differences less than 10%, two systems had 
differences less than 15% and the remainder had differences of approximately 45%, 
37% and 27%. 

In Figure 1, the average measured MGD per view was plotted as a function of 
compressed breast thickness for each type of digital mammography system in the 
survey. All three models demonstrated increasing mean glandular dose with increas-
ing breast thickness. However, for the Sectra L30 system, the MGD appears to pla-
teau for breast thicknesses greater than 60mm.   

The average MGD per view obtained by measurement and from the organ dose 
field was plotted as a function of compressed breast thickness and the average differ-
ence was calculated for each unit in the survey. The system in best agreement  
(Figure 2) had an average difference of 3.3% and the system in least agreement  
(Figure 3) had an average difference of 33%. In summary, it was observed that over 
the entire range of compressed breast thickness, 75% of the units in the survey  exhib-
ited an average difference between measured and organ dose of less than 15%. 
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Table 1. Measured and Organ MGD according to Model (Errors represent 95% confidence 
limits) 

Model View 

Measured  
Average MGD 
per Exposure 
(mGy) 

Organ Dose  
Average MGD per 
Exposure 
(mGy) 

Percentage 
Difference 

CC 0.96 ± 0.01 0.72 ± 0.01 24.6% MDM L30 
OB 0.93 ± 0.01 0.71 ± 0.01 24.0% 

          

CC 1.36 ± 0.02 1.24 ± 0.02 8.6% 
Selenia 

OB 1.44 ± 0.02 1.31 ± 0.02 8.8% 

          

CC 1.40 ± 0.01 1.34 ± 0.01 4.2% 
Essential 

OB 1.52 ± 0.02 1.44 ± 0.02 5.1% 

0

1

2

3

20 40 60 80 100

Compressed Breast Thickness (mm)

M
G

D
(m

G
y)

MDM L30

Essential

Selenia

 

Fig. 1. Average MGD per view as a function of compressed breast thickness 

0

1

2

3

20 40 60 80 100

Compressed Breast Thickness (mm)

M
G

D
(m

G
y)

Measured MGD

Organ Dose

 

Fig. 2. Comparison of the average MGD values for the unit with the smallest average differ-
ence between the measured and organ dose estimates 
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Fig. 3. Comparison of the average MGD values for the unit with the largest average difference 
between the measured and organ dose estimates 

4   Discussion 

As shown in Table 1, the GE Essential and Hologic Selenia systems provided similar 
estimates of measured and organ dose for the average MGD to the breast whereas the 
Sectra MDM L30 exhibited the greatest difference. This result was contrary to expec-
tation in terms of the conversion factors used by each system. The Sectra systems use 
the Dance [2-4] conversion factors which we used in our calculation, whereas, the GE 
and Hologic systems use the conversion factors published by Wu & Barnes [5, 6]. 
However closer inspection of the results of individual Sectra systems revealed better 
correspondence between measured and organ dose for four of the Sectra systems. This 
suggests that the large differences observed for the remaining systems may have been 
particular to these systems. Possible causes of these large differences include poor 
system calibration or inaccurate QA measurement data.  

As expected, the average MGD increased with compressed breast thickness for all 
systems included in the survey. Figure 1 clearly demonstrates the lower breast dose of 
the MDM L30 versus the other two models across the range of breast thicknesses in 
the survey. It also indicates that the Selenia achieves a lower breast dose for smaller 
breasts in comparison to the Essential. The rate of increase in dose with breast thick-
ness appears to be similar for all three models until approx 60mm. For greater breast 
thickness, the breast dose associated with the GE Essential and the Hologic Selenia 
models continues to increase but appears to plateau for the Sectra systems. 

The graphs of measured and organ dose as a function of compressed breast thick-
ness provide a good visual indication of the comparative performance of each system 
type. As illustrated by Figures 2 and 3, the dose trends were very similar even  for the 
individual units with large differences between measured and organ dose. The  graphs 
also demonstrate that the organ dose underestimated the measured dose for all  but 
two units in the survey. 

Cole et al performed a comparative study of the organ dose with established meth-
ods of breast dose estimation on a number of screen-film systems and on one full field 
digital mammography system [10]. They found that once system accuracy was estab-
lished the organ dose could potentially be used for dose reference level (DRL) com-
parison. The results from this study also support the use of the organ dose for DRL 
comparison once system accuracy has been established.  
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Abstract. Dual-Energy Contrast Enhanced Digital breast tomosynthesis is an 
emerging technique for breast cancer detection, which combines the strengths 
of functional and morphological 3D imaging. The projection images acquired 
with two energy spectra at several angulations are combined to obtain “iodine” 
projections. These are then reconstructed to provide 3D iodine images. The 
combination process significantly increases the noise in the images, which is 
further amplified by the 3D reconstruction. This paper proposes a regularized 
reconstruction method based on the simultaneous algebraic reconstruction tech-
nique to be used for the reconstruction of the iodine volume. The regularization 
represents a constraint for the reconstructed volume, which causes the reduction 
of the noise and preserves the structures of interest. Preliminary results on clini-
cal data demonstrate a significant increase of the visibility of iodine-enhanced 
regions without affecting their sharpness and morphology. 

Keywords: digital breast tomosynthesis, dual energy, iodine imaging,  
functional imaging. 

1   Introduction 

During cancer development, angiogenesis occurs in the vicinity of tumors to support 
their growth [1]. These newly formed blood vessels are characterized by an increased 
permeability and cause the blood to pool around the tumors.  

Contrast-enhanced digital breast tomosynthesis (CE-DBT) takes advantage of this 
physiological phenomenon to provide 3D functional images of the breast tumor vas-
culature using an iodinated vascular contrast agent [2, 3, 4]. In dual-energy (DE)  
CE-DBT, post-contrast projections are acquired at energy levels below and above the 
K-edge of iodine. Projection images containing only the iodine-uptake are obtained 
by combining the low-energy and the high-energy projections acquired at the same 
angle. An iodine volume image is then reconstructed from the iodine projections. 

The suppression of anatomical noise in the iodine projections comes at the expense 
of an increased stochastic noise due to the DE recombination process. The 3D recon-
struction further amplifies the noise. The iodine-uptake in tumors is expected to be 
lower than 4 mg/cm3, corresponding to a modest increased x-ray attenuation and, 
consequently, to a low signal difference between the iodine-enhanced regions and the 
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background. Therefore the iodine-enhanced regions will exhibit low signal-
difference-to-noise (SDNR) levels in the iodine volume. 

To address noise reduction, total variation-based noise filtering has been success-
fully applied on the iodine projections prior to reconstruction, without degrading 
clinical information [3]. 

Simultaneous Algebraic Reconstruction Technique (SART) is currently used in 
both DBT [5] and DE CE-DBT [4] applications. Appropriate a-priori information on 
the local signal behavior could be integrated into a regularized SART reconstruction 
to reduce the noise while preserving the morphology and the sharpness of the iodine-
enhanced regions. 

In this paper, we propose to constrain the noise propagation directly during the re-
construction process by using a regularized SART algorithm. 

2   Materials and Methods 

2.1   Regularized SART 

Consider that the volume to be reconstructed is represented as vector of J elements,  
V = [vj], where vj is the linear attenuation coefficient for the jth voxel. There are I 
measurements available, represented as a vector P = [pi]. These measurements are 
logarithmic transforms of the detector pixel values obtained for the different projec-
tion views. The geometry of the acquisition system is modeled by the I x J projection 
matrix R = [rij], where rij represents the contribution of the voxel j to the measurement 
(ray) i. Thus, the tomosynthesis acquisition can be modeled as P = RV. 

The reconstruction problem consists in inverting the projection matrix R, which is 
underdetermined and high-dimensioned. Algebraic techniques are iterative methods to 
solve this problem. An estimate of the solution is projected using the projection ma-
trix and compared to the measurements at each iteration. The resulting error is back-
projected to update the estimate. 

The SART is an algebraic reconstruction technique where the update is performed 
after all rays in one projection view have been processed [6]. The estimation of the 
volume at step (q + 1) is done using the projection n(q): 

An iteration is completed when all measurements are used exactly once. Therefore the 
volume is updated N times during one iteration, where N is the number of projection 
views. The relaxation factor λ(q) is between 0 and 2. 

It was proven in [7] that the SART is a particular case of a general iterative scheme 
for image reconstruction based on Landweber’s method, and that it converges to the 
solution of the following minimum weighted least square estimation problem: 
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The regularized version of equation (2) is: 
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where β is a positive weighting factor and the regularization term, 
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modeled by a generalized Gaussian Markov random field [8]. C is a set of pairs of 
neighboring voxels, bjk are directional weighting coefficients, and ρ is a potential 
function chosen so that it penalizes noise in the reconstructed volume while preserv-
ing edges. 

Using the preconditioned gradient method employed in [7], it can be shown that 
the following iterative scheme, called herein regularized SART, converges to the 
solution of (3): 

The potential function used in this work was introduced in [9] and has a parameter d 
that determines the level of smoothing applied: 
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Voxel value differences below d, which are considered to correspond to noise, are 
smoothed, whereas differences above d, which correspond to edges, are preserved. 

2.2   Evaluation of the Regularized Reconstruction 

The evaluation of R-SART was performed both using phantom images and on a clinical 
case selected from a previously performed pilot trial on DE CE-DBT. Images were 
acquired with a Senographe DS-based prototype DBT system (GE Healthcare, Chalfont 
St Giles, UK) modified to allow interleaved LE and HE image acquisitions in a single x-
ray tube sweep. Each LE and HE image sequence consisted of 15 projection images 
acquired over a 40 degree arc. LE images were acquired using acquisition parameters 
typically employed to retrieve anatomy images, HE images were acquired at 49 kVp 
using a Mo or Rh target and a Cu filter. The LE and HE projection images were decom-
posed into iodine equivalent projection images using a previously developed algorithm 
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[10]. The decomposed projection images were then reconstructed to obtain DE CE-DBT 
(iodine) volumes using SART and R-SART. Three iterations were used for both SART 
and R-SART. “Iodine” volumes were reconstructed in planes (slices) parallel to the 
detector using 1 mm increments with an in-plane pixel size of 0.1 mm2. 

A digital subtraction angiography (DSA) phantom (Nuclear Associates - DSA 
phantom, linearity insert), composed of a 2.4 cm block of PMMA with embedded 
iodine inserts at different surfacic concentrations was imaged. Sections of 50% breast-
equivalent material (BR12 plates manufactured by CIRS) were added to reach a 
thickness of 5 cm. 

For patient imaging Visipaque-320 (GE Healthcare, Chalfont St Giles, UK) was 
power-injected at a dosage of 1ml/kg bodyweight prior to image acquisition. Then, 
the breast was positioned for MLO view image acquisition using normal compression. 

The reconstructed volumes were visually inspected to assess an overall impression 
of vascular enhancement (clinical case only), lesion/iodine inserts morphology, and 
image noise. The cross-sectional images were reviewed in stack mode on a SenoAd-
vantage review workstation (GE Healthcare, Chalfont St Giles, UK). 

A slice of interest was selected in each “iodine” volume for further analysis. The 
slice contains in-focus iodine inserts for the phantom dataset, and an in-focus iodine 
enhanced lesions for the clinical case. The following criteria were used to compare 
the performance of the two reconstruction algorithms: 

(1) signal-difference-to-noise ratio per pixel between an iodine insert/iodine enhanced 
lesion and non-enhanced background, as a measure for the detectability of iodine in 
the DE CE-DBT volumes. SDNR per pixel was computed as: 

background

backgroundiodine SISI
SDNR

σ
−

=  , 
 

(6) 

where SIiodine and SIbackground are the per-pixel average signal intensities in the iodine 
insert/iodine enhanced lesion and non-enhanced background and σbackground is the stan-
dard deviation in the background; 
(2) in-plane noise power spectrum (NPS) estimated in the central uniform region of 
the DSA phantom, to evaluate the spectral properties of the noise. Its computation 
was performed by averaging Fourier power spectra of overlapping, detrending cor-
rected, 256×256 pixel ROIs; 
(3) line profiles through the center of iodine inserts/enhanced lesions, as a measure of 
sharpness of the margins of inserts/lesions; 
(4) visual inspection of the pixel-to-pixel difference between the reconstructions of 
the same region of interest with the two algorithms to evaluate the information loss 
caused by the regularization. 

3   Results 

Figure 1 illustrates a region of the slice of interest through the DSA phantom, contain-
ing the 0.5 mg/cm2 insert in focus. The use of the regularization leads to the increase 
of the SDNR per pixel of the insert from 0.52 (SART reconstruction) to 1.24 (R-
SART reconstruction). SDNR was computed using (6), where the average signal 
intensity in the iodine was estimated in ROI 1 and the average signal intensity and the 
noise in the background were estimated in ROI 2. 
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Fig. 1. Detail of the slice of interest through the DSA phantom, containing the 0.5mg/cm2 
iodine insert, reconstructed using SART (left) and R-SART (right). The insert SDNR per pixel 
is 0.85 for SART and 2.02 R-SART. 

To facilitate quantitative comparison of the in-plane NPS of the reconstruction 
schemes, the measured NPS in the x-direction (parallel to the sweep plane) for 
fy = 0 lp/mm and in the y-direction (perpendicular to the sweep plane) for fx = 0 lp/mm 
are shown in Figure 2. Due to the high noise on the central axes, seven lines on each 
side of fy = 0 lp/mm and, respectively, fx = 0 lp/mm were averaged to compute the 
1D NPS. The in-plane NPS is anisotropic, which is consistent with previously re-
ported results [11]. The regularization has a low pass filtering effect on the noise that 
explains the coarser noise “grain” in the R-SART reconstruction (Figure 1 right) than 
in the SART reconstruction (Figure 1 left). 

 
Fig. 2. In-plane NPS in the x-direction and the y-direction computed in the central uniform area 
on the slice of interest through the DSA phantom 
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Fig. 3. Slice of interest of a DE CE-DBT clinical case containing an iodine-enhanced lesion 
(IDC), reconstructed using SART (left) and R-SART (right). The lesion SDNR per pixel is 2.18 
for SART and 5.23 for R-SART. Images courtesy of Dr Dromain, Institut Gustave Roussy - 
Villejuif, France. 

Figure 3 illustrates a DE CE-DBT slice of a patient reconstructed with SART (left) 
and with R-SART (right). This patient presented a 13×6 mm invasive ductal carci-
noma (IDC) that exhibits iodine uptake, depicted in the zoomed area. Based upon 
visual inspection, both reconstruction techniques demonstrate consistent lesion mor-
phology and border sharpness. The enhancement of the index lesion was also qualita-
tively concordant. The noise in the images reconstructed with R-SART appears to be 
lower. Reduction of noise in the images results in a superior visualization of the en-
hancing tumor and blood vessels. The SDNR of the mass in the images reconstructed 
with R-SART (SDNR = 5.23) is twice as high than in the image reconstructed with 
SART (SDNR = 2.18). The SDNR was computed using (6), where the average signal 
intensity in the iodine-enhanced region was estimated in the ROI labeled 1 in Figure 3 
and the average signal intensity and the noise in the background were estimated in the 
ROI labeled 2 in Figure 3. 

The difference between the zoomed areas in Figure 3 is displayed in Figure 4 (left). 
Neither morphological structures relevant for iodine uptake nor residual texture are 
visible in this image. 
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Fig. 4 Difference between the zoomed areas in Figure 3 (left) and vertical profiles along the 
line labeled 3 in Figure 3 (right) 

Vertical line profiles through the iodine-enhanced region are shown in Figure 4 
(right). The profiles correspond to the lines labeled 3 in Figure 3. The SART profile 
looks like a noisy version of the R-SART one. R-SART does not alter the sharpness 
of the contrast-uptake lesion. 

4   Discussion 

We showed that the SART algorithm could be regularized to constrain the increase of 
the noise of the reconstructed “iodine” volume in DE CE DBT. The new algorithm, 
R-SART, converges to a solution that fits the input data (projections) and has well 
behaving noise properties. 

On a DSA phantom study, it was demonstrated that the SDNR of iodine inserts is 
increased when the regularization is used. This is because the noise is reduced. From 
a spectral perspective, the reduction of the in-plane NPS is quasi-uniform over the 
frequency range, and the power spectrum shape is not distorted. 

The analysis of an iodine-enhanced region in a clinical DE CE-DBT case demon-
strated that the R-SART reconstruction conducted to a better visibility on the lesion 
(the SDNR is more than two times higher) than SART, without modifying its mor-
phology and its sharpness. 

The results are consistent between the phantom and clinical acquisitions, in terms 
of impact of the regularization on the noise, preservation of the morphological fea-
tures of the iodine insert/iodine enhanced lesion, improvement of the SDNR. 

The preliminary results presented in this paper illustrate the potential of the regu-
larized SART to improve the iodine-uptake conspicuity and to facilitate the applica-
tion of automatic algorithms to detect and characterize the contrast-uptake in DE  
CE-DBT. Of course, the impact on the clinical assessment needs to be evaluated. 

Acknowledgments. The authors would like to thank Ann-Katherine Carton for fruit-
ful discussions and knowledgeable advice. 
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Abstract. In a national breast screening program using analog mammography 
systems, the dose to a 45 mm phantom was routinely calculated at annual phys-
ics surveys. This test procedure was retained through the gradual transition to 
digital mammography. Here the phantom doses recorded for 50 analog mam-
mography systems, and 24 (2007) and 35 (2008/2009) digital systems are com-
pared. The phantom doses for the digital systems were found to be statistically 
significantly lower than the doses for the analog systems. The digital doses 
were essentially unchanged from 2007 to 2008/2009.  

Keywords: quality control, phantom doses. 

1   Introduction 

When the Norwegian Breast Cancer Screening Program (NBCSP) was initiated in 
1995, only screen-film based mammography systems were available. A protocol 
mandating annual physics surveys was developed. This protocol required both regular 
patient dose surveys and dose monitoring through calculation of the mean glandular 
dose (MGD) to a specified phantom with thickness 45 mm. For the phantom MGD, 
required and desirable maximum dose levels were given (2.0 mGy and 1.5 mGy  
respectively). 

Currently, the majority of mammography systems used in the screening program are 
digital. In several ways, these systems are fundamentally different from their analog 
counterparts. New test protocols have therefore been developed. Our most recent pro-
tocol describes assessment of system dose in accordance with the European Guidelines 
[1], i.e., the MGD obtained with clinical system settings is evaluated for PMMA phan-
toms with thicknesses in the range 20 to 70 mm. However, when the first digital  
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systems were brought into use, protocols for routine physics testing were not firmly 
established. Therefore, in order to facilitate comparison between “historic” and current 
dose levels in a program with both analog and digital systems, and to allow assessment 
of the dose levels with digital systems in terms of the previously established dose lim-
its, the dose evaluation for the 45 mm phantom was retained for digital systems. 

Here we present mean glandular doses calculated for the 45 mm phantom at the 
last annual physics survey conducted for 50 analog mammography units (screening 
and assessment), and the MGDs calculated for the same phantom for all digital units 
surveyed in 2007 and from October 2008 to November 2009 (2008/2009 in the  
following). This allows both a comparison between “analog” and “digital” dose  
levels, and an assessment of the development of the dose level with digital systems 
over time. 

2   Materials and Methods 

A test phantom of the material BR12 (CIRS, Norfolk, VA, USA) with total thickness 
45 mm and surface area 100 mm x 125 mm was placed on the breast support table, 
centered laterally and with one edge coinciding with the edge of the table. Compres-
sion was applied and an exposure made with system settings corresponding to set-
tings that would have been used for a breast with the same thickness. The target and 
filter material, tube voltage (kV) and tube current-time product (mAs) were re-
corded. The tube output for the target and filter material and kV employed was 
measured with an ion chamber assembly (Radcal Corporation, Monrovia, CA, USA). 
The same instruments were also used in the dose measurements conducted for calcu-
lation of half value layer (HVL). The MGD was calculated according to Dance et al. 
[2] as 

MGD = Kgcs, (1) 

using conversion factors published by Dance et al. [2,3]. 
MGD was calculated for a total of 50 analog mammography units, from the manu-

facturers General Electric (GE Medical Systems, Buc, France), Instrumentarium (now 
GE) and Siemens (Siemens, Erlangen, Germany). Data from the last physics survey 
conducted for each particular unit after the introduction of the first digital system in 
the screening program in 2000 was used. Due to a very gradual transition to digital 
mammography, the data collection period extends from 2000 to 2009. 

The doses for digital systems in 2007 were calculated for a total of 24 units, in 
2008/2009 the number of units was 35. The digital system manufacturers represented 
were General Electric, Hologic (Hologic, Inc., Danbury, CT, USA), Sectra (Sectra 
Imtec AB, Linköping, Sweden) and Siemens. No CR systems were included. An 
overview of the x-ray set models, number of units, available target-filter combina-
tions, and target-filter combination and kVp used for the phantom exposures, is 
shown in Table 1 for the analog systems, and in Table 2 and Table 3 for the digital 
systems. 
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Table 1. Analog x-ray set models included in the study. Mo=molybdenum, Rh= rhodium. 
"Target-filter used" and "kVp used" refer to the phantom exposures. 

Manufacturer Model # units Target- filter  
available 

Target-filter 
used 

kVp used 

GE Senographe 600T 2 MoMo MoMo 28 29 
GE Senographe 800T 2 MoMo MoRh MoMo 29 
GE Senographe DMR 5 MoMo MoRh RhRh MoMo 28 29 
    MoRh 26 
Instrumentarium Alpha 1 MoMo MoRh MoMo 29 
Instrumentarium Diamond 9 MoMo MoRh MoMo 28 29 30 
Siemens  Mammomat 300 6 MoMo MoMo 29 30 
Siemens Mammomat 3000/ 

3000 Nova 
25 MoMo MoRh WRh MoMo 27 29 30 

Table 2. Digital x-ray set models surveyed in 2007 included in the study. Mo=molybdenum, 
Rh= rhodium, W=tungsten, Al=aluminium. "Target-filter used" and "kVp used" refer to the 
phantom exposures. 

Manufacturer Model # units Target- filter  
available 

Target-filter 
used 

kVp used 

GE Senographe 
2000D  

2 MoMo MoRh RhRh MoRh 27 28 

GE Senographe DS 10 MoMo MoRh RhRh RhRh 29 
GE Senographe 

Essential 
4 MoMo MoRh RhRh RhRh 29 

Hologic Lorad Selenia 2 MoMo MoRh MoMo 28 
Sectra MicroDose D40  1 WAl WAl 32 
Siemens Mammomat 

Novation 
5 MoMo MoRh WRh WRh 26 27 

Table 3. Digital x-ray set models surveyed in 2008/2009 included in the study. 
Mo=molybdenum, Rh= rhodium, W=tungsten, Ag=silver, Al=aluminium. "Target-filter used" 
and "kVp used" refer to the phantom exposures. 

Manufacturer Model # units Target- filter  
available 

Target-filter 
used 

kVp used 

GE Senographe 
2000D  

2 MoMo MoRh RhRh MoRh 27 28 

GE Senographe DS 7 MoMo MoRh RhRh RhRh 29 
GE Senographe 

Essential 
12 MoMo MoRh RhRh RhRh 29 

Hologic Lorad Selenia 1 WRh WAg WRh 28 
Sectra MicroDose D40  3 WAl WAl 26 29 32 
Siemens Mammomat 

Novation 
4 MoMo MoRh WRh WRh 27 28 

Siemens Mammomat 
Inspiration 

6 MoMo MoRh WRh WRh 28 
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3   Results 

All phantom MGD values were found to be below the 1.5 mGy limit in the quality 
assurance protocol. The mean phantom MGD for the analog systems was found to be 
1.11 mGy. The MGD values for the digital systems were found to be lower, at 0.98 
mGy (a reduction of 11.7 %) and 0.96 mGy (a reduction of 13.5 %) respectively for 
the 2007 and 2008/2009 digital data sets. The difference between the analog and digi-
tal dose levels was found to be statistically significant with a two-sided t-test and a 
significance level of 0.05. There was no statistically significant difference between 
the doses in the two digital data sets. The ratio between the highest and lowest MGD 
were calculated for the three data subsets and found to be lowest for the doses with 
analog systems, intermediate in the 2007 digital group and highest in the 2008/2009 
digital group. A summary of the key dose findings is shown in Table 4. In Table 5, 
mean MGD values is shown for the digital x-ray set models represented in both digi-
tal data sets with three or more unist, GE Senographe DS and Essential, and Siemens 
Mammomat Novation. For these system models the mean MGD in practice remained 
unchanged from 2007 to 2008/2009. 

Table 4. Various features of the phantom doses found in the three data sets 

 # units MGD mean 
(standard deviation) 

[mGy] 

MGD 
median 
[mGy] 

MGD range
[mGy] 

MGDmax/ 
MGDmin 

Analog 50 1.11 (0.11) 1.13 0.84-1.30 1.55 
Digital 2007 24 0.98 (0.18) 1.03 0.61-1.43 2.34 
Digital 2008/09 35 0.96 (0.21) 1.01 0.36-1.24 3.44 

Table 5. Mean MGD calculated for the digital x-ray set models represented in both digital data 
sets with three or more units 

Manufacturer Model # units 
2007 

MGD mean 
(standard 
deviation) 

[mGy] 

# units 
2008/09 

MGD mean 
(standard 
deviation) 

[mGy] 
GE Senographe 

DS 
10 1.01 (0.05) 7 0.98 (0.05) 

GE Senographe 
Essential 

4 1.10 (0.04) 12 1.07 (0.04) 

Siemens Mammomat 
Novation 

5 0.81 (0.07) 4 0.86 (0.07) 

4   Discussion 

Image quality and dose are closely connected. Whether the recorded phantom doses 
were appropriate in terms of giving the necessary image quality is not the subject of 
this paper. In our experience, the digital systems were used in accordance with the 
manufacturers’ recommendations. The use of the analog systems might to a larger 
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extent have been subject to local custom, for instance in terms of preferred film opti-
cal density level. 

Data for analog systems was selected from the last physics survey available for 
each unit rather than from one particular year. The transition to digital systems has 
been very gradual and we wanted to include analog data from as close as possible to 
the actual shift of technology at each site. For analog systems, the dose level deter-
mines the film optical density. Different film and screen types and generations might 
require different doses. All units included in our study used film from Kodak (East-
man Kodak Company, Rochester, NY, USA). Only two film types were represented: 
Kodak Min-R 2000 and Min-R EV. Min-R 2000 was used exclusively in the period 
2000 to 2005. While Min-R EV dominated from 2005, Min-R 2000 was still used by 
some sites in 2009. The conditions in terms of film used were therefore comparable 
throughout the data collection period. 

The doses calculated for the digital systems were found to be statistically siginfi-
cantly lower than the doses calculated for the analog systems. It can be seen in Table 
1 that, with one exception, the target-filter combination used for the analog systems 
was molybdenum-molybdenum (MoMo). Table 2 and Table 3 show that with the 
digital systems, a shift to harder x-ray beams had taken place. Similar findings have 
recently been reported in a study of patient doses by Hendrick et al. [4]. Harder x-ray 
beams carry the potential to provide a reduction in dose. However, since digital detec-
tors can provide diagnostically usable images over a much larger dose range than 
film, including at quite high doses, the shift to harder x-rays does not, in itself, guar-
antee a reduction in dose. That a dose reduction was actually observed indicates that 
the dose operating levels chosen by the system manufacturers have been such that at 
least some of the dose reduction potential of the harder x-ray beams has been realized. 

From the first to the second digital data set there seems to be a non-significant 
trend towards lower doses. This could be partly attributable to the introduction of a 
new system model from Sectra (representing 8.6 % of the units in the 2008/2009 data 
set) which in our material was found to operate at approximately 35 % lower dose 
level than the previous model. In addition, the Hologic Selenia unit represented in 
both data sets had its original molybdenum-target x-ray tube replaced with a tungsten-
target tube, contributing to an approximate halving of the phantom dose for this unit. 
One can conclude from this that the choice of x-ray set model is among the factors 
that might strongly influence the “digital” dose level. A larger spread in dose level 
among the digital systems than the analog is clearly evident in the ratios 
MGDmax/MGDmin shown in Table 4. The largest ratio was found for the most recent 
digital data set. For the digital system models that were represented in both digital 
data sets with three or more units, the mean MGD essentially remained unchanged 
from 2007 to 2008/2009 in spite of a change in the number of units for each model. 

It was stated earlier that the phantom exposures were made with system settings 
corresponding to settings that would have been used for a breast with the same thick-
ness. Over time the automatic exposure control systems in digital mammography have 
grown continuously more sophisticated and fine-tuned to the task to which they are 
actually designed: ensure optimal exposure of a human breast. While the degree of 
sophistication might vary from one model to another, this development has still made 
the choice of how to actually run the machine for phantom exposures considerably 
more challenging for digital compared to analog systems. 
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Abstract. A task-based method for evaluating tomosynthesis reconstruction 
image quality is developed. An ideal observer model using a signal known ex-
actly/background known exactly (SKE/BKE) is demonstrated for a breast tomo-
synthesis system. Image quality is evaluated by calculating the detectability (d′) 
of a spherical lesion. The detectability is calculated in the central slice of the re-
construction. The effect of various filter choices is demonstrated on lesion de-
tectability at various dose levels. This model is extended to backgrounds which 
simulate anatomic variability in a “background known statistically” model.  

Keywords: tomosynthesis, ideal observer, image quality, noise power  
spectrum, Fourier analysis, filtered back projection.  

1   Introduction 

Filtered back projection (FBP) is a standard algorithm for reconstructing images in 
cone-beam computed tomography (CBCT), where a full dataset is available (>180o, 
and 200+ ~ 500+ projections). Breast tomosynthesis (DBT) is a form of cone-beam 
CT with limited-angle acquisition and a limited number of views. The goal of DBT is 
generally to produce slice images with a high in-plane resolution (≈1 mm) but only a 
modest resolution in the slice thickness (≈1 mm). Reconstruction for tomosynthesis 
can be performed using FBP, but special filter modifications are required to compen-
sate for the incomplete data and undersampling in the slice thickness direction.[1] 
These are angle-dependent filters used to compensate for aliasing and to reduce the 
appearance of high spatial frequency noise. Additional filter modifications may be 
used to restore low-spatial frequency content lost by a standard ramp reconstruction 
filter.[2] 

Image quality analysis for breast tomosynthesis can be evaluated by determining 
the noise equivalent quanta (NEQ) following the approach by Siewerdsen et al. used 
for CBCT.[3] Furthermore, the NEQ can be extended to evaluate task-based perform-
ance of an imaging system. Here, we will develop a 2D task-based measure for a 
simple lesion detection task in the central slice. We examine the effect of slice-
thickness filters on detectability of lesions of various sizes in both homogeneous and 
heterogeneous backgrounds. 
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2   Method 

The task evaluated here is a detection task of a Gaussian lesion embedded in a cubic 
block of tissue to simulate mass detection in breast tomosynthesis. A computer 
simulation of projection imaging and a filter back-projection reconstruction algorithm 
were implemented. 

2.1   X-ray Model 

The tomosynthesis geometry shown in Fig.1 is modeled. The source to detector dis-
tance, SDD is 660 mm, the source to pivot distance SPD is 620 mm and the detector 
size is 2048 × 512 with detector element pitch of 100 µm. Image acquisitions consists 
of 15 projection images acquired with a gantry arc from -20° to 20° and a stationary 
detector. Projections were simulated by simple ray-based projections through a voxel 
model with attenuation coefficients equal to 50%/50% fibroglandular/adipose tissue 
by composition.   

 
Fig. 1. Partial isocentric breast tomosynthesis geometry used in the simulation 

Noise-free projection images are generated assuming 20 keV monoenergetic x-
rays. Poisson noise realizations of the projection images are generated at four air 
kerma levels: 0.17, 0.29, 1.14, 2.86 mGy. An ideal detector with 100% quantum effi-
ciency, zero electronic noise and transparent paddles and tables were assumed. Table 
height above the detector was assumed to be zero. 

2.2   Filtered Back Projection for Breast Tomosynthesis 

Following the approach of Mertelmeier, the filtered projection image is calculated as 
the following in the Fourier domain 

Table 

Breast

Detector

SDD0 

(u0, v0)

γ 

SPD

(uc, vc)

Pivot

SPD 

SDDc

Paddle



108 X. Wang et al. 

 

)()()(),(),( SPSTR
*

xzxyxyx fHfHfHffgffg =  (1) 

where HST is the slice thickness apodization filter to reduce aliasing and artifacts in 
the z-direction (perpendicular to the detector), HSP is a Hanning spectral filter, and HR 
is the reconstruction or ramp filter.HST is given by: 
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where 0< β ≤1 is a filter parameter that can be adjusted to increase the amount of 
filtering in the slice direction, and fz-ny is the Nyquist frequency in the z direction . 

Back-projection followed with bilinear interpolation on a reconstructed volume 
size of 120 × 30 × 60 mm3 and a voxel size of 100 µm × 100 µm × 1 mm. 

2.3   Task and NEQ 

The detectability, d ′ , of an ideal observer for a 2D image with a signal known ex-
actly/background known exactly (SKE/BKE)[1][1][2] test is related to the NEQ as 
follows[3], 
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where K is the gain factor of the system, MTF is the 2D modulation transfer function,, 

NPS is the 2D noise power spectrum, and SΔ  is the expectation of the difference 
between signal present and signal absent images. For simplicity, we will use the 2D 
NEQ to evaluate the detectability for the central slice through a lesion in a DBT re-
constructed image. 

The numerator simplifies to the Fourier transform of the difference between the 
signal present and absent output image, IΔ , yielding 
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To eliminate any low spatial frequency bias, the NPS was calculated using a differ-
ence of images approach.[7] The NPS was evaluated for the ensemble of subregions 
of size 64×64 voxels in each image. 

2.4   SKE/BKE Simulation 

For this model, the signal-absent volume consists of a uniform rectangular block of 
breast tissue equivalent material with 50% fibroglandular tissue and 50% adipose 
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tissue for a breast thickness of 60 mm. For the signal present case, a spherical lesion 
is inserted at the centre of the volume. The diameter of the lesion was varied from 2 to 
8 mm. The mean difference between signal present {

SV
~ } and signal absent {

BV
~ } re-

constructed volumes was calculated, 
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and ),( yx ffIΔ  was calculated as the 2D Fourier transform of the central-slice image 

of VΔ . 

2.5   Heterogeneous Background 

In clinical situations, the background is not homogeneous, nor is it “known exactly.”  
Instead, the background is heterogeneous with tissue structures that tend to have 
common texture measures. We extend our modeling to include heterogeneous back-
grounds in a “background known statistically” (BKS) simulation. Here, 3D “random 
cloud” backgrounds are generated by filtering uniform random deviates by an inverse 
power-law to simulate mammographic backgrounds.[8] of the form 
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where  f0 = 0.01 mm-1 and b = 2.5 for our simulations. The resulting “cloud” volume 
was converted to attenuation coefficients normalized to range between 100% fat and 
100% fibroglandular tissue. 

The simulation geometry is a slightly different from the homogeneous case.  The 
volume size was 32×32×40 mm3, with isotropic voxels 100×100×100 μm3 to maintain 
a consistent spatial frequency content in all three directions in the simulated back-
grounds. A single lesion size was considered (4 mm diameter) for the signal- present 
volumes. Twenty realizations of signal-present, )( j

SV  volumes were created. Projection 

images were simulated as above, with quantum Poisson noise added to create, { )( j
SI } 

for the jth realization. Twenty (n=20) different realizations of random backgrounds 
with no lesion present, )( j

BV , are generated and the same level of quantum Poisson 

noise is added on the projected images { )( j
BI }. Reconstruction follows to yield the 

estimated reconstruction volumes )(~ j
SV  and )(~ j

BV . 

The signal is estimated from average of the difference between a signal-present and 
a signal-absent reconstructed volume,  
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A reliable NPS that captures the quantum noise and the “anatomic noise” cannot be 
obtained from a difference of images. Instead, the background was corrected for 
global reconstruction artifacts by calculating an average reconstructed signal-absent 
volume and calculating the NPS on each realization of the corrected volume 
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3   Results 

Examples of the simulated projection images are shown in Fig. 2 for four different 
lesion sizes. The smallest lesion is almost invisible at the given noise level. Fig. 3 
shows examples of the central slice through reconstruction of the corresponding le-
sions at the same air kerma (0.019 mGy per projection, or 0.59 mGy per exam). 

Fig. 4 shows the effect of varying the slice thickness filter factor, β on the detect-
ability SNR ( d ′ ) for a range of air kerma and lesion diameters. As expected, the 
detectability improves with more severe filtering (β) but the improvement appears to 
be marginal, especially at low doses. 

Because only a 2D detectability was evaluated in the central slice, the impact of the 
slice filter in the third dimension was examined. In Fig. 5, the orthogonal slice in the 
x-z plane through the lesion is shown. Qualitatively, the slice filter has a strong im-
pact on reducing the appearance of artifacts (note the reduced streaks in the upper half 
of the slice for β = 0.3). 

Fig. 6 shows examples of the random backgrounds created in simulations for 
noise-free and noisy projections and central slices. Fig. 7 shows the calculated detect-
ability for the SKE/BKS trials. Again the slice thickness filter parameter has a mar-
ginal effect on improving detectability. Interestingly, increasing the air kerma beyond 
1.14 mGy did not improve the detectability as was seen in the homogenous cases 
(Fig. 4). This suggests that in the presence of heterogeneous backgrounds, the detect-
ability is no longer quantum limited for an air kerma greater than 1.14 mGy. 

 
(a)                               (b)                              (c)                            (d) 

 

Fig. 2. Different lesion sizes projection images at gantry angle 0°, 20 keV, for a single projec-
tion kerma of 0.019 mGy (per projection) for lesion diameters of a) 2 mm, b)  4 mm, c) 6 mm, 
and d) 8 mm. Contrast settings are identical for each image. 
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               (a)                                (b)                             (c)                              (d) 

 

Fig. 3. Central slice through the lesions for reconstruction by filtered back projection using slice
thickness filter factor β=0.3 , and total exam air kerma is 0.29 mGy for different lesion size  a) 2
mm, b) 4 mm, c) 6 mm,  and d) 8 mm. Contrast settings are identical for each image. 
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Fig. 4. 3D volume reconstructions from projections with different lesion sizes. Filtered back 
projection with different slice thickness filter factors was used. SNR was calculated for the 
corresponding volume slices for lesion diameters of (a) 2 mm and (b) 8 mm. 

                 (a)                                (b)                                  (c)                                 (d) 

 

Fig. 5. For the 4 mm lesion, the reconstructed slice in the x-z plane is shown for the 2.86mGy. 
exam for different slice thickness filters with (a) β=0.3 (b) β=0.5 ,(c) β=0.7 (d) β=1.0. Contrast 
settings are identical for each image. 

(a)                                                               (b) 
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(a)                              (b)                            (c)                             (d) 

 

Fig. 6. Examples of lesions in heterogeneous backgrounds generated from power-low filtered 
random structures. A noise-free projection image is shown in (a) and the corresponding central 
slice of the reconstruction is shown in (b). Noisy versions of the (c) projection and (d) recon-
struction (d) are shown for an incident air kerma of 0.29 mGy for the total exam. 
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Fig. 7. Lesion size is 4 mm. Heterogeneous backgrounds SNR calculation. 

4   Discussion 

Note that the detectability SNR is much higher than was calculated for the homoge-
neous case. Part of this is expected, as the phantom thickness was reduced (40 mm 
instead of 60 mm) which should lead to a 2× improvement in SNR. In addition, there 
may be discrepancies in the two different NPS calculation techniques. Future work 
will include validation of the two approaches to ensure consistent results. 

Further work is necessary to extend this to a 3D NEQ model for task-based evalua-
tion. However, the coarseness of the reconstruction (1 mm slices) in the 3rd dimension 
makes it very difficult to obtain a reliable 3D NPS, in part, because the number of 
samples is small in the 3rd dimension as well as the fact that assumption of a station-
ary system is extremely difficult to justify over the entire reconstruction volume.  

Note that the effect of slice thickness filtering is believed to be more dramatic for 
the detectability of microcalcifications but was beyond the scope of this work. 
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5   Conclusion 

An NEQ-based approach calculating the detectability for a SKE/BKE and SKE/BKS 
task for tomosynthesis is demonstrated for a filtered back-projection technique. The 
effect of different slice thickness filter factors (β) is evaluated to determine the impact 
on lesion detectability. For homogeneous or heterogeneous phantoms with a spherical 
lesion, the results show that strong filtering (small β) results in the best SNR but the 
improvement is small. However this may have an adverse effect on lesion localization 
in the z-direction.  
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Abstract. The variability of breast percent density (PD%) estimation from digi-
tal mammography (DM) images was evaluated using measurements from read-
ers with different training and clinical experience. Post-processed DM images 
(PremiumViewTM, GE Healthcare) from 40 women were analyzed. Breast PD% 
estimation was performed using the Cumulus software (Ver. 4.0, Univ. To-
ronto). Two groups of readers were considered, one with clinical (i.e., radiolo-
gists) and one with non-clinical training (i.e., physicists). Consistency of PD% 
was analyzed using the Pearson correlation coefficient (r) and ANOVA. Inter-
reader agreement was higher among clinical (r=0.91, p<0.001), than non-
clinical readers (r=0.83, p<0.001). Intra-reader consistency after repeated reads 
was on average equally high for both groups (r=0.91, p<0.001). Our results 
suggest that the reader’s experience and training has an effect on the obtained 
PD% measures. The higher correlation among the clinically trained readers 
could be attributed to their extensive exposure to post-processed DM images 
and their knowledge of breast anatomy. 

Keywords: Digital mammography, breast percent density, breast cancer risk  
estimation. 

1   Introduction 

It is well known that the sensitivity of mammography in detecting breast cancer de-
creases as parenchymal density increases. There is also growing evidence that sug-
gests that breast density is an independent risk factor for breast cancer [1]. Breast im-
aging radiologists incorporate a density estimate in all clinical mammographic reports 
using the 4-tiered Breast Imaging Reporting and Data System (BI-RADS) system and 
they are very familiar with the wide variety of breast parenchymal patterns that are 
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present in clinical mammographic images. Unfortunately, because the assignment of a 
BI-RADS density category is subjective, there is a high degree of inter-reader vari-
ability [2, 3]. Currently, the most widely used methods to quantify breast density rely 
on measures derived from mammograms using a semi-automated image thresholding 
method [4]. Most of the studies published to date have been performed using digitized 
screen-film mammograms [5]. Digital mammography (DM) is increasingly replacing 
screen-film mammography in breast cancer screening. DM imaging systems typically 
produced two-types of images; the “FOR PROCESSING” images, which are propor-
tional to the x-ray attenuation (i.e., raw data), and the “FOR PRESENTATION”  
images, which are post-processed according to vendor-specific image processing al-
gorithms prior to presentation to the radiologist for diagnostic interpretation. Cur-
rently, the strategy adopted by most clinical breast imaging divisions is to archive 
only the post-processed (i.e., “FOR PRESENTATION”) images due to storage and 
cost constraints. Therefore, studies are needed to determine the optimal approaches 
for utilizing the digital data for breast density estimation. Investigating the potential 
use of post-processed images in breast density estimation could result in a more 
widely-adopted translation of density-based breast cancer risk assessment in clinical 
practice. Currently, not many studies exist that have investigated this potential [6].    

We performed a study to compare the inter-reader variability of area-based breast 
percent density (PD%) estimation in post-processed DM images performed by groups 
of readers with different training and clinical experience. Post-processed DM images 
were used in our study because they are the DM images that clinicians are most famil-
iar with and are the images that best display breast anatomy. In addition, the post-
processed images are often more widely available and accessible in clinical practices. 
The main goals of our study were to investigate i) if post-processed DM images can 
provide viable means for PD% estimation and ii) if the obtained measures are affected 
by the type of training and the clinical experience of the readers.  

2   Methods 

The MLO DM image from the contralateral (i.e., unaffected) breast of 40 women with 
recently detected abnormalities and/or previously diagnosed breast cancer, recruited 
as part of a separate multi-modality imaging clinical trial that has been completed in 
our department1, were retrospectively collected and analyzed under HIPAA and IRB 
approval. All women were study volunteers who had signed informed consent. DM 
imaging was performed with a GE Healthcare DS full-field DM system (GE Health-
care, Chalfont St. Giles, UK)  [7-9]. Images were acquired with 0.1 mm/pixel resolu-
tion at 12 bit gray-level. Image post-processing was performed using PremiumViewTM 
(GE Healthcare), an embedded adaptive histogram equalization method [8]. Area-
based breast percent density (PD%) was estimated using the semi-automated image 
thresholding technique of Cumulus (Ver. 4.0, Univ. Toronto) [4]. Using Cumulus the 
image background and the pectoral muscle region are excluded from the breast den-
sity calculations and user-defined gray-level intensity thresholds are applied to outline 
the fibroglandular tissue regions within the breast. PD% is then computed as the per-
cent of the breast occupied by fibroglandular tissue.        
                                                           
1 Evaluation of Multimodality Breast Imaging, NIH P01 CA85484, PI: M.D. Schnall. 
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Two groups of readers were considered, one with clinical experience (i.e., breast 
imaging radiologists) and one with non-clinical training (i.e., medical physicists). 
Each group included three readers at different levels of experience (i.e., years of train-
ing). The clinical readers had varying degrees of clinical experience of breast anatomy 
and digital mammographic images (i.e., 3 months, 3 years and 20 years of experi-
ence). The non-clinical readers had knowledge of breast anatomy and varying degrees 
of training in medical physics (i.e., 2, 12 and 14 years of experience). Both groups 
received the training outlined in the manual which accompanies the Cumulus soft-
ware. Each group performed two rounds of readings on the same dataset.  

To evaluate the consistency of the obtained PD% measures among readers in the 
same group (i.e., inter-reader agreement) and between the repeated reads of each 
reader (i.e., intra-reader agreement), pair-wise Pearson correlation coefficients were 
computed and analysis of variance (ANOVA) was performed. To compare the PD% 
measures between the groups of readers the Student’s paired t-test was applied on the 
mean of the PD% estimates of the corresponding groups.  

3   Results 

Inter-reader correlation was high for both groups (Table 1), with the clinically trained 
group having a higher average inter-reader Pearson correlation (r=0.91, p<0.001) than 
the non-clinically trained group (r=0.82, p<0.001). Linear regression analysis also 
demonstrated lower variability and a stronger association between the PD% estimates 
obtained by the clinically trained readers than between the non-clinically trained read-
ers (Fig. 1). Overall, the mean of the PD% estimates for the non-clinically trained 
group was statistically significantly higher (p<0.001) than that of the clinically trained 
group (meanRead1=27%, meanRead2=24%), both for the first (meanRead1=30%) and the 
second (meanRead2=35%) reads.  ANOVA showed that the obtained breast PD% meas-
ures were more consistent among the clinically trained readers than among the  
non-clinically trained readers (Fig. 2). The means of the PD% estimates were not sta-
tistically significantly different among the clinically trained readers (pANOVA1=0.39, 
pANOVA2=0.05), but statistically significantly different among the non-clinically trained 
readers (pANOVA1<0.001, pANOVA2<0.001). Intra-reader agreement after repeated reads 
was on average equally high (r=0.90, p<0.001) for both groups (Table 2). 

Table 1. Pair-wise Pearson correlations (r) for inter-reader variability in breast PD% estimates 
between readers in each group. Readers are ordered in increasing order of experience. 

 Pearson correlation coefficients (r) for PD% inter-reader variability 

 Clinically Trained Readers Non-clinically Trained Readers 
 Read 1 Read 2 Read 1 Read 2 

Reader 2 3 2 3 2 3 2 3 
1 0.95 0.90 0.83 0.93 0.83 0.85 0.79 0.84 
2  0.91  0.92  0.77  0.86 
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Fig. 1. Linear regression plots for pair-wise comparisons in the breast PD% estimates between 
the readers in each group (Read 1) with adjusted-R2 estimates and linear regression equations. 
Readers in each group are ordered in increasing order of experience.  
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Table 2. Pearson correlations (r) for intra-reader variability in breast PD% estimates between the 
two reads of the readers in each group. Readers are ordered in increasing order of experience.  

 Pearson Correlations (r) for PD% intra-reader variability 
 Clinically Trained Readers Non-clinically Trained Readers 

Reader 1 2 3 1 2 3 
 0.98 0.79 0.95 0.91 0.91 0.89 
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Fig. 2. Box-plots and ANOVA p-values for the breast PD% estimates of the readers in the 
clinically trained group (up) and the non-clinically trained group (down) after the first and the 
second breast PD% reads. Readers are ordered in increasing order of experience. 

4   Discussion 

The observed overall high inter- and intra- reader correlations suggest that area-based 
breast PD% estimates obtained from post-processed DM images could be a viable 
means for obtaining breast density measures in DM. However, the level of experience 
and training of the reader may have an effect on the obtained measures. Our study 
suggests that clinically trained readers, such as breast imaging radiologists, with 
minimal training in the use of the semi automated image-thresholding software  
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(i.e., Cumulus Ver. 4.0, Univ. Toronto), have an overall higher inter-reader agreement 
in performing breast PD% estimation on post-processed DM images. The higher cor-
relation among the clinically trained readers may be attributed to their greater clinical 
experience with the post-processed DM images and their clinical knowledge of breast 
anatomy. 

The statistically significant difference in the means of the breast PD% measures 
between the two groups suggests that differences in breast imaging training could 
potentially impact a patient’s risk assessment outcome. We attribute the observed 
differences in breast PD% estimates between the clinically and the non-clinically 
trained readers in potentially inherent differences in their corresponding visual  
perception of the dense breast tissue region in the DM image. Figure 3 illustrates an 
example where the difference in the thresholded dense tissue region resulted in sig-
nificantly different breast PD% estimates between the two readers.  

     

             Original DM                    Clinically-Trained Reader        Non-Clinically Trained Reader 

Fig. 3. An example of an MLO DM image and the corresponding Cumulus dense tissue thresh-
olding for a clinically trained and a non-clinically trained reader with PD% estimates.  

Consistent and reproducible measures of breast PD% will become increasingly 
necessary as breast density measures become more frequently incorportated in breast 
cancer risk assessment algorithms. In addition, consistent and reproducible breast 
density measures will continue to be important in understanding the potential sensitiv-
ity of mammographic screening for individual women as we move forward towards 
adopting personalized screening algorithms for breast cancer detection. Fully-
automated methods for estimating breast PD% hold the promise to alleviate the sub-
jectivity introduced by individual readers and result in more accurate quantitative 
measures [10-12]. Further work is underway to compare the breast PD% estimates 
obtained from the post-processed DM images with the corresponding measures esti-
mated from the raw (i.e., unprocessed) digital mammograms. 

PD = 42% PD = 74% 
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Abstract. We describe a group of concepts that facilitate reading of multi-
modality breast imaging data in a single workplace and discuss their use and 
limitations. Our concepts comprise intelligent preprocessing, spatial referencing 
and dedicated workflow tools and aim at homogenizing and simplifying the 
multi-modality workplace, at improving the standardization across modalities 
and vendors, at supporting cross-modality information linkage, and at reducing 
required user interaction and waiting times, all at a high level of flexibility for 
the user to access the available imaging information at any time required. As a 
result, many situations where information from multiple modalities and time 
points must be assessed, both qualitatively and quantitatively, are expected to 
be handled more efficiently and reliably. 

Keywords: multi-modality, image display, human-computer interaction, data 
fusion, image processing, image registration, computer-aided radiology. 

1   Introduction 

As new and improved imaging modalities continue to add options for diagnostic and 
clinical discoveries, the efficient and reliable access and fusion of the available 
information becomes a key factor for optimizing the reading workflow, for maximiz-
ing the overall diagnostic outcome, and for evaluating new versus existing technol-
ogy. In breast imaging, multi-modal reading is in general required as soon as any 
single modality is insufficient for a conclusive decision regarding the treatment of 
women. Specifically, women with mammographic findings detected in screening are 
recalled for further imaging. Any finding from other modalities in the ipsilateral and 
contralateral breast then needs to be correlated to the respective mammographic 
location, often necessitating error-prone manual comparison of modalities. Currently, 
a number of specialized computer workstations from different vendors are needed to 
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take full advantage of combinations of established and new imaging modalities, such 
as digital mammography (MG), breast MRI, positron emission mammography 
(PEM), handheld ultrasound (US), automated 3d breast ultrasound (ABUS), or tomo-
synthesis (DBT). The combined use of several workstations results in inadequate 
workflows with different user interfaces, lack of synchronization, suboptimal data 
transfer, multiple keyboards and monitors, etc. Our goal is to describe and discuss a 
group of novel software based concepts to support multi-modal breast image reading. 

2   State of the Art 

Concepts for integrated or fused viewing and methods for joint analysis are sparse. 
The same holds true for methods that make direct use of available data beyond diag-
nostic imaging, be it histology and pathology data or patient information such as 
hormone receptor status, family history, etc. This is despite the known correlations of 
patient risks and outcomes, and despite the amount of work spent on registration 
approaches for multi-modal combinations of imaging modalities.  

In literature, the term multi-modality most often refers to the complementary analy-
sis and diagnostic characterization of images of different modalities (MG, MRI, US, 
PET, etc.), comparing their respective additional cancer yield etc. [1] In general, such 
comparisons are conducted utilizing software provided by the vendor of the respective 
modalities. Those publications emphasize clinical aspects, rather than workflow and 
computer support. Examples are numerous, recent work encompassing the multi-
center ACRIN 6666 trial to assess the benefit of ultrasound in addition to screening 
MG, the controversy regarding the utility of contrast-enhanced MRI, alone or in 
combinations with other modalities and in women with increased risk of developing 
cancer [2, 3], and also work on the combination of per-modality CAD systems on MG 
and US [4].  

The necessity of fusion imaging and fused viewing is widely acknowledged [5] but 
still community efforts to provide integrated viewing of different modalities are few. 
First multi-modal workplaces do exist from different vendors, but without dedicated 
cross-modality workflow or reading support or joint analysis of the data. Also, sys-
tems exist that are not specifically targeted at breast imaging [6], the free Fusion-
Viewer is a research tool targeting the evaluation of the underlying MRI-PET registra-
tion scheme [7], and most major PACS systems permit multi-modal viewing. Though 
with the advent of digital image data, the workflow of radiology technologists was 
examined and changed [8], research on the diagnostic workflow of radiologists using 
multi-modal, multi-examination breast images is lacking. Hence, most software tools 
support a limited set of simple diagnostic or procedural aspects, and some are inte-
grated into the hospital PACS.  

Also, intra- and inter-modality coregistration has been addressed, providing sup-
port for specific clinical scenarios, e.g. easier look-up of prior findings in current 
mammograms, reduction of motion artifacts in dynamic contrast-enhanced MRI, and 
more [9, 10]. Many of the current work are founded on methods established with no 
particular focus to breast imaging, e. g. various standard registration methods [11, 12]. 
More recently, breast imaging related issues were addressed such as 2d-3d spatial 
correlation [13], correlation between MG and MRI [14], and correspondence analysis 
regarding the deformations induced by different breast imaging modalities [15]. Only 
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few of these techniques are in clinical use, mainly because spatial registration algo-
rithms are often computationally slow and also sensitive to parameterization and 
therefore in a routine workflow only accessible to trained operators who can compen-
sate for lack of accuracy.  

Reliable automated advanced preprocessing needs assured quality standards, re-
garding image quality [16] and acquisition artifacts for all modalities. Quality checks 
are today only performed after image acquisition, with the patient no longer available 
for a repeat scan. The only online validation of image quality is performed visually by 
a trained operator, not necessarily guaranteeing quality criteria crucial for computer-
ized processing steps. Automated processing pipelines, such as proposed by Zijden-
bos et al. [17], rely on a level of image quality that cannot always be granted. 

Regarding digital pathology, open technical issues have been described in detail 
[18]. Research has provided tools for interactive and automated segmentation of cell 
nuclei and other structures from digital pathology slides, and also three-dimensional 
reconstructions of thin-slice sections are being explored [19, 20]. Web-based multi-
scale access to the enormous amounts of data has also been suggested. However, the 
issue of storage, exchange, and collaboration on these images in a clinical setting 
combined with a radiology workplace is still unsolved.  

3   Concepts 

The integration of different imaging modalities into a single, multi-modality work-
station poses significant challenges to user interface design, information standardiza-
tion, cross-modality information linkage, and workflow adaptation. Consequently, we 
propose four novel building blocks for an efficient multi-modal workplace as summa-
rized by Figure 1: (i) The Diagnostic Workflow Gallery providing comprehensive 
access to all available information while providing an intuitive means to define and 
adapt complex multi-modal reading workflows, (ii) An Intelligent Preprocessing 
Engine supporting standardization and speedup of multi-modal reading, (iii) Ad-
vanced Spatial Referencing, both for efficient prior-current and cross-modality 
comparisons, and (iv) Cross-Disciplinary Embedding comprising real-time access to 
full-resolution histological data and integration with the required tools for interven-
tional procedures from biopsies to open surgery. 

Diagnostic Workflow Gallery. To support efficient reading, the current diagnostic 
task is analyzed based on the available data combined with user preferences and 
related information is prefetched and processed (cf. preprocessing engine). Resulting 
image series are sorted with respect to image modality and acquisition time and 
represented by miniature images, so-called thumbnails, as entry points for the Diag-
nostic Workflow Gallery. The physician may now simply click on one of the thumb-
nails to activate related diagnostic tasks. From this point, a number of additional 
workflow options based on pre-analyzed images are added to the gallery, and options 
that no longer apply are removed. Using this concept, the main functionality of the 
multi-modal workstation intuitively reveals itself to the physician without requiring 
multiple menu-based mouse interactions. For each workflow step, the user interface is 
streamlined to the specific diagnostic task while further advanced functionality is 
offered and displayed through dynamically generated thumbnails within the gallery. 
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Subsequently, for example, if the current situation allows reporting of a lesion seen 
in MRI, the Diagnostic Workflow Gallery offers tools for segmentation based kinetic 
and morphologic lesion characterization, for altering the segmentation, for correlating 
the lesion location at other time points and in other modalities, and for retrieving 
similar findings from a case database. Note that, in case of lesion characterization, the 
gallery shows a preview of the individual lesion segmentation, not only a fixed button 
or symbol. Also, the Diagnostic Workflow Gallery does not force user interaction. 
Instead, the reader may interact with the main screen and upon parameter or view 
alterations, the gallery previews update their appearance. 

From the history of steps performed, workflow templates can be generated or 
adapted to the physician’s individual requirements. Likewise, all image series are 
accessible through drag-and-drop for intuitively defining a user’s preferred mono- or 
multi-modal hangings that are also saved as a part of the workflow templates. 
Through an adaptive fingerprint algorithm, hangings are filled with data of new 
patients in a best-match fashion that robustly tolerates even considerable changes in 
acquisition protocols [6]. Once findings are defined on any of the images, these are 
persistently managed within the gallery together with associated bookmarks. Book-
marks permit the immediate retrieval of the full workflow state including all viewers 
at any time, and a parameter set history to enable full interactivity from the state in 
which the workflow was left.  

 

Fig. 1. Conceptual collaboration graph: Advanced preprocessing provides the basis of subse-
quent visualization for the diagnostic gallery and to calculate spatial correlations. Symbolic 
visualizations and thumbnails enable intuitive workflow operation, while temporal and cross-
modality correlation and registration enable easy navigation and is the foundation of multi-
modal analysis tools. Both contribute to efficient diagnosis and serve the multidisciplinary 
embedding of radiology, pathology, and surgery. 
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Intelligent Preprocessing Engine. In order to reduce interaction times but also to 
increase the robustness of information extraction, we propose an intelligent preproc-
essing engine that (i) is modular and extensible and that (ii) can be automated based 
on the available image data and on the specific requirements of departments and 
individual clinicians. The basic concept for automation is similar to the adaptive 
fingerprint algorithm, but requires a stricter rule set because preprocessing must be 
able to run fully automatically and without supervision. After proper configuration, 
unread patient series are retrieved from PACS and required image analysis methods 
are applied automatically including lesion segmentation and characterization. 

As an important prerequisite for reliable application of post-processing and CAD 
algorithms, we propose to employ automated content-based quality assurance of 3d 
and dynamic images prior to processing and visualization. Specifically, dedicated 
software modules automatically detect imaging artifacts and ensure the defined image 
acquisition standards with regard to the intended post-processing, CAD tool, or 
visualization. In particular, artifacts such as improper timing of contrast-agent bolus, 
patient motion, or adjustment problems may occur during MRI acquisition and can be 
detected automatically. To some extent, artifacts can be compensated, for example by 
modeling the specific contrast agent relaxivity or acquisition sequence in order to 
normalize image intensities.  

Further methods within the preprocessing engine are deformable motion correction 
methods for dynamic imaging and for ABUS to minimize post-processing artifacts. 
Other tools provide automatic cross-vendor homogenization for cases where only for 
presentation images have been stored and enhancement of mammograms [21], or 
offer plug-in interfaces to dedicated CAD tools. In order to maximize display speed 
even on slow network connections, intelligent preprocessing is complemented by 
progressive on-demand retrieval of large datasets. 

Advanced Spatial Referencing. While motion correction in breast MRI is part of 
most current workstations, an increasing number and diversity of acquired images per 
patient asks for additional spatial coregistration methods. We focus on two different 
problems here, namely precise spatial correlation of prior and current imaging series 
and fast cross-modality spatial alignment for synchronization of imaging findings. 

The joint analysis of prior and current images provides additional information on 
temporal lesion development. However, numerous factors in the context of imaging 
prohibit a direct comparison of image intensity values, including changes in scanner 
hardware and software, different acquisition parameters, pathological and physiologi-
cal breast tissue changes, or geometrically different breasts after intervention. We 
propose to use deformable image registration methods and an automated slice syn-
chronization tool to allow the direct comparison of breast MRI images over time that 
performs reasonably well even for extreme deformations [10, 22].  

To enable fast cross-modality alignment and CAD, we propose a set of automatic 
segmentation and localization methods for anatomical structures such as nipple, skin 
boundary, fatty tissue, fibroglandular tissue, pectoral muscle, chest wall, and possibly 
vasculature besides lesions. Based on these structures we propose to employ non-
linear coordinate system transformations between the respective modalities in both 
directions including physical deformation modeling. Typically, a trained clinician 
visually correlates findings between modalities based on spatial sense and experience. 
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Our approach is intended to perform a similar job even in difficult cases, such that for 
each position in one modality, an approximate 2d or 3d search region can instantly be 
displayed in the other modality. If automatic extraction fails for a single anatomical 
structure, we propose to use an efficient interactive tool as a fallback solution. 

Cross-Disciplinary Embedding. Despite the progress of radiology, pathology 
remains the diagnostic gold standard for breast abnormalities. The result from pathol-
ogy needs to be correlated to other available information. Such cross-disciplinary 
correlation provides the basis to clarify the diagnosis in ambiguous cases. Also, the 
biopsy position within the breast tissue needs to be assured and documented [23]. In 
MRI, those lesions with diffuse and low contrast uptake, e.g. DCIS, may hardly be 
visible under MRI-based biopsy guidance. As a solution, we propose to perform a 
transformation of the target area from a high-resolution pre-interventional MRI to the 
intra-interventional situation (cf. spatial referencing, Fig. 2).  

Any surgery or biopsy specimen is submitted to the pathology department with the 
ultimate goal of correlation to the imaging findings. Still, only selected, if any, snapshots 
of histological images are exported to PACS and directly accessible to radiologists.  
 

 

Fig. 2. Advanced spatial referencing: Computations can provide estimations of corresponding 
locations or search regions, wherever features suffice for the task. From mammography (MG), 
referencing to MRI can be deducted from combinations of CC and MLO views. Volume 
ultrasound (3DUS) can be mapped to MRI in a local loose coupling fashion. Solid connections 
indicate computer-provided spatial referencing; dashed connections indicate interactively 
established correlations. 
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Moreover, unlike digital radiology, digital pathology is still in its infancy, with most 
pathologists relying on conventional microscopes. However, due to the growing avail-
ability of automated microscopes that enable batch digitization of histological slides, 
pathology becomes increasingly computerized. A lack of infrastructural integration 
combined with insufficient tools for digital pathology is the most likely cause for con-
tinuing skepticism towards digital pathology. Additionally, digital whole-slide images 
cannot easily be integrated into medical workstations. Typical file sizes for such slides 
are at least one order of magnitude larger than typical radiological images, thus current 
PACS systems may not be capable of storing these files. 

As a possible solution, we propose specialized multi-scale viewers with efficient on-
demand data streaming connected to a histological image server, resulting in a seamless 
integration of full high-resolution histology data for cross-disciplinary evaluation of 
ambiguous cases. Furthermore, in order to support histological-radiological communica-
tion, we propose illustration tools for pathological annotations. We argue that a compre-
hensive breast imaging workstation should enable cross-disciplinary planning of  
interventions from biopsy over surgery to radiation therapy, and allow for full cross-
disciplinary correlations of radiological and histological findings. 

4   Discussion and Perspectives 

An integrated software solution for multi-modal reading has the potential to associate 
corresponding locations by providing visual guidance, e.g. search corridors or co-
registration based exact lesion matches. Computer assistance relating a finding seen 
on MG views to an approximate region of likelihood in breast MRI or ABUS vol-
umes, or vice versa, requires further fundamental research. Also, new image analysis 
and CAD algorithms, which show potential for advanced diagnostic support, provide 
a challenge to user interface design due to the increasing complexity of resulting 
software systems. The proposed extensible Diagnostic Workflow Gallery aims at a 
solution here. Importantly, an integrated workplace will provide a homogenized look-
and-feel for basic and advanced display options of all modalities, in contrast to the 
combination of several proprietary single-modality workplaces. Intuitive customiza-
tion of cross-modality 2d, 3d, and dynamic views without requiring technical knowl-
edge is facilitated through a hanging editor with adaptive fingerprinting of image 
series. Post-processing and CAD tools often sensitively depend on the compliance 
with standards for acquisition protocols and image quality. Practically, however, strict 
standardization across sites, vendors, and clinicians has severe limitations and is 
currently out of reach. Instead, we propose sophisticated algorithms to estimate levels 
of artifacts as a basis for automated image quality assurance. Ideally, this would take 
place during image acquisition to allow reacquisition in case of low-quality data.  

Current limitations relate to a lack of standardization in image acquisition and stor-
age, coarseness of cross-modality spatial correlation, availability of digital high-
resolution histology data, and availability and specificity of dedicated multi-modal 
CAD algorithms. Even though digital pathology is still young, an upcoming extension 
of the DICOM standard will permit the combined management of radiological and 
pathological images in a single PACS system. Ultimately, making direct use of multi-
modal and cross-disciplinary information will facilitate more sensitive detection and 
more specific characterization of lesions seen in more than one modality. 
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Abstract. Objective: To assess the impact on breast cancer mortality of improv-
ing the sensitivity of breast screening programmes. Methods: A Markov Model 
was populated with data describing the UK screening programme and the inci-
dence and mortality of breast cancer. The model was used to study the impact 
of CAD on cancer detection rates and mortality for a cohort followed from age 
45 to age 90. Results: Running the model with values of sensitivity from 75 to 
95% shows the proportion of cancers detected at screening increasing as screen-
ing improves, and deaths from breast cancer falling. The drop in breast cancer 
deaths is however modest: increasing sensitivity from 75% to 85% reduces the 
number of breast cancer deaths from 28 to 27 per thousand. Conclusions: The 
likely improvements in the sensitivity of screening with CAD do not have a 
marked effect on breast cancer mortality. 

1   Introduction 

Computer aided detection (CAD) systems analyse digital mammograms and alert the 
user to regions of the image more likely to contain an abnormality.  One question that 
is often asked of CAD is whether it allows a single reader to achieve the sensitivity 
normally attained by double reading mammograms. Attempts to compare CAD with 
double reading have largely failed to achieve either methodological rigour or statisti-
cal power with the notable exception of the CADET II trial which suggested that 
single reading with CAD provides comparable sensitivity to double reading.[1,2]  

To assess the importance of sensitivity in screening we need to understand the rela-
tionship between sensitivity and outcomes. Clearly, better screening should have a 
greater impact on mortality, but it is naïve to assume that each extra cancer detected at 
screening is a life saved. Mathematical simulations have been carried out to assess the 
financial value of digital mammography and of CAD.[3,4] This paper presents a 
mathematical modeling exercise which takes values from official UK statistics and 
the academic literature and simulates the impact of changing the sensitivity of screen-
ing on various outcomes. 

2   Methods 

Cancer in a screened population is modelled as a Markov process. The states and the 
allowed transitions are shown in Figure 1. Each transition is associated with a probability. 
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Examples of age-related transition probabilities for women aged 45, 60 and 75 are shown 
in Table 1. Using this model, a cohort of women is followed from age 45 to 89. Each 
year women are moved from state to state according to the transition probabilities. The 
transition probabilities can be adjusted to model different scenarios.  

 

Fig. 1. Markov model of breast cancer screening. The ovals represent states through which 
women pass. Arrows show transitions between states.  

Between the ages of 50 and 64, a proportion of the cohort attends for screening 
every three years. Two categories of detected cancer are considered: detected at 
screening and detected outside screening. No distinction is made between cancers 
detected in the intervals between screening visits and those detected in women who 
have not attended for screening. The progression of disease is not modelled explicitly, 
but detected cancers are assigned a prognostic category, according to a profile of 
prognostic categories for the method of detection. The difference in the profiles of 
screen-detected and non screen-detected) is the basis, in the model, for the benefit due 
to screening: women with cancers detected at screening are more likely to survive 
because these cancers are more likely to be assigned to a category with a better prog-
nosis. All cancer deaths are assumed to occur within 10 years of diagnosis, after 
which patients are returned to the initial state. 

Authoritative estimates of transitions labelled 1,2,3 in Figure 1 (death from ‘other 
causes’, screening uptake, proportion of women with cancers detected at screening, 
were obtained from the UK mortality statistics and the NHS screening pro-
gramme.[5,6]  The approach to modeling the other transitions is outlined here.  

 

Screening 
mammography 

Initial 
State: Well 

Non screen-
detected cancer 

Screen-
detected cancer 

Undetected 
cancer

Dead from 
cancer 

Dead from 
other causes 

1

1 11

2 

3 4

5

6

7

8

9 
9
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Table 1. Age-related transition probabilities for women aged 45, 60 and 75 

Age Other cause 
mortality 
rate, per 
100,000 

Screen  
detected  

cancer rate, 
per 100,000 of 

population 

Non screen 
detected  

cancer rate, 
per 100,000 of 

population 

Mean  
sojourn time 

in years 

45 124 6 164 3 

60 503 207 96 4 

75 2507 65 248 6 

Transitions 4,5,6: If the model is to be used to assess improvements to the screening 
programme, it must include a pool of detectable but currently undetected cancers. The 
model therefore includes an ‘undetected cancer’ state to which women are transferred 
with a probability reflecting the sensitivity of the screening programme. These can-
cers are undetected until the ‘sojourn’ time elapses, after which they present clinically 
and the woman transfers to the ‘non screen-detected cancer’ state. Estimates of sensi-
tivity vary, however the accuracy of the baseline estimate of sensitivity used is not 
crucial for the model. Consider Figure 1. If an estimate is chosen for 4 and used to 
calculate a figure for 5, then so long as the figure for 6 is set so that the total for 5 and 
6 is accurate, the accuracy of the estimate at 4 is of no consequence. We followed 
Elmore et al. and assume 25% of cancers are missed at screening so set the probabil-
ity of transition 4 to be 1/3 the value of transition 3.[7]  

Transition 5 is the rate at which missed cancers present clinically. Women stay in 
the missed cancer state – unless they die of ‘other causes’ – until the sojourn time has 
elapsed. An estimate of mean sojourn time (MST) at each age is used to generate a 
Poisson distribution from which the number of missed cancers presenting each year is 
determined. Undetected cancers are attenuated with the force of the other cause mor-
tality rate (transition 1) each year that they stay in this state. In order to determine 
age-related estimates of MST, PubMed was searched and five papers containing 
seven sets of estimates for the age-related MST obtained. [8-12] Plotting age against 
MST and fitting a simple exponential curve made it possible to generate a figure for 
MST at each age. These ranged from 3 yrs at age 50 to 6yrs at age 75. To test the 
sensitivity of the model to this estimate, the performance of the model was assessed as 
the fitted curve was varied through plus and minus 40%.  

The total of transitions 5 and 6 was calculated by subtracting the figure for screen de-
tected cancer from the total number of cancer registrations.[13] The figure for transition 
6 is then determined as the balance required given the calculated value of transition 5. 

Transitions 7 & 8. Profiles for screen-detected and non screen-detected cancers are 
used to assign each cancer a ‘prognostic category’. Each category is associated with a 
separate survival curve. The modeled impact of screening on mortality will depend 
very closely on these profiles and associated survival curves. If the profile of cancers 
is similar for screen detected and non screen detected cancers, screening can have  
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Fig. 2. The prognostic profiles for screen and non-screen detected cancers. The bar chart shows 
the percentages of non screen-detected and screen detected cancers in the different prognostic 
categories of the NPI. Cancers in the simulation are assigned to a prognostic category according 
these frequencies, depending on the method of detection. The graph shows the survival curves, 
for an imaginary cohort of 10,000 women aged 60 in 2006 in each these categories. The curves 
are based on data for cancer deaths collated by Nottingham City Hospital combined with ‘Other 
Cause Mortality’ rates, for ages 60 to 69, calculated from UK mortality statistics. 

little benefit. If the survival curves for the different prognostic categories are not 
widely separated, screening can have little benefit. Two approaches were compared: 
one based on the staging of cancers and one on categories of the Nottingham Prognos-
tic Index (NPI), shown in Figure 2. In order to compare the performance of the model 
with different estimates of these values, two ‘figures of merit’ were used.  

First, the model was used to generate an estimate of the overall impact of the 
screening programme on the number of breast cancer deaths. This was achieved by 
running a simulation with sensitivity of 0% (transition 4), simulating the complete 
absence of screening. Comparing this to a simulation with the baseline sensitivity of 
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75% allows an estimate of the overall impact of screening on mortality. Second, age-
specific rates of breast cancer mortality were compared to those in the UK mortality 
statistics and the mean squared error calculated. Note that the two datasets should be 
similar but there is no a priori reason why they should be identical, the model simu-
lates a cohort aged 45 in 2006 and followed for 45 years, UK mortality statistics are 
calculated for the women aged between 45 and 90 in 2006.  

Two implementations of the model, one using the profiles and survival curves pub-
lished for categories of the NPI, the other based on stages, were compared on these 
two ‘figures of merit’. The NPI model gives an estimate for the impact of NHSBSP of 
a 16% reduction in breast cancer deaths. The stage model gives an estimate of 9%. 
Both sets of data seem consistently to underestimate the number of deaths, compared 
to the 2006 data, and to markedly underestimate deaths in older women. On balance 
the NPI data seemed more robust, with a more plausible estimate of the impact of 
screening and was used in the remaining simulations. The NPI data were however 
calibrated with the figures for breast cancer deaths in 2006, in order to allow for a 
possible interaction between age and mortality, resulting in a mean squared error of 
1.1% in the central region. The NPI profiles were determined from data published by 
Wishart et al. and survival curves based on data published by Blamey et al. [14,15] 
Since the NPI profile is for invasive disease only, estimates of the proportion of de-
tected cancers that are non-invasive in screening and outside screening were obtained 
from the NHSBSP and the literature.[6,16] 

Transition 9. An assumption that survival curves plateau at 10 years after diagnosis is 
enforced, and surviving patients return to the well state. 

The model was used to simulate changes in the cancer detection rate that might fol-
low from changes in the screening protocol. The model was run varying the sensitiv-
ity from 75% to 95%. Each simulation was run 1,000,000 times. 

3   Results 

Running the model from age 45 to 89 with sensitivity set at the baseline value of 75%, 
predicts the detection at screening of 44 cancers per thousand of population and the 
detection outside of screening of 82 cancers per thousand of population. Improving 
screening to a sensitivity of 85% should increase the number of cancers detected at 
screening to 50 per thousand and decrease the number detected outside screening to 
76 per thousand. The number of breast cancer deaths moves only slightly, from 28 to 
27 per thousand. Table 2 shows the impact of changing the sensitivity of screening 
from 75% to 95%. There is a drop in breast cancer deaths as screening improves over 
this range, but almost no impact on overall survival is observed.  

4   Discussion 

The original aim of this work was to assess the possible impact of CAD on the out-
comes of the screening programme. In order to determine how CAD might alter the 
sensitivity of screening, a pair of linked systematic reviews was carried out, looking 
first at comparisons of single reading and CAD and then at comparisons of single and 
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double reading. This work has been described in detail elsewhere.[17] Ten studies 
were found comparing single reading to single reading with CAD, and seventeen 
comparing single reading with double reading. Double reading with arbitration (films 
where the two initial readers disagree are reviewed by a third) shows a significant 
increase in detection rate (odds ratio: 1.08, 95% CI:1.02-1.15) and a significant de-
crease in recall rate (odds ratio:0.94, 95% CI:0.92-0.96). CAD studies do not show a 
significant increase in cancer detection rate (odds ratio: 1.04, 95% CI: 0.95-1.13) and 
– although there is considerable heterogeneity between studies – show an increased 
recall rate (odds ratio: 1.10, 95% CI: 1.09-1.12). These differences in cancer detection 
rate are relatively small (expressed as a risk difference the best estimate of the effect 
due to CAD is 0.16 extra cancers per 1000 women screened, for double reading 0.44 
extra cancers per 1000 women screened). Rather than attempt to compare the model 
run on such similar estimates, it seemed more illuminating to use the model to simu-
late larger changes in sensitivity. The conclusion is that the kinds of improvements in 
sensitivity that we can anticipate are unlikely to have a significant impact on the main 
outcomes of interest to the screening programme. 

Perhaps the best evidence about the impact of CAD is from the CADET II trial. 
CADET II was designed as an equivalence trial and powered to detect a 10% differ-
ence between the intervention and control conditions. No difference was detected so 
the two are considered equivalent. The systematic review of trials suggests that nei-
ther CAD nor double reading are likely to improve screening sensitivity by 10%. The 
modeling reported here suggests that improvements of less than 10% are not going to 
have an impact on the chief outcome of interest to screening programmes. 

Table 2. Outcomes per 100,000 of population for different levels of sensitivity of screening 

 
 
 

Sensitivity of 
screening 

Screen 
detected 
cancers 

Non screen 
detected 
cancers 

Breast 
cancer 
deaths 

Total 
deaths 

95 
5534 7143 2647 71317 

92.5 
5389 7260 2682 71212 

90 
5255 7374 2696 71291 

87.5 
5096 7521 2690 71260 

85 
4953 7642 2728 71333 

82.5 
4816 7785 2748 71388 

80 
4694 7879 2751 71308 

77.5 
4505 8063 2798 71338 

75 
4370 8246 2816 71353 

One conclusion to draw from this is that proposed enhancements of screening 
should target the specificity of screening rather than the sensitivity, where the scope 
for real improvement is perhaps limited. By itself, this would argue for the retention 
of double reading and not single reading with CAD: both the systematic review and 
the CADET II trial showed a significant increase in recall rate with CAD. CAD can 
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be justified on cost grounds if the saving in radiologist time of not doing double read-
ing is less than the combined cost of CAD and of dealing with the additional recalls 
generated by CAD. The data suggest that screening is beneficial, but since screen 
detected cancers do not directly translate into lives saved, improvements in screening 
have only a small impact on mortality. 
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Abstract. Recently, detective quantum efficiency (DQE) arising from the concept 
of signal-to-noise ratio (SNR) has been used for assessing digital x-ray imaging 
systems. Using a phase-shift of x-rays that occurs when passing through an object, 
digital phase contrast imaging (herein referred to as “phase imaging”), which in-
volves magnification, can produce images different from those of standard contact 
imaging (herein referred to as “regular imaging”). For this reason, assessment of 
the image quality based on DQE which does not include the object information 
may not be appropriate to compare image quality between the phase images and 
the regular images. As an alternative method, we proposed a new image quality 
assessment method based on radial direction distribution function (RDDF) and 
signal intensity distribution function (SIDF) in two-dimensional power spectra of 
images that contain information of an object. To evaluate the usefulness of our 
method based on RDDF and SIDF, we assessed images of different contrast, noise 
characteristic and sharpness using simple phantoms. Our results showed that the 
accurate evaluation of these factors was successfully performed. Comparing the 
image quality of projected plant seeds by phase imaging and regular imaging, we 
found the phase imaging method provided higher image quality in terms of edge 
sharpness than that of the regular imaging. 

Keywords: phase contrast imaging, radial direction distribution function, signal in-
tensity distribution function, edge enhancement, two-dimensional power spectra. 

1   Introduction 

For evaluation of digital x-ray imaging systems, detective quantum efficiency (DQE) 
is sometimes applied based on the concept of signal-to-noise ratio (SNR).[1, 2] This is 
because DQE has been considered useful for comprehensive evaluation of an x-ray 



138 S. Matsuo et al. 

 

detection system, as data calculations of DQE are done using the gradient obtained 
with input-output conversion characteristics of the system (characteristic curve), 
modulation transfer function (MTF) for resolution properties, and the Wiener spec-
trum or noise power spectrum for noise properties [3] 

For image evaluation of digital phase contrast imaging developed for mammogra-
phy examination, the authors have been conducting comparative studies between con-
ventional digital x-ray imaging (herein referred to as “regular imaging”) and new phase 
contrast imaging (herein referred to as “phase imaging”) using simple phantoms [4-9] 

The feature of the phase imaging is to provide edge-enhancement of an imaged ob-
ject, utilizing refracted x-rays which occur when x-rays pass through the object. 
Therefore, phase imaging should be assessed based on the distribution of x-ray inten-
sities after passing the object, including the refracted x-rays. Namely, to assess differ-
ences between the phase images and regular images, conventional methods are not 
appropriate, such as MTF that has been used to evaluate feature of an x-ray detector 
without including an imaged object, Wiener spectrum, DQE, or noise equivalent 
quanta (NEQ) that has been used for image quality evaluation. In this study, we pro-
posed a new image evaluation method including an imaged object, utilizing radial 
direction distribution function (RDDF), which was obtained based on two-
dimensional (2D) power spectrum (herein referred to as “power spectrum”) [10-14]. 

2   Materials and Methods 

The system used in our experiment (Mermaid, Konica Minolta, Tokyo, Japan) con-
sists of mammography x-ray equipment (MGU-100B, Toshiba, Tokyo, Japan) capa-
ble of performing regular imaging and phase imaging and a data reader (REGIUS 
MODEL190, Konica Minolta, Tokyo, Japan) which includes a photostimulable phos-
phor plate of Computed Radiography (PM-6M，Konica Minolta, Tokyo, Japan) for 
the x-ray detector. A molybdenum x-ray tube with a 0.1 mm / 0.3 mm focal spot size 
was used, in which selection of the size was automatically done (a 0.3 mm size was 
used for regular imaging and a 0.1 mm size was used for phase imaging). The dis-
tance between the focal spot of the x-ray tube and the target object was 65 cm. In 
regular imaging, the detector was positioned right behind the object; whereas, in 
phase imaging, the detector was positioned 49 cm apart from the object. Therefore, in 
phase imaging, the imaged object was magnified by 1.75-times.  

The parameter of the system had a sampling pitch of 0.04375 mm, matrix size of 
4360 × 5736, and density resolution of 12 bits. Therefore, the effective sampling pitch 
at 1.75-time magnification imaging was 0.025 mm. 

Data analysis was conducted after transferring the raw digital image data of the im-
aged phantom to a personal computer and post-processing the data. Power spectrum 
was obtained by 2D Fourier transformation of images. 

p (r) and p (θ) are the sum total of power spectrum in spatial frequency regions; a 
round-shape and fan-shape, as shown in Fig. 1 (a) and (b), respectively. The p (r) is 
defined as RDDF that shows the degree of texture roughness. The p (θ) can be defined 
as ADDF, which shows the direction of texture. 
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Fig. 1. The concept of (a) radial direction distribution function (RDDF) of the power spectrum, 
p (r) and (b) angle direction distribution function (ADDF) of the power spectrum, p (θ) 

Next, as shown in the following Eq. (1), by using a logarithm of ratio between the 
ps+n (r) of “signal + noise” image and pn (r) of “noise” image, subtraction of pn (r) 
from ps+n (r) is done, and thus RDDF of only “signals” is obtained. In the present 
study, we defined this as signal intensity distribution function (SIDF), that is Ps (r). 

             ( ) ( )
( )rp

rp
logrP

n

ns
s

+= 1010    [dB]                    (1) 

In this study, as our purpose was to evaluate sharpness of x-ray images, image quality 
difference between phase images and regular images were evaluated using RDDF p 
(r) (for spatial frequency component evaluation) and SIDF Ps (r) obtained from p (r). 

To evaluate usefulness of our image evaluation method applicable when including 
the subject information by RDDF and SIDF, we used two types of simple phantoms 
which provide different levels of contrast, sharpness and noise, independently.  

Secondly, image quality of phase images and regular images was compared using 
plant seeds (including grains of rice embedded in glue) having major axes of 4 -5 mm. 

3   Results and Discussion  

RDDF and SIDF obtained from spherical phantom images with different contrast are 
shown in Fig. 2 (a) and (b), respectively. Although the difference of image contrasts 
cannot alter the shapes of the curves of RDDF or SIDF, it can be shown as different 
levels of RDDF or SIDF in all frequencies. These facts helped to accurately analyze 
the difference of contrasts. 

RDDF and SIDF obtained from spiked-ball phantom images with different sharpness 
are shown in Fig. 3 (a) and (b). Difference of image sharpness was clearly shown in the 
different RDDF or SIDF curve shapes and their levels in the frequency band areas be-
tween 0.2 and 2.5 cycles/mm, although those were not different in the low frequency  
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Fig. 2. Radial direction distribution functions (RDDFs) (a) and signal intensity distribution 
functions (SIDFs) (b) for high and low contrast phantom images as well as for the noise image 

band areas. When the sharpness is different, a spatial frequency band area recognizable 
as signals is altered. These results provide accurate analysis of the sharpness difference. 

RDDF obtained from different noise images (Fig. 4 (a), (b)) are shown in Fig. 4 
(c). Using the same detector, the difference of noise characteristic of these images 
occurs only in the low frequency region, as these reflect difference of quantum noise 
only. The results clearly reflect the noise difference. 

RDDF and SIDF of the phase image and regular image are shown in Figs. 5 (a) and 
(b), respectively. Frequency band of signals is considered different between regular 
images and phase images, as signal component of phase images contains signals up to 
6.0 cycles/mm, though that of regular images becomes 0 dB at 3.0 cycles/mm. These 
results concur with the difference in sharpness observed with image evaluation of the 
simple phantom (as shown in Fig. 3 ), and that phase images provide better sharpness 
than regular images. Based on the images of plant seeds with RDDF or SIDF, we con-
sider the image quality improvement by phase imaging was resulted from improvement 
of image sharpness, and the causes must be the scaling effect derived from magnifica-
tion imaging and edge enhancement effect due to refracted x-rays.  
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Fig. 3. Radial direction distribution functions (RDDFs) of the spiked spherical phantom images 
of different sharpness and with the different level of noise (a). Signal intensity distribution 
functions (SIDFs) of the spiked spherical phantom images having different sharpnesses (b). 
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Fig. 4. The noise images by the difference in a dose. (a) high noise image (dose : 5mAs) and (b) 
low noise image (dose : 16mAs). (c) Radial direction distribution functions for high and low 
noise images. 
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Fig. 5. Radial direction distribution functions (RDDFs) of plant seeds and noise images for the 
phase imaging and regular imaging (a). Signal intensity distribution functions (SIDFs) of plant 
seeds images for the phase imaging and regular imaging (b). 

4   Conclusion  

In this study, using phantoms, we investigated whether image quality evaluation was 
possible between different images, using RDDF and SIDF which were obtained from 
power spectrum. The results of our experiment proved that differences of image con-
trast and sharpness could be correctly evaluated. This method is effective for phase 
imaging, where evaluation of sharpness is impossible without images containing in-
formation of the scanned object. 
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Appendix : Clinical Mammograms 

The clinical image of the breast are shown in Fig. 6 [9].  The improved sharpness in 
the phase contrast image is obvious from clinical images due to the edge enhancement 
effect than that in regular image. 

(a) (b)(a) (b)

 

Fig. 6. Clinical image comparison. (a) Regular image (b) Phase image 
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Abstract. The appearance of breast tissue in mammograms is altered by the 
presence of a malignant mass. Existing synthesis methods have not addressed 
this structural deformation. We aim to use a set of mass background images that 
display altered breast tissue to simulate such deformations in regions of digital 
mammograms previously showing no signs of disease. Regions are decomposed 
using the dual-tree complex wavelet transform (DT-CWT) to obtain a richer 
representation of local structure than provided by image grey-levels alone. Syn-
thesis is achieved by modifying the high-frequency DT-CWT coefficients of 
normal regions to match those in mass backgrounds. Three methods for com-
pleting this task are described. The results, advantages and current limitations of 
the methods are discussed. 

Keywords: Mammography, malignant mass, tissue deformation, lesion synthe-
sis, texture models, dual-tree complex wavelet transform. 

1   Background 

Several authors have described the benefits of synthesising signs of breast disease in 
digital mammograms [1-4]. When synthesising masses, a common theme is to gener-
ate an image representing the increased attenuation through the dense mass tissue and 
superimpose this on a real mammogram previously displaying no signs of disease. 
The appearance of a stellate lesion may be achieved by adding spicules to the mass  
[1, 3, 4]. However, such approaches treat the mass (and spicules) independently from 
the tissue to which they are added and fail to account for deformation in existing 
breast tissue caused by the malignancy. In this paper we present methods for  
synthesising mammographic background changes associated with the presence of a 
malignant mass.  

The principal purpose of this work is to create regions that can be combined with 
existing methods for synthesising the central density of masses, thus achieving a more 
complete simulation of breast disease. We report results in terms of how realistic 
synthesised regions appeared to expert mammogram readers.  
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2   Data and Methods 

2.1   Mammogram Data 

Two sets of mammographic image data were used in this work: normal regions and 
mass backgrounds. Normal regions were extracted from mammograms displaying no 
signs of disease. Each mass background was obtained by extracting a mammographic 
region about a biopsy-proven malignant mass and then subtracting the central density 
from this region using a process described in our earlier work [5]. As a result, a mass 
background displays both spicules (if present) and the structural deformation of breast 
tissue in the region. Our aim is to simulate the appearance of a mass background in a 
normal region. 

2.2   Modelling and Synthesising Mammographic Texture Using the Dual-Tree 
Complex Wavelet Transform 

Because mammographic appearance is often rich in linear structures we apply the 
dual-tree complex wavelet (DT-CWT) [6] to our image data. The DT-CWT decom-
poses images into 6 oriented subbands localised in scale. The magnitudes of DT-CWT 
coefficients have the important property of shift invariance and the phase of coeffi-
cients can be used to infer information on local structural shape. Thus the DT-CWT 
provides a richer representation of our data than using the grey-levels alone, whilst 
the construction of the transform minimises redundancy in the coefficients without 
introducing inconsistencies associated with shifts in the decomposition frame. 

In addition, the decomposition is invertible, allowing the image to be reconstructed 
from the set of coefficients. We make use of this fact and apply the following three 
stage process to synthesise mass background appearance in a normal region:  

1) Compute the DT-CWT decomposition of a normal region 
2) Modify coefficients in the decomposition to match the properties of  

DT-CWT coefficients in real mass backgrounds 
3) Invert the modified DT-CWT to reconstruct a region in which mass back-

ground appearance has been synthesised 

We now describe three methods of completing the second stage of the process. 

2.3   Directly Transferring DT-CWT Coefficients  

As an initial proof-of-concept, we transfer DT-CWT coefficients from the high fre-
quency subbands of real mass regions into the decomposition of a normal region. This 
replicates the appearance of spicules and deformed tissue in the modified region, 
whilst maintaining the underlying global appearance of the normal region. 

However, if in addition to abnormal structures the mass background has a textured ap-
pearance with an underlying dominant orientation, the structures that give rise to the 
orientation will be encoded in the transferred DT-CWT coefficients. As a result the ap-
pearance of a dominant orientation will be transferred to the target normal region. If this 
orientation differs from the existing dominant orientation of texture in the normal region, 
there will be a mismatch at the borders of the transferred region causing unrealistic  
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appearance. For example, Fig. 1 (a) depicts a normal region containing structures with a 
primarily vertical orientation, whilst in Fig 1 (b) we show a mass background with ap-
proximately horizontal dominant linear structures. When DT-CWT coefficients are trans-
ferred from the mass background into the normal region, the mismatch in orientation 
causes a notably unrealistic texture in the modified region displayed Fig 1 (c). 

 

Fig. 1. Aligning orientation in the transfer region a) normal region; b) mass background; c) 
modified region with unaligned orientations; d) orientation histogram for normal region; e) 
orientation histogram for mass background; f) modified region following orientation alignment 

To prevent this mismatch of orientations, we rotate the mass background prior to 
computing its DT-CWT so that its dominant orientation matches that of the target 
region. To find the optimal angle of rotation, we compute orientation histograms for 
each region (Fig 1 (d) and (e)) using a function of the DT-CWT coefficients [7], and 
select the angle that would achieve greatest correlation between the two histograms. 
For these two regions, an angle of 102º was calculated as the best angle by which to 
rotate the mass background. The result of applying this alignment is depicted in Fig 1 
(f). Note how the modified region now appears much more realistic than the case 
prior to the rotation. 

Whilst aligning structure orientation helps to remove some texture artefacts from the 
modified regions, there will still be some mismatches for particular pairs of normal 
regions and mass backgrounds (for example, when transferring DT-CWT coefficients 
from a mass background rich in parenchymal structure to a mainly fatty normal region). 

(a) (b) (c) 

(d) (e) (f)
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Moreover, because we use a real mass background as a template to modify each normal 
region, we are limited to sampling from the finite set of mass backgrounds in our  
training data. To overcome these limitations, in the following two sections we explore 
methods for sampling new DT-CWT coefficients in normal regions with respect to 
probabilistic texture models learnt from our training data. 

2.4   Sampling DT-CWT Coefficients from Local Texture Models 

Rather than using DT-CWT coefficients directly sampled from the decompositions of 
real mass backgrounds, we can attempt to model the spatial distribution of coeffi-
cients in the real data. Due to the heterogeneity of mammographic texture, construct-
ing a single model to describe the variation in coefficients across a whole region is not 
possible. Instead we model local patches of coefficients.  

For a given location (x,y) in the L-th level of a DT-CWT, we define a local patch 
x  such that it includes coefficients in a 5 by 5 neighbourhood centred on (x,y) from 
each of the 6 oriented subbands. We also include the coefficient sampled at (x,y) from 
each of the oriented subbands in the next coarsest level. Each coefficient has a com-
plex magnitude and phase, thus x  is a 312-element feature vector representing the 
local structure at  (x,y). 

We extract all such feature vectors from the set of real mass backgrounds to popu-
late a feature space for each DT-CWT level and describe the distribution of vectors 
within each feature space by fitting a Gaussian Mixture Model (GMM) using the k-
means algorithm [8]. 

As a result of the model fitting we can describe the probability of any feature vec-
tor x  as 

( ) ( | ) ( )
k

i

P P i P i=∑x x  

where i indexes the i-th Gaussian component and 

( )( | ) ,i iP i Nx μ Σ∼ .  

The mean μi and covariance Σi of each Gaussian component are computed as the 
sample mean and covariance of each cluster returned from the k-means algorithm, 
whilst the prior probabilities for each component P(i) are computed as the proportion 
of the total points assigned to each cluster. 

To select k, models were built for each level using increasing values of k (starting 
at k = 10 and increasing in increments of 10) until at least one cluster was dropped 
during the algorithm. Because the k-means algorithm is susceptible to getting stuck in 
local minima, having selected a value of k, we repeated the modelling 100 times at 
each level, choosing a different randomly selected initialisation of clusters for each 
repeat. Within each level, the model that returned the most compact clusters was se-
lected. Applying this process to the 5 finest DT-CWT level produces 5 GMMs that 
can be used to sample new coefficients in a normal region. 

The sampling procedure follows a method we have described in earlier work [5]. In 
summary, in the DT-CWT of a normal region, we discard all existing coefficients from 
the area in which we wish to synthesise mass background appearance. We then fill in 
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the missing area, working from the outside inwards, at each step sampling new coeffi-
cients from the GMMs conditioned on the neighbouring coefficients that have already 
been filled. The DT-CWT levels are filled from coarse to fine, so that information on 
long range structural interactions are passed upwards through the decomposition. 

2.5   Adding Structure to the Texture Models 

Early experiments using the method described in section 2.4 indicated that although 
general mammographic texture was being generated, it did not include linear struc-
tures associated with breast tissue or spicules. To overcome this, we can force the 
models to generate DT-CWT coefficients associated with structure at specific loca-
tions, by applying a line detection algorithm to obtain maps of structure for each real 
mass background in our training data. Local feature vectors are then constructed as 
previously; however the set of feature vectors corresponding to structure is modelled 
separately from feature vectors not corresponding to structure. Thus for each level we 
have a structure GMM and a non-structure GMM.  

At synthesis time, we require a structure map to determine which model should be 
used to sample coefficients at each location in the normal region we are modifying. 
Ideally, this map itself would be generated by sampling from a probabilistic model 
that encapsulates the spatial distribution of linear structure in real mass backgrounds. 
However as yet, we do not have a method for constructing such a model. Instead, for 
each normal region we used the structure map from a randomly selected mass back-
ground to act as a template. In this way, the method can be seen as a combination of 
the direct transfer method described in section 2.3 with the probabilistic sampling 
method described in section 2.4. 

3   Results 

The three methods described above have been used to synthesise mass background 
appearance in 89 regions randomly selected from normal mammograms. Fig. 2 depicts 
synthesis results for three normal regions. On the top row of Fig. 2 the regions are 
shown in their original form. The second, third and fourth rows show the result of modi-
fying each region using the methods described in section 2.3, 2.4 and 2.5 respectively. 

Evaluating the results is difficult because by construction each synthetic mass 
background will only resemble a region of a real mammogram when a synthetic cen-
tral density has been added to it (thus reversing the separation process used to gener-
ate mass backgrounds, as outlined in section 2.1). 

30 mass backgrounds synthesised using the direct transfer of DT-CWT coeffi-
cients have been combined with our method for synthesising the central density of 
malignant mammographic masses ([9]) and quantitatively evaluated by expert 
mammogram readers. In this study, ten expert readers were shown randomised set of 
30 real and 30 synthetic masses, and asked to rate each mass on a scale varying from 
definitely real to definitely synthetic. ROC curves were fitted to the reader ratings, 
and a mean area-under-curve of Az = 0.70±0.09 was computed. This suggests experts 
could identify synthetic masses at a rate significantly better than chance. Moreover, 
from feedback provided by the readers during the study, it would appear that in the  
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Fig. 2. Top row: three normal mammogram regions; Three methods of synthesising mass  
background appearance: directly transferring DT-CWT coefficients from real data (2nd row); 
probabilistically sampling coefficients from local texture models (3rd row); probabilistically 
sampling with respect to a map of structure (bottom row) 
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majority of correctly identified synthetic masses, unrealistic texture artefacts in the 
synthesised mass backgrounds were the cause. 

This provides further motivation to develop the methods in which new DT-CWT 
coefficients are sampled from probabilistic models. However as yet, we have not 
performed a quantitative evaluation in which synthetic mass backgrounds generated 
using either of the methods described in sections 2.4 and 2.5 are combined with syn-
thetic mass densities. Instead, a qualitative assessment of the methods is given in the 
next section. 

4   Discussion 

The image results obtained by directly transferring DT-CWT coefficients (section 2.3) 
show that mass background appearance can be synthesised within the framework we 
have specified in section 2.2. However the direct transfer method will only work for 
certain mass background/normal region pairs. Where the existing mammographic 
texture in normal regions is not a good match to the texture in the randomly selected 
mass background, texture artefacts may generated in the modified region that ulti-
mately allow such regions to be identified by experts as synthetic. 

In contrast, the two probabilistic methods for sampling new DT-CWT coefficients 
(sections 2.2 and 2.3) have the potential to generate mass background appearance in 
any normal region.  

These two methods have yet to be assessed by experts. However, a simple visual 
assessment of the images produced show that the structures present in a typical mass 
background (such as spicules) are not being generated by the methods. We belive that 
a significant cause of this failure is that the representation we have used to encode 
local structure produces a feature space for which we cannot adequately learn a prob-
ability distribution. This is evidenced by the fact such structures were still not created 
despite the explicit structure maps used in the method described in section 2.5. We are 
currently working on compacting this representation (e.g. by using rotation invariant 
features) to obtain a feature space that will be easier to model. 

5   Conclusion  

The results of this work should be considered in the context of previous attempts to 
synthesise mammographic appearance. Modelling and synthesising distortions in 
normal breast tissue are extremely challenging tasks that to the best of our knowledge 
have not been addressed by other authors in previously published literature. Whilst we 
have not solved the problem, we believe we have at least set it in framework that will 
enable a successful solution. Obtaining such a solution is crucial to any method at-
tempting a realistic simulation of malignant mammographic masses. We also propose 
that our models for synthesising tissue deformations associated with a visible mass 
could be adapted to synthesise, and ultimately detect, more general patterns of archi-
tectural distortion in mammograms. This proposal is the subject of ongoing research. 
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Abstract. Classification of linear structures, such as blood vessels, milk ducts, 
spiculations and fibrous tissue can be used to aid the automated detection and di-
agnosis of mammographic abnormalities. We use a combination of dual-tree 
complex wavelet coefficients and random forest classification to detect and clas-
sify different types of linear structure. Encouraging results are presented for syn-
thetic linear structures added to real mammographic backgrounds, and spicules 
in real mammograms. For spicule/non-spicule classification in real mammo-
grams we report an area Az = 0.764 under the receiver operating characteristic. 

Keywords: mammography, linear structures, classification, random forests, 
dual-tree complex wavelet. 

1   Introduction 

It has been reported recently that that current CAD systems do not detect architec-
tural distortion (AD) with adequate sensitivity or specificity [1]. Previous attempts at 
detecting patterns of distorted breast tissue – including both patterns of spicules 
associated with malignant masses and more general cases of AD in which no focal 
mass is visible – have used a two stage approach involving i) detecting linear struc-
tures, ii) analysing the orientation patterns of these structures to determine if AD is 
present [2-4]. 

We hypothesise that the sensitivity of AD detection algorithms could be improved if 
different types of linear structure could be labelled automatically, and used selectively 
in the second stage of the analysis outlined above. Although there is an extensive lit-
erature on detecting linear structures in digital mammograms [2-7], less attention has 
been paid to classifying different structure types [8]. 

We present a novel method for classifying linear structures, based on the use of a 
complex wavelet transform to provide a rich representation in which local shape can 
be inferred from the phase relationships between coefficients (cf [5-7]). We use ran-
dom forest classification [9] applied to this representation to detect linear structures 
and classify their types. Results are given for synthetic linear structures added to real 
mammographic backgrounds, and for spicule detection and classification in real 
mammograms. 
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2   Data and Methods 

2.1   Mammogram Data 

We used a sequential set of 84 abnormal mammograms with biopsy-proven malig-
nancy, drawn from a screening population (Nightingale Breast Centre, South Man-
chester University Hospitals Trust, UK), and a set of 89 normal mammograms of the 
contralateral breasts of the same individuals (where disease was radiologically con-
firmed to be confined to one breast). All mammograms were digitised to a resolution 
of 80µm, using a Vidar CADPRO scanner. A 4×4 cm patch was extracted around 
each abnormality, and a similar patch was sampled randomly from each of the normal 
mammograms. For each abnormal patch an expert radiologist annotated some (though 
not necessarily all) of the spicules associated with the abnormality, using in-house 
software, resulting in a total of 555 spicule annotations. 

2.2   Synthetic Data 

We generated synthetic images by adding linear structures to 128×128 pixel normal 
mammogram patches, pre-processed to remove naturally occurring linear structure.  
6130 normal mammogram patches were sampled randomly from 185 normal screen-
ing mammograms, including the 89 described above. For the experiments in Section 3 
we added linear structures with Gaussian or rectangular cross-sections. For the ex-
periments in Section 4.1 we added linear structures with elliptical cross-sections, 
simulating the x-ray projection of uniformly dense cylindrical structures. 

2.3   Representing Local Structure Using the DT-CWT 

Wavelet transforms have been used extensively in image processing and analysis to 
provide a rich description of local structure. The dual-tree complex wavelet transform 
(DT-CWT) has particular advantages because it provides a directionally selective 
representation with shift-invariant coefficient magnitudes and local phase information 
[10]. The DT-CWT combines the outputs of two discrete transforms using real wave-
lets, differing in phase by 90°, to form the real and imaginary parts of complex coeffi-
cients. For 2-D images, the DT-CWT produces 6 directional sub-bands, oriented at 
±15º, ±45º, ±75º, at each of a series of scales separated by factors of 2. 

In the experiments described in Sections 3 and 4, we used the complex coefficients 
(in phase/magnitude form) from the 6 oriented sub-bands in each of the s finest de-
composition scales from a ww×  neighbourhood centred on each pixel. This pro-
duced feature vectors with of length 212sw . In some experiments we formed more 
compact vectors of length 22sw  by including only the coefficients at each location 
and scale for the sub-band that gave the largest response. 

2.4   Classifying Structure Using Random Forests  

Given a set of training data consisting of N samples each of which is a D-dimensional 
feature vector labelled as belonging to one of C classes, a random forest comprises a 
set of tree predictors constructed from the training data [9]. Each tree in the forest is 
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built from a bootstrap sample of the training data (that is, a set of N samples chosen 
randomly, with replacement, from the original data). The trees are built using a stan-
dard classification and regression tree (CART) algorithm; however, rather than as-
sessing all D dimensions for the optimal split at each tree node, only a random subset 
of d < D dimensions are considered. The trees are built to full size (i.e. until a leaf is 
reached containing samples from only one class) and are not pruned. 

During classification, an unseen feature vector is classified independently by each 
tree in the forest; each tree casts a unit class vote, and the most popular class can be 
assigned to the input vector. Alternatively, the proportion of votes assigned to each 
class can be used to provide a probabilistic labelling of the input vector. 

Random forests are particularly suited to learning non-linear relationships in high-
dimensional multi-class training data, and have been shown to perform as well as 
classifiers such as Adaboost or support vector machines, whilst being computationally 
more efficient [9]. For all the experiments described below we followed published 
guidelines [9], constructing forests containing 200 trees and setting d D= . 

3   Experimental Results for Synthetic Data 

We conducted initial experiments to test our approach, using synthetic images con-
taining linear structures with Gaussian or rectangular cross-sections superimposed on 
real mammographic backgrounds, as described in Section 2.2. For each image, the bar 
type and orientation were selected randomly, whilst the contrast and width were ran-
domly sampled from ranges typical of linear structures in real mammograms: widths 
[4, 32] pixels (0.3 – 2.5mm), peak contrast [8, 16] grey-levels (relative to images 
scaled 0 – 255). Fig. 1 shows two synthetic images, and the largest complex coeffi-
cient (over the 6 orientation sub-bands) for three different levels in the transform. 

 

Fig. 1. Synthetic images and their DT-CWT coefficients. Top: Gaussian bar, width (SD) 4.33 
pixels, contrast 10.12 grey-levels. Bottom: rectangular bar, width 8 pixels, contrast 9.05 grey-
levels. Columns L to R show original and maximum response over orientation sub-bands for the 
2nd, 3rd and 4th levels of the DT-CWT, using intensity (magnitude), hue (phase) coding. 
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We generated training sets containing 10, 20, 40, 80 and 160 images and a test set 
containing 100 images. The pixels in each image were labelled as belonging to either 
background or rectangular/Gaussian bar, giving a three-class classification problem.  
We extracted 432-dimensional feature vectors, using all 6 orientation sub-bands, a 
neighbourhood size of w = 3, and s = 4 scales. We sampled 40,000 vectors randomly 
from each of the training sets, and constructed a random forest classifier as described 
in Section 2.4. The forest was used to classify all the pixels in the test images and 
classification error (misclassified pixels / total pixels) was calculated. The results are 
summarised in Table 1. Classification accuracy improves as the number of training 
images increases, reaching 97.7% correct classification for the largest training set 
tested. Given these promising results, we moved on to real data. 

Table 1. Random forest classification error rates for 3-class labelling of sythetic images 

Number of training 
images 

10 20 40 80 160 

Classification error 0.0522 ±  
0.0584 

0.0354 ±  
0.0429 

0.0365 ±  
0.0425 

0.0237 ±  
0.0348 

0.0231 ±  
0.0322 

4   Experimental Results for Real Data 

To apply our approach to real mammographic data we proceeded in three stages i) 
detecting the linear structures in a set of normal and abnormal training images, ii) 
building a spicule/non-spicule classifier using the expert annotations of the training 
images, iii) using the classifier to label pixels in unseen test images, using expert 
annotations to evaluate classification accuracy. Because we were working with a 
limited dataset, we used a cross-validation approach to evaluation. 

4.1   Detecting Linear Structures in Mammograms 

For line detection in real mammograms, we trained a random forest classifier on syn-
thetic images designed to contain similar structures to those found in mammograms. 
Linear structures with elliptical cross-sections were added to normal mammogram 
backgrounds as described in Section 2.2, with widths in the range [2, 32] pixels (0.15 
– 2.5 mm), and contrasts in the range [4/256, 16/256] grey-levels. We experimented 
with neighbourhood sizes w = 1, 3 and 5, scales s = 4 and 6, and number of sub-bands 
all or maximum response only, building in each case a random forest classifier using 
200,000 training vectors sampled with equal probability from the line and background 
classes. We also varied the lower and upper bounds [l, u] of the range of widths used 
during training. 

We found that it was possible to achieve close to 100% classification accuracy on 
unseen synthetic data with virtually all parameter combinations, though all-sub-band 
classifiers generally outperformed maximum-sub-band classifiers. Example linear 
structure probability images obtained by applying classifiers built using different 
training regimes to a real mammogram patch are shown in Fig 2. All the classifiers 
produce plausible results, but because we do not have ground truth data for the real 
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linear structures it is difficult to draw firm conclusions. Inspecting the results for a 
large number of images, we made the following observations regarding different 
training regimes: 

• minimum line width l = 2 gave more noisy results than l = 4; 
• maximum line width u = 32 gave less sensitivity to subtle lines than u = 16; 
• neighbourhood size w = 3 or 5 gave better signal-to-noise than w = 1, probably 

because information on phase derivatives is captured; 
• scales s = 6 gave better discrimination between lines and edges than s = 4; 
• using all orientation sub-bands gave better results near line crossings than the 

maximum sub-band approach. 

  

Fig. 2. (a) Original mass region; (b)-(f) Line probability maps using for varying parameter sets: 
(b) Bar widths = [4, 16], w = 3, s = 6, all sub-bands; (c) Bar widths = [2, 16], w = 3, s = 6, all 
sub-bands; (d) Bar widths = [2, 32], w = 3, s = 6, all sub-bands; (e) Bar widths = [2, 16], w = 3, 
s = 6, maximum sub-band response; (f)  Bar widths = [2, 16], w = 1, s = 6, all sub-bands 

Based on these observations, we selected for subsequent experiments a classifier 
trained using synthetic bars of width [4, 16] pixels, with 648-dimensional feature 
vectors constructed using neighbourhood size w = 3, scales s = 6, and all oriented sub-
bands (see Fig 2 (b)). This classifier was used to construct linear structure probability 
images for the 84 abnormal and 89 normal regions. 

(b) (c)

(d) (e) (f)

(a)
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4.2   Classifying Spicules in Mammograms  

We used the linear structure probability images described above to train a random 
forest classifier to distinguish between spicules and other linear structures in real 
mammograms, using DT-CWT features. 

The expert spicule annotations for the abnormal images were used as a basis for se-
lecting spicule pixels, though they were not sufficiently accurate to be used directly. 
To refine the annotations, we initialised a snake [11] using each original annotation, 
and iterated it to convergence, using evidence from the linear structure probability 
image. The 555 refined spicule annotations identified a set of 36,514 spicule pixels. 

We also randomly sampled an equal number of pixel locations from the 89 normal 
patches such that the distribution of linear structure probabilities in the normal sam-
ples matched the distribution of those in the spicule sample. 

Random forest classifiers were trained using DT-CWT feature vectors constructed 
using varying neighbourhood size w, scales s, and number of sub-bands with the spi-
cule/non-spicule labels, and evaluated using a 10-fold cross-validation design. The set 
of normal and abnormal regions were divided into 10 groups so that the total number 
of normal and spicule samples in each group were as close as possible to a 10th of the 
total. The samples in each group were then classified using a random forest trained on 
the samples from the remaining 9 groups. The classification results from each group 
were pooled to generate an unbiased class probability for each sampled pixel. These 
probabilities were used to compute an ROC curve for each training regime, and the 
area under the curve (Az) was computed and used as a measure of classification per-
formance. The results are tabulated in Table 2. 

Table 2. Spicule classification results for varying compositions of feature vectors 

Composition of feature vectors 

Neighbourhood 
size (w) 

No. of decomposition 
scales (s) 

No. of subbands 

Size of feature 
vectors (D) 

ROC Az 

3× 3 4 All 432 0.693 
3× 3 5 All 540 0.699 
3× 3 6 All 648 0.755 
3× 3 6 Maximum 108 0.752 
1× 1 6 All 72 0.764 
5× 5 6 All 1800 0.754 

From the results we can see the advantage of including more decomposition scales in 
the feature vectors and using the responses in all oriented subbands as opposed to using 
only the maximum response. However, somewhat surprisingly, the classification results 
appear to be slightly better using 1x1 neighbourhoods rather than 3x3 neighbourhoods, 
in contrast to the trend observed when performing line detection ( see Section 4.1).  

We also applied the 10-fold cross-validation approach and the best classifier design 
(neighbourhood size w = 1, scales s = 6, all sub-bands) to generate unbiased spicule 
probability images for all 89 normal and 84 abnormal regions. Typical results are 
shown in Figure 3, where the increased spicule probability in spiculated areas of the 
abnormal region – relative to both the normal region and the non-spiculated areas of 
the abnormal region – is clearly visible.  
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Fig. 3. Left column: a mass region and normal region; centre column: line probability maps of 
each region; right column: spicule probability depicted as hue from cyan (normal) to pink  
(spicule), modulated by line strength 

5   Conclusion 

In this paper we have presented a new method for classifying local structure in mam-
mograms. We have applied the method to detect and differentiate between two types 
of synthetic linear structures added to real mammographic backgrounds. The accuracy 
of the classification highlighted the promise of the approach.  

For real data, we first trained a classifier on synthetic images to perform line detec-
tion. We then used the results of this detection scheme, together with radiologist an-
notations to perform spicule/non-spicule classification. An ROC Az of 0.764 suggests 
that a meaningful differentiation can be made between the two classes. Whilst such a 
classification may not be strong enough to detect abnormal malignant patterns on its 
own, the spicule probabilities may allow us to assign a weighting to each pixel  
when it is included in other measures (for example probability maps) designed to 
detect such patterns, thus improving the specificity of these measures. This will be the 
subject of further work. 
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Abstract. 16963 FFDM cases (280 cancers), were culled retrospectively and 
run with a CAD algorithm. Instead of using CAD as a "second reader", the 
study investigates the feasibility of using CAD for prescreening, allowing cases 
with no CAD prompts to bypass review, thereby decreasing the workload. The 
study also investigates the outcome of presorting all cases with matching CAD 
marks of the same type in both views, to enrich the case mix, thereby enhancing 
the reader's willingness to accept true CAD prompts. The sensitivity of the 
CAD algorithm was 83.4% and the mean false mark rate generated by CAD per 
case was 1.15. It was found that prescreening decreases the workload by about 
42%, but is not feasible since 6.4% of the cancers would be missed. Using pre-
sorting, 73.2 % of the cancers and only 14.2% of the normals would be priori-
tized for interpretation, enriching the case mix by 5 times. 

Keywords: FFDM, Screening mammography, Computer Assisted Detection 
(CAD), CAD sensitivity, False mark rate, Second reader, Pre-screening. 

1   Introduction 

True CAD prompts identify cancers, but some CAD marks are false, pointing to struc-
tures not related to malignancy. Since in a screening environment almost all cases are 
normal, almost all the CAD marks presented to the radiologist are false prompts, even 
though the false mark rate generated by the CAD algorithm is quite low. Thus, when 
CAD is used in a screening environment as a "second reader", an additional workload 
is imposed on the radiologist by the necessity to evaluate each of the CAD prompts. 
On the other hand, if CAD could be used for prescreening, the need to interpret all 
mammograms with no CAD prompts would be eliminated. Developing prescreening is 
worthwhile, since it offers a great savings in man- hours, and this could be translated 
into much wider access to mammography, without adding to the cost of screening 
programs. However, since CAD algorithms have not yet reached 100% sensitivity, 
when cases are read in the prescreening mode, malignant cases with no CAD marks 
will also not be reviewed by the radiologist, thus reducing the cancer detection rate.  

Another area of concern when CAD is used as a "second reader" in a screening en-
vironment, is the radiologists' reluctance to accept CAD prompts, assuming that almost 
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all prompts are false marks [1], [2] since most of the cases are, indeed, normal. How-
ever, if the reader would know that the case mix has been enriched with malignant 
findings rather than a routine screening case mix, the reader's approach would be modi-
fied [3]. A novel approach, investigated in the present study, to creating an enriched 
case mix may be obtained by presorting the cases with matching CAD marks of the 
same type (i.e. a mass or cluster) in both views. This method could be effective since 
cancers are usually visible in both views, while false marks tend to occur randomly and 
would usually not have corresponding marks in both views. Thus, when the cases are 
read following presorting, true CAD prompts in those cases with matching marks of 
the same type, are more likely to be accepted by the radiologist. 

This study investigates the feasibility of using CAD for prescreening in order to 
decrease the workload in screening mammography, by allowing all cases with no 
CAD prompts to bypass review by a radiologist. Furthermore, the study also investi-
gates the outcome of automatically presorting all cases with matching CAD marks, in 
order to determine by how much such an approach would enrich the case mix.  

2   Material and Methods 

2.1   CAD Methodology  

All the cases were run with a prototype CAD algorithm (Siemens), which is trained to 
detect suspicious masses and clustered micro-calcifications. In the first step of the 
detection process, the algorithm identifies all possible candidates for suspicious find-
ings. For each candidate, the algorithm calculates a score based on its characteristics, 
reflecting the likelihood of malignancy. Only candidates with a score above a certain 
threshold are displayed on the mammogram. The number of displayed CAD marks 
depends on this pre-selected operating point of the CAD algorithm. Modifying the 
operating point affects both the detection sensitivity and false mark rate. High detec-
tion sensitivity is associated with a larger number of false marks. The operating point 
should be set to optimize the balance between sensitivity and false mark rate.  

2.2   Case Analysis - Outcome of Prescreening  

16963 FFDM cases (280 cancers, 16683 normals), were culled retrospectively in a 
consecutive manner, from 6 facilities. The normal cases were either negative cases or 
cases with findings deemed benign by the radiologist, at screening. No follow-up was 
available to assure that these cases indeed represented "true-normal" cases. For the 
normal mammograms, the mean rate of CAD false marks per case was calculated. 
Then, the percentage of normal cases for which the CAD algorithm generated no 
prompts, was evaluated to assess what percentage of normal cases would bypass in-
terpretation in the prescreening reading mode.  

In order to analyze the sensitivity of the CAD algorithm, for the malignant cases the 
prompts generated by CAD were compared with the mammographic findings that were 
forwarded for biopsy. For this purpose, a non-blinded radiologist marked on the digital 
image the location of the biopsied finding (ground truth). Then, the percentage of malig-
nant cases with no CAD prompts was calculated to determine the rate of missed cancers 
which would result from using CAD for prescreening rather than as a "second reader".  
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2.3   Case Analysis - Outcome of Presorting 

In addition, the percentage of normal cases with matching CAD marks and of malig-
nant cases with matching CAD marks were calculated. Furthermore, the subgroup of 
malignant cases in which the cancer was detected by CAD was analyzed to determine 
the percentage of cases with matching CAD marks. First, the cases with matching 
marks that are indeed corresponding marks correctly identifying the cancer in both 
views were analyzed. Then, the malignant cases in which the cancers were correctly 
detected only in one view with a false matching mark of the same type in the other 
view were analyzed. In the remaining cases, the matching CAD prompts are both 
false marks, while the true mark does not have a matching mark. These data were 
used to determine the extent to which the presorting of cases with matching CAD 
marks will enrich the case mix.  

3   Results 

3.1   CAD Analysis Using the Prescreening Reading Mode  

Figure 1 shows that for almost 43% of the normal cases no false marks were gener-
ated. The percentage of cases with false marks generated by the CAD algorithm de-
creased, as the number of false marks per case increased. The average false mark rate 
per case was 1.15. 
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Fig. 1. Distribution of false CAD marks in normal cases 

The CAD algorithm detected the cancer in at least one view, in 236 of the malig-
nant cases, yielding a sensitivity of 83.4%. The algorithm did not detect the cancer in 
44 cases, but as shown in figure 2, in 26 of these cases false marks were generated by 
the CAD algorithm. On the other hand, in 18 malignant cases (42% of the cancers 
missed by CAD) the cancer was missed with no CAD prompts whatsoever. Only 
these 18 malignant cases would bypass review by the radiologist using the prescreen-
ing reading mode. 
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Fig. 2. A detailed scheme of the detection results 

As shown in figure 3, the percentage of normal cases with no CAD prompts was 
42.9%, while the percentage of malignant cases with no CAD prompts was only 
6.4%.  
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Fig. 3. Percentage of cases without CAD marks by pathology results 

Overall, in 7167 of the cases (42.3%) no prompts were generated by the CAD algo-
rithm. Hence, if CAD had been used for prescreening, i.e. all the cases without CAD 
prompts would have been bypassed reviewed by the radiologist, the workload would be 
reduced by 42.3%. Thus, with prescreening 42.9% of the normal cases will bypass re-
view by the radiologist, but 57.1% of the cases will still have to be interpreted. The 
effect of prescreening on the malignant cases would be to present the 236 cases with the 
true CAD marks and the 26 missed cases with false CAD marks to the radiologist for 
interpretation. But, unfortunately, 6.4% of the malignant cases (18 missed cases without 
false marks) would bypass review by a radiologist, reducing the cancer detection rate. 

3.2   CAD Analysis Using the Presorting Reading Mode 

Figure 4 shows the percentage of normal cases and of malignant cases with matching 
CAD marks.  
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Fig. 4. The percentage of cases with matching CAD marks for normal cases and for malignant 
cases 

This figure shows that of the normal cases, only 14.2 % (2369 cases) had, coinci-
dentally, matching CAD marks of the same type in both views. On the other hand, 
73.2% (205) of malignant cases had matching CAD marks of the same type in both 
views. However, this subgroup included some cases with a true CAD mark in one 
view, while the matching CAD mark of the same type on the other view was a false 
mark. As shown in figure 5, further analysis showed that 193 of the 236 cases in 
which the cancer was detected by CAD (81.8%) had matching CAD marks in both 
views. In 181 cases (76.7%) of the 236 cases with cancers detected by CAD, corre-
sponding prompts were, indeed, marked by CAD, identifying the cancer correctly in 
both views. 
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Fig. 5. The percentage of cases with matching CAD marks for malignant cases, in which can-
cers were detected by CAD 

Thus, if presorting would be selected as the reading mode, the radiologist would 
prioritize the interpretation of all cases with matching marks, i.e. 2369 of the 16683 
normal cases, and 205 of the 280 malignant cases. Thus, the case mix in the priori-
tized subgroup would be enriched 5 times, from 1.6% (280 of 16963) without presort-
ing to 8% (205 of 2574) with presorting. 
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4   Discussion 

Since its inception, CAD in screening mammography has been envisioned as a "sec-
ond reader", to be used following conventional interpretation, as a means of avoiding 
oversights. The necessity to evaluate each CAD prompt imposes an additional work-
load on the radiologist and increases the reading time, since in a screening environ-
ment almost all cases are normal. Although the false mark rate of the CAD algorithm 
is very low, in a screening environment the vast majority of CAD marks presented to 
the radiologist are false prompts. Therefore, perhaps another approach to the use of 
the information generated by CAD would be more beneficial. In this study the use of 
CAD for prescreening was explored. In this scenario, all cases with no CAD marks 
could bypass review by a radiologist, thus offering a great savings in man-hours, 
which could be translated into a cost savings for screening programs. 

Even though this study shows that prescreening by CAD would decrease the work-
load by about 42%, the results of this study indicate that it is not feasible to exclude 
the reading of cases with no CAD prompts, since 6.4% of the cancers would be 
missed. However, the operating point of the CAD algorithm analyzed in the study was 
optimized for the use of CAD as a "second reader". Hence, additional operating 
points, resulting in a different balance between sensitivity and false mark rate, should 
be investigated to allow prescreening. Prescreening would require an operating point 
with higher detection sensitivity, in order to minimize the missed cancer rate, but this 
operating point will result in a concomitant higher false mark rate and, therefore, in a 
lower decrease in workload.  

The use of CAD for presorting in order to enrich the case mix, was also explored in 
this study. This method of prioritizing the cases with matching marks, could be effec-
tive since cancers are usually visible in both views while false marks tend to occur 
randomly and would usually not have corresponding marks in both views. Based on 
the results of this study, presorting by matching CAD marks in both views will raise 
the level of concern of the radiologist regarding 73.2% of the cancers but will priori-
tize only about 14.2% of the normal cases. Thus, when the cases with matching CAD 
marks are automatically presorted by the algorithm, the radiologist reads a case mix 
enriched by 5 times, which may enhance the willingness to accept true CAD prompts 
in a screening environment.  The remaining cases without matching CAD marks 
would have a much lower incidence of cancer, and furthermore, would include more 
subtle cancers. A more expert reader could be assigned to interpret these cases, which 
would be more challenging, with a very low incidence of cancers including many 
subtle findings.  

These results indicate that another approach to the use of CAD could be used to 
better advantage. Instead of using CAD as a "second reader", CAD could be run in the 
background just in order to presort cases, and case interpretation will be performed 
without viewing the CAD prompts, but with a raised level of concern for the priori-
tized cases, knowing that the case mix is enriched. Likewise, CAD could also be used 
for prescreening without presenting the prompts to the radiologist, but for this purpose 
the algorithm must be improved to reduce the missed cancer rate. In both scenarios 
the CAD prompts could be presented to the reader on demand. Alternatively, follow-
ing prescreening, the remaining cases with CAD marks could be displayed with CAD 
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prompts, but using the operating point appropriate for the use as a “second reader”, 
rather than the operating point used for prescreening.   

The success of CAD as a “second reader” ultimately depends upon the acceptance 
of true CAD prompts by the radiologist for overlooked cancers. While for medico-
legal reasons, most radiologists fear missing a cancer in mammography, most readers 
find it difficult to identify subtle cancers which do not demonstrate characteristic 
features of malignancy. These are the very cancers that are likely to be overlooked, 
and that are most likely to be rejected when presented as CAD prompts. Indeed, in a 
recent study [4], it was found that performance for radiologists without fellowship 
training in mammography, improved most during their first 3 years of clinical prac-
tice, due to a decrease in false-positive reading but with no associated increase in 
sensitivity. In a related study [5], it was further stated that fellowship-trained radiolo-
gists had significantly higher recall and false-positive rates, but this finding was asso-
ciated with improved sensitivity. It is possible that fellowship-trained radiologists 
would be more amenable to the use of CAD as a “second reader”. Alternatively, when 
CAD is used in a prescreening or presorting mode, the cases could be assigned to 
fellowship trained or non-fellowship trained radiologists for interpretation based on 
the CAD results, even without ever showing the CAD marks to the readers. 
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Abstract. Both interactive thresholding tools and human visual assessment 
have been related to the risk of developing breast cancer. In this paper we ex-
plore the relationship between human assessment of area of dense tissue and the 
actual thickness of tissue in the breast by using a volumetric density technique 
to compute areas of dense tissue, varying the threshold below which areas of 
low density are discounted and observing the correlation with visual assessment 
of density at different thresholds. Based on analysis of thresholds used in the 
automated method, radiologists’ definition of a dense pixel is one in which the 
percentage of glandular tissue is between 10% and 20% of the total thickness of 
the compressed breast at that point.  

Keywords: risk assessment, human perception, computer analysis, breast density.  

1   Introduction 

The quantity and pattern of dense glandular tissue in the breast has for many years 
been linked with the risk of developing cancer. Wolfe developed a set of classes into 
which mammograms could be assigned depending on the appearance of the breast 
tissue, but despite demonstrating a clear relationship with risk, assignment was sub-
jective [1]. Boyd introduced a more quantitative measure which was more readily 
understandable, using the percentage of dense tissue as an indication of risk [2]. Sub-
sequent attempts at automation have either used texture measures to try to replicate 
Wolfe’s classes [3], or focused on the quantification of breast tissue to improve the 
objectivity of Boyd’s method [4,5]. A widely used method is Cumulus, an interactive 
thresholding programme for use with digitised images which requires an operator to 
                                                           
* Corresponding author. 
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define thresholds to separate the breast from the background, and dense from fatty 
tissue [6]. This still has a considerable element of subjectivity and raises the question 
as to what radiologists consider to be dense tissue when assessing mammograms. In 
order to gain an insight into this, we have taken a calibration-based volumetric tech-
nique which provides the thickness of gland and fat at each pixel in the mammogram 
and used it to compute the area of gland in the mammogram [7]. By applying a 
threshold on the thickness of gland that is used to compute the area it is possible to 
simulate the way in which radiologists decide where to place their internal threshold 
when assessing density.  

2   Materials and Methods 

A set of 672 screening mammograms was randomly selected from mammograms 
obtained during routine film-based mammographic screening of women over the age 
of 50 in Bolton and Bury. All participants had consented to breast density measure-
ment. Breast density was assessed by two consultant radiologists who marked the 
proportion of dense tissue on a 10cm Visual Analogue Scale. Both readers are highly 
experienced in mammographic interpretation, although radiologist 2 had greater ex-
perience than radiologist 1 in using Visual Analogue Scales for density estimation. 

A subset of 168 mammograms was digitized, and breast density was measured us-
ing a calibration-based semi-automated technique [7]. This involves calibrating an 
aluminium step-wedge by imaging it alongside known thicknesses of tissue equiva-
lent material. The calibrated step-wedge is then imaged next to the breast in each 
mammogram. Radio-opaque markers are placed on the compression plate. The mag-
nification of these markers in the mammogram enables accurate measurement of 
compressed breast thickness and tilt of the compression plate.  The grey-level of 
 

           

Fig. 1. Left: An original mammogram showing the calibration object and the images of the 
circular markers on the compression plate used to compute compressed breast thickness. Right: 
An unthresholded glandular tissue map of the mammogram.  
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every pixel in the mammogram is then matched to the equivalent grey-level value in 
the image of the step-wedge. The corresponding thickness of the step-wedge at this 
point, combined with the breast thickness measurement, allows composition to be 
uniquely determined at each pixel.  

The automated method thus provides an estimate of the thickness of glandular and 
fatty tissue at every pixel in the image, from which the volumes of fatty and glandular 
tissue in the breast can be computed. However, for this study we used the technique to 
produce maps of fatty and glandular tissue in the breast from which we could com-
pute the area of dense tissue in the breast as a percentage to mirror the visual assess-
ment process. Figure 1 shows an example of a glandular tissue map alongside the 
original mammogram from which it was derived. The calibration object is seen as a 
vertical step-wedge at the right hand side of the mammogram, and the circular com-
pression plate markers are visible along the top and bottom edges of the mammogram. 

 

Fig. 2. Thresholded glandular tissue maps for the image shown in figure 1. Dense glandular 
regions are shown as white. The top row shows the glandular tissue map thresholded at 0%, 5% 
and 10%, whilst the bottom row shows thresholds of 15%, 20% and 25%. 
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We produced six such maps for each digitized mammogram, using a threshold on 
the percentage thickness of glandular tissue at 0, 5, 10, 15, 20 and 25% so for exam-
ple at the 20% threshold a pixel which had 18% glandular tissue would be considered 
as being fatty background for the purposes of computing the % dense tissue in the 
breast by area, whilst at the 15% threshold, the same pixel would have been classed as 
dense tissue. At the 0% threshold, any pixel which contained even the smallest 
amount of gland was classed as dense. Figure 2 shows examples of the thresholded 
density images for the mammogram in Figure 1.  At a threshold of 0%, virtually the 
whole breast appears to be dense. As the threshold increases, the area of dense tissue 
decreases. 

The percentage area of dense tissue was computed for each threshold from the 
number of pixels above the threshold and the number of pixels within the breast bor-
der. These areas were compared with the visual assessment of percentage area of 
dense tissue. 

3   Results 

There was a significant difference in density estimation by the two radiologists using 
the visual analogue scale, with radiologist 1 (R1) giving lower readings for all  
mammographic projections with an average mean of differences of 15.9% (p<0.05). 
Figure 3 shows a scatter plot of the two radiologists’ assessments. They were more 
likely to agree when estimating densities of very dense or fatty breasts, with the least 
agreement in fatty-glandular breasts, which fall in the middle of the density range.  

 

Fig. 3. Densities estimated by two consultant radiologists, R1 and R2  
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When compared with the automated measure of area using thresholds of 0% and 
5%, both radiologists produced values that were significantly lower than the dense area 
output by the automated method. At thresholds of 10% and 15%, the agreement im-
proved, however, as the threshold increased further, the radiologists’ readings were 
found to be generally higher than those generated by the software. This reached statis-
tical significance at a threshold of 25%. The radiologists’ readings of low and high 
density breasts were found to be closer to the software values than their assessments of 
breasts of intermediate density. This can be seen in Figure 4, which shows an agree-
ment plot [8] of one radiologist’s assessments with the automated measurement at the 
10% threshold. A similar pattern was observed for both observers at all thresholds. 

 

Fig. 4. Agreement plot showing the difference between R1’s assessment of percentage dense 
area and the automated measure plotted against mean density for the RMLO view using a 
threshold of 10% 

4   Discussion 

Based on analysis of thresholds used with a volumetric method for computing gland 
and fat in the breast, the radiologists’ definition of a dense pixel is one in which the 
percentage of glandular tissue is between 10 and 20% of the total thickness of the 
compressed breast at that point.   

This could indicate that when radiologists make a judgement about what part of the 
breast constitutes ‘dense tissue’ they ignore pixels in which there is actually a sub-
stantial glandular component. However, when the dense tissue maps at different 
thresholds are examined (Figure 2), we can see that there is actually a significant edge 
effect near the breast border, particularly noticeable at the lower thresholds (5-10%). 
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At the border, the estimate of breast thickness is less reliable: in the part of the breast 
where the compression plate is in contact with the skin we have an accurate measure 
of thickness of tissue from the markers on the compression plate, but where the breast 
loses contact with the compression plate we must rely on a model to estimate thick-
ness. The model used in the quantitative method used in this study was that the breast 
adopts a semicircular profile at the boundary. Clearly, as the estimated breast thick-
ness tails off towards the edge of the breast, the impact of any inaccuracy will have a 
large effect on the thickness maps thresholded according to percentage of density. 

One approach to overcoming this would be to exclude the edge of the breast when 
computing glandular thickness. We are currently exploring methods by which this 
could be achieved without impinging on genuine glandular tissue; it would not be 
appropriate to exclude a uniform band around the edge of the breast, as the glandular 
tissue in the breast is not uniformly distant from the breast border, being closer at the 
nipple. Furthermore, the example shown here is a cranio-caudal view in which the 
area of loss of contact with the compression plate is relatively uniformly distributed 
around the breast border. In medio-lateral oblique views, this is no longer the case 
because of the pectoral muscle. Automated methods [9,10] could be used to identify 
the nipple, and thus facilitate definition of a tapered region to be excluded. The com-
ponent of non-fatty tissue due to the skin should also be taken into account. A prag-
matic approach to correcting images for edge effects would be to use a low threshold 
on the glandular map as a basis for excluding regions from further analysis. 

Another approach would be to produce maps based on actual thickness of gland 
rather than percentage thickness, with thresholds on thickness of gland in mm. This is 
more intuitive when compression paddle tilt is taken into account, for example, since in 
this case a constant thickness of gland would correspond to different percentages across 
the same breast. However, it is less clearly related to radiologists’ perception of density. 

It is difficult to establish a gold standard against which methods of density measure-
ment can be assessed. Visual assessment varies from observer to observer, and accord-
ing to the method used to record it [11]. In this study we used Visual Analogue Scales, 
as our readers are familiar with this approach and it has been related to risk of develop-
ing cancer in our screening centre [12]. Although semi-automated methods have been 
described as gold-standard approaches, they still rely on subjective judgement [13]. It is 
possible to measure density using other imaging modalities, but there is no guarantee 
that the volume of the breast imaged and assessed is the same across modalities. Current 
breast phantoms allow calibration to a limited extent, but do not provide a useful way of 
assessing whether methods are dealing with the breast edge in an appropriate fashion. 

Area-based methods of visual assessment that express density as a percentage of 
the whole breast are the standard method of identifying women at risk on the basis of 
increased breast density. Such methods may not always provide an accurate assess-
ment as they are unduly affected by weight change [14]. For example, when women 
gain weight, their breasts rapidly gain volume, due to an increase in fat. There is no 
corresponding rapid gain in dense glandular tissue, so weight gain would be associ-
ated with a decrease in the percentage of dense glandular tissue, and hence a decrease 
in risk, whereas actually post-menopausal weight gain is associated with an increased 
risk of cancer. 

In addition, visual assessment of density requires the radiologist to make a decision 
about what level of brightness actually corresponds to dense tissue. This is problematic 
when women are imaged with different parameters as may be the case across popula-



174 C. Jeffries-Chung et al. 

tions, or for a given woman, over time. It may also be the case that the perceived bright-
ness depends on specific overlaps of tissue in the breast volume. which could arise or 
disappear depending on how the breast is positioned for imaging. We believe that this 
supports the use of quantitative, volumetric methods in which such subjectivity is re-
moved, although it is important to understand how visual assessment relates to volumet-
ric density, given the significant body of knowledge relating visual assessment to risk. 

Acknowledgments. The authors are grateful for the support of the John Lewis Part-
nership and the Genesis breast cancer prevention charity for funding this research. 
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Abstract. We have developed a segmentation approach, which is based on
modelling local texture information and incorporates both greylevel and spatial
aspects. Variation in local greylevel configuration/appearance is represented in
histogram format for which the distribution varies with texture appearance. Seg-
mentation results based on full mammographic images are presented. In addition,
the potential use of the segmentation results for mammographic risk assessment
and abnormality detection is discussed.

1 Introduction

Over the past years (texture) segmentation approaches have been developed, which have
been linked to the detection of abnormalities [1,2] and the automatic estimation of mam-
mographic risk [3,4,5,6,7,8,9]. With respect to the detection of abnormalities, such seg-
mentation approaches have been linked to asymmetry estimation in the comparison of
left and right breast images. In addition, local texture aspects can be used to detect
subtle abnormalities, such as spiculated lesions [10]. Automatic estimation of mam-
mographic risk approaches are directly linked to the work of Wolfe [11], Byng [12]
and Tabar [13], who have used mammographic image information and correlated the
appearance of mammographic tissue with mammographic risk assessment.

We present a texture based segmentation approach, which is based on histograms of
local greylevel appearance. Each variation in local greylevel configuration/appearance
is represented by an unique number. The distribution of local greylevel appearances
forms the basis for texture models which are used for segmentation purposes. Various
approaches to the modelling and the use of local greylevel appearance histograms are
presented and discussed.

The layout of the paper is as follows. In Sec. 2 the local greylevel appearance (LGA)
histogram based approach is presented, which covers both the modelling of the data and
the use of such models in automatic segmentation of mammographic images. In addition,
potential application areas, such as the detection of abnormalities and automated mam-
mographic risk assessment, are discussed. The paper concludes with a discussion and
conclusions. As might be expected with a texture based segmentation approach, there
are similarities with existing approaches which are covered in the discussion section.

J. Martı́ et al. (Eds.): IWDM 2010, LNCS 6136, pp. 175–182, 2010.
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2 Local Greylevel Appearance (LGA) Histograms

The aspects discussed in the section cover how models can be generated and how these
models can be used in segmentation (and classification) applications. Parameters within
the models are introduced.

2.1 Building Models

The building of models based on LGA histograms incorporates the following steps (the
parameter values that will be used in Sec. 3 will be indicated):

1. Set the size of the local window, which indicates the number of dimensions to
represent the local greylevel appearance (a 3 × 3 local window is used in Sec. 3).

2. Set the greylevel resolution, which determines the number of greylevel bins to be
used in the subsequent processing steps. This can be used to reduce the greylevel
range (8 bins were used in Sec. 3).

3. Create storage allocation for a number of elements equal to the number of pixel
samples from the image(s).

4. Extract at each pixel sample in the image(s) a local window and at the same time
reduce the greylevel resolution with the values set under 2).

5. At each pixel transform the local window greylevel information into a unique num-
ber by using ∑

i,j

#binscounter(i,j)I(i, j), (1)

where counter(i, j) starts at a value of zero and increments at each location in
the local window, and I(i, j) is the (reduced resolution) greylevel value at position
(i, j) in the local window. Each number is unique in that it represents a specific
greylevel configuration/appearance within the local window.

6. Store the unique numbers obtained under 5) as indicated under 3).
7. Sort all the stored values using an appropriate technique.
8. Transform the stored values into a LGA histogram that only contains the combina-

tion of unique numbers and their occurrence. At this stage it is possible to remove
”noise” with low occurrence from the LGA histograms. The LGA histograms can
be normalised with a L1 metric.

This completes the formation of a LGA histogram model. It is possible to generate
a single LGA histogram model from a single image, or a number of LGA histograms
models representing various image regions (textures), or a single LGA histogram model
from a series of images (all representing similar texture appearances). L1 normalisation
tends to appear after all relevant histograms have been combined.

2.2 Using Models

Using the models is similar in approach as building the models, but only based on the
information from a local region and not a full image. This involves the following steps
(again the parameter values that will be used in Sec. 3 will be indicated):
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1. Set the size of the local region (24 × 24 regions were used in Sec. 3), which will
contain a number of local windows (the window is expected to be smaller that the
region).

2. For each pixel in the image to be segmented use a local region and extract all the
local windows within the local region and use these to form a local LGA histogram
of unique numbers and their occurrences. The local LGA histogram are L1 nor-
malised.

3. Determine the distance between the local LGA histogram and the LGA histogram
model(s) using an appropriate distance metric. (e.g. Euclidean, transportation or
hybrid transportation [4]). This can use some clever coding to avoid going through
all entries in the LGA histogram model and/or local LGA histogram.

This process is repeated for all pixels in the image and the results form either a ”proba-
bility” or a classification image.

3 Results

The initial results presented in this section are based on the Mammographic Images
Analysis Society (MIAS) database [14]. Each mammogram in the MIAS database was
labeled according to the four Birads density classes.

3.1 One Model per Birads Density Class

The first results are based on one LGA histogram model for each of the four Birads den-
sity classes. These models were obtained by combining the individual LGA histograms
from the relevant MIAS images. To achieve this, a non-normalised LGA histogram was
generated for each mammogram in the database. Subsequently, histograms belonging
to the same Birads density class were combined and the resulting LGA histograms were
L1 normalised.

The four Birads LGA histogram models have been used to classify pixels within full
mammograms as belonging to one of the four classes. Typical segmentation results,
covering the full Birads density range, can be found in Fig. 1. These examples indicate
that the various appearances associated with the four Birads classes are represented in
the segmented images and result in realistic segmentation results. Birads I associated re-
gions are represented as major areas in the left two mammograms (Birads I and II), but
can also be found as smaller regions in the Birads III and IV cases. Similar aspects can
be concluded for the regions associated with the Birads IV class, which is represented
mainly in the right two images (Birads III and IV). This almost binary segmentation
needs further investigation, although it should be noted that there are significant seg-
mented regions associated with Birads classes II and III.

3.2 Four Models per Birads Density Class

Secondly, we have also generated results based on four LGA histogram models for each
of the four Birads density classes. These models were obtained by obtaining four cluster
centres from the individual LGA histograms from the relevant MIAS images (k-means
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Fig. 1. Example mammograms (top row) and associated segmentation results (bottom row) based
on one LGA histogram model per Birads density class. From left to right the mammograms range
from Birads I to Birads IV.

was used as a clustering technique). To achieve this, a non-normalised LGA histogram
was generated for each mammogram in the database. Subsequently, histograms belong-
ing to the same Birads density class were used clustering and the resulting four LGA
histograms were L1 normalised.

The sixteen Birads LGA histogram models have been used to classify pixels within full
mammograms as belonging to one of the four classes, and within each class there are four
sub-classes. Typical segmentation results, covering the full Birads density range, can be
found in Fig. 2. These results indicate overall similar results when compared with Fig. 1
and in general the four regions are sub-divided into the four sub-classes for each Birads
density class. However, there is some mixing between classes, but overall the results
appear realistic. One aspect that should be noticed is that breast boundary region tends
to be associated with the high risk Birads class and this should be further investigated.

3.3 Potential Application Areas

Two potential application areas are discussed where the described segmentation results
could be used. This covers automatic mammographic risk assessment and the detection
of potential abnormal regions in mammographic images.
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Fig. 2. Segmentation results based on fours LGA histogram model per Birads density class. From
left to right the mammograms range from Birads I to Birads IV (see Fig. 1 for the original mam-
mograms).
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Fig. 3. First two principal components of the 4D feature space. The different markers represent the
ground truth for the four Birads density classes represented by sixteen LGA histogram models.

To indicate the potential of the developed segmentation approach for mammographic
risk estimation we have preformed a simple experiment. Each mammogram is repre-
sented by the relative number of pixels within each of the four Birads classes repre-
sented by sixteen LGA histogram models (i.e. the relative areas of the sixteen classes
in the segmented images), which results in a sixteen dimensional feature space. The
distribution of a set of 322 cases from the MIAS database can be found in Fig. 3, which
displays the first two principal components. It should be clear that low/high risk shows



180 R. Zwiggelaar

Fig. 4. Example mammograms (middle) and associated segmentation results (outside) based on
one LGA histogram model per Birads density class

good discrimination, but at the same time it seems that a more detailed classification
might be problematic. The correct classification was 64% (using a simple k-nearest-
neighbour classifier) with respect to four Birads density classes, while low/high risk
estimation was correct for 98% of the cases. The former is not at the same level as some
of the published results (see references in Sec. 1), but could be used as the basis to do
subsequent processing.

For the detection of potential abnormalities in mammographic images, a direct
comparison between left and right segmentation results could indicate areas of dis-
similarity. A typical example of this can be found in Fig. 4, which shows the results
of segmentation of two mammograms where the abnormality is clearly indicated as a
difference between the two results. A full evaluation is outside the scope for this paper,
but the potential of this should be clear from the shown example.

4 Discussion

Clearly, one of the parameters within the developed approach is the local window size.
In general, it would be reasonable to expect that a larger window size would contain
additional texture information as long as it does not exceed the structural size of the
texture under analysis. However, it should also be clear that an increase in the window
size is directly linked to an increase in the feature space dimensionality. Without an
increase in the number of samples this would mean a sparser populated feature space,
which tends to result in a degradation of segmentation/classification results. With only a
limited number of samples this might mean that a small local window size provides the
most robust results, which is in line with the work of Varma who used a 3 × 3 window
to generate a feature space [15].

The second parameter, which determines the greylevel resolution, can be seen to have
at least two effects: a) reducing the greylevel resolution initially results in the removal
of noise and subsequently in the loss of information, and b) reducing the greylevel
resolution is directly related to the feature space dimensionality and has such has similar
effects as the local window size (see above).
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4.1 Related Approaches

Up to a certain point, the underlying information within the local window is the same
as that being used in the texton based approaches [5]. However, within the texton based
approaches the texture models are formed by cluster centre related histograms, while
here we model the full feature space.

There are also similarities with local binary pattern (LBP) based texture analy-
sis [16,17]. However, the main differences is that with the developed there is no re-
duction to binary patterns, but the full greylevel range can be used. This means that the
resulting histograms might contain more information, but at the same time would be
sparser populated. Closely related to the original LBP work is that of Zhang et al. [18]
who use local histograms of LBP results (and call these spatial histograms).

The term spatial histogram is also used by Birchfield et al. [19], but in their case this
is used for triple-histograms that contain the number of pixels at a specific greylevel,
but also the mean and covariance of the position of all the pixels at that same greylevel.

5 Conclusions

We have investigated a novel texture segmentation methodology based on a concept
of LGA histograms. Initial results show realistic segmentation of full mammographic
images and the potential of the developed approach for mammographic risk estimation
and the detection of potential mammographic abnormalities has been indicated.
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Abstract. In this paper, it’s presented an automatic quantification com-
puter algorithm of breast arterial calcifications in digital mammograms,
using image processing techniques, to be used as a quantitative cardiovas-
cular risk or diabetes indicator for women. The proposed image process-
ing algorithm is composed of two main steps: a detection phase, using a
combination of the line operator method with edge detection, and a seg-
mentation phase which use a thresholding technique to obtain seeds for a
region growing algorithm. Obtained results shows a good agreement with
ground truth images of calcified vessels which have been hand–segmented
by an experienced radiologist with a high degree of detail and quality .

1 Background

Breast arterial calcifications (BAC) is a consequence of calcium deposition along
the inner breast vessel lumen and are a common finding in screening mammo-
grams, with a significant prevalence (7-25%) that increases with age [1]. The
relationship between BAC and age is agreed by all researchers in our knowledge.
Usually, those findings are often unreported because they are not related with
breast cancer.

Some studies have reported the association of BAC seen in mammography
with diabetes [2,5,6,7], hypertension [1], coronary artery disease [3,4,5,6,8,9],
retinopathy [10], and osteoporosis [11] and they have found a statistical signifi-
cant association, so screening mammography can be used to identify women with
higher risk of these diseases, or as another useful disease risk indicator. Other
studies suggest that presence of BAC are not a useful indicator of diabetes [12]
or cardiovascular risk [13,14,15]. The relationship between BAC and pregnancy
and lactation has been also reported by Maas et al [13], hypothesizing that hor-
monal changes during pregnancy are important in the deposition of calcium in
breast arteries.

In most of the papers, the indicator is the presence or absence of arterial cal-
cification, and, in some cases, the location and severity scored by radiologists are
also included. In a recent study, the number of BAC and the longest continuous
segment is used as a quantitative measure of severity of arterial calcifications.
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The use of digital image processing techniques can be useful to obtain better
quantitative measures of calcium deposition, but to our knowledge, only one
study has been reported [16]. Better quantitative measures of calcium deposi-
tion can be very useful to improve the discussion about the relationship between
BAC and those diseases. Additionally, digital image processing techniques can
be used to analyze digital mammograms without any time loss for radiologists,
because they can be performed automatically by computers.

The aim of this paper is to present a novel automatic computer algorithm
which allows the quantification of calcium deposition on vessels and can be used
to estimate the quantity and severity of breast arterial calcifications. This al-
gorithm performs a detection and segmentation of BAC on the mammogram
so it can be obtained a collection of BAC indicators, as the number of pixels
with high probability of calcification, the number and length of calcified ves-
sels, etc. Obtained results of segmented images are compared with annotated
mammograms.

2 Method

We have used three sets of digital mammograms to evaluate the detection and
quantification of breast vascular calcifications

1. Standard database: 20 pairs (both projections) of digitized mammographic
images with BAC has been selected from University of South Florida Digital
Database for Screening Mammography (DDSM)[17]. This database has been
selected because it’s publicly available and it can be used as a reference to
compare different algorithms from different researchers. These images are
normalized using the calibration curve of the digitized scanner to reduce
distortion, following a detection and removal of artifact objects in the back-
ground of the film (e.g. labels).

2. From this set, a small (five) group of mammograms which exhibits BAC has
been hand–segmented by an expert radiologist with a very high degree of
accuracy to be used as ground truth images. This small set is used as an aid
in the development of the quantification algorithm.

3. Full digital database: 20 pairs (both projections) of full–field digital mam-
mograms (FFDM) with BAC has been selected from Laboratory of Digital
Radiology at University of Malaga database. This database is chosen as a
target because the increasing use of digital mammography systems will ob-
solete film mammography in the near future.

Before the detection of vascular calcification, the breast contour is detected and
the algorithm only needs to perform computations on pixels located inside the
breast region.

2.1 Detection of Calcified Vessels

To extract vascular calcifications, we used a similar approach to Zwiggelaar line
operator method [18,19]. For each pixel inside the breast, a line-strength S is
computed as
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S = α(L − N) + (1 − α)(I − G) (1)

where L is the average grey level of the pixels that lay on a line passing through
the target pixel in the orientation that produces the maximum value, N is the
average grey level of the pixels inside a square neighborhood with the same
orientation, I is the original pixel value, G is the grey level pixel value obtained
with gaussian filtering with a σ value which matches the size of the square
neighborhood used to compute N and α ∈ [0, 1] is a parameter. The line-strength
S is a weighted average of the line operator method, which is able to obtain
higher values for linear structures, and a classical edge detection algorithm, which
obtains higher values at vessel edges. The combined detection of line structures
and edges is used to improve detection of curve-shape calcified vessels.

2.2 Segmentation of Calcified Vessels

In the previously mentioned papers [18,19], the goal is to obtain a skeletonized
description of the linear structures. For our purposes, the goal is the detection
of pixels with higher probability of calcification, so thinner or connected struc-
tures are not required. Therefore, segmentation is performed with a two step
algorithm.

1. A simple thresholding technique is used on the line-strength S image to
obtain an image with the pixels of the vessels with higher probability of
calcification.

2. A region-growing algorithm, using the result of the thresholded image as
seeds, to include pixels with high intensity gray level pixel value compared
with the neighborhood, connected with seed pixels but with not enough line-
strength pixel value to be detected in the first step of the algorithm. Usually,
added pixels are located inside the calcified vessels.

3 Results

Figure 1 shows a typical result obtained with the proposed algorithm before the
region growing phase. In this case, the threshold value has been selected to obtain
a very low of false positive BAC, but it can be shown that most of the BAC are
detected. The main difference is that BAC in the ground truth image have bigger
area that in the detected ones, because the line strength measure exhibits greater
values in the boundaries of individual BAC. By the addition of the second term
of the equation 1 to the line operator, we obtain a way to balance this behavior
using the α parameter. If α has high values (close to 1) linear structure detection
increases, it’s obtained high values of S at pixels located inside vessels, but if α
value is low (close to 0) then calcified contours detection is favored, with higher
values of S located at the vessel boundary pixels.
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Fig. 1. Segmented BAC with the proposed algorithm. a) Original image (Case 4101,
left mammogram, lateral–oblique projection, from USF-DDSM database). b) Ground
truth image, segmented by an expert radiographer. c) Obtained result (α = 0.1).

Boundary pixels have a higher probability of calcification because the projec-
tion of the deposition of calcium in the intima of the vessels produces images
with linear or curved parallel lines similar to a railroad, so in our approach we
used small α values (0.05 − 0.20) to produce this pattern in detection. On the
contrary, if we are interested in the deposition of calcium in the media, a higher
value of α must be selected.

Figure 2 shows the S line strength pixel values in magnified portions of a
mammograms which contains arterial calcifications using a value α = 0.1 before
the thresholding technique. In this case, it can be shown that the operator gives
an strong response on the boundaries of the calcified vessels.

In Figure 3, it is shown magnified portions of a BAC where the proposed
algorithm illustrates a typical behavior with high positive and negative predictive
values (PPV 0.98 and NPV 0.96, respectively in the whole database) and high
specificity (0.999) when it’s considered a false positive (FP) a pixel that has
been detected with the algorithm but the pixel is not included in the ground
truth annotated image and it’s considered a FN (false negative) when the pixel
is plotted in the annotated image but it’s not detected by the algorithm. If we
consider BAC instead individual pixels, also sensibility is very high (close to 1).

Even if a optimized segmentation algorithm can show a better adjustment
with the ground truth images, authors believe that obtained results are bet-
ter to be used as a quantitative measure of calcium deposition in vessels if they
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Fig. 2. Typical examples (case 4131 and 3481) of line strength operator (α = 0.1). a)
Original image. b) Line strength result.

Fig. 3. Typical examples (case 4131 and 3481) of segmentation results for a magnified
BAC. a) Ground truth image, segmented by an expert radiographer. b) Obtained result
after thresholding. c) Final result after region growing.
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don’t include the interior part of the calcified vessels, in an attempt to quantify
only the calcium deposited in the intima, with a possible exception with highly
calcified cases, which exhibits higher grey level pixel values. This argument is
also supported by Penugonda et al [15], arguing that a lack of a clear association
between BAC seen in mammography and coronary disease may reflect differences
in the mechanism of calcium deposition in breast arteries (uniformly located in
the media) and coronary arteries (localized to the intima).

The results obtained with the computer algorithm are compared with the
small set of hand–segmented BAC images to determine the accuracy of the
proposed method. At this point, receiver–operator parameters and ROC curve
graphics can be plotted. Finally, using the breast contour and the obtained
results, a quantitative measure of calcium deposition in vessels can be obtained
as the relation of pixels who exhibits BAC to the total number of pixels inside
the breast in the mammogram.

4 Discussion

A automatic computer quantification method to assess cardiovascular risk using
screening mammograms has been developed. This method has been tested with
digitized images from the USF–DDSM database and compared with ground
truth images, segmented with very high degree of detail by an experimented
radiologist, and tested with full field digital mammographies. Obtained results
shows that BAC are detected and segmented with enough degree of precision to
obtain a quantitative measure of calcium deposition.

Cardiovascular diseases as heart stroke or coronary artery disease are one of
the leading causes of mortality for women above the age of 45, the same popula-
tion who is the target of mammographic screening programmes. Screening mam-
mography is widely used and it’s considered an excellent and standard method
to detect early breast cancer in women with an age range which matches higher
coronary disease and diabetes risk. Early diagnosis and therapeutic intervention
can significantly reduce the mortality from cardiovascular episodes in women, so
if a relationship between with BAC shown in screening mammography can be
established, it will very useful.

A hot controversial can be found in the scientific literature about the usefulness
of BAC to predict cardiovascular risk. Most of the papers rely their conclusions on
the use of very basic indicators of BAC, mostly presence/absence of BAC. The use
and research on new quantitative parameters of BAC, as the proposed measure of
calcium deposition, can be very useful to elucidate this question.

An automatic detection of BAC and the quantification of calcium deposition
can be performed on the computer easily with FFDM images without an increase
of the radiologist reading time and can offer an indicator of cardiovascular risk
and other diseases risk or can be valuable to improve the discussion about the
usefulness of BAC using quantitative improved indicators. Computer aided diag-
nosis is now widely accepted and used and the proposed quantification measure
can be easily implemented and included in the software.
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A prospective study is underway at our laboratory to assess the utility of
the proposed quantification indicator on screening mammography in clinical
practice.
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Abstract. During the acquisition of a mammogram the breast is com-
pressed between the compression paddle and the support table. When
compression is applied the upper plate is tilted which results in variation
in breast thickness from the chest wall to the breast margin. Variation in
breast thickness influences the grey level values of the image and ham-
pers image analysis, such as volumetric breast density estimation. In this
paper we present and compare two methods that estimate and correct
image tilt. The first method estimates tilt from fatty tissue regions. The
second method is based on the entropy of the grey level distribution of
the image. 1876 images are obtained from relatively young women with
a high breast density on average. The tilt correction methods are eval-
uated by assessing their accuracies in estimating artificial tilts that are
added to the images that are expected to have only a small tilt. On av-
erage both methods are able to estimate the artificial tilt, although the
accuracy is relatively low. To the best of our knowledge this is the first
paper that presents and validate tilt correction methods on individual
mammograms. We expect that results will be better in screening popu-
lations which forms the majority of cases utilised in image analysis.

Keywords: tilt correction, full field digital mammography, breast
density.

1 Background

Mammograms are obtained by compressing the breast between two plates of
imaging radiation transparent material, and taking an image of the compressed
breast tissue. Due to the forces that are applied during compression, the upper
plate, the compression paddle, is subject to deformation. This deformation may
lead to variation of the breast thickness up to 2 cm from the chest wall to the
breast margin. It is seen in almost all mammography systems. [1,2,3].

Variation in breast thickness affects image analysis by its impact on the pixel
values. In addition, the knowledge of breast thickness variations is essential in
volumetric breast density estimation. It would therefore be of great value if
compression paddle tilt can be estimated to accurately correct mammograms.

At our institute we have collected a database of over 100,000 mammogram
images to study the relation between breast density and breast cancer. However,
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the images were recorded with a Hologic Selenia FFDM system that contained
a paddle that is designed to bend during compression. In order to accurately
estimate the volumetric breast density of the images in our database the effect
of the paddle tilt needs to be removed.

In this work we present and compare two methods that estimate and correct
the tilt on an image based level.

2 Method

2.1 Estimating Tilt From Fatty Tissue Regions

The first tilt correction method is based on estimating the breast thickness along
the x direction of the mammogram by measuring the distribution of pixel values
of fatty tissue as a function of x, where x runs from the chest wall to the nipple
side.

For pure fatty tissue the following equations hold:

If = I0e
−μf,eff h (1)

with I0 the X ray exposure of the incident beam, h the breast thickness, μf,eff

the effective attenuation coefficient for fat tissue, and If the exposure at the
detector of an X ray beam that is exclusively attenuated by fatty tissue.

In raw FFDM images pixel values are proportional to exposure. If we log-
transform the image we obtain

yf = ln gIf = ln g + ln I0 − μf,effh

dyf

dh
= −μf,eff (2)

with g the gain.
Previous research [1,2] showed that the thickness of the breast can be modelled

by a linear function of x

h = t ∗ x + b

t =
dh

dx
(3)

in which t is the tilt. (see fig 1)
Combining eq. 2 and eq. 3 yields

t =
dyf

dx
∗ 1
−μf,eff

(4)

The tilt angle (a) between the compression paddle and the support table can be
computed by

a = arctan(
−dy

dx
) = arctan(−t) = arctan(

dyf

dx
∗ 1

μf,eff
) (5)
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Fig. 1. Schematic representation of the tilt

We try to estimate dyf

dx by evaluating the histogram of pixel values in fatty
tissue regions as a function of x. For each column of 0.2mm width in the image
we estimate yf by computing the 5th percentile of the log transformed pixel
values. Next dyf

dx is obtained by fitting a regression line through (x,yf ), after
which the tilt tangle is calculated according to equation 5. (see fig 2)

As in the periphery the breast is not fully compressed, the computation of yf

is restricted to the interior of the breast. In addition, dense columns are excluded
as in dense areas a reliable value of a fatty pixel is hard to obtain. The density
of a column is assessed by observing the standard deviation of the pixel values
in that column. If the standard deviation exceeds a threshold the column is not
included in the estimation of the tilt angle. Images that do not have at least 10
fatty columns (i.e. 2mm) are rejected.

2.2 Estimating Tilt by Minimising Entropy

The second tilt correction method is based on the entropy of the grey level
distribution of the image. In the histogram of a tilt corrected image the peaks of
the fatty and dense tissue are relatively narrow, which is reflected in the entropy
computed by

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (6)

with H(X) the entropy of the histogram, p(xi) the probability that a pixel has
a grey level x in bin i, and n the number of bins.

To estimate the tilt of an image, H is computed as a function of (a). For a
given value of a H is computed by correcting the image using equations 1-5 and
subsequently applying equation 6 as is depicted in figure 3. The tilt that gives
the minimum entropy is taken as the estimated tilt of the image.

2.3 Validation

The tilt correction methods are evaluated on images recorded with a GE Seno-
graph 2000D. As this system contains a paddle that is relatively rigid, the images
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Fig. 2. In the interior of the breast pixel values of fatty pixels are measured. The pixels
marked black in the left image are fatty pixels from fatty columns. The pixels marked
grey are fatty pixels from dense columns. The right graph shows the fit of the regression
line. An artificial tilt of 3.0 deg was added to the image. The tilt that is estimated (3.16
deg.) is close to the artificial tilt of 3.0 deg.
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Fig. 3. Grey level distributions and entropy for a series of potential tilts for the mam-
mogram shown in fig. 2. The minimal entropy is found at a tilt of 3.29 deg. which is
close to the artificial tilt of 3.0 deg. that was added to the image.

are expected to have only a small tilt with a maximum of 1.0 deg. [1,2]. By adding
an artificial tilt to each image according to the tilt model described above we
can obtain a series of images with known tilt angles. Consequently we can com-
pare the proposed methods by assessing their accuracies in the estimation of the
artificial tilt.
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2.4 Database

The database used in this study contained 1876 images of 553 women with a
mean age of 51.5 (± 11.1). The BI-RADS density of each image was deter-
mined automatically using [4], yielding a mean BI-RADS density of 2.75. The
images were acquired on a GE Senograph 2000D using standard clinical settings,
including the use of an anti-scatter grid. The tilts that were simulated were ho-
mogeneously distributed in the range of 2.8 to 8.5 deg. which is the range that
is observed in clinical practice with Hologic.

3 Results

Figure 4 shows the relation between the artificial tilt and the estimated tilt for
both tilt correction methods. It can be seen that on average both methods are
able to estimate the artificial tilt, although the tilt is slightly underestimated.
Accuracy is relatively low as is indicated by the the large inter quartile ranges.
Tilt correction method 1 rejected 27,5% of the images because it could not find
enough fatty columns in the breast.

-10

-5

 0

 5

 10

 15

 3  4  5  6  7  8  9

E
st

im
at

ed
 ti

lta
ng

le
 (

de
g)

Artificial tiltangle (deg)

Fat

-10

-5

 0

 5

 10

 15

 3  4  5  6  7  8  9

E
st

im
at

ed
 ti

lta
ng

le
 (

de
g)

Artificial tiltangle (deg)

Entropy

Fig. 4. Box plots for both tilt correction methods, showing the relation between the
artificial tilt and the tilt that is estimated. The solid lines represent the median. It
can be seen that both methods are able to estimate the tilt to some extent. Accuracy,
however, is relatively low.

4 Discussion

To the best of our knowledge this is the first paper that presents and validate tilt
correction methods on individual mammograms. Results showed that accuracy
of the developed methods is still relatively low. Part of this low accuracy may
be attributed to the fact that the GE images do have a small tilt themselves.

The images were obtained from relatively young women with dense breasts,
which hampers especially the first tilt correction method. It is expected that
results will be better for mammograms from screening, which forms the majority
of the cases we want to study.
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Abstract. A common metric used to optimise digital mammography image ac-
quisition is contrast-to-noise ratio.  Using the standard attenuation rate (SAR), a 
quantitative normalised representation of breast tissue for image analysis appli-
cations, we demonstrate that the image contrast may be completely separated 
from the acquisition parameters, in particular the beam quality, used for acquisi-
tion.  Optimising the contrast-to-noise ratio at acquisition is therefore subopti-
mal, since the contrast may be manipulated by post processing.  A tissue 
equivalent phantom is used to investigate the variation in both signal-to-noise 
ratio, and image sharpness within the SAR images.  The results show that the 
primary effect of varying the acquisition parameters through the various auto-
mated optimisation of parameter modes, and hence the mean glandular dose, is 
to vary the global contrast of the acquired image, an effect successfully mapped 
to a common normalised basis using the SAR.  The signal-to-noise ratio and 
image sharpness are second order effects, and are therefore dominated by the 
global image contrast when image acquisition is optimised using the contrast-
to-noise ratio. 

Keywords: image acquisition optimisation, quantitative mammography. 

1   Introduction 

A key benefit of digital mammography is the decoupling of the x-ray image formation 
and detection process, from that of image display. In practice however, this benefit is 
seldom fully realised in current clinical workflows. Pisano et al [1] presented a picto-
rial essay describing the various algorithms employed for the "manipulation of fine 
differences in image contrast". Such algorithms generally involve generic image en-
hancement techniques, such as contrast-limited adaptive histogram equalisation and 
unsharp masking, whose performance leads the paper to conclude "different digital 
image processing algorithms are likely to be useful for different tasks". In this work 
we propose a different approach to image processing, namely to use a quantitative, 
normalised representation of breast tissue, which we call the standard attenuation rate 
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(SAR) [2] in which radiodensity is measured at each pixel.  In simple terms, SAR 
provides the sum of the breast composition attenuation values along the path to a 
given pixel location, including the sums of all forms of adipose tissue, fibroglandular 
tissues, and calcifications. Its value is smaller if the path contains more adipose tissue, 
larger for dense tissues, and much larger for calcifications.  The SAR thereby removes 
the dependency upon the acquisition conditions and results in an image that depends 
solely upon the underlying tissue composition, so, regardless of the beam quality from 
which the mammogram was acquired, global contrast depends only on the tissues of 
the breast.  One may think of this as being similar to the Hounsfield unit used univer-
sally in CT, though specifically optimised for mammography.  Computation utilises a 
model of the physics of image formation to quantify the difference between the pri-
mary x-ray photon fluence incident upon the breast and the primary x-ray photon 
fluence exiting the breast and subsequently recorded by the image detector.  The dif-
ference between these fluences, which is a result of the radiodensity of the constituent 
tissues, is expressed per unit distance traversed by the primary beam through the 
breast relative to a reference material, which, in this work, is a 50/50 mixture of adi-
pose/fibroglandular tissue (though the method can be straightforwardly adapted to any 
other measure).  The physics model includes: photon production within the x-ray tube 
given the acquisition configuration of the mammography unit; an empirical detector 
calibration model to calculate the photon fluence exiting the breast; and a scatter 
model which calculates an estimate of the component of the image signal from scat-
tered photons, enabling the primary component to be estimated. 

In this paper, we present an analysis of image quality, more specifically image 
sharpness, and noise, traded against mean glandular patient dose for a range of image 
acquisition conditions, using the SAR image. 

Much of the work in the literature makes use of the contrast-to-noise ratio (CNR) 
to quantify image quality.  For example, a study by Young et al [3], used a phantom 
constructed of PMMA (background) and aluminium (foreground), and defined a met-
ric of image quality (which they state "has been adopted in European and UK Guid-
ance on testing AECs") around the CNR, which they applied to the "unprocessed" 
images acquired on a GE Senographe 2000D.  It is worth noting that the pixel inten-
sity in such images is linearly related to photon fluence, and exponentially related to 
tissue composition (see [2]).   The specific measure they adopted is: ( ) ( )[ ( ) ( ) ]2  
Since digital image processing, such as the SAR, can remove the dependency of im-
age contrast on beam quality, and contrast in the SAR may be linearly scaled at dis-
play time by the user through the use of window and level controls, or rescaled using 
a non-linear function should the need arise, the use of a quality metric which includes 
a contrast measure in the raw acquisition seems sub-optimal, especially since global 
contrast may be manipulated by algorithmic post processing.  Ideally, acquisition is 
optimised for that which cannot be corrected by signal processing.  The noise measure 
in the denominator is one such property over which we cannot apply post processing 
correction, and so it should be minimised at image acquisition time, since stochastic 
noise intrinsically cannot be corrected for algorithmically (since, by definition, no 
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technique exists for identifying the combination of random events which occurred 
during any given exposure: filters applied to signals containing stochastic noise will 
have equal effect on both noise and signal).  Young et al make the implicit assump-
tion that the MTF of the imaging system is not significantly affected by varying beam 
quality, an assumption they state may need to be verified for some designs, and one 
which we investigate in this paper.  The MTF describes the frequency response of the 
imaging system, and whilst it is the low frequency components that describe the un-
derlying foundation of the image, the fine details, such as lesion spicules or microcal-
cifications, are a result of the presence of high frequencies.  It follows that a sharp 
image containing the fine detail required for clinical diagnosis results from a MTF in 
which the high frequencies have a high contrast relative to low frequencies: the more 
extended the frequency response, the finer the detail included and the sharper the 
image. 

2   Materials and Methods 

A series of images were acquired of a tissue equivalent phantom, which we designed 
and constructed.  The phantom is 100mm by 100mm, 60mm thick, and consists of a 
pair of interlocking step wedges (with steps varying in height between 1 and 3mm), 
one of glandular, the other of adipose equivalent material (supplied by CIRS), with a 
further two adipose wedges forming the sides (pictured in our companion conference 
paper [2], together with an experimental study using the phantom to verify the per-
formance of the SAR, specifically its ability to derive an image in which contrast is 
independent of beam quality).  The phantom includes adipose/fibroglandular compo-
sitions ranging between 12% and 83%. 

Phantom images were acquired using a GE Senographe Essential, and in order that 
the acquisition parameters adopted were as close as possible to those which would be 
employed clinically, the built-in automatic exposure control was used.  This has three 
selectable modes of operation for the automated optimisation of parameters (AOP): 
standard (STD), contrast (CNT) and dose (DOSE).  The DOSE mode attempts to limit 
the glandular dose delivered to the patient, whilst the CNT mode attempts to maxi-
mise the global contrast in the acquired image (rather than by software post-
processing) at the expense of patient dose. An image was acquired in each mode, and 
it is upon these three images that the SAR image was computed.  The mean glandular 
dose was calculated for each image using the technique proposed by Dance et al [4-5].  
The tube output and half value layer measurements required by the calculation were 
taken from the routine quality assurance reports undertaken by the NHS radiation 
protection physicists, and the "breast" composition was taken to be 50/50. 

Subtraction images of both the raw "FOR PROCESSING" and the SAR images 
were computed giving the percentage difference between the DOSE and STD, and 
CNT and STD images so as to assess the overall effect of the variation in acquisition 
parameters resulting from the three AOP modes. 

The noise in the SAR images was measured by computing the standard deviation 
in a 42 by 58 square of pixels within each step of the phantom.  It should be stressed 
that pixel intensity in the SAR image is independent of the acquisition beam quality 
and exposure (within the bounds of modelling and measurement error), and dependant 
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only on the underlying tissue composition, and since the same phantom is used in all 
images remains constant, and so the standard deviation alone may be used to assess 
image noise (which is not the case in the raw acquired image). 

When developing a metric to assess image sharpness, one should note the subtle 
distinction between contrast (the magnitude of the difference between two location) 
and image sharpness (a measure of the distinctness of a features edges).  In a noise-
free x-ray image of a fine detail arising from a discontinuity in composition, the con-
trast will depend on the exact location of the two points chosen to measure contrast 
between, and the resulting variation in contrast between slightly varying locations of 
the two measurement points, will be governed by the image sharpness.  In a technique 
analogous to anisotropic diffusion, image sharpness is measured by plotting local 
contrast between two points either side of, and equidistant from, the centre of an im-
age feature, against the distance between the points.  The shape of the resulting plot 
describes image sharpness.  Fig. 1 illustrates the method, where the sharpness of the 
two signals on the left is plotted on the right, and in which each point describes the 
contrast between the points a distance 'x' either side of the centre of the discontinuity. 
Measuring image sharpness in the spatial domain in this way allows the MTF of the 
image system to be indirectly quantified at any image point, in this case for a tissue 
equivalent phantom and thus the measure of the system response closely corresponds 
to those found during clinical examination. 
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Fig. 1. The computation of the image sharpness metric 

3   Results 

For each of the three AOP modes, the acquisition parameters selected were: 31kVp 
Rh-Rh 74mAs, 31kVp Rh-Rh 57.8mAs and 30kVp Rh-Rh 126.8mAs for STD, DOSE 
and CNT respectively.  The resulting mean glandular doses were 1.757mGy, 
1.372mGy and 2.656mGy.  Subtraction images quantifying the percentage difference 
between the raw images are shown in fig. 2 and the SAR images in fig. 3.  Note the 
variation in the scales of the "jet" colour map between the various images, depicted by 
the scale bars immediately to the right of each plot which show the percentage differ-
ence corresponding to each colour. 
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Fig. 2. Subtraction images showing the percentage difference between raw "FOR PROCESS-
ING" images, DOSE-STD (left) and CNT-STD (right) 

 

Fig. 3. Subtraction images showing the percentage difference between SAR images, DOSE-
STD (left) and CNT-STD (right) 

 
The variation in the noise between the SAR images is shown in fig. 4, and the 

variation in image sharpness is shown in fig. 5. 
 



202 C.E. Tromans et al. 

 

 

Fig. 4. The variation with composition of the image noise in the SAR images measured by 
computing the standard deviation 

 

Fig. 5. The local image contrast measure assessing image sharpness computed at across the 
discontinuity arising over a step at the centre of the step wedge 
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4   Discussion 

The variation in global image contrast arising within the exponential relationship 
between composition and pixel intensity occurring as a result of the decrease in tube 
accelerating potential from 31 to 30kVp between the STD and CNT modes is notice-
able from the subtraction images on the right of fig. 2 where the percentage difference 
rises from the high thirties in the highly dense fibroglandular left hand side of the 
phantom, to the low forties in the mostly adipose material on the right.  In the case of 
the comparison of the differences between DOSE and STD on the left of fig. 2, where 
the beam quality has remained constant and only the exposure has varied between 
57.8 and 74mAs, as one would expect no global contrast variation exists between 
adipose and fibroglandular, however the dominant effect which may be observed is 
the increase in quantum noise resulting from the reduction in exposure. 

As expected, the high similarity between the normalised SAR images may be seen 
in fig. 3, where the vast majority of pixels fall into the range of the colour map which 
only encompasses 0 to 2.5%.  The variation in noise may be observed between the 
various doses, though these generally result in differences confined to below 1%.  The 
largest discrepancies visible occur at the discontinuities between steps, though given 
the display range finishing at 2.5%, these are only minor. 

The noise is quantified using the standard deviation in fig. 4, where the expected 
relationship due to quantum noise between increased mean glandular dose, and de-
creased standard deviation/image noise may be observed, though it should be noted 
these are only small given the range of 0 to 2.5%. 

The image sharpness measured via local contrast depicted in fig. 5 shows a very 
high degree of similarity between the three acquisition conditions images, suggesting 
that the assumption that the MTF of the imaging system is not significantly affected 
by varying beam quality made by Young et al [3] is valid. 

The British National Health Service remedial dose level for a 60mm thick breast, 
the thickness of the phantom, is 3.0mGy, and so it may (happily) be concluded that 
the equipment is performing satisfactorily. 

The dose between STD and DOSE mode dropped by 21.9%, whilst the average 
standard deviation across all the steps of the phantom rose by 10.5% (equivalent to a 
step in the fibroglandular wedge within the phantom of 0.048mm).  Similarly, the dose 
between CNT and STD mode rose by 33.9%, whilst the average standard deviation 
dropped 11.68% (equivalent to a step in the fibroglandular wedge within the phantom 
of 0.064mm).  A qualitative visual evaluation between the SAR images revealed very 
little difference, as is to be expected from the difference image falling almost entirely 
between 0 and 2.5%.  Noise and image sharpness would appear to be second order 
effects compared to global image contrast, however since this may be algorithmically 
manipulated, as demonstrated by the SAR computation, the use of 33.9% extra dose to 
achieve the same primary effect at image acquisition is unnecessary. 

Further work is required to relate this approach to the perceptual characteristics of 
the images, particularly as viewed by highly experienced radiologists.  It may, for 
example, be possible to ascertain a minimum signal-to-noise ratio required for a given 
specificity and sensitivity of diagnosis.  Optimal patient doses and hence acquisition 
parameters when using the SAR may then be calculated.  Work is ongoing to assess 
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diagnostic performance of SAR using both human readers, and for the case of com-
puter aided diagnosis. 

5   Conclusion 

The primary effect of varying the acquisition parameters through the operating mode 
of the AOP algorithm, and hence the mean glandular dose delivered to the patient, is a 
variation in global contrast of the acquired image.  The SAR is seen to successfully 
map between the global contrast variations resulting from the beam quality variations 
tested to a common normalised basis in which the image is dependant solely on un-
derlying tissue composition.  The signal-to-noise ratio and image sharpness are seen 
to be only second order effects, and are therefore dominated by the global image con-
trast when image acquisition is optimised using the contrast-to-noise ratio, suggesting 
this measure is suboptimal for the case of digital mammography where contrast may 
be manipulated by algorithmic post processing. 
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Abstract. Scattered photons degrade mammographic image quality, so, almost 
universally, a physical anti-scatter grid is used to limit their effect.  Physical 
grids are not completely effective in rejecting only scattered photons, so patient 
dose must be increased in order to maintain low levels of quantum noise.  The 
standard attenuation rate (SAR), a quantitative normalised representation of 
breast tissue for image analysis applications, incorporates a model of scatter, 
and a software correction of the image blurring arising from scatter within the 
image signal.  A tissue equivalent phantom is used to investigate the possibility, 
in terms of both image sharpness and noise, of replacing the physical grid with 
the software correction in the SAR.  Encouraging results are reported, software 
correction almost matching the performance of the grid, whilst maintaining a 
superior signal-to-noise ratio. 

Keywords: algorithmic scatter correction, physics modelling, acquisition  
optimisation. 

1   Introduction 

Scattered photons are those which do not follow a straight path in their traversal 
through the breast, from focal spot to image detector.  As a result of their often com-
plex paths, they convey no useful information, and degrade the mammographic im-
age.  Their detrimental effect manifests itself in two forms: the signal-to-noise ratio 
worsens due to increased quantum noise; and image sharpness is reduced through the 
introduction of a low frequency blurring.  Quantum noise arises due to the counting of 
a number of random x-ray photon detection events at the detector over a finite time, 
and may be modelled as the standard deviation of a Poisson distribution, for which the 
signal-to-noise ratio may be written as: 

y =
 

where the presence of the scattered photon fluence in the denominator, together with 
its absence in the numerator (since scatter conveys no useful information), illustrates 
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the detrimental effect on the signal-to-noise ratio within the image.  Quantum noise 
should be minimised at acquisition time, since stochastic effects intrinsically cannot 
be corrected by post processing (since, by definition, no technique exists for identify-
ing the combination of random events which occurred during any given exposure: 
filters applied to signals containing stochastic noise will have an equal effect on both 
noise and signal).  Image blurring may, however, be corrected by digital image proc-
essing, for example unsharp masking.  Currently, the inclusion of a physical anti-
scatter grid between the patient and detector is the technique used almost universally 
to reduce the image degradation effect of scatter.  Anti-scatter grids are not com-
pletely effective in rejecting scattered photons, so the image is still degraded, though 
to a lesser extent than in the absence of a grid.  However, anti-scatter grids are also 
not completely effective in the transmission of primary photons, which necessitates an 
increase in patient dose in order to maintain a given detector fluence, hence magni-
tude of quantum noise.  Evidently, it would be of interest were one be able to dispense 
with the anti-scatter grid, not least in the context of digital breast tomosynthesis, 
which requires a greater number of projection images to be acquired within a strict 
dose budget.  In this paper, we investigate the impact on image quality when acquisi-
tion takes place both with and without an anti-scatter grid, and when the acquired 
image is post processed to calculate the standard attenuation rate (SAR) image [1].  
SAR is a quantitative normalised representation of breast tissue for image analysis 
applications, in which pixel intensity depends only on the underlying tissue radioden-
sity.  SAR is calculated using a model of the physics of image formation to quantify 
the difference between the primary x-ray photon fluence incident upon the breast and 
the primary x-ray photon fluence exiting the breast and subsequently recorded by the 
image detector.  In order to calculate the primary fluence it includes a model of  
scattered photons. Though the technique was originally developed with the aim of 
quantifying the magnitude of scatter in the image signal to facilitate quantitative 
mammography, its wider application in the possible replacement of conventional 
physical grids is presented in what follows. 

2   Materials and Methods 

Two scattering phenomena occur within the mammographic energy range: coherent 
scatter, that is the photon changes direction but there is no loss of energy; and inco-
herent scatter, in which a change in photon direction occurs together with a portion of 
the photon energy being transferred to an electron.  The coherent scattering cross 
section Tdσ  arising from a free electron for which photons are scattered in direction 

φ  into solid angle Ωd  may be written precisely as: 

( ) ( )φφσ 2
2
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Scaling this free electron case by the atomic/molecular form factor, tabulated in [2], 
gives the atomic/molecule cross section, cohσ : 
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Similarly, for incoherent scatter, the cross section of the photon scattering arising 
from an electron (bound electron Compton) using the Klein-Nishina formula is: 
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Scaling the single electron case by the atomic/molecular scatter function ( )xSm , 

tabulated in [2-3], gives the atomic/molecule cross section, incohσ : 

( ) ( )∫=
φ
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The remaining photon energy, 'E , post incoherent scattering, is then given by: 
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These relations are used to calculate the scatter arising around a primary ray, as de-
picted in fig. 1, where for each small traversal dt, centred around point P, along pri-
mary ray path AB, the scatter fluence adopting path PC, and being incident upon  the 
pixel centred at C, is calculated for all pixels in the vicinity of B.  The scatter signal at 
each image pixel, arising from scattering at P and being attenuated by the tissue in 
path PC is given by: 
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Fig. 1. The calculation of the scatter arising around a primary ray 
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Fig. 2 shows the result of a typical calculation of the scatter around a primary ray. 

 

Fig. 2. The calculated scatter point spread function arising around a primary ray traversing 
60mm of 50/50 adipose/fibroglandular tissue, in the absence of a grid 

The probability of a photon travelling in a given direction successfully traversing 
the scatter grid is calculated from the grid geometry, and the resulting effect of the 
grid on the scatter around a primary ray is shown in fig. 3. 

 

Fig. 3. The calculated scatter point spread function arising around a primary ray traversing 
60mm of 50/50 in the presence of a 5:1 31 lp/cm reciprocating focused anti-scatter grid 
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The scattering arising around a number of "seed" primary rays spaced throughout 
the image area are calculated (since they are spatially variant), and the intermediaries 
are found by interpolation.  Assuming a 50/50 composition of the entire breast vol-
ume, the scatter-to-primary ratio is computed by summing at each pixel the scatter 
contributions from all primary rays in the vicinity of the pixel.  The scatter-to-primary 
ratio is then used to calculate the scatter component within the acquired image. 

The low frequency blurring effect of scattered photons is modelled using a kernel 
derived from the image acquisition conditions and the underlying scatter relations.  
Subtraction of the calculated scatter signal from the acquired image yields both an 
approximation of the magnitude of primary signal, and the removal of the image blur-
ring arising as a result of scatter.  This is analogous to unsharp masking.  However, in 
this instance, the subtracted low pass signal is of a magnitude equivalent to that of the 
scattered photon fluence, and the kernel we use has the shape of the point-spread 
arising from scatter around a primary beam (for example those shown in fig. 2 or fig. 
3), both of which, as discussed earlier, are calculated utilising the fundamental physi-
cal relations describing scatter. 

Numerous studies have investigated whether or not an anti-scatter grid should be 
utilised in digital mammography (though none propose a physics based post process-
ing operation as included here).  For example, Veldkamp et al [4] use the CDMAM 
phantom which consists of a matrix of square cells with gold disks of varying sizes, 
fixed onto a 0.5mm thickness of aluminium, surrounded by PMMA.  The choice of 
phantom is critical since the magnitude of the scattered fluence, and its spatial charac-
teristics (governed by the angular scattering properties) need to be as close as possible 
to breast tissue, so as to ensure that any optimisation of the imaging system applies to 
images of the breast, and not just to images of the phantom.  At the k-α edge of Mo-
lybdenum, which falls at 17.5keV (a peak in the photon energy spectrum due to char-
acteristic emission), the linear attenuation coefficients for photoelectric absorption 
and scattering (both coherent and incoherent) [5] for adipose tissue are 0.0762 and 
0.0596; 0.785 and 0.285 for fibroglandular tissue; and 27.3 and 1.47 for calcium hy-
droxyapatite (crystalline); whilst those for gold are 2090 and 52.5 (orders of magni-
tude different from anything found in the breast), and 12.6 and 1.03 for aluminium.  
To reduce the possibility of optimising to the phantom materials, rather than breast 
tissue, we have manufactured a phantom from tissue equivalent resins (supplied by 
CIRS).  The phantom comprises of an upper and lower cuboid of adipose material, 
measuring 100mm by 100mm, with a thickness of 10mm, and a further two cuboids, 
one of adipose, and one of glandular, measuring 100mm by 50mm, with a 40mm 
thickness are placed in-between to form a large discontinuity in tissue composition, 
across which the blurring effect of scatter will be significant.  This phantom is an 
extreme case, such a large discontinuity is highly unlikely to be encounter within a 
human breast in clinical practise, but the objective is to test the algorithm at its ex-
tremities, to allow the quantification of the worst case performance.  A second tissue 
equivalent phantom which far better approximates clinical cases is also investigated.  
This comprises of interlocking step wedges, and is used for the validation of the SAR 
computation in our companion paper [1], in which a full description of it design and 
photographs may be found. 
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The phantoms were imaged on a Siemens Mammomat Inspiration, both with  
and without the factory fitted 5:1, 31 lp/cm reciprocating focused anti-scatter grid. 
The SAR images were computed for each acquired image, both with and without the 
image blurring due to scatter correction enabled.  Since the SAR image is both quanti-
tative and normalised, it provides an ideal basis for comparison between the four 
images (as discussed in our companion paper [6]). 

3   Results 

Fig. 4 shows a horizontal profile, spatial averaged vertically over 300 rows, across 
the SAR images of the phantom, and the variation in sharpness of the discontinuity 
can be seen to be the underlying phenomena governing the results of the visual 
assessment. 

 

Fig. 4. A horizontal profile, spatial averaged vertical over 300 rows, across the SAR images 

The signal-to-noise ratio in each of the SAR images was calculated as the ratio of 
the median and standard deviation, in the middle of both the high and low density 
areas of the phantom.  Since the SAR is dependant only upon the underlying tissue 
composition, and the dependency upon the image acquisition parameters is removed 
(see [1]), the signal-to-noise ratio is the appropriate measure of image quality, since 
the same phantom is used for the comparisons. 
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Table 1. The signal-to-noise ratio in the SAR images acquired at 32kVp W-Rh 45mAs 

With Grid Without Grid  
High 

Density 
Low Density High Den-

sity 
Low Density 

Blur Corrected 75.2 91.2 97.2 109.9 
No Blur Correction 81.1 98.1 120.2 134.8 

For the case of the interlocking step wedge phantom, percentage difference images 
are given in fig. 5. 

 

Fig. 5. Percentage difference images between SAR images: acquired with and without grid 
present, no algorithmic blurring correction (left); and with the grid but no blurring correction, 
and without the grid but with blurring correction (right) 

The scatter model execution time was 81.79 seconds and 75.35 seconds (85 micron 
image) for the cases with and without the anti-scatter grid respectively. 

4   Discussion 

The performance of the software blur correction may be seen in fig. 4, where the 
corrected image sharpness is almost identical to that observed when the physical anti-
scatter grid is used.    It worthy of note that this test is an extreme case, using a phan-
tom which contains a discontinuity in tissue composition far greater than that ever 
likely to be found in clinical practice, and thus tests the model to the extremities.  Blur 
correction comes at the cost of a worsening of the signal-to-noise ratio, as may be 
observed in table 1, since it is not possible to discriminate noise from signal, so the 
noise is also sharpened.   

In the case of the more clinically realistic interlocking step wedge phantom, the re-
sults are given as percentage difference images in fig. 5.  On the left,  the blurring effect 
of scatter may be observed, since in this image the presence of the grid is compared with 
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its absence, and in the resulting subtraction all the salient features of the phantom can be 
made out.  When the blurring correction is applied to the image acquired with the grid 
absent, the difference image on the right shows successful correction of the blurring 
since no features of the phantom can be seen, only the variation in image noise. 

5   Conclusion 

A technique is proposed for the algorithmic correction of scatter with the aim of replac-
ing the physical grid.  Experiments upon phantom images suggest that the blurring ef-
fect of scatter is significantly reduced by the technique, even at large discontinuities in 
tissue composition, to a level very similar to that seen when the grid is included. A 
superior signal-to-noise ratio is observed when the algorithm is used in the absence of 
the grid, due to the increased primary photon fluence at the detector. 
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Abstract. Diffusion-weighted imaging (DWI) visualizes the thermal motion of 
protons in tissue, which is less affected by the state of the background mammary 
gland and therefore has sufficient capability to diagnose DCIS as well as ILC. Of 
30 patients with DCIS, sensitivity was 87%, and 4 cases were false negative 
(FN); of 30 patients with invasive lobular carcinoma ILC, the rate of true posi-
tive cases (TP) was 93%, and 2 cases were FN. With an ability to provide steady, 
high-contrast resolution tissue images, DWI is expected to play a significant role 
in future breast cancer diagnosis. We should promote the application of DWI in 
clinical practice, taking advantage of its high-contrast resolution.  

Keywords: Diffusion-weighted imaging, Magnetic Resonance Imaging, Breast 
cancer. 

1   Introduction 

Diffusion-weighted imaging takes advantage of the slight density discrepancies that 
can occur even under the same temperature and pressure as surrounding tissue, due to 
the random thermal movement of molecules. The clinically applied diffusion-
weighted imaging (DWI) visualizes the diffusion caused by the random thermal 
movement of water molecules. In oncology, the diffusion of water molecules is 
closely related to cellularity, and the diffusion image can reveal the density of the 
tissue. Therefore, the tissue structure can be inferred from the analysis of DW images. 
To date, DWI has been developed mainly in neuroradiology, but recent advances in 
parallel imaging have allowed some clinical studies to report the application of DWI 
in examinations of the body trunk [1], [2], [3], [4], [5]. With regard to breast tumors, 
DWI is expected to aid in discriminating between malignancy and benignancy and in 
evaluating the efficacy of neoadjuvant chemotherapy (NAC) [6]. 

In this study, we investigated the imaging capacity of non-contrast MRI in combi-
nation with DWI and short TI inversion recovery (STIR) for diagnosing DCIS and 
ILC.  
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2   Method and Materials 

2.1   Patients 

The subjects were 30 cases of DCIS and 30 cases of ILC that had been consecutively 
diagnosed by post-operative pathology. All patients underwent preoperative MRI with 
DWI and mammography (MMG), which had been performed within a one-month 
interval. Cases of a synchronous cancer in an ipsilateral mammary gland and cases 
with prior breast cancer treatment and/or a history of NAC were excluded.  

2.2   Image Protocol of Mammography and MRI 

We used a mammography exposure unit, LORAD M-IV (HOLOGIC, USA), and an 
image reader, FCR PROFECT CS (FUJIFILM Corporation, Japan). The sampling 
size was 0.05 mm. The recommended characteristic curve (Type T) was applied. 
Bilateral cranio-caudal view and mediolateral oblique view were obtained. The LCD 
we used was monochrome with resolution 2048 x 2560. The brightness was 660 
cd/m2 and the gray scale resolution was 256 levels. 

MR examinations were performed with a 1.5-Tesla MR imager (Gyroscan Intera 
1.5-T Master Grade; Philips Medical Systems, the Netherlands). Bilateral breast im-
ages were acquired using a SENSE body coil with patients in the prone position. All 
imaging was performed in the transaxial plane. Subsequent to DWI and STIR, dy-
namic study was carried out on each image using Gd-DTPA enhancement. Single-
shot echo planar imaging was employed for DWI.  Employed b factor of DWI was as 
follows. Single DWI protocol; b factor=1000 sec/mm2 and Dual DWI protocol; com-
binations of 750 sec/mm2 and 1500 sec/mm 2. The details of imaging protocol are 
shown in Table 1.  

Table 1. The details of Image parameters 

 FOV 
(mm) 

TR/TE 
(msec) 

Thk/Gap 
(mm) 

Mtrx NEX Scan time 
(sec) 

STIR 320 4039/60 5/0 512x269 2 147 

Single DWI 320 3100/85 5/0 256x101 1 39 

Dual DWI 320 4500/76 5/0 256x102 3 109 

2.3   Imaging Analysis 

Three radiologists with 15 and 14 years of experience in diagnostic radiology inter-
preted MR images and MMG by the retrospective consultation. Mammography was 
interpreted according to category classification of BI-RADS, and surrounding mammary 
glands of MMG were classified into fatty, scattered fibroglandular tissue; heterogene-
ously fibroglandular tissue; and mostly fibroglandular tissue and further subdivided into 
two groups, fatty/scattered fibroglandular tissue and heterogeneous fibroglandular tis-
sue/mostly fibroglandular tissue.  

STIR and DWI images were interpreted on the basis of the diagnosis criteria 
shown in Table 2. The apparent diffusion constant (ADC) was not used for diagnosis, 
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and images were evaluated visually. We classified the signal intensity in DWI and 
STIR of the area in question as high, iso, or low in comparison with the signal inten-
sity of the corresponding srroundung mammary gland. Areas of high intensity on 
DWI were located and then investigated on STIR with the help of signal intensity, 
marginal aspect, and internal structure. Based upon the results, they were classified as 
malignant, highly suspicious of malignancy and requiring further examination, and 
benign with low likelihood of malignancy and requiring no further examination. An 
area of high intensity on DWI and low or iso-intensity on STIR was classified into the 
malignant group. In the case of high intensity on both DWI and STIR, the area was 
classified as malignant if there was marginal irregularity and/or internal structure, for 
example a papillary projection. As an exception, an area of extremely low intensity on 
STIR was classified as malignant based on morphologic findings, regardless of its 
signal intensity on DWI.  

The true positive rate (TP) and false negative rate (FN) were calculated using the 
pathology results, analyzing their relationship to MMG categories and surrounding 
mammary gland types, respectively.  

Table 2. Criteria of  MR image Interpretation 

Intensity of 
DWI 

Intensity of 
STIR 

Irregular 
Margin 

Internal struc-
ture 

Diagonosis 

High Low – Iso ---------- ---------- Malignancy 

High High Positive ---------- Malignancy 

High High Negative Positive Malignancy 

High High Negative Negative Benign 

Low ~ Iso Low ~ High ---------- ---------- Benign 

---------- Extremely low ---------- ---------- Malignancy 

3   Results 

Of 30 patients with DCIS, sensitivity was 87%, and 4 cases were FN. The TP rate of 
patients with fatty/scattered fibroglandular tissue was 90%. For patients with hetero-
geneous fibroglandular tissue/mostly fibroglandular tissue, the TP rate was 85%. The 
TP rate of category 1/2 patients was 71%, while the TP rate of category 3/4/5 patients 
was 91%. 

Of 30 patients with ILC, the TP rate was 93%, and 2 cases were FN. The TP rate of 
patients with fatty/scattered fibroglandular tissue was 100%, while the TP rate of 
patients with heterogeneous fibroglandular tissue/mostly fibroglandular tissue was 
92%. The TP rate of category 1/2 patients was 83%, and the TP rate of category 3/4/5 
patients was 96%. Mammography and MR images of a DCIS case were and a ILC 
case were shown in Fig. 1, Fig. and 2, Fig. 3, and Fig. 4.  
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Fig. 1. MLO view of Mammography of a DCIS case  

   STIR   Gd-T1WI

   DWI (b:750)    DWI (b: 1500)

 

Fig. 2. MR images of a DCIS case  
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Fig. 3. MLO view of Mammography of a ILC case  

     STIR    Gd-T1WI

     DWI (b: 750)    DWI (b: 1500)

 

Fig. 4. MR images of a ILC case  
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4   Discussion 

Though Gd-DTPA enhanced dynamic study is required in Breast MRI in some clini-
cal guidelines, we investigated it without contrast medium daringly to confirm poten-
tial of the non contrast MRI for breast cancer survey. In this study, the combination of 
DWI and STIR, using no contrast agent, was shown to have a possibly higher depic-
tion capacity than MMG. The capacity was characterized by the independency of 
cancer from the surrounding mammary gland that was dense breast type. The reason 
of detectability was speculated with the effective signal suppression of surrounding 
mammary gland using DWI. However, some drawbacks were found with DWI: some 
cases with a high degree of mastopathy demonstrated an insufficient suppression of 
signal of sourrounding mammary gland, which hindered lesion recognition. Also, fat 
suppression is indispensable in DWI, so cases with insufficient fat suppression re-
sulted in difficulties in distinguishing between the lesion and the surrounding fat, 
which lowered the lesion-depicting capacity of DWI. DWI has a high-contrast resolu-
tion, but its spatial resolution is low. This latter characteristic together with back-
ground glandular suppression means DWI generally cannot provide anatomical  
information about the structure being imaged, which means supplemental anatomical 
information must be provided by some other sequence images or modality. 

Limitations of this study are as follows. Firstly it is that there is a small number of 
cases, and secondly that the false positive rate for the benign disease is not considered. 

5   Conclusion 

DWI has excellent potential to depict covert breast cancer in the dense breast without 
contrast medium, even if it was hard to detect DCIS and ILC by mammography. DWI 
may be valuable in close inspection of the patients who cannot be administered the 
contrast media and survey.    
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Abstract. Computed radiography (CR) is a digital radiography technology in 
which a storage phosphor plate is used to store a latent X-ray image. The plate is 
exposed in a light-tight cassette and then read out in a digitizer to create the digital 
image. Traditionally, CR powder imaging plates (PIP) are used based on  
BaFBr1-xIx:Eu2+ phosphor. The active layer consists of phosphor micro-crystals in 
a polymer binder. A needle imaging plate (NIP), created by vapor deposition of 
needle-shaped phosphor crystals, is expected to lead to better image quality. A 
first reason is that lateral light spread is less in NIP. Further, the system gain is 
higher, because more storage centers are created per unit of absorbed X-ray en-
ergy, because read-out depth can be higher and because the stimulated light es-
cape efficiency is higher. The more transparent NIP guarantees a more constant 
image contribution over the thickness of the plate. Finally, the NIP layer is more 
homogeneous than the PIP layer, which leads to a lower degree of screen-
structure noise.  Measurements confirm that CsBr:Eu2+ NIP's in CR mammogra-
phy have significantly better image quality (DQE), especially in the high  
frequency range. A linear-systems approach is used to model signal and noise 
transfer in a CR system using PIP or NIP. The transfers are described by cascad-
ing transfer relationships for each process. The calculated image quality (DQE) is 
in good agreement with measurement for both the NIP and the PIP systems. 

Keywords: digital mammography, computed radiography (CR), detective  
quantum efficiency, needle imaging plate, image quality measurement, modeling. 

1   Introduction 

In CR storage phosphors, free electrons and holes released by X-ray quanta are 
trapped in storage centers, to generate a latent image. In the read-out process in the 
digitizer, the trapped electrons are stimulated with red light to give rise to a blue lu-
minescence signal, which is transformed in an electronic signal by a light sensor and 
digitized [1].  

Today, storage phosphors of the BaFBr1-xIx:Eu2+ family are used in commercial CR 
systems. BaFBr1-xIx:Eu2+ is used in the CR Mammography plates of Agfa, Fuji, Care-
stream and Konica. It is an excellent storage phosphor with a high storage capacity and 
a relatively high specific X-ray absorption. Since BaFBr1-xIx:Eu2+ does not melt congru-
ently it decomposes upon vaporization, which makes it unfit for NIP manufacturing. 
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Agfa discovered an excellent new storage phosphor, CsBr:Eu2+, with a chemical com-
position and density of 4.5 g/cm3 that lead to a specific X-ray absorption that is similar 
to that of BaFBr1-xIx:Eu2+ [2]. NIP is expected to lead to better image quality than PIP 
for several reasons. The needles provide strong forward light scattering, thereby 
strongly reducing light spread in lateral direction in the phosphor layer. As a conse-
quence, image sharpness is higher at equal thickness. Further, a NIP system’s gain is 
higher, because i) more storage centers are created per unit of absorbed X-ray energy, ii) 
read-out depth can be higher and iii) the stimulated light escape efficiency is higher. The 
more transparent needle shaped CsBr:Eu2+ layer guarantees a more constant image 
contribution over the thickness of the layer, which leads to a higher Swank factor. 
Evaporated CsBr layers are more homogeneous than coated BaFBr1-xIx:Eu2+ layers, 
ensuring a lower degree of screen-structure noise.  Today, CsBr:Eu2+ needle image 
plates are used in commercial CR systems for general radiography (Agfa) and have, 
more recently, also been introduced in CR Mammography systems (Konica, Agfa).  As 
indicated in [3] the much higher DQE of the NIP CR general radiography system results 
in a superior performance of the system in observer performance studies [4]. 

Superior performance of NIP CR systems compared to PIP systems is also ex-
pected in mammography. The purpose of the actual study is to confirm the superior 
image quality by measurement and to illustrate the physical backgrounds based on a 
simple simulation. 

2   Experimental 

CR Systems 
The reference NIP system is the commercial Agfa DX-M system with Agfa HM5.0 
NIP, as presented in [5]. The DX-M is a new generation flying-spot digitizer that 
supports both standard phosphor plates (PIP) and needle-based detectors (NIP). The 
HM5.0 NIP is a dedicated high resolution CsBr:Eu2+ Mammo plate.  

The Agfa CR MM3.0R plate a rigid BaFBr1-xIx:Eu2+ high resolution PIP was 
scanned with the same DX-M digitizer, with adjusted scan parameters for optimal 
image quality.  

Measurement Procedures and Exposure Conditions 
The technical image quality for both systems was determined in according to the 
methods of the IEC 62220-1-2 standard [6]. The X-ray spectrum used in the meas-
urements corresponded to the RQA-M2 radiation quality, with an X-ray tube voltage 
of 28 kVp, an internal Mo filter and an external Al filter of 2.0 mm. The resulting Al 
half-value layer was ca. 0.61 mm Al. The normalized noise power was determined at 
a dose of 77 μGy, and the MTF at a dose of 156 μGy. The dose was measured with an 
ionization chamber dosimeter prior to the exposure. As X-ray source a Siemens 
Mammomat 1000 X-ray tube with focal spot size of 0.3 mm was used. The tube is 
mounted on a horizontal bench, allowing easy introduction of extra diaphragms for 
optimal exposure conditions to guarantee high primary-to-scatter ratio. 
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Measurement Analysis 

DQE Calculation 
The 2-dimensional frequency-dependent detective quantum efficiency DQE(u,v) is 
given by: 

DQE(u,v). = MTF2(u,v).Win(u,v)/Wout(u,v)                            (1), 

where MTF is the pre-sampled modulation transfer function of the imaging device, 
Wout the noise power spectrum of the flat-field image made with the X-ray imaging 
device and Win the noise power spectrum of the incoming X-radiation at the detector, 
i.e. phosphor plate surface. The input noise power spectrum is equal to the incoming 
X-ray quantum fluence and is constant for all spatial frequencies (white noise).  

The DQE, calculated as the average of the DQE measured in slow- and fast-scan 
direction, was used for comparison between the systems and for comparison with 
model calculations. 

3   Model Calculations 

Sections 1: X-ray spectrum generation in X-ray tube 
The X-ray spectra are calculated using the model of Tucker et al [7]. Using this semi-
empirical model, the bremsstrahlung and characteristic X-rays produced at varying 
depth in the W anode is simulated, resulting in a spectral distribution of X-rays gener-
ated in the tube. The attenuation of arbitrary internal filtration on the spectra is calcu-
lated using the energy-dependent Lambert-Beer law [8]. Attenuation data used for the 
materials were obtained from the National Institute of Standards and Technology 
(NIST) [9].  

Section 2: spectral changes by filtration 
Section 2 generates the X-ray spectrum after transmission through an external filter, 
usually present in an X-ray imaging system. The output of section 2 is the X-ray spec-
trum incident on the phosphor plate. 

An X-ray spectrum corresponding to the RQA M2 Al half-value layer of 0.612 mm 
was generated. To obtain this HVL, the Mo-generator X-ray source high voltage had 
to be set at 28 kVp for the combination with the internal Mo filter of 0.025 mm and 
the external 2.0 mm Al filter. 

Section 3: Interaction of X-rays with phosphor plate 
Section 3 covers the interaction of X-ray quanta with the phosphor layer and the gen-
eration of light in the stimulation process. The linear-systems approach [10] is used to 
describe both signal and noise transfer in the system. The link is made to metrics of 
image quality and system performance including the modulation transfer function 
(MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE).  
The cascaded systems approach represents the imaging system as a series of discrete 
stages, where each stage represents a process which affects either the mean number of 
image carriers, a gain stage, or the spatial distribution of the image carriers, a  
spatial spreading stage. Each of these processes has distinct signal and noise transfer 
characteristics. 
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First, the interaction of X-rays with the plate is modeled. The spectrum of the X-
rays that deposit energy in the screen is calculated using the energy dependent law of 
Lambert-Beer and using the mass-energy absorption coefficients of the phosphor 
material. Since the plate response is not homogeneous, it is split up in 15 virtual lay-
ers in the thickness direction and the energy deposited in each layer is calculated. The 
energy needed to create a storage center in the storage phosphor being known, this 
allows calculation of the number of storage centers being created in each layer.  

Next, stimulation of the phosphor plate by the digitizer in the read-out phase is 
modeled. The stimulation efficiency is assumed for each virtual layer of the phosphor 
screen, giving the fraction of storage centers that will give rise to an optical photon. It 
is assumed that the stimulation efficiency in the top layer is higher than that in the 
bottom layer. For the intermediate layers, the stimulation efficiency is obtained by 
linear interpolation. Photons generated in the stimulation process have a certain es-
cape efficiency towards the digitizer optics. Again, each virtual phosphor plate layer 
is assumed to have a different escape efficiency, the escape efficiency from the top 
layer being higher than the escape efficiency from the bottom layer. The stimulation 
and light emission stages give rise to spatial spreading of the signal, caused by lateral 
light diffusion. Therefore, an MTF is connected to these stages. In our model, the 
MTF of the stimulation and emission stages is described by a Lorentzian, which is 
different for each virtual phosphor plate layer: 

MTF(u) = [1 + (u/H)2]-1                                                 (2) 

The Lorentz factor H is normally assumed to be higher for the top than for the bottom 
layer of the plate. The H values for the intermediate layers are calculated by linear 
interpolation. The noise transfer of these 3 stages is calculated using the cascaded 
systems approach. The NPS is calculated for every virtual layer using the input pa-
rameters for the individual layers as described. The total NPS is calculated by sum-
ming the NPS of the individual layers. 

The system MTF at this stage is calculated as the weighted average of the virtual 
layers' MTF, the weighing factors being the relative contributions of the layer to the 
signal. The weighing factor, therefore, depends on the X-ray absorption and on the 
stimulation and escape efficiencies of the virtual layer. 

The DQE at this stage is calculated as: 

DQE(u) = q0.G
2.MTF(u)2/NPS(u)                                         (3) 

where q0 is the mean number of quanta incident on the screen and G is the gain of the 
phosphor plate, i.e. the number of photons per incident X-ray quantum. 

Table 1 summarizes the parameters used for the simulation of DQE of both  
systems.  

Section 4: Conversion of photons to photoelectrons 
The signal conversion stage deals with the transmission of photons to the detector by 
the digitizer optics, with the passage through the filter for stopping the stimulation 
light and with the conversion to photoelectrons. The total system gain is calculated as 
the gain of the previous stage, multiplied by the transmission efficiency of the light 
guide, the transmission of the filter and the quantum efficiency of the light detector. 

The noise transfer is again calculated using the cascaded systems approach. 
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Table 1. Model parameters for PIP and NIP system DQE calculation 

System PIP NIP 
Phosphor BaFBr1-xIx:Eu2+ CsBr:Eu2+ 
Coating weight (mg/cm2) 52 50 
Effective thickness (μm) 104 110 

Fill factor (%) 75 90 

Physical thickness (μm) 138 122 

X-ray absorption (%) 85 87 

# virtual plate layers 15 15 

Storage center generation energy (eV) 100 75 

Est. number of F-centers / abs. X-ray 200 265 

Stimulation efficiency (X-ray side) (%) 80 75 

Stimulation efficiency (bottom) (%) 30 65 

Escape efficiency (X-ray side) (%) 70 80 

Escape efficiency (bottom) (%) 20 60 

MTF Lorentzian (X-ray side) 2.2 1.6 

MTF Lorentzian (bottom) 3.5 4.9 

Coupling efficiency optics (%) 60 60 

Filter transmission (%) 50 45 

PMT quantum efficiency (%) 28 25 

Pixel aperture (μm) 50 50 

 
The pre-sampled MTF represents the deterministic spreading of the photons by the 

pixel aperture. It is considered as deterministic since each integrated photon is con-
ceptually redistributed to a single point (the pixel center) at which it will be counted. 
The pre-sampled MTF is modeled with a sinc function. The total system MTF is cal-
culated as the MTF of the previous stage, multiplied by the sinc function. 

Section 5: Addition of screen structure noise 
Since it is very difficult to model the screen structure noise, a simple approach is used 
[11]. Per frequency extra noise is added to the total NPS. 

4   Results 

4.1   MTF 

Figure 1 shows the measured and calculated MTF. The MTF for NIP systems is 
higher than for PIP systems. The improvement in sharpness is most pronounced at 
high frequency. The correspondence of simulated MTF and experimental MTF is for 
both systems very good. 
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Fig. 1.  Measured PIP (squares) and NIP (triangles) CR systems' MTF and fitted values (lines) 

4.2   DQE 

Figure 2 shows the measured and calculated DQE curves for both systems.  In this 
simulation, the experimental SSN as obtained from the dose dependence of the NPS is 
used. There is good correspondence between the measured and calculated DQE val-
ues for the PIP system. For the NIP system correspondence is perfect when experi-
mental SSN data are used. In trying to optimize the fit for PIP, an optimization of 
SSN was done. Since only 3 dose levels were tested in dose range is restricted to 38 – 
156 μGy, the accuracy of this SSN calculation is not good. Extra dose levels espe-
cially at even higher dose levels are needed for a more accurate characterization of the 
SSN. In fig 2 measured and calculated DQE curves are shown for the PIP systems 
after optimizing the SSN for optimal fit of calculated to measured data. Compared to 
the experimental SSN data at low frequencies a 1.5 to ca 2x higher SSN is needed for 
optimal fit quality. The fact that for NIP no further optimization in SSN is needed to 
get a perfect match between experimental and simulated DQE is a further illustration 
of the lower contribution of SSN to the image quality at higher dose levels for NIPs. 
In the relevant mammographic dose range, screen structure noise is an important 
contributor to the total noise of the system. The lower SSN for NIP is responsible for 
a considerable contribution to improvement of the image quality at low frequency. 

The experimental DQE is at low frequency at least 30% higher for NIP than for 
PIP. The relative DQE (NIP / PIP) increases continuously over the entire spatial fre-
quency range, reaching a factor of 2 at 5 lp/mm. As indicated in [5] the higher DQE of 
the NIP CR system results in a superior performance of the system in observer per-
formance studies, or a potential lower patient dose for the same image quality as 
compared to the PIP CR systems. 
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Based on the above estimated number of storage centers generated per absorbed X-
ray quantum in the phosphor and the efficiencies to model the various cascades in the 
imaging process, the number of photon generating photon electrons on the cathode of 
the PMT that can contribute to the signal is estimated to be 3.5 for PIP and 7.7 for 
NIP. The high voltage on the PMT is used to amplify the signal to a fixed working 
point to assure similar grey levels in clinical images. The higher number of photons to 
generate photo-electron on the PMT cathode for NIP ensures a higher signal to noise 
level as compared to PIP. Experimentally, at low dose a significantly lower NNPS is 
measured for NIP as compared to PIP which is more or less constant over the fre-
quency domain (20 – 30%).  
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Fig. 2. Measured PIP (squares) and NIP (triangles) CR systems' DQE and calculated values 
(lines). Model calculations using experimental SSN and model calculations after optimization 
of SSN for optimal fit to experimental DQE. 
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Abstract. In order to justify the clinical use of a new modality such as digital 
breast tomosynthesis (DBT), a performance test in terms of a clinical parameter 
is indicated. For screening applications, lesion detectability is crucial. Whereas 
a real phantom with typically a homogeneous background that includes a series 
of details may provide a good indication of such detectability, a more specific 
approach is needed if the potential advantages of DBT have to be assessed.  
More specifically, the potential of the reduction of soft tissue superposition has 
to be covered in the performance test. We propose 2 concepts for a performance 
evaluation phantom: a hardware phantom with lesion-like inserts and where a 
background can be simulated on top of the images, and a software phantom 
with simulated lesions of different size and density (that can originate from 
theoretical models or from attenuation templates of real lesions). We discuss the 
need and the use of these phantoms for performance testing. 

Keywords: Test objects, breast tomosynthesis, performance, observer studies. 

1   Background 

Digital breast tomosynthesis (DBT) is a new x-ray breast imaging technique, that can 
be offered as a separate system or as an option on (2D) mammography systems [1]. In 
a DBT acquisition, the x-ray tube moves in a small angle around the breast while a 
series of X-ray images are acquired, either with continuous tube motion or in a step-
and-shoot mode. From these projections, images parallel to the detector are recon-
structed. Image quality and performance are determined by X-ray tube, detector, 
beam quality, dose, geometry and motion, image reconstruction and visualisation. 
There are steps than in 2D full field digital mammography (FFDM).   

An absolute performance evaluation of a DBT system should ideally be driven by the 
clinical task addressed. In this regard, screening needs a high detectability for (subtle) 
lesions. Justification to implement the new modalities into screening programmes may 
therefore require evidence that lesion detectability using DBT alone or combined with 
FFDM, improves compared to FFDM. For purely diagnostic applications, performance 
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may relate more to the accurate work-up of a lesion. Today, it is a challenge to under-
stand and assess the performance of a DBT system.  

Detectability of lesions in DBT is influenced by three key-issues: (1) the quality of 
lesion reproduction in a reconstructed plane; (2) the ability of the DBT system to 
suppress out of plane texture produced by adjacent tissue; (3) the reconstructed image 
plane thickness presented to the radiologist. A well resolved reconstruction of a plane 
without any infolding of adjacent tissues may not be the best solution in the clinical 
practice. For example, there may be a minimum amount of tissue required to help the 
radiologist recognize patterns like clusters of microcalcifications.  

Classical approaches of detectability assessment such as contrast-to-noise ratio 
(CNR) [2,3], with the contrast created by a homogenous insert in a homogenous 
background, will not fully assess the possible improvement in detectability produced 
by a DBT system over FFDM. The fact that the zero spatial frequency component of 
an object frequency spectrum is largely depressed in the reconstructed planes implies 
that large area image contrast may be reduced in DBT; the edge enhancement effect 
often seen in images reconstructed using the filtered back projection method [4] sug-
gests that object edges or perimeter may be determining for detection. There is likely 
to be a difference between detection of small, irregularly shaped objects with a high 
contrast (such as clusters of microcalcifications) versus large objects with a more 
smooth shape. Artefacts may even be of benefit for detection purposes. In practice, 
benign and speculated masses may end up with different detectability characteristics. 
It can be anticipated that lesion detectability will be distinctly different, depending on 
object signal (size) and background structure [2]. Assessment with simple geometrical 
test objects may not provide a complete answer. 

In the present text we discuss concepts for the practical performance testing of 
DBT systems. Ideally we would need a method (phantom, evaluation strategy, refer-
ence values, …) that answers 2 requirements: (1) the results correlate with the clinical 
performance and (2) the method can be applied on all systems. Several concepts have 
been simulated with our DBT simulation environment. 

2   Material and Methods 

In Table 1, we present an overview of parameters with an expected direct impact on 
the performance of a DBT system and the challenges in assessing them. 

We discuss 2 tools to approach a performance test:  

1. A ‘hardware’ phantom. The phantom should include realistic targets (represent-
ing microcalcifications and small masses with smooth and irregular borders) with a 
preference for alternative forced choice (AFC) reader tests (manual reading) or a 
larger number of objects for computerized reading, and produce a realistic scatter 
pattern for all competing breast X-ray imaging modalities. It should test at different 
locations and for different breast thicknesses. Anatomical backgrounds, ranging from 
fatty to very dense and having different thicknesses, could be foreseen in the phantom 
base material or added artificially, by multiplying the projection images of the real 
phantom with ‘templates’ from a real breast acquisition or from breast models. 
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Table 1. Overview of system parameters with a possible, direct impact on the performance of a 
DBT system and the challenges when defining a measurement methodology 

Part Parameter Challenges

α, Δα, number of projections
Optimization requires 
simulation as these parameters 
cannot be (freely) set

Geometry
Required measurement accuracy

Continous vs. step-and-shoot
Include patient motion in the 
test

AEC
Dose (proj, α, thickness, 
glandularities); Beam quality

Dosimetry for tube in motion;  
Need new conversion factors; 
Organize patient dose surveys

Reconstruction algorithms

Processing algorithms

Slabbing, MIP

Hanging protocol' and speed of 
display

Reconstruction & 
processing

Display

Define: 3D NPS, 3D MTF, artefact 
spread function; Study 

detectability and 
characterization of lesions on 
antropomorphic or anatomical 

background

Evaluation representative for 
the clinical working condition; 

evaluation of artefacts

Pixel size (binning), detector 
material

Detector

Tube

Define 2D NPS, MTF, lag, 
homogeneity for low dose 
oblique projections; Access to 
raw data of the projection 

 
 

2. A ‘Software’ phantom  Method 1: the use of a specific series of 3D voxel models 
that represent realistic breasts, both in terms of X-ray attenuation coefficients and 
visual appearance. Projection images can be calculated from these models and that 
can then be reconstructed with the DBT reconstruction tools.  The model is its own 
gold standard. Insertion of virtual lesions, either from theoretical models or from 
templates retrieved from acquisitions of real lesions can improve specificity.  
Method 2: the use of projection data of real patient cases into which templates of 
attenuation coefficients of real lesions (with given size and position) are simulated. 
These hybrid images can be  reconstructed using routine reconstruction software. 
Observer studies can be set up. 

3   Results 

All suggested methods require access to the reconstruction software. In our team, this 
is performed for the Siemens DBT system using TomoEngine (Siemens, Germany). 

1. The ‘Hardware’ phantom. Fig 1 shows a phantom design for a DBT assessment 
test and an image acquired from this phantom on a Siemens DBT system. It includes 
spheres of different glandularities and small particles to represent fibrils and micro-
calcifications. The phantom is modular: the objects can be inserted in several configu-
rations. Different types of breast simulating (homogeneous) tissue can be used to 
overlay the inserts. There are no inhomogeneous layers foreseen. Fig 2 illustrates an 
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approach to create anatomical backgrounds, via the multiplication of the projection 
images with profiles of real structures. This approach is especially appealing for the 
study of small details. Larger details may become unrealistic as mass effects cannot 
be easily simulated. Fig 3 represents a modular phantom concept that can be devel-
oped into a performance testing phantom for DBT and breast-CT.  

     

Fig. 1. Left: A physical test object for performance testing of DBT with inserts in one plane and 
triangle segments of glandular tissues in another plane (by A. Walker, Leeds Test Objects, UK). 
Right: DBT acquisition on a Siemens Inspiration DBT system (W/Rh, 26kV, 200mAs). 

  

Fig. 2. Left: Reconstructed plane from projections of the phantom (Fig 1) after multiplication 
with anatomical background. Middle & Right: magnified image segments  

 

Fig. 3. A modular approach allows the testing of different modalities using the same basic 
phantoms. Concept developed within the FP7 breastCT project for FFDM, DBT and breastCT. 
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Breast tissue simulating backgrounds have been used in a commercial phantom 
(Mammography BR3D phantom), consisting of a set of 6 slabs made of a mixture of 
breast equivalent material mimicking 100% adipose and glad tissues swirled together 
in 50/50 ratio by weight. One slab includes a simulation for  micro-calcifications, 
fibrils and masses. AK Carton (Duke conference on tomosynthesis, May 1st, 2009) 
produced a promising antropomorphic phantom from the Bakic voxel model.  

2. The ‘software’ phantom. Method 1. Breast simulating (voxel model) phantoms 
are available today [5,6]. Fig 4 shows a typical example. Projection data are being 
calculated from this model using a Monte Carlo detector model [7],[8]. Into such a 
phantom, lesions with well known contrast, size and 3D position can be simulated [9]. 
The development of always more sophisticated phantoms is on-going work in several 
teams. Images thus simulated, with lesions at known locations for the computer but 
unknown for the human reader, can be input for free response Receiver Operating 
Characteristic (FROC) studies (human observations). 

Fig 5 illustrates the approach (Method 2) of the partial simulation, in which lesions 
are being simulated into the projection images of real patients that are then recon-
structed using the clinical tools. Artefacts typically seen in normal DBT images may 
also be seen and studied in simulated images. 

The proposed phantoms are being developed, difficulties are gradually overcome. 

4   Discussion and Conclusion 

The justification of DBT could be performed via large clinical trials. As with 2D 
mammography, this may be very expensive and time consuming. Typical occurrence 
of cancer in screening series is about 6 to 7 cases per 1000 women, and whether a 
case is indeed normal is only confirmed after the subsequent screening round. The 
fact that not only global justification is required, but more refined justification that is 
specific to several types of patients or the use of the technique in comparison to other 
modalities such as echography and MRI etc, further emphasizes the need to test as 
many parameters as possible with hardware and/or software phantoms.  

With regard to the objective assessment of image quality through the use of calcu-
lated parameters, we propose to opt for a DQE that is evaluated from reconstructed 
data; this would allow a measurement of system efficiency on an absolute scale, even 
for systems where there is no access to the projection images. However, there are 
potential problems with this method including the degree to which linear systems 
analysis can be applied to images with non-linear processing in order to estimate 
modulation transfer function (MTF), for example. Normalization of the noise power 
spectrum (NPS) for system gain in the reconstructed image sequence poses a further 
problem. The effect of anatomical background cannot easily be accounted for. 

We have presented two approaches, using hardware and software phantoms, to 
overcome the limitations of a purely physics metrics. We are convinced that one 
hardware phantom with a homogenous background will not allow to evaluate the 
performance of DBT and certainly not the added value of DBT when compared to 
competing techniques. We hypothesize that the use of software phantoms or the add-
ing of a background structure to phantom images may be a valuable alternative.  
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Fig. 4. Software phantom. Left: Mammogram calculated from a 3D voxel model of a breast.  
The model can be foreseen with simulated lesions for performance testing. Top: model for a 
mass based upon a random walk. Middle: 3D model of microcalcification cluster, obtained via 
micro-CT acquisition of a real cluster [9]. Right: model for speculated mass. 

 

Fig. 5. Simulation of small objects into the projections of real cases or into homogenous 
PMMA plates. Left: a cluster of microcalcifcations simulated into anatomical backgrounds. 
Middle: a sphere of 1cm diameter and consisting of glandular tissue has been simulated into 
PMMA.  Right: the same sphere simulated in an anatomical background. Artefacts visible in 
the PMMA images are faintly visible in the anatomical planes. 

 

CNR evaluations have a crucial role in 2D FFDM, but the predictive power of 
this metric for system detectability may be weakened for 3D imaging modalities. 
Appropriate MOs may link better with detectability of objects, although the applica-
tion of this method is complicated by the presence of structured noise [2]. The 3D 
detectability could be expressed via the detectability in the 2D tomographic plane 
with maximal detectability or as a (weighted) sum of detectability in an adjacent 
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series of reconstructed planes. More research, particularly with respect to the vali-
dation of MO methods in DBT has high priority. 

The software phantoms proposed in this text, can be expanded to breast CT or 
other X-ray modalities (2D FFDM, phase contrast, dual energy approaches, 
monoenergetic rays) as long as the detected signal can be simulated. Equally crucial is 
the access to raw, projection data, the possibility to use the image reconstruction 
software as a black box and the same with the image processing software. 

A good performance test object could test the potential benefits of some particular 
design features (like geometry, new design of grids, dual energy, …) or beam quality 
settings of the systems. Other aspects cannot be easily tested neither with static test 
objects nor with simulated phantoms: the advantages of step and shoot versus con-
tinuous motion, ultra short acquisition times, slot scan devices, etc. For such applica-
tions, it may be sufficient to review series of patient cases and calculate rejection rate, 
the number of obvious motion artefacts, etc… The role of the radiologist and the 
radiographer should not be underestimated. 

The concepts presented here should be further discussed with other groups and 
compared to other concepts that aim for performance testing. 
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Abstract. Digital breast tomosynthesis (DBT) provides a possible solution to 
overcome the problem of overlapping tissue since it provides a 3D volume rep-
resentation of the imaged object. In order to study the detectability of lesions in 
DBT, we have developed a simulation tool where objects are simulated into real 
projection DBT images. The methodology has already been validated for 3D 
geometrical shapes and has now been extended to irregularly shaped lesions. 
The work focuses on the simulation of clusters of microcalcifications that are 
modeled using micro-CT images of biopsy specimens containing such lesions. 
The compilation of a database of microcalcifications clusters classified follow-
ing Le Gal nomenclature is ongoing. These extracted model lesions were then 
simulated into images of biopsy specimens next to the original real cluster in 
order to confirm the realism of the simulation. 

Keywords: breast tomosynthesis, microcalcifications simulation, image quality.  

1   Background 

Digital tomosynthesis is a form of limited angle tomography that produces section 
images from a series of projection images acquired as the x-ray tube moves over a 
prescribed path [1]. The total angular range of the tube movement ranges from 15° to 
50° for digital breast tomosynthesis (DBT). The projection images are then recon-
structed into planes parallel to the detector. DBT is considered as a potential imaging 
technique for early detection of breast cancer as it provides volumetric information of 
the breast that could solve the problem of overlapping tissues hiding pathology of 
interest [2]. Whether this modality improves the detection of subtle lesions, when 
compared to 2D mammography, remains to be proven. To study the detectability of 
lesions, we have developed and validated a software framework that can simulate 3D 
objects into a DBT image series in a realistic way [3]. The technique of simulation 
has been applied to both 2D projection mammography [4] and to DBT imaging [5].  

In the present work, we report on the simulation of subtle lesions (microcalcifica-
tions) into DBT images, including the methodology to produce 3D models of clusters of 
microcalcifications, the collection of a database of different types of microcalcifications, 
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and the procedure to simulate these clusters into DBT projection data. We also report on 
the steps towards a validation study to verify the realistic appearance of simulated mi-
crocalcifications. The goal of the current work is to use the framework described by 
Shaheen [3] and adapt it to the simulation of clusters of microcalcifications into real 
patient breast images for later use in observer studies concerning the detectability of 
such lesions in DBT. 

2   Materials and Methods 

2.1   Simulation Framework: Theoretical Aspect 

A framework was previously designed [3] to simulate small 3D objects into real pro-
jection images of breast tomosynthesis systems. Fig. 1 is an overview of the different 
steps: a 3D object (including its spatial coordinates) is defined and ray traced using 
the Siddon algorithm [6] to obtain templates representing the total primary X-ray 
attenuation for the different tomography angles. These ideal templates are then modi-
fied to the corresponding detector characteristics by multiplying each template by its 
corresponding detector modulation transfer function (MTF). Due to the assumption 
that the simulation object is small, the noise is assumed to be inherited from the back-
ground. The scatter fraction is then calculated based on Boone’s data [7] and used to 
estimate the scatter offset and the primary component of the beam. The templates are 
multiplied with the estimated primary part of the real tomographic input images. 
These hybrid images are subsequently reconstructed. This same methodology can be 
used to simulate objects into 2D digital mammography systems by considering the 
geometry of the system and using correct estimates of scatter fraction for systems 
with anti-scatter grid. The pre-processing (raw) hybrid image is then processed with 
the image processing algorithm. 

Object 
description

Ray tracing Ideal 

Template 

Template 
modification

InsertionReconstruction

 

Fig. 1. Simulation process for 3D objects 

2.2   3D Model of Microcalcifications 

In order to assure a realistic representation of microcalcifications, the simulation starts 
from biopsy specimens containing clusters of microcalcifications. The specimens are 
obtained with a guided vacuum large core needle (10 gauge) by means of a digital 
biopsy table [Mammotest Plus/S (Fisher Imaging, Norderstedt)]. For every patient 
case, the tissue containing the microcalcifications was preserved in a tube containing 
Formaldehyde (CH2O) (for later histological analysis) and was imaged using a cone 
beam micro-CT scanner (SkyScan 1172) that provides projection and 3D images. 
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2.2.1   Model Building 
To obtain good models of the microcalcifications, the micro-CT exposure settings 
were adjusted for each sample. Tube voltage was varied between 60 to 80 kVp and 
the µAs was set to give low noise without saturation. In the simulation framework, the 
linear attenuation coefficient of the 3D object is assumed to be constant within the 
object. Therefore, the microcalcification model is obtained by segmenting the micro-
CT 3D images to produce a binary 3D model.  

A segmentation procedure is applied to every reconstructed image of a biopsy 
specimen. This included microcalcification edge detection, morphological operations 
such as dilation and erosion, and the application of a median filter to remove the 
background noise.  

Calcium oxalate (CaC2O4) is used as substitute material for microcalcifications 
since it is considered a close match [8]. The steps used to build the 3D models of 
clusters of microcalcifications as described in section 2.2 are shown in Fig. 2.  

 

Fig. 2. Steps to create 3D models of clusters of microcalcifications 

2.2.2   Database Building 
The creation of a database of 3D models of microcalcifications is currently in pro-
gress with data acquired on a weekly basis. Since it is important to preserve the shape 
information of the simulated microcalcifications that is crucial in diagnosis, the data-
base was set up to contain lesions representative for all morphologies found in clinical 
practice. The morphological characteristics of the microcalcifications were classified 
using the Le Gal system [9] (widely used in Europe). There are five Le Gal classes 
(Fig. 3): type 1 calcifications is defined as annular; type 2 is defined as regular puncti-
form (point-like); type 3 is defined as too fine to characterize the shape (dusty); type 4 
is defined as irregularly punctiform; and type 5 is defined as vermicular (worm-like) 
calcifications. While the goal is to obtain the different Le Gal types of calcifications 
as described by Zanca [4], this is not a straight forward task and is done by a trained 
radiologist. 
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Fig. 3. The classification of microcalcifications by their morphologic characteristics according 
to Le Gal’s classification system. 

2.3   Microcalcification Simulation 

2.3.1   Simulation Procedure 
A DBT system (Siemens Inspiration TOMO, Siemens AG Healthcare, Erlangen, 
Germany) with an angular range of ±25° that produces 25 projection images is used. 
The system is equipped with an a-Se detector with a pixel size of 85µm. The same 
system also produces 2D digital mammographic images. In order to simulate micro-
calcifications into patient images, the 3D models built as described in section 2.2.1 
are used as input. The spatial position of the 3D model of a cluster of microcalcifica-
tions is defined along with the geometrical information of the DBT system. The simu-
lation framework described in section 2.1 is applied to obtain modified templates to 
be inserted into real raw projection images prior to reconstruction. In case of tomo-
synthesis, the raw projection images are reconstructed using the software of the  
company (TomoEngine, Siemens, Erlangen, Germany) that is based on Filtered Back-
projection algorithm (FBP) [10]. For the 2D case, the default image processing algo-
rithm for 2D digital mammography (OpView2, Siemens, Erlangen) is applied to the 
raw image to obtain a processed image.   

2.3.2   Validation Method 
The present approach was validated for a selected set of biopsy specimens. These 
biopsy specimens were put on top of a 4cm PMMA slab and imaged by the DBT 
system in 2D and in tomosynthesis modes where the dose was set slightly higher for 
better visualization than for a typical 4.5cm breast in digital mammography (1.3 
mGy) and doubled in the tomosynthesis mode (2.6 mGy). In order to study the real-
ism of the simulation of the microcalcifications, the 3D model of the cluster based on 
the same specimen was simulated into the projection raw biopsy images of the real 
cluster at a spatial position adjacent to this cluster. 

One of the objectives of the presented work is the collection of a database of micro-
calcifications clusters that are classified according to their morphology. With such a 
database, it will be possible to study whether DBT preserves the shape information of the 
simulated calcifications. Our verification of the simulation procedure started with the 
simulation of the clusters of microcalcifications in the same environment as where they 
were taken from, in a simple homogeneous background. This would reduce the number 
of confounding parameters for the analysis, like anatomical background, different breast 
glandularity, the insertion position into a breast… These will be the topic of future  
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research. Fig. 4 shows an example of a simulated cluster of microcalcifications, using the 
proposed method, inserted in 2D digital mammography raw image (shown at left the 
processed version) and in tomosynthesis projections that are reconstructed (shown at 
right, for the in focus plane), where the region containing both the simulated and real 
clusters is selected and magnified next to it, to be able to visualize it. The arrow indicates 
the simulated cluster of Le Gal type 4. 

     

Fig. 4. A simulated cluster of microcalcifications (Le Gal type 4) in 2D processed image (left) 
and in reconstructed in focus tomographic plane (right). The simulated cluster is inserted adja-
cent to the real cluster and indicated by the arrow. 

3   Results and Discussion 

The creation of the database is still in progress.  A set of 15 biopsy specimens is col-
lected so far. Every biopsy specimen was scanned by the micro-CT, segmented to 
form a 3D model, and re-simulated into the biopsy images using the proposed meth-
odology for validation. From the 15 biopsy specimen cases, only 12 could be seg-
mented and modeled. Failure to do so was caused by reconstruction artifacts (beam 
hardening) of the micro-CT that made the segmentation impossible. An example of 
these artifacts is shown in Fig. 5.  

The simulated clusters in the 2D processed images and in the reconstructed tomo-
synthesis planes were judged by an expert radiologist who determined whether the 
simulated and real clusters were distinguishable and classified the clusters to the cor-
rect Le Gal type. The classification of the Le Gal types in our database is shown in 
Table 1. Since some clusters of microcalcifications were not consisting of only one Le 
Gal type, these clusters were classified to the type dominating the cluster.   

 

 

Fig. 5. A reconstructed micro-CT image with artifacts 
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Table 1. The different Le Gal types currently available in the database 

Le Gal type 
Number 
of models 

1 (annular) 0 

2 (regularly punctiform) 4 

3 (dusty) 3 

4 (irregularly punctiform) 5 

5 (vermicular) 1 
 

 
(a) Le Gal type 2 (regularly punctiform) 

 
(b) Le Gal type 3 (dusty) 

  
(c) Le Gal type 4 (irregularly punctiform) 

 
(d) Le Gal type 5 (vermicular) 

 

Fig. 6. Simulated vs Real clusters of microcalcifications of the different Le Gal types. The 2D 
processed image (left), and the in-focus reconstructed tomographic plane (right). The simulated 
cluster is indicated by the arrow. 
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For the distinction between real and simulated clusters of microcalcifications, 10 
out of 12 simulations were not distinguished by the expert radiologist, which is con-
sidered an encouraging feedback from the radiologist who had the freedom to zoom 
(in/out), scroll through the different planes, and to change the window level. The 2 
cases, which were recognized as simulated, had a slightly different background such 
that the real cluster was in a glandular tissue and the simulated was inserted into a 
fatty tissue. Some examples of the simulated and real clusters are shown in Fig. 6. In 
some cases such as in Fig. 6(b), the visualization and recognition of the Le Gal type 
of the cluster was better in 2D, this is due to the presence of artifacts around dense 
microcalcifications.  

The visibility of the microcalcifications is preserved throughout the simulation 
process which is an important aspect in simulating microcalcifications and a crucial 
requirement for diagnosis. 

4   Conclusion 

A newly developed methodology is proposed to simulate clusters of microcalcifica-
tions into real raw projection DBT images that can be generalized to 2D digital 
mammography and breast CT. It starts by building 3D models of microcalcifications 
that are acquired from biopsy specimens and their classification, in terms of morpho-
logical characteristics, into the different Le Gal types to form a database. Once an 
efficient database is established, it can be used to simulate these clusters into patient 
images using the proposed framework.  The future work is to validate this framework 
with patient data in order to use it in observer studies related to the detectability of 
such subtle lesions in terms of different aspects. The preliminary results show that it is 
a promising tool in terms of realism, efficiency and simplicity that can be applied in 
several applications.  
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Abstract. Spherically symmetric basis functions (blobs) are alternatives to the 
more conventional cubic voxels for image reconstruction in breast tomosynthe-
sis. The volume representation and its projection views (PV) are essential com-
ponents of iterative algorithms for image reconstruction from data collected from 
an area detector. This paper addresses the forward projection and backprojection 
process of three-dimensional (3D) breast reconstruction obtained from cone-
beam scans using tomosynthesis imaging equipment. The smoothness of the blob 
elements allows more realistic modeling of the breast, and the rotational symme-
try of the elements leads to more efficient calculation of both directional projec-
tion of the represented volume, as required in iterative reconstruction techniques. 
The combination of blob volume elements and the projection matrix method im-
proves tomosynthesis reconstruction in both accuracy and speed.  

Keywords: Breast tomosynthesis, cone-beam projection, image reconstruction, 
blob, projection matrix. 

1   Introduction 

Digital breast tomosynthesis (DBT) is an x-ray acquisition and processing technique 
which is based on a set of projection images acquired over a range of angles. From the 
reconstruction of the projection images a series of cross-sectional images or slices are 
obtained. The advantage of DBT over conventional mammography is that the slices 
do not contain a superposition of the anatomic structures that occur over the thickness 
of the breast.  Resolving the depth in the image to a selected slice eliminates the con-
founding effect of structures at other depths and can, therefore, enhance the conspicu-
ity of a tumour as well as facilitate spatial localization within the breast. Moreover  
the patient does not incur additional radiation dose from DBT compared to mammog-
raphy DBT. 

However the reconstruction of a three-dimensional (3D) breast volume is challeng-
ing in DBT because the dataset may be sparse and/or noisy: only a limited number of 
low-dose projections are acquired over an arc. Consequently spatial resolution 
through the thickness of the breast is typically inferior to the resolution within the 
plane of the detector. Iterative methods for calculating the reconstruction are preferred 
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when projections are sparse, noisy, or when sampling is non-uniform [1]. Iterative 
reconstruction techniques are based on successive estimation of backprojection and 
forward projections of the object estimated at intermediate stages of the algorithm [2]. 
However, they are critical steps in many tomographic image reconstruction tech-
niques. The computed values are based on a model of the data acquisition process 
which is often simplified or compromised by the need to minimize the reconstruction 
time. Therefore, much effort has been spent in designing fast projection techniques 
for reconstruction based on cubic voxels [3]. There remains a need for methods that 
combine the speed of the fast-projection techniques with more accurate modeling. 
This is particularly true for DBT, where the data acquisition is inherently incomplete 
and the breast is under-sampled. 

Conventional reconstruction methods generate breast representations that are com-
prised of volume elements or voxels that are generally cubic or rectangular prisms 
arranged on a regular Cartesian lattice. These choices, although they simplify the 
analysis/and are computationally efficient, allow only a crude approximation of the 
object according to the principles of sampling theory. As an alternative, smooth 3-D, 
spherically-symmetric volume elements known as ‘blobs’ are proposed [4]. Blobs, 
like cubic voxels, are centred on a regular Cartesian grid in 3-D. Unlike the contigu-
ous cubes or prisms, however blobs overlap and have a bell-shaped weighting profile 
whose value tapers smoothly from unity at the centre of the blob in the radial direc-
tion to nil at the surface of the spherical ‘blob’. 

In this paper we describe the application of smooth blob volume elements to a ray-
tracing reconstruction algorithm as well as a projection-matrix, and evaluate the im-
provements achieved in both computational speed and image fidelity compared to the 
use of cubic voxels.  

2   Method 

2.1   Breast Volume Representation by Blobs 

Reconstruction in DBT yields a discrete approximation of the (continuous) distribu-
tion of breast attenuation on a grid. Image values at intermediate locations (i.e., be-
tween the grid points) can be obtained by interpolation. The interpolation process 
consists of a convolution operation which appropriately weights and shifts copies of a 
voxel.  Therefore, using blobs, in principle a continuous description of the object 
could (theoretically) be restored by performing these interpolations everywhere in the 
volume, from the finite set of stored image data.  Following the approach of Lewitt 
[4] and Galigekere, [5] we present a blob-based representation of image reconstruc-
tion for DBT. 

Let ( , , )Tx y z=Q be the point in the object having components x, y and z along 

the orthogonal X-, Y-and Z-axes. The reconstruction volume V is a Cartesian lattice 
specified in terms of a reference point Q0 and a transposed array of index vec-

tors ( , , )Ti j k=J (all vectors are column vectors). ∆x, ∆y and ∆z describe the grid 

resolution in the three directions, respectively. In a Cartesian grid G, the 3-D coordi-
nates of a grid-point J in V can be expressed as vector: 
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( ) ( , , )Ti x j y k z= + Δ Δ Δ0G J G
. (1) 

The image representation denoted by f  at an arbitrary position Q within the volume 

is constructed as the superposition of scaled and shifted copies of the local basis func-
tion b, as follows:  

( ) ( ) ( ( ))f c b= −∑ J
Q J Q G J  . (2) 

For rotational symmetric basis functions (blobs): 

( ( )) ( ( ) )b b− = −Q G J Q G J
 . (3) 

where 2 2 2 1/ 2( )x y z= + +Q  denotes the distance of Q from the origin. The gen-

eral Kaiser-Bessel function is defined in the spatial domain as follows: 

2 2

( , )

1
( 1 ( / ) ) ( 1 ( / ) ) for 0 ,

( )( )

0 otherwise.

m
mm

m

r a I r a r a
Ib rα α

α
⎧ − − ≤ ≤⎪= ⎨
⎪⎩

 (4) 

where a is the extent of the blob (set as 2.0), r is the distance from the centre of the 
blob, and α is the ‘taper’ parameter (a property of the bell-shaped weighting profile) 
which should be 10.40 to obtain a high quality low-pass filter performance in the 
frequency domain of the basis function [2]). The function, Im. is the modified Bessel 
function of the first kind with order m (set m = 2 to get a continuous derivative within 
the blob and at the border [2]).  

2.2   Projection Matrix 

Regardless of the geometry that is chosen for image acquisition in DBT (e.g., isocen-
tric, partial isocentric or parallel), the image acquisition can be represented (in the 
homogeneous coordinate system) by a sequence of matrix operations. Following the 
rigid transformation of gantry and/or detector, the perspective view associated with 
each angle can be described by a single projection matrix P. The matrix P can be 
either estimated by imaging a calibration phantom or constructed from direct specifi-
cation of the acquisition geometry. We used the following geometry in our simula-
tions: the x-ray source-to-image distance (SID) is 63 cm, and the centre of rotation is 
2cm above the detector. The detector remains stationary while the x-ray tube rotates 
around the pivot, and θ is the rotation angle of the x-ray tube, with zero defined as the 
perpendicular position of the tube with respect to the detector. The projection matrix 
can be calculated as:   

0

0

0 1 0 0 sin

0 0 1 0 0

0 0 1 0 0 1 cos

SID u SOD

P SID v

SOD

θ

θ

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠  . 

(5) 
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where 0 0( , )u v are the coordinates of the perpendicular projection point of the source 

over the detector plane, and source-to-object distance (SOD) is the source to pivot 
distance. Deviations from ideal geometry can be incorporated through suitable trans-
formation matrix applied to P. Thus, the projection of an arbitrary grid-point ( )G J  

in the volume to be reconstructed V can be computed by matrix multiplication. Sev-
eral algorithms have been proposed for voxel-driven projection (VDP), based on the 
efficiency of matrix multiplication with P [5]. However, as commonly implemented, 
the quality of ray-driven projection (RDP) is superior to that of the VDP, especially in 
the case of perspective view or non-isotropic volume elements used in tomosynthesis. 
Here, we demonstrate the use of matrix P in ray-driven projection (Fig. 1).  

 

Fig. 1. Ray tracing with computation of distances from the x-ray to centres of blobs encoun-
tered in transit determine the active region of neighboring grid points 

2.3   Fast Ray Tracing Algorithm 

The x-ray passing through source point ( , , )T
x y zS S S=S  has a unit direction vec-

tor ( , , )T
x y zU U U=U  which is determined by the destination detector element. The 

equation of the x-ray is specified as: ( )t t= +Q S U . It is possible to extract source 

position S and ray direction U from P without matrix decomposition or any explicit 
knowledge of the detector pixel coordinates [5]. The two most important parts in ray-
driven projection (RDP) are finding the interception points of the x-ray with the vol-
ume of interest and computing the ray-sum. First, we must choose the most efficient 
dimension for ray tracing, and this is usually the dimension which has the maximum 
absolute value in U components, i.e., max( , , )x y zU U U . For illustration we con-

sider the Z- axis; similar equations apply to other directions. 
The points intercepted with each (kth) grid plane along the chosen direction can be 

determined by: 
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(6) 

The square distance from any grid point on the kth plane to the x-ray therefore can be 

expressed as 
22 ( ( ) ( ))kr t= − ×Q G J U , as shown in Fig. 2, which expands to 

simpler formula compared to other general ray-tracing algorithms [6]. Let 

( ) ( )kt −B = Q G J , 
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B = Q G J  . (7) 

Because the third component of B in equation 7 equals zero, the time required to 
compute the square distance is reduced by one-third. Furthermore, other two compo-
nents of B are comprised of a constant part and an incremental part when moving 
from one grid position to next along the chosen direction.  

 

Fig. 2. Distance from an x-ray to the centre of a blob on any grid lattice 



248 G. Wu, J.G. Mainprize, and M.J. Yaffe 

 

The acquisition of the digital breast tomosynthesis was simulated for a partial isocen-
tric geometry. The detector was stationary while the x-ray tube rotated around a pivot 
point. Eleven (11) projections were taken at different angles from -20° to 20°, with 4° 
increments, using monoenergetic (20 keV) x-rays. Two mathematical phantoms repre-
senting the compressed breast were created: Phantom A and Phantom B. Phantom A has 
a uniform distribution of 50% fibroglandular and 50% adipose tissue as background. 
While Phantom A provides a good model of the artifacts inherent in DBT, its uniform 
background is an oversimplification of the complex detection task in clinical breast 
screening and diagnosis. Anatomic structures in the normal breast, particularly in the 
dense breast (which contains a high proportion of fibroglandular tissue), present a ‘clut-
tered’ background which may confound image interpretation. Phantom B was designed 
based on volumetric tissue attenuation data obtained from a clinical breast tomosynthe-
sis examination and, therefore, has a depth-dependent structure. Both mathematical 
phantoms are rectangular prisms in shape and each contains a simulated small tumor (4 
mm × 4 mm × 2 mm) at the centre.  The attenuation coefficients of the simulated tu-
mour are equivalent to those measured for infiltrating ductal carcinoma (IDC) [6]. 

An iterative reconstruction method, simultaneous algebraic reconstruction tech-
nique (SART) has been implemented in Matlab and C++ to evaluate the performance 
of reconstruction algorithm which use blob voxels. The conventional box-voxel re-
constructions are also used to compare the resulting image quality. 

3   Results 

For the uniform phantom (Phantom A), reconstructions based on cubic and blob  
voxels resulted in almost exactly the same volume, except that the blob-voxel recon-
struction tended to show more artifacts near the edge of the phantom if the boundary 
geometry is not correctly specified. 

   (a)  (b)  

Fig. 3. The central slice of the tumor after two iterations of SART reconstruction for Phantom 
B, shown in X-Y plane, in comparison of two different voxel types: (a) regular cubic voxels, 
(b) spherical blob voxels 

The central slices of the reconstructed volumes of the phantom B were compared 
between box and blob RDP methods, in the neighborhood of the simulated tumor as 
shown in Fig. 3. Fig 3a and 3b are displayed with the same grayscale window and 
centered at the same level. The blob-voxel reconstruction resulted in a less noisy but 
more blurry image compared to the cubic voxels. The box-voxel reconstruction is 
noisier and has more intensity fluctuations in the background tissue and the tumor, 
which introduce some ring-like artifacts in the tumor area. This is also demonstrated 
in the profile through the centre of the tumor for Phantom B, as shown in Fig. 4. 
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Fig. 4. Profiles through the center of the tumor for Phantom B. Dotted line corresponds to box-
voxel and the bold line correspond to blob-voxel. Dash line represents the truth value in the 
phantom. 

With respect to the speed of reconstruction algorithm, we observed computation 
time using blobs as voxel elements is comparable to that achieved using box voxels, 
when fast ray-tracing techniques are not applied in both cases. With the projection 
matrix based ray-tracing, we achieved enhancement in speed for projection simula-
tions by a factor of 6.5, and a factor of 4 for reconstruction. 

4   Discussion 

The speed of the algorithm is determined by the number of volume elements that are 
traversed by the ray. When higher accuracy is desired, the size of detector elements 
must be reduced or the overlapping of the blobs increased and this, increases compu-
tation time. As shown by Popescu et al [7], computational speed measured as a func-
tion of the number of volume elements traversed per unit time is comparable when 
ray tracing is performed using blobs or boxes. 

Using blobs on a regular grid enables a convenient and flexible model of the for-
ward and backprojection in DBT. The smoother, continuous representation of the 
sampled signal may yield a more accurate result but this is the subject of future work. 
Ray-tracing procedures based on the method described here have been implemented 
and tested, demonstrating flexibility for iterative image reconstruction for DBT. 
Evaluation of image quality (e.g., edge artifacts and the spread of intensity profiles in 
a region of interest (e.g., tumour)) will be addressed in further study comparing the 
performance of blobs and box voxels.  
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Abstract. In this paper we present a boosting based approach for au-
tomatic detection of micro-calcifications in mammographic images. Our
proposal is based on using local features extracted from a bank of filters
for obtaining a description of the different micro-calcifications morphol-
ogy. The approach performs an initial training step in order to automat-
ically learn and select the most salient features, which are subsequently
used in a boosting classifier to perform the detection. The validity of
our method is demonstrated using 112 mammograms of the well-known
digitised MIAS database and 280 mammograms of a full-field digital
database. The experimental evaluation is performed in terms of ROC
analysis, obtaining Az = 0.88 and Az = 0.90 respectively, and FROC
analysis. The obtained results show the feasibility of our approach for
detecting micro-calcifications in both digitised and digital technologies.

1 Introduction

Breast cancer continues to be a significant health problem in the world. It con-
stitutes the most common cancer among women in the European Union [1], and
it is estimated that in the United States between one in eight and one in twelve
women will develop breast cancer during their lifetime [2,3]. Mammography is
the most effective and reliable method for an early detection of breast cancer
which is fundamental for improving prognosis [4,5]. Mammographic images are
characterised by high spatial resolution allowing the detection of subtle scale
signs such as micro-calcifications and masses. In this work, we focused on the
detection of micro-calcifications, which are tiny granular deposits of calcium that
generally appear in a mammogram as small bright spots within an inhomoge-
neous background.

The automatic detection of micro-calcifications is a well-known topic in mam-
mography, as can be seen in the different surveys covering this topic [6,7] or the
recent works of Chang et al. [8], Nunes et al. [9] and Papadopoulos et al. [10].
The approaches for micro-calcification detection are usually based on two steps.
Firstly the detection of suspicious regions is performed, usually tuning the al-
gorithm parameters in order to detect as many suspicious regions as possible
(i.e., detecting the largest number of micro-calcifications but also increasing the
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probabilities to detect normal tissue as being a micro-calcification). Secondly,
a false positive reduction algorithm is applied in order to find those detected
suspicious regions being in fact normal tissue. However, none of these micro-
calcification detection approaches have emerged as a standard algorithm.

It is well known that digital mammography allows to improve the detection
of micro-calcifications thanks to its superior sensitivity [11]. Unfortunately, this
technology is not available in many countries and clinical centres due to its
expensive cost. Therefore, reliable automatic approaches able to detect micro-
calcifications in film plates are still necessary. In this work we present a boosting
based approach for the detection of micro-calcifications in both digital and digi-
tised databases. Our proposal is based on learning the different morphology of
the micro-calcifications using local features, which are extracted using a bank
of filters. Afterwards, this set of features is used to train a pixel-based boost-
ing classifier which at each round automatically selects the most salient one.
Therefore, when a new mammogram is tested only the salient features are com-
puted and used to classify each pixel of the mammogram as being part of a
micro-calcification or actually being normal tissue.

The rest of this paper is structured as follows. The following section describes
the proposed approach. Section 3 explains the methodology followed to perform
the experimental evaluation, which is done using two different databases and
ROC and FROC analysis. Finally, the paper ends with the conclusions and
further work.

2 Micro-calcification Detection

The presented approach for micro-calcification detection is based on the work of
Murphy et al. [12] for object detection using local features and boosting classifier.
As is shown in Fig. 1, the proposed approach is divided in three parts. Firstly, we
create a visual word dictionary, which is composed by convolving patches con-
taining a micro-calcification with a bank of filters. Afterwards, the training data
is found by convolving positive samples (patches containing a micro-calcification)
and negative samples (patches of other tissues) with the words of the dictionary
defined as the duple patch-filter. Finally, new mammograms are classified pixel-
by-pixel by the trained classifier. Hence, the detection problem is translated to
a pixel-based classification approach.

In the following subsections we describe in more detail the three parts of our
approach.

2.1 Building the Dictionary

The first task of the system consists in building the feature dictionary. This
dictionary is similar to an atlas, since it contains samples (patches) of micro-
calcifications. However, it also contains the convolution of these patches with
a bank of filters, including the delta function (which gives the own patch as a
result), 4 Gaussian derivatives, a Laplacian filter, a corner detector, and 2 Sobel
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Fig. 1. Schematic representation of our approach. Note that the final result of the
algorithm is a probability image where brighter pixels represent more confidence to be
a micro-calcification.

filters. Hence, the dictionary contains grey-level and gradient information of the
micro-calcifications and their neighbourhood.

Therefore, each dictionary word wij can be understood as the duple (pi, fj),
where pi represents the patch and fj the filter.

2.2 Training Step

Once the dictionary is built, the words are used to extract the mammographic
features that will be used for the micro-calcification detection. Hence, for the
training step, we need a different database of patches containing instances of both
patches with micro-calcifications and patches from the rest of the mammogram
tissues.

The feature extraction of each training image patch consists in two operations.
Firstly, it is convolved with all the bank filters, and secondly, the normalised
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cross-correlationwith all the words is computed. Mathematically, both operations
can be summarised as:

v = (I ∗ fj) ⊗ wij (1)

where I is the training image patch convolved (∗) with the filter fj and cross-
correlated (⊗) with the word wij (note that wij = pi ∗ fj). The resulting value v
represents the similarity of the training patch and the dictionary word. Therefore,
for each training image patch, a vector of features v is constructed by cross-
correlating all the dictionary words wij with the convolution of the patch itself
with filter fj. Notice here the necessity of keeping the filter as well as the patch
in the dictionary word.

In contrast with the original approach that uses all pixels in the image as the
centre of a positive or a negative patch, we manually select these points in each
training image. In particular, we select the centre of the micro-calcifications
as positive training examples and some random locations of the background
containing examples of different tissues as negative training examples. Note that
this is necessary in order to reduce the high computational cost due to the large
size of the mammograms.

At this point, the positive and negative training examples have been charac-
terised. Therefore, this data can be used to train a classifier. In this work, we
have used the Gentleboost algorithm [13].

Boosting algorithms are based on the simple idea that the sum of weak clas-
sifiers can produce a strong classifier. In the Gentleboost algorithm, the weak
classifiers (ht) are simple regression stumps with one of the features, so at each
round t the feature with less error is selected. The weak classifier used is:

ht(x) = aδ(xi > th) + b (2)

where th is a threshold that determines if pattern x belongs to the object class,
xi is the i’th dimension of x, and a and b are parameters selected to minimise
the error of the classifier (a is the regression slope and b the offset):

e =
∑

(z(y − (a(xi > th) + b))2) (3)

At each round the training data weights (z) are updated, increasing in the follow-
ing round the possibility of classifying correctly the previous incorrectly classified
points. In the GentleBoost algorithm the data weights are updated:

zt+1 = zte
y·ht(x) (4)

Hence, when testing a new data, the final (strong) classifier is computed using
the weak classifier created at each round of the boosting. Therefore, the testing
data is classified according to the sign of the sum of weak classifiers:

H(x) =
∑

h(x) (5)

The absolute value of H(x) shows the confidence of the classified data.
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2.3 Testing Step

Once the classifier is built, the system is ready for the testing step, where the
strong classifier H(x) is applied to new images in order to evaluate the micro-
calcifications detection. Note that the classifier is pixel-based, i.e. it is applied
one-by-one to all the image pixels. Therefore, the result of our approach after
evaluating a mammogram is a probability image, where high values represents
more confidence to be a micro-calcification.

Since the classifier is pixel-based, a pre-processing step may be necessary in
order to avoid the algorithm detecting micro-calcifications in the background (in
digitised images) and in the pectoral muscle. In particular, we used a previous
developed algorithm to detect the skin-line border [14] and the approach of Kwok
et al. [15] to remove the pectoral muscle.

3 Results

The experimental results were performed using two different subsets of mam-
mograms. The first subset of 112 mammograms was extracted from the MIAS
database [16], and contained all the mammograms with micro-calcifications (22
in total) and a set of 90 normal mammograms. In order to train the clas-
sifier with positive examples, an expert accurately marked among 5 and 15
micro-calcifications in each mammogram containing micro-calcifications, while
the negative examples were randomly obtained from the rest of tissues of normal
mammograms. On the other hand, we also used a set of 280 full-field digital mam-
mograms extracted from a non-public database, 90 of them containing micro-
calcifications and 190 being normal ones. The mammograms were acquired using
a Hologic Selenia mammograph, with resolution 70 micron-pixel, size 4096×3328,
and 12-bit depth. The selection of the training points was performed in the same
way that using the MIAS subset.

In order to perform the evaluation of our experiments in both databases
we used a 10-folder cross-validation methodology. Therefore, we divided both
datasets in 10 different groups. One of the groups was used to create the dic-
tionary, eight of them were merged for training the system, while the remaining
one was used for testing it. This procedure was repeated until all groups were
used for testing. Hence, each mammogram appears in the test set only once.

To perform the quantitative evaluation we used Receiver Operating Char-
acteristic (ROC) and Free-response Receiver Operating Characteristic (FROC)
analysis. In ROC analysis, a graphical curve represents the true positive rate
(number of detected mammograms with micro-calcifications divided by the to-
tal number of mammograms with micro-calcifications) as a function of the false
positives rate (number of normal mammograms incorrectly detected as contain-
ing micro-calcifications divided by the total number of normal mammograms).
Moreover, the percentage value under the curve (Az) is an indication for the over-
all performance of the observer, and is typically used to analyse the performance
of the algorithms. Note that points in the curve are obtained by thresholding at
different levels the result of Eq. 5.
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Fig. 2. Obtained FROC when testing the MIAS and the digital database. Note that
we obtained better results when testing the latter.

On the other hand, in FROC analysis the Lesion Localisation Fraction (LLF)
is obtained as the number of correctly detected lesions relative to the total
number of lesions and the Non-Lesion Localisation Fraction as the number of
non-correctly detected lesions relative to the total number of images. The FROC
curve is the graphical summary of both measures [17]. Note that the definition
of a detected region is needed. In this paper we assume that a region is detected
if a set of suspicious points are detected inside the region marked by the experts.

Using ROC analysis, we achieved an area under the ROC of Az = 0.88 for
the MIAS subset and Az = 0.90 for the digital database. Note here the benefits
of the digital technology, since applying the same method it allows a better
detection even when using a bigger number of images for testing.

On the other hand, the obtained FROC curves when testing both databases
are shown in Fig. 2. For the MIAS database we obtained 4.3 false positives per
image at a sensitivity of 80%, while using the digital database we obtained 3.2
false positives per image at the same sensitivity. Note that these numbers can be
decreased using a posterior false positive step. For instance, introducing spatial
constraints, and hence assuming that the micro-calcifications appear in the form
of clusters. Comparing the performance of the approach using both databases we
noticed that again we obtained better results using the digital one. This is the
expected behaviour since digital mammography improves the contrast between
the different internal structures.

Finally, we compare in Table 1 the results presented in this paper with those
obtained by different current state-of-the-art approaches using ROC analysis.
Note that each approach used a different subset of images coming also from
different databases and hence the comparison is only done in a qualitative way.
Note that the obtained results using our approach are of the same order as the



A Boosting Based Approach for Automatic Micro-calcification Detection 257

Table 1. Comparison of the obtained experimental results with state-of-the-art algo-
rithms for micro-calcification detection i mammographic images

Authors Cases Results (Az)

Chang et al. (2008) [8] 194 0.90
Nunes et al. (2007) [9] 121 0.93

Papadopoulos et al. (2008) [10] 60 0.92
Our approach – MIAS 112 0.88

Our approach – Digital 280 0.90

ones shown in the table. However, we want to stress here that our approach, in
contrast with the other ones, does not include a false positive reduction step,
and hence they are obtained directly from the detection step. Hence, applying
such false positive reduction step would probably increase them.

4 Conclusion

We have presented a new approach for micro-calcification detection based
on extracting local features for characterising the morphology of the micro-
calcifications. The proposed boosting approach allows the selection of the most
salient features at each round, reducing the computational time of the testing step.
The performed experiments have shown the validity of our proposal when using ei-
ther digitised or digital mammograms.

Further work is focused in two directions. Firstly, we would like to integrate a
false positive reduction step into the boosting algorithm to improve the results.
Secondly, we also want to expand this work for detecting and diagnosing clusters
of micro-calcifications.
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Abstract. Breast tissue density is an important risk factor in the detec-
tion of breast cancer. It is also known that interpretation of mammogram
lesions is more difficult in dense tissues. Therefore, getting a preliminary
tissue classification may aid in the subsequent process of breast lesion
detection and analysis. This article reviews several classification tech-
niques for two datasets, both digitized screen-film (SFM) and full-field
digital (FFDM) mammography, classified according to BIRADS cate-
gories. It concludes with a hierarchical classification procedure based on
k-NN combined with principal component analysis on texture features.
The results obtained classifying 1740 mammograms reflect up to 83%
of samples correctly classified. The method is being integrated within a
CADe system developed by the authors.

1 Introduction

Breast cancer continues to be an important health problem. Early detection is
the only way to improve breast cancer prognosis and significantly reduce women
mortality. It is by using Computer-Aided Diagnosis systems (CAD) that radiolo-
gist can improve their ability to detect and classify breast lesions, [1]. Therefore,
the development of reliable CAD systems is an important and challenging task
in automated diagnosis. However, automated interpretation of mammogram le-
sions still remains very difficult. Some of the reasons are the dense tissues. The
dense tissues may cause suspicious areas to be almost invisible and may be easily
misinterpreted as calcifications or masses [2], [3]. One of the CAD algorithms im-
plemented by the authors which highlights this fact is the adaptive filtering [4].
When processing a mammographic image with dense tissue using this method
it is necessary to adjust the input parameters to control the sensitivity of the
algorithm in areas of high intensity and thus reduce false positive detections in
these areas. Thus, it is possible to design optimal algorithms for a CAD system
by previously using breast tissue classification.

Moreover, there is also an interest in investigating the breast tissues since the
discovery of the relation between mammographic parenchymal patterns and the
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risk of developing breast cancer in 1976 by Wolfe [5]. A good review of the work
on breast tissue classification since then can be found in [6].

This research has been prompted by this need to classify breast tissue and
drive the development of CAD algorithms for automatic analysis of breast le-
sions. This paper is not intended to be applied to the classification of benign or
malignant lesion associated with tissue types [7], [8], but as mentioned above,
only to drive the CAD algorithms. In our study several classification meth-
ods have been compared and a hierarchical classification procedure based on
k-nearest neighbors (k-NN) combined with principal component analysis (PCA)
on texture features is proposed as the best solution. Experimental results have
been given on different mammograms with various densities and abnormalities
from both SFM and FFDM.

Section 2 describes the methods and material used for this work. This include
the feature extraction procedure applied to the classifiers, the tested classifiers,
the data training and testing carried on, as well as the experimental database
used. Section 3 describes the results obtained with the proposed method and
finally, in Section 5 the main conclusions are drawn.

2 Methods and Materials

There are several classification techniques to classify datasets according mammo-
graphic breast density [7]. We use the American College of Radiology BIRADS
that has been used in a number of studies and is the most common technique
used in the USA [9]. In this classification datasets have been classified accord-
ing to 4 categories. These are: T.I) fatty, T.II) fatty-glandular or fibroglandular,
T.III) heterogeneously dense and T.IV) extremely dense. Figure 1 shows this
clasification.

Fig. 1. BIRADS tissue classification. From left to right: T.I) fatty, T.II) fatty-glandular
or fibroglandular, T.III) heterogeneously dense and T.IV) extremely dense.
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(a) Original image (b) Preprocessed image

Fig. 2. Breast tissue selection

To deal with the breast tissue classification problem several studies have been
described in the literature. These studies are based on: a) the use of grey-level
histograms and b) texture information extracted from different regions. Our
proposal is to apply texture analysis on the whole breast tissue. Thus, all mam-
mograms have been previously preprocessed to identify the breast region and
remove the background and possible labels. This is illustrated in Figure 2.

2.1 Feature Extraction

Most studies on texture classification are based on statistical features obtained
from the image [10],[11]. Here we analyze 33 features, both 1st and 2nd order
texture statistics, obtained from the preprocessed image histogram and the co-
occurrence matrix-based features. The latest have been some of the Haralick’s
coefficients and they have been calculated for a distance parameter equal to 1
at 0, 45, 90 and 135 degrees [12]. These features were:

– (1st order): mean, variance, skewness, kurtosis and entropy.
– (2nd order): energy, variance, contrast, entropy, correlation, homogeneity and

the difference statistics: 2nd angular moment, contrast, entropy and mean.

The discrimination power of these features was analyzed with a feature ranking
on individual performance for classification method. This evaluation is based
on the results from intra-cluster and inter-cluster distances between the four
tissue types. These distances measure the variability within and between different
classes [13]. This will get the features that maximize these values. The ten most
significant features in increasing order of relevance were: 1st order variance,
1st order mean, 1st order entropy, 2nd order and 0 degrees entropy, 1st order
and 45 degrees entropy, 1st order and 135 degrees entropy, 1st order and 90
degrees entropy, 1st order asimetry, 1st order kurtosis, 2nd order and 0 degrees
correlation.
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Moreover, to reduce and select the feature space a principal component anal-
ysis (PCA) was applied. This mathematical procedure transforms a number of
variables that can be correlated into a smaller set of uncorrelated variables called
principal components.

Different tests were performed by varying the number of components from
the space reduced by the PCA. This number of components varies between 5
and 30 at intervals of 5. The average errors for all classifiers were measured at
each interval. These average errors range between 0.421 and 0.453 with the best
performance of 0.12 as shown in Table 1. The minimun error corresponds to the
reduction of the space to 10 components by means of the PCA.

In this process, the obtained eigenvectors and eigenvalues were analyzed in
order to find the most representative features according to the PCA. The ten
most significant features in increasing order of relevance were: 2nd order and 90
degrees variance, 2nd order and 45 degrees entropy, 2nd order and 45 degrees
homogeneity, 2nd order and 90 degrees homogeneity, 2nd order and 90 degrees
entropy, 2nd order and 45 degrees 2nd angular moment, 2nd order and 45 degrees
variance, 2nd order and 135 degrees variance, 2nd order and 0 degrees contrast,
2nd order and 90 degrees correlation.

2.2 Classifiers, Data Training and Testing

Different classification methods from the PRTOOLS Matlab library were tested
on the selected features [13]. These methods were: support vector machine (SVM)
with polynomial, minkowski distance, exponential, radial basis and sigmoid ker-
nels, neural networks (feedforward, backpropagation, perceptron and radial ba-
sis) (NN), k-NN with k equal to 1, linear bayes normal (LBN), quadratic (QD)
and tree-classifier with two layers ({T.I-T.II, T.III-T.IV} and {{T.I, T.II}; {T.III,
T.IV}}). The best results obtained for the SVM were with a polynomial kernel and
for the NN were with the backpropagation (BPNN), and these are shown here.

To train and test classifiers a combination of hold-out (H-method) and re-
substitution (R-method) methods is used [14]. This combination is accomplished
through two stages. In the first stage the data is divided into two groups con-
taining the same number of samples. One of these groups is randomly selected
to train the classifiers. Once trained the classifiers, the tests were performed on
the complete dataset.

The performance of these classifiers are shown and discussed in section 3.

2.3 Experimental Database

Two datasets were considered. One composed of 1418 FFDM provided by the
local Hospitals, and the other one composed by 322 SFM obtained from the
MIAS public database. The last set was used to compare our results with other
authors. Both datasets were labeled according to the BIRADS categories by three
expert clinicians from the Hospital General de Ciudad Real. The image sizes are
3328 ∗ 4084 and 1024 ∗ 1024 respectively for the FFDM and SFM datasets.

The MIAS database contains images from right and left medial-lateral projec-
tions (RMLO, LMLO) of 161 different cases while the FFDM contain in most cases
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(a) LCC (b) RCC (c) LMLO (d) RMLO

(e) Processed (a) (f) Processed (b) (g) Processed (c) (h) Processed (d)

Fig. 3. Breast image projections before and after the preprocessing step

the four projections, right and left medial-lateral as well as right and left cranial-
caudal (RCC, LCC). Figure 3 shows the original RMLO, LMLO, RCC and LCC
projections and the preprocessed images previous to tissue classification.

3 Results

Table 1 shows the results of the classifiers with and without PCA for the SFM
and FFDM datasets. The columns indicate the classifier used while rows indicate
the tissue types. The results of Table 1 (c) and (d) are given with 10 features since
the PCA obtained the best results with selection of 10 features, as mentioned
above.

The best classifiers are shown in bold for those ≥ 80% and light grey for those
≥ 75% and ≤ 79%. The best classifier is the SVM for T.I, k-NN for T.II and
T.IV and BPNN for T.III. On average and weighted respect to the number of
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Table 1. Agreement of Classifiers. % of Mammograms Correctly Classified.

Types SVM BPNN k-NN LBN QD

T.I 80% 52% 71% 55% 50%
T.II 69% 49% 71% 55% 45%
T.III 78% 81% 81% 79% 89%
T.IV 56% 23% 58% 42% 31%

(a) FFDM without PCA

Types SVM BPNN k-NN LBN QD

T.I 88% 88% 83% 75% 82%
T.II 71% 76% 78% 78% 72%
T.III 42% 82% 77% 77% 67%
T.IV 61% 36% 73% 61% 55%

(b) SFM without PCA

Types SVM BPNN k-NN LBN QD

T.I 64% 64% 70% 56% 69%
T.II 70% 38% 72% 49% 55%
T.III 81% 80% 80% 83% 83%
T.IV 60% 41% 58% 40% 55%

(c) FFDM with PCA

Types SVM BPNN k-NN LBN QD

T.I 77% 86% 77% 87% 76%
T.II 53% 67% 80% 68% 62%
T.III 61% 62% 80% 71% 49%
T.IV 57% 80% 75% 66% 66%

(d) SFM with PCA

Table 2. Confusion Matrices for the 1-NN Classifier

Estimated True
Types T.I T.II T.III T.IV Total

T.I 175 37 31 6 249
T.II 28 312 84 9 433
T.III 26 75 484 19 604
T.IV 9 14 32 77 132

(a) FFDM

Estimated True
Types T.I T.II T.III T.IV Total

T.I 65 12 7 0 84
T.II 5 82 12 3 102
T.III 3 9 74 6 92
T.IV 2 3 6 33 44

(b) SFM

mammograms of each type the k-NN is the best one with similar results with or
without PCA (79%). Table 2 shows the confusion matrices for this classifier.

A 2-layer tree classifier was also tested. The results improved upon the pre-
vious ones obtaining up to 91% in the 1st layer and 83% in the 2nd layer with
k-NN and applying PCA to the MIAS dataset. In the case of the FFDM dataset
the results are 83% in the 1st layer and 74% in the 2nd layer. The final results
are shown in Table 3.

Examining each tissue: T.I reachs up to 85%, T.II reachs up to 88%, T.III
reachs up to 88% and T.IV reachs up to 71%. Therefore the classifiers found the
most difficult classification for mammograms of type T.IV.

The difference between the two datasets is due to the use of 4 different pro-
jections in the FFDM dataset. While the two CC projections do not contain
the pectoral muscle tissue, the MLO projections do contain this muscle. This
muscle is usually denser than the rest of the breast tissue and influences the
classification because half of the images do not contain it.

In order to improve the results and test the performance and accuracy of the
classifiers, we are doing different ongoing tests. These include a cross-validation
to train and test the classifiers, different statistical tests for feature selection,
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Table 3. 2-Layer k-NN with PCA Tree Classifier for FFDM and SFM

Types 1st Layer 2nd Layer

T.I 81% 68%
T.II 69%
T.III

84%
83%

T.IV 55%

(a) FFDM

Types 1st Layer 2nd Layer

T.I 94% 85%
T.II 88%
T.III

86%
80%

T.IV 71%

(b) SFM

since there is not agreement between the PCA selection and the intra/inter-
class feature distances, as above shown, and further selection of the dataset to
get more homogeneous set among the tissue types.

4 Discussion and Conclusions

In this work a hierarchical procedure based on k-NN and PCA on texture features
has been proposed for breast tissue classification. There are just three works
in the literature presenting breast tissue classification according to BIRADS
categories on SFM. Their overall correct classification is about 71% [10], 76%
[15] without tissue segmentation and 82% [6] with it. Our approach reflect up to
83% of samples correctly classified for the SFM dataset and 74% for the FFDM
one.

The method is being integrated within a CADe system developed by the
authors and further tests are being carried out to improve the classification
results for all tissue types and datasets.
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Abstract. The purpose of this study was to evaluate, using full-field digital 
mammography (FFDM), our prior computerized texture analysis method that was 
developed on screen-film mammography method.  The evaluation included the 
analyses on the parenchymal patterns of women with BRCA1 or BRCA2 gene 
mutations and of women at low risk of developing breast cancer.  A total of 180 
cases, including 80 women with BRCA1 or BRCA2 gene mutations and 100 low-
risk women, were retrospectively collected under an institutional review board 
approved protocol.  Images were obtained with a GE Senographe 2000D FFDM 
system with 0.1 mm pixel size and 12-bit quantization.  Regions-of-interest 
(ROIs), 256 pixels by 256 pixels in size, were manually selected from the central 
breast region immediately behind the nipple. The ROIs were used in subsequent 
computerized feature extraction to assess the mammographic parenchymal pat-
terns in the images.  Various mammographic parenchyma features based on local 
composition, gray-level histogram analysis, spatial relationship among gray-
levels, fractal analysis, edge frequency analysis, and Fourier analysis, were auto-
matically extracted from these ROIs.  Receiver Operating Characteristic (ROC) 
analysis was used to assess the performance of the computerized texture features 
in the task of distinguishing between gene-mutation carriers and low-risk subjects.  
Computerized texture analysis on digital mammograms demonstrated that gene-
mutation carriers and low-risk women have different mammographic parenchy-
mal patterns.  In addition, in a round-robin-by-case evaluation with the FFDM 
dataset with linear discriminant analysis, an AUC value of 0.88 was obtained.  
Our results indicate the transferability of these radiographic biomarkers for breast 
cancer risk assessment from SFM to FFDM.   

Keywords: Computerized texture analysis, breast cancer risk assessment, 
mammographic parenchymal patterns, full-field digital mammograms. 

1   Introduction 

Breast cancer is the most commonly diagnosed cancer among women in the United 
States, with approximately 192,370 new cases of invasive breast cancer and 62,280 
new cases of in situ breast cancer expected to occur among women during 2009.  An 
estimated 40,170 breast cancer deaths are expected in 2009 [1]. Mammographic den-
sity and parenchymal patterns have been shown to be associated with the risk of de-
veloping breast cancer [2-7].  Computer-extracted mammographic texture features 
may be useful for identifying women at high risk for breast cancer and for monitoring 
the treatment of breast cancer patients [8-13]. 
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We have previously developed computerized texture analysis methods for breast 
cancer risk assessment using digitized screen-film mammograms (SFM) [8-11].  Our 
method is schematically shown in Figure 1. Our results showed that women at high 
risk of developing breast cancer tended to have dense breasts and their mammo-
graphic parenchymal patterns were coarse and low in contrast. Thus, the purpose of 
this study was to validate, using full-field digital mammography (FFDM), our prior 
screen-film mammography method for the computerized texture analysis. The evalua-
tion included the analyses on the parenchymal patterns of women with BRCA1 or 
BRCA2 gene mutations and of women at low risk of developing breast cancer. 

 

Fig. 1. Computerized texture analysis method for breast cancer risk assessment previously de-
veloped for digitized screen-film mammograms 

2   Materials and Methods 

2.1   Database 

In our current study, we extended the evaluation of the performance of our methods to 
full-field digital mammograms [FFDM] using a database from 180 cases: 80 women 
with BRCA1 or BRCA2 gene mutations and 100 low-risk women.  These full-field 
digital mammograms were retrospectively collected at the University of Chicago 
Medical Center under an institutional review board (IRB) approved protocol.  All 
images were obtained with a GE (Waukesha, WI) Senographe 2000D FFDM system.  
The FFDM images were acquired at 12-bit quantization with a pixel size of 0.1 mm.   

The gene mutation carriers were tested at Clinical Laboratory Improvement 
Amendments (CLIA) approved laboratories under institution review board (IRB) ap-
proved protocols.  The mammograms of low-risk women were obtained from the 
screening mammography program.  These mammograms were of women who had no 
family history of breast or ovarian cancer, and no prior history of breast cancer or 
benign breast disease.  These women had a less than 10% lifetime risk of developing 
breast cancer based on the Gail model. 
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2.2   Computerized Texture Analysis 

Regions-of-interest (ROIs), 256 pixels by 256 pixels in size, were manually selected 
from the central breast region immediately behind the nipple. Only the left cranial-
caudal (CC) view was analyzed.  The ROIs were used in subsequent computerized 
feature extraction to assess the mammographic parenchymal patterns in the images.   

A set of computerized texture features was extracted from each ROI to characterize 
the mammographic parenchymal patterns. These computer-extracted texture features 
were based on (a) local composition (density related measures), (b) gray-level histo-
gram analysis, (c) spatial relationship among gray-levels, (d) fractal analysis, (e) edge 
frequency analysis, and (f) Fourier analysis, including RMS variation, first moment of 
the power spectrum, and power spectral analysis.  The detailed descriptions of each 
individual features can be found elsewhere [8-11]. 

In order to assess the potential usefulness of these computer-extracted texture fea-
tures, receiver operating characteristic (ROC) analysis [14-16] was used to determine 
the performance of each feature in the task of distinguishing mammographic paren-
chymal patterns from the BRCA1/BRCA2 gene-mutation carriers and those from sub-
jects in the low–risk group.  Here, the area under the fitted ROC curve AUC is used as 
an index to evaluate the inherent discriminant capacity of these texture features in the 
task of distinguishing between gene-mutation carriers and low-risk subjects. 

3   Results 

Computerized texture analysis on digital mammograms demonstrated that gene-
mutation carriers and low-risk women have different mammographic parenchymal pat-
terns. For gene-mutation carriers, they appear to have dense breast. The skewness, 
 

 

Fig. 2. LDA showed a statistically significant improvement as compared to the individual fea-
tures in the task of distinguishing between gene-mutation carriers and low-risk women (P-
value<0.05) 
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which is related to mammographic density in the breast, yielded an AUC value of 0.63 
in distinguishing between gene-mutation carriers and low-risk women from ROC analy-
sis in the entire dataset.  Feature values that characterize the texture, i.e., first moment of 
the power spectrum, yielded AUC values of 0.71 and were found to be similar for high 
risk subjects imaged with FFDM and, from our earlier studies, with SFM.   

In addition, in a round-robin-by-case evaluation with the FFDM dataset with linear 
discriminant analysis, an AUC value of 0.88 was obtained. (Figure 2) The features 
merged were those including skewness, first moment and contrast, indicating, as we 
had found with the prior screen-film mammography dataset, that women at high risk 
of breast cancer have dense breast and their parenchymal pattern is coarse and of low 
contrast. 

Our results indicate the transferability of these radiographic biomarkers for breast 
cancer risk assessment from SFM to FFDM.  Comparison of the various features be-
tween digitized screen-film mammography and FFDM is listed in Table1. 

Table 1. Comparison of SFM and FFDM: Performance of texture features in distinguishing 
between gene-mutation carriers and low-risk groups 

Features 
FFDM (180 cases) 

AUC±SE 
SFM (172 cases) 

AUC±SE p-value 
Features related to image local composition (density measure) 

Skewness 0.63 ± 0.04 0.72 ± 0.04 0.1783 
Balance 0.62 ± 0.04 0.68 ± 0.04 0.5065 

Features related to image coarseness 
Fractal (Box Counting) 0.68 ± 0.04 0.74 ± 0.04 0.1304 

MeanGradient 0.67 ± 0.04 0.68 ± 0.05 0.9436 
FMP 0.71 ± 0.04 0.75 ± 0.04 0.4191 

Feature related to local variation (contrast measure) 
Contrast  

(Co-occurrence matrices) 
0.68 ± 0.04 0.86 ± 0.04 <0.0001 

4   Summary 

Computerized texture analysis of FFDM provided radiographic descriptors of mam-
mographic parenchymal patterns.  Our study on FFDM showed that BRCA1/2 gene-
mutation carriers and low-risk women have different mammographic parenchymal 
patterns.  High risk women tend to have dense breast, and their mammographic par-
enchymal patterns are coarse and low in contrast, which agrees with our previous 
studies on SFM. The computer-extracted image markers may potentially be used 
alone or together with clinical measures, as well as biomarkers, for use in identifying 
women at high risk for breast cancer and for monitoring the treatment of breast cancer 
patients.  Our investigation provided a validation on FFDM of our earlier findings on 
digitized screen-film mammograms.   
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Abstract. This paper deals with learning spiculation scores of masses
in a supervised manner. Three spiculation score prediction models treat-
ing the score either as a continuous or ordinary variable are presented.
These models were compared on a data-set of 255 masses.

Keywords: spiculation score, variable prediction, automatic feature
selection.

1 Introduction

It is well known that lesion spiculation is a very important characteristic that
strongly influences the radiologist decision in the malignancy diagnosis of masses
in mammography images[1]. There is extensive research devoted to extracting fea-
tures characterizing the stellate/spiculated structure of the masses ( e.g. [2,3,4]).

However, the focus of our paper is learning the spiculation score of lesions and
selecting features, which are most required for the spiculation score prediction,
in supervised and automatic manner. We use a few novel supervised learning
models based on linear regression treating the spiculation score either as a con-
tinuous or ordinal variable1. Our learning includes automatic feature selection
that enables us to validate if heuristically generated spiculation features are in-
deed selected by the models. The proposed models can be used for learning any
other score information. Our intension is to reliably estimate a spiculation score
corresponding to the perception of radiologists.

2 Method

We used the following steps to create data for learning the spiculation score.
First, in order to create the ground truth, a radiologist is asked to assign the
� Corresponding author.
1 In statistics, ordinal variables are variables which like categorical variables have a

discrete number of values, but are clearly ordered between them.
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spiculation score to the displayed masses; the spiculation score has a number
of levels starting from ’non-spiculated’ to ’very spiculated’ (Section 3). Second,
the lesions are described by 231 features among which 20 are specially designed
spiculated features. The mass features with the spiculation score attached are
considered as training data and are used to learn the system to assign the spic-
ulation score automatically to new unseen findings.

During learning the features are considered as predictor variables, and the
score as a response variable. We use two supervised learning approaches to ad-
dress the problem differing in treating the response score variable either as a
continuous or ordinal variable. The first approach treats the score as a contin-
uous variable and includes two models: a Bayesian linear regression model with
automatic relevance detection (ARD) (M1) and nested linear regression (M2).
The first model selects the appropriate features using the ARD approach [5] and
the second iteratively adds the best feature one by one using a greedy approach
(Chapter 8 of [6]).

The second approach is a novel model introduced by us and is a modified
Multiple Instance Learning Relevance Vector model (MIL RVM) that considers
the score as an ordinal variable. This model (M3) is an instantiation of the ’Data
Replication Method’ framework [7] for the Bayesian MIL RVM binary classifier
[8]. This novel classifier automatically selects the relevant features and builds
the linear boundaries to assign the spiculation score.

In general all three considered models project data to some ’discriminative’
direction in space and thus their number of parameters is of the order of the size
of the feature space (O(d)). The models M2 and M3 have the same internal
feature selection mechanism. The main difference between the two approaches
lies in treating the variable either as an ordinal or continuous. The main diffi-
culties of the problem are (i) data sparsity, as the number of lesions is less than
the data dimensionality (number of features extracted); (ii) large correlation be-
tween the extracted features and (iii) a possible lack of consistency between the
scores given by the expert2.

3 Data Description

Our data is created by using a specially written graphical user interface (GUI)
tool which enables medical experts to review the image with the lesion superim-
posed and assign the spiculation score by clicking the appropriate buttons.

We constrained ourselves to six levels of spiculation from ’non-spiculated’ to
’very spiculated’ with the values being assigned to s ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9}.
(see Fig. 1). Currently, we have a small data base of 255 masses, where each mass
is described by the d-dimensional feature vector x (d = 231 for our data-set) and
the spiculation score s.

The proportion of the scoring levels is very non-homogeneous3 and is visually
clustered into three groups. Probably, this means that it is more natural and
2 As well as a subjectivity of the scoring.
3 The score proportion for our data-set is 4.71%, 9.8%, 7.45%, 13.73%, 27.45%, 36.86%

for the score values considered.
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s = 0 s = 0.5 s = 0.9

Fig. 1. Score of the Masses. The masses with the increasing spiculation score. The
spiculation score level is given above each of the image.

easier for radiologists to perceive masses as belonging to three groups ’non-
spiculated’, ’ambiguous’ and ’spiculated’, rather than discriminate them in more
subtle categories. Therefore, in measuring model performances, we divided the
scores into three groups S1, S2, S3 with the score s being s ≤ 0.1, 0.1 < s ≤
0.3, s > 0.3, respectively (see also Section 5). This is in agreement with [9],
where it was shown that in general the spiculated masses constitute more than
55% of all the masses.

Currently, the responses of a single radiologist are used to learn the spiculation
score; however, partial analysis of responses of three radiologists were analyzed.
This preliminary analysis show the instability of the spiculation score; we intend
to address this issue in the future.

4 Learning Models

This section presents the three learning models to perform the spiculation score
prediction.

4.1 Bayesian Linear Regression Model with ARD (M1)

This section is focused on developing a Bayesian linear regression model for
the spiculation score variable y given a training set D = {xn, yn}k=1,...,N of
N independent samples, where xn ∈ Rd is a d-dimensional predictor variable
and yn is a scalar response variable. The linear regression model assumes linear
dependence between the score variable y and the projection of the feature vector
onto some unknown direction w in the space:

y = wtx + ε, ε ∼ N (0, σ2) (1)

where ε is a zero-mean Gaussian noise term with variance σ2.
We use the maximum a-posteriori principle (MAP) to estimate the weight

vector w:

w∗ = argmax
w

L(w) = argmax
w

[log(p(Y/w,X)) + log(p(w))], (2)
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where Y =
[
y1 y2 . . . yN

]t and a design matrix X =
[
x1 x2 . . . xn

]t. The
log-likelihood of the data is given by:

log p(Y/w,X, A)) = −N log σ − N

2
log 2π − 1

2σ2

N∑
i=1

(yi − wtxi))2. (3)

The weight prior is given by:

p(w) = (2π)−d/2|A|1/2 exp(−wtAw
2

), A = diag(α1, ..., αd), (4)

and states that the weight components are independent and close to zero with
a variance parameter 1/αi. The parameters αi are hyper-parameters that are
learned from the data to maximize the marginal likelihood p(D|A). The hyper-
parameters provide a mechanism to select effective features [8,5]. As the αi → ∞
the corresponding weight variance tends to zero (thus concentrating the prior
sharply at zero). Hence, regardless of the evidence of the training data, the
posterior will be also sharply concentrated on zero, thus corresponding feature
can be removed from training.

The MAP estimation for the weight vector and σ2 lead to a regularized linear
regression in the form:

w∗ =
1
σ2 S−1Sxy, σ∗2 =

1
N

N∑
i=1

(yi − wtxi)2 (5)

S = A +
1
σ2 Sxx, Sxx =

N∑
i=1

xixt
i, Sxy =

N∑
i=1

yixi. (6)

To perform the optimal feature selection, we apply the type-II maximum likeli-
hood [10], which means maximizing the marginal likelihood p(Y/X, A)) over A.

Though analytical formula for A can be obtained, it is non-linear and requires
applying numerical methods; instead we use the same approximation strategy as
in [8]. A Hessian of L(w) is easily calculated as H = −(A+ Sxx

σ2 ) = −S, where S
is defined in Eq.6. Using the same evaluation as in Eq.(16-17) of [8], we finally
get:

− 1
2
w∗

i
2 +

1
2αi

− 1
2
H−1

ii = 0 ⇔ αi =
1

w∗
i
2 + H−1

ii

(7)

The final algorithm iterates recursively between calculating the hyper-parameters
αi by Eq.7 and then the MAP estimation of w∗ is performed according to Eq.5.
With the iterations the hyper-parameters some αi become too large. This means
that their corresponding wi → 0 and the corresponding features are irrelevant and
can be eliminated in future iterations.

4.2 Nested Linear Regression (M2)

We consider the same linear regression model (Eq. 1) and perform a feed-forward
model selection based on the χ2-test on the number of new predictor variables.
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A test checks, whether to increase a number of variables by one comparing
iteratively on j = 2, ..., J a current null hypothesis:

Hj−1
0 : aj = 0 (8)

against an alternative (that is considered as a current full model):

Hj
0 : arbitrary ar, r ≤ j (9)

The statistic of the nested models test is constructed by the method of the
”maximum likelihood ratio”. The ratio of the maximum likelihood 2 logλ = pj

pj−1

is approximately distributed as χ2(r) with a degree of freedom r = 1 (a number
of constraints) [6]; the maximum likelihood pj is the maximum likelihood of Y
given a truncated set of variables X with only j first columns.

The χ2(r) test with significance level α stops the model growing if

Δerse ≤ σ2
j [χ2(1)]−1(1 − α),

where [χ2(r)]−1 is an inverse function of the cumulative density function of
χ2(r) with r degrees of freedom, Δerse is a difference of residual square errors
erse for the regression variable y(·) with j and j − 1 variables; σj = erse is an
estimated variance of an independent Gaussian noise in the full model. We set
the significance level to α = 0.05 in our experiments.

4.3 MIL RVM with the Ordinal Data (M3)

This section presents the modified MIL RVM for ordinal data. Below, we briefly
present the MIL RVM binary classifier and explains mapping the ”data replica-
tion (DR) framework” [7] to MIL RVM.

MIL RVM Binary Classifier. In the MIL framework the data is considered
to be aggregated into the so called bags xμ, μ = 1 . . .M, (M is the number of
bags). All the instances of the bag share the same extra bag-state label being
positive or negative. The bag-μ is considered to be negative if all its instances
xs

μ, s = 1 . . . Sμ (Sμ is the number of samples in the bag μ) are negative; and
positive if at least one its instance is positive. The probability of the μthe bag to
be positive (yμ = 1) is given by:

pμ = p(yμ = 1|xμ) = 1 −
Sµ∏
s=1

(1 − σ(wtxs
μ), σ(z) =

1
1 + e−z

The classifier optimization criterion is obtained as the MAP estimator of the
weight vector w ∈ Rd from the observed bag’s-data D.

w∗ = arg max
w

[log(p(D/w)) + log(p(w))], (10)
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where the log-likelihood of the bag’s data is defined as:

log p(D|w) =
M∑

μ=1

(yμ log pμ + (1 − yμ) log(1 − pμ)). (11)

The weight prior is the same sparsity prior (Eq. 4) as in the linear regression
model with ARD.

Mapping the DR Framework to MIL RVM. The RVM MIL is an ideal bi-
nary classifier to be used in the DR framework for ordinal data classification that
additionally allows feature selection and easily generalized to MIL framework.
It is used without any particular changes with the replicated data as described
in [7]. The only issues that need attention are:

1. Adding linear constraints on the biases to be ordered: Instead we add the
extra data to the training data-set in the form proposed in [7]. This addition
does not guarantee the bias ordering, but modifies a log-likelihood to try to
satisfy it. After learning is completed we check that the biases are correctly
ordered.

2. Replication of the data within the MIL concept: It is easy to see that during
the replication we not only replicate the data, but the bag label as well; all
the other considerations remain the same.

Currently, our data is constrained to a case where each instance stands for a
unique bag (the lesions from different views were not consolidated to a bag), i.e.
we constrain ourselves to using RVM without MIL concept.

5 Results

The spiculation score is a very subjective characteristic that has a large in-
ter and intra expert variability. In general the radiologists are very confident
in the spiculation presence or absence, but are very uncertain about its value
when spiculation is present. We performed training with the originally assigned
score values, however we report the model’s performances for the scoring groups
S1, S2, S3.

The results are presented as confusion matrices for the train and test sets,
which are obtained by splitting all the data-set in half randomly. In addition, we
introduce so called migration specificity and sensitivity errors as a percentage
of non-spiculated lesions to be classified as spiculated and spiculated as non-
spiculated, respectively. This consideration is the simplest variant of penalizing
differently the errors of spiculated and non-spiculated masses to migrate to am-
biguous and opposite scoring groups; i.e. in such consideration assignment to the
ambiguous group is ignored by us. Table 1 presents confusion matrices in percent
for all the models and training/testing sets. All three models have a good per-
formance in assigning spiculation masses with a low migration sensitivity errors
of 17.65% for the models M2 and M3 (Table 1).
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Table 1. Scoring results for three models: The table presents the confusion matrices
in percent. The migration specificity errors appear in bold and sensitivity errors are
shaded. All three models have a good performance in assigning spiculation masses.
The most compact model is M3. S1, S2, S3 are ’non-spiculated’, ’ambiguous’ and ’spic-
ulated’ score zones, respectively. Their size is indicated as Sk() in brackets.

M1: Linear Regression with the ARD M2: Nested Linear Regression
Training Testing Training Testing

score S1(17) S2(8) S3(100) S1(20) S2(11) S3(99) score S1(17) S2(8) S3(100) S1(20) S2(11) S3(99)
groups groups
S1 29.41 5.88 64.71 20.00 10.00 70.00 S1 29.41 52.94 17.65 30.00 15.00 55.00

S2 12.50 25.00 62.50 9.09 9.09 81.82 S2 0.00 25.00 75.00 9.09 0.00 90.91
S3 3.00 10.00 87.00 15.15 11.11 73.74 S3 0.00 0.00 100.00 8.08 6.06 85.86
selected summary summary selected summary summary
features error % error % features error % error %
73 24.8 40 94 14.4 30

M3: Ordinary MIL RVM
Training Testing

score S1(17) S2(8) S3(100) S1(20) S2(11) S3(99)
groups
S1 5.88 76.47 17.65 5.00 55.00 40.00
S2 0.00 25.00 75.00 0.00 36.36 63.64
S3 0.00 11.00 89.00 2.02 16.16 81.82
selected summary summary
features error % error %
12 26.4 33.8

The most compact model is the ordinal RVM MIL model (M3) that selects
12 features only, among which only 2 features are heuristically built spiculated
features. Models M1 and M2 select 73 and 94 features, among which 7 and 12
are the spiculation features, respectively. In selection of spiculated features, all
the models agree on a single spiculation feature.

6 Discussion

The spiculation score assignment is a clinically demanding task that influences
the final diagnosis given by the radiologists and could be helpful for CAD sys-
tems. In this paper, we attempted to solve the score prediction task in the
supervised manner by considering the score either as a continuous or ordinary
variable and using the simplest models based on the linear regression. We showed
on the small data-set of 255 masses that it is possible to get satisfactory results.
However, more experiments on a large data set are required.

We also notice that the spiculation score has a large inter and intra expert
variability that raises other interesting problems, such as (i) the right score
quantization that is perceptually stable, (ii) creating models that are stable to
unstable response variables [11]. Another interesting application of the score
information is considering the score prediction in a multi-task framework for the
mass detection.
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Abstract. The purpose of this study was to determine if displays that provide 
more grayscale levels (10bit vs. 8bit) can improve observer performance in 
breast cancer detection. The study was also designed to determine if 3MP (mil-
lion-pixel) displays can achieve similar observer performance as compared to 
5MP displays. The study was performed using the WorkstationOne mammog-
raphy software on Dome® E5 and E3 high-resolution displays. Ten radiologists 
reviewed 33 digital mammography screening studies. On 5MP displays, the av-
erage Az value across all observers was 0.7912 using 8bit displays, and 0.8306 
using 10bit displays. The difference between 8bit and 10bit displays is statisti-
cally significant (F=4.43, p=0.0157). The difference of the average Az value 
from 8bit 3MP displays is not statistically significant compared to reading with 
5MP displays. The implications of the study are that, using appropriate software 
and hardware, 5MP 10bit displays may improve diagnostic accuracy and 3MP 
displays may not impact negatively diagnostic accuracy.  

Keywords: Digital Mammography, Medical Display, Observer Study. 

1   Introduction 

Most evidence suggests that the human visual system is able to perceive around 1000 
grayscale levels over the luminance range currently used in medical displays [1-4]. 
However an 8bit display can only provide 256 grayscale levels, whereas most digital 
mammography acquisition devices (such as FFDM or Mammography CR) produce 
images at higher bit depths, ranging from 10 to 16 bits. This means that all the acquired 
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grayscale levels cannot be displayed at once, or at least not displayed at the contrast 
sensitivity that human observers can utilize. This could result in a potential loss of in-
formation during the diagnostic interpretation, with the implication that the observer 
may require frequent changes to a localized contrast window and level in order to see all 
the information, which would impact the observer’s efficiency. 

This study assessed whether human observer perceptual performance would im-
prove with 10bit 5MP (million-pixel) displays compared to 8bit 5MP displays. This 
study also assessed whether 3MP displays can achieve similar observer performance 
to 5MP displays. The reading time was also recorded in order to determine if the three 
different displays have an impact on the efficiency of the reading workflow. 

2   Methods 

The study used the WorkstationOne software (Three Palm Software, Los Gatos, CA) 
on the Dome E5 5MP and E3 3MP displays (NDS Surgical Imaging, San Jose, CA) 
driven by FX4600 graphic cards (NVIDIA, Santa Clara, CA). Dome E5 and E3 dis-
plays are FDA-cleared high-resolution grayscale monitors for displaying medical 
images (Dome E5 is also FDA-cleared for Mammography use). All displays were 
calibrated to the DICOM GSDF requirements. WorkstationOne has FDA clearance 
for use with digital mammography systems to interpret digital mammography images 
by radiologists. WorkstationOne was designed to maximize the radiologists’ effi-
ciency as well as accuracy in reading digital mammograms, specifically; the software 
is designed to support a mammography specific interpretation workflow. With this 
feature, the radiologist’s reading performance is expected to be similar between 3MP 
displays and 5MP displays. By providing higher pixel grayscale levels, the radiolo-
gists’ performance is expected to be improved with 10bit displays. 

A set of 33 digital mammography cases were randomly selected from an existing 
database. Among the 33 cases, 16 cases contain mammography visible cancer lesions 
confirmed by biopsy reports. Each case consists of the standard four view mammo-
gram images. The pixel depth of the images was 10bit or 12bit, and the pixel size of 
the images was 50µm, 70µm or 94µm. All patient identifiers were removed from the 
images. 

The study recruited 10 observers, including 9 certified radiologists and 1 fellow. 
The average digital experience was 16.6 months with a range from 0 months to 4 
years. The years reading mammograms were from 8 months to 23 years.  All partici-
pates were voluntary and were from the teaching course “Multimodality Detection 
and Diagnosis of Breast Diseases”. A written informed consent form was provided 
and signed by each subject before the study began. Participation in this study posed 
no risks. There is no foreseen benefit to the individuals in this study, and the subjects 
were not financially compensated.   

The WorkstationOne software was downloaded to 6 computers, each with 2 Dome 
grayscale displays. Among the 6 computers, 2 were setup with 8bit 3MP displays, 2 
with 8bit 5MP displays and 2 with 10bit 5MP displays. The study was conducted in a 
dark room associated with the Mammography Education course held January 21-24, 
2009 at the Phoenix convention center.   
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Reading of the cases was divided into three sessions. In each session, each ob-
server read all 33 cases using the WorkstationOne software. The observers were 
blinded to the reading results for all three sessions. For session A, the observer used 2 
Dome E3 displays (8bit-3MP session).  For session B, the observer used 2 Dome E5 
8bit displays (8bit-5MP session). For session C, the observer used 2 Dome E5 10bit 
displays (10bit-5MP session). The order of these sessions was random for each ob-
server. For each case, the observers marked up any lesion that they found, indicated 
the type of lesion, and ranked the lesion’s suspicion (quasi-continuous) level from 0-
100%. 10 cases (5 cancers and 5 normal cases) were provided for training before the 
study began. The similar cancer and normal case distribution for the 33 cases was 
known to the observers. 

A reading methodology was followed on WorkstationOne, which includes the fol-
lowing viewing workflow steps: 

1. Overview viewing to display the standard four views of a mammography case 
from both current and prior (if exists) cases; 

2. Bilateral current viewing with same size fit to the display size; 
3. Current and prior (if exists) comparison to enhance the detection of tissue den-

sity changes; 
4. Systematic comparison of left and right breasts using masking [5] to enhance 

the detection of structural asymmetries; 
5. All-pixel viewing of full resolution images using automatic tracking of the 

viewing path to ensure that there are no areas in the images that are not 
viewed; 

6. Report of interpretation findings. 

The study used a standard methodology for multi-reader multi-case (MRMC) receiver 
operating characteristic (ROC) observer studies [6-12] with a sequential reading model. 
The MRMC ROC analysis software (DBM MRMC v2.2) from the Kurt Rossmann 
Laboratories at the University of Chicago was used to calculate ROC curves and the 
area under the curve (Az value). The software also provided statistical analysis to com-
pare the Az values between the 8bit 3MP group and the 8bit 5MP group; as well as 
between the 8bit 5MP group and the 10bit 5MP group. The sensitivity and specificity 
for each observer were also computed.  The t-test was used to compare these three 
measures pooled over the observers for each pair of reading conditions. 

3   Results 

The study data pooled from all three display configurations were analyzed using DBM 
MRMC (v2.2) software (see previous section). The program employed jackknifing and 
ANOVA (Analysis of Variance) techniques [6-12]. The analysis was reported by treat-
ing both observers and cases as random samples, i.e., results apply to the observer and 
case populations. The null hypothesis of equal “treatments” (display configurations) is 
tested, and the treatments difference 95% confidence intervals are given. 
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3.1   ROC Area under the Curve (Az) Analysis  

The data collected from 3 “treatments” (display configurations), 10 readers (observers) 
and 33 cases (17 normal and 16 abnormal mammogram studies) are loaded into  
the program DBM MRMC for analysis. The curve fitting methodology was PROPROC 
[6-12]. A graph of the ROC areas under the curve (Az values) for each observer and for 
each display configuration is shown in the following figure. 
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Fig. 1. The Az values for each observer and for each display configuration 

The mean values (average across observers) are shown in the following table. 

Table 1. The mean values across all observers for each display configuration 

Display Mean Az 

8bit 3MP 0.82779296 

8bit 5MP 0.79116570 

10bit 5MP 0.83063642 

 
The Az values of the three display configurations are not equal, F(2,18) = 4.43, p = 

0.0273. The 95% confidence intervals for the difference between 8bit 3MP and 8bit 
5MP is not significant, p = 0.0235 (> 0.0167). The  95% confidence intervals for the 
difference between 8bit 3MP and 10bit 5MP is not significant, p = 0.8498 (> 0.0167). 
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The 95% confidence intervals for the difference between 8bit 5MP and 10bit 5MP is 
significant, p = 0.0157 (< 0.0167). 

Since the study made comparisons among 3 configurations, the critical p-value 
(0.05) was adjusted by dividing by 3, so the critical p-value 0.0167 was used. 

3.2   Sensitivity Analysis 

The sensitivity analysis was also performed at specificity = 0.5 (considering around 
50% of normal population of the study data). The mean values (average across 
observers) are shown in the following table. 

Table 2. The mean sensitivities across all observers for each display configuration 

Display Average Sensitivity 

8bit 3MP 0.88977372 

8bit 5MP 0.83981452 

10bit 5MP 0.89634391 

 
The sensitivities of the three display configurations are not equal, F(2,50) = 4.27, p 

= 0.0194. The 95% confidence intervals for the difference between 8bit 3MP and 8bit 
5MP is not significant (p = 0.0222). The 95% confidence intervals for the difference 
between 8bit 3MP and 10bit 5MP is not significant (p = 0.7574). The 95% confidence 
intervals for the difference between 8bit 5MP and 10bit 5MP is significant (p = 
0.0102). 

3.3   Sequential Reading Analysis 

An ROC analysis was also performed for the sessions to determine whether 3  
sequential readings in three days would change observer performance. The display 
configuration was randomly assigned to each session for each observer based on the 
equipment availability. 

Table 3. The mean Az values across all observers for each reading session 

Session Average Az 

first 0.83393918 

second 0.82404307 

third 0.81189700 

 
The Az values of the three sessions are not statistically significantly different, 

F(2,62) = 0.74, p = 0.4832. So the session arrangement of 3 sequential readings in 
three days may not change observer performance. 
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The reading time was automatically recorded during the study, and the average 
reading time for the 33 cases is shown in the following table. 

Table 4. Reading time for each configuration 

Display Average Time (minutes) 

8bit 3MP 34.3 

8bit 5MP 31.4 

10bit 5MP 35.9 

 
The reading time on 8bit 3MP and 10bit 5MP were longer than 8bit 5MP. But 

analysis was not performed to determine if the differences between these times are 
statistically significant. 

4   Conclusions 

Observer average performance was better on 10bit 5MP displays compared to 8bit 
5MP displays, and the difference was statistically significant. Observers also per-
formed at higher detection sensitivity (6% better) on 10bit displays. 

Observer performance difference was not statistically significant on 3MP displays 
compared to 8bit 5MP displays. 

The sequential sessions of repeat reading three times of same cases in three days 
did not change observer performance. 

5   Clinical Relevance/Application 

The study results suggested that 10bit displays may improve readers’ performance for 
mammography interpretation. If the current recommended 5MP displays are not prac-
tical, 3MP displays may provide comparable performance with appropriate software. 

6   Discussion 

This study results showed that 10bit displays are better than 8bit displays. However 
another published study (Krupinski chest nodule study) showed no difference [2].  
The unique (subtle) image characteristics and features on mammography images and 
the perceptual reading methodology [5] for mammography may be the factors that 
enable 10bit displays to improve readers’ performance. 

3MP displays performed slightly better than 5MP displays, which could be 
attributed to the perceptual reading methodology [5] provided on WorkstationOne 
which includes the Tabar masking viewing and all-pixel viewing techniques.  

Readers spent slightly more time on 8bit 3MP displays than 8bit 5MP displays 
(and more time on 10bit 5MP displays than 8bit 3MP displays) which may have 
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contributed to the slightly better performance. More displayed image pixel 
information (10bit vs. 8bit in depth) might have made the observers involuntarily 
spend more time to read each case; and more time was required for the observers to 
scan through all pixels on the lower resolution displays (3MP vs. 5MP), which might 
explain why observers’ performance improved. 

7   Limitations 

This study used only 33 cases with a variety of image pixel bit depth, a small number 
which can be a potential bias or imprecision when generalizing the study result. A 
larger number of cases (>100 cases) with the detailed lesion information (such as 
lesion type, size and subtlety) and tissue density assessment (especially for normal 
cases) is planned to be used for a follow-on study. 

Validity of whether the reading environments are consistent and whether the time 
interval between each reading session should be longer or shorter is debatable and 
needs to be validated. 

The study tools (software and hardware) were limited to a small set of manufacturers. 
Thus it is unknown if the study results apply in general (i.e., to any software and  
hardware). 
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Abstract. This study was conducted to retrospectively evaluate the variation of 
CAD performance utilizing two different FFDM systems in normal clinical cases. 
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1   Introduction 

Computer-aided detection (CAD) has been applied to full field digital mammography 
(FFDM) for some time. However, unlike the raw imaging data on hard copy, utilizing 
digitizers for CAD processing in the film-screen system with groups in units of 8-10 
bits, the raw imaging data for CAD processing in FFDM are analyzed with groups in 
units of 12-14 bits, which has a much more dynamic range compared to digitized hard 
copy data in the film-screen system. According to the background, there are more op-
portunities to apply a combination of anode/filters such as W/Rh that allows us to de-
crease the radiation dose while keeping higher image quality compared to the images 
using Mo/Mo and Mo/Rh in the film-screen system [1]. The raw imaging data for 
CAD processing in FFDM can be more strongly influenced by the different contrast 
and image sharpness in clinical images, compared to the CAD dedicated to a film-
screen system. From this hypothesis, the detection pattern in CAD could vary even in 
normal clinical cases. 

2   Methods 

This study was conducted as part of research that was approved by the IRB at our insti-
tute on June 12th in 2007. All patients that were recruited for this study gave informed 
consent. The clinical cases in this study were selected from screening mammograms 
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taken from June 12th in 2007 to December 24th in 2009. Clinical image data were ac-
quired by two different FFDM systems. One was an a-Se FFDM system with a spatial 
resolution of 70μm (System A) and imaging data were acquired from June 12th in 2007 
to November 24th in 2008. Another was an a-Se FFDM system with a spatial resolution 
of 85μm (System B) and imaging data were acquired from December 7th in 2008 to De-
cember 24th in 2009. Mammograms were diagnosed as BI-RADS category 1 or 2 by 
double-reading and breast ultrasound was performed in each case and diagnosed as a 
normal or a benign case. The total number of cases was 1140 cases in System A and 
1178 cases in System B. The median patient age was 59.8 years old (range 40-75 years 
old) in System A and 60.0 years old (range 40-88 years old) in System B. To optimize 
radiation exposure parameters in clinical images, we measured CNR (Contrast to Noise 
Ratio) in accordance with EUREF (European guidelines for quality assurance in breast 
cancer screening and diagnosis) guide lines simulating breast thickness, utilizing 
PMMA phantoms (20-70mm) and radiation exposure parameters, kV (24-34kV) and 
combinations of anode/filters (Mo/Mo, Mo/ Rh, and W/Rh). In addition, we performed 
spectral analysis of anode/filters (Mo/Mo, Mo/ Rh, and W/Rh) regarding both FFDM 
systems. A  CAD dedicated to the FFDM systems was applied for purpose of review 
and was verified, regarding detection areas, with reference to the diagnostic reports of 
the mammogram and ultrasound. The same CAD algorithm was utilized for the two 
FFDM systems.  

3   Results 

We optimized radiation exposure parameters in a clinical setting with reference to the 
results of the CNR analysis and dosimetry in accordance with EUREF Guidelines 
[2](Fig.1-2). In System A, under 20mm breast thickness, the combination of 24kV 
with Mo/Mo was selected; from 21m to 30mm breast thickness, the combination of 
26kV with Mo/Mo was selected; from 31mm to 40mm breast thickness, the combina-
tion of 28kV with Mo/Mo was selected; from 41to 60mm, the combination of 30kV 
with W/Rh was selected; from 61mm to 70mm, the combination of 32kV with W/Rh 
was selected; and above 70mm, the combination of  34kV with W/Rh was selected. 
CAD detected relatively dense areas as false-positive masses (Fig.3) at a rate of 9.8% 
(448/4560 images) and fibrous tissue as false-positive microcalcifications (Fig.4) at a 
rate of 0.7% (34/4560 images). In the cases utilizing 24-28kV Mo/Mo, CAD detected 
masses as false positives more frequently at a rate of 12.7% (279/2196 images) , 
compared to the cases utilizing 30-34 kV W/Rh which detected false positives at a 
rate of 7.1% (169/2364 images). There was a statistically significant difference 
(P=0.008< 0.05) between the two different combinations of anode/filters. CAD de-
tected more false-positive masses in the cases utilizing the combinations with Mo/Mo 
in comparison with the cases utilizing the combinations with W/Rh. On the other 
hand, in the cases utilizing 30-34kV W/Rh, CAD detected false-positive microcalcifi-
cations more frequently at a rate of 1.1% (26/2364 images), compared to 0.4 % 
(8/2196 images) detected utilizing 24-28kV Mo/Mo. There was a statistically signifi-
cant difference (P=0.022<0.05) between the two combinations with different an-
ode/filters. CAD detected more false-positive calcifications in the cases utilizing 
W/Rh in comparison with the cases utilizing Mo/Mo (Table 1a.). In System B,  
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Table 1. Clinical Radiation Exposure Setting of System A (Table 1a) and System B (Table1b)  
regarding Frequency of False Positives (FPs) using CAD 

FP Mass FP Microcalcifications

24kV W/Rh 1.0% (5/500) 1.2% (6/500)

26kV W/Rh 3.3% (32/960) 0.7% (7/960)

28kV W/Rh 3.3% (48/1460) 1.2% (18/1460)

30kV W/Rh 1.4% (16/1128) 0.5% (6/1128)

32-34kV W/Rh 4.2% (28/664) 0% (0/664)

Total 2.7% (129/4712) 0.8% (37/4712)

P>0.05 P>0.05

FP Mass FP Microcalcifications

24-28kV Mo/Mo 12.7% (279/2196) 0.4% (8/2196)

30-34kV W/Rh 7.1% (169/2364) 1.1% (26/2364)

Total 9.8% (448/4560) 0.7% (34/4560)

P=0.008<0.05 P=0.022<0.05

Table1b.

Table1a.

 

Table 2. Linear Attenuation Coefficient of Breast Tissue at 20keV [3] 

   Linear Attenuation Coefficient(cm-1)  

Breast Tissue  0.8  

Fat Tissue  0.45  

Skin  0.8  

Mass  0.85  

Calcification  12.5  

 
under 25mm breast thickness, the combination of 24kV with W/Rh was selected; 
from 26m to 35mm breast thickness, the combination of 26kV with W/Rh was se-
lected; from 36mm to 45mm breast thickness, the combination of 28kV with W/Rh 
was selected; from 46 to 55mm, the combination of 30kV with W/Rh was selected; 
and above 56mm, the combination of 32kV-34kV with W/Rh was selected. CAD de-
tected false-positive masses at a rate of 2.7% (129/4712 images) and false-positive 
microcalcifications at a rate of 0.8% (37/4712 images) in total. With 24kV, CAD  
detected false-positive masses at a rate of 1.0% (5/500 images) and false-positive mi-
crocalcifications at a rate of 1.2% (6/500 images). With 26kV, CAD detected false-
positive masses at a rate of 3.3% (32/960 images) and false-positive microcalcifica-
tions at a rate of 0.7% (7/960 images). With 28kV, CAD detected false-positive 
masses at a rate of 3.3% (48/1460 images) and false-positive microcalcifications at a 
rate of 1.2% (18/1460 images).With 30kV, CAD detected false-positive masses at a 
rate of 1.4% (16/1128 images) and false-positive microcalcifications at a rate of 0.5% 
(6/1128 images). With 32-34kV, CAD detected false-positive masses at a rate of 4.2%  
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Fig. 1. CNR Analysis: 20mm, 40mm, and 60mmThick PMMA Phantom in System A 
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Fig. 2. CNR Analysis: 20mm,40mm,and 60mm Thick PMMA Phantom in System B  
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Localized Relatively Dense 
Breast Tissue Detected as a 
False Positive Mass

 

Fig. 3. An Example Case with a False Positive Mass Marked by CAD  

Breast Fibrous Tissue 
Detected as False Positive 
Calcifications

 

Fig. 4. An Example Case with False Positive Calcifications Marked by CAD  

(28/664images) and 0% (0/664 images) false-positive microcalcifications. There was 
no significant difference among different kV levels with the same combination of  
anode/filters in System B (P>0.05) (Table 1b.). Regarding spectral analysis of an-
ode/filters, in System A, Mo/Mo and W/Rh demonstrated different spectrum charac-
teristic curves. In addition, the two systems showed different spectrum characteristic 
curves with W/Rh and the peak value in System B with W/Rh was shown at a higher 
kV level compared to System A (Fig.5-6).  
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Fig. 5. Spectra of Mo/Mo and W/Rh in System A 
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Fig. 6. Spectrum of W/Rh in System B 
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4   Discussion 

At present, CAD dedicated to digital mammography analyzes the raw imaging data 
and detects the candidate lesions including masses and microcalcifications. As for the 
physical characteristics, regarding the linear attenuation coefficient for breast tissue 
[3], the differential value between breast tissue and calcification is larger than the dif-
ferential value between breast tissue and mass (Table2). Mass lesions have relatively 
localized large areas with a smaller number of photon counts compared to surround-
ing breast tissue in the raw imaging data.CAD analyzes the characteristics and detects 
the area as a candidate mass lesion. The raw imaging data is inverted and the mass le-
sion is recognized clinically as a localized high density area compared to background 
breast tissue density. On the other hand, the images with microcalcification lesions 
have localized small and clustered areas with a smaller number of photon counts 
compared to the background breast tissue in the raw imaging data. CAD analyzes the 
characteristics and detects the area as a candidate microcalcification  lesion. The raw 
imaging data is inverted and the microcalcification lesions are recognized clinically as 
small and clustered areas with higher density compared to the background breast tis-
sue density.  According to the background, CAD dedicated to digital mammography 
can be directly affected by the physical characteristics of raw imaging data. In this 
study, in System A, CAD detected more false positive masses with 24-28Kv Mo/Mo 
compared to those detected with 30-34Kv W/Rh. According to spectral analysis, 
Mo/Mo acquires a smaller number of photons compared to W/Rh (Fig.5). The raw 
imaging data with Mo/Mo has a relatively narrow range of photon counts and the dif-
ferentials in the photon counts between background breast tissue and mass can be 
small. As a result, CAD can detect more false positive masses compared to imaging 
with W/Rh. On the other hand, CAD detected more false positive microcalcifications 
with 30-34Kv W/Rh compared to the number detected with 24-28Kv Mo/Mo. This 
could be a result of the characteristics of W/Rh which can acquire a larger number of 
photons compared to Mo/Mo. Images with W/Rh have a much wider range of photon 
counts and the differential value of photon counts between background breast tissue 
and microcalcifications is large. As a result, imaging data with W/Rh can detect can-
didate microcalcification lesions with more sensitivity than imaging with Mo/Mo. 
Even with the same combination of anode/filters, the CAD in System A with 30-34kV 
W/Rh detected more false positive masses compared to System B with 30-34kV 
W/Rh.CAD results may differ even when the same system is used, according to which 
combination of anode/filters is used. On the other hand, CAD results may differ when 
different systems are used, even though the same combination of anode/filter is used. 
According to spectral analysis, the spectrum of W/Rh used in System A shows greater 
similarity to the spectrum of Mo/Mo than the spectrum of W/Rh used in System B 
(Fig.5-6). As a result, CAD detected more false positives using W/Rh with System A 
compared to System B. 

In conclusion, the CAD performance was affected by the difference in image qual-
ity produced by different radiation exposure parameters of the different anode/filters 
within one system and by differences in the two systems. In FFDM, CAD algorithms 
should be considered to vary depending on the image acquisition systems. 
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Abstract. We present an automatic approach to feature point detec-
tion that is well-suited to the non-rigid registration of digital breast to-
mosynthesis images. The approach combines the scale saliency and the
continuous intrinsic dimensionality of image structures in order to de-
tect key feature points along the breast boundary and within the breast.
These feature points can be used as the control points for polyaffine
transformation regularisation. Experimental results show that non-rigid
registration driven by such feature points yields good spatial alignment.

1 Introduction

Digital breast tomosynthesis (DBT) is an emerging imaging modality with the
advantage that it delivers 3D information about anatomical structures, poten-
tially improving breast cancer detection and diagnosis at X-ray doses similar
to those of conventional mammography. The spatial alignment of DBT images
could serve as a computer-aided detection and diagnosis (CAD) tool for the clini-
cian to compare DBT images: two different views of the same breast, left vs right
same view, and or to detect significant changes in the“same” view at two differ-
ent times. For example, bilateral comparison is used primarily to identify breast
asymmetry/abnormality, so that an asymmetric area may indicate suspicious
regions or an underlying cancer [1]. The image difference analysis used for regis-
tered bilateral pairs could be an indicator of a developing mass or future breast
disease, such as architectural distortion. As a complementary method to bilat-
eral registration or as an improved means of monitoring pathological changes or
growths over time, temporal breast image registration is increasingly recognized
as a key component of CAD in mammography community.

DBT image registration poses a difficult and challenging problem using either
standard intensity based or feature based methods. Although intensity based
registration has the advantage that no prior segmentation is required, it necessi-
tates an expensive computational overhead primarily because DBT images are so
large. On the other hand, feature based methods face the fundamental problem
of deciding what image features, geometrical or anatomical landmarks, reliably
underpin registration. Moreover, the limited-angle acquisition protocol and the
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resulting tilt artifacts, make it difficult to represent and compare DBT images.
The potential differences in large volumetric displacements of structures during
compression and different imaging parameters or pathological changes over time
mean that their appearances are likely to be dissimilar for intra-subject tempo-
ral DBT image pairs. Such reasons have led to several registration algorithms
relying on the breast boundary, and ignoring internal features that are seriously
affected by the dissimilarities of breast image pair. As proposed in Sallam and
Bowyer [2], and Karssemeijer and te Brake [3], using the boundary as a basis for
registration is based on the observation that the breast tends to be compressed
to approximately the same extent in each scan since the breast contents mostly
do not vary greatly between scans. However, Marias et al.[4] demonstrate a good
registration framework which uses both the breast boundaries and internal land-
marks in order to align a pair of temporal mammographic images. They develop
a maximum curvature detection algorithm to select boundary landmarks, then
a wavelet analysis to separate internal features at different scales and a saliency
measure to select certain features as salient internal landmarks.

In this paper, we propose an algorithm that combines scale saliency and con-
tinuous intrinsic dimensionality of image structures to automatically select the
breast boundary and internal feature points in order to drive the non-rigid reg-
istration of DBT images. Although the experiments were done using polyaffine
transformation, any warping function, such as those used in a thin-plate spline,
b-spline, or more generally, point set based registration regularization can natu-
rally be substituted into our algorithm. In the following sections, the methodol-
ogy is presented and results of the experiments on DBT image pairs/sequences
are shown.

2 Method

Our method consists of five steps:

1. Weighting the output of the scale saliency algorithm by the continuous intrin-
sic dimensionality (ciD): Scale saliency [5] can be considered as a geometrical
measure to detect salient regions in an image domain that could be used as
matching features. By making use of the scale saliency, we obtain a set of points
representing feature regions of different types. However, the feature points ob-
tained in this way correspond to different scales and, potentially, to different
image structures. In order to refine the set of feature points to initiate non-rigid
registration, we associate the ciD of image structures [6] with the output of a
scale saliency algorithm to assist in determining where the feature points are
located. This can be represented as:

F (s,x) = (λ · YD(s,x), β · ciD(x)) (1)

where F (s,x) denotes a set of weighted feature points x at scale range s by
associating the output YD(s,x) of scale saliency algorithm with the continuously-
valued intrinsic dimensionality ciD(x) (formal definition of YD and ciD can be
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found in appendix section). λ and β are weighting parameters for YD and ciD
respectively, and satisfy λ + β = 1. In our case, we use ci1D and ci2D to select
salient points along the breast boundary or within the breast.

2. Curve fitting to the breast boundary: A (spline) parameterised curve C : t → x,
where t ∈ R and x ∈ R

2, can be fitted to a set of scale salient points identified
‘around’ the breast boundary in step 1. However, such salient points correspond
to a range of scales s and are located at the centres of different scales. The
curve fitted directly to such salient points is usually not a good approximation
to the breast boundary. In order to re-direct the fitted curve towards the breast
boundary, we re-sample the first fitted curve and for each re-sampled point along
the curve we draw a circle taking the mean value of the scales s as its radius.
The final parameterised curve is then re-fitted to the breast boundary by finding
the outer envelope of re-sampled and re-scaled circles.

3. Detection of the maximum curvature in the breast boundary curve and
placement of boundary control points: To register a pair of DBT images, cor-
respondence between the fitted breast boundary curves in step 2 needs to be
established. In the model of [2], three points of characteristic geometry in the
breast boundary can be used as consistent landmarks. In our DBT case (a sim-
ilar cranio-caudal view in mammogram), these points could be two invariant
points near the chest wall, which are approximated by the beginning and end of
the fitted breast boundary curve respectively. The third point (or possibly, the
nipple) can be detected by the maximum curvature point (negative curvature by
convention) proposed by Marias et al. [4]. Other control points could be placed
along the fitted breast boundary curve between the maximum curvature point
and one of the chest wall points.

4. Internal feature point matching: In this step, we establish internal feature point
correspondences. This is done firstly by roughly aligning two DBT images. For
example, the floating image is displaced in Cartesian coordinates, such as a small
translation in x and y coordinates, in order to get the optimal match against the
reference image in terms of intensity difference. Next, the corresponding internal
feature points Finternal are established by finding the minimum of the Euclidean
distance measure between any pair of two internal points in the aligned images.

5. Using detected feature points to drive polyaffine transformation: The polyaffine
transformation weights the sum of local displacements according to a weight
function for each individual image region by solving the following ODE:

D(x) = ẋ(t) =
∑

i wi(x)Pi(x, t)∑
i wi(x)

(2)

where D(x) denotes the globally-weighted transformation for a point x in the
image domain; wi denotes the weight function and Pi denotes the local displace-
ment for an image region i.

In equation 2, a Gaussian mixture model is used to define the weight function:

wi(x) = qi

∑
i=1

G(ai,σi)(x) (3)
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where the anchor point ai describes how each region is geometrically connected.
In our case, the anchor points or control points are stored in a location vector
using Fboundary/internal detected via steps 1 to 4. The standard deviation σi

specifies the range of each anchor point’s effect on the global transformation. σi

also controls the extent to which each anchor point affects the local deformation
around its neighbourhood and hence the extent (or smoothness) of warping
that a polyaffine transformation can produce. The relative weight qi reflects the
importance of the individual anchor points. In our case, we assume that each
anchor point contributes equally to the global transformation. That is, we set
the relative weight to 1.

For a polyaffine transformation, each Pi can be represented as:

Pi(affine)(x) = Ai · x + di, ∀x ∈ R
2 (4)

where Ai and di are respectively the deformation part and translation part. The
spatial deformation Dspatial is then obtained by associating the Ppolyaffine with
the ODE and integrating equation 2 with respect to time t (0 � t � 1), such that
D(x) = Φ(x, 1), where Φ(x, t) isthe solution (i.e. the warp flow) of the ODE.

3 Result

One volunteer DBT dataset with limited-angle projection of [+12o,−12o] has
been used to date in our experiments.

Feature Point Detection: Figure 1 indicates the result of using our detection
algorithm to select breast boundary feature points for a pair of bilateral DBT
images. Since the internal structure correspondence of such a pair may not be
available, we demonstrate the internal feature point correspondences between
the +12o projection and the 0o projection DBT images from the same side of
the breast instead.

Applied to Bilateral DBT Image Registration: Figure 2 is the result of registering
a pair of bilateral DBT images. The 0o projection slices are used. Although only
nine breast boundary control points are selected by the feature point detection
algorithm to drive the polyaffine transformation [7], substantial spatial differ-
ences are aligned. The root means square errors (RMSE) of image pair after
registration is reduced to 7.48mm (right-to-left registration) and 8.52mm (left-
to-right registration), compared with the RMSE of 24.86mm before registration.

Correcting Tilt Artifacts: The maximum +12o projection and the 0o projection
DBT images of the left and right sides of the breast are shown in figure 3 after
correcting for tilt artifacts. Both breast boundary and internal feature points
are used. The RMSE of a DBT sequence acquisition ( [+12o,−12o] with small
angle increment for each of 13 frames) before registration were 8.61 ± 2.39mm
and 6.72±1.81mm for left and right breast respectively; and 1.65±0.71mm and
1.84 ± 0.89mm after registration.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Result of feature point detection. (a) and (b): associating CID to the output
of the scale saliency algorithm to select feature points around the breast boundary
for a pair of bilateral DBT images. (c) and (d): parameterised curves fitting to the
breast boundary. (e) and (f): using the maximum curvature detection algorithm to
place control points. (g) and (h): establishing internal feature point correspondence
by the Euclidean distance measure between (g) the 0o projection and (h) the +12o

projection DBT images from the same side of the breast.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Result of bilateral DBT image registration. (a) Left and (b) right DBT images
with identified breast boundary control points and (c) their difference image before
registration. (d): registered right DBT image (right-to-left registration) with (e) its
warping grid by polyaffine transformation and (f) difference image between warped
right DBT image and left DBT image.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Result of correcting tilt artifacts. (a) 0o projection and (b) +12o projection
left DBT images with (c) identified breast boundary and internal control points and
their difference image before registration. (d): registered +12o projection with (e) its
warping grid by polyaffine transformation and (f) difference image between warped
+12o projection and 0o projection left DBT images.

Table 1. RMSE evaluation on Non-rigid Registration of DBT Images

Application Feature Point Used RMSE (before) RMSE (after)

Bilateral (R to L) Boundary 24.86mm2 7.84mm2

Bilateral (L to R) Boundary 24.86mm2 8.52mm2

Artifacts (R seq) Boundary+Internal 6.72±1.81mm2 1.84±0.89mm2

Artifacts (L seq) Boundary+Internal 8.61±2.39mm2 1.65±0.71mm2

4 Discussion

In this paper, we have presented a feature-based detection algorithm for selecting
breast boundary and internal feature points to drive a non-rigid registration al-
gorithm. The key to our algorithm is to associate the CID of image structures to
the output of a scale saliency algorithm and separate the breast boundary salient
points and internal salient points for further establishment of their individual cor-
respondence. We applied our algorithm to identify the breast boundary points for
the polyaffine transformation in order to align a pair of bilateral DBT images and
the result shows a good spatial alignment. In the future, we will extend our algo-
rithm to the temporal DBT image registration. Establishing surface correspon-
dence for registering reconstructed DBT volume images is also of our interest.
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A Scale Saliency

In equation 1, scale saliency is defined by the weighted entropy across scale and
position:

YD(s,x) � HD(s,x) ×WD(s,x) (5)

where YD(s,x) denotes the out put of a point x at scale s from the scale saliency
algorithm; HD and WD denote the entropy and the weighting function respec-
tively, which are defined by:

HD(s,x) �
∫

i∈D

pD(s,x) log2 pD(s,x) · di (6)

WD(s,x) � s ·
∫

i∈D

⏐⏐⏐⏐ ∂

∂s
pD(s,x)

⏐⏐⏐⏐ · di (7)

and the scale vector is defined by:

s �
{

s :
∂HD(s,x)

∂s
= 0,

∂2HD(s,x)
∂s2 < 0

}
(8)

In equation 6 and 7, pd is the probability density as a function of position x
at scale s. By applying the Kadir-Brady scale saliency operator to substantial
DBT and mammographic images, it is shown that over 80% of the salient points
are located near the breast boundary and up to 20% of the points are located
within the breast.

B Continuous Intrinsic Dimensionality

In image processing, the intrinsic dimensionality is formulated as a heuristi-
cally discrete distinction between edge-like and corner-like structures. Krüger
and Felsberg [8] represent the the intrinsic dimensionality in a continuous and
topologically manner as ciD = {ci0D, ci1D, ci2D}, for example, in the spectrum
of an image patch (i.e., the Fourier transform of a neighbourhood), the ci0D
points, for which their local spectrum is concentrated in the origin, can be used
to represent constant image patch. The ci1D points, for which their local spec-
trum varies primarily in one direction (i.e., along a line via the origin), represent
edge, ridge or boundary-like structures. The ci2D points where their local spec-
trum is neither concentrated in the origin nor along a line represent corner or
junction-like structures. They further develop a 2D triangular model for ciD. In
a polar coordinates u → (q, θ), the radial variance and the angular variance can
be defined respectively as:

ε2
R =

1
N ′

∫ Q

0
q2

∫ 2π

0
|F (q cos θ, q sin θ)|2dθdq (9)

ε2
A = min

θ0

1
N ′

∫ θ0+π

θ0

(θ − θ0)2
∫

Q

|F (q cos(θ − θ0), q sin(θ − θ0)|2dqdθ (10)
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where Ω is the region of integration in the Fourier domain, Q denotes radius of
Ω, N ′ is a normalization constant and angle θ0 represents the local orientation.
By multiplying ε̃2

A with ε̃2
R, a 2D triangular representation for ciD is obtained,

in which each of the corners of the triangle corresponds to a certain intrinsic
dimensionality.
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Abstract. Detection of low contrast and very small size objects is of great im-
portance on digital mammography imaging techniques. Hence, when comparing 
image quality performance for different equipments, it would be desirable to 
make an objective evaluation primarily based on raw images. In this work we 
present the results of an image quality performance comparison test for digital 
mammography systems. Contrast detail curves obtained for raw and filtered im-
ages from a CDMAM v3.4 phantom were analyzed. The test resulted in an 
overall image quality figure index for filtered and raw images of 106.66 and 
109.90 respectively for a detection rate threshold of 75%. The largest differ-
ences were observed with the small diameter dishes of the phantom. 

Keywords: Full field digital mammography, quality assurance, contrast detail 
curves, CDMAM. 

1   Background 

Due to the nature of the lesions localized in breast tissue, it is of paramount impor-
tance the detection of low contrast and very small size objects. Digital mammography 
imaging systems should perform well when resolving these objects. Hence, evaluation 
of the system performance should be objective and independent of the observer. 

Image quality may be objectively evaluated by means of the analysis of the Modu-
lation Transfer Function (MTF) of the system as well as contrast detail curves. MTF 
analysis provides extended information to the spatial resolution test of the system. 
The contrast detail test adds the information on the contrast performance of the imag-
ing system. This contrast detail test can be seen as a good indicator of the overall 
quality image performance of the evaluated system. 

A major problem when dealing with mammography equipments is the restricted 
access to raw data. Raw data is normally automatically archived by the image analysis 
software of the system and most of the times is not accessible without the intervention 
of the manufacturer.  However, to avoid the influence of image processing on the 
results, the performance tests should also be carried on raw images. 

The aim of the present work is to evaluate the influence of image processing on 
image quality tests results, using raw images as a benchmark. Different filters will be 



 Contrast Detail Curves on Digital Mammography 305 

 

applied to these benchmark images. These filters will be firstly characterized by the 
frequency response obtained from the MTF calculation. The noise behaviour of these 
filters will be evaluated as well. Results of this pre-analysis will then be confronted to 
results obtained from the contrast detail analysis as a more general evaluation of im-
age performance. 

2   Materials and Methods 

The contrast detail tests were conducted on a Seno Essential System flat-panel digital 
mammography system (GENERAL ELECTRIC). This equipment is based on an 
amorphous Silicon indirect-detection flat-panel imager: a Cesium Iodine fluorescent 
layer coupled to an amorphous Silicon photo-detector matrix. The detector features a 
pixel size of 95 μm and an active detection surface of 24x31 cm2. In this system a so-
called "Premium View" filter is applied by default to all acquired images. However, 
raw data is stored together with the corresponding processed images and is accessible 
by the user. 

The CDMAM v3.4 phantom (ARTINIS MEDICAL SYSTEM BV) was used in the 
performance test. The European guidelines for quality assurance in breast cancer 
screening and diagnosis [1] [2] were followed. The contrast detail phantom was in-
serted in between of 4 1cm PMMA layers. A total of 6 images of the CD-MAM phan-
tom were taken, using an automatic exposure control in standard operation mode. The 
automatic selection mode parameters of the exposures were: 29 kVp, 56 mAs for a 
combination of anode and filter of Rhodium /Rhodium in all cases. 

Images were acquired, stored and then transferred to the analysis software. The 
CDMAM Analyzer v1.1 image analysis software (ARTINIS MEDICAL SYSTEM BV) 
was used in the test. For the evaluation, a detection rate threshold of 75% was set as 
recommended by the Spanish quality assurance protocol in digital mammography [3]. 

Filter performance was evaluated using the following software applications: 

- The application MiQuaela [5] distributed by the Spanish Association of Medi-
cal Physics. MiQuaela allows for the calculation of the MTF using an imaged 
high contrast edge 

- The application ImageJ 1.42q [6] distributed by the National Institutes of 
Health. ImageJ allows for an easy evaluation of image noise 

High contrast edge images were acquired using a phantom consistent of 4 PMMA layers 
1 cm width each and a 0.5 mm Copper layer interleaved. The Copper layer was inserted 
slightly rotated in order to obtain an oversampling of the high contrast profile. 

These images of the 4 cm PMMA and 0.5 mm Cu phantom were acquire using an 
automatic exposure control in standard operation mode. The exposure parameters were 
in this case 29kVp, 50mAs for a Rhodium /Rhodium anode and filter combination. 

Noise images were acquired using a 4 cm width PMMA phantom. Automatic ex-
posure control was employed in this case as well, for the same anode/filter set. 

All images were acquired using the bucky compressor assembly, with compression 
strength of 16 daN. 
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Vertical MTF values were evaluated from the horizontal edge of the Copper layer 
and vice versa. For this purpose, 500x250 pixels ROIs were defined centred on these 
borders (see Figure 1.) 

A blank image of the 4 cm PMMA phantom without the Copper layer inserted was 
also acquired. This is used by MiQuaela to correct the edge images for the actual 
radiation field profile. 

    

Fig. 1. Defined ROIs for the calculation of horizontal and vertical MTF 

3   Results 

The contrast detail curve has been first evaluated for the default image filter "Prime 
View". The obtained values of the contrast detail curve are tabulated below. These are 
compared with the values for the raw images. 

Table 1. Contrast – detail values obtained for the two series of images 

Processed series Raw series

Diameter (mm) Thickness (μm)
0.060 2.500
0.080 1.557
0.100 0.769
0.130 0.388
0.160 0.370
0.200 0.185
0.250 0.176
0.310 0.118
0.400 0.095
0.500 0.052
0.630 0.048
0.800 0.042
1.000 0.030
1.250 0.036
1.600 0.030
2.000 0.040

Diameter (mm) Thickness (μm)
0.060 2.500
0.080 1.917
0.100 0.764
0.130 0.450
0.160 0.401
0.200 0.184
0.250 0.162
0.310 0.110
0.400 0.095
0.500 0.052
0.630 0.048
0.800 0.042
1.000 0.030
1.250 0.030
1.600 0.030
2.000 0.040
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The obtained values fulfill both the tolerances and the recommended values as es-
tablished by the Spanish quality assurance protocol in digital mammography [3]. This 
is valid for both series of data. The contrast detail curves are depicted in the scatter 
plot of figure 2. 

We obtained the following scores in terms of IQF index value [4]: 

 - IQF = 106.66 for processed images 
 - IQF = 109.90 for raw images 

 

Fig. 2. Contrast detail curves obtained for the two series of images 

We considered a number of available filters in order to study the influence on the 
IQF value. The so-called "Prime View Low", "Prime View Medium" and "Prime 
View High" filters have been evaluated. 

The behavior of these set of filters have been established by the MTF analysis of a 
high contrast edge processed image. An automatic exposure controlled image of the 4 
cm width PMMA phantom was acquire. The automatic exposure X-ray generator 
parameters were registered. The same parameters (kVp and mAs) were manually set 
to acquire the high contrast edge images of the 0.5 mm Copper layer. The mentioned 
filters were subsequently applied to these images. 

The following set of figures was considered from the MTF analysis: 

- MTF value at 2cycles/mm. 
- MTF value at 4cycles/mm. 
- MTF value at the  Nyquist frequency. 
- The frequency value for the MTF to reach 50% of the its maximum value or 

f(MTF50). 
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All MTF curves have been normalized to the 0 cycles/mm MTF value. It is immediate 
to see that these figures describe edge enhancement filters with different intensities. 
The corresponding MTF has been represented on figure 3. 

The effect of the applied filters on image noise can be evaluated from Figure 4. 
Here we show a histogram of the values laying in a 328032 pixels homogeneous ROI. 
The standard deviation for these distributions has a higher value for the filters with 
higher intensity. Moreover, the minimum values decrease and the maximum values 
grow, giving a net increase of the range of values. All these data is coherent with an 
increase of image noise. 

Table 2. Evaluation of the MTF for the considered image filters and for raw image 

Series Filters 
MTF at 

2cycles/mm
MTF at 

4cycles/mm

MTF at 
the Nyquist 
frequency 

f (MTF50) 
(cycles/mm) 

1 Prime View Low 1.28 0.95 0.73 6.02
2 Prime View Medium 1.72 1.11 0.82 6.33
3 Prime View High 2.34 1.53 1.15 7.05
7 Raw 0.77 0.56 0.42 4.39

MTF GE Seno Essential

0

0,5

1

1,5

2

2,5

MTF 0ciclos/mm MTF 2ciclos/mm MTF 4ciclos/mm MTF f Nyquist

Prime View  Low

Prime View  Medium

Prime View  High

Raw

 

Fig. 3. MTF curves for the different post-processing filters considered and for the non-
processed image. The 2 cycles/mm, 4 cycles/mm and Nyquist frequency values have been 
explicitly plot.  
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Fig. 4. Homogeneous ROI histograms for the "Prime Viem Low", "Prime View Medium" and 
"Prime View High" filters 

These post-processed images score the following IQF figures: 

Table 3. IQF values obtained for postprocesed series of images 

Series Filters IQF 
1 Raw 109,6
2 Prime View Low 107,4
3 Prime View Medium 110,9
4 Prime View High 114,9

Figure 5 shows the contrast detail curve for the "Prime View Filter" and the origi-
nal raw image. As mentioned, this is the filter that weights the higher frequencies the 
most. Minimum differences for the object detection rate can be observed, even if this 
filter has a MTF50 value significantly higher. This can be explained by the fact that 
the corresponding frequency (7.05 cycles/mm) is above the Nyquist frequency value, 
thus offering no advantage from the quantitative point of view. The analysis provided 
by a software application will not show any improvement. 
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Fig. 5. Contrast detail curves for the raw and post-processed images. Applied filter in this case 
is "Prime View High". 

4   Discussions 

The observed differences in terms of IQF value are almost negligible. Nevertheless, 
the edge filters boost the image noise, especially for the high intensity filters. The 
detection rate for the small diameter (0.08 mm and 0.1 mm) objects decreases, all this 
suggesting a net loss of information. 

It is important to point out that having access to raw data is always useful. Proc-
essed images may improve the ability of the human observer to detect relevant clini-
cal information; however information may be lost during the filtration process. In a 
general case, this could be reflected on the Image Quality Tests.  
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Abstract. A number of studies have demonstrated that radiologists can become 
fatigued after reading cases for a number of hours. Some of these studies have 
demonstrated that there are associated decreases in observer performance (i.e., 
reduced accuracy), but mammographic reading has not been a focus of any of 
these studies. Based on these recent findings regarding decreases in perform-
ance as a function of time of day and/or number of hours reading, this retro-
spective study examined data from a variety of mammography studies in which 
readers participated in two sessions – once in the morning and once in the after-
noon. The ROC Az data from these studies were compared for statistical differ-
ences between morning and afternoon reading. Overall there was a small yet 
significant (t = 2.365, p = 0.0277) between morning and afternoon diagnostic 
performance, with performance being degraded in the afternoon. These data 
suggest that reader fatigue may impact mammography interpretation perform-
ance, although more formal studies are required to verify these findings with a 
prospective study since this retrospective analysis did have limitations. 

Keywords: Full field digital mammography, quality assurance, contrast detail 
curves, CDMAM. 

1   Background 

Radiologists today read more and more cases with more and more images per case, 
even in mammography where digital images make it easier to retrieve and view pre-
vious exams. This burden is compounded by shortages in radiologists, especially spe-
cialty radiologists such as mammographers in rural and medically underserved areas. 
The result is that radiologists are working longer hours than ever before and some 
concerns have been raised regarding fatigue and whether it impacts diagnostic accu-
racy. A more recent problem is the reliance on digital imaging in radiology.  Even the 
best medical-grade displays available have less contrast than traditional radiographic 
film and they also have reduced spatial resolution. The problem is that it is this infor-
mation that the visual system uses to regulate image focus, single vision, and direction 
of gaze. This change to digital displays may have increased strain on radiologists’ 
oculomotor systems, overworking the eyes and resulting in eyestrain (known clini-
cally as asthenopia).2-3 Close work with digital displays may result in oculomotor 
fatigue, compounding the effects of longer workdays and aging eyes.4 A number of 
studies have indeed demonstrated that radiologists can become fatigued after reading 
cases for a number of hours. Some of these studies have demonstrated that there are 
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associated decreases in observer performance (i.e., reduced accuracy), but mammo-
graphic reading has not been a focus of any of these studies. What has been demon-
strated, however, is the fact that FFDM reading still appears to take longer to interpret 
than screen-film images.5 The potential for increased fatigue due to these longer 
viewing times would seem to be high. 

For example, Gale6 found a significant morning to afternoon drop in sensitivity in 
detecting pulmonary nodules in chest radiographs. In a more controlled study, 
Krupinski and Berbaum 7,8 measured visual accommodation before and after test 
sessions and had subjects complete the Swedish Occupational Fatigue Inventory 
(SOFI) 9,10 and the oculomotor strain subscale of the Simulator Sickness Question-
naire (SSQ).11-12 Each subject read a series of bone images with fractures before and 
after a day of clinical reading.  Average Receiver Operating Characteristic (ROC) Az 
(area under the curve) was 0.89 for before work test and 0.85 for the after work test, 
(F(1,36) = 4.15, p = 0.049 < 0.05). There was significantly greater error in accommo-
dation after the clinical workday (F(1,14829) = 7.81, p = 0.005 < 0.01), and after the 
reading test (F(1,14829) = 839.33, p < 0.0001). SOFI measures of lack of energy, 
physical discomfort and sleepiness were higher after a day of clinical reading (p < 
0.05). The SSQ measure of oculomotor symptoms (i.e., difficulty focusing, blurred 
vision) was significantly higher after a day of clinical reading (F(1,75) = 20.38, p < 
0.0001).  

Based on these findings regarding decreases in performance as a function of time 
of day and/or number of hours reading, the present retrospective study examined data 
from a variety of mammography studies in which readers participated in two sessions 
– once in the morning and once in the afternoon. All of the studies examined another 
hypothesis than reader fatigue so the present analysis is an ad hoc one that has limita-
tions. The goal however is to provide some preliminary data about reader fatigue in 
mammography to help determine if a more controlled study is warranted. Therefore, 
the ROC Az data from these studies were compared for statistical differences between 
morning and afternoon reading. 

2   Method 

This retrospective study examined data from four earlier ROC mammography studies 
[14-17] in which the readers were required to participate in two test sessions. The 
records were reviewed to identify which of the subjects completed their test sessions 
once in the morning and once in the afternoon. Those who completed both in the 
morning or both in the afternoon were not included in the present analysis. Each study 
originally had 6 radiologists serving as observers.  

Study #1 [14] compared screen-film and monitor reading of 20 mammograms (5 
mass, 5 microcalcification, 5 mass + microcalcifications, 5 normal) with the lightbox 
and monitor each at two luminance levels (1100 & 660 ft-L and 140 & 80 ftL respec-
tively). Four of the 6 readers qualified for this analysis (read one condition in the morn-
ing and the other in the afternoon) in the screen-film arm and 3 qualified in the monitor 
arm. Study #2 [15] compared mammograms displays on a monitor calibrated to the DI-
COM Gray Scale Display Function vs calibrated with the SMPTE standard. Three of 
the 6 readers from this study qualified. Study #3 [16] compared CRT vs LCD on and 
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off-axis reading of mammograms and 4 of the six qualified for the present analysis. The 
fourth study [17] compared digital images that were either processed or not processed 
with a method to correct for the monitor’s MTF and 4 of the 6 readers qualified.  

The ROC Az data from the qualifying readers were analyzed with a paired t-test to 
determine if there were statistically significant differences in diagnostic accuracy as a 
function of whether the cases were read in the morning vs afternoon. In those studies 
where eye-position was recorded, these data were examined for potential time of day 
reading effects as well. 

3   Results 

The ROC Az values from the 4 studies are shown in Table 1. It is important to note 
that for every experiment about half of the trials for each condition were completed in  
 

Table 1. ROC Az values from the various studies. Am and pm designate the time of day the 
observer completed the trial. The am trials are in regular font and pm are in bold. 

STUDY #1 Film 1100 ftL STUDY #1 Film 660 ftL 
.9466 am .9398 pm 
.9563 pm .9517 am 
.8850 am .8784 pm 
.9772 pm .9691 am 
STUDY #1 Monitor 140 ftL STUDY #1 Monitor 80 ftL 
.9655 am .9603 pm 
.9843 am .9837 pm 
.9663 pm .9695 am 
STUDY #2 DICOM STUDY #2 SMPTE 
.9800 pm .9637 am 
.9463 am .8704 pm 
.8948 am .8560 pm 
STUDY #3 CRT on-axis STUDY #3 CRT off-axis 
.9172 am .9017 pm 
.8822 am .8592 pm 
.9120 pm .9004 am 
.8718 pm .8783 am 
STUDY #3 LCD on-axis STUDY #3 off-axis 
.9119 pm .8632 am 
.9079 am .8544 pm 
.9175 am .9103 pm 
.8996 am .8446 pm 
STUDY #4 no correction STUDY #4 MTF correction 
.9878 pm .9871 am 
.8698 am .8301 pm 
.8754 pm .8927 am 
.8967 pm .9457 am 
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the morning (am) and about half in the afternoon (pm). Therefore, although the ex-
periments were directed at another hypothesis than fatigue effects, the overall differ-
ences between am and pm reading cannot be attributed solely to the experimental 
condition results. 

On average, the ROC Az for morning (am) performance was 0.924 and was 0.910 
for afternoon (pm) reading. The difference was statistically significant (t = 2.365, p = 
0.0277). In general, irrespective of the study they were in and the overall results of 
those studies, reader performance was lower in the afternoon reading sessions than in 
the morning reading sessions. Interestingly, the study that compared film and digital 
viewing [14] revealed no significant differences (F = 1.445, p = 0.2876) in either mo-
dality for am (mean Az film = 0.936, mean Az digital = 0.973) vs pm (mean Az fim = 
0.938, mean Az digital = 0.970) reading. 

Studies 1 and 2 used full images rather than regions of interest so viewing times 
were compared for these studies. Overall, viewing times were longer (mean am = 
39.76 sec, sd = 13.21; mean pm = 46.24 sec, sd = 15.84) during the am trials than the 
pm trials (t = 2.637, p = 0.0270). For study 1 am an pm readings were compared for 
film vs digital viewing and significant differences were found (F = 43.147, p < 
0.0001). The results are shown in Figure 1. For both film and digital images, viewing 
times were longer in the pm reading sessions than the am reading sessions and the 
effect was much more pronounced for the digital images overall. 
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Fig. 1. Mean viewing times for am and pm viewing of film vs digital images in study #1 & 
study #2 

The decision dwell times for study #1 were also analyzed for am and pm readings 
on film vs digital images. Decision dwell times are derived from the eye-position data 
recorded as the mammographers search the images for masses and/or microcalcifica-
tion clusters. Dwell reflects to total amount of time during search that the observer 
spent on the lesion (true positive if they reported the lesion, false negative if they did 
not), on a non-lesion area they reported (false positive) or on non-lesion areas they did 
not report on (true negatives). Overall there were trends to longer dwell times for each 
decision for digital than film viewing and dwell times tended to be longer in both 
cases for pm viewing. None of the differences, however, reached statistical signifi-
cance. The data are shown in Figure 2. 
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Fig. 2. Mean dwell timers (msec) for true positive (TP), false negative (FN), false positive (FP) 
and true negative (TN) decisions in study #1 for am and pm reading of film and digital images 

4   Discussion 

Mammographers are fatigued by their clinical reading workday. Although retrospec-
tive in nature, this study suggests that mammographers are less accurate reading im-
ages in the afternoon than in the morning. This supports results found by others such 
as Gale [6] and Krupinski and Berbaum. [7,8] Part of the reason for the degradation in 
performance is likely visual fatigue resulting from the close nature of mammographic 
viewing. With both film and digital reading, mammographers tend to work very close 
to the images. Close work with digital displays may result in oculomotor fatigue, 
compounding the effects of longer workdays and aging eyes [4]. 

The viewing time data suggest that viewing times are longer later in the day than 
earlier and the effect seems to be more pronounced for digital images viewed on a 
computer monitor. Dwell times for the individual decisions (TP, FN, FP, TN) also 
show trends towards longer viewing times in the pm vs am for both film and digital 
reading. Eyestrain has not been very well studied in radiology and never in mammog-
raphy, but an early self-report study showed that radiologists experience more severe 
symptoms of eyestrain, blurred vision and difficulty focusing, as they read more im-
aging studies.[18] Vertinsky and Forster [19] also found that 36% of radiologists re-
ported eyestrain, and the eyestrain could be predicted from the length of work days, 
the number of breaks, screen flicker, and imaging modality. Goo, et al.[20] found that 
increased ambient light and monitor luminance levels also lead to reports of greater 
subjective visual fatigue. Eyestrain occurs when oculomotor systems work to main-
tain accommodation, convergence, and direction of gaze, resulting in physical symp-
toms such as blurred vision, headaches, and pain in and around the eyes.  
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The present study does have some limitations. As already noted, the data are retro-
spective from studies that were not concerned with measuring the impact of fatigue or 
time of day on performance. However, from Table 1 it is clear that we had a fairly 
good balance of am vs pm reading across all experimental conditions. Thus the im-
pact of morning vs afternoon reading is likely independent (at least to some degree) of 
the original experimental conditions. Clearly, however, in order to verify the effects 
of fatigue on diagnostic accuracy in mammographic reading a prospective study de-
signed to directly address this hypothesis should be conducted. 
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Abstract. Comparing the clinical performance of digital mammography tech-
nologies is challenging. The aim of this work is to develop and test a methodol-
ogy for adjusting mammographic images taken on a given imaging system to 
simulate their appearance as if taken on a different system. Such methodology 
would be very useful for a wide range of system performance and design stud-
ies using both phantom and clinical images. The process involves changing the 
image blurring in accordance with the measured modulation transfer functions 
and adding noise (electronic, quantum and structure). The method has been 
tested by adapting flat field images acquired using an amorphous selenium de-
tector and a computed radiography (CR) detector to different dose levels and 
comparing the resultant simulated NPSs with directly measured NPSs. For the 
detectors used in this work the NPSs at different dose levels are well predicted. 
This could be a powerful tool for studies of clinical image quality. 

Keywords: mammography, simulation, noise. 

1   Introduction 

Extensive work has been undertaken on measuring the image quality of digital mam-
mography systems. The physical parameters of images such as noise and sharpness 
have been measured using quantitative measurements such as modulation transfer 
function (MTF) and noise power spectra (NPS). Contrast detail measurements are 
used to ensure that clinical systems meet acceptable standards and have advantages in 
that they include factors in addition to the detector performance including the visual 
response of an observer, scatter, scatter rejection and beam quality [1]. Nonetheless, 
the relationship between contrast detail measurements and measurements of MTF and 
noise are well understood [2]. However, the relationship between the clinical task of 
cancer detection and the measured physical characteristics of the detector are less well 
understood. 



320 A. Mackenzie et al. 

 

Clinical evaluation of image quality in mammography is expensive and time-
consuming. Clinical trials to compare the effectiveness of different systems are rarely 
conducted as they would require large numbers of patients to achieve both sufficient 
numbers of detected cancers and statistical significance. In particular it would be 
desirable to repeat exposures on the same breasts with the same compression to 
minimise confounding due to differences in breast appearance and compression but 
this raises ethical issues. Alternative methods involving some degree of image simula-
tion have the potential to enable evaluations at reduced cost and time and without 
additional radiation exposure. For this purpose it is desirable to be able to acquire 
images on a given system and to simulate their appearance on a second system, so the 
performance of the two systems can be compared. This may be possible when the 
performance of the second system is inferior to that of the second system in terms of 
unsharpness and or noise, but not conversely. Such a method would enable the back-
ground tissue and compression to be the matched in different arms of a study using 
the insertion of simulated cancers. Work has already been undertaken in correcting for 
dose and detector used [3-5]. 

The aim of this work therefore is to set up a framework for adapting images to ap-
pear with different imaging characteristics. In particular we are aiming to convert an 
image acquired using an amorphous selenium detector to appear as a generic CR 
image. Ultimately, after this has been shown to produce realistic test images, we 
would apply the methodology to a set of clinical images obtained with DR so that the 
performance of DR and CR systems for the detection of cancers can be compared at 
several dose levels. 

2   Theory 

2.1   Contributions of Electronic, Quantum and Structure Noise to the NPS 

There are three different noise sources which contribute to the NPS: electronic, quan-
tum and structure; each has a different relationship with dose and spatial frequency  
[6, 7]. Equation 1 shows the three components to the total noise power NPStot and 
their air kerma dependence. In this expression, NPSe, NPSq and NPSs are the NPS 
components for the electronic, quantum and structure noise sources respectively at 
1 μGy and K is the detector air kerma (DAK) in μGy.  

( ) ( ) ( ) ( ) 2,,,, KvuNPSKvuNPSvuNPSvuNPS sqetot ++=  (1)

2.2   Creation of Noise Images from Measured Noise Coefficients 

With the knowledge of the NPS components shown in equation 1, a flat field image 
can be created. The first stage is to create three noise images for a DAK of 1 μGy 
based on the NPS components. The separate noise images are then combined (equa-
tion 3) to provide a simulation of the linearised flat field image without reference to 
an initial image.  
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( ) ( ) ( ) ( ) KKyxsIKyxqIyxeIyxI M +++= ,,,,  (3)

where IM  is the modelled image, Ie, Iq and Is are the flat field images produced from 
the three noise sources, K is the DAK (μGy) (or the mean pixel value of the modelled 
image) 

2.3   Adapting an Image to Simulate an Image Acquired with a Different 
Detector and Dose 

The methodology is now extended to modify an image acquired with a given image 
detector with known MTF and noise power coefficients (from equation 1) to simulate 
images at different dose levels from a different detector.  

The image adjustment was undertaken using the following steps: 

• Change the original image sharpness to match the model image 
• Simulate DAK change (if necessary) 
• Adjust the noise components to match the system to be modelled 

The original image is blurred by the ratio of the MTFs in frequency space. The three 
original noise sources are also blurred by the square of the ratio of the two MTFs to 
give NPSb to account for the noise in the image being blurred.  

Dose change: To simulate dose change in the detector the image is multiplied by a 
dose factor (R). The difference between the noise expected for the new dose level and 
the noise in the image which has been modified is shown in equations 5a and 5b. No 
adjustment is required for the structure noise as this noise source scales correctly with 
the dose correction. 

Detector change: The next stage was to account for differences in noise between the 
two detectors. The noise differences (NPS∆x) between the NPS of the three noise 
sources of the CR and DR systems are calculated (equation 4).  

( ) ( ) ( )vuNPSvuNPSvuNPS bxxmx ,,, −=Δ  (4)

( ) ( )( ) ( )vuNPSRvuNPSvuNPS eede ,1,, 2
Δ+−=  (5a)

( ) ( )( ) ( )vuNPSRvuNPSvuNPS qqdq ,1,, Δ+−=  (5b)

( ) ( )vuNPSvuNPS sds ,, Δ=  (5c)

where NPSΔx is the differences between the detectors’ NPS, NPSdx is the total differ-
ence in noise between the original image and the image to be simulated. 

The NPSdx for the each of the noise source are made into an image using the 
method described earlier. Each pixel in the blurred image has been linearised to be 
equivalent to the detector air kerma, therefore an image with the correct magnitude of 
noise can be created by multiplying the blurred image with the noise on a 
pixel-by-pixel basis (equation 6). This will ensure that the noise is correct for that 
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dose and will have the correct frequency spectrum and the noise will still be corre-
lated. Finally, the extra noise image (IN) is added to the blurred original image to 
obtain the modelled image (equation 7). 

( ) ( ) ( ) ( ) ( ) ( )yxIyxdsIyxIyxdqIyxdeIyxI blurblurN ,,,,,, ++=  (6)

( ) ( ) ( )yxIyxIyxI NblurM ,,, +=  (7)

IN is the noise array to be added to the blurred image, Iblur is the modelled image with 
the correct blurring but noise not corrected, IM is the modelled image, IR the dose 
reduced image, Iblur the blurred original image, and Ide Idq and Ids the images produced 
from electronic and quantum noise sources and blurred by MTFs. 

3   Method 

3.1   Measurement of Imaging Characteristics of Digital Mammography 
Detectors 

Two digital mammography imaging systems were used in this study: 

DR:  Hologic Selenia with an amorphous Selenium detector with pixel 
pitch of 70 µm. 

CR:  Carestream CR900 with GE Senographe DMR+ X-ray system with a 
CR detector with a pixel pitch of 50 µm.  

 

For each system the measurements were made using methods as close as possible to 
those described by the IEC [8] using 2 mm high purity aluminium at the exit port of 
the tube, and radiographic factors of 28 kV, and a molybdenum/molybdenum tar-
get/filter combination. 

The signal transfer function (STP) was measured by acquiring flat field images col-
limated to about 100 mm × 100 mm field over a range exposure values from a factor 
of five below to five above the typical dose (147 µGy for DR and 101 µGy for CR). 
The mean pixel value was measured for each image over 20 mm × 20 mm region of 
interest, 50 mm from the chest wall side of the image. The mean pixel value was 
plotted against DAK to give the STP relationship. All images were linearised with the 
inverse of the STP relationship. The resulting linearised pixel value then represented 
the DAK which facilitated image comparisons and manipulation. Using the same 
experimental set up as for the STP a further four images were acquired at normal dose 
plus quarter, half, double and quadruple typical dose level. The noise power spectra 
(NPS) were measured at each DAK level of the STP images.  

The modulation transfer function (MTF) was measured using a steel edge 0.8 mm 
thick. The MTF was measured in the two orthogonal directions of the detector using 
IDL based ‘OBJ_IQ_reduced’ [9].  

Using the NPS and STP images obtained over a range of dose, the separate contri-
butions can be estimated. By fitting equation 1 to the NPS data obtained at the differ-
ent dose levels, the three noise components are obtained as a function of spatial  
frequency for both systems. These values are in essence the NPS of the noise source 
at DAK of 1 µGy. 
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Using this knowledge it is then possible to predict the difference in the NPS for 
images taken under different conditions and to adjust the noise in the image on a pixel 
by pixel basis to model different imaging conditions. 

3.2   Simulation of Flat Field Images at Different Dose Level from the Noise 
Coefficients 

To test the image creation process, flat field images were modelled using the fitted 
noise components. The images produced using these methods were then compared 
with real images for the same factors. For this purpose, the normalised noise power 
spectra (NNPS) were calculated for each of the images and compared with the meas-
urement from the original image. 

3.3   Adjusting the Imaging Properties of an Image to Appear as if Acquired with 
a Different Detector 

The flat field images used for measurement of NPS and STP were change an acquired 
image to appear as if acquired using a different detector. 

Images acquired on the DR system at high dose were modified to appear as if ac-
quired by the CR system. This was repeated for all five dose levels collected for 
measurement of the NPS. Images acquired on the DR system were then converted to 
images of similar dose acquired on the CR system. 

A region of interest of 60 x 60 mm with a centre 50 mm from the chest was ex-
tracted from each of the DR images. The model images are then created using the 
method described in the theory section. The NNPS of the model images was meas-
ured and compared with those of the real images that were the model. 

It was decided not to change the pixel pitch of the image in the conversion and so 
the modeled CR image had a pixel pitch of 70 µm instead of 50 µm. There is little to 
be gained in rescaling the image as there is no information in the original image above 
its Nyquist frequency. In reality the MTF of the CR system above Also the rescaling 
in itself may create errors [10].  

4   Results and Discussion 

4.1   Measurement of Signal Transfer Function and Modulation Transfer 
Function 

The STP was measurements showed that the CR system has a logarithmic relationship 
and the DR system has a straight line relationship with an offset. With this informa-
tion images from either system were linearised so that the linear pixel value will be 
equal to the DAK and so the images were comparable. 

The MTF of the DR system is greater than the CR at all spatial frequencies. Thus 
one of the conditions allowing the images to be adapted to simulate another detector 
has been met for conversion from DR to CR. 
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Fig. 1. a) Signal transfer function of DR and CR systems as a function of pixel value against 
detector air kerma (K). b) The modulation transfer function for the CR and DR systems in the x 
and y axis. 

4.2   Simulation of Flat Field Images at Different Dose Levels for a Given 
Detector 

This was undertaken for five dose levels for both CR and DR. Fig. The DR images 
(fig. 2a) showed the NNPS of the real DR and the modeled image were closely 
matched over the whole dose range. The NNPS (fig 2b) of CR simulated images and 
real CR images agreement is slightly poorer than the modeled DR image results, but 
were still on average within a few percent between the real and modeled image.  

 

Fig. 2. NNPS of flat field images created from measurements of the noises compared to the 
equivalent real image for a) DR and c) CR in scan direction 

4.3   Adaptation of Image Noise to Simulate Image Obtained with a Different 
Detector 

When converting from a high dose DR images (fig. 3a) to appear as CR images, then 
the NNPS of the modeled CR images closely matched the real CR image even down 
to low dose levels. It is easier to convert a large dose change in the image as the origi-
nal noise in the image is reduced by the square of the dose change. Therefore, the 
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difference between the noise expected and in the dose reduced image is larger and so 
there is better scope to add the noise into an image with the correct magnitude and 
shape. However, when the dose change is small as in figure 3b, then there is less 
scope for accurately inserting noise. The largest difference between the real CR and 
the simulated CR image was at the conversion from a 28 µGy DR image to 26 µGy 
CR image. An issue arises at these dose levels as the DR system has more electronic 
noise than the CR system and at these dose level then electronic noise becomes a 
significant proportion of the overall noise in the image. The electronic noise cannot be 
simply removed and its effects are mitigated by a noise correction factor, without this 
correction the error would be much larger at this low dose level. 

 

Fig. 3. a) NNPS of simulated CR image produced from DR image at 568 µGy compared to the 
real CR images; b) NNPS of simulated CR image produced from DR image compared to the 
real CR images, the dose change was 28 µGy to 26 µGy, 79 µGy to 75 µGy, 147 µGy to 
145 µGy, 282 µGy to 210 µGy and 282 µGy to 300 µGy in x direction (CR scan direction) 

The NNPS of the real CR images extends to higher spatial frequencies than the 
simulated CR image. The CR system has a Nyquist frequency higher than the simu-
lated images as it was modelled from images obtained from a detector with a larger 
pixel pitch.  

5   Conclusions 

This work show shows potential for the conversion of images both in terms of the 
detector used and the dose acquired. The work requires further improvement and 
validation. However, if this method is successful it will be a very useful tool for as-
sessing the impact of using detectors with different imaging properties on cancer 
detection. Clinical trials currently require very large numbers of images to be able to 
detect differences in acquisition parameters, the reason for the large numbers is the 
large variability in clinical images due to differences between breasts being imaged. 
Even if the same breast is imaged using several technologies there will be differences 
due to the differences in compression/projection. This conversion program can allow 
the same image to appear as if it was imaged with a different detector and/or different 
dose. In addition it can remove variability due to differences in scatter rejection sys-
tems. This therefore may be a powerful tool for studies of clinical image quality. 
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Human Observer Performance in a Single Slice
or a Volume: Effect of Background Correlation

Ingrid Reiser and Robert M. Nishikawa
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Abstract. Human observer performance in a search task was compared
for viewing a single 2D image or a 3D image volume in cine mode. The
test images consisted of designer nodules added to white noise back-
grounds, or filtered noise backgrounds. In white noise backgrounds, per-
formance increased dramatically when the entire volume was provided. In
correlated backgrounds, no increase in performance was observed. These
results are consistent with our previous findings for signal-known-exactly
detection performance in single tomosynthesis slices or the entire recon-
structed volume, where the inclusion of adjacent slices in the observer
study did not result in a measurable increase in observer performance.

1 Background

With two emerging breast imaging modalities that are generating volume data
sets, namely tomosynthesis and breast CT, the goal of this study was to shed
light on human readers’ performance viewing volume images in slice mode. To-
mosynthesis breast images are often reviewed by scrolling through slices, or by
viewing the image stack in cine-mode [1].

We have previously presented results from a study that compared tomosyn-
thesis performance when looking at a single reconstructed slice, or a 3D stack of
reconstructed slices. The study is summarized briefly: The experiment measured
human detection performance for exactly-known signals (SKE) in the tomosyn-
thesis reconstructed volume. Test images consisted of a reconstructed designer
nodule [2] with a 8-mm diameter added into reconstructed breast tomosynthesis
backgrounds. Two reading conditions were investigated. In the first condition,
the 2D slice through the center of the reconstructed signal were shown. In the
second condition, all 36 of the 1-mm thick image slices through the volume were
shown, and the observers could scroll through slices at their own pace. Reading
time was not restricted, and readers rated their confidence of the presence of a
signal on a 1-8 scale in each trial. Two readers participated in the study. The
results are shown in Fig. 1. No significant difference in area under the ROC curve
was found.

This result was not expected and it was not clear whether this finding was
caused by errors in the display setup. Conventional wisdom would have suggested
that presenting adjacent slices would increasing the information available to the
observer and thus improve observer performance. To clarify the cause of these

J. Mart́ı et al. (Eds.): IWDM 2010, LNCS 6136, pp. 327–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Observer performance in a SKE detection study in tomosynthesis, for the 2D
in-focus slice through the signal, or when scrolling through the 3D volume. We have
presented these data at the XIIIth conference of the Medical Imaging Perception Society
(MIPS) in Santa Barbara, CA, Oct. 2009.

findings, a comparison of free search in a volume versus free search in a single
slice was performed, for signals added to white noise backgrounds, and filtered
noise backgrounds.

2 Method

Observer performance was measured by determining the proportion of correct
responses in a free-search task. A high-contrast copy of a 2D slice through the
center of the signal was shown to the observer, and the observer was asked to
indicate the location of the signal in the image. After the observer made his or
her decision, the signal location was revealed by a circle cue. A screen shot of
the display layout, including the circle cue, is shown in Fig. 2.

First, search experiments were conducted on 2D slices through the volume,
located at the center of the signal. Signal amplitude was set so that observers
reached a proportion of approximately 0.55 correct answers in the 2D slices. The
search experiment was then repeated with the same volume, but this time all
volume slices were shown to the observer in an infinite cine-loop. The frame rate
was fixed at 20 frames per second.

Search performance was measured in two types of background, uncorrelated
and correlated. The uncorrelated backgrounds were uniform with white Gaussian
noise. Correlated backgrounds were generated by filtering a random noise volume
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Fig. 2. Screen layout of the observer study. The example shows a filtered noise back-
ground. The signal amplitude is higher than was used in the actual experiment for
presentation purposes. The circle cue appears after the observer has indicated the sig-
nal location.
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with a 3D spherically symmetric kernel of the form k(f) = const/f2. This results
in volume with a spherically symmetric 3D power spectrum following P (f) =
c/f4. In this volume, the correlation is isotropic, i.e., a slice through the volume
along the x − y axes looks no different than a slice along the x − z axes. The
corresponding power spectrum in a 2D slice is then P2D(f2) = c′/f3

2 , i.e., the
texture in the slices is similar to that observed in tomosynthesis [3]. Signals
consisted of spherically symmetric designer nodules with a normalized profile of
s(r) = (1− (r/R)2)2ΠR, where ΠR is a rect function. Signal centers were placed
randomly within the volume.

Two observers, who were medical physicists (one in training) with experience
viewing tomosynthesis images, participated in the reader study. In perception
experiments, reader variability tends to be low and typically a small number of
observers is sufficient [4,5]. Experiments were conducted with signals of 14, 30
and 60 voxels in diameter. Volume size was 384x384x48 voxels. 64 trials were
conducted per experimental condition.

3 Results

Figures 3 and 4 show the proportion of correct responses in white noise back-
grounds and filtered noise backgrounds, for signal of 60, 30 and 14 voxels in
diameter. Inter-observer variability is within error bars, justifying the use of two
observers for this type of experiment. The first column in the figure shows the
proportion of correct answers in uncorrelated white-noise backgrounds. For all
signal sizes, showing the entire volume increases proportion correct dramatically,
from about 0.6 to 0.98. Since the same images were presented to the observers
in the 2D and 3D study, a pairwise comparison can be performed for each im-
age, the result of which is shown as “difference per image”. As expected, a large
increase of proportion correct of 0.4 or larger is found.

The second column shows results obtained in filtered noise backgrounds.
In these backgrounds, changes in observer performance are minimal, and not
statistically significant in that the change is less than the total length of the
error bars.

4 Discussion

For signals added to uniform white-noise backgrounds, this study produced the
expected large increase in observer performance. The frame rate of the cine-loop
was fast enough to exceed the integration time of the eye, which is about 0.1 sec
[6]. This indicates that the display setup was appropriate.

In the second set of experiments, background correlation was introduced at
a level similar to that observed in tomosynthesis images. In these backgrounds,
differences in human reader performance did not reach statistical significance
when the full 3D volume was shown. This could change if the number of trials
was increased.
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Fig. 3. Proportion of correct answers for two human readers in a search experiment in
uncorrelated white noise. First row: 60 voxels signal diameter. Second row: 30 voxels
signal diameter. Third row: 14 voxels signal diameter. The total length of the error
bars are two standard deviations.
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Fig. 4. Proportion of correct answers for two human readers in a search experiment in
a correlated background. First row: 60 voxels signal diameter. Second row: 30 voxels
signal diameter. Third row: 14 voxels signal diameter. The total length of the error
bars are two standard deviations.



Human Observer Performance in a Single Slice or a Volume 333

A limitation of this study is that there was no participation of a radiologist
who routinely reads a 3D imaging modality in slice-viewing mode. Further, the
signals as well as the filtered-noise backgrounds did not exhibit any sharp edges,
which may not be representative of 3D breast images.

To assess the implication of these results on display modes used in tomosyn-
thesis, we plan to perform 2D and 3D search experiments using clinical to-
mosynthesis backgrounds and realistic lesions, and we plan to include clinical
radiologists in those studies.

5 Conclusion

Our findings indicate that our display setup is capable of measuring differences
in performance in slice or volume reading. Our findings also indicate that there
may be little benefit of providing adjacent slices when detecting signals in a
volume.
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Abstract. X-ray field phase differences caused by an object can induce edge 
enhancement in a radiological image. Phase contrast effects have been inter-
preted using a model based on x-ray Fresnel diffraction. The dependence of 
edge-enhancement on x-ray energy, object characteristics and magnification has 
been systematically studied and interpreted by calculations using this model. It 
was found a good agreement between numerical simulations and experimental 
results obtained under magnification conditions with a commercial digital 
mammography unit. The numerical calculations have been extended to the more 
general situation of a variable total source-to-detector distance. In this paper, we 
present the results of these calculations as well as the results derived from the 
analysis of the influence of the fiber radius on the edge enhancement.  

Keywords: Phase contrast, Edge enhancement, Digital Mammography, x-ray 
diffraction. 

1   Introduction 

In the last years, there has been a growing interest in phase contrast radiography as an 
alternative method to gain information about low attenuating x-rays objects. Phase con-
trast is based on the changes experimented by the radiation wave front as a consequence 
of differences in the real part of the complex index of refraction of different media. For 
x-rays, the index of refraction can be expressed as n=1-δ + iβ. In the energy region 
typical for clinical radiography and for low-atomic-number elements, real coefficients δ 
are thousands of times larger than imaginary coefficients β which are related with the 
attenuating properties [1]. Therefore, phase contrast can be of relevance to radiological 
images of soft tissues, particularly in mammographic images [1,2]. 

Phase changes cause interference of wave fronts, generating dark and bright fringes 
around the object’s edges -where the refraction index varies abruptly- thus improving 
the visualization of the borders. To visualize the fine structure of the interference 
pattern is required to have spatially coherent radiation field at the object plane. In 
addition, the detector must be placed some distance behind the object to facilitate the 
Fresnel fringes observation. Different strategies have been designed to accomplish 
these requirements. The most common one makes use of synchrotron radiation with 
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special geometrical conditions to obtain mammographic phase contrast images [3]. In 
recent years, x-ray tubes with a small focus size (microfocus) have been applied to 
achieve partially coherent radiation [4,5,6]. Conventional mammography x-ray tubes 
using the small focus in combination with an object-detector distance greater than the 
usual (magnification) are commercially available [7,8]. Among the possible modali-
ties to exploit phase observation as image contrast, this work deals with “phase con-
trast radiography”[1,2], also called “in-line imaging”[9]. Phase contrast images of 
acrylic fibers with different diameters included into a mammographic phantom were 
acquired in the magnification mode (i.e. focus size equal to 0.1 mm) of a commercial 
mammographic unit i.e. total source-to-detector distance equal to 0.66 m. The object-
detector distance was varied to obtain images with a series of magnification factors 
(M), see Fig.2 for definition of M. Enhanced edges can be observed (Fig. 1) in the 
magnified images of the fibers that were acquired with a detector of 70 µm pixel size. 
The average of several intensity profiles across the fiber shows the increase of the 
intensity at the fiber edges. 

 

Fig. 1. Image and profiles for a 0.30 mm diameter fiber. a) Image acquired with Mo/Mo at 26 
kV, M=2.64 and a 70 µm detector pixel size. b) Average profile for three fibers, including the 
one shown in the image. c) Simulation of the relative intensity at the detector plane for 15 keV 
x-rays, M = 2.64 and 70 µm detector pixel size.  

Experimental observations were interpreted by a diffraction based simulation. The 
radiation intensity distribution at the detector plane has been derived from the analyti-
cal expression obtained considering the 2-dimensional diffraction of monoenergetic x-
rays by a weakly attenuating object. The dependence of the edge-enhancement on 
energy, object characteristics and magnification has been systematically studied and 
interpreted by the calculations. It was found a good agreement between experimental 
results and numerical simulations (Fig. 1)[10]. The numerical calculations have been 
extended to the more general situation of a variable total source-to-detector distance. 
In this paper, we present the results of these calculations. In addition, we have ana-
lyzed the influence of the fiber radius on the edge enhancement. 

2   Theoretical Formalism 

The objects considered in this work are long cylinders oriented along the y-axis (see 
Fig 2). The attenuation and phase shift effects of this object on the radiation field are 
described by a transmission function t(x1)[6]: 
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t(x1) = exp[−μ(x1)/2 + iπϕ( x1)] = A(x1) exp[iπϕ( x1)] . (1) 

where x1 is the x-coordinate at the object plane that is normal to the beam propagation 
direction z. ϕ(x) and μ(x) are the object projected phase shift and linear attenuation 
coefficients, given in terms of the index of refraction δ and β coefficients, respec-
tively, by 

∫ ∫=−= dzzxβ
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π

xμdzzxδ
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xφ ),(
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2
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Therefore, the phase contrast image formation can be treated as a two-dimensional 
(x1,z) problem. The radiation source focal spot can be considered as a linear, uniform, 
spatially incoherent monochromatic source of length a and intensity I0. The object is 
placed at the distances R1 and R2 from the source and detector respectively (Fig. 2). 

 
Fig. 2. Geometrical scheme used in the diffraction analysis where R1 is the source-object dis-
tance, R2 the object-detector distance and M is the magnification factor 

Applying the Van Citter-Zernike theorem [11] to relate the mutual intensity 
J(x1,x1’) at the object plane x1 to the intensity of the incoherent source, and after per-
forming some approximations, the intensity distribution at the detector plane x2 is 
obtained: 
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where M is the magnification factor. For the cylindrical objects considered in this work, 
the amplitude and phase of the transmission function obey the following expressions: 

 

     (4) 

2
2

2

( )8 ( ) 4
( ) exp 1 .

1

C C

C

x x x xr d x
A x

r dx r x x

r

π ϕ δβ
λ λ

⎡ ⎤− −⎛ ⎞⎢ ⎥= − − =⎜ ⎟⎢ ⎥⎝ ⎠ −⎛ ⎞⎣ ⎦ − ⎜ ⎟
⎝ ⎠



 Influence of Geometrical Factors on Phase Contrast Fiber Images 337 

 

where xC is the displacement of the fiber center from the coordinate origin, which 
coincides with the center of the radiation source. 

3   Results 

Eq. (3) was programmed in MATLAB for the specific case of a cylindrical object (Eq. 
4). The relative intensity distribution calculated at the image plane shows sharp 
maxima and minima (Fig. 3a) at the edges of the object that do not appear when only 
the attenuation effect is considered (Fig. 3b). The internal structure is the combination 
of attenuation and the minima of the phase oscillation. These effects result in contrast, 
due to the phase changes, complementary to the contrast produced by absorption alone. 

 

Fig. 3. Relative intensity distribution calculated at the detection plane for the following values 
of the parameters of interest: effective energy E = 15 keV, source size a = 100 µm, M = 2, fiber 
diameter d = 0.3 mm in air. (a) Absorption and phase; (b) Pure absorption (δ = 0).  

In this work, the detector was characterized by its finite Modulation Transfer Func-
tion (MTF) represented in Fig. 4, that was experimentally determined following the 
methodology described in the IEC standard [12]. Data were processed using the free 
software MIQuaELa (v.1.0) [13]. The Fourier Transform of the intensity distribution 
at the image plane was numerically calculated and then multiplied by the detector 
MTF. The inverse Fourier Transform (FT) of the product of the MTF and the FT of 
the intensity distribution at the detector plane obtained from Eq. (3) was numerically 
calculated. The result simulates the intensity distribution measured by the detector, 
without taking into account the noise. 

The study of the dependence of the edge enhancement on fiber size shows that it is 
slightly more relevant for cylindrical objects with a larger diameter (Fig 5a). The 
same behavior holds if the detector MTF is taken into account (Fig. 5b). In the latter 
case, the height of maxima associated with the edge enhancement is significantly 
reduced and its width is increased. Also it is observed the disappearance of the two 
sharp minima at the internal part of the fibers as a consequence of both a reduction on 
its depth and an increasing of its width.  

 



338 M. Chevalier et al. 

 

 
Fig. 4. Presampling MTF of the 70 µm pixel size a-Se detector mounted in the mammography 
system. The figure shows the average MTF, measured according to IEC. 

 
Fig. 5. Relative intensity distribution for several values of the fiber diameter (E = 15 keV, a = 
100 µm, M = 2): (a) Simulated profiles at the image plane (b) Simulated profiles at a 70 µm 
pixel size matrix detector 

Figure 6 displays the influence on edge enhancement of both object-detector dis-
tance (R2) and object-source distance (R1) for the fiber of diameter 0.25 mm. As can 
be seen in Fig. 6a, edge enhancement does not depend on the increase of R2 when R1 
is constant. The height of maxima remains the same and their width increases with R2. 
The image size also increases due to a major M value. However, a larger edge en-
hancement is observed for the greater values of R2 when the detector pixel size is 
considered (Fig. 6c). This is a consequence of the different contribution to the pixel 
energy integration due to the different width of the maxima.  

As beam spatial coherence increases with distance R1, greater values of R1 (lower M 
values) cause more pronounced edge enhancements i.e. greater values of the height of 
maxima (Fig. 6b). The detected relative intensity (Fig 6d) exhibits the same behavior. 
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Fig. 6. Relative intensity distribution at the image plane for several values of: (a) object-
detector distance R2 (R1 fixed at 0.33 m); (b) object- source distance R1 (R2 fixed at 0.33 m); (c) 
& (d) effect of a 70 µm pixel size detector (E = 15 keV, a = 100 µm, fiber diameter = 0.25 
mm). 

Note that commercial mammographic units have a constant focal spot-detector dis-
tance i.e. R1 + R2 is about 60-66 cm. Under this condition, the effect of phase contrast 
would be more visible for values of M between 1.6 and 2.8 where the influence of 
both distances on edge enhancement are positively combined (Fig. 7). The edge en-
hancement EE was quantified by the simple expression: 

 

 

(5) 

where IMAX is the maximum intensity at the edge and I0 is the background. 
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Fig. 7. Edge enhancement as a function of the magnification for three different x-ray effective 
energies in the range of mammography clinical values. The fiber diameter was 0.25 mm. 

The general tendency is for EE to increase rapidly from zero (at contact) up to 0.5-
0.7% at about M = 2 and to decrease afterwards. Edge enhancement is larger at the 
lower energy, about 45% stronger at 14 than at 17 keV. 

4   Discussion and Conclusions 

A simulation model has been developed to analyze the image formation for in-line 
phase-contrast imaging. The model has been based on x-ray Fresnel diffraction and 
the formalism of the mutual coherence function to describe the coherence properties 
of the incident beam. This model also includes the matrix structure of a detector with 
a pixel size typical for commercial mammography units. The detector performance 
has been characterized through its experimentally determined MTF. The sharp struc-
ture of maxima and minima that characterizes the theoretical intensity distribution is 
softened in the detection process and the edge enhancement is reduced by about 10% 
in the images of the detected fibers. The influence of the geometrical parameters has 
been systematically analyzed in order to establish the adequate conditions for experi-
mental observation of the edge enhancement associated to the phase contrast effect. 
Placing the detector away from the object produces an important increasing of the 
theoretical maxima (about 30%). However, these values are strongly reduced when 
the detector is considered. For commercial units, intermediate M values (about 2) are 
demonstrated to be the best conditions to observe these effects. Regarding the geo-
metrical characteristics of the fibers, edge enhancement is more relevant for fibers 
with greater diameters for relatively small scales (diameter 0.1-0.5mm). 
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Abstract. Volumetric breast composition measurements generally require accu-
rate imaging physics data.  In this paper we describe a new method (Volpara™) 
that uses relative (as opposed to absolute) physics modeling together with addi-
tional information derived from the image to substantially reduce the dependence 
on imaging physics data.  Results on 2,217 GE digital images, from a diversity of 
sites, show encouraging agreement with MRI data, as well as robustness to noise 
and errors in the imaging physics data.  

Keywords: Breast density, volumetric, Volpara. 

1   Introduction 

Area-based breast density measures, both manual and semi-automated, have been 
shown repeatedly to correlate well with breast cancer risk and with the diagnostic 
difficulty of a mammogram [1-11]. Such measures are increasingly suggested as a 
basis for tailoring breast screening for each individual woman. However, such area-
based measures are intrinsically subjective, and there is substantial inter- and intra-
observer variability [12-14]. Also, such methods require additional decision-time by 
skilled users. As a result, although the results generated by trained users in research 
environments are encouraging, the applicability of such methods in the real-world is 
at best problematic. Unfortunately, to date at least, the automation of area-based den-
sity measures, to the point where they can be incorporated into clinical workflow, has 
proven to be difficult, primarily due to: differences in imaging parameters making the 
image brighter or darker or affecting the contrast, hence appearing more or less dense; 
and to textural similarities between very fatty and very dense breasts.  

Volumetric breast density measurements, which are, in principle, objective and 
straightforward to automate, have been proposed, based upon a succession of physics-
based models of the x-ray imaging process [15-20]. They have been shown to compare 
well to visual estimations of breast density. However, to date, the correlation to breast 
cancer risk has been variable [21]. We contend that this is due primarily to current 
volumetric models overly relying on imaging physics data that is assumed to be accu-
rate. In this paper, we build upon the work in [16] and describe a “relative” (as opposed 
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to absolute) physics model which dramatically reduces the need for accurate imaging 
physics data by optimizing the information extracted from the image itself. 

2   Method 

Previously reported volumetric techniques use some form of calibration object or find 
a position in the breast image that corresponds to a column of tissue that is entirely 
fat, give or take a thin layer of skin. Of course, the use of calibration objects should, 
in principle, lead to highly accurate modeling, and should perhaps be the basis for a 
research-based “gold standard”. However, the use of such methods within a clinical 
environment for routine clinical use poses a number of practical challenges such as 
the need on numerous occasions to remove the calibration object, for example when 
imaging large breasts. For this reason, we have focused our efforts on finding an area 
of the breast that corresponds to entirely fatty tissue, then using that as a reference 
level (PFAT) to find the thickness of dense tissue (hd) at each pixel (x,y) as shown by 
the following equation from [16] where it is simply assumed that the pixel value (P) is 
linearly related to the energy imparted to the x-ray detector (all direct digital images 
match this criteria):  

 
( )

fat dense

ln ( , ) /
( , ) Fat

d

P x y P
h x y

μ μ
=

−
                                            (1)

 

The values in the denominator are the effective x-ray linear attenuation coefficients 
for fat and dense tissue at the particular target, filter, tube voltage and recorded breast 
thickness combination. This formulation is intrinsically robust to errors in time of 
exposure, detector gain and other multiplicative variations, since those values appear 
both in the reference level and in the actual pixel values, so cancel out. 

Of course, the difficulty, as pointed out by [17,21], lies in finding an area of the 
breast which is entirely fat, especially when the breast in question is very dense 
(which is the category of highest risk and thus of greatest interest). We have over-
come this difficulty, while retaining a relative physics model approach by (i) using 
phase congruency [23], which is invariant to imaging conditions, and (ii) an iterative 
approach to finding the fatty, uncompressed breast edge as documented in [17] along 
with realistic, relative, breast edge models [16,17]. With an accurate, breast edge 
found, we can always find PFAT. 

We included a scatter removal process based around the algorithm reported in [16] 
but adjusted it to again make it work in a relative manner by making simplifications 
around the variations in scatter-to-primary due to different breast tissue types. 

We correct for compression plate slant by assuming a fixed slant [16], an assump-
tion which appears valid for most x-ray systems but not for those systems which pur-
posely have a slanted top compression paddle. For the latter, we are developing a 
more sophisticated method. 

The volume of dense tissue is found by integration of the   values over the 
image, while the volume of the breast is determined by multiplying the area of the 
breast by the recorded breast thickness; the breast density is then the ratio of the two. 
Evidently, errors in recorded breast thickness remain important; we return to this issue 
below, where we demonstrate Volpara’s robustness. 
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3   Results 

We have collected 2,217 GE digital mammograms from Oslo, Nijmegen and the Uni-
versity of Virginia, and have imaged a range of phantoms in order to validate the 
software, which we have named Volpara™.  The results presented in this paper are 
for version 1.2.1 of that software. 

The performance of our new breast edge detection algorithm, and thus the robust-
ness of finding PFAT on some very dense breasts can be illustrated by visualization of 
the inner and outer limits of the uncompressed, fatty breast edge within which we 
search for PFAT – see Figure 1. Critically, note that the inner limit of the determined 
breast edge does not overlay any dense tissue: 

 

Fig. 1. Dense breasts and the inner edge which Volpara finds 

3.1   Accuracy 

To demonstrate that Volpara is indeed measuring breast density, we used it to analyze 
a set of 5 images of a test phantom acquired with different imaging combinations, 
kindly supplied by the University of Toronto. Each image had 5 “plugs” inserted 
(labeled A-E below) with different densities and the average error between actual and 
estimated densities is 1.11%. See Table 1. 

Further, we manually measured fibroglandular volume, consequently breast den-
sity, from breast MRI volumes for 26 younger women and found a correlation of 0.94 
with the Volpara™ fibroglandular volume, and a close relationship between the breast 
densities as shown in Figure 2, the breast densities will be offset due to the difficulty 
of measuring total breast volume in the MRI images [16]: 
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Table 1. Phantom Data 

Toronto Plug Phantoms 
Actual Plug Densities 

Image A B C D E Imaging Factors 
 

#1     0.0 25.0 25.0 12.5 25.0 
MoMo26 
76mAs 

 
#2 0.0 25.0 25.0 12.5 25.0 

MoMo28 
51mAs 

 
#3 0.0 20.0 20.0 10.0 20.0 

MoMo26 
110mAs 

 
#4 0.0 16.7 16.7 8.3 16.7 

MoRh26 
155mAs 

  
 #5 12.5 37.5 37.5 25.0 37.5 

MoMo28 
55mAs 

VolparaV1.2.1 Estimated Plug Densities 

#1 0.43 23.9 24.3 9.9 23.0   
#2 0.16 23.8 24.0 9.7 22.9   
#3 0.41 20.1 20.2 8.6 18.0   
#4 0.64 17.8 18.0 7.8 15.8   
#5 13.6 39.2 39.2 25.2 37.6   

 

 

Fig. 2. Volpara breast density versus that derived from breast MRI 
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3.2   Consistency and Robustness 

We analyzed the results over the different detectors in our database; Table 2 shows 
the median breast density for each detector, along with the Pearson Correlation Coef-
ficient for L/R and CC/MLO along with numbers of images. This demonstrates that 
we achieve consistent results across detectors.  An exception is the PM34_05 detec-
tor; but that is the detector on which we have collected the images of young women 
who have been imaged prior to having breast MRI, thus the high breast density. 

Table 2. Comparisons across detectors 

 Median PCC L/R PCC CC/MLO #Images 
ALL 8.8 0.923 0.915 2217 

PM54_01 8.9 0.930 0.908 937 
PM460_2 7.8 0.914 0.878 290 
PM34_05 16.1 0.915 0.931 104 

PM079_04 8.0 0.911 0.916 881 
 
Next, to investigate the robustness of the results to imaging conditions, we edited 

the mAs in an image (Mo/Mo, 29kVp) by +/- 20% and then again ran Volpara™, as 
shown in Table 3. As that Table shows, and as expected from Equation (1) ,we found 
identical results which we also obtained when multiplying the pixel values in the 
image by various factors to simulate variations in detector gain such as you might 
expect between detectors, over time, and between manufacturers. 

Table 3. Effect of errors in mAs on Volpara’s Composition Estimates 

 -20%  
(80mAs) 

0% (100mAs) +20% (120mAs) 

Volume of Dense Tissue 114cm3 114cm3 114cm3 
Volume of Breast 575cm3 575cm3 575cm3 
Breast Density 19.8% 19.8% 19.8% 

 
For a further demonstration, we introduced extra noise into a set of images by ran-

domly adding or subtracting up to 5% and 10% of the pixel value and found that, as 
expected, noise has limited effect apart from at low breast density. See Table 4. 

Table 4. Effect of varying level of random noise on Volpara’s Density Estimate 

Volpara1.2.1 Breast Density Results Running On: 
 Original Image Original Image ±  5%  

Random Noise 
Original Image ± 10%  

Random Noise 
2.3% 3.4% 5.1% 

12.4% 12.5% 13.5% 
19.6% 19.7% 17.1% 
28.1% 28.2% 28.2% 
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As noted earlier, breast thickness’s major influence is in the breast volume but it is 
also present to a lesser degree in the dense tissue volume when we work out the effec-
tive energy. Fortunately, whereas previous implementations [16] had seen these two 
factors act in different ways so as to amplify the errors; Volpara™’s implementation 
has the factors acting in the same way – so, if breast thickness rises, then both breast 
volume rises and the volume of dense tissue rises so that the overall ratio does not 
vary widely. Table 5 shows the results from Volpara over four different images when 
the breast thickness was varied by 20% up and down. Clearly, breast thickness errors 
will inevitably introduce small errors into the breast density measurement, but thanks 
to quality requirements in the field, they should rarely exceed 10%, and so, as can be 
seen, the resulting estimate of breast density remains remarkably accurate.  Further-
more, because breast thickness is almost always under-estimated by the x-ray ma-
chine, the woman’s density assessment will rise, not lower and thus the woman will 
never be treated in a lower density and thus risk category. 

Table 5. Effect of errors in breast thickness on Volpara’s Density Estimate 

 Variation in Breast Thickness (H) 
H mm -20% -10% 0% +10% +20% 

86 2.5% 2.4% 2.3% 2.2% 2.1% 
32 15.1% 13.6% 12.4% 11.4% 10.6% 
20 23.7% 21.4% 19.6% 18.0% 16.8% 
40 33.6% 30.5% 28.1% 26.2% 24.4% 

4   Discussion 

The use of relative physics models throughout our new software has produced a ro-
bust breast composition measurement tool, Volpara™ and this has uses for a wide 
range of clinical work, including tailoring screening, but also for temporal comparison 
of images. 

Entirely reasonably and realistically, given the quality regulations that apply to 
mammography, the algorithm still requires relatively accurate information on kV, 
target, filter and compressed breast thickness. Inevitably small errors will be present 
which will have an effect on breast density. Quality control and simple practical 
measures can be implemented to alert the user as to when their x-ray system or com-
pression paddle needs recalibration. 
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Abstract. This paper presents results of a technical evaluation of a digital breast 
tomosynthesis (DBT) system. Projection images were used to assess x-ray focal 
spot size and lag as a function of detector air kerma (K) during a tomographic 
scan. Modulation transfer function (MTF), normalized noise power spectrum 
(NNPS) and detective quantum efficiency (DQE) were used to obtain a quanti-
tative assessment of detector operation, also from the projection image data. 
Maximum 1st image lag was 4% at 20 mAs/projection. Both edge and wire 
methods were used to assess MTF; in the direction of tube travel, MTF was re-
duced by a factor of 0.33 compared to 2D FFDM (static tube). Detector re-
sponse results showed that detector gain is increased by a factor of 3.6 for DBT 
operation compared to 2D FFDM mode. DQE measured at 28 kV W/Rh and 2 
mm Al added filtration and a typical detector K of 23.8 µGy per projection was 
0.5 at 0.5 mm-1, indicating quantum limited performance of the detector for 
DBT acquisitions. The availability of projection image data enables the evalua-
tion of important aspects of DBT detector performance in the field. 

1   Introduction 

Digital breast tomosynthesis (DBT) is a promising technique that hopes to improve 
the detectability of breast lesions compared to standard projection radiography by 
removing or at least suppressing the influence of overlying anatomical structure [1]. 
Overall acceptance of DBT systems into routine clinical service will depend on 
whether these systems can match or improve on the cancer detection rates of current 
projection mammography systems for the same patient dose burden. This information 
is usually provided by clinical trials and is very costly and time consuming to pro-
duce. Although far more limited in scope, technical evaluation provides data for com-
paring different DBT systems and for the eventual generation of Quality Assurance 
protocols. At the detector acquisition stage, we expect low lag for the detector, only a 
small effect on the system MTF from focal spot motion and quantum limited opera-
tion of the detector, especially at the low exposure per image used in DBT. For the 
tomographic images, we might expect good localization of contrast for small plane 
spacing (typically 1mm separation used) good low contrast transfer with regard to the 
MTF, and quantum limited statistics for the noise in tomographic volume.  
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2   Materials and Methods  

The system evaluated was a Siemens Mammomat InspirationTomo prototype  
(Siemens, Erlangen, DE) capable of performing standard projection mammography 
with/without antiscatter grid and tomosynthesis acquisition without antiscatter grid. 
This unit is based around an amorphous selenium (a-Se) detector of pixel pitch 0.085 
mm, with a 24 cm x 30 cm field of view acquired into image matrix of 2816 x 3584 
pixels. In tomographic mode, 25 projection images are acquired in a period of ap-
proximately 23s over an angular range of ±25°. Centre of rotation for the tube is 47 
mm above the detector; focus detector distance is 65 cm. 

2.1   Focal Spot Dimensions and Detector Lag 

Dimension of the focal spot was assessed from the projection images using a multiple 
pinhole test object placed at the tube exit port. This consisted of a matrix of 15 x 
0.050 mm diameter holes, each hole separated by 1 cm, drilled into a 0.3 mm thick 
brass plate. Detector lag was assessed from the projection images using two test ob-
jects; a) a 2mm thick lead ball and b) a lead sheet of dimension 24 cm x 30 cm and 
lead equivalent thickness of 2 mm with a 2 mm square hole cut at the centre. The 
compression plate tray (upper surface) was used to support each test object at a height 
of 7 cm above the breast support platform. The hole in the lead sheet generates a high 
signal in the x-ray detector and the tomographic motion causes the position of this 
signal to move across the detector during the scan. 

2.2   Detector Response, MTF, NNPS  and DQE from Projection Images 

Radiation output was measured using a calibrated 1 cm3 air chamber (RTI Ortigo, 
Sweden) as a function of mAs for a beam quality of 28 kV, W/Rh target filter setting 
and 2 mm Al added filtration. Pixel value (PV) from a 2 x 2 cm region of interest 
(ROI) positioned 6cm from the chest wall was plotted against detector air kerma (K); 
this was done for 2D projection mode and for the 0° projection images from a tomo-
graphy sequence. In order to examine quantum limited operation of the detector, stan-
dard deviation measured for this ROI was plotted as a function of K and a power 
function fitted (PV = a.Kb). 

Two methods were used to assess detector MTF, a version of the edge method [2] 
and the wire method. A 1 mm thick edge of dimension 12 cm x 6 cm was placed at 
the detector centre on the breast platform, angled at approximately 3° to the pixel 
matrix and an image was acquired at 28 kV, W/Rh with no additional filtration and 
grid removed. MTF was calculated from PV data extracted using a 5 cm ROI placed 
across the edge [3]. For the wire technique, a 20 µm thick tungsten wire was stretched 
across a wooden frame and placed on the breast platform. With this method applied to 
the projection image data, the tails of the line spread function (LSF) were extrapolated 
beyond the 2% point using an exponential curve fit applied to the LSF. 

NNPS of the projection images was calculated using a standard method [3] from five 
flood images taken around the 0° projection (-3.64° to +4.18°), acquired at 28 kV, 
W/Rh and 2 mm added Al filtration. NNPS was assessed at a typical clinical operating 
level by using the AEC to set the total tomographic scan mAs. DQE was calculated 
from MTF, NNPS and number of x-ray photons using a standard formula [4]. 
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2.3   MTF, z-Plane Contrast Sensitivity and NPS for the Reconstructed 
Tomographic Planes 

The in-plane MTF for the tomographic planes was measured with a 20 µm thick tung-
sten wire, stretched across a wooden frame and placed at various positions above the 
breast support table. No extrapolation of the LSF tails was performed for these recon-
struction images. Rather than measure MTF in the z-direction (vertically through the 
stack of planes), contrast sensitivity was measured using a 20 µm thick W wire posi-
tioned orthogonally to the direction of tube travel and at an angle of approximately 
10.1° to the breast support table. Voxel variance for the stack of flood images was 
measured with a 2cm x 2cm ROI acquired through all the planes at the x-y centre. The 
in-plane NPS was then calculated from 128 ROIs of dimension 128 x 128 pixels taken 
from the centre plane from the stack; the NPS was not normalized by the input signal 
as a logarithmic transform is applied to the projection images before the reconstruc-
tion is performed [5]. This transformation yields the linear attenuation coefficients of 
the imaged objects used in the reconstruction; the NPS of the images after transforma-
tion is then inversely proportional to the mean of the projection image (i.e. the air 
kerma or mAs per image). 

3   Results and Discussion 

Focal spot dimension for the DBT mode measured at a point 6 cm from the chest wall 
was 0.32 mm in the direction of tube motion and 0.37 mm in the front-back direction. 
Exposure time per projection for the measurement was 154 ms. Tube travel is ap-
proximately 20 mm/s leading to 3.17 mm focus travel in one exposure and hence an 
effective focus length of 1.01 mm. By varying mAs, it was found that the system 
changed tube current in order to maintain an exposure time of 155 ms; this will ensure 
consistent blurring from the focus motion for every DBT scan. 

Decay lag and build-up lag were measured as a function of detector exposure, 
ranging from 56 mAs total (2.2 mAs per projection) to 400 mAs (16 mAs per projec-
tion) and corresponding to an approximate range of 30 to 220 µGy per projection at 
the detector. Figure 1 shows relative signal for the decay lag (2 mm hole cut in lead 
sheet to generate signal - see Figure 1a(i)). Some slight overshoot is seen; there is 
little exposure dependency with a measured lag of approximately 3%, in agreement 
with published data [5]. Note that this method measures the largest exposure range, 
from direct exposure of the detector to a completely shielded region of the detector. 
The low lag demonstrated here is important if artifacts are to be avoided in the recon-
structed images [6]. 

Detector response for both 2D FFDM and DBT mode was linear. Both systems 
have a PV offset of approximately 45; gradient of the detector response for DBT 
mode was a factor of 3.6 higher, at 12.1 compared to 3.5 for 2D FFDM. Fitting a 
power function to standard deviation plotted as a function of K for DBT mode gave a 
b coefficient of 0.51, indicating quantum noise limited operation of the detector for 
the projection images. 
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Fig. 1. a) Images used to evaluate lag: i) 2 mm hole in lead sheet and ii) lead ball placed in 
compression paddle. b) Graph of relative signal plotted as a function of image for the decay lag, 
with mAs per projection as a parameter. 

    

Fig. 2. a) MTF measured for 2D FFDM and DBT mode in the tube-travel and front-back direc-
tions across the detector. b) 2D FFDM MTF corrected for tube motion blurring along with the 
measured DBT MTF in the tube travel direction. 

Figure 2a shows that there is some anisotropy of detector MTF calculated from the 
projection data, even in 2D FFDM mode. MTF is similar in the front back direction 
for both DBT and 2D FFDM modes, while some reduction is seen in the direction of 
tube travel for the DBT MTF. Figure 2b shows close agreement between the predicted 
effect of focal spot motion on the static 2D MTF and the measured result. Figure 3a 
plots the in-plane tomography MTFs measured with the W wire for the tube-travel 
and front-back directions, normalized to 1.0 at the respective peak values. These re-
sults are consistent with DBT MTF results for an earlier prototype of this system 
measured with a thin aluminium edge [7]. As expected, the MTFs are significantly 
different from the projection (detector) MTFs, with a strong reduction in MTF at low 
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spatial frequencies due to the reconstruction algorithm and the limited angular range 
of the tomographic scan [7]. Contrast sensitivity in the z-direction (normal to the 
detector) measured with the 20 µm wire for a 1mm reconstructed plane spacing is 
plotted in figure 3b. Full width half maximum (FWHM) for this system is approxi-
mately 3.0 mm. This shows clearly that there is some spread of contrast between 
planes; small high contrast objects (typically <1mm) such as microcalcifications will 
appear in more than one plane.   

Fig. 3. a) In-plane MTF measured for the tomographic plane in the tube-travel and front-back 
directions. b) tomographic contrast sensitivity in the z-direction (normal to the detector) meas-
ured with a 20 µm W wire. 

The AEC selected a total 147 mAs for 2 mm Al beam load, which is equivalent to 
5.9 mAs and 24 µGy per projection. As might be expected, this is a significantly 
lower detector K than the range of 50 to 100 µGy typically used in 2D FFDM. At 24 
µGy per image (projection), NNPS in 2D FFDM mode is a factor of 1.85 greater than 
for DBT mode, indicating the presence of electronic noise. This is shown in figure 4a. 

Figure 4b plots DQE for 2D FFDM mode and DBT mode, calculated for the pro-
jection images. At a detector K of approximately 24 µGy, DQE in DBT mode is a 
factor of 1.8 greater than for 2D FFDM. In fact, DQE in DBT mode at 23.8 µGy is 
close to the value for 2D FFDM with the detector operated at 98 µGy, a result which 
confirms quantum limited operation of the DBT system even at low K. This is a result 
of the increased gain for DBT mode reducing the influence of electronic noise at a 
low detector K.  

Finally, we can examine the in-plane NPS calculated from the central tomographic 
plane. Figure 5a plots a greyscale representation of the NPS with the vertical direction 
(90°) in this figure being the tube travel direction. The greyscale NPS shows the in-
fluence of the reconstruction filters on the noise; the noise power is not isotropic and 
shows clear reduction in noise at low spatial frequency. Figure 5b plots the NPS sec-
tioned at 0° (front back direction) and 90° (tube travel direction).  



 Technical Evaluation of a Digital Breast Tomosynthesis System 355 

 

    

Fig. 4. a) NNPS measured for 2D FFDM mode and for the DBT system projection images 
acquired at 28 kV W/Rh and 2 mm Al added filtration b) DQE for 2D FFDM mode and for the 
DBT mode calculated from the projection images; 28 kV W/Rh and 2 mm Al added filtration 

      

Fig. 5. a) Greyscale figure of the NPS measured for DBT tomographic images acquired at 28 
kV W/Rh and 2 mm Al added filtration and 147 mAs for total scan b) Sectioned NPS at 28 kV 
W/Rh and 2 mm Al added filtration and 147 mAs for total scan 

The influence of the tomographic MTF in the tube travel direction is clearly seen in 
the NPS results. Note that proper normalization of these results will be a further topic 
of study; this will enable comparison of NPS results acquired on different systems at 
different exposure levels [8]. The voxel variance offers a means of checking whether 
the noise in the tomographic image volume is quantum limited. We expect a recipro-
cal relationship between the noise from logarithmically transformed images and the 
exposure; alternatively, the exposure multiplied by the noise should be constant for 
quantum limited operation. The voxel variance for the flood images studied in this 
work did not follow this relationship – this was not expected as the noise in projection 
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images from which the tomographic planes were reconstructed was shown to be quan-
tum limited. This is a subject of further study. 

Access to the projection data enables the measurement of focal spot dimension and 
focal spot motion blur, and detector lag. These results demonstrate the value of access 
to the projection image data in a standardized format, a position not currently guaran-
teed by all manufacturers. While good performance for these parameters is clearly 
desirable, it is less clear how we should evaluate the results for the reconstruction 
planes. One means might be via the visibility of different object types. Extension of 
the analysis presented here to other DBT systems should also help us to see the influ-
ence of these parameters for different designs and ultimately implement a practical 
protocol that usefully characterizes the imaging performance of these systems. 
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Abstract. This study examined how experienced and less experienced breast 
screening personnel performed when they examined DICOM screening cases in 
three conditions: on digital mammography workstations, a LCD monitor  and 
an iPhone. In each condition they either viewed the full images unaided or used 
post-processing manipulations (HCI). For each case they reported features, 
rated their confidence on abnormality presence and classified the case. Their 
visual search behaviour was recorded as well as behavioural data.  Additionally, 
their screening experience was derived from data on a national scheme as well 
as actual screening information.  Both experienced and less experienced screen-
ers performed best on the clinical workstation, however good performance was 
also demonstrated on the monitor using HCI, with iPhone performance being 
poor.  Overall, results indicate that low cost devices could be used to provide 
additional tailored training as long as device resolution and HCI aspects are 
carefully considered. 

Keywords: mammographic interpretation training, eye movements, image ma-
nipulation, iPhone. 

1   Introduction 

Breast screening has been undertaken across the UK for over 20 years using mammo-
graphic film as the imaging medium [1]. Ongoing developments will see the age 
range being increased from the current range of 50 – 70 years [2] to encompass 
women aged 47 - 73 years by 2012 [3].  Both to cope with the additional workload 
resulting from this increase in screening age range as well as to aid in screening 
younger women who tend to have denser breasts then Full Field Digital Mammo-
graphic (FFDM) imaging is being rolled out nationally.  It is planned that in 2010 all 
UK screening centres will have some digital imaging ability with full digital imaging 
gradually ensuing as screening using a film medium eventually ceases [3]. Such a 
drastic change in imaging technique introduces several related changes concerning 
image acquisition, image storage, and image viewing. Of importance here is the im-
age interpretation as this is a key issue as the soft copy reporting of digital images 
requires current screening personnel to be trained further in examining these images 
as their appearances differ to mammographic film. Digitally displayed images have 
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limited resolution which is offset by the ability of the health professional to use post 
processing techniques (such as adjusting window, contrast level and zoom) – these 
tools are here termed HCI.  Furthermore, the expanded screening age range means an 
increased workload potentially necessitating further new screening staff being  
trained.   

1.1   Training 

Current training in image interpretation in breast screening comprises the availability 
of a number of training courses run by UK breast screening training centres coupled 
with other approaches such as the PERFORMS scheme [4]. A recent survey of 
screening centres [5] elucidated that over 80% of radiologists and technologists re-
ported limited time for training with over 20% citing limited access to roller viewers 
(for mammographic film interpretation training) and almost a similar percentage re-
porting limited access to a digital workstation (where digital imaging was available).  
Overwhelmingly, individuals positively reported a need for dedicated training when 
and where it suited them. Therefore if other image display systems can be used to 
present mammographic images appropriately for training purposes then it would ap-
pear that there is a demand for this from health professionals. 

Training for current and future reporting staff should ideally be undertaken on the 
clinical workstations themselves but this is not always possible as such workstations 
are in demand for clinical usage.  Consequently this study is part of a series of inves-
tigations which examine the use of other display devices for training purposes in 
breast screening.  It is accepted that for making screening or diagnostic decisions then 
mammographic workstations are de rigour. 

Specifically, how screeners performed with smaller lower resolution displays was 
examined as compared to their performance on a clinical workstation.  Furthermore 
their ability in doing this was studied by monitoring their visual search behaviour and 
interaction behaviour with the display devices.  Additionally, task performance was 
related to participants’ data from actual breast screening as well as a national self 
assessment scheme to examine the role of screening experience.  

2   Method 

An expert radiologist selected two sets of recent screening cases (20 cases in each set 
including both MLO and CC views) which demonstrated challenging examples of 
normal, benign and malignant appearances (features included: masses; calcification, 
and architectural distortion).  Then 14 radiologists and advanced practitioners (tech-
nologists who read screening cases) from two UK screening centres undertook three 
rounds of trials (the whole process spanned over eight months) and examined these 
DICOM cases on GE digital mammography workstations (dual-monitors), a single 
standard LCD monitor (using a DICOM viewer, screen size: 21.5”, resolution: 1680 x 
1050) and an iPhone (using Osirix software, screen size: 3.5”, resolution: 480 x 320) 
respectively (Fig 1).   
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Fig. 1. Illustration of the respective sizes of the three display systems 

For half the cases each individual was only allowed to view the full two view 
cases unaided and for the other half they could use post-processing image ma-
nipulations (HCI) – namely zoom, pan and window level/width adjustment.  The 
order of examining images across the centres was count-balanced and there was a 
gap of at least a month between each trial at each centre.  Ambient lighting levels 
were controlled. 

A head mounted eye tracker (ASL 504) was used to record their visual search be-
haviour throughout (Fig. 2). The viewing distance was 55-65 cm depends on each 
individual.  They were additionally videotaped using a camera to monitor interaction 
usability. For each case, participants reported if it was normal or abnormal, specified 
mammographic features, rated their confidence of abnormality presence, classified the 
case and reported its density.   

The performance of each individual was treated anonymously and then related 
to their known recent performance in the PERFORMS self assessment scheme 
(where each UK screener reports on a set of difficult exemplar screening images) 
as well as their known real life performance data from everyday clinical screening 
to ascertain their screening experience.  This was so that the study utilised indi-
viduals with various experience levels as one aim was to determine if different 
display devices were useful for a range of experienced and less experienced 
screeners [7]. 

 

MLO views shown on  a standard LCD monitor. 
      Screen size: 21.5”,  

Resolution: 1050 x 1680 pixels 

MLO views shown on an iPhone. 
 Screen size: 3.5”, 
 Resolution: 480 x 320 pixels 

 MLO views shown on a GE digital mam-
mography workstation with 5 megapixel dual 
monitors. 

Screen size: 21.5” each 
Resolution: 2048 x 2560 pixels – each 
i
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Fig. 2. top row: eye movement record, examples of magnification on the right breast of the 
MLO views and the experimental setting for the workstation task; Middle row: eye move-
ment record, examples of magnification on the right breast of the CC view and the experi-
mental setting for the LCD monitor task; Bottom row: eye movement record, examples of 
changing window level/width on the left breast of the CC view and the experimental setting 
for the iPhone task. (Apparent different ambient lighting conditions are for photographic 
purposes). 
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3   Results 

In terms of overall performance, clearly the workstation proved to be better, however 
participants were able to identify abnormalities on the monitor with the support of 
image manipulation tools just as well as on the workstation. Data were analysed using 
JAFROC (6) and the Figure-Of-Merit (FOM) values of the workstation with no image 
manipulation, workstation with image manipulation, and standard monitor with image 
manipulation were found to be comparable; 0.838, 0.816, and 0.827 respectively.  
Performance on the iPhone was generally poor, with  the FOM of with/without image 
manipulation being 0.529 and 0.42 respectively (see Fig. 3). 
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Fig. 3. Figure-Of-Merit (FOM) values on workstation (W/S), standard monitor (SM) and 
iPhone with (HCI) and without HCI (nonHCI) 

On the workstation, performance was not significantly different whether partici-
pants manipulated the images or simply viewed them without making any alterations 
to zoom, window level, etc.  Data were evaluated using Receiver Operating Charac-
teristic (ROC) analysis to compare participants’ average performance between exam-
ining images with, and without, using the image manipulation tools. The area under 
the ROC curve (Az) and the trend of the results (Fig. 4) shows that participants per-
formed better when using image manipulation tools (Az = 0.981) than when examin-
ing images without these tools (Az = 0.951).  

The workstation data were also compared between different features types 
(namely:- Architectural Distortion [AD], Masses, Calcification and Normal cases 
containing no such features - Fig. 5) in the two conditions.  Performance between 
using or not using the image manipulation tools to identify Masses and AD  was about 
the same. Although there was no significant difference between with/without image 
manipulation tools to identify micro-calcification, manipulation was found to be 
slightly better even though it was not significantly so (p>.05, r=.125). Furthermore, 
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using image manipulation led to raising the recall rate, although this was not signifi-
cant (p>.05, r=.100). 

Performance on the standard LCD monitor and iPhone was different to this for certain 
mammographic features in that whilst masses could be identified sometimes without 
manipulation, calcifications could generally only be identified when the images were 
manipulated.  Altering the images on the iPhone using the Osirix software was perfectly 
feasible but due to the large image sizes and the need to move between the four images of 
each case this proved to be troublesome to some participants and took time.  

Additionally, a relationship was found between experience and visual search be-
haviour with the experienced participants using longer saccadic eye movements and 
longer fixations in fewer image locations which mirrors the findings in other medical 
image domains. This also illustrates the potential of utilising visual search data in  
mammographic interpretation training.  

 

 

Fig. 4. ROC curves of workstation performance with HCI (left) and without (right) 

Recording visual search behaviour on the workstation and monitor was a feasible 
and useful technique which yielded detailed information on how participants went 
about assessing the images to find abnormalities.  Whilst this was also possible on the 
iPhone the actual resolution of the ASL system coupled with the small image size 
meant that the resulting data had to be interpreted with considerable caution. 

3.1   Clinical Applications 

Overall, the superior workstation performance findings were as expected although it 
was predicted that using HCI tools would have improved performance. The main  find-
ing that using an office monitor with HCI tools could produce similar performance to a  
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Fig. 5. Workstation performance in correctly identifying key features, with and without HCI usage 

 

clinical workstation was somewhat surprising.  These test images were chosen as diffi-
cult exemplars demonstrating a range of mammographic features and were thought 
would be challenging for examination on a monitor.  Whilst we would strongly not 
advocate translating this finding to mean that such monitors could be used for clinical 
reporting it is evidence to support their use in tele-radiology applications and also as a 
‘second read’ where a clinical workstation is not available.  It is also strong support for 
their use to deliver training in interpreting such digital images.  The participants here 
were all familiar with reporting FFDM images on workstations using DICOM viewers 
but were unfamiliar with the particular DICOM viewer used here yet they quickly and 
easily mastered its use. 

Small hand held devices such as the iPhone are increasingly being found to be use-
ful in reporting relatively small radiological images (e.g. in CT). Its use here was 
found to be poor, mainly due to the need to zoom in to the image in order to perceive 
small mammographic features which then led to participants having difficulty both in 
encompassing the whole image and remembering where they were within the image. 

4   Conclusions 

Superior performance was attained using the clinical workstations, however partici-
pants were able to identify abnormal features on both the LCD monitor and iPhone, 
particularly when they were able to manipulate the images.  Using the lower resolu-
tion monitor with HCI was surprisingly good, equivalent here to the workstations, but 
the iPhone and its software implementation examined here entailed extensive image 
manipulation for these large images which inevitably took time and produced poor 
results.   
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It is argued that lower resolution displays, such as the LCD display, are therefore 
potentially very useful for training purposes as long as the user is aware of the limita-
tions of the display and appropriate manipulation software is used.  Improved soft-
ware (tailored specifically for digital mammographic images) for the iPhone would 
render it much more useful in examining such large images.   

Although high-performance display devices are clearly needed diagnostically, it is 
then possible to use lower quality devices for training purposes.  Whilst such usage 
will not meet every training need they do provide an additional adjunct.  

Acknowledgements 

This work is partly supported by the UK National Health Service Breast Screening 
Programme. 

References 

1. Patnick, J. (ed.): Celebrating 20 years of screening. NHS Cancer Screening Programmes, 
Sheffield (2008) 

2. Patnick, J. (ed.): NHS Breast Screening Programme Annual Review 2009. NHSBSP, Shef-
field (2009) 

3. Department of Health, Cancer Reform Strategy, Department of Health, London (2007) 
4. Chen, Y., Gale, A.G., Scott, H.J.: Mammographic interpretation training in the UK: current 

difficulties and future outlook. In: Sahiner, B., Manning, D.J. (eds.) SPIE Medical Imaging 
2009: Image Perception, Observer Performance, and Technology Assessment, vol. 7263, 
pp. C1 – C10 (2009) 

5. Gale, A.G., Scott, H.: Measuring Radiology Performance in Breast Screening. In: Michell, 
M. (ed.) Contemporary Issues in Cancer Imaging – Breast Cancer. Cambridge University 
Press, Cambridge (2010) 

6. Chakraborty, D.P.: Jackknife Free-Response Receiver Operating Characteristic Analysis 
Software, [computer software], Available at: http://www.devchakraborty.com 
[accessed March 10, 2010] 

7. Chen, Y., Gale, A.G., et al.: Breast Screening: visual search as an aid for digital mammo-
graphic interpretation training. In: Proceeding of SPIE (in press, 2010) 



J. Martí et al. (Eds.): IWDM 2010, LNCS 6136, pp. 365–370, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

A Survey of Patient Doses from Digital 
 Mammography Systems in the UK in 2007 to 2009 

Jennifer M. Oduko1, Kenneth C. Young1,2, and Anna Burch3 

1 NCCPM, Medical Physics Department, Royal Surrey County Hospital, 
Egerton Road, Guildford GU2 7XX, UK 

2 Physics Department, University of Surrey, 
Guildford GU2 7XH, UK 

3 Medical Physics Department, Breast Test Wales, 
18 Cathedral Road, Cardiff CF11 9LJ, UK 

jenny.oduko@nhs.net, ken.young@nhs.net,  
anna.burch@velindre-tr.wales.nhs.uk  

Abstract. Patient dose data from across the UK were collated, and the informa-
tion relating to full-field digital mammography systems were analysed, and 
compared with overall results for film-screen systems. For CR systems, the av-
erage mean glandular doses was 2.19 ± 0.07 mGy which was similar to the av-
erage for film screen systems 2.15 ± 0.01 mGy. The average patient dose for 
DR systems was 1.46 ± 0.02 mGy approximately 32% lower than for film 
screen systems. When different DR systems were compared, the Sectra MDM 
L30 and the Siemens Novation and Inspiration had the lowest average mean 
glandular dose, at 0.95 ± 0.02 mGy, 1.16 ± 0.05 mGy and 1.21 ± 0.07 mGy, re-
spectively. It was shown that for DR systems the MGD to the standard breast 
was broadly correlated with the average MGD for oblique views of 50-60mm 
thick breasts, while the correlation for CR systems was much lower. 

Keywords: patient dose, digital mammography. 

1   Introduction 

In the UK a nation-wide breast screening programme (NHSBSP) is run by the Na-
tional Health Service (NHS), and since its inception it has operated a quality system, 
to ensure optimum performance. As part of the physicists’ and radiographers’ quality 
control programmes, patient dose data is collected at least once every three years, for 
each X-ray set, for a sample of fifty or more women. Although not part of the 
NHSBSP, many NHS and private hospitals also record the same patient dose data, 
which increases the pool of information available on doses in both digital and  
film-screen mammography. The data have been analysed and the results published at 
intervals [1, 2]. About 20% of the mammography X-ray systems in the NHSBSP are 
digital at present. The data for digital systems are analysed and presented in this pa-
per, and compared to the average for film-screen systems. 
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2   Method 

Patient dose data from physics services working with the NHSBSP were gathered, 
and combined into a single database for analysis. The dose surveys had been carried 
out in the years 2007, 2008 and 2009. The exposure parameters for individual patients 
were supplied to the physics services by the radiographers who performed the mam-
mography examinations. The physics services provided technical information from 
their own regular equipment surveys, (including mean glandular dose (MGD) to the 
standard breast for each system, and X-ray output and half-value layer at each kV, 
target, filter combination occurring in the patient dose data). Each physics service 
used the same programme to record the data and to calculate the MGD for real 
breasts, according to Dance et al [3]. 

The data were analysed in detail to provide information about patient doses in 
direct digital radiography (DR) and computed radiography (CR) systems in use in 
the UK.  

3   Results 

3.1   MGD for Oblique Views, for All Breasts, for Different Systems 

The numbers of images and digital systems for which data was recorded, and the 
mean MGD, for oblique (OB) views, and mean compressed breast thickness, are 
shown in Table 1 for DR systems and Table 2 for CR systems. The data in these ta-
bles are averages for the oblique films for all breast thicknesses. 

Table 1. MGD and thickness for OB views, for all breasts, for different types of DR system and 
film-screen for comparison 

Manufacturer and 
model 

Number 
of  
systems 

Number 
of main 
images 

Mean MGD to 
breast (mGy)
 ± 2 SEM 

Mean  
thickness (mm) 
 ± 2 SEM 

GE 2000D 2 200 1.30 ± 0.04 57.0 ± 0.8 
GE DS 7 1139 1.59 ± 0.03 53.9 ± 0.3 
GE Essential 4 805 1.44 ± 0.03 58.1 ± 0.4 
Hologic Selenia 3 356 2.00 ± 0.07 53.1 ± 0.5 
Hologic Selenia W 3 616 1.44 ± 0.04 52.2 ± 0.8 
IMS Giotto 1 118 1.78 ± 0.10 55.5 ± 0.9 
Sectra MDM L30 4 316 0.95 ± 0.02 63.5 ± 0.6 
Siemens Inspiration 1 128 1.21 ± 0.07 58.8 ± 1.1 
Siemens Novation 3 483 1.16 ± 0.05 56.9 ± 0.6 

     
Total/mean (DR) 28 4161 1.46 ± 0.02 55.9 ± 0.5 
     
Average film-screen 454 36814 2.15  ± 0.01 56.7 ± 0.14 
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Table 2. MGD and thickness for OB views, for all breasts, for different types of CR system and 
film-screen for comparison 

Manufacturer and 
model 

Number 
of  
systems 

Number 
of main 
images 

Mean MGD to 
breast (mGy) 
± 2 SEM 

Mean  
thickness (mm) 
± 2 SEM 

Fuji Profect 5 713 2.20 ± 0.10 54.3 ± 1.1 
Agfa CR 35-X 3 208 2.20 ± 0.12 56.6 ± 1.7 
Konica CP-1M 1 190 2.08 ± 0.09 55.4 ± 1.8 
Kodak EHR-M2 2 68 2.33 ± 0.24 49.3 ± 3.4 
     
Total/mean (CR) 11 1179 2.19 ± 0.07 54.1 ± 0.8 
     
Average film-screen 454 36814 2.15 ± 0.01 56.7 ± 0.14 

 

3.2   MGD for Oblique Views of 50-60mm Thick Breasts for Different Systems 

Calculating the average MGD for oblique views, for compressed breast thickness 50-
60mm, facilitates comparison between different digital systems. Results are shown 
(and compared with results for film-screen systems) for DR systems in Table 3 and 
for CR systems in Table 4. The percentage distribution of mean MGD values (for all 
breasts) with breast thickness is shown in Figure 1, for both DR and CR systems.  

Table 3. MGD and thickness for OB views, for 50-60mm breasts, for different types of DR 
system and film- screen for comparison 

Manufacturer and 
model 

Number 
of  
systems 

Number 
of main 
images 

Mean MGD to 
breast (mGy)  
± 2 SEM 

Mean  
thickness (mm) 
± 2 SEM 

GE 2000D 2 50 1.28 ± 0.06 55.0 ± 0.8 
GE DS 7 331 1.62 ± 0.06 55.4 ± 0.3 
GE Essential 4 212 1.37 ± 0.04 55.6 ± 0.4 
Hologic Selenia 3 103 1.88 ± 0.10 54.5 ± 0.7 
Hologic Selenia W 3 215 1.52 ± 0.07 55.0 ± 0.5 
IMS Giotto 1 41 1.73 ± 0.08 56.3 ± 0.9 
Sectra MDM L30 4 101 0.89 ± 0.03 55.5 ± 0.6 
Siemens Inspiration 1 39 1.06 ± 0.07 55.3 ± 1.1 
Siemens Novation 3 132 1.16 ± 0.07 55.3 ± 0.5 

     
Total/mean (DR) 28 1224 1.44 ± 0.03 55.3 ± 0.2 
     
Average film-screen 454 11141 1.98 ± 0.01 55.3 ± 0.06 
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Table 4. MGD and thickness for OB views, for 50-60mm breasts, for different types of CR 
system and film- screen for comparison 

Manufacturer and 
model 

Number 
of  
systems 

Number 
of main 
images 

Mean MGD to 
breast (mGy) 
± 2 SEM 

Mean  
thickness (mm) 
± 2 SEM 

Fuji Profect 5 215 2.10 ± 0.13 55.6 ± 0.5 
Agfa CR 35-X 3 70 2.28 ± 0.21 56.1 ± 0.8 
Konica CP-1M 1 76 1.99 ± 0.06 55.7 ± 0.7 
Kodak EHR-M2 2 24 2.51 ± 0.26 53.5 ± 1.4 
     
Total/mean (CR) 11 385 2.14 ± 0.08 55.4 ± 0.3 
     
Average film-screen 454 11141 1.98 ± 0.01 55.3 ± 0.06 
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Fig. 1. Distribution of MGDs for oblique views, for all breast thicknesses, for DR and CR systems 

3.3   Comparison of Average MGD for 50-60mm Breasts with MGD to the 
Standard Breast 

For each DR and CR system, the average MGD for oblique views of breasts of com-
pressed thickness 50-60mm was plotted against the MGD to the standard breast for 
that system. The standard breast is represented in measurements by a 45mm thickness 
of PMMA, equivalent to 53mm thickness of typical breast tissue. The results  
are shown in Figures 2 and 3 for DR and CR systems respectively. Also shown on 
Figures 2 and 3 are the national diagnostic reference level (NDRL) of 3.5mGy for the 
average MGD for 50-60mm breasts, and the remedial value of 2.5mGy for dose to the 
standard breast. 
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Fig. 2. Average MGD for 50-60mm breasts (oblique view) plotted against MGD to the standard 
breast for each DR system 
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Fig. 3. Average MGD for 50-60mm breasts (oblique view) plotted against MGD to the standard 
breast for each CR system 
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4   Discussion 

The average MGD for oblique views is about 1.5mGy for breasts imaged with DR 
systems, and approximately 50% higher at 2.1mGy for breasts imaged with CR  
systems (Tables 1 to 4). These values are almost the same for the whole population 
studied and for the selected thickness range of 50-60mm. The average MGD for DR 
systems is about 30% lower than the average MGD for film-screen mammography, 
while for CR systems it is 2% and 8% higher, for all breasts and 50-60mm thick 
breasts respectively. This compares with a 22% average dose saving for digital mam-
mography, reported for the DMIST trial [4]. As expected, the mean compressed breast 
thickness is close to 55mm for all groups.  

Tables 1 and 3 compare the average MGD for a range of DR systems. For 50-
60mm thick breasts, the lowest MGDs are 0.89mGy for the Sectra MDM L30, and 
1.06mGy for the Siemens Inspiration and Novation (the corresponding figures for all 
breasts are 0.95mGy for Sectra MDM L30 1.2mGy for the Siemens Inspiration and 
Novation. The average MGDs for the CR systems presented in Tables 2 and 4 are 
similar to those found for film screen systems. Systems cannot be ranked on dose 
alone without considering image quality, so that a comparison based on, for example, 
dose required to reach achievable image quality [5] is also relevant. Figure 1 shows 
the distribution of MGDs for DR and CR systems, with the CR results generally at 
higher values, as expected from the average MGDs noted above. 

Figure 2 shows that for DR systems, MGD to the standard breast and average 
MGD to 50-60mm breasts (oblique views) are broadly correlated, with a line of slope 
1.12 fitted to the points. For the CR systems, shown in Figure 3, the correlation is 
poorer. None of the systems exceed the national DRL or the remedial value shown in 
these figures. 
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Abstract. We investigated the link between the results from daily quality control 
(QC) data, on the one hand, and from successive half-yearly medical physics QC 
visits on the other hand. To do so, criteria defining ‘unchanged results’ were set 
for both the daily QC data and the half-yearly QC results. Out of the results of 181 
QC visits and daily QC at the time of the QC visit, we found that systems that 
showed little or no deviation in daily constancy performance were likely to show 
basically unchanged results in the half-yearly medical physics test. The specificity 
of the daily QC data for a change in results at QC visits was 93% for the dose and 
SDNR test and 88% for a change in contrast threshold values. Daily QC data 
could be used to prioritize the work load of the medical physicist. 

Keywords: Mammography, Quality control, Daily, Half-yearly. 

1   Background 

Screening mammography is the subject of substantial quality control procedures. In 
Europe most are based on the European protocol for the quality control of the physi-
cal and technical aspects of mammography screening [1]. These guidelines contain 
procedures to ensure the quality for both radiological equipment and viewing devices 
on two levels: (1) at acceptance, the physicist verifies whether a minimum quality 
level is achieved and this is repeated at half-yearly intervals; (2) constancy tests: regu-
lar quality control procedures designed to guarantee that quality is maintained at 
every moment during the screening actions. The latter tests should be performed by 
the local personnel and supervision by the physicist is encouraged.  

In Flanders, mammography screening is decentralized, allowing each participating 
center to buy any approved mammography system of their choice, and free to choose 
which certified quality control reference center to work with. The result of this situa-
tion is that we have a large variety of mammography systems in our network, spread 
over the whole of Flanders.  

In our medical physics practice, we opted for a rigorous implementation and cen-
tralized supervision of the local QC procedures: every day, radiographers acquire 2 
flat-field images using the automatic exposure control (AEC), after which an auto-
matic procedure retrieves and analyses these images and sends the results to our cen-
ter via e-mail or ftp. The methods and analyses are described in more detail by Jacobs 
et al [2]. Viewing stations are tested using the variable MoniQA pattern [3]. 
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This work investigates the link between the results from daily QC data, on the one 
hand, and from successive half yearly medical physics QC visits on the other hand. 
More specifically, the hypothesis that systems that show little or no deviation during 
constancy checks would also show basically unchanged results in the half-yearly 
quality control was tested. The present study was performed in the frame of optimiza-
tion of the physics effort to guarantee quality: could the frequency of visits be reduced 
if the physics team decided to put effort in rigorous daily QC supervision? Can daily 
QC be used to prioritize the work of the physicist?  

2   Method 

Results of medical physics QC visits of all digital mammography systems in our net-
work were collected into a database for present analysis. From all available data, the 
mean glandular dose (MGD) and signal-difference to noise ratio (SDNR) for expo-
sures of 2, 3, 4, 5, 6 and 7 cm of polymethyl-methacrylate (PMMA) with a small 
aluminum disk of 0.2 mm thickness were selected, along with the contrast-detail re-
sults. Results from tests of the x-ray tube, the detector response curve and the short 
term reproducibility were not included in the further analysis because there is not a 
single instance of these tests failing in any of our QC visits and the values have never 
given rise to any discussion or optimization action. Therefore adding them would 
have no influence on the results of this study.  

The first QC acceptance tests were performed in November 2006. At present 63 
digital mammography units are included in our network. A total of 50 systems from 6 
vendors were included in the study. These are 16 computed radiography (CR) sys-
tems, all Profect CS systems by Fuji, and 34 direct radiography (DR) systems. These 
last were divided between 16 Siemens Mammomat Inspiration systems, 4 Siemens 
Mammomat Novation, 7 GE Senographe Essential, 2 GE Senographe DS, 6 Hologic 
Lorad Selenia, 2 Sectra L-30 MDM and 1 IMS Giotto Raffaello system. 

The first 3 systems were installed and accepted for screening in 2006, 20 in 2007, 
18 in 2008 and 9 in the first half of 2009 (systems installed after this time had the 
second test too late to be included in present study). One of the systems is located in a 
mobile screening unit, 13 are located in private radiological practices, 4 in polyclinics, 
22 in regional hospitals and 10 in tertiary care centers, as shown in figure 1. 

For each physics QC visit, two weeks of daily quality control (DQC) results (one 
week either side of the QC visit) were summarized into a representative value for 
further comparison. To do this, the kVp, mAs and SNR in the reference point were 
averaged. The DQC results were declared as ‘unchanged’ between these two points if 
the following criteria were met: no change in anode/filter combination, a maximum 
change of the average nominal kVp of 1.0, less than 5% change in SNR, less than 
10% change in mAs and no change of detector ID. 

To compare the results of successive QC visits, the relative change in the parame-
ters from the previous QC visit was calculated. For MGD and SDNR the median 
value of the changes over the complete thickness range (2 to 7 cm of PMMA) was 
used. System performance between two half-yearly QC tests was declared ‘un-
changed’ if both SDNR did not decrease by more than 10% and MGD did not in-
crease by more than 10%. 
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Fig. 1. Overview of installation date and location type 

From the contrast-detail analysis, threshold gold thickness for the 0.1 mm detail 
was retrieved, as this is the crucial factor in determining the limits for the SDNR. 
These values were obtained with a computerized method applied on sets of at least 8 
images [4]. When comparing contrast-detail results, only data acquired with the same 
phantom in the two consecutive tests were used. A system was declared as unchanged 
between two half-yearly QC tests if the contrast threshold did not increase by more 
than 15%. 

QC-visit/DQC pairs for which one of the data sets was incomplete were withheld 
from the analysis. The remaining data pairs were compared with the previous results 
in order to ascertain whether ‘unchanged’ data from DQC would give rise to an ‘un-
changed’ result from QC visits based upon SDNR and MGD on the one hand and 
contrast threshold gold thicknesses on the other hand. 

3   Results 

There are 129 complete combinations of half-yearly QC visit results and DQC pa-
rameters from all mammography systems. There are 74 combinations where the same 
contrast-detail phantom has been used in both QC visits. Table 1 shows the results for 
two such combinations, the first a Fuji Profect CS system combined with a Siemens 
Mammomat 3000 x-ray unit, and the second a Siemens Mammomat Novation system. 

For the first system, both the results from the DQC and the half-yearly QC visit 
stayed the same after 6 months. For the second system, the results from the DQC 
show that the exposure of the phantom was reduced by 30%, a reduction for which 
the consequences can be clearly seen in the half-yearly tests: lowered MGD, lowered 
CNR and an increase in contrast-threshold. The reduction in dose was the conse-
quence of a new calibration for the system after the x-ray tube was replaced. 

Out of the initial 129 combinations, 68 (53%) show a change in the DQC parame-
ters, using the above criteria. From this subset of 68 systems, there are 27 systems 
where the results of the half-yearly visit change more than prescribed in the methods  
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Table 1. Overview of the complete results for 2 systems 

System: Fuji Profect CS with  
Siemens Mammomat 3000 

Siemens Mammomat Novation 

Date: Dec/2008 Jun/2009 Nov/2008 Aug/2009 
DQC results     
Detector ID: N/A N/A MM12835 MM12835 

Anode/Filter: Mo/Mo Mo/Mo W/Rh W/Rh 
kVp: 27 27 27 27 

Average mAs ± SD: 78.9 ± 0.9 79.0 ± 0.6 92.0 ± 1.1 64.5 ± 0.7 
Av. MPV ± SD: 256.9 ± 4.9 246.1 ± 3.7 351.2 ± 4.4 248.7 ± 3.2 

Av. St.Dev. ± SD: 6.55 ± 0.11 6.35 ± 0.12 6.26 ± 0.09 4.91 ± 0.05 
Av. SNR ± SD: 39.2 ± 0.7 38.8 ± 0.6  48.2 ± 0.4 40.5 ± 0.5 
HY QC results     

MGD 2cm PMMA 0.54 0.53 0.47 0.38 
MGD 3cm PMMA 0.91 0.86 0.58 0.46 
MGD 4cm PMMA 1.57 1.58 0.81 0.64 
MGD 5cm PMMA 2.11 2.05 1.14 0.88 
MGD 6cm PMMA 1.88 1.93 1.29 1.00 
MGD 7cm PMMA 3.37 3.12 1.77 1.35 
CNR 2cm PMMA 9.54 9.31 8.84 7.56 
CNR 3cm PMMA 8.63 8.22 7.64 6.64 
CNR 4cm PMMA 8.19 8.00 7.16 6.07 
CNR 5cm PMMA 6.89 6.74 6.41 5.53 
CNR 6cm PMMA 5.73 5.64 4.96 4.35 
CNR 7cm PMMA 5.78 5.45 4.50 3.98 

Contrast threshold     
A/F & kVp: Mo/Rh 27 Mo/Rh 27 W/Rh 28 W/Rh 28 

mAs: 125 125 125 80 
Limit  (µm Au) for     

2.00 mm detail: 0.043 0.045 0.047 0.051 
1.60 mm detail: 0.046 0.048 0.049 0.054 
1.25 mm detail: 0.051 0.053 0.052 0.058 
1.00 mm detail: 0.058 0.060 0.056 0.064 
0.80 mm detail: 0.069 0.072 0.063 0.073 
0.63 mm detail: 0.087 0.090 0.073 0.087 
0.50 mm detail: 0.115 0.119 0.089 0.108 
0.40 mm detail: 0.156 0.161 0.113 0.137 
0.31 mm detail: 0.230 0.237 0.156 0.188 
0.25 mm detail: 0.326 0.336 0.211 0.254 
0.20 mm detail: 0.475 0.490 0.298 0.354 
0.16 mm detail: 0.700 0.721 0.429 0.504 
0.13 mm detail: 1.011 1.040 0.610 0.710 
0.10 mm detail: 1.618 1.665 0.963 1.108 
0.08 mm detail: 2.422 2.490 1.432 1.633 
0.06 mm detail: 4.085 4.201 2.403 2.714 
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Fig. 2. Results without contrast-threshold data 
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Fig. 3. Results for contrast-threshold data 

section (true positives) and 41 where the change is less (false positives). Of the 61 
systems where the parameters of the DQC are unchanged following our calculation 
method, there are 56 for which the results of the half-yearly visit do not change more 
than prescribed (true negatives), and 5 where the ‘system showed a change’ following 
our definition (false negatives). This gives the threshold that we defined for the 
change in DQC parameters a specificity of 84% for changes in results at the half-
yearly QC visits. 
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If we have a more detailed look at the 5 false negative values, 3 of these cases can 
be explained by the use of a different AEC exposure mode at the half-yearly test 
which was not mirrored in the DQC parameters. Both the half-yearly test and the 
DQC should be performed with the clinical exposure condition. Therefore this differ-
ence reflects DQC or half-yearly tests being carried out incorrect, rather than a system 
failure. If we take this into account, the specificity of our test increases to 93%. These 
results are shown in figure 2. 

A parallel analysis on the contrast threshold results shows that in these 74 cases, 
we find 14 true positives, 26 false positives, 31 true negatives and 3 false negatives, 
which gives a specificity of 82%. A closer look at the false negatives shows the same 
deviating QC visit test due to the other AEC mode. Removing this case increases the 
specificity to 88%. These results are shown in figure 3. 

4   Discussion 

The results show that for systems where the change of parameters measured in the 
DQC remains below our chosen threshold, it is unlikely that results of the half yearly 
QC visit will show a change. The use of this DQC parameter could be a base to priori-
tize QC efforts and could have enabled a 40% reduction in the number of half yearly 
QC visits, leading to a reduction of more than 20% in the total number of QC visits. 
The principle of a yearly QC visit would be maintained for verification purposes. 

It is important to take note of some of the limitations of our proposal. The basic 
limitation is that this can only be applied if there is a daily routine QC check in place. 
It should only be applied to systems that have a certain initial quality margin above 
the acceptable limits. For a system where, for example SDNR is less than 10% above 
the acceptable limit, the half-yearly test should be performed, even if our method 
would conclude from the DQC data that the half-yearly test would remain unchanged. 
A less tangible disadvantage is that for the centers that a physicist would only visit 
once a year, there is less contact, which may be increasing the barrier for questions 
and remarks about the QC procedures.  

Because we used results from over a period of 3 years, starting from the first intro-
duction of digital mammography in screening in our network, experience has grown 
substantially, different colleagues performed the QC visits and practical procedures 
have been gradually introduced. Therefore it is possible that some of the variation in 
the QC results is caused by a change in procedure and not by system change. There-
fore, the positive predictive value of the DQC threshold is likely to be higher in prac-
tice than the figure found here. Note that there has been no change in the method used 
to analyze DQC over this period. 

During a normal half-yearly QC visit, the viewing devices are also subject to a test 
procedure including a visual inspection of the general purpose AAPMtg18-QC pattern 
[5] and of low contrast resolution patterns, a uniformity measurement and a confor-
mance test to the grayscale standard display function (GSDF) [6]. So in principle, 
even if we decided the half-yearly test of the mammography system was not needed, 
we should still go to the site for the monitor QC. Our current experience is that with 
the exception of acceptance tests, we have never seen anything more serious than 
small deviations from the GSDF calibration. If there are problems at the acceptance 
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test of the monitors, this usually means that they were installed without applying a 
calibration. In the daily follow-up we have only seen two real problems (loss in per-
ceived contrast, once due to a loss of calibration tables and once due to incorrect 
placement of viewing devices) out of the 68 diagnostic workstations included in our 
network. All other lower scores, obtained by using the MoniQA test pattern [3], can 
be attributed to environmental conditions like ambient light or the daily tests being 
performed without due care. This could indicate that a daily evaluation of an extended 
pattern like MoniQA is redundant and perhaps should be replaced by a simpler and 
faster test optimized to verify correct viewing conditions. 

Finally we would like to point out that instead of checking the DQC whether a 
half-yearly test is necessary, we could trigger an additional test the moment these 
results start deviating from the baseline established at the previous QC visit. With this 
approach, the effective testing frequency would increase for problem sites and de-
crease for problem-free sites. In addition, other parameters followed in DQC but not 
used in this study, like detector inhomogeneities or modality software upgrades, can 
also trigger additional QC visits or actions. 
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Abstract. We compare a volumetric versus an area-based breast density estima-
tion method in digital mammography. Bilateral images from 71 asymptomatic 
women were analyzed. Volumetric density was measured using QuantraTM 
(Hologic Inc.). Area-based density was estimated using Cumulus (Ver. 4.0, 
Univ. Toronto). Correlation and regression analysis was performed to determine 
the association between i) density from left versus right breasts and ii) volumet-
ric versus the area-based measures. Volumetric breast density measures are 
strongly correlated but statistically significantly different than the area-based 
measures (r=0.79, p<0.001). Regression demonstrates a significant non-linear 
association (R2=0.70, p<0.001). The density correlation between right and left 
breasts is also strong for both methods, (r≥0.95, p<0.001). The strong associa-
tion with the area-based density measures suggests that volumetric breast den-
sity could potentially also aid in breast cancer risk estimation. The observed 
non-linear association between volumetric and area-based estimates may have 
implications for risk stratification in clinical practice.  

Keywords: Volumetric breast density, digital mammography, breast cancer risk.  

1   Introduction 

Growing evidence suggests that breast density is an independent risk factor for breast 
cancer, the strongest known attributable risk factor after age [1, 2]. Currently, the 
most commonly used methods to quantify breast density rely on semi-automated 
image thresholding techniques to segment the area of the dense tissue in mammo-
grams [3]. Mammographic breast density is then estimated as the percent of dense 
tissue area within the entire breast [1]. Although useful for breast cancer risk estima-
tion, these methods are highly subjective and difficult to standardize [1, 3-5], a factor 
limiting their translation for breast cancer risk assessment in the general population. 
In addition, they do not provide an estimate of true volumetric breast density but a 
rather rough area-based estimate measured from the mammographic projection image 
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of the breast. Methods are now under development to estimate volumetric breast den-
sity from mammograms by incorporating image acquisition physics and breast thick-
ness information [6-10]. Knowing that the risk of breast cancer is mainly associated 
with the total amount of fibroglandular tissue in the breast (where cancer generally 
originates), volumetric measures of breast density hold the promise to also provide 
more accurate measures for breast cancer risk estimation [11].  

Studies have demonstrated the reproducibility of different volumetric breast den-
sity methods and strong associations with known breast cancer risk factors [7, 12]. 
However, most studies published to date have been performed using digitized screen-
film mammograms and have not demonstrated a clear advantage of the volumetric 
versus the area-based density measures in breast cancer risk estimation [10, 13]. 
Methods applied directly to digital mammographic images hold the promise to pro-
vide more accurate quantitative measures and fully-explore the potential role of using 
volumetric breast density assessment in breast cancer risk estimation [14, 15]. 

We performed a study to evaluate a new volumetric method for breast density es-
timation in digital mammography (DM) in comparison to the commonly used area-
based density estimation method for a screening population of women. Our goals 
were to evaluate the consistency of the volumetric method, compare it to the com-
monly used area-based approach, and investigate the nature of the association be-
tween the volumetric and the corresponding area-based breast density estimates. The 
results of this investigation could have significant implications on the implementation 
of density-based breast cancer risk stratification in clinical practice.  

2   Methods 

Bilateral DM images from 71 asymptomatic women (age 34-75 yrs, mean 54 yrs) 
presenting for annual screening mammography were retrospectively collected and 
analyzed under HIPAA and IRB approval from a separate IRB-approved breast can-
cer screening clinical trial that has been completed in our department1 [16]. All 
women were study volunteers who signed informed consent. Digital mammography 
imaging was performed with a GE DS FFDM system (GE Healthcare, Chalfont St. 
Giles, UK) at 0.1 mm/pixel resolution and 12 bit gray-levels. Image post-processing 
was performed with the GE PremiumViewTM algorithm [17]. 

Volumetric breast density (VD%) estimation was performed using QuantraTM 
(Hologic Inc.), an FDA approved and commercially available fully-automated soft-
ware based on an extension of the Highnam & Brady method [6] for digital mammog-
raphy [14]. Briefly, QuantraTM estimates the thickness of the fibroglandular breast 
tissue above each pixel in the image and aggregates these pixel-wise estimates to 
compute the total volume of fibroglandular tissue in the breast (Fig. 1). Through a 
similar process, QuantraTM considers the entire imaged breast outline, compensating 
for those portions of the breast that were not uniformly compressed, to estimate the 
entire volume of the breast. The estimated fibroglandular tissue volume is then 
divided by the total breast volume to calculate the volumetric percentage of 
fibroglandular tissue in the breast (i.e., VD%) [18].  

                                                           
1 GE Healthcare Protocol Number 804380, Penn PI: E.F. Conant. 
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Fig. 1. The main idea of the QuantraTM  (Hologic Inc.) method for estimating pixel-wise breast 
thickness and deriving a volumetric density measure. 

To compare to the commonly used area-based breast density measures, breast per-
cent density (PD%) was estimated in the PremiumViewTM post-processed DM images 
by an experienced reader, using the semi-automated image thresholding technique of 
Cumulus (Ver. 4.0, Univ. Toronto) [3].  

The Student’s pair-wise t-test was applied to compare the means of the breast den-
sity distributions obtained by the volumetric and the area based methods. The Pearson 
correlation coefficient (r) was computed and linear regression analysis was performed 
to determine the degree of association between the density estimates from left and 
right breasts. In addition, both linear and non-linear regression was performed to 
model the association between the volumetric and the area-based measures. 

3   Results 

The volumetric breast density (VD%) measures obtained with QuantraTM are strongly 
correlated (r=0.79, p<0.001) but statistically significantly different than the  
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Fig. 2. Box-plots for the distributions of the area-based Cumulus percent density (PD%) meas-
ures and the QuantraTM volumetric density (VD%) measures 
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corresponding area-based breast percent density (PD%) measures obtained with Cu-
mulus (p<0.001). As expected, volumetric density estimates (mean=21.94%) are 
lower than the corresponding area-based estimates (mean=37.97%) (Fig. 2).   

When investigating separately for each method the breast density correlations be-
tween left and right breasts, both methods are highly consistent, as evidenced by the 
strong and statistically significant correlations and the linear regression fits (Fig. 3).  
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Fig. 3. Linear regression fits between right and left breasts for the Cumulus area-based breast 
percent density (PD%) (up) and the QuantraTM volumetric density (VD%) (down) 
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The QuantraTM method had a slightly higher, but significantly different, correlation 
coefficient than the Cumulus method for the volumetric breast density correlation 
between the right and left breasts (r = 0.95, p<0.001). 

To model the association between the volumetric and the corresponding area-based 
density measures, both linear and non-linear regression analysis was performed  
(Fig. 4). Both models show statistically significant associations (p<0.001), with the 
non-linear regression indicating a stronger second-degree polynomial fit (R2 =0.70).  
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Fig. 4. Linear and non-linear regression fits between the QuantraTM volumetric (VD%) breast 
density measures and the Cumulus area-based percent density (PD%) estimates.   

4   Discussion and Conclusions 

Our study performs a comparative evaluation of the first FDA approved fully-
automated software for volumetric breast density estimation in digital mammography 
(QuantraTM, Hologic Inc.) versus the current gold-standard area-based breast density 
estimation method (Cumulus, Ver. 4.0, Univ. Toronto) for a screening population of 
women. The strong correlation observed between right and left breasts indicates that 
volumetric breast density measures computed with QuantraTM can provide consistent 
fully-automated measures of breast density for women undergoing mammographic 
screening. The strong association observed between the volumetric and the corre-
sponding area-based density measures, shown by several studies to correlate with 
breast cancer risk [1], supports the hypothesis that volumetric breast density measures 
could also aid in breast cancer risk assessment.  

However, the observed non-linear association in our study (Fig. 4) also suggests a po-
tential non-linear relationship between the corresponding volumetric and the area-based 
risk stratification levels, which could ultimately have implications for risk stratification in 
clinical practice. This concept is illustrated in Figure 5. Further work is underway to 
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validate these findings with larger clinical studies and to fully investigate the association 
between volumetric breast density measures and breast cancer risk. Such larger studies 
will also help to determine more accurately the risk stratification levels using the  
volumetric versus the area-based density estimates. Our long term hypothesis is that 
quantitative methods for measuring volumetric breast density can provide more accurate 
measures of density and ultimately result in more accurate measures to assess breast 
cancer risk. In addition, fully-automated methods can alleviate the subjectivity of the 
currently used semi-automated techniques and accelerate the translation of density-based 
risk stratification in clinical practice. 

a
b

c

d

 

Fig. 5. An illustrative example demonstrating a non-linear association between the established 
area-based ACR BIRADS density categories for breast cancer risk stratification [19] and the 
corresponding volumetric density categories based on the specific non-linear trend observed in 
our study. Larger clinical studies will determine more accurately the corresponding volumetric 
density risk stratification levels, denoted here for illustration purposes as “a”, “b”, “c”, and “d”. 
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Abstract. Breast density is positively linked to the risk of developing breast 
cancer. Furthermore, the addition of breast density as an input to breast cancer 
risk prediction models has been shown to improve their predictive power. Such 
models are used in the management of women at high risk but could potentially 
be used to determine screening strategy. A stepwedge-based technique has been 
used to measure volumetric density from the mammograms of 1,289 women in 
the UK screening programme who additionally completed a questionnaire on 
risk-related factors.  The sample had a mean age of 60.1 (range 48.0 – 78.0), a 
mean breast thickness of 59mm (range 21 – 102mm) and a mean volumetric 
breast density of 11% (range 0.5 – 58%).  Using Pearson’s correlation coeffi-
cient, breast density was found to be significantly correlated with weight (r = -
0.45), body mass index (r = -0.48), age (r = -0.13) and breast thickness  
(r =-0.65) at the p = 0.01 level.  Absolute glandular volume was also found to 
be significantly correlated with these parameters although the extent of correla-
tion was weaker. 

Keywords: breast density, volumetric technique, risk factors. 

1   Introduction 

The amount of dense (non-fatty) tissue within the breast is strongly linked to the risk 
of developing breast cancer [1 – 3]. A number of techniques exist for the measure-
ment of breast density, either by area [3 – 6] or volume [7 – 11].  Although area-based 
techniques have shown strong correlations between breast density and risk [1 – 3], 
results are generally based on an interpretation of the mammogram which equates 
brightness of the image with density; the validity of this assumption has, however, 
been questioned [12]. Volumetric methods seek to provide a quantitative and more 
objective approach which takes into account the true three-dimensional nature of the 
breast and its component tissues. 
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2   Materials and Methods 

6,000 women attending routine breast screening were invited to participate in a feasi-
bility study which aimed to provide descriptive statistics on breast density distribution 
in the screening population and to examine the relationship of volumetric breast den-
sity to other breast cancer risk factors, collected via questionnaire. The inclusion of 
breast density in risk prediction models has been shown to offer improved accuracy in 
the identification of women at high risk of developing breast cancer [13].  Question-
naire data included age at examination, height, weight (and hence body mass index, 
BMI), date of first pregnancy, ages of menarche and menopause, ethnicity and family 
history of breast cancer (mother or sister only) including the age at which breast can-
cer was diagnosed in this relative.  Information regarding previous breast disease and 
use of hormone replacement therapy (HRT) was available in the patients’ notes. 

Mammograms were taken as usual.  A stepwedge calibrated against glandular and 
adipose tissue equivalent material was placed on the breast support platform and ra-
dio-opaque magnification markers were placed on the compression paddle, to facili-
tate accurate determination of breast thickness across the mammogram [14]. The 
images were anonymised and digitised and a semi-automated method was used to 
assess breast density [11]. An operator was prompted to select the radio-opaque 
markers and define two steps on the stepwedge. An approximate location for  
the breast edge was determined by i) applying a global threshold based on analysis of 
the grey-level histogram in each mammogram ii) applying morphological operators to 
the resulting binary image to isolate the main breast region. The approximate breast 
edge location was used to initialise an adaptation of active contour algorithm which 
then computed a more precise (and locally smooth) demarcation of the breast edge.  A 
thickness of glandular tissue was determined at each pixel, allowing breast density to 
be expressed in terms of the absolute glandular volume and the percentage breast 
density (defined as glandular volume / total breast volume). An example of the result-
ing glandular thickness map is shown in Figure 1.   

 

Fig. 1. Glandular thickness map shown alongside an original mammogram 
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The absolute glandular volume and percentage breast density were calculated for 
each view. The differences between breast density in the left / right and cranio-caudal 
(CC) / medio-lateral oblique (MLO) views were examined using paired t-tests.  Corre-
lations between breast density and a number of risk-related parameters have been 
assessed using Pearson’s correlation co-efficient. 

Results have been compared to those from previous work, which examined the 
correlation of these parameters with radiologist-assessed percentage breast density for 
a subset of 294 women from this sample [15].  

3   Results 

3.1   Population Demographics 

1,289 women consented to take part in the study and had their breast density calcu-
lated using the method described above.  The demographics of the population sample 
are shown in Table 1. The values quoted for breast thickness, glandular volume and 
breast density are the average of all four views. The maximum measure of breast 
thickness is used (i.e. that measured at the chest wall). 

Table 1. Demographics of the population sample 

Parameter Mean Minimum Maximum Standard 
deviation 

Age (years) 60.1 48.0 78.0 5.7 
Weight (kg) 69.7 32.3 178.1 13.8 
Body Mass Index (kgm-2) 26.9 13.8 74.1 5.2 
Breast thickness (mm) 58.9 20.9 102.3 12.1 
Glandular volume (cm3) 72 8 626 49 
Breast density: mean of four 
views (%) 

11.0 0.5 58.0 8.8 

 

3.2   Variation in Breast Density by View 

The variation in breast density by view was assessed using paired t-tests. The results are 
shown in Table 2. Glandular volume and breast density were found to vary with mam-
mographic view. The difference between left and right breasts was not significant but 
interestingly, the difference between the CC and the MLO view was significant.   

Table 2. Variation in volumetric breast density by view 

95% Confidence Interval  Mean 
difference Lower Upper 

Significant 
difference 

p-value 

LMLO – LCC -1.70 -1.89 -1.50 Yes <0.01 
RMLO – RCC -1.39 -1.59 -1.20 Yes <0.01 
RCC – LCC -0.02 -0.21 0.17 No 0.41 
RMLO – LMLO -0.01 -0.19 0.18 No 0.47 
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3.3   Correlation of Breast Density with Other Risk-Related Factors 

The correlations of breast density with age and BMI are shown in Figures 2 and 3 
respectively. The correlation of absolute glandular volume and percentage breast 
density with these and other parameters is compared in Table 3. All correlations were 
significant at the p=0.01 level.  

 

Fig. 2. Breast density versus age at examination 

 

Fig. 3. Breast density versus body mass index (BMI) 
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As expected, breast density was found to decrease with age, weight, BMI and 
breast thickness. Glandular volume also decreased with these parameters although the 
strength of correlation was weaker. The stronger association with percent density can 
be explained by the evidence that breast volumes increase with weight but there is not 
a large change in gland volume. The association with BMI for both density variables 
reflected the association and strength of association with weight.   

3.4   Comparison with Radiologist Visual Assessment  

294 women from this sample had their breast density measured by a radiologist using 
a visual analogue scale.  The mean age of this sample was 60.2 (range 50 – 72) and 
the mean weight was 69.3kg (range 41.3 – 139.9kg). Within this sample, the mean 
breast density was 27% (range 2 – 88%). It is interesting to note that the CC view was 
denser than the MLO view by an average of 0.5% (left) and 0.8% (right), a trend that 
agrees with the results in Table 2 for volumetric breast density.  However, the right 
breast density was found to be greater than the left breast density by an average of 
1.1%; no significant difference was observed between left and right when using the 
volumetric method. 

The correlations between visually-assessed breast density with risk-related factors 
are shown in Table 3. Although the trends are similar to those for volumetric breast 
density, the strength of correlation is generally weaker for visually-assessed density. 
The relationship with BMI was significant at the p=0.01 level; the relationship with 
weight was significant at the p=0.05 level. 

Table 3. Correlation of glandular volume and breast density with risk-related factors 

Pearson’s correlation co-efficient (r) 
 Glandular vol-

ume (cm3) 
Volumetric Breast 

density (%) 
Visually-Assessed 
Breast density (%) 

Breast thickness 
(mm) 

-0.11 -0.65 -0.30 

Age (years) 
 

-0.18 -0.13 -0.18 

Weight (kg) 
 

-0.11 -0.45 -0.29 

BMI (kgm-2) 
 

-0.16 -0.48 -0.41 

4   Conclusion 

All women taking part in the study had their breast density measured for each mammo-
graphic view using a semi-automated volumetric method. The average breast density of 
the sample was 11% (range 0.5 – 58%).  As expected, breast density was found to de-
crease as breast thickness increased (r = -0.65).  There were also strong negative correla-
tions (p = 0.01) with weight (r = -0.45) and BMI (r = -0.48).  Significant correlations 
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were also observed between these parameters and absolute glandular volume although 
the strength of the correlation was lower.  This was expected as although breast volume 
increases with weight, weight gain is associated with an increase in adipose, rather than 
glandular tissue. 

Our previous work examined the relationship between visually-assessed breast 
density and risk-related factors. The mean breast density using this method was 
found to be higher than the software-based measure of volumetric breast density. 
The visual method was only applied to a subset of the women taking part in the study 
but the mean age and weight were similar for both samples, as were the ranges for 
these parameters. Other studies comparing area-based and volumetric techniques 
have shown that the measure of breast density is higher using area-based techniques 
[16, 17].  It is interesting to note that the strength of association between visually-
assessed density with weight, BMI and breast thickness was lower than that for 
volumetric density. 

Glandular volume and volumetric breast density were found to vary with mam-
mographic view. The difference between left and right breasts was not significant but 
the difference between the CC and the MLO view was significant. On average, the 
CC view was found to be denser than the MLO view, a result also supported by radi-
ologist visual-assessment.  This suggests that it may not be adequate to measure  
density for one view only.  There is evidence to suggest that the strength of the asso-
ciation between breast density and risk increases when considering both the CC and 
MLO views compared to the MLO view only [18].  However, this paper was based on 
a study using radiologist visual assessment of density and other studies using auto-
mated techniques have shown that it is possible to use one view only [19]. 

This study examined the relationship between volumetric breast density and other 
risk factors for breast cancer.  Ideally, we would have liked to examine the relation-
ship with breast cancer risk itself. Independent t-tests were used to compare women 
who had previously had breast cancer with those who had not. Unfortunately, the 
analysis into this variable was hampered by the small sample size and the difficulty in 
accurately matching controls. Meaningful comparison was therefore impossible.  Our 
semi-automated volumetric method is currently being used in a large-scale multidis-
ciplinary study which aims to develop risk-prediction models for the screening popu-
lation. A number of different methods are being applied and their relationship with 
risk will be compared. Work is underway to adapt our method to make it suitable for 
full-field digital mammography. Although it will still be a calibration-based tech-
nique, the stepwedge will no longer be required. 
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Abstract. Single measures of breast density have been consistently related to 
breast cancer risk, but the role of changes in breast density over the early meno-
pausal period is not clear. We investigated determinants and consequences of 
change in breast density among 493 women in Scotland. Using simple measures 
of change, only hormone replacement therapy use and current body mass index 
were consistently predictive of breast density change. Increases in area-based 
percent breast density were related to higher breast cancer risk, although the 
analysis was based on very few women. Modeling of change and rate of change 
in larger datasets is warranted.   

Keywords: Breast density, trajectories, lifecourse epidemiology, breast cancer. 

1   Introduction 

High breast density is recognised as a strong risk factor for breast density [1]. Under-
standing determinants of change in breast density not only contributes to our knowl-
edge of the aetiology of breast cancer, but also has public health implications. The 
identification of women who are at an increased risk of breast cancer, based on their 
breast density, could provide an opportunity for primary prevention of breast cancer. 
If breast density is causally related to breast cancer, it is likely that efforts to reduce 
breast density could result in reductions in breast cancer risk [2].  

The role that changes in breast density over the menopause and beyond play in de-
termining future breast cancer risk has received little attention. Key papers in this area 
are analyses of the Minnesota Breast Cancer Family cohort [3], an East London Screen-
ing cohort [2] and the Hawaiian Multi-ethnic cohort [4]. Each of these studies has dem-
onstrated a reduction in breast density with age, but the determinants of this change are 
not consistent between studies. For example, two studies have found that BMI predicts 
change in breast density [3,4], whereas this was not found in a third study [2].  

We have previously reported on determinants of breast density using area-based 
and volumetric measures of density [5,6]. The aim of the current study was to identify 
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whether risk factors in early or later adulthood affect change in later mammographic 
breast density. 

2   Methods 

The women included in the study are part of the Glasgow Alumni Cohort [7]. Stu-
dents who were registered at the University of Glasgow at some time between 1948 
and 1968 were invited to an annual medical examination at the Student Health Ser-
vice. Approximately 50% of students attended, including 3,584 women. We have 
previously shown that those who attended were broadly representative of the total 
student population [7]. Substantial medical data were collected at this examination, 
including age at menarche (self reported approximately 6 years after the event). The 
examining physician measured height and weight from which we calculated body 
mass index (BMI), in kg/m2. Women were traced through the NHS Central Register 
and those who were successfully traced and still alive (n: 2,169, 61%) were contacted 
by postal questionnaire in 2001. The response rate was 59% (n: 1,285). Women pro-
vided self-reported information on details of all pregnancies, lifetime use of oral con-
traceptive (OC) and hormone replacement therapy (HRT), physical activity at age 20, 
40 and 60  years (categorised as: very, fairly, not very or not at all physically active), 
body weight at age 40 and 60 years, lifetime smoking habits and current fruit and 
vegetable intake.  

Of the questionnaire respondents who were living in Scotland (n: 935, 73%), the 
70% who had ever had at least one screening mammogram were asked for consent to 
access mammograms taken under the Scottish Breast Screening Programme (1989–
2002). Follow-up of the cohort, the questionnaire survey and the mammogram study 
each received full ethical approval. 

Mammograms were retrieved from the relevant screening centre and were digitised 
on site with a Canon FS 300 digitiser scanner at a resolution of 100 μm with 8 bit 
precision by a single radiographer. Scanned images were displayed at 300 micron 
resolution on a flat-panel display system. Mammograms were visually classified using 
i) Wolfe categories [8] and ii) a six-category classification (SCC) of visually esti-
mated breast density percent [9] by a single experienced radiologist from the digitized 
images. The SCC categories used were 0%, 1–10%, 11–24%, 25–49%, 50–74% and 
>75%. We also used an automated estimation of volumetric percent and absolute 
breast density, the Standard Mammogram Form (SMF), version 2.2, [10]. Cranio-
caudal (CC) views were excluded as they resulted in high average density images than 
medio-lateral oblique (MLO) views, and for most women, they were only available at 
the first visit. Left and right density measures taken on the same day were averaged; 
for SMF and SMF%, the median of all values was used; for Wolfe and SCC, catego-
ries were given a score of 1-4 and 1-6 respectively, and the mean score for each day 
was used. 

Change on the Wolfe or SCC scale was defined as an increase one or more catego-
ries, and was compared to no change or a decrease in density from the first to the last 
mammogram. Change in absolute and percentage SMF was defined as the absolute 
difference between the first and last values. Breast cancer was defined as a breast 
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cancer registration on or before 1st June 2008, or breast cancer being recorded on a 
death certificate on or before 31st August 2009. 

Logistic regression (for change in Wolfe and SCC categories) and linear regression 
(for change in SMF and SMF%) and associated 95% confidence intervals (CI)  were 
used to model determinants of change. Logistic regression was used to estimate odds 
ratios (OR) and CIs for the association between change in breast density and subse-
quent breast cancer. All models were adjusted for the age of the woman at the time of 
the first mammogram, the number of years between the first and last mammogram 
and for baseline measures of density. 

3   Results 

A total of 657 women who answered the 2001 questionnaire had had at least one 
screening mammogram. Of these, 151 women had attended only one screening round, 
so were excluded. There remained 2,953 mammograms from 506 women. For 19 
films (of 15 women) the SMF algorithm produced too poor an estimate of density for 
analysis. The digitised images of 64 films from 33 women were too pale to assign 
visual density.  One woman who had her first mammogram at age 40 and another who 
had had a previous single mastectomy were also excluded. A total of 493 women 
were included in the analyses.  

The median age at first mammography was 54.7 years (range 48.6 to 69.9), and the 
median time between first and last mammogram was 6.2 years (range 0.17 to 12.87). 
There were reductions in all measures of breast density over this time period (mean 
change in Wolfe: -0.26 of a category (range -2 to +2), SCC: -0.45 of a category (range 
-3 to +2.5), SMF: -5.16cm3 (range -78 to +87), SMF%: -3.2% (range -22.8 to 18.5). 
The annual rate of change was 0.003 of a category for Wolfe (95%CI -0.24 to 0.24); 
0.06 of a category for SCC (95%CI -0.44 to 0.56); -10.5cm3 for SMF (95%CI -28.3 to 
7.3) and -3.5% for SMF% (95%CI -10.4 to 3.4). 

Determinants of reduction in breast density were broadly similar for all measures. 
There was no evidence that age at menarche, ever having been pregnant, fruit intake 
or exercise or BMI in early and mid-adulthood was related to change in breast den-
sity. Those women who had ever taken hormone replacement therapy (HRT) were 
less likely to have increases in density across all four measures. Higher vegetable 
intake was strongly protective against increase in Wolfe and SCC pattern, but this was 
not evident for the SMF measures. Women who had ever smoked were more likely to 
have increases in Wolfe patterns. Frequent recent exercise patterns were related to 
lower levels of adverse change in absolute SMF levels. BMI reported at an average 
age of 60 predicted a lower chance of adverse density change for three density meas-
ures (Wolfe, SCC and SMF), whereas higher BMI was related to a higher change in 
SMF%. 

Only six women have developed breast cancer since the date of the final mammo-
gram. Despite this tiny sample, increases in Wolfe (OR 19.5, 95%CI 2.61 to 146) and 
SCC (OR 11.8, 95%CI 2.4 to 57.4) density were strongly related to breast cancer risk, 
P=0.003 and P=0.002 respectively), whereas increases in SMF and SMF% appeared 
not to be; comparing the upper to the lower half of the change distribution: (OR 1.09, 
95%CI 0.29 to 4.13 for SMF; 0.88, 95%CI 0.23 to 3.41 for SMF%). 
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4   Discussion 

Using simple measures of change, we have demonstrated that HRT use,  current BMI 
and possibly vegetable intake appear to be predictive of breast density change, 
whereas more distal measures of lifestyle were not related to change in density.  

There are numerous issues which need to be considered when analysing breast den-
sity, which have been clearly summarised previously [11]. These include reliability 
and reproducibility of measurement, the differentiation between age- and meno-
pausal-effects, and time-varying exposures. In the current study, we have addressed 
the issue of reproducibility of measurement through the use of a single machine being 
used to digitise all mammograms and an experienced radiologist (RW), performing all 
of the subjective density analyses. Although in this study we did not incorporate re-
peat-reading of mammograms to estimate intra-reader reproducibility, she has previ-
ously demonstrated high intra-individual reproducibility of density readings on the 
Wolfe scale, with a correlation coefficient of 0.88 between the two assessments [12], 
and very good agreement with another radiologist, i.e. high inter- individual repro-
ducibility [13]. A further strength of the current study was the use of a fully auto-
mated method to estimate the volumetric breast density.  

However, the main limitation of this study is the measurement of the exposure data 
collection, which occurred at a single point in time. For some women, the exposure 
data were collected after one or both mammograms were taken. Therefore, it is possi-
ble that some of the results that we present could be explained by time-varying expo-
sures. In particular, the HRT effect on breast density may be solely due to the fact, 
that some women were on HRT at the time of the first mammogram and no longer 
received HRT at the time of their subsequent mammogram, thus artefactually appear-
ing to show that HRT is related to a reduction in breast density over time. A further 
limitation of the data is our lack of knowledge of the timing of menopause in relation 
to the timing of the two mammograms.  We were also limited by the relatively small 
sample size, particularly in relation to subsequent breast cancer risk. 

Previous studies have differed in their findings of the associations between recent 
and past exposures and change in breast density. This is particularly noticeable for 
BMI, which was found to predict a slower decline in breast density over the meno-
pause in the Minnesota Breast Cancer Family cohort [3] but not in the East London 
Screening cohort [2]. In our study, BMI measured at age 20, and recalled at age 40 
was not predictive of change. However, higher BMI at age 60 (i.e. relatively close to 
the timing of the mammograms), predicted a lower chance of adverse density change 
Wolfe and SCC measures, whereas higher BMI was related to a higher adverse 
change in SMF%. Since the area-based measures of density that we used were not 
computer-assisted, we could not investigate the effect of BMI on the individual  
components of area-based breast density (i.e. dense and non-dense area). The reduc-
tion in breast density over time is driven by an increase in total breast area and a  
concomitant decrease in dense area [2,4]. Further investigations of the differential 
effects of determinants of change on the two components of breast density are  
therefore warranted. 

Our results for reproductive factors, that are known to be related to breast cancer 
risk, are consistent with those of McCormack and colleagues [2]. This indicates that 
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the mode of action through which these factors affect breast cancer risk appears not to 
be through their effect on adverse change in breast density over time. 

It remains unclear whether the detrimental effect of high breast density on breast 
cancer risk is due to tracking over time [2], conceptualised as a sensitive period model 
[14], or due to the cumulative exposure over many years of high density [4]. In the 
Mayo Clinic mammography screening cohort, no association between change in 
breast density and subsequent breast cancer risk was seen [15]. Conversely, using 
pooled data from the Breast Cancer Surveillance Consortium, an increase in breast 
density among women with originally low density (BI-RADS 1 or 2) was associated 
with a higher risk of breast cancer, whereas women with originally high breast density 
retained their higher level of breast cancer risk, irrespective of their subsequent den-
sity measure [16]. The numbers of women in the current dataset precluded any precise 
estimation of the magnitude of the increase in risk associated with a positive change 
in breast density. Future follow-up of the cohort will allow us to address this. 

In summary, we have demonstrated that factors measured in early life, including 
those that are known to have an effect on a single measure of breast density and breast 
cancer risk, do not appear to be related to change in breast density. More proximal 
factors, such as current BMI and HRT use, are modifiable determinants of breast 
density change. 

Table 1. Determinants of change in breast density for four different measures of density 

 Change in 
Wolfe 

Change in 
SCC 

Change in SMF Change in 
SMF% 

 OR (95% CI) OR (95% CI) β (95% CI) β (95% CI) 
     
Age at menarche    
<=12 1.00 1.00 0.00 0.00 
13 1.21 

(0.41 to 3.56) 
2.18 

(0.84 to 5.65)
-0.78  

(-4.88 to 3.32)
0.85  

(-0.30 to 2.00) 
>=14 0.58  

(0.14 to 2.43) 
1.78  

(0.62 to 5.08)
-3.09  

(-7.36 to 1.19)
0.52  

(-0.68 to 1.72) 
     
Ever pregnant     
No 1.00 1.00 0.00 0.00 
Yes 0.70  

(0.25 to 1.97) 
0.82 

(0.36 to 1.89)
-3.54  

(-7.38 to 0.30)
-0.14  

(-1.22 to 0.93) 
     
HRT use     
Never 1.00 1.00 0.00 0.00 
Ever 0.34  

(0.12 to 0.99) 
0.51  

(0.23 to 1.12)
-5.47  

(-9.15 to -1.79)
-1.03  

(-2.08 to 0.02) 
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Table 1. (Continued) 

Ever smoked     
No 1.00 1.00 0.00 0.00 
Yes 3.82 

(1.06 to 13.78)
1.98  

(0.85 to 4.62)
1.37 

(-2.15 to 4.89)
0.15  

(-0.84 to 1.15) 
     
Fruit intake     
Under 2 portions per 
day 

1.00 1.00 0.00 0.00 

2 or more portions 
per day 

0.47 
(0.17 to 1.34) 

1.40  
(0.65 to 3.01)

0.51 
(-2.94 to 3.97)

0.71 
(-0.26 to 1.68) 

     
Vegetable intake     
Under 2 portions per 
day 

1.00 1.00 0.00 0.00 

2 or more portions 
per day 

0.09 
(0.01 to 0.71) 

0.35 
(0.13 to 0.96)

-0.03 
(-3.66 to 3.61)

-0.28 
(-1.31 to 0.74) 

     
Exercise @ 20y     
Not /not very active 1.00 1.00 0.00 0.00 
Fairly / very active 0.61  

(0.22 to 1.71) 
0.54  

(0.24 to 1.20)
0.97 

(-3.14 to 5.07)
-0.21  

(-1.37 to 0.95) 
Exercise @ 40y     
Not /not very active 1.00 1.00 0.00 0.00 
Fairly / very active 0.88  

(0.31 to 2.51) 
1.39 

(0.56 to 3.44)
-3.61  

(-7.64 to 0.41)
0.32  

(-0.83 to 1.46) 
     
Exercise @ 60y     
Not /not very active 1.00 1.00 0.00 0.00 
Fairly / very active 0.44  

(0.16 to 1.21) 
0.77  

(0.35 to 1.69)
-3.80  

(-7.53 to -0.07)
1.08 

(0.04 to 2.12) 
     
BMI @ 20y     
>=22 1.00  1.00  0.00 0.00 
22.1-24.9 0.66  

(0.21 to 2.12) 
1.01  

(0.41 to 2.48)
-1.14  

(-5.15 to 2.87)
-0.77  

(-1.89 to 0.35) 
>=25 0.82  

(0.20 to 3.39) 
1.25 

(0.40 to 3.93)
0.15  

(-5.66 to 5.96)
-1.15  

(-2.77 to 0.48) 
Per kg/m2 0.94  

(0.77 to 1.15) 
1.10  

(0.95 to 1.27)
0.16  

(-0.53 to 0.86)
-0.13  

(-0.33 to 0.06) 
     
BMI @ 40y     
>25 1.00  1.00  0.00 0.00 
25-29.9 0.23  

(0.05 to 1.15) 
0.46  

(0.14 to 1.52)
-2.30  

(-7.14 to 2.52 
-1.96  

(-3.35 to -0.58) 
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Table 1. (Continued) 

>=30 0.64  
(0.07 to 6.25) 

0.64  
(0.07 to 5.55)

10.27 
(-1.34 to 21.9)

-1.27  
(-4.61 to 2.07) 

Per kg/m2 0.90  
(0.74 to 1.09) 

0.91  
(0.77 to 1.07)

0.10  
(-0.60 to 0.81)

-0.46 
(-0.65 to -0.26) 

     
BMI @ 60y     
>25 1.00  1.00  0.00 0.00 
25-29.9 0.52  

(0.15 to 1.79) 
0.56  

(0.22 to 1.49)
0.64 

(-3.39 to 4.67)
-2.78 

(-3.94 to -1.62) 
>=30 0.34  

(0.06 to 1.86) 
0.24  

(0.05 to 1.17)
9.44 

(3.52 to 15.35)
-3.19  

(-4.90 to -1.49) 
Per kg/m2 0.90  

(0.77 to 1.04) 
0.88  

(0.78 to 1.00)
0.80 

(0.33 to 1.26) 
-0.40  

(-0.53 to -0.26) 
Note: change in density is coded so that a positive change means an increase in density.  
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Abstract. The purpose of this paper is to compare subregional breast density and 
whole breast density and their association with breast cancer risk. The film mam-
mograms of 278 cases and 834 age and ethnicity-matched controls were digitized 
and analyzed using single-energy x-ray absorptiometry (SXA). The subregion was 
a 3-cm diameter circle centered in the breast. The whole and subregional densities 
are found to be highly correlated (r2=0.7). The 4:1 quartile odds ratio after control-
ling for other significant risk factors (age, BMI, family history and age at first live 
birth) was 3.6 (95 CI 2.1-5.4) and the 2.4 (95 CI 1.5-3.7) for the whole and subre-
gional breast density, respectively. Further studies are underway to optimize the 
placement of the ROI and combined multiple regions. 

Keywords: mammographic density, quantitative mammography. 

1   Introduction 

Breast density, a strong risk factor for breast cancer, is quantified from mammograms 
as the dense area (or dense volume) normalized to the total breast area (or total breast 
volume). Little is known regarding the accuracy or predictive power of quantifying 
breast density in subregions. According to the spatial distribution of dense tissue 
studies [1] high-density areas are clustered at the central part of the breast. Breast 
density in subregions is of interest because other technologies, such as optical spec-
troscopy [2, 3] and quantitative ultrasound [4], may be useful to quantify breast den-
sity but not practical for whole breast measures. A centralized subregion has also been 
used to measure parenchymal patterns as a risk factor for breast cancer. However, 
little is known regarding the correlation of the density and features to whole breast 
measures.  

Only three papers are known to have addressed any questions regarding local breast 
density distributions. In a study of the association of quadrant density to the location of 
DCIS, Ursin et al. used a subjective breast density determination by a radiologist of the 
fraction of dense tissue area in each breast quadrant [5]. Vachon et al. used areal percent 
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mammographic density in breast quadrants to local associations of density to local can-
cer [6]. Pinto Pereira et al. used areal percent mammographic density subdivided on the 
mammogram into 48 rectangles to look at the density spatial autocorrelation [1]. All of 
these investigators were limited in their ability to spatially describe breast density since 
only regions on the boundary of a dense area would report a region as something differ-
ent than 0 (total fat) or 1 (total density). However, there are techniques available that 
measure the volume of dense tissue on a pixel-by-pixel scale [7] that could quantify 
small subregional densities.  

We hypothesize that the volumetric breast density measured in a localized region 
of interest has good correlation and a similar risk association to that measured from 
the whole breast. In this study, we compared subregional percent fibroglandular dense 
volume (sub_%FGV) to the total percent fibroglandular dense volume (%FGV) in an 
established cohort of women with breast cancer. 

2   Methods 

The film mammograms of 278 cases and 834 age- and ethnicity-matched controls 
were digitized and analyzed for both sub_%FGV and %FGV using single-energy x-
ray absorptiometry technique (SXA) [7, 8]. The mammograms were acquired pro-
spectively as part of the Breast Cancer Cohort Study, a prospective collection of 
mammograms, serum, and breast health questions in the San Francisco Bay area. 
Only the CC-view images were analyzed for this study. The SXA method modeled 
breasts as a tissue mass of two materials, fat and fibroglandular tissue. SXA uses a 
calibration phantom in the corner of each mammogram to convert grey-scale values to 
the associated fat and fibroglandular tissue components. The calibration phantom is 
an in-image bi-wedge phantom that created a compressible thickness between the 
compression surfaces to image two reference materials with the same thickness as the 
breast. The wires imbedded in the phantom allowed for compression thickness and 
paddle tilt estimates. To determine breast volume, breast thickness was estimated for 
all pixels in contact with both compression surfaces and those out of contact in the 
periphery. Knowing the compression thickness under the phantom and tilt angle we 
estimated breast compression area as a tilted plane. Breast shape in the periphery 
region was approximated as having a semicircular curvature in cross section. The end 
results are %FGV and thickness maps for each participant. The total breast %FGV is 
just the sum of the FGV for each pixel divided by the total breast volume. Subre-
gional %FGV values can be defined as contours drawn on the digitized image. The 
subregional %FGV studied in this paper (sub_%FGV) was measured in a 3-cm di-
ameter region centered in the breast. A line was drawn from the nipple to the center 
chest wall that divided the breast into two equal areas. The center of the 3-cm region 
was placed at the midpoint of this line. This placement was picked for convenience 
and for easy automation. The size of the region was chosen to insure that the entire 
region was within the breast tissue in contact with the compression surfaces. Larger 
regions were found to go into the periphery region of the smaller breast participants. 
The fibroglandular dense tissue volumes of the whole breast (FGV) and subregion 
(sub_FGV) were calculated as a product of %FGV and breast volume and as a  
product of %FGV and subregion breast volume, respectively. Fig. 1 (left) shows the 
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biwedge SXA phantom in the background conforming to the tilted compression angle 
generated by a quality control phantom in the foreground. Fig. 1 (right) shows the 
%FGV density map of a LCC-view clinical screen-film mammogram with the subre-
gion circle ROI. The image of the biwedge phantom has been excluded.  

The whole breast %FGV and sub_%FGV were compared using linear regression 
for all participants. The mean values for the cases and controls for each measure were 
also compared. The significance of the difference was determined using the Pearson’s 
p-value. Lastly, the cases were compared to quartiles of the controls and odds ratios 
calculated after controlling for BMI, family history, and age at first live birth using 
logistic regression. 

 

Fig. 1. Compressed wedge phantom (brown) with calibration phantom (left), clinical LCC 
mammogram showing calibration phantom (center), and SXA density map with the subregional 
circle ROI (right) 

3   Results 

A comparison of subregional and whole breast density measures is presented in  
Fig. 2. The %FGV and sub_%FGV were highly correlated with r2=0.7.  

Using Bland-Altman analysis presented in Fig. 3, we observed positive bias trend 
in the difference between the sub_%ROI and %FGV when compare to the average 
values. The sub_%FGV has lower values than the total %FGV for low density breasts 
and higher values for high density breasts.  

The results of case and control breast and population parameters are presented in 
Table 1. One can see lower mean values for the case and control subregional density 
distribution in comparison to mean values for the total breast density distribution. In 
addition, the sub_%FGV case and control distribution is about 6% broader in com-
parison to the %FGV distribution.  

Quartile odds ratios were calculated for both %FGV and sub_%FGV. The 4:1 
quartile odds ratio for %FGV was 3.6 (95 CI 2.1-5.4) after controlling for other sig-
nificant risk factors (age, BMI, family history, and age at first live birth). The odds 
ratio for the sub_%FGV at similar conditions was 2.4 (95 CI 1.5-3.7). 
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Fig. 2. Sub_%ROI versus %FGV dependence 

 
Fig. 3. Bland-Altman plot of difference between the sub_%FGV and %FGV 

Table 1. Parameters of case and control distributions 

Variable P-value (2 sided) Control Mean (Std. Dev.) Case Mean(Std. Dev) 

%FGV, %  0.0007 44.95 (16.95) 48.45 (17.08) 
FGV, cm3 <0.0001 194.46 (99.32) 241.72 (135.28) 
Sub_%FGV, % 0.046 42.12 (22.92) 45.31 (23.23) 
Sub_FGV, cm3 0.003 14.95 (7.15) 16.43 (7.18) 
BMI, kg/m2 0.005 24.1 (4.0) 25.0 (5.0) 
Age, years 0.95 57.2 (11.3) 57.2 (11.4) 
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4   Discussion 

We found that sub_%FGV was highly correlated to %FGV as well has having a simi-
lar relationship to breast cancer risk. Thus, our hypothesis was correct. However, 
there were systematic differences between the values that ranged from approximately 
-10% to 20% %FGV over the entire range of values. Individual women had an even 
higher disagreement with a few differing by as much as 60%. It could be that the 
subregional density value was more predictive and the preferred density value. Yet, 
we found that the odds ratio values for sub_%FGV were lower than for whole breast 
%FGV although both were statistically and clinically significant. Our conclusion for 
this subregion is that it is a strong predictor of cancer risk but not superior to whole 
breast density, and that it is unlikely that the women with disparate subregional values 
are better classified with subregional values than with whole breast values. 

The region we picked for this study may not be representative of all subregions. It 
was picked for convenience. The lower odds ratios were related to the large popula-
tion standard deviations for sub_%FGV when compared to %FGV. It is known that 
density is not evenly distributed in breasts. Ursin [5] found that the highest density 
quadrant was the upper/outer with density values of 56% versus the lowest density 
quadrant (38%). The %FGV of the projected upper/outer quadrant may be a superior 
region to sub_%FGV and should also be investigated with volumetric methods. 

Our findings to date seem to indicate that methods using subregional values may 
not be as strong of risk indicators as whole breast %FGV. But there still may be ad-
vantages to using technologies that look at subregions. For example, many women 
choose not to have mammograms for either discomfort or safety reasons. Non-
ionizing subregional technologies such as optical spectroscopic or ultrasound probes 
may offer a way to utilize breast density in risk models without the patient having to 
have a mammogram. In addition, there is controversy surrounding the use of screen-
ing mammography for women younger than 50 because of the potential harms of false 
positives and accumulated radiation dose. The U.S. Preventive Services Task Force 
(USPSTF) recently recommended against screening mammography for women under 
50 years old [9]. Furthermore, the USPSTF stated that starting biennial mammogra-
phy screening in these women should be up to the individual and take into account 
their specific benefits and harms. For these women, a nonionizing measurement of 
breast cancer risk is needed, and this most likely would be a regional measure. 

Our study was limited in the following ways. First, we used digitized mammo-
grams versus the current state-of-the-art Full Field Digital Mammography (FFDM). 
Second, we only used one region when other regions or regions used together may 
show additional benefit. This study shows that measuring subregional density holds 
promise as a surrogate measure of whole breast density especially in situations when 
whole breast density is not available. 
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Abstract. Computer-aided thresholding programs, such as Cumulus, are seen as 
the gold standard for breast density measurement. In this paper we compare a 
new volumetric breast density software package, Volpara™ to an expert’s BI-
RADS visual assessment and Cumulus and show that all are closely related, 
whilst there is a less close relationship between Cumulus percent breast density 
and absolute volume of dense tissue. These results support the further validation 
of this new method against breast cancer outcomes.   

Keywords: Breast density, volumetric, Volpara. 

1   Introduction 

Cumulus [1] and similar mammographic density estimator programs are widely con-
sidered to be the gold standard for breast density work. They are based on a user-
defined thresholding method, and the density calculation is area-based, i.e. calculated 
from the area of the projected image. These measures have been shown in a meta-
analysis to correlate well with breast cancer risk [2]. Nonetheless, the method is sub-
jective and the density measures that results from its use are highly dependent on the 
observer, with substantial inter- and intra-observer variability, although training does 
appear to reduce this variability [3,4].  

There is increasing interest in the potential for fully automated volumetric meas-
ures of breast density. The advantages of these methods include an elimination of 
user-variability, elimination of the time-consuming density estimation and considera-
tion of the breast as a 3-D organ. 

In this paper we compare a new quantitative, user-independent, volumetric breast 
density method, Volpara™, to visual assessment and to Cumulus. Volpara™ is 
based around an entirely relative physics model, and is an extension of work de-
scribed previously [5,6]. The model was designed from the outset with a focus on 
temporal comparison and for working on images from all digital detectors. A full 
description can be found in [7]. Key differences with SMF are in the robustness and 
reliability of the results, especially in dense breasts, and not including skin in the 
volume of dense tissue. 
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2   Methods 

As part of the American College of Radiology Imaging Network (ACRIN) Digital 
Mammography (DMIST) trial [8], the University of Virginia recruited approximately 
1,300 women, most of whom had both a film-screen mammogram and a GE digital 
mammogram on the same day performed by the same technologist.  

Cumulus density estimation was performed by one radiologist (JAH) on the left 
CC image of the digitized film-screen images, and on the “for processing” (i.e. raw) 
digital image. The BI-RADS breast composition visual assessment (1 to 4) was also 
performed. From that dataset, we selected the first 105 cases from each of the BI-
RADS breast composition categories to investigate the performance of Volpara™, a 
new volumetric breast density method. Statistical methods used were the correlation 
coefficient, regression coefficient and Bland-Altman analyses for agreement. 95% 
confidence intervals (CI) were calculated for each estimation. 

The study was approved by the University of Virginia Institutional Review Boards 
(IRB) and was Health Insurance Portability and Accountability Act (HIPAA) compliant. 

3   Results 

Out of the 420 cases selected, only 324 cases had readings available for both film 
screen mammograms and digital mammograms. The BI-RADS density was fatty in 
82 patients, scattered in 68 patients, heterogeneous in 102 patients, and extremely 
dense in 72 patients.  

Cumulus breast density percentage (BD%) from the raw digital image and from the 
films were closely related to each other, Figure 1; the correlation coefficient was 0.95. 
However, the results from the raw digital image were systematically over-estimated 
compared to from the digitised film (regression coefficient 0.89, 95% CI 0.86 to 0.92, 
i.e. a 1% increase in the digital image was associated with a 0.89% increase in the 
analogue image). Using a Bland-Altman analysis to measure agreement, the mean 
difference between the two measures was -3.96% (95% CI -4.93 to -2.99). 

There was a strong relationship between Volpara™ BD% and BI-RADS catego-
ries, with the median Volpara™ percent density rising linearly from 4.0% in the low-
est BI-RADS category to 18.9% in the top category (Figure 2).  

There was also a strong relationship between Volpara™ BD% and Cumulus BD%, 
see Figure 3. The correlation coefficient was 0.85. However, as can be seen from a 
comparison of the scales of the x and y axes in Figure 3, the proportion of the breast 
that is considered dense is much smaller when measured on a volumetric compared to 
an areal scale. This explains the rather low regression coefficient; a 1% increase in 
BD% is associated with an 0.20% increase in Volpara™ BD%, 95% CI 0.18% to 
0.21%). 

The relationship between the area-based percentage breast density measures and 
absolute volume of dense tissue was, as expected, weaker than with the volumetric 
percent density. The correlation coefficient between the absolute volume of dense 
tissue and the Cumulus BD% was 0.45, see Figure 4. A 1% increase in Cumulus 
BD% was associated with a 0.56cm3 increase in absolute volume of dense tissue 
(95% CI: 0.44 to 0.68). 



410 M. Jeffreys, J. Harvey, and R. Highnam 

 

 

Fig. 1. Relationship between the Cumulus BD% measured on the raw digital (x-axis) and digi-
tized film-screen (y-axis) image 

 

Fig. 2. Association between Volpara™ BD% and BIRADS categories. For each category, the 
horizontal line shows the median, the box contains the 25th to 75th percentiles of data. 
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Fig. 3. Association between Cumulus BD% and Volpara™ BD% 
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Fig. 4. Association between Cumulus BD% and absolute Volpara™ dense volume 

There was a small increase in the absolute dense tissue volume across BI-RADS 
and Cumulus categories, with the median Volpara™ volume rising from 38cm3 in the 
lowest BI-RADS category to 80cm3 in the highest, and from 41cm3 in the lowest Cu-
mulus category (<10%) to 80cm3 in the highest (>75%), see Figure 5. 
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Fig. 5. Association between BI-RADS categories and absolute Volpara™ dense volume 

4   Discussion 

As far as we are aware, this is the first analysis to compare measures of breast density 
from digitized film-screen and digital images taken on the same day. We found that 
BD% from the raw digital image was systematically higher than from the digitised 
film. A previous analysis suggested the opposite association [9], with a higher mean 
density when estimated from analogue compared to digital films. However, because 
the current study was based on films taken on the same day, it is likely that these 
results are more reliable. As increasingly more studies of breast density are based on 
FFDM images, these results have important implications for the comparisons of stud-
ies of breast density using digital or digitised measures. 

Volpara™, the new volumetric method of assessing breast density, designed to be 
run on FFDM images, is closely related to breast density from area-based visual tech-
niques (BI-RADS) and a semi-automated technique, Cumulus. Unsurprisingly, there 
is only a weak linear relationship between the volume of dense tissue and the area 
based density measure, as has been found with previous comparisons between volu-
metric and area-based measures [10].   

The range of percent breast density is considerably smaller on the Volpara compared 
to the Cumulus scale. The results are not fully consistent with previously reported 
measures of volumetric breast density. For example, among women without breast 
cancer, the inter-quartile range of absolute breast volume when measured by SMF v2.2β 
run on digitised images was 20.8% to 33.5% [11], compared to 4.6% to 15.6% in this 
study; this is explained by Volpara™ not including skin in its calculation. 
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In conclusion, since Volpara™ correlates well with the gold standard measure of 
breast density, we expect that there should also be a strong relationship between Vol-
para™ and breast cancer risk. The results presented here support further detailed 
analysis of the potential of this novel measure in relation to breast cancer outcomes. 
The most useful study design for this will be a case-control analysis. 
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Abstract. This study compares visual assessment of density on full field digital 
mammograms using visual analogue scales (VAS) and written percentages. 
Fifty normal digital screening mammograms were selected at random. Nine 
readers viewed the images on two occasions, firstly indicating density on a 
VAS and then estimating the percentage of dense tissue in the breast. Although 
the two methods were correlated, the degree of agreement between the density 
estimates varied considerably from reader to reader. More experienced readers 
used a wider range of values, and inter-observer variability for both methods 
was higher for these readers. The greatest difference between the methods was 
in mammograms with a mixed fatty-glandular appearance (density between 
55% and 75%). Both methods are quick and convenient, although these results 
demonstrate a need for training to ensure they are used consistently by readers 
of different degrees of experience.  

Keywords: breast screening, risk estimation, breast density, digital  
mammography. 

1   Introduction 

Visual assessment of breast density was first related to breast cancer risk more than a 
quarter of a century ago [1]. Wolfe’s classification scheme described both the quantity 
of dense tissue visible in the mammographic image and the nature of the mammo-
graphic pattern, but assignment of images to classes is subjective. Boyd introduced a 
six class scheme based only on density which was conceptually simpler but still re-
quired subjective assessment of density [2]. Despite this, it is possible to obtain con-
sistent estimates of density using both Wolfe’s classes and Boyd’s, provided that the 
reader is sufficiently experienced and well-trained [3].  This result has not, however, 
been replicated using a large number of readers of varying profession and experience.  
                                                           
* Corresponding author. 
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More recently, researchers have attempted to automate the process of measuring 
density, notably using interactive thresholding [4], calibration-based methods [5, 6] 
and model-based approaches [7,8]. Of these methods, the interactive thresholding 
method known as Cumulus is the most widely used. This requires a trained observer 
to select image thresholds that best delineate the breast edge and glandular tissue, and 
to interactively mark out the edge of the image and pectoral muscle. The vast majority 
of studies using Cumulus have operated with digitised films. The calibration-based 
and model-based methods have been facilitated by the availability of digital images, 
which provide a more straightforward platform on which to work. These techniques 
can estimate the volumes of fat and gland in the breast, using knowledge of the imag-
ing process to associate pixel values with thicknesses of dense tissue. The relationship 
of volumetric density to risk has not yet been as thoroughly explored as that of the 
percentage estimates introduced by Boyd, or the subjective pattern classification used 
by Wolfe. It is, however, worth noting that volumetric measures enable the separation 
of the fat and gland components of the breast, and this will overcome one of the major 
disadvantages of methods based on percentage area. It has been shown that weight 
loss (or gain) could seriously confound risk studies that use percentage breast density 
because such measures are dominated by breast fat, which can change rapidly with 
change in a woman’s body weight. As women lose weight, their percentage breast 
density rises indicating an increase in risk, when lower weight should correspond to 
lower risk [9]. Volumetric methods will allow the investigation of fat and gland as 
separate risk factors. 

The introduction of full field digital mammography, whilst facilitating the intro-
duction of quantitative volumetric techniques, has proved a complicating factor for 
breast density measurement, since the majority of work relating density to risk was 
performed using film-screen mammography and hardcopy or digitised images. With 
full field digital mammography there is more scope for image processing to optimise 
image display so that subtle abnormalities can be detected. Automated methods for 
estimating density usually use the raw (unprocessed) data and thus avoid the influence 
of image processing algorithms, but many breast imaging centres currently only save 
the processed images, as these are the images from which a diagnosis or screening 
outcome has been determined. In longitudinal studies looking at the change in risk 
over time, women may have had earlier mammograms taken using film-based sys-
tems and later ones using full field digital mammography. Here, visual assessment 
may provide a method of bridging the gap, although a systematic comparison of read-
ers’ assessments across the two modalities would be necessary. An accurate measure 
of change in density could prove beneficial in a number of applications such as identi-
fying women whose density is not reducing as expected with age, or determining 
whether treatments such as Tamoxifen are effective in reducing density. 

There are several different ways in which visual assessment can be achieved includ-
ing writing down a percentage of dense tissue; classifying according to Wolfe or Boyd’s 
groups; or marking a Visual Analogue Scale (VAS). In our breast centre, many of our 
readers have extensive experience in using the latter method, and results have shown a 
clear correlation with risk, especially when density is estimated in both mammographic 
projections [10]. In this study we compare two methods of visual assessment to deter-
mine which might be most appropriate to use either as a baseline against which to com-
pare automated and semi-automated methods, to indicate ‘difficulty’ of cases when 
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selecting test sets for evaluation of computer-aided detection algorithms, or to provide 
an indication of risk in large scale longitudinal research. The study uses a wide range of 
mammogram readers to provide an indication of how practical it would be to use the 
methods in a typical screening centre. 

2   Materials and Methods 

Fifty normal full field digital mammograms were selected at random from screening 
mammograms taken in 2009 as part of the UK National Health Service Breast 
Screening Programme (NHSBSP) [11]. They were made available to readers on 
their usual reporting workstation. Nine mammogram readers of varying experience 
were recruited (table 1). In Manchester, screening mammograms are read independ-
ently by pairs of readers drawn from a pool of experienced radiologists, radiogra-
phers and breast physicians all trained in mammogram reading and meeting the 
NHSBSP guidelines for annual reading workloads. The majority of the readers who 
participated in this study had prior experience in the visual assessment of breast 
density using Visual Analogue Scales due to participation in a previous research 
study [12]. In table 1, the readers are ranked in order of experience based on the 
number of years of film-reading experience multiplied by the approximate number 
of mammograms read per year, as it proved impractical to obtain a more accurate 
assessment of lifetime experience.  

The set of fifty mammograms, each of which comprised four images (Cranio-Caudal 
and Medio-Lateral Oblique views of both breasts), was read by each reader on two 
different days. On the first day the proportion of breast density in each mammographic 
view was recorded on a 10cm Visual Analogue Scale on a paper pro-forma, and on the 
second day, the reader simply wrote down the estimated percentage on dense tissue in 
the breast in each view. The Visual Analogue Scales were processed automatically to 
extract percentage densities based on the relative positions of readers’ marks across each 
scale line. The results from the four mammographic views were analysed separately; in 
this paper, results from a single view (the Right Cranio-Caudal, or RCC) are shown, as 
similar results were found with the other views.  

Table 1. Experience of mammogram readers. RG=Radiographer; CR= Consultant Radiologist; 
BP= Breast Physician. 

Reader Profession Years of Experience Approximate number of 
mammograms read per year 

1 RG 1.0 5,000 
2 BP 3.0 5,500 
3 RG 4.0 5,000 
4 CR 3.5 7,000 
5 RG 7.0 7,000 
6 BP 8.0 7,000 
7 CR 15.0 7,000 
8 CR 20.0 7,000 
9 CR 23.0 7,000 
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3   Results 

The correlation between estimates of density made using the VAS and percentage 
varied from 0.95 for a relatively inexperienced radiographer reader (Reader 3) down 
to 0.72 for one of the experienced consultant radiologists (Reader 7). Examples of the 
results for these two readers are shown in Figures 1 and 2 as Bland-Altman plots [13]. 
In Figure 1 the difference between the estimates made using the two techniques is 
plotted against the mean of the two estimates for Reader 3, a relatively inexperienced 
radiographer with little prior experience of density estimation (95% limits of agree-
ment in this example are -12.71 - 8.51). At the other end of the spectrum, the results 
for Reader 7, the experienced radiologist, are shown in figure 2. Here there is poor 
agreement between the two methods of assessing density (95% limits of agreement -
16.90 - 32.46). This reader had a discrepancy in excess of 15% in more than a third of 
the mammograms viewed, whereas all but one pair of Reader 3’s estimates were 
within 15% of each other. Six of the nine readers had large discrepancies between 
estimates for the same mammogram, which was in the middle of the density range 
with an average density assessed as 50%. 

Although the two methods were found to be correlated, the degree of agreement 
between VAS and percentage estimates varied considerably from reader to reader 
(table 2). More experienced readers used a wider range of values for both methods, 
and variation in discrepancy was higher for these readers. The greatest difference 
between the methods was in mammograms with a mixed fatty-glandular appearance 
(density between 55% and 75%).  

There was no evidence from these data that professional group had a significant ef-
fect on the discrepancy between measures made by the two techniques. Similarly, 
reader experience was not systematically related to discrepancy. 

Agreement Plot (95% limits of agreement)
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Fig. 1. Bland-Altman plot of the difference between the two estimates of density against the 
mean. Results are shown for Reader 3 (a relatively inexperienced radiographer). 
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Agreement Plot (95% limits of agreement)
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Fig. 2. Bland-Altman plot of the difference between the two estimates of density against the 
mean. Results are shown for Reader 7 (an experienced consultant radiologist). 

Table 2. 95% Limits of agreement ranked by reader experience. Readers 1, 3 and 5 are radiog-
raphers, 4, 7, 8 and 9 are consultant radiologists and 2 and 6 are breast physicians. 

Reader 95% limits of agreement (2dp) 

1 -15.61 15.41 

2 -9.28 22.32 

3 -12.71 8.51 

4 -16.70 5.94 

5 -17.67 22.63 

6 -22.85 21.69 

7 -16.90 32.46 

8 -20.14 20.94 

9 -16.17 8.09 

Figure 3 shows the VAS and percentage estimates assigned by the most experi-
enced reader for all 50 mammograms.  Although the images were presented in ran-
dom order, here we have arranged them in increasing density as assigned by VAS. It 
is noticeable that this reader has rounded all of the percentage estimates to the nearest 
5%. Many of the readers adopted a similar strategy. 
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Fig. 3. VAS and % estimates of density for Reader 9 (the most experienced reader, a consultant 
radiologist). The data is ordered with increasing VAS estimate. 

4   Discussion 

Both methods of density estimation are quick and convenient, and as expected the esti-
mates of density provided by the two methods show a high degree of correlation. How-
ever, for some mammograms there was a large difference between the two estimates 
and this is a concern. The variation between readers indicates that if the methods are to 
be used successfully, there is a need for training to ensure that they are used consistently 
by readers of different degrees of experience. In this study, the readers with least experi-
ence in using Visual Analogue Scales were amongst the most consistent. 

The discrepancy between estimates made by the two methods was not found to de-
pend systematically on breast density, although the greatest differences between the 
methods were found in mammograms of mixed fatty-glandular appearance. A larger 
study with mammograms selected to cover the density range would be necessary to 
investigate this further; in our data set, which was selected randomly from screening 
cases, the majority of mammograms were from post-menopausal women, and hence 
there were only a small number of images showing a high proportion of dense tissue. 

Subjective assessment is unlikely to provide sufficient accuracy and reliability to 
enable subtle changes in density to be monitored, for example to facilitate decisions 
about the continuation of risk prevention intervention. Whilst previous research has 
concluded that visual assessment was reproducible, results from only a small number 
of highly trained readers were investigated [3]. Our results show that different readers 
behave in different ways when confronted with an image and a scoring system: some 
use the full range of values available to them, whilst others select particular values 
that they find conceptually easy (e.g. recording values of 25%, or 50%). The tendency 
of the majority of readers to round values to the nearest 5 or 10 percent suggests that 
it may be better to stipulate in advance that this precision is sufficient. 
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Abstract. X-ray computed tomography (CT) has been proposed and evaluated 
recently as a potential alternative method for breast imaging. Efforts so far 
showed success with respect to contrast-enhanced dynamic imaging, but suf-
fered from limited spatial resolution. The concept presented here builds upon 
micro-CT scanning approaches and aims at providing both high spatial resolu-
tion at around 100 µm for micro-calcification imaging and advanced dynamic 
scan capabilities with continuous acquisition and scan times of about 10 sec-
onds for differential diagnosis of lesions. To achieve this, spiral scan modes, 
slipring technology, high-resolution detectors and high-power micro-focus X-
ray tubes are demanded. The concept has been evaluated and confirmed by 
simulations and basic experiments; first clinical results are expected by the end 
of 2011. 

Keywords: computed tomography, breast, calcifications, image quality, dose. 

Full field digital mammography (FFDM) [1–3] represents today’s standard and the 
most widely applied imaging modality for the early detection of breast cancer. How-
ever, severe limitations with respect to its sensitivity and specificity are to be ac-
knowledged. In consequence, many alternative approaches are under investigation at 
present with magnetic resonance imaging (MRI) as one of the promising candidates 
[4; 5]. For a number of good reasons, X-ray computed tomography (CT) has also been 
proposed and is presently under investigation as an alternative method. 

1   Demands on Breast Imaging 

There is a general consensus that 2D projection imaging has limitations; this is espe-
cially the case for FFDM when dense breasts are to be examined. The superposition-
ing of structures can obscure the details of interest to a degree that a diagnostic find-
ing goes undetected. Therefore, full 3D capabilities are an essential demand. Tradi-
tionally the detection and diagnosis of microcalcification clusters is one of the most 
important tasks; high spatial resolution on the order of 100 μm in all three dimensions 
appears necessary for this. Soft tissue structures shall be discerned just the same, 
which implies moderate demands regarding low-contrast resolution. In addition, spe-
cific information about lesion characteristics is desired; the recording of contrast me-
dium kinetics, that is dynamic imaging capabilities, are of considerable interest as has 
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been shown in several studies [6; 7]. Also, any modality under consideration should 
support intervention and therapy efforts. Patient comfort and safety are a further de-
mand which cannot be neglected. Safety relates both to the radiation dose delivered 
when X-rays are involved and to the contrast medium dose being applied. Comfort 
mostly relates to the examination time, patient positioning and to the question if the 
breast is compressed or not. It is also of importance to image the full breast including 
all regions close to the chest wall and close to the axilla. These demands are summa-
rized in table 1. It is the purpose of this proposal to show that a dedicated breast CT 
scanner may fulfill all these demands.  

Table 1. General requirements for breast imaging 

Full 3D capability 

High isotropic spatial resolution of about 100 µm 

Dynamic imaging capabilities (sub-minute temporal resolution) 

Soft-tissue differentiation 

Low dose of X-rays and contrast medium to the patient 

Patient comfort, no breast compression 

2   Prior Art 

Efforts at building a dedicated CT scanner for the breast date back to the 1970s. A so-
called CT mammography (CTM) scanner was promoted at the time [8; 9]. The 
woman was lying prone on the table with one breast at a time hanging through a hole 
in the table. Spatial resolution was considered inadequate for the mammographic task, 
and the concept was discontinued.  

Renewed efforts started in the early 2000s in the United States [10–13]. Standard 
components were mostly used for the respective prototype setups. Several limitations 
resulted from this. E.g., with X-ray tubes and detectors as commonly used in an-
giography or flat-detector CT with effective pixel sizes of 150 to 400 μm, insufficient 
spatial resolution was obtained.  

However, some of these scanners provide dynamic CT capabilities, i.e. the possi-
bility for differentiating lesions which are enhancing either fast (malignant) or slow 
(benign). This feature was also shown for standard clinical CT imaging of complete 
thorax cross-sections with the patient lying prone. Perrone et al. reported [7] re-
markably good results for the differential diagnosis of benign and malignant lesions 
(figure 1). While efforts regarding dynamic CT are being continued, there is a  
general consensus that dedicated breast CT up to now does not allow sufficient reso-
lution for an adequate diagnosis of microcalcifications to the same degree that mam-
mography does [14]. 
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Fig. 1. Dynamic CT allows for differential diagnosis of benign and malignant lesions (Data 
reproduced from [7]). However, in clinical CT spatial resolution and patient dose values are of 
the same order as in standard thoracic CT and not acceptable for dedicated breast CT. 

3   Proposed Concept 

A new effort at breast CT was started by W. Kalender in 2007 [15]. The respective 
European Union project aimed at investigating the potential of a dedicated breast CT 
scanner which should be capable of achieving all goals stated in table 1. A sketch of a 
possible scanner setup proposed at that time is shown in figure 2. It is similar in prin-
ciple to the setup developed by J. Boone [12] and is used in patient studies [14]. A 
decisive advantage is expected by providing higher spatial resolution. Special data 
processing approaches will allow providing different images from a single scan: a 
high-resolution high-noise image for assessing microcalcification clusters and a low-
resolution low-noise scan for viewing soft-tissue lesions [16]. 

Preliminary proof of evidence for the expected imaging performance of a respec-
tive scanner was obtained in first practical test measurements on an experimental 
micro CT scanner using the parameters as outlined above, in this case a focal spot size 
of 10 μm and a detector pixel size of 100 μm. Spatial resolution in this case was about 
50 μm. Measurement results for a surgical resection specimen are shown in figure 3 to 
indicate the potential. Microcalcifications in a great range of sizes are displayed with 
high clarity; to indicate the 3D nature of the findings, three views of the volume are 
shown side by side from different perspectives. 

Essential parts of the necessary basic measurements and simulation studies have 
been completed; the results confirm that the stated goals can be achieved. However, 
the concept necessitates the development of new technological solutions for most 
scanner components. For example, as an X-ray source, a tube with focus size down to 
100 μm is required with the focus spot very close to one end of the tube to allow hav-
ing the focus directly under the table and thereby to include the anatomy up to the 
chest wall.  
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Fig. 2. In dedicated breast CT, the patient will be scanned with low X-ray dose in prone posi-
tion with only one breast exposed at a time. Calculations and preliminary measurements indi-
cate that we will be able to display microcalcifications as well as or even better than in standard 
mammography. Soft-tissue lesions which are often obscured in mammography by overlying 
tissue will be displayed clearly without an increase in dose at decreased spatial resolution. 
Note: The two separate inserted displays of soft tissue lesions and of microcalcifi-cations are 
derived from the same, single measurement by different processing. 

a)    b)     c)  

Fig. 3. Experimental micro-CT allows modeling the imaging task. Scans of a breast surgical 
specimen at about 50 μm isotropic spatial resolution display the 3D microcalcification clusters 
in a quality not available in clinical imaging so far. Fig. 3a–c display three different perspec-
tives to indicate the 3D nature of the data. 

As a detector, a highly efficient design with detector pixel sizes of 100 μm or less is 
required to achieve the desired high spatial resolution. Also, the number of readings per 
second has to be increased to allow for a high number of projections being measured 
during a 360° rotation in very short time. The geometry should be similar to the typical 
biopsy tables which are in use today, i.e. the scanner should be small and neither de-
mand much space nor intimidate the patient. A proposed setup which shall fulfill these 
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expectations is shown in figure 4. An important step will be the transition from single-
circle scans using a flat detector (figure 2) to spiral CT using a dedicated CdTe detector 
(figure 4a) and a new scanner design allowing for spiral scans (figure 4b). 

  

Fig. 4. Proposed CT concept. a) Source-detector design similar to that of modern clinical CT. 
b) Novel patient-friendly scanner concept which also allows for biopsy taking. 

4   Patient Dose Considerations 

It is considered essential that patient dose associated with the proposed CT scanner 
does not exceed the levels necessary and accepted for FFDM. Therefore, the dose 
situation has been assessed in detail since the very start. In a manner similar to the 
assessment of image quality, the approach was based both on calculations [17] and on 
measurements. Respective 3D dose distributions are shown in figure 5. It should be  
 

           

Fig. 5. 3D dose distribution. a) Dose in mammography falls nearly exponentially from entrance 
to exit plane. Average glandular dose is below 3 mSv. b) Dose in CT is more homogeneous and 
can be kept to a similar level.  
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noted that CT delivers a much more homogeneous dose pattern, especially at higher 
voltage values, and does not reach the high peak values found for FFDM and tomo-
synthesis on the beam entrance side. Average glandular dose values in the range of 2 
to 6 mGy appear feasible for CT [18; 19], which amount to the values typically found 
in bi-plane FFDM. 

It is important to note that dose for dynamic scans will be significantly lower than 
for high-resolution scans so that the total dose of a complete examination including 
high-resolution microcalcification and low-resolution dynamic or functional scanning 
will not exceed the above estimates significantly. Accordingly, the effective or whole 
body-equivalent dose will be around 1 mSv or less. These values are much lower than 
those found in standard clinical CT. They may also be compared to the typical natural 
background radiation level of 3 mSv per year with its range given at 1 to 10 mSv. 

5   Conclusions 

Based on simulations, on preliminary experiments and on general experience with 
high-resolution flat-detector micro-CT it appears feasible to build a dedicated CT 
scanner of the breast fulfilling all the demands given in table 1. In particular, this 
includes the demand that dose has to be limited to the levels known and accepted for 
mammography. Necessary developments of respective new technological compo-
nents, of algorithms and software will take time, but we expect practical solutions for 
clinical testing to be available by the end of 2011. 
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Abstract. Breast tomosynthesis is a promising technology for breast imaging. Al-
though existing tomosynthesis systems using detector technology developed for 
FFDM and uniform acquisition parameters have demonstrated the potential to im-
prove the effectiveness of breast screening, the full potential of tomosynthesis is 
yet to be realised. The effectiveness of tomosynthesis depends on multiple factors, 
including acquisition geometry, number of projections, reconstruction software 
and X-ray detector performance. In this study, the authors investigated the use of 
a specially designed 29 cm x 23 cm CMOS flat panel X-ray detector with a novel 
Active Pixel Sensor with high spatial resolution, high speed read-out, low noise, 
negligible image lag and a unique ability to reconfigure imaging parameters such 
as resolution and gain during an acquisition. Advanced tomosynthesis acquisition 
methods were used with the new detector including non-uniform spacing of pro-
jection views. This combination of optimised X-ray detector and optimised acqui-
sition methods provides enhanced imaging performance. 

Keywords: Breast imaging, tomosynthesis, CMOS X-ray detector. 

1   Introduction 

Breast tomosynthesis is a promising technology for breast imaging and especially for 
breast screening. Studies have shown that tomosynthesis has the potential to signifi-
cantly enhance specificity in comparison with FFDM [1, 2]. Although tomosynthesis 
may also bring benefits to diagnostic breast imaging, it is in screening that greatest 
value can be realised. Breast tomosynthesis promises solutions to many of the prob-
lems currently associated with screening mammography, including the reduction of 
false-positive results caused by the superposition of normal tissues and making le-
sions that are masked by superimposed breast tissue more conspicuous, especially in 
the dense breast. In order to be employed as an effective breast cancer screening mo-
dality, tomosynthesis must not require long acquisition times, which would increase 
the risk of patient motion during acquisition.  

Tomosynthesis products developed to date have used detector technology origi-
nally developed for FFDM (amorphous Silicon readout arrays with and amorphous 
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Selenium and CsI converters). Tomosynthesis systems based on such detectors suffer 
from a number of limitations. First, low frame rate limits the number of images ac-
quired, which can results in image artefacts. Second, read noise, ghosting and lag 
affect the reconstruction process, reducing the contrast of the reconstructed images. 
Third, the relatively low frame rate of TFT-based detectors can result in image blur-
ring, both from patient motion and from the motion of the X-ray source tube. 

One approach is to use a large number of projection views (PV) over a wide angu-
lar range (e.g. 25 PVs over 50 degrees). This provides good image resolution, but 
results in a slow scan time when performed with a TFT-based detector with a low 
frame rate. Long acquisition times increase the likelihood of patient motion during 
acquisition and may increase the level of discomfort felt by patients. A second ap-
proach is to reduce the acquisition time by reducing the number of PVs acquired and 
the angular range (e.g. 11 projections over 15 degrees), but this may have a negative 
impact on the image quality of the resulting reconstruction (especially in the Z dimen-
sion). A third approach is to use multiple scanning linear detectors [3]. This approach 
avoids the correlation between number of projections and acquisition time found in 
flat-panel tomosynthesis. However, the scanning linear detector systems developed to 
date have suffered from slow acquisition times related to the limited output of avail-
able mammography X-ray tubes and the low X-ray efficiency of slot scan systems, in 
which the majority of the X-ray photons output by the X-ray source are absorbed by 
collimators above the breast. These systems are also complex mechanically and ex-
pensive to manufacture, both of which are undesirable in a product intended for use in 
screening. 

In this work, the authors have adopted an alternative approach: using a faster flat 
panel detector with low read noise and acquiring sufficient projections to endure good 
image quality. This novel CMOS X-ray detector is inexpensive, robust and offers 
significant technical advantages for breast tomosynthesis. 

The CMOS X-ray detector uses custom CMOS sensors, specifically designed for 
use in breast tomosynthesis, with an active imaging area of 1536 x 1944 pixels, each 
74.8 μm x 74.8 μm, read out through 6 parallel off-chip ADCs. In order to produce a 
detector suitable for mammography and breast tomosynthesis, the sensors are tiled 
into a 2 x 2 array bonded to a fibre optic plate (FOP) giving a total active imaging 
area of 3072 x 3888 pixels. A 150 μm columnar CsI scintillator is coupled to the FOP. 
The binning modes and associated framing rates are shown in Table 1 below. 

Table 1. CMOS detector binning modes and associated framing rates 

Binning 1x1 1x2 2x2 1x4 2x4 4x4 
Framing rate(frames/s) 26 53 70 72 81 86 

The binning mode can be changed instantaneously, allowing multiple detector 
resolutions to be used in the same acquisition. For example, a central projection with 
higher dose and 74.8 μm resolution can be incorporated into an acquisition sequence 
in which the other PVs are acquired at 149.6 μm. The detector also has the capability to 
change the gain at the pixel level instantaneously, providing both low noise and high 
saturation modes for each of the binning modes above. 
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Existing tomosynthesis systems typically use uniform acquisition methodologies, 
with a uniform distribution of projections and a uniform radiation dose across projec-
tions. In this study, non-uniform parameters have been used with the CMOS X-ray 
detector and compared with uniform parameters [4, 5]. Table 2 shows tomosynthesis 
parameters used in this study (A) and selected sets of parameters used in three other 
studies. 

The objectives of this study were twofold: (a) To characterise the imaging proper-
ties of a high speed, low noise CMOS X-ray detector and (b) to investigate novel 
variations in tomosynthesis acquisition parameters using a high speed, low noise 
CMOS X-ray detector and their effect on image quality in breast tomosynthesis. 

Table 2. Breast tomosynthesis acquisition parameters 

System Detector 
pixel size 
(µm) 

Projection 
Views (PVs) 

Angular 
range 
(degrees) 

Uniform or 
non-uniform 
sampling 

Detector 
technology 

A 74.8x74.8 13 24 NU CsI / CMOS 
B [9] 139x139 11 15 U aSe / TFT 
C [10] 85x85 or 

85x170 
25 50 U aSe / TFT 

D [11] 100x100 11-21 30-60 U CsI / TFT 

2   Method 

The spatial resolution (MTF), saturation charge and read noise of the CMOS X-ray 
detector were measured in the laboratory. MTF data were acquired using a spectrum 
of 25 kVp and a W/Rh Target/Filter combination without the use of additional filtra-
tion. The pre-sampling MTF was measured using the edge method [6]. The saturation 
charge and read noise of the CMOS X-ray detector were measured using standard 
photon transfer curve (PTC) method described by Janesick [7]. 

A breast phantom study was performed at dose levels selected to be equivalent to a 
typical single-view FFDM breast glandular dose of 1.5 mGy. This study was per-
formed on a laboratory system incorporating the Dexela CMOS detector, Sedecal 
mammography X-ray generator and Varian RAD70 X-ray tube. The X-ray tube was 
moved using a specially constructed C-arm gantry. The X-ray source was calibrated 
using a dosimeter. 

For the breast phantom study, sets of projections were acquired with different 
combinations of uniform and non-uniform parameters and different numbers of pro-
jections. Both sets had the same aggregate dose. To compare the volumes recon-
structed from the different sets of projections these performance measures were used: 
contrast-to-noise ratio and normalized line profiles of test objects, following the 
method used by Zhang et al [5]. An iterative method was used to reconstruct the vol-
ume in each case, similar to that described in [9]. 

A clinical breast tomosynthesis case was also acquired using the non-uniform PV 
angles distribution shown in Table 3. This was acquired using the native 74.8 µm 
unbinned pixel in all PVs and the detector’s high saturation mode. 
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3   Results 

The read noise of the detector was measured as ~148 –e rms in the low noise mode 
325 –e rms in the high saturation mode. Modulation Transfer Function (MTF) has 
been measured as a function of spatial fequency and is shown in Figure 1. 

  

Fig. 1. MTF 

Initial results demonstrate fast scan time and excellent image quality can be com-
bined with high in-plane spatial resolution. A clinical trial is planned to determine 
quantitative measures of clinical performance.  

To investigate the effect of the distribution of the PV angles on the reconstructed 
image, three sets of the projection angle geometries were selected, 1) Uniform angles 
(U) containing 13 PVs, 2) Non-Uniform angles (NU) containing 13 PVs and 3) Wide 
Non-Uniform angles which is similar to NU with an extra added angle to contain 15 
PVs. The projection angles are specified in Table 3. It should be noted that a limited 
number of geometries are used here due to the lack of data at the time of submission. 
More geometries will be evaluated in the near future. 

Table 3. Three sets of projection angles in degrees 

Uniform Angles (U)  ±12 ±10 ±8 ±6 ±4 ±2 0 
Non-Uniform Angles (NU)  ±12 ±8 ±5 ±3 ±2 ±1 0 
Wide Non-Uniform Angles 
(WNU) 

±18 ±12 ±8 ±5 ±3 ±2 ±1 0 

To compare the volumes reconstructed from the different sets of projections these 
performance measures were used: contrast-to-noise ratio (CNR) and normalized line 
profiles (NLP), following the methods used by Zhang et al [5]. An iterative method 
based on Total Variation regularization was used to reconstruct the volume in each 
case, similar to that described in [8].  
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Two test sets were used for this investigation. One was acquired using a phantom 
containing metal wires to evaluate the blurring in the reconstructed image. The metal 
wires where placed perpendicular to the path of X-ray source movement and the NLP 
was obtained. For this test, the PV angles of U and NU were employed. The second test 
contained the reconstructed images of dead, detail from which is shown in Figure 2. The 
geometries used for this test were NU and WNU. 

 

Fig. 2. Detail from a slice taken from the reconstructed image of mice using the WNU distribution 

The CNR values of the uniform (U) and non-uniform (NU) projection angles are 
given in Table 3. Based on the current limited set of geometries used, the results show 
that the uniform distribution gives better CNR in X-Y plain compared to the NU ge-
ometry evaluated. 

Table 4. Contrast to noise ratio (CNR) of selected low and high contrast mass applied on 
phantom 

 U NU 
Low contrast mass 5.30 3.65 
High contrast mass 15.32 13.84 

The results of the CNR of the test mice images are provided in Table 5. The results 
indicate that the introduction of a pair of extra PV (in WNU geometry) has improved 
the CNR of both low and high contrast mass region. 

Table 5. Contrast to noise ratio (CNR) of selected low and high contrast mass applied on the mice 

 NU WNU 
Low contrast mass 2.09 2.19 
High contrast mass 8.04 8.90 
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The in-plane NLP (i.e. the line profile in x-y plane) for the given projection angle 
distribution did not show significant differences. However, the inter-plane NLP (i.e. 
the line profile along Z axis) of a high contrast object produced a different outcome, 
as shown in Figure 3. Here, the uniform distribution produced lower inter-plane blur-
ring than the non-uniform distribution. As indicated in [5], the centrally concentrated 
PVs (as for the NU geometry) contribute more blurring to the out-of-focus planes. 

Figure 4 shows a series of slices from a reconstructed clinical data set acquired at 
University of Virginia Hospital, Charlottesville. The acquisition used the non-uniform 
(NU) distribution of thirteen PVs shown in Table 3. The MGD employed was 1.5  
 

 

Fig. 3. Normalized inter-plane line profiles along Z axis of a high contrast object 

 

Fig. 4. Details from slices of a reconstruction of a breast acquired with non-uniform PV angles 
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mGy and the compressed breast thickness was 80 mm. The same breast had previ-
ously been imaged on a commercial FFDM system and in that case compressed breast 
thickness was = 73 mm. The images presented in Figure 4 are a series of four slices 
separated by 10mm. As can be seen, high-quality images are achieved with the NU 
distribution, although the results presented in Table 4 favour the uniform distribution 
method. 

The data was acquired using a pixel resolution of 74.8 µm and this spatial resolu-
tion was used in the X-Y plane of the reconstruction. 

4   Discussion 

A novel breast tomosynthesis system has been developed using a fast, low noise 
CMOS X-ray detector. The CMOS detector is the first to have been developed spe-
cifically for breast tomosynthesis. As such, it offers advantages over tomosynthesis 
systems that use TFT-based detectors designed primarily for FFDM. The flexibility of 
the CMOS detector allows optimisations of variable binning and variable gain to be 
incorporated in the acquisition protocol.  

The low read-noise and high frame rate of the detector allows breast tomosynthesis 
to be performed at a higher spatial resolution (74.8 µm in the X-Y plain) than has 
been achieved with some other breast tomosynthesis systems without lengthening the 
acquisition time or increasing the mean glandular dose. 

Further research is required to determine whether breast tomosynthesis image qual-
ity is improved by using more PVs acquired with the CMOS detector’s low noise 
mode and what the optimum tomosynthesis geometry is for this detector. 
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Abstract. Digital breast tomosynthesis (DBT) is an imaging modality in which 
tomographic sections of the breast are generated from a limited range of x-ray 
tube angles. One drawback of DBT is resolution loss in the oblique projection 
images. The purpose of this work is to extend Swank’s formulation of the trans-
fer functions of turbid granular phosphors to oblique x-ray incidence, using the 
diffusion approximation to the Boltzmann equation to model the spread of light 
in the phosphor. As expected, the modulation transfer function (MTF) and noise 
power spectra (NPS) are found to decrease with projection angle regardless of 
frequency. By contrast, the dependence of detective quantum efficiency (DQE) 
on projection angle is frequency dependent. DQE increases with projection an-
gle at low frequencies, and only decreases with projection angle at high fre-
quencies. Importantly, the x-ray quantum detection efficiency (AQ) and the 
Swank information factor (AS) are also found to be angularly dependent. 

Keywords: Digital breast tomosynthesis (DBT), oblique x-ray incidence, turbid 
granular phosphor, optical transfer function (OTF), modulation transfer func-
tion (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), 
Swank information factor (AS). 

1   Introduction 

Digital breast tomosynthesis (DBT) is an emerging 3D imaging modality in which x-
ray images of the compressed breast are acquired over a limited range of projection 
angles. Using digital image reconstruction techniques, tomographic sections at all 
depths of the breast volume can then be generated.  Preliminary studies indicate that 
DBT provides increased sensitivity and specificity for the early detection of breast 
cancer in women relative to conventional 2D digital mammography [1]. 

One trade-off of DBT is resolution loss in the projection images as a result of 
oblique x-ray incidence.  Although the degradation in image quality due to oblique  
x-ray incidence has been studied in columnar cesium iodide phosphors doped with 
thallium (CsI:Tl) with empirical data [2] and amorphous selenium (a-Se) direct con-
verting detectors using Monte Carlo simulations [3], to our knowledge no one has 
performed a theoretical analysis of the consequences of oblique x-ray incidence. The 
purpose of this work is to extend Swank’s analytical formulation [4] of the transfer 
functions of x-ray fluorescent screens to oblique x-ray incidence. To this end, we have 
considered a non-structured turbid granular phosphor such as gadolinium oxysulfide 
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doped with terbium (Gd2O2S:Tb), which is commonly used in breast imaging and 
which can reasonably approximate other detector materials. 

2   Methods 

The optical transfer function (OTF), noise power spectra (NPS), and detective quan-
tum efficiency (DQE) of a turbid granular phosphor irradiated obliquely are now 
derived from first principles.  The spread of visible light in a scintillator can be de-
scribed by the Boltzmann transport equation.  A first-order, steady state solution to 
the Boltzmann transport equation is a diffusion equation of the form [5] 

                                                )()()( 22 rrr S=+∇− φσφ  ,                                        (1) 

where φ(r) is the product of the density of the secondary carriers (i.e., the optical 
photons) with the diffusion constant, σ is the reciprocal of the mean diffusion length 
of the secondary carriers, and S(r) is the source function.  The source function S(r) 
may be modeled as point-like and positioned on (z0tanθ, 0, z0), where z0 is the depth 
of the phosphor of total thickness T and where θ is the projection angle relative to 
normal x-ray incidence.  In terms of Dirac delta functions, S(r) can be written as 
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In the Fourier domain, the source function can be written as the integral 
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where ν is the 2D spatial frequency vector and k = 2πν.  To solve this differential 
equation, one can apply integral transform techniques.  Denoting the Laplace trans-
form of ψk(z) as Ψk(p), the transform of the differential equation is 
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where C1 and C2 are the constants of integration.  Solving for Ψk(p) and taking the 
inverse transform generates the following piece-wise expression for ψk(z). 
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The constants C1 and C2 can now be determined from boundary conditions concerning 
secondary carrier currents directed toward the planes at z = 0 and z = T.  In terms of 
the inverse relaxation length τ, the secondary carrier currents across any plane of 
constant z are 
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In the right-hand side of the two equations, the first term models the effusion current, 
while the second term comes from Fick’s law.  The first boundary condition is deter-
mined by the reflectivity r0 of the plane at z = 0.  Noting that jright(0) = r0 jleft(0), one 
finds 
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The second boundary condition is determined from the reflectivity r1 of the boundary 
at z = T, as stipulated by the expression jleft(T) = r1 jright(T).  Defining ρ1 similar to ρ0 
and noting that the boundary conditions hold for each Fourier component ψk of φ, it 
can be shown that 
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Defining z = T as the plane of the photocathode, the OTF of the scattering process, 
Ts(ν, z0), can now be determined for a point source from the expression 
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To calculate the OTF of the entire phosphor, one multiplies Eq. (13) by the relative 
number of x-ray absorptions as a function of the depth z0 
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where μ is the x-ray linear attenuation coefficient of the phosphor, and then integrates 
from z0 = 0 to z0 = T.  The OTF is thus 
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where 
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The normalized modulus of the OTF of Eq. (15) gives the modulation transfer func-
tion (MTF).  In the absence of other noise sources, the quantum NPS or WQ(ν) is cal-
culated by integrating the product of N(z0) with |Ts(ν, z0)|

2 from z0 = 0 to z0 = T. 
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With Eqs. (15)-(17), one now has all the tools required for determining the DQE of 
the phosphor.  From the work of Nishikawa, DQE can be formulated as the product of 
four terms [6] 

                                            )()()(DQE ννν NCSQ RRAA=  ,                                     (18) 

where AQ is the x-ray quantum detection efficiency determined from the Lambert-
Beer Law as 1 – e-μTsecθ, AS is the Swank information factor given by |Ts(0)|2/WQ(0), 
RC(ν) is the Lubberts fraction found by normalizing the quotient |Ts(ν)|2/WQ(ν) to unity 
at ν = 0, and RN(ν) is the ratio of the x-ray quantum noise power WQ(ν) to the total 
noise power WT(ν).  Outside of x-ray quantum noise, additional sources of noise 
which contribute to WT(ν) include optical-detector noise due to silver granules in the 
phosphor or thermal noise in the photocathode, secondary quantum noise arising from 
stochastic variation in the number of secondary carriers produced for each incident x-
ray, and screen-structure noise [7].  Assuming a quantum-limited imaging system, we 
treat RN(ν) as unity in this work. 

3   Results 

The preceding results are now illustrated for a phosphor possessing 90% x-ray quan-
tum detection efficiency at normal incidence, a reflective backing, a non-reflective 
photocathode, and optical scatter at the diffusion limit (τ → ∞).  Assuming that the 
frequency vector is oriented along the x direction (νy = 0), Figures 1A-1B show MTF 
and normalized NPS (NNPS) versus frequency at multiple angles of x-ray incidence 
for a phosphor with no optical absorption (σ = 0) and a phosphor with high optical 
absorption (σ = 2T-1). Figures 1A-1B demonstrate that increasing the optical absorp-
tion increases both MTF and NNPS, which is consistent with Swank’s prior work at 
normal incidence. In addition, Figures 1A-1B indicate that increasing the projection 
angle decreases both MTF and NNPS, with the relative decrease as a function of pro-
jection angle being most predominate at high frequencies. The projection angle  
dependence of the NNPS is slightly less pronounced than the projection angle de-
pendence of the MTF. For example, comparing 30° incidence to normal incidence at 5  
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Fig. 1. Assuming that the frequency vector is oriented along the x direction, the modulation 
transfer function (MTF), normalized noise power spectra (NNPS), and detective quantum effi-
ciency (DQE) are plotted versus frequency in units of inverse phosphor thickness (T-1) in sub-
plots (A)-(C) for multiple projection angles (θ = 0°, 10°, 20°, 30°) and two optical absorption 
parameters (σ = 0, 2T-1).  The phosphor possesses 90% x-ray quantum detection efficiency at 
normal incidence, a reflective backing, a non-reflective photocathode, optical scatter at the 
diffusion limit, and quantum-limited noise.  Subplots (A)-(C) implicitly share a common leg-
end.  In (D), the explicit dependence of the Swank information factor (AS) and DQE(0) on the 
angle of x-ray incidence is studied for the two optical absorption parameters. 
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Fig. 1 (continued) 

line pairs per millimeter (lp/mm) in a scintillator with 100 μm thickness and no opti-
cal absorption, the MTF decreases by 20% whereas the NNPS decreases by only 14% 
(19% and 8.9%, respectively, with high optical absorption). 

Figure 1C shows DQE versus frequency for the same phosphor. Consistent with 
Swank’s previous observations, Figure 1C indicates that increasing the optical absorp-
tion reduces the DQE at low frequencies but has a smaller effect on the DQE at high 
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frequencies.  In addition, Figure 1C demonstrates that unlike MTF and NNPS which 
decrease with projection angle at all frequencies, DQE actually increases with projection 
angle at low frequencies and only decreases with projection angle at high frequencies. 
The DQE degradation with projection angle at high frequencies is slightly more pro-
nounced than either the MTF or NNPS degradation. For example, at 5 lp/mm in a scin-
tillator of 100 μm thickness irradiated at a 30° angle, the DQE decreases by 24% rela-
tive to normal incidence for both optical absorption parameters shown in the figure. 

In Figure 1D, the Swank information factor (AS) and DQE(0) are plotted versus the 
angle of x-ray incidence.  Swank has shown that AS provides a measure of the fluctua-
tion in signal generated from each x-ray due to variability in the absorbed energy of 
each interacting x-ray and in the number of optical photons generated from each  
interacting x-ray [8]. Figure 1D demonstrates that in a phosphor with no optical ab-
sorption, AS is unity for all projection angles, but in a phosphor with high optical ab-
sorption, AS increases with projection angle from 0.86 at normal incidence to unity at 
shearing incidence. In the typical range of projection angles used in DBT, the projec-
tion angle dependence of AS is slight.  For example, comparing 30° incidence to nor-
mal incidence in a phosphor with high optical absorption, AS increases by merely 
1.0%. Unlike AS, DQE(0) is projection angle dependent for all possible optical ab-
sorption parameters.  The projection angle dependence of DQE(0) is more pro-
nounced than the projection angle dependence of AS.  In Figure 1D, DQE(0) increases 
from 0.90 (no optical absorption) and 0.77 (high optical absorption) at normal inci-
dence to unity at shearing incidence.  Comparing 30° incidence to normal incidence, 
the relative increase in DQE(0) is 3.3% in a phosphor with no optical absorption and 
4.4% in a phosphor with high optical absorption. 

4   Discussion 

This work develops analytical models of OTF, NPS, and DQE for a turbid granular 
phosphor irradiated obliquely. In agreement with Mainprize et al. who studied CsI:Tl 
phosphors experimentally [2], we show that at high frequencies, oblique x-ray inci-
dence gives rise to considerable degradation in MTF and hence poorer resolution.  We 
have also observed that NPS is degraded with projection angle for all frequencies, 
where the NPS degradation is much less pronounced than the MTF degradation.  
Although Mainprize et al. did not study the dependency of NPS on projection angle, 
our finding of small changes in NPS with increasing projection angle is qualitatively 
concordant with the prior work of Hajdok and Cunningham in their Monte Carlo 
simulations of a-Se detectors [3]. As a final point, we have demonstrated that DQE 
increases with projection angle at low frequencies but decreases with projection angle 
at high frequencies. Consistent with the observations of Hajdok and Cunningham, the 
DQE degradation with projection angle at high frequencies is more pronounced than 
the MTF degradation, reflecting the dependency of DQE on the square of MTF. 

In this work, it has been observed that the Swank information factor (AS) is angu-
larly dependent, but its dependency is small over the angles used in DBT. This obser-
vation is consistent with Monte Carlo simulations of columnar CsI:Tl phosphors  
conducted by Badano et al., who show that the variation in AS over projection angles 
typical of DBT is minimal [9]. While the relative change in AS with angle is slim, the 
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relative increase in DQE(0) is more substantial, as it includes the influence of increas-
ing x-ray quantum detection efficiency (AQ) with increasing angle. 
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Abstract. A dual modality tomosynthesis (DMT) breast scanner has been devel-
oped that combines x-ray breast tomosynthesis (XBT) and molecular breast imag-
ing tomosynthesis (MBIT) on a common upright gantry to obtain co-registered 
structural and functional tomosynthesis images. This paper describes the scanner’s 
design and operation, and summarizes the results of a pilot clinical evaluation us-
ing the tracer 99mTc-sestamibi. The pilot study results suggest that DMT breast 
scanning is feasible and provides improved specificity and positive predictive 
value compared to XBT alone. Potential clinical roles for DMT scanning include 
problem solving for equivocal mammographic/ultrasound studies; as an aid in  
biopsy target selection following a positive mammogram with multiple suspicious 
areas; cancer surveillance in patients with a personal history of breast cancer;  
pre-surgical planning for determination of disease extent; as an alternative for 
women for whom MRI is impossible; and for monitoring response to neoadjuvant 
therapy. 

Keywords: breast tomosynthesis, molecular breast imaging, limited angle 
SPECT, multimodality imaging, hybrid scanners. 

1   Background 

Digital x-ray breast tomosynthesis is under study by a number of groups (1-11). Also, 
during the past decade, the development of high spatial resolution, compact gamma 
cameras for single gamma breast scintigraphy (molecular breast imaging (MBI), or 
breast specific gamma imaging (BSGI)) has permitted visualization of lesions less 
than 10 mm in size throughout the breast, including regions near the chest wall (12-
14). At the same time, hybrid imaging, in which modalities offering complementary 
types of information are paired, has become increasingly prevalent. Integrated hybrid 
scanners containing a nuclear medicine modality and an anatomic modality permit 
accurate co-registration of functional and structural images, and have been shown to 
reduce ambiguities in tracer uptake distribution and to improve attenuation correction 
in the nuclear medicine image (15-22). Recently, investigators wishing to overcome 
the limitations of using whole-body hybrid scanners for breast imaging have begun 
development of dedicated PET-CT (23) and SPECT-CT breast scanners (24;25). 
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Fig. 1. Scale diagram of the dual modality tomosynthesis scanner at UVa as configured with 
the CCD x-ray detector 

In a collaboration of academic and industrial partners, we have developed a hybrid 
scanner for dual modality breast tomosynthesis. A schematic of the dual modality 
tomosynthesis (DMT) scanner is shown in Figure 1. The scanner acquires 3-
dimensional dual modality breast images by performing sequential x-ray breast tomo-
synthesis (XBT) and molecular breast imaging tomosynthesis (MBIT) scans with the 
breast in a single configuration under mild breast compression. The integration of 
XBT with MBIT has the potential to improve breast cancer detection, characteriza-
tion, and management by providing co-registered structural and functional image 
data. The DMT scanner has recently undergone preliminary clinical evaluation in a 
pilot study among women scheduled for breast biopsy. Details of that study have been 
recently reported (26). Here we describe the scanner’s operation and summarize the 
results of the pilot human study. 

2   Methods 

2.1   Image Acquisition 

The x-ray component of the DMT scanner uses a fully isocentric image acquisition 
geometry in which the tube and detector are rotated about a common axis. The x-ray 
tube has a tungsten target and uses 50 microns of external rhodium filtration. The 
source-to-detector distance is 80 cm. Until recently, the x-ray detector was a device 
developed under NCI funding that incorporates a 2x3 array of CCDs, each coupled to 
a common gadolinium oxysulfide phosphor via demagnifying fiber optic tapers (27). 
The detector’s field of view (FOV) is approximately 20 cm x 30 cm, and it was typi-
cally operated in 2x2 binning mode for an effective detector element size of 90  
microns. The CCD detector was used in the pilot clinical study described below. 
However in light of its relatively long readout time (~2 seconds) and large depth  
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Table 1. kVps used for 
various breast thicknesses 

3 cm 5 cm 7 cm 
23 kV 27 kV 29 kV 

(16.5 cm) the CCD detector has now been replaced with a CMOS-based detector 
manufactured by Dexela, Ltd. The model 2923 CMOS detector uses a columnar 
CsI(Tl) converter optically coupled to a 3072 x 3888 matrix of 75 micron detector 
elements for a FOV of 23 cm x 29 cm. It can be read out at up to 26 frames per sec-
ond, and has a depth of only 4.3 cm.  

XBT image reconstruction is performed using an algorithm developed by Dexela. 
The Dexela algorithm is a multi-threaded iterative process that employs anisotropic 
diffusion-based regularization. 

The gamma camera, built at Jefferson Lab (Newport News, VA) includes a tiled 
3x4 array of Hamamatsu H8500 position sensitive photomultiplier tubes optically 
coupled to a pixellated NaI(Tl) crystal array from Saint-Gobain Crystals. Each crystal 
in the array is 2 mm x 2 mm x 6 mm thick and the crystal pitch is 2.2 mm. The overall 
gamma camera active area is approximately 15 cm x 20 cm. The camera uses a lead 
foil parallel hole collimator and has an overall sensitivity of 450 cpm/μCi. 

MBIT image reconstruction is performed using an expectation maximization (EM) 
parallel-beam algorithm developed at UVa. During each iteration a mask based on the 
prior knowledge of the breast surface location gained from the XBT scan is used as a 
constraint to compensate for projection data incompleteness by preventing detected 
gamma events from being attributed to voxels lying outside the breast surface. An 
inverse cylindrical ray-driven projector-backprojector is used along with the voxel-
specific system point spread function (PSF) to avoid overweighting voxels distal to 
the camera while still permitting resolution recovery. This approach results in recon-
structed spatial resolution that is relatively uniform throughout the imaged volume 
despite the asymmetrical nature of the image acquisition process. Under typical imag-
ing conditions (i.e. 5 – 6 cm compressed thickness, 5 evenly spaced views spanning 
40 degrees) the in-plane resolution in the MBIT reconstructions (FWHM of the PSF), 
averaged at 5 locations within the imaged volume, is 7.6 ± 0.9 mm. The average spa-
tial resolution in the direction of compression is 34.1± 3.1 mm. Phantom studies have 
shown that compared to 2-D MBI, MBIT provides improved lesion image contrast 
and signal-to-noise ratio (28). 

2.2   Human Study 

The pilot study recruited 18 women (a total of 21 biopsied lesions) who were sched-
uled for breast biopsy at the University of Virginia’s Breast Care Center. Eligible 
participants were identified by monitoring the list of patients scheduled for core or 
excisional biopsy. Participating volunteers were scanned prior to their biopsy. Ap-
proximately 25 mCi (925 MBq) of 99mTc-sestamibi was injected intravenously. Mild 
medio-lateral breast compression was used, and subjects were seated throughout the 
imaging procedure. The breast compression level was determined based on discussion 
between the subject and the mammography technologist with the goal of achieving 
the maximum compressive force that could be 
comfortably tolerated during the ~11 minute total scan 
time per breast. 

Both breasts were scanned. XBT was performed 
first; 13 unevenly spaced views were obtained distrib-
uted over an angular range of ± 12º from the direction 
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2-D mammogram XBT slice 
 

MBIT slice 

Fig. 2. Planar mammographic image, XBT slice, and correspond-
ing MBIT slice from an example case from the pilot study. In this 
example the biopsy result indicated poorly differentiated  
carcinoma. 

of breast compression. The tube kVp was chosen based on the results of phantom 
testing designed to maximize the signal-to-noise ratio relative to the mean glandular 
dose for this particular target-filter-detector combination for a range of breast compo-
sitions and thicknesses (29). Table 1 lists the kVp values used for three different com-
pressed thicknesses. Tube voltages for other thicknesses were determined via interpo-
lation or extrapolation. The total exposure to the breast during the XBT scan was 
chosen to result in a mean glandular dose that was approximately equal to that in the 
subject’s most recent 2-view mammographic exam. 

Immediately following x-ray image acquisition without uncompressing the breast, 
five 120 second MBIT views were obtained, distributed evenly over an angular range 
of ± 20º away from the direction of breast compression. For each view the gamma 
camera collimator was positioned as close as possible to the breast compression pad-
dle. Total MBIT scan time was 10 minutes per breast, chosen to be consistent with 
current practice in clinical dedicated planar MBI, which is also performed under mild 
compression. The total acquisition time for both modalities was approximately 11 
minutes per breast.  

2.3   Reader Study 

All images were viewed by a board-certified mammography radiologist (AEG) who 
was blinded to the biopsy results and to all prior images (mammography, ultrasound, 
MRI, etc.). Images were viewed on a Dexela dual monitor (5 megapixels per  
monitor) workstation, which is FDA approved for primary mammographic  
interpretation. 
XBT images alone 
were read first. 
Each finding 
identified was 
scored using a 5-
point scale: 1, 
definitely benign; 
2, probably 
benign; 3, 
indeterminate; 4, 
suggestive of 
malignancy; 5 
highly suggestive 
of malignancy. 
Next, the MBIT 
images were 
viewed alone, but 
in a sequence that 
was randomized 
relative to the 
sequence in which 
the XBT images 
were viewed. The 
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same 5-point scale was used to score each finding. Finally, the paired XBT and MBIT 
images were presented together, and each finding was scored. 

3   Results 

The biopsy results for the 21 lesions showed 7 malignant lesions and 14 benign ones. 
Figure 2 shows, for one of the malignant cases, the subject’s 2-D clinical mammo-
gram, a slice from the 3-D XBT image, and the corresponding slice from the 3-D 
MBIT image. Based on the results of the reader study, and taking the biopsy results as 
ground truth, Table 2 shows the sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and accuracy for XBT alone (2nd column), 
MBIT alone (3rd column), and DMT (4th column). For these calculations, reader 
scores of 1, 2, or 3 were considered negative while scores of 4 or 5 were considered 
positive. 

Table 2. Results of DMT pilot study, taking reader scores of 1 – 3 as negative and 4 – 5 as 
positive. PPV=positive predictive value; NPV=negative predictive value. 

 XBT Only MBIT Only DMT 
Sensitivity 86% (6/7) 86% (6/7) 86% (6/7) 
Specificity 57% (8/14) 100% (14/14) 100% (14/14) 

PPV 50% (6/12) 100% (6/6) 100% (6/6) 
NPV 89% (8/9) 93% (14/15) 93% (14/15) 

Accuracy 67% (14/21) 95% (20/21) 95% (20/21) 

4   Discussion 

The results of the pilot study demonstrate that dual modality tomosynthesis is feasi-
ble, and suggest that the addition of MBIT to XBT could improve clinical perform-
ance, especially in terms of specificity and positive predictive value. In one case DMT 
scanning detected high-grade ductal carcinoma in situ that was occult on the subject’s 
recent clinical mammographic exam (26). Notably, in this small study MBIT scanning 
alone performed as well as DMT. More data are needed to determine the added value 
of DMT relative to MBIT alone.  

Retrospective analysis of the data from the pilot study showed that while microcal-
cifications are well visualized on some XBT scans (based on comparison with the 
clinical mammograms) they are not clear on others because of subject motion during 
the ~30 second XBT scan time resulting from the slow CCD detector readout. How-
ever with the newly installed CMOS detector the scan time will be ~4 – 8 seconds, 
which is well within the breath-hold time of most women. The higher likelihood of 
breathing-induced motion during the longer MBIT scan is considered acceptable 
given the very different projection data spatial resolutions of XBT (< 80 microns 
FWHM using the CMOS detector) and MBIT (4 – 11 mm FWHM depending on the 
viewing angle). 
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Constant breast configuration during XBT and MBIT scanning is essential for pre-
cise co-registration of the two volumetric data sets. The level of breast compression 
typically used in planar mammography is too high to be comfortably tolerated during 
the substantially longer MBIT scan. Therefore a lower compressive force is required 
that satisfies the requirements of both XBT and MBIT. The motivations for breast 
compression in XBT and MBIT are different. Compression in digital mammography 
is necessary to reduce scatter, dose, structure superposition, and patient motion while 
in MBI its principal role is to improve lesion conspicuity by reducing attenuation of 
gamma rays from the lesion (30-32). Duke investigators have shown that the reduc-
tion in structure superposition inherent in XBT permits some increase in compressed 
thickness (from reduction in compressive force) with negligible impact on conspicuity 
of microcalcifications or masses under isodose conditions (33). Recent results from 
that group (2010 SPIE Medical Imaging Conference) have shown that the thickness of 
a 6 cm breast can be increased by at least 17% without compromising conspicuity, 
with larger increases possible for thinner breasts. A retrospective analysis of the com-
pressed thicknesses used in the pilot study showed that on average the ‘comfortable’ 
compressed thickness was 17% greater during DMT than for the same breast during 
the preceding clinical mammogram. Thus breast compression consistent with both 
high quality XBT and comfortable MBIT appears possible. 

Like all imaging approaches that use injected tracers, the performance of DMT will 
depend on the choice of imaging agent. Our DMT studies thus far have used 99mTc-
sestamibi, which is FDA approved for breast cancer imaging and is the most widely 
used MBI agent when performing 2-D MBI. However, several other agents including 
bombesin and tetrofosmin have also been successfully used to image breast cancer. 
These agents are expected to be joined by more specific agents that are now under 
development; for example those targeting HER2-, ER-, or VEGFR-positive tumors. 
The sensitivity and specificity of DMT can be expected to vary depending on the 
particular tracer used.  

Potential clinical roles for DMT breast imaging include problem solving for 
women with equivocal mammographic/ultrasound studies, especially those with radi-
odense breasts; screening high-risk women, as an aid in biopsy target selection fol-
lowing a positive mammogram, particularly in patients with multiple suspicious areas; 
workup of palpable masses not demonstrated on mammography or ultrasound; cancer 
surveillance in patients with a personal history of breast cancer; pre-surgical planning 
for women with known cancer for determination of disease extent (multi-focal, con-
tralateral breast); as an alternative to breast MRI for women for whom MRI is impos-
sible because of NSF/NFD, obesity, claustrophobia, or who have cardiac pacemakers 
or other types of implants containing ferromagnetic components; and for monitoring 
response to neoadjuvant therapy (34;35). 
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Abstract. We have performed spectral analysis of simulated tomosynthesis pro-
jections generated using an anthropomorphic software breast phantom. Twenty 
phantoms were generated: ten 450 ml phantoms with 40% glandular fraction 
and ten 1500 ml phantoms with 20% glandular fraction. Simulated mammo-
graphic compression and acquisition was performed using monoenergetic ray-
tracing. ROIs were extracted and the modulus-squared 2D FFT was applied to 
each ROI to obtain periodograms. Radially-averaged periodograms were com-
pared between phantom and clinical images. We observed a good agreement 
between the spectral power law exponents (β) calculated from phantom projec-
tions and clinical images.  

Keywords: breast anthropomorphic phantom, digital breast tomosynthesis, 
power law, power spectrum. 

1   Introduction 

Clinical validation of novel breast imaging systems is largely unfeasible today as it 
requires long and expensive clinical trials. On the other hand, physical characteristics 
of imaging systems such as the MTF, NNPS and NEQ, do not necessarily predict the 
behavior of the human observer scrutinizing complex mammographic backgrounds 
and do not take into account clinical processing or display. In an alternative approach, 
a voxelized anthropomorphic software breast phantom has been developed for use in 
pre-clinical validation of breast imaging modalities. The phantom realistically simu-
lates the spatial distribution of adipose and fibroglandular tissues with known ground 
truth in simulated images. Projections of simulated tissue structures generate realistic 
parenchymal pattern, called anatomical noise. The anatomical noise is known to affect 
visibility of breast lesions. [1]. 

A frequently used descriptor of the anatomical noise is the power law exponent (β) 
of the radially-averaged periodogram. A periodogram is the modulus-squared 2D dis-
crete Fourier transform of a region of interest (ROI). Burgess et al. [2] demonstrated 
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that periodograms of digitized clinical mammograms follow a power law, P(f ) = B / f β. 
They performed spectral analysis of 46×46 mm regions in 213 mammograms and 
calculated the average power law exponent β to be 2.83 with a standard deviation 
σ=0.35. Engstrom et al. [3] analyzed the periodograms from tomosynthesis projection 
views and reconstructed images. Using 12.8×12.8 mm regions in 55 cases, they found 
the mean β to be 3.06 (σ=0.21) in the projection view images and 2.87 (σ=0.24) in the 
reconstructed images. In this paper we report results of estimating β in simulated to-
mosynthesis images of a software breast phantom. 

2   Materials and Methods 

We used an anthropomorphic breast phantom described by Bakic et al. [4,5], designed 
based upon the analysis of a large number of clinical breast images and histological 
slides. The phantom simulates the ellipsoidal shape of the breast outline. The phantom 
interior includes regions of predominantly adipose and predominantly fibroglandular 
tissues, and internal tissue structures (adipose compartments and Cooper’s ligaments), 
as illustrated in Fig. 1. The design of the phantom is flexible to cover anatomical 
variations in breast composition and size.  

 

Fig. 1. (a) Orthogonal slice through a software breast phantom. Phantom outlines prior (b) and 
after (b) simulated mammographic compression.  (d) Simulated x-ray projection image of the 
phantom.  

For this study, we used ten 450 ml phantoms with 5 cm compressed thickness and 
ten 1500 ml, 7.5-cm thick phantoms.  The 450 ml phantoms were generated with 40 
percent by volume of fibroglandular tissue, while the 1500 ml phantoms were gener-
ated with 20 percent by volume of fibroglandular tissue.  These glandularities were 
chosen in light of recent studies that have revealed that 95% of women have breast 
glandularity below 45% [6].   
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We simulated mammographic breast compression using a finite element model of tis-
sue deformation. Simulated tomosynthesis projection images of the breast phantom were 
acquired using a monoenergetic x-ray beam without scatter or quantum noise by a detec-
tor which did not introduce any noise or blurring. Ray-tracing was used to calculate the 
x-ray attenuation through the phantom. The detector pixel resolution was matched with 
the voxel resolution of the phantom (500 micron). The acquisition geometry included 11 
views over a 50-degree arc, with the center of rotation 15 cm above the breast [7].   
β values were calculated on the tomosynthesis projection images using the method 

described by Engstrom et al. [3]. For this study, we selected 32×32 mm ROIs that 
were completely contained within the projected phantom region. ROIs were allowed 
to overlap by 50%; this is consistent with previous reports in the literature [2]. To 
reduce spectral leakage, we used a radial Hanning window on the mean-subtracted 
ROIs. The modulus-squared 2D FFT of each filtered ROI was calculated, and the ob-
tained periodograms were each radially-averaged to reduce noise. β values were cal-
culated as the slope of the linear portion of the log-log plot of the radially-averaged 
periodogram; these β values were evaluated from 0.15 to 0.7 cycles/mm. β values 
from all ROIs extracted from one breast and one projection view were averaged, and 
this average is denoted by β’breast. βbreast indicates that the average was taken across 
one breast and all projection views. 

3   Results 

Fig. 2 shows examples of ROIs from simulated tomosynthesis phantom projections with 
corresponding periodograms and 1-D power spectra approximations (radially averaged 
periodograms).  β values for individual ROIs in a single phantom projection image were 
found to range between 1.5 and 3.5.  Fig. 3 shows β’breast values as a function of tomosyn-
thesis projection angle.  Tables 1 and 2 show βbreast averaged over projection angles and 
averaged over breast phantoms.  The average of βbreast over all the phantoms of the same 
size were 2.65 (σ= 0.318) for 450ml phantoms and 2.62 (σ=0.412) for 1500ml phantoms. 
Note that σ is the average standard deviation of β values found in a breast.   

Table 1. A summary of βbreast values and standard deviations for ten 450 ml phantoms and ten 
1500 ml analyzed breast phantoms.  Mean values and standard deviation were calculated for all 
ROIs from all projection views for each phantom.  

450 ml phantoms 1500 ml phantoms 
Phantom ID βbreast  σβ Phantom ID βbreast  σβ 

B1 2.604 0.305 DD1 2.648 0.400 
B2 2.640 0.316 DD2 2.654 0.463 
B3 2.621 0.318 DD3 2.618 0.430 
B4 2.673 0.255 DD4 2.569 0.380 
B5 2.664 0.360 DD5 2.650 0.347 
B6 2.665 0.282 DD6 2.544 0.395 
B7 2.693 0.355 DD7 2.603 0.369 
B8 2.703 0.356 DD8 2.585 0.449 
B9 2.651 0.289 DD9 2.582 0.434 

B10 2.626 0.348 DD10 2.765 0.451 

Average 2.654 0.318 Average 2.622 0.412 
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Fig. 2. Estimation of β values. (a) 32 mm × 32 mm ROIs from phantom projections.  
(b) Corresponding periodograms. (c) 1-D power spectra for a 450 ml (left column) and a 
1500 ml phantom (right column).  
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Fig. 3. Dependence of β’breast values on the tomosynthesis projection angle for ten 450 ml soft-
ware breast phantoms (left) and ten 1500 ml phantoms (right).  Blue (dashed or solid) lines are 
β’breast values for individual phantoms, and red (bold) lines are β’breast values averaged over all 
phantoms of the same size. 

Table 2. Average β’breast values for projection views averaged over ten 450 ml phantoms and 
ten 1500 ml analyzed phantoms.  Standard deviation was calculated across the β’breast values for 
ten phantoms at each tube angle. 

450 ml phantoms 1500 ml phantoms 
Tube angle 

< β’breast  > σ(β’breast) < β’breast  > σ(β’breast) 
-25° 2.644 0.043 2.641 0.066 
-20° 2.637 0.064 2.617 0.074 
-15° 2.659 0.048 2.628 0.073 
-10° 2.671 0.041 2.609 0.067 
-5° 2.670 0.046 2.635 0.075 
0° 2.678 0.046 2.622 0.078 
5° 2.658 0.027 2.613 0.066 

10° 2.653 0.050 2.601 0.054 
15° 2.668 0.064 2.616 0.054 
20° 2.616 0.050 2.625 0.064 
25° 2.636 0.056 2.632 0.062 

4   Discussion 

The range of β values estimated from phantom projections (1.5-3.5) is consistent with the 
range reported in the literature (1.5-4.5) [3]. The average βbreast values (2.65 for 450 ml 
phantoms and 2.62 for 1500 ml phantoms) are comparable with clinical measurements 
from digitized mammograms (average βbreast = 2.83) [2] and tomosynthesis projection 
view images (average βbreast = 3.06) [3]. The average βbreast values from the phantom are 
slightly lower than those reported in the literature. This might be due to the fact that the 
βbreast values reported in the literature were estimated from contralateral breast images 
of women with a known breast lesion; parenchymal properties of contralateral breasts 
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are known to be correlated with risk of cancer. The phantom images used in our study 
did not include any lesions nor did they simulate high-risk parenchymal patterns. 

The tomosynthesis projection angle has almost no effect on the measurement of 
β’breast. In this preliminary study of two groups of phantoms we did not observe a sig-
nificant effect of the breast volume or glandularity on the estimated βbreast values.  
Further analysis will include more groups of phantoms with different volume, thick-
ness, and glandularity.    

We identified limitations of our acquisition simulation approach. We have not used 
any quantum or detector noise and have not included scatter or detector blur. The in-
clusion of stochastic noise would affect the power spectrum at high frequencies 
(above approximately 1.0 cycles/mm [3]). The range of frequencies we have used to 
estimate β in this study will likely not be affected by the addition of quantum and de-
tector noise. Scatter may increase the entire signal by a uniform amount with poten-
tially a smaller increase at the edges of the image.  Since we are using ROIs that do 
not encompass the entire image, we do not expect a large increase in the low fre-
quency component of the approximated 1D power spectrum.  

5   Conclusions 

Power-law exponents calculated from simulated tomosynthesis projections through an 
anthropomorphic software breast phantom are comparable with clinically estimated 
values. 
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Abstract. Two new full field digital mammography (FFDM) equipments are 
compared, Fujifilm Amulet and Siemens Mammomat Inspiration. The systems 
are identical apart from the detector. Both use a-Se for photon conversion, but 
differ in detector readout technology: innovative photoconductive switching 
readout in the first system (pixel pitch 50 μm) and conventional a-Si TFT-
matrix readout in the second (pixel pitch 85 μm). Comparison of the physical 
characteristics in terms of MTF, NNPS and DQE gives similar results for peak-
DQE (both > 70% for Mo/Mo anode/target combination at 120 μGy detector 
entrance kermaair), but a slower DQE decline at higher frequencies in the first 
system. Image quality assessment was based on contrast to noise (CNR) meas-
urement and automated contrast detail (CD) curve analysis (phantom CDMAM 
ver. 3.4 and CDMAM Analyser ver. 1.1, both Artinis). It revealed a superior 
performance of the new detector equivalent to an average glandular dose 
(AGD) reduction comprised between 8% and 28% at equal image quality. 

Keywords: digital mammography, direct conversion detector, a-Se detector, 
photoconductive switching readout. 

1   Introduction 

In FFDM most commercial systems use a-Se direct conversion Active Matrix Flat 
Panel Imagers (AMFPI) mainly because of their very high spatial resolution. How-
ever, this technology suffers from several drawbacks, first the high noise components 
if compared to indirect conversion CsI AMFPI, which diminish the detection effi-
ciency. Further, the a-Si TFT matrix readout assembly reduces the fill factor, limiting 
detector efficiency and pixel size. A pixel pitch not much less than 100 μm is general-
ly considered the limit compromise between image quality, resolution and dose [1]. 
                                                           
∗ Corresponding author. 
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Besides, conventional a-Se based detectors are susceptible to  ghost   artifacts   and  
need to be flushed with an intensive light source before a new exposure to erase re-
sidual charge. The time interval between subsequent images is in the order of 30 s for 
systems on the market. Additionally, a-Se detectors are very temperature sensitive. 

Recently a novel a-Se detector has been proposed [2]. The device combines a dou-
ble layer of a-Se with photoconductive switching readout technology, boasting a 
100% fill factor. This allows a smaller pixel pitch of 50 μm, reduced ghost suscepti-
bility and fast readout. 

In this work we compare two FFDM equipments with different a-Se direct conversion 
detectors, but otherwise identical units, only recently brought on the market: Siemens 
Mammomat Inspiration (System B) and Fujifilm Amulet (System A). The Siemens sys-
tem uses a detector with the established TFT matrix readout and has previously been 
shown to exhibit a very good performance with respect to other FFDM equipments [3]. 
The Fujifilm system employs the innovative photoconductive switching readout detector. 
Its operation has been described elsewhere [4,5,6]. Comparison is carried out in terms of 
physical characterization (MTF, NNPS, DQE) and image quality assessment by contrast 
to noise ratio (CNR) evaluation and contrast detail (CD) analysis. 

2   Methods 

Table 1 summarizes the main characteristics of the two equipments which are com-
pared in this study. Although the readout data of both detector types follow a linear 
response function, in System A output data are delivered after a logarithmic transfor-
mation to allow the same image processing as in the Fujifilm CR systems. To the 
purpose of MTF, NNPS and DQE calculation particular attention was posed on the 
linearization of the image data to minimize uncertainty deriving from truncation er-
rors. All analyzed images were dicom images “for processing”. In system A the proc-
essing modality FIX-mode was used with sensitivity (S) and latitude (L) set to 121 
and 2, respectively. Measurements were taken with calibrated detectors. 

Table 1. Systems’ characteristics 

 System A System B 
Manufacturer FujiFilm Siemens  
Model Amulet Mammomat Inspiration 
Target/filter combinations          Mo/30 µm Mo, Mo/25 µm Rh, W/50 µm Rh 
Focus detector distance/grid 650 mm / ratio 5:1, 31 lines/cm 
Detector manufacturer FujiFilm Anrad (LMAM) 
Detector size 177 mm x 237 mm 240 mm x 300 mm 
Pixel number 3540 x 4740 2816 x 3584 
Pixel pitch 50 μm 85 μm 
Photon conversion layer a-Se, 187 μm a-Se, 193 μm 
Readout a-Se, 18 μm, photoconduc-

tive switching readout with 
scanning blue LED array 

a-Si, < 5 μm, electronic 
sequential readout with 
TFT 

Image cycle time 15 s < 30 s 
Detector response function 
Output data format 

Linear, 16 bit 
Logarithmic, 12 bit 

Linear 
Linear 
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The physical characterization has been carried out according to IEC 62220-1-2. To 
permit comparison with previous studies exposures were performed with radiation qual-
ity RQA-M2 (Mo target, 30 μm Mo filtration, 2 mm Al additional filtration at tube exit), 
with neither antiscatter grid nor compression paddle in place. The response curves were 
determined from a wide range of uniform exposures on the base of the mean pixel value 
(MPV) of a 1 cm2 region of interest (ROI,) centered midline 6 cm from the chest wall 
edge. The same ROIs were considered for noise components analysis using the fit: 

γβα ++= 22 xxSD , (1) 

where SD is the standard deviation in pixel values within the ROIs, x is the exposure 
and α, β and γ represent the contributions of the quantum-statistical (Poisson) noise 
source, structural noise and dose independent electronic noise, respectively. 

Evaluation of the physical parameters was performed with the open source Java 
plug-in “qa-distri/DQE Panel v7” for ImageJ, extended for DQE calculation. MTF 
was determinated with a tungsten edge test object placed directly on the detector 
cover with the edge centered midline, 6 cm from the chest wall edge, slightly tilted 
with respect to the pixel lines or rows. NNPS analysis was always carried out on 3 
subsequent flat images and the average value considered for DQE calculation. MTF, 
NNPS and DQE were determined for two orthogonal directions, perpendicular and 
parallel to the chest wall edge, which we shall denote briefly as perpendicular and 
parallel. Correctness of calculation routine has been verified previously by compari-
son with literature. Dose measurements were taken as kermaair with a regularly cali-
brated ionisation chamber (Radcal 9010 and 10X6-6M, Radcal Corporation, USA).  

Images for MTF determination were acquired with a detector entrance kermaair 
slightly higher than the values used by each unit in clinical automatic exposure con-
trol (AEC) modality for a 4.5 cm polimethylmetacrylate (PMMA) block, which we 
will denote as E0. In System B measurements at additional dose values were made. 
Flat images for NNPS analysis were acquired at 0.5E0, E0 and 2E0. 

For image quality assessment two methods have been taken into account, CNR 
measurement and CD evaluation. The former is a straightforward tool, but its numeri-
cal value is a relative quantity which is meaningful only if referred to the same unit. 
On the contrary, the latter represents an objective method suitable for comparison of 
different equipments, provided the same phantom is used.  

CNR has been measured according to the European Guidelines [7]. The contrast 
object (0.2 mm Al, 1.5 cm x 1.5 cm) was always positioned at a fixed high above a 
2 cm homogenous polymethylmetacrylate (PMMA) block covering the whole detec-
tor area, with one edge on the midline 6 cm from the chest wall edge. For CD evalua-
tion the same phantom CDMAM ver. 3.4 was used, combined with the commercial 
software CDMAM Analyser, ver. 1.1 (both Artinis, The Netherlands) for automated 
image analysis. To simulate clinical exposure conditions, the detail tablet (thickness 
0.5 cm, absorption corresponds to 1 cm PMMA) was embedded between PMMA 
layers, with the smaller details towards the chest wall side. Except for the smallest 
total phantom thickness of 2 cm, the detail tablet layed on 2 cm of PMMA. For both 
phantom set-ups additional PMMA layers were put on top of the contrast object/detail 
tablet, to achieve the desired total phantom thickness. 

All reported results represent, in order to reduce uncertainty, the curve fitted value 
of the analysis (75% detection rate) of 8 raw images for each exposure technique. 
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Between successive images the detail tablet was slightly moved. Results are ex-
pressed in terms of a group contrast detail curve and, additionally, of an overall qual-
ity index, the Image Quality Figure Inverse (IQFinv), defined as 

∑
=

=
16

1 *

100

i ii
inv DepthDiameter

IQF ,    (2) 

which increases when detail detection rises. This figure has prevously been shown to 
represent an objective and absolute measure of the image quality [8], suitable for 
comparison of different equipments.  

CNR and IQFinv have been measured for a very wide set of exposure techniques, 
including very unusual ones, although in both systems the clinical setups used only 
the target/filter combination W/Rh. For each phantom thickness (from 2 cm to 7 cm) 
the exposure load was varied at least from a factor 0.5 to 2 relative to the average 
glandular dose (AGD) value used by the systems in automatic exposure control 
(AEC) mode. In System A the normal dose Mode L was taken as reference (see 
Fig. 1, left). The relation CNR ∝ IQFinv was verified in both systems. Under the hy-
pothesis that image noise is dominated by quantum noise, image quality improves 
applying a higher dose according to CNR2 ∝ dose. That means CNR2/dose is constant 
for each kV/phantom setting. In analogy we defined the dose independent figure of 
merit IQFinv

2/AGD to compare systems performances in various conditions.  

Fig. 1. Comparison of dose levels applied in clinical AEC modalities at various PMMA phan-
tom thicknesses (left) and analysis of the noise components (right) in both systems 

3   Results 

Physical Characterization: The results of the noise components analysis are displayed 
in Fig. 1 (right). The curve related to System B corresponded to an almost perfect 
straight line, whereas the detector with photoconductive switching readout of System 
A deviated from the ideal behavior.  

Fig. 2 reassumes the results for the presampled MTF up to fNyquist. In both Systems 
the values showed a marked direction dependance, being higher in the perpendicular 
direction. In System A the difference increased with increasing exposure, while the 
MTF value itself reduced (Fig. 2, left). Despite the smaller detector pixel pitch, Sys-
tem A revealed a lower mean MTF value compared to System B (Fig. 2, right). 
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Fig. 2. Presampled MTF. Effect of exposure on calculated values for System A (left) and com-
parison between Systems A and B at similar exposure values (right). Both systems show a 
marked direction dependance. H = perpendicular to chest wall edge, V = parallel. Error: < 2%. 

 

Fig. 3. NNPS. Effect of sampling direction on the calulated values for System A (left) and 
comparison between Systems A and B at similar exposure values (right). H = perpendicular to 
chest wall edge, V = parallel, Rad = radial. Relative error: < 4%. 

 

Fig. 4. DQE. Effect of sampling direction on the calulated values for System A (left) and com-
parison between Systems A and B at similar exposure values (right). H = perpendicular to chest 
wall edge, V = parallel. Relative error: 8%. 

NNPS results are summarized in Fig 3. In both units the noise diminished with in-
creasing exposure (Fig. 3, right). In System A the NNPS value exhibited a strong 
direction dependence, with higher noise in the perpendicular direction (Fig. 3, left). 
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For System B the calculated values evidenced some smaller peaks in the perpen-
dicular direction; beside that the variations linked to the sampling direction were 
small. With increasing frequency System B exhibited an almost constant NNPS; in 
System A, with the new detector, the calculated NNPS value decreased, being at 
comparable detector entrance kermaair on average lower by a factor 1.6 at a frequency 
f = 2 mm-1, 2.1 at f = 3 mm-1, 2.6 at f = 4 mm-1 and 3.6 at f = 5 mm-1. 

Resulting DQE values are shown in Fig.  4. In the investigated dose range both de-
tector types featured a peak DQE value above 70% (Fig. 4, right): in System A it 
occurred at a frequency of 1 mm-1, whereas in System A the peak was broader and 
shifted towards 2.5 mm-1. As the frequency increased, in System A the DQE value of 
the perpendicular direction dropped significantly below the value of the parallel direc-
tion. The difference between the DQE values in the two orthogonal directions was in 
the order of 10% (Fig. 4, left). Nevertheless both values kept high as frequency in-
creased, if compared to System B. For f > 2.5 mm-1 the calculated DQE value in Sys-
tem A exceeded that for System B by an amount between 15% and 25%. To a minor 
extent also the latter system suffered from direction dipendent behavior, which here 
affected the peak value, too. The DQE performance was inferior in the perpendicular 
direction with localized small drops. With respect to dose, in System A the computed 
DQE values were comparable at normal and high exposure levels and slightly inferior 
at low dose, but showed constant peak DQE. In system B the DQE turned out to have 
a slight, opposite dose dependence: DQE decreased with increasing exposure.  

Image Quality Assessment: The AEC devices of the two units were calibrated very 
similarly in the normal dose mode (maximum AGD difference at various phantom 
thicknesses 10%, Fig. 1, left). In both systems CNR and IQFinv correlated strongly 
over the wide technique range investigated, as illustrated in Fig.5 . The linear correla-
tion coefficient r resulted 0.9533 and 0.9655 for Systems A and B, respectively. 

Fig. 6 reassumes the outcomes of CD analysis. For a given AGD, System A scored 
a higher IQFinv value for every phantom thickness, as figured in Fig. 6, left. The sign 
test confirmed the difference being significant (p < 0.01). The dose saving permitted 
by System A with the new detector whilst achieving a specific IQFinv value was com-
promised between 8% and 28%, depending on the phantom thickness. Performances 
are compared in Fig. 6 (right) by means of the figure of merit IQFinv

2/AGD. Each bar 
represents a mean value of 2-4 datapoints corresponding to different AGD values. 

 

Fig. 5. Study of the correlation between CNR and IQFinv. Relative error: CNR 3%, IQFinv 5%. 
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Fig. 6. Comparison of image quality performance of the systems A and B in terms of the over-
all image quality index IQFinv, AGD (left) and the figure of merit IQFinv

2/AGD (right, System A 
= full symbols, System B = empty symbols). Bars represent a mean value. Relative error: IQFinv 
< 4%, AGD 10% (precision: 3%), mean IQFinv/AGD 5 % - 7%. 

4   Discussion 

In clinical normal dose mode the AEC devices of the two systems applied similar ex-
posure parameters for every phantom thickness, leading to comparable AGD values. 

In system B the noise had substantially poissonian origin, with a small additive 
(electronic) component and negligible structural noise. In System A the deviation 
from the ideal linear line confirmed the presence of a structural component, as pointed 
out by other authors [5,6]. Both detectors exhibited a clearly better MTF-performance 
in the parallel direction. This may have different causes in the two system, related to 
the different detector readout technologies.  

The most striking difference in the performances of the two detectors regarded the 
NNPS. In System B the noise contributions were almost constant over the whole 
spatial frequency range and direction indipendent, as usual for a-Se detectors with 
TFT-matrix readout. On the contrary System A revealed a decreasing noise with in-
creasing frequency. Although in the parallel direction the performance was markedly 
poorer, the noise level was generally very low, being on average lower by a factor of 
almost 2.5 with respect to System B at comparable exposure levels.  

Peak DQE values resulted similarly high in both systems (> 70%), but with in-
creasing frequency in System A the DQE value declined much more slowly, owing to 
the decrease in NNPS. At a frequency of 5 mm-1 the mean DQE value of System A 
was more than twofold the value of System B. In both systems the directional de-
pendence of DQE was governed by the MTF, exhibiting higher values in the parallel 
direction. In System B the peaks in NNPS caused drops in DQE.  

The MTF, NNPS and DQE curves presented in this study for System A demonstrate 
some variations from literature [5], where data refer mostly to the clinically used tar-
get/filter combination W/Rh. Measurements on System A, not discussed in this work, 
indicate that for the latter tecnique the DQE behaviour is different, with a higher peak 
value and a quicker decline. The curves seem to be more similar to the reported ones. 

In both systems the correlation between CNR and IQFinv was confirmed and could 
regarded as linear for all practical purposes. Contrast detail evaluation brought out a 
statistically significant better performance of the new detector at comparable AGD 
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levels, which was summarized by a higher score in the dose independent figure of 
merit IQFinv

2/AGD. System A allowed on average a dose saving of 20% (min 8%, 
max 28) at equal image quality. 

5   Conclusions 

Compared to System B with a conventional a-Se detector, System A exhibited a 
slightly lower spatial resolution but a definitely better noise behavior. These resulted 
in a comparable peak DQE value for both detector types at low frequency. With in-
creasing frequency differences between the two systems became more evident. Owing 
to the decrease in NNPS, in System A the DQE value declined much more slowly. 
This reflected into a better performance in terms of small detail detection in contrast 
detail curve analysis. The new detector seamed to allow average dose savings from 
8% to 28 at equal image quality. 
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Abstract. A method was developed to determine the area in a mammogram 
where the breast is not in contact with the compression paddle (the periphery), 
and to predict the breast thickness in that peripheral region. The periphery is de-
termined by evaluating the variation of the signal intensity along radial lines, 
and the peripheral thickness is modeled assuming the breast has a semi-circular 
shape. The method was tested on 26 simulated mammograms for which the 
volumetric information was available. The mammograms were obtained using 
CT data that were deformed to simulate mammographic compression and then 
projected using a physical model. The method predicted the thickness in the pe-
riphery to within 3.3 mm of the actual value and the volumetric breast density 
within 4.3 percentage points. The method was also tested on 209 digital mam-
mograms, and on average it was estimated that thickness errors occurred on 9% 
of the breast image, and the average absolute thickness error on those points 
was estimated to be approximately 2.0 mm in the periphery and central region 
of the breast but as large as 10.5 mm in the extreme periphery where the thick-
ness is small. 

Keywords: volumetric breast density, digital mammography, periphery detection. 

1   Introduction 

The estimation of volumetric breast density (VBD) from mammograms is highly sensi-
tive to the breast thickness [1,2]. Several factors can be responsible for uncertainties in 
thickness. The breast thickness may be reported incorrectly by the mammography unit. 
In addition, the breast thickness varies due to a slant or curvature in the compression 
paddle, and at the natural outer bulge, i.e. from the point where the breast loses contact 
with the paddle at the peripheral region of the breast [3,4,5]. Algorithms have been 
developed to identify the peripheral region on the mammogram and to model the breast 
shape in the periphery [4,5]. However, the accuracy of such methods cannot be easily 
estimated without direct measurement of the breast thickness. Furthermore, the effect 
of these peripheral correction methods on the measurement of the total VBD has not 
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been reported. In this work, we tested the validity of a peripheral thickness correction 
method in mammography using CT data that were deformed to simulate the effects of 
compression, and thus for which the compressed thickness data were available. The 
method was also tested on 209 digital mammograms, and an estimation of the thick-
ness error from the algorithm was performed. 

2   Methods   

2.1   Peripheral Detection Algorithm 

The algorithm is similar to ones proposed by others [4,5]. The inner edge of the pe-
ripheral region is found using the variation of image intensity along radial lines. The 
negative logarithm of the pixel value of the digital mammogram, L(x,y) = - ln I(x,y) is 
taken. The variation in L represents changes in attenuation, due to changes in tissue 
thickness and composition. The outer breast edge, E, of the breast (see Fig. 1a)) is 
determined by threshold. For each ϕ ∈ [0,π], the intensity range Δ(ϕ) = max(L)-
min(L) is taken from the maximum and minimum intensities in the image. Plots of 
L(r) are generated, where r is the distance on the image from a point (x,y) to M (see 
figure 1a)), the point midway between the breast edges on the chest wall edge of the 
image. An example of a function L(r) is shown in Fig. 1b). We can see that for r close 
to 0, there are relatively small changes in intensity, presumably due to changes in 
tissue composition rather than from changes in thickness. Further away from M, we 
note a sudden change in intensity, which arises from the reduction in thickness that 
occurs at the breast periphery. To identify the onset of that sudden change, various 
linear fits are performed on a progressively larger subset, spanning a distance from M 
of pRC in L(r) for p = (0.1, 0.2, …, 1) for each ϕ, and the linear fit with the lowest 
absolute slope is recorded, yielding the linear function ar + b, where a is the slope and 
b the offset of the fit. The multiple fits are performed to obtain the best estimate of the 
baseline constant-thickness intensity in the image, by avoiding localized pockets of 
adipose or fibroglandular tissue. The distance, RC,  was chosen so that RC = αRϕ, 
where Rϕ is the distance from M to the outer breast edge E at the angle ϕ, and α varies 
from 0.6 to 0.8 for small to large breasts respectively. The maximum distance, r0, 
along r in which (ar + b) − L(r) is smaller than the threshold intensity βΔ(ϕ), is de-
termined, where β was determined empirically to be 0.07. That point r0 denotes the 
approximate location of the inner edge of the periphery. By repeating the procedure at 
each angle ϕ, the approximate inner periphery contour C’ is found, and is then 
smoothed using a low-pass filter. 

The location of the inner periphery contour C is then determined using the thick-
ness profile to be applied in the periphery. The empirical semi-circular thickness pro-
file T(r) is obtained from Rico et al [5], and is scaled such that T(0) = 1 and T(1) = 0, 
where r is the normalized distance form the inner periphery edge to the breast edge. 
Assuming that the thickness at C′ corresponds to (1 - β) of the compressed breast 
thickness T0, the inner periphery contour C is obtained by applying a morphological 
operation of erosion C′ by a distance r´ =  δ×T0/2, with δ such that T(δ) = 1 - β. For 
β = 0.07, δ = 0.49. Finally, the thickness map is applied along radial lines (centred on 
M) in the peripheral region P, such that T(C) = T0 and T(E) = 0. 
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Fig. 1. a) Image of L(x,y) showing the central chest wall point M, the inner periphery contour 
C´, the peripheral region P and the outer edge E; b) plot of L(r) for a given angle φ. The dot 
indicates the distance r0 where the periphery C´ was located, and the dotted line the linear fit. 

2.2   Peripheral Detection on Simulated Mammograms 

CT image data sets of 26 volunteers were obtained using a dedicated breast CT scanner 
[6]. The CT data was segmented into skin, fibroglandular and adipose tissue, and a finite 
element model was applied to simulate the effects of mammographic compression, as 
described in Yaffe et al [2]. The model squeezes the breast with a rigid compression 
plate to achieve a target thickness. The deformed volumes were used to simulate a  
digital mammogram, considering the effects of the polychromatic x-ray spectrum, the 
primary and scattered energy transmitted through the breast (using the point spread 
functions of Boone et al [7]), the anti-scatter grid and the detector efficiency. A corre-
sponding thickness map, T(x,y), of the breast was obtained by projecting a unity volume 
of the breast. The volume of dense tissue in the whole breast, VD, and the peripheral 
region, VPD, were obtained by using the VBD algorithm of Yaffe et al [2] and by deter-
mining the true periphery, P, by using a modified version of the peripheral detection 
algorithm on T(x,y).  The total breast volume, V, and the volume, VP, and area, AP, in the 
peripheral region were also determined. The simulated mammograms were then ana-
lyzed with the peripheral correction method outlined in section 2.1, and the thickness 
map TP(x,y) was obtained from the algorithm. The total volume of dense tissue V′D, the 
volume of dense tissue in the periphery, V′PD, the total breast volume, V′, and the vol-
ume, V′P, and area, A′P, of the peripheral region were also determined, respectively. To 
evaluate the error in the method, the root mean square (rms) of T - TP was computed 
over the periphery, P′, determined by the algorithm In addition, the “extrema error”, the 
points with density that were outside the range from 0 to 1.0, were identified as a surro-
gate measure of inaccuracy used to compare the simulation results and the results ob-
tained from the digital mammograms.  

2.3   Peripheral Detection on Clinical Mammograms 

The peripheral detection algorithm was tested on 209 digital mammograms from a GE 
Senographe 2000D, and the VBD analysis was performed. The method of Mawsdley 
and Tyson [3] is used to account for errors in the compressed thickness readout from 
the mammography unit. In addition, for the uniformly compressed region (within C), 

a)
b) 
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the compressed thickness is adjusted iteratively in 1 mm increments by minimizing 
the number of density values that are outside the range from 0 to 1.0 (and thus for 
which the thickness is over- or underestimated, respectively) to less than 5% of the 
total number of points in that region. The remaining values on the whole image that 
where smaller than 0 and larger than 1.0 were set to 0 and 1.0 respectively.  

The total dense volume, VD, total volume, V, the dense volume in the periphery, 
VPD, and the volume of the periphery, VP, were computed. The extrema error was also 
computed on the image in order to evaluate the accuracy of the peripheral correction 
method. Assuming a sensitivity of 0.046 density per mm (Yaffe et al [2]), the esti-
mated thickness error ΔT was computed as ΔT = Δm/0.046, where Δm is the calcu-
lated erroneous density value minus the upper or lower bound density of 0 or 1.0.  

3   Results 

3.1   Peripheral Detection on Simulated Mammograms 

For the 26 deformed CT cases, on average, the true values were V = 566 cm3, VP = 
347 cm3, VD = 108 cm3, VPD = 67 cm3. Using the thickness map TP from the algorithm, 
we obtain the following averages: V′ = 564 cm3, V′P = 351 cm3, V′D = 110 cm3, and 
V′PD = 71 cm3. The respective averages of AP and A′P were 76.8 cm2

 and 75.6 cm2. Fig. 
2(a) shows the histogram of the rms of T(P′) - TP(P′), with a mean of 3.3 mm. Fig. 
2(b) shows the relation between the true VBD and VBD′, the density obtained with 
the detected periphery. The average VBD and VBD′ were 0.231 and 0.245 respec-
tively. A linear least square fit gave a slope of 1.01, an intercept of 0.011 and a corre-
lation with R2=0.89. The rms of VBD - VBD′ was 0.043. On average, the fraction of 
points showing extrema errors was 6% and 9%, when using the true thickness T and 
when using TP, respectively. 

  

Fig. 2. a) Histogram of the rms of T(P′) - TP(P′); b) Plot of the true VBD versus VBD′, the den-
sity calculated using the detected periphery. The dashed line represents the identity function.   

3.2   Peripheral Detection on Clinical Mammograms 

For the 209 digital mammograms, the average VD and V were 114 cm3 and 811 cm3 
respectively. VPD and VP were 60 cm3 and 378 cm3, respectively. Thus the average  
 

a) b)
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Fig. 3. a) Calculated density map of a digital mammogram. The VBD was 0.130. The image 
contrast was amplified for clarity; b) Corresponding mammogram (dark gray) showing the 
density values under 0 (light gray), density values above 1.0 (white) and the periphery contour 
(black line). The outside of the breast is also black. 

VBD was of 0.162 for the whole breast and 0.173 in the periphery only. The average 
fraction of points showing extrema errors was 9%, with 6% and 3% of the errors with 
density below 0 and above 1.0, respectively and with the majority (8%) of these errors 
occurring in the peripheral region. Fig. 3a) shows the calculated density map of a 
mammogram, and Fig. 3b) shows the same mammogram with the extrema errors 
highlighted, as well as the periphery contour. Fig. 4 shows the distribution (for the 
209 images) in estimated minimum thickness error ΔT for the points showing extrema 
errors. Negative and positive values represent thickness overestimation (density be-
low 0) and underestimation (density above 1.0), respectively, and the average ΔT for 
those subsets were respectively -2.0 mm and 10.5 mm. The average absolute thick-
ness error was 6.2 mm. The presence of the offset positive ΔT peak is discussed in the 
next section. 

 

Fig. 4. Histogram of the estimated thickness error for the points with extrema errors, for the 
209 digital mammograms 

 

a) b) 
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4   Discussion 

In comparing the detected peripheral volume and thickness with the truth from the 26 
simulated images, the thickness was well predicted, with the rms(T - TP) = 3.3 mm in 
the peripheral region. Since the thickness errors were partially compensated by cor-
recting the density to the nearest acceptable value, the total VBD was within 0.014 
with rms(VBD - VBD′) = 0.041.  

This validation study had limitations. The breast deformation was simulated and 
thus it is possible that real breasts would be compressed in a different manner, yield-
ing a differently-shaped outer bulge in the periphery for which the thickness model 
might not apply. Moreover, the simulation of the mammograms and the general VBD 
algorithm are also susceptible to error. For example, even when the true breast thick-
ness profiles were used from the simulated mammograms, there was an average of 
6% of points with extrema errors.  

The method was also tested on 209 clinical digital mammograms. The true thick-
ness and VBD information were not available. On average, the fraction of points 
showing extrema errors was 9%, which is similar to what is observed in the validation 
study with simulated mammograms. Those erroneous values occurred for the most 
part in the peripheral region. They can be due to errors in the VBD calculation algo-
rithm or from errors in thickness from the peripheral detection algorithm. Assuming 
the latter, a lower bound on the error in thickness ΔT can be estimated from the ap-
proximate sensitivity of density with respect to thickness, as reported by Yaffe et al 
[2]. We note a distinct peak in the histogram of Fig. 4 for positive ΔT, with a mean of 
10.5 mm. Those erroneous points were almost exclusively located near the outer edge 
of the breast image, as can be seen in Fig. 3b) and occurred on 3% of the image on 
average. Around the outer edge, the thickness of the breast drops very rapidly to zero, 
and thus small errors in the position or shape of the thickness profile will induce large 
errors in the thickness. It would thus be possible to optimize the shape of the thick-
ness profile near the outer edge. However, since the thickness of the breast is small 
near the outer edge, those large errors in thickness only had a small effect on the cal-
culated volume and dense volume of the breast. Moreover, the presence of skin at the 
outer edge, which has a larger x-ray attenuation coefficient than that of pure fibro-
glandular tissue, will cause density values to be above 1.0. The remainder of the er-
rors in thickness occurred mostly in the rest of the periphery, with a mean ΔT of -2.0 
mm. We note that the actual thickness errors are likely larger, since we assumed that 
the true density value for the erroneous points was either 0 or 1.0, while the true den-
sity value could be in between that range.   

This study indicates that a reasonable estimate of the VBD can be achieved by ne-
glecting the peripheral region altogether. The average total VBD was 16.2%, while 
the VBD on the central compressed breast region only was 15.1%. However, in our 
case set, the peripheral region accounted for an average of 50% of the dense volume 
in the breast and 47% of the total volume. The peripheral volumes detected by the 
algorithm are large. This is because the periphery is defined to where the thickness 
starts to drop, and the initial decay of the thickness profile in the periphery is very 
gradual (the thickness decreases by only 7% roughly half-way between the inner 
periphery and the breast edge). A better estimate of the peripheral volume could be 
determined by choosing a larger thickness threshold and we will investigate this. 
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Another limitation of the peripheral detection algorithm is in the use of radial lines 
to detect the periphery edge and to apply the thickness profile. This method works 
well for breast images that have an approximately semi-circular shape, since the radial 
lines then are approximately orthogonal to the breast edge. For breasts with a more 
elongated or contracted shape, the radial lines, for small angles with respect to the 
chest wall, were not orthogonal to the breast edge. For those images and at those loca-
tions, the largest errors in the VBD or thickness estimation occurred. It would be 
possible to improve the algorithm by using conformal lines that intersect the breast 
edge perpendicularly. Finally, the algorithm didn’t perform well in the nipple region 
and where skin folds occurred, but those regions accounted for a small area of the 
mammograms. 
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Abstract. 234 pathology-proven FFDM malignant cases and 3872 normal cases 
were culled retrospectively from 6 screening facilities. For malignant cases, lo-
cation and size of the biopsied finding and breast density were recorded. All 
cases were run with a prototype CAD algorithm (Siemens) to evaluate the im-
pact of breast density, lesion size and lesion pathology on CAD performance. 
The overall CAD sensitivity was 84.2%, with 85.5% sensitivity in "non-dense" 
breasts and 82.3% in "dense" breasts (p=0.26). No significant difference 
(p=0.10) was found between CAD sensitivity for ductal lesions (86.4%) and 
lobular lesions (70.6%). The sensitivity for invasive ductal lesions (86.9%) was 
slightly higher (p=0.30) than for in-situ lesions (82.6%). The CAD sensitivity 
for large masses (90.1%) was significantly higher (p<0.001) than for small 
masses (66.0%). The false mark rate was 1.01. The study indicates that CAD 
can assist the radiologist in identifying suspicious lesions, independent of breast 
density, lesion pathology or invasiveness.  

Keywords: FFDM, Computer Assisted Detection (CAD), CAD sensitivity, 
False mark rate, Breast density, Lobular carcinoma, Ductal carcinoma, In-situ 
lesions, T1a/T1b masses. 

1   Introduction 

While screening mammography has greatly impacted breast cancer survival, the detec-
tion of cancers in dense breasts is problematic and often requires additional imaging 
modalities (US, MRI). The detection of small cancers is also problematic, especially in 
dense breasts, while the detection of such cancers is of utmost importance since their 
timely detection has a direct impact on breast cancer survival [1], [2]. It is also known 
that lobular cancers are difficult to detect in screening mammography [3], although their 
detection is of great merit. The importance of detecting non-invasive ductal cancers 
should also not be underestimated [4]. The purpose of this study was to evaluate the 
impact of breast density, lesion size, lesion pathology and lesion invasiveness on the 
performance of a CAD algorithm for screening mammography. 
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2   Material and Methods 

2.1   Case Acquisition and Review  

4106 FFDM cases were culled retrospectively, in a consecutive manner, from 6 
screening facilities.  234 of the cases were pathology-proven malignant (159 masses, 
43 masses containing calcifications and 32 clustered microcalcifications), and 3872 
cases were normal. The normal cases were either negative cases or cases with find-
ings deemed benign by the radiologist, at screening. For the normal cases, no follow-
up was available to assure that they indeed represented "true-normal" cases. As 
shown in figure 1, of the 234 malignant cases, in 199 cases the pathology indicated a 
ductal process (176 invasive, 23 in-situ), in 17 cases a lobular process, and 18 cases 
had only cytology results.  

 

 
 
 
 
 
 
 
 
 

Fig. 1. Histopathology of the malignant lesions 

2.2   CAD Methodology  

The CAD algorithm is designed to identify and mark on digital mammograms find-
ings suspicious for malignancy. In order to analyze the performance of the CAD algo-
rithm, the prompts generated by CAD have to be compared with the mammographic 
findings that were proven to be malignant at biopsy. Therefore, for each malignant 
case, a non-blinded radiologist marked on the digital image the location of the biop-
sied finding. The same radiologist also recorded the breast density and, in cases of 
mass lesions, the size of the mass. Cases with breast density categories 1 and 2 were 
considered “non-dense breasts” (148 cases), while breast density categories 3 and 4 
were considered “dense breasts” (86 cases).  Masses less than 10 mm in size (T1a and 
T1b) were considered small (50 cases), while masses greater than or equal to 10 mm 
in size were considered large (152 cases).  

All cases were run on a prototype CAD algorithm (Siemens) that actually consists 
of two separate algorithms, one for the detection of masses and the other for the de-
tection of clustered microcalcifications. These algorithms have been trained on a large 
dataset of malignant and normal cases. It should be emphasized that all the cases 
included in the present study were unknown to the algorithms, and none of the cases 
were used for training the algorithm. 

Detection was assessed by correlating the location of the CAD prompts to the loca-
tion of the biopsied finding on the digital image. This analysis permitted the calcula-
tion of the CAD sensitivity for the detection of malignant findings. Figures 2 and 3 
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show the CAD prompts marking subtle findings in dense breasts. The CAD prompt 
for a mass is an ellipse, the size and orientation of which varies according to the size 
and orientation of the mass. The CAD prompt for a cluster of micro-calcifications is a 
rectangle, which also varies with size and orientation to conform to the cluster.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A small subtle mass with calcifications detected by CAD in a dense breast 

 
 

 

Fig. 3. A barely visible invasive lobular cancer detected by CAD in a very dense breast 

2.3   Analysis of the Cases by the CAD Algorithm 

The CAD sensitivity was analyzed by breast density, lesion size, lesion pathology and 
lesion invasiveness in order to evaluate the effect of these factors on the CAD per-
formance. The 95% Confidence Intervals for the CAD sensitivities were also calcu-
lated. The sensitivity of the CAD algorithm for ductal lesions was compared with that 
for lobular lesions and, likewise, the sensitivity for invasive ductal lesions was com-
pared with that of in-situ ductal lesions. To determine the significance of the differ-
ences found in the CAD sensitivities, one-tailed p-values were calculated, using the 
two sample t-test assuming unequal variances. 

Although no follow-up was available to assure that the normal cases represented 
"true-normal" cases, all CAD prompts generated by CAD for the normal cases were 
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considered false marks. Since some CAD prompts for these cases may be "true 
marks", the false mark rate per case which was calculated, may in fact be an overes-
timation, and the actual false mark rate may be lower than reported.  

3   Results 

3.1   CAD Performance by Breast Density  

The CAD algorithm correctly detected 197 of the 234 cancers, yielding an overall 
detection sensitivity of 84.2% [95% CI: (79.5%, 88.9%)]. The CAD sensitivity for 
cancers in "non-dense" breasts (85.5%) was slightly higher than in "dense" breasts 
(82.3%), with no significant difference (p=0.26). The CAD sensitivity for the 202 
malignant masses was 84.16% [95% CI: (79.08%, 89.24%)] and for the 32 clustered 
microcalcifications – 84.38% [95% CI: (71.08%, 97.68%)]. As shown in figure 4, 
breast density did not significantly affect the CAD sensitivity for either masses or 
clustered microcalcifications. The CAD sensitivity for mass lesions was 85.4% in 
dense breasts vs.  82.3% in non-dense breasts (p=0.28). Likewise, the CAD sensitivity 
for clustered microcalcifications was 86.7% in dense breasts vs. 82.4% in non-dense 
breasts (p=0.37). In dense breasts, the CAD sensitivity for masses and clustered mi-
crocalcifications was, in fact, almost identical.  
 
 

 
 

 
 
 
 
 
 
 
 
 

Fig. 4. CAD sensitivity for mass lesions and for clustered microcalcifications by breast density 

3.2   CAD Performance by Histopathology 

Figures 5 and 6 display the analysis of the CAD algorithm performance by histopa-
thology. As shown in Figure 5, the detection sensitivity for the 199 ductal lesions 
(86.4%) was higher than for the 17 lobular lesions (70.6%), but the difference did not 
reach significance (p=0.10). 

Figure 6 displays a separate analysis of the ductal carcinomas only, by lesion inva-
siveness. As shown in this figure, the detection sensitivity of CAD for the 176 ductal 
lesions with invasive pathology (86.9%) was slightly, but not significantly higher 
(p=0.30) than for the 23 in-situ ductal lesions (82.6%).   
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Fig. 5. CAD sensitivity of ductal vs. lobular lesions 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Ductal lesions - CAD sensitivity by invasiveness 

3.3   CAD Performance by Lesion Size 

Figure 7 shows the sensitivity of the CAD algorithm by lesion size, in dense and in 
non-dense breasts. 
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Fig. 7. CAD sensitivity for large and small masses, in dense and in non-dense breasts 

It was found that lesion size had a greater impact on the CAD sensitivity than 
breast composition or lesion pathology. The CAD sensitivity for the 152 large masses 
(90.1%) was significantly higher (p<0.001) than for the 50 small masses (66.0%). As 
shown in figure 7, this trend is true for both dense breasts and non-dense breasts. 
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However, in dense breasts the difference in the CAD sensitivity between large and 
small masses was only 9.8% (p=0.2), compared to 33.6% (p<0.0006) in non-dense 
breasts.  

For the 3872 normal cases, the false mark rate generated by CAD per case was 
1.01.  The mass false mark rate was 0.73 while the cluster false mark rate was only 
0.28.  

4   Discussion 

It is especially important for CAD to assist in the detection of cancers in dense breast 
[5] and in the detection of lobular cancers [3], which are known to have lower mam-
mographic sensitivity when analyzed conventionally. It was found that breast density 
did not significantly affect the CAD sensitivity for either masses or clustered micro-
calcifications. Likewise, the CAD sensitivity was not significantly affected by either 
lesion pathology or lesion invasiveness. It can be, therefore, concluded that CAD has 
the potential to assist in the detection of subtle breast findings such as lobular cancers, 
even in dense breasts.  

The impact of lesion size on the CAD sensitivity was greater than that of breast 
composition or lesion pathology. Although the sensitivity for T1a/T1b masses was 
significantly lower than for larger masses, in the subset of cases with dense breasts the 
difference was not statistically significant. Surprisingly, it was found that the detec-
tion sensitivity of CAD for small masses was higher in dense breasts (75%) than in 
non-dense breasts (60%). This finding is especially remarkable since small masses in 
dense breasts are considered one of the great challenges in the conventional interpre-
tation of mammography, and hence CAD may prove to be most beneficial for this 
type of lesion. 

In order to obtain statistical significance, in the present study the ratio of malignant 
cases to normal cases was enriched to 6%, about ten times higher than expected in 
screening mammography. Despite the use of the enriched case mix the present study 
included only a small number of in-situ ductal carcinomas (23) and of lobular carci-
nomas (17). The small sample size may explain the lack of statistical significance for 
the rather large difference in CAD sensitivity between ductal carcinoma (86.4%) and 
lobular carcinoma (70.6%). The lack of statistical significance between the CAD 
sensitivity for invasive ductal carcinoma (86.9%) and in-situ ductal carcinoma 
(82.6%) seems to be a result of the quite similar sensitivities, but the small sample 
size may also contribute to the lack of statistical significance. 

It should be noted that the study dataset included 32 malignant clustered microcal-
cifications which comprised only 13.7% of the malignant cases. However, the detec-
tion sensitivity of the CAD algorithm for clustered microcalcifications was similar to 
that for masses, and nearly identical in dense breasts. Thus, it is unlikely that the ratio 
of masses to clustered microcalcifications in the study dataset has influenced the re-
sults. The higher CAD sensitivity for ductal lesions compared to lobular lesions is 
apparently also not affected by the higher incidence of micro-calcifications in ductal 
lesions, since the CAD sensitivity for clustered microcalcifications was similar to that 
of masses.  
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The CAD algorithm used in this study is able to assist the radiologist in identifying 
suspicious lesions, independent of breast density, lesion pathology or invasiveness. In 
particular, this study indicates that this CAD algorithm can assist in the detection of 
small cancers in dense breasts, and in the detection of lobular cancers, which are dif-
ficult to detect in screening mammography. Such a CAD algorithm with quite a high 
detection sensitivity and with a relatively low false mark rate should increase the 
acceptance of the true CAD prompts by the radiologist.  
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Abstract. In this paper we present a biomechanical model of isolated breast 
tumours under mammographic compression forces. We apply a range of  
reported mechanical properties, both linear elastic and hyperelastic. We also in-
troduce a volume of increased density/stiffness around the tumour. These vari-
ables have a non-negligible effect on stresses and strains, as shown in this work. 
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1   Introduction 

Biomechanical modelling of the breast provides constraints for medical image analy-
sis including non-rigid registration. A recent review of the topic can be found in [1].  
However, even in the macroscopic domain, realistic breast tumour mechanics pose 
considerable modelling and computational challenges among which are:  

1. the geometrical and structural complexity of the adult female breast, which in-
cludes fatty and fibroglandular tissues, as well as muscles and ligaments; 

2. published values of mechanical properties vary considerably for each type of 
tissue [1], and even different constitutive equations are proposed. However, such 
parameters are needed to develop a realistic model of breast tumour mechanics. 
Given the significance of these issues in this work, they will be covered in more 
detail in Section 1.1; 

3. the geometrical complexity of tumours has to be considered: it is only necessary 
to see mammographies or histopathological images of ductal carcinomas (Fig 1 
taken from [2]) to appreciate both the need for and the difficulty of this task. In this 
case, the stellate character of tumours is especially important as spiculated shapes 
are generally indicative of malignancy [2]. Spicules, as shown in Figure 1, may 
cover part or the whole surface of the tumour core, show different lengths and 
base diameters. It should be noted here that other authors [3, 4] have mostly con-
sidered smooth uniform tumour surfaces; 
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4. it is accepted among clinicians that an increase of breast density is linked to a 
high probability of a tumour presence. This increase has been experimentally re-
lated with total collagen density increase around the tumour in Col1a1tmJae mice 
in [5]. In turn, an increase in collagen density corresponds to an increase in tis-
sue “stiffness”. This suggests that, even normal healthy breast tissues show dif-
ferent mechanical properties in the presence of tumours, even though, to the best 
of our knowledge, the mechanical properties of stiffened tissues have not been 
measured. 

In this work, the relevant mechanical variables –stresses and strains/displacements- 
have been determined using Abaqus (www.simulia.com) to implement a Finite Ele-
ment Analysis. Because of item 1 above in this work we consider an idealized tumour 
in isolation, that is, surrounded by one type of homogeneous tissue, and apply a far 
field static mammographic compression force. We have used a range of reported 
mechanical properties, both linear elastic and hyperelastic to analyse the effect men-
tioned in item 2. Finally, we have introduced a volume of increased “stiffness” around 
the tumour to study the effect mentioned in item 4. 

Following a mechanical description in Section 1.1, in this paper we compare values 
of stresses and displacements of smooth (case A) and stellate (case B) tumours, for 
different elastic and hyperelastic mechanical properties. Finally we add the effect of 
increased-stiffness surrounding materials (case C). 

 

Fig. 1. Histopathological images of breast invasive carcinomas, taken from [2] 

1.1   Mechanical Description of the Problem 

Our aim is to biomechanically model breast tumours under mammographic compres-
sions, that is, to determine stresses and displacements/strains for the problem shown in 
Fig 2. The tumour –whether smooth or stellate- is surrounded by one or more materials, 
all of which are homogenous, isotropic and incompressible and are rigidly attached. 
This structure lays on the y=0 plane and is subject to a static far field compression load, 
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that is, a uniform force F in the -y direction. These boundary conditions are shown in 
Fig 2 as white arrows and triangles.  

To derive a unique solution to the Mechanics equations subject to the above 
boundary conditions, constitutive equations must be introduced. Some authors [6, 7] 
have proposed a linear relationship between stresses and strains or equivalently, be-
tween forces and displacements for breast tissues.  

 

Fig. 2. Idealized breast tumour subject to a far field mammographic compression 

On the other hand, Samani and co-workers [8, 9, 10] performed indentation tests 
on breast tissue samples ex vivo. One of the plotted Force vs. Displacement curves is 
shown in Fig 3. Evidently, there is a non-linear behaviour for these tissues even for 
forces that are very small compared to those typical of mammography. This strongly 
suggests that breast tissue behaviour is better described as hyperelastic than linear-
elastic specially when subject to mammographic compression forces. In fact, accord-
ing to Samani, breast tissues can be modelled using various hyperelastic models such 
a polynomial (n=2) or Arruda-Boyce fits.  

In spite of the evidence shown in Fig. 3, in the present work both linear-elastic and 
hyperelastic constitutive equations have been implemented for the sake of comparison. 

 

Fig. 3. Force-displacement curve for breast tissue [8, 9] 
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2   Materials and Methods 

We consider three different cases. Each can be represented as part of the structure 
shown in Fig. 2, with an applied force F of 160N. Case A represents a smooth spheri-
cal tumour (Fig 3, a). Case B is a mathematically created stellate mass where all the 
spicules have random values of base radius and length (Fig. 3, b). Case C is the same 
stellate tumour used in case B and surrounded by three spherical concentric layers 
(Fig 3, c). The mechanical properties are constant in each of these layers. They vary 
linearly from the tumour’s to the non-tumour’s properties, whether elastic or hypere-
lastic. Limitations in space hinder us from describing the generation and implementa-
tion of the models in Abaqus and the corresponding convergence analysis. 

In this work we have used the linear elastic constants reported in [6] for tumours 
and fatty tissues, the polynomial (n=2) values for fatty and fibroglandular tissues [8] 
for both Arruda-Boyce [10] and polynomial (n=2) fits for malignant tumours. This 
gives three sets of material properties that will be denoted by E2, PA and PP, respec-
tively. Given the large uncertainties in these values and given the fact that this is a 
qualitative study, we have averaged them. Other reported values (such as those shown 
in [7] and other fits included in [10]) were also explored but they led to convergence 
issues or rendered physically unrealistic results. 

 

Fig. 4. Smooth spherical tumour (a), randomly mathematical spiculated tumour (b) and spicu-
lated tumour surrounded by three layers of denser/stiffer materials 

 

Fig. 5. Three paths where the values of von Mises stresses stresses σ, displacement moduluss u 
and displacements in the y direction u2 have been analysed 
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To analyse the effect of a stellate geometry we compared the results of cases A and 
B while, to determine the mechanical effect of denser/stiffer materials we have com-
pared cases B and C.  Values of von Mises stresses σ [Pa], displacement modulus u 
[m] and engineering strains in the y direction e2 have been determined for the three 
paths located at z=0 shown in Figure 5 as white dots, where the absolute distance 
between successive points is given in meters.  

3   Results 

3.1   Comparison of Cases A and B 

Figure 6 shows the maps of von Mises stresses σ for the spherical (b) and stellate 
tumours (a) for the same scale. White represents highest values of σ, that correspond 
in this case to the spicules oriented nearest the y direction, that is, the direction of the 
applied force. The comparison of Fig. 6 (a) and (b) clearly shows that a spiculated 
mass produces an increase in von Mises stresses even within the core of the tumour.  

 

Fig. 6. Map of the von Mises stresses for spiculated (a) and a spherical tumour (b) 

To show this effect the maximum values of σ for the path-esp have been deter-
mined for the linear elastic E2, PA and PP sets. These results are shown in Figure 7. 
The maximum values of σ -expected to appear in the spicules oriented nearest to the y 
direction- increase dramatically for spiculated masses. It is also interesting to point 
out that the values for the sets PP and PA are higher than those of the E2 set. 

Values of strains in the path-top for the three different sets of material properties 
have been used to confirm that e2 does not change significantly from case A and B.    
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Fig. 7. Maximum von Mises stresses at path-esp for spherical and stellate masses for the three 
different sets of mechanical propterties 

On the other hand, it is worth analysing the effect of spicules in displacements 
within the tumour. Figure 8 (a) shows the values of u along path-core for the linear 
elastic E2 values. It is readily observable that the stellate mass introduces only small 
changes in these values, effect that can also be observed for the other two sets of ma-
terial properties. Figure 8 (b), on the other hand, displays displacements for the three 
sets where, in this scale, both PA and PP and both E2 values overlap. Figure 8 (b) 
shows the dramatic increment observable for the PP and PA sets. 

 

Fig. 8. Module of the displacements u along path-core for the linear elastic E2 set of values (a) 
and for all sets of values (b) 

3.2   Comparison of Cases B and C 

In this section we consider the effect of denser/stiffer layers around tumours. Figure 9 
shows the maps of von Mises stresses σ for the stellate tumour (a) and the embedded 
tumour (b) for the same scale. Here again white represents highest values of σ, that 
correspond in (a) to the spicules oriented nearest the y direction, that is, the direction 
of the applied force. It is interesting to point out that the von Mises stresses have de-
creased in the layers case, generating a stress shield effect. 
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Fig. 9. Map of the von Mises stresses for spiculated (a) and embedded spiculated tumour (b) 

This effect can be readily observed in Figure 10 that shows maximum von Mises 
stresses values along path-esp for all sets of properties. Here again values of PP and 
PA maximum von Mises stresses are higher the E2 values. 

Values of strains in the path-top for E2, PP and PA have been determined to con-
firm that there is no significant change on e2 for cases B and C. 
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Fig. 10. Maximum von Mises stresses along path-esp for a stellate tumour and an embedded 
stellate tumour for the three different sets of mechanical properties 

Regarding displacements within the tumour, Figure 11 shows values of u for 
cases B and C. It can be observed that the layers of surrounding material cause a 
decrease of the values of u. Values in Figure 11 (a) correspond to PA properties but 
the other sets present a similar behaviour. The difference between sets of properties 
can be observed in Figure 11 (b) that shows the dramatic increase in displacements 
for the PA and PP sets. 
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Fig. 11. Modulus of the displacements u along path-core for the stellate and embedded stellate 
tumour for the PA set (a) and for all three sets (b) 

4   Conclusions 

As presented herein, the comparison of smooth and stellate tumours shows that spi-
cules generate a dramatic increase on stresses at a local level. On the other hand the 
spiculated character of malignant tumours does not, per se, influence displacements 
within them. 

Besides, increasing the stiffness around a fully spiculated tumour generates both a 
progressive shield of stresses and a decrease of displacements. 

All such analyses depend on the choice of linear-elastic and hyperelastic constitu-
tive equations. It has been shown here that von Mises stresses at the spicules’ tips and 
displacements within tumours show higher values for both hyperelastic sets of materi-
als for spherical, stellate and embedded stellate tumours.  

The wide range of published values of mechanical properties imposes a consider-
able limitation for realistic biomechanical modelling. In this work we have shown that 
not only constitutive equations but also de spiculated character of the tumour and the 
presence of denser/stiffer material around it render different results even for an iso-
lated tumour. More yet has to be done in order to be able to implement a mechanical 
registration of cancerous breasts. 

We plan nextto investigate the effect of non homogeneous materials a different 
number of layers.  
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Abstract. A computer-based training tool was developed through a collabora-
tive design process. The tool allows trainee radiologists to access a large num-
ber of suspicious lesions. The tool employs a certainty-based scoring system in 
which trainees’ responses are scored not just as right or wrong but according to 
their confidence. Different approaches to providing trainees with feedback were 
considered: one based on a histogram and one using a line graph of cumulative 
scores. Following an initial assessment by radiologists, a revised scheme was 
introduced in which disagreements between trainee and expert are rated accord-
ing the clinical or pedagogical significance of the error. 

1   Introduction 

Recent years have seen significant improvements in the technology used to create 
mammograms. Nevertheless these images are still difficult to interpret and the per-
formance of radiologists is highly variable. [1] It is therefore important to consider 
whether novel tools can be used to enhance the competence of radiologists. There is 
considerable scope for computer-based training tools to improve the ability of radi-
ologists to read screening mammograms. The aim of the work reported here is to 
explore different ways that a computer-based learning environment can add value to 
conventional training methods.  

We have developed a number of tools for different aspects of mammographic im-
age interpretation. One, provisionally termed ‘Lesion Zoo’, is intended to give train-
ees access to a large number of abnormalities. The argument is that experience of a 
wide range of appearances is necessary for the acquisition of visual expertise. [2] In 
this paper we describe this prototype, paying particular attention to the scoring of 
trainees’ assessments, and report on expert and trainee radiologists’ initial experience 
with the tool. 

2   Lesion Zoo Prototype 

Lesion Zoo displays a sequence of selected regions of interest, each containing a 
lesion (either a mass or a microcalcification) and invites the user to classify the lesion 
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using the BIRADS descriptors and to assess it, using the BIRADS assessment catego-
ries. Users are given case by case feedback on their performance and finally summary 
statement of their performance over the set of images (see Figure 1). 

Lesion Zoo uses a database of 300 annotated images. Each of the cases in the data-
base was selected for inclusion because it had particular value for training.[3] All the 
selected cases were annotated by an expert radiologist. The radiologist viewed the 
original films with the associated clinical information and then entered relevant in-
formation into the database via a bespoke annotation tool. One element in this in-
volved marking the centre and diameter of any regions of interest. The Lesion Zoo 
software displays these regions of interest, automatically selected from the database 
images and invites users to enter a description of the lesion via a menu of descriptors 
based on the BIRADS terminology. 

 

Fig. 1. screen shot of the Lesion Zoo application. The trainee’s description of the image is 
entered via the menu on the right. Feedback is given in the table at the bottom: the trainee 
disagrees with the biopsy and the expert decision (note the darker red tone for the biopsy). 

2.1   Feedback 

Feedback provided to trainees uses ‘certainty-based marking’.[4] This is a scheme 
that aims to assess the change in confidence of a learner. Key to the approach is the 
collection of data not just on the accuracy of a student’s responses but also on his or 
her confidence in that accuracy. The point is not, as in ROC analysis, to gain a thresh-
old-independent measure of accuracy. Instead, data about the confidence a student has 
in his or her clinical judgment is incorporated into the scoring in order to allow an 
assessment of the practical value of the judgment.  Confident but inaccurate judg-
ments are dangerous. Accurate but unconfident judgments are not useful to the 
trainee. Useful knowledge leads to responses that are both confident and accurate. 
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Using this approach, responses are scored according to the scheme in Table 1 and 
aggregated to create a single score. The weights were chosen to reflect practice using 
the approach elsewhere and may need to be modified in this setting. 

Table 1. Scheme for certainty-based marking 

Certainty 1 (Low) 2 (Mid) 3 (High) 
Score if correct 1 2 3 

Score if incorrect 0 -2 -6 

We developed two methods of visualising the results of certainty-based marking to 
provide feedback in Lesion Zoo: a histogram showing how the responses are distrib-
uted across the six categories in Table 1 and a graph showing how a trainee’s per-
formance changed as cases were attempted, illustrated in Figure 2.  
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Fig. 2. Number of cases classified as useful knowledge (mid to high confidence, correct re-
sponse), unusable knowledge (low confidence) and dangerous knowledge (mid to high confi-
dence, wrong response) as a function of number of cases attempted. The x-axis corresponds to 
the cases done so far by the trainee. Ideally, the green line should rise to a slope of 45° while 
the red and blue should approach the horizontal.  

3   Refining the Prototype 

The Lesion Zoo prototype has been developed in close collaboration with staff in two 
UK NHSBSP screening units. It has been used on an experimental basis by expert and 
trainee radiologists to collect feedback on the design and the scoring system.  
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3.1   Methodology 

To gather feedback on Lesion Zoo, we used a qualitative, observation-based method-
ology [5]. We have found in previous studies of the use of computer-based tools in 
mammography that this approach is very effective for  understanding how people use 
these tools [6]. 

We gathered qualitative data over four use sessions (two observed and written 
notes taken, one videoed and one where feedback was elicited from the user after use) 
and the design team examined the data for emerging themes. Typically the sessions 
involved encouraging users to work through a set of 10 or so lesions and to verbalize 
their impressions. These sessions provided the basis for iterative refinement to the 
lesion zoo tool. Although informal and lightweight we found the approach to be help-
ful and informative, with users demonstrating consistent and coherent views of the 
tool’s more or less appealing characteristics. 

3.2   Results 

Some participants responses indicated the sorts of reflection and deliberation that we 
hoped would be elicited by Lesion Zoo. On other occasions, participants’ responses 
were not so straightforwardly positive. In particular there were a number of occasions 
where they disagreed with the characterizations of lesions, and were concerned that 
the scoring mechanism was unfair when penalising and rewarding certain sorts of 
responses. One participant using the Lesion Zoo pointed out how it can be hard to 
make a forced choice between BIRADS descriptors when these may not necessarily 
be mutually exclusive.  

“Lesions can have two appearances – it can be spiculated in one part and ill-
defined in another” 

That a lesion might not always unambiguously be assigned to a single category, 
and to penalise disagreement with the expert on the basis of what is seen as a judge-
ment call is seen as unfair. The tool should not be unnecessarily discouraging, for 
example, by penalising the trainee for trivial classification errors when, otherwise, 
they are demonstrating competence. 

It became increasingly obvious that Lesion Zoo would need to have a notion of 
which distinctions are clinically important, and which not, and to be able to moderate 
the marking accordingly. For example, conflating round and oval as descriptors of 
mass shape is a less critical error than calling a malignant presentation benign. It also 
became clear that there can be a number of dimensions against which the appropriate-
ness of a response might be judged. For example, while confusing two different be-
nign descriptors would not adversely consequential for the patient, it may indicate 
problems with the trainee’s conceptual grasp of the subject matter.  

One trainee radiologist categorically disagreed with the expert, stating that she had 
recalled a lesion similar to the one presented that had turned out to be a cancer, 
whereas the expert opinion on the lesion presented was that it was benign. 

“I saw a cancer the other day that looked just like that – I disagree with the expert” 
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The point here is not whether on this case the classification was appropriate, or the 
trainee’s memory exact, but that there should be some room to allow for disagreement 
between professionals to be voiced where feeling is strong. 

Feedback from the participants suggested that one assumption behind certainty-
based marking, that there was a simple right answer in the interpretation of these 
cases, was inappropriate. We subsequently undertook an exercise to establish what 
sorts of deviation from expert opinion might be more or less consequential to enable 
us to moderate the marking appropriately. Three consultant radiologists were asked to 
complete a confusion matrix for each of the BIRADSs rating questions, scoring the 
severity of the disagreement for each combination of trainee and expert opinion. 

The experts’ rankings for BIRADs assessment are shown in Table 2. Similar tables 
of rankings were obtained for the different descriptors used to characterize masses 
and microcalcifications. These will be used to weight the scores assigned to dis-
agreements. 

Table 2. Experts’ (n=3) rankings for the significance of disagreements between expert and 
trainee over BIRADs assessments 

Trainee  
M1 M2 M3 M4 M5 

M1  2 3 4 5 
M2 2  2 4 4 
M3 3 3  2 3 
M4 5 5 2  1 

Expert 

M5 5 5 4 1  

4   Discussion 

Our study provided insights into how the tool would be used in practice and revealed 
a number of ways in which it could be improved. We have provided a facility for 
trainees to express their opinion as a free text comment. We also solicited free text 
comments from the experts assessing the lesions so that they also had room to express 
how the lesion matched the BIRADS descriptors. Comments could be used to state, 
for example, that the lesion is typical or atypical member of the chosen category. 
Expert comments are made available to the trainee after they have made their own 
assessment of the lesion. 

Another issue concerned radiologists’ application of the five-point BIRADS scale 
for suspicion (1. Normal to 5. Benign). One junior film reader suggested that her more 
experienced colleagues tended to be more confident in calling a lesion M5. A senior 
radiologist (independently) made the same point when she said that junior readers are 
more cautious in how they grade lesions. At screening there is no difference in clini-
cal outcomes between grading lesions as M4 or M5, as both will result in a recall for 
further assessment, thereby providing leeway for junior radiologist to make conserva-
tive assessments without impacting on patient care. The less experienced radiologist 
drew attention to this, partly because she thought she might improve her score if she 
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rated lesions in a way that emulated how she presumed the expert would rate them. In 
other words, she was attempting to ‘second guess’ the expert.  

This exemplifies a more general problem observed with using game-like environ-
ments for education, neatly expressed by Conati and Lehman, who devised a ‘micro-
world’ game to teach principles in physics [7]: “Our observation of student players 
indicates that it may be possible for a student to become skilled in solving a problem 
in game terms, i.e. without significantly improving their physics knowledge”. So, by 
using a game format, one may introduce elements of fun, competition, ease of playing 
and focus on a specific task, but risk a worse than might hoped for transfer of skill to 
the real world domain.  

We have learned lessons experimenting with confidence based marking (CBM) in 
a novel domain. While sympathetic to CBM’s goals of reducing trainees’ motivation 
for simply guessing when uncertain, and encouraging reflection on, and awareness of, 
lacunae in trainees’ understanding of a topic, we found its application in a mammog-
raphy task somewhat tricky in a couple of respects. Part of this stems from the fact 
that CBM was designed to be applied to domains where it is possible to unambigu-
ously distinguish between correct and incorrect answers. This is evidently not the case 
in mammography, where variation in lesion appearance in continuous, rather than 
discrete and always neatly categorisable, as the BIRADs classification scheme might 
imply. Thus, the evident discomfiture of the participants in the exercise above where 
reasonable or non-consequential disagreements were penalised, and of one consultant 
radiologist who completed a session only to have her decision-making described as 
‘dangerous’ by the tool. 

5   Conclusions 

The evaluation of the Lesion Zoo has enabled us to have a better understanding of 
how it would be used and to identify criteria for a successful marking scheme for 
trainees’ responses.  

First, the scheme must be seen to be fair. BIRADS descriptors are not all mutually 
exclusive, assigning a lesion to a single category is something of a judgement call. 
Penalising the trainee for errors in such cases is seen as unfair. It became increasingly 
obvious that the system had to have a notion of which distinctions are the important 
ones, and which less so, and to moderate the marking accordingly. For example, con-
flating ‘coarse’ and ‘eggshell’ calcifications is a less critical error than calling a ma-
lignant presentation benign. However, while confusing two very different benign 
descriptors (e.g. ‘skin’ and ‘suture’ calcifications) would not have any consequence, it 
may indicate problems with the trainee’s grasp of the subject matter.  

Second, we must also allow for disagreement between professionals. We have pro-
vided a facility for trainees to express their opinion. This provides room for trainees to 
express disagreement with the expert classification or a justification for their own. It 
is hoped that this also will provide a means of softening the impact of the marking 
scheme by providing an opportunity for readers to voice professional disagreement, as 
well as creating a valuable resource for understanding how trainees interpret lesions. 
We also collected a free text comment about each lesion in the zoo from three expert 
radiologists. The aim of the comment is for the expert to be able to provide a rationale 
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for their classification and rating decisions, for example, if the lesion exemplifies the 
category, or if its classification is problematic. 

It is anticipated that these expert comments (made available to the trainee after 
completing each lesion) will help reinforce the trainee’s grasp of the relation between 
the lesion's appearance and its classification, as well as alerting them to less clear cut 
cases where their own opinion might more reasonably deviate from the expert. 

A collaborative design process has resulted in a novel tool that includes a sophisti-
cated assessment of the significance of a trainee’s disagreement with an expert and 
assesses this in conjunction with a measure of the trainee’s confidence in order to 
provide a measure of how useful knowledge is developing. 
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Abstract. In the development of a computer-aided detection (CAD)
system a large database of training samples is of major importance. How-
ever digital breast tomosynthesis (DBT) is a relatively new modality and
no large database of cases is available yet. To overcome this limitation
we are developing a CAD system for mass detection in DBT that can
be trained with regular 2D mammograms, for which large datasets are
available. We trained our system with a very large database of screen-film
mammograms (SFM). Our approach does not use projection images, but
only reconstructed volumes, because it is expected that manufacturers of
tomosynthesis systems will only store the reconstructed volumes. In this
study we developed a method that converts reconstructed volumes into a
series of SFM-like slices and combinations of slices, called slabs. By com-
bining slices into slabs, more information of a whole mass, which usually
spans several slices, is used and its appearance becomes more similar to
a 2D mammogram. In this study we investigate the effect of using slabs
of different sizes on the performance of our CAD system. For validation
we use a dataset of 63 tomosynthesis cases (245 volumes) consisting of 42
normal cases (163 volumes) and 21 abnormal cases (82 volumes) with a
total of 47 malignant masses and architectural distortions. The volumes
are acquired with a tomosynthesis system from Sectra and are recon-
structed into 0.3 cm thick slices. Results show that performance of our
CAD system increases significantly when slices are combined into larger
slabs. Best performance is obtained when a slab thickness of 1.5 cm (5
slices) is used, which is significantly higher than using slabs of a single
slice, two slices and all slices.
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1 Background

A limitation of 2D projection mammography is that superimposition of nor-
mal tissue can falsely be seen as a lesion and true lesions can get obscured by
overlying breast tissue. Digital breast tomosynthesis (DBT) seems a promising
modality to overcome these problems, by reconstructing a 3D volume of the
breast from several low dose, limited angle x-ray projections. CAD systems for
detecting masses in DBT are being developed to aid radiologists. Singh et al. [1]
developed a mass detection system that detects suspicious locations in the pro-
jection images and projects them back into the volume to obtain 3D locations of
mass candidates. Subsequently a featuresless approach is used on reconstructed
slices and slabs of these 3D locations, to reduce false positives (FP). Reiser et
al. [2] chose not to use the reconstructed data, and developed a CAD system
where initial mass candidate detection and feature analysis for FP reduction, is
done directly on the projection images. Another approach is taken by Chan et
al. [3] who combine information from both the reconstructed volume and the
projection images by merging results from their 2D and 3D CAD systems.

Our approach differs from the systems above in that we aim at making a
system that only uses reconstructed volumes and does not use the projection
images. The reason herefore is twofold: first it is expected that manufacturers
of tomosynthesis systems will not store the individual projection images, but
only the reconstructed volumes. Second, for some tomosynthesis systems the
projection data is unsuitable for direct interpretation, due to the acquisition
method of the system (like for the scanning-multislit system used in this study).
Another difference of our approach is that instead of using the limited amount
of available tomo data to train the detection algorithm, we use our existing 2D
mass detection algorithm that was trained on a large database of screen-film
mammography (SFM) images. It is well known that a CAD system improves
when it is trained with a larger database. However tomosynthesis is relatively
new and no large database of cases is available yet. Kallenberg et al. [4] showed
that for full-field digital mammography (FFDM), using a CAD system that was
trained on a large SFM database outperformed a CAD system that was trained
on a smaller FFDM database. Because our tomosynthesis database is very small
(21 abnormal and 42 normal cases) and we have a very large SFM database (636
abnormal and 3262 normal cases), we assume that it is also a good approach
to use a CAD system that was trained on this large SFM database, to detect
masses in DBT. In this study we developed such a system.

Although in-plane resolution in tomosynthesis is comparable to 2D mammog-
raphy, resolution in the z direction is low due to the small angle that is used to
acquire the projection images. A reconstructed slice usually is about 1 to 3 mm
thick (depending on the tomosynthesis system and reconstruction parameters).
A reconstructed tomosynthesis volume can therefore be seen as a stack of 2D
mammograms and an obvious approach is to apply the 2D CAD system to each
individual slice of the reconstructed volume. However most masses are larger
than 3 mm in diameter and will therefore span several slices. By combining sev-
eral slices into a larger slab, more information of the whole mass is used and its
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appearance might become more similar to a 2D mammogram. In this study we
investigate the effect of using slabs of different sizes on the performance of our
CAD system.

2 Method

2.1 CAD System

Our CAD system for mass detection in reconstructed tomosynthesis volumes is
based on a previously developed system for 2D screen-film mammograms. This
system consists of three stages: a preprocessing stage, an initial detection stage
and a false positive reduction stage. In the preprocessing stage a mammogram
is downsampled to a resolution of 0.2 x 0.2 mm and segmented into three areas:
breast tissue, pectoral muscle and background [5]. Candidate mass regions are
detected in the second stage as described in [6,7]. In this stage five features are
computed that measure the presence of a stellate pattern and central mass in
each location of the mammogram. An ensemble of five neural networks (trained
on a small separate dataset of 302 images) then assigns a likelihood score to
each location, resulting in a likelihood image. This image is smoothed and local
maxima are selected as locations of interest. Finally a candidate mass region is
segmented for each location of interest by using a segmentation method based
on dynamic programming [8]. In the third stage a set of 31 features is computed
for each segmented region. This feature set contains the five features from the
initial detection stage, the maximum and mean likelihood score of the region,
compactness, region size, pectoral overlap, 2 linear texture features, 2 border
features and several local context, location and contrast features [9,10]. A sec-
ond ensemble of five neural networks is used to assign a malignancy score to
each region. These networks are trained on a large screen-film database of 636
abnormal cases (2156 images) and 3262 normal cases (9688 images).

In order to make 3D DBT data suitable for a 2D SFM CAD system, we
developed a method that converts a reconstructed DBT volume into a series
of slabs with an SFM-like representation. A slab can simply be generated by
computing the mean voxel value per column of several adjacent slices (Eq. 1).
Because voxel values in our reconstructed DBT volumes represent an estimation
of the attenuation coefficient (scaled with a constant) at that location, voxel
values in a slab now represent the attenuation coefficient of a thicker piece of
tissue.

μ̄(x, y, z′) =
1
N

z′+N−1∑
z=z′

μ(x, y, z) (1)

Where μ̄(x, y, z′) is the voxel value of a slab at location (x, y, z′), μ(x, y, z) the
voxel value at location (x, y, z) in the DBT volume and N the number of slices
per slab. We compute overlapping slabs and construct each slab from the same
amount of slices by letting z′ run from 0 to the number of slices of the volume
−N (see Fig 1). In this study slab size is varied from 1 to 8 slices (0.3 to 2.4 cm)
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Fig. 1. Schematic drawing of generated slabs of 2 slices (left) and 3 slices (right) of a
volume of 6 slices

and also a large slab of all slices of a volume is constructed, which on average is
20 slices (6.0 cm) thick, depending on the thickness of the breast.

Subsequently slabs are converted into an SFM-like representation by using
the method described by Kallenberg et al. [4]. This method converts raw FFDM
images, where pixel values are linearly related to x-ray exposure (E), into SFM-
like images where pixel values represent optical density (od(E)), by applying the
characteristic curve:

od(E) = odmin +
odmax

1 + (E
s )−g

(2)

Parameters g, s, odmin and odmax respectively represent the gradient and speed
of the film, and the minimum and maximum of the curve. The method estimates
parameter s from an image at hand by mimicking the automatic exposure control
of an SFM system. Voxel values of the tomosynthesis slabs represent attenuation
coefficients (μ) and are converted into exposure (E) first, by applying Beer-
Lambert law:

E = E0 · e−μ·d (3)

Where E0 is the incident exposure and d the tissue thickness. Fig 2, 3, 4 and
5 show an example of an original reconstructed tomosynthesis slice (downscaled
to a resolution of 0.2 x 0.2 mm) and the converted SFM-like slab of 5 slices.

The SFM-like slabs are used as input to the CAD system described above,
resulting in a set of suspicious regions per slab. In order to count multiple findings
of the same false positive in adjacent (overlapping) slabs only once and give a
single malignancy score to each true positive that was detected in multiple slabs,
detection results are merged. For simplicity, depth information (i.e. z-location
of a lesion) was not used in this study and overlapping regions of all slabs are
merged into a single set of 2D regions per volume. Two regions in different slabs
are marked as overlapping when the (2D) center of one region lies in the other.
Overlapping regions are merged by keeping the one with the highest malignancy
score and discarding the others.

2.2 Validation

For validation we use a dataset of 63 tomosynthesis cases (245 volumes) consist-
ing of 42 normal cases (163 volumes) and 21 abnormal cases (82 volumes) with
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Fig. 2. Original reconstructed tomosyn-
thesis slice, downscaled to a resolution of
0.2 x 0.2 mm. Pixel values represent an
estimation of the attenuation coefficients.

Fig. 3. Transformed SFM-like slab of 5
slices. Pixel values represent an estima-
tion of optical density.

Fig. 4. Magnification of the mass in the
tomosynthesis slice of Fig 2

Fig. 5. Magnification of the mass in the
SFM-like slab of 5 slices of Fig 3
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a total of 47 malignant masses and architectural distortions. The volumes are
acquired with a Sectra tomosynthesis system that is equipped with a photon-
counting scanning-multislit detector. The system uses a tomo angle of 12 degrees
(±6) and reconstructs 3 mm thick slices at an in-plane resolution of 0.1 x 0.1
mm. All volumes are reconstructed by means of a stochastic model and the con-
vex algorithm for maximum likelihood estimation of the attenuation parameters
of the voxels. No postprocessing is used. All lesions are annotated with a contour
in the slice where it is most clearly visible.

In this study we carried out a total of 9 experiments, one for each different
slab size of 1 to 8 slices and all slices together. In each experiment each volume in
the dataset is transformed into a volume of (overlapping) SFM-like slabs of the
slab size used in that particular experiment. Subsequently our CAD algorithm
is applied to the slabs and the detected regions are merged as described above.
An FROC curve is calculated for each experiment to measure performance.

A malignant lesion is counted as a true positive when the CAD system detects
a region with its center of mass inside the annotated region of the lesion (in 2D).
All other detected CAD regions that do not hit an annotated lesion are counted
as false positives. FROC curves are calculated by varying a threshold on the
malignancy scores of detected regions. To obtain a single performance measure
for each slab size experiment we compute the mean sensitivity in the range of
0.05 to 2.0 false positives per volume, S. To avoid domination of performance at
high false positive rates, the mean is calculated on a logarithmic scale.

Significance of the obtained performance differences between the slab sizes is
computed by using the bootstrap method. Cases are sampled with replacement
to construct a 1000 new sets of cases, where the total number of cases of a
set is kept equal to the original set. For each new set, FROC curves and mean
sensitivity S is calculated for all different slab size experiments. The difference
in mean sensitivity ΔS of two different slab size experiments is calculated for
each of the 1000 new sets and p-values are defined as the fraction of ΔS values
that are negative or zero. Performance differences are considered significant if
p < 0.05.

3 Results

Results of slab size on mass detection performance are shown in Fig. 6 where
mean sensitivity S is plotted as a function of slab thickness. Results show that
performance increases when slabs of more than 1 slice are used upto a slab
thickness of 1.5 cm. When more slices are added performance starts to decrease.
All slab sizes between 2 and 8 slices (0.6 and 2.4 cm) perform significantly better
than a single slice. The best performance is acquired with slabs of 5 slices (1.5
cm) which is significantly better (p < 0.02) than performance of slabs of a single
slice, 2 slices and all slices. Fig. 7 shows the FROC curves (averaged over all
bootstraps) for slabs of 1, 5 and all slices.
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4 Discussion

Results show that the performance of our CAD system increases when slices are
combined into larger slabs. Best performance is obtained when a slab thickness
of 1.5 cm (5 slices) is used, which is significantly higher than using slabs of a
single slice, two slices and all slices. An explanation for this result can be found
in the fact that most masses are larger than 3 mm in diameter and will therefore
span several slices. By combining slices, more information of the whole mass is
used and its appearance becomes more similar to a 2D mammogram (but with-
out overlapping normal tissue). Features extracted from these slabs resemble the
features our SFM CAD system was trained on. In the future other slab construc-
tions will be investigated e.g. one where slab thickness is related to the diameter
of the initial detected lesion. Other region merging strategies will also be investi-
gated. Generating thicker slabs by averaging the individual reconstructed slices,
will also make the slabs less sensitive to noise and reconstruction artifacts that
are present in the individual slices. We therefore assume that our method will
also be applicable to volumes generated with other reconstruction algorithms
that calculate an estimation of the attenuation coefficient of the voxels. In this
study our CAD system only detects masses in the x-y plane, by merging over-
lapping regions found in the slabs. Therefore, in theory it is possible that a mass
is detected by a very suspicious FP region found below or above the true lesion,
however we can argue that this is a highly unlikely event, in particular at the
low false positive rates considered in this study. 3D localization of suspicious
regions is however being developed. Furthermore visual inspection of the indi-
vidual reconstructed tomosynthesis slices suggest that more improvement can be
gained by making more use of spiculation of masses, which is often very clearly
visible in individual tomosynthesis slices. This is a topic of interest in future
developments.



504 G. van Schie et al.

Acknowledgments. This work has been funded by the EU HighReX project
within the Sixth Framework Programme (FP6).

References

1. Singh, S., Tourassi, G.D., Baker, J.A., Samei, E., Lo, J.Y.: Automated breast mass
detection in 3D reconstructed tomosynthesis volumes: a featureless approach. Med.
Phys. 35(8), 3626–3636 (2008)

2. Reiser, I., Nishikawa, R.M., Giger, M.L., Wu, T., Rafferty, E.A., Moore, R., Kopans,
D.B.: Computerized mass detection for digital breast tomosynthesis directly from
the projection images. Med. Phys. 33(2), 482–491 (2006)

3. Chan, H.P., Wei, J., Zhang, Y., Helvie, M.A., Moore, R.H., Sahiner, B., Hadji-
iski, L., Kopans, D.B.: Computer-aided detection of masses in digital tomosynthe-
sis mammography: comparison of three approaches. Med. Phys. 35(9), 4087–4095
(2008)

4. Kallenberg, M., Karssemeijer, N.: Computer-aided detection of masses in full-field
digital mammography using screen-film mammograms for training. Phys. Med.
Biol. 53(23), 6879–6891 (2008)

5. Karssemeijer, N.: Automated classification of parenchymal patterns in mammo-
grams. Phys. Med. Biol. 43(2), 365–378 (1998)

6. Karssemeijer, N., Te Brake, G.M.: Detection of stellate distortions in mammo-
grams. IEEE Trans Med. Imaging 15(5), 611–619 (1996)

7. te Brake, G.M., Karssemeijer, N.: Single and multiscale detection of masses in
digital mammograms. IEEE Trans Med. Imaging 18(7), 628–639 (1999)

8. Timp, S., Karssemeijer, N.: A new 2D segmentation method based on dy-
namic programming applied to computer aided detection in mammography. Med.
Phys. 31(5), 958–971 (2004)

9. te Brake, G.M., Karssemeijer, N., Hendriks, J.H.: An automatic method to discrim-
inate malignant masses from normal tissue in digital mammograms. Phys. Med.
Biol. 45(10), 2843–2857 (2000)

10. Hupse, R., Karssemeijer, N.: Use of normal tissue context in computer-aided de-
tection of masses in mammograms. IEEE Trans Med. Imaging 28(12), 2033–2041
(2009)



 

J. Martí et al. (Eds.): IWDM 2010, LNCS 6136, pp. 505–512, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Synthesising Malignant Breast Masses in Normal 
Mammograms 

Michael Berks1, Chris Taylor1, Rumana Rahim2, David Barbosa da Silva3,  
Caroline Boggis4, and Susan Astley1 

1 Imaging Science and Biomedical Engineeering, University of Manchester, Oxford Road, 
Manchester, M13 9PT, UK  

2 Department of Clinical Radiology, University of Manchester, Manchester, UK  
3 University of Manchester Medical School, Stopford Building, Oxford Road, 

Manchester M13 9PT, UK 
4 Nightingale Breast Centre and Genesis Prevention Centre,  

University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK 
michael.berks@manchester.ac.uk 

Abstract. Using mammograms in which signs of breast cancer have been syn-
thesised overcomes the problem of obtaining a sufficiently large volume of real 
data with known ground truth for training and test purposes. This paper de-
scribes a fully automated method for generating synthetic spiculated masses. 
Statistical methods are used to model the appearance and location of a training 
set of real masses and their effect on surrounding breast tissue. The models are 
then used to synthesise the appearance of a malignant mass in an otherwise 
normal mammogram.  By virtue of using generative statistical models, the syn-
thesis process can be fully automated. In an observer study in which 10 expert 
mammogram readers attempted to distinguish between synthetic masses gener-
ated by the method and real masses, we report an area Az = 0.70±0.09 under the 
receiver operating characteristic. 

Keywords: Mammography, breast cancer, breast mass, lesion synthesis, statis-
tical models, DT-CWT. 

1   Background 

Large sets of digital mammograms displaying a wide range of abnormalities associ-
ated with breast cancer are essential for successfully training and assessing radiolo-
gists, validating applications such as automatic detection software, and evaluating the 
performance of visual display units. Synthesising such abnormalities overcomes the 
problems of obtaining a sufficient volume of real data with known ground truth. 

Spiculated masses are one of the most frequent mammographic signs of malignancy, 
but despite previous attempts, have yet to be synthesised successfully [1-3]. Of the pre-
vious work in which spiculated masses have been synthesised, only Saunders et al. [3] 
and Caulkin et al. [1] describe a quantitative evaluation of masses they have generated. 
In both cases an observer study was implemented in which expert radiologists assigned 
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a realism rating to randomised sets of real and synthetic masses. The ability of radiolo-
gists to identify synthetic masses was quantified by fitting an ROC curve to their re-
sponses and computing the area-under-curve (Az). Caulkin et al. reported an Az of 
0.69±0.13 whilst Saunders et al. reported an Az of 0.65±0.07. This suggests radiologists 
were able to identify synthetic masses generated by both methods at a rate significantly 
better than chance. 

In this paper, we describe a novel method for generating malignant spiculated 
masses in mammograms previously displaying no sign of disease, and present the 
results of an observer study to evaluate the method. Finally, we discuss the advan-
tages of our approach over previous synthesis methods. 

2   Data and Methods 

2.1   Mammogram Data 

Our method for synthesising malignant mammographic masses is based on construct-
ing statistical models that describe the appearance of a set of real training data. It is 
important the training data contains as wider variation of mass appearance as possible, 
whilst being a representative sample of the global screening population. 

We used a sequential set of mammograms containing a biopsy proven-malignancy, 
drawn from cases detected during NHS screening at Nightingale Breast Centre, Uni-
versity Hospital of South Manchester and digitized using a Vidar CADPRO scanner 
at a resolution of 40μm. 

Within these data, a set of 101 malignant masses were identified and annotated by 
a consultant breast radiologist. Where there were two or more mammographic views 
of a single mass, one view was randomly selected for inclusion in the training data. 
These masses varied in size from a minimum of ~16mm2 to a maximum of ~900mm2 
(mean 176mm2). As would be expected of a set of malignant masses, the majority had 
irregular borders and displayed signs of spiculations, with the number and length of 
spicules increasing for larger, more developed masses. Fig. 1 shows three real masses 
from our training data. 

 

Fig. 1. Three real mammographic masses from our training data 
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2.2   Overview of Modelling Method 

Fig. 2 depicts a flow chart of the modelling steps we have applied to our set of train-
ing masses, and subsequently the synthesis steps required to simulate a new malignant 
mass in an otherwise normal mammogram. 

 

Fig. 2. Flow chart summarising the process for modelling a set of malignant masses and subse-
quently using the models to generate synthetic masses in normal mammograms 

 

5. Build model 
of mass  

background 
appearance 

1. Obtain set of mammograms containing malignant  
mammographic masses annotated by a breast radiologist 

3. Separate each mass region into masses and 
mass backgrounds 

4. Build model 
of mass  

appearance 

2. Extract region containing each  
mammographic mass 

6. Build model 
of mass  
location 

7. Segment the breast and sample a location within the breast at 
which to generate a mass. Extract a region with the sample 

location at its centre 

Start with a normal mammogram, labelled as either MLO or 
CC, left or right breast 

8. Modify the appearance of the normal region using the model of 
mass background appearance 

9. Conditionally sample the mass model to generate a new  
synthetic mass and add to the modified region 
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We have previously described how the central density of each mass in the training 
data can be separated from surrounding breast tissue (boxes 2 and 3  in Fig. 2.) and 
how a model can be constructed to optimally fit the set of separated central densities 
(box 4 in Fig. 2.) [4]. 

In summary, separation is achieved in each region by estimating the underlying 
background grey-levels in the area occupied by the mass, using a thin-plate spline 
interpolant. High frequency components are added to the initial estimates, before the 
background is subtracted from the original region to obtain the separated central den-
sity. A principal component based statistical appearance model [5], is fitted to encap-
sulate the variation in shape, size and texture in the set of separated densities. A 
unique representation of a central density can be synthesised by randomly sampling 
from the probability distribution encoded in the model. 

In the following sections we describe the remaining steps in our synthesis method. 

2.3   Synthesising Mass Background Appearance 

Having separated the central density from a real mass region, we are left with an im-
age we label the mass background. The background contains all other breast tissue in 
the region, including any spicules associated with the mass. In many backgrounds the 
presence of a mass distorts the surrounding breast tissue.  

Our aim is to model this distortion so that given a normal region we can modify the 
region in way that not only generates mass spicules, but also accounts for how struc-
tures in the region would be altered by the presence of a mass. To work with the com-
plex textures and structures present in mammographic tissue, we use the dual-tree 
complex wavelet transform (DT-CWT) [6] to decompose image regions into sub-
bands localised in scale and orientation. We apply the following three stage process to 
synthesise mass background appearance in a normal region: 

1. Compute the DT-CWT of a normal region 
2. Modify coefficients in the decomposition to match the properties of DT-

CWT coefficients in real mass backgrounds 
3. Invert the modified DT-CWT to reconstruct a region in which mass back-

ground appearance has been synthesised 

For the masses evaluated in this paper, stage 2 of this process was achieved by di-
rectly transferring DT-CWT coefficients from a real mass background (randomly 
selected from the training data) into the transform of a normal region. In the top row 
of Fig. 3 we depict three normal mammographic regions and in the second row show 
the result of modifying each region to display mass background appearance. 

Further ways of achieving stage 2 are described elsewhere in this volume [7]. 

2.4   Combining Masses and Mass Backgrounds 

Using our earlier work [4] and the method described in the section 2.3, we can syn-
thesise both the central density of a mammographic mass and the distorted appearance 
of breast tissue displayed in a mass background. The two can be added to complete 
the appearance malignant mass. However, the size and shape of the central density 
must match the appearance of the synthesised background. We achieve this by condi-
tionally sampling the central density given the properties of the real mass used as a  
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Fig. 3. Top row: three normal mammogram regions; 2nd row: modified regions displaying mass 
background appearance; 3rd row: central densities conditionally sampled to match the mass 
backgrounds; bottom row: complete synthetic mass regions 
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template when synthesising the mass background. In the third row of Fig. 3 we show 
three central densities sampled to match each of the synthetic mass backgrounds dis-
played in the row above. As a result of adding each central density to its mass back-
ground, we generate a complete mass region, as depicted in the bottom row of Fig. 3. 

2.5   Modelling Mass Location 

Given a method for synthesising the appearance of malignant mammographic mass in 
a normal region, it remains to show how normal regions can be automatically selected 
from whole mammograms. 

To achieve this, we construct a probabilistic model of mass location that extends an 
earlier method proposed by Caulkin [1]. 

First, we apply an automatic segmentation algorithm to locate the skin-air bound-
ary of the breast and for MLO views the pectoral muscle, in each mammogram in our 
dataset. The segmentations are then used to define a common set of landmarks points 
to describe the breast shape in each MLO or CC mammogram. We then build point 
distribution models (PDM) [8] to encapsulate the variation in breast shape and thus 
define a mean shape to act as reference frame for all mammograms. 

Given a mean breast shape for both MLO and CC mammograms, and a training set 
of mammograms containing (annotated) masses, Caulkin’s method [1] can be applied 
to construct probabilistic maps of mass location. This involves warping the breast 
shape in each mammogram containing a mass to the appropriate CC/MLO mean 
shape, and subsequently computing the location of each mass relative to the mean 
breast shape. This populates the mean shapes with a set of mass centres (see Fig. 4. 
(a) and (b)).  

A probability density can then be computed to describe the spatial distribution of 
mass centres by placing an adaptively scaled Gaussian kernel on each centre. The 
probability of finding a mass at a given location in the mean breast shape can then be 
computed by summing the contribution from each of the Gaussian kernels (see Fig. 4. 
(c) and (d)). 

 

Fig. 4. Mean breast shape with mass centres marked a) MLO b) CC; probability density of 
mass location c) MLO d) CC 

 

(a) (b) (c) (d) 
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To sample a location at which to synthesise a mass in a normal mammogram, we 
again warp the breast shape to the appropriate MLO/CC mean shape. A location can 
then be sampled from the model distribution. Reversing the warp then transforms the 
sampled location so that its coordinates are relative to the original breast shape. 

However, the probability distributions extend to the edge of the skin-air boundary 
in the mean breast shapes. If a location were sampled here, the synthetic mass would 
lie over the skin-air boundary and would thus appear unrealistic. Our solution is to 
mask off (i.e. set to zero) the probability density at some radius inside the skin-air 
boundary. The size of the masking radius is adapted to the size of the lesion to be 
sampled (it is assumed this is known as part of the synthesis method) to ensure that no 
matter how large a lesion is it will not overlap the skin-air boundary. 

3   Results 

To assess whether the models consistently generated synthetic masses of realistic 
appearance, we implemented an observer study involving ten expert mammogram 
readers from the Nightingale Breast Centre. During the study a reader was shown a 
randomised set of 30 real and 30 synthetic masses, and asked to rate each mass on a 
scale varying from definitely real to definitely synthetic. The real masses were ran-
domly selected from the training data, whilst the synthetic masses were generated 
using the method described in section 2. The readers completed the task individually 
and independently, and were unaware of the exact number of real or synthetic masses 
in the test set.  

We fitted ROC curves to the reader ratings and computed a mean Az of 0.70±0.09. 
This shows that the synthetic masses were identified at a rate significantly better than 
chance and implied that a proportion of synthetic masses generated from our method 
can be distinguished from real masses. In addition to the ratings assigned to each 
mass, the readers were asked to provide feedback on masses they had identified as 
synthetic. This feedback suggested that in the majority of masses correctly identified 
as synthetic, failures within the mass background synthesis algorithm were responsi-
ble. Further details on this study, including a full breakdown of individual Az scores 
are given in a recent publication [9]. 

4   Discussion 

Like previous methods, we have yet to generate malignant masses that are indistin-
guishable from real examples to expert mammogram readers. However we note that 
of the malignant masses that have been quantitatively evaluated [1, 3], ours are the 
only ones that have been generated fully automatically. In addition, we have made an 
attempt to explicitly model the interaction between a mass, spicules associated with 
the mass and surrounding breast tissue. This crucial aspect of mass appearance was 
not addressed in previous methods that generate masses and spicules independently of 
the background they are added to [1-3]. Synthesising the distortion of normal breast 
tissue due to the presence of a mass is a particularly challenging task, and one our 
method has not yet solved. However, we have indentified improvements to the 
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method to overcome these limitations. In particular, rather than copying DT-CWT 
coefficients directly from a real mass background (as described in section 2.3), we 
propose sampling coefficients from texture models trained on the set of real mass 
backgrounds. These methods are the subject of ongoing research [7]. 
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Abstract. 21158 screening mammograms were obtained, 10024 acquired using 
full field digital mammography (FFDM) and 11134 acquired using film-screen 
mammography. For each mammogram, data were collected on recall for further 
assessment due to detection of microcalcification, use of needle biopsy, and pres-
ence of microcalcifications in biopsy specimens. 61.5% of women who had a core 
biopsy following digital mammography had microcalcifications detected, com-
pared with 65.8% for analogue mammography but this difference was not signifi-
cant (p=0.71). Rates of detection of microcalcifications in women screened by the 
two methods were similar.  It was also found that the recall rate for assessment for 
women screened digitally (6.1%) was significantly higher than the recall rate for 
those screened by analogue mammography (3.3%), 95% confidence interval 2.2% 
- 3.4%.  Screening using digital mammography leads to a higher recall rate for as-
sessment than analogue mammography, although similar rates of detection of mi-
crocalcifications occur with both imaging modalities.  

Keywords: breast screening, cancer detection, mammographic features, recall 
rates, digital mammography. 

1   Introduction 

It has been reported that full field digital mammography (FFDM) results in fewer 
recalls for assessment than conventional film-screen mammography [1], and the bene-
fits for certain groups of women (such as those with dense breasts) has been demon-
strated in the DMIST trial [2]. Clearly, reduced recall is advantageous provided that 
the detection of significant abnormalities is not compromised. Whilst we would ex-
pect that there would be significantly fewer recalls for technical reasons, the effect of 
the introduction of FFDM on recalls for mammographic abnormality in women from 
50-65 is harder to predict.  
                                                           
* Corresponding author. 
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Our breast screening centre was in the process of changing from analogue (film) 
mammography to digital mammography, so it was possible to directly compare the 
two methods using the same set of film readers who were reading both analogue and 
digital mammograms during the transition period. 

Of particular interest is the detection of microcalcifications as they are often pre-
sent at an early stage of the disease, and they are seen in the majority of cancers de-
tected by mammography.  

The aim of this study was to determine whether digital mammography led to a 
higher recall rate than analogue mammography, and then to compare the detection of 
microcalcifications in women screened by the two modalities. 

2   Materials and Methods 

21,158 screening mammograms were included in this study. They were taken between 
November 2006 and March 2009.  10,024 of the mammograms were digital mammo-
grams taken at a static breast centre (The Nightingale Breast Centre in South Man-
chester) and 11,134 of the mammograms were analogue (film-screen) mammograms 
obtained from a mobile unit which travelled to different areas of the community in 
Greater Manchester in order to offer easy access to screening. All the mammograms 
were read in one reading room by the same group of expert readers.  Although the 
women in the study were screened by different methods of mammography and in 
different locations it was expected that there would be no significant differences be-
tween the population that was screened at the static centre and that which was 
screened by the mobile unit. 

Data were collected from the screening database and from patient records when 
necessary. The data collected included: the number of women screened by digital 
mammography at the Nightingale Centre between November 2006 and March 2009; 
the number of women screened by analogue mammography in a mobile unit between 
November 2006 and March 2009; the number of women recalled for mammographic 
abnormality in each location; and whether a core biopsy had been performed.  160 
patients in the study group had received a stereotactic core biopsy; the results of these 
biopsies were obtained to determine whether microcalcifications had been found.  

The proportion of digital mammograms with detected microcalcifications was com-
pared with the proportion of analogue mammograms with detected microcalcifications. 
The results of the stereotactic core biopsies taken from women who received digital 
mammography were also compared with the results of the stereotactic core biopsies 
taken from women who were screened using analogue mammography. The proportion of 
patients who were screened by digital mammography and recalled because of a mammo-
graphic abnormality was compared with the proportion of patients who were screened by 
analogue mammography and also recalled for further views. Chi-square tests and 95% 
confidence intervals were used to test differences between the two groups. 

3   Results 

Out of the 10,024 women undergoing digital mammography that were included in this 
study, 608 had been recalled for assessment because of mammographic abnormality 
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and 83 women underwent a stereo core biopsy, with 48 of these biopsies leading to 
the detection of microcalcifications. Of the remaining 11,134 women who had ana-
logue mammograms 362 had been recalled, with 77 receiving a stereo core biopsy, of 
which 48 biopsies also showed microcalcifications (Table 1).  

Table 1. Recalls and core biopsies in women screened with digital and analogue mammogra-
phy at a static centre and mobile unit between November 2006 and March 2009 

Number of Women Digital Mammography Analogue Mammography 

Screened 10,024 11,134 
Recalled 608 362  
Stereo core biopsy 83 77 
Microcalcifications detected 48 48 

It is evident from figure 1 that the proportion of women recalled for review in clinic 
following digital mammography at 6.1% was higher than the proportion recalled for 
review following analogue mammography at 3.3%,a difference of 2.8% with a 95% 
confidence interval of 2.2% - 3.4%.. This was a significant difference (p=0.000).  

For women recalled by analogue mammography there was a greater chance that 
they would undergo a stereo core biopsy, with 21.27% of those recalled from the 
mobile unit having this investigation. In contrast, only 13.65% of those recalled fol-
lowing digital mammography underwent a stereo core biopsy.  

61.5% of all women that had received a stereo core biopsy following digital mam-
mography had microcalcifications present, whereas 65.8% of all patients that had 
received a stereo core biopsy following analogue mammography had microcalcifica-
tions present. This was not statistically significant (p=0.712). 

 

Fig. 1. Percentage of women recalled by digital and analogue mammography 

4   Discussion 

One of the advantages of digital mammography over analogue mammography should 
be a reduction in overall recall rate, since the radiographers acquiring the mammograms 
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are able to immediately identify images which do not meet the exacting technical stan-
dards required for detection and diagnosis. Any technically inadequate mammograms 
can thus be repeated without recalling the woman. However, our results show that any 
reduction in recall rate for technical reasons is offset by an increase in the rate of recall 
for assessment for mammographic abnormality. We found almost double the number of 
women being recalled for review with digital mammography than were recalled for 
review after screen-film mammography. Published data on recall rates with digital 
mammography shows a wide range of findings. In a study in London in 2006-2007, no 
significant difference in recall rates was found (3.2% with digital vs 3.4% with ana-
logue)[3]. These authors also undertook a meta-analysis of data from eight studies and 
this confirmed that there was no significant difference either in recall or detection rate. 

Many authors have identified a relationship between recall rate and cancer detec-
tion [4,5]. Worldwide, mammographic screening recall rates vary widely depending 
on the way in which the screening programme is operated, including age at which 
screening commences and screening interval. In the UK, the lower age range is cur-
rently being extended to 47, although at the time this study started, women were in-
vited from the age of 50. The screening interval also plays a part; in the UK this is 3 
years. Other factors include number of views, number and experience of readers. 
These factors make comparison between screening programmes difficult, but it is 
worth noting that the recall rates for both analogue and digital mammography are both 
well within the normal range for screening programmes. In the UK in 2007-8, the 
overall recall rate was 4.2%, a decrease of 0.3% from the previous year [6]. During 
both these years, the vast majority of mammograms acquired were analogue. It is 
apparent that the recall rate with analogue mammography in our study was slightly 
lower than the national average. This could be a result of the fact that the Nightingale 
Centre is one of the busiest screening centres in the UK, and has exceptional breadth 
and depth of reading expertise. All mammograms are double read with either a con-
sultant radiologist or a breast physician as part of the reading team. If the readers 
score a mammogram as being equivocal, it is sent for arbitration, usually by another 
pair of readers. Another reason for the recall rate in our study being lower than the 
national average could be that the proportion of incident and prevalent round screens 
may not have been the same.  

It should be noted that digital mammography is still in its infancy in the UK, and 
that the increase in recall rate may only be a temporary effect. This can be verified by 
observing the recall rate for digital mammography over a period of time. 

In the UK, approximately 1 in 6 women who have an abnormality detected during 
routine breast screening are found to have breast cancer. Of these, about a fifth have 
ductal carcinoma in situ (DCIS), with 29% of these cases being treated by mastec-
tomy [6].  

Our expectation was that the advantages of digital mammography would translate 
into having a greater rate of microcalcification detection in comparison to analogue 
mammography. This was not the case in this study. We found no significant differ-
ence between the rate of detection of microcalcifications between digital and analogue 
mammography. The results of this study were inconsistent with previous studies 
which showed a better detection rate of microcalcifications using digital mammogra-
phy in comparison with analogue mammography [7,8].  The results of the study ap-
pear to be more consistent with the results revealed in a diagnostic setting which also 
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showed digital and analogue mammography to be equivalent in relation to the detec-
tion of microcalcifications [9,10].  Our results are also consistent with those of the 
Digital Mammographic Imaging Screening Trial (DMIST) [2] which showed that 
digital mammography and analogue mammography both had a similar screening 
accuracy. 

Acknowledgments. The authors would like to acknowledge the contribution of the 
readers who participated in this study, and of the administrative staff of the Nightin-
gale Breast Centre for their assistance, especially Sue Berry. 
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Abstract. As the number of installed digital breast tomosynthesis (DBT) sys-
tems increases, the need for quality control routines rises. Current work reports 
on our initial experience with a newly developed method for the analysis of DBT 
acquisitions of a homogenous phantom. Both the uniformity of the projection as 
of the reconstruction data is analyzed, together with the in-plane and inter-plane 
noise variations. The approach was tested in 2 different ways: on DBT projection 
and reconstructed data of different vendors and via simulations of potential de-
tector artifacts known from 2D mammography into the projection images of the 
DBT (and followed by reconstruction of the hybrid data). The following poten-
tially disturbing artifacts were observed: localized detector artifacts, modification 
of reconstruction software settings and synchronization issues. Our results indi-
cate that the proposed method could be an easy and reliable way of performing 
constancy checking of DBT systems. 

Keywords: quality control, quality assurance, mammography, digital breast 
tomosynthesis, phantom. 

1   Background 

Digital breast tomosynthesis (DBT) or limited angle tomography for mammography 
is a new and emerging technology for the detection and diagnosis of breast patholo-
gies. This technique reconstructs images of planar sections in the breast while elimi-
nating superimposition of anatomical background structures. Although still largely 
experimental, DBT systems are already being installed for study purposes or for ini-
tial clinical trials. In parallel to this, the first commercially available systems are en-
tering the market. Today the stability of these systems remains largely untested and 
the methods on how to test them efficiently are unknown. The need to develop and 
validate test metrics for this pseudo 3D modality together with the huge size of both 
projection and reconstructed image series, make this a challenging task. In current 
work we report on a selection of methods for performing constancy checks of DBT 
systems. Results of this study will be discussed in the International Breast Phantom 
Group where a more advanced phantom for constancy check is being developed. 
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2   Methods and Materials 

2.1   Evaluation Strategy 

On a daily basis an homogeneous phantom consisting of a 4-cm-thick polymethyl-
methacrylate (PMMA) slab with dimensions large enough to cover the complete  
detector, is imaged twice under clinically relevant exposure settings. This double 
exposure allows to rule out artifacts in the phantom which could be interpreted falsely 
as detector problems and helps substantially in the interpretation of the artifacts via 
this minimal ‘reproducibility’ test. To check for possible angular deviations based on 
the used system setup, one image is taken in CC (cranio-caudal) mode and one in 
MLO (medio-lateral oblique) mode. Often DBT systems can be used for both 2D 
Full-field Digital Mammography (FFDM) and tomosynthesis acquisitions. Because 
there could be a difference in setup between 2D mode and tomosynthesis mode (usage 
of grid, calibration, difference in used spectrum, …), we test a DBT system always in 
DBT mode. If available, both the projection data as well as the reconstruction data are 
being used during the evaluation. A possible pre-exposure which is not part of the 
tomographic series, is not taken into account in present analysis. 

2.1.1   Projection Data 
To find detector related artifacts, only the projection image closest to 0° is analyzed 
for homogeneity using the method described in [2-3] (homogeneity of mean pixel 
value (PV), standard deviation (std. dev.), signal-to-noise-ratio (SNR), variance, 
skewness, kurtosis, minimum PV, maximum PV and median PV). For all other pro-
jections only analysis values of a reference ROI (2x2cm at 6 cm from chest wall side) 
are calculated. Certain DICOM header values (exposure settings, reconstruction re-
lated information, used tomographic angles, ...) are collected and monitored over 
time. 

2.1.2   Reconstruction Data 
The homogeneity of all reconstructed planes (mean PV, std. dev., SNR and variance) 
is calculated using regions-of-interest (ROI) of 2mm x 2mm with a 50% overlap. This 
results in a volumetric homogeneity analysis that can be used for visualization and 
quantification of detector artifacts. The evaluation of this volume is done using three 
different analysis stacks (XY, XZ and YZ). For 6 reference ROIs, parameter chim-
neys are calculated in all reconstructed planes at the same in-plane coordinates to 
identify and follow up the differences in the homogeneity of reconstructed planes 
(inter-plane variations) (Fig cc). Although the in-plane noise power spectrum (NPS) 
would be related directly to the plane-by-plane viewing of DBT reconstructed images 
[4], the use of a co-variance matrix at a reference location may be a more robust esti-
mate of noise given the shift-variant nature of noise in DBT reconstructed images. 
The full-width-half-maximum (FWHM) of the co-variance graph with the half-height 
plane as a reference together with the in-depth NPS in two directions (YZ and XZ), is 
being used to analyze the inter-plane correlation and thus could indicate modifications 
in the used reconstruction algorithm. 
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Fig. 1. Example of 4 parameter chimneys (mean pixel value, SNR, standard deviation and 
variance) at 6 different ROIs for system C. Each chimney gives a color coded indication of the 
deviation of the current plane against the mean of the bottom 5 planes, the mean of the top 5 
planes and the mean throughout the complete volume 

2.2   DBT Systems Used in Current Study 

The proposed method is being tested routinely on three prototype DBT systems  
(Siemens Novation with BTS option, lab setting – system A; Siemens Inspiration with 
BTS option, clinical setting – system B; IMS Giotto with BTS option, clinical setting 
– system C) and one commercially available unit (Hologic Selenia Dimensions, clini-
cal setting – system D). As a proof of concept also a limited number of datasets of 
two other prototype systems were considered (GE Healthcare Senographe Essential 
modified for tomosynthesis investigation, lab setting – system E; Sectra photon count-
ing tomosynthesis prototype, clinical setting – system F).  

2.3   Simulation of Detector Related Artifacts 

Currently it is still not clear if projection data will be available on all DBT systems. 
Certain quality issues however are directly related to the detector and could therefore 
probably most easily be detectable in this type of data. In an attempt to check for the 
influence of detector related artifacts typically seen in 2D mode, on the reconstructed 
volume of homogeneous phantoms, it was tried to simulate these artifacts for one 
system (system B). Masks containing simulations of typical detector artifacts were 
created and multiplied with every projection image of a tomosynthesis series of the 
homogenous phantom. Vendor specific reconstruction software was used to recon-
struct the modified projection images using clinically relevant settings. Subtracting 
two reference planes of the reconstructed volumes of both the original and the modi-
fied projection images, gives an indication of the influence of the simulated artifact 
on the volume homogeneity (Fig. 2). Artifacts that were simulated, included: dead 
pixels, dead rows, vibration lines, blooming, lag ghost and failing dead pixel map 
corrections. 
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Fig. 2. Schematic overview of the artifact simulation routine. (1) original projection data of 
homogeneous phantom; (2) mask containing the artifact ; (3) original projection data multiplied 
with the mask image; (4) and (5) both projection datasets are reconstructed using vendor spe-
cific reconstruction software; (6) a reference plane at 20 mm for both datasets is subtracted to 
investigate the influence of the artifact on the homogeneity. 

3   Results 

We successfully evaluated the following number of datasets per system: system A: 34 
(91 days); system B: 251 (209 days); system C: 12 (6 days); system D: 32 (39 days); 
system E: 2 (1 day) and system F: 2 (1 day). Due to the prototype character of most 
tested DBT systems, several image format transformations were needed before data-
sets of all tested systems could be analyzed and therefore vendors are encouraged to  
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implement DICOM supplement 125 [5] when presenting their final product. For three 
systems (system D, E and F) it was not possible to retrieve the projection data at all. 
In our analysis, we couldn’t see any difference between the results for datasets made 
in CC view and datasets made in MLO view for all tested systems. The proposed 
methods were able to check for the presence of typical detector artifacts (dead pixels, 
dead lines - Fig. 1) and for their influence on the volumetric homogeneity (Fig. 3) 
(system A, visible in all evaluations). For system B, a synchronization issue between 
the exposures and the detector read-outs during a tomographic acquisition was de-
tected (Fig. 4) (2 evaluations) together with an unknown artifact resulting in randomly 
deviating pixels in the reconstruction dataset (5 evaluations). An example of the influ-
ence of simulated lag ghost on the reconstructed dataset can be seen in Fig. 5 (system 
B). The normalized inter-plane covariance measurements were able to find simulated 
modifications in reconstruction settings or reconstructed plane thicknesses (Fig. 6) 
(system A). 

 

Fig. 3. Dead detector column visible in the projection data (left: variance map) and (middle: 
color coded variance deviation) and in the three stacks of the reconstructed data  
(right: variance data) (System A) 

 

Fig. 4. Reference mean PV of all 25 projections indicating a synchronization problem (A) and a 
normal projection dataset (B) (System B) 
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Fig. 5. Example of the influence of simulated ghost on the reconstructed dataset for three  
different levels of ghost (a: 5%; b: 8% and c: 11% reduction of pixel value). (1) modified pro-
jection image at 0° including the ghost; (2) line profile perpendicular to chest wall side; (3) 
subtraction image of reference plane at 20mm. 

 

Fig. 6. Influence of changing reconstruction inter-plane distance (a) and modified 
reconstruction parameters (b) on the normalised inter-plane covariance with half height as the 
reference plane (system A) 
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4   Discussion 

In current work we presented a fast and easy method to perform constancy checking 
of DBT systems. This method could be applied to datasets of all tested systems. Typi-
cal artifacts known from 2D FFDM (both real and simulated), could be detected in 
both the projection and the reconstructed datasets. 

However, by using only a homogeneous phantom, certain DBT specific aspects are 
not taken into account. Due to the angular tube movement and the influence of the 
reconstruction algorithm, potentially missing breast tissue could be an issue. Also the 
spread of artifacts in the Z-direction or the Z-direction sensitivity profile are not ad-
dressed in current method. Therefore recently a more advanced phantom (Agatha 
phantom) has been made in the frame of a new AAPM working group1, established to 
develop and harmonize breast imaging phantoms [6]. A picture of this phantom can 
be seen in Fig. 7. A complete constancy testing protocol could combine the strengths 
of both approaches: as a quick evaluation the method proposed in current paper could 
be used, while for a more detailed evaluation the Agatha phantom could be used. 

 

Fig. 7. Example of the Agatha phantom. This phantom consists out of: (1) phantom positioning 
aid; (2) cuboidal inserts to check for missing breast tissue; (3) low and high contrast spheres to 
check the artifact spread function (ASF) and to measure 3D MTF; (4) in-plane nylon wires to 
check the line object spread function (LOSF); (5) vertical wire to check for SDNR throughout 
the volume; (6) tilted Tungsten wire to check Z-direction sensitivity profile. 
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Abstract. Clinical research has shown that breast cancer risk is strongly
related to characteristic mixture of breast tissues as seen on
mammographic images. We present an automatic mammographic im-
age segmentation approach, which uses a novel texture signature based
methodology, the resultant segmentation can be found useful as a means
of aiding radiologists’ estimation in mammographic risk assessment. The
developed approach consists of four distinct steps: 1) feature extraction
use a stack of small detail annotated mammographic patches, 2) Tabár
mammographic building blocks are modelled as texture signatures, 3)
model selection and reduction is used to remove noise and possible out-
liers, and 4) mammographic image segmentation. Visual assessment in-
dicates good and consistent segmentation results. The MIAS database
was used in a quantitative and qualitative evaluation with respect to
mammographic risk assessment based on both Tabár and Birads risk
categories. We found substantial agreement (κ = 0.7 and 0.75 based on
Tabár and Birads risk categories, respectively) between classification re-
sults and ground truth data. Classification accuracy were 78% and 75%
in Tabár and Birads categories, respectively; 86% and 87% in the corre-
sponding low and high categories for Tabár and Birads, respectively.

Keywords: Tabár, breast segmentation, breast classification, mammog-
raphy, parenchymal patterns.

1 Introduction

Strong evidence has shown that breast cancer risk is closely related to the rel-
ative proportion of the characteristic mixture of breast tissues, referred to as
mammographic parenchymal patterns. Tabár et al. have proposed a mammo-
graphic texture modelling scheme based on mixtures of four building blocks
composing the normal breast anatomy (i.e.; nodular, linear, homogeneous and
radiolucent). Nodular densities mainly corresponds to Terminal Ductal Lobu-
lar Units (TDLU); linear densities correspond to either ducts, fibrous or blood
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vessels; homogeneous densities correspond to fibrous tissues which appears as
bright areas in mammographic images, and could hide the underlying normal
TDLU and ducts as well as their alterations; radiolucent areas are related to
adipose fatty tissues, which appears as dark areas in mammographic images [1].
Under influences of Wolfe’s work [2], Tabár subdivide mammograms into five risk
classes based on the relative proportion of tissue belonging to the proposed four
building blocks. The relative proportion of the four building blocks in different
patterns and their variations are as follows (using the following order [nodu-
lar, linear, homogeneous, radiolucent]): Pattern I [25±10%, 15±5%, 35±17%,
25±14%]; Pattern II/III (Pattern III is similar in composition to Pattern II,
with the retroareolar prominent ducts are associated with periductal fibrosis [1])
[2%, 14%, 2%, 82%]; Pattern IV [49±15%, 19±7%, 15±7%, 17±10%]; and Pat-
tern V [2%, 2%, 89%, 7%]. Figure 1 shows example mammographic risk patterns
with respect to Tabár’s modelling. In mammographic risk assessment, inter and
intra observer variability are introduced due to radiologist’s subjective appraisal
of mammograms. Quantitative defined mammographic risk patterns as described
by Tabár’s modelling suggest the possibility of using an accurate and repeatable
texture based mammographic segmentation technique to automate the mam-
mographic risk assessment, as well as quantification of change of the relative
proportion of different breast tissue patterns can be evaluated [1].

Signatures are effectively 2D histograms statistical approaches based on his-
togram features can be used to encode various image features (e.g. coarseness,
fineness and orientation). Guliato et al. [3] used a signature based on turning
angle function of contour of breast masses to encode features, that characterise
contours roughness and complexity for breast tumour classification. Zwiggelaar
et al. [4] investigated scale-orientation signature for labelling of structures in
images, and to classify pixels into linear structures, blob-like structures or back-
ground texture. A handful of related papers used the same but improved scale-
orientation signature as a means of abnormality detection (e.g. central mass of
spiculated lesions) in digital mammography, and have described signatures as
rich descriptors of the neighbourhood around each image pixel [5]. Signatures
can be used to describe mammographic tissue structures in terms of their density,
size of abnormalities, orientation and thickness of linear structures etc. This is
particularly useful as radiologists often categorised mammographic image pat-
terns for risk assessment, based on mixture of characteristic various in tissue

Fig. 1. Example Tabár’s mammographic risk patterns. From left to right: Patterns I-V,
corresponding from low to high mammographic risk.
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type. In this paper we present a novel texture signature approach for mammo-
graphic image segmentation, and the resultant segmentation were quantitatively
evaluated as a means of mammographic risk classification.

2 Data and Methods

We used the MIAS database [6] which contains 320 available images (file
mdb296rl and mdb295ll are excluded for historical reasons). A total of 643
mammographic patches (199 nodular, 253 linear, 70 homogeneous and 121 ra-
diolucent) were subsampled from randomly selected mammograms by an expert
mammographic screening radiologist. In addition, 98 mammographic patches
were detail annotated. The collection of the patches consists of representa-
tive Tabár’s mammographic building blocks, with respect to mammographic
parenchymal patterns, covering various risk categories.

At the learning stage a stack of small mammographic patches with detailed
annotations were used (regardless of the associated risk class for the original
mammograms) to model mammographic building blocks as described by Tabár’s
modelling. The feature extraction involves three 2D histograms encoding distinct
texture features (e.g. intensity variance, skewness, kurtosis, orientation, elonga-
tion). A circular window (63 pixels in diameter) was used to compute local
texture features. The diameter for the circular window was determined based on
the size of texture features we wanted to capture, and Fourier analysis on the lo-
cal patches. The first part of the texture signature shows a cumulative histogram
based on radial distance to the centre pixel, and grey-level intensity. The signa-
ture’s y-axis represents measurements for the same grey-level intensity, and the
x-axis represents measurements for the same radial distance to the centre pixel.
The second part of the texture signature shows a cumulative histogram based
on angle between the tangent at segment, and the y-axis of the circular window
and grey-level intensity. The signature’s y-axis represents measurements for the
same grey-level intensity, and the x-axis represents measurements for the same
angle between the tangent at segment, and the y-axis of the circular window.
The third part of the texture signature is a modified co-occurrence matrix with
d = 1 and θ = 0 ◦. In this case the signature’s x-axis and y-axis both represent
grey-level information, and the absolute value of intensity difference is accumu-
lated. This part of the texture signature represents not only frequency of some
grey-level configuration, but also the magnitude of the variance of two pixels;
the configuration varies rapidly in fine textures, and slowly in coarse textures.
Finally, the three individual signatures are combined to form the final texture
signature. Figure 2 shows example 2D histograms as signatures and final texture
signatures. From a visualisation point of view, the texture signature can be con-
sidered as a colour image, and the three 2D histograms are the RGB channels
of the image. We used signature size of 25 × 25, this parameter setting was
thoroughly studied via algorithm validation, chosen to capture sufficient texture
features, and to keep feature dimensionality low.

K-means clustering was used to group similar texture signatures in the fea-
ture space as a means of establishing texture models. We generated 120 cluster
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Fig. 2. Example texture signatures for three different texture images, from left to right
showing: texture image, texture signature part I - III, and combined texture signature

centres, each tissue class was represented by 30 models. The initial number of
cluster centres was determined based on visual appearances of mammographic
building blocks, and was over-estimated to facilitate the model selection and
reduction process.

In model selection and reduction, we first combined similar models generated
in the initial clustering, using a cross voting technique based on the Euclidean
distance between texture signatures, and higher votes indicated a group of closely
clustered texture signatures. The mean texture signatures were calculated to
represent the subgroups of texture signatures, so as to reduce the models. Texture
signatures which received no votes were added to the reduced models, because
these outliers belong to the same texture class. Next we filtered out some obvious
incorrect models based on the standard deviation (normalised from 0 to 1) of
the models. For example, high intensity homogeneous tissue and low intensity
radiolucent, can be distinguished from the intensity distribution accumulated at
two distinct ends of the intensity spectrum in the texture signatures, respectively.
Whilst texture signatures for nodular and linear structure contain thicker band
and rough peaks, respectively. The threshold values (i.e.; 0.4, 0.5, 0.6 and 0.5
were used for nodular, linear, homogeneous and radiolucent, respectively) were
determined empirically, based on visual assessment on segmentation accuracy of
the annotated mammographic patches.

The resulting models can be used to classify unseen pixels. We used a distance-
weighted K-Nearest Neighbour (KNN) to increase classifier robustness, and re-
duce misclassification. The modified KNN weights the contribution of each of
the K neighbours based on the inverse square of its Euclidean distance, giving
greater weight to closer neighbours. Where K = 3 was empirically defined and
variation indicated robustness.

Once mammographic images are tissue segmented, the relative percentage of
different tissues was used in risk classification, as mammographic risk assessment
with respect to Tabár’s modelling. In Tabár pattern I, the relative proportion of
the four building blocks can vary due to involution, which is a process of tissue
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changes from one to another (e.g. total fatty replacement), occurs highly individ-
ual, and can be caused by hormone replacement or pregnancy. With involution,
pattern I will change to either pattern II or pattern III [1]. This regression also
happens in pattern IV. The variations of the pattern I and IV were taken into
account during the mammographic risk classification, by adding or subtracting
the standard deviation of the relative proportion of a building block accordingly
when measuring distance between two tissue composition vectors. To minimise
classification error, a threshold post process was applied to reclassify some radi-
olucent pixels. In particular, if a pixel has very high intensity and was classified
as radiolucent, then it was reassigned to either nodular or homogeneous. The
threshold values were determined based on the mean value of homogenous and
nodular from the collection of detail annotated mammographic patches, respec-
tively. The collection of the mammographic patches is sufficient to reflect the
intensity distribution and variation across the whole MIAS database.

3 Results and Discussion

Example segmentation on tissue specific areas can be found in Figure 3 which
shows good consistency with the annotated data. Figure 4 shows example seg-
mentation for a mammographic image. The characteristic mixture of breast tis-
sues can be observed. Average relative proportion of the four building blocks and
their standard deviation with respect to Tabár’s tissue model, based on the seg-
mentation are (in this order [nodular, linear, homogeneous, radiolucent]): Pattern
I [19±5.8%, 14±5.3%, 26±15.6%, 41±16.3%]; Pattern II/III [10±9.4%, 12±4.2%,
10±18.8%, 68±21.6%]; Pattern IV [44±11.7%, 11±4.3%, 13±11.5%, 32±12.4%];
and Pattern V [11±3.3%, 7±4.4%, 64±11.0%, 18±10.9%]. The current result has
a smaller mean variance of the relative proportion of the four building blocks, in
direct comparison with the results presented in [7], which indicates a better match
to the Tabár’s tissue model. All the available images in the MIAS database were
used in the evaluation. Figure 5 (a) shows classification accuracy for discrimi-
nating between Tabár’s categories. In direct comparison with results presented

Fig. 3. Example mammographic patch segmentations. Top row from left to right show-
ing example patches for nodular, linear structure, homogeneous and radiolucent. Bot-
tom row showing corresponding segmentations with respect to tissue specific areas
(Colour coded areas represent the specific tissue classes while white represents the
other tissue classes).
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Fig. 4. Example segmentation (mdb108rl, Tabár IV). Tissue composition [42.6%, 8.6%,
25.9%, 22.9%]. Top row showing the mammographic image and its segmentation. Bot-
tom row showing corresponding tissue segmentation from left to right covering: nodular,
linear, homogeneous and radiolucent. In each case white regions indicate the other tis-
sue classes (e.g. for the nodular case this would constitute the linear, homogenous and
radiolucent tissue).

in [7], significant improvements were made in total classification accuracy by
12.8% to 78% (κ = 0.7). Total classification in the corresponding low (pattern
I and II/III) and high (pattern IV and V) categories improved by 15% to 86%
(κ = 0.69). To avoid bias and determine the robustness of the classifier, we
also performed classification based on Birads categories. Classification results
as seen in Figure 5 (b), achieved in 75% (κ = 0.75) and 87% (κ = 0.74) accu-
racy for Birads four categories, and the corresponding low and high categories,
respectively.

All the patches were normalised to zero mean and unit variance during the
training stage to reduce intensity distribution variance (e.g. contrast and bright-
ness). This could potentially alter the inter and intra class variation, leading to
incorrect models from the learning stage.

Misclassification may be caused by the model selection and reduction process
which only takes intra class variation into account and fails to remove all the
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Tabár Pattern I II/III IV V Accuracy
I 102 16 1 0 85.7%

II/III 7 61 11 14 65.6%
IV 9 5 65 1 81.3%
V 1 4 0 23 82.1%

Birads Pattern I II III IV Accuracy
I 41 5 10 3 69.5%
II 1 68 12 5 79.0%
III 0 11 101 29 71.6%
IV 0 0 5 29 85.3%

(a) (b)

Fig. 5. Classification confusion matrix

noise or outliers. The amount of annotated data is relatively small, and may
not be adequate to be a strong training dataset. Visual inspection indicates
that some of the annotated data are less precise which may be related to hand
tremor and other limitations during the manual process, as a consequence the
annotation data contain artifacts and noise which is not beneficial for the model
selection and reduction.

From a classification point of view, the K-Nearest Neighbour algorithm can
be sensitive due to irrelevant features in high dimensional space, misclassification
between radiolucent and nodular can be caused by structure and shape features
overtaken by intensity features (dominant features). An appropriate dimension-
ality reduction (i.e.; principal component analysis) may be required to improve
the current method. On the other hand, distance weighting allows all training
examples to have an influence on the classification of a given pixel. The cur-
rent classification method is a global method because all training examples were
considered, when classifying a new pixel. This may not be the optimal way to
deal with inter class variation. A local method cab be used, if only the nearest
training examples are considered.

4 Conclusions

The proposed texture signature based mammographic image segmentation has
shown good consistency with expert radiologist’s annotations, and was able to
produce realistic segmentation on tissue specific areas. A quantitative measure-
ment was performed for mammographic image classification based on Tabár and
Birads categories over all the available images in the MIAS database. Kappa’s
coefficient was used as a mean of qualitative evaluation, and indicated strong
correlations between classification results and ground truth data. The relative
proportion of the four building blocks indicated agreement with Tabár’s model.
The total classification were 78% and 86% in Tabár’s categories and the corre-
sponding low and high categories, respectively; 75% and 87% in Birads categories
and the corresponding low and high categories, respectively. The novel aspects
in this study are: 1) demonstration for mammographic image segmentation and
risk classification using the developed texture signature approach based on the
MIAS database; 2) the achieved classification accuracy based on Tabár’s cate-
gories outperformed previously published results; 3) to our knowledge this is the
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first attempt to use not only the density information, but also other parenchy-
mal pattern information, as attributes for mammographic risk assessment based
on Birads categories; and 4) the produced segmentation results can be used
for quantitative measurement of the characteristic mixture of breast tissues in
mammographic risk assessment, as well as for quantification of change of relative
proportion of different breast tissues. The developed automatic mammographic
segmentation method can be found useful as a means of aiding radiologists’ es-
timation in mammographic risk assessment, as well as abnormality detection.
Future work will focus on algorithm improvement and possible evaluation in a
clinical environment.
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Abstract. Ideally, the outcome of any CAD performance assessment should 
predict how well the system would work if used clinically. In principle, if the 
selection process draws cases that are “representative” of the general patient 
population, the study design will be unbiased. In this study we explored the ef-
fect of stratified sampling on stand-alone and radiologists’ performance using 
data from an observer study. Although our database was relatively small, 50 
cancer cases, no meaningful difference in performance was measured among 
different stratified sampling schemes or against the whole dataset nor was there 
any difference in the variance in the measured performance metrics. These re-
sults cast doubts on the usefulness of requiring stratified sampling, whose added 
cost does not seem to be justifiable without empirical evidence. We believe that 
it is more important to specify how cases should be collected than try to define 
the range and frequency of the characteristics of patients and cancers to be in-
cluded the dataset, which we suspect to be prone to actually produce unrealistic 
samples. 

Keywords: computer-aided diagnosis, computer-aided detection, evaluation, 
observer study, mammography, breast cancer, case selection. 

1   Introduction 

Case selection is likely to affect strongly the measured performance of CAD schemes 
and human observers (e.g., radiologists).  It is also crucial for interpreting results in the 
context of clinical utility and ultimately economical viability. When a case sample 
matches the general population, the stand-alone test performance of CAD can be ex-
pected to provide a precise and reasonably unbiased measurement. Creating a database 
ignoring entirely the composition of the population and how it affected the specific 
performances is feasible  (e.g., a perspective random sample). However, to obtain 
precise and conclusive measurements for something like breast cancer screening such a 
dataset is likely to be very large (on the order of thousands or tens of thousands). For 
an observer study, this is logistically impractical and economically unfeasible,  
as a very large amount of physician time would be necessary to perform such a study. 
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With the exception of one heroic effort (1), the number of cases used in a breast-cancer 
screening observer study is usually a few hundred or less and  typically requires 50-
100 cancers to have sufficient statistical power. This sets prevalence around 10-30%, 
which is substantially higher than the approximately 0.5% observed clinically, but 
small enough to hope that radiologists will not read too differently from their clinical 
practice. Given that there might be only 50 cancers in a database, it is impossible for 
cases to match but a few characteristics of a clinical population and therefore these 
characteristics have to be chosen carefully. Case selection is critical not only to the 
outcome of an experiment, but also to its interpretation. 

In order to meaningfully reflect the general population, it has been proposed to 
base the selection of cases on patient characteristics such as breast density and age, 
and lesion characteristics such as type, histology and size. Then for each characteris-
tic, a distribution of the different subtypes is specified. For example the distribution of 
cancers could be, by lesion type: 40% masses, 40% clustered microcalcifications, 
10% architectural distortions, and 10% asymmetric densities.  If the total number of 
subclasses is large, then to collect 100 cases that fulfill the specified distributions for 
all the characteristics is likely to be either impossible or require a perhaps unusual 
combination of factors on a number of cases. This would mean that a lot of reasonable 
cases might have to be discarded while a number of less common ones might have to 
be included to reach the desired composition, therefore biasing the results instead of 
producing a more accurate measurement. Moreover, it is not unreasonable that be-
tween 200-1000 cases will need to be collected to obtain the 100 cases needed. This is 
likely to produce a considerable burden, which should be evaluated in light of ethical, 
logistical and economical considerations. 

2   Method 

We used 50 cancer cases from an observer study performed previously. These cases 
were originally selected because they contained a cancer that was missed clinically, 
but detectable in retrospect and, therefore, they may not represent the general popula-
tion (however, this is unlikely to have any relevance with respect to the conclusions of 
this paper). The characteristics of these cancers are given in Table 1. Five different 
characteristics were considered in this study: 

1. Number of cancers less than 1 cm in size 
2. Number of cancers greater than or equal to 1 cm and less than 2 cm in size 
3. Number of cancers greater than or equal to 2 cm in size 
4. Number of cases with dense breasts 
5. Number of cases with either an asymmetric density or an architectural distortion 

Using this dataset we created other datasets using a bootstrap-like approach (2) 
equivalent to considering this dataset as the population. For a given bootstrap sam-
ple, a case was randomly drawn from the total 50-case set. The case is returned and 
another sample is drawn from the 50-case set. This is repeated 50 times creating a 
new dataset with 50 samples, where some of the cases are represent more than once 
in the bootstrap dataset. Similarly, for that dataset, readers are randomly selected 
from total dataset of 8 readers. Therefore, one bootstrap dataset consists of 50 cases 
and 8 readers, where cases and readers may be represented more than once.  In total 
100,000 such sets were created.   
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Table 1. Characteristics of the 50 cancer cases used in this study 

Size (cm) Number % 
d<1 25 50 

1.0<=d<2 14 28 
2.0<=d 6 12 

Lesion Type     
Mass 28 56 

Calcifications 5 10 
Other* 17 34 

Breast Density     
Dense 27 54 
Fatty 23 46 

   

*Other = Architectural distortion or asymmetric density 
 

 

Fig. 1. Flowchart of method used to calculate performance measure for different datasets 
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Each bootstrap set had a specific distribution of characteristics (such size and 
breast density).  We then stratified these bootstrap datasets to create groups with 
comparable characteristics (see Fig. 1). Typically, 50-4000 bootstrap samples had 
comparable characteristics and these were grouped together. For each stratified sam-
ple type, composition varied by +/-1 case (+/-2%) within a characteristic. For each 
stratified sample type, we computed the mean and standard deviation of the stand-
alone sensitivity (by case and by image), of the false detection rate and of the radiolo-
gists’ unaided vs. aided sensitivity.  

3   Results 

Table 2 shows mean values and standard errors for the standalone sensitivity of the 
CADe scheme, the false detection rate, the average of the eight radiologists in terms 
of sensitivity without CADe, with CADe, and the percentage change in sensitivity for 
the different sample types. The means and standard deviations are nearly the same 
and we see no reason to expect for any of these slightly different values to be more or 
less close to the actual population value being the differences among the expected 
values for each sample types much smaller than the sampling variability. 

Table 2. CADe and radiologists’ performance for different sets of 50 cases 

 

Table 3 shows the correlation between the average values of a case characteristic 
and CADe or radiologist performance for the bootstrapped datasets. The correlation 
appears to be poor between characteristics and performance measures: bootstrap sam-
ples with a large fraction of cases with small cancers did not show a major decrease in 
performance. 
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Table 3. Correlation coefficients between characteristics of database and CADe and radiologists’ 
performance 

Characteristic CADe Sensitivity CADe  Radiologist Sensitivity 

  By By FP per Without With % increase 
   Case  Image case  CADe CADe with CADe 

average size -0.06 -0.13 0.02 -0.05 -0.03 0.06 
% dense breasts 0.08 0.11 -0.27 -0.19 -0.15 0.19 

4   Discussion 

While the similarity in the mean values was surprising, it is perhaps more unexpected 
for samples with the same characteristics to have a standard deviation similar to the 
whole dataset, which is more heterogeneous. This seems to contradict the very reason 
why a stratified sampling scheme would be useful in the first place. Further the poor 
correlation observed between the characteristics of the cases and CADe or radiologist 
performance seems to indicate that using their values for selecting cases for evaluating 
CADe may have a much smaller impact than expected, perhaps even nearly negligible. 

The database used in this experiment was small, therefore the results may not hold 
for a larger dataset.  Similarly, our observer study had only 8 readers who may not be 
representative of the general population of MQSA radiologists.  However, assembling 
a larger sample of paired reader-cancer-case samples would require an unusually large 
reader study. 

We believe the size of our study and the composition of our dataset (clinically 
missed cancers) may explain the lack of effect on stand-alone performance.  How-
ever, the literature on to the effect of breast density on CADe performance appears to 
be conflicting at this time, suggesting that further studies are necessary. 

However, for observer studies, we believe our results have important ramifications.  
In an observer study of CADe, only a small fraction of the cases are important in 
determining the effectiveness of CADe. These are the cases that are missed by the 
readers in the unaided condition and are found when CADe is used. These cases are 
most likely to be difficult cases, such as those we used in our experiment. That is, if a 
larger, more general dataset (e.g., 200 consecutive cancer cases) were used, we argue 
that the cases that will power the difference between with and without CADe will be 
the cases represented in our dataset. The other 150 cancers will affect the overall 
sensitivity and area under the ROC curve (AUC), but not the difference in sensitivity 
and to a lesser degree the difference in AUC between with and without CADe.  
Therefore, selecting cases so as to represent the general patient population has merit, 
at least in principle, but we believe that the burden it generates when designing a 
CADe observer study is unjustified. 

5   Conclusions 

Based on our dataset, we conclude the following: 



 Stratified Sampling for Case Selection Criteria for Evaluating CAD 539 

 

1.  The cancer size and breast density does not seem to be a reliable predictor of the 
performance either of stand-alone CADe or of radiologists reading with or without 
CADe. Thus, it is not clear how to use these characteristics to select a dataset for 
clinical evaluations. 

2. We could not find evidence that sampling stratified by the characteristics we 
considered is capable of reducing the standard deviation of performance measures. 
Given the burden of case collection implied by this type of approach, careful consid-
eration should be applied before using it. 

3. Since the performance of radiologists and the CADe scheme showed little de-
pendence upon the exact characteristics of the cases in the database, we believe that it 
is more important to specify how the cases were selected, in order to prevent selecting 
a sample whose performance might relate poorly with the actual population for which 
a clinical question needs to be answered. 

For stand-alone testing, a larger dataset with cases more representative should be 
performed. For observer studies, we believe our dataset is representative of the most 
relevant cases (i.e., those that will allow a difference to be measured) and therefore we 
find no evidence supporting the use of stratified sampling in CADe observer studies. 

References 

1. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York 
(1993) 

2. Gilbert, F.J., Astley, S.M., McGee, M.A., Gillan, M.G., Boggis, C.R., Griffiths, P.M., 
Duffy, S.W.: Single reading with computer-aided detection and double reading of screening 
mammograms in the United Kingdom National Breast Screening Program. Radiology 241, 
47–53 (2006) 



Breast Shapes
on Real and Simulated Mammograms�

Christine Tanner1,2, John H. Hipwell2, David J. Hawkes2, and Gábor Székely1
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Abstract. We investigate the need for anisotropic materials when sim-
ulating X-ray mammograms from real 3D MR breast images employ-
ing biomechanical models. We previously observed on 3D MRI that the
breast in the prone position elongates very little in the anterior-posterior
direction even when applying large lateral-to-medial compressions. Im-
proved accuracy was achieved for these 3D deformations when employ-
ing transverse-isotropic materials, where the tissue in anterior-posterior
direction was stiffer than in the other two directions. We investigate
here whether this also holds when simulating cranio-caudal mammo-
grams where the patient is standing. The realism of the simulated breast
compressions was judged by comparing the anterior breast shapes of sim-
ulated and real mammograms. The anterior breast shape was quantified
by the log ratio of the medial-lateral to anterior-posterior diameter of
an ellipse fitted to the anterior breast edge. The breast shapes on real
and simulated mammograms were on average statistically significantly
different (0.48 versus 0.27, P<0.01) when employing isotropic materials.
No such difference was observed for transverse-isotropic materials (0.47).
The estimated breast thickness, to achieve the breast shape observed on
the corresponding real mammogram, was on average very unrealistic for
isotropic materials (8.7 mm) while reasonable for anisotropic materials
(49.5 mm).

1 Introduction

Relating breast MR images to mammograms is an important but difficult task.
Simulation of mammograms from MRI has been proposed as an important step
in assessing registration methods for this purpose [4], and to learn more about
breast deformations [13]. Several groups have proposed the use of finite ele-
ment (FE) models for simulating breast compressions [10,9,17,8,3,13]. Evalua-
tion of these methods for large breast compressions (> 38%) have been limited
to one recent study [14]. There 3D MR breast images were acquired before
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and after lateral-to-medial breast compressions. Analysis of these showed an
anisotropic deformation behaviour with the breast expanding less in anterior-
posterior (AP) than in the superior-inferior (SI) direction. The study also showed
for the first time that FE models employing transverse-isotropic materials can
more accurately predict these deformations than models with isotropic material
properties.

The study was based on MR images of the patient in the prone position,
where the breast is stretched in the anterior-posterior direction due to grav-
ity. The anisotropic behaviour could therefore be an effect of the pre-stretching
of Cooper’s ligaments. During mammography, the patient is standing and the
breast is pulled away from the chest by the radiographer to improve visibility
of overlying structures, which might produce a similar effect. This study in-
vestigates if the anisotropic deformation behaviour still exists for deformations
between prone MR breast images and mammograms.

2 Method

Materials. The first cohort consisted of digital mammograms from a data set
of 79 patients from the Radboud University Nijmegen Medical Centre. Breast
thickness had been recorded for these image. The second cohort comprised MRI
images acquired for the UK MR breast screening study (MARIBS) [6] for 20
women. Corresponding digitized mammograms were available for ten of these
cases. Breast thickness had not been recorded for these. The MR images had a
voxel dimension of 1.33×1.33×2.5 mm3 and a coronal slice orientation. All MRIs
were obtained with the women in the prone position.

Biomechanical Model. Breast compressions were simulated for 20 subjects as
described in [13,14]. In short we employed high resolution 10-noded tetrahedral
meshes, stepwise (0.5%) boundary conditions to model plate contact, rezoning
to cope with badly shaped elements, FE package ANSYS and up to 5 tissue
types (fat, glandular, tumour, muscle, skin). Isotropic linear and non-linear ma-
terial models were selected according to published values [12,5,16,11,15], see
Table 1. The configuration of the transverse isotropic linear materials was based
on the optimal material parameters determined during the MRI compression
study [14]. These were mapped onto the new cohort on the basis of similar per-
centage in glandular tissue, resulting in the material definitions shown in Table 2.
The same boundary conditions were employed for the two material models. The
breast thickness after compression was selected from a normal random distribu-
tion (51±13 mm) [18,1,2]. Breast rolling parameters, where the breast is rotated
around the AP-direction before compression, were sampled from a uniform ran-
dom distribution (range [-11,11]o) [13]. Simulated mammograms were created by
projecting the intensity-inverted masked MRI of the compressed breast onto a
2D image with an isotropic resolution of 0.5 mm.
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Table 1. Overview of isotropic material models. Tissue variations were simulated by
randomly selecting a breast tissue model (B1-B4), one of the related tumour model
(T1-T5), a muscle model (M1,M2) and factors (ff , fg , ft, fm ∈ {−1,−0.5, ..., 1})
which determine the deviation from the mean Young’s moduli values [13].

Young’s modulus E in kPa for strain e ≥ 0. E(e) = E(−e) for e < 0
B1 [12] B2 [5]

Fat 1 + 0.5ff 18.5 + 7ff

Glandular 1.5 + 0.5fg (27.50 + 9.16fg) exp(3.64e)
Tumour T1 3.6 + 0.5ft (82.67 + 24.80ft) exp((5.16 + 0.22ft)e)
Tumour T2 10.4 + 1.9ft (10.91 + 1.62ft) exp((16.59 + 0.22ft)e)
Tumour T3 16.5 + 3.5ft (53.45 + 21.16ft) exp((11.08 + 0.92ft)e)

B3 [16] B4 [11]
Fat (4.46 + 2.35ff ) exp((7.4 + 4.0ff )e) 3.25 + 0.91ff

Glandular (15.1 + 6.75fg) exp((12.3 + 7.4fg)e) 3.24 + 0.61fg

Tumour T1 (17.76 + 4.2ft) exp((21.4 + 2.8ft)e) 6.41 + 2.86ft

Tumour T2 (37.57 + 6.05ft) exp((20 + 1.4ft)e) 10.4 + 2.6ft

Tumour T3 (33.78 + 6.15ft) exp((24.08 + 5.5ft)e) 16.38 + 1.55ft

Tumour T4 - 19.99 + 4.2ft

Tumour T5 - 42.52 + 12.47ft

Muscle M1 [15] 2.25 + 0.25fm + (10.85 + 0.33fm)e + (61.88 + 0.5fm)e2

Muscle M2 [15] 8.12 + 0.08fm + (21.05 + 0.08fm)e + (242.93 + 0.08fm)e2

Table 2. Transverse isotropic material properties for subjects S1 to S20 from optimal
results from [14]. Parameters are expressed as ratios of the Young’s modulus (E),
namely the ratio to the coronal plane (ra = EAP /ESI = 2ma , EML = ESI) and the
ratio to fat (rk = Ek/Efat = 2mk ) for glandular tissue (rg), tumour (rt), muscle (rm)
and skin (rs). #Case where the stated value was used instead of the optimal ma = −1
to have stiffer tissue in AP-direction for all cases. *Case without a tumour in [14].
Tumour variation was modelled by mt = mg + mr with mr sampled from a uniform
random distribution (range [-1,11]).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
ma 1 6 1 #1 2 4 2 3 3 #4 9 3 2 2 3 3 3 2 3 3
mg -8 1 0 -6 1 1 0 4 -5 -1 1 0 -1 -1 3 0 0 1 0 3
mt 8 *1 *11 8 *10 *6 *9 *8 -2 *2 *11 *9 -2 -2 *13 *-1 *1 *11 *9 *5
mm -1 -3 0 -2 -4 -5 0 4 0 -1 1 -6 -1 -1 3 -3 -3 -7 -3 3
ms 2 7 5 5 3 5 5 8 9 8 8 5 7 7 9 5 6 3 6 6

Breast Shape. The digital mammograms were downsampled from 0.1 mm to
the same image resolution as the simulated mammograms. The breast was seg-
mented on real and simulated mammograms employing Otsu’s method [7]. Visual
inspection showed that this worked very well for all cases. The breast shape was
measured by first fitting an ellipse to the anterior breast edge up to a constant
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depth D as illustrated in Fig. 1. After visual inspection, D was set to 19 mm
to avoid problems with images where the true breast edge goes off the film and
with small breasts. Using the coordinate values of the fitted points, the shape
was then quantified by the ratio e = dML/(2dAP ), where di denotes the maxi-
mum range in the ith direction and the medial-lateral (ML) and AP-direction
was assumed to be aligned with the image axes. Since e is a ratio, we assess
log(e).

Assessment. The robustness of the shape measure with respect to variations in
the set-up (breast rolling, in-plane rotation, etc.) was investigated by comparing
the values of the left and right breast for 79 patients. Then we compared the
shape distribution of three populations, namely 158 real mammograms and 20
simulated mammograms when using isotropic or anisotropic materials. For 10
cases, where we had mammograms in addition to the simulations, we estimated
the breast thickness required to achieve the breast shape observed on the real
mammogram. We tested for statistically significant differences in mean values
using two-sided (paired) t-test.

log(e) = 0.30
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Fig. 1. Examples of anterior breast shapes from real mammograms. An ellipse was
fitted to the breast edge up to a depth of 19 mm. The shape was then quantified by
log(e), where e = dML/(2dAP ).
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3 Results

Fig. 1 shows a selection of shapes encountered. The left and right breast were
very similar in breast thickness, volume of the anterior breast region (defined by
the breast area up to depth D times the breast thickness) and anterior shape
(log(e)), see Table 3. The statistics for the three population (real, iso, aniso) are
summarized in Table 4. Isotropic materials produced simulated mammograms
which were statistically significantly different in mean breast shape (0.48 versus
0.27, P<0.01), while transverse isotropic materials did not.

Fig. 2 illustrates the change in breast shape during compression for simula-
tions using isotropic and transverse isotropic materials. Isotropic materials seem
unable to recover the breast shape seen on the corresponding real mammogram,
while transverse isotropic materials reproduce the real breast shape more accu-
rately. When fitting a quadratic function to the shape values with respect to the
breast thickness, see Fig. 3, it can be observed that in most cases the shape of the
real mammogram is only achieved for very unrealistic breast thicknesses (mean
8.7 mm, range [-9.7,28.5] mm) including impossible negative values. This is not
the case for transverse isotropic materials (mean 49.5 mm, range [34.4,65.7] mm).

Fig. 2. Illustration of the change in breast shape during simulated compression for
isotropic (left) or transverse isotropic materials (right) in comparison to the breast
shape of the corresponding real mammogram (red) for two cases (top, bottom). The
anisotropic tissue was (top) 22 and (bottom) 29 times stiffer in anterior-posterior di-
rection.
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Table 3. Mean and standard deviation (a,b) of features from X-ray mammograms for
(a) left and (b) right breast and (c) of difference in features for contralateral breasts.
The distributions had no statistically significant different mean values (paired t-test).

(a) left (b) right (c) left - right
Thickness (mm) 54.67 ± 13.19 55.03 ± 12.77 -0.35 ± 4.55
VolumeRegion (cm3) 271.10 ± 79.60 271.69 ± 77.88 -0.59 ± 24.50
Shape (log(e)) 0.48 ± 0.07 0.48 ± 0.07 0.00 ± 0.04

Table 4. Mean and standard deviation of features from (a) 132 X-ray mammograms
and (b,c) 20 simulated mammograms from MRIs and biomechanical simulations using
(b) isotropic or (c) transverse-isotropic material models. †Distributions with statisti-
cally significant different mean values to (a) at the P = 0.01 level (t-test).

(a) real (b) iso (c) aniso
Thickness (mm) 54.85 ± 12.94 55.51 ± 11.72 55.51 ± 11.72
VolumeRegion (cm3) 271.40 ± 78.49 226.77 ± 75.90 258.48 ± 78.62
Shape (log(e)) 0.48 ± 0.07 0.27 ± 0.20† 0.47 ± 0.17
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Fig. 3. Relationship between the breast shape and the progression of the simulated
compression for (left) isotropic and (right) transverse isotropic materials. A quadratic
function (line) was fitted to the thickness-versus-shape values (crosses) measured dur-
ing a FE simulation at 4% compression intervals. Circles depict the estimated breast
thickness for the breast shape of the corresponding real mammogram predicted from
the quadratic function. Very unrealistic and even impossible negative breast thicknesses
are estimated for models with isotropic materials.
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4 Discussion

We compared the breast shape of real and simulated mammograms on a popula-
tion basis as well as for corresponding images from the same subject. Simulated
shapes were significantly different when employing isotropic materials, but not
for transverse isotropic materials with an increased stiffness in the AP direction.
The simulation progression showed that impossible or unrealistic high compres-
sions would be required for isotropic models to achieve the breast shape of the
corresponding mammogram.

These results confirm for the first time the need for material models which are
stiffer in AP direction when simulating mammograms from MR images by pure
compression. Alternatively, simulations might be based on the more complicated
scenario of first removing gravity and then applying the compression for isotropic
materials.

For the registration of MRI and mammograms, Ruiter required additional
surface displacements to compensate for insufficient elongation [9]. Anisotropic
materials are likely to remove this need. Furthermore, the shape measure could
prove useful for fast selection of the initial material properties.
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Abstract. The method presented in this paper addresses the problem of regu-
larization parameter selection in maximum a posteriori iterative reconstruction 
for digital breast tomosynthesis. The method allows analytically deriving the 
combination of prior function parameters for noise level expected in the recon-
struction without priors and estimated breast density such that it effectively con-
trols the level of noise while preserving the edges of breast structures. Results 
show reduced noise level and improved contrast to noise ratio compared to fil-
tered back projection and maximum–likelihood iterative reconstruction without 
penalizing term. 

Keywords: breast tomosynthesis, statistical iterative reconstruction, prior func-
tions, maximum a posteriori iterative reconstruction. 

1   Introduction 

Digital Breast Tomosynthesis (DBT) suffers from incomplete data and poor quantum 
statistics limited by the total dose absorbed in the breast. Popular filtered backprojec-
tion reconstruction methods (FBP) provide high contrast and excellent detail level in 
reconstructed images [1] but lose the information about relative tissue density. This 
happens due to removal of low frequency components with some filter kernels (see 
Fig.1). 

Another problem is that out-of-plane artifacts are enhanced by filtering together 
with the image features. Hence, an appropriate statistical iterative reconstruction ap-
proach that maximizes similarity between the calculated and measured projections 
and enables noise reduction through introduction of priors [2] may have some advan-
tages. One of the disadvantages of this approach is that it requires to empirically de-
termine the optimal parameters of the prior function that usually involves a grid 
search over a range of values, as it was implemented in [3] and [4]. The latter is not 
practical for high resolution breast imaging, especially when multiple prior functions 
need to be evaluated.  

In this study we propose a method for analytical statistical criteria based selection 
of prior function parameters for iterative maximum a posteriori (MAP) statistical re-
construction algorithm for DBT. 
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 a) b) c) 

Fig. 1. Central slice segment of a breast volume a) FBP reconstruction that shows high contrast, 
high resolution but the brightness of voxels corresponding to peripheral fatty tissue is not dif-
ferent from the denser tissue in the center of the breast.  b) Iterative ML-gradient reconstruction 
without priors and noise reduction gives a more realistic density representation of the breast 
tissue. c) Iterative MAP reconstruction with Geman prior.  

2   Method 

The goal of the maximum likelihood (ML) method [2] is to find the expectation value 
µ (breast volume attenuation coefficients) that maximizes the log-likelihood function 
L(µ) : 

 
 

ML reconstruction generally yields reasonably good results in DBT and converges in 
4-5 iterations, but produces overly noisy images without the use of priors. In [2], typi-
cal ML iteration schemes are modified to take into account a smoothing prior. The 
log-likelihood L(µ) is then changed to the log-posterior  ( ) )()( μβμμ UL −=Φ , 

where )(μU  is a smoothing prior function penalizing the differences in values of 

neighboring pixels, and 0>β is the regularization parameter. We refer to this ap-

proach as maximum a posteriori (MAP) method. For the case of the ML-gradient re-
construction method, for example, Lange et al [2] suggest the following Newton 
based update method with the simple quadratic smoothing prior )(μU : 

 
            (1) 
 
 

In this update scheme, j refers to the voxel index, ijl  represents the intersection length 

of the i-th ray with voxel j, and iY  denotes the measured photon count in projection i. 

In the next section we describe a practical method which allows analytically de-
riving the parameters of the prior function )(μU . The proposed method can be ap-

plied to a variety of prior functions. In transmission tomography and breast imaging 
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particularly, it is important to preserve edges while reducing noise. That is why we 
choose an edge preserving generalized Geman prior function with convexity condi-
tion [5] as an example:  
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where 
kjjk μμμ −=Δ  is the difference in intensity of the neighboring voxels, 

j
Nk ∈ -

voxels in the neighborhood of voxel j,  and 17/16≤m in order to maintain convexity 
of the prior function and keep its second partial derivative positive [5].  

It is important to select an edge-preserving prior function for DBT to be able to 
suitably visualize clinical features with very important high frequency components, 
such as calcifications and spiculated masses. The convexity condition, on the other 
hand, ensures convergence of the algorithm. The selected Geman prior function satis-
fies these requirements, although we do not claim that it is the only possible choice.  

The parameterσ  is selected such that the first derivative of the prior function 
reaches its maximum (for non-convex optimization only) or the highest curvature 
point (for convex functions, see Fig.2) at values of μ~Δ  that correspond to the ex-

pected noise level. Naturally, μ~Δ  must be lower than the weakest gradient of the 

edges that must be preserved. The penalty for voxel intensity deviations below or 
equal to the highest expected noise level will be “proportional” to those deviations. At 
the same time, the edges with differences in voxel intensity higher than that level will 
only receive a small (same as the highest expected noise) amount of correction or 
penalty. For non-convex optimization methods it is possible to choose a Geman prior 
function with m=2 which allows penalty for edge voxels to be close to 0. 

 
 

                            
  

                           a)                                                                              b)  

Fig. 2. a) 1st derivative of prior function for 0006.00 ≤≤σ , b) 2nd derivative is positive definite 

Furthermore, the parameter β  is explicitly computed for the expected noise level 

and the mean breast volume attenuation estimate μ . For the ML-gradient optimiza-

tion method (1) introduced in [2], β is computed in the following way: 
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The average value 
_________

∑
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ijilY is computed only once before the iterations. The noise 

level μ~Δ  could be predicted for a given x-ray spectrum as a function of the breast 

thickness and the tube load (mAs) using regression methods. Generally, the noise 
level can be kept constant for any breast thickness via selection of the tube load and 
the photon energy (keV). μ  could be predicted using regression methods from photon 

energy and breast density estimate obtained from segmented original projections us-
ing existing methods [6].  

The convex optimization update formula [2] also suggested in (1) yields following 
equation for β : 
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3   Results 

The breast tomosynthesis system used in our experiments was a prototype based on 
the Siemens MAMMOMAT NovationDR modified to acquire 25 low-dose projections 
over an angular range of approximately 45° using a stationary amorphous selenium 
flat-panel detector. The x-ray tube motion is continuous to avoid mechanical instabili-
ties. During the integration phase of the detector cycle, the x-ray generator is pulsed 
to acquire the projection data. The system was described in detail in our prior work 
[1]. The clinical data used for this work was acquired at Duke University Medical 
Center and Malmö University Hospital.  

Our experiments with patient data and phantoms showed that the combination of 
parameters β  and σ effectively controls the level of noise while preserving the 

boundaries (see Fig. 1c,  3, 6) for both convex and gradient optimization in MAP re-
construction. Whereas ML reconstruction without prior already gives a more realistic 
density grayscale (see Fig 1.) than FBP, the difference in noise and CNR is not much 
different. Only when using a penalizing term for noise regularization, SNR and CNR 
can be improved. We analyzed contrast and CNR in a patient dataset, by measuring it 
in the smallest visible vessel and a featureless background spot in the central slice.  

As it could be seen from the Fig. 4a and b, the relative contrast improves with more 
iterations, but CNR goes down for ML methods because of the increasing noise level. 
CNR increases with more iterations for both convex and gradient implementations 
(see Fig. 4b). Visually, the results of the convex and the gradient implementation look 
very similar, although the convex method converges more robustly (without  
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                                    a)                                  b)                             c) 

Fig. 3. Faintest smallest visible vessel (90x90 pixels ROI) in the central slice on a featureless 
background a) FBP results. b)  5th iteration of ML gradient reconstruction without priors. c)  5th 
iteration of MAP gradient reconstruction with Geman prior. 
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Fig 4. a) Contrast and b) CNR measured in the small vessel and the background featureless spot 
throughout the iterations. c) Convergence of all investigated algorithms. 

visible oscillations) than the gradient algorithm. Although the ML-convex method 
converges faster than the ML-gradient method (Fig. 4c), this difference disappears as 
soon as priors are introduced in both implementations.  

The spatial resolution was assessed using a German QC phantom [7]. The phantom 
contains several inserts, one of which is designed to assess spatial resolution of the 
system using a high-contrast bar pattern (see Fig 5). This experiment was performed 
with ‘extreme’ smoothing, when μ~Δ  is set exactly to the noise level measured in the  
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a) b) c)  

Fig. 5. Magnified image from a lead bar phantom reflecting spatial resolution of the system 
reconstructed using a) ML-convex method (i.e., without prior). b) MAP-convex (i.e., with 
prior). c) Enlarged fragment of MAP-convex reconstruction with window-level allowing visu-
alization of the lead bar-slit pattern. 

featureless spot of the phantom insert. The visual assessment of the lead-bar phantom 
reconstructions confirmed that resolution is actually not lost with the introduction of 
smoothing priors. Boundaries of fine structures in the image are preserved while the 
image looks considerably smoother. 

This strategy, however, should be applied with care when reconstructing real pa-
tient images. When μ~Δ  is set exactly to the expected noise level, the reconstructed 

images look too artificially smooth and ‘washed-out’, like the examples in Fig.3c and 
6c. Some microcalcifications in fact may have gradient level similar to that of noise 
voxels (see calcification indicated by arrow in Fig. 6b).  

With the use of smoothing priors their intensity could be reduced to unacceptable 

level (Fig. 6c). In practice, in order to preserve important clinical features μ~Δ  should 

be set to: 

 
                             ),,~min(~

cnoise gμμ Δ=Δ                                            (5) 

 
where noiseμ~Δ  is the expected noise level, and cg is the minimum gradient level of 

the clinical features (microcalcifications) that must be preserved. As an example, we 

chose the smallest visible calcification with the smallest gradient as cg  (where 

cnoise g〉Δμ~  ) and set μ~Δ  as in eq. 5 and used it for  σ and β  calculations (see Fig. 2 

and equation 4). The resulting reconstruction in Fig. 6d still looks smooth while all the 
microcalcifications are well visible. Iterative reconstruction in general (Fig. 6 b, c and 
d) preserves low frequency information  well, so that the tissue background  of the 
calcification cluster has a visibly higher density, compared to the FBP reconstruction 
in Fig. 6a.  
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         a)        b) 

      

         c)     d) 

Fig 6.  VOI from a patient data set with a microcalcification cluster reconstructed using a) FBP 
method, b) ML-convex, c) MAP-convex with μ~Δ  set above the noise level measured in image 

in Fig. 6b, d) MAP-convex with μ~Δ  set to preserve the microcalcification indicated by the 

arrow. 

4   Conclusion 

We have presented a method to analytically determine regularization parameters for 
MAP iteration algorithms for DBT. Our preliminary experiments show that the result-
ing parameters in fact provide improved CNR, which could lead in turn to the possi-
bility of dose reduction in clinical practice.  

However, it is likely that, in practice, the parameters would have to be addition-
ally tuned depending on the feedback of the clinicians in an observer study that would 
be required because human perception of image diagnostic quality goes well beyond 
known image quality measures.  
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Abstract. Digital breast tomosynthesis (DBT) is an emerging technique that al-
lows for slices parallel with the detector to be constructed through the breast, as 
opposed to two dimensional mammography. Present phantoms for use on 
mammography systems are two dimensional in nature and focus mainly on dif-
ferences in contrast. Since tomosynthesis is a three-dimensional-technique, a 
suitable phantom for use on a DBT-system should contain different overlying 
structures, as is the case within a real breast. We present a method to construct 
such a three dimensional phantom from a liquid polyurethane-basis that con-
tains overlapping masses, microcalcifications and a representative anatomical 
background. This way a representative quantitative phantom could be con-
structed for image quality control on a DBT-system. 

Keywords: Phantoms, Mammography, Tomosynthesis, Image Acquisition,  
Image Quality, Systematic Testing/Validation. 

1   Background 

Digital Breast Tomosynthesis (DBT) is an exciting new technique that is based on a 
long since understood radiological principle. Multiple projection images of the breast 
are acquired at different angles of the X-ray tube while the detector remains station-
ary. These projection images are then processed in such a way to create slices or slabs 
throughout the breast. These slices have the benefit of an excellent resolution in the 
plane of view even though the Z-axis remains poor, the result of an incomplete data-
set. This way superimposed structures as are commonly seen on two-dimensional 
mammography can be differentiated from one another, a theoretical advantage in the 
radiological examination of the dense breast with abundant glandular tissue. Though 
it is still early days, many research groups have already published interesting data 
regarding the potential clinical role of DBT in the diagnosis of breast cancer and  
reduction of recall rates [1, 2]. 
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However there is an obvious lack of a suitable phantom model that can be used for 
image quality control and optimization of acquisition settings on DBT-systems. Any 
existing breast phantom model to this day focuses mainly on differences in contrast 
and resolution of their different inlaying structures. These models all lack superim-
posed structures as well as a realistic background noise generated by superimposed 
glandular tissue. We propose a method to construct a three dimensional phantom in 
close compliance with the ICRU-44 breast tissue standard. 

2   Methods 

The main component of the breast phantom we constructed is a polymer with a spe-
cific gravity of 1.00 and attenuation factor of 1,23 cm-1 The latter was determined 
experimentally using a typical mammography MoMo 28kV photon spectrum. This 
specific polymer is created by mixing two liquid components, the mixture hardens 
within 24 hours.  

We constructed a first phantom in the shape of four individual stackable layers by 
pouring the polymer-mixture into circular molds. Two layers contain masses of  
varying diameters, one layer contains microcalcifications and a fourth layer acts as a 
structured noise pattern. These layers can be oriented as such in any way that overlap 
between different structures ensues. Figure 1 shows the four layers separately, a su-
perimposed mammogram as well as some reconstructed DBT-images.  

 

Fig. 1. First phantom model. Mammography of the separate layers (series A) ; Total oriented 
phantom (series B) ; DBT reconstruction images (series C). 
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Within the first two layers we simulated masses of different diameters by introduc-
ing circular spheres which are removed later on in the process, after the polymer has 
hardened. The remaining cavities then get filled with a similar type of polymer but 
one that has a 4% higher specific gravity. The experimental attenuation factor of this 
polymer was found to be 1,27 cm-1 using the same MoMo 28kV photon spectrum. 
This difference in attenuation is essential in order to ensure that masses and back-
ground can be differentiated. 

The third layer of this first phantom-model contains pulverized particles of egg-
shell in order to simulate microcalcifications. These particles are checked on a mam-
mography unit for size (0,1 - 0,3 mm) prior to their integration in the phantom. It is 
common practice to use particles of eggshell or teeth to mimic microcalcifications [3].  

The fourth layer serves as a structured background noise pattern and contains a 
glandular part of mammal udder. This glandular tissue has first been preserved in a 
formaldehyde solution. The overlap of this noise pattern ensures a more difficult visu-
alization of the simulated masses and microcalcifications as is the case within a real 
breast as well. 

A second phantom model was constructed later on. We chose to create a single-
layer model in the conical shape of a partially compressed breast using the same prin-
ciples as described above.  

Images were acquired in both cases by digital mammography (GE Healthcare Es-
sential) and DBT on a prototype system (GE Healthcare) using different acquisition 
parameters. 

 

Fig. 2. Second phantom model. Simulated mass seen on mammography (left) and DBT-
reconstruction (right). 
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3   Results 

Attenuation experiments on the two rubber compounds we used, showed linear at-
tenuation coefficients of 1,23 cm-1 (base material) and 1,27 cm-1 (masses) respec-
tively. These values are somewhat higher than tabulated values for ICRU-44 breast 
tissue (1,11 cm-1), but they are still in adequate agreement.  

Standard digital mammography of the multi-layered phantom proved difficult to 
read. Of all 24 masses the first phantom contained, only five could be differentiated 
on the mammogram. These masses all had a diameter of more than 1 cm. None of the 
smaller masses could be detected using mammography. The clusters of microcalcifi-
cations were readily detectable on the mammogram though they suffered heavily from 
masking by the overlying glandular tissue.  

The DBT study was performed with various acquisition settings. The angle of mo-
tion of the X-ray tube, the number of acquired projection images and the tube settings 
were altered. Regardless of these changes in acquisition settings we managed to detect 
virtually all simulated masses, whether overlapping or not. The microcalcifications 
were readily visualized as well and suffered less loss of contrast due to the overlying 
glandular tissue. Despite this fact the microcalifications did appear much more 
blurred and showed extensive signs of loss of anatomical detail compared to the 
mammography. 

We calculated the contrast to noise ratio (CNR) of the reconstructed images of the 
different DBT-studies. As could be expected the CNR increases with an increase in 
the number of projection images taken and with an increase in exposure. The CNR 
also increases as the angle of motion of the X-ray tube increases. The latter would 
seem to suggest that the larger the angle, the better the quality of the reconstructed 
images and this at no extra cost in patient dose. 

The relatively sharp edges of both the cylindrical model of the first phantom and 
the parts of glandular tissue caused relatively extensive artefacts on the reconstructed 
DBT images. Interestingly enough while we found that an increase in the angle of 
motion of the X-ray tube does attribute to an increase in CNR, this does also worsen 
the described artifacts as well as furthers blurs the microcalcifications. 

A 6-month radiographic follow up of the first phantom model showed no signs of deg-
radation or dehydration. Since the glandular tissue is encased in the polymer, it is kept 
completely safe from contact with air. This combined with the fact that we sterilized the 
tissue prior to its integration in the phantom, should ensure long-term preservation. 

In order to overcome the artifacts caused by the cylindrical shape of the phantom, 
we constructed a second model in the form of a partially compressed breast. Because 
of an algorithm that GE developed for use on their experimental tomosynthesis-unit 
and that allows for this more natural contour to be taken into account when recon-
structing the final images, the described artifacts caused by the edge of the phantom 
were strongly reduced in the second  model. 

4   Discussion 

The three dimensional phantom model we constructed can be used for image quality 
assessment and the optimization of acquisition settings on a DBT-system. It is relatively 
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easy and cheap to make and one can add additional components in function of their own 
personalized needs.  

The polymers we used for the construction of our phantom-models are in close 
compliance with the  ICRU-44 breast tissue standard and allow for a certain degree of 
elasticity. The glandular material in the phantom ensures the addition of realistic 
background noise. The eggshell particles we used to simulate microcalcifications 
while visually very realistic, are not easily reproducible. The two preliminary models 
we constructed are mainly qualitative, however it should not be difficult to add quan-
titative elements.  

Both mammographic and DBT-examinations of our phantoms produced quite real-
istic images, especially those of the second model. We calculated the contrast to noise 
ratio for the reconstructed DBT-images of the cylindrical phantom and found that the 
CNR increases with an increased number of projection images, increased exposure 
and an increased angle of motion of the X-ray tube. However when the angle of mo-
tion increases microcalcifications loose their typical morphology, becoming more 
blurred. It is then not so easy as to conclude that a larger angle of motion ensures bet-
ter image quality.  

Both phantom models still contain small cavities of air. This could be avoided by 
mixing the polymers in an airtight environment. Otherwise, if this is not possible, one 
might vibrate the mixture for a certain amount of time to release as much of the air-
bubbles as is possible or let the mold settle in an underpressurized environment. 

Further development of this phantom could focus on the testing of different types 
of polymers, to see if an attenuation factor can be found that matches the ICRU-44 
breast tissue standard more closely. Other structures (spheres, iodine contrast agents, 
geometrical objects) could be introduced that can be used for image quality assess-
ment in other breast imaging applications, such as in contrast enhanced mammogra-
phy. Also, more reproducible structures could be introduced to add a quantitative  
dimension to the phantom for QA purposes. 
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Abstract. We introduce the Standard Attenuation Rate (SAR), a quantitative, 
and normalised measure of radiodensity per unit distance traversed by the pri-
mary beam incident on each pixel of an x-ray mammogram is presented. We 
sketch an algorithm to compute the SAR. The calculation utilises a physics 
model of image formation, including consideration of photon production in the 
x-ray tube, photon detection within the image receptor, and photon scattering 
occurring within the tissues of the breast. Using the model, the difference in the 
flux incident upon, and exiting from, the breast is quantified relative to a refer-
ence material. Experimental validation of the SAR representation is presented, 
based on a tissue equivalent phantom designed and manufactured specifically 
for the purpose. The observed performance across the clinical range of acquisi-
tion parameters is very promising, supporting the suitability of this approach to 
form the basis of a next generation of diagnostic techniques based on quantita-
tive tissue measurement. 

Keywords: Quantitative mammography, measuring radiodensity, acquisition 
physics modelling, scatter removal. 

1   Introduction 

The brightness recorded at any location within a mammogram depends on many fac-
tors, including: the specifics of the x-ray source, for example the accelerating poten-
tial and the anode material; the exposure time; the filtration of the photon fluence 
before it exposes the breast; the detector characteristics; any anti-scatter devices 
present; and, most importantly, the unknown contents of the breast that is being im-
aged.  As a result of this dependency upon a multiplicity of factors, compounded by 
the unknown tissue structures with the breast, most human and computer analysis is 
essentially qualitative rather than quantitative. We present a quantitative representa-
tion, which we call the Standard Attenuation Rate (SAR), which consists of a norma-
lised measure of the radiodensity per unit distance of tissue traversed between the 
focal point of an x-ray source and each pixel in an x-ray projection image of a breast: 
that is the radiodensity per unit distance encountered by the primary beam. This may 
be thought of as an analogue to the Hounsfield unit used universally in CT, though in 
this case specifically optimised for imaging the soft tissues of the breast. A measure 



562 C.E. Tromans and S.M. Brady 

 

such as SAR has numerous potential applications, for example, to quantify the attenu-
ation (and hence atomic composition and density) of a suspect feature (a lesion or 
calcification), the microenvironment of a tumour, or the breast as a whole (as is the 
case when estimating breast density), for which the result may then be compared to 
that which is known for such a lesion or a cancerous breast. Quantitative tissue com-
position measurement also has uses in soft-copy display, for example in optimal im-
age display in setting window width and level, as well as in CAD systems which often 
utilise image normalisation techniques prior to applying detection algorithms. Further 
applications are possible in the field of digital breast tomosynthesis, where the abso-
lute measure of radiodensity provides a normalised basis between projections upon 
which reconstruction algorithms may operate. 

In 1996 Highnam et al [1-2] published the hint representation which achieves a 
normalised measure of tissue characteristics through utilising a model of image for-
mation physics to ascertain the thickness of “interesting tissue” (breast tissue that is 
anything other than fat) above each pixel in a mammogram. The majority of descrip-
tions of other approaches in the literature for the quantification of mammographic 
images have related to the study of volumetric breast density. Most adopt the tech-
nique of comparison with images of a reference object. The choice of reference object 
material varies: Pawluczyk et al [3] adopts tissue-equivalent plastic, whilst Diffey et 
al [4] utilise an aluminium step-wedge. Techniques differ in how they measure the 
image transfer function: some incorporate reference objects into each clinical acquisi-
tion [4-5], whilst others image the references alone in order to calibrate the equipment 
[6], and Pawluczyk et al combines both techniques using different reference objects 
[3]. Modelling the physics of image acquisition has the advantage that it enables the 
scattered radiation and effects of beam hardening to be given full consideration, whe-
reas the use of reference objects only includes such effects in as much as they are 
present in both the calibration and the clinical images. The aluminium step wedge, for 
example, will result in a significantly different photon energy spectrum incident upon 
the detector from that exiting the tissue of the breast since significant discrepancies 
exist between the attenuation coefficients of the two materials across the range of 
photon energies present in a mammography x-ray beam. Also due to its small size and 
possible proximity to the breast (depending on breast size) scattering effects will 
differ. This work follows the approach of Highnam et al [2] in utilising a model of 
image formation for tissue quantification, however it is a considerably enhanced re-
working of their method, giving far greater consideration to the underlying physical 
phenomena, and resulting in a method that is devoid of many of their simplifying 
assumptions. 

2   Materials and Methods 

In order to calculate the SAR, a detailed, though inevitably approximate, model of the 
physics of mammographic image formation is used to calculate the difference be-
tween the primary x-ray photon fluence incident upon the breast and the primary x-
ray photon fluence exiting the breast and being subsequently recorded by the image 
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detector, quantified relative to a reference material: in this work a 50/50 mix of adi-
pose and fibroglandular tissue is used, according to the elemental composition and 
density reported by Hammerstein et al [7]. Other choices may be substituted, accord-
ing to the application, for example the 70/30 composition reported by Yaffe et al [8] 
as being a typical breast. The reference material used here, as opposed to other pro-
portions, amounts, in the definition of SAR, to changing a single parameter. The 
quantification of radiodensity relative to a reference material, rather than the approach 
of trying to distinguish adipose from fibroglandular in a two tissue model adopted by 
other authors comes from our previous work [9] in which significant variation was 
reported between the varying reports in the literature of the elemental composition 
and density of the two tissue types, suggesting significant variation within the popula-
tion. Further, the results of the histology study reported by Alowami et al [10] show 
the dependency of mammographic appearance on stromal composition, in particular 
the increased collagenous stroma and expression of lumican and decorin in breast 
tissue associated with high mammographic density, illustrating the need to consi-
derthe variation within the compsition of fibroglandular tissue across the population.  
Measuring radiodensity supports the inclusion of these effects, which violate the two 
tissue assumption. 

The image formation model consists of three components: a model of the x-ray 
tube, a model of the image detector, and a model of photon scattering within the tis-
sues of the breast. 

The algorithm inputs for a given image are the raw "FOR PROCESSING" DICOM 
pixel data, the tube voltage (kVp), the anode and filter material, the exposure, and the 
compressed breast thickness: all values which may be found for modern digital 
mammography equipment in the DICOM metadata header.  The pixels of the output 
image are the multiplicative scaling factor which must be applied per unit x-ray beam 
traversal distance to the attenuation of the reference material in order that the signal 
recorded at the image receptor matches that observed in the acquired image, after the 
effect of scatter has been subtracted (using the scattering model described herein).  
Specifically, the image pixel intensity in the standard attenuation rate image is  in: 

 

where  is the input image;  is the inverse detector transfer function (calcu-
lated using the detector model discussed later), specifically the mapping between 
pixel intensity and incident photon fluence;  is the scattered photon fluence recorded 
by the detector;  is the primary image;  is the attenuation of the column of 
breast tissue between the focal spot and the pixel under consideration at photon ener-
gy ;  is the traversal length through the breast tissue between the focal spot and the 
pixel in question;  is the incident photon fluence upon the upper surface of the breast 
(calculated using the tube model discussed herein); and  is the attenuation of 
the reference material. 

The basis of the x-ray tube model is the spectral data reported by Cranley et al[11].  
The anode self filtration (heel effect) is considered through the calculation of an effec-
tive target angle for each image pixel, that is the target angle in the measurement 
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geometry of the published data[11] for which the self filtration distance within the 
anode is the same as that for the ray emanating in the direction of the detector pixel 
under consideration. The beam emanating from the anode surface is attenuated ac-
cording to the traversal path through the tube window and any additional beam filtra-
tion, as well as scaled according to the inverse square law.  Two empirical corrections 
for beam intensity and quality are applied, in order to account for discrepancies be-
tween the spectrum calculated by the model, and that observed in reality due to such 
effects as manufacture tolerances and anode pitting with age. 

In order to develop a complete detector model which considers photon transport 
and signal production, such as that presented by Williams et al [12], a detailed know-
ledge of the exact construction details is required.  Such information is largely unob-
tainable since it is considered proprietary by manufacturers. Recognising this, we 
have developed an empirical approach, in which the family of detector transfer func-
tions are sampled so as to capture all the dependant variables, in particular fluence 
and photon energy spectrum (beam hardening), whilst also being independent of the 
precise detector technology. Samples are interpolated using a series of regression-
fitted analytical functions which are then used to describe the detector response cha-
racteristics. A purpose designed breast equivalent attenuator, shown in fig. 1, has been 
manufactured to streamline the acquisition of the calibration images. 

 

Fig. 1. The phantom used for calibration of the family of detector transfer functions 

The detector output is measured as the average pixel intensity for a circle of diame-
ter 13 pixels located at the centre of each aperture shadow, and the incident fluence, 
including scatter, is calculated using the tube and scatter model to give the input of 
the transfer function. 70mm lead apertures are used to control the volume of material 
contributing scatter to the pixels from which the detector output is measured. Four 
thickness of PMMA (which approximates the attenuation of breast tissue) are em-
ployed, 15, 30, 45 and 90mm, so as to capture the variation in detector response with 
the incident photon energy spectrum, occurring due to hardening of the beam arising 
from varying imaging thickness. Log-quadratic interpolation is used to interpolate 
intermediate values between the measured thicknesses. Images of the calibration ob-
ject are acquired for each anode-filter combination separately, and for at least three 
tube potentials spanning the clinical range. Interpolation between measured tube  
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potentials is achieved using regression fitting of log-quadratic relations. The cases 
with and without the scatter grid present are calibrated separately. 

The scatter model is based on the molecular form factor and the incoherent scat-
ter function, which together scale the free electron coherent and incoherent scatter 
relations respectively, to provide the angular scatter characteristics of breast tis-
sues. In order to achieve a clinically realistic computation time, whilst maintaining 
accuracy, optimal information sampling and interpolation at the limit prescribed by 
the Nyquist-Shannon sampling theorem is used to calculate the scatter-to-primary 
ratio at each image pixel. A geometric model of an anti-scatter grid is used to cal-
culate the selective photon transmission probability according to the angle of inci-
dence. The low frequency blurring effect of scatter is included by using a kernel 
derived from the image acquisition conditions and the underlying fundamental 
physical photon scattering relations. Subtraction of the calculated scatter signal 
from the acquired image yields both an approximation of the magnitude of primary 
signal, and the removal of the image blurring arising as a result of scatter. Further 
details of the scatter model may be found in our companion conference paper [13] 
assessing the possibility of replacing physical anti-scatter grids with software  
correction. 

3   Results 

In order to validate the performance of the technique, we have designed and con-
structed a tissue equivalent phantom (manufactured from CIRS supplied plastics), 
shown in fig. 2, comprising of a pair of interlocking step wedges, one of glandular, 
the other of adipose, equivalent material, with a further two adipose wedges forming 
the sides.  It should be emphasised that this phantom is used purely for validation, and 
is not used in the design, calibration, or implementation of the standard attenuation 
rate algorithm or underlying image formation model. 

Validation was performed on a GE Senographe Essential installed in a symptomat-
ic breast clinic which sees everyday use in patient examination and is in no way spe-
cially customised for this work. Tube output and half value layer measures were taken 
from the routine NHS quality assurance surveys. Fig. 3 shows raw images of the vali-
dation phantom for a variety of image acquisition parameters spanning the range 
employed clinically, together with the corresponding SAR image.  Fig. 5 illustrates 
the normalisation quantitatively. 

 

Fig. 2. The validation tissue equivalent validation phantom, white is fibroglandular equivalent, 
terracotta is adipose 
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Fig. 3. Validation images of the tissue equivalent test object, raw "FOR PROCESSING" ac-
quired image (window width 764, centre 1452) [top] and SAR image [bottom]; 25kVp Mo-Mo 
140mAs [left], 30kVp Mo-Rh 56mAs [centre] and 30kVp Rh-Rh 90mAs [right] (window width 
0.4, centre 1.0) 

 

Fig. 4. The median value of a 50 by 50 square of pixels within each step of the experimental 
validation acquisitions of the tissue equivalent test object in the raw "FOR PROCESSING" image 
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Fig. 5. The median value of a 50 by 50 square of pixels within each step of the experimental 
validation acquisitions of the tissue equivalent test object in the SAR image 

4   Discussion 

Qualitative evaluation of fig. 3 reveals a high degree of similarity between the SAR 
images of the phantom acquired over the range of beam qualities shown, as is to be 
expected given the constant phantom composition. Quantitative results are shown in 
fig. 3 and fig. 4, where the coefficients of determination being unity (to 3 significant 
figures) show the successful transformation from a exponential relation between pixel 
intensity and composition in the raw image, to a linear relation in the SAR image.  
The maximum difference between the gradients in the linear relations describing the 
relation between composition and SAR pixel intensity throughout the tested beam 
qualities is 3.4%, and the intercepts is 0.86%, showing a high degree of accuracy in 
the image normalisation and thus in the underlying model of image formation. 

5   Conclusion 

A method is presented for deriving an image dependant solely on the attenuation 
characteristics of the underlying breast tissue, from a mammogram.  Experimental 
validation shows the successful decoupling of image contrast, within the bounds of 
measurement and modelling error, from the x-ray acquisition conditions yielding an 
image dependant solely on the underlying tissue composition. Thus quantitative mea-
surement is facilitated which could form a basis for novel diagnostic techniques. 
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Abstract. Quality assurance in digital mammography, especially in screening 
environments, needs a lot thoughtfulness. As the images are digital, it provides 
the possibility of the use of computer assisted tests. This requires adequate 
computer readable phantoms and powerful software tools, which should support 
the medical technical assistant (MTA) in carrying out the required constancy 
tests. An added value of software assisted quality assurance is the ability to 
generate reports and statistical evaluations of the collected results. The national 
mammography screening program in Luxembourg has established a sophisti-
cated quality assurance program including automatic reading, ready to use  
reporting and tailored formation at a national scope during the last years. This 
paper reports our experiences during the implementation of this common na-
tional wide quality control system and discuss the challenges involved. 

Keywords: Quality assurance, constancy control, automatic phantom reading. 

1   Introduction 

In the Luxembourgian mammography screening program 44 000 women between an 
age of 50 and 69 years are invited every two years to conduct a mammography exami-
nation. With an overall acceptance of 64% participating women from all invited the 
program runs successful. The invited women have the opportunity to go to one of the 
nine screening centers which are participating in the program. Once an examination is 
performed, the first reading is done in the screening center. The examination is then 
transferred for the second reading to the Ministry of Health mammography program. 
Here a blinded second reading is performed. If the diagnosis match, an appropriate 
                                                           
∗ Corresponding author. 
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report is send. In the case the results do not match, a third reading is scheduled. The 
communication process, which includes the management and scheduling of screening 
participants and their registration in the local and remote Radiology Information Sys-
tems (RIS) and the secure transfer of the taken images for second reading is done using 
a custom management system electronically (Figure 1). 

 

Fig. 1. Workflow of the process of second reading 

With the introduction of the Council directive 97/43/EURATOM quality control 
for all radiographic modalities becomes an obligation in the EU countries [1]. The 
detection of early cancer in mammography screening programs make demands on 
cutting edge image quality. As in mammography screening programs potential 
healthy women are radiated, there is a need for high quality at low dose levels. This 
high demand on quality resulted in the development of a quality assurance program 
adapted to the specific needs of the Luxembourgian mammography screening  
program.  

2   Materials and Methods 

The developed quality assurance program is based on the recommendations given by 
the European Reference Organisation for Quality Assured Breast Screening and Diag-
nostic Services (EUREF) in the European Guidelines for Quality Assurance (QA) in 
Breast Cancer Screening and Diagnosis [2]. In 2006 the Luxembourgian mammography 
screening program switched the first mammography unit to a digital mammography 
system. In parallel a work group developed an adapted quality assurance program to 
correspond to the new requirements. This QA program needs to take the characteristics 
of the new digital technology into account: For example in the analog mammography 
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the determination of the noise was only possible with high efforts, it changed in digital 
completely, because access to the discrete pixel values stored in the image files is possi-
ble. The QA not only focuses on the image quality of the mammography system it also 
has to control the other parts of the image chain into account. This includes the envi-
ronment of the readers as well as the constancy of the used displays.  

 

Fig. 2. Phantom accorging to PAS 1054 

For the constancy control the method described in the Public Available Specifica-
tion 1054 (PAS 1054) [3] and the corresponding phantom (Figure 2) was chosen. This 
phantom is designed in respect to the guidelines established from the EUREF [3+4]. 
In addition the CDMAM phantom [5], is used to determine the low-contrast visibility 
of small objects. The PAS 1054 phantom is used for the daily and weekly constancy 
control tests as it fits well to the requirements and was one of the first commercially 
available phantom that time. This phantom includes a lot of features by default. It 
includes, depending on the model, a 14-steps step-wedge made of PMMA or alumi-
num. The aluminum step-wedge is obligatory for level B tests, but can also be used 
for the level A tests. The PMMA step-wedge is only applicable for level A tests so we 
decided to use the aluminum one for all the tests that are performed.  

To support the MTA, who are doing the daily test in the sites, and to use the benefits 
provided by the new technology, the Optimage project was chosen to ease up and re-
duce the daily work of the MTA. The Optimage software, which is a suite for automated 
quality control of radiographic modalities, is a module based solution to automatically 
read phantom measurements and document them probably [6]. That simplifies the pro-
cedures in constancy control for the MTA and maximizes the available information for 
the responsible medical physics expert. Due to the fact that constancy control in  
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Table 1. Parameters included into the quality assurance program Besides the replacement of 
the machines and the introduction of the software, also training of the Medical Technical Assis-
tants (MTA) was scheduled. This leaded to the offer of continuing training courses for MTA as 
well as radiologists [9]. To enable them to understand the changes and different behaviors of 
the digital technology the offered courses included hands-on workshops. 

Parameters Frequency Reference levels 

Visual display control Weekly  

Determine geometrical  
deformation with AAPM 
TG18-QC 

Weekly Borders of the grid must be visible and 
non deformed 

Contrast and grey level 
TG18 

Weekly The 5% and 95% fields must be differen-
tiable, steps must have a linear increase in 
the luminance 

Visibility of artifacts Weekly Non disturbing artifacts 

Homogeneity of detector Weekly SNR >10% 
change >10% 

Artifacts Weekly Visible artifacts 

Defect elements of detector Weekly Pixel >20% mean of ROI 

Average Glandular Dose Daily >5% 

SNR Daily >10% 

Mean pixel value Daily >10% 

CNR Daily >10% 

Contrast Daily >10%  for every step in the step wedge 

Low Contrast visibility 
(KP-MDP) 

Weekly >= reference 

Function of AEC Monthly CNR >10% 
mAs >10% 

Luxembourg is performed in collaborative work of the MTA, that are responsible to 
perform the level A test (high frequency; simple tests) together with the medical physics 
experts with review the results and report them to the supervising authority. The medi-
cal physics experts are also responsible to do the  level B tests (infrequent; more ad-
vanced)[7]. 

In addition the phantom enables us to measure the offset of the signal, the high-
contrast resolution, mean grey value, signal to noise ratio (SNR) and the accurateness 
of the thorax side border. This set of measurements can be enhanced by adding inserts 
to the phantom. In the different set ups the phantom can then also measure contrast to 
noise ratio (CNR), ghosting and low contrast detail. Therefore different inserts are 
available, utilizing parts of the CDMAM phantom that are representing the achievable 
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contrast detail curve. Also available are inserts using structures from the ACR or Ac-
kerman phantom, containing small fibrils, masses and micro-calcification simulating 
objects. For systems that are used in screening contexts it is an obligation to evaluate 
one of these low contrast detail inserts daily, to monitor this parameter as best as pos-
sible [3]. An extract of the performed tests and their frequency for the constancy con-
trol of the mammography units in the screening program can be found in table 1. 

The Optimage GUI is optimized to do the test and documentation of the measured 
parameters in just three steps. The user just selects the image to analyze, and the soft-
ware automatically recommend a suitable profile to be used. Then the user is able to 
start the verification process. During this step the software uses methods of image 
recognition to find the features (step wedge, line pairs, …) embedded in the phantom. 
If all features can be found the calculation step is enabled.  

In the case of a wrong placed or oriented phantom the software stops the measure-
ment with a comment to the user to correct this before he can continue. When the 
measurement is performed the user gets a short customizable list of the most interest-
ing parameters. More advanced users can also examine the complete list of all meas-
ured parameters (>100). From the result a report can be created and the results can be 
stored in a relational database. These data can later on be used to generate time  
reports and statistical analysis of the observed machines [8]. 

3   Results 

The work groups reviewed the state of the art in performing constancy control in digi-
tal mammography. Thereby the European guidelines proposed from the EUREF and 
the German PAS 1054 were selected as the bases for the implementation of the qual-
ity assurance in the Luxembourgian regulations in general. This implies that all digital 
mammography systems in Luxembourg have to be tested in the same conditions, 
whatever it is used for curative or screening purpose. The PAS 1054 was selected 
because it is the only specification which also defines the phantom (see Figure 2).  

Phantom images are evaluated automatically using the Optimage Software pack-
age. Due to the grown IT infrastructure in the Luxembourgian hospitals the diversity 
of used systems is very high. To be able to install the Optimage software in the hospi-
tals the complete flexibility of the software has to be used. It has been installed in 
every hospital with radiographic department participating in the national mammogra-
phy screening program. Till march 2010 two centers replaced their mammography 
units completely to digital full field systems. During this year 3 additional centers will 
switch to digital mammography systems.  

The biggest challenge was to integrate the software in the different environments.  
The software is installed on Linux servers, Windows Servers, Citrix and dedicated 
Windows PC.  

In all cases the software has to be integrated as a DICOM node to the network in-
frastructure as well. The success of this is very depending on the manufacturer of the 
picture archiving and communication systems (PACS). In one case we needed to in-
vest in a license to receive uncompressed images. 2/3 of the DICOM nodes could be 
set-up by the PACS administrators of the hospital and for the rest of the installations a 
technician of the manufacture had to asked to set up the node. More complicated was 
the access to the raw image data. In only 20% of the installations the option to send 
these kind of data was accessible without the help of a technician.  
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Fig. 2. How the Optimage Software is installed in the screening centers 
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Fig. 3. Measurement distribution of the last 3 years 

In 3 years of usage of the Optimage software in the screening centers, they aggre-
gated 943 measurements, for the distribution of the performed phantom measurements 
see figure 3. The in the software used automatic segmentation algorithms for the fea-
ture extraction was improved during this time up to a detection rate 99.5%. 
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To enable the MTA to do the constancy tests in digital mammography all involved 
MTA participated in a special training program to be able to do it, with and without 
the support of the Optimage software. This was done till the end of 2009 in several 
training sessions. We turned attention on giving high quality courses in collaboration 
with external experts. Also the hand-on workshops were included to the training. We 
kept a ratio between tutor and the participants by 1:4 or better.  

4   Conclusions 

The introduction to the quality assurance program was only possible in close collabo-
ration of all participating parties (IT, PACS administrators, MTA, medical physics 
experts). Also the manufactures have to be involved, as the access to the raw image 
data needs additional configuration effort.  

This integral approach within our work group enabled us to take the different opin-
ions and requirements into account. This resulted in a high acceptance of the pro-
gramme. Due to the developed automatic reading software, that was deployed with 
every digital device from the beginning, daily quality control tests are efficient, objec-
tive and centrally documented. 

We have been faced with several challenges during our work: The software needs 
adaptation to the different hospital IT systems. The MTA needed dedicated training to 
correctly apply the developed QA procedure and use the software without problem. A 
help desk is useful for the users that have problems performing the tests. 
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Abstract. If breast density is to be incorporated into breast cancer risk prediction 
models, the technique used for measurement must be quantitative, accurate, ob-
jective and reproducible. We present a semi-automated method that has been 
used by three independent operators to measure glandular volume from the digi-
tised mammograms of 29 women (116 images). Additionally, one operator used 
the method on 10 separate occasions on a sample of 24 images. Intra-observer 
variability was found to be acceptably low, with coefficients of variation ranging 
from 3.5 – 5.7% depending on mammographic view (intra-class correlation coef-
ficient close to 1 in all cases). However, inter-observer variability was greater 
with significant differences in glandular volume recorded between observers. 
This was attributed to the method of breast edge detection. The development of a 
new automatic breast edge detection algorithm has resolved the issue. The aver-
age difference in glandular volume measurement between two independent  
operators in the cranio-caudal view is -0.89cm3 (95% confidence interval -
2.77 – 0.99 cm3) using the new method, compared to 5.99cm3 (95% confidence 
interval 2.72 – 9.76 cm3) using the old method. 

Keywords: breast density, volumetric technique, observer variability. 

1   Introduction 

Early detection of breast cancer is essential in providing effective treatment and im-
proving the chance of survival. This is achieved to a significant extent through routine 
breast screening. However, it is particularly important to identify women at increased 
risk of the disease and breast cancer risk prediction models have been developed for 
this purpose, including the Gail [1], Claus [2] and Tyrer-Cuzick [3] models.   

Despite evidence of a strong link between breast density and cancer risk, breast den-
sity was not included in risk prediction models until relatively recently. Barlow et al [4] 
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developed a model incorporating breast density and use of hormone therapy as addi-
tional inputs. Breast density was found to be a statistically significant risk factor for 
breast cancer diagnosis in pre- and post-menopausal women and it is thought that its 
inclusion in risk prediction models may offer improved accuracy in the identification of 
women at high risk of developing breast cancer.   

The reason for not including breast density in risk prediction models can be attrib-
uted to difficulties in measuring this parameter. If breast density is to be measured 
routinely, it is necessary to use a method which is quantitative, accurate, reproducible 
and objective. Operator dependency should be minimised in order to reduce intra and 
inter observer variability. An additional advantage of an automated technique is that it 
is less time consuming. This is essential if the technique is to be applied to a screening 
population. 

We have developed a semi-automated method for measuring volumetric breast 
density. Three observers used this method on the mammograms of 29 women who 
had consented to take part in a study assessing the feasibility of using the method in 
the UK breast screening programme. Each woman had four mammographic views 
taken (left and right cranio-caudal, CC, and mediolateral-oblique, MLO) giving a total 
of 116 images. One operator used the method on 10 separate occasions to analyse a 
subset of 24 images from this sample. Following improvements to the breast edge 
detection algorithm, the new method was applied to the same sample of mammo-
grams.  We present results of intra and inter observer variability for the original 
method and inter observer variability for the method with the new automatic breast 
edge detection algorithm. 

2   Materials and Methods 

Our method for volumetric breast density measurement been described previously  
[5 - 7]. A calibrated stepwedge is imaged alongside the breast, with radio-opaque 
magnification markers on the compression paddle to enable accurate determination of 
breast thickness, taking into account paddle tilt. Using software written in Matlab, the 
operator is prompted to select the radio-opaque markers in a digitised mammogram; 
the location of each marker is determined using a Canny edge detector (Figure 1a). 
Secondly, they mark and define the edges of two steps on the stepwedge. Finally, they 
draw an approximate breast outline (Figure 1b).  

Initially, the location of the breast edge was determined based on the gradient of a 
series of greyscale profiles plotted from the user-defined outline in a direction normal 
to the breast edge. The breast edge algorithm has since been improved to remove any 
operator dependency. It now uses the Hough transform and is described as follows: an 
approximate location for the breast edge is determined by i) applying a global thresh-
old based on analysis of the grey-level histogram in each mammogram ii) applying 
morphological operators to the resulting binary image to isolate the main breast re-
gion. The approximate breast edge location is used to initialise an adapted active 
contour algorithm which then computes a more precise (and locally smooth) demarca-
tion of the breast edge.  
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                                          (a)                                                         (b) 

Fig. 1. (a) original mammogram showing definition of markers; (b) approximate definition of 
breast edge by operator 

Three independent operators were trained in the use of the software and carried out a 
practice session on 10 images before commencing the study. The same three operators 
then used the software with the original breast edge detection to calculate glandular 
volume from the digitised mammograms of 29 women (116 images). The sample was 
selected to include a range of breast thicknesses and densities (based on radiologist 
assessment of breast density) and to include both small (18x24cm) and large (24x30cm) 
format films. Within this sample, a subset of 24 images was analysed on 10 separate 
occasions by the same operator to enable assessment of intra-observer variability.  

The software provides outputs of breast thickness, breast area, breast volume and 
glandular volume. Our method for breast thickness determination accounts for paddle 
tilt by measuring the thickness at a number of locations from the chest wall to the 
nipple edge [8]. The breast thickness measurement considered in this study was that at 
the chest wall. 

The software with the improved breast edge detection was run again on the images 
marked up by two of the three observers; the only operator input required was the 
segmentation of the pectoral muscle, as the results of the original marker and step-
wedge mark-up had been saved. 

3   Results and Discussion 

3.1   Intra-observer Variability 

There was little intra-observer variability in the determination of glandular volume. 
Repeatability of the method was considered to be acceptable, with average coeffi-
cients of variation (CV) ranging from 3.49% to 5.73% depending on radiographic 
projection (Table 1). Although the CV for the RCC view exceeds 5%, the intra-class  
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Table 1. Coefficient of Variation and Intra-class Correlation Coefficient for glandular volume 

 View 
 LCC LMLO RCC RMLO 

Average co-efficient of 
variation (%) 

3.49 
 

4.01 
 

5.73 
 

4.65 
 

Intra-class correlation coeffi-
cient 

0.96 0.95 0.97 0.96 

correlation coefficient (ICC) is 0.97 which indicates repeatability. In all cases the ICC 
was close to 1. Results for breast thickness, breast area and breast volume all showed 
CV less than 5% and ICC close to 1. 

3.2   Inter-observer Variability: Original Breast Edge Detection Method 

Box and whisker diagrams were plotted for each mammographic view to compare the 
range of data generated by each operator for breast thickness, breast area, breast vol-
ume and glandular volume. Figure 2 shows the range of data for glandular volume in 
the RCC view for three operators using the original breast edge detection method.  
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Fig. 2. Box and whisker plot showing the range of glandular volume data generated by each of 
the three readers for the RCC view 

A number of trends were observed. There was greater spread and poorer agreement 
between operators for the CC views compared to the MLO views, with the greatest 
discrepancy being found for the RCC view. This was true for breast area, breast vol-
ume and glandular volume.  

Reader 3 consistently generated the highest glandular volumes and Reader 2 gen-
erated the lowest glandular volumes for all views.  

The relationship between inter-observer variability with glandular volume was ex-
amined further by comparing the individual glandular volume results obtained for 
each image with the average glandular volume for that image. Figure 3 shows the 
results for the left MLO view. The spread of data was found to increase significantly 
(p<0.05) as glandular volume increased.  
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Fig. 3. Glandular volume generated by each observer plotted against the average glandular 
volume for that image 

The comparison of breast thickness between operators was found to exhibit very 
little variation, with an average difference between readers of just 0.28mm and a 
maximum difference of 1.93mm. It is therefore thought that the greatest source of 
discrepancy is the mark-up of the breast edge and further investigation of the images 
that exhibited the greatest spread in glandular volume revealed that there was a con-
siderable difference in the operator-defined breast edge and the subsequent determina-
tion of the breast edge by the software. 

3.3   Inter-observer Variability: Automatic Breast Edge Detection Algorithm 

The automatic method is highly reproducible; the mean difference in breast area for 
CC views is 0% when running the algorithm three times on the same set of images.  
There is still some variation in the breast area of the MLO views as the operator has to 
mark the pectoral muscle.  

A box and whisker plot showing the spread of data for glandular volume between 
Readers 1 and 2 for the RCC view is shown below in Figure 4. It can be seen that the 
mean and median values are much closer using the automatic breast edge detection 
algorithm that those in Figure 1 using the original method. The same was found for 
breast area and breast volume, as shown in Table 2.  

It is interesting to note the effect of the new breast edge detection model in terms 
of the percentage bias in glandular volume. The mean difference between readers 
expressed in terms of the discrepancy relative to the median value is 12% (maximum 
18%) using the original breast edge detection method, compared to only 1.8% (maxi-
mum 5.5%) using the new method. 
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Table 2. Average and 95% confidence interval for the differences in breast area, breast volume 
and glandular volume for Reader 1 and Reader 2, RCC view 

Parameter Measurement Original 
method 

Automatic 
method 

Mean difference  
(Reader 1 – Reader 2) 

-19.6 0.0 Breast area  
(cm2) 

95% limits of agreement 
 

-23.7 – (-15.6) 0.0 

Mean difference  
(Reader 1 – Reader 2) 

-103.3 -1.31 Breast volume 
(cm3) 

95% limits of agreement 
 

-127.4 – (-79.2) -3.25 – 0.62 

Mean difference  
(Reader 1 – Reader 2) 

5.99 -0.89 Glandular volume 
(cm3) 

95% limits of agreement 
 

2.72 - 9.26 -2.77 - 0.99 
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Fig. 4. Box and whisker plot showing the range of glandular volume data generated by Readers 
1 and 2 for the RCC view 

4   Conclusion 

The stepwedge based method gave repeatable results when images were marked up by 
a single operator. However, there was inter-observer variability in the results for breast 
area, breast volume and glandular volume, with the largest differences between opera-
tors being observed for glandular volume. The disagreement in the measurement of 
glandular volume generated by each reader was found to increase as breast glandularity 
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increased. The spread in data was consistently higher for the RCC view. It is interest-
ing to note that the greatest intra-observer variability was also found for the RCC view. 
The reasons for this are not clear but warrant further investigation. 

The inter-observer variability was attributed to differences in the way in which 
each operator marked the breast edge, rather than their definition of other landmarks 
on the image. This had a pronounced effect on the way in which the software calcu-
lated the exact breast edge. Determination of breast thickness exhibited negligible 
inter-observer variability, with a mean difference of only 0.28mm between observers.  

A new automatic breast edge detection algorithm has been developed and has 
shown promising results in improving inter-observer variability. Work is in progress 
to improve this algorithm to auto-detect the pectoral muscle as currently this is still 
defined by the operator on the MLO views. 
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Abstract. The use of digital mammography systems has become widespread 
recently. However, the optimal exposure parameters are uncertain in clinical 
practice. We need to optimize the exposure parameter in digital mammography 
while maximizing image quality and minimizing patient dose. The purpose of 
this study was to evaluate the most beneficial exposure variable—tube voltage 
for each compressed breast thickness—with these indices: noise power spec-
trum, noise equivalent quanta, detective quantum efficiency, and signal-to-noise 
ratios (SNR). In this study, the SNRs were derived from the perceived statistical 
decision theory model with the internal noise of eye-brain system (SNRi), con-
trived and studied by Loo LN [1], Ishida M et al. [2] These image quality indi-
ces were obtained under a fixed average glandular dose (AGD) and a fixed  
image contrast. Our results indicated that when the image contrast and AGD 
was constant, for phantom thinner than 5 cm, an increase of the tube voltage did 
not improve the noise property of images very much. The results also showed 
that image property with the target/filter Mo/Rh was better than that with 
Mo/Mo for phantom thicker than 4 cm. In general, it is said that high tube volt-
age delivers improved noise property. Our result indicates that this common 
theory is not realized with the x-ray energy level for mammography. 

Keywords: digital mammography, average glandular dose, noise power spec-
trum, signal-to-noise ratio, noise equivalent quanta, detective quantum  
efficiency. 

1   Introduction 

The number of female breast cancer patients in Japan has been increasing recently. 
The prevalence of breast cancer has increased especially among women in their mid-
dle and early years. The mortality rate of breast cancer is also increasing year by year. 
Mammography is helpful in the early detection of breast cancer. However, it is said 
that Japanese women have dense breasts, which makes it difficult to find a tumor on 
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mammography. There is very little difference between the x-ray attenuation of the 
glandular tissue and that of tumor tissue, so the exposure parameter for mammogra-
phy should be chosen appropriately. It requires maximization of the image quality and 
minimization of patient dose. The purpose of this study was to evaluate the most 
beneficial exposure variable—tube voltage for each compressed breast thickness—
using these indices: noise power spectrum (NPS), noise equivalent quanta (NEQ), 
detective quantum efficiency (DQE), and signal-to-noise ratios (SNR). In this study, 
the SNRs were derived from the perceived statistical decision theory model with the 
internal noise of eye-brain system (SNRi), contrived and studied by Loo LN [1], 
Ishida M et al. [2] We measured those indices under a fixed average glandular dose 
(ADG). The NPS, NEQ, and DQE were evaluated with fixed image contrast. 

2   Materials and Methods 

2.1   Equipment Used in This Study 

The mammography equipment used in this study was Mermaid model MGU-100B. 
The CR reader used was REGIUS V stage, Model 190. The CR plate used was 
CP1M200 (with columnar crystal phosphors). This equipment were manufactured by 
Konica Minolta MG. X-ray images of low contrast objects were obtained for the 
measurement of the SNRi. We used a dosimeter, Radiation Monitor Controller model 
9015 manufactured by Radcal Corporation, for the evaluation of AGD. To measure 
the contrasts and to calculate NPS, we obtained images of acrylic steps (thickness: 1–
10 mm) and uniformly exposed x-ray images. We used acrylic plates (thickness: 2, 4, 
5, and 7 cm) as breast phantoms. Mo/Mo and Mo/Rh were chosen for the target/filter 
combinations. As the source of low contrast signal, we used a resinous disc (diameter: 
4.2 mm, thickness: 4.5 mm). To measure the presampled MTF for NEQ and DQE, we  
 

 
Fig. 1. Geometrical layouts for the measurements of SNRp (a), the image contrasts (b) and 
uniform exposure to calculate the NPS (c) 
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obtained images of the tungstenium edge. For the calculation of DQE, we require the 
number of quanta q, which contributes the image. To survey q, we measured exposed 
x-ray quanta with the spectrometer RAMTEC 413 manufactured by Toyo Medic 
Corporation. 

2.2   Measurement of the Average Glandular Dose 

We measured AGD and chose the exposure level that gave the AGD on EUREF dose 
acceptable level (Table 1) for every combination of the thicknesses of phantoms and 
the tube voltages (25, 28, 30, 32, 35 kV). We could not adjust the exposure level for 
AGD closely because of the restriction of the machine. Therefore we selected the 
exposure level as near as possible to the EUREF acceptable level dose. Table 2 shows 
the exposure conditions for 4-cm thick polymethyl methacrylate (PMMA) with 
Mo/Mo. For another thickness of phantom and target/filter combination, we chose the 
exposure level in the same way. 

Table 1. EUREF dose acceptable level for each thickness of PMMA and its equivalent breast 
thickness 

PMMA  
thickness [cm] 

Equivalent breast 
thickness [cm] 

Dose acceptable level 
[mGy] 

2 2.1 0.6 

4 4.5 1.6 

5 6.0 2.4 

7 9.0 5.1 

Table 2. Exposure level for 4-cm-thick PMMA with Mo/Mo 

25 kV 28 kV 30 kV 32 kV AGD   
[mGy] Exposure level [mAs] 

1.3  80 50 40 32 

1.7  100 63 50 40 

2.3   Measurement of Image Contrasts 

NPS depends on the image contrast, and the image contrast changes with the tube 
voltage. For this reason, we evaluated NPS under fixed image contrast. In order to do 
this, the image contrast of each tube voltage was measured. We obtained the images 
of the acrylic plates and the acrylic steps, which were put on the chest wall side of the 
table for the contrast evaluation (Fig. 2). We read out the raw data of the acrylic step 
images and found the contrast by the pixel value of each step. 
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Fig. 2. Layout of measurement of the contrast 

2.4   Calculation of NPS 

We calculated the NPS by the 2 dimensional fast Fourier transform method. When we 
evaluated the NPS values at 25, 30, 32, and 35 kV, we adjusted the contrasts under 
these tube voltages to under 28 kV. To tune the image contrasts, we computed the 
NPS and multiplied the following correction factor k. 

       ( )2 voltagebeanother tuat contrast  image / kV 28at contrast  image=k         …(1) 

2.5   Calculation of NEQ and the DQE 

To calculate the NEQ and the DQE for each system, we used the NPS, the presampled 
MTF and number of x-ray quanta. The MTF was measured with the edge method. 
The number of x-ray quanta q, which contributes the image was quantified with the 
spectrometer. Using the value of presampled MTF, NPS, and q, we computed the 
NEQ and the DQE as described below.  
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Here, u is spatial frequency; G is the gradient of the digital characteristic curve; 
NPSΔPV  is NPS calculated with the pixel value; and q is the number of incident x-ray 
quanta per unit which contribute the image composition. To measure the presampled 
MTF, an exposure level of 50 mAs, a tube voltage of 28 kV, and a target/filter of 
Mo/Mo were used for the exposure conditions. 

 
 

(b) Overhead view (a) Overview 
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2.6. Calculation of SNRi 

SNRi, which takes the spatial frequency response of the human visual system and the 
internal noise of eye-brain system into consideration, is written as 

                              
222 1 )N/N(

SNR

NN

S
SNR

pi

p

ip

p
i

+
=

+
=                 …(4) 

In this equation (4), the SNRp represents the SNR only with the human visual charac-
teristic, without the internal noise. The SNRp is shown as (5). 

                                                  p
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where 
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DIS(u,v) and DWS(u,v) mean the displayed signal spectrum and the NPS, respec-
tively. The visual spatial frequency response of the human observer3) is represented 
by VRF(u,v). 

The Ni shown in equation (4) means the internal noise4) that is caused by the noise 
inherent in an observer, for instance, the noise in relation to neurophysiological insta-
bility and to fluctuations of the observer’s memory. 

3   Results 

3.1   NPS and NEQ 

The NPS was almost stable when the tube voltage changed between 2-cm and 4-cm-
thick phantoms. There were few differences in the NPS values for each tube voltage 
with 5-cm-thick phantom, and we observed the tendency that high tube voltage im-
proves the noise property of the image. This trend was more remarkable for 7-cm-
thick phantom. As the combination of target/filter, Mo/Rh was more beneficial than 
Mo/Mo for phantoms thicker than 4 cm. This trend was also more conspicuous for 
thicker phantom. 

For 2-cm-thick phantoms, the NEQ did not change with the tube voltage and filtra-
tion except for 32 and 35 kV with Rh filter. The NEQ values on these two exposure 
conditions were lower than that on others. Also, 35 kV with Rh filter gave the highest 
NEQ for phantom thicker than 4 cm. In these cases, the superiority of Rh filter to Mo 
became clearer for thicker phantom. 
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3.2   DQE 

The results of the DQE are shown in Figures 3-5. The DQE value was large for 
the low tube voltage for every thickness of phantom. The difference between the 
tube voltages was clear for the thick object. The DQE with Mo filter was larger 
than that with Rh filter. The difference between the filtrations was clear for the 
thin object.  

3.3   SNRi 

I show you the result for the SNRi in Figure 6. For 2 and 4cm-thick objects, we 
recognized the tendency that the SNRi value with Mo filter was larger than that 
with Rh filter. The relation of the SNRi value and tube voltage was not shown in 
our result however. 
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           Fig. 3. DQE for 2-cm-thick phantom                   Fig. 4. DQE for 4-cm-thick phantom 
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  Fig. 5. DQE for 7-cm-thick phantom                Fig. 6. SNRi for 2 and 4 -cm-thick phantom 

4   Discussion 

The results of NPS and NEQ indicate that when the image contrast and AGD was 
constant, for a phantom thinner than 5 cm, an increase of the tube voltage did not 
improve the noise property of images very much. The results also showed that image 
property with the target/filter Mo/Rh was better than that with Mo/Mo for the phan-
tom thicker than 4 cm. In general, it is said that high tube voltage delivers fine noise 
property. The result of our study indicates that this common theory is not realized 
with the x- ray energy level for mammography. 

From the results of DQE, we can say that the contribution of high energy x-ray 
photons for image is less than that of low energy x-ray photons. The effect of beam 
hardening makes the difference between tube voltages clear for thick objects. 

We could not recognize the relation of the SNRi value to the level of x-ray energy. 
We should make accuracy high with more many low contrast objects. In this study, 
the SNRi considered in the dimension of pixel value of raw data image but the index 
needs to be calculated in the dimension of brightness.  
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5   Conclusion 

In conclusion, when the image contrast and AGD was constant, for the phantom thin-
ner than 5 cm, an increase of the tube voltage did not improve the noise property of 
images very much. The results also showed that image property with the target/filter 
Mo/Rh was superior to that with Mo/Mo for the phantom thicker than 4 cm. Our re-
sult signified that high tube voltages did not improve the noise property of images 
with the x-ray energy level for mammography. 

From the result of DQE, low energy x-ray photons contributed image effectively. 
This tendency was clear for thick object. 

In addition, we need to examine SNRi in brightness with accuracy. 
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Abstract. The image data from 348 breast CT studies performed on patient 
volunteers in a Phase II clinical trial were used in a pre-whitened matched filter 
(PWMF) model observer study. This computer-based investigation simulated 
the addition of spherical lesions of various diameters to the breast data sets, and 
a series of images with different slice thicknesses ranging from 0.3 mm to 44 
mm were created by voxel averaging. The PWMF was tailored to each slice 
thickness, and signal known exactly receiver operating characteristic analysis 
was performed. A total of 1000 lesions and “non-lesions” were simulated for 
each diameter on each breast data set. Receiver operating characteristic (ROC) 
curve analysis was performed, and sensitivity at 95% specificity was computed.  
Thin slice imaging as with breast CT demonstrated significantly better sensitiv-
ity than thick slice images as with mammography, with improvements in sensi-
tivity ranging from 5% to 50%. 

Keywords: Breast CT, Ideal Observers, Receiver Operating Characteristic 
Curves. 

1   Introduction 

Breast CT has been proposed as an alternative for breast cancer screening and diagno-
sis.  At our institution, two breast CT scanners have been designed, fabricated and are 
being using to image suspected breast cancer patients in the clinical setting.  Over 300 
women have been imaged on the two UC Davis scanners to date. The technical per-
formance and dose issues of breast CT has been discussed in previous publications  
[1-15].   

While we are still acquiring patient images for a pending human observer clinical 
trial, the vast experience that breast imaging physicians have with mammography will 
inevitably lead to a training bias in any ROC experiments performed with radiolo-
gists. We therefore have sought to study the fundamental, “theoretical”, performance 
of breast CT image data sets in comparison to traditional projection imaging. This 
ideal observer study was conducted to perform such a comparison, using pre-
whitened matched filter techniques on the breast CT data sets. 
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2   Methods and Materials 

The breast CT systems built in our laboratory have been used in both Phase I and 
Phase II clinical trials, and approximately 300 women have been imaged to date on 
these two systems. The breast CT systems use a 40 cm x 30 cm flat panel detector 
system with a readout rate of 30 frames per second, with 2 x 2 detector elements 
binned together to yield a pixel size of 0.388 mm. Projected to the isocenter, the sam-
pling pitch is about 0.210 mm. A 16.6 s acquisition of 500 images is used to image 
the breast during patient breath-hold, with the breast hanging in pendant geometry 
through a hole in the patient couch. No breast compression was used. The x-ray sys-
tem uses a tungsten anode with 0.2 mm Cu filtration at 80 kVp, and the radiation dose 
level is adjusted to be the same as for two view mammography for each individual 
women, based upon her breast size and composition.   

The raw data set of 500 projection images is flat field corrected, logged, and Fou-
rier filtered prior to being backprojected to a 512 x 512 x 512 CT image matrix.  The 
CT slice thickness is approximately 0.28 mm, depending on the dimensions of the 
women’s breast.  The overall reconstruction process results in a ~5123 data set of 
nearly isotropic voxels, with the data converted to Hounsfield Units (HU).   

Spherical breast lesions, with HU equal to that of the glandular tissue, were added to 
each breast CT data set, one at a time. The lesions ranged in diameter from 1.0 to 15 
mm, with 6 different diameters used. A number of different methods for placing the 
lesion into the breast image data set were explored, as shown in Figure 1. Because the 
breast lesions have approximately the same density as glandular tissue, adding the HU 
values of the lesion in not possible when there is glandular tissue present. The final 
procedure used a distance transform and an edge smoothing process, to assure that the 
inserted lesion is as close to an actual spherical lesion in the breast as is possible. A 
total of 1000 lesions of each size, and corresponding “non-lesions” (where no gray 
scale was added – these are “normal” breasts), were added to each breast CT data set.  

 

Fig. 1A. Several strategies for lesion insertion, a) background, b) direct intensity replacement, 
c) intensity addition to adipose tissue only, d) modulation on tissue boundary, e) modulation on 
tissue and sphere boundary 
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Fig. 1B. The results of the final approach for inserting simulated lesions into breast volumes are 
shown in this figure, where the 0.5 mm slice thickness corresponds to breast CT, and the 34.5 
mm projection thickness is more like mammography in appearance.  Lesions of various diame-
ters were inserted, and these increase from left to right in this panel of images. 

Once the lesion was synthetically added, the breast image data was projected onto 
a 256 x 256 region of interest and the signal-known-exactly (SKE) pre-whitened 
matched filter computation was performed, resulting in a filter response function.  
The matched filter was computed for each slice thickness studied. For lesions which 
are larger than the slice thickness, then that image cuts through the lesion and it would 
appear more disk-like than a spherical projection. Figure 2a illustrates the relative 
filter response (the sum of the product of the matched filter with the projected image 
data), and the ROC curve that is generated from this data is shown in Figure 2b. 

.  

Fig. 2. Distribution of the PWMF response to 11mm lesions and non-lesions (a) with the corre-
sponding ROC curve (b). This data was generated from a scan of a particularly dense breast for 
thin projections of 0.75 mm (e.g. bCT).  

3   Results 

Figure 3 illustrates the mean signal to noise ratio (SNR) for lesions of different di-
ameters as a function of projection length. The projection length is simply the slice 
thickness, and thinner projection lengths (~0.3 mm) correspond to breast CT while 
thicker projection lengths (~44 mm) are thought to be more representative of mam-
mographic images. The SNR is seen to be near maximum for each lesion diameter  
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Fig. 3. The signal to noise ratio (SNR) computed for lesions of various diameters (indicated) is 
plotted as a function of the projection length (slice thickness).  Thin slice images such as with 
breast CT are on the left of this figure, while thick slice images towards the right are typical of 
mammography.  It is seen that the SNR is higher for thinner images, in general. 

 

Fig. 4. The average area under the ROC curve, AUC, is shown (with one standard deviation 
error bars) as a function of lesion diameter for a 0.3 mm projection image (breast CT) and a 44 
mm projection (“mammography”).  These data were computed in fatty breasts, as determined 
by radiologist interpretation using the BIRADS scale for fatty breasts. 
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Fig. 5. The area under the ROC curve (AUC) is shown as a function of lesion diameter for 0.3 
mm projection (breast CT) and 44 mm projection (mammography) thicknesses.  These data are 
for dense breasts. 

 

Fig. 6. The sensitivity at a realistic 95% specificity was computed from the ROC curves, and 
these results are shown for fatty breasts (left) and dense breasts (right). 

when the projection length is slightly less than the lesion diameter, which is not  
surprising. Once reaching a maximum SNR, the SNR continues to decrease as the 
projection length increases.   

An ROC curve using the 2000 lesions and non-lesions was computed for each of the 
348 breast volume data sets, and for each lesion diameter. The area under the ROC 
curve, AUC, was computed and these data are shown in Figure 4 for fatty breasts. The 
thin (0.30 mm) slice results show significant improvement in AUC compared to the 
thicker images, and indeed for this cohort of fatty breast data, the AUC for lesions larger 
than about 5 mm is almost perfect at 1.0, while there is a pronounced drop-off in AUC 
for the thicker images as the lesion diameter decreases below 10 mm.   
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Figure 5 illustrates the AUC for dense breasts for both thin and thick slice imaging.  
While both curves are significantly lower in this dense breast cohort compared to the 
fatty breast cohort results seen in Figure 4, the thin slice images remain superior in 
terms of AUC compared to thick slice images. Indeed, the separation between the two 
curves in Figure 5 (dense breasts) is in general greater than that of Figure 4 (fatty 
breasts), suggesting that breast CT’s performance in dense breasts, while not perfect, 
will nevertheless be substantially improved over projection imaging techniques.   

The sensitivity was computed at 95% specificity for each ROC curve (the data 
from Figures 4 and 5) and the averages are shown in Figure 6. In Figure 6a, the data 
are shown for the fatty breasts, and for Figure 6b, the data shown are for dense 
breasts. It is quite clear from Figure 6 that the thin (0.3 mm) sections corresponding to 
breast CT out-performed the projected data (44 mm), which simulate mammographic 
projections. Dramatic increases in sensitivity are observed for all but the largest (and 
most obvious) lesions, Although the overall performance of breast CT was reduced in 
denser breasts, the performance remained consistently better than projection imaging 
across all lesion diameters for the case of dense breasts. 

4   Conclusions 

Using a pre-whitened matched filter methodology, the results of this computer simu-
lation exercise demonstrate a statistically significant (p<0.05) improvement in lesion 
detection for thin slice (breast CT) images as compared to projection images (mam-
mography). While the improvement of breast CT degrades in dense breasts relative to 
fatty breasts, the drop in detection performance is less for breast CT compared to 
projection imaging approaches.   

Only mass lesions were studied, and microcalcifications were not. The results of 
this study, while demonstrated in computer modeling, lend support to the notion that 
tomographic imaging of the breast may lead to better cancer detection rates for 
smaller and earlier cancers. While these results are based on computer simulations 
and not on human observers, the data generated show good consistency and the trends 
are consistent with clinical experience. Unlike with human observer studies, this in-
vestigation used over 7 million simulated lesions for these detection experiments , a 
number not achievable with human observer studies.   
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Breast Structural Noise in Digital Breast Tomosynthesis 
and Its Dependence on Reconstruction Methods 
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Abstract. Digital breast tomosynthesis (DBT) is being investigated to over-
come the obscuring effect of overlapping breast tissue in projection mammog-
raphy. To quantify the effectiveness of DBT in reducing overlapping breast 
structures, it is important to investigate how breast structural noise propagates 
during the reconstruction process. Others have found that breast structure may 
be characterized as power law noise of the form κ/fβ. We investigate how the 
power law exponent, β, varies as a function of reconstruction methods. Clinical 
DBT data sets were used to analyze breast structural noise in both projection 
and reconstructed domains using different filter schemes of a filtered back pro-
jection (FBP) reconstruction algorithm. The dependence on filter settings was 
compared with cascaded linear system theory. The goal this work is to combine 
frequency domain analysis of breast structural noise with previous work on 
quantum noise in DBT and develop a generalized framework to optimize DBT 
for breast lesion detection.  

Keywords: digital breast tomosynthesis, anatomical clutter, NPS, linear system 
model, ideal observer model. 

1   Introduction 

Lesion detection in screening mammography is often obscured by overlapping breast 
tissue structure, which is caused by the projection of three-dimensional (3D) breast 
anatomy onto a two-dimensional (2D) image. Digital breast tomosynthesis (DBT) is a 
promising 3D x-ray imaging modality that can reduce the obscuring effect of struc-
tural noise. By acquiring a set of x-ray projection images (<50) over a limited angular 
range (<50 degrees), a 3D volume may be reconstructed with thin image slices ori-
ented parallel to a stationary detector.  

Burgess has characterized the structural noise in screening mammography as fol-
lowing a power law in the form of κ/fβ [1], where f is the radial spatial frequency and 
β the exponent, quantifying the correlation of the spectral power. β was found to have 
a mean of approximately 3. 

Metheany et al. studied the power law structural noise of a breast computed tomo-
graphy (bCT) system [2]. The results showed that β of the reconstructed bCT images 
is lower than that of mammograms by approximately 1. 

Engstrom et al. investigated β of a DBT system with an iterative, maximum likeli-
hood-expectation maximization (MLEM) reconstruction algorithm [3]. They found 
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that, on average, the value of β of DBT slices using MLEM was 0.194 lower than the 
respective projection images. Further, they studied the change in κ as a function of 
DBT reconstruction, finding a drop of approximately an order of magnitude in value. 
However, comparison is not straightforward as the values are represented in different 
units. 

Previously our group has developed a cascaded linear system model for analyzing 
the signal and noise propagation from projection mammography to DBT using linear 
reconstruction methods (e.g. FBP). This model has been used successfully as a tool to 
optimize the detector performance, imaging geometry, and reconstruction filters in 
DBT. Combining the cascaded linear system model with a frequency domain ideal 
observer detectability index, d’, has also provided useful guidance in optimizing an-
gular dose distribution for the detectability of microcalcifications in DBT, which is 
affected mainly by x-ray quantum noise [4]. The ultimate goal of the present work is 
to incorporate breast structural noise in the calculation of d’ so that DBT optimization 
can be performed for the detection of breast masses. The ideal observer detectability 
index, d', may be calculated for both 3D volumes and in-plane images using: 
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where O is the object signal spectrum, T represents the system modulation transfer 
function (MTF), and Kc is a contrast constant used to vary the contrast of O. The noise 
power spectra include both SQ and SSt, which represent the quantum and structural 
components of the total noise, respectively. Both quantities are expressed in the re-
constructed image domain. The x- and z-directions are defined as the tube travel and 
slice-thickness directions, respectively, and the y-direction orthogonal to the x-z plane. 

In this paper we will analyze the propagation of β through DBT reconstruction using 
a modified FBP algorithm with a number of different filtering schemes. Understanding 
the dependence of SSt on reconstruction methods will facilitate the implementation of 
structural noise into a cascaded linear system model, and allow the calculation of d’ 
including both structural and quantum noise (Eq. 1).  

2   Methods and Materials 

2.1   Acquisition and Reconstruction 

The clinical images used in the present investigation were obtained using a prototype 
DBT system (Siemens NovationTOMO)1. It employs a full field amorphous selenium 
(a-Se) digital mammography detector with 2816x3584 pixels and 85 µm pixel size. 
For each cranial-caudal (CC) or medio-lateral oblique (MLO) view, 25 projection 
                                                           
1 Breast tomosynthesis is an investigational practice and is limited by U.S. law to investiga-

tional use. It is not commercially available in the U.S. and its future availability cannot be 
ensured. 
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images were acquired over a nominal angular range of ±22 degrees over a stationary 
detector. The 2x1 detector binning mode was selected for all acquisitions where 2 
adjacent pixels in the tube-travel (x-) direction were binned. Images were then recon-
structed using a modified FBP algorithm [5],[6],[7].  

Four different reconstruction filters were implemented as shown in Fig. 1: (1) ramp 
filter (HRA); (2) spectral apodization filter (HSA); (3) slice-thickness filter (HST); and (4) 
polynomial (4th order) filter (HPOLY), which replaces HRA and HSA and provides a non-
zero response at zero frequency to compensate for signal loss at low frequencies in 
DBT due to the incomplete angle of sampling [7]. The SA and ST filters are both in the 
form of Hanning windows applied in the x-direction and the z-direction, respectively. 
Their corresponding window widths A and B are defined in multiples of the Nyquist 
frequency of the detector (fNY = 5.88 cycles/mm). We used four reconstruction filter 
combinations in our study: (1) simple backprojection (SBP, i.e. no filters) - designated 
as filter scheme 1 (FS1); (2) RA filter only (FS2); (3) RA filter and ST filter with B = 
0.17 (FS3); and (4) POLY filter with response function shown in Fig. 1.  
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Fig. 1. Four reconstruction filters used in the modified FBP algorithm: HRA, HSA, HST, and 
HPOLY correspond to ramp, spectral apodization, slice-thickness, and polynomial (4th order) 
filters, respectively. The direction of filter application is indicated on the figure labels.  

2.2   Noise Power Analysis 

DBT image datasets from 11 patients were included in the present study, with all 
except one case consisting of both CC and MLO views. The single exception con-
sisted of an MLO view only. Seven cases were of the right breast and four of the left.  

2D noise power spectrum (NPS) analysis was performed on both projection images 
and reconstructed DBT image slices. The 3D NPS was calculated for the entire recon-
structed image volume. The methods used for calculating 2D and 3D NPS were simi-
lar to those used previously for x-ray quantum NPS calculations [8].  

For 2D NPS calculations of each projection image, the region of the breast with 
approximately equal thickness was manually selected. This cropped image was then 
divided into ROIs with 64x64 pixels, overlapping in both x- and y-directions by 32 
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pixels. The mean of each ROI was subtracted and a 2D Hanning window was applied 
to reduce the effects of spectral leakage. The NPS was obtained as the ensemble aver-
age of the modulus squared of the 2D Fourier transform (FT) of each ROI.  

For 3D NPS calculations of each reconstructed volume, a region as large as 
384x384x96 voxels was selected with uniform breast thickness. It was then divided 
into VOI with 64x64x64 voxels, overlapping in x-, y-, and z-directions by 32 pixels. 
The mean was subtracted from each VOI before a 3D Hanning window was applied. 
The 3D FT of each VOI was calculated, from which the 3D NPS was determined.  

The 2D NPS was viewed along the tube travel direction fx with fy = 0 and the 3D 
NPS was viewed along fx with fy = fz = 0. The low frequency region of the NPS was 
used for the power law fitting with κ/fβ.  

3   Results and Discussion 

Shown in Fig. 2 are examples of the CC and MLO DBT image slices of one patient’s 
right breast, reconstructed using FS4. The NPS results shown in Fig. 3 and Fig. 4 
were obtained from the CC view of this DBT image data set.  

a) b)

 

Fig. 2. Example of a single DBT slice from the CC (a) and MLO (b) views of one patient. 
Subsequent figures (3 and 4) are from the same image data set. 

Shown in Fig. 3(a) is the total 3D NPS, which includes both structural and quantum 
noise, displayed in the x-z plane with fy = 0. The DBT reconstruction was performed 
using FS2 (RA filter only). For ease of analysis, the spoke along fx with fy = fz = 0, 
displayed as the solid white line in Fig. 3(a), was chosen for power law fitting and the 
results are shown in Fig. 3(b). Shown in the same graph for comparison is the NPS of 
the projection images. As shown in Fig. 3(b), the exponent of power law noise as quan-
tified by β, does not change between the projection NPS and the 3D NPS analyzed 
along any angle of the sampled 3D spectrum. This finding with limited angle DBT is  
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Fig. 3. Results of breast structural noise analysis using the DBT projection and reconstruction 
data set of the CC view of one patient: (a) the total NPS of the x-z plane of the CC view; (b) 
log-log plot of the projection and 3D NPS; (c) a log-log plot of the 3D and in-plane NPS. The 
analyses were performed along fx, where fy = fz = 0, which is depicted as the solid, white line in 
(a). The solid lines in (b) and (c) are power law fits for the data. β = 3.29, 3.29, and 2.26 for the 
projection, 3D, and in-plane views, respectively.  

consistent with previous investigations by Metheany et al [2] and Tward et al. [9] for 
structural noise in CT with complete angular sampling, and is expected from the cen-
tral slice theorem. The in-plane (IP) NPS calculated from each individual reconstructed 
image slice and plotted along the fx-axis (with fy = 0) are shown in Fig. 3(c). Plotted for 
comparison is the 3D NPS along the same axis. Since the IP NPS is equivalent to the 
summation of the 3D NPS in the fz-direction, the power law noise exponent, β de-
creases by approximately 1, despite the lack of complete angular sampling.  

It is also important to note that β for the IP NPS in fy direction should be the same 
as that in the 3D, i.e. not reduced by 1. This results in asymmetry in the IP NPS. This 
is shown clearly with the comparison of IP NPS in Fig. 4 (a log-log plot of the NPS 
along the x-axis, where fy = 0, and the y-axis, where fx = 0).  

Shown in Fig. 5 are the total 3D (a) and IP (b) NPS calculated using the same data 
set as that used in Fig. 3, but with different filter schemes. In the case of SBP (FS1), 
the value of β in the 3D NPS was 5.21, which is increased by ~2 from that in the pro-
jection view (3.29). This is consistent with the blur function in SBP, which is 1/f. The 
addition of the RA filter for both FS2 and FS3 result in β = 3.29, which is equivalent 
to that of the projection view as expected from the central slice theorem. The addition 
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of the ST filter in FS3 made essentially no difference in β since its effect is to elimi-
nate high frequency (quantum) noise in the z-direction. This has little effect on power 
law noise, which is heavily weighted in the lower frequencies. The result with POLY 
filter (FS4) exhibits a β value that is lower than that in SBP, but higher than either of 
FS2 or FS3. This is due to the retention and relative accentuation of lower frequency 
information that is characteristic of the POLY filter, which increases the noise at low 
frequencies. For each reconstruction filter scheme, the IP NPS in Fig. 5(b) exhibits a 
decrease in β by approximately 1 from the 3D NPS in Fig. 5(a). 

The 2D and 3D NPS analyses described above were performed on the DBT acqui-
sitions of 11 patients. The mean and standard deviation (σ) for β over all patient im-
age data sets are shown in Table 1 for projection, 3D, and IP NPS analyses, using  
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Fig. 4. The comparison of IP NPS (using FS2) along fx (with fy = 0) and fy (with fx = 0) with the 
fitted β values of 2.30 and 3.29, respectively 
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Fig. 5. Log-log plots of the 3D (a) and in-plane (b) NPS of the same example patient data set 
for each filter scheme. Power law fittings for FS1 and FS3 are shown in solid lines in each 
graph.  
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each filter scheme. In general, the β value for IP NPS is decreased by approximately 1 
from that of the 3D NPS. However, the absolute value of β changes with the recon-
struction filter and the dependence is consistent with the filter function at low spatial 
frequencies. To achieve the ultimate goal of the present work, the amplitude of power 
law noise, κ, with respect to the quantum noise needs to be determined. This will 
allow us to incorporate structural noise in the linear system model and the ideal ob-
server SNR, and optimize DBT for the detection of different type of breast lesions. 

Table 1. Mean and standard deviation (σ) of β values obtained from 11 sets of patient data. The 
results are shown for projection, 3D, and IP NPS with each filter scheme. 

  
Projection 

3D 
FS1 

 
FS2 

 
FS3 

 
FS4 

IP 
FS1 

 
FS2 

 
FS3 

 
FS4 

β 3.09 5.52 2.83 2.87 4.34 4.45 2.06 2.27 3.10 
σ 0.74 0.81 0.53 0.46 0.81 0.68 0.58 0.62 0.66 

4   Conclusion 

We analyzed the breast structural noise from clinical DBT data sets from 11 patients, 
using both CC and MLO views. The power law exponent β in the tube travel direction 
of the 3D NPS is the same as that of the projection NPS, which is to be expected from 
central slice theorem. For in-plane structural noise, β decreases by approximately 1 
from the 3D NPS. The absolute value of β changes with the reconstruction filter, and 
the dependence is consistent with predictions from linear system theory and the in-
corporation of filter functions.  
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Abstract. The cancers exhibit a higher effective atomic number than the normal 
tissue. The aim of this study was to improve early detection of microcalcifica-
tions, which are the earliest indicators of breast cancer, and to get a better defi-
nition of the cancer boundary on the base of visualization of an effective atomic 
number distribution. Dual-energy subtraction mammography may provide in-
formation regarding the product of the atomic number, density and thickness of 
the breast tissue. The paper presents the dual-energy dividing mammography 
which is based on the dividing of the logarithms of the low-energy image by the 
high-energy image. That ratio depends upon only an effective atomic number 
and does not depend on the density and the thickness of the breast.  The study 
shows that the visualization of that ratio improves the detection of microcalcifi-
cations and the sharpness of the breast image.  

Keywords: dual-energy mammography, cancer, microcalcifications, atomic 
number, early detection.  

1   Background 

The cancerous tissue and the normal tissue are very similar but their atomic number 
differs. The microcalcifications, as the earliest indicators of breast cancer, have sig-
nificantly higher atomic number than normal tissue.  That is why a cancer with the 
microcalcifications exhibits a higher effective atomic number than normal breast 
tissue.  

Traditional X-ray mammography visualizes the distribution of the photon number 
which is registered by the detector film. This visualization presents the non-linear 
distribution of the product of the atomic number, density and thickness of the breast 
tissue. It is impossible to determine the reason of the optical density variety at the 
mammogram, whether it is caused by changes of tissue density or atomic number.  

The dual-energy subtraction mammography [1-5] visualizes weighted subtraction 
of the logarithm of the low-energy image from that of the high-energy image. This 
subtraction is in proportion to the product of the atomic number, density and thickness 
of the breast tissue. But this method does not allow to distinguish areas with raised 
high density from the areas with the high atomic number. 

The division of the same logarithms can be more useful in diagnosing malignant 
growths because it depends only on the effective atomic number. 
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2   Method 

Despite the fact that the effective atomic number of the breast elements varies from 
5.5 (cholesterol) to 12-14 (microcalcifications), the real range of an effective atomic 
number variation is narrower and varies from approximately 6.5 to 7.5. It is explained 
by a small concentration of anomalies in the breast  [6]. 

Fig.1. presents the dependence of the division and the subtraction of the mass coef-
ficients for energy 20 and 40 keV on an effective atomic number (Z). 
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Fig. 1. Dependences of the division and the subtraction of the mass coefficients  

In spite of the fact that mass photoelectric absorption coefficient is dependent on 
the fourth power of the atomic number Z,  the subtraction and division of the absorp-
tion coefficients for low and high energy are in practically proportion to the effective 
atomic number in this rang. Hence the subtraction of the logarithms is in proportion to 
the product of the atomic number, density and thickness of the breast tissue and the 
division of the same logarithms is in proportion only to the effective atomic number. 
The next equations illustrate this fact.  
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where mμ  is the mass coefficient of absorption, ρ  is the density, d is the thickness, 

Z is the effective atomic number, k and a are the coefficients, N0 and N are the initial 
and detected photons numbers, respectively, L and H are the indexes for low and high 
energy, respectively. 

The dual-energy dividing mammography is based on equation (2).  
As a rule, the thickness of the breast tissue is constant during mammography checkup. 

Hence, equations (1) and (2) allow us to calculate the actual density distribution: 
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That is why these two methods do not compete but rather supplement each other.   
Subtraction and division of the logarithms give three additional images: the effective 
atomic number, the density and their product. 

Having two images (at low and high energy) we can apply non-traditional methods 
of image processing. We present two of them. 

The first is connected with artificial decreasing high energy during atomic number 
calculation. It can be accomplished by artificial increasing of the initial photon num-
ber in the equation 2. This corresponds to the increasing of the linear attenuation coef-
ficient that can be interpreted as the increase of the effective atomic number. It gives 
the opportunity to get a better definition of the cancer boundary. 

The second type is concluded in the artificial shift of the low energy image rela-
tively another one. This method is particularly useful for the early detection of the 
microcalcifications. 

3   Results 

The reconstruction of the atomic number distribution was carried out for real mam-
mary glands. Eighteen women were enrolled in our study and four of them (patient 1-
4) are presented in this paper [7]. 

For the high-energy beam, an aluminum filter with thicknesses 1mm was placed in 
the beam.  For the low-energy beam, molybdenum filter with thicknesses 0.03 mm 
was tested. 

Two x-ray beam voltages were selected (low-energy beam, 22–33 kVp, high-
energy beam, 44–49 kVp). Low and high photon energies were admitted as 22 keV 
and 30 keV in reconstruction procedure. 

Initial photons numbers were measured by means of 2 mm aluminum plate. 
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Fig. 2. (a) Cancer with microcalcifications {a},(b) Healthy section of the breast {b}.TM - 
Traditional mammogram, Zρ - Visualization of the product of the effective atomic number and 
density, Z - Visualization of an effective atomic number, Ρ - Visualization of the density. 
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Fig.2 (patient 1) presents the traditional mammogram of the cancer with microcal-
cifications, visualizations of the product of an effective atomic number and density, 
the effective atomic number. The density was reconstructed by means of formulas (1-
3). In spite of the fact that all four images are similar the sharpness and the contrast of 
the atomic number distributions are better than at the traditional mammograms both 
for cancer (a) and for healthy section (b) of the breast.  

Such effect is seen at the image of the cancer without microcalcifications (fig.3) 
(patient 2).  

Fig.4 presents the first mentioned above method of image processing for this 
breast. Low and high photon energies 22 keV, 25 keV (z1), 15 keV, 30 keV (z2), 30 
keV, 22 keV (z3) were used in the calculation of initial photons numbers. The cancer 
boundary is just the same but the image contrast is significantly better and there are 
practically no atomic number variations in the healthy section of the breast. The 
swelling boundary is almost just the same at these three images but significantly 
sharper than at fig.3b . 

     
                             a)                             b) 

Fig. 3. (a) Traditional mammogram {a}, (b) Reconstructed z-distribution {b} 

Z1Z1
   
Z2Z2

   
Z3Z3

 

Fig. 4. Z-distribution with various values of high energy, admitted during atomic number  
calculation 
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Fig. 5 presents the z-distribution reconstructed without (a) and with (b) initial im-
age shift (along x-axis – 5 pixels and y-axis – 40 pixels) (the second type of image 
processing) for patient 2. 

The darker microcalcification images correspond to the healthy sections of the 
breast (low energy) against the background of the tissue with the microcalcifications 
(high energy).  

The lighter microcalcification images correspond to the tissue with the microcalci-
fications (low energy) against the background of the healthy sections of the breast 
(high energy). 

Reconstructed atomic number is determined by division of mass coefficients which 
obey the following inequalities 
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Hence the double-images of microcalcifications have minimum and maximum of 
numerical value at the atomic number distribution. This explains the high contrast of 
microcalcification images at z-distribution reconstructed on the base of shifted mam-
mograms. 

 
                                   a)                                                                 b)  

Fig. 5. Z-distribution. (a) without initial image shift {a},(b) with shift {b} 

Fig.6 presents results of z-reconstruction of the suspect area with high X-ray ab-
sorption marked by the rectangle (patient 3).  

Not all light areas in the marked rectangle at the traditional mammogram are 
shown up at the atomic number distribution. The initial shift along x-axis and y-axis 
was equal to 5 pixels. The presence of the white points at z-distribution allows sup-
posing that they can correspond to microcalcifications. It is only the supposition be-
cause the cancer diagnosis was not set for that patient and the morphological analysis 
was not done.  
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10 mm 

 
           a)        b)                         c) 

Fig. 6. (a) Traditional mammogram {a}, (b) enlarged area marked by the rectangle {b} , (c) z-
distribution in the marked area {c} 

The cancer (marked by the rectangle at the  fig. 7a) was found in the breast of the 
fourth  patient.  

Visualization of the affective atomic number distribution with the first and the sec-
ond type of image processing allows detecting the microcalcifications (Fig.7b), the 
most of which are not seen at the traditional mammogram (Fig.7a). 

The morphological analysis of the removed organ confirmed the presence of mi-
crocalcifications in areas marked by white point at the atomic number distribution. 

Microcalcifications are seen not only in the cancer area but in milk ducts of normal 
part of the breast. It allows considering the possibility of the early detection of the 
microcalcifications. 

 
 

    
                             a)                                                                 b) 

Fig. 7. (a) Traditional mammogram with marked area with the cancer {a}, (b) reconstructed z-
distribution {b} 
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4   Discussion 

The traditional mammogram visualized the non-linear product distribution of the 
atomic number, density and thickness of the breast tissue. The dual-energy subtraction 
mammography gives the linear distribution of the same product. The dual-energy 
dividing mammography gives only atomic number distribution. The removal of den-
sity variation makes the cancer image sharper.   

If two pixels at traditional mammogram are characterized by the same counted 
photons they will be presented by equal numerical value at the image got by any con-
ventional image processing technique. If the first pixel corresponds to the high density 
and the second to the high atomic number and have just the same number their nu-
merical values will be different at the atomic number distribution. Conventional im-
age processing technique can be applied to the distribution of the atomic number. 

Particularity of microcalcification reconstruction in dividing mammography is 
concluded in the appearance of tree-dimensional image. This artifact is explained by 
the impossibility of the ideal synchronization of two mammograms got at low and 
high energy.       

Not all of the known cancers were reconstructed by dividing mammography algo-
rithm. The investigation was not intended to be a definitive test of dividing mammog-
raphy but rather a demonstration of its feasibility and potential. But presented results 
allow concluding that the visualization of the effective atomic number on the base of 
dual-energy dividing mammography enables improving the diagnosis of the mam-
mary gland disease. 
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Abstract. In this work we study how the BI-RADS assessment could
help to improve the performance of a CAD (Computer Aided Diagno-
sis) image-based system in the task of masses diagnosis. Our system is
based on the use of Independent Component Analysis (ICA) as feature
extractor from mammographic images, and Neural Networks as a final
classifier. For our tests, the “Digital Database for Screening Mammog-
raphy” (DDSM) has been used, particularly the subset BCRP MASS1.
The best results were obtained when we used the image data (with fea-
ture extraction by means of ICA) together with the BI-RADS assessment
provided by DDSM database. Keywords: CAD, breast cancer, mammo-
gram, independent component analysis, neural networks.

1 Background

Different sources [1,2] show that breast cancer treatment in an early stage of
development can increment considerably the patient survival chance. Addition-
ally, early breast cancer detection increases the chances for conservative surgery
to be carried out instead of mastectomy, the only solution in advanced breast
cancers [3].

The screening programs have been very useful in order to reduce the mortality
[4]. However, interpreting screening mammograms is not easy. In one screening
program, thousands of mammograms have to be processed, from which only
a very little quantity will present one cancer in an early stage or an evident
cancer. This labour can be tedious and stressful, and can cause radiologists’
fatigue leading to a diagnosis error. Both film-screening mammography and dig-
ital mammography present challenges when radiologists attempt to distinguish
healthy breast tissue from malignancies that are usually tiny.

Double reading of mammograms by two radiologists has been demonstrated
to improve the detection rate of breast cancer [5]. However, the resources are
limited, either in personal or capital and thus, it is not possible to set up this
strategy in a generalized form. CAD (Computer Aided Diagnosis) systems can
be seen as an acceptable-cost second “opinion“.

J. Mart́ı et al. (Eds.): IWDM 2010, LNCS 6136, pp. 614–621, 2010.
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In the pathology of breast cancer there are mainly two types of abnormalities:
the clusters of microcalcifications and masses. Many different techniques for
breast cancer CAD have been proposed [6] [7][8]. However, in most of the cases,
these proposals are difficult to compare because they use different datasets, and
the performance of the CAD system is highly dependent on the datasets used
[9][8].

Focusing on the masses, as we said above, there are very different approaches
to detection, segmentation and diagnosis using CAD techniques. We can find
recent reviews of the different techniques in [7][8]. Despite this amount of tech-
niques used in the CAD of masses, new techniques and approaches are constantly
proposed. For example, in [10] a statistically based enhancement is performed,
followed by a multilevel-thresholding segmentation and region selection. In [11],
the authors use Principal Component Analysis (PCA) for detection (”eigende-
tection“) and they perform a false positive reduction using two-dimensional PCA
along with the breast density information.

The rest of the paper is organized as follows: in section 2, the method and
materials are described in detail. Next, in section 3, we present the results, and
finally, in section 4, our conclusions are stated.

2 Method

Our objective in this work is to diagnose previously selected “Regions of Interest”
(ROIs) from mammographic images that contain a mass, and also to study the
influence of using the BI-RADS assessment besides image features.

To this aim, we have developed a classifier system where the inputs are the
pixels of ROIs (rescaled to a size of 128x128, 64x64 or 32x32) and/or BI-RADS
assessment.

After rescaling the ROIs, the next step in our classifier is a feature extrac-
tion stage for those rescaled ROIs. This stage has been done using Independent
Component Analysis (ICA) [12]. The result of the feature extraction step (be-
sides assessment, when considered) is presented as input to a Neural Networks
classifier. The output of this classifier is related to the probability of malignity
of the mass under study.

In Figure 1, we show how the overall process is carried out. In a first stage,
we obtain the ICA transformation matrix using a set of images with a mass,
resampled to 128x128, 64x64 or 32x32. Before applying the ICA algorithm we
make a Principal Component Analysis (PCA) in order to reduce the dimension.
The result of this stage is an ICA basis that can be used to represent ROI
images with unknown mass. The second step is to train a classifier (in this work,
a neural network). As inputs to the classifier, we make a feature extraction with
ICA using the previously obtained basis along with non-image features (like
age, density, assessment, ...). Finally, in the third step, we diagnose an unknown
ROI previously detected using the trained classifier and expressed as a linear
combination of the ICA basis extracted in the first step. The result indicates
whether the mass is considered as malignant or benign.
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Fig. 1. General process outline. Stage I shows an extracted ICA basis for a dimension
reduction to 30 components. In stage II this basis is used to make a feature extraction
step from images ROIs with mass, and later a neural network classifier is trained. The
stage III shows the process of diagnosing a new detected ROI with a mass.

In the next subsections, we describe the used database (Digital Database for
Screening Mammography (DDSM)), the method applied for feature extraction
(ICA) and the experimental setup.

2.1 Database

Different databases have been used to develop the works of mammographic CAD.
Most of them use their own set of cases which is usually collected in near centers,
a situation that makes very difficult the comparison of all the results obtained
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Table 1. Composition of the two test sets considered in this work with respect to
assessment and pathology. Numbers 0, 1, ..., 5 are the assessment. B (benign) and M
(malignant) are related to pathology.

Assessment → 0 1 2 3 4 5

Pathology → B M B M B M B M B M B M

Random set 35 4 0 0 17 0 77 10 160 78 5 92
MASS1+50 set 4 0 0 0 1 0 16 0 29 10 1 66

with different techniques. Within the group of databases of generalized use, the
most commonly referenced is probably the MIAS database, at least in oldest
works [13]. MIAS group provides a free version with low resolution which may be
useful in some applications. Other references make use of the Nijmegen database,
very difficult to obtain nowadays, or LLNL/UCSF. Recent developments usually
work with the DDSM database [14], which includes 2,620 complete cases with the
four typical views (left/right MLO and CC), where each view has truth marks
surrounding abnormality extension (if it exists) and assessment using BI-RADS
terminology from ACR [15]. Besides, DDSM creators have formed two subsets of
mammograms with masses, in order to facilitate the comparison of performance
between different CAD systems (they are called BCRP MASS0 (for training)
and BCRP MASS1 (for test)).

All our work has been done using DDSM database. We have used two different
sets: firstly, we have considered ROIs from the whole database (except from
BCRP MASS1) for training (2,197 ROIs) and BCRP MASS1 subset plus fifty
benignant ROIs for test (127 ROIs). We have extended the test set because
BCRP MASS1 only has malignant ROIs (MASS1+50 set). Secondly, we have
built the learning and the testing sets by a random selection from whole database,
with 2,086 and 244 ROIs respectively (Random set). In Table 1 the composition
of test sets with respect to assessment and pathology is shown.

2.2 Independent Components Analysis (ICA)

Independent Component Analysis is a statistical and computational technique for
revealing hidden factors that underlie sets of random variables, measurements
or signals. ICA defines a generative model for the observed multivariate data,
which is typically given as a large database of samples. In the model, it is as-
sumed that the data are linear combinations of unknown latent variables, and the
system whereby combined is also unknown. It is also assumed that non-gaussian
latent variables are mutually independent, and they are called independent com-
ponents of the observed data. These independent components, also called sources
or factors, can be found by ICA. ICA is slightly related to PCA (Principal Compo-
nent Analysis). However, ICA is a much more powerful technique, able to find un-
derlying factors or sources when conventional methods fail completely. The data
analyzed by ICA may come from very different types of fields, including digital
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images, documents, databases, economic indicators and psychometric measures.
In many cases, the measures are given as sets of parallel signals or time series, the
term ”blind source separation” is used to characterize this problem. As examples,
we can mention simultaneous combination of speeches that have been recorded by
several microphones, brain waves stored by multiple sensors, interfering radio sig-
nals in a mobile phone, or parallel time series obtained from industrial processes
[12]. Let x be a m-dimensional aleatory variable, the method ICA tries to find a
transformation W such that, when being applied to x,

s = W · x
makes the new components of the n-dimensional vector s the most statistically
independent.

Supposing that x is the result of combining a group of original signals with
diverse sources of noise, this would allow to recover the different components and
to discard the noisy components. This technique can be used for the extraction of
features, since the components of x can be considered as features that represent
the objects [16]. It is usual to make PCA in a first stage, before applying ICA,
in order to reduce the original dimension of data.

To apply this technique in feature extraction on mammography, we must
suppose that a region of a given size in the mammography (called patch) is a
linear combination of a series of independent unknown sources, a priori. These
unknown sources can be seen as statistical independent patches, and can be
estimated by ICA using samples. The process provides us a base of functions
(small squared images in our case) that lets us expand a given patch from the
mammography in terms of them. The mentioned procedure can be expressed
graphically as follows:

Where si coefficients represent the features to extract and which let us char-
acterise a region from its sources.

2.3 Experimental Setup

All the programs needed for this study have been written using R and C++
languages, using Linux as platform.

The training was carried out for the three sizes of ROIs (128x128, 64x64
and 32x32) by varying the number of components retained (from 10 to 60).
We have also simulated combinations of these features extracted by ICA with
additional input parameters (apart from the assessment, we used the density, age
and subtlety). In summary, over 3,000 classifiers were trained. All the simulations
needed were performed using our Beowulf cluster with 180 CPU cores, and the
results were saved in a SQL database.
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3 Results

As we explained above, we have used two different subsets from DDSM to test
our system. The first one, includes all the ROIs from BCRP MASS1 plus fifty
benignant ROIs randomly selected (and, obviously, not used in training). We
called this set MASS1+50, and in total has 127 ROIs. The second set used for
testing, with 244 ROIs, was randomly chosen from DDSM ROIs with masses. The
results are presented in Table 2, where we show the ROC (Receiver Operating
Characteristic) area and the Accuracy, both parameters calculated using the
ROCR package for R language [17].

The ROC curves are shown in Figures 2 and 3 for Random and MASS1+50
test sets, respectively. For Random test set, the best results are achieved for an
ICA configuration of 55 components extracted from 32x32 ROIs. And for the
other test set (MASS1+50 ) the best results are obtained with ROIs of 64x64
and 25 ICA components.

Table 2. Comparison of the results obtained over the two sets considered for testing

MASS1+50 set Random set

ROC area Accuracy ROC area Accuracy

ICA 0.727 73.2 % 0.643 64.3 %
ICA+Assessment 0.978 92.9 % 0.846 79.1 %
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ICA    (AUC: 0.643)
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Fig. 2. ROC curves for Random test set using only ICA as feature extractor and
ICA features plus BI-RADS assessment. The best results for this test set are obtained
extracting 55 ICA components from ROIs resized to 32x32.
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Fig. 3. ROC curves for MASS1+50 test set using only ICA as feature extractor and
ICA features plus BI-RADS assessment. The best results for this test set are obtained
extracting 25 ICA components from ROIs resized to 64x64.

4 Discussion

The results show something that could be obvious a priori: the use of BI-RADS
assessment as input parameter (along with image features) greatly improves the
diagnostic of a ROI with a mass. As usually happens in complex problems of
pattern recognition, the results show a significant dependence on the testing set
used. In our case the set MASS1+50 is significantly easier to diagnose than the
other, chosen at random, at least for our system. However, it must be noted that
similar results are obtained with other ICA configurations different from those
referred in the results section. Therefore, to establish more correctly which is
the best configuration we should perform a statistical study (for example, by
cross-validation).
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Abstract. The Valencian Breast Cancer Early Detection Program (VBCEDP) 
started in the Valencian Community (Spain) in 1992. Up to now, 24 mammo-
graphic units have been installed all over the region. Mammography is used to 
aid in the diagnosis of breast cancer diseases in women. There are different 
types of mammographic equipments involved in the program (analogical, CR 
and DR). Ionizing radiation implies a health risk in the studied women that has 
to be estimated and controlled. Software to calculate approximately the cancer 
induction in the VBCEDP has been developed based on Monte Carlo tech-
niques. This paper attempts to analyze benefit/risk ratios obtained in the pro-
gram during 2007 and 2008.  

Keywords: Benefit/risk, Breast Early Detection Program. 

1   Introduction 

Screening mammographic programs try to get an early diagnosis of the breast cancer in 
middle aged women. The European Guidelines of Quality Assurance in Breast Cancer 
Screening and Diagnosis [1] is the document that regulates this practice, allowing 
quality on the diagnostic and the comparison between different screening units. 

Although screening for the early detection of breast diseases reduces breast cancer 
mortality, it is well known that the diagnosis by mammography presents risks for 
women undergoing screening due to the exposition to ionizing radiation. At present, it 
is considered the mean glandular dose (MGD) in acquiring the mammography as a 
risk parameter. Then it is possible to use the MGD in order to obtain the risk of in-
duced breast cancers in a screening programme. Risk projection models obtained 
from data of exposed populations, such as the survivors of the atomic bombs or pa-
tients exposed to high doses due to medical reasons have been used. That was the 
reason of the development of SCREENRISK [2]. This software based on Matlab© [3] 
and gives an easy way of quantifying risks in mammographic screening programs. 

Knowledge of the number of cancers detected and induced by the program in each 
mammographic unit allows a way of assessing the benefit/risk ratio. 
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2   Method 

SCREENRISK is software that estimates the risk of exposure-induced cancer and 
fatal cancer for a specific type of cancer in a given population. 

The excess relative risk (ERR) is a parameter used to transport risks between popu-
lations which have been exposed to radiation and have different baseline rates. Risk 
projection models are used in epidemiology in order to estimate incidence and mortal-
ity cancer rates in one population under study from data that has been obtained in 
other populations.  

Different studies have been chosen to estimate risks in the Valencian Breast Cancer 
Early Detection Program. The mortality models are: (1a) Life Span Study cohort 
(LSS) that includes female bomb survivors between 1950 and 1985; (2a) and the LSS 
with follow-up until 1990 depending on age at exposure and (3a) depending on at-
tained age. The incidence models for breast cancer are: (1b) the Life Span Study for 
incidence breast cancer (1958-1993); (2b) the Massachusetts fluoroscopy study, for 
tuberculosis patients (TBO) and the extension (TBX); (3b) the New York acute post-
partum mastitis cohort (APM); and (4b) the benign breast disease treatment in Swe-
den (BBD). 

The excess relative risk is fitted with 
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where Φ(Dg) is the dose response with dose dg to the breast, s is the gender of the 
individual and θ(s) is a function that depends on gender and cancer type, equal to 
unity for breast cancer on female. The covariate vector for the ERR is the same for 
incidence and mortality, and it includes the variables. The other variables are age of 
exposition (te) and reached age (tk). Each model has its own parameters based on 
cases under study. 

It has been considered in order to transport the risks an extension of Cox Propor-
tional Hazards to estimate the Excess Absolute Risk (EAR) as 
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where ERR(m) is the excess relative risk of the model m for breast cancer. In (2), it is 
observed that ERR(m) is transported to a population with a risk base function λ(tk) for 
incidence or mortality. L represents the latency period. 

The risk of exposure induced cancer (REIC) is defined as the probability of an indi-
vidual develops a radio-induced cancer, not necessarily mortal, all over his life. The risk 
of exposure induced death (REID) shows that an individual dies due to a radio-induced 
cancer.  So, deriving a Markov process, REIC and REID can be obtained as [2]: 
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where  )|(ˆ1 fbcj zts
r is the estimator of the survival function, EARfbc is the excess 

absolute risk for mortal breast cancer and inz
r

 is the vector of covariates for the sur-

vival function. 
In a breast screening program, women are invited to undergo mammography be-

tween an initial age (a) and a final age (b), with a constant screen interval (s) and 
receiving normally one exposure per breast at each time.  

There are different indicators when evaluating the associated cancer risk during 
breast screening. One of these is the average radiological detriment for breast cancer 
incidence and mortality in a given instant of the screening and can be estimated as: 
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where ν (tj) is the number of views per breast in each visit, ω (tj) is the fraction of 
population and dgj is the average mean glandular dose per film at an age-at-exposure tj 
for the cohort m for radioinduced breast cancer. 

2.1   The Valencian Breast Early Detection Program (VBCEDP) 

The Valencian Breast Cancer Early Detection Program started in 1992 and actually 24 
units are working on that. Yearly quality controls are performed in all units with the 
recommendations of the European Protocol on Dosimetry in Mammography. 

The VBCEDP is directed towards asymptomatic women between 45 and 69 years 
old, with an initial age lower than other screening programs (i.e. UK Screening Pro-
gram starts at the age of 50 and finishes at 64 years old). The screening examination 
consists of two exposures per breast; craniocaudal (CC) and mediolateral oblique 
(OBL). The first time that the woman participates in the program (first round) re-
ceives two exposures per breast and a single mammogram OBL per breast in subse-
quent rounds. The screening rounds are spaced every two years and two independent 
radiologists read each mammogram. 

Each six months population samples are taken from the screening units involved in 
the program in order to estimate and control the radiological risk. 

2.2   Mammographic Systems Used in the VBEDP 

The 24 mammographic units of the VBCEDP used different types of obtaining the 
needed images for the screening. There are analogical and digital systems. The ana-
logical ones use films as both a receptor and a display for the image to produce static 
and fixed images. Digital mammography uses detectors (similar to those found in 
digital cameras) that change the x-rays into electrical signals. These signals are then 
transferred to a digital receptor that converts the x-ray energy to numbers, processes 
the numbers, and produces an image that can be displayed on a monitor or printed on 
a high-resolution laser printer. 
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Digital mammography systems can be classified as [4]: 
Direct systems (DR systems); the image is obtained without the use of a laser to 

digitize it. Those systems are flat-panel phosphor detector, phosphor-CCD and sele-
nium flat panel detector. Direct systems can be divided into two subtypes. If x-rays 
are transformed directly to electric signal, those are called direct conversion systems 
(selenium flat panel detector). If a scintillator is needed to obtain light and then trans-
form into electric signal, those are called indirect conversion systems (flat-panel 
phosphor detector, phosphor-CCD). 

Indirect systems; the radiation hits a photo-estimulating phosphor panel that is later 
digitized with a laser. Those are called CR systems. 

In the VBEDP, there are 5 DR systems (3 selenium flat panel, 1 phosphor-CCD 
and 1 flat panel phosphor), 5 CR systems and the rest are analogical. The equipment 
has been purchased from different suppliers. 

2.3   Estimation of Benefit/Risk Ratio 

A possible way of calculating benefit/risk ratio for the VBCEDP can be taken as [5]: 

M
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·

−=
rateInduction 

rateDetection 
 (7) 

where A is the proportion of individuals who survive for any subsequent period of the 
cancers detected by screening, B is the proportion of individuals who survive for any 
subsequent period of cancers detected symptomatically by non-screening services and 
M is the percentage mortality of this group. 

In equation (7), (A-B)/M represents conversion factor C. There are different ways 
of obtaining numerical data for factor C. The easiest to interpret and apply is to ob-
serve the change of the Nottingham Prognostic Indicator (NPI) after the introduction 
of the screening. NPI index is based on size, state and grade of breast tumor when it is 
detected. It is a numerical value, equal to the sum of (0.2 x size in centimeters) + 
stage + grade. The lower the NPI, the better the prognosis. It was first derived empiri-
cally and later verified in a screened population. Data for 15-year survival of a group 
of an age-matched population of women for three different value ranges of NPI are 
given in Table 1.  

Factor C has a value of 0.62 for no future screening and 1.62 for future screening 
of older women1. See appendix for calculations.  

Table 1. Nottingham Prognostic Indicator (NPI) data [5] 

15-year survival (%) Proportion of women presenting (%) 
NPI 

Actual Age corrected Before screening After screening 
< 3.4 80 96 29 76 

3.4-5.4 42 51 54 20 
>5.4 13 16 17 4 

 

                                                           
1 Older women here refers to women over the age of normal routine screening i.e. 64 years (UK 

Screening Program). 
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3   Results 

Table 2 shows the obtained results of detections/inductions ratio, benefit/risk ratio 
(C=0.62) and benefit/risk ratio (C=1.62) for different mammographic equipment 
during 2007: 

Table 2. Values benefit/risk obtained for 2007 

Mammographic 
equipment rateInduction 

rateDetection  0.62)(C 
Risk

Benefit = .62)(C 
Risk

Benefit
1=

Analogical 54.74 33.94 88.69 
CR+DR 68.70 42.60 111.30 

CR 79.72 49.32 129.14 
DR 52.19 32.36 84.54 

Table 3 shows the obtained results of detections/inductions ratio, benefit/risk ratio 
(C=0.62) and benefit/risk ratio (C=1.62) for different mammographic equipment 
during 2008: 

Table 3. Values benefit/risk obtained for 2008 

Mammographic 
equipment rateInduction 

rateDetection  0.62)(C 
Risk

Benefit = .62)(C 
Risk

Benefit
1=

Analogical 49.31 30.57 79.88 
CR+DR 46.21 28.65 74.86 

CR 52.43 32.50 84.93 
DR 42.07 26.08 68.15 

4   Discussion 

Results obtained in Table 2 indicate that computed radiography systems have a better 
benefit/risk ratio either it is used a no future screening parameter (C=0.62) or a future 
screening parameter (C=1.62). Table 3 shows that computed radiography systems have 
a better benefit/risk ratio in both studied cases. Analogical systems present the second 
best benefit/ratio and DR systems obtain the poorest results for both studied years. 

C-factor depends on detection rate and consequently on the mammographic 
equipment. This involves that each type of mammographic system would need a dif-
ferent C-factor. Keep in mind that NPI was verified for analogical screening. 

It can be appreciated that calculated data for 2008 are lower than those of 2007. 
This fact could be explained as cancer detection rate was 3.9 detected cancers per 
1000 women in 2007 and 3.2 detected cancers per 1000 women in 2008 [6]. But ra-
dioinduced cancer rate remained approximately constant. 

The difference in detected cancers for two consecutive years is due to the planning 
of the Program itself. The screening rounds are spaced every two years so a better 
comparison can be done with two alternative years. 
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It is important to remark that NPI index is an approximate value for the Valencian 
program because it was calculated for the National Health System Breast Screening 
Program where screened women have an interval age of 50-64 years. 

As a result of this work, it can be stated that Valencian Breast Cancer Early Detec-
tion Program is clearly justified in terms of protection to ionizing radiation and digital 
indirect systems (CR) show better results than analogical ones. 

Acknowledgments. This work is funded with the Project PI06/90502 of the Carlos III 
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Detection Program Office.  
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Appendix: Calculation of C Factor  

Calculation of C factor from detection/induction to benefit/risk ratios from Notting-
ham Prognostic Indicator data in Table 1. 

Overall 15-year percentage survival before introduction of screening (from  
Table 1): 

(0.29 x 96) + (0.54 x 51) + (0.17 x 16) = 58% (8) 

Percentage of mortality in the absence of screening is M = 100-58 = 42% 
Overall 15-year percentage survival after introduction of screening (from Table 1): 

(0.76 x 96) + (0.20 x 51) + (0.04 x 16) = 84% (9) 

Percentage of mortality in the presence of screening is M = 100-84 = 16% 

Hence, 62.0
42

)5884( =−=C  in the absence of subsequent screening, or 

62.1
16

)5884( =−=C  if screening continues for all subsequent years. 
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Abstract. This paper reports on a further development of an image
simulation chain, and in particular, the inclusion of contrast degradation
across an image using scatter to primary ratios calculated using Monte
Carlo simulation. The Monte Carlo technique, using the Geant4 toolkit,
has been implemented to model the scatter conditions when imaging the
CDMAM phantom with commercial digital mammography. Observed
differences between linear and cellular anti scatter grid are presented
and discussed. These results support previous assumptions taken by
Yip et al.[1].

Keywords: Digital Mammography, Monte Carlo simulations, Scatter,
anti-scatter grids, CDMAM phantom.

1 Background

New digital technologies are being developed for X-ray mammography which
have the potential to improve cancer detection rates, but there is a need to
investigate how these perform in comparison with conventional 2D digital mam-
mography, and how these should be used in an optimal way. Since clinical trials
to assess the performance of any mammography system are expensive, there is
great interest in the development of computer-based models of the breast and
imaging systems which can be used for evaluation and optimisation.

As a first step towards modelling patient images, and as a validation of the
methodology, we are developing models for 2D imaging of the CDMAM phan-
tom. This phantom is widely used for testing the performance of digital mam-
mography systems in Europe. Previously, Yip et al[1] presented contrast detail
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curves calculated using a model incorporating heel effect, geometric and detec-
tor blurring and image noise. Loss of contrast due to scatter was assumed to be
globally uniform across the image. In the present work, we address this previous
assumption by incorporating scatter to primary ratio (SPR) maps calculated
from Monte Carlo simulations.

2 Method

Figure 1a shows an adapted diagram from [1] of the simulation chain including
the SPR component. The simulation chain has two parts. First, a noise free
image is generated. Pixels values are assigned to a binary CDMAM template
according to the exposure to be simulated and a heel effect mask is applied. Discs
are added to the CDMAM template using the SPR calculated from the Monte
Carlo simulations in order to calculate the contrast for each disc as explained
below. The image is then blurred with an MTF filter. In the second part, a noise
image is simulated using a Gaussian noise field and a noise filter calculated from
the relevant Normalised Noise Power Spectrum(NNPS). This image is scaled
according to an a-priori mean variance relationship for the detector. The final
image is obtained after adding the blurred image and the scaled noise image.

Geometry. For the Monte Carlo simulations, the following components (from
top to bottom) have been included in the setup according to their real dimen-
sions and materials taken from manufacturer’s specifications as illustrated in
Figure 1b: (i) compression paddle, (ii) CDMAM phantom with a block of Per-
spex on top and bottom, (iii) breast support, (iv) anti-scatter grid with cover
on top and bottom and (v) detector with its top cover as well. Selenium, ce-
sium iodide and cesium bromide have been used for the Hologic, GE and Agfa
detectors simulated in this work. The CDMAM test object has been simulated
using a 3mm thick Perspex layer and 0.5mm thick Aluminium layer. 20mm thick
Perspex blocks were placed on top and bottom of CDMAM. The focal spot was
considered as a point source 65cm above the centre of chest wall edge of the
detector. A top view diagram of the set up used for GE simulation is shown
in Figure 2(a). The chest wall (CW) is located at position O. Outer area (1)
represents the external dimensions of the system (detector, grid, breast support
and compression paddle). (2) illustrates the position of the blocks of Perspex
placed on top and bottom of CDMAM and (3) and (4) shows the location of the
Perspex and Aluminium layers respectively used to simulate CDMAM.

Spectra. Table 1 describes the spectra used for the three systems simulated:
Hologic Selenia, GE Essential and Siemens Mammomat 3000 using an Agfa
computerised radiography plate. The energy spectrum has been simulated in
Monte Carlo using data calculated from [2] and adjusted mathematically with a
specific aluminium filter thickness to match the measured half value layer (HVL).
Three simulations of 1010 X-ray photons have been simulated in Monte Carlo.
These were summated to model each system.
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(a) (b)

Fig. 1. (a) Diagram of Image Simulation Chain, adapted from [1], where the insertion
of SPR map can be observed . (b) illustrates the setup used in Monte Carlo simulations
with all the layers commented above. The numbered layers are discussed in the text.

Table 1. Spectra used in the simulations

System Spectrum(Target/Filter) HVL
Hologic Selenia W/Rh @ 30kVp 0.45mm
GE Essential Rh/Rh @ 29kVp 0.42mm
Siemens/Agfa Mo/Rh @ 28kVp 0.41mm

Anti-scatter grid. Special attention has been paid to implementing the design
of the moving focused anti-scatter grid to match the specifications of particular
manufacturers systems. For the manufacturers chosen for this work, GE and
Siemens/Agfa use linear grids, and a cellular grid is used by Hologic. In all the
Monte Carlo simulations, the anti-scatter grid has been shifted several times
along one axis (for the case of linear grids) or 2 axes (in the case of cellular grid)
to cover a complete scatter grid unit cell(septa width + interspace width). The
simulated anti-scatter grid was sufficiently large to cover the entire detector after
every shift. The septa were positioned and angled so as to simulate a focused grid
with the focal spot at a distance of 65cm from the edge of the detector. Cover
layers on the top and bottom of the grid have been included in the simulations.

Detector. The Monte Carlo simulation used the Geant 4 code [3,4]. Once a
photon has left the X-ray source, it is tracked through all the layers above the
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detector until either it is completely absorbed by one of the layers (including the
detector), or it leaves the system. During its passage through the geometry shown
in Figure 1b, the photon is tagged as a scatter if it undergoes a Compton and/or
Rayleigh interaction in any of the layers above the detector. When a photon
reaches the detector, only Compton interactions and photoelectric absorption
within the detector are taken into account in order to score the energy deposited.
The energy deposited in the detector and its spatial location are stored according
to the aforementioned flag (scattering, or primary if it does not interact with
any layer above the detector).

SPR Calculation. The SPR was calculated using a similar method to that
of [5], where the ratio of the image generated by energy deposited by scattered
photons (affected by Compton or Rayleigh) within the detector over the image
generated by energy deposited by primary photons gives the scatter to primary
map(Equation 1). Here ISca and IPri represent the images generated by energy
deposited inside the detector affected by scattering and primary photons respec-
tively for one of the position of the grid. ISca,T corresponds to the sum of all
the ISca images generated for each shifted grid position, while IPri,T is similarly
defined for IPri.

S

P
=

∑
ISca∑
IPri

=
ISca,T

IPri,T
(1)

This expression is evaluated separately for each pixel. The SPR is generated
using a detector comprising 1mm2 pixels under the assumption that the scat-
ter distribution does not contain fine structures. Then, using this assumption
that the scatter distribution is a slowly varying function, the SPR image is
median-filtered by an 11x11 kernel, providing a smoother, less statistically noisy
representation of the SPR distribution. As the region of interest in this work is
the CDMAM area, the image recorded in the detector is then cropped to the
CDMAM’s dimensions (inner area (4) shown in Figure 2a) giving a SPR image
size of 152x230 pixels using the pixel dimension (1mm2).

Contrast discs calculation using scatter map. Once the SPR map is gen-
erated and cropped to CDMAM’s location, this is inserted in the image simula-
tion chain to calculate the new contrast of the discs in the CDMAM as explained
above. The contrast of each disc within the CDMAM is calculated using Equa-
tion 2, where Cobs represents the contrast of a disc observed at some particular
location, Cp is the relative contrast of this disc considering only primaries pass-
ing the CDMAM and blocks of Perspex on top and bottom with and without
the gold disc of specific thickness and S

P is the value of the SPR for the specific
coordinates of the disc in the CDMAM image.

Cobs =
Cp

1 + S
P

(2)
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3 Results

Images of energy deposited by primary and scattered photons recorded in the
GE detector after Monte Carlo simulations are shown in Figure 2b and 2c
respectively. The resultant SPR image is presented also in Figure 2d. The mean
value of SPR calculated in the CDMAM area is 0.170 with a standard deviation
of 0.008 for this system. Figure 2a shows a top view of the GE system and block
of Perspex and CDMAM dimensions are highlighted as mentioned above.

(a) (b)

(c) (d)

Fig. 2. Images generated from Monte Carlo Simulations: (a) top-view diagram of a GE
system where outer area (1) represents system dimension, (2) block of Perspex on top
and bottom of CDMAM and (3) and (4) Perspex and Aluminium layers of CDMAM
respectively. (b) shows the energy deposited by primary photons in the detector IPri,T ,
(c) represents energy deposited in the detector due to scattered photons ISca,T and (d)
represents the SPR calculated using (b) and (c). Note that all layers shown in (a) are
highlighted in (b),(c) and (d).

A 3D plot of the median-filtered SPR map shown in Figure 2d is plotted in
Figure 3a, where the the various edges of the components of the phantom are
also shown. Figure 3b and 3c illustrate SPR values calculated by the mean of
10 profiles along planes parallel and perpendicular to the anode-cathode axis
(profiles OA and BC of Figure 2a).

For the Siemens/Agfa system, the mean SPR value across the CDMAM loca-
tion was 0.172 (standard deviation of 0.008) and for the Hologic system a mean
SPR value of 0.06 (standard deviation of 8.22x10−4) was found.
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(a)

(b) (c)

Fig. 3. (a) shows a 3D plot of the SPR map in the detector where CDMAM areas are
highlighted. (b) and (c) represents the mean SPR values of 10 profiles along profile
OA and BC illustrated in Figure 2a respectively. Vertical lines represents changes in
dimension along the profiles OA and BC shown in Figure 2a. Numerical labels (1-4)
corresponds to regions shown in Fig. 2a.

A study of the anti scatter grids used by GE (linear) and Hologic (cellular) was
also undertaken. Figure 4 illustrates the equivalent profiles as seen above but in
this case, SPR is plotted for both GE and Hologic system with and without anti
scatter grid. Contrast improvement factors (CIF) of 1.50 and 1.60 was measured
for GE and Hologic anti scatter grids respectively. Ratios of CIF between linear
and cellular grids found by [6] varies from 0.91 to 0.95 for different thickness of
breast phantoms for 30kVp. In this work, the ratio of the CIF values of the GE
and Hologic grids is 0.937.

Automated scoring software for CDMAM using the CDCOM framework [7][8]
has been used in this work for evaluation. A comparison of experimental acquired
data, previous simulation data using a globally uniform SPR [1] and results
from this work are shown in Figure 5 for GE systems and three different mean
glandular doses(MGD).
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(a) (b)

Fig. 4. Grid Study:In both figures, solid lines represent the SPR from the GE system
and dashed lines from the Hologic system. (a) and (b) show the profiles OA with
and without anti scatter grid. Vertical lines represents changes in dimension along the
profiles OA and BC shown in Figure 2a. Numerical labels (1-4) corresponds to regions
shown in Fig. 2a.

Fig. 5. Contrast detail curves for GE system. From top to bottom: 0.26, 0.52 and 1.06
mGy MGD. Solid lines illustrate contrast detail measured from experimental data.
Dashed and dotted lines represent contrast detail considering uniform scatter (from [1])
and calculating SPR from Monte Carlo simulations respectively. Errors bars indicate
2 standard errors of mean.

4 Discussion

Considering Figure 3b, an increase of the SPR values is observed near the edge
from area (1) to (2) and from (2) to (3)(4). Previously, [9] introduced this effect
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due to the compression paddle. A similar effect of increasing SPR at the edges
is also described in [5]. Thus, components of the system such as the compression
paddle or breast support may increase somewhat the scattering on the edge of
phantoms and should be taking into account for scatter correction.

The cellular grid implemented here has better performance than the linear
grid as expected. The very low scatter found with this set up when comparing
with other cellular grid [6] can be attributed to wider septa and interspace.
This also eliminates the increased scatter at the edges of CDMAM discussed
previously.

It is observed in Figure 5 that images simulation using both uniform scatter
and scatter calculated from Monte Carlo are within the error bars, so the results
shown in this work support previous assumption used by [1]. Moreover, the
simulation chain still have to be improved.
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ation with the MRC and Department of Health (England). The author would
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Abstract. The aim of this paper is to investigate a 2.5-dimensional approach in 
classifying masses as benign or malignant in volumetric anisotropic voxel 
whole breast ultrasound data. In this paper, the term 2.5-dimensional refers to 
the use of a series of 2-dimensional images. While mammography is very effec-
tive in breast cancer screening in general, it is less sensitivity in detecting breast 
cancer in younger women or women with dense breasts. Breast ultrasonography 
does not have the same limitation and is a valuable adjunct in breast cancer de-
tection. We have previously reported on the clinical value of volumetric data 
collected from a prototype whole breast ultrasound scanner. The current study 
focuses on a new 2.5-dimensional approach in analyzing the volumetric whole 
breast ultrasound data for mass classification. Sixty-three mass lesions were 
studied. Of them 33 were malignant and 30 benign. Features based on compact-
ness, orientation, shape, depth-to-width ratio, homogeneity and posterior echo 
were measured. Linear discriminant analysis and receiver operating characteris-
tic (ROC) analysis were employed for classification and performance evalua-
tion. The area under the ROC curve (AUC) was 0.91 using all breast masses for 
training and testing and 0.87 using the leave-one-mass-out cross-validation 
method. Clinically significance of the results will be evaluated using a larger 
dataset from multi-clinics.  

Keywords: ultrasound breast mass, classification, geometric feature, echo feature. 
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1   Introduction 

Mammography is very effective in breast cancer detection. It is the routine technique 
used in breast cancer screening in women who have no symptom of breast cancer. 
However, mammography is less sensitivity in detecting breast cancer in younger 
women or women with dense breasts. This is due to the inherited limitations of x-ray 
employed in the image acquisition in mammography. Breast ultrasonography is an-
other long-standing technique in breast imaging and is a valuable adjunct in breast 
cancer detection. Distinguished from mammography, the technique employs acoustic 
waves and does not have the same limitation as mammography. However, it is not 
without its shortcomings. 

Currently, ultrasound breast examination is routinely performed by an ultrasono-
grapher or ultrasonologist. A small hand-held probe of size about 4 cm is used and the 
ultraonographer/ ultrasonologist runs the probe over the entire breast or pre-identified 
regions during an examination. The technique can provide very valuable information 
in the hands of experienced examiners but is in general time consuming. Results are 
operator independent and reproducibility is poor. A novel breast scanning system that 
can acquire the data of the entire breast quickly, systematically and repeatedly with 
precision will be of great advantage. 

We have previously introduced a prototype whole breast ultrasound scanner for 
auto-acquisition of volumetric breast ultrasound data [1]. Diagnostic value of the data 
was investigated [2]. The volumetric ultrasound data of a whole breast consist of a 
stack of two-dimensional images, each depicting an axial slice image of the breast. In 
exploiting the benefit of volumetric data, three-dimensional analysis was used in our 
previous study in classifying malignant and benign breast masses [3].  

One issue noted in our previous three-dimensional analysis was that the data was 
anisotropic. Anisotropic data are generally computationally cumbersome. One of the 
common practices would be to resample the data to create isotropic voxel. However, 
this would not be a good practice for our volumetric whole breast data as the resolu-
tion in one direction (z-direction, normal to the axial plane) is about 8 to 10 times 
lower than that in the other two directions. The discrepancy is large and a reliable 
model for interpolation cannot be guaranteed. Another option is to increase the num-
ber of data points in the z-direction in the raw data. This could be achieved by reduc-
ing the interval between adjacent slice images. Options for slice intervals are 2 mm, 1 
mm and 0.5 mm. Corresponding unilateral breast study contains 84, 168 and 336 
(axial) images, respectively, with  acquisition time increases from 20, to 40 and 80 
seconds, respectively. The increase in number of axial unnecessarily burdens the 
interpreters while longer acquisition time leads to problems such as image blurring 
due to patient movement. Neither of the above options is desirable in this situation as 
the first one relied on interpolated slice images of which accuracy of the image details 
to be employed in the computer-aided image analysis cannot be guaranteed. The sec-
ond one imposes on a clinical practice to collect extra data which is a burden to the 
practice at no clear clinical benefits. After taken the above into consideration, this 
paper investigates the efficacy of a 2.5-dimensional analysis, a step between 2-
dimensional and 3-dimensional analyses. 
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2   Method 

2.1   Ultrasound Data  

Volumetric full-breast ultrasound data were used in this study. The data included 63 
breast masses. Of them 33 were malignant and 30 (16 cysts; 14 fibroadenomas) were 
benign. The malignant and benign masses were related to 29 and 24 breasts, respec-
tively. All the masses were annotated by a radiologist experienced in breast ultrasound 
and the malignant masses were proven by biopsy. With the patient in prone position, a 
diagnostic ultrasound system Prosound-II SSD-5500 (Aloka Co., Ltd, Japan) and a 
prototype full-breast scanner ASU-1004 (Aloka Co., Ltd, Japan) (Figure 1) were used 
to acquire the full-breast images. The scanner ASU-1004 was equipped with a 5-10 
MHz 6 cm linear probe. Operating in a fixed pattern, the probe scanned an area of 16 × 
16 cm2 in 3 sweeps, covering the full-field of a breast. The original scan images were 
B-mode breast section images in DICOM format with an overlap margin of 1 cm on 
each of the 'stitching' side. Volumetric full-breast data were generated by 'stitching' 
corresponding images in the 3 sweeps together (Figure 2). Details of the scanner can be 
found in [4-6]. 

The full-breast ultrasound scans were performed in the period 2003-2004 at the 
Center of Optical Medicine, Dokkyo University School of Medicine, Tochigi, Japan 
where a prototype full-breast scanner ASU-1004 was located. The size of each 
(stitched) B-mode image in the constructed volumetric full-breast data was 694 × 400 
pixels with a spatial resolution of 0.23 mm/pixel and a slice-to-slice interval of 2 mm.  

The images had a gray scale resolution of 8 bits. For each mass, a series of axial slice 
images containing that mass is employed in the 2.5-dimensional analysis (Figure 3). 
Features are measured individually on each slice image. The same feature measured on 
difference slice images are combined at a later stage. 

      

Fig. 1. The prototype full-breast scanner ASU-1004 (right) with a patient in prone position (left) 
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Fig. 2. Corresponding breast section slice images in the 3 sweeps (above) are 'stitched' together 
to form a slice image in the volumetric full-breast data (below) 

 

Fig. 3. 2.5-dimensional analysis. In this example, a series of 4 images containing the mass were 
used in the analysis. The same set of features is measured on each images and is combined at a 
later stage according to a set rule. 

2.2   2.5-Dimensional Analysis 

For each mass lesion, a number of axial images containing the mass lesion were iden-
tified. The number of associated slice images depends on the size of the mass and the 
slice-to-slice interval. With the use of a 2 mm slice-to-slice interval and the lesion size 
ranges from 5 mm to over 3 cm in this study, the number of associated slice image for 
a mass varies from a minimum of 1 to 2 images to a maximum of over 10 images, 
with the majority being 4 to 6 images. With the series of slice images containing the 
mass lesion identified, lesion boundaries were delineated manually and lesions in 
each of the slice images were segmented.  
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After the segmentation process, features were measured on the lesions depicted in 
each of the slice images.  Six features were defined. They were compactness, orienta-
tion, shape, depth-to-width ratio, homogeneity and posterior analysis. These six fea-
tures were similar to the features selected in our previous study [3] and were based on 
the image features that radiologists’ found useful and routinely consulted in breast 
ultrasound images interpretations. A summary of the six features is given in the next 
paragraph. 

In general, compactness (C) measures the degree of roundness of an object and is 
given by  

                                                    
2/4 SAC ××= π                                                 (1) 

where A and S are the area and circumference of the object, respectively. Benign 
masses are usually round in shape while malignant masses are more likely to be ir-
regular or oval in shape. Orientation measures the angle (in degrees) between the 
horizontal axis and the major axis of the ellipse that has the same second-moments as 
the object and is given by 
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Depth-to-width (DW) ratio is another feature that can provide information of the 
orientation of an (elongated) object. This feature can be simply defined as the ratio of 
the height to the width of the smallest bounding box containing the mass. Homogene-
ity of the mass is computed using the variance of the intensity inside a mass. Benign 
masses such as cysts generally display homogeneity (small variance) inside the mass. 
Posterior echo is also another feature to distinguish benign and malignant lesions. The 
absence of posterior echo is an indicator of malignant lesion.  

The above six features were measured on the lesions in each individual slice im-
ages. In other words, the six features were repeatedly measured on a series of mass 
cross-sectional images separated at a fixed interval of 2 mm.  

The 2.5-dimensional analysis is based on features measured in a series of 2-
dimensional images. For each breast mass, measurements of the same feature meas-
ured on a series of images are combined according to a rule which is feature-specific. 
For example, the depth-to-width (D/W) ratio measures the depth (vertical extent) of a 
mass to the width (horizontal extent) of a mass in a 2-dimensional image. Malignant 
lesions are more rigid and less compressible when subject to external force, hence the 
D/W ratio of malignant lesions is generally high. On the other hand, benign lesions 
such as cysts, which are usually filled with fluid or lipids, are more compressible and 
deformable. Hence, their D/W ratios are generally low. In other words, higher the 
D/W ratio, more likely is the lesion malignant. So in a 2.5-dimensional analysis, the 
maximum of the D/W ratios measured on a series of 2-dimensional images of a lesion 
is the strongest evidence for malignancy. Table 1 listed the rules in combining the 
multi-slice measurements of the same feature towards 2.5-dimensional analysis as-
suming strongest evidence for malignancy. 
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Table 1. Rules for combining multi-slice feature measurements in 2.5-dimensional analysis 

FEATURES  
 

2.5-DIMENSIONAL ANALYSIS 

Compactness minimum 
Orientation maximum 
Depth-to-width ratio maximum 
Posterior echo minimum 
homogeneity maximum 
Shape  maximum 

3   Results 

Linear discriminant analysis and receiver operating characteristic (ROC) analysis 
were employed for classification and performance evaluation. Discriminative powers 
of the six 2.5-dimensional features (combined over slice images) were analyzed in 
Table 2. The discriminative power of individual feature was indicated by the area 
under the ROC curve (AUC) obtained when using that feature alone in classifying the 
mass as benign or malignant. Both the resubstitution AUC using all breast masses for 
training and testing and the leave-one-mass-out cross-validation AUC are depicted. 
Table 2 shows that among the six features, three of them have strong discriminative 
power, namely, orientation, depth-to-width ratio and posterior echo. 

When using all the six features for classification, the area under the ROC curve 
(AUC) was found to be 0.91 using all breast masses for training and testing (resubsti-
tution) and 0.87 using the leave-one-mass-out cross-validation method. 

Among a number of classifiers, linear discriminant analysis was chosen for its ro-
bustness. Its hyperplane decision surface makes it less susceptible for over-training 
which is preferable for studies with small samples.  

Table 2. Discriminative powers of the six features indicated by the area under the ROC  
curve (AUC) 

FEATURES  
 

AUC 
(resubstitution) 

AUC 
(leave-one-mass-out) 

Compactness 0.64 0.64 
Orientation 0.82 0.79 
Depth-to-width ratio 0.83 0.84 
Posterior echo  0.84 0.84 
homogeneity 0.66 0.50 
Shape 0.60 0.58 

4   Discussion and Conclusion 

The classification based on 2.5-dimensional analysis in this study resulted in high accu-
racy in discriminating malignant and benign lesions in volumetric breast ultrasound data 
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with anisotropic voxel. AUC indices in this study are in general high and similar to that 
based on 3-dimensional analysis in our previous study [2]. However, direct comparisons 
cannot be made. This is because the sample sizes in the two studies were different (63 
masses in this study and 36 in the previous 3-d study) and shape feature was introduced 
in the current 2.5-dimensional analysis but not in the previous 3-dimensional study. In 
addition, though features definitions are very similar in the two studies, different algo-
rithms were used to compute the features in the two studies. Slight variations in the 
interpretation of individual features may exist.   

Plan for further work in this project is two-folded. (1) a larger database is required 
to confirm the results in this study. (2) Classification categories will also be extended 
to include normal breast tissue lumps and other artifacts in the breast which are the 
false positives found in the detection stage. 
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Abstract. In 2006 the fourth edition of the European Guidelines for Breast 
Cancer Screening and Diagnosis was published by the European Commission. 
Due to the fast developments in the field of digital mammography and the ex-
perience with digital mammography systems over the past years a supplement 
to the technical quality control procedures proved necessary. This paper de-
scribes important changes compared to the Guidelines and their rationale. Test-
ing methods which are new or have changed include: the size of the standard 
region of interest (ROI), the thickness compensation measurement, noise 
evaluation, threshold contrast visibility, an AEC measurement which simulates 
local dense area. A paragraph on evaluation of image processing has been 
added. With these changes European quality control procedures are again up-to-
date with current knowledge.  

Keywords: mammography, quality control. 

1   Introduction 

In 1996 the third edition of the European Guidelines for quality assurance in mam-
mography screening was published, fully based on screen-film mammography. Part 
of these guidelines is the European protocol for the quality control of the physical 
and technical aspects of mammography screening. Due to the introduction of digital 
mammography an addendum to this edition was published in 2003. In this adden-
dum technical quality control procedures for digital mammography systems were 
given. This addendum is incorporated as chapter 2b in the fourth edition of the 
European Guidelines for Quality Assurance for Breast Cancer Screening and diag-
nosis, which has been published by the European Commission in 2006 (Perry  
2006).  

Since 2006 developments in the field of digital mammography and the current 
knowledge of failures in mammography equipment necessitated a supplement to this 
protocol. In this paper the changes in the forthcoming supplement compared to the 
fourth edition of the Guidelines are listed and their rationale is given. 
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2   Adaptations Compared to the Fourth Edition of the European 
Guidelines 

A number of quality control tests have been updated: the size of the standard region of 
interest (ROI), the thickness compensation measurement, the noise evaluation, com-
puter readout of threshold contrast visibility. Furthermore an AEC measurement 
which simulates local dense area has been introduced and a paragraph on evaluation 
of image processing has been added. Additionally the dosimetry section has been 
adapted to accommodate the recently introduced X-ray spectra. This will not be part 
of this paper but is described elsewhere (Dance 2009). 

2.1   Region-of-Interest   

In the fourth edition of the Guidelines the standard ROI is a square with dimensions 
of 2 cm x 2 cm. The centre of this square is positioned 60 mm from chest wall side 
and centered laterally. In this ROI pixel value and standard deviation are measured to 
calculate Signal-to-Noise-Ratio (SNR) and Contrast-to-Noise-Ratio (CNR). In prac-
tice, for systems with specific pixel value trends over the imaging field, like the heel 
effect, this means that the measured standard deviation includes this trend. To reduce 
the influence of these trends a number of options are available. The first option is that 
the physicist performs a trend correction on all images. However this is quite compli-
cated and probably time-consuming. Therefore a more realistic option is to decrease 
the size of the standard ROI, thus minimizing the influence of  non uniformity, see 
table 1. (Al Sagar 2008).   

Table 1. Error in CNR for different sizes of ROI on a CR system 

ROI Size CNR Error compared to non  
  uniformity corrected image 

(mm)  (%) 
20 x 20 12.3 10 
10 x 10 13.1 4 

5 x 5 13.3 2.5 
2.5 x 2.5 13.6 0.2 

Reduction of non uniformity is obtained with very small ROIs, but in practice, the 
ROI should include a sufficient number of pixels for reliable measurement of SD. In 
Table 2 the coefficient of variation (COV) of SD in the reference ROI is given for 10 
images made under identical exposure conditions (Bouwman 2009). It is clear that the 
choice of ROI size is a compromise between the reduction of trends in the X-ray field 
end the accuracy of SD measurements. Therefore a standard ROI with dimensions 5 
mm x 5 mm has been chosen. 

 
 



 A supplement to the European Guidelines for Quality Assurance 645 

 

Table 2. COV of SD for two mammography systems for different sizes of ROI 

ROI Size COV in SD of DR system COV in SD of CR system  
 (pixel size 100 micron) (pixel size 50 micron) 

(mm) (%) (%) 
20 x 20 0.4 5.6 
10 x 10 0.8 2.0 

5 x 5 0.9 1.0 
2.5 x 2.5 3.4 1.5 

2.2   Thickness Compensation Measurement  

It is practice to simulate the exposure to different breast thicknesses by PMMA slabs. 
Dance (2000) calculated the PMMA thicknesses that correspond in terms of X-ray 
attenuation to specific compressed breast thicknesses. However the slabs are thinner 
than the corresponding typical breasts. On most mammography systems, the X-ray 
spectrum selection is based on the height of the compression paddle. Simulating the 
attenuation of a breast with PMMA will therefore introduce a difference in X-ray 
spectrum compared to a typical breast with the same attenuation. We propose to use 
spacers to equal the height of the compression paddle to the height of the typical 
breast with the same attenuation, see table 3. The spacers should be positioned outside 
the area, which determines the exposure factors.  

Table 3. Typical breasts thickness equivalence to PMMA thickness (Dance 2000) 

PMMA  
thickness 

(mm) 

Equivalent typical breast 
thickness 

(mm) 

Thickness of spacer 
(mm) 

20 21 None 

30 32 2  

40 45 5 

45 53 8 

50 60 10 

60 75 15 
70 90 20 

In addition it is proposed to use a smaller piece of aluminum (10 mm x 10 mm, 0.2 
mm thick) for the CNR evaluation. Next to a change in ROI size (see paragraph 2.1), 
it is proposed to calculate the signal in a 5 mm x 5 mm ROI of the aluminium insert 
and the background in four 5 mm x 5 mm background ROIs, see figure 1. The four 
background ROIs are used to minimize the influence of trends in the X-ray field. The 
background pixel value (PV) and SD are the average of the four background ROIs.  
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The CNR is calculated using the formula from the fourth edition of the Guidelines 
and the limiting values from the fourth edition remain unchanged. 

10 mm
5 mm

 

Fig. 1. schematic drawing of the ROI in the aluminium sheet and the background ROIs in the 
thickness compensation measurement 

2.3   Noise Evaluation   

The noise evaluation of the fourth edition of the European Guidelines proved to be 
insufficiently sensitive to additional noise, therefore a completely different approach 
is suggested. Noise in images can be subdivided in components: electronic noise, 
quantum noise and structure noise:  

                                             SD² = k e 
2 + kq

2 · PV + ks
2 · PV2                                                 (2) 

SD = standard deviation in reference ROI 
ke = electronic noise coefficient 
kq = quantum noise coefficient 
ks = structure noise coefficient 
PV = average pixel value in reference ROI 

Electronic noise is assumed to be independent of the exposure level, structure noise is 
assumed to be proportional with exposure and quantum noise is assumed to be related 
with the square root of the exposure. Due to this difference in behavior against dose 
the components can be separated. All removable parts (e.g. compression paddle, cov-
ers and anti-scatter grid) are removed from the X-ray beam and a 2 mm thick alumin-
ium attenuator is positioned as close as possible to the X-ray tube. In manual mode 
the X-ray spectrum, which is chosen for a standard image, is set and images are made 
at different mAs-values (10 values) over the whole range of available values.  

The dose on the detector surface is calculated from the tube output and mAs val-
ues. For systems with a non-linear response, the pixel data is linearized before further 
analysis. In the reference ROI, pixel value and SD are measured. SD² against detector 
dose is plotted. The measured data is fitted using equation 2 and the noise coefficients 
are determined. The detector dose range for which quantum noise is the largest noise 
component is determined. For the clinically used detector dose levels quantum noise 
should be the largest component, see figure 2. 
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Fig. 2. Example of the proposed noise analysis 

2.4   Threshold Contrast Visibility  

The method described in the fourth edition shows intra and inter reader variability.  In 
addition, scoring threshold visibility images by human observers is time consuming. 
Therefore computer readout is introduced.  

Threshold contrast visibility is determined for cylindrical details with diameters in 
the range from 0.1 to 1 mm. As with human reading, the details have to be imaged on 
a background object with a thickness equivalent (in terms of attenuation) to 50 mm of 
PMMA. The details must be positioned at a height of 20 to 25 mm above the breast 
support table. Use the exposure factors that would be selected for a 60 mm average 
breast. Make sixteen images of the details and move the phantom slightly between the 
successive exposures to obtain images with different relative position of the details 
and the detector elements. 

Score the images using CDCOM (latest version downloadable from 
www.euref.org) and calculate the detection matrix. For each diameter a psychometric 
curve is fitted using equation (3) to determine the threshold contrast for each diameter 
(Veldkamp 2003): 
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                                         (3) 

C = logarithm of signal contrast C = log(1 − e−μd). 
Ct = signal contrast at the threshold of 62.5% 
f  =  fitting parameter 
p(d) = probability of detection p(d) of an object with size d 

A threshold at 62.5% correct response is used to determine the threshold contrast. 
Results for which the psychometric curve is fitted with only a few data points are 
disregarded. In order to use the limiting values from the fourth edition, the resulting 
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thresholds for each diameter have to be converted to human readout.  This can be 
done using the relationship in Young (2008), that predicts the human readout from the 
computer readout. 

                                            TCpredicted = a[TCauto]n                                                  (4) 

TCpredicted = Predicted human readout threshold contrast 
TCauto = Computer readout (using CDCOM) threshold contrast 
a and n = fitting parameters 

Pooling the data (series of images from 113 systems) from the Guildford, Nijmegen 
and Leuven centres (Young 2008), provided the following factors: 

 
n = 0.888 
a = 1.17 
 

For images with high noise the conversion factors are not validated yet, system de-
pendence of the factors n and a was not observed in this dataset. The resulting pre-
dicted human readout threshold contrasts are fitted with a third order polynomial 
function to obtain a contrast-detail curve.  

                                          Tc = a + b x-1 + c x-2 + d x-3                                                                    (5) 

Tc = nominal threshold contrast (%) calculated at 28 kV Mo/Mo 
x = detail diameter (mm) 
a, b, c and d = coefficients adjusted to achieve a least squares fit, and are ≥ 0 

The fitted curve is checked against the limiting values for human readout as published 
in the European Guidelines, 4th edition. 

2.5   Simulating a Local Dense Area 

In digital mammography most X-ray units incorporate an automatic exposure control-
ler (AEC) system using a pre-exposure technique. With the information from this pre-
exposure, the area (or areas) with highest attenuation is determined and the exposure 
factors are tuned to this area. However, it was observed that some AEC systems tune 
the exposure to a very large area of the breast, in some cases even the whole breast. 
This potentially leads to underexposure of high attenuation areas i.e. glandular tissue. 
This potential underexposure is not detected with the current AEC quality control 
tests, which use plates of PMMA covering the total area of the detector. Therefore a 
method has been set up in which an area with higher attenuation is simulated, see 
figure 3.  

Three PMMA plates (1 cm thick) and two spacers are positioned on the bucky. The 
plates are positioned such that the area in which the exposure factors are determined 
is fully covered, the spacers are positioned outside this region. By adding 1 to 10 
small PMMA plates of dimensions 20 x 40 mm (2 mm thick), a small area with in-
creasing glandularity is simulated. The AEC system should detect the extra attenua-
tion and exposure factors should be adapted accordingly, so pixel value or SNR (de-
pending on the workings of the AEC) should be approximately equal for all images in 
the area of extra attenuation.  
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Fig. 3. Setup for the measurement simulating a local dense area 

2.6   Image Processing   

The lack of methods to evaluate the effect of image processing algorithms is a gap in 
the quality evaluation in digital mammography. One of the problems in evaluating 
image processing is that image characteristics, like pixel value distribution (histo-
gram), shape etc. are used in processing algorithms. Therefore phantoms whose char-
acteristics differ from those of a breast cannot be used to evaluate image processing. 
The difference in characteristics causes the processing of phantom images to be dif-
ferent from images of breasts and artefacts may also be introduced because image 
processing algorithms presume a breast edge (skin line) that may not be present in 
technical test objects.  

Therefore evaluation of image processing can only be performed subjectively by 
scoring mammograms by radiologists. After installation of a system and the accep-
tance test by a physicist, it is advised to carefully evaluate a series of clinical images 
of ca. 50 patients. If possible, images from the installed system should be compared to 
previous images from an established modality of the same women. The following list 
of image characteristics might be taken into account when comparing images (van 
Ongeval 2008): 

 
1. The visualization of the skin line 
2. The visibility of vascular structures through dense parenchyma 
3. The visualization of vascular and fibrous structures and pectoral muscle 
4. The visualization of structures along the pectoral muscle 
5. The visualization of Coopers ligaments and vascular structures in the low 

and high pixel value areas of the image 
6. The edges of microcalcifications 
7.  The noise in the low and high pixel value areas of the image 
8. The contrast in the low and high pixel value areas of the image 
9. The appearance of glandular tissue 
10. The appearance of background area 
11. The confidence of the radiologist with the representation of the image  
12. The presence of artefacts.  
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It must be realized that in individual cases visibility of structures might differ due to 
e.g. differences in positioning. Conclusions should not be drawn on small number of 
cases. 

3   Discussion and Conclusions 

With the adaptations of quality control tests described in this paper the measurements 
have become more powerful to detect problems (noise evaluation, simulating a local 
dense area), less reader dependent and time consuming (threshold contrast visibility) 
and the effect of the Heel effect is minimized (changes in size of standard ROI and 
the setup of the thickness compensation measurement). It is still not possible to evalu-
ate the quality of image processing algorithms objectively, although not perfect the 
paragraph on image processing evaluation does provide some tools for this evalua-
tion.  Additionally the dosimetry section has been adapted to accommodate the re-
cently introduced X-ray spectra (Dance 2009). With this supplement, it is expected 
that the European Guidelines are up-to-date with regard to the physical and technical 
aspects of mammography screening.  
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Abstract. Breast density is known as a strong risk factor for breast cancer. 
Clinically, physicians often use the BI-RADS or the Boyd categories to de-
scribe the density of breast, measured by observing mammograms. More accu-
rately, breast density is measured by the percentage of glandular tissue in a 
breast. For all these methods, there might be more easily interpretable clinical 
value if the breast density was reported with scoring methods which are corre-
lated to the patient distribution. In this paper two practical scoring methods will 
be discussed. The first one is population-based, with each segment of the con-
tinuous scores matching the patient BI-RADS distribution found in large scale 
clinical study. The second one is statistics-based, with the breast density result 
compared with the mean and the standard deviation from a reference popula-
tion. Both methods will be described in details, together with preliminary re-
sults from an evaluation study with a total of 942 patients. 

Keywords: volumetric breast density, BI-RADS, Z-score, Vbd-score,  
ACR-score.  

1   Background 

Mammography density is a reflection of the amount of glandular tissue as opposed to 
other fatty tissue in the breast. It is measured using either area based or volume based 
methods, with the breast density (BD) result expressed in percentage. Studies [1] have 
shown that the percentage breast density is a better predictor of breast cancer risk than 
the breast density classified into discrete categories. However, physicians are more 
familiar with the conventional BI-RADS or Boyd type descriptions of breast density. 
There might be greater clinical value if the breast density is also reported with scoring 
methods related to the existing categorical classifications and patient distribution. The 
new quality scores generated from breast density algorithm could provide physicians 
with more information and help them to better interpret the breast density result. We 
have been investigating two new scoring methods that will be discussed in this paper. 
The first method is developed based on patient BI-RADS population distribution and 
the second one is based on statistical distribution of breast density. Our goal is to 
generate additional information from the existing breast density result, to assist appli-
cation of breast density in clinical practice.  
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2   Methods 

We carried out the study with a database of 942 patients acquired from several clini-
cal sites and with BI-RADS score available for each patient. The breast density of 
each mammogram was calculated with an FDA-approved commercial software pack-
age – Quantra [2]. QuantraTM was developed based on physical modeling of mam-
mography system, and performs volumetric assessment of breast tissue compositions. 
In this paper, breast density refers to the volumetric breast density (VBD or Vbd) only, 
different from the more common radiological area-based percentage breast density. 
The Vbd results of all mammograms of one patient were averaged first, and the mean 
value was used as her breast density. The BI-RADS distributions of our database were 
compared with the population distributions in the ACRIN DMIST [3] study and good 
agreement was established between the two, suggesting that our database represented 
a good screening population. With both the breast density and the BI-RADS score 
results available, we developed two practical scoring methods to generate new quality 
scores based on breast density results.   

The first method is a look-up-table based mapping method, which translates the 
percentage breast density into another continuous score that can better follow the BI-
RADS classification of a mammogram. We refer the new score as the “ACR-score” in 
the paper for the ease of discussions. While for each individual patient, the ACR-
score may not always match her BI-RADS number, we constrain and regulate the 
results such that over the entire group of study population, the ACR-score distribution 
matches the BI-RADS patient population distributions. In this way we expect that 
overall performance of the algorithm will be satisfactory. The look-up-table derived 
from the study population can be applied to other individual or patients population for 
general applications. In this algorithm, each unit segment of the continuous ACR-
score will be corresponding to each BI-RADS category; and the number of patient in 
each unit segment of ACR-score will match the number of patient in each BI-RADS 
category. Using this new ACR-score, physician could conveniently link the breast 
density result to the BI-RADS category. Since BI-RADS score was given to each 
patient, and not to each breast or each mammogram, we used the averaged breast 
density of a patient to develop the mapping function to get her ACR-score.  

The second method is a statistical method, which the breast density of a patient is 
compared with the mean and the standard deviation (SD, or σ) of breast density from 
a reference population. The offset value of a patient from the mean breast density of 
the reference population in unit of SD is reported as a new breast score, which is re-
ferred as the “Vbd-score” in the paper. The Vbd-score can help to reveal how the breast 
density of a particular patient stands against the reference population. For example, a 
Vbd -score of +1.0 means her breast density is at 1σ greater than the mean, or alterna-
tively speaking, there is about 84% of the population having a breast density lower 
than hers. This method is proposed based on the same concept of the T-score or Z-
score methods for bone mineral density (BMD) in bone densitometry, and may poten-
tially become similarly useful in the field of breast density.  
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3   Results 

3.1   Characteristics of the Database 

The database in this study consists of 3307 mammograms of 1669 breasts from 942 
patients (not all patients have all four mammograms). The mean patient age is 53.1 
year old (σ=12.2) with a range from 21 to 96 year old. The mean compressed breast 
thickness is 5.4 cm (σ=1.6 cm). The mean breast density is 17.5% (σ=7.1%). In Table 
1, the BI-RADS breast density distributions and mean age are compared with the 
ACRIN DMIST study. The patient populations in the database are considered similar 
to the screening populations in the DMIST study.  

Table 1. Patient distributions in the Hologic database and in DMIST study 

 Hologic (pts) Hologic (%) DMIST (pts) DMIST (%) 
BI-RADS 1 112 11.9% 5184 10.5%
BI-RADS 2 434 46.1% 21171 42.9%
BI-RADS 3 340 36.1% 19089 38.7%
BI-RADS 4 56 5.9% 3690 7.5%
Mean age 53.1  54.6  

3.2   The “ACR-Score” Method for BI-RADS Type Output 

As shown in Table 1, the BI-RADS distributions in our database are: 11.9%, 46.1%, 
36.1% and 5.9% for BI-RADS category 1, 2, 3 and 4, respectively. The normalized 
probability distribution function (PDF) of breast density is shown in Fig. 1. Theoreti-
cally values of BD are between 0% and 100% but in our database few patients have 
BD over 50% so the plot is showed only between 0% and 50% for clarity.  The shape 
of the distribution curve looks noisy, which is probably due to the relatively small 
number of patients in the study. The mean and σ of BD are 17.5% and 7.1%, respec-
tively. We divide the study population into four segments according to their breast 
density values from small to large, and make the percentage of patient population in 
each segment to match the distribution of each BI-RADS category. We find the limit-
ing breast density values are about 9.3%, 16.4%, and 28.8% between adjacent seg-
ments. In Fig.1 we show the four segments under the PDF curve.  

Since BI-RADS density by definition has only 4 discrete categories but the value 
of breast density is continuous from 0% to 100%, we would like to generate a con-
tinuous ACR-score, with each unit segment of the ACR-score corresponding to the 
each BI-RADS category. We assume that the breast density from 0% to 100% will be 
mapped to a numerical value range of 0 to 4 monotonically, and each unit segment 
between 0 and 4 will be corresponding to the BI-RADS category from 1 to 4. Under 
these assumptions, an empirical mapping curve is developed and is given in Fig. 2. 
The mapping curve can convert a patient’s breast density to her ACR-score. It should 
be noted that the BD limits in Fig. 2 are adjusted, and are slightly different from those 
limits in Fig. 1. We find it is necessary as the PDF curve is noisy and the adjustment 
can help us to get better matching of ACR-scores to BI-RADS later.  
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Fig. 1. Normalized BD distribution function and its four segments. The patient number in each 
segment from left to right matches the patient number in each BI-RADS category from 1 to 4.  
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Fig. 2. A mapping curve that converts Vbd values to the ACR-scores, with each segment of 0-1, 
1-2, 2-3, and 3-4 in ACR-score corresponds to BI-RADS category 1, 2, 3 and 4, respectively 

3.3   The Statistical Vbd-Score (Z-Score) Method 

The definition of the Vbd-score is given by equation 1. The mean M, standard devia-
tion σ and the power term L come from a reference patient population through LMS 
fitting method [4], which could be either age and race matched group or a general 
population. In the study through age-independent LMS fitting, we find that L = -
0.596, M = 18%, and σ =6.6%. The distribution of Vbd is skewed so value of the 
power term L is different from 1.0. It should be noted that values of the mean M and 
standard deviation σ obtained through LMS fitting method are slightly different from 
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other direct (non-LMS) method. (Unless specifically mentioned, the mean and σ in 
this paper refer to these derived from non-LMS method.) If we use the database as a 
reference to itself, then Vbd for typical Vbd-score of Z=0, +1, and +2 is 18%, 27%, and 
47%, respectively. In Fig.3, these three characteristics lines are co-plotted with PDF 
curve to show their relationships to the BI-RADS segmentations.  
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Eq. 1 

With the new Vbd-score method, a person with a Vbd-score of Z=0, or +1, or +2 will 
have about 50%, or 84%, or 97.7% of population with breast density lower than her, 
respectively. On the other hand, given a person’s B-score, together with the known 
values of the power term, mean and standard deviation of the reference population, 
the breast density of the person can be calculated. For example, for Vbd-score equals 
to 1.5, her Vbd value is 35%.  
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Fig. 3. The same PDF plot from Fig. 1 but with Vbd locations for several different Vbd-scores 
labeled. The Vbd are at 18%, 27.3%, and 47.1% for Z= 0, +1, +2, respectively. 

4   Discussions 

4.1   The Variation of Breast Density 

The database in this study consists of 3307 mammograms, 1669 breasts from 942 
patients. Our previous studies in the past have suggested the database consists of 
fairly representative screening population, which support the purpose of this study. In 
Table 2, we also compare our patient population with a paper from Yaffe [5]. We find 
the mean breast densities between the two study populations are close (19.3% vs. 
17.5%) but the standard deviations differ (12.1% vs. 7.1%).  

4.2   Correspondence of ACR-Score and BI-RADS  

We want to study the correspondence of the ACR-score to radiologist’s BI-RADS 
scores. As a point of comparison, we started by studying the inter-radiologist variability 



656 B. Ren, A.P. Smith, and J. Marshall 

 

of BI-RADS scores. BI-RADS is a subjective score method using only 4 discrete steps. 
When doctors score clinical images, there is a large variation in the reported density 
scores. To characterize the inter-reader variation among radiologists, we performed an 
analysis with some data obtained as part of a clinical trial. The results are included in the 
appendix, which show that the inter-reader agreement is about 61%.  What this means is 
that two radiologists on average will rate a patient with the same BI-RADS density 
score 61% of the time. 

Table 2. Comparison of mean and σ of patient population of this study versus that of Yaffe [5]   Yaffe mean (σ) Hologic, mean (σ) number 2831 patients 942 patients VBD 19.3% (12.1%) 17.5% (7.1%) age 59.3 (??) 53.1 (12.2) cm 5.9 (1.6) 5.4 (1.6) 
In Fig. 4, we show the histograms of patient distribution versus the ACR-score in 

each of the four BI-RADS categories. The distributions of ACR-score are also sum-
marized in Table 3. The result shows that the ACR-score has an overall agreement 
rate of 62% to BI-RADS, and the agreements for the BI-RADS 2 and 3 patients are 
higher than the other two categories. The agreement of ACR-score to BI-RADS of 
62% is remarkably the same as the agreement between two radiologists rating BI-
RADS. It is known that BI-RADS number is assigned clinically based on both the 
density and the texture pattern of breast tissues. Since our ACR-score method does 
not take breast texture as an input, the agreement of the ACR-score and BI-RADS is 
compromised due to lack of information.  

Table 3. Patient distributions vs. ACR-score in each BI-RADS breast density category 

 

The BD-score method is developed with a constraint to match large scale distribution 
of patient population, and overall agreement has been shown to be 62%. So our ACR-
score method is comparable to the clinical performance of radiologist in predicting 
BI-RADS scores. However, our BI-RADS method uses decimal number to score a 
breast, which would allow better differentiation of breast than the discrete BI-RADS 
scores. For example breasts with ACR-score of 2.9 and 3.1 do suggest great similarity  
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Fig. 4. Patient distribution versus the ACR-score in each BI-RADS category 

in breast density, but two such breasts could be classified into adjacent BI-RADS 
categories, and fail to reveal their proximity in breast density.  

4.3   The Vbd-Score Method 

Regarding the Vbd-score method, a quick literature search suggests that it might be a 
new concept to the breast density field since no similar discussion could be found in 
existing literatures. Further studies on this method are needed to determine how to 
best select appropriate reference population for the Vbd-score calculation, and to cor-
relate the Vbd-score to the risk of breast cancer.  As we know, the T-score or Z-score 
methods have been well established in the field of bone densitometry. In particular, 
the World Health Organization (WHO) has a formal definition for osteoporosis based 
on the T-score value of a patient (when T<-2.5). Therefore we expect that a similar 
Vbd-score defined for breast density would inherit many advantages of this statistical 
method established in the BMD field.  

5   Conclusion 

In this paper, we describe two new scoring methods for breast density, and evaluate 
them with a database of 942 patients. Our first method aims to generate a BI-RADS 
type score to assist doctors to correlate to breast density to BI-RADS category number. 
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The current algorithm has an agreement rate of 62% matching the BI-RADS score 
from doctors. This performance is similar to how radiologists agree among themselves 
with BI-RADS scores. Our second method aims to provide statistical information on 
how a patient’s breast density result is compared with a reference population, thus 
adding insight into the breast density result. Both methods need to be further evaluated 
to justify them as new methods for breast density.  
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Appendix: Study on Inter-reader BI-RADS Score Agreement 

In this study, 309 images were scored by 15 radiologists using BI-RADS breast den-
sity. We evaluated the inter-reader variation between any pairs of two readers. There 
were a total of 15x14/2=105 pairs, and about 105x309=32445 individual data points. 
We made a 4x4 matrix to record all these data point through histogram method and 
the results are shown in Table 4. We found radiologists tend to agree with each other 
better for BI-RADS 2 and 3 cases, and the overall agreement rate between two radi-
ologists was 61% in BI-RADS results.  

Table 4. Inter-reader BI-RADS agreements, tested with 309 images rated by 15 radiologists 
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Abstract. The performance of a new double layer amorphous Selenium detec-
tor for digital mammography is compared to the FDA approved CR system for 
digital mammography in a two step study. A study comparing radiation be-
tween both systems is first done to obtain the best settings for a clinical study. 
In a second step the results in terms of quality are evaluated by three readers 
comparing the final images. A minimal reduction of dose (20%) is obtained and 
a better definition of glandular structures is demonstrated with the new device. 

Keywords: Breast, Breast Cancer, Digital Mammography. 

1   Purpose  

The purpose of the study is to establish if there is any improvement in mammography 
with the use of a DR double layer amorphous selenium detector (A) compared to the 
FDA approved CR (P) for digital breast imaging. 

2   Method and Material 

The systems compared are a novel CE approved DR System for mammography. The 
Amulet (FUJIFILM, Japan), mainly based on a double Amorphous Selenium layer 
detector, and an optical switch reading of the electronic virtual imaging, against a 
known CE and FDA approved CR System for mammography, the Profect (FUJI-
FILM, Japan), based on a removable imaging plate, and a laser beam reading of the 
electronic virtual imaging.  

A two step study has been designed. In the first step, a study analysis by three 
observers, comparing the films obtained in both systems under different conditions 
(mAs and kvp), as well as anode filter combinations) with two different standard 
phantoms RMI 156 and CDMAM. We used the CDMAM to quantify the image 
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quality, where the Image Quality Figure (IQF) is calculated according to the  
formula: 

 

Where Di, denotes the threshold diameter in contrast-column i. Summation over all 
contrast-columns yields the IQF [1]. 

In the other phantom RMI156 result evaluation we used the recommended crite-
ria described in the Mammography quality control manual published by the  
ACR [2]. 

This part has been designed to obtain the best conditions for the second part of the 
study.  

The second step has been the clinical study. A total of 104 patients have been in-
cluded in the study. To avoid any bias, patients have been collected consecutively 
without any selection, but only if they signed an informed consent agreement. Patients 
were examined for breast cancer screening (60), previous check out to breast augmen-
tation surgery(7), follow up of previously detected nodules, asymmetries or calcifica-
tions (27), actual clinical problem (7), and other (prosthesis, lumpectomy, axillary 
tumor) (3). 

The patient data included were age and breast density following the four ACR BI-
RADS types. Type 1, <25%, type 2, 25-50%, type 3, 50-75%, and type 4, >75%. 

All the patients had a CC and a MLO view both in the right with Profect (P), and 
left breast with Amulet (A). Where the Kvp were fixed at 28 and the mAs were 
automatically selected by the Automatic Exposure Control (AEC) device in the 
mammographic equipment (P). Then the same recorded mAs and kvp were fixed 
manually in each patient in the DR system (A). Just to compare with exactly the 
same figures. Three independent readers were (RST) a radiologist with more than 
20 years experience years in breast imaging; (RSI) a young radiologist with less 
than 5 experience years in breast imaging; and (XSI) a radiology resident in training 
in radiology. The results from the comparison of the different structures, quality, 
artifacts, etc, were classified using a five point rating scale where: (1) P is much 
better than A; (2) only better; (3) equal; (4) worse; (5) much worse; and of no value 
if it were impossible to see.  

Vascular structures, pectoral muscle contour, microcalcifications, the skin line 
definition, sub-areolar structures, fibroglandular tissue, pectoral muscle penetration, 
artifacts, and electronic or digital noise were assessed and compared in every patient 
between both systems. 

3   Results 

The first part of the study produced the results given below. 
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1.   RMI 156 Results 

28kV Mo/Mo Dose Fiber Calc Mass 

PROFECT 100% 5,0 4,0 4,5  

AMULET 100% 5,8 4,0 4,5  

  80% 5,0 4,0 4,3  

  60% 5,0 3,8 4,0  

a) With the exposure conditions of 28kV and Mo/Mo,  
Fibre and Calcium in image A with 80% dose shows the same quality as image P 

with 100% dose.  
Mass in image A with 100% dose shows the same quality as image P with 100% 

dose.  

29kV Mo/Rh Dose Fiber Calc Mass 

PROFECT 100% 4,3 4,0 4,5  

AMULET 100% 5,0 4,0 4,5  

  80% 5,0 4,0 4,5  

  60% 5,0 4,0 4,0  

b) With the exposure conditions of 29kV and Mo/Rh,  
Fibre, Calcium and Mass in image A with 80% dose shows the same quality as im-

age P with 100% dose.  
c) These results led to the suggestion that A performs 20% dose reduction com-

pared to P with 29kV Mo/Rh.  

2.   CD-MAM Results 

a) The CD curve of A shows better performance than P at a smaller diameter.  
b) IQF of A 80% dose image is better than or equal to IQF of P 100% dose image 

with either 28kV Mo/Mo or 29kV Mo/Rh.  

It was confirmed that the dose was almost the same with the same mAs, kVp and 
anode/filter between Amulet and Profect. In this image evaluation, the breast thick-
ness was almost the same between Amulet and Profect. Therefore the AGD was ap-
proximately the same. 

[2]Clinical test 

In the clinical test, of the 155 patients consecutively attending from March 13th to 
March 23rd; only 104 were included, having excluded some because of mastectomy, 
gynecomastia, or simply patient refusal. 

The results are summarized in chart 3. 
a) A shows better performance for “VASC”, “PM”, “MICRO”, “RETROAR”, 

“TISSUE”, “PMPENET”, and “NOISE” by means of the 5 point scale 
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b) Regarding “MICRO”, A shows higher performance when breast density be-
comes lower.  

c) Regarding “TISSUE”, A shows higher performance when breast density be-
comes higher.  

The sharpness of fibro-glandular tissue was better seen with the new system (p 
value below 0.05, statistically significant). The other items studied (Pectoral muscle 
contour, Microcalcifications, sub-areolar structures, pectoral muscle penetration, and 
electronic or digital noise) were better on DR but did not reach statistical significance 
(p value in a range between 0.08 and 0.18). Artifacts and skin line definition were 
similar in both systems. 

4   Conclusion 

There is a lot of literature on different types of detectors, based or not on Selenium, 
applied to Full Field Digital Mammography [3-8]. Here we compare a new Selenium 
based detector to a CR system for breast imaging. 

From the first part of the study we conclude: 

1.   RMI156 

a)- Because A has a higher MTF and DQE than P especially at high frequency, im-
age A shows Fibre and Calcium more finely and clearly. Regarding Mass, A has the 
same performance as P.  

b)- There is a different X-ray energy dependence between A and P. A shows better 
X-ray conversion efficiency with higher energy than P. Therefore an amount of dose 
reduction using A is higher with 29kV, Mo/Rh than with 28kV, Mo/Mo because 
29kV, Mo/Rh beam has higher energy than 28kV, Mo/Mo beam.  

2.   CD-MAM 

These results led to the suggestion that A performs with a 20% dose reduction com-
pared to P, either with 28kV Mo/Mo or 29kV Mo/Rh.  

Amulet has potential for about 20% dose reduction, but further study is needed to 
show if there is significant difference. From this phantom study, it is confirmed that 
Amulet image quality is at least the same as Profect. Therefore the clinical study was 
performed under the same conditions between Amulet and Profect. 
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In the clinical study in our series, under any breast density condition, only the 
sharpness of fibroglandular tissue was statistically better seen with the new DR sys-
tem. Microcalcifications were better seen in the Amulet equipment when breast den-
sity was lower than 50% (types 1 and 2 BIRADS). Other aspects, such as skin line, 
digital noise, pectoral muscle definition, and penetration, etc., were to be found better 
but of no statistical value. Further studies are required to show this trend. This new 
detector improves the resolution applied to breast imaging. The size of the sample in 
our series was unable to demonstrate big differences in many aspects, but the quality 
of the new system based on a double layer selenium detector is at least equal if not 
better than the FDA approved CR system for breast imaging diagnosis. 
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Abstract. Breast tissue characteristics are widely accepted as important indica-
tors of the likelihood of the developing breast cancer. Methods which have the
ability to automatically classify breast tissue distribution therefore provide im-
portant tools in assessing the risk to which patients are exposed. This paper ex-
amines the machine learning techniques employed for knowledge discovery in
a recent approach to mammographic risk assessment. A number of weaknesses
for selected classification techniques are identified and examined. Additionally,
important trends in the data such as decision class confusion and how this affects
the ability to perform accurate knowledge discovery on the extracted image data
are also explored. The paper is concluded with some ideas as to how the identi-
fied trends in the data and weaknesses in the classification approaches could be
addressed.

1 Introduction

The approach described in [14], employs a number of methods for the segmentation
and the extraction of features from mammographic images for the task of risk assess-
ment. A number of machine learning methods are used in this approach and the authors
achieve good empirical results. Further investigation however has revealed that there are
a number of areas where the approach could be improved. More specifically, a number
of important trends within the data are ignored, also the leave-one-out cross-validation
strategy as well as the chosen classifier learners have a number of weaknesses which
are not addressed or justified. The areas which are examined in this paper relate to: 1)
The classification methods employed, 2) The classification validation approach and 3)
Class confusion within the extracted data

The remainder of the paper is structured as follows. Section 2 summarises the back-
ground of the approach under consideration and discusses the points outlined above.
Section 3 describes some methods for dealing with the problems and weaknesses iden-
tified in section 2. Section 4 concludes the paper with a short discussion of future work.

2 Background and Analysis

The problem considered in [14] is that of mammographic risk analysis, where mammo-
graphic breast tissue density information extracted from images is used to assess how
likely a woman is to develop breast cancer. The steps involved are described in detail in
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[14], but are summarised here. The initial stages involve the segmentation and filtering
of the mammographic images: all mammograms are pre-processed to identify the breast
region and remove image background, labels, and pectoral muscle areas.

In the second phase, a feature extraction step is performed, where the fuzzy c-means
(FCM) algorithm [2] is employed which results in the division of the breast into two
clusters. A co-occurrence matrix is then used to derive a feature set which results in
10 features which describe morphological characteristics and 216 for the texture infor-
mation (226 total). This feature set is then labelled using the consensus opinion of 3
experts to assign a label to each object mammogram using the BIRADS [1] classifi-
cation. The dataset employed in the empirical evaluation is the Mammographic Image
Analysis Society (MIAS) database [18].

2.1 Detailed Analysis

In this section, a more detailed examination of the results obtained using the approach
employed in [14] is made. This highlights a number of areas which require further in-
vestigation both in terms of the methods employed and more importantly the data gen-
erated from the mammographic images. These aspects are examined in the following
sections.

Classification. In [14] the authors employ a number of different methods in order to
classify the image data: k Nearest Neighbours (kNN), C4.5, and a Bayesian combina-
tion of the two previously described methods.

Whilst the results obtained in [14] offer interesting findings there are some problems
with the classification methods employed. The first of these relates to the use of leave-
one-out cross-validation (LOOCV). At first, the LOOCV method may appear to be
attractive solution as the greatest possible amount of data is used for training in each
case. However, because the test data cannot be stratified, LOOCV guarantees a non-
stratified object. Stratification involves ensuring adequate representation of objects of
each decision class in the test set data. However this is impossible when the test data
consists of only a single object.

The second downside to LOOCV relates to the classifiers which are learned. As
LOOCV uses all of the data to train and only one instance to test, this can often result in
models which are not robust [11] and classifiers which have a tendency to overfit. This
occurs as LOOCV tends to include unnecessary components in the generated models
[17], which in turn translates into poor generalisation [11]. Furthermore, the method
does not work well for data with strong clusterisation, [6] and also tends to underesti-
mate the true predictive error [13].

Further problems which relate to the classification methods adopted in [14] relate
to parameter tuning in the case of kNN, and the inability of both kNN and C4.5 to
deal with the problem of class imbalance (which is discussed the next section in detail).
The specification of any subjective parameter will involve period of ‘tuning’ in order to
discover an optimal value. The effort required in order to ‘learn’ such optimal values
can entail extensive testing and or computation which may not be feasible for large
datasets. Furthermore, the specification of a parameter means that a subjective value is
imposed upon the data rather than learning using only information contained in the data
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itself. Both the kNN and combined Bayesian approach of [14] employ such subjective
tunable parameters.

Although it is not clear from [14], it would also appear that a wrapper approach is
employed for feature selection. Wrappers for feature selection employ the induction
algorithm in order to determine feature ‘goodness’ and can result in good classification
accuracies, but they also have a strong tendency to ‘overfit’ especially in the presence
of class imbalance, thus leading to classifiers which are non-robust [12].

Data. The datasets employed in [14] are generated from the raw image data using the
method described in section 2. This data includes extracted features which are gener-
ated in two different steps. In the first, the image is segmented using the fuzzy c-means
(FCM) [2] clustering method. This results in the image being divided into two clus-
ters, one containing the bright pixels and the other dark pixels. It is assumed that the
bright pixels are representative of dense regions, while the dark pixels represent fatty
regions. From each cluster a set of morphological and texture features which relate to
area, mean intensity, standard deviation of intensity, etc. are extracted. For the texture
related features, statistics derived from the co-occurrence matrices and laws energy fil-
ters are employed. These concatenated features are then used to describe the complete
mammogram.

The results generated in [14] provide a comprehensive and detailed examination of
the the data through the use of confusion matrices in order to examine classifier perfor-
mance with respect to consensus expert opinion. Indeed the misclassification of objects
is explored on a class-by-class basis for each of the decisions and an overall statistical
evaluation metric (kappa coefficient) is employed which attempts to provide a summary
of the performance for each classification method. There are however some important
characteristics and trends within the data which are ignored in the analysis. Perhaps the
most important of these is the class confusion observed for BIRADS classes II and III
for all classifiers except for the SFS+kNN method (where there also seems to be sig-
nificant confusion between classes I and III - this could be attributed to the incorrect
removal of important features which are necessary for the classifier to discriminate be-
tween these classes however). It would seem that there are two likely explanations for
this confusion: 1) There is significant divergence of expert opinion relating to the la-
belling of objects for decision classes II and III, and 2) There is insufficient information
present in the extracted data to enable a classifier learner to to discriminate between
objects of these two different decision classes.

Although it is true that human expert opinion will always differ to varying degrees,
this does not account for the decision class confusion demonstrated in [14] with respect
to consensus opinion and classifier performance. Indeed, if the results are examined
closely, it can be seen that the most frequent and significant divergence in consensus
opinion amongst experts occurs in relation to classes I and II (50.5% for expert A and
48% for expert B). However, if the results for classifier performance in terms of consen-
sus opinion are examined, it can be seen that the most likely misclassification error or
confusion for objects of decision classes II and class III are those from the adjacent de-
cision class. It could be argued that since these decision classes are conceptually ‘close’
that experts tend to disagree to a greater extent as to their true classification. The com-
parison provided in [14] of consensus opinion with respect to individual opinion does
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Table 1. Confusion matrices and classification accuracies for the MIAS dataset classification
using six different classifier learners

JRip PART FNN
( Classification accy = 66.78%) (Classification accy = 63.98%) (Classification accy = 62.42%)

C
on

se
ns

us
op

in
io

n

I II III IV
I 72 10 4 1
II 15 65 21 2
III 2 30 56 7
IV 0 4 11 22

I II III IV
I 64 17 4 2
II 19 64 17 3
III 5 25 56 9
IV 3 2 10 22

I II III IV
I 58 20 9 0
II 16 67 20 0
III 2 29 60 4
IV 1 2 18 16

FRNN FRNN-O VQNN
( Classification accy = 69.90%) (Classification accy = 66.14%) (Classification accy = 71.75%)

C
on

se
ns

us
op

in
io

n

I II III IV
I 74 12 1 0
II 12 67 22 2
III 0 26 64 5
IV 2 3 12 20

I II III IV
I 66 18 3 0
II 16 62 25 0
III 2 21 66 6
IV 0 2 16 19

I II III IV
I 74 11 1 1
II 13 68 20 2
III 0 22 70 3
IV 2 2 14 19

not support this statement however. This leads to the the second point noted above;
there is insufficient information contained in the data in order to be able to discriminate
between objects of these classes and hence perform accurate and reliable knowledge
discovery. This would seem to be the case for the MIAS dataset where both classes
II and III are easily misclassified using C4.5 and SFS+kNN. In order to investigate
whether this trend was present in other classifier learners an experimental evaluation
has been carried out. A number of different classifiers have been utilised - JRip, PART,
Fuzzy NN [19], FRNN [9], FRNN-O, and VQNN [5]. The leave-one-out cross valida-
tion method has also been used here such that the results can be compared with those
of [14]. Tables 1 shows that in spite the classifier learner employed, the class confu-
sion for classes II and III remains. This combined with the fact that consensus expert
opinion does not contain the same level of class confusion for classes II ad III strongly
suggests that there is insufficient information available in the extracted data to be able
to discriminate between these decision classes.

A feature selection step is often utilised as an effective way of both reducing data
dimensionality, and removing irrelevant and redundant information. Indeed a good fea-
ture selection method should select only those features which lead to the decision class
and retain or even improve classification accuracy [12]. In [14] only one such approach
is employed which is based around the kNN algorithm. Here, a number of different
feature selection and classification approaches are employed to investigate the impact
of various feature selectors on classification accuracy. All of the methods employed in
Table 2 (consistency-based feature selection [12], Fuzzy-Rough Feature Selection, CFS
[7] and DMTRS)are filter type methods which avoid the negative tendency of wrapper
approaches to overfit.

Table 2. Results of various FS and classification techniques

FS Method Classifier Learner Classification Subset size
Accy.

CS FRNN 66.46 11
CS FNN 55.59 11
CS FRNN-O 66.15 11
CS VQNN 70.19 11

CFS FRNN 72.37 32
CFS FNN 60.25 32
CFS FRNN-O 69.88 32
CFS VQNN 74.22 32

FS Method Classifier Learner Classification Subset size
Accy.

FRFS FRNN 61.49 7
FRFS FNN 51.24 7
FRFS FRNN-O 65.84 7
FRFS VQNN 65.22 7

DMTRS FRNN 55.28 6
DMTRS FNN 62.73 6
DMTRS FRNN-O 62.11 6
DMTRS VQNN 59.00 6
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One other aspect of the data which affects prediction capability and can frustrate
classifier learning capability considerably is class imbalance. The problem of class im-
balance occurs in classification domains where one or more classes are represented by
a small number of objects when compared to the numbers of objects representing other
class/classes. The negative impact that class imbalance has on classifier performance
has been the subject of much research in the machine learning community [15]. The
problem is of great importance since it is very common in real-world domains. Tradi-
tional machine learning approaches such as C4.5, MPL, and support vector machines
are often biased towards the majority class or classes and thus, may predict minority
class objects [8] incorrectly.

This is because many such approaches are designed with the naive assumption that
datasets are well-balanced. Examining the dataset employed in [14], it can be seen that
classes I and IV are under-represented (87 and 37 objects respectively as opposed to
103 and 95 objects for classes II and III) or imbalanced. This poor representation or
imbalance not only means poor performance for minority classes but may also affect
the discriminatory ability of better represented classes. Additionally, it is highly likely
that this is a contributory factor for the class confusion mentioned previously. Indeed
the classifiers employed for the experimental evaluation in [14] are of the type which
are known to suffer from poor performance in the presence of class imbalance.

3 Proposed Solutions

One of the first disadvantages of the methods adopted in [14] identified in the previous
section was the use of LOOCV as an approach to model selection. The adoption of vali-
dation methods such as stratified 10-fold cross validation or other stratifiable validation
methods would ensure more robust models but also help to address the underestima-
tion of classification error [11], [3], [19]. A number of tentative experiments have been
carried out using this method and a summary is presented below. The RMSE is a com-
bined measure of bias/variance and is useful for gauging the generalisation of a learned
classifier. Low RMSE values are an indicative of a robust classifier. In the case of (al-
most) unbiased methods such as LOOCV, RMSE is a measure of variance. This choice
of validation schemes stems from the findings in [11], and [3] where it is shown that
stratification and n-fold cross-validation are useful methods for addressing the prob-
lem of bias and variance reduction in classifier learning. The validation schemes em-
ployed for the experimentation described here are: 1)Stratified 10 fold cross-validation
(10FCV), 2) Leave-one-out-cross-validation (LOOCV), 3) Stratified two fold cross-
validation (2CV), 4) Stratified three fold cross-validation (3CV), 5) Stratified four fold
cross-validation (4CV), 6) Stratified five fold cross-validation (5CV) and 7) A random
66/33% training/test split of the data.

It can be seen from the results that the RMSE for LOOCV is higher for both classi-
fiers indicating very high variance, while stratified 10 fold cross-validation (10FCV)
manages lower values and in the case of PART also has better classifier accuracy.
For C4.5, LOOCV has a higher RMSE value than 10FCV, yet LOOCV is unbiased,
therefore this value relates only to high variance thus indicating a tendency to overfit.
This would account for the higher classification accuracy figures achieved by LOOCV.
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Fig. 1. Classification accuracy and RMSE using 2 classifier learners

Stratified four and five fold cross-validation show low values of RMSE and high classi-
fication accuracies thus confirming the observations of [11] that these methods are best
for model selection, while 10FCV is best for classification accuracy. A more compre-
hensive investigation involving methods such as .632 bootstrap, bagging, etc. is beyond
the scope of this paper but would form the basis for a complete study of the classifiers
learned for this dataset.

Parameter tuning, as mentioned previously can be both time-consuming and have
a negative impact on the data under consideration. The adoption of methods which
rely only on the information contained in the data will avoid both of these undesirable
aspects. Fuzzy-rough set-based classification methods such as [9] have the ability to
consider real-valued data and do not require any subjective thresholding or parameter
tuning.

3.1 Proposed Methods for Dealing with Extracted Data

The most challenging problem identified in section 2.1 is that of addressing the lack
of information contained in the data generated using the feature extraction method of
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[14]. As discussed previously, it is apparent that the class confusion noted for decision
classes II and III arises from a lack of information within the data to perform accurate
classification. This is apparent as the feature selection step employed serves only to in-
troduce further confusion amongst other classes. This would indicate that there is a loss
in discriminatory ability when feature selection is employed. However the full dataset
does not perform much better indicating perhaps that there is insufficient information
contained within the extracted image features

Classical methods for addressing the class imbalance problem have primarily fo-
cused on a number of solutions both at data level and algorithm level. However, many
new lines of research have been proposed for the general problem of class imbalance.
Broadly speaking these can be divided into four groups which: 1)Resample objects in
order to rebalance the class distribution of the dataset, 2) Modify existing learning al-
gorithms, 3) Use classifier performance metrics to in an attempt to perform knowledge
discovery in imbalanced domains, 4) Examine the relationship between class imbalance
and other data complexity characteristics.

In mammographic risk assessment where it is desirable to employ methods which
result in robust models, a more suitable technique for dealing with class imbalance is
described in [4]. This is an approach for over-sampling the minority class/es which
rather than simply replicating objects which belong to the minority class/es, generates
new synthetic minority data objects by interpolating between several objects that are
similar in some respect. It allows the classifier to build larger decision regions which
contain similar objects from the minority decision class/es. There are other undersam-
pling methods which rely on noise removal or the removal of objects from majority
classes in an attempt to redress the lack of data objects for minority classes. Other
approaches which may be useful in addressing the class imbalance problem for mam-
mographic risk assessment include one-class classification techniques [16], or a com-
bination of one-class classifiers and resampling [10]. These methods use classification
techniques in an attempt to determine the distribution of the minority classes and use
this information to guide the induction algorithm.

4 Conclusion

This paper has examined a recent approach to mammographic risk assessment [14] and
identified some important areas which require further investigation. Some of these ar-
eas relate to the extracted data while others to the machine learning methods employed
at the knowledge discovery stage. In terms of the data itself, the initial experimenta-
tion carried out here suggests that there is insufficient information contained within
the data to predict classes II and III accurately. In an attempt to overcome this prob-
lem the authors of [14] have combined the classifier learners using a Bayesian method
which alleviates this problem somewhat. However, the fact that these classifier learners
employ LOOCV which results in non-robust and overfitting models is ignored. This
may result in poor performance for unseen data and ultimately ‘break’ the classifier
model.
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Other problems such as class imbalance, subjective threshold specification have also
been discussed but no empirical evaluation has been made as such a level of investiga-
tion is beyond the scope of this paper. An extensive and thorough examination of the
machine learning methods and a more complete look at the data in [14] and other such
work would therefore form the basis for further investigation.

References

1. American College of Radiology. Illustrated Breast Imaging Reporting and Data System
BIRADS, 3rd edn. American College of Radiology (1998)

2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,
New York (1981)

3. Braga-Neto, U., Dougherty, E.R.: Is cross-validation valid for small-sample microarray clas-
sification? Bioinformatics 20(3), 374–380 (2004)

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, K.P.: SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

5. Cornelis, C., De Cock, M., Radzikowska, A.: Vaguely Quantified Rough Sets. In: An, A.,
Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007.
LNCS (LNAI), vol. 4482, pp. 87–94. Springer, Heidelberg (2007)

6. Eriksson, L., Johansson, E., Muller, M., Wold, S.: On the selection of the training set in
environmental QSAR analysis when compounds are clustered. Journal of Chemometrics 14,
599–616 (2000)

7. Hall, M.A.: Correlation-based feature selection machine learning. Ph.D. Thesis, Department
of Computer Science, University of Waikato, Hamilton, New Zealand (1998)

8. Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent
Data Analysis 6(5), 429–450 (2002)

9. Jensen, R., Cornelis, C.: A New Approach to Fuzzy-Rough Nearest Neighbour Classification.
In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI),
vol. 5306, pp. 310–319. Springer, Heidelberg (2008)

10. Juszczak, P., Duin, R.P.W.: Selective Sampling Methods in One-Class Classification Prob-
lems. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003.
LNCS, vol. 2714, pp. 140–148. Springer, Heidelberg (2003)

11. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection. In: Proceedings of the International Joint Conference on Artficial Intelligence
(IJCAI 1995), pp. 1137–1143 (1995)

12. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. Data Mining and
Knowledge Discovery Series. Chapman & Hall/CRC, Boca Raton (2008)

13. Martens, H.A., Dardenne, P.: Validation and verification of regression in small data sets.
Chemometrics and Intelligent Laboratory Systems 44(1), 99–121 (1998)

14. Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E.R.E., Zwiggelaar, R.: A
Novel Breast Tissue Density Classification Methodology. IEEE Transactions on Information
Technology in Biomedicine 12(1), 55–65 (2008)

15. Orriols, A., Bernad-Mansilla, E.: The class imbalance problem in learning classifier systems:
a preliminary study. In: Proceedings of the 2005 Workshops on Genetic and Evolutionary
Computation (2005)

16. Raskutti, B., Kowalczyk, A.: Extreme rebalancing for svms: a case study. SIGKDD Explo-
rations 6, 60–69 (2004)
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Fabián Narváez, Gloria Dı́az, and Eduardo Romero

Bioingenium Research Group, Departament of Medicine,
National University of Colombia, Bogotá, Colombia
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Abstract. This paper presents a CBIR (Content Based Information Re-
trieval) framework for automatic description of mammographic masses
according to the well known BI-RADS lexicon. Unlike other approaches,
we do not attempt to segment masses but instead, we describe the re-
gions an expert selects, after the series of rules defined in the BI-RADS
lexicon. The content based retrieval strategy searches similar regions by
automatically computing the Mahalanobis distance of feature vectors
that describe main shape and texture characteristics of the selected re-
gions. A description of a test region is based on the BI-RADS description
associated to the retrieved regions. The strategy was assessed in a set
of 444 masses with different shapes and margins. Suggested descriptions
were compared with a ground truth already provided by the data base,
showing a precision rate of 82.6% for the retrieval task and a sensitivity
rate of 80% for the annotation task.

Keywords: Automatic Annotation, BI-RADS, Computer Aided Diag-
nosis, Content-based Image Retrieval.

1 Introduction

Breast cancer is the most frequent type of cancer in women and is considered
as the largest public health problem in women population [1,2]. This disease is
fully curable if diagnosis is achieved early and mammography is the more efficient
method for visualizing these first abnormalities [3,4]. However, mammographic
interpretation is really hard, studies have shown that between 10% and 25% of
breast cancers are not detected [5]. An agreement to reduce variability between
radiologists resulted in the Breast and Imaging Report and Database System
(BI-RADS), designed by the the American College of Radiology , as a standard
description to report breast lesions for allowing to categorize different pathologies
as well as their severity level [6]. This standard established that basic descrip-
tors for masses are shape, margin and density. Thus, automatic mammography
categorization based on BI-RADS descriptors is becoming important. Most of
related works have classified the tissue density of mammograms based on the
four BI-RADS categories [7,8,9]. But, shape and margin descriptors there are
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not considered. Recently, an approach to classify the shape and margin of mam-
mographic mass into different categories was presented [10]. In this case masses
were previously segmented in order to extract the boundaries that were then
characterized and classified, results reported a precision lower than 70%.

On the other hand, development of Computer Assisted Diagnosis Systems
(CAD) for mammography has decreased the variability effects, becoming a well
accepted clinical practice to assist radiologists interpreting mammograms when
they search and identify micro-calcification clusters [11]. However, the relatively
low performance of CAD schemes in mass detection [12], make them less ac-
cepted as mass diagnosis tools. As an alternative, the interactive CAD systems,
based on content-based information retrieval schemes [13,14,15], identify visually
similar mass lesions that eventually are clinically relevant to the actual lesion
[16]. Actually, CBIR-based CAD schemes have a potential to provide radiolo-
gist with visual aid and increase their confidence in accepting CAD-cued results
in the decision making process. However, their main drawback is that they are
also based on the segmentation of mass regions, which is a very difficult task
especially for masses with blurred boundaries.

This paper proposes a new approach to support and assist the task of describ-
ing mass lesions from a set of Regions of Interests (RoIs). Given a particular
query or region under examination, the method finds the most similar regions
from a database, according to the BI-RADS lexicon, using the two most impor-
tant diagnostic features for describing masses: morphology and texture. Mor-
phology is described using the Zernike moments [17], and texture is captured
via the Neighborhood Gray Tone Difference Matrix (NGTDM) [18]. Once these
basic features are computed, a further reduction of dimensionality is achieved us-
ing a standard Principal Component Analysis (PCA), assembling a descriptor of
15 dimensions. Finally, a multiclass retrieval algorithm based on a k-NN scheme
is constructed for the shape, margin descriptions and pathology classification.

The rest of this article is organized as follows: after this introduction, next sec-
tion presents the methodology, then results are shown and last section discusses
future work and conclusions.

2 Methods

An overview of the proposed framework is shown in Fig. 1. Firstly, a radiologist
manually selects a region of interest as the queried RoI, which is preprocessed
to improve the mass visual details. Afterward, morphology and texture features
are extracted, compared with the information stored in the database (reference
database) so that the most similar regions are retrieved. Finally, the BI-RADS
is used to assign the most probable description to these regions.

2.1 RoI Pre-processing

Mammography analysis generally must deal with regions difficult to interpret [19]
since they are associated to hard acquisition conditions. Every image was en-
hanced and two resulting images were prepared for analysis, the former aimed to
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Fig. 1. Method overview

highlight mass edges by stretching the maximum and minimum gray level values
to the interval [0, 255], followed by a bin reduction from 256 to 12 bins. The lat-
ter captured differences between patterns associated with mass and parenchyma
tissue by adaptively equalizing the histogram so that structural details were
preserved. In both cases, resultant images were smoothed out by a median filter
in order to remove remaining noise [20]. Mass descriptors were drawn from the
former image while texture features were extracted from the latter.

2.2 Feature Extraction

According to the BI-RADS lexicon, morphology and texture are the most im-
portant criteria for mass diagnosis [5,21]. Tradionally, Zernike moments, a class
of statistical moments [22], have shown to be very effective for morphological
representation i.e. rotation-invariant and robust to the noise [23]. Furthermore,
representation with Zernike moments allows reconstruction with minimal losses
and constitute a classical multiresolution representation for shapes [24,23]. The
Zernike polynomials are a set of complex polynomials that form an orthogo-
nal complete set Vpq(x, y) within the unitary circle, which are defined by the
equation 1.

Vpq(x, y) = Rpq(r)ejqθ , r ∈ [−1, 1] (1)

where r =
√

x 2 + y2 is the vector magnitude and θ = tan−1
(

y
x

)
its angle.

The complex Zernike moments are derived from the real-valued radial poly-
nomials, given by [2].

Rpq(r) =
(p−|q|)/2∑

s=0

(−1)s (p − s)!

s!(p+|q|
2 − s)!(p−|q|

2 − s)!
rp−2s (2)
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where p and q are subject to p − |q| is even, 0 � |q| � p, and p � 0. Then, the
complex Zernike moments of order p, with q repetitions for an image intensity
function f(x,y) are given by [3].

Zpq =
p + 1

π

∑
x

∑
y

V ∗
pq(x, y)f(x, y) (3)

where ∗ stands for the conjugated complex of Vpq(x, y).
In this work the Hosny implementation [25] of Zernike moments was used for

describing shapes. For achieving so, the RoI was mapped onto the unitary circle
so that the image center coincides with the unitary circle center, subjected to
the condition that every pixel is within the RoI. The number of order moments
used for generating the shape descriptor was selected by minimization of the
reconstruction error ε given by the equation 4. The first 60 order moments were
heuristically selected for generating a descriptor of 961 features.

εn =
N−1∑
i=0

N−1∑
j=0

{ [f(i, j) − F (i, j)n]2

[f(i, j)]2
} (4)

where f(i, j) is the original image and F (i, j)n is the image reconstructed using
n first order moments, as presented by Chong et al. [17].

On the other hand, the essential texture features were captured via the Neigh-
borhood Difference Gray Tone Matrix [18] as follows: a neighborhood is firstly
set and the absolute difference of the central pixel with its neighborhood average
is computed. This average difference constitutes an occurrence that is stored in
a histogram whose bins 1, 2, 3, 4 and 5 corresponded to the neighborhood sizes.
So, this descriptor allows to capture pattern differences around to mass bound-
ary in an area of 25 pixels, larger neighborhood sizes were evaluated but poor
performance was obtained. So, five histograms of 256 positions were generated
and five features were calculated from each, as described in [18]:

1. Contrast =

(
1

Ng(Ng−1)

Gh∑
i=0

Gh∑
j=0

pipj(i − j)2
)(

1
n2

Gh∑
i=0

s(i)
)

2. Busyness =
(

Gh∑
i=0

pis(i)
)

/

(
Gh∑
i=0

Gh∑
j=0

ipi − jpj

)

3. Complexity =
Gh∑
i=0

Gh∑
j=0

[|i − j|/(n2(pi + pj))
]
[pis(i) + pjs(j)]

4. Texture strength =

[
Gh∑
i=0

Gh∑
j=0

(pi + pj)(i − j)2
]

/

[
ε

Gh∑
i=0

s(i)
]

5. Coarseness = ε +
Gh∑
i=0

pis(i)

where Ng is the total number of different gray levels with n = N − 2d, for an
N × N image, Gh is the highest gray tone in the image, pi is the probability of
occurrence of the ith gray tone, s(i) is the histogram value at ith gray tone and
ε is a small number that prevents these values become infinite.
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2.3 Automatic Mass Description

A content based information retrieval strategy that uses the K-NN rule ( K-
Nearest Neighbor [26]), was implemented. Such algorithm uses the information
associated a certain number of images retrieved from the reference data base
to assign a label to a particular RoI. Given the knowledge of N prototype RoIs
(each marked by an expert radiologist) and their correct classification into several
classes, it assigns an unclassified RoI to the class that is most heavily represented
among its k nearest neighbors. The algorithm used a weighted Mahalanobis
distance (wd) to measure the similarity among the feature vectors describing
both the database and queried RoIs. Once a set of K RoIs are retrieved, each
shape, margin and pathology BI-RADS description is set using the decision rule
in equation 5, where Label(S) assigns the value description with the largest
weight.

Label(S) = arg max
Si

|S1, ..., Sn|, Si =
K∑

i=1

wsi

d (5)

where wd = 1/d(x, y) is the relative weight of each possible value description
and Sn corresponds to number of possible labels for each shape, margin and
pathology BI-RADS description.

3 Experimental Results

A total of 444 regions extracted from the Digital Database for Screening Mam-
mography (DDSM) [27], which were previously BI-RADS annotated by a group
of breast radiologists, were used to evaluate the performance of the proposed
approach. These regions were split into training (344 RoIs) and testing (100
RoIs) sets. Both the content-based image retrieval scheme and the automatic
annotation algorithm were independently assessed.

Before applying the retrieval process, a PCA analysis was used to reduce
the feature vector dimensionality. From 986 extracted features (961 from shape
descriptor and 25 from texture descriptor), 15 were selected, the ones which
reported the larger eigen-value variability in the training subset.

3.1 Content-Based Image Retrieval Evaluation

Retrieval performance was assessed by computing the relevance of the recovered
images, according to the ground truth of DDSM mammogram databases, identi-
fied by an experienced radiologists. Furthermore, shape, margin and pathology
characteristics are taken into consideration in this evaluation. Therefore, We
used four levels to describe the degree of relevance , namely Score = 1 for three
correct targets, Score = 0, 66 for two, Score = 0, 33 for one and Score = 0 for
zero. The Precision-Recall (P-R) graph was used for evaluating the performance
of CBIR scheme. The precision (P ) was defined as the relevance of images that
the system was able to find among all images retrieved by the system, while
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recall (R) was the relevance of images that the system was able to find among
all the relevant images stored in the database.

P =
∑k

i=1 Si

K
, R =

∑k
i=1 Si∑n
i=1 Si

(6)

where Si is the score assigned to the ith RoI, K is the number of retrieved images
and n is the total number of images in the reference database.

Retrieval performance for a set of 100 image queries was evaluated, using
the 15 most similar images for annotation. An average precision and recall of
respectively 82% and 42%, were obtained.

Figure 2 shows the Precision-Recall curve obtained when the average precision
and recall measures were computed for a number of retrieved regions which varied
from 1 to 15, with incremental steps of 1.The first point, the leftest curve point
represents the average precision and recall rates for the first returned image. The
second point corresponds to the precision and recall for the first two retrieved
images, and so forth. It is observed from the graph that the first retrieved image
report a relevance up to 80%. As expected, as long as the number of retrieved
images increases, this precision decreases. However and interestingly, precision
was higher than 65% in general. On the other hand, high recall values were found
basically because the number of relevant images in the database was lower than
the number of queried images.

Fig. 2. Precision-Recall Average Curve

3.2 Automatic Annotation Assessment

Each shape, margin and severity BI-RADS description was assigned to each ROI
query, based on equation 5. The optimal number of images used to assign each BI-
RADS mass description was estimated by a 10-fold cross validation assessment.
Results showed that a minimal of 7 images are needed for annotating shape
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Table 1. Performance of Automatic BI-RADS description

Accuracy PPV TPR

Shape 80.3 0.791 0.80
Margin 75.1 0.752 0.76
Pathology 85.3 0.861 0.87
Average 80.23 0.801 0.81

and margin descriptions while 9 are required for establishing a severity level.
Table 1 shows the accuracy (ACC), positive predictive value (PPV) and true
positive rate (TPR) computed from the automatic annotation for each BI-RAD
description. The most difficult annotation was the margin, probably because
of the blurred boundaries presented in many mass classes. However, average
performance annotation is higher than 80%, a figure very acceptable for a system
that tries to assist a diagnosis task.

4 Conclusions

In this paper a new strategy for assisting the diagnosis of mammography, based
on a content based image retrieval scheme was proposed, implemented and evalu-
ated. This strategy provided a BI-RADS mass description of a region of interest,
which was supported by a set of diagnosed images that were shown to the expert.
Instead of attempting to segment masses, we proposed a mass feature descrip-
tion, based on its internal structure with no explicit mass boundary detection.

The proposed approach was evaluated on a public image database (DDSM).
Retrieval results have shown that this approach is successfully able to find the
most similar images of a RoI query in a reference database. Likewise, the anno-
tation results have also shown the capability of the method for generating the
shape, margin and severity descriptions associated to the RoI, according to the
BI-RADS lexicon, especially for discriminating the severity label i.e to decide
whether a mass is benign or not.

These preliminary results have opened up new strategies for the computer
assisting tools based on CBIR schemes in mammographic diagnosis, although a
validation of the impact on diagnostic improvement of inexperienced radiologists
is required.
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Abstract. DBT provides significantly more information than mammography.  
This offers new opportunities to improve existing microcalcification detection 
methods. In a companion work in this volume, we showed that the use of epipolar 
curves can improve both the sensitivity and specificity of microcalcification 
detection. In this paper, we develop a clustering algorithm to form epipolar 
curves from candidate microcalcifications (which may be noise points), obtained 
after applying a detection algorithm to each individual projection. This enables 
the subsequent 3D analysis for the classification of microcalcification clusters. 

Keywords: digital breast tomosynthesis, microcalcifications, clustering, epipo-
lar curves, DBT. 

1   Introduction 

The detection of microcalcifications, microcalcification clusters, and their subsequent 
classification are important tasks in the early detection of breast cancer. In [1], we 
demonstrated the use of epipolar curves for the detection of microcalcifications, 
showing how they can help improve the sensitivity and specificity detection visually.  
Following this, we are also working on the estimation of the 3D positions of micro-
calcifications from epipolar curves with sufficient accuracy to enable 3D analysis of 
the shape of a microcalcification cluster, without first reconstructing the data into an 
explicit 3D representation, since reconstruction methods continue to be developed. It 
is expected that the outcome of this work can help automate the classification of breast 
abnormalities as malignancy and benign, as opposed to simply detecting such  
abnormalities. 

As a key component of the automation of the process of detecting microclacifica-
tions using epipolar curves, this paper develops a clustering algorithm to group points 
found in the individual projection images into the epipolar curves, alternatively rejects 
them as noise.   
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2   Methods 

The first step in our detection process is the application of a detection algorithm to each 
of the individual projection images in order to identify candidate microcalcifications, 
similar to the existing methodology applied in mammography, except now that we 
apply the detection algorithms to multiple projections. Of course, the poor sig-
nal-to-noise ratio of the individual projection images means that some of the candidates 
will turn out to be noise points, and, equally, some microcalcifications may be missed 
in some views. Either way, the input to the clustering algorithm is a list of the 2D po-
sitions of all the microcalcification candidates. The output of the clustering algorithm is 
the set of clusters of 2D points, each of which corresponds either to an epipolar curve 
(hence a microcalcification tracked over most of the projections) or is identified as a 
noise point.  The algorithm also indicates those microcalcifications that have been 
missed in which (small number of) views. It also indicates the likely positions in the 
projection images, potentially enabling a subsequent application of the detection algo-
rithm with adapted parameters, such as local thresholds. 

In the study reported here, in order to evaluate our method against ground truth, we 
have used the X-ray simulation software developed by Tromans et al [2] to generate 
simulated DBT views of a cluster containing 15 spherically shaped microcalcifications 
with radius ranging from 0.0355 to 0.075mm in a curvilinear arrangement.  Statistical 
noise of the amount expected with current detectors in each acquisition image is added 
to better simulate reality.  As a demonstration, we selected the middle 7 DBT views out 
of the total 15 views, taken at angles -8.65o, -5.81o, -2.99o, -0.16o, 2.67o, 5.5o, 8.33o (we 
refer to these as tomo4, tomo5, tomo6, tomo7, tomo8, tomo9, tomo10 respectively).  
Note that, as in [1], the angles used follow a plausible DBT acquisition geometry.  We 
have deliberately chosen one of the simplest detection algorithms, namely a top hat 
transformation, which effectively equates microcalcifications with small, locally bright 
points, and is expected to miss fainter microcalcifications [3].   

Recall from [1] that an epipolar curve can be defined as: 
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In our plausible DBT acquisition system, D = 660mm, L = 40mm, u = 143.36mm, v = 
232.96mm and detector resolution = 0.07mm.  We have also used these settings in the 
demonstration.  Also, in our demonstration, the x-, y- coordinates are directly obtained 
from the projections and the coordinate frame used is the one used by the simulated 
software.  A coordinate frame transformation is applied to transform it to our sensor 
coordinate frame used in the derivation of the epipolar curve.  Here, for x-coordinate, 
we mean the transformation of the 2nd element in Equation (1); for y-coordinate, we 
mean the transformation of the 1st element in Equation (1). 

Our clustering technique is based on the following observations, which would have 
analogues in any similar acquisition geometry:  
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1. Equation (1) implies that the DBT views generated from equal but opposite di-

rections ( iθ  and - iθ ) will have the same value in one of the coordinates.  By as-

signing typical values used in DBT into the variables in the equation, this implies 
that the x values from the 7 projections are nearly equal. 

2. The values in the other axes will follow a specific order with respect to the angles taken 
to generate the DBT views.  In our case, the y values are in descending order with re-
spect to the angles taken to generate the DBT views and the differences in y values 
between neighbouring projections are very similar for the same microcalcification. 

3. Due to the size of microcalcifications and the viewing angles, the number of pro-
jection points for each microcalcifications captured in each DBT view are different. 

4. Since noise is assumed to be random and is statically generated randomly, it is 
expected that a noise point in a projection appear as a single point. 

5. The superimposition problem in mammography implies that one projection point 
may be generated from 2 or more microcalcifications in the breast.  However, this 
situation is unlikely in all but a minority of DBT views, due to different acquisition 
angles and differences in the 3D positions of the microcalcifications.  In Obser-
vation 2, we mentioned that the differences in y values between neighbouring 
projections are very similar for the same microcalcification.  For different micro-
calcifications at different 3D positions, this “differences” varies. 

Taking account of the above, our clustering method comprises 6 steps: 

1. Sort all the points in ascending order of x values and descending order of y values.  
(Observations 1, 2) 

2. Classify the points into noise points and into groups of same x values. 
(a) If only one point has a particular x value, label this point as a noise point.  

(Observation 4) 
(b) Assign points having same x values into same group.  (Observation 1) 

3. Determine noise points within a group.  The noise points are those points whose y 
values do not follow the specific order with respect to the angles. (Observations 2)  

4. Combine groups with x and y values within a preset range into a cluster. This is 
because a microcalcification can be larger than one pixel in a projection.  
(Observation 3) 

5. Check each cluster and see whether they should be split due to projection points 
being too close together but actually they are coming from different microcalci-
fications.  (c.f. superimposition problem in mammography or microcalcifications 
in the breast are being too close to each other.)  (Observation 2, 5) 

6. Recheck the noise points. If they are within a preset distance from a cluster, include 
it in the cluster. One cluster corresponds to one microcalcification. (Observation 3) 

3   Results 

Fig. 1 shows the ground truth of all the projection points of 15 microcalcifications from 
7 DBT views obtained visually and manually. We have assigned a no. 1 to 15 to each 
microcalcification for identification. The inputs of our clustering technique are points 
detected by top hat in each DBT view. The detection results by top hat in each indi-
vidual DBT view are recorded in Table 1: 
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Fig. 1. Ground truth of all the projection points of 15 microcalcifications from 7 DBT views 
obtained visually and manually.  (Note: Some microcalcifications cannot even be visualized by 
human eyes in tomo4 (microcalcification 1), tomo5 (microcalcifications 4, 13) and tomo10 
(microcalcification 10) due to limitations in acquisition.)  

Table 1. Detection results of individual projections (tomo4 to tomo10) using top hat transformation 

DBT view Microcalcification  
detected 

No. of  
microcalcifications 

detected in each view 

No. of noise 
points  

detected 
tomo4 2,6,7,8,9,12,14,15 8 2 
tomo5 1,2,5,6,7,8,9,11,12,14,15 11 4 
tomo6 2,5,6,7,8,9,10,12,14,15 10 1 
tomo7 2,7,8,9,11,12,13,14,15 9 5 
tomo8 2,3,5,6,7,8,9,11,12,15 10 7 
tomo9 2,3,7,8,9,10,11,15 8 1 

tomo10 2,7,8,9,11,12,14,15 8 0 
  Max no. detected: 11 Total  

(3 views: 13 
7 views: 20) 

To assess the effects of using different number of DBT views, we have applied our 
clustering algorithm using 3 and 7 DBT views. The detection results are shown 
graphically in Fig. 2 and are summarized in Table 2: 
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Fig. 2. Detection results using epipolar curves.  Top: 3 views; Bottom: 7 views.  (Red Circles: True 
Positives; No Circle: True Negatives; Black Circles: False Positives; Green/Blue Circles: False 
Negatives; Dotted Red Circles: True Positives/False Negatives (depends on implementation.) 
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Table 2. Detection results of using epipolar curve approach.  (The effects of using different no. of 
views are also shown.) 

No. of 
Views 
used 

True  
Positives  
(out of 15  

microcalc.) 
(counted as  

no. of clusters) 

True  
Negatives 
(counted 

as  
isolated 
points) 

False  
Positives 
(counted 
as no. of 
clusters) 

False  
Negatives  
(out of 15  

microcalc.) 
(counted as  

no. of clusters) 

Uncertain 
(counted as 

no. of  
clusters) 

3 8  
(2, 7, 8, 9, 11, 12, 

14, 15)* 

11 
 

0 5 
(1, 3, 4, 10, 13) * 

2 
(5, 6)*  

7 12 
(2, 3, 5, 6, 7, 8, 9, 

10, 11, 12, 14, 
15)* 

18 1 3 
(1, 4, 13)* 

0 

* refers to the microcalcifications. 

 

Fig. 3. Explanation of the clustering algorithm step-by-step pictorially (Extracted from Fig. 2 
Bottom) 

The algorithm is explained pictorially by magnifying the detection results using 7 
DBT views (Fig. 2 Bottom) in Fig. 3. 

It can be seen that the epipolar curve approach can greatly improve the detection 
process. Most of the noise points (false positives) can be distinguished. If we use more 
views (7 in this example), the results are better than those in any single projection. We 
can detect 12 microcalcifications using 7 views while at most 11 microcalcifications 
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are detected in any single projection.  In addition, it tells us which points are missing in 
the view by looking at the clusters.  This allows us to adapt our detection algorithms for 
better results. 

4   Discussion 

DBT provides significantly more information than mammography. This offers new 
opportunities to improve existing microcalcification detection methods. We demon-
strated here that one simple clustering technique can be implemented to extract mi-
crocalcifications using the epipolar curve approach automatically. Also, we want to 
point out that the discussion here highlights the cases and conditions which may be 
encountered during epipolar clustering. It demonstrates the feasibility in com-
puter-aided detection of microcalcifications. It is noted, however, that this is only an 
initial study and further study and fine-tuning are required in order to accommodate 
various peculiar cases and extreme cases.  

By using the epipolar curve approach, we can now obtain the groups belonging to 
the same microcalcifications, we can then estimate the 3D positions of the microcalci-
fications and perform 3D analysis. This will facilitate the classification of breast into 
malignant and benign. 
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Abstract. Observer performance experiments for lesion detection are an ac-
cepted means of assessing the imaging performance of radiological imaging sys-
tems. Simulation methods for clusters of microcalcifications have been proposed 
for creating images with abnormal pathology for its use in such experiments. We 
report on a software tool that can generate simulated clusters of microcalcifica-
tions for different exposure parameters and different digital mammography sys-
tems. The effect of the simulation steps on microcalcification templates, (namely 
exposure settings, breast thickness, modulation transfer function (MTF) and 
pixel size) is demonstrated and validated. Results were evaluated in terms of the 
cluster’s peak contrast (PC) for three cases: for different exposure conditions 
within a given system, for different systems and for different system MTF calcu-
lation methods. As expected,  with higher tube voltage and for insertion into 
thicker breast simulating material, the lesion contrast decreases while the posi-
tion of the peak remains unchanged. When different systems are considered with 
the same exposure settings, the observed difference   in the PCs is related to the 
blurring due to the different MTF and the pixel size of the systems;  a shift in the 
peak position is also observed,  due to resampling. This functional and user-
friendly system could be used by other researchers for performing comparative 
studies of mammographic imaging systems. 

Keywords: simulation, microcalcifications, observer performance experiments, 
digital mammography. 

1   Introduction 

The effectiveness of a mammography system lies in its ability to improve the detec-
tion of relevant findings, like microcalcifications. Observer performance experiments 
for lesion detection are therefore often used to assess the performance of radiological 
systems. In screening mammography, abnormal cases are relatively rare (approxi-
mately 3–6 cancers per 1000 women), and hence it is difficult to assemble an ade-
quate number of images to conduct such experiments. Furthermore, establishing 
ground truth via pathology examination is time consuming. To address this problem, 
simulation models for single microcalcifications or clusters have been proposed [1-3]; 
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they allow the creation of abnormal images containing realistic but artificial lesions, 
for which position, morphology and characteristics are known. Such hybrid images 
can be used in detection experiments if the simulations are appropriate [1,3-4]. This 
paper presents a software tool that can generate simulated clusters of microcalcifica-
tions for different exposure parameters and different digital mammography systems. 
The scientific validation of the different steps in the simulation is described.  

2   Materials and Methods 

2.1   System Description  

The software tool, mctam, Micro-Calcification Template Adapter, has been  devel-
oped in MATLAB (MathWorks, Natick, MA) and allows to simulate clusters of mi-
crocalcifications under different exposure conditions and/or for different detector 
systems. Such simulated lesions can be subsequently multiplied with linear raw 
mammographic data to create abnormal images, to be used in detection observer per-
formance experiments. Mctam is an automated and generalized approach of the 
method reported by Zanca et al. [3]. It uses a database of magnified high resolution 
images of clusters of microcalcifications and creates templates for other systems and 
exposure conditions, as described in detail in the original methodology. An example 
of a digital image of a large core needle biopsy specimen containing a real microcalci-
fication cluster is shown in Figure 1. Such clusters were used to build up the database 
of templates. To simulate microcalcifications for a variety of target system parameters 
and breast thicknesses, specific adjustments (beam quality, detector modulation trans-
fer function (MTF) and detector pixel size) have to be applied to cope with the differ-
ences between the acquisition (input) system (used to image the real cluster) and the 
target system.   

2.2   Software Modules 

The method has three steps: (a) the creation of an ideal template (for an imaging sys-
tem with MTF = 1); (b) the expression of the template gray values in terms of Alumi-
num equivalent thickness and (c) the correction for the difference in the system MTF 
and detector pixel size between the acquisition and the target system.  

                        

Fig. 1. Example biopsy specimen containing a real cluster of microcalcifications (left). Magni-
fied image of the same cluster (right), extracted following the methodology proposed by Zanca 
et al. [3]. 
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The steps can be summarized as follows: an input template T1 (a real cluster of mi-
crocalcifications) has been acquired with an input system having pixel size α1, MTF1 
and in magnification m1. This template is then corrected (in the Fourier domain) for the 
MTF1 of the system to get an ideal template (IT1). Then the gray values of the ideal 
template IT1 are expressed in terms of Aluminum equivalence (AE) [5], to retrieve 
AE1. The template is subsequently corrected for any differences in beam quality com-
pared to the input conditions, to obtain the ideal template IT2 for the target conditions. 
Next, IT2 is adjusted towards the MTF2 of the target system (which includes all pre-
sampling components, e.g., focal spot size and magnification), to produce the template 
T2MTF2. Finally, the template is re-sampled for pixel size β2 of the target system and for 
magnification factor m2 (typically m2=1), to produce the final template T2.  

2.3   Software Testing 

The realistic appearance of the simulated microcalcifications and of the simulated 
clusters [3] has been proven in a clinical setting where five experienced radiologists 
compared 59 pairs of simulated and real microcalcifications in a two alternative 
forced choice (2-AFC) task, designed to test their ability to  distinguish the real from 
the simulated lesions. They also classified the shapes of the microcalcifications ac-
cording to a standardized clinical lexicon [6]. The radiologists were unable to distin-
guish the lesions and the shape classification revealed substantial agreement with the 
truth, showing that we were able to accurately simulate the lesion morphology. While 
this experiment confirmed our ability to accurately simulate realistic lesion while 
preserving their morphology, it does not ensure that a given physical microcalcifica-
tion cluster would be correctly reproduced for different target system parameters and 
breast thicknesses. This is due to the fact that the study was involved with one system 
and was not extended to different systems. Indeed, it is important  to illustrate the 
correct behavior of the methodology and of the software tool beyond the system that 
had been used in our institution before, if the simulation method has to be used in 
comparative system tests. The different steps in the simulation procedure are vali-
dated here by studying major aspects of the imaging chain separately: X-ray attenua-
tion, MTF, and binning for a detector with a different pixel size.  

3   Results and Discussion 

Table 1 illustrates all the steps in the simulation process and their effects on the input 
template. This is done by tracing the peak contrast (PC) of the template, where PC is 
the maximally attenuated pixel of the cluster image divided by the background signal 
(for normalization to 1). The example of the input template (second row) that is used 
to track the changes applied through the different steps had been acquired from a 
specimen with m1=2, for a specific exposure setting (27 kV MoMo 4 cm Lucite 
(PMMA)) and system parameters (MTFA, pixel size 70 µm) and has a PC value of 
0.79 at a spatial position (x,y) = (8,24) in the template image. In the second column of 
Table 1, the input template is recalculated for target conditions identical to the input 
conditions but for magnification 1, so the MTFs of input and target system are the 
same, except for the magnification factor. The ideal template IT1 has a higher contrast 
with the background (lower PC, 0.66, 34%), due to the removal of the blurring effect 
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Table 1. Different simulation steps, for different exposure  settings, PMMA and detector pixel 
size. T1= input template; IT1= ideal template; AE1= Aluminum equivalence template; IT2= ideal 
template corrected for different exposure settings; T2MTF2 = template corrected for the target sys-
tem MTF2; T2 = re-sampled template; PC= Peak Contrast; MoMo =Molybdenum/Molybdenum; 
WRh= Tungsten/Rhodium; PMMA=  Lucite; m1, m2 = magnification. 
 

Input system 27 kV MoMo, 4 cm PMMA, System A 70µm, MTFA m1=2 

Input 
Template T1 

                                             PC= 0.79, (x=6, y=24) 

Ideal template 
IT1 (200%) 

                                             PC= 0.34 

Al 
equivalence 
AE1 (200%) 

                                             PC=0.47 

Target 
systems 

27 kV MoMo, 4 
cm PMMA, 

System A 70µm, 
MTFA m2=1 

30 kV MoMo, 4 
cm PMMA, 

System A 70µm, 
MTFA m2=1 

32 kV WRh, 7 cm 
PMMA, System A 

70µm, MTFA  

m2=1 

27 kV MoMo, 4 cm 
PMMA,  

System B 70µm,  
MTFB m2=1 

Correction 
exposure 

settings: IT2 

(200%) 
 

PC=0.66 PC=0.71 
 

PC=0.81 
 

PC=0.66 

Correction for 
target  

MTF: T2MTF2 

(200%) 
 

PC=0.74  PC=0.78  
 

PC=0.86  
 

PC=0.75 

Re-sampled 
template: T2 

(400%) 
 

PC=0.81 (x=3, 
y=12) 

 
PC=0.84 (x=3, 

y=12) 

 
PC=0.9 (x=3, 

y=12) 

 
PC=0.81 (x=3, 

y=12) 
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caused by the MTF of the input system. The peak Al equivalence (AE1) of this tem-
plate is 0.47 mm. The template corrected for the target exposure settings IT2 gives a 
PC (0.66, 34%) identical to the PC value of IT1, as expected. Subsequently, by cor-
recting for the target system MTF (MTFA m2=1), the output T2MTF2 has a PC of 0.74, 
which reflects a decreased contrast, from 34% to 26%, of the microcalcification with 
respect to template IT2 for a system with an ideal MTF. Finally, when the template is 
re-sampled (T2) the PC is very close to the one of T1 but slightly higher (0.81 instead 
of 0.79, difference of 2%). The position of the PC in terms of pixel coordinates re-
mains unchanged when going from m1=2 to m2=1, reflecting the fact that the relative 
position of the microcalcifications within the clusters is preserved.  Similarly, an 
increase of only the kV from 27 kV to 30 kV (third column in Table 1), decreases the 
contrast (from 21% to 16%), and an increase in breast thickness and kV also de-
creases contrast (from 21% to 10%). The position of the PC remained unchanged. The 
last column shows the effect of a different target MTF (two different systems), but 
with the same pixel size. Compared to T2 in the first column, the output T2MTF2 has a 
slightly changed PC (a difference of 1%) due to the fact that the MTF of system A is 
higher than the MTF of system B, (0. 75 @ 3 lp/mm vs 0.67 for system B). This dif-
ference is washed out when the template is binned, as the PC of the final template is 
0.81, as for system A. Again, the position of the peak contrast remained unchanged.  
Table 2 reports on the same cluster recalculated for different systems at the same 
exposure settings of the input template, to show the combined effect of the detector 
pixel size and MTF. As the exposure conditions are not changed with  respect to the 
input template, IT2 is identical for all systems investigated, with a PC=0.66. The sec-
ond column of table 2 reports again the reference example: the input template recalcu-
lated for target conditions identical to the input conditions, as in Table 1. In the third 
column, the input template is calculated for a system (system C) having a larger pixel 
size than the input system A, namely 100 µm and a lower MTF (0.4 @ 3 lp/mm com-
pared to 0.75 of system A). The effect of a lower MTFC is reflected in T2MTF2, with a 
decrease in contrast with respect to IT2 (from 34% to 21%). After re-sampling, the 
final template T2 has again a decreased contrast with respect to T1 (from 21% to 15%) 
and to system A (from 19% to 15%). The position of the PC is shifted due to the 
binning (from x=3, y=12 to x=2, y=8).  

For system D (column 4), having a pixel size smaller than system A, namely a 
change from 70 µm to 50 µm, and a lower MTF (about 0.33@  3 lp/mm compared to 
0.75 of system A), T2MTF2 shows a strong decrease in contrast with respect to IT2 
(20%). The final template T2 has the same PC as T2MTF2 showing that in this condition 
the binning doesn’t have a  large effect on the contrast, probably due to the smaller 
pixel size than system A, but the position of PC is shifted (from x=3, y=12 to x=5, 
y=17). Finally, in the last column of Table 2 a system with pixel size 85 µm is con-
sidered. The decrease in contrast with respect to IT2 (from 34% to 25%) is compara-
ble to that of system A, because of the similar pixel size (85 µm vs. 70µm) and a 
similar MTF (about 0.7 @ 3 lp/mm compared to 0.75 for system A). After re-
sampling, the final template T2  has again a decreased contrast with respect to T1 

(from 21% to 18%) but as expected very similar to system A. The position of the PC 
is shifted, due to the binning (from x=3, y=12 to x=3, y=10), but the shift for system 
E is less important compared to the example of system D, because of the smaller pixel 
size of system D. Table 3 reports an example of two templates simulated for 
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Table 2. Presentation of the different simulation steps, for different systems (different MTF and 
pixel size) but same exposure conditions. All abbreviations are like in Table 1. 

Input system 27 kV MoMo, 4 cm PMMA, System A 70µm, MTFA m1=2 

Input 
Template T1 

                                             PC= 0.79, (x=6, y=24) 

Ideal 
template IT1 

(200%) 

                                             PC= 0.34 

Al 
equivalence 
AE1 (200%) 

                                             PC=0.47 

Target 
systems 

27 kV MoMo, 4 
cm PMMA, 
System A 

70µm, MTFA 

27 kV MoMo, 4 
cm PMMA, 

System C 100µm, 
MTFC m2=1 

27 kV MoMo, 4 
cm PMMA, 

System D 50µm, 
MTFD m2=1 

27 kV MoMo, 4 
cm PMMA, 

System E 85µm, 
MTFE m2=1 

Correction 
exposure 

settings: IT2 

(200%)  
PC=0.66 

 
PC=0.66 

 
PC=0.66 

 
PC=0.66 

Correction 
for target 

MTF: T2MTF2 

(200%) 
 

PC=0.74 
P

C=0.79 PC=0.86 PC=0.75 

Re-sampled 
template: T2 

(400%) 
 

PC=0.81 (x=3, 
y=12) 

PC=0.85 (x=2, 
y=8) 

PC=0.86 (x=5, 
y=17) 

P
C=0.82 (x=3, 

y=10) 
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Table 3. Effect of a measured system MTFSYSm  and of a calculated system MTFsysc (from 
measured detector MTF and calculated scatter MTF, MTFsysc=MTFdetec*MTFscatter) on the 
contrast of a simulated clusters of microcalcifications. The first column reports the results for 
MTFsysm while the third column reports the results obtained from MTFsysc. All abbreviations 
are like in Table 1. 

Input system 27 kV MoMo, 4 cm PMMA, System A 70µm, MTFA m1=2 

Input Template T1 

                                             PC= 0.79, (x=6, 
y 24)

1-Ideal template 
IT1 (200%) 

                                             PC= 0.34 

Al equivalence AE1 

(200%) 

                                             PC=0.47 

Target systems 
28 kV WRh, 4 cm PMMA, 

System A 70µm, MTFSYSm m2=1 
28 kV WRh, 4 cm PMMA, 

System A 70µm, MTFsysc m2=1 

Correction 
exposure settings: 

IT2 
(200%) 

 
PC=0.66 

 
PC=0.71 

Correction for 
target MTF: T2MTF2 

(200%) 
 

PC=0.79  
 

PC=0.79 

Re-sampled 
template: T2 

(400%) 
 

PC=0.84 (x=3, y=10) 
  

PC=0.84 (x=3, y=10) 
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identical target condition, but using in one case (second column) the system MTF 
calculated following the edge method as proposed in [7] (and as currently imple-
mented in mctam) and in the other case a fitted system MTF, calculated as cascade of 
measured detector MTF and calculated scatter MTF [8]. Results show that there is no 
change in contrast nor shift in the PC. The approximation of using a system MTF 
calculated as in [7] seems therefore not to introduce a large error, although further 
investigation may be necessary. 

4   Conclusion 

A software tool is developed to allow for the generation of templates that represent a 
specific cluster of microcalcifications as originally imaged and adapted  to any target 
system or exposure setting. Evaluating the simulation procedure for different target 
systems showed that the detector MTF and pixel size have the most effect on the final 
template in terms of PC and its spatial position within the template image. Which of 
these templates is best visible after their insertion in real mammogram is an open 
question, especially when sophisticated image post-processing is applied on the raw 
images.   
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Abstract. In this paper we explore the use of a penalized maximum likelihood 
(PML) based reconstruction method to improve the image quality and micro-
calcification detectability in digital breast tomosythesis (DBT). To evaluate  
performance, a human observer psychophysical study was performed with com-
puter simulated images. The simulation used realistic structured breast models 
derived from CT scans of surgical mastectomy specimens giving sufficient sta-
tistical variability in terms of breast background structural noise. Sensitivity and 
specificity of microcalcification detectability measured with PML reconstruc-
tion was compared to that obtained with the filtered back projection (FBP) 
method for simulated breast tomosynthesis images. An observer study con-
ducted using localized receiver operating characteristic (LROC) analysis 
showed significantly better sensitivity and specificity using the PML recon-
struction method for simulated mean glandular dose levels of 1.0 mGy for a 5 
cm compressed breast. This study suggests that MC detection accuracy is  
improved using PML reconstruction technique and that it might be feasible to 
reduce the imaging dose of DBT using this technique. 

Keywords: Breast Tomosynthesis, Reconstruction techniques, Dose. 

1   Introduction 

DBT is a 3D imaging modality for breast which reduces tissue overlap and is hence 
expected to enhance the visibility of malignancies in comparison to digital mammog-
raphy (DM). In DBT, the projections are acquired over a limited angular range lead-
ing to an ill conditioned and underestimated inverse problem. One of the main issues 
that may stand against DBT being accepted as a screening modality would be its pos-
sibly low performance in detecting small microcalcifications (MC) [1]. Although 
there are several factors like patient motion, misalignment and reconstruction artifacts 
which could contribute to MCs being blurred or hard to detect in the 3D image, it is 
important to make sure that the noise in the reconstruction itself is low enough to 
improve MC detectability if the above mentioned issues were absent or could be cor-
rected for. FBP has been the most commonly used method for such tomographic re-
constructions which yield noisy images when the acquisition dose is low. Heavy post 
reconstruction filtering operations can reduce noise but will then make it hard to see 



698 M. Das et al. 

 

small microcalcifications. Recently, some research groups have proposed and imple-
mented iterative reconstruction methods for DBT that seem to improve the visibility 
of MCs [2, 3]. In this paper we use a penalized maximum likelihood method and 
compare it with FBP. In this paper, the merit of each of these techniques is assessed 
by a human observer study performed using an ensemble of simulated images for 
various dose levels of acquisition.   

2   Methods 

To setup a clinically realistic psychophysical human observer study, we used a rigorous 
computer simulation that incorporated realistic models of the x-ray spectra, breast anat-
omy, and the signal and noise transport through the breast and an indirect conversion 
(CsI based) flat-panel detector. Focal spot and detector blurring were also modeled. In 
this section, each of these components of our DBT system simulation is described as are 
our 3D models of MC clusters (MCC). 

2a.   Breast and MC Model 

We have generated an ensemble of realistic looking breast models from the CT scans 
of freshly obtained surgical mastectomy specimens[4]. For this particular study we 
have used 24 compressed breast models each one of 5 cm thickness. Fig. 1 shows one 
example of a compressed breast model (coronal, transverse, and saggital slices), and 
the resulting simulated mammogram generated from this phantom. Simulated MC 
clusters were distributed randomly in these compressed breast phantoms. At least 2 
MCC’s were located in each breast phantom. Some of the phantoms had MCC’s lo-
cated in 3 independent slices. X-ray attenuation properties of hydroxyapatite were 
used to model attenuation of malignant MCC’s. There were 7 MCs in each cluster 
where each microcalcification was modeled as a sphere with diameter of size 150 
microns. 

 

Fig. 1. A,B,C) Three orthogonal slices of a compressed breast phantom displayed as a ‘nega-
tive’ (adipose tissue values light and glandular values dark). D is a simulated mammogram 
using this compressed phantom. The simulation technique used a Mo/Mo 30kVp spectra at 
1.5mGy mean glandular dose with simulated detector characteristics of 100 micron2 pixel  and 
CsI thickness of 100 microns. 
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2b.   X-Ray Spectrum and Detector 

The X-ray spectrum was modeled as generated from a molybdenum anode source, 
and was scaled to provide the desired total mean glandular dose (MGD) to a 5 cm 
thick compressed breast at 30 kVp. Focal spot blurring was modeled using a Gaussian 
function and a 300 micron focal spot. Breast tomosynthesis using a rotating source-
and-detector geometry was modeled, with 21 projection views obtained over a 60 
degree angular range. Propagation of the signal and noise through an indirect 100 
micron thick CsI based flat-panel detector with 100 micron pixel size was simulated 
using a serial cascade mode [5]. The scintillator blurring was modeled using an em-
pirically measured pre-sampling MTF.  

2c.   Projections 

Projections were obtained using Siddon’s ray tracing algorithm with attenuation coef-
ficients for adipose tissue and fibroglandular tissue obtained from the empirical meas-
urements [6]. A projection set with MGD of 1.0 mGy was generated. The total dose 
was distributed equally between the 21 projections. 

2d.   Reconstruction 

Each projection set was reconstructed using: 1) a PML objective function which was 
maximized using a separable paraboloidal surrogate (SPS) coordinate ascent algo-
rithm and 2) a filtered-backprojection (FBP) algorithm using 3D post-reconstruction 
Butterworth filtering applied for regularization. Reconstructions were made with 
rectangular voxels of 1 mm thickness and 100 micron in plane resolution.  

Penalized Maximum Likelihood Algorithm (PML): The penalized likelihood 
method was adapted from Fessler et.al [7] and uses a separable paraboloidal surro-
gate (SPS) optimization transfer principle to maximize the objective function. In this 
paper we use a penalized maximum likelihood objective function where the roughness 
penalty and the edge preserving threshold can be controlled. An estimate μ  of the 

true attenuation coefficient map  trueμ  is obtained using a method that maximises a  

penalized likelihood objective function of the form, 

                 0))(max(arg ≥Φ≅ μμμ ; )()()( μβμμ RL −≅Φ ,………              .(1)                                            

where the objective function Φ  includes a roughness penalty )(μR . The parameter 

β  controls the trade off between spatial resolution and noise. Since maximizing Φ is 

not an easy task due to its non-quadratic nature we have chosen to replace Φ  with a 
paraboloidal surrogate function that is easier to maximize. Several authors have pro-
posed the use of various forms of surrogate functions. Here we have chosen a Huber 

function that is of the form 
2

2

1)(
u

x+= βμφ  where β  is the smoothness prior 

and u controls the threshold in edge preserving. The simultaneous update algorithm 
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updates all the pixels simultaneously with feedback from the backprojection method. 
The final form of the paraboloidal surrogate algorithm used can be seen in [7] (Chapter 
6, sec 6.2 Eq. 99). We noticed that the smoothness prior and the roughness penalty do 
not impact tomosynthesis images drastically for a wide range of values tested, unlike in 
the case of a CT image with more complete angular sampling. The smoothness effect 
observed for the range of β  and u values are very small as opposed to that observed in 

CT images. We have chosen the 69th iteration from each reconstruction.  

Filtered back projection (FBP): Another reconstruction method tested was the 
widely used FBP. A Feldkamp FBP algorithm was used with a ramp filter. For each 
FBP reconstructed volume a 3D Butterworth filter was applied as a post reconstruc-
tion step. The cut off frequency of Butterworth filter was subjectively selected such 
that MC visibility was the best while maintaining the visibility of the background 
structures. Very heavy smoothing could reduce the overall noise in the image but 
seemed to reduce MC visibility. A cut off frequency of 0.4 /pixel was used for these 
simulations. This was determined using a pilot observer study and was shown to yield 
the best MC detectability. A lower cut off frequency (like 0.25 /pixel) seemed to yield 
a smoother or visually appealing image which might be better for mass detectability. 
A cut off frequency higher than 0.4 /pixel yielded very noisy image and again de-
creased the detectability of MCs.   

2e.   LROC Observer Study 

An LROC observer study performed using 20 training images and 98 study images in 
each session presented single slices to the observer with 4 confidence ratings to 
choose from. The observer had to locate the MCC and rate their confidence level of 
its presence. Half of the study images had no MC cluster present. During the training 
session, feedback was provided to the reader after each selection. Immediately after 
the training session was completed, the comparison study was performed.  The ob-
server confidence rating and the suspected MCC location were recorded for all the 
images displayed. Swensson’s method [8] was used to fit the data and obtain the area 
under the LROC curve. Four observers participated in this study.   

A two-way Analysis of Variance (ANOVA) study was performed to estimate the 
statistical significance of the differences in techniques and also to estimate the statis-
tical significance in the performance difference between the 3 observers.  

3   Results and Discussion 

Images obtained from PML reconstruction appeared to have lower noise and better 
visibility of MCC’s in comparison to those obtained using FBP. We performed pilot 
studies for dose levels higher than 1.5 mGy and found that both techniques performed 
equally well in MC detection. We decided to do a larger observer study for acquisi-
tion dose of 1.0 mGy which is lower than the current dose used by some clinical sys-
tems [9, 10] to image a 5 cm compressed breast. Fig. 2 shows a comparison of PML 
vs FBP when the imaging dose was 2.5 mGy. Fig. 3 shows a comparison of images  
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Fig. 2. Comparison of FBP (left) vs PML (right) reconstruction for simulated MGD of  
2.5 mGy 

 

                                                               

Fig. 3. Comparison of FBP (left) vs PML (right) reconstruction for MGD of 1.0 mGy 

when the imaging dose is 1.0 mGy. It can be seen that with a decrease in the total 
imaging dose, the noise is higher in the reconstructed image making the visibility of 
MCs more challenging. Visibility of MCs also depends on the breast density and the 
location in breast where the MCs are present.  
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Fig. 4. Comparing the average LROC curves for all 4 observers for PML (dashed) vs 
FBP(solid) for 1 mGy acquisition 

Figure 4 shows the average LROC curves for all four observers plotted for both 
PML and FBP reconstruction methods for the 1 mGy acquisition dose. The sensitivity 
and specificity obtained using PML technique is higher than that obtained using FBP. 
The average area under the LROC curves for PML technique was 0.93 ±0.05  and for 
FBP technique was 0.7 07.0± . The uncertainties represent the standard deviation in 
observer performance. A two way ANOVA found statistically significant difference 
(at a significance level of 0.05) between the two reconstruction strategies with a p= 
0.014 for the dose level of 1.0 mGy. There was no statistically significant difference 
(at a significance level of 0.05) in observer performance for each study with a p value 
of 0.48  

4   Conclusions 

Our study shows that images generated using PML reconstruction technique resulted 
in improved MC detectability in comparison to those generated using FBP. An LROC 
study conducted using four observers for an acquisition dose level of 1.0 mGy yielded 
an average area under the LROC curve of 0.93 and 0.7 for PML and FBP techniques 
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respectively. We have chosen to test acquisitions with 1 mGy dose since it this is a bit 
lower than the standard breast imaging dose level and presents a more challenging 
scenario. A 2 way ANOVA study suggested statistically significant difference be-
tween the perfomance of the two strategies. Studies with multiple dose levels of ac-
quisition will be conducted in future.  In conclusion, our results are very encouraging 
and point towards the possibility of improving MC detectability using PML tech-
niques and also towards the possibility of reducing the imaging dose. A more detailed 
study which also incorporates low contrast mass detection along with MC detection 
will be conducted in future. 
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Abstract. The detection of microcalcifications is a key task in the early detec-
tion of breast cancer. Digital breast tomosynthesis (DBT) offers new opportuni-
ties to improve existing microcalcification detection methods. By utilizing the 
multiple projections in DBT, and a model of the DBT acquisition system, we 
propose the use of epipolar curves to constrain the position of a microcalcifica-
tion in the multiple DBT views. We show how this can improve both the sensi-
tivity and specification of microcalcification detection. 

Keywords: digital breast tomosynthesis, microcalcifications, detection, epipo-
lar curves, standard attenuation rate, DBT. 

1   Introduction 

The detection of microcalcifications is a key task in the early detection of breast can-
cer.  Existing techniques e.g. local adaptive thresholding and feature extraction [1], 
machine learning approaches [2], and the physics-based approach based on breast 
composition [3], all assume that there are at most two X-ray projections in order to 
detect microcalcifications. However, a single 2D mammogram cannot represent a 
complete picture of the 3D breast, tissue superimposition being one of the major limi-
tations of mammography. All microcalcification detection algorithms (published or 
commercially confidential) have limited sensitivity and specificity.  This paper shows 
how digital breast tomosynthesis (DBT) provides a novel opportunity to improve 
microcalcification detection, yielding improved sensitivity and specificity. 

DBT generates multiple projections, for example by rotating the X-ray arm over a 
limited angular range. Microcalcifications that are hidden in conventional mammog-
raphy may be visible in some DBT projections. There are two obvious approaches to 
microcalcification detection in DBT: using reconstructed slices [4]; or analyzing the 
individual projections, followed by reconstruction [5]. In this paper, we adopt the 
latter approach; but stress that it can be combined with the former in an expectation-
maximisation framework. A substantial advantage of the approach taken here is that 
we can detect microcalcifications and the clusters they form without reconstruction, 
since the latter requires considerable further development. 
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2   Methods 

We sub-divide the detection process into two steps: microcalcification detection in the 
individual projections; and combination of the individual projection detection results 
using the concept of epipolar curves, that are familiar from computer vision in stereo 
or structure from motion. The two steps are iterative in the sense that the latter step 
may help identify a number of noise points or missing microcalcifications during 
detection in some projections in the first step and this subsequently can further im-
prove whatever detection algorithm is employed. 

Our emphasis in this paper is the derivation of epipolar curves and their application 
in the detection of mirocalcifications. In the first part, for the purpose of complete-
ness, we outline one of the detection algorithms using breast composition approach 
we are currently working on. It is noted that further study is required for optimal de-
tection results in real clinical use.  We then focus on our epipolar curve approach in 
the second part. We first present its derivation, based on a plausible DBT geometry, 
though again we emphasise that this is merely for illustration; the method can 
straightforwardly be adapted to any geometry. Finally, we demonstrate how the epi-
polar curves can help locate the true microcalcification points (true positives), noise 
points (false positives), missing points (false negatives) in the detection process.            

2.1   Microcalcification Detection in Individual Projections 

Notwithstanding the decreased signal-to-noise ratio of DBT images, existing detec-
tion algorithms in mammography can be extended and used straightforwardly in 
DBT, though of course with modification. Our current work is based on our previous 
work aimed at determining breast composition. Tromans et al. [6] have introduced the 
standard attenuation rate, which measures the ratio of any suitable reference material 
(which may be, for example, a chosen proportion of adipose to fibroglandular tissues) 
to the thickness of the breast along the X-ray path to the pixel location.  In simple 
terms, the standard attenuation rate provides the sum of the breast composition along 
the path to the pixel location including the sums of all forms of adipose tissue, fibro-
glandular tissues and calcifications. Its value is smaller if the path contains more adi-
pose tissue, larger for dense tissues, much larger for calcifications. 

Our detection algorithm, based on that of Yam et. al. [3], starts by identifying sus-
pected microcalcification regions from each projection, by extracting those pixels 
with locally high contrast values.  Morphological operations close the holes within 
such regions and remove isolated pixels, which are unlikely to be microcalcifications.  
The standard attenuation rate is used to calculate a number of volume measures: refv , 

the volume of the reference material of the region; surrv , the volume of the surround-

ing tissues ; )( surrrefdiffv − , the difference in these volume measures, which gives the 

additional volume in the region when compared with the surrounding.  Those regions 
for which )( surrrefdiffv − exceeds a preset threshold are the candidate microcalcification 

regions that are further analysed using epipolar curves. 
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2.2   Epipolar Curves 

DBT generates multiple 2D projections of a 3D breast.  By analyzing the geometry of 
the DBT acquisition system, we can derive the “epipolar curve” formed from the 2D 
projection in the multiple projections in DBT generated from the same 3D point 
within the breast. Fig. 1 shows the geometry of a simplified version of a plausible 
DBT acquisition system, though, as we noted earlier, this is presented simply as an 
illustration and our approach can readily be extended to any real system, in the same 
way that any published stereovision algorithm can be realised in conjunction with a 
suitable calibration and image distortion reduction algorithm. The hypothetical DBT 
system consists of a sensor plane S, a pivot point P about which the X-ray arm rotates 
and the focal spot fi. L is the height of P above the sensor plane, and D is the length of 
the X-ray arm. Two coordinate frames are used during the derivation of the epipolar 
curve: the world coordinate frame w with origin at P and the sensor coordinate frame 
s with origin at Os.  

Next, we derive the equations of the projection points given a 3D position of mi-

crocalcification m at (a, b, c) w and iθ . Of course, subsequently, we will use this 

analysis in an inverse sense to detect microcalcifications and their positions in 3D. 

The line that contains 0,f m is given (in world coordinates - superscript w) by: 
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Now consider projection points from equal and opposite focal points ,i if f+ − . It is 

straightforward to show that: 
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Finally, for the focal spots at iθ  and - iθ , the 2D coordinates in the sensor coordinate 

frame are represented by the vectors s
ix+  and s

ix−  given the microcalcification point 

positioned at (a, b, c) as follows: 
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   (4)    

This is the epipolar curve at (a, b, c), named by analogy with stereovision and struc-
ture from motion. An example of an epipolar curve representing a microcalcification 
is shown in Fig. 2. 

Knowing that a microcalcification in the breast can be represented as an epipolar 
curve, it is straightforward to use epipolar curves to represent a cluster of microcalci-
fications (Fig. 3 (Top)). In reality, where there is substantial noise in each acquisition 
image, and where the detection algorithms are in consequence less than perfect, it 
may be expected that some DBT views have noise points and some microcalcifica-
tions are missed in some DBT views. In such cases, our epipolar curves enable identi-
fication of noise points and missing microcalcification points by putting all the micro-
calcification points from different projections found in the detection step into the 
same 2D coordinate frame (See Fig. 3 (Middle and Bottom).).   

Currently we choose the detector plane as our 2D coordinate frame; but, of course, 
other choices are possible, and are related to the one we propose by a simple homo-
graphy. The steps of detection and epipolar clustering can be iterated. 
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Fig. 1. Geometry of DBT 
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Fig. 2. An example of an epipolar curve representing a microcalcification 
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Fig. 3. Top: An example of 10 epipolar curves representing a cluster of 10 microcalcifications 
in the ideal case (One red circle represents one microcalcification) (True Positives).  Middle: 
The same example with noise points detected in some projections (indicated by red circles) 
(False Positives).  Bottom: The same example but some points cannot be detected in some 
projections (indicated by red arrows) (False Negatives). 
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3   Results 

In order to evaluate the method against ground truth, testing has been carried out 
both on simulated DBT projections, as generated by the X-ray simulation software 
developed by Tromans et al [6], and real X-ray projections of a phantom comprised 
of perspex with 12 carefully drilled holes containing Calcium substances. Initial 
results show that detection in individual projections using standard attenuation rate 
approach is promising, in that 11 of the 12 Calcium regions can be distinguished out 
of 289 regions segmented as suspected regions, while the remaining one can also be 
extracted with 7 false positive regions. As mentioned before, we only demonstrate 
the feasibility of detection in the individual projections in this paper. Further devel-
opment in the detection algorithms is required. 

To demonstrate the use of epipolar curves, we generated 15 simulated DBT views 
containing 2 clusters of microcalcifications. By putting all the detection results in the 
same 2D coordinate plane, we identify both noise points and points that are missing in 
some projections using our epipolar curve approach. In Fig. 4, we show the detection 
result of 7 DBT views (tomo4, tomo5, tomo6, tomo7, tomo8, tomo9, tomo10) show-
ing one of the clusters of 15 microcalcifications. It can be seen that epipolar curves 
can improve the detection results by identifying the noise points (isolated points in the 
figure.) and supplementing the failure in the detection algorithms (e.g. Microcalcifica-
tion 14 can only be detected in 5 DBT views and is missed in DBT views tomo8 and 
tomo9.  With the epipolar curve, we can even point out the expected locations of the 
missing points in those DBT views in which they are missed.) 

 

Fig. 4. Detection results of a cluster of 15 microcalcifications using 7 DBT views. (tomo4-
tomo10 represents the chosen middle 7 DBT views out of the 15 views; No. in the rectangles 
are the microcalcification identifiers.) (Red Circles: True Positives; No Circle: True Negatives; 
Black Circles: False Positives; Green/Blue Circles: False Negatives). 
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4   Discussion 

DBT provides significantly more information than mammography. This offers new 
opportunities to improve existing microcalcification detection methods. In this paper, 
we presented evidence that epipolar curves enable the determination of noise points 
detected (false positives) and the identification of missing microcalcification points 
(false negatives) in some projections. By combining detection in individual projections 
and epipolar curves approach iteratively, the detection algorithms can be further fine-
tuned and improved detection results can be achieved. 

In order to automate the detection processes using epipolar curves, we have also 
investigated a simple clustering algorithm, an epipolar clustering algorithm, to group 
microcalcifications, to identify noise points and missing microcalcification points.  
Readers who are interested can refer to [7]. 
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Abstract. Digital Breast Tomosynthesis (DBT) is a new 3D imaging
technique aiming at overcoming some limitations of mammography. A
computer aided detection system may help the radiologist to process the
increased amount of data of this new modality. In this paper we propose
to address the detection of masses and architectural distortions in DBT
datasets. To achieve this task, we propose a detection scheme composed
of two separate channels, each of them being dedicated to the detection
of one of the target radiological signs.

We propose a description of these channels as well as a validation on
clinical data. We also compare the performance with existing approaches.

1 Introduction

Mammography is a widely used technique to diagnose breast cancer. Nonethe-
less, due to the nature of these images, superimposition of tissues may lead to
obscured lesions or false alarms. Digital Breast Tomosynthesis (DBT) is a new
3D imaging technique that potentially overcomes this limitation, but that also
increases the amount of data to be reviewed by the radiologist. A computer
aided detection (CAD) system dedicated to this new kind of data may help the
radiologist to achieve his detection task, and increase his sensitivity.

In this paper we focus on the detection of masses and architectural distor-
tions, which are suggestive of malignancy. This detection is performed with two
independent channels, whose results are aggregated afterward. We also validate
our algorithms on a database composed of 101 breast volumes (53 containing
one or more biopsy proven lesions, and 48 containing no lesion).

First, we describe the method we implemented to perform the detection task,
then we expose and discuss the performance the proposed approach achieved.

2 Methods

As said previously, our approach is composed of two channels dedicated to the
detection of dense kernels and convergence areas, respectively. These two radio-
logical signs are likely to represent masses and architectural distortions.

J. Mart́ı et al. (Eds.): IWDM 2010, LNCS 6136, pp. 712–719, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2.1 Masses Detection

This channel is composed of several steps. First we process the volume slice
by slice in order to detect focal-densities. This detection is performed using a
fuzzy connected filter as introduced in [1], whose discriminant attributes are size,
compacity and contrast-based measures. This kind of filters is suitable to mark
potential masses because of their great variability. Actually, fuzzy connected fil-
ters allow to define non crisp criterion thresholds, which can help in dealing with
border line structures. In the next step, the most suspicious regions are selected
and grouped in 3D through a pseudo-connected component labeling. The main
difference with a regular connected component labeling is that we introduce a
maximum shape variability criterion to be met by the produced 3D connected
components. This allows disconnecting some components and thus enables to
ensure that each resulting one corresponds to only one potential lesion and does
not aggregate two distinct structures together. Then for each suspicious region,
the most representative slice is selected and segmented using a dynamic pro-
gramming segmentation approach [2,3]. Finally, some attributes are extracted
in order to feed a SVM classifier [4], which will provide the final decision: the
current region is or is not suspicious. Attributes that were used mainly rely on
morphological properties of the findings (compactness, size, etc.) and on statisti-
cal analysis of its neighborhood (probability of suspicious convergence, statistical
measures on orientations, etc.).

2.2 Architectural Distortions Detection

The second channel aims at detecting suspicious convergence areas. In order to
achieve this task, we used an a contrario modeling of the problem [5,6]. Briefly
the idea is to define a convergence measure similar to the one proposed in [7]
and to select realizations in real images that are unlikely to appear in healthy
breasts. This last detection step is performed again slice by slice. After applying
an aggregation step, a feature extraction procedure associated with a classifica-
tion stage using a SVM classifier is performed. This last step is done for each
slice of each finding, thus each finding is considered suspicious if at least one
slice is classified as suspicious by the classifier. The features used during this
classification step mainly correspond to the analysis of orientations within the
neighborhood of the finding.

2.3 Final Output

The two channels previously presented aim at detecting different types of radio-
logical signs. For this reason, a disjunctive-like aggregation step is implemented
to merge their results. Nonetheless, the border between these two types of pop-
ulation may not be well defined. For instance, a highly spiculated mass may in
certain cases be detected by the convergence detection channel. For this reason,
such an aggregation strategy may improve the performance of the overall chain
in comparison with a simple combination of the performance of the two channels.
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3 Results

We validated the previously described CAD system on clinical DBT volumes
containing biopsy proven lesions. We discuss here the performance of each chan-
nel as well as the performance of the overall system.

3.1 Database

The database we used is composed of 101 breasts, 53 with a biopsy proven cancer
and 48 with no pathology. Since DBT is a relatively recent technique, this is
already a quite large database. DBT volumes corresponding to these breasts were
reconstructed using iterative techniques [8] from low dose projections acquired
over an angular range of 40 degrees. Slice interspacing was set to 1mm. The 53
cancerous breasts contained a total of 56 lesions, 7 irregulars masses, 4 lobulated
masses, 39 spiculated masses, and 3 architectural distortions. Three more lesions
were discarded because they were not representative. These lesions require a
dedicated detection channels to be designed when more similar data will be
available. The other lesions were used to assess the performance of our detection
scheme. The density detection channel was evaluated using all irregular and
lobutated, as well as the less spiculated masses (29 lesions). The remaining lesions
were used to compute the performance of the second channel. The choice to split
the spiculated lesions into two pools has been motivated by the idea that the
main characteristic of such lesions is sometimes their stellate pattern rather than
their density. More practically such a choice also enables to have a more accurate
validation of the convergence detection channel, even if a 13 lesions database is
not enough to be actually conclusive on its real performance. But still, its allows
evaluating the validity of our processing.

3.2 Masses

The performance of the channel dedicated to the detection of masses is pre-
sented trough the FROC curve of Figure 1. This curve was obtained using cross-
validation techniques on the first part of the database, and corresponds to the
assessment of the whole chain (marker selection and false positives reduction).
More precisely, the performance of the chain was obtained using a leave-one-out
strategy. During the assessment of each finding (the one left out), the classifier
was trained using a n-fold procedure in order to provide a good generalization
of the learning database (all the cases except the one discarded). Now from a
performance stand point, depending on the user needs, several operating points
can be used. For instance, we can mention that for a sensitivity of 90%, this
detection scheme achieves a specificity of 1.23 false positives per volume.

An example of detection is illustrated in Figure 2. This example proposes the
detection map obtained as a result of the fuzzy connected filter and the final
decision obtained after false positive reduction. The intermediate result can be
interpreted as follows: each pixel is associated with a gray level, which codes
a membership degree (black means 0 while white means 1). This membership
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Fig. 1. FROC curve of the suspicious density detection channel

value is the degree to which the pixel is suspicious according to the filter. Now, on
this particular example, we can note that the cancer is associated with a degree
close but not equal to 1. This actually means that the values of the discriminant
criterion were border line. Nonetheless, while the lesion does not perfectly fit the
suspiciousness criterion, it is considered for further processing. The last image
allows seeing the gain brought by the false positive removal stage. Here, we keep
the lesion and one false positive. Let us finally state that while the example
shows only one slice, 3D information is taken into account as mentioned earlier.

3.3 Convergence Patterns

The second channel was evaluated on the remaining lesions. The performance
is illustrated in Figure 3. This FROC curve has also been obtained using the
same cross-validation scheme as the one used for mass detection. Let us mention
that this detection scheme achieved a sensitivity of 92% at 0.48 false positives
per volume. However, since the amount of data is rather small, the confidence
interval associated with the actual performance of this channel is probably pretty
large. Nonetheless, this allows us to draw some intermediate conclusions on the
validity of the approach.

An example of detection is illustrated in Figure 4. This example presents the
result of the marker stage based on a contrario modeling as well as the final
decision of the channel. Here the DBT slice contains an architectural distortion,
which is retrieved by the marker stage and kept by the false positive removal
stage. Example of false positives that are kept or suppressed during the whole
processing are also provided.
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(a) (b) (c)

Fig. 2. Example of detection using the mass detection channel. (a) DBT slice contain-
ing a spiculated lesion. (b) Output (markers) of the fuzzy connected filter. (c) Final
result: the lesion (in black) is detected as well as a false positive (in white).
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Fig. 3. FROC curve of the suspicious convergence detection channel
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(a) (b) (c)

Fig. 4. Example of detection using the suspicious convergence detection channel. (a)
DBT slice containing an architectural distortion. (b) A contrario detection result. (c)
Final result: the lesion (in black) is detected as well as a false positive (in white).

3.4 Overall performances

As mentioned earlier, the target populations of the two previous channels may
overlap. Table 1 presents operating points for common sensitivities, and illus-
trates the gain in specificity in comparison to a direct combination of the two
channels performance.

The performance we obtain is comparable to other results of CAD systems
for DBT datasets [9,10], while we address specifically architectural distortions in
addition to masses. In [9], the authors propose a combination of detections within
the projections and within the volume in order to obtain a new detection scheme.
They validated it on a database containing a little bit more cancers than ours.
As we can see in Table 1, our approach achieves a false positive rate of 1.31 for a
81% specificity. For similar specificity (80%), the method proposed by [9] reaches
a specificity of 0.84 false positive per volume, which is better. Nonetheless, if
we move to another operating point, we can get similar performances: for a
sensitivity about 90%, both methods produce 1.6 false positive per breast. Now, if
we increase the target sensitivity to 96%, the specificity of our approach becomes
1.81, while the performance of the other approach go beyond 2 false positives
per breast. In [10], the authors propose a detection scheme whose amount of
false positives is reduced using information theoretic principles. Unfortunately
they only reach a sensitivity of 85% for 2.5 false positives per case.
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Table 1. Performance of the combination of the two channels

Sensitivity (%) Specificity (false positives per breast)
81,1 1,31
90,6 1,60
96,2 1,81

Nonetheless, because of the databases sizes/discrepancies, a comprehensive
comparison of these approaches is hazardous. However, we can conclude that
they are comparable, with a slight advantage (resp. disadvantage) of our ap-
proach for higher (resp. lower) sensitivity values, while stating validation on a
larger database should be performed in order to compare them in a reliable
manner.

4 Conclusion

We have introduced a new scheme for detection of some suspicious radiologi-
cal signs in DBT volumes. It is composed of two distinct channels dedicated to
the detection of masses and highly convergent signs, respectively. Both of them
are relying on a two steps detection: a marker extraction stage followed by a
false positive reduction stage. While the second step is similar for both chan-
nels, the first one is using completely different tools. Thus markers corresponding
to masses are retrieved using fuzzy connected filters tools, and suspicious con-
vergence areas are extracted using a contrario modeling based methods. We
proposed a validation of the whole system and showed that its performance is
comparable to other systems in the literature.

The further steps of the presented work will be to enlarge the database in
order to obtain a more accurate validation. Assessing other existing approaches
on such a database would enable us to actually compare them with our method.
In addition to that, we would like to address other suspicious radiological signs
using additional detection channels.
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Abstract. Lesion detectability in contrast-enhanced digital mammography 
(CEDM) was studied using a model observer for task-based system evaluation. 
Digital mammography (DM) and CEDM images were simulated to include a 
realistic mammographic appearance and contrast enhancement based on simple 
physiological assumptions of iodinated contrast agent uptake. A Laguerre-
Gauss Channelized Hotelling observer (LG-CHO) was implemented to compute 
the lesion detectability, d′, according to the signal-to-noise ratio of the CHO test 
statistic. Iodine concentrations from 0.3 to 3 mg/ml in simulated lesions resulted 
in greater d′ for log-subtracted CEDM images (acquisition technique of Jong et 
al. Radiology 2003) compared to full dose DM (standard screening DM acqui-
sition technique). Doubling mean glandular radiation dose yielded only minimal 
relative gains in d′ for all but the lowest lesion contrast agent uptake levels con-
sidered, suggesting that quantum noise was not the limiting factor for lesion  
detectability.  

Keywords: mammography, contrast enhancement, image perception, image 
quality, observer model. 

1   Introduction 

Contrast-enhanced digital mammography (CEDM) can be used to identify the pres-
ence of tumour angiogenesis with an intravenous injection of an iodinated contrast 
agent [1]. In clinical pilot studies this modality has shown promise as an adjunct to 
mammography to improve lesion specificity, to determine the extent of disease and to 
detect mammographically occult lesions, particularly in the dense breast [2-4]. Opti-
mization of CEDM has been reported where the signal difference-to-noise ratio 
(SDNR) is maximized while minimizing mean glandular dose [5-7]. The Rose crite-
rion was then used to predict iodine concentration detection limits [5-7]. However, the 
SDNR is a simplistic image quality metric that does not account for several factors 
that influence radiologists’ detection performance in mammographic images, includ-
ing anatomical clutter, lesion shape and margin appearance. 

Several investigators are currently developing task-based model observers that can 
predict human performance at detecting lesions in medical images [8,9]. These models 
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could potentially be used for efficient evaluation and optimization of CEDM image 
quality. In this study we apply the Laguerre-Gauss (LG) channelized Hotelling ob-
server (CHO) [10] to CEDM. The CHO has performed well for approximating the 
ideal observer in mammography and it has been shown to correlate well with human 
reader performance [11]. 

In this work we have used a clustered lumpy background (CLB) [12], which repre-
sents mammographic texture closely and allows for the efficient creation of a large 
number of realizations. Simple assumptions regarding the uptake of contrast agent in 
normal tissues and lesions were applied in the simulation of single-energy subtraction 
CEDM. Recently Castella et al. evaluated human observer performance of malignant 
mass detection in both CLB images and real mammograms and found that perform-
ance was significantly better with real backgrounds [13]. Hence, we believe that using 
the CLB will yield conservative estimates of lesion detectability. To demonstrate the 
utility of this task-based framework for CEDM optimization we characterize lesion 
detection performance for the imaging conditions used in the study by Jong et al. [3], 
and over a clinically relevant contrast agent uptake range in each of the lesion and the 
surrounding normal tissues. 

2   Methods 

2.1   Simulation of Mammographic Backgrounds 

We implemented the isotropic double-layered CLB approach of Castella et al. [12] to 
emulate mammographic backgrounds. Raw CLB image intensity was scaled to gener-
ate linear attenuation maps consistent with breast tissue x-ray attenuation characteris-
tics [14]. The intensity of each lump was scaled such that the mean linear attenuation 
in a CLB realization would be equivalent to a 20% fibroglandular (FG) breast [15]. 
For comparison, uniform 20% FG backgrounds were also generated. A 5 mm diame-
ter Gaussian shape with the attenuation of infiltrating ductal carcinoma [14] was in-
serted into the centre (signal known exactly) of half the images to represent a mass 
lesion. 

2.2   Contrast Agent Uptake 

The attenuation corresponding to 0.3, 0.5, and 3.0 mg/ml of iodine was added to the 
lesions, a range observed clinically by Jong et al. [3]. Iodine contrast was also added 
to the background tissue with the iodine concentration proportional to the reported 
distribution volumes (V), the total of the vascular volume and extravascular extracel-
lular space in FG and adipose tissues (Vadipose=VFG/3 [16, 17]). We will describe the 
relative proportion of uptake between the lesion and the background in terms of a 
parameter called the lesion-to-fibroglandular iodine concentration ratio (LFR). For 
each lesion iodine concentration, LFRs of 1.67, 2.5, 5, 10, and 20 were considered, a 
range estimated from the results of Jong et al. [3]. 
 



722 M.L. Hill et al. 

 

Table 1. One example CLB realization with (left) and without (right) a lesion inserted and the 
corresponding images under DM and CEDM exposure conditions 

 Lesion present No lesion 

Noise free attenuation  
map 

  

DM exposure  conditions 

  

CEDM exposure  
conditions, no iodine 

  

2.3   Image Simulation 

X-ray transmission was modeled with a mono-energetic (DM = 18 keV, CEDM = 35 
keV) parallel beam geometry through a 5 cm thick breast. The image size was 256×256 
pixels with 100 μm detector elements. The entrance surface air kerma (ESAK) used for 
the CEDM images was 0.34 mGy, equal to that used by Jong et al. (Mo anode, 0.3 mm 
Cu/0.3 mm Al filters, 45 kV, 140 mAs) [3]. The ESAK for the DM images was 4.8 
mGy, that selected by the automatic exposure control on a GE Senographe 2000D for a 
5 cm, 20% FG breast (Mo anode, Rh filter, 27 kV, 67 mAs). Appropriate scatter frac-
tions and an anti-scatter grid were incorporated [18]. Quantum noise was based on the 
number of photons that interact with a 100 μm thick layer of CsI. 

2.4   Lesion Detectability 

Following the approach of Gallas and Barrett [10] a LG-CHO was implemented to 
compute lesion detectability. A test statistic, t, is calculated for two cases: 1) signal  
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Table 2. CEDM images with 3 mg/ml iodine uptake in the lesion for the same example CLB 
realization shown in Table 1 (anatomical) and for a uniform background. CEDM images are 
shown for two example LFRs, 1.67 (left) and 20 (right). 

 Lesion uptake 
1.67 × fibroglandular (FG) 

Lesion uptake 20 × FG 

Post-contrast anatomical 
image 

  

Log-subtracted anatomical 
image 

  

Log-subtracted uniform 
image 

  

absent (ns) and 2) signal present (s). The detectability, d′, is the SNR of the test statis-
tic and is calculated according to: 
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(1) 

A set of 2000 independent CLB realizations was generated. From this image set the 
required attenuation maps and corresponding images were generated for each case 
under examination. A group of 500 signal absent and 500 signal present images were 
used to estimate the CHO weights, and then these weights were used to calculate d′ 
using the remaining 500 image pairs. Lesion detectability was calculated for DM 
images (no iodine) and logarithmically subtracted CEDM images. Likewise, using a 
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set of 2000 uniform background realizations d′ was calculated for uniform log-
subtracted CEDM images. 

3   Results 

One randomly selected CLB realization and its associated images are shown in Table 1 
with and without a lesion inserted for each of the DM and CEDM exposure conditions. 
In this illustration, the backgrounds are identical so that the lesion is apparent to the 
reader, but in simulation, a unique CLB realization was generated for each signal-
present and signal-absent image. Note that all images presented here are windowed 
from the minimum to the maximum intensity in each image. 

The images in Table 2 illustrate the effect of background tissue iodine contrast up-
take on the visual appearance of CEDM images. The images on the left-hand side of 
Table 2 have an LFR of 1.67, with an LFR of 20 on the right. 

Fig. 1 plots d′ as a function of the LFR for each of the contrast uptake conditions 
studied. Results are shown for log-subtracted CEDM images with anatomical (CLB) 
and uniform backgrounds. For comparison, d′ was also calculated for a standard 
mammographic screening case where DM images were acquired of a CLB phantom 
with no contrast agent present. The DM detectability level is indicated in Fig. 1 by the 
dashed line. 

Fig. 2 demonstrates the fractional change in d′ observed in log-subtracted anatomi-
cal CEDM images acquired with increased radiation exposure, as a function of LFR 
for each lesion contrast uptake level studied. The mean glandular dose was doubled 
from 0.64 mGy to 1.28 mGy. 

 

Fig. 1. Lesion detectability in log-subtracted CEDM images for the given lesion iodine uptake 
as a function of LFR. Open ( ) markers denote anatomical backgrounds, filled ( ) markers 
denote uniform backgrounds. The dashed line (--) is the DM lesion detectability. 
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Fig. 2. Fractional increase in lesion detectability for log-subtracted anatomical CEDM images 
acquired with twice the mean glandular dose at the given lesion iodine uptake level and LFR 

4   Discussion 

The images in Table 1 illustrate qualitatively that the lesion is not readily apparent in 
the CLB background for the DM images or the pre-contrast CEDM images. This 
presents a challenging detection task, such as in a dense breast where FG tissue may 
mask or mimic a lesion. The potential of subtraction CEDM to improve lesion detect-
ability compared to DM in an anatomical background is shown quantitatively in Fig. 
1, where DM is outperformed by CEDM in terms of d′. 

In Fig. 1 the detectability in a uniform background is consistently greater than in an 
anatomical background. This demonstrates that lesion detectability is sensitive to 
anatomical clutter and suggests that previous estimates of minimum iodine detectabil-
ity in CEDM may have been overestimated when a uniform background was as-
sumed. For each background type, d′ begins to converge as the LFR increases, sug-
gesting that the influence of anatomical clutter decreases as LFR increases. This result 
is also seen qualitatively by a comparison between the log-subtracted CEDM images 
with anatomical and uniform backgrounds in Table 2. 

Jong et al. kept the x-ray dose very low for each image acquisition so that a five 
time point CEDM exam (six images) could be completed for a total dose approxi-
mately equal to that of one screen-film mammographic image [3]. Since single-energy 
CEDM is restricted to a single view [15], it may be appropriate to image with a total 
dose equal to that for two mammographic views to get the best possible image quality. 
The benefits of imaging with an exposure that increases the mean glandular dose by a 
factor of two are presented in the results in Fig. 2. Although we might expect detect-

ability to improve by a factor of 2  due to quantum noise reduction, this magnitude of 
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detectability increase is only attained at the highest LFR for the lowest contrast agent 
uptake concentrations considered. This result suggests that for most clinically relevant 
levels of contrast agent uptake, quantum noise is not the limiting factor for detectabil-
ity, and that the background contrast uptake can be a limiting factor if the LFR is 
small. 

Future work will focus on the validation of the use of the LG-CHO for lesion de-
tectability estimation by comparison with human observers and refinement of the 
contrast agent uptake model. 
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Abstract. In this study, we investigated the applicability of a Graphics Process-
ing Unit (GPU)-based dynamic explicit finite element (FE) program for fast 
quasi-static deformation simulations of breasts, and proposed an optimisation-
based method to estimate material parameters of in vivo breast tissues in the 
context of nonlinear hyperelastic models. Due to its high-speed execution, the 
GPU-based FE program was used as a forward solver in the optimisation proc-
ess. A hybrid simulated annealing algorithm for global optimisation was em-
ployed to find the optimised material parameters by mininising the Euclidean 
distance between FE predicted displacements and estimated displacement from 
image registration at the selected landmark positions. The proposed method can 
be used for fast FE analyses of soft tissue deformations in medical image analy-
ses and surgical simulations.  

Keywords: Soft Tissue Deformation, Finite Element Method, Image Registration. 

1   Introduction 

Biomechanical models using finite element methods (FEMs) have been used to pre-
dict breast deformations in surgical simulations and in medical image analyses for 
assisting breast cancer diagnosis [1], [2], [3]. Typically the breast deformation during 
mammography [1], [3] is considered as a quasi-static problem and has been analysed 
using static implicit finite element methods (e.g. ANSYS [4]). In static implicit 
FEMs, the implicit integration scheme is employed to solve finite element equations 
using iterative methods (e.g. the Newton-Raphson method). Although the static im-
plicit integration method is unconditionally stable and a bigger increment time step 
can be taken in the solution, it can encounter numerical difficulties converging to a 
correct solution during an analysis involving large deformations, highly non-linear 
material behaviour or contact, requiring a large number of iterations. Dynamic ex-
plicit FEMs, extensively applied to solve dynamic problems, have proved valuable in 
solving quasi-static problems when inertial effects can be neglected [5]. In dynamic 
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explicit FEMs, the explicit time integration method is used, and the FE equations are 
solved by explicitly advancing the kinematic state from the previous increment, with-
out iteration. Therefore convergence problems are not an issue. It is also suitable for 
parallel execution because the computations can be conducted at the element level. 
Recently, a GPU-based dynamic explicit FEM algorithm with total Lagrangian for-
mulations [6] was implemented via highly parallel graphics hardware for nonlinear 
deformation analyses of soft tissues. One aim of the current study is to investigate the 
applicability of this method for fast quasi-static breast deformation simulations. 

Nonlinear hyperelastic models have been widely used for describing breast tissues 
[2], [3], [6]. However, the material parameters used for breast deformation simula-
tions are generally obtained from in vitro tests, which are commonly different from in 
vivo data. Therefore, the second aim of this study is to develop a material parameter 
identification method to estimate in vivo material properties of breast tissues in the 
context of nonlinear hyperelastic models. 

2   Method 

Like most biological soft tissues, breast tissues exhibit nonlinear, anisotropic and time-
dependent response under large deformation [7]. When breast tissues are subjected to 
small deformations (less than 2-5%), conventional anisotropic linear elastic models are 
adequate to model their mechanical behavior. However, large deformations are often 
involved in clinical practice, such as surgery, mammographic examinations or during 
ultrasound scanning etc, and linear elastic models are no longer valid for these materi-
als. Soft tissues under large deformation often experience large recoverable elastic 
deformation, therefore hyperelastic models have been widely used to model the 
nonlinear and anisotropic behavior of these materials. The constitutive behaviour of 
hyperelastic materials is defined in terms of strain energy potential. By using different 
forms of strain energy function, several hyperelastic models including the incom-
pressible/nearly incompressible, viscoelastic, hyperelastic and anisotropic behavior of 
soft tissues have been implemented in the GPU-based dynamical FE program [6]. 

2.1   Constitutive Model 

In this study a transversely isotropic hyperelastic model was chosen to model the 
anisotropic behavior of breast tissues, and the strain energy potential had the follow-
ing form [6]:  

 ( ) ( )22

1 4
3 ( 1) 1

2 2 2

k
I J I

μ η
ψ = − + − + −  (1) 

where μ  denotes the initial shear modulus; 1I  represents the first deviatoric strain 

invariant; k  stands for the bulk modulus; J  denotes the total volume change; η  

represents a material parameter with units of  Pa; 
4

I = ⋅⋅
0 0

a C a  stands for the pseudo-

invariant of 
2 / 3

J
−=C C , C  denotes the right Cauchy-Green strain tensor, and 

0
a  is 

the preferred direction to present the transversely isotropic response. In the model, μ  
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and k  can be determined from another two elastic parameters, Young’s modulus E  
and Poisson’s ratio v , through the relationships of /(2(1 ))E vμ = +  and 

/(3(1 2 ))k E v= − . If the preferred direction of a tissue can be pre-determined, e.g. it is 

much stronger in the z direction, so 
0

[0, 0,1]=a , only three parameters, ( ), ,E v η , are 

required to completely define this anisotropic model. If 0η = , Equation (1) becomes 
the well-known Neo-Hookean isotropic model.  

2.2   Finite Element Model of Breasts  

In breast deformation analyses, FEMs were used to calculate the displacement field 
that satisfied the applied boundary conditions and a given set of material parameters. 
Both static implicit FEM program (ANSYS) and dynamic explicit FEM programs 
(ABAQUS/Explicit and GPU-based dynamic explicit FE program) were employed for 
breast deformation simulations. The geometrical model for FE analyses was con-
structed by segmenting MR image volumes into different tissues and then meshed 
into tetrahedral elements with ANSYS in order to account for the irregular breast 
shape. The material type of each element was assigned according to the segmentation. 
The displacement boundary conditions were applied by constraining the surface nodes 
of the breast, which were extracted by registering the MR images of the compressed 
breast to the MR images of the uncompressed breast using a 3D non-rigid image reg-
istration method. The detailed description on how to produce a FE model of the breast 
can be found in Ref [1].  

 

Fig. 1. A typical FE model: (a) Geometric model and FE mesh of undeformed breast (b) Distri-
bution of breast tissues 

Fig. 1(a) shows a typical geometric model and FE mesh of an undeformed breast, 
which will be compressed with a fixed medial plate and a moveable lateral plate. The 
breast compression by the two plates can be simulated by two approaches: (1) employ 
a contact model with/without friction effect to simulate the contact between the plates 
and the breast, and apply a displacement to the compression plates to compress 
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breasts; or (2) directly apply displacement boundary conditions to the breast surface 
on both medial and lateral sides to simulate frictionless contact between the plates and 
tissues, without using actual compression plates and contact definition. The second 
approach is simple and fast but may lead to unrealistic deformation, e.g. swelling on 
the surface [8]. At present, the contact model has not been implemented in the GPU-
based dynamical FE program. Unless otherwise stated, all the breast compression 
simulations in this paper were performed by using the second approach to model the 
contact between the plates and the breast. As shown in Fig. 1(b), the breast is seg-
mented into fat, fibroglandular tissue and pectoral muscle. This model consisted of 
54025 4-node tetrahedron elements.  

2.3   FE-Based Material Parameter Identification Method  

The material parameters used for breast deformation simulations are generally ob-
tained from in vitro tests, which are different from in vivo data. Therefore, an inverse 
algorithm was proposed to estimate the material parameters of in vivo breast tissues. 
Displacements of landmarks were estimated by image registration between the com-
pressed and uncompressed MR images [1]. The material parameters that best fit the 
FEM predicted displacements to the estimated displacements of landmarks were 
found by solving a constrained optimization problem. The objective function was 
defined as: 

                         
2

arg min −
0

u(p) u         subject to lb < p < ub  (2) 

where [ , , ]
T

E v η=p  was the material parameter vector with the lower bound con-

straint lb and upper bound constraint ub ; u(p)  and
0

u  were the FE predicted dis-

placements and the estimated displacements, respectively. The inverse problem was 
solved by using a hybrid simulated annealing algorithm. The global search was per-
formed by use of the MATLAB function, simulannelbnd, to find parameter values 
near the optimum; then with these parameter values as initial values, the local search 
was performed by calling the MATLAB function, fmincon, at the end of iteration of 
the simulated annealing solver to find the optimization parameters. Since a number of 
iterations were involved in the inverse reconstruction of material parameters, it was 
not realistic to use a commercial FE program such as ABAQUS or ANSYS as an FE 
solver, particularly in case of 3D FE simulations with a typical CPU execution time of 
several hours. Therefore, due to its high speed execution, the GPU-based dynamic 
explicit FE program [6] was used as the FE solver in this study. 

3   Results 

The performance of the GPU-based explicit FE program on quasi-static deformation 
simulations of the breast was investigated by analysing the breast deformation under 
compression, as shown in Fig. 1. For comparison, the same FE model was also ana-
lysed by two commercial FE packages, ANSYS (static implicit FEM) and 
ABAQUS/Explicit (dynamic explicit FEM). To make the quasi-static deformation 
simulation valid when using explicit FEMs [5], the kinetic energy was monitored to 
ensure that the ratio of kinetic energy to internal energy was less than 5%; that is, the 
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dynamic effect could be neglected. Fig. 2 shows displacement distributions of the 
breast shown in Fig. 1(a) using three FE programs. The frictionless contact between 
the compression plates and the breast was simulated by applying a displacement 
boundary to the breast surface. 

 

Fig. 2. Total displacement distributions calculated from (a) Static implicit FE (ANSYS 11.0) 
(b) Dynamic explicit FE (ABAQUS 6.8) and (c) Dynamic GPU-based FE program  

As shown in Fig. 2, all three FE programs give a consistent displacement distribu-
tion. Although a large deformation (30% compression) was involved, the two explicit 
FE programs had no difficult converging, and unlike the implicit FE program, AN-
SYS, no intervention was required during simulation. However, an execution time of 
15.6s with the GPU-based dynamic explicit FE program (run on a 2.4GHZ Intel Core 
2 CPU PC with a NVIDIA GeoForce GTX280 1GB graphics card) was much less 
than an execution time of 6.0h with ABAQUS/Explicit (run on a 2.4GHZ Intel Core 2 
CPU PC with an integrated graphics card). Much longer computation time and addi-
tional processing to handle convergence difficulties (through re-mesh and solution 
mapping procedures) were required to complete the same simulation using ANSYS. 

The estimation of the property parameters of breast tissues was performed with the 
method described in Section 2.3. Seven FE models were created from the MR data of 
seven subjects (denoted as S1 to S7) before and after compressing the breast with two 
plates, following the method described in Section 2.2. For the sake of simplicity and 
avoiding unrealistic deformation due to partial constraints on the surface [8], all the 
surface nodes of the breast models were constrained by applying a displacement 
boundary condition directly extracted through registering deformed MR volume im-
ages to undeformed MR volume images of the breast. The GPU-based FE program 
was employed as a FE solver for breast compression simulations. In the FE-based 
reconstruction procedure, the material property parameters of fat, glandular tissue and 
muscle were considered as variables. Since only displacement boundary conditions 
were applied, the displacement field was determined by the relative values of the 
material property parameters of tissues. Here we chose fat as the reference material 
with an initial Young’s modulus of 1kPa [1]. Both transversely isotropic and isotropic 
hyperelastic models were considered. For the anisotropic hyperelastic model, the 
variables included ( , )f fv η  for fat, ( , , )g g gE v η for fibroglandular tissue and 

( , , )m m mE v η  for muscle, and we assumed that the z direction was the preferred direc-
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tion, 0 [0,0,1]a = . For the isotropic Neo-Hookean model, 0f g mη η η= = = . The mate-

rial parameters were estimated by minimising the difference between FE predicted 
displacements and estimated displacements computed via image registration at the 
landmark positions. That is, the estimated displacements at the landmarks were con-
sidered as ground truth. 80% of all nodes within the regions of glandular tissue and 
muscle were randomly chosen as landmarks. Fig. 3 shows typical outputs during the 
material parameter identification procedure for subject S1. Fig. 4 presents a compari-
son of deformed tissue structures from the image registration and the FE prediction by 
using optimized material parameters, as shown in Fig. 3(b).  

The material parameter identification process was a process to find the best match 
of deformed internal tissues between the FE prediction and the estimation with image 
registration through optimising material property parameters. Table 1 1ists the mean  
 

 

Fig. 3. Typical outputs in the material parameter estimation process for subject S1: (a) Error 
change with increasing iterations (b) optimized material property parameters 

 

Fig. 4. Deformed tissue structures on the slice through the nipple: (a) Estimation from image 
registration and (b) FE prediction 
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Euclidean distance errors (or matching errors) after optimisation. Considering that the 
displacements of landmarks were estimated from image registration and registration 
errors can not be avoided, the GPU-based explicit FE program gave a reasonable 
prediction of internal tissue deformations. The results listed in Table 1 also show that 
the FE prediction accuracy could be improved by considering the anisotropic effect of 
breast tissues, although the performance improvement was limited (up to 10%). The 
limited performance improvement may lie in the fact that the tissues have less free-
dom to deform due to constraining all the surface nodes of the breast in this study. It 
is expected that the anisotropic effect of tissues will be more obvious when the con-
tact model was directly used to simulate the breast deformation by compression 
plates, as shown in Fig. 5. ABAQUS/Explicit was used for these simulations.  
The contact between the breast and the compression plate was modelled by defining 
contact pairs on the surface. The optimised material parameters from the material 
parameter estimation process were employed for both the isotropic model and the 
anisotropic model. A clearly greater elongation in the z direction was observed from 
the isotropic model. 

Table 1. Mean Euclidean distance error between FE predicted and estimated displacements at 
the landmark positions using different material models  

Subject Error using isotropic 
hyperelastic model (mm) 

Error using anisotropic 
hyperelastic model (mm)  

Performance  
Improvement 

S1 3.518 3.263 7.2% 
S2 2.945 2.935 0.45% 
S3  2.086 2.038 2.29% 
S4  3.015 2.79 7.36% 
S5  2.122 2.076 2.12% 
S6 4.583 4.238 7.51% 
S7 3.635 3.271 10.0% 

 

Fig. 5. Breast compression simulations of subject 3 using different material models: (a) Iso-
tropic hyperelastic model (2) Anisotropic hyperelastic model 
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4   Discussion and Conclusion  

The GPU-based dynamic explicit FEM algorithm developed was capable of simulat-
ing large nonlinear quasi-static deformations of breast tissues at high speed and there 
was no convergence difficulty. 

By taking advantage of the high speed execution of the algorithm, a general mate-
rial parameter identification method was developed to estimate the material property 
parameters of in vivo breast tissues. Since only displacement boundary conditions 
were considered, the material parameters obtained were relative values. However, the 
same method could be used to estimate real material property parameters by minimis-
ing the difference between predicted force-displacement response and experimentally 
measured force-displacement response. When anisotropic effects of soft tissues were 
included, the matching errors of internal tissue deformations between the FE predic-
tion and the estimation by image registration decreased for all cases, showing that the 
anisotropic hyperelastic models provided more accurate simulations of breast defor-
mations. This confirms a similar observation made for linear transverse isotropic 
materials [1].  

Although the frictionless contact between compression plates and the breast can be 
simulated by applying surface displacement boundary conditions, it may lead to unre-
alistic deformation simulations on the surface [8]. To avoid this problem and facilitate 
wider applications such as surgery simulation, the contact model will be implemented 
into the GPU-based FE program to simulate the frictional/frictionless contact between 
soft tissues and medical equipment/devices in the future.   

Acknowledgments. The study was supported by the HAMAM project funded under 
the 7th Framework Program for Research, ICT-2007.5.3. 
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Abstract. During breast cancer diagnosis, the breasts undergo large deforma-
tions due to gravity or compression loads. It is therefore non-trivial to recover 
the deformation and register medical images of the breast in different orienta-
tions (e.g. prone versus supine). Free-form deformations and biomechanical fi-
nite element models have been used to non-rigidly register breast images from 
prone to supine, but with limited success. In this paper, we demonstrate that the 
use of a finite element model to predict the deformation of the breast from 
prone to supine provides a significantly more accurate registration compared to 
free-form deformation methods. We also show that the use of this biomechani-
cal model prediction as a prior to free-form deformation provides a significantly 
more accurate match than does the use of either method independently. 

1   Background 

There has been considerable interest in applying image registration techniques to 
warp one medical image of the breast to match another [1]. Non-rigid registration 
techniques can give rise to unrealistic deformations, such as implausible changes in 
the volume of the tissues, since they do not account for the physical characteristics of 
the breast [2]. The finite element method (FEM) can be used to apply physically real-
istic constraints on breast deformations [3, 4]. Though simulations using the FEM 
may be physically plausible, reasonable assumptions regarding the tissue properties 
and the loading conditions are required in order to predict realistic breast deforma-
tions. We examined the use of a biomechanical finite element (FE) model as a prior to 
an intensity-based non-rigid registration algorithm. We assessed localisation accuracy 
using sets of internal features identified from MRI data of a breast phantom and of the 
breasts of five volunteers. 

2   Methods 

Magnetic resonance imaging 
Five volunteers were recruited and scanned on a 1.5T Siemens MR scanning system. 
T2-weighted images of the breasts were acquired with the volunteers positioned in 
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prone and supine orientations. Although the standard sequence for breast MR imaging 
is T1, the T2 imaging protocol used in this study is more appropriate for future studies 
regarding tissue heterogeneity in the breasts, as it allows greater distinction between 
the fat and fibro-glandular tissue. 

The image dimensions were 512 x 512 pixels spanning a 350mm x 350mm field of 
view with approximately 60 slices of 2.5mm thickness. Similar imaging was per-
formed on a CIRS triple modality breast phantom containing twelve inclusions. The 
phantom was imaged before and after a 45% compression, using a T1-weighted FL3D 
pulse sequence with a slice thickness of 0.75mm. 

Image registration 
MRI data for the uncompressed volunteers’ breasts and the breast phantom were seg-
mented and used to create personalised FE models (Figs 1A and 2A, respectively) for 
FEM based registration. Further details on the procedure to create the FE models may 
be found in [5]. The FE models were based on isotropic, homogeneous, and incom-
pressible mechanical response, as defined by the neo-Hookean constitutive relation 
W=Vn(I1-3), where I1 is the first principle invariant of the right Cauchy-Green defor-
mation tensor and Vn is the stiffness parameter for the nth volunteer’s breast: V1=80Pa; 
V2=100Pa, V3=200Pa, V4=160Pa, V5=120Pa.  

A)    

B)   C)  

Fig. 1. A) Clinical MR images of the prone breast were used to create a personalised FE model 
for each volunteer. B) This model was used to predict the supine orientation, and thus warp the 
prone MRI data. This model-warped image was then compared against the clinical supine im-
age shown in (C). 
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A) B)  

Fig. 2. Finite element model of the breast phantom with inclusions indicated A) before and B) 
after simulated compression  

The breast tissues were assumed to be fixed at the ribs surface for simulating the 
prone to supine reorientation. FE implementation1 of finite deformation elasticity was 
used to simulate the large deformations that the breast tissues and phantom underwent 
between imaging. Breast deformations were modelled using gravitational body forces 
to simulate the reorientation from prone to supine (Fig 1B). To mimic the biophysical 
conditions, forces were not applied to the skin surface as has been the case in previous 
studies [4]. Frictionless contact constraints were used to represent the interactions 
between the phantom and the loading plates during simulated compression (Fig 2B). 

Non-rigid registration was performed using a free-form deformation (FFD) method 
based on B-spline warping of the images [6]. We used normalised mutual information 
as the voxel-based objective function for the FFD registration. Initially, the rigid reg-
istration of the images was determined through alignment of the rib structures (which 
did not deform substantially between scans). A global affine deformation was then 
used to capture the gross deformation between the images, followed by local registra-
tion using B-spline FFDs. We used the multi-resolution capability of the IRTK code2 
to recover the local deformations. The initial coarse resolution 
(40mm×40mm×40mm) FFD mesh was iteratively refined to a 10mm isotropic mesh. 

In this study, we compared the FFD and FE methods with a combined method 
(FEM+FFD), where the deformation is initially predicted using a FE model. The FEM 
warped image and the clinical image of the deformed object were then registered us-
ing the B-spline FFDs. 

Image comparison measures 
After applying the three methods described above, we quantitatively evaluated the 
image registration on a regional basis over the entire breast or phantom. In the phan-
tom, there were 12 embedded inclusions (diameters of 2mm-10mm) that were distinct 
under MRI. To compare the three registration algorithms, we calculated the target 
registration error [7] of the centroids of the inclusions between the model-warped 
images and the images of the compressed phantom. The volume overlap (Dice coeffi-
cient, D) and surface distance (symmetric mean absolute surface distance, SMAD) 
were also evaluated for each of the inclusions. 
                                                           
1 www.cmiss.org 
2 www.doc.ic.ac.uk/~dr/software/ 
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where Aj is the jth inclusion segmented from the target image, Bj is the same inclusion 
segmented from the warped image, di

ab is the minimum distance between the ith sur-
face voxel on A and the surface voxels on B, and na, nb are the number of surface vox-
els in A and B, respectively. 

In contrast to the phantom, landmark features inside the breasts are typically not 
well defined between clinical MR images. It was therefore advantageous to consider 
similarity measures on a regional basis across the entire breast. We used a block 
matching algorithm [8] to compare model-warped images with the target images of 
the supine breasts. This algorithm computes the optimal rigid translation for itera-
tively smaller 3D blocks (to 5mm×5mm×5mm volume) between the two images by 
maximising the normalised cross correlation between the voxel intensities in these 
blocks. The error between the two images was obtained using displacement measures. 
In this study, the displacement errors across the breast tissues for the different regis-
tration schemes were analysed by fitting a linear model and analysis of variance 
(ANOVA), followed by post-hoc comparisons (Tukey's test) using the statistical 
package R3 to determine whether there were significant differences between the accu-
racy of the three registration methods. 

3   Results 

A one-way ANOVA test on the target registration error of the centroids of the 12 in-
clusions in the phantom indicated that there were significant differences between the 
three methods (p<0.001). Post-hoc comparisons revealed that the FEM+FFD method 
performed significantly better than the FEM (mean+SD: 1.8mm+0.7mm vs 
2.7mm+1.0mm, respectively, p<0.001), which in turn outperformed FFD (mean+SD: 
5.5mm+2.1mm, p<0.001 compared to FEM). The other accuracy measures (surface 
overlap, volume overlap and block matching; Table 1) indicated consistent outcomes. 
The relatively low Dice index values (FFD: 36%; FEM: 49% and FEM+FFD: 58%) 
showed that the lesions were not accurately mapped for all three registration  
methods (Fig 3).  

The distributions of the block matching error vector magnitudes were skewed, 
thus statistics were performed using a square-root transform of the error vector 
magnitudes. For the individual breast image comparisons, the block matching re-
sults led to similar conclusions to the phantom case, whereby FEM outperformed 
FFD (p<0.001), and FEM+FFD was significantly (p<0.001) more accurate than 
FEM or FFD alone for each and every individual (Table 1). The volunteer data was 

                                                           
3 www.r-project.org 
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grouped by registration method and pooled across all volunteers, then analysed by 
fitting a linear model. One-way ANOVA on the linear models revealed significant 
differences between the three registration methods (p<0.001). Post-hoc compari-
sons indicated that the FEM performed significantly better than FFD (squared linear 
model intercepts: 3.45mm vs 4.23mm, respectively, p<0.001), and that the 
FEM+FFD method outperformed the FEM (squared intercepts: 1.87mm vs 3.45mm, 
p<0.001) (Table 2). 

Table 1. The measures of error for the 3 different registration methods used to deform the 
clinical images of the breast/ breast phantom to match images of the breast/ phantom under 
gravity and compression loads, respectively.  

 FFD FEM FEM+FFD 

Breast Phantom 
(internal landmarks) 
Centroid location (mm) 
SMAD (mm) 
Dice Index (%) 

 
 
5.5 + 2.1 
2.0 + 0.6 
36.3 + 18.9 

 
 
2.7+1.0 
1.4 + 0.4 
49.1 + 14.0 

 
 
1.8 + 0.7 
1.0 + 0.3 
58.0 + 14.3 

Breast Phantom 
(block matching) (mm) 

1.0 + 1.4 0.9 + 1.2 0.5 + 1.0 

Volunteer 1 (mm) 12.4 + 8.9 4.3 + 3.2 3.5 + 2.0 

Volunteer 2 (mm) 8.9 + 9.8 8.7 + 8.8 5.2 + 4.7 

Volunteer 3 (mm) 2.4 + 4.0 2.0 + 2.2 1.4 + 2.1  

Volunteer 4 (mm) 6.2 + 8.4  6.1 + 5.4  2.2 + 3.3 

Volunteer 5 (mm) 5.9 + 5.4  3.8 + 3.6  1.8 + 2.5 

                     

A) B) C)  

Fig. 3. The difference images for the simulated compression of the breast phantom using  
A) FFD, B) FEM and C) FEM+FFD minus the experimental compressed image 
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Table 2. Statistical comparison between the 3 methods for the registration of prone to supine 
images of the breast. A linear model was fitted to the square root of the magnitude of the block 
matching error vectors. The linear model intercepts, and standard errors of the mean (SE) the 
squares of the intercepts are listed. All pair-wise comparisons were significantly different 
(p<0.001).  

Method Squared intercept (mm) Squared confidence interval (mm) 

FFD 4.23 ( 4.21 ; 4.26 ) 

FEM 3.45 ( 3.43 ; 3.46 ) 

FEM+FFD 1.87 ( 1.86 ; 1.89 ) 

 
 

 
 

     

Fig. 4. Registration error vectors on a supine clinical image for volunteer 1 A) FFD; B) FEM; 
C) FEM+FFD and volunteer 2 D) FFD; E) FEM; F) FEM+FFD 
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4   Discussion 

We have analysed the ability of three non-rigid registration algorithms to predict large 
deformations of a breast phantom, and the breasts of five volunteers. We registered 
images of the uncompressed and compressed phantom, whilst deformations were 
from prone to supine for the breast studies. Tables 1 and 2 demonstrate that using a 
biomechanical FE model as a prior to localised FFD warping significantly improves 
the image registration accuracy in all cases. Moreover, the FE model consistently out-
performed FFD. 

In all of our experiments, the FEM positioned the skin surface above the supine 
image data. This is reflected in the error distribution for the FEM model and was not 
improved by decreasing the breast tissue stiffness parameter. We will most likely be 
able to improve on the results based on the FE predictions by refining modelling as-
sumptions, such as the boundary constraints. Examination of the resulting error  
vectors for all volunteer cases indicated that using fixed boundary contraints was too 
restrictive, with the maximum errors for the FEM model occurring along the axilla 
region of the breast model (Fig 4). The breast tissues are attached via Cooper’s liga-
ments to the chest wall, which allows for some degree of sliding (as opposed to being 
rigidly fixed). To address this, we plan to investigate the use of sliding boundary con-
straints at the rib surface in future studies. 

From Table 1, we observed that the Dice index for the breast phantom inclusions 
was rather low for all three methods (FFD: 36%; FEM: 49% and FEM+FFD: 58%), 
even though the block-matching results indicated a good match. This was also evident 
in the higher values for the inclusion centroid localisation errors compared to the 
block matching results. Thus, even though the FFD, FEM and FEM+FFD methods all 
reliably reproduced the overall deformation of the compressed breast phantom, they 
less accurately mapped the local deformations of the individual inclusions within the 
phantom (Fig 3). These inclusions are either cystic or dense masses, which have lower 
or higher stiffness values, respectively, compared to the bulk material of the phantom. 
Not accounting for these material heterogeneities may have led to the poor deforma-
tion match for the inclusions. In particular, the FE models used in this study were as-
sumed to consist of homogeneously stiff materials, which most likely led to errors in 
modelling the localised deformations of the inclusions. The FE model of the phantom 
may thus be improved by representing the spatial differences in the material proper-
ties within the phantom. Similarly, breasts are not homogeneous, but they are made 
up of several tissue types, including fat and fibroglandular tissues surrounded by skin. 
We are presently developing techniques to reliably represent these tissue heterogenei-
ties inherent in the breast and breast phantom in order to improve model deformation 
predictions. 

In this paper, we have shown that the use of a biomechanical model coupled with 
an image-based non-rigid registration technique can improve the image registration of 
large breast deformations, such as from prone to supine. We have also identified ways 
to improve the FE model predictions and thus registration accuracy (particularly if 
combined with FFD). Such improvements are expected to increase the clinical appli-
cability of these methods for reliably registering medical images of the breast. 
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The Effect of Motion Correction on
Pharmacokinetic Parameter Estimation

Andrew Melbourne, John H. Hipwell, and David J. Hawkes

Centre for Medical Image Computing, University College London

Abstract. A Dynamic Contrast Enhanced MRI dataset consists of
many imaging frames, often both before and after contrast injection.
Due to the length of image acquisition, patient motion is likely and im-
age re-alignment or registration is required before further analysis such
as pharmacokinetic model-fitting. Non-rigid image registration proce-
dures may be use to correct motion artefacts, however careful choice of
registration strategy is required to reduce mis-registration artefacts as-
sociated with enhancing features. This work compares the results of two
model-fitting algorithms with two registration methods. Results show
changes to the fitted parameters after motion correction within enhanc-
ing regions. This preliminary work indicates the importance of careful
registration algorithm selection.

1 Introduction

Patient movement between the acquisition of contrast enhanced MRI images
can cause difficulties for subsequent analysis and problems for the model-fitting
procedures used for pharmacokinetic analysis [1]. Although conceivable that mo-
tion artefacts will result in biased parameter estimates from the model-fitting
routine, it remains a challenge to demonstrate any improvement due to auto-
matic image alignment algorithms. Some effort has been made, for instance in
[2,3,4,5] but there remains no accepted standard of image registration accuracy
in DCE-MRI.

In general, automatic image registration algorithms find the registration of
local contrast change difficult. This is due to the image-similarity measure being
minimised for identical images and therefore not between images with contrast
change. As a result it is difficult to analyse changes due to image registration
by inspection of an increase (or otherwise) of image-similarity. Due to inappro-
priate image-similarity measures, a common mis-registration artefact is volume
change of enhancing regions. This is often counteracted by a penalty term re-
flecting the local Jacobian determinant of the deformation field [6], thus this also
presents some proxy for registration performance. However since it is normally
incorporated as a constraint, this precludes its use as a measure of assessment.

Improvements in the accuracy of parameter estimation and a quantitative
analysis of factors affecting registration performance have the potential to en-
hance the targeting and assessment of therapeutics. The accurate determination
of summary parameters in contrast enhanced MR mammography is vital for

J. Mart́ı et al. (Eds.): IWDM 2010, LNCS 6136, pp. 744–751, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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diagnostic and prognostic purposes. Image registration may be able to remove
visible motion but the importance is the impact of registration algorithms on
the extraction of accurate pharmacokinetic data. This preliminary work high-
lights some of the differences that can be generated using different model-fitting
and registration algorithms emphasising some of the differences between motion
artefacts and mis-registration by the registration algorithm.

2 Methods

The chosen registration algorithms are built on the b-spline image registration
algorithm developed in [7]. This highly optimised algorithm is suitable for the
high resolution 3D datasets used in this study. The four post-contrast volumes
are registered to the pre-contrast volume (Reg 1) (See (1) where each timepoint
t, in a dataset A, is registered, →, to the first image A(1)). The results in this ab-
stract do not penalise the registration algorithm for local volume change, leaving
the final deformation field result to be assessed, but do include the conventional
bending energy penalisation. A second registration method (Reg 2) incorporates
this algorithm into the DCE-MRI registration method in [4] incorporating a
data-driven iterative routine for minimising sensitivity to predictable contrast
change. The algorithm is shown in (2), in which the result (the new best reg-
istered data An+1) at a given iteration n, is given by the registration of the
best registered data from the previous step An, registered to artificial images
generated from a temporal principal components analysis of the best registered
data from the previous step, rebuilt using n principal components Um generated
at that iteration. All registrations are 3D. Registrations incorporate normalised
mutual information (NMI) as an image similarity measure: although due to its
generality it is considered suitable for ’multi-modality’ images it is not necessar-
ily suitable for images with time-varying tissue contrast.

A(t) → A(1) (1)

An+1(t) = An(t) →
n<T∑
m=1

(Un
m ·An)Un

m(t) (2)

Model-fitting is carried out using two heuristic models. This is in contrast to
more physiological models that require accurate T1 estimation, which are them-
selves susceptible to additional motion artefact errors. Here, a modulated sigmoid
function is used to fit the signal directly (3). In general the parameters of the
modulated sigmoid function reflect the properties we are interested in: namely
the enhancement rate represented by μin and the fade-out rate modulated by
μout. The maximum enhancement is encoded in the S0 parameter.

A second model is also compared, although the interpretation of the units is
slightly different in (4) compared to (3). This form has a close relationship to the
dual-exponential input model used in [1] although the derivation and interpreta-
tion are different. Model 2 will have poor behaviour at the bolus arrival time and
requires the extra condition that S(t < tonset) = 0.
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In contrast, model 1 maintains a continuous gradient throughout bolus arrival.
An important difference of these two models is the interpretation of the bo-
lus onset: bolus arrival at t = 0 coincides with the rise from zero for model
2 but corresponds to the half-maximum of model 1, hence care is required to
avoid the possibility of systematic bias. Models 1 and 2 could be used to re-
duce the interpretation needed in a registration and fitting method such as [3].
The models are also less susceptible to errors due to mis-registration between
the images used to estimate T1 values. Example curves are plotted in Figure 1
for parameters: model 1; [S0, μin, μout] = [1, 3min−1, 0.01min−1] and model 2;
[S0, μin, μout] = [4.64, 4.71, 0.009]min−1.

S(t) =
S0e

−μoutt

1 + e−μint
(3)

S(t) =
S0

μin − μout
(e−μoutt − e−μint) (4)

Direct image registration assessment is carried out by inspection of the average
intra-dataset, inter-volume similarity. This provides an indicator of registration
performance. The deformation field Jacobian (in the absence of a volume pre-
serving modification to the registration algorithm) may also be analysed, which
may show discrepancies between registration algorithms. We also inspect changes
to the parameter maps and attempt to correlate these with motion artefacts by
generating a time series of synthetic images from the parameter maps.

Five high resolution 3D volumes from four patients are analysed, three at 3T
and two at 1.5T similar to the protocol in [8]. A pre-contrast volume is acquired
followed by four subsequent volumes after contrast bolus injection over a time of
approximately 18 minutes. The datasets thus allow comparison of registration
performance alongside model-fitting evaluation. Pixel sizes are 0.92x0.92x1mm

Fig. 1. Example time intensity curves for blue) model 1 (Equation3) and green) model
2 (Equation 4)
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for 3T and 0.66x0.66x1.3mm for 1.5T. Additional low spatial resolution data
is acquired immediately after bolus injection, thus an estimate of bolus arrival
time can be used to remove a parameter from the model-fitting.

3 Results

Summary registration and model-fitting parameters are shown in Table 1 for a
single slice in each dataset. The total model-fit residual for both model 1 and 2
is lower for registration method 2 (Reg 2) than for no registration and method
1 (Reg 1). The fitting of model 1 often has a lower final model-fit residual than
for fitting model 2. The large residual for dataset 5 appears to be the result of
mis-registration by method 1 in an area of pectoral muscle. For the registration
statistics, the average inter-volume NMI is improved by image registration, more
so for registration method 2 than 1, perhaps due to the iterative update of the
target images used in Reg 2. Assessment of the standard deviation of the per-
pixel percentage volume change - found by taking the log of the local Jacobian
determinant for each pixel - shows only a small volume change in addition to
smaller volume change statistics seen for Reg 2 than Reg 1. Specific results of
the model-fitting for dataset 2 are shown in the histograms of Figure 2. Figures
2a and b show histograms of the distribution of all fitted values of −μin and
−μout found by model 1 and their change under image registration (shown as
a line for improved visibility). Correction of motion artefacts visibly changes
the parameter distribution across the whole breast, corresponding to improved
visual alignment in some areas of the images requiring further investigation.

Inspection of Dataset 2 (associated with Figure 2) reveals differences due to
image registration. The first column of Figure 3 shows timepoint 2 registered by
each method. Whilst superficially similar in all cases, there are motion artefacts
in the original dataset and mis-registration artefacts between timepoints in the
central enhancing region for Reg 1 when compared with other images in the
dataset. this is true when inspecting neighbouring slices for through-plane effects
and for the remaining timepoints. Column 2 contains corresponding images to

Table 1. Registration performance comparison. Average model fit residuals for models
1 (Fit1) and 2 (Fit2) (units of intensity, for a single slice). Also shown are the average
inter-volume NMI for each dataset ( ¯NMI) and the per-pixel standard deviation log of
the Jacobian determinant (Jac).

NoReg Reg1 Reg2 NoReg Reg1 Reg2
Dataset Fit1 Fit2 Fit1 Fit2 Fit1 Fit2 ¯NMI Jac ¯NMI Jac ¯NMI Jac

1 0.043 0.046 0.028 0.030 0.026 0.027 1.56 0 1.59 0.017 1.59 0.012
2 0.053 0.056 0.041 0.042 0.028 0.030 1.56 0 1.58 0.016 1.58 0.013
3 0.028 0.30 0.023 0.025 0.020 0.021 1.55 0 1.55 0.018 1.57 0.016
4 0.024 0.027 0.022 0.024 0.022 0.024 1.55 0 1.54 0.022 1.56 0.022
5 0.018 0.018 0.031 0.032 0.013 0.013 1.57 0 1.57 0.021 1.58 0.028
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Fig. 2. Histogram counts of all values of μin and μout over the manually segmented
right breast for dataset 2 using model 1 and varying registration method. a: histogram
of fitted parameter values for μin and b: for μout

Fig. 3. Differences in model-fitting after each image registration method (rows)
(Dataset 2, timepoint 2). First column [a,e,i]: registered timepoint 2, second column:
synthetic images at timepoint 2 generated from model-fitting, third column: differ-
ence of first column with first (pre-enhancement) image in dataset and fourth column:
difference of second column with pre-enhancement synthetic images. Rows: 1) No reg-
istration 2) Reg 1, 3) Reg 2.
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Fig. 4. Analysis of parameter maps for dataset 2. Rows: parameters for model 1,
[S0, μin, μout, R]T . Columns: Unregistered data, Reg1, Reg2. Images smoothed by
Gaussian of width σ =

√
2. Figure best viewed electronically. All rows scaled to maxi-

mum value = maximum intensity (red).

column one, but these images have been generated from the parameters found
by the model-fitting routines (here model 1). We begin to see discrepancies in
the resolution of small enhancements (compare Figure 3F and 3J). The third
and fourth columns of Figure 3 are difference images with the corresponding
version of timepoint 1 (original, registered, synthetic as required); differences
between registration methods are now enhanced. Motion artefacts associated
with the lateral breast are present in the unregistered case: these are reduced by
both registration methods. However, in the case of Reg 1, there is some loss of
resolution and detail in the model-fitting of the enhancing regions, this is likely
to be due to the mis-registration artefacts in the remainder of the dataset. These
mis-registration artefacts are not present under Reg 2 resulting in finer model-
fitting in the enhancing breast. Thus, care must be taken with the registration
algorithm. Possible solutions are the registration of all images within a dataset
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to one another, in a scheme such as Reg 2, or more careful choice of the fixed
image, for instance registering all images to the second (enhancing) image, A(2).

Parameter maps for dataset 2 are shown in Figure 4. The motion artefacts in
Figure 3 column 3 around the lateral breast boundary are associated with larger
values of the μin parameter. This reflects the breast motion in the enhancing
images relative to the first image in the dataset; thus the intensity change due
to motion is fitted by non-zero model-parameter values. Mis-registration arte-
facts using Reg 1 manifest as the area of large residual in the final row. This
feature is not present in the corresponding images for no registration and for
Reg 2 and is likely to be the result of registration of enhancing features to an
inconsistent position in the pre-enhancement image. In general, after image reg-
istration, existing features are enhanced relative to their surroundings and there
are examples of higher regions of μin in small areas after motion correction that
are not the result of through plane artefacts.

A summary analysis of the deformation magnitude (using an l2-norm) for
each timepoint by each registration method reveals: for Reg 1, increasingly sub-
stantial deformations are needed with increasing time from timepoint 1 and for
Reg 2, each timepoint has a largely equivalent deformation magnitude. This is
commensurate with the registration scheme used, since Reg 1 registers each im-
age to the space of the first image, whilst the Reg 2 method registers each image
towards an average position.

4 Discussion

This work presents an initial investigation of the effect of image registration
on pharmacokinetic parameter estimation. Early results suggest that a reduc-
tion of motion artefacts can be linked to changes in parameter estimation over
registered regions, confirming that motion correction is an important step in
contrast-enhanced MR post-processing. In addition, results suggest that perfor-
mance differences can be achieved when varying the registration method (hence
it is important to choose an optimal registration strategy given the data). In
particular, if the chosen registration strategy is sub-optimal, mis-registration
artefacts may occur, as shown in Figure 3. The emphasis must be on a registra-
tion strategy that reflects the time-series nature of the data or carefully chooses
a suitable fixed image to which to register, however validation of differences in
registration algorithms is challenging without a standardised framework. Fur-
ther work will assess the contribution of registration algorithms incorporating
a volume change penalty in the registration and algorithms involving iterative
model-fitting as part of the registration procedure. Performance differences will
be investigated alongside monitoring of the changes to parameters during the
registration procedure.

Acknowledgements. This work was funded by EPSRC grant EP/E031579/1.
The authors would like to thank the Radboud University Nijmegen Medical
Centre.



The Effect of Motion Correction on Pharmacokinetic Parameter Estimation 751

References

1. Tofts, P.S.: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn.
Reson. Imaging 7(1), 91–101 (1997)

2. Hayton, P., Brady, M., Tarassenko, L., Moore, N.: Analysis of dynamic MR breast
images using a model of contrast enhancement. Med. Image Anal. 1(3), 207–224
(1997)

3. Buonaccorsi, G.A., O’Connor, J.P.B., Caunce, A., Roberts, C., Cheung, S.,
Watson, Y., Davies, K., Hope, L., Jackson, A., Jayson, G.C., Parker, G.J.M.: Tracer
kinetic model-driven registration for dynamic contrast-enhanced mri time-series
data. Magn. Reson. Med. 58(5), 1010–1019 (2007)

4. Melbourne, A., Atkinson, D., White, M.J., Collins, D., Leach, M., Hawkes, D.: Regis-
tration of dynamic contrast-enhanced MRI using a progressive principal component
registration (ppcr). Phys. Med. Biol. 52(17), 5147–5156 (2007)

5. Milles, J., van der Geest, R.J., Jerosch-Herold, M., Reiber, J.H.C., Lelieveldt, B.P.F.:
Fully automated motion correction in first-pass myocardial perfusion mr image se-
quences. IEEE Trans. Med. Imaging 27(11), 1611–1621 (2008)

6. Rohlfing, T., Maurer, C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving non-
rigid registration of MR breast images using free-form deformation with an incom-
pressibility constraint. IEEE Trans. Med. Imaging 22(6), 730–741 (2003)

7. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Fox, N.C.,
Hawkes, D.J., Ourselin., S.: Fast free-form deformation using graphics processing
units. In: Comput. Methods Programs Biomed. (2009)

8. Veltman, J., Stoutjesdijk, M., Mann, R., Huisman, H.J., Barentsz, J.O., Blickman,
J.G., Boetes, C.: Contrast-enhanced magnetic resonance imaging of the breast: the
value of pharmacokinetic parameters derived from fast dynamic imaging during
initial enhancement in classifying lesions. Eur. Radiol. 18(6), 1123–1133 (2008)



Improved Detection of Cancer in Screening
Mammograms by Temporal Comparison

Fei Ma, Mariusz Bajger, Simon Williams, and Murk J. Bottema

Flinders University, Bedford Park 5042, SA, Australia
{feim,Mariusz.Bajger,swilliam,murkb}@csem.flinders.edu.au

Abstract. A method is presented for including information from the
preceeding mammogram in a scheme for automatically detecting ma-
lignant masses in screening mammograms. The method circumvents the
inherent difficulty of registering temporal mammograms by replacing im-
age registration by graph matching. The scheme incorporates a single
image mass detection algorithm and so the contribution of the temporal
analysis can be measured. At a true detection rate of 80 percent, the sin-
gle image scheme results in 1.02 false positive detections per image while
the temporal scheme results in 0.96 false positives. At 90 percent true
detection, the false positive rates per image are 1.84 and 1.63 respectively.

Keywords: computer-aided mammography, breast cancer, mass detec-
tion, graph matching, temporal analysis.

1 Introduction

In reading screening mammograms, the availability of a previous mammogram
provides important information regarding the likelihood of breast cancer. If a
suspicious region in the current mammogram matches closely in appearance and
location to a suspicious region in the previous mammogram, then the anomaly
is not likely to be associated with cancer. If there is no corresponding anomaly
in the previous mammogram or if there is significant change, then this argues for
cancer. Accordingly, inspecting the previous mammogram helps to reduce the
number of false positive detections and allows the identification of cancer that
might be missed in reading the current mammogram alone.

Automating the process of incorporating previous mammograms could play
an important role in computer-aided mammography but has not been adopted
widely. This is due, in part, to the difficulty of the image registration problem,
in particular, the task of automatically identifying anomalies in one image with
corresponding regions in the previous image.

One approach is to find a function that maps the breast in one image to
match the breast in the other image. Hasegawa et al. started with a rigid body
alignment followed by registration of the dense regions of the mammogram using
deformation of a B-spline control point grid [3]. Richard and Cohen used a
variational formulation to find the smooth function φ that best explains the
deformation needed to map one mammogram to another and applied the method
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to bilateral pairs [11]. While their method is very satisfying from a mathematical
point of view, the difficulty with methods based on warping functions is that,
in practice, the true map between two images of the same breast is usally not
smooth and need not even be well defined.

Another approach is to search locally in one breast for a matching anomaly
found in the other breast. Sanay-Gopal et al. used a search region based on
location of the mass in the current mammogram relative to the centroid of the
breast and the nipple [12]. Sahiner et al. investigated the classification of masses
as benign or malignant based on comparing attributes of the current and previous
mammogram, but relied on radiologist defined regions of interest to search for
associated anomalies in the mammograms [2].

A natural extension is to combine global and local registration. Timp et al.
performed initial rigid body global registration by aligning the centers of mass
(after removing the pectoral muscle) of the two breasts and then used local
searches to align suspicious regions in the current breast [14]. Marias et al. also
used two stages. In the first stage, the boundaries of the breast were matched.
In the second stage, thin plate slpines were used to match the multiresolution
representations of the internal structure of the breasts [9].

Comparing these approaches is difficult because results were reported on dif-
ferent data sets. A comparison of four methods: nipple alignment, center of mass
alignment, maximizing mutual information after allowing deformation by shift-
ing, rotating, scaling and vertical shear and warping suggested that the method
using mutual information was best [15]. However, the problem of temporal com-
parison cannot be considered as solved.

This paper extends the strategy introduced in [7], namely that of replacing
image registration by graph matching. The potential advantage of this method
is that registration is restricted only to image features relevant to breast cancer.
This means there is no opportunity for errors in registration of features not
related to cancer to contribute to the overall failure of the registration process.
The main steps of the method are; (1) segmentation of the current and previous
image, (2) assigning mass-like scores to components to reflect the likelihood that
the component corresponds to a malignant mass, (3) applying graph matching
algorithm to associate candidate masses in the current and previous image and
(4) adjusting the range of the mass-like score to reflect the information from
both images.

Although the study in [7] demonstrated a slight improvement in detection
performance when temporal analysis was included, this has to be interpreted
with care for two reasons. First, the performance was reported on a component
by component basis and not on the true and false positive detections per image
or per case. Second, the performance of the initial segmentation scheme was not
competitive with state of the art schemes, leaving open the possibility that the
improvement seen in applying temporal analysis only made up for deficiencies
in the original segmentation scheme and would not actually improve screening
performance in practice.



754 F. Ma et al.

The present study follows the same steps as in [7] but upgrades part of the
segmentation process by using sublevel set analysis [13], [1], [4]. This results in
improved segmentation performance for detection of cancer in single images and
hence provides a more reliable base for judging the contribution of the temporal
analysis.

2 Methods

Initial segmentation was accomplished using an adaptive pyramid (AP) method
[5]. This graph theory based method reliably identifies components associated
with masses but does not provide accurate boundaries of masses needed to com-
pute characteristics such as size, shape and contrast parameters. The components
found by the AP method were refined using sublevel set analysis [13], [1], [4].
This involves forward extraction of sublevel sets, excluding those not relevant to
mass detection, backward extraction and contour identification [8]. Sublevel set
analysis does produce accurate boundaries but only once locations of interest
are provided. Hence, initial segmentation by AP is viewed as seeding segmenta-
tion by sublevel sets. Next, a mass-like score was computed based on 17 features
(Appendix) measured on the components found in the segmentation step. The
mass-like score was used to restrict further attention to candidate malignant
masses only. The cut-off was set sufficiently low that a very large number of true
malignant masses are likely to be included (in principle all, but this cannot be
guaranteed). Many non-malignant anomalies were included too.

A full graph was constructed with the surviving candidate masses as vertices
and with fuzzy spatial relationships used as edge weights [10]. More explic-
itly, the four relationships to the right of, to the left of, below, and above, were
computed for two points p and q by

μright =
{

cos2 θ if −π
2 ≤ θ ≤ π

2 ,
0 otherwise,

μbelow =
{

sin2 θ if 0 ≤ θ ≤ π,
0 otherwise,

μabove =
{

sin2 θ if − π ≤ θ ≤ 0,
0 otherwise,

μleft =
{

cos2 θ if − π ≤ θ ≤ −π
2 , π

2 ≤ θ ≤ π,
0 otherwise,

where θ is angle between the positive x-axis and the line segment joining p and
q. For two components A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bm}, the multiset
Θ = {θij = ∠(aibj), i = 1, 2, . . . , n, j = 1, 2, . . . , m} was constructed and the
histogram associated with Θ was defined as

HΘ(A, B) = {(θ, fθ)},
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where f(θ) is the number of pairs (ai, bj) with ∠(ai, bj) = θ and f is normalized
by maxθ f(θ).

To evaluate the degree to which a spatial relation between two regions holds,
the histogram H is treated as an unlabeled set, which represents the spatial
relation between A and B. The problem of to what extent H is described by
the four spatial relations is then treated as a problem of compatibility of fuzzy
sets [10]. If G denotes the fuzzy set of one of the spatial relations and μH and
μG denote the membership functions of H and G, the compatibility of H to the
fuzzy set G is the fuzzy set CP (H ; G) whose membership function is defined as

μCP (H;G)(v) =
{

sups,v=μG(s) μH(s) if μ−1
G (v) �= ∅,

0 if μ−1
G (v) = ∅.

The final degree to which a spatial relation holds is defined as the center of
gravity of the compatibility fuzzy set, CP (H ; G).

In addition, the boundary of the breast was included as special vertex in
the graph as this allowed a connection between the relative positions of masses
and the global shape of the breast. A graph matching scheme similar to [6] was
used to match the resulting graphs of the current and previous images. The
algorithm was adjusted to compensate for the fact that matching solutions of
different lengths must be compared in this application.

3 Data

Cases were obtained from the archives of BreastScreen SA (Adelaide, South
Australia) subject to the criteria that (1) one breast contained a malignant mass
found at screening and verified by histopathology, (2) a previous mammogram
from a visit 2 - 3 years earlier and judged to be normal was available. This
resulted in 95 images with cancer and 90 images without cancer. Images were
digitized at 48μm resolution and 12 bit depth using a Vidar Diagnostic Pro
Advantage digitizer. For the segmentation step, images were reduced by replacing
8× 8 pixel patches by a single pixel having intensity equal to the mean intensity
of the patch.

4 Results and Discussion

Every image was assigned a score equal to the maximum mass-like score of any
of its components. For a given threshold on the mass-like score, the percentage
of images containing true malignant masses and correctly identified as such,
was computed, as well as the number of false positive components within each
current image (Table 1). This resulted in a measure of the performance of the
process based on the current screening visit only. To incorporate the previous
image, a candidate mass in the current image for which no match was found in
the previous image, retained its current image mass-like score. Candidate masses
for which a similar anomaly was found in the previous image were assigned the
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Table 1. The entries show the average number of false positive detections per image
or per case for the given true detection rate

per-case per-image
Detection Single Temporal Single Temporal

80% 1.04 1.00 1.02 0.96
90% 1.62 1.43 1.84 1.63

minimum of the two scores. This step incorporates the prior knowledge that the
appearance of the candidate mass in the previous image decreases the likelihood
that it is associated with cancer. Also, if there is a match, but the mass has
changed significantly (lesion growth, for example) then this score reflects such
a change and the lesion is more likely to be assigned as cancer. These adjusted
mass-like scores were used to compute the number of false positive detections
per image for fixed true detection rates as described above (Table 1). Similarly,
a case was considered a false positive case if at least one image contained at least
one false positive.

The performance of the detection scheme applied to current images only (Sin-
gle) is comparable to results published for the best mass detection algorithms.
Hence the reduction of false positive detections per image seen when the previ-
ous image is compared to the current image (Temporal) represents a true, albeit
small, gain in performance.

4.1 Examples

Visual inspection of images indicates that plausible matches were found in most
cases including cases where difference in positioning resulted in different appar-
ent sizes of the breast (Figure 1) or substantial difference appearance (Figure 2).

Fig. 1. Examples of match results. (a) The current mammogram. (b) The same breast
from the previous visit. (c) The same image as (a) but with outlines showing matched
regions. (d) The same image as (b) but showing the matched regions color coded to
indicate the correspondence between the regions in (c). The matches seem to be correct
despite substantial difference in the size and position of the breast.
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Fig. 2. (a) The current mammogram. (b) The same breast from the previous visit.
(c) Same as (a) but with matched regions annotated. (d) Same as (b) but showing
matched regions color coded to indicate associations with regions in (c). The matching
process correctly identified the regions shown despite substantial differences in relative
location, appearance of the anomalies and overall positioning of the breast.

Fig. 3. (a) The current mammogram. (b) The same breast from the previous visit. (c)
Same as (a) but with regions annotated. (d) Same as (b) but showing matched regions
color coded to indicate associations with regions in (c). The matches are not correct in
this case. The global distribution of the dense tissue was very different in these images
and lead to incorrect association of regions.

In both these examples, regions which may appear suspicious in the current mam-
mogram were successfully identified in the previous mammogram thus improving
the chance that the regions are correctly identified as not being associated with
cancer.

The matching process failed conspicuously in only one case (Figure 3). This
failure was likely due to very difference of appearance of the dense tissue in the
current and previous mammogram. In a clinical setting, the result of such an
error would be to alert the radiologist that there were many mass-like regions in
the current mammogram with no obvious corresponding anomaly in the previous
mammogram and so that these regions should be considered carefully.
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Appendix: Features for Mass-Like Scores

R denotes the region to which features are assigned, R(i, j) is the intensity of
pixel (i, j) and | · | denotes size.

– Solidity: |R|
|C(R)| , where C(R) denotes the convex hull of R.

– Ratio of lengths of the major and minor axis of the ellipse that has the same
normalized second central moments as R.

– Standard deviation of the radial distance of the boundary of R.
– Intensity variance along the boundary: |E(R)−E(O2)|

E(R)+E(O2) , where Ot represents
the set of pixels outside component R but within t pixels distance. E(·) is
the mean intensity.

– Contrast measure 1: (E(R)−E(Od))2

σ(R)+σ(Od) , where d =
√

|R|
π and σ(R) is the std of

the intensity in R.
– Contrast measure 2:

∑
i |H(R, i) − H(Od, i)|, where H(R, i) represents the

proportion of pixels in component R with intensity i.
– Entropy of the intensity distribution:

∑256
k=1 H(R, k) log(H(R, k)).

– Energy:
∑

i,j R(i,j)2

|R| .
– Luminosity inertial momentum:

∑
i,j R(i, j)D(i, j)2 where D(i, j) is the Eu-

clidean distance between (i, j) and center of luminosity. The center of lumi-
nosity is defined by xlc =

∑
i,j R(i,j)i∑
i,j R(i,j) and ylc =

∑
i,j R(i,j)j∑
i,j R(i,j) .

– Anisotropy: the distance between the geometric center and the center of
luminosity.

– Seven second and third order central invariant moments of R.



Combined Reconstruction and Registration of
Digital Breast Tomosynthesis

Guang Yang1,�, John H. Hipwell1, Matthew J. Clarkson1,2,
Christine Tanner1,3, Thomy Mertzanidou1, Spencer Gunn4,

Sebastien Ourselin1, David J. Hawkes1, and Simon R. Arridge1

1 Centre for Medical Image Computing, Department of Computer Science and
Medical Physics, University College London (UCL), London, WC1E 6BT, UK

G.Yang@cs.ucl.ac.uk
2 Dementia Research Centre, UCL Institute Of Neurology, London, WC1N 3BG, UK
3 Computer Vision Laboratory, Eidgenössische Technische Hochschule Zürich (ETH),

8092, Zürich, CH
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Abstract. Digital breast tomosynthesis (DBT) has the potential to en-
hance breast cancer detection by reducing the confounding effect of super-
imposed tissue associated with conventional mammography. In addition
the increased volumetric information should enable temporal datasets to
be more accurately compared, a task that radiologists routinely apply to
conventional mammograms to detect the changes associated with malig-
nancy. In this paper we address the problem of comparing DBT data by
combining reconstruction of a pair of temporal volumes with their reg-
istration. Using a simple test object, and DBT simulations from in vivo
breast compressions imaged using MRI, we demonstrate that this com-
bined reconstruction and registration approach produces improvements
in both the reconstructed volumes and the estimated transformation pa-
rameters when compared to performing the tasks sequentially.

1 Introduction

Digital breast tomosynthesis (DBT) is an X-ray modality in which a small num-
ber of low dose X-ray images (typically between 10 and 50) are acquired over a
limited angle and reconstructed into a 3D volume [1]. A key issue in the creation
of DBT images is the algorithm used to perform the reconstruction. This has
been a topic of substantial research with many algorithms being proposed in-
cluding traditional shift-and-add (SAA) [2], filtered back-projection (FBP) [3],
algebraic reconstruction technique (ART) [4], maximum-likelihood expectation
maximization (MLEM) [1], and matrix inversion tomosynthesis (MITS) [5]. In
addition surveys have been published comparing and contrasting the relative
merits of each approach [2] [4].
� This work has been funded by DTI Project Digital Breast Tomosynthesis

TP/7/SEN/6/1/M1577G. The authors would like to thank the UK MR Breast
Screening Study (MARIBS) [6] for providing the data for this study.

J. Mart́ı et al. (Eds.): IWDM 2010, LNCS 6136, pp. 760–768, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Combined Reconstruction and Registration of Digital Breast Tomosynthesis 761

Reconstructed 3D DBT images have high in-plane resolution but low out-of-
plane resolution and exhibit reduced superposition of overlying tissue structures
as compared to conventional X-ray mammography. Whilst the added depth in-
formation offered by DBT has the potential to enhance detection and diagnosis
of breast cancer [7]; the greater volume of data, relative to X-ray mammography,
increases the need for automated tools to aid the reading process. This is of partic-
ular importance if DBT is to be adopted in the high workload screening context.

In this paper we address the problem of comparing temporal DBT volumes via
registration. This is a challenging task due to the significant artefacts associated
with DBT reconstructions. These are generated by the limited field of view of
the acquired images and the correspondingly large null-space in the frequency
domain. Rather than registering the images after reconstruction therefore, we
investigate the benefits of combining both reconstruction and registration, and
test the hypothesis that the performance of each task will be enhanced as a result.
We propose an iterative method of least squares optimisation for our combined
reconstruction and registration scheme. This avoids the implicit assumption of
missing data being equal to zero in algorithms such as in FBP.

In recent relevant research on SPECT imaging [8] Schumacher et al. present
a method to combine reconstruction with motion correction using a rigid trans-
formation. We have developed an iterative algorithm which alternates between
optimising the reconstructed intensities at each time point and the affine trans-
formation parameters between time points.

2 Method

Two sets of limited angle X-ray acquisitions, y1 ∈ RN2 and y2 ∈ RN2, obtained
at different times, can be expressed in terms of a 3D volume, x ∈ RN3 , in two
positions related by the transformation, R, with parameters, ζp ∈ R, and the
system matrix A : RN3 → RN2 via

y1 = Ax, (1)

and
y2 = Ax† = ARζpx. (2)

We solve equations 1 and 2 with respect to estimates x1 and x2 of x and the
registration parameters ζp, by alternating an incomplete optimisation (i.e. n
iterations) of the reconstructed volumes x1 and x2:

x∗
1 = argmin

x1

(
ΦRec1 =

1
2

∥∥Ax1 − y1
∥∥2

2

)
(3)

x∗
2 = argmin

x2

(
ΦRec2 =

1
2

∥∥Ax2 − y2
∥∥2

2

)
(4)

with the registration of the current estimates x∗
1 and x∗

2 with respect to the
registration parameters ζp:

ζp
∗ = arg min

ζp

(
ΦReg =

1
2

∥∥Rζpx∗
2 − x∗

1

∥∥2
2

)
. (5)
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After each registration iteration (Eq. 5), and prior to the next iteration of the re-
constructions (Eqs. 3 and 4), the reconstruction estimates are updated as follows
(Eqs. 6 and 7).

x1 = Rζpx∗
2 (6)

x2 = x∗
2. (7)

This “outer loop” of reconstruction followed by registration is repeated m times.
The last iteration outputs x1 = x∗

1, x2 = x∗
2 and Rζpx∗

2.
The reconstruction is performed via a nonlinear conjugate gradient search

engine and the registration currently via a simple hill-climbing optimisation
method. The following analytical gradients are used for x1 and x2

Ψx1 = AT (Ax1 − y1) (8)

Ψx2 = AT (Ax2 − y2). (9)

The preceding combined reconstruction and registration method is summarised
by

Algorithm 1. Iteratively Combined Reconstruction and Registration

Input: y1, y2.
Output: x1, x2, Rζpx2.

begin
% Initialization of x1 and x2
x1

0,0 := 0; x2
0,0 := 0; ζp

0 := 0;

% Outer loop for the registration
for (i = 0; i < m; i + +) do

% Inner loop for the reconstruction
for (j = 0; j < n; j + +) do

% Ψx is the analytical gradients of the x and CG solver
Ψx1

i,j := AT (Ax1
i,j − y1);

Ψx2
i,j := AT (Ax2

i,j − y2);
x1

i,j+1 := x1
i,j + (AT A)−1Ψx1

i,j ;
x2

i,j+1 := x2
i,j + (AT A)−1Ψx2

i,j ;
% Run a simple hill-climbing optimisation
ζp

i+1 := arg minζp
i

1
2

∥∥Rζp
ixi,j+1

2 − xi,j+1
1

∥∥2
2;

x1
i+1,j+1 := Rζp

i+1xi,j+1
2 ;

x2
i+1,j+1 := xi,j+1

2 ;

% Output x1, x2, and Rζpx2

x1 := xi,j+1
1 ;

x2 := x2
i+1,j+1;

Rζpx2 := x1
i+1,j+1 := Rζp

i+1xi,j+1
2 .

end
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3 Results

In the following three experiments we compare the performance of (a) sequential
reconstruction and registration, in which n = 100 iterations of the reconstruction
of projection images, y1 and y2, are followed by a single registration of the
reconstructed volumes x1 and x2 (m = 1), and (b) our iterative method in
which n = 10 iterations of the reconstruction are followed by a registration, and
this is repeated m = 10 times. In both cases the total reconstruction iterations
are the same (m × n = 100); however, there are 10 registrations in our iterative
approach rather than the single registration used in the sequential method. For
each pair of test volumes, x and x†, 11 projections covering ±25 degrees are
created to simulate the pair of temporal DBT acquisitions y1 and y2.

In the first experiment a 3D toroidal phantom image was created and rigidly
transformed via parameters Rζp using a translation of Tx,y,z = [10, 0,−20] mm
and a rotation about the y axis of −30 degree (Fig. 1). As seen in Fig. 1. (f)
and (h), the iterative results are more compact and accurate than the sequential
results Fig. 1. (b) and (d), and the out of plane blurring is reduced (coloured
squares). The sum of squared differences (SSD) ‖x1 − x‖2

2 is decreased by an
order of magnitude (1011 to 109); however, for the iterative method this value
of 4.32 × 109 is superior to the sequential result of 6.89 × 109. In the second
experiment the same transformation was applied to a 3D breast MR image that
obtained similar behaviour (iterative 1.25×108 vs sequential 1.42×108 decreased
from 1.71 × 1011) illustrated in Fig. 2. There is a black region with sharp edge
at the bottom of both Fig. 2 (h) and (d) due to the transformed image Fig. 2
(e) falling outside of the field of view. However, a better reconstruction for the

Fig. 1. (a) Original test volume x; (e) Transformed test volume x† ; Sequential results
(b)-(d): (b) reconstruction x1, (c) reconstruction x2, and (d) transformed reconstruc-
tion Rζpx2; Iterative results (f)-(h): (f) reconstruction x1, (g) reconstruction x2, and
(h) transformed reconstruction Rζpx2
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Fig. 2. As Fig. 1 but for a 3D uncompressed breast MR image

Fig. 3. As Fig. 1 but applied to in vivo MRI acquisition of a breast before and after plate
compression (Images have been segmented and mapped to effective X-ray attenuation)

missing data in Fig. 2 (f) is obtained due to our incorporation of all the X-ray
acquisitions into the reconstruction of x1.

In a third experiment we tested the methods using two MRI acquisitions
obtained before and after application of a lateral-to-medial plate compression
of the breast (Fig. 3). The SSD between reconstruction, x1, and the original
volume, x, indicates that the iterative method produces a more accurate recon-
struction of the data (iterative 5.9 × 109 vs sequential 7.6 × 109 decreased from
6.91 × 1011). In addition, the affine transformation model is insufficient for the
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compression deformation which may degrade the reconstructed results; however,
measurement of the target registration error for a set of 12 user defined land-
marks, indicates that the iterative method also produces a more accurate regis-
tration result (4.6mm vs 8.6mm, given an initial misregistration of 23.6mm).
All the numerical results of the three experiments above are shown in the
Table 1 below,

Table 1. Numerical results of the three experiments. (SSD = ‖x1 − x‖2
2)

Initial Combined
Method

Sequential
Method

Toroid SSD 4.51× 1011 4.32× 109 6.89× 109

Uncompressed
MRI SSD

1.71× 1011 1.25× 108 1.42× 108

Compressed
MRI SSD

6.91× 1011 5.90× 109 7.60× 109

Misregistration
(mm)

23.6 4.6 8.6

Plots of the cost function ΦRec1 = ‖Ax1 − y1‖2
2 represented in equation 3 for

both sequential and combined methods are shown in Figures 4, 5, and 6.
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Fig. 4. Plot of the cost function ΦRec1 = ‖Ax1 − y1‖2
2 for the 3D toroid experiment
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Fig. 5. As Fig. 4 but for the 3D uncompressed breast MR image
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Fig. 6. As Fig. 4 but for the in vivo compressed MR experiment

4 Discussion

Our iterative method was found to produce superior results in optimised cost
function value, registration accuracy and reconstructed image appearance. This
is illustrated in Fig. 7. We attribute this to the fact that the iterative approach
uses all the X-ray acquisition data (both y1 and y2) to reconstruct volume x1.
This leads to an improvement in the reconstruction of x1 which in turn enables
a more accurate registration to reconstructed volume x2 to be achieved.

An implicit assumption in this approach is that there is no change in the breast
(such as the growth of a tumour or due to the differences in image acquisition
parameters) between the two time-points being reconstructed and registered,
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justifying the use of SSD as the registration similarity metric. Given this ap-
proach, we could envisage a subsequent step where we compare reconstruction
volume x1 with the original acquisitions, y1 and y2, to detect change.

Fig. 7. Magnified results of the three tests above. (a), (b) and (f) of figures 1, 2 and 3.
Left to right: Original fixed image x; Results of the sequential method x1; Results of
the iterative method x1. Only one of the out-of-plane slices has been shown accordingly

The iterative method updates x1 with the transformation of x2, Rζpx∗
2, after

10 iterations of the reconstruction and a single registration. This results in the
10 peaks in the cost function plot for the iterative method when compared to
the smooth plot for the sequential method, Figs. 4, 5 and 6. In Fig. 5, the final
cost function value of the sequential method is less than our iterative method
because the MR volume has been transformed beyond the field of view (x† in
Fig. 2). This region is visible in the simulated projection images, y1, however,
because the 3D transformation is applied in the world coordinate frame. The
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result is that the sequential method produces a lower value of the cost function,
ΦRec1 = ‖Ax1 − y1‖2

2, due to greater image overlap despite the reconstruction
(and registration) being less successful.

5 Conclusion

We have presented a method to iteratively reconstruct and register temporal
DBT data sets. We have compared this approach with performing the two tasks
sequentially and demonstrated that the former improves both the registration
accuracy and the quality of the reconstructed datasets. In future work we will
investigate alternative non-rigid transformations and address the issue of change
in the breast tissue which may occur between time points.
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Böhler, Tobias 121
Boone, John M. 467, 591
Bosmans, Hilde 78, 227, 235,

350, 371, 518, 643, 689
Bottema, Murk J. 752
Brady, Sir Michael 197, 205, 296,

342, 481, 561, 682, 704
Brandan, Maŕıa-Ester 334
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Garćıa-Orellana, Carlos J. 614
Gavenonis, Sara 114
Gifford, Howard C. 697
Giger, Maryellen L. 9, 267
Given-Wilson, Rosalind 1
Glick, Stephen J. 54, 697
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