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Preface

The 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining was
held in Hyderabad, India during June 21–24, 2010; this was the first time the
conference was held in India.

PAKDD is a major international conference in the areas of data mining (DM)
and knowledge discovery in databases (KDD). It provides an international fo-
rum for researchers and industry practitioners to share their new ideas, original
research results and practical development experiences from all KDD-related
areas including data mining, data warehousing, machine learning, databases,
statistics, knowledge acquisition and automatic scientific discovery, data visual-
ization, causal induction and knowledge-based systems.

PAKDD-2010 received 412 research papers from over 34 countries includ-
ing: Australia, Austria, Belgium, Canada, China, Cuba, Egypt, Finland, France,
Germany, Greece, Hong Kong, India, Iran, Italy, Japan, S. Korea, Malaysia,
Mexico, The Netherlands, New Caledonia, New Zealand, San Marino, Singapore,
Slovenia, Spain, Switzerland, Taiwan, Thailand, Tunisia, Turkey, UK, USA, and
Vietnam. This clearly reflects the truly international stature of the PAKDD
conference.

After an initial screening of the papers by the Program Committee Chairs, for
papers that did not conform to the submission guidelines or that were deemed
not worthy of further reviews, 60 papers were rejected with a brief explana-
tion for the decision. The remaining 352 papers were rigorously reviewed by
at least three reviewers. The initial results were discussed among the reviewers
and finally judged by the Program Committee Chairs. In some cases of con-
flict additional reviews were sought. As a result of the deliberation process, only
42 papers (10.2%) were accepted as long presentations (25 mins), and an addi-
tional 55 papers (13.3%) were accepted as short presentations (15 mins). The
total acceptance rate was thus about 23.5% across both categories.

The PAKDD 2010 conference program also included seven workshops: Work-
shop on Data Mining for Healthcare Management (DMHM 2010), Pacific Asia
Workshop on Intelligence and Security Informatics (PAISI 2010), Workshop on
Feature Selection in Data Mining (FSDM 2010), Workshop on Emerging Re-
search Trends in Vehicle Health Management (VHM 2010), Workshop on Behav-
ior Informatics (BI 2010), Workshop on Data Mining and Knowledge Discovery
for e-Governance (DMEG 2010), Workshop on Knowledge Discovery for Rural
Systems (KDRS 2010).

The conference would not have been successful without the support of the
Program Committee members (164), external reviewers (195), Conference Orga-
nizing Committee members, invited speakers, authors, tutorial presenters, work-
shop organizers, reviewers, authors and the conference attendees. We highly
appreciate the conscientious reviews provided by the Program Committee
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members, and external reviewers. The Program Committee members were
matched with the papers using the SubSift system (http://subsift.ilrt.bris.ac.uk/)
for bid matching; we thank Simon Price and Peter Flach, of Bristol University,
for developing this wonderful system. Thanks also to Andrei Voronkov for host-
ing the entire PAKDD reviewing process on the easychair.org site.

We are indebted to the members of the PAKDD Steering Committee for their
invaluable suggestions and support throughout the organization process. We
thank Vikram Pudi (Publication Chair), Pabitra Mitra (Workshops Chair), Ka-
mal Karlapalem (Tutorials Chair), and Arnab Bhattacharya (Publicity Chair).
Special thanks to the Local Arrangements Commitee and Chair R.K. Bagga, and
the General Chairs: Jaideep Srivastava, Masaru Kitsuregawa, and P. Krishna
Reddy. We would also like to thank all those who contributed to the success of
PAKDD 2010 but whose names may not be listed.

We greatly appreciate the support from various institutions. The conference
was organized by IIIT Hyderabad. It was sponsored by the Office of Naval Re-
search Global (ONRG) and the Air Force Office of Scientific Research/Asian
Office of Aerospace Research and Development (AFOSR/AOARD).

We hope you enjoy the proceedings of the PAKDD conference, which presents
cutting edge research in data mining and knowledge discovery. We also hope
all participants took this opportunity to share and exchange ideas with each
other and enjoyed the cultural and social attractions of the wonderful city of
Hyderabad!

June 2010 Mohammed J. Zaki
Jeffrey Xu Yu
B. Ravindran
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Subsequence Matching of Stream Synopses under the Time Warping
Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Su-Chen Lin, Mi-Yen Yeh, and Ming-Syan Chen

Session 8A. Similarity and Kernels

Normalized Kernels as Similarity Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Julien Ah-Pine

Adaptive Matching Based Kernels for Labelled Graphs . . . . . . . . . . . . . . . 374
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The Web has continued to evolve quickly. With the emergence of cloud comput-
ing, we see a new opportunity of creating a cloud platform to leverage developer
ecosystem and enabling the development of millions of micro-vertical services
and applications to serve users’ various information need. In this new world,
there is an opportunity to build a more powerful and intelligent search engine
that understands what users are trying to accomplish and helps them learn,
decide and take actions. In this talk, I will first discuss a few new trends from
cloud computing that will impact web search, and then I will share my thoughts
on possible directions to tap into this new wave and develop not only innovative
but also potentially disruptive technologies for Web search.
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The climate and earth sciences have recently undergone a rapid transformation
from a data-poor to a data-rich environment. In particular, climate and ecosys-
tem related observations from remote sensors on satellites, as well as outputs of
climate or earth system models from large-scale computational platforms, pro-
vide terabytes of temporal, spatial and spatio-temporal data. These massive and
information-rich datasets offer huge potential for understanding and predicting
the behavior of the Earth’s ecosystem and for advancing the science of climate
change.

However, mining patterns from Earth Science data is a difficult task due to
the spatio-temporal nature of the data. This talk will discuss various challenges
involved in analyzing the data, and present some of our work on the design of
algorithms for finding spatio-temporal patterns from such data and their appli-
cations in discovering interesting relationships among ecological variables from
various parts of the Earth. A special focus will be on techniques for land cover
change detection (and their use in assessing the impact on carbon cycle) and
finding teleconnections between ocean and land variables.
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Game theory is replete with brilliant solution concepts such as the Nash equi-
librium, the core, the Shapley value, etc. These solution concepts and their ex-
tensions are finding widespread use in solving several fundamental problems in
knowledge discovery and data mining. The problems include clustering, classifi-
cation, discovering influential nodes, social network analysis, etc. The first part
of the talk will present the conceptual underpinnings underlying the use of game
theoretic techniques in such problem solving. The second part of the talk will
delve into two problems where we have recently obtained some interesting results:
(a) Discovering influential nodes in social networks using the Shapley value, and
(b) Identifying topologies of strategically formed social networks using a game
theoretic approach.
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Abstract. This paper introduces GlobalRSC, a novel formulation for

partitional data clustering based on the Relevant Set Correlation (RSC)

clustering model. Our formulation resembles that of the K -means cluster-

ing model, but with a shared-neighbor similarity measure instead of the

Euclidean distance. Unlike K -means and most other clustering heuristics

that can only work with real-valued data and distance measures taken

from specific families, GlobalRSC has the advantage that it can work

with any distance measure, and any data representation. We also discuss

various techniques for boosting the scalability of GlobalRSC.

Keywords: Clustering, correlation, shared neighbor, RSC, SASH.

1 Introduction

Clustering is the art of partitioning a data set into groups such that objects from
the same group are as similar as possible, and objects from different groups are
well differentiated. To support clustering, a measure of similarity (or distance)
between data objects is needed. Popular distance measures for clustering include
the class of general Lp norms (which includes the Euclidean distance L2), and
the cosine similarity measure. The k objects most similar to a data item v are
often referred to as the k-nearest-neighbor (k-NN) set of v.

An interesting and appealing class of ‘secondary’ similarity measures, the
so-called shared-neighbor (SN) measures, can be derived from any other (‘pri-
mary’) similarity measure. SN measures typically are expressed as a function
of the intersection size of the k-NN sets of the two objects whose similarity
is to be computed, where the neighborhoods are computed using the primary
similarity measure. The use of SN-based similarity in clustering can be traced
back to the merge criterion of the agglomerative algorithm due to Jarvis and
Patrick [1]. Other agglomerative clustering methods with SN-based merge crite-
ria include the hierarchical algorithm ROCK [2] and the density-based algorithm
SNN (Shared Nearest Neighbor) [3]. SNN is essentially an improved version of
the well-known DBSCAN [4] clustering algorithm; like DBSCAN, SNN is able

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 4–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to produce clusters of different sizes, shapes and densities. However, the perfor-
mance of SNN greatly depends on the tuning of several non-intuitive parameters
by the user. In practice, it is difficult (if not impossible) to determine appropriate
values for these parameters on real datasets.

A common requirement of most SN-based clustering methods is that a fixed
neighborhood size — either in terms of the number of neighbors k as in SNN and
in Jarvis & Patrick’s method, or in terms of the radius r of the neighborhood
ball as in ROCK — needs to be chosen in advance, and then applied equally
to all items of the data set. However, fixed choices of neighborhood sizes k or
radius r are known to lead to bias in the clustering process [5], the former with
respect to the sizes of the clusters discovered, and the latter with respect to the
density of the regions from which the clusters are produced.

Recently, an SN-based clustering model was proposed that allows the sizes
of the neighborhoods to vary. The Relevant Set Correlation (RSC) model [5]
defines the relevance of a data item v to a cluster C in terms of a form of ‘set
correlation’ between the memberships of |C| and the |C|-nearest-neighbor set
of v. RSC quality measures can be used to evaluate the relative importance of
cluster candidates of various sizes, avoiding the problems of bias found with
other shared-neighbor methods that use fixed neighborhood sizes or radii. The
same paper introduced a clustering algorithm based on RSC, called GreedyRSC,
that generates cluster candidates in the vicinity of every object of the dataset,
evaluates the quality of the candidates according to the model, and greedily
selects them in decreasing order of their quality. GreedyRSC is a ‘soft’ clustering
algorithm, in that the clusters produced are allowed to overlap. It does not
require that the user choose the neighborhood size or specify a target number
of clusters; instead, the user simply specifies the minimum allowable cluster
size, and the maximum allowable correlation between any two clusters. Unlike
many other clustering algorithms, GreedyRSC uses only local criteria for the
formation of cluster candidates — the clustering process is not guided by a
global optimization criterion.

In this paper, we present a new RSC-based partitional clustering algorithm,
GlobalRSC, that allows the user to specify the number of clusters to be generated,
K. Unlike GreedyRSC, GlobalRSC emulates the well-known K -means clustering
algorithm in that it seeks to optimize a global objective function. Given an initial
clustering configuration, both K -means and GlobalRSC attempt to optimize
their objective function through an iterative hill-climbing improvement process.
GlobalRSC, however, replaces the Euclidean distance of K -means by a shared-
neighbor similarity measure, and can therefore be applied (in principle) to any
form of data, and using any appropriate similarity measure.

This paper is organized as follows. In Section 2 we review those elements of
the RSC model upon which GlobalRSC is based, and introduce the GlobalRSC
clustering criterion. In Section 3, we give the details of the GlobalRSC cluster-
ing algorithm. Experimental results are presented in Section 4, and concluding
remarks appear in Section 5.



6 N.X. Vinh and M.E. Houle

2 Shared Neighbor Similarity and the RSC Model

In this section, we present a brief introduction to the Relevant Set Correlation
(RSC) model for clustering, and the set correlation similarity measure upon
which it is based.

Let S be a dataset of |S| = n data items {s1, s2, . . . , sn}. Any subset A of
S can then be represented as a n-dimensional zero-one characteristic vector,
where the value of the i-th coordinate is 1 if and only if si ∈ A. The simplest
SN-based similarity measure between the two sets A and B is the ‘overlap’ or
intersection size |A ∩ B|, which can be expressed as the inner product between
the two characteristic vectors. Another popular measure, the cosine similarity
cos(A, B) � |A∩B|√

|A||B| , is the inner product of the normalized characteristic vectors

for A and B, which in turn equals the cosine of the angle between them. Values of
the cosine measure lie in the range [0, 1], with 1 attained whenever A is identical
to B, and 0 whenever A and B are disjoint.

In [5], the set correlation measure was proposed as the value of the Pearson
correlation between the coordinate pairs of characteristic vectors of A and B.
After derivation and simplification, this expression becomes:

R(A, B) � |S|√
(|S| − |A|)(|S| − |B|)

(
cos(A, B)−

√|A||B|
|S|

)
. (1)

Values of the set correlation lie in the range [−1, 1]. A value of 1 indicates that A
and B are identical, and a value of −1 indicates that A and B are complements
of each other in S.

Despite their simplicity and their popularity in practice, the overlap and cosine
measures both have the disadvantage of bias relative to the sizes of the two sets
A and B. To see this, let A be fixed with size |A| = a, and let B be selected
uniformly at random from the items of S with the constraint that |B| equals some
fixed value b > 0. Let a = |A|. Under these assumptions, the overlap is known to
be hypergeometrically distributed with expected value E[|A∩B|] = ab

n , and the

expected value of the cosine measure is therefore E[cos(A, B)] = E[|A∩B|]√
ab

=
√

ab
n .

When used to rank the similarity of sets with respect to A, both measures are
biased towards sets B of larger sizes. On the other hand, the expected value of the
set correlation under the same assumptions can be shown to be E[R(A, B)] = 0,
indicating no bias with respect to the sizes of A and B. Therefore, of these three
SN-based similarity measures, the set correlation measure is best suited for those
applications in which the neighborhood size is variable.

Under the RSC model, the quality of a given cluster candidate set A is assessed
in terms of the set correlation between the candidate and neighborhood sets (the
‘relevant sets’) based at its members. Let Qv

k denote the set of k-nearest neigh-
bors of v with respect to S. The RSC model uses the set correlation R(Qv

|A|, A)
between Qv

|A| and A as a measure of relevance of item v to the cluster can-
didate A. Note that in this formulation, the neighborhood size is taken to be
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the cardinality of A. This definition eliminates the need for specifying a fixed
neighborhood size, and avoids the bias associated with such choices.

For more details concerning the quality measures of the RSC model, see [5].

3 The GlobalRSC Clustering Algorithm

3.1 GlobalRSC and K -Means

The GlobalRSC clustering criterion has the same general form as that of K -means.
In the standard K -means formulation, a partition A = {A1, A2, . . . , AK} of the
data set is sought which maximizes the following objective function:

D(A) =
1
n

K∑
i=1

∑
v∈Ai

D(v, c(Ai)), (2)

where c(A) is a function which returns the center of mass of a cluster A (com-
puted as c(A) = 1

|A|
∑

v∈A v), and the distance measure D is generally taken
to be the square of the Euclidean distance. The proposed formulation of Glob-
alRSC replaces the distance measure D(v, c(Ai)) by the average set correlation
between cluster Ai and the neighborhood Qv

|Ai| based at v, as follows:

R(A) =
1
n

K∑
i=1

∑
v∈Ai

R(Qv
|Ai|, Ai). (3)

Both D and R serve as measures of the relevance of an item to its assigned
cluster. However, unlike R, D can only be computed when the data can be
represented as real-valued vectors. As discussed earlier, the use of set correlation
in the formulation of GreedyRSC is preferred over that of the overlap or cosine
measure, due to the bias of the latter measures with respect to set sizes.

3.2 A Hill-Climbing Heuristic

The problem of optimizing the GlobalRSC objective function (3) greatly resem-
bles that of optimizing the K -means objective function (2). Despite its simple
appearance, the K -means clustering problem with squared Euclidean distance
is known to be NP-hard even for K = 2 [6]. Although the hardness of the Glob-
alRSC optimization problem is still an open question, a heuristic approach seems
to be indicated.

In this section, we propose an iterative hill-climbing solution, which we simply
refer to as GlobalRSC. The core idea is as follows: at each round the algorithm
iterates through the items of S looking for items whose reassignment to a differ-
ent cluster leads to an improvement in the value of the objective function R. As
is the case with K -means, two reassignment schemes can be employed for Glob-
alRSC: incremental update, in which reassignment is performed as soon as an im-
provement is detected, and batch update, in which all the membership changes are
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applied only at the end of each round, when the algorithm has completed a full it-
eration through all data items. The advantage of the batch update scheme is that
the recomputation of R can be performed very efficiently through the use of in-
verted neighborhood sets (as defined in Fig. 1). However, it is possible that delaying
the reassignment of items until the end of each round could result in a decrease in
the value of the objective function, even if each reassignment would have led to an
increase if it were applied individually. In practice we often observe that first few
rounds of the batch update scheme quickly improves the objective value. It would
therefore be beneficial to begin with several rounds of batch updating, followed
by an incremental update phase to further refine the clustering.

It should be noted that in an incremental reassignment of v from cluster Ai to
cluster Aj , the contributions R(A) =

∑
w∈A R(Qw

|A|, A) to R for an individual
cluster A do not need to be recomputed except for A = Ai and A = Aj . To verify
whether the reassignment would increase the value of R, it suffices to perform
the test R(Aj ∪ {v}) +R(Ai \ {v})−R(Aj)−R(Ai) > 0.

The recomputation of R after the reassignment of a single item v would be
relatively expensive if all K − 1 possible reassignments were considered. We
therefore limit the tentative reassignment of v to those candidate clusters found
in the vicinity of v; that is, those clusters containing at least one element in
the neighborhood Qv

|Ai|, where Ai is the cluster to which v currently belongs.
If one of these tentative reassignments of v would result in an increase in the
value of R, then the reassignment that results in the greatest such increase is
applied. Otherwise, v is not reassigned. If the size of the new cluster Aj is larger
than that of the currently-stored neighborhood of v, then that neighborhood
would need to be expanded. Accordingly, whenever it is necessary to recompute
a neighborhood for item v ∈ Aj , we choose the size to be min{�(1 + b)|Aj |�, m}
for some fixed real parameter values b > 0 and m > 0. In our implementation of
GlobalRSC, b is set to a default value of 0.5, and m is set to 50.

A pseudocode description of the basic GlobalRSC heuristic is shown in Fig. 1.
The heuristic can easily be shown to converge within a finite number of steps.

3.3 Complexity Analysis

The algorithm requires storage for the neighbor lists of all n data items, each of
which has size proportional to that of the cluster to which it has been assigned.
The total space required is of order

∑K
i=1 |Ai|2. Let μ and σ be respectively the

mean and standard deviation of the cluster sizes; in terms of μ and σ, the space
required is proportional to K(σ2 + μ2).

At the initialization step, the neighborhood list for each data item must be
calculated. A straightforward implementation requires the computation of O(n2)
distances. Once computed, these distances can also be used to generate an ini-
tial clustering. Since the neighborhoods must be constructed in sorted order, the
total time required for preparing neighborhoods is

∑K
i=1 |Ai|(|Ai|+ |Ai| log |Ai|)

= O((σ2 + μ2)K log n) using linear-time methods for determining order statis-
tics [7]. The total time required for initialization is thus O(dn2+(σ2+μ2)K log n),
where d is the cost of computing a single distance.
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Input: The data set S; the number of desired clusters K; (optionally) a hard initial clustering
A = {A1, A2, . . . , AK} on S; minimum neighborhood set size m; neighborhood set buffer size b.

0. Initialization: If no initial clustering was provided, compute an initial clustering A =
{A1, A2, . . . , AK} as follows:
(a) Select K items of S uniformly at random as the seeds of the K clusters.
(b) Assign each data item v to the cluster corresponding to the seed closest to v.
(c) Build the neighborhood Qv for each item v ∈ Ai, with size equal to min{�(1+b)|Ai|�, m}.

1. Batch phase:
(a) Calculate R(A1),R(A2), . . . ,R(AK) and set the termination flag halt ← FALSE.
(b) Repeat until halt = TRUE:

i. Set halt ← TRUE.
ii. For each v ∈ S, build the inverted neighborhood Iv, where r ∈ Iv if and only if

v ∈ Qr .
iii. For each data item v currently in cluster Ai:

A. Build the list C of clusters (other than Ai) containing at least one item of Qv.
B. Tentatively reassign v to each of the Aj in C.
C. Using the inverted neighborhood sets, calculate the index j for which the im-

provement value R(Aj ∪ {v}) + R(Ai\{v}) − R(Aj) − R(Ai) is maximized.
D. If the improvement value is positive, record (v, j) for future reassignment.

iv. Tentatively apply all the recorded reassignments for this round, and let A′ =
{A′

1, A′
2, . . . , A′

K} be the resulting clustering. Calculate R(A′). If R(A′) > R(A),
set halt ← FALSE and A ← A′. Otherwise, proceed to the incremental phase.

2. Incremental phase:
(a) Set halt ← FALSE.
(b) Repeat until halt = TRUE:

i. Set halt ← TRUE.
ii. For each data item v currently in cluster Ai:

A. Build the list C of clusters (other than Ai) that contribute items to Qv.
B. Tentatively reassign v to each of the Aj in C, and calculate the index j for which

the improvement value R(Aj ∪{v})+R(Ai\{v})−R(Aj)−R(Ai) is maximized.
C. If the improvement value is positive, reassign v to Aj immediately, adjust the

values of R(Aj) and R(Ai), and set halt ← FALSE.

Fig. 1. A pseudocode description of the basic GlobalRSC variant

During each round of the batch phase, building the inverted neighbor sets
requires that the values of K(σ2 +μ2) integer variables be copied. Recalculating
R for the tentative reassignment of item v from cluster Ai to cluster Aj requires
time proportional to |Ai| + |Aj | + 2|Iv| when using the inverted neighbor lists.
Assuming that v needs to be tentatively reassigned to each of the other K − 1
clusters, the cost of reassignment is O(n). Adding the cost over all choices of
v, the total cost of reassignment per phase is at most O(n2). The neighbor
list can be reconstructed in O(n log n + nd) time if required; the total cost of
reconstruction will be no worse than that of initialization, which is O(dn2+(σ2+
μ2)K log n). The worse case complexity of each batch phase iteration through the
data set is therefore O(dn2 +(σ2 +μ2)K log n). However, in practice we expect a
much lower time cost, since there are typically only a limited number of nearby
clusters for each data item, and few if any neighborhoods require reconstruction.

In the incremental phase, tentatively moving an item v from a cluster Ai

to another Aj requires O(|Ai|2 + |Aj |2) operations for the direct recalculation
of the objective function. If v is tentatively reassigned to each of the other
K − 1 clusters, the cost is O(K(σ2 + μ2)); over all possible choices of v (one
full round), the total cost of reassignment becomes O(nK(σ2 + μ2)). Recon-
struction of the neighborhood for each item, if required, can be performed in



10 N.X. Vinh and M.E. Houle

O(dn2 + n2 log n) total time. The worst case complexity of a full round is there-
fore O(dn2+n2 log n+nK(σ2+μ2)). However again, the observed cost should be
much lower in practice. Since the incremental phase is often considerably more
expensive than the batch phase, to improve time efficiency for large data sets,
we employ a ‘reduced’ variant of the incremental phase, in which a data item
v is considered for reassignment to another cluster if and only if that cluster
already contains the majority of the neighbors of v. This variant scheme focuses
on items with neighborhoods of low consistency, with the worst case complexity
of each round being reduced to that of the batch phase.

In practice, the standard deviation of the cluster size, σ, is typically of the
same order of the mean cluster size μ = n/K, leading to an overall space com-
plexity of Õ(n2/K), and a time complexity (for the reduced incremental phase
variant) of Õ(dn2 + n2(log n)/K). Optionally, if a full distance matrix is to be
stored in order to speed up neighborhood list computation, then the space com-
plexity would attain its worst-case value of Θ(n2).

3.4 Scalability

In this section we present several techniques that can boost the scalability of
GlobalRSC for large, high dimensional data sets. The challenges faced by Glob-
alRSC (and other SN-based clustering algorithms) as the dimensionality in-
creases are: (i) the construction of neighborhoods becomes more expensive, due
to an effect known as the ‘curse of dimensionality’ [8]; (ii) the optimization of
the objective function becomes more difficult, as local optimization approaches
such as hill-climbing are more easily trapped at local maxima that may be far
from the global optimum.

In order to accelerate the construction of neighborhoods, we propose the use
of the Spatial Approximation Sample Hierarchy (SASH) developed in [8].

If the data set contains many large clusters, the calculation of set correlation
scores with respect to these clusters may be prohibitively expensive. One of the
simplest ways of avoiding the high costs associated with large cluster candidates
is through the restriction of neighborhood sizes. In our implementation of Glob-
alRSC, we restricted the maximum size of the neighborhood to be 1000. Only
the average relevance score for items in cluster of size smaller than this thresh-
old is calculated exactly, while the membership of larger clusters are ‘frozen’.
Items are permitted to be reassigned from smaller clusters to frozen clusters and
vice-versa, as long as such a movement increases the average relevance score of
the smaller clusters.

4 Experimental Results

In this section we report the results of our experiments on various real data sets
taken from several domains. GlobalRSC, implemented in C++ and tested on a
Pentium IV 3.2GHz workstation equipped with 4Gb of main memory, was com-
pared against a MATLAB implementation of ‘Fast’ K -means [9] (available from
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the author’s website), and the ‘bisecting’ K -means algorithm available as part
of the CLUTO clustering toolkit [10]. CLUTO was run with its default distance
measure, the cosine similarity, using repeated bisecting clustering followed by
a final global optimization phase. For large data sets, we used GreedyRSC to
initialize GlobalRSC, as well as the SASH to speed up neighborhood construc-
tion. We report the mean and standard deviation values of the quality metrics,
plus the average execution time and the number of iterations performed by each
algorithm (if known). We did not include the SNN clustering algorithm, due to
the difficulty in tuning its parameters, and since it often leaves a large number
of items unassigned to any cluster. For interested readers, a comparison between
SNN, K -means and GreedyRSC on several data sets can be found in [5].

For each of the data sets considered, the clustering results are assessed against
a ground-truth classification according to 5 different quality measures: the well-
known Adjusted Rand Index (ARI) from statistics [11]; the recently developed
Adjusted Mutual Information (AMI) [12] from information theory; the Expected
Precision (EPrec), Recall (ERec) and Cosine (ECos) measures [5] from informa-
tion retrieval. For all these measures, higher values represent better clusterings,
with a maximum possible value of 1. A low expected precision score is an indi-
cation of cluster fusion, occurring when too few clusters are produced, whereas
a low expected recall indicates cluster fragmentation, occurring when too many
clusters are generated. A high expected cosine score can be taken as evidence
that the clustering avoids extremes of cluster fusion and cluster fragmentation.
Due to lack of space, we do not give details of these measures here. Interested
readers are referred to the original publications for more information.

4.1 Biological Data

We tested the algorithms on several gene expression microarray data sets:

– B1: This set consists of 384 genes whose expression level peak at different
time points corresponding to the five phases of a cell cycle [13].

– B2: This set consists of 237 genes corresponding to four categories in the
MIPS database. The four categories (DNA synthesis and replication, or-
ganization of centrosome, nitrogen and sulphur metabolism and ribosomal
proteins) were shown to be reflected in clusters from the yeast cell cycle data
[13]. These four functional categories form the four classes in the external
criterion for this data set.

– B3: A subset of 205 genes from the yeast galactose data set [14]. The expres-
sion patterns reflect four functional categories in the Gene Ontology (GO)
listings.

As is popular practice in microarray data analysis, the data was row-normalized
to have zero mean and unit variance. Under this normalization scheme, the
Euclidean distance and cosine similarity are equivalent. From the experiment
results shown in Table 1, averaged over 100 runs, CLUTO appears to perform
best, closely followed by GlobalRSC and then K -means.
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Table 1. Experimental results (the highest quality index values are in bold)

Data Algorithm ARI AMI EPrec ERec ECos Loops Time (s)

B1
K -means 0.42±0.05 0.48±0.02 0.55±0.02 0.56±0.04 0.55±0.03 11±4 0±0
CLUTO 0.50±0.00 0.52±0.00 0.59±0.00 0.61±0.00 0.60±0.00 N/A 0±0
GlobalRSC 0.48±0.01 0.50±0.01 0.56±0.01 0.62±0.02 0.58±0.01 11±3 2±1

B2
K -means 0.49±0.03 0.33±0.01 0.65±0.01 0.54±0.02 0.59±0.01 8±3 0±0
CLUTO 0.51±0.00 0.34±0.00 0.65±0.00 0.56±0.00 0.60±0.00 N/A 0±0
GlobalRSC 0.50±0.02 0.29±0.01 0.69±0.01 0.48±0.01 0.56±0.01 11±3 1±1

B3
K -means 0.83±0.09 0.78±0.08 0.92±0.02 0.83±0.09 0.86±0.06 7±4 0±0
CLUTO 0.96±0.00 0.91±0.00 0.95±0.00 0.96±0.00 0.96±0.00 N/A 0±0
GlobalRSC 0.92±0.04 0.84±0.07 0.92±0.05 0.96±0.01 0.93±0.03 3±0 0±1

I1

K -means 0.48±0.01 0.72±0.00 0.66±0.01 0.56±0.01 0.56±0.01 20±4 1278±347
K -means* 0.49±0.01 0.74±0.00 0.61±0.01 0.59±0.01 0.55±0.01 23±5 993±416
CLUTO 0.53±0.00 0.75±0.00 0.67±0.00 0.61±0.00 0.59±0.00 N/A 1015±51
CLUTO* 0.53±0.00 0.75±0.00 0.62±0.00 0.62±0.00 0.58±0.00 N/A 847±9
GreedyRSC 0.59±0.00 0.77±0.00 0.64±0.00 0.68±0.00 0.62±0.00 N/A 328±24
GlobalRSC 0.61±0.01 0.78±0.00 0.66±0.00 0.71±0.00 0.64±0.00 17±3 417±29

I2

CLUTO 0.41±0.00 0.73±0.00 0.48±0.00 0.52±0.00 0.48±0.00 N/A 7893±16
CLUTO* 0.48±0.00 0.69±0.00 0.80±0.00 0.35±0.00 0.50±0.00 N/A 27302±192
GreedyRSC 0.56±0.00 0.72±0.00 0.82±0.00 0.42±0.00 0.56±0.00 N/A 4352±53
GlobalRSC 0.59±0.00 0.74±0.00 0.85±0.00 0.46±0.00 0.59±0.00 28±3 5002±127

T2
CLUTO* 0.02±0.00 0.24±0.00 0.60±0.00 0.02±0.00 0.10±0.00 N/A 1201±14
GreedyRSC 0.04±0.00 0.26±0.00 0.61±0.00 0.04±0.00 0.12±0.00 N/A 495±2
GlobalRSC 0.09±0.00 0.29±0.00 0.64±0.01 0.07±0.00 0.16±0.00 17±4 1616±167

T1
GreedyRSC 0.01±0.00 0.25±0.00 0.71±0.00 0.01±0.00 0.06±0.00 N/A 10657±334
GlobalRSC 0.02±0.00 0.26±0.00 0.72±0.00 0.02±0.00 0.08±0.00 18±5 19044±756

*: K -means and CLUTO run using the number of clusters K as determined by GreedyRSC

4.2 Image Data

We tested the clustering algorithms on the Amsterdam Library of Object Images
(ALOI) [15], which consists of 110,250 images of 1000 common objects. Each
image is represented by a dense 641-dimensional feature vector based on color
and texture histograms (see [16] for details on how the vectors were produced).
The following data sets were used:

– I1-ALOI-var: A subset of 13943 images, generated by selecting objects
unevenly from among the classes, with the i-th object class having approxi-
mately 40000/(400 + i) image instances selected.

– I2-ALOI-full: The entire ALOI library.

Since the appearance of individual objects varies considerably with the van-
tage points of the images, almost every class would be expected to generate
several natural clusters. Over 20 runs, GreedyRSC estimated the number of
clusters to be 843 ± 8 for the I1 data set, and 3724 ± 25 for the I2 data set.
Fast K -means and CLUTO were executed twice with random initialization, for
both the true numbers of clusters (K = 1000) and the number of clusters as
determined by GreedyRSC. GlobalRSC was initialized using GreedyRSC, and a
SASH was used to construct the neighborhood sets. All runs except those involv-
ing CLUTO were conducted using the Euclidean distance measure. Over 20 runs,
GreedyRSC consistently achieves good clustering quality which is then further
refined by GlobalRSC, as observed in Table 1. For the ALOI-full data set, the
execution of Fast K -means failed to terminate due to insufficient main memory.
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It can be observed that when a good initialization is provided and SASH is used,
the execution time of GlobalRSC is significantly shorter, comparable to that of
K -means and CLUTO.

4.3 Text Data

We tested the clustering algorithms on the Reuters Corpus Volume I (RCV1),
an archive of over 800,000 manually categorized newswire stories recently made
available by Reuters, Ltd. for research purposes [17]. The document class struc-
ture was simplified into 57 distinct classes. We then selected a subset T1 con-
sisting of 200,000 documents classified to either exactly one subtopic or exactly
one meta topic. We also constructed a smaller data set T2 consisting of 20,000
documents selected uniformly at random from T1. For both T1 and T2, TF-IDF
weighting was used to construct the feature vectors, resulting in sparse vectors
of length 320,648. Fast K -means was excluded in this experiment due to its lack
of support for sparse numerical data. Since the number of external classes of
these data sets was not as reliable as of the ALOI image data set, we first ran
GreedyRSC to estimate the number of natural clusters K. The clustering result
of GreedyRSC was used for the initialization of GlobalRSC, while CLUTO was
run with the desired number of clusters also set to K. The cosine similarity
measure was used for all runs. The clustering scores, averaged over 20 runs, are
reported in Table 1. While all the algorithms successfully processed the small
T2 set, on T1 CLUTO gave a memory failure message after a few hours of
execution, leaving only the results of GreedyRSC and GlobalRSC available for
evaluation. The observed low agreement between the clustering result and the
class information in this experiment can be attributed to natural fragmentation
of the classes within the data domain.

4.4 Categorical Data

The mushroom data set, drawn from the UCI machine learning repository
[18], contains 8124 varieties of mushrooms, each recorded with 22 different cate-
gorical physical attributes (such as color, odor, size, and shape). Each record is
classified as to whether its associated mushroom is poisonous or edible. The dis-
tance measure for this data set is taken as the straightforward mismatch count,
with missing values treated as contributing to the count.

The mushroom data set was previously analyzed with ROCK [2], which in
their paper was reported as finding 21 clusters. Most of the clusters consist
of only one type of mushroom, either edible or poisonous. Only 32 mushrooms
were misclassified by ROCK. On 20 runs with random initialization, GreedyRSC
produced 22± 1 clusters, with 87± 120 mushroom instances misclassified. The
result is further refined with GlobalRSC, which brought the number of mushroom
species misclassified down to 46 ± 97. The classification errors of the 20 runs
are reported in table 2. All the algorithms greatly outperformed the traditional
hierarchical clustering implemented in [2], which produced 20 clusters within
which 3432 out of 8124 items were misclassified. K -means was excluded from
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Table 2. Experimental results on the Mushroom data set: classification errors over

20 runs

Classification errors

GreedyRSC 32 69 69 32 289 484 69 33 44 33 32 32 278 32 32 52 32 32 32 32

GlobalRSC 1 33 33 1 257 289 33 1 1 1 1 1 257 1 1 0 1 1 1 1

this experiment as it can not handle categorical data. A clustering algorithm
from CLUTO, which operates on the similarity matrix, was tested but did not
yield competitive results, with 1339 misclassified species. It should be noted
that whereas ROCK required an estimate of the number of clusters, GreedyRSC
automatically determined this number.

5 Conclusion

In this paper we have introduced a novel shared-neighbor clustering algorithm
based on the Relevant Set Correlation (RSC) model. The key difference in our
approach to clustering, compared to other shared-neighbor-based approaches,
is that it requires the setting of only one main parameter — the number of
clusters. The objective function greatly resembles that of K -means, and like
K -means, the GlobalRSC method aims to discover compact, globular clusters.
While this class of clusters appears to be restrictive, Dasgupta [19] has shown
that for high dimensional data, random projection can transform highly eccentric
clusters into more spherical ones, which in turn can be discovered by K -means
or GlobalRSC. The techniques we presented for improving the scalability of our
proposed GlobalRSC algorithm allow for practical application of the method
for large, high-dimensional generic data sets under any reasonable measure of
similarity.
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Abstract. Given a pairwise dissimilarity matrix D of a set of n objects,

visual methods (such as VAT) for cluster tendency assessment generally

represent D as an n × n image I(D̃) where the objects are reordered

to reveal hidden cluster structure as dark blocks along the diagonal of

the image. A major limitation of such methods is the inability to high-

light cluster structure in I(D̃) when D contains highly complex clusters.

To address this problem, this paper proposes an improved VAT (iVAT)

method by combining a path-based distance transform with VAT. In

addition, an automated VAT (aVAT) method is also proposed to au-

tomatically determine the number of clusters from I(D̃). Experimental

results on several synthetic and real-world data sets have demonstrated

the effectiveness of our methods.

Keywords: Visual cluster analysis, cluster tendency assessment, VAT,

path-based distance, chamfer matching.

1 Introduction

A general question in the pattern recognition and data mining community is how
to organize observed data into meaningful structures or taxonomies. As such,
cluster analysis aims at grouping objects of a similar kind into their respective
categories. Given a data set O comprising n objects {o1, o2, · · · , on}, (crisp)
clustering partitions the data into c groups C1, C2, · · · , Cc, so that Ci ∩ Cj =
ø, if i 	= j and C1 ∪ C2 ∪ · · · ∪ Cc = O. There have been a large number of
clustering algorithms reported in the recent literature [1]. In general, clustering
of unlabeled data poses three major problems: (1) assessing cluster tendency, i.e.,
how many groups to seek or what is the value of c? (2) partitioning the data into c
groups; and (3) validating the c clusters discovered. Given a pairwise dissimilarity
matrix D ∈ Rn×n of O, this paper addresses the problem of determining the
number of clusters prior to clustering.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 16–27, 2010.
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Most clustering algorithms require the number of clusters c as an input, so the
quality of the resulting clusters is largely dependent on the estimation of c. Vari-
ous attempts have been made to estimate c. However, most existing methods are
post-clustering measures of cluster validity [2,1,3,4,5,6,7]. In contrast, tendency
assessment attempts to estimate c before clustering occurs. Visual methods for
cluster tendency assessment [8,9,10,11,12,13,14,15] generally represent pairwise
dissimilarity information about a set of n objects as an n× n image, where the
objects are reordered so that the resulting image is able to highlight potential
cluster structure in the data. A “useful” reordered dissimilarity image (RDI)
highlights potential clusters as a set of “dark blocks” along the diagonal of the
image, and can be viewed as a visual aid to tendency assessment.

Our work is built upon one method for generating reordered dissimilarity
images, namely VAT (Visual Assessment of cluster Tendency) of Bezdek and
Hathaway [8]. Several algorithms extend VAT for related assessment problems.
For example, bigVAT [13] and sVAT [11] offer different ways to approximate the
VAT reordered dissimilarity image for very large data sets. CCE [16] and DBE
[17] use different schemes to automatically estimate the number of clusters in
the VAT images. In addition, Havens et al. [18] perform data clustering in or-
dered dissimilarity images, and coVAT [10] extends the VAT idea to rectangular
dissimilarity data. Naturally, the performance of these VAT-based methods is
greatly dependent of the quality of the VAT images. However, while VAT has
been widely used for cluster analysis, it is usually only effective at highlighting
cluster tendency in data sets that contain compact well-separated clusters. Many
practical applications involve data sets with highly irregular structure, which in-
validate this assumption. In this paper, we propose an improved VAT (iVAT)
approach to generating RDIs that combines VAT with a path-based distance
transform. The resulting iVAT images can clearly show the number of clusters
and their approximate sizes for data sets with highly complex cluster structures.
We also propose a new strategy for automated determination of the number of
clusters c from RDIs, by detecting and counting dark blocks along the main di-
agonal of the image. Experimental results on both synthetic and real-world data
sets validate our methods.

The remainder of the paper is organized as follows: Section 2 briefly reviews
the VAT algorithm. Section 3 illustrates our iVAT algorithm. Section 4 presents
our strategy for automatically determining the number of clusters c. The experi-
mental results on both synthetic and real-world data sets are given and analyzed
in Section 5, prior to conclusion in Section 6.

2 VAT

Let O = {o1, o2, · · · , on} denote n objects in the data and D a pairwise matrix
of dissimilarities between objects, each element of which dij = d(oi, oj) is the
dissimilarity between objects oi and oj , and generally, satisfies 1 ≥ dij ≥ 0; dij =
dji; dii = 0, for 1 ≤ i, j ≤ n. Let π() be a permutation of {1, 2, · · · , n} such that
π(i) is the new index for oi. The reordered list is thus {oπ(1), · · · , oπ(n)}. Let P
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be the permutation matrix with pij = 1 if j = π(i) and 0 otherwise, then the
matrix D̃ for the reordered list is a similarity transform of D by P, i.e.,

D̃ = PT DP.

The reordering idea is to find P so that D̃ is as close to a block diagonal form
as possible. The VAT algorithm [8] reorders the row and columns of D with
a modified version of Prim’s minimal spanning tree algorithm, and displays a
reordered dissimilarity matrix D̃ as a gray-scale image. If an object is a member
of a cluster, then it should be part of a sub-matrix with low dissimilarity values,
which appears as one of the dark blocks along the diagonal of the VAT image
I(D̃), each of which corresponds to one potential cluster.

Figure 1(a) is a scatter plot of 2000 data points in R2. The 5 visually apparent
clusters are reflected by the 5 distinct dark blocks along the main diagonal in
Figure 1(c), which is the VAT image of the data. Given the image of D in the
original input order in Figure 1(b), reordering is necessary to reveal the under-
lying cluster structure of the data. VAT reordering produces neither a partition
nor a hierarchy of clusters. It merely reorders the data to (possibly) reveal its
hidden structure, which can be viewed as an illustrative data visualization for
estimating c. Sometimes, hierarchical structure can be detected by the presence
of diagonal sub-blocks within larger diagonal blocks.
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Fig. 1. An example of the VAT algorithm

3 Improved VAT (iVAT)

At a glance, a viewer can estimate the number of clusters c from a VAT image
by counting the number of dark blocks along the diagonal if these dark blocks
possess visual clarity. However, this is not always possible. Note that a dark block
appears only when a compact group exists in the data. For complex-shaped data
sets where the boundaries between clusters become less distinct due to either
significant overlap or irregular geometries, the resulting VAT images may fail to
produce dark blocks even when cluster structure is clearly present. See Figures
4(b) and 5(a) for examples. Different viewers may deduce different numbers of
clusters from such poor-quality images, or worse, not be able to estimate c at
all. This raises the question of whether we can transform D into a new form D′

so that the VAT image of D′ is clearer and more informative about the cluster
structure.
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In [12], SpecVAT combines VAT with graph embedding [19,20] to solve this
problem. SpecVAT first embeds the data into a k-dimensional subspace spanned
by the eigenvectors of the normalized Laplacian matrix and then re-computes
a new pairwise dissimilarity matrix in the embedding subspace as the input of
the VAT algorithm. However, this method depends on two main parameters, one
of which is r for the r-th nearest neighbor based local scale computation when
constructing the affinity matrix from D [21] (for deriving the Laplacian matrix),
and the other is k, the number of eigenvectors used. In particular, k largely
depends on the number of clusters c. Figure 2 gives an example of SpecVAT
images with respect to different values of k. Since c is unknown, a range of k
values need to be used for generating a series of SpecVAT images to find the
‘best’ SpecVAT image that is truly informative of the real structure in the data
(e.g., k = 3 in this case). In contrast, this work adopts a parameter-free method
(called iVAT) by combining VAT with a path-based distance transform.

VAT k=1 k=2 k=3

k=4 k=5 k=6 k=7

Fig. 2. An example of SpecVAT on synthetic three-circle data set S-3 (c = 3)

The path-based dissimilarity measure was introduced in [22]. The intuitive
idea is that if two objects oi, oj are very far from each other (reflected by a
large distance value dij), but there is a path connecting them consisting of other
objects such that the distances between any two successive objects are small,
then dij should be adjusted to a smaller value to reflect this connection. The
adjustment of dij reflects the idea that no matter how far the distance between
two objects may be, they should be considered as coming from one cluster if
they are connected by a set of successive objects forming dense regions. This
reflects the characteristic of elongated clusters.

Let us treat D as a fully connected graph G, where each vertex corresponds
to an object and the edge weight between vertices i and j is the distance dij .
Suppose that Pij is the set of all possible paths from oi to oj , then for each
path p ∈ Pij , the effective dissimilarity between objects oi and oj along p is the
maximum of all edge weights belonging to this path. The path-based distance
d′ij is defined as

d′ij = min
p∈Pij

{ max
1≤h<|p|

dp[h]p[h+1]}
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where p[h] denotes the object at the h-th position in path p and |p| denotes
the length of path p. After obtaining D′ = [d′ij ], we reorder it using the VAT
algorithm to obtain the iVAT image (see examples in Figures 4(c) and 5(b)). The
iVAT images are almost always clearer and more informative than the original
VAT images in revealing the data structure.

4 Automated VAT (aVAT)

A viewer can simply estimate the number of clusters c (i.e., count the number
of dark blocks along the diagonal of a RDI image if these dark blocks possess
visual clarity). However, as the boundaries between different clusters become
less distinct, the RDI image will degrade considerably with confusing bound-
aries between potential dark blocks. Accordingly, different viewers may deduce
different numbers of clusters from such poor-quality images. Can we automati-
cally determine the number of clusters c, as suggested by I(D̃′), in an objective
manner, without viewing the visual display? To answer this interesting question,
two methods have been developed, i.e., DBE [17] and CCE [16] (see the algo-
rithm details and comparison in Section 5.3). Here we propose an alternative
method, called aVAT, using some image processing techniques. The process of
aVAT is illustrated in Figure 3. The individual steps are all well known in the
field of image processing, so we do not describe their underlying theories.
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Fig. 3. Illustration of the aVAT algorithm. From left to right: scatter plot (n = 100, c =

5), VAT image of (a), iVAT image of (a), binarized image of (c), edge map of (d), DT

image of (e), and detected squares in (f) imposed using red lines.

Since information about possible cluster structure in the data is embodied in
the square dark blocks along the diagonal of a RDI, we propose to detect and
count them using shape-based Chamfer matching [23]. As a preprocessing step,
the RDI is firstly binarized to extract regions of interest (Figure 3(d)). Otsu’s
method [24] is used to automatically choose a global threshold. To make within-
cluster distances smaller and between-cluster distances larger (i.e., increasing
contrast) to obtain a more reliable threshold, we transform the image intensities
using a “monotonic” function

f(txy) = 1− exp(−t2xy/σ2)

where txy denotes the intensity value of the image pixel on the location (x, y),
and σ is empirically set as the mean value of all pixel intensities.



iVAT and aVAT: Enhanced Visual Analysis 21

Chamfer matching was first proposed by Barrow et al. [25]. Assume that two
point sets are U = {ui}Ni=1 and V = {vi}Mi=1, the chamfer distance is defined as

dcham(U ,V) =
1
N

∑
ui∈U

min
vj∈V

‖ui − vj‖.

The symmetric chamfer distance can be obtained by adding dcham(V ,U). The
chamfer distance between two shapes can be efficiently computed using a dis-
tance transform (DT, Figure 3(f)), which takes a binary image as input, and
assigns to each pixel in the image the distance to its nearest feature. We use
Canny edges as image feature points (Figure 3(e)) and the Euclidean distance
for DT, and the model points are the projected contours of a 2D (rigid) square
template. The distance between the template and the edge map can then be
computed as the mean of the DT values at the template point coordinates.

In general, matching consists of translating, rotating and scaling the template
shape at various locations of the distance image. Fortunately, in the RDI, we
just need to search for squares along the diagonal axis and scale the template
to different sizes to adapt to various cluster sizes. There is no need for template
rotation, because there are no orientation changes in VAT RDIs. This greatly
reduces the complexity of common shape detection using Chamfer matching.
The exact matching cost is ideally 0, but in practice the edges in an image are
slightly displaced from their ideal locations. Thus in our experiments, when the
matching cost lies below a certain threshold τ , the target shape is considered to
have been detected (Figure 3(g)).

5 Experimental Results

In order to evaluate our methods, we have carried out a number of experiments
on 6 artificially generated data sets, as well as 6 real-world data sets. Unless oth-
erwise mentioned, in the following experiments the (Euclidean) distance matrix
D was computed in the attribute space (if the object vectorial representation is
available). All experiments were implemented in a Matlab 7.2 environment on a
PC with an Intel 2.4GHz CPU and 2GB memory running Windows XP.

5.1 Test Datasets

Six synthetic data sets were used in our experiments, whose scatter plots are
shown in Figure 4(a). These data sets involve irregular data structures, in which
an obvious cluster centroid for each group is not necessarily available. Six real-
world data sets were also considered to evaluate our algorithms, 3 of which were
taken from the UCI Machine Learning Repository, i.e., Iris, Vote and Multiple
Features. The Face data set [26] contains 1755 images of 3 individuals, each of
which was down-sampled to 30×40 pixels. The Gene data set [27] is a 194×194
matrix consisting of pairwise dissimilarities of a set of gene products from 3
protein families. The Iris data set contains 3 types of iris plants, 50 instances
each. The Vote data set consists of 435 vote records (267 democrats and 168
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(a) Scatter plots. From left to right: S-1 to S-6

(b) Corresponding VAT images

(c) Corresponding iVAT images

(d) Corresponding binarized images of iVAT images

(e) Corresponding detected squares using aVAT

Fig. 4. Visual analysis on 6 synthetic data sets

republicans). Votes were numerically encoded as 0.5 for “yea”, -0.5 for “nay” and
0 for “unknown disposition”. The Action data set [28] is an 198× 198 pairwise
dissimilarity matrix derived from 198 human action clips. The Multiple-Features
(MF) data set consists of binary image features of 10 handwritten numerals, 200
patterns per class. The characteristics of these synthetic and real data sets are
summarized in Table 1.

5.2 Results and Analysis

For each of the data sets, we first applied the VAT algorithm. The VAT im-
ages are shown in Figure 4(b) for synthetic data and Figure 5(a) for real data,
respectively. It can be seen that the cluster structure of the data in the VAT
images is not necessarily clearly highlighted, especially for complex-shaped data.
Accordingly, viewers have difficulties in giving a consistent result about the num-
ber of clusters, and different viewers may deduce different estimates of c. Next
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Table 1. Summary of results of estimating c using different methods

Data VAT iVAT

Name cp # attri. n Manual DBE CCE aVAT Manual DBE CCE aVAT

S-1 2 2 2000 ≥ 1 6 3 6 2 2 2 2
S-2 3 2 266 ≥ 2 5 3 3 3 3 3 3
S-3 3 2 1800 ≥ 1 10 11 11 3 3 3 3
S-4 3 3 3000 - 8 9 7 3 3 3 3
S-5 4 2 512 ≥ 1 5 5 5 4 4 4 4
S-6 5 2 2500 ≥ 5 8 6 5 5 5 5 5

Vote 2 16 435 ≥ 2 2 2 3 2 2 3 2
Iris 3 4 150 2 3 2 2 2 2 2 2

Gene 3 - 194 ≥ 3 3 4 3 3 5 3 4
Face 3 1200 1755 3 or 4 4 3 6 4 4 5 5

Action 10 - 198 ≥ 9 8 7 7 10 7 7 7
MF 10 649 2000 ≥ 8 9 5 12 8 7 6 9

AAE - 2.17 2.25 2.25 0.33 0.83 0.92 0.67

ARE - 0.73 0.59 0.66 0.07 0.16 0.18 0.14

we carried out our iVAT algorithm for each of the data sets used. The resulting
iVAT images are shown in Figure 4(c) for synthetic data and Figure 5(b) for real
data, respectively. In contrast to the original VAT images, the iVAT images have
generally clearer displays in terms of block structure, thus better highlighting
the hidden cluster structure.

Table 1 summarizes the number of clusters determined from iVAT images
automatically, along with the results estimated from the VAT and iVAT images
using manual inspection by the authors for comparison. From Table 1, we can
see that

1. The results estimated from the iVAT images by manual inspection are clearly
better than those estimated from the original VAT images by manual inspec-
tion, whether for synthetic or real-world data sets.

2. The results of cluster number estimation from the iVAT images for all syn-
thetic data sets are accurate in terms of the number of real physical classes
(cp), whether it was estimated automatically by our aVAT algorithm or by
manual inspection.

3. For real-world data sets, some estimates deviate slightly from the number of
real physical classes using our aVAT algorithm.

Overall, these results highlight the benefits of converting D to D′ by the path-
based distance transform for obtaining a good estimation of c (whether auto-
matically or manually). We would like to note several points:

1. Though some estimates are imperfect for the real data, the aVAT algorithm
correctly detected all squares in the binarized images (see Figure 5(c)). This
suggests that we may need to seek more sophisticated methods of image
binarization (e.g., multiple local thresholds) for avoiding the loss of some
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(a) VAT images. From left to right: vote, iris, gene, face, action and MF

(b) Corresponding iVAT images

(c) Corresponding binarized images of iVAT images

(d) Corresponding detected squares using aVAT

Fig. 5. Visual analysis on 6 real data sets

physically meaningful blocks (e.g., for Action data, some small blocks corre-
sponding to different action classes were transferred into a bigger block after
binarization).

2. We could use a ‘square size’ threshold to filter some detected very ‘small’
blocks corresponding to either noise/inliers or subtle sub-structures (e.g., for
Face and Gene data sets).

3. As a side product, for ‘perfect’ iVAT images (such as those of the 6 synthetic
data sets), the exactly detected squares may be directly used to retrieve data
partitions (i.e., each square corresponds to one potential cluster and its size
corresponds to the cluster size).

5.3 Algorithm Comparison

We compared our aVAT algorithm with CCE [16] and DBE [17] in terms of es-
timating the number of clusters. Note that we did not compare aVAT to index-
based methods for post-clustering assessment of cluster validity, as our interest
is in estimating the number of clusters before clustering. The major steps for
CCE are summarized as follows: 1) Threshold the VAT image with Otsu’s al-
gorithm; 2) Apply the FFT to the segmented VAT and a correlation filter of
size s and multiply the transformed image with the complex conjugate of the
transformed filter; 3) Compute the inverse FFT for the filtered image; 4) Take
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the q-th off-diagonal pixel values of the back-transformed image and compute its
histogram; and 5) Cut the histogram at a horizontal line y = b, and count the
number of spikes. The major steps of DBE are summarized as follows: 1) Perform
intensity transform and segmentation of the VAT image, followed by directional
morphological filtering with size of αn; 2) Apply a distance transform to the
filtered image and project the pixel values onto the main diagonal axis to form
a projection signal; 3) Smooth the projection signal by an average filter with a
length of 2αn, compute its first-order derivative, and then detect the number of
major peaks by ignoring minor ones using a filter with size of 2αn.

As suggested in [16,17], we used s = 20, q = 1 and b = 0 for CCE and α =
0.03 for DBE. We used both VAT and iVAT images to make our comparisons,
and the results are summarized in Table 1, in which we used bold figures to
show that the estimate is equal to the number of real physical classes cp and
italic figures to show results that are relatively closer to cp. AAE and ARE
represent average absolute error and average relative error between the number
of estimated clusters and the number of real physical classes, respectively. From
Table 1, it can be seen that:

1. For synthetic data sets, all of these three methods give correct results when
using the iVAT images, while aVAT and CCE are slightly better than DBE
when using the original VAT images (i.e., 2 correct and 2 closer for aVAT,
1 correct and 3 closer for CCE, and 2 closer to DBE).

2. For real-world data sets plus the use of VAT images, DBE performs best,
then CCE and finally aVAT (i.e., 3 correct and 3 closer for DBE, 2 correct
and 2 closer for CCE, and 1 correct and 2 closer for aVAT); while for real-
world data sets plus the use of iVAT images, aVAT is a little better than
both CCE and DBE (i.e., 1 correct and 4 closer for aVAT, and 1 correct and
3 closer for both CCE and DBE).

3. Specifically, when using iVAT images, aVAT, CCE and DBE yield the same
estimate for the Iris and Action data sets. They all yield acceptable (but
different) estimates for the Gene and Face data sets. They disagree for the
Vote and MF data sets.

Overall, these three methods are comparable to each other and there is no clear
winner (at least based on the results on these data sets used currently). However,
we can see that the positions of peaks and valleys in the projection signal in DBE
implicitly correspond to centers and ranges of sub-blocks (or clusters). It is hard
to see a similar phenomena from the CCE histograms. In contrast, aVAT is
better in this aspect because it explicitly shows the number of clusters, positions
and ranges of each block (or clusters) within the image itself, in a more intuitive
manner.

6 Conclusion

This paper has presented a new visual technique for cluster tendency assess-
ment. Our contributions include: 1) The VAT algorithm was enhanced by using
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a path-based distance transform. The iVAT algorithm can better reveal the hid-
den cluster structure, especially for complex-shaped data sets. 2) Based on the
iVAT image, the cluster structure in the data can be reliably estimated by vi-
sual inspection. As well, the aVAT algorithm was proposed for automatically
determining the number of clusters c. 3) We performed a series of primary and
comparative experiments on 6 synthetic data sets and 6 real-world data sets,
and our methods obtained encouraging results.

In addition to further performance evaluation on more data sets with various
structures, future work will mainly focus on increasing the robustness of our
algorithms, e.g., exploring more sophisticated image thresholding methods [29]
and robust path-based distance computation [30].
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Abstract. Finding correlation clusters in the arbitrary subspaces of high-
dimensional data is an important and a challenging research problem. The cur-
rent state-of-the-art correlation clustering approaches are sensitive to the initial
set of seeds chosen and do not yield the optimal result in the presence of noise.
To avoid these problems, we propose RObust SEedless Correlation Clustering
(ROSECC) algorithm that does not require the selection of the initial set of seeds.
Our approach incrementally partitions the data in each iteration and applies PCA
to each partition independently. ROSECC does not assume the dimensionality of
the cluster beforehand and automatically determines the appropriate dimension-
ality (and the corresponding subspaces) of the correlation cluster. Experimental
results on both synthetic and real-world datasets demonstrate the effectiveness of
the proposed method. We also show the robustness of our method in the presence
of a significant noise levels in the data.

Keywords: Correlation clustering, principal component analysis.

1 Introduction

Clustering is one of the most popular techniques in the field of data mining [9]. The ba-
sic idea of clustering is to partition the data in such a way that the members of a partition
are closer to each other and the members of different partitions are far apart. But many
real-world applications often suffer from the “curse of dimensionality” and the mea-
sure of nearness becomes meaningless. In such scenarios, many feature selection and
dimensionality reduction methods have been proposed to aid clustering [7]. However,
these methods reduce the dimensionality by optimizing a certain criterion function and
do not address the problem of data clustering directly. The result of using dimension-
ality reduction techniques for clustering high-dimensional data is far from satisfactory
and rarely used in such scenarios. Moreover, it is possible that different clusters lie in
different subspaces and thus cannot be identified using any dimensionality reduction or
feature selection method (see Fig. 1(a)). To deal with such cases, subspace clustering
methods such as CLIQUE [4], ENCLUS [6], SUBCLU [10] etc. have been proposed
in the literature (see Fig. 1(b)). These methods attempt to find clusters in different sub-
spaces. Searching every possible subspace is a computationally intensive task due to
exponentially large search space. Thus, most of these methods use some form of an
Apriori-based approach to identify the most interesting subspaces. Projected clustering
[3,12] is one form of subspace clustering that uses the concept of projection. How-
ever, these subspace clustering or projected clustering methods have the following two
limitations:
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1. They are only able to separate clusters that are oriented in axis-parallel manner.
They cannot find cluster in arbitrary-oriented subspace (see Fig. 1(c)).

2. They can only find clusters in the sense of locality.

(a) (b) (c) (d)

Fig. 1. Different kinds of correlation clusterings. (a) Projected clustering (b) Axis-Parallel corre-
lation clusters. (c) Arbitrary oriented subspace clusters. (d) Arbitrary oriented subspace clusters
with different dimensionality.

In subspace clustering, the clusters are formed in the subspaces rather than the full-
dimensional space [4,6]. Finding arbitrary-oriented subspace cluster (Fig. 1(c)) involves
exponential search space. To efficiently address the problem, most correlation based ap-
proaches use PCA to avoid searching unwanted regions of the search space. ORCLUS
[2], which uses the same idea of axis-parallel PROCLUS [3], is the first PCA based
method to find correlation clusters. 4C [5] also uses PCA, however it incorporates a
density-based approach and hence, the number of clusters need not be pre-specified.
Although these methods are able to keep the computational complexity low and do not
suffer from a potentially infinite search space, their success in finding correlation clus-
ters is highly dependent on the initial choice of the seeds. In addition, they usually do
not produce optimal results in the presence of noise. Another problem with these meth-
ods is that the dimensionality of the correlation has to be pre-defined which is usually
difficult for the end-user from the practical viewpoint. Yip et al. [13] proposed an algo-
rithm called HARP [13], which exploits the data to adjust the internal threshold values
dynamically at the runtime. However, this method faces difficulties in obtaining a low-
dimensional cluster [11]. To avoid the problem associated with PCA-based methods
such as choosing the initial set of seeds and susceptibility to noise, CASH algorithm [1]
uses Hough transform to find correlations. Though this method does not use any ini-
tial seeds, its worst case time complexity is exponential, thus making it impractical for
high-dimensional data. To solve these issues, we propose a novel PCA based algorithm
which eliminates the problem of susceptibility to noise and the need for initial seeds to
find correlation clusters. It can also simultaneously find correlation clusters of different
dimensionality (see Fig. 1(d)) and the computational complexity is relatively low.

In this paper, we propose RObust SEedless Correlation Clustering (ROSECC) algo-
rithm to find the correlation clusters in high-dimensional data. The main advantages
of the ROSECC algorithm compared to the state-of-the-art methods proposed in the
literature are:

1. It does not require initial seeds for the clustering and hence it is deterministic.
2. It can simultaneously identify correlation clusters with different number of

dimensions.
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3. It is robust to handle noise in the data and can obtain the desired correlation clusters
despite the presence of significant noise levels in the data.

The rest of this paper is organized as follows: Section 2 describes the necessary defi-
nitions and notations. The proposed algorithm along with its computational complexity
is described in Section 3. Section 4 outlines the experimental results on both synthetic
and real-world datasets. Finally, Section 5 concludes our discussion.

2 Preliminaries

In this section, we will introduce some definitions that are needed to comprehend our
algorithm. Our method is based on the projection distance of a point onto the principal
vectors. Let dp ∈ D is a datapoint and v is the principal vector of a member Pi of Par-
titionset P , then the projection distance of dp and Pi is given by the following equation:

PDist(dp, Pi) =

{
dp.v if |Pi| > 1.

dist(dp, x) if |Pi| = 1.

where dist(dp, x) =
√∑

j(dpj − xj)2. dpj and xj corresponds to the jth feature

of the data points dp and x respectively. At the beginning of the generation of parti-
tions, there will be only one single point x without any principal component. In such
cases, the Euclidean distance from the point x will be used as the projection distance.
A “Partitionset” (denoted by Pi) is defined as a set of datapoints which have lower
projection distance to a particular component compared to the projection distance to
any other component. A “Partition” is defined as a set of Partitionsets.

Definition 1. (Nearest Component): Let dp ∈ D and P = {Pi} where Pi’s are
components, the nearest component of dp from P , denoted by NComp(dp, P ), is
defined as the component for which the projection distance from dp is minimum.
NComp(dp, P ) = argmin

Pi∈P
(PDist(dp, Pi)). The corresponding distance is the

“minimum projection”, denoted by MProj(dp, P ) = min
Pi∈P

(PDist(dp, Pi))

Definition 2. (Farthest Candidate): Let P = {Pi} where Pi is a Partitionset. The far-
thest candidate of P , denoted by FCand(P ), is defined as the data point for which the
minimum projection distance is maximum. FCand(P ) = argmax

dp∈D
(MProj(dp, P ))

Theorem 1. Let a new component consisting of a single element {dp′} is added to the
component list P to become P ′ i.e.if P ′ = P∪{dp′}. If MProj(dp, P ) > dist(dp′, dp)
then MProj(dp, P ′) = dist(dp′, dp)

Proof
From the definition of the projection distance, we have PDist(dp, {dp′})=dist(dp′, dp).
Therefore, MProj(dp, P ) > dist(dp′, dp) ⇒ MProj(dp, P ) > PDist(dp, {dp′}).
Also, from the definition of the Minimum Projection, we get,
MProj(dp, P ) ≤ ∀Pi∈P PDist(dp, Pi)⇒PDist(dp, {dp′})<∀Pi∈P PDist(dp, Pi)
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⇒ PDist(dp, {dp′}) ≤ ∀Pi∈P ′PDist(dp, Pi).
Hence, from the definition of the projection distance, we get
MProj(dp, P ′) = PDist(dp, {dp′}) = dist(dp′, dp). ��
This theorem helps in reducing some of the unnecessary computations during the par-
tiotionset assignment step after obtaining a farthest candidate and the corresponding
new component of a single datapoint. We can use the minimum projection value di-
rectly from the last iteration and compare it to the Euclidean distance from the farthest
candidate. This is an important step that saves a lot of computation time.

Definition 3. (Dimensionality of a cluster): Let P = {Pi} where Pi is a Partition-
set and λ1, λ2...λm be the eigen values of the Eigen decomposition of that partition
set in descending order. The dimensionality of the cluster is defined as Dim(Pi) =
Mink(

∑k
1 λi > τ) where τ is a threshold.

When τ = 0.9, 90% of the original variance of the data is preserved and the corre-
sponding Partitionset is obtained as a cluster. The dimensionality of the cluster is the
number of eigenvalues that cover most of the variance in the data of the Partitionset.

Definition 4. (Acceptable Partitionset): A Partitionset Pi is said to be an acceptable
Partitionset, if |Pi| ≥ n0 and 1

|Pi|
∑

dp∈Pi
PDist(dp, Pi) ≤ ε

For a Partitionset to be acceptable, it must satisfy the following two conditions:

1. There must be sufficient number of data points (n0) in the Partitionset.
2. The points in the correlation cluster must be closer (< ε) to its principal component.

3 The ROSECC Algorithm

In this section, we will describe the details of the proposed ROSECC algorithm and also
analyze the effect of different parameter values in the algorithm. The overall procedure
is shown in Algorithm 1.

3.1 Algorithm Description

The five different steps in the ROSECC algorithm are described below.

Step 1: Finding k0 principal components: For a given set of data points (Data), this
step will find k0 number of components in the data by iteratively generating a sufficient
number of partitions and their corresponding principal components. The details of this
step are described in Algorithm 2. Initially, the principal components are computed with
the entire dataset. Then, the Farthest Candidate from the first principal component is
taken and the dataset is partitioned into two different subsets depending on the distance
of the data point to the previous principal component vector and the new seedpoint. PCA
is independently applied on these two subsets, thus generating the two corresponding
principal component vectors. The membership is updated and this process is repeated
until k0 number of components are obtained (see Fig. 2(a)). At this point, one might
encounter any of these following scenarios:
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1. Some principal components are obtained for data points that are not correlated at
all. These are outliers or noise points.

2. There might be some components that contain more than 1-dimensional correlation.
3. More than one component and corresponding points might be obtained for the same

cluster.

In the next three steps, these three situations are handled.

Step 2: Removing non-informative principal components: The components that may
not represent a correlation cluster are removed in this step. A component is accepted
for further consideration only if it satisfies the definition of acceptability given in the
previous section. When the unacceptable components are removed, the corresponding
set of points become members of the outlier set (O), which can then become a member
of any other cluster in the later stages (see Fig. 2(b)).

Algorithm 1. ROSECC(Data, k0,k1,n0)
1: Input: Data matrix (Data), Number of Partitionsets (k0), Number of iterations (k1), Thresh-

old for datapoints (n0)
2: Output: Set of Correlation Clusters (P )
3: Procedure:
4: P←Generate Components(Data,k0,k1)
5: [P ,O]←Remove Unacceptable Components(P ,n0)
6: [P ,O]←Include Possible Datapoints(O,P )
7: P←Merge Possible Components(P )
8: Return P

Step 3: Finding the dimensionality of the correlation: Though Step 1 successfully
produces the set of components that possibly represent some correlation, identifying
the dimensionality of the correlation is one of the key aspects of the algorithm. Prac-
tically, the correlation cluster lies in a low-dimensional space. Hence, we can assume
that a high-dimensional correlation in the data will contain a one dimensional correla-
tion with at least a fewer number of those datapoints. Correlation dimensionality of an
acceptable component P (denoted by Dim(P )) is the number of eigenvectors needed
for preserving the desired amount of variance.

Step 4: Adding points to the correlation cluster: This step assumes that there are
some acceptable components and a set of outliers obtained from step 1. It will also
consider each outlier and tries to assign them to any one of the current components. If
a datapoint cannot be assigned to any of the correlation clusters, then it remains to be
an outlier. A data point dp in the outlier set O is includable to Pi, if PDist(dp, Pi)
is less than a threshold η (see Fig. 2(c)). At this point, the mutual exclusiveness of the
component does not hold and hence the algorithm will produce overlapping clusters.

Step 5: Merging the correlation cluster: In this step, each component is checked for
any possibility of merging with another component. Two components will be merged if
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Algorithm 2. Generate Components(Data, k0,k1)
1: Input: Data matrix (Data), Number of Components (k0), Number of iterations (k1)
2: Output: Partition Set (P )
3: Procedure:
4: P = Data, k = 0

5: repeat
6: k = k + 1; dp′ = FCand(P ); newp = {dp′}; P = P ∪ newp
7: for each dp∈D do
8: if MProj(dp, P ) > dist(dp′, dp) then
9: Comp(dp) = Comp(dp) − {dp} //Reassignment of cluster membership

10: newp = newp ∪ {dp} //when the new partition is created
11: end if
12: end for
13: for i = 1 to k1 do
14: for each dp ∈ D do
15: for each Pi ∈ P do
16: if MProj(dp, P ) > PDist(dp,Pi) then
17: Comp(dp) = Comp(dp)− dp
18: Pi = Pi ∪ dp
19: end if
20: end for
21: end for
22: end for
23: until k = k0 //Each iteration generates a new partition

(a) (b) (c) (d)

Fig. 2. Different steps of the proposed ROSECC algorithm. (a) Generation of a Partition-
set: 15 partitions (C1-C15) are generated. (b) Removal of unacceptable Partitionsets: Only
C1,C4,C7,C8,C10 and C14 remain after this step. (c) Addition of datapoints: the remaining points
(points colored in red) are outliers. (d) Merging of Partitionsets: C1, C8 and C10 are merged to
CC1; C4 and C14 are merged to CC2.

the coefficient of their representative vectors does not differ significantly. i.e. two com-
ponents Pi and Pj are merged, if |cil − cjl| < δ, ∀ l (see Fig. 2(d)).

The time complexity of our algorithm is O(k3
0 +Nd2), which is typically dominated by

the Nd2 term for large-scale and/or high-dimensional data. This time complexity of the
ROSECC algorithm is competitive to the other state-of-the-art techniques.
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Table 1. Effect of the change in parameter values for the DS1 dataset

k1 3 5
n0 1%-3% 1%-3%
k0 5 10 15 20 5 10 15 20

Accuracy 51.45% 70.34% 87% 87.35% 61.32% 95% 100% 100%

3.2 Tuning of the Parameters

The parameter k0 is the number of components that are to be generated in the first
step of the algorithm. This value should be at least twice the number of correlation
clusters present in the data. The second parameter k1 is the number of iterations that
the algorithm runs for convergence with the new partition. From our experiments, we
observed that very few iterations (fewer than 6) are necessary for convergence. The
third parameter n0 is required to check the acceptability of a component and should
be atleast 1% of the number of data points. In Table 1, we show the effect of different
parameter values for a synthetic dataset (DS1). Since we know the ground truth, we
presented the accuracy as the percentage of correctly clustered datapoints. We can see
that k1 is good with value as low as 5, while the value of n0 can be between 1% and
3%. Results are not optimal when k0 = 5, but k0 = 15 or more gives an accurate result.
Hence, it is important to generate more number of components in the first step of the
algorithm.

4 Results and Discussion

4.1 Synthetic Datasets

Our algorithm was tested successfully on various synthetic datasets that were gener-
ated to see the different aspects of the ROSECC algorithm. We discuss two different
synthetic datasets and explain the data generation along with the corresponding results.

(1) DS1 : In this dataset, two one-dimensional correlations containing 200 data points
generated from the origin with a slope of 1 and -1. Another correlation cluster (with 100
data points) is generated from the origin with a slope of 1.4. 100 random noise points
are also added. The ROSECC algorithm found all the correlation clusters, even in the
presence of sufficient noise and significant overlapping of the clusters (see Fig. 2(d)).
Thus it shows that our algorithm is robust and only starts to break when the noise is
greater than 20% in the data (see Table 2).

(2) DS2: In this dataset, one two-dimensional correlation cluster (circular shape) with
300 data points is generated. Two 1-dimensional correlation clusters that start from the
edge of that cluster in two different directions, one with 150 datapoints and the other
with 100 datapoints is added to the first cluster (see Fig. 3). This dataset is created
to test the ability of the ROSECC algorithm to simultaneously identify the correlation
clusters with different dimensionality which is one of key challenges in the correlation
clustering problem.
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Table 2. Robustness of ROSECC: Accuracy is measured in presence of different noise levels

Noise percentage 5% 10% 15% 20% 25% 30% 35%
Accuracy 100% 100% 100% 100% 93% 85% 70%

We compared the result of the ROSECC algorithm with the well-studied DBSCAN [8]
and 4C [5] algorithms. In this dataset, all the datapoints are density connected (see
Fig. 3). There are two 1-dimensional and one 2-dimensional correlation cluster in this
dataset. As shown in the result, DBSCAN recognizes all the data points as a single
cluster (Fig. 3(a)). Algorithm 4C recognizes either 1-dimensional clusters (Fig. 3(b)) or
the 2-dimensional cluster (Fig. 3(c)) depending on the choice of the parameter corre-
sponding to the number of dimensionality. On the other hand, the ROSECC algorithm
was able to successfully identify all the three clusters simultaneously in a single run
(Fig. 3(d)).

(a) DBSCAN (b) 4C (1-d) (c) 4C (2-d) (d) ROSECC

Fig. 3. Comparison results: ROSECC(d) finds all the desired correlation clusters in a synthetic
dataset (DS2) where both DBSCAN(a) and 4C(b and c) fail

4.2 Real-World Datasets

We also show the performance of the ROSECC algorithm in finding correlation clusters
in the following three real-world datasets.

(1) Breast Cancer dataset:1 This dataset measures nine biomedical parameters char-
acterizing breast cancer type in 683 humans. The algorithm found one 3-dimensional
cluster and two 2-dimensional clusters. When the result is projected in a 3-D space
using PCA, we found that the 3-dimensional correlation cluster is a pure cluster of be-
nign cancer (see Fig. 4) and no malignant cancerous patient belongs to any correlation
cluster and are considered to be outliers by our algorithm.

(2) Wages dataset : The wages dataset contains the statistics of the determinants of
Wages from the 1985 Current Population Survey. It contains 534 observations on 11
features sampled from the original Current Population Survey of 1985 and can be

1 http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
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Fig. 4. Projection of the breast cancer dataset onto the 3-dimensional space using PCA. (a) Orig-
inal class labels and (b) Result of the ROSECC algorithm.

Fig. 5. ROSECC identifies the clusters
in the Wages dataset

downloaded from StatLib Data archive2. ROSECC
gives one 2-dimensional correlation (see Fig. 5)
which basically gives YE(Years of Education) +
WE(Years of work experience) + 6 = Age. It also
gives four 1-dimensional correlation clusters;
(i) Age = WE + 18, YE=12
(ii) Age = WE + 20, YE=16
(iii) Age = WE + 24, YE=18
(iv) Age = WE + 24, YE=14.

However, all of the data points of these
four clusters are also the members of the 2-
dimensional clusters, which suggests that these four 1-dimensional correlations are ac-
tually on the 2-dimensional plane of the 2-dimensional cluster. This is an interesting
example because there are quite a few data points in the 1-dimensional clusters and our
algorithm identifies those as separate clusters as well.

(3) Glass Identification dataset: The glass identification dataset3 consists of 214 sam-
ples and 9 attributes measuring the refractive index and weight percentage of different
metals in the corresponding oxide in the glass. We ran our algorithm to find the clusters
in this dataset and the wdbc dataset. We measure the performance of the ROSECC al-
gorithm by using the class label as ground truth and calculating the F1 measure. Table 3
shows the results of the ROSECC algorithm in both the datasets are better than the other
state-of-the-art methods.

Table 3. Experimental results of F1 measure for real-world datasets

Dataset CLIQUE [4] SUBCLU [10] PROCLUS [3] ROSECC
Glass 0.45 0.49 0.57 0.58

WDBC 0.42 0.43 0.47 0.49

2 http://lib.stat.cmu.edu/datasets/CPS 85 Wages
3 http://archive.ics.uci.edu/ml/datasets/Glass+Identification/
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5 Conclusion
We proposed ROSECC, a novel PCA based robust seedless correlation clustering algo-
rithm. ROSECC does not require the initial set of seeds for clustering and is robust to
noise in the data compared to the other PCA based approaches which typically require
initial seeds and a pre-defined dimensionality parameter. It incrementally partitions the
data space and eventually finds the correlation clusters in any arbitrary subspace even in
the presence of overlapping clusters. Using several synthetic and real-world datasets, we
demonstrated the advantages of the ROSECC algorithm compared to the other methods
available in the literature for identifying correlation clusters.
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Abstract. Integrative mining of heterogeneous data is one of the major chal-
lenges for data mining in the next decade. We address the problem of integrative
clustering of data with mixed type attributes. Most existing solutions suffer from
one or both of the following drawbacks: Either they require input parameters
which are difficult to estimate, or/and they do not adequately support mixed type
attributes. Our technique INTEGRATE is a novel clustering approach that truly
integrates the information provided by heterogeneous numerical and categorical
attributes. Originating from information theory, the Minimum Description Length
(MDL) principle allows a unified view on numerical and categorical information
and thus naturally balances the influence of both sources of information in clus-
tering. Moreover, supported by the MDL principle, parameter-free clustering can
be performed which enhances the usability of INTEGRATE on real world data.
Extensive experiments demonstrate the effectiveness of INTEGRATE in exploit-
ing numerical and categorical information for clustering. As an efficient iterative
algorithm INTEGRATE is scalable to large data sets.

1 Introduction

Integrative data mining is among the top 10 challenging problems in data mining iden-
tified in [1]. Moreover it is essential for solving many of the other top 10 challenges,
including data mining in social networks and data mining for biological and environ-
mental problems. In this paper, we focus on integrative clustering. Clustering aims at
finding a natural partitioning of the data set into meaningful groups or clusters. Thus,
clustering provides an overview on major patterns in the data without requiring much
previous knowledge. During the last decades, clustering has attracted a lot of attention
as reflected in a huge volume of research papers, e.g. [2,3,4,5,6,7], to mention a few.
We address the question of how to find a natural clustering of data with mixed type at-
tributes. In everyday life, huge amounts of such data are collected, for example from
credit assessments. The collected data include numerical attributes (e.g. credit amount,
age), as well as categorical attributes (e.g. personal status). A cluster analysis of credit
assessment data is interesting, e.g., for target marketing. However, finding a natural clus-
tering of such data is a non-trivial task. We identified two major problems: Either much
previous knowledge is required, or there is no adequate support of mixed type attributes.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 38–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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To cope with these two major problems, we propose INTEGRATE, a parameter-
free technique for integrative clustering of data with mixed type attributes. The major
benefits of our approach, which to the best of our knowledge no other clustering method
meets all of them, can be summarized as follows:

– Natural balance of numerical and categorical information in clustering supported
by information theory;

– Parameter-free clustering;
– Making most effective usage of numerical as well as categorical information;
– Scalability to large data sets.

The rest of this paper is organized as follows: Section 2 gives a brief survey of the
large previous work. Section 3 presents a detailed derivation of iMDL, an information-
theoretic clustering quality criterion suitable for integrative clustering. Section 4
presents our effective and efficient iterative algorithm INTEGRATE optimizing iMDL.
Section 5 documents that INTEGRATE makes most effective usage of numerical as well
as categorical information by comparing it to well-known and state-of-the-art clustering
algorithms on synthetic and real data sets. Section 6 summarizes the paper.

2 Related Work

The algorithm k-prototypes [3] combines k-means [2] for clustering numerical data
with k-modes for categorical data in order to cluster mixed type data. The attribute
weights and the number of clusters have to be determined a priori. CFIKP [8] can pro-
cess large data sets by k-prototypes in combination with a CF*-tree, which pre-clusters
the data into dense regions. The problem for selecting the number of clusters remains.
The algorithm CAVE [9] is an incremental entropy-based method which first selects
k clusters, parametrized by the user, and then assignes objects to these clusters based
on variance and entropy. Knowledge of the similarity among categorical attributes is
needed in order to construct the distance hierarchy for the categorical attributes. The
cluster ensemble approach CEBMDC [10] overcomes the problem of selecting k but
requires a threshold parameter that defines the intra-cluster similarity between objects.
The CBC algorithm [11] is an extension of BIRCH [4] for clustering mixed type data. It
uses a weight-balanced tree that needs two paramters, defining the number of entries for
(non)-leaf nodes. Furthermore, all entries in a leaf node must satisfy a particular thresh-
old requirement. Ahmad and Dey [12] propose a k-means-based method for mixed type
attributes, but the process of solving the optimization of the cost function is very com-
plex and thus not scalable to large data sets. [13] uses standard fuzzy c-means on a set of
features which is mapped to a set of feature vectors with only real valued components.
This mapping is computationally intensive and is designed rather for low dimensional
data. An extension of the cost function of entropy weighting k-means [14] to more
efficiently specify the inter- and intra-cluster similarities is proposed by the IWEKM
approach [15]. Some papers have focused on avoiding the choice of k in partitioning
clustering, e.g. X-Means [5], RIC [6] and OCI [7]. However, these clustering methods
are designed for numerical vector data only.
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3 Minimum Description Length for Integrative Clustering

Notations. In the following we consider a data set DS with n objects. Each object x
is represented by d attributes. Attributes are denoted by capital letters and can be either
numerical features or categorical variables with two or more values. For a categorical
attribute A, we denote a possible value of A by a. The result of our algorithm is a
disjoint partitioning of DS into k clusters C1, ..., Ck.

Likelihood and Data Compression. One of the most challenging problems in clus-
tering data with mixed attribute type is selecting a suitable distance function, or uni-
fying clustering results obtained on the different representations of the data. Often,
the weighting between the different attribute types needs to be specified by parame-
ter settings, cf. Section 2. The minimum description length (MDL) principle provides
an theoretical foundation for parameter-free integrative clustering avoiding this prob-
lem. Regarding clustering as a data compression problem allows us a unifying view,
naturally balancing the influence of categorical and numerical attributes in clustering.
Probably the most important idea of MDL which allows integrative clustering is relating
the concepts of likelihood and data compression. Data compression can be maximized
by assigning short descriptions to regular data objects which exhibit the characteristic
patterns and longer descriptions to the few irregular objects or outliers.

3.1 Coding Categorical Data

Assume a data set, where each object is represented by one categorical attribute A with
two possible values. It can be shown that the code length to encode this data is lower
bounded by the entropy of A. Thus, the coding costs CC of A are provided by:

CC(A) = −
∑
a∈A

p(a) · log2 p(a).

By the application of the binary logarithm we obtain the code length in bits. If we
have no additional knowledge on the data we have to assume that the probabilities for
each value are equal. Hence, we need one bit per data object. Clustering, however,
provides high-level knowledge on the data which allows for a much more effective
way to reduce the costs. Even if the probabilities for the different outcomes of the
attributes are approximately equal w.r.t. the whole data set, often different clusters with
non-uniform probabilities can be found. As an example, refer to Figure 1. The data
are represented by two numerical attributes (which we ignore for the moment) and
one categorical attribute which has two possible values, red and blue. Considering all
objects, the probabilities for red and blue are equal. However, it is evident that the
outcomes are not uniformly distributed. Rather, we have two clusters, one preliminarily
hosts the red objects, and the other the blue ones. In fact, the data has been generated
such that in the left cluster, we have 88% of blue objects and 12% of red objects. For the
right cluster, the ratio has been selected reciprocally. This clustering drastically reduces
the entropy and hence CC(A) = 0.53 bits per data object, which corresponds to the
entropy of A in both clusters.
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Fig. 1. Top: Example data set with two numerical and one categorical attribute with the outcomes
red and blue. Bottom: Cost curves assuming two clusters: Considering the numerical information
only (green), integrating numerical and categorical information (red, blue). For each outcome and
each cluster, we have a unique cost curve. Intersection points mark the resulting cluster borders.

3.2 Coding Numerical Data

To specify the probability of each data object considering an additional numerical at-
tribute B, we assign a probability density function (PDF) to B. In this paper, we apply
a Gaussian PDF for each numerical attribute. However, let us note that our ideas can be
straightforwardly extended to other types PDF, e.g. Laplacian or Generalized Gaussian.
Thus, the PDF of a numerical attribute B is provided by:

p(b) =
1

σ
√

2π
exp
(
− (b− μB)2

2σ2
B

)
.

If the data distribution of B is Gaussian with mean μB and standard deviation σB , we
minimize the costs of the data by a coding scheme which assigns short bit strings to
objects with coordinate values that are in the area of high probability and longer bit
strings to objects with lower probability. This principle is also commonly referred to as
Huffman-Coding. The coding costs CC of B are provided by:

CC(B) = −
∫

p(b) log2 p(b)db.

Again, if we have no knowledge on the data, we would have to assume that each at-
tribute is represented by a single Gaussian with mean and standard deviation determined
from all data objects. As discussed for categorical data, clustering can often drastically
reduce the costs. Most importantly, relating clustering to data compression allows us
a unified view on data with mixed type attributes. Consider again the data displayed
in Figure 1. In addition to the categorical attribute we now consider the numerical x-
coordinate, denoted by X . To facilitate presentation, we ignore the y-coordinate which
is processed analogously. The two green curves at the bottom represent the coding costs
of the two clusters considering X . For both curves, the cost minimum coincides with
the mean of the Gaussian which generated the data. The cluster on the right has been
generated with slightly larger variance, resulting in slightly higher coding costs. The
intersection of both cost curves represents the border between the two clusters provided
by X , indicated by a green vertical line. In addition, for each cluster and each outcome
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of the categorical attribute, we have included a cost curve (displayed in the correspond-
ing colors). Again, the intersection points mark the cluster borders provided by the
categorical attribute. Consider, e.g., the red vertical line. Red objects with a value in X
beyond that point are assigned to the cluster on the right. Thus, in the area between the
red and the blue vertical line, the categorical value is the key information for clustering.
Note that all borders are not fixed but optimized during the run of our algorithm.

3.3 A Coding Scheme for Integrative Clustering

We also need to elaborate a coding scheme describing the clustering result itself. The
additional costs for encoding the clustering result can be classified into two categories:
the parameter costs PC required to specify the cluster model and the id-costs IDC
required to specify the cluster-id for each object, i.e. the information to which cluster
the object belongs.

For the parameter costs, lets focus on the set of objects belonging to a single cluster
C. To specify the cluster model, we need for each categorical attribute A to encode the
probability of each value or outcome a. For a categorical attribute with |A| possible val-
ues, we need to encode |A|−1 probabilities since the remaining probability is implicitly
specified. For each numerical attribute B we need to encode the parameters μB and σB

of the PDF. Following a central result form the theory of MDL [16], the parameter costs
to model the |C| objects of the cluster can be approximated by p/2 · log2 |C|, where p
denotes the number of parameters. The parameter costs depend logarithmically on the
number of objects in the cluster. The considerations behind this are that for clusters
with few objects, the parameters do not need to be coded with very high precision. To
summarize, the parameter costs for a cluster C are provided by

PC(C) =
1
2
· ((
∑
Acat

|A| − 1) + |Bnum| · 2)) · log2 |C|.

Here Acat stands for all categorical attributes and Bnum for all numerical attributes in
the data. Besides the parameter costs, we need for each object to encode the information
to which of the k clusters it belongs. Also for the id-costs, we apply the principle of
Huffman coding which implies that we assign shorter bitstrings to the larger clusters.
Thus, the id-costs of a cluster C are provided by:

IDC(C) = log2

n

|C| .

Putting it all together, we are now ready to define iMDL, our information-theoretic
optimization goal for integrative clustering.

iMDL =
∑
C

(
∑
A

|C| · CC(A)) + PC(C) + IDC(C).

For all clusters C we sum up the coding costs for all numerical and categorical attributes
A. To these costs we need to add the parameter costs and the id-cost of the cluster, denoted
by PC(C) and IDC(C), respectively. Finally, we sum up these three terms for all clusters.
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4 The Algorithm INTEGRATE

Now we present the highly effective algorithm INTEGRATE for clustering mixed type
attributes that is based on our new MDL criterion iMDL, defined in Section 3. IN-
TEGRATE is designed to find the optimal clustering of a data set DS, where each
object x comprises both numerical and categorical attributes by optimizing the overall
compression rate. First, INTEGRATE builds an initial partitioning of k clusters. Each
cluster is represented by a Gaussian PDF in each numerical dimension B with μB and
σB , and a probability for each value of the categorical attributes. All objects are then
assigned to the k clusters by minimizing the overall coding costs iMDL. In the next
step, the parameters of each cluster are recalculated according to the assigned objects.
That implies the μ and the σ in each numerical dimension and the probabilities for each
value of the categorical attributes, respectively. After initialization the following steps
are performed repeatedly until convergence. First, the costs for coding the actual clus-
ter partition are determined. Second, assignment of objects to clusters is performed in
order to decrease the iMDL value. Third, the new parameters of each cluster are re-
calculated. INTEGRATE terminates if no further changes of cluster assignments occur.
Finally, we receive the optimal clustering for DS represented by k clusters according
to minimum coding costs.

4.1 Initialization

The effectiveness of an algorithm often heavily depends on the quality of the initializa-
tion, as it is often the case that the algorithm can get stuck in a local optimum. Hence,
we propose an initialization scheme to avoid this effect. We have to find initial cluster
representatives that correspond best to the final representatives. An established method
for partitioning methods is to initialize with randomly chosen objects of DS. We adopt
this idea and take the μ of the numerical attributes of k randomly chosen objects as
cluster representatives. During initialization, we set σ = 1.0 in each numerical dimen-
sion. The probabilities of the values for the categorical attributes are set to 1

|a| . Then a

random set of 1
z n objects is selected, where n is the size of DS and z = 10 turned out

to give satisfying results. Finally, we chose the clustering result that minimizes iMDL
best, within m initialization runs. Typically m = 100 runs suffice for an effective result.
As only a fraction of DS is used for the initialization procedure, our method is not only
effective but also very efficient.

4.2 Automatically Selecting the Number of Clusters k

Now we propose a further improvement of the effectiveness of INTEGRATE. Using
iMDL for mixed type data we can avoid the parameter k. As an optimal clustering
that represents the underlying data structure best has minimum coding costs, iMDL
can also be used to detect the number of clusters. For this purpose, INTEGRATE uses
iMDL no longer exclusively as selection criterion for finding the correct object to
cluster assignment. Rather we now estimate the coding costs for each k where k is
selected in a range of 1 ≤ k ≤ n. For efficiency reasons INTEGRATE performs this
iteration step on a z% sample of DS. The global minimum of this cost function gives
the optimal k and thus the optimal number of clusters.
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5 Experimental Evaluation

Since INTEGRATE is a hybrid approach combining the benefits of clustering methods
using only numeric attributes and those for categorical attributes we compare algorithms
of both categories and algorithms that can also handle mixed type attributes. In partic-
ular, we selected the popular k-means algorithm, the widely used method k-modes, the
k-means-based method by Ahmad and Dey denoted by KMM and k-prototypes (cf.
Section 2). For k-means and k-modes the numerical and categorical attributes were ig-
nored. For evaluation we used the validity measure by [17] referred to as DOM in the
following (smaller values indicate a better cluster quality), which has the advantage
that it allows for clusterings with different numbers of clusters and integrates the class
labels as “ground truth”. We report in each experiment the average performance of all
clustering algorithms over 10 runs.

5.1 Synthetic Data

If not otherwise specified the artificial data sets include three Gaussian clusters with
each object having two numerical attributes and one categorical attribute. To validate
the results we added a class label to each object which was not used for clustering.

Varying Ratio of Categorical Attribute Values. In this experiment we generated
three-dimensional synthetic data sets with 1,500 points including two numerical and
one two-valued categorical attribute. We varied the ratio for each of the values of the
categorical attributes from 1:0 to 0:1 clusterwise in each data set. Without need for diffi-
cult parameter setting INTEGRATE performs best in all cases (cf. Figure 2). Even in the
case of equally (5:5) distributed values, where the categorical attribute gives no infor-
mation for separating the objects, the cluster quality of INTEGRATE is best compared
to all other methods. As k-means does not take the categorical attributes into account
the performance is relatively constant.

Varying Variance of Clusters. This experiment aims at comparing the performance of
the different methods on data sets with varying variances. In particular, we generated
synthetic data sets each comprising 1,500 points including two numerical and one two-
valued categorical attribute that form three Gaussian clusters with a variance ranging
from 0.5 to 2.0. Figure 3 shows that INTEGRATE outperforms all competitors in all
cases, in which each case reflects different degree of overlap of the three clusters. Even
at a variance of 2.0 where the numerical attributes carry nearly no cluster information
our proposed method shows best cluster quality as in this case the categorical attributes
are used to separate the clusters. On the contrary, k-modes performs worst as it can only
use the categorical attribute as single source for clustering.

Varying Clustersize. In order to test the performance of the different methods on data
sets with unbalanced clustersize we generated three Gaussian clusters with different
variance and varied the ratio of number of points per cluster from 1:10:1 to 10:1:10 in
five steps. It is obvious from Figure 4 that INETGRATE separates the three clusters best
even with highly unbalanced cluster sizes. Only in the case of two very small clusters
and one big cluster (1:10:1) k-modes shows a slightly better cluster validity.
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Fig. 2. Varying ratio of
categorical attribute values

Fig. 3. Varying variance of
clusters

Fig. 4. Varying Clustersize

Fig. 5. Numerical dimensions Fig. 6. Categorical dimensions Fig. 7. Noise dimensions

Varying Number of Numerical Dimensions. In this experiment we leave the number
of categorical attributes to a constant value and successively add numerical dimensions
to each object that are generated with a variance of σ=1.8. INTEGRATE shows best
performance in all cases (cf. Figure 5). All methods show a slight increase in cluster
quality when varying the numerical dimensionality, except k-modes that performs con-
stantly as it does not consider the numerical attributes.

Varying Number of Categorical Dimensions. For each object we added three-valued
categorical attributes where we set the probablity of the first value to 0.6 and the proba-
bility of the two remaining values to 0.2, respectively. Figure 6 illustrates that our pro-
posed method outperforms the other methods and even k-modes by magnitudes which
is a well-known method for clustering categorical data. Whereas KMM shows a heavy
decrease in clustering quality in the case of two and four additional categorical at-
tributes, our method performs relatively constant. Taking the numerical attributes not
into account the cluster validity of k-means remains constant.

Noise Dimensions. Figure 7 illustrates the performance of the different methods on
noisy data. It it obvious that INTEGRATE outperfoms all compared methods when
adding non-clustered noise dimensions to the data. k-means shows a highly increase in
the DOM values which refers to decreasing cluster validity. Even in the case of nine
noise dimensions INTEGRATE leads to the best clustering result.

5.2 Real Data

Finally, we show the practical application of INTEGRATE on real world data, avail-
able at the UCI repository http://archive.ics.uci.edu/ml/. We chose two
different data sets with mixed numerical and categorical attributes. An additional class
attribute allows for an evaluation of the results. Table 1 reports the μ and σ of all meth-
ods within 10 runs. For all compared methods we set k to the number of classes.

http://archive.ics.uci.edu/ml/
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Table 1. Results on real data

INTEGRATE k-means k-modes kMM k-prototypes

Heart Disease μ 1.23 1.33 1.26 1.24 1.33
σ 0.02 0.01 0.03 0.02 0.00

Credit Approval μ 0.61 0.66 0.70 0.63 0.66
σ 0.03 0.00 0.00 0.09 0.00

Heart Disease. The Heart-Disease data set comprises 303 instances with six numerical
and eight categorical attributes each labeled to an integer value between 0 and 4 which
refers to the presence of heart disease. Without any prior knowledge on the data set
we obtained best cluster validity of 1.23 with INTEGRATE. KMM performed slighty
worse. However, the runtime of INTEGRATE is 0.1 seconds compared to KMM which
took 2.8 seconds to return the result.

Credit Approval. The Credit Approval data set contains results of credit card applica-
tions. It has 690 instances, each being described by six numerical and nine categorical
attributes and classified to the two classes ‘yes’ or ‘no’. With a mean DOM value of 0.61
INTEGRATE separated the objects best into two clusters in only 0.1 seconds without
any need for setting input parameters.

5.3 Finding the Optimal k

On the basis of the data set illustrated in Figure 8(a) we highlight the benefit of IN-
TEGRATE for finding the correct number of clusters that are present in the data set.
The data set comprises six Gaussian clusters with each object having two numerical
attributes and one categorical attribute with two different values that are marked in
“red” and “blue”, respectively. Figure 8(b) shows the iMDL of the data model for dif-
ferent values of k. The cost function has its global minimum, which refers to the optimal
number of clusters, at k = 6. In the range of 1 ≤ k ≤ 4 the plotted function shows an
intense decrease in the coding costs and for k > 6 a slight increase of the coding costs
as in these cases the data does not optimally fit into the data model and therefore causes
high coding costs. Note, that there is a local minimum at k = 4 which would also refer
to a meaningful number of clusters.

(a) The data set. (b) iMDL for 1 ≤ k ≤ 30.

Fig. 8. Coding costs for different k according to a data set that consists of k = 6 clusters
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6 Conclusion

We have introduced a new information-theoretic clustering method — INTEGRATE. We
gave a solution to avoid difficult parameter settings guided by the information-theoretic
idea of data compression. We have shown with extensive experiments that INTEGRATE
uses the numerical and categorical information most effectively. And finally, INTE-
GRATE shows high efficiency and is therefore scalable to large data sets.
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Abstract. The sum squared residue has been popularly used as a clus-

tering and co-clustering quality measure, however little research on its

detail properties has been performed. Recent research articulates that the

residue is useful to discover shifting patterns but inappropriate to find

scaling patterns. To remedy this weakness, we propose to take specific

data transformations that can adjust latent scaling factors and eventu-

ally lead to lower the residue. First, we consider data matrix models with

varied shifting and scaling factors. Then, we formally analyze the effect

of several data transformations on the residue. Finally, we empirically

validate the analysis with publicly-available human cancer gene expres-

sion datasets. Both the analytical and experimental results reveal column

standard deviation normalization and column Z-score transformation are

effective for the residue to handle scaling factors, through which we are

able to achieve better tissue sample clustering accuracy.

Keywords: Data Transformation, Sum Squared Residue, Z-score Trans-

formation, Scaling Pattern, Shifting Pattern.

1 Introduction

Hartigan’s pioneering work, direct clustering [13], stimulated a vast amount of
research on co-clustering. Co-clustering aims at identifying homogeneous local
patterns, each of which consists of a subset of rows and a subset of of columns
in a given two dimensional matrix. This idea has attracted genomic researchers,
because it is compatible with our understanding of cellular processes, where
a subset of genes are coregulated under a certain experimental conditions [5].
Madeira and Oliveira [15] surveyed biclustering algorithms and their applications
to biological data analysis.

Cheng and Church [7] are considered to be the first to apply co-clustering,
biclustering, to gene expression data. The greedy search heuristic generates bi-
clusters, one at a time, which satisfy a certain homogeneity constraint, called
mean squared residue. Since then, several similar approaches have been proposed
to enhance the original work. For example, Cho et al. [8] developed two mini-
mum sum squared co-clustering (MSSRCC) algorithms: one objective function
is based on the partitioning model proposed by Hartigan [13] and the other one
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is based on the squared residue formulated by Cheng and Church [7]. The later
is the residue of interest and defined in the next chapter.

Recently, Aguilar-Ruiz [1] shows that the mean squared residue depends on
the scaling variance in the considered data matrix. This finding issues the weak-
ness of the residue and the need of new approaches to discover scaling patterns.
Motivated by the work, we propose a simple remedy to find scaling patterns, still
using the same residue measure. We suggest to take specific data transforma-
tions so as to handle hidden scaling factors. In this paper, we apply several data
transformations to data matrix models derived from varied scaling and shifting
factors and analyze the effect of data transformations on the the second residue,
RESIDUE(II) [8]. Furthermore, using MSSRCC, we empirically demonstrate the
advantage of the data transformations with publicly available human cancer mi-
croarrays. Both analysis and experimental results reveal that column standard
deviation normalization and column Z-score transformation are effective.

The rest of this paper is organized as follows: In Section 2 we introduce
some definitions and facts used in this paper. We describe the considered data
transformations in Section 3. Then, we formally analyze the effects of data trans-
formations and summarize the analysis results in Section 4. We discuss the ex-
perimental results with human cancer gene expression datasets in Section 5.
Finally, the paper is concluded with some remark.

2 Definition

We adapt the following definitions in Agular-Ruiz [1], Cheng and Church [7],
and Cho et al. [8] to fit for our context.
Data matrix. A data matrix is defined as a real-valued rectangular matrix
A ∈ R

m×n, whose (i, j)-th element is denoted by aij .
For example, a microarray can be defined with two finite sets, the set of genes

and the set of experimental conditions. Note that Aguilar-Ruiz [1] describes the
microarray whose rows represent experimental condition and columns represent
genes. However, in this paper, we will consider a microarray which consists of
examples of genes in rows and attributes as experimental conditions in columns.
Co-cluster. Let I ⊆ {1, 2, . . . , m} and J ⊆ {1, 2, . . . , n} denote the set of indices
of the rows in a row cluster and the set of indices of the columns in a column
cluster. A submatrix of A induced by the index sets I and J is called a co-cluster
and denoted as AIJ ∈ R

|I|×|J|, where |I| and |J | denote the cardinality of index
set I and J , respectively. In reality, rows and columns in a co-cluster are not
necessary to be consecutive. However, for brevity we consider the co-cluster,
AIJ , whose entries consist of first |I| rows and first |J | columns in A.

2.1 Sum Squared Residue

In order to evaluate the coherence of such a co-cluster, we define RESIDUE(II)
of an element aij in the co-cluster determined by index sets I and J as below.
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Residue. RESIDUE(II) is defined as hij = aij − aiJ − aIj + aIJ , where the
mean of the entries in row i whose column indices are in J is computed by
aiJ = 1

|J|
∑

j∈J aij , the mean of the entries in column j whose row indices are in

I by aIj = 1
|I|
∑

i∈I aij , and the mean of all the entries in the co-cluster whose

row and column indices are in I and J by aIJ = 1
|I||J|

∑
i∈I,j∈J aij .

Sum squared residue (SSR). Let HIJ ∈ R
|I|×|J| be the residue matrix whose

entries are described by RESIDUE(II). Then, the sum squared residue of HIJ

is defined as SSR = ‖HIJ‖2 =
∑

i∈I,j∈J h2
ij , where ‖X‖ denotes the Frobenius

norm of matrix X, i.e., ‖X‖2 =
∑

i,j x2
ij .

2.2 Patterns

We assume A contains both scaling and shifting factors. We borrow the concepts
of “local” and “global” scaling and shifting from Cheng and Church [7], Cho et
al. [8], and Aguilar-Ruiz [1] and generalize the definition of data patterns in [1].
Global/local scaling and global/local shifting patterns. A bicluster con-
tains both scaling and shifting patterns when it expresses aij = πi × αj + βj ,
where πi is the base value for row (e.g., gene) i, αj is the scaling factor for column
(e.g., experimental condition) j, and βj is the shifting factor for column (e.g.,
experimental condition) j. We classify the expression into the following four pat-
terns: global scaling (gsc) and global shifting pattern (gsh) when aij = πi×α+β;
global scaling (gsc) and local shifting pattern (lsh) when aij = πi×α +βj; local
scaling (lsc) and global shifting pattern (gsh) when aij = πi × αj + β; and local
scaling (lsc) and local shifting pattern (lsh) when aij = πi × αj + βj .

3 Data Transformations

Raw data values have a limitation that raw values do not disclose how they vary
from the central tendency of the distribution. Therefore, transformation of the
raw data is considered one of the most important steps for various data mining
processes since the variance of a variable will determine its importance in a given
model [16]. In this study, we investigate the following data transformations.
No transformation (NT). No centering or scaling is taken. In other words,
a′

ij = aij , ∀i and ∀j, i.e., the raw matrix is directly input to MSSRCC.
Double centering (DC). DC is defined as a′

ij = aij −ai·−a·j +a··, ∀i and ∀j.
Through DC, each entry of a data matrix A becomes a′

ij = (πi − μπ) (αj − μα).
Note that we have a′

i· = a′
·j = 0 and consequently a′

·· = 0, since DC transforms
the data matrix to have both row means and column means to be 0.
Column/row mean centering (MC). Column MC is defined as a′

ij = aij −
a·j, ∀i and ∀j. Through column MC, each entry becomes a′

ij = πiαj + βj − μ·j .
Therefore, row mean, column mean, and whole mean become a′

i· = πiμα+μβ−a··,
a′
·j = μπαj +βj−a·j , and a′

·· = μπμα+μβ−a··, respectively. Similarly, row MC is
defined similarly with ai·. Therefore, row mean, column mean, and whole mean
become a′

i· = πiμα + μβ − ai·, a′
·j = μπαj + βj − a··, and a′·· = μπμα + μβ − a··.
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Column/row standard deviation normalization (SDN). Column SDN is
defined as a′

ij = aij

σ·j
, ∀i and ∀j. Similarly, row SDN is defined with σ2

i·. Through
column and row SDN each column and row has a unit variance, respectively.
Column/row Z-score transformation (ZT). Column ZT is defined as a′

ij =
aij−a·j

σ·j
, ∀i and ∀j. Similarly, row ZT is defined with ai· and σ2

i·. It is also called
“autoscaling”, where the measurements are scaled so that each column/row has
a zero mean and a unit variance [14]. Through ZT, the relative variation in
intensity is emphasized, since ZT is a linear transformation, which keeps the
relative positions of observations and the shape of the original distribution.

4 Analysis

Now, we analyze the effect of the data transformations on the sum squared
residue, RESIDUE(II). Because of space limitation, we focus on analysis on the
three data transformations including NT, column SDN, and column ZT, which
clearly demonstrate the effect of the specific data transformation.

4.1 No Transformation (NT)

(i, j)-th entry of row i ∈ I and column j ∈ J of co-cluster AIJ is described
as aij = πiαj + βj . Then, the mean of the base values of AIJ is computed by
μπI = 1

|I|
∑

i∈I πi. and the mean of the scaling factors by μαJ = 1
|J|
∑

j∈J αj ,
and the mean of the shifting factors by μβJ = 1

|J|
∑

j∈J βj . Also, the mean of row
i is obtained by aiJ = πiμαJ + μβJ , the mean of column j by aIj = μπαj +
βj , and the mean of all the elements by aIJ = μπμαJ + μβJ . Using these val-
ues, we obtain RESIDUE(II), hij = (πi − μπI )(αj − μαJ ). Consequently, the sum
squared residue (SSR) can be computed as SSR = ‖HIJ‖2 =

∑
i∈I,j∈J h2

ij =∑
i∈I,j∈J (πi − μπI )

2(αj − μαJ )2 = |I||J |σ2
πI

σ2
αJ

, where σ2
πI

= 1
|I|
∑

i∈I(πi − μπI )
2

and σ2
αJ

= 1
|J|
∑

j∈J (αj − μαJ )2.
In fact, SSR shown above is a revisit of Theorems in Aguilar-Ruiz [1]. It shows

with no data transformation that SSR is dependent on both the variance of base
values and the variance of scaling factors, but independent from shifting factors.
Accordingly, any shifting operations such as DC and MC to the given data ma-
trix should not contribute to RESIDUE(II). As also shown in [1], RESIDUE(II)
itself has an ability to discover shifting patterns.

4.2 Column Standard Deviation Normalization (SDN)

Column SDN transforms A to have the constant global scaling factor, i.e., 1, and
the local shifting factors, i.e., βj

αj
. To be more specific, (i, j)-th entry is trans-

formed as aij = 1
σ·j

(πiαj + βj) = 1
σπ

(
πi + βj

αj

)
. Then, row mean, column mean,
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and whole mean of co-cluster AIJ are computed by aiJ = 1
|J|
∑

j∈J
1

σ·j
(πiαj +βj),

aIj = 1
|I|
∑

i∈I
1

σ·j
(πiαj + βj), and aIJ = 1

|I||J|
∑

i∈I

∑
j∈J

1
σ·j

(πiαj + βj), re-
spectively. Therefore, using RESIDUE(II), we can capture the perfect co-cluster,
i.e., zero RESIDUE(II), for all the four expression patterns.

4.3 Column Z-Score Transformation (ZT)

Column ZT transforms A to have the constant global scaling factor, i.e., 1, and
the constant global shifting factor, i.e., −μπ. To be more specific, (i, j)-th entry
is transformed as aij = 1

σ·j (πiαj + βj − a·j) = 1
σπ

(πi − μπ). Then, row mean of
co-cluster AIJ is obtained by aiJ = 1

σπ
(μπi − μπ) = aij , and column mean and

whole mean by aIj = 1
σπ

(μπI − μπ) = aIJ . Like column SDN, we obtain zero
REDIDUE(II) for all the possible combinations of scaling and shifting patterns.

5 Experimental Results

Now, we empirically show the effect of data transformations on the four pub-
licly available human cancer microarray datasets including Colon cancer [2],
Leukemia [12], Lung cancer [3], and MLL [3]. With MSSRCC [8][9], we generate
100 × 2 or 100 × 3 co-clusters with random and spectral initializations, setting
τ = 10−3‖A‖2 and τ = 10−6‖A‖2 for batch and local search, respectively. De-
tailed algorithmic strategies and their contributions are discussed in [9].
Data preprocessing. Since utilizing sophisticated feature selection algorithms
is not a main focus, we just apply the simple preprocessing steps usually adopted
in microarray experiments as in [6][10][11] to detect differential expression. De-
tails are summarized in Table 1. Further, the gene expression values in Colon
dataset were transformed by taking the base-10 logarithm.

Table 1. Description of microarray datasets used in our experiments

Colon Leukemia Lung MLL

# original genes 2000 7129 12533 12582

# samples 62 72 181 72

# sample classes 2 2 2 3

Normal(20) ALL(47) ADCA(150) ALL(24)

Sample class names Tumor(42) AML(25) MPM(31) AML(25)

MLL(23)

|max/min| 15 5 5 5

|max − min| 500 500 600 5500

# remaining genes 1096 3571 2401 2474

Abbreviations: ALL – Acute Lymphoblastic Leukemia; AML – Acute

Myeloid Leukemia; ADCA – Adenocarcinoma; MPM – Malignant

Pleural Mesothelioma; and MLL – Mixed-Lineage Leukemia. The

number after each sample class name denotes the number of samples.
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Tissue sample clustering evaluation measure. To evaluate the performance
of sample clusterings, we quantify tissue sample clustering performance using the
following clustering accuracy measure: accuracy(%) = 1

T

(∑l
i=1 ti

)
×100, where

T denotes the total number of samples, l the number of sample clusters, and ti
the numbers of the samples correctly clustered into a sample class i.
Performance comparison. Figure 1 illustrates the average tissue sample ac-
curacy using MSSRCC with RESIDUE(II). As reported in [9], spectral initial-
ization and local search strategy play a significant role in improving MSSRCC
performance. However, in this paper, we are more interested in how data trans-
formations affect the tissue sample accuracy performance.

NT, DC, and MC with random initialization ((a)-(d)) and NT and MC
with spectral initialization ((e)-(h)) result in nearly similar accuracy. Note that
RESIDUE(II) is not affected by shifting factors, but still affected by the scal-
ing factors as first articulated in [1] and also revisited in the analysis. To be
more specific, the residue with NT on data matrices with local scaling factors is
(πi − μπI ) (αj − μαJ ), on which interestingly the residue with DC or MC is also
dependent. In our experiment, DC with random initialization generates com-
patible accuracy with that of other data transformations ((a)-(d)), however it is
relatively less effective with spectral initialization ((f)-(h)). For all the consid-
ered datasets, MC presents compatible performance that of NT, but not better
than that of either SDN or ZT.

As analyzed in the previous section, both column SDN and column ZT help
MSSRCC with RESIDUE(II) capture perfect co-clusters, thus MSSRCC with
column SDN or column ZT is supposed to generate similar accuracy and also
better accuracy than those with NT, DC, or MC. Accordingly, they lead to the
best accuracy values for most cases ((a)-(h)).

6 Conclusion and Remark

Aguilar-Ruiz [1] issues the need of a new metric to discover both scaling and
shifting patterns, showing that the sum squared residue can discover any shifted
patterns but may not capture some scaled patterns. To answer this need, we
propose a simple remedy that helps the residue resolve its dependency on scaling
variances. We suggest to take specific data transformations through which the
hidden scaling factors are implicitly removed. We analyze the effect of various
data transformation on RESIDUE(II) [8] for data matrices with global/local
scaling and global/shifting factors.

Both analysis and experimental results reveal that column standard deviation
normalization and column Z-score transformation are effective for RESIDUE(II).
To be more specific, through MSSRCC with RESIDUE(II) and the two data trans-
formations,we are able to discover coherent patterns with both scaling and shifting
factors. The transformed matrix contains the constant global scaling factor 1 and
local shifting factors and gives the perfect residue score, i.e., zero RESIDUE(II).

Note that RESIDUE(II) is a special case (scheme 6) of the six Euclidean
co-clustering schemes in Bregman co-clustering algorithms [4]. Our formal
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analysis can be applicable to any clustering/co-clustering algorithm that has a
closed-formof objective function, thus our potential future direction is to apply the
proposed analysis to the remaining co-clustering models in Bregman co-clustering
algorithms and formally characterize each of Bregman co-clustering algorithms.
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Abstract. The definition of a community in social networks varies with appli-
cations. To generalize different types of communities, the concept of link-
pattern based community was proposed in a previous study to group nodes into 
communities, where the nodes in a community have similar intra-community 
and inter-community interaction behaviors. In this paper, by defining centroid 
of a community, a distance function is provided to measure the similarity be-
tween the link pattern of a node and the centroid of a community. The problem 
of discovering link-pattern based communities is transformed into a data clus-
tering problem on nodes for minimizing a given objective function. By extend-
ing the partitioning methods of cluster analysis, two algorithms named G-LPC 
and KM-LPC are proposed to solve the problem. The experiment results show 
that KM-LPC outperforms the previous work on the efficiency, the memory uti-
lization, and the clustering result. Besides, G-LPC achieves the best result  
approaching the optimal solution. 

Keywords: Social Network, Link-Pattern based Community, Clustering  
Algorithms. 

1   Introduction 

Social network analysis is an established field in sociology. A social network is most-
ly modeled by a graph in which a node represents an individual and an edge between 
two nodes denotes a social interaction between the corresponding individuals. In 
recently years, because of the increasing availability of social network data on the 
Web 2.0 platform, the study of social network analysis has emerged into an active 
research field. The community structure is an important topological characteristic of 
social networks, which provides a basis for further analysis of social networks. Ac-
cordingly, discovering the communities from a social network has become an essen-
tial problem on social network analysis. 

The definitions of a community in social networks vary with applications. In most 
studies, finding groups of nodes within which the interconnections are dense but  
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between which the interconnections are sparse is attractive to users. In earlier papers, 
the graph partitioning techniques were adopted to divide nodes into subsets by dis-
covering the various kinds of cuts in a graph such as average cuts [1], normalized cuts 
[9], min-max cuts [2], and maximum flow/minimum cuts [3, 5]. However, in some 
applications such as those in blogosphere, a group of individuals linking to the same 
set of blogs indicates a set of latent friends with common interests even though they 
sparsely link to each other [6, 8]. Therefore, to generalize the different types of com-
munities, the concept of link-pattern based community was proposed in [7]. 

A link-pattern based community is a group of nodes which have a similar link pat-
terns, i.e., the nodes in the same community have similar intra-community and inter-
community interaction behaviors. For example, the individuals, denoted by the nodes 
in Figure 1, are grouped into three communities: C1 = {v1, v2, v3, v4}, C2 = {v5, v6, v7, 
v8}, and C3 = {v9, v10, v11, v12}. The nodes in C1 link densely to each other, link moder-
ately to the nodes in C2, and link sparsely to the nodes in C3. On the other hand, the 
nodes in C2 link moderately to the nodes in C1 and link sparsely to the nodes in both 
C2 and C3. The nodes in C3 also link to other nodes within the community and be-
tween the communities in similar ways. The concept of a community prototype graph 
was also proposed, which consists of a set of community nodes (i.e., C1, C2 and C3 in 
Figure 1) and a set of edges among community nodes to represent the community 
structures. Accordingly, the graph and its community prototype graph are represented 
as affinity matrices in which each entry represents the weight of an edge between two 
corresponding nodes. An iterative algorithm named CLGA was developed to find the 
optimal community prototype graph from the graph by solving the optimization  
problem of matrix approximation. 

 

Fig. 1. An example of the link-pattern based communities 

The number of individuals in a social network is enormous in most cases, and the 
size of the affinity matrix of the original graph is determined by the number of  
individuals. Consequently, the algorithms for solving the problem of discovering the 
link-pattern based communities are challenging on the requirement of memory usage 
and the performance efficiency. However, in [7], in order to find the optimal commu-
nity prototype graph, it requires exhaustive search by moving a node from one com-
munity to another community. In each time of iteration, the affinity matrix of the 
corresponding community prototype graph has to be recomputed. As a result, CLGA 
is computationally infeasible. Besides, CLGA has to maintain the affinity matrix of 
the community prototype graph. Consequently, the memory requirement of CLGA is 
at least double of the one required by the affinity matrix of the original graph. 

According to the concept of the link-pattern based community, the edges with 
weights incident to a node are essential features which imply the link-pattern of the 
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node. In this paper, we reformulate the problem based on the proximity of the links of 
nodes to discover the link-pattern based community structures, and evaluate the qual-
ity of the community structures according to the similarity of the weights of the intra-
links within a community and that of the weights of the inter-links between the  
community and every other community. It is proved that the reformulated problem of 
communities discovering is equivalent to the problem defined in [7]. In order to get a 
good clustering result, two different strategies are provided to select sample nodes for 
determining the initial the communities. Based on the extracted initial community 
structures, two algorithms, named G-LPC and KM-LPC, based on the classical clus-
tering methods, are provided to discover the communities. The experiment results 
show that KM-LPC outperforms CLGA not only on the efficiency and memory utili-
zation, but also on the clustering result. Although G-LPC requires the most computa-
tional cost than the others, it achieves the best result approaching the optimal solution. 

The remaining sections of this paper are organized as follows. The reformulated 
problem and the proposed algorithms are described in Sections 2 and 3, respectively. 
The performance study is reported in Section 4, which shows the effectiveness,  
efficiency, and memory usage of the proposed methods. Finally, in Section 5, we 
conclude this paper and discuss directions for our future studies. 

2   Preliminaries 

In this section, the problem proposed in [7] for discovering the link-pattern based 
communities is introduced briefly. Then we reformulate the problem and provide 
solutions to the problem in Section 3. 

2.1   Problem of Matrix Approximation Optimization 

Suppose an undirected weighted graph G = (V, E, A) is given, where V is a set of 
nodes {v1, v2, …, vn}, E is a set of edges (vi, vj), and A is the affinity matrix of G. A is 
an n×n symmetric matrix, in which A[i, j] is a positive value representing the weight 
of the edge between nodes vi and vj if (vi, vj) ∈ E; otherwise, A[i, j] is set to be 0. 

A community prototype graph defined in [7] consists of a set of community nodes 
and a set of edges among community nodes associated with weights to represent the 
community structures. Let K denote the number of communities specified by the us-
ers. The community structure matrix B is a K×K matrix for representing the weights of 
intra-links and inter-links of the community nodes. Besides, an n×K matrix C with 
binary values denotes the community membership of each node, where each node 
belongs to exact one community and there is no empty community. The affinity ma-
trix of a community prototype graph, denoted as A', is an n×n matrix which is the 
result of CBCT. Accordingly, the challenge of discovering the link-pattern based 
communities is how to find C and B such that ||A - A'||2 is minimized. 
[Example 2.1]. The nodes of the social network shown in Figure 2(a) are required to 
be grouped into two link-pattern based communities. The affinity matrix of the corre-
sponding graph is shown as Figure 2(b). When the two communities are constructed 
as C1 = {v1, v2, v3, v4} and C2 = {v5, v6, v7, v8}, the corresponding community proto-
type graph shown in Figure 2(c) is the optimal solution of this case. Accordingly, the 



 A Better Strategy of Discovering Link-Pattern Based Communities 59 

1 2 

3 4 

1 

1 

0.125 

5 6 

7 8 

C1 

C2 

corresponding matrices C and B of the constructed community structures are shown in 
Figure 2(d). Besides, the affinity matrix of the community prototype graph is shown 
as Figure 2(e). Therefore, the difference between the affinity matrix of the graph and 
the affinity matrix of the community prototype graph is 3.5. 

 
 
 
 
 
 
 

   (a)                  (b)                         (c)                      (d)                                          (e) 

Fig. 2. An example of a graph and its optimal community prototype graph 

2.2   Problem Definition 

Based on the definition of the link-pattern based community, a good solution of the 
problem tends to group the nodes with similar intra-community and inter-community 
interaction behaviors into the same community. The link pattern of a node is charac-
terized by its edges linked to other nodes, and the link pattern of a community by the 
aggregate link patterns of the nodes in the community. An object function is designed 
to evaluate the quality of the communities by the distance between the link patterns of 
each community and its nodes. 

Suppose the members in each community have been assigned. Le t 

{ }1 2
, , ,

nu
u u u uC v v v= K  and { }1 2

, , ,
nv

v v v vC v v v= K  denote two communities, where nu 

and nv denote the number of nodes in Cu and Cv, respectively. The affinity matrix for 
the nodes in Cu, denoted 

uCA , is an nu×nu sub-matrix of A which is the affinity matrix 
of the original graph. The intra-community link pattern of 

iuv  is represented by the ith 

row in 
uCA  with the weights of the intra-community edges of 

iuv . Moreover, the 

affinity matrix ,u vC CA  for the nodes in Cu with the nodes in Cv is an nu×nv sub-matrix 

of A, in which the ith row represents the inter-community edges of 
iuv  with the nodes 

in Cv. 
Consequently, the intra-community pattern of the community Cu is represented by 

a vector of nu dimensions where each dimension contains the average weight of the 
intra-community link patterns of all the nodes in Cu as the following formula shows: 
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The inter-community pattern of the community Cu with Cv is represented by a vector 
of nv dimensions where each dimension contains the average weight of the inter-
community edges of all the nodes in Cu with Cv as the following formula shows: 
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1 2 3 4 5 6 7 8 
1 1 1 1 1 0 0 0 0 

2 1 1 1 1 0 0 0 1 

3 1 1 1 1 1 0 0 0 

4 1 1 1 1 0 0 0 0 

5 0 0 1 0 1 1 1 1 

6 0 0 0 0 1 1 1 1 

7 0 0 0 0 1 1 1 1 

8 0 1 0 0 1 1 1 1 

1 2 3 4 5 6 7 8 
1 1 1 1 1 0.125 0.125 0.125 0.125 

2 1 1 1 1 0.125 0.125 0.125 0.125 

3 1 1 1 1 0.125 0.125 0.125 0.125 

4 1 1 1 1 0.125 0.125 0.125 0.125 

5 0.125 0.125 0.125 0.125 1 1 1 1 

6 0.125 0.125 0.125 0.125 1 1 1 1 

7 0.125 0.125 0.125 0.125 1 1 1 1 

8 0.125 0.125 0.125 0.125 1 1 1 1 

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

1 0.125
0.125 1

C= 

1 4 

2 3 

5 8 

6 7 

B = 
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Therefore, the intra-distance of Cu and the inter-distance between Cu and Cv are de-
fined by the following formulas: 

[ ]( )2

1 1

,
u u

u u u

n n

C C C
i j

SSD A i j AVG
= =

= −∑∑                                           (3) 

[ ]( )2
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u v u v u v

n n
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= −∑∑                                       (4) 

[Example 2.2]. The nodes of the graph shown in Figure 2(a) are grouped into C1 and 
C2. Consequently, the corresponding matrices 

1CA , 
2CA , 

1 2,C CA , and 
2 1,C CA  are shown 

in Figure 3(a), (b), (c), and (d), respectively. Accordingly, the values of 
1CAVG , 

2CAVG , 
1 2,C CAVG , and 

2 1,C CAVG  are 1, 1, 0.125, and 0.125, respectively. Besides, the 

values of 
1CSSD , 

2CSSD , 
1 2,C CSSD , and 

2 1,C CSSD  are 0, 0, 1.75, and 1.75, respectively. 

 1 2 3 4  5 6 7 8 5 6 7 8 1 2 3 4

1 1 1 1 1 5 1 1 1 1 1 0 0 0 0 5 0 0 1 0 

2 1 1 1 1 6 1 1 1 1 2 0 0 0 1 6 0 0 0 0 

3 1 1 1 1 7 1 1 1 1 3 1 0 0 0 7 0 0 0 0 

4 1 1 1 1 8 1 1 1 1 4 0 0 0 0 8 0 1 0 0 

(a)                  (b)                  (c)                  (d) 

Fig. 3. The affinity matrices 
1CA , 

2CA , 
1 2,C CA , and 

2 1,C CA  

Consequently, the problem of discovering the link-pattern based communities from 
a social network is formulated by minimizing the sum of the intra- and inter-distances 
of the communities as the following. According to a given positive integer K which 
denotes the number of communities, the optimized communities are given by 
minimizing the following objective function: 

1 2
,, , ,

1 1

arg min
i i j

K

K K

C C C
C C C

i j j i

SSD SSD
= = ∧ ≠

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ ∑

K

                                         (5) 

where the n nodes in the social network are separated into C1, …, CK such that each 
node belongs to exact one community. Besides, there is no empty community allowed. 

It is deducible that the optimal solution discovered according to the proposed ob-
jective function is the same as the one discovered by CLGA. Suppose the members in 
each community have been assigned. Based on our observation on matrix B, the di- 
agonal entry B[i, i] is equal to 

iCAVG  and the non-diagonal entry B[i, j] in B is equal 

to ,i jC CAVG . Therefore, for any pair of vx and vy in Ci, the entry A'[x, y] in A' of the 

community prototype graph is equal to 
iCAVG . On the other hand, the entry A'[x, y] is 

equal to ,i jC CAVG  for any node vx in Ci and node vy in Cj. Since each node belongs to 

exact one community, ||A – A'||2 is equal to 
,

1 1
i i j

K K

C C C
i j j i

SSD SSD
= = ∧ ≠

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ ∑ . 

3   The Proposed Algorithms 

According to the objective function defined in Section 2, the task of discovering the 
link-pattern based communities is an optimization problem of minimizing the  
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objective function. However, it is computationally infeasible to exhaustively search 
the global optimum solution of this problem. To provide a heuristic algorithm for 
solving this problem, a greedy based algorithm and a K-Means based algorithm are 
proposed to discover the disjoint clusters of data nodes which correspond to the link-
pattern based communities of these nodes. 

3.1   Basic Idea 

In order to get a value of the objective function as small as possible, one effective way 
is to adopt the greedy-based algorithm in which each node is iteratively assigned to a 
community such that the obtained value of the objective function is minimal. The K-
Means algorithm [4] is a typical method of cluster analysis. The goal of K-Means is to 
minimize the sum of squared distances between data and the mean of the correspond-
ing cluster, which is similar to the goal of the objective function defined in this paper. 
Therefore, a K-Means based algorithm is also proposed to discover the communities. 

According to the given information of graph G, row i in the affinity matrix A of G 
provides the information of the link pattern of node vi, which forms the feature vector 
of vi. For a community Cu, the feature vector of Cu is an n-dimensional vector. The jth 
dimension in the feature vector of Cu contains the value of 

uCAVG  if node vj belongs 

to Cu; otherwise, it contains the value of ,u vC CAVG  if node vj belongs to another com- 

munity Cv. During the progressive process of clustering, the feature vector of a com-
munity will be used to be its centroid. Therefore, the value of the objective function 
defined in formula (5) corresponds to the sum of squared distance between the feature 
vector of each node and the centroid of its community. 

To adopt the clustering methods for discovering the communities, first, K initial cen-
troids are determined by performing a clustering on the sample nodes selected from the 
social network. Next, each node in the social network is assigned to a community by 
executing one of the proposed two algorithms. The centroid of a community will be 
updated according to the nodes assigned to the community. Relative to the new cen-
troids, the above process is repeated until there is no change in communities. 

3.2   Determining Initial Centroids 

In terms of the quality of the clustering result, determining a set of appropriate initial 
centroids of clusters is the key step of clustering algorithms. However, it is not easy to 
determine a ‘good’ set of initial centroids of clusters without knowing the connec-
tivity among the nodes. Therefore, some sample nodes are chosen from the graph. 
Then the agglomerative hierarchical clustering method is adopted to separate these 
sample nodes into K disjoint clusters. Finally, the mean of the feature vectors of the 
sample nodes assigned to a cluster is set as the initial centroid of the cluster. 

A straightforward method is to choose the sample nodes randomly. However, a 
good quality of the clustering result is obtained by chance based on which sample 
nodes are chosen. In order to understand the characteristics of the link-pattern based 
communities in a real dataset, the Enron email dataset is analyzed by CLGA. It is ob-
served that the nodes which are distributed to the same community usually have the 
similar degrees. In other words, it is more possible that two nodes belong to the same 
community as their degrees are closer. Accordingly, in our second strategy, the sample 
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nodes are selected based on the degrees of the nodes. Moreover, the number of chosen 
sample nodes is determined by K×U, where K is the number of expected communities 
and U is a user-specified integer which is at least one and less than ⎣n/K⎦. 

By summarizing the above considerations, the following two strategies are used to 
select sample nodes from the given graph G. 
(1) Picking by random 

K×U sample nodes are chosen from G randomly without replacement. 
(2) Picking by node degree 

The nodes with the identical degree are assigned to the same group. Within each 
group, U nodes are chosen randomly without replacement. 

After selecting sample nodes by one of the above-mentioned strategies, the sample 
nodes are separated into K clusters by the agglomerative hierarchical clustering. At 
the beginning, each sample node is considered as an individual cluster. Let cx and cy 
denote the centroids of two clusters Cx and Cy, respectively. The distance between Cx 
and Cy is decided by calculating the Euclidean distance between cx and cy: 

( ),x y x ydist C C c c= −                                                 (6) 

Iteratively, two nearest clusters are chosen to be merged into a cluster until K clusters 
remain. Whenever two clusters are merged to generate a new cluster Cl, the centroid 
of Cl, which is denoted as cl, is obtained according to the following formula: 

1
.

l

l
SN Cl

c SN fv
n ∈

= ∑                                                         (7) 

where nl denotes the number of sample nodes in Cl, SN denotes a sample node in Cl, 
and SN.fv denotes the feature vector of the sample node. 

[Example 3.1]. In the graph shown in Figure 2(a), the number of distinct degree values 
of nodes is 2. By using the picking by node degree strategy to select sample nodes, the 
nodes in the graph are separated into two groups {v1, v4, v6, v7} and {v2, v3, v5, v8}. 
When U is set as 1, the number of chosen sample nodes from each group is 1. Suppose 
nodes v4 and v3 are chosen as the sample nodes. Accordingly, <1, 1, 1, 1, 0, 0, 0, 0> and 
<1, 1, 1, 1, 1, 0, 0, 0> of v4 and v3 are used as the initial centroids of C1 and C2. 

3.3   Communities Discovering 

After the initial centroids of K clusters are obtained, each node in G is then assigned 
to the closest cluster, and the centroid of each cluster is updated according to the 
nodes assigned to the cluster. Then two algorithms are proposed to reassign each node 
in G to the clusters iteratively until the result converges. 
(1) Discovering Initial Communities 

According to the initial centroids, each node in the graph G is assigned to the clos-
est cluster one by one. The distance between a node v and Cu is determined: 

( ), .u udist v C v fv c= −                                                        (8) 

where v.fv denotes the feature vector of node v. 
When the assignment of all the nodes to the clusters completes, the initial structures 

of communities are constructed. Accordingly, the feature vector of each initial com-
munity is computed to update its centroid. 
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[Example 3.2]. By continuing the result of Example 3.1, the nodes in the graph are 
separated into two initial clusters C1 = {v1, v2, v4} and C2 = {v3, v5, v6, v7, v8}. The 
values of 

1CAVG , 
2CAVG , and 

1 2,C CAVG  are 1, 0.76, and 0.2667, respectively. 

Therefore, the centroids of C1 and C2 are <1, 1, 0.2667, 1, 0.2667, 0.2667, 0.2667, 
0.2667> and <0.2667, 0.2667, 0.76, 0.2667, 0.76, 0.76, 0.76, 0.76>, respectively. 
(2) The Clustering Algorithms 

The two clustering algorithms proposed to discover the community structures ac-
cording to the initial communities are introduced. 

(A) The Greedy based Algorithm 
The process of the Greedy based algorithm for discovering Link Pattern-based 

Communities (abbreviated as G-LPC) aims to distribute a node to the cluster such that 
the objective function is minimized locally. In each time of iteration, one by one, each 
node is checked to decide the cluster which the node is assigned to. The node is 
moved from the cluster, which it was assigned to in last time of iteration, to another 
cluster if the value of objective function will be reduced after the movement. The 
above process is repeated until there is no change in clusters. 
[Example 3.3]. According to the result of Example 3.2, the two initial clusters are C1 
= {v1, v2, v4} and C2 = {v3, v5, v6, v7, v8}. If we move node v1 from C1 to C2, 

1CAVG , 

2CAVG , and 
1 2,C CAVG  are recomputed to be 1, 0.6111, and 0.4167, respectively. Also, 

the centroids of C1 and C2 are updated. Finally, the new value of the objective func-
tion is obtained, which is 14.3889. The value is larger than the previous one, i.e. 
10.4267; hence, v1 is remained in C1. 

(B) The K-Means based Algorithm 
The process of the K-Means based algorithm for discovering Link Pattern-based 

Communities (abbreviated as KM-LPC) assigns each node to the cluster whose cen-
troid is nearest to the feature vector of the node. At the end of each time of iteration, 
the centroid of a cluster is recomputed according to the nodes which are assigned to 
the cluster. The above process is repeated until no member of any cluster changes. 
[Example 3.4]. By continuing the result of Example 3.2, the initial centroids of C1 and C2 
are <1, 1, 0.2667, 1, 0.2667, 0.2667, 0.2667, 0.2667> and <0.2667, 0.2667, 0.76, 0.2667, 
0.76, 0.76, 0.76, 0.76>, respectively. The distances between the feature vector <1, 1, 1, 1, 0, 
0, 0, 0> of v1 and the centroids of C1 and C2 are 0.9068 and 1.9953; consequently, v1 is re-
mained in C1. Similarly, other nodes are assigned to the closest clusters. In the end of this 
loop, the members of C1 and C2 are {v1, v2, v3, v4} and {v5, v6, v7, v8}. By KM-LPC, the final 
community result is C1 = {v1, v2, v3, v4} and C2 = {v5, v6, v7, v8}, which is the optimal solution 
of the link-pattern based communities with 2 communities. 

4   Performance Evaluation 

In order to evaluate the effectiveness, efficiency, and memory requirement of the 
proposed algorithms, G-LPC and KM-LPC are implemented by MATLAB ver. 7.0.1. 
Furthermore, CLGA [7] is also implemented for comparison. All the experiments are 
performed on a personal computer with the Intel Pentium Core 2 Quad CPU, 2 GB of 
main memory, and running the Microsoft Windows XP. 
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4.1   Datasets 

Two real datasets: Enron email DB1 and DBLP Bibliography DB2 are used in the 
following experiments. The Enron email DB contains the emails of 151 employees. 
The dataset is modeled by a graph in which the weight of the edge between two nodes 
is set to be 1 if any one of the corresponding employees has ever sent an email to the 
other; otherwise, the edge weight is set to be 0. On the other hand, the DBLP dataset 
contains the publication information of approximate 700,000 authors. In order to 
reduce the size of the dataset, we select the authors who have at least 75 coauthors, 
and the authors who publish more than 10 papers with one of the previously selected 
authors to run the experiments. As a result, only 7,356 authors are selected. Then an 
undirected weighted graph is constructed, in which a node represents one of the se-
lected 7,356 authors; in addition, the weight of an edge between two nodes is set to be 
the number of collaborations between the two corresponding authors normalized by 
the maximum number of collaborations between any two authors. 

4.2   Results and Discussions 

There are three parts of experiments to be performed. In the first part, the Enron email 
dataset is used to evaluate the quality of obtained communities, the execution time, 
and the memory requirement of the proposed algorithms and the previous work. Next, 
by using the DBLP dataset, the detailed comparisons of the parameters setting in KM-
LPC are observed in the second part of experiments. At last, the properties of the 
discovered link pattern-based communities from the DBLP dataset are analyzed. 

4.2.1   Comparison between the Proposed Algorithms and CLGA 
[Exp. 1]. The Enron email dataset is used in this part of experiments. The parameter 
U is set to be 1. In addition, the strategy of picking by node degree is adopted. 

By varying the value of K, the values of the objective function for the communities 
discovered by the proposed two algorithms and CLGA are shown in Figure 4(a). It is 
indicated that the community structures obtained by the two proposed algorithms are 
both better than the one obtained by CLGA. Besides, G-LPC gets the best result. In 
CLGA, if users have no prior knowledge about the social network, the initial setting 
of the community structures is determined by random. The result shows that the ran-
dom setting adopted in CLGA usually results in a poorer result by comparing with our 
algorithms. Figure 4(b) shows the execution time of the algorithms, in which the  
execution time of KM-LPC is much less than the time of the others. It shows that 
KM-LPC provide a significant improvement for discovering the communities effi-
ciently. Moreover, the sizes of memory requirement of the algorithms are shown in 
Figure 4(c). In our algorithms, in addition to the affinity matrix of the given graph, 
only the centroids of the communities have to be maintained in main memory instead 
of storing another affinity matrix of the community prototype graph adopted by 
CLGA. Therefore, both the proposed algorithms require less memory than CLGA. 

                                                           
1 http://www.cs.cmu.edu/~enron/ 
2 http://www.informatik.uni-trier.de/~ley/db/ 
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To decide the community of a node, G-LPC computes the new value of the objec-
tive function for each possible movement of the node. On the other hand, in KM-LPC, 
it only computes the distance between the feature vector of a node and all the cen-
troids of communities to find the community with the nearest centroid. As a result, 
although G-LPC requires the most computational cost than the others, it achieves the 
better result than the others when the value of K is increasing. Besides, when the 
strategy of picking by random is adopted, the performances of our algorithms are also 
better than that of CLGA. Due to space restrictions, the details of this part of experi-
ment are not shown here. 
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Fig. 4. Comparisons between our algorithms and CLGA in the Enron email dataset 

4.2.2   Comparison of the Parameters Setting in KM-LPC 
Because the number of authors chosen from the DBLP dataset is 7,356, the graph 
constructed for the dataset is large and complicated. CLGA cannot run on the DBLP 
dataset under limited memory. Thus, in this part of experiments, we will observe the 
effect of the parameters U and K on KM-LPC. Two versions of the algorithm are 
implemented where the strategy for selecting the sample nodes adopts the picking by 
random and picking by node degree, individually. 

[Exp. 2]. The parameter U is set to be 1 and the value of K is varied from 100 to 220. 
The results of the objective function of the 2 different versions of KM-LPC are shown 
in Table 1. The bold-faced values shown in the table indicate the better result in the 
two versions of KM-LPC. In most cases, it obtains the better result of the communi-
ties by using the picking by node degree strategy than using the picking by random 
strategy. However, since most of the edge weights in the graph are very small, the 
difference between the obtained objective function values of these two strategies is 
not obvious. Table 2 shows the execution time of the 2 versions of KM-LPC, in which 
the bold-faced values represent the same meaning as used in Table 1. According to 
the results, for KM-LPC, the version by adopting the picking by node degree strategy 
runs faster than the one by adopting the picking by random strategy in most cases. 

[Exp. 3]. For a setting of K, the value of U is varied from 1 to 3. In addition, KM-
LPC is performed by combined with the picking by node degree strategy. Table 3 
shows that a larger value of U gets smaller value of the objective function in most 
cases. That is, for KM-LPC, picking more sample nodes from the graph to determine 
the initial centroids of the clusters is a good strategy to get better result. However, 
when the value of U increases, the number of selected sample nodes increases. The 
cost of performing the hierarchical clustering to determine the initial centroids of 
clusters also increases tremendously. Therefore, as the results shown in Figure 5, the 
execution time of KM-LPC substantially increases when the value of U increases. 
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Table 1. The values of the objective function    Table 2. The running time (sec.) obtained 
obtained by Exp. 2                                                      by Exp. 2 

K
Algo. 

100 115 130 145 160 175 190 205 220 
K

Algo. 
100 115 130 145 160 175 190 205 220 

KM-LPC 
(Random) 

7212.5 7207.7 7186.1 7178.1 7162.6 7149.0 7132.1 7119.4 7101.3
KM-LPC
(Random)

915.1 653.5 935.5 1320.2 1396.1 1459.5 1576 1182.4 1431 

KM-LPC 
(Degree) 7211.0 7206.8 7191.6 7177.1 7154.8 7144.1 7130.2 7118.5 7098.9

KM-LPC
(Degree) 518.3 643.6 743.8 811.4 879.1 1048 1152.2 1258.7 1604.8 

Table 3. The values of the objective functionby  
varying the values of K and U 

 

 

Fig. 5. The running time of Exp. 3 

4.2.3   Property Study of the Discovered Link Pattern-Based Communities 
[Exp. 4]. The parameter U is set to be 1 and the value of K is varied from 25 to 200. 
In addition, KM-LPC is performed by combined with the picking by node degree 
strategy. Suppose a node vx belongs to a community Ci. The intra-community-
interaction of node vx is defined to be the sum of the weights of the edges between vx 
and all the other nodes belonging to Ci divided by the sum of the weights of all edges 
of vx. A node with a high value of the intra-community-interaction implies that the 
edges of the node mainly connect to the other nodes within the same community. In 
this experiment, the property of the discovered communities is studied by measuring 
the average intra-community-interaction of the nodes in the graph. When the values of 
K are set to be 200, 100, 50, and 25, the values of the obtained average intra-
community-interaction are 0.70, 0.79, 0.84, and 0.91, respectively. It is indicated that 
the value of the average intra-community-interaction tends upwards by decreasing the 
value of K. 

By analyzing the discovered communities by KM-LPC in detail, when a small value 
of K is given, most of the communities have dense connections within the community 
and sparse connections with other communities. However, when the value of K be-
comes as large as 200, two different types of communities are observed. The first type 
of communities has dense connections within the community. Although the second 
type of communities has sparse connections within the community, the nodes in each 
community consistently connect to the nodes in a certain set of dense communities. 

According to the semantics of the dataset, the authors assigned to one of the first type 
of communities have strong co-author relationship within the community. Thus, the 
members of a community in first type have common research topics. On the other hand, 
in the second type of communities, although the authors cooperate seldom with each 
other, they co-work with the authors in the same set of the first type communities. 
Therefore, the authors assigned to a second type community also have the similar 
research interests, who are potential partners with each other. This interesting finding 
 

   K 
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2 7210.9 7205.5 7189.6 7174.6 7159.7 7143.7 7130.1 7115.7 7099.0

3 7210.7 7205.3 7190.3 7173.4 7159.3 7143.4 7127.8 7112.1 7097.2
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is useful for authors to find possible cooperators. Consequently, depending on the 
needs of users, KM-LPC can discover the different meaningful communities by vary-
ing the value of K. 

5   Conclusions and Future Work 

In this paper, we reformulate the problem of discovering link-pattern based communi-
ties from a social network based on the similarity of link patterns of the nodes within 
each community. The problem of discovering link-pattern based communities is trans-
formed to a classical clustering problem. Two algorithms named G-LPC and KM-LPC 
are proposed based on the classical clustering methods. The experiment results with the 
real datasets demonstrate that KM-LPC is better than CLGA not only on the discov-
ered communities but also on the efficiency and memory utilization. Although the 
computational cost of G-LPC is higher than the others, its result is the best approaching 
the optimal solution. Finally, in most cases, picking by node degree is a good strategy 
to select the sample nodes for deciding the initial community centroids. 

In some social networks, it is allowed that an individual belongs to multiple com-
munities. To extend the concept of link-pattern based communities in this environment 
for identifying the communities is under our investigation. Moreover, how to deter-
mine a proper number of communities for discovering a set of semantically meaningful 
communities is another important issue for our future study. 
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Abstract. During social interactions in a community, there are often

sub-communities that behave in opposite manner. These antagonistic

sub-communities could represent groups of people with opposite tastes,

factions within a community distrusting one another, etc. Taking as in-

put a set of interactions within a community, we develop a novel pattern

mining approach that extracts for a set of antagonistic sub-communities.

In particular, based on a set of user specified thresholds, we extract a set

of pairs of sub-communities that behave in opposite ways with one an-

other. To prevent a blow up in these set of pairs, we focus on extracting

a compact lossless representation based on the concept of closed pat-

terns. To test the scalability of our approach, we built a synthetic data

generator and experimented on the scalability of the algorithm when

the size of the dataset and mining parameters are varied. Case studies

on an Amazon book rating dataset show the efficiency of our approach

and the utility of our technique in extracting interesting information on

antagonistic sub-communities.

1 Introduction

We form opinions and at times strong convictions on various issues and questions.
Based on similarity in opinions and ideals, it is common that sub-groups or
communities of users are formed. As members support or uphold a particular
view or even conviction, we also observe the dynamics of human social interaction
of antagonistic groups, i.e., two groups that consistently differ in opinions.

Opposing groups and their nature have been studied in the sociology domain
[17,5,4,14,10,6]. Understanding the formation of these groups and wide-spread-
ness of opposing communities are of research interest. They could potentially sig-
nify signs of disunity in the larger community and point to sub-communities that
oppose one another. If these issues could be detected early, unwanted tensions
between communities could potentially be averted. Identification of antagonistic
communities is also the first step to further studies on: e.g., how the antagonistic
communities are formed, why they are formed, how does the antagonistic commu-
nities grow over time, when do the communities stop being antagonistic, etc.

Aside from enriching studies on dynamics of social interactions, information
on groups of people having opposing opinions could potentially be used for:
designing better marketing/product survey strategy by deeper understanding

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 68–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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on the nature of each sub-community and potentially an opposing one, better
recommendation of friends, or even recommendation of “non-friends”, e.g., those
whose reviews one could ignore, etc.

In this study, our goal is to discover antagonistic communities automati-
cally from their history of interactions. We design a novel pattern mining al-
gorithm to directly mine antagonistic communities. We take as input a database
of user opinions/views over things, bucketized into high/medium/low or posi-
tive/neutral/negative. From this database, we extract every two sets of users
that are antagonistic over enough number of common items/issues with a high
likelihood. Each mined pattern identifies a group of users that oppose another
group over a sufficient number of common issues/items of interest (i.e., enough
support) with a high likelihood (i.e., enough confidence).

Our approach explores the search space of all possible opposing communities
and prunes those that appear with not enough frequency/support. An apriori-
like anti-monotonicity property is used to prune the search space. Eventually the
patterns mined are checked if the confidence is sufficient. If it is, it would then
be reported. As a frequent antagonistic pattern would have many sub-patterns
that are frequent we only report patterns that are closed. A pattern is closed if
there exists no super-pattern having the same support and confidence.

To show the scalability of our approach, we developed a synthetic data gener-
ator in a similar fashion as the IBM data generator used for mining association
rules [2]. The data generator is used to test the scalability of our approach on
several dimensions of interest. The result shows that our algorithm is able to run
well on various parameter settings. We also investigates a rating dataset from
Amazon. Our algorithm is able to run on the real dataset and extract antago-
nistic communities. A few hundred communities are mined from the dataset.

The contributions of our work are as follows:

1. We propose a new problem of mining antagonistic communities from so-
cial network. Mined antagonistic communities could potentially be used to
shed better light on social interactions, prevent unwanted tensions in the
communities, improve recommendations and marketing strategies, etc.

2. We propose a new algorithm to mine for antagonistic communities that is
shown to be scalable.

3. We extract antagonistic communities from real datasets shedding light to
the extent of consistent antagonistic behavior in real rating datasets.

The structure of this paper is as follows. Section 2 describes some related work.
Section 3 formalizes some concepts and the semantics of antagonistic communi-
ties. Section 4 describes our mining algorithm. Experiments and case studies are
described in Section 5. We finally conclude and describe future work in Section 6.

2 Related Work

There have been a number of studies on finding communities in social net-
work [3,9,8]. In this study we enrich past studies by discovering not cohesive
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communities but ones with opposing sub-communities. We believe these two
source of information could give more light to the social interactions among
users in Web 2.0.

Antagonistic communities is also related to the concept of homophily. Mem-
bers of a pair of antagonistic communities, intuitively share more preferences
with those in the same community and share less preferences with others from
the opposing community. There have been a number of studies on homophily in
social networks [16]. In this work, our mined communities not only express sim-
ilar preferences but also opposing preferences. Homophily and trust are closely
related as users with similar preferences are more likely to trust each other [11]. In
this sense, our work enriches existing studies on homophily and trust [12,15,13].

In the sociology, economics, and psychology communities, the concept of inter-
group antagonism has been studied by various work [17,5,4,14,10,6]. We extend
this interesting research question by providing a computation tool to automati-
cally identify opposing communities from a history of their behaviors. We believe
our tool could potentially be used to help sociologist in understanding the be-
haviors of communities from the wealth of available data of user interactions in
Web 2.0.

Our algorithm belongs to a family of pattern mining algorithms. There have
been a number of pattern mining algorithms including those mining associa-
tion rules (e.g., [2]), frequent sequences (e.g., [18]), frequent repetitive sequences
(e.g., [7]), frequent graphs, etc. The closest to our study is the body of work on
association rule mining [2]. Association rule mining also employs the concept of
support and confidence like us. However, association rule mining extracts fre-
quent transactions, and relationship between transactions. On the other hand,
we extract two sets of opposing users that share many common interests/form
opinions/commonly rated items but oppose each other with high likelihood.
This problem is inherently different from association rule mining. We show that
a similar apriori-like anti-monotonicity property holds but we employ a different
algorithm to mine for antagonistic communities. Similar to the work in [18], we
do not report all frequent and confident groups rather only the closed ones.

3 Antagonistic Group

We formalize past histories of user social interactions in terms of ratings to items
which can be objects, views, or even ideas. Hence there is a bipartite graph
between users and objects where the arrows are labeled with rating scores. We
divide all rating scores to be high, medium, low rating polarities depending
on the score ranges. For example in Epinions where there is a 5-point scale
assigned to an item by a user, we bucketize rating scores of 1 − 2 to be of low
rating polarity, 3 to be of medium rating polarity, and 4− 5 to be of high rating
polarity. We formalize our input as a database of ratings, defined in Definition 1.
We refer to the size of a rating database DBR as |DBR| which is equal to the
number of mapping entries in the database.
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Definition 1. Consider a set of users U and a set of items I. A database of
ratings consists of a set of mappings of item identifiers to a set of pairs, where
each pair consists of user identifier and rating score. There are three types of
rating scores considered: high (hi), medium (mid), and low (lo). The database of
ratings could be formally represented as:

DBR = {itid �→ {(usid, rtg), . . .}|itid ∈ I ∧ usid ∈ U ∧ rtg ∈ {hi, mid, lo} ∧
usid gives itid a rating of rtg}

Two ratings are said to be common between two users if the ratings are assigned
by the two users on the same item. A set of ratings is said to be common among a
set of users if these ratings are on a common set of items rated by the set of users.

Definition 2 (Antagonistic Group): Let Ui and Uj be two disjoint sets of
users. (Ui, Uj) is called an antagonistic group (or simply, a-group) if at least σ
of their common ratings satisfy all the following conditions:

– Users from Ui share the same rating polarity pi;
– Users from Uj share the same rating polarity pj; and
– pi and pj are opposite polarities.

The number of common ratings between two sets of users Ui and Uj is known as
their support count and is denoted by count(Ui, Uj). The support of the two
user sets support(Ui, Uj) is defined as count(Ui,Uj)

|I| where I represents the set of
all items.

The number of common ratings between Ui and Uj that satisfy the three con-
ditions in the antagonistic group definition (see Definition 2) is called the an-
tagonistic count, denoted by antcount(Ui, Uj). Obviously, antcount(Ui, Uj) ≤
count(Ui, Uj). The antagonistic support of the two user sets asupport(Ui, Uj)
is defined as antcount(Ui,Uj)

|I| . We also define the antagonistic confidence of a

a-group (Ui, Uj) to be aconf(Ui, Uj) = antcount(Ui,Uj)
count(Ui,Uj)

.

Definition 3 (Frequent Antagonistic Group): An antagonistic group (Ui,Uj)
is frequent if support(Ui, Uj) ≥ λ and asupport(Ui, Uj) ≥ λ × σ where λ is the
support threshold (∈ (0, 1)), and σ is the antagonistic confidence threshold
(∈ (0, 1)).

We consider (Ui, Uj) to subsume (U ′
i , U

′
j) if: (a) U ′

i ⊂ Ui and U ′
j ⊆ Uj ; or (b)

U ′
i ⊆ Ui and U ′

j ⊂ Uj . We denote this by (U ′
i , U

′
j) ⊂ (Ui, Uj).

Frequent a-groups satisfy the important Apriori property as stated below.
Due to space constraint, we move the proof to [1].

Property 1 (Apriori Property of Freq. A-group): Every size (k−1) a-group
(U ′

i , U
′
j) subsumed by a size-k frequent a-group (Ui, Uj) is frequent.

Definition 4 (Valid Antagonistic Group): An a-group (Ui, Uj) is valid if it
is frequent and aconf(Ui, Uj) ≥ σ.
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Definition 5 (Closed Antagonistic Group): A valid a-group (Ui, Uj) is
closed if ¬∃(U ′

i , U
′
j).(Ui, Uj) ⊂ (U ′

i , U
′
j), count(U ′

i , U
′
j) = count(Ui, Uj) and

antcount(U ′
i , U

′
j) = antcount(Ui, Uj).

Example 1. Consider the example rating database in Table 1 (left). Suppose
λ = 3 and σ = 0.5. Both (a, d) and (a, bd) are valid a-groups. However, since
count(a, d) = count(a, bd) = 3 and antcount(a, d) = antcount(a, bd) = 2, (a, d)
is not a closed a-group and is subsumed by (a, bd). Hence, (a, d) is considered as
redundant. On the other hand, both (a, b) and (a, bc) are closed a-groups even
though both aconf(a, b) and aconf(a, bc) has the same value which is 2

3 . This is
so as count(a, b) 	= count(a, bc) and antcount(a, b) 	= antcount(a, bc).

Table 1. Example Rating Database 1 (DBEX1), 2, and 3

Item User ratings

i1 a-hi, b-lo, d-lo

i2 a-hi, b-lo, d-lo

i3 a-hi, b-hi, d-hi

i4 a-hi, b-lo, c-lo
i5 a-hi, b-lo, c-lo
i6 a-hi, b-hi, c-lo

Item User ratings

i1 a-hi, b-lo, c-lo
i2 a-hi, b-lo, c-lo
i3 a-hi, b-lo, c-hi

i4 d-hi, e-lo, f -lo

i5 d-hi, e-hi

Item User ratings

i1 a-hi, b-lo, d-lo

i2 a-hi, b-lo, d-lo

i3 a-hi, b-hi, d-hi

Note that count(Ui, Uj) = count(U ′
i , U

′
j) does not imply that antcount

(Ui, Uj) = antcount(U ′
i , U

′
j) for any (Ui, Uj) ⊂ (U ′

i , U
′
j), and vice versa. We

can show this using the rating database example in Table 1 (middle). In this
example, we have count(a, b) = count(a, bc) = 3 but (antcount(a, b) = 3) >
(antcount(a, bc) = 2). We also have antcount(d, e) = antcount(d, ef) = 1 but
(count(d, e) = 2) > (count(d, ef) = 1).

Definition 6 (Antagonistic Group Mining Problem): Given a set of items
I rated by a set of users U , the antagonistic group mining problem is to find all
closed antagonistic groups with the given support threshold λ and antagonistic
confidence threshold σ.

4 A-Group Mining Algorithm

We develop a new algorithm to mine for antagonistic groups from a database
of rating history. The database could be viewed as a cleaned representation of
people opinions or views or convictions on various items or issues. Our algorithm
systematically traverses the search space of possible antagonistic groups using a
search space pruning strategy to remove unfruitful search spaces.

The a-group mining algorithm runs for multiple passes. In the initialization
pass, we calculate the count and antcount of all the size-2 a-group candidates
and determine which of them are frequent. In the next pass, with the set of
frequent a-groups found in the previous pass, we generate new potential frequent
a-groups, which are called candidate set. We then count the actual count and
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antcount values for these candidates. At the end of this pass, we determine the
frequent candidates, and they are used to generate frequent a-groups for the
next pass. After that, we filter the previous frequent a-group set with the newly
generated frequent a-group set by removing non-closed a-groups. Then we move
on to the next pass. This process continues until no larger a-groups are found.
After successful mining of all frequent a-groups, we derive the valid a-groups
from them.

Input: λ; σ; rating database

Output: valid and closed a-group of all size

L1 = frequent user set;1

C2 = {({ui}{uj})|i < j, ui ∈ L1, uj ∈ L1};2

for k = 2;k ≤ |U | and |Lk−1| �= 0; k++ do3

if k > 2 then4

Ck=antGrpMining-gen(Lk−1);5

end6

root← buildHashTree(k,Ck);7

foreach item t ∈ D do8

Ct=subset(t,root);9

foreach candidate c in Ct do10

update count and antcount of c;11

end12

end13

Lk={gk ∈ Ck| count(gk)
|I| ≥ λ and

antcount(gk)
|I| ≥ λ × σ};14

Lk−1=prune(Lk−1, Lk);15

end16

G={g ∈ ⋃k Lk|antcount(g)
count(g)

≥ σ};17

Output G;18

Algorithm 1. Mining Algorithm – Clagmine(λ,σ,DBR)

Algorithm 1 shows the a-group mining algorithm known as Clagmine. Two
basics data structures are maintained namely Lk the intermediary set of frequent
a-groups of size k and Ck a candidate set of size k for valid a-groups checking.
The first two lines of the algorithm derives size-2 candidates to get the fre-
quent size-2 a-groups. It forms the base for subsequent processing. A subsequent
pass, say pass k, consists of three phases. First, at line 5, the a-groups in Lk−1

found in k− 1 pass are used to generate the candidate a-group set Ck, using the
antGrpMining-gen method in Algorithm 2. Next, the database is scanned and
the count and antcount of candidates in Ck is updated (lines 7 to 13). We make
use of the hash-tree data structure described in [2] to hold Ck and we then use a
subset function to find the candidates overlap with the raters of an item. After
we marked all the overlapped candidates, we update the count and antcount
of them. Frequent a-groups can be determined by checking count and antcount
against the support threshold and λ× σ thresholds respectively. Following that,
Lk−1 is filtered with the newly generated a-groups to remove non-closed a-groups
(line 15). After all the passes, the valid a-group is determined from the frequent
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a-group set (line 17). The following subheadings zoom into the various compo-
nents of the mining algorithm in more detail.

Input: size-(k − 1) frequent a-group set Lk−1

Output: size-k candidate frequent a-group set

foreach p, q ∈ Lk−1 do1

gk ← merge(p, q);2

add gk to Ck;3

forall (k − 1)-subsets s of gk do4

if s¬ ∈ Lk−1 then5

delete gk from Ck;6

end7

end8

end9

return Ck;10

Algorithm 2. antGrpMining-gen(Lk−1)

Candidate Generation and Pruning. The antGrpMining-gen function de-
scribed in Algorithm 2 takes Lk−1, the set of all frequent size-(k − 1) a-groups
as input. It returns a superset of all frequent size-k a-groups. It works as below.
First, we merge all the elements in Lk−1 that share the same sub-community of
size-(k-2). Each of them can be merged into a size-k candidate a-group consist-
ing of the common sub-community and the two differing members. We add the
candidate a-groups to Ck. Next, in the pruning stage, we delete gk ∈ Ck if some
(k − 1) subset of gk is not in Lk−1.

The pruning stage’s correctness is guaranteed by Property 1. From the prop-
erty, if gk is frequent, all its (k − 1) subsets must be frequent. In other words, if
any one (k − 1) subset of an a-group gk is not frequent, gk is not frequent too.
We thus prune such gks. The correctness of antGrpMining-gen function follows
from Lemma 1. Due to space constraint, we move the proofs of all lemmas and
theorems to [1].

Lemma 1. For k ≥ 3, given a set of all size-(k−1) frequent a-group, i.e., Lk−1,
every size-k frequent a-group, i.e., Lk, is in the candidate set, i.e., Ck, output
by Algorithm 2.

An example to illustrate the process of candidate generation via merging and
deletion is given below.

Example 2. Let L3 be {(u1, u2u3),(u5, u2u3),(u1u4, u2),(u1u5, u2),(u4u5, u2)}.
After the merge step, C4 will be {(u1u5, u2u3), (u1u4u5, u2)}. The deletion step
serving as apriori-based pruning, will delete the a-group (u1u5, u2u3) because
the a-group (u1u5, u3) is not in L3. We will then left with only {(u1u4u5, u2)}
in C4.

Subset Function. Candidate a-groups are stored in a hashtree as mentioned
in line 7 of Algorithm 1. Each node of the hashtree contains either a hashtable
(interior node), or a list of candidates (leaf). Each node is labeled with a user



Mining Antagonistic Communities from Social Networks 75

identifier representing the user associated with this node. The hashtable at in-
terior nodes contains mappings to nodes at the next level, with each hash key
being the corresponding user identifier. Every candidate is sorted according to
the user identifier, and is then inserted into the hashtree.

The subset function in line 9 of Algorithm 1 finds all the candidate a-groups
among raters of item t. The raters of item t is first sorted by their user identifiers.
The raters are then traversed one by one. A pointer list is kept to maintain a list
of nodes which are visited, which initially has only the root of the hashtree. For
a rater u, we traverse through all the nodes in the pointer list, if a child node of
the current node is found with label u, the child node is further checked to see
whether it is interior or leaf. If it is an interior node, we add it to the pointer
list and if it is a leaf, every a-group stored in the leaf is marked as a subset of
raters of t. A node is removed from the pointer list if all of its child nodes are in
the list (i.e., are visited). The process is repeated through all the raters of item
t. At the end, all the candidates which are subset of raters of t will be marked.

Filtering Non-Closed A-Group. The filtering of non-closed a-groups corre-
sponds to line 15 in Algorithm 1. The function works as follows. For each a-group
gk in Lk, we traverse through every a-group gk−1 in Lk−1. If gk subsumes gk−1,
and the count and antcount of the two groups are equal, gk−1 can be filtered.
This step ensures all the a-groups in Lk−1 are closed. By iterating through k,
we can have all the non-closed a-group of any size filtered. Note that a closed
a-group could potentially subsumes a combinatorial number of sub-groups. Re-
moval of non-closed a-group potentially reduces the number of reported a-groups
significantly.

Correctness of the algorithm. The correctness of the algorithm is guaranteed
by Theorems 1 & 2 stated below.

Theorem 1. Mined a-group set G contains all valid and closed a-groups.
Theorem 2. Mined a-group set G contains only valid and closed a-groups.

Scalability Variant: Divide and Conquer Strategy. At times, the main
memory required to generate all the candidates could be prohibitive. If there are
too many L2 patterns, storing all of them in the memory would not be feasible.
To address this issue, we perform a divide and conquer strategy by partitioning
the database, mining for each partition, and merging the result. We first state
some new definitions and describe a property.

Definition 7 (User Containment). Consider a member m = itid �→ PairSet
in a database of ratings DBR. We say that a user ui is contained in the entry,
denoted by ui ∈ m, iff ∃ (ui, rtg) where rtg ∈ {hi, lo, mid} and (ui, rtg) is in
PairSet. We also say that a user ui is in an a-group a = (S1, S2) iff (ui ∈ S1
∨ ui ∈ S2)

Example 3. To illustrate, consider the first entry etr in the example rating
database shown in Table 1(left). The first entry etr contains users a, b and
d: a ∈ etr, b ∈ etr, and d ∈ etr.
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Definition 8 (Database Partition). Consider a user ui and a database of
ratings DBR. The partition of the database with respect to user ui, denoted as
DBR[ui] is defined as: {etr|ui ∈ etr ∧ etr ∈ DBR}

Example 4. To illustrate, projection of the database shown in Table 1(left) with
respect to user d is the database shown in Table 1(right).

Using the two definitions above, Lemma 2 describes the divide and merge mining
process.

Lemma 2 (Divide and Merge). Consider a database of ratings DBR, sup-
port threshold λ, and confidence threshold σ. Let Uset be the set of users in DBR

and Cm be the shorthand of the Clagmine operation in Algorithm 1. The follow-
ing is guaranteed:

Cm(λ, σ, DBR) =
⋃

ui∈USet
{g|ui ∈ g ∧ g ∈ Cm( λ×|DBR|

|DBR[ui]| , σ, DBR[ui])}

Based on Lemma 2, our algorithm to perform divide and conquer is shown in
Algorithm 3. The algorithm partitions the database one item at a time and sub-
sequently calls the original closed antagonistic group mining algorithm defined
in Algorithm 1. Theorem 3 guarantees that the mined result is correct and a
complete set of a-groups are mined by Algorithm 3.

Theorem 3. Algorithm 3 would return a complete set of closed and valid a-
groups and all returned a-group would be closed and valid.

Note that the divide and conquer algorithm reduces memory costs however it
could potentially increase the runtime cost since the database would now need to
be scanned more number of times. In Section 5, we show the results of running
the two algorithms over a number of datasets.

5 Performance and Case Studies

In this section we describe our performance study using various data generated
from our synthetic data generator with various parameter values. We then de-
scribe a case study from a real book rating dataset.

Performance Study. As a summary, our synthetic data generator accepts as
input I (in ’000)(the number of items), U (in ’000)(the number of users), P (the
expected number of users rating an item), NG (average size of maximal potential
large a-group), and NL (in ’000) (number of maximal potential large a-group).
We use the following datasets:

DS1 I=100, U=10, P=20, NG=6, NL=2
DS2 I=100, U=50, P=20, NG=6, NL=2
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Fig. 1. Runtime and Patterns: DS1 at various support values

The result for dataset DS1 when varying the support threshold from 0.002 to
0.006 with σ=0.7 is shown in Figure 1. The first graph shows the runtime needed
to execute the algorithm at various support thresholds. “Non-split” and “Split”
correspond to Algorithms 1 & 3 respectively. We only include 3 data points for
“Non-split”, as mining at lower thresholds are too long to complete. The second
graph shows the numbers of a-groups mined at various support thresholds.

Input: λ; σ; rating database

Output: valid and closed a-group of all size

USet = Set of all users in DBR;1

G = {};2

foreach ui ∈ USet do3

G = G ∪ {ag|ui ∈ ag ∧ ag ∈ Clagmine(
λ×|DBR|
|DBR[ui]| ,σ,DBR[ui])};4

end5

Output G;6

Algorithm 3. Clagmine-partitional(λ,σ,DBR)

The result shows that the time taken grows larger when support threshold is
reduced. This growth is accompanied by the growth in the number of a-groups
mined. Also, many longer patterns are mined as the support threshold is lowered.

For DS2, we consider a larger number of users. The results for various support
thresholds with σ=0.7 are shown in Figure 2. We have also conducted additional
performance studies and their results can be found in our technical report [1].

The performance study has shown that the algorithm is able to run well on
various settings. The lower the support threshold the more expensive it is to
mine. Also, the larger the number of users (or items or expected number of users
rating an item – see [1]), the more expensive it is to mine.

Case Study. For the case study, we consider a dataset of book ratings from
Amazon. There are a total of 99,255 users ratings 108,142 books in 935,051
reviews. The experiment is run with σ=0.5. The result is shown in Figure 3.

The number of mined a-groups in the real dataset is small even on much
lower support threshold. Interestingly, we find that antagonistic behavior is not
so much apparent on item ratings.This might be the case since the objects rated
are not “sensitive” items that tend to divide people into opposing groups.
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Fig. 2. Runtime and Patterns: DS2 at various support values
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Fig. 3. Runtime and Patterns: Book ratings dataset at various support values

Several interesting a-groups are discovered from the Amazon dataset by run-
ning the mining algorithm with absolute support (i.e., λ× |I|) of 10 and σ=0.5.
Out of 167 a-groups generated, 147 are of size 2, 18 of them are of size 3, and 2
of them are of size 4. We post-process to retain those with aconf > 0.7, and at
least one user has (commonly-rated-items/ totally-rated-items) > 0.6.

Table 2. Interesting Examples from Amazon Book Rating Dataset

ID Antagonistic Groups Commonly
Ratings

Ratings by
User 1

Ratings by
User 2

Ratings by
User 3

1 ({Johnston},{Weissgarber}) 12 56 13 -
2 ({Johnston, Jump},{Weissgarber}) 10 56 61 13
3 ({Johnston, Hill},{Weissgarber}) 10 56 106 13
4 ({Leeper},{Weissgarber}) 10 137 13 -
5 ({Kern},{Sklarski}) 14 452 22 -

After post-processing, we note 5 of the most interesting a-groups. We select
those having highest aconf and average (common-item/total item) over all con-
stituent users. They are represented in table 2. We select the first a-group and
observe the following:

– High antagonistic level : We observe that the two users in the first a-group
rated with a high level of antagonism. Among Jason Johnston’s 56 rated
books, 12 have ratings opposite to the ratings by Luke Weissgarber. Similarly
for Weissgarber, 12 of all his 13 rated books have ratings opposite to those by
Johnston, which means more than 92% of Weissgarber’s ratings are opposite
to Johnston’s. It is a significantly high figure.
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– Antagonistically rated books: We found that for books with opposite ratings
from Weissgarber and Johnston are some novels with similar story back-
ground. These books are clearly liked by Johnston but not by Weissgarber.

– Antagonistically behaved users : It is interesting that Weissgarber appears in
four a-groups. His ratings are opposite to other 4 users for at least 10 books.

6 Conclusion and Future Work

In this study, we proposed a new pattern mining algorithm to mine for an-
tagonistic communities. Our algorithm traverses the search space of possible
antagonistic groups and uses several pruning strategies to remove search space
containing no antagonistic pattern. We also propose a new variant of the al-
gorithm that adopts a divide and conquer strategy in mining when the first
algorithm becomes prohibitively expensive to run. A performance study is con-
ducted on various synthetic datasets to show the scalability of our approach on
various parameter values. We also mine from an Amazon book rating dataset.
The result shows that antagonistic communities exists but are not particularly
many or large in the Amazon dataset. In the future, we plan to investigate more
“sensitive” datasets and further speed up the mining algorithm.
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Abstract. Within the large body of research in complex network anal-

ysis, an important topic is the temporal evolution of networks. Existing

approaches aim at analyzing the evolution on the global and the local

scale, extracting properties of either the entire network or local patterns.

In this paper, we focus instead on detecting clusters of temporal snap-

shots of a network, to be interpreted as eras of evolution. To this aim,

we introduce a novel hierarchical clustering methodology, based on a

dissimilarity measure (derived from the Jaccard coefficient) between two

temporal snapshots of the network. We devise a framework to discover

and browse the eras, either in top-down or a bottom-up fashion, support-

ing the exploration of the evolution at any level of temporal resolution.

We show how our approach applies to real networks, by detecting eras in

an evolving co-authorship graph extracted from a bibliographic dataset;

we illustrate how the discovered temporal clustering highlights the cru-

cial moments when the network had profound changes in its structure.

Our approach is finally boosted by introducing a meaningful labeling of

the obtained clusters, such as the characterizing topics of each discovered

era, thus adding a semantic dimension to our analysis.

1 Introduction

In the last years, much attention has been devoted to topics related to Social
Network Analysis. One research direction that has attracted researchers in var-
ious fields, including Data Mining, is analyzing networks that evolve over time.
Time in networks can play a double role: the entities involved may perform ac-
tions, and the connectivity structure may change. In this last setting, several
phenomena can be analyzed, and much effort has been devoted in this direction
so far [13,12,10,4,3].

In this paper, we focus on detecting clusters of temporal snapshots of an
evolving network, to be interpreted as eras of evolution of the network. By
analyzing the similarity of the structures of consecutive temporal snapshots of
the same network, we observe that, despite a global increase of similarity, it is
possible to detect periods of sudden change of behavior, where people act in a

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 81–90, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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counter-trend fashion, making this similarity either decrease, or suddenly start
increasing very fast, much more than the average.

In real-life social networks, in fact, a common phenomenon is that people tend
to both keep being part of the networks, and keep alive all the connections cre-
ated in the past. On the other hand, new users join the networks as time goes by,
and people set new relationships while keeping the previous ones[13]. However,
while the number of newly created relationships tends to be almost constant
at every snapshot, the number of previous relationships kept alive grows, thus
the global effect of newly added nodes or edges looses importance over time
[3]. Because of this, the similarity of the structure of two consecutive temporal
snapshots increases almost at each step. The increase, however, is not locally
uniform: for example, there can be one snapshot where suddenly people change
behavior and start giving more importance to creating new connections, In other
words, despite a global moderate conservative trend, people can suddenly alter-
nate highly more conservative periods, or a highly more innovative behavior.

The aim in this paper is to catch these sudden changes by detecting the
snapshots in which they start. Intuitively, these are starting points of new eras.
In a globally changing world, we then want to detect eras characterized not by
changes in structure (that we not only allow within the same cluster of snapshots,
but we also expect), but rather characterized by a change in counter-trend with
the previous era: either the previous results more conservative, or it is actually
more innovative than the era under investigation.

To this aim, we introduce a novel hierarchical clustering methodology, based
on a dissimilarity measure derived from the Jaccard coefficient computed be-
tween two temporal snapshots of the network. We devise a framework to dis-
cover and browse the era hierarchy either in top-down or a bottom-up fashion,
from the lowest level of the single temporal snapshots, to the highest level of the
complete period of existence of the network.

In order to do so, we find a measure of the dissimilarity of two temporal
snapshots, and we show how to use it as a basis for detecting starting points of
new eras. In our experimental section, we show how this measure is not affected
by classical phenomena detectable in real-life networks, such the presence of
highly connected nodes. We apply this methodology to real data, extracted by
the well known bibliographic database DBLP. We build a co-authorship network
from it, and analyze two different aspects of the network, namely the nodes
(authors), and the edges (collaborations).

Our contribution can be then summarized as follows: we define a dissimilarity
measure between two temporal snapshots of an evolving network; we describe
the clustering process driven by this measure; we show how to apply labels to
the obtained clusters, in order to add a semantic dimension to our analysis; we
present the results obtained on the DBLP network.

2 Related Work

Interesting properties have been recently studied and discovered on evolving net-
works, such as shrinking diameters, and densification power law. Specifically, the
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authors in [13] discover that in most of these networks the number of edges grows
superlinearly in the number of nodes over time and that the average distance
between nodes often shrinks over time. In literature, many models capturing
these properties have been proposed; an interesting survey is presented in [7].

Three more recent works are [12,14,16]. In the first, Leskovec et al. present a
detailed study of network evolution. They analyze four networks with temporal
information about node and edge arrivals and use a methodology based on the
maximum-likelihood principle to show that edge locality plays a critical role in
evolution of networks. In the second, McGlohon et al. study the evolution of
connected components in a network. In [16], the authors propose a novel model
which captures the co-evolution of social and affiliation networks.

The notion of temporal graph has been studied in [10]. The main aim of this
paper is to study how do the basic properties of graphs change over time. A sim-
ilar setting is used in [11] where Kossinets et al. study the temporal dynamics of
communications. They define a temporal notion of “distance” in the underlying
social network measuring the minimum time required for information to spread
between two nodes. Other works related to the temporal analysis in a network
propose the study of aspects of the temporal evolution of the Web [6,8,9,5].

For our temporal analysis we perform hierarchical clustering: an interesting
survey on existing clustering approaches can be found in [2].

3 Problem Definition

We are given an evolving network G, whose evolution is described by a tem-
porally ordered sequence of temporal snapshots T = {t1, t2, . . . , tn}, where ti
represents the i-th snapshot. T can be either computed on the sets of nodes, i.e.
each snapshot ti is represented by the set of nodes involved, or on the sets of
edges, i.e. each snapshot is represented by the set of edges in it.

Based on a dissimilarity measure d : (ti, ti+1)→]−∞, +∞[, we want to find a
hierarchical clustering on T , returning clusters Ci = {tj , . . . , tj+k}, with j ≥ 1,
and 0 ≤ k ≤ n− j.

Each cluster represents then an era of evolution. Due to the global evolution of
real-life networks, we do allow alterations of the structure of the network among
snapshots of the same cluster, as long as they follow a constant trend. As soon
as this trend changes, we want to set the corresponding snapshot as the first of
a new era. The stronger is the change, the higher should be the dissimilarity of
that snapshot with the previous one. The definition of the dissimilarity function
should reflect this intuition.

We then want to assign to each cluster Ci a label describing the represented
era. This step adds a semantic dimension to our framework.

4 Framework for Temporal Analysis

In this section we describe the details of the framework that we propose.
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Dissimilarity. In order to perform clustering, the first step is to define a measure
of dissimilarity among elements that we want to cluster. In our setting, a simple
way to do this is to use the Jaccard coefficient. In a generic network, we can
easily apply this coefficient on either two sets of nodes or two sets of edges,
where each set corresponds to a temporal snapshot of the network. As we show
later in the paper, clustering temporal snapshots actually corresponds to perform
a segmentation of the sequence of the snapshots, thus we are interested only in
computing this Jaccard coefficient for every pair of consecutive snapshots.

Real-life networks are well known to follow global evolutionary trends, then if
we plot the Jaccard coefficient for each snapshot, we shall see a global increase
(or decrease), characterized by an almost constant slope of the Jaccard coefficient
plot, alternated by (moderate to high) changes of this slope (we prove this intu-
ition in Section 5). An immediate way, to define starting point of new eras is to
detect the snapshots corresponding to these changes. This could be done by com-
puting the second derivative of the Jaccard and finding values different from zero.
However, the Jaccard is continuous but not derivable exactly in the points we need.
To overcome this problem, we consider an approximation of the second derivative
defined as follows. We take triples of consecutive years, and we trace the segment
that has as endpoints the Jaccard computed for the first and the third snapshot. If
the middle point is distant from the segment, the corresponding snapshot should
be considered as the start of a new era. The Euclidean distance between the mid-
dle point and the segment also gives as a quantitative analysis of how important
is the change: the higher the distance, the higher the change.

Definition 1. Given a temporal snapshot tj, we define the following measure:

sN (tj) =
|cN (tj)− (m× j)− q|√

(1 + (m2))

where m = cN (tj−1)−cN (tj+1)
tj−1−tj+1

, q = (−(j + 1) × m) + cN (tj+1), and cN (tk) =
|Nk−1∩Nk|
|Nk−1∪Nk| is the Jaccard coefficient computed on the node sets.

Defining sE , which is the counterpart computed on the set of edges, requires to
consider cE instead of cN , where cE is the Jaccard computed on the edges.

However, this measure takes, formally, only one snapshot as input, thus it is
not intuitive to use as basis for a clustering methodology. In order to tackle this
problem, we define a dissimilarity between any two snapshots as follows.

Definition 2. Given an ordered sequence t1, t2, . . . , tn of temporal snapshots of
a network G, the dissimilarity between any two snapshots ti and tj computed on
their node sets is defined as

dN (ti, tj) =
{

sN (tmax(i,j)) if |i− j| = 1
undefined otherwise

Defining the similarity on the edges dE requires to consider sE instead of sN .
Moreover, this dissimilarity measure allows for a straightforward hierarchical

clustering: an higher dissimilarity corresponds to a stronger separation between
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two consecutive eras. This means that by setting fixed threshold, we can draw
a dendrogram of the hierarchical clustering, driven by this dissimilarity as a
criterion for merging two consecutive clusters in a bigger one.

Merging Clusters. In hierarchical clustering, when merging clusters, there are
various main approaches followed in the literature to define the distance between
two clusters: the maximum distance between any two points belonging to the two
clusters (complete linkage), the minimum (single linkage), the average (average
linkage), the sum of all the intra-cluster variance, and so on.

Given two clusters Ci = {t1, t2, . . . , tk} and Cj = {tk+1, tk+2, . . . , tk+p}, in
order to define the distance between two clusters, we shall first compute all the
distances between every pair (ti, tj), with 1 ≤ i ≤ k and k + 1 ≤ j ≤ k + p.

However, according to Definition 2, only one pair of snapshots has a dissimi-
larity defined: (tk, tk+1). At this point, we use this dissimilarity as inter-cluster
distance. As one can immediately see, taking the only available dissimilarity
value as distance between clusters actually corresponds not only to both the
complete linkage and the single linkage, but also to the average. In our case,
thus, the three of them are identical.

Assigning Labels to Clusters. Once we have computed the cluster hierarchy,
we want to add a description of every era. In order to do so, we label each cluster
with the node (or edge, or a property of it), that maximizes the ratio between its
relative frequency in that cluster, and its relative frequency in the entire network.
This strategy may produce several values equal to 1 (identical numerators and
denominators). In order to discern among these cases, we weight the numerator
by multiplying it again for the relative frequency in the cluster under analysis.
In this way, we give more importance to 1s deriving from nodes (or edges) with
a higher number of occurrences in the cluster.

With this frequency based strategy, we are assigning labels that truly charac-
terize each cluster, as each label is particularly relevant in that cluster, but less
relevant for the entire network.

One important caveat in this methodology is what to take as label for the
edges. In fact, while for the nodes it is straightforward to consider the identity
of the corresponding entity of the network as candidate label, the edge express
a relationship with a semantic meaning, thus each network requires some effort
in defining exactly which label could be applied to a cluster computed on edges.
For example, in a co-authorship network, where two authors are connected by
the papers that they have written together, a possible strategy is to take every
keyword in the title of the papers as possible label. In the experimental section
we show exactly this kind of labeling.

5 Experiments

From the DBLP1 database, we created a co-authorship graph for the years 1979-
2006, where each node represents an author and each edge a paper written
1 http://dblp.uni-trier.de
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together by the two connected authors. We then considered each year as temporal
snapshot of DBLP, generating then 28 snapshots. In each snapshot we put only
the nodes or the edges appearing in the corresponding year, thus not following
a cumulative approach.

Jaccard Coefficient. Figure 1(a) shows the Jaccard on both the nodes and the
edges. These plots confirm the general increasing behavior of the Jaccard during
time, both on nodes and on edges, broken by short series of years in which people
acted in counter-trend. Two questions might be raised on the effectiveness of
following a Jaccard-based approach for clustering eras: what would the Jaccard
computed on non consecutive snapshot tell us? Is the Jaccard noise free?

We start answering the first question by plotting the coefficient computed for
every pair of snapshots: figures 2(a) and 2(b) show that the Jaccard decreases
when computed between snapshots more distant in time. This observation justi-
fies a dissimilarity measure that takes into account only consecutive snapshots,
as two distant snapshots are not likely to be similar, thus they will belong to
different clusters. Temporal segmentation is then a good model for clustering
real-life evolving networks. Please note that while in this paper we only show
the results obtained on one dataset, these considerations are well accepted in
the literature regarding evolving networks [3,13].
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Fig. 1. (a) Evolution of the Jaccard Coefficient in DBLP; (b) Dissimilarity in DBLP;

(c) Jaccard Coefficient with and without hubs; (d) Pearson Correlation
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Fig. 2. Jaccard Coefficient in DBLP

Note that by answering the second question we also say something about pos-
sible noise on the dissimilarity measure. As the two are closely related, proving
that the Jaccard is noise free also proves the same for the dissimilarity. However,
using the Jaccard to this aim results much more intuitive. To answer the second
question, we analyzed what happens to the Jaccard coefficient when removing
a possible cause of noise in the structure: from the entire network, we removed
the 1% of top connected hubs, i.e. highly connected nodes, and recomputed the
Jaccard. Figure 1(c) shows that, despite a general decrease of the Jaccard val-
ues, the global increasing trend, as well as the local sudden changes, are almost
unchanged. In order to further support this observation, we plotted the Jaccard
coefficient calculated on different versions of the network snapshots after an in-
creasing percentage of hubs removed. Figure 2(d) shows an interesting result:
while the global Jaccard dramatically decreases after removing about 10% of
the top hubs, always keeping the global evolutionary behavior, it increases again
after removing 70-80% of the hubs. This behavior can be explained by consid-
ering the intrinsic inter-components function of hub nodes: after removing the
majority of the hubs, we have only the small connected components left in the
network, and each of them keeps a high Jaccard during its evolution, acting as
a separated network. This does not happen when removing an increasing per-
centage of random nodes (Figure 2(c)), which makes the Jaccard index globally
decrease. As last proof of the strength of the Jaccard as good similarity mea-
sure, we report in Figure 1(d) the values of the Pearson correlation [1] between
the series of Jaccard coefficient computed on the original dataset, and the ones
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computed after removing the hubs. The figure shows that removing an arbitrary
percentage of hubs does not affect the correlation with the Jaccard computed
on the original network. In the figure we have also reported the correlation with
a constant series and a random one.

Dissimilarity. The second step of the framework required to compute our dis-
similarity on the basis of the Jaccard coefficient computed on the network. Fig-
ure 1(b) reports the values of the dissimilarity for both the edge and the node
cases. As one can see, the quantitative analysis of our dissimilarity measure is
effective: its values have a considerable standard deviation. That is, we can ef-
fectively perform hierarchical clustering finding a well distributed strength of
starting snapshots for new eras of evolution.

Another observation that can be done is that while the Jaccard values com-
puted on nodes or edges look similar, stronger differences can be found in the
dissimilarity plots. That is, we expect the eras computed on nodes to slightly
differ from the ones computed on the edges.

As last note, we see that in the first years under investigation there are a
few very high peaks of dissimilarity. This is mainly due to the data acquired
by DBLP before year 1990. In the first decades, in fact, the set of publications
recorded in the database was more restrictive, and sometimes limited only to
publications in German. This created a kind of noise in the cluster, and it is the
reason why in the final dendrograms we see the years up to 1985 to be among
the last ones to be added to the global cluster (Figure 3(a)-(b)), and why also
we see labels in German in the final labeling (Figure 3(c)).

Merging Clusters. We then started to compute the clusters on the sequences
of temporal snapshots. We started from clusters containing only one year and
then, driven by the dissimilarity values computed in the previous step, we merged
similar consecutive clusters, with increasing values of dissimilarity. Figure 3(a)-
(b) show the dendrograms of clusters obtained using the sets of edges (on the
left) or the sets of nodes (on the right). Please note that the dissimilarity is
reported in percentage of the highest value found.

As one can see, there are actually a few differences between the two dendro-
grams, even if at a higher level the two look similar. A deeper view would show
a more uniform distribution of the joins between clusters. We recall that in the
dendrogram on the left we report the analysis performed on the edges, i.e. the
collaborations, while on the right we show the clusters obtained on the nodes,
i.e. the authors. This can be read saying that, while there are different, uniformly
distributed, ways of changing evolutionary behavior for the collaboration, there
are less thresholds for changing eras while looking at the nodes: i.e., the strength
of changes of eras can be further clustered in a few similar thresholds.

Assigning Labels. As last step in our framework, we computed the labels for
each cluster obtained. Figure 3 reports, in (c) and (d), 5 labels for each cluster
with at least two years (due to space constraints, we do not report labels for
single years). Please note that the rows in these tables are sorted by order of
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(a) - Edge Eras (b) - Node Eras

ERA TOPICS

04-05 servic, web, mobil, detect, wireless

01-02 web, mobil, softwar, adapt, dynam

98-99 object, parallel, architectur, simul, softwar

95-96 parallel, databas, simul, abstract, logic

93-94 parallel, logic, objectori, databas, abstract

97-99 parallel, object, databas, sotwar, environ

88-89 logic, parallel, expert, databas, languag

90-91 parallel, logic, abstract, languag, databas

84-85 prolog, expert, databas, abstract, languag

87-89 parallel, logic, expert, prolog, databas

81-82 comment, pascal, languag, microcomput, databas

01-03 web, mobil, servic, softwar, architectur

01-05 web, servic, mobil, dynam, detect

92-94 parallel, logic, objectori, databas, languag

92-96 parallel, logic, databas, abstract, objectori

87-91 parallel, logic, abstract, databas, languag

00-05 web, mobil, servic, dynam, adapt

87-96 parallel, logic, databas, abstract, languag

83-85 databas, prolog, abstract, expert, languag

87-99 parallel, logic, databas, abstract, languag

87-05 parallel, architectur, softwar, perform, environ

86-05 parallel, architectur, softwar, perform, environ

83-05 parallel, architectur, softwar, perform, gener

80-82 pascal, languag, rechnungswesen, comment, databas

80-05 parallel, architectur, softwar, perform, gener

ERA AUTHORS

03-04 Z. Wu, W.Y. Ma, H. Zhang, M. Li, W. Gao

88-89 M. Ali, C. Lécluse, C. Tong, A.J. Brodersen, P. Richard

81- 82 W. Lipski Jr., M. Courvoisier, A.C. Klug, N. Goodman, R. Keil

98-99 M. Potkonjak, G. J. Edwards, R. Vemuri, P. Kuosmanen, R. Radhakrishnan

90-91 V. Zue, R. Potasman, A. R. Newton, M.S. Phillips, A. Srinivasan

95-96 H.J. Nussbaumer, T.C. Fogarty, R.M. Owens, R. Yagel, M. Tien-Chien Lee

03-05 W.Y. Ma, Zhaohui Wu, Minglu Li, Licheng Jiao, Wen Gao

86-87 S.Khoshafian, R.F. Rashid, J. van de Graaf, D.S. Lindsay, K. Doshi

86-89 S. Khoshafian, C. Lécluse, M. Ali, J.M. Bower, G.P. Copeland

02-05 W.Y. Ma, M.T. Kandemir, Z. Wu, W. Gao, M. Li

83-84 H. Bekic, G.Spur, W. Frey, F.L. Krause, W. Remmele

86-91 W. Ameling, D. Chaum, G.E. Kaiser, E.Y. Shapiro, C. Lcluse

01-05 M.T. Kandemir, W. Gao, H. Zhang, W.Y. Ma, Z. Wu

94-96 T.C. Fogarty, B. Kaminska, B. Lin, R.M. Owens, R.K. Brayton

93-96 R.K. Brayton, B. Kaminska, T.C. Fogarty, A.L. Sangiovanni-Vincentelli, R.L. Wainwright

85-91 W. Ameling, D. Chaum, E.Y. Shapiro, D.W. Stemple, S. Khoshafian

97-99 M. Potkonjak, A.N. Choudhary, B. Schneier, C.J. Taylor, A.Y. Levy

97-00 M. Potkonjak, T.S. Huang, A.N. Choudhary, C.J. Taylor, M.M. Veloso

97-05 M.T. Kandemir, E.R. Hancock, W. Gao, H. Zhang, T.S. Huang

92-96 R.K. Brayton, A.L. Sangiovanni-Vincentelli, J.D. Foley, B. Kaminska, D.K. Pradhan

85-96 A.L. Sangiovanni-Vincentelli, R.K. Brayton, M. Sharir, K. Kennedy, M.J. Carey

85-05 E.R. Hancock, A.L. Sangiovanni-Vincentelli, P.S. Yu, S.M. Reddy, M.T. Kandemir

83-05 E.R. Hancock, A.L. Sangiovanni-Vincentelli, S.M. Reddy, P.S. Yu, M.T. Kandemir

80-82 P. Raulefs, N. Goodman, S. Kartashev, S. Kartashev, G. Winterstein

80-05 E.R. Hancock, A.L. Sangiovanni-Vincentelli, S.M. Reddy, P.S. Yu, M.T. Kandemir

(c) - Edge Era Labels (d) - Node Era Labels

Fig. 3. DBLP Eras discovered on Edges or Nodes

cluster formation. Please also note that the keywords of the publications were
pre-processed using the Porter’s stemming algorithm [15].

We recall that for each cluster Ci we assign the set of the k labels maximizing
the ratio between their frequency in Ci and their frequency in the entire network.
Due to our strategy, it is then not surprising that, if we look at the node cluster
labels, in all the clusters except the complete network we do not find the most
active authors, but the ones that mostly published only on each specific cluster.
That is, we can find as labels authors with a not so strong publication record,
but whose publication record was extremely stronger in a specific cluster w.r.t
the entire network. This behavior is less evident in the edge era labels, where
topics such as “parallel” can be found in different clusters.

In this table, however, another consideration can be done. If we compare the
era labels with the dissimilarity plot, we can see which are the labels that corre-
spond to more conservative or more dynamic eras. If we exclude the first noisy
years, the highest peak in the dissimilarity plot is around year 2000. This, in fact,
corresponds to the creation of the cluster starting at year 2001. We can say that
from year 2000, a short era of very conservative collaborations started. One of the
most representing label for the collaborations in these cluster is “web”. One can
say that this topic is highly representative for highly conservative collaborations,
i.e., collaborations that take place among the same (large) group of people.
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6 Conclusions and Future Work

We have proposed a framework for the discovery of eras in an evolving social
network. Based on a dissimilarity measure derived from the Jaccard coefficient,
we have presented a methodology to perform hierarchical clustering of the tem-
poral snapshots of a network. We have applied our methodology to real-life data,
showing the effectiveness of our approach.

Future research directions include the application to several different evolving
networks, possibly showing different temporal behaviors, different definitions of
dissimilarity, and the introduction of a label-driven temporal clustering strategy.
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Abstract. In this work, we investigate the use of online or “crawling”

algorithms to sample large social networks in order to determine the

most influential or important individuals within the network (by varying

definitions of network centrality). We describe a novel sampling technique

based on concepts from expander graphs. We empirically evaluate this

method in addition to other online sampling strategies on several real-

world social networks. We find that, by sampling nodes to maximize the

expansion of the sample, we are able to approximate the set of most

influential individuals across multiple measures of centrality.

1 Introduction and Motivation

Given a large or even massive social network, how can one efficiently identify
the most important or influential individuals without complete access to the
entire network at once? This scenario arises when the network is too large for
conventional analysis to be computationally feasible. It may also arise in the
context of mining data from a network whose complete structure is hidden from
public view (such as a friendship network in Web-based social media) or has a
highly distributed structure (such as the network of blogs or the Web itself).
The efficient identification of influential individuals (by varying definitions of
influence) in large social networks has many applications, from the prevention
of computer worms to viral marketing. In this work, we investigate the use of
online sampling in identifying such critical individuals.

Online Sampling of Centrality. One of the key tasks in social network analy-
sis is determining the relative importance of individuals based on their positions
in the structure of the network [1, 2]. This is referred to as the centrality of
individuals, and there are many notions of what it means to be central to a
network [2]. In a sampling approach to centrality approximation, a subset of
the individuals in the network is sampled, and an induced subgraph consisting
only of these individuals and the links among them is produced. The centrality
computation, then, is performed on this induced subgraph instead of the entire
network, with the centrality scores of the sample being used as approximations
of the true centrality of sampled individuals. It is clear that, for this approach to
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be useful, two criteria must be met. First, the sampling method must produce
an induced subgraph that is representative of centrality in the original network
(e.g. the centrality ranking in the sample should be consistent with that of the
original network). Ideally, the sampling method will quickly find high centrality
nodes, and these nodes will also be ranked highly when computing centrality on
the sample. A second criterion is that the sampling method must be an online
algorithm, since the network may be too large for its global structure to be ac-
cessed in its entirety or the global view of the entire network may be limited.
By online, we mean that the sampling is produced in an iterative, sequential
manner, without a priori access to the entire input (i.e., sampling via crawling);
at each iteration the new addition to the sample is based on the properties of the
nodes crawled thus far. The next node selected for inclusion in the sample is al-
ways chosen from the set of nodes connected directly to the current sample. This
is also referred to as snowball sampling or neighborhood sampling. In this work,
we systematically investigate the task of online sampling of centrality in large
social networks. We show that, by sampling nodes to maximize the expansion of
the sample, the set of most influential individuals can be approximated across
three different centrality measures: betweenness, closeness, and eigenvector cen-
trality. Remarkably, these sets of top ranked individuals can be approximated
reasonably well with sample sizes as small as 1%.

2 Background and Related Work

Centrality in Networks. The idea that the structural position of an individual
in a social network may be correlated with the relative influence or importance
of that individual was first postulated by Bavelas in the 1940s in the context of
organizational communication [3,1]. Since then, many notions of what it means
to be important or central in a network have been proposed and applied with
great success in a variety of different contexts (e.g. [4,5]). In this paper we focus
on three widely-used measures: betweenness centrality, closeness centrality, and
eigenvector centrality. The betweenness of a node is defined as the fraction of the
overall shortest paths passing through a particular node [6,7,1]. The closeness of
an individual in a network is a function of the inverse of the average distance to
every other individual [1]. Finally, eigenvector centrality is a measure of prestige
or popularity proposed by Bonacich [8]. When respresenting the entire network
(or graph) as an adjacency matrix A, the eigenvector centrality of individuals
in the network is the eigenvector x of matrix A corresponding to the largest
eigenvalue λ [8]. The PageRank measure [5] used by Google to rank search
results is, in fact, simply a variant of eigenvector centrality and has been shown
to be highly effective in approximating the prestige and authority of Web pages.

Related Work. Web crawlers, programs that traverse the Web and index pages
for search engines in an automated manner, can be viewed as online sampling
algorithms. Although the goal of Web crawlers is to collect and store the Web link
graph for offline processing, it is highly advantageous for crawling algorithms to
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seek out high PageRank pages early in the crawl [9]. As a result, there have been
several studies evaluating these algorithms in their ability to sample PageRank
(e.g. [9,10,11,12]). In Section 4.2, we evaluate the performance of several of these
algorithms in the context of undirected social networks and in their ability to
sample alternative notions of network centrality. Finally, also related to this work
are the existing studies on representative subgraph sampling such as [13,14,15].

3 Proposed Method

We employ an online sampling algorithm to sample individuals in the social
network. Let G = (V, E) be a network or graph where V is set of vertices (or
nodes) and E ⊆ V ×V is a set of edges (or links between the nodes). We begin by
selecting a single individual v ∈ V uniformly at random and specifying a desired
sample size k where k � V . The sample S ⊂ V , then, is initialized to {v}. Each
subsequent individual selected for inclusion in the sample is chosen from the
current neighborhood N(S), where N(S) = {w ∈ V − S : ∃v ∈ S s.t. (v, w) ∈
E}. Next, upon constructing the sample S, a centrality measure is computed on
the induced subgraph of the sample, G(S). The critical question is how to select
individuals from N(S) such that:

1. The ranking of individuals by centrality scores in G(S) corresponds to the
ranking of individuals in G (most importantly for the highest centrality
individuals, as they are generally of greater interest).

2. The highest centrality individuals are quickly included in the sample.

Moreover, as an online algorithm, these selection decisions must be made solely
on the basis of local information (i.e. information obtained only from those indi-
viduals already crawled). In the following sections, we describe several different
approaches to online sampling.

Expansion Sampling. We now describe a novel sampling technique based
on the concept of expansion in graphs [16]. We refer to this method as expan-
sion sampling (XS). The expansion of a sample S is defined as |N(S)|

|S| . In this
approach, we seek out the sample S of size k with the maximal expansion:
argmaxS: |S|=k

|N(S)|
|S| . We propose a simple algorithm that greedily selects nodes

in order to maximize the expansion of the current sample. That is, the next
node v selected for inclusion in the sample is chosen based on the expression:
argmaxv∈N(S) |N({v})− (N(S) ∪ S)|.

Web Crawlers. As mentioned previously, the process of web crawling is essen-
tially an online sampling process. There are several crawlers explicitly designed
to include high PageRank nodes into the sample more quickly. One such ap-
proach is referred to as Backlink Count (BLC) in which the next node selected
for inclusion into the sample is the node with the most links to nodes already in
the sample [11]. A second approach is referred as the OPIC algorithm [10]. In
this approach, all individuals are assigned a default “cash” value. When a node
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is included in the sample, its cash is distributed to its neighbors in equal pro-
portion. The next node selected for inclusion into the sample, then, is a function
of the sum of cash a node has received from its neighbors. We evaluate both
these methods not only in their ability to sample PageRank (or Eigenvector
Centrality), but also other centrality measures.

BFS, DFS, and Random Walks. As a basis for comparison, we evaluate
the performance of several basic approaches to online sampling. Specifically,
we evaluate the breadth-first search (BFS), the depth-first search (DFS), and
sampling based on a random walk (RW) of the social network.

4 Evaluation

4.1 Experimental Setup

Datasets. We evaluate four diverse, real-world social networks1. These include a
co-authorship network (Cond-Mat [17]), an email network (Enron [18]), an online
trust network (Epinions [19]), and an online social network (Slashdot [20]).

Sampling Methodology. As described earlier, our aim is to sample a minute
fraction of the individuals in the original network in a way that the individuals
ranked highly in the entire network are both present and ranked highly in the
induced subgraph of the sample. We execute each sampling algorithm on each
dataset and sample up to 5% of the nodes. Ten samples are produced by each
algorithm on each dataset. During the sampling process, at one percent inter-
vals (e.g. 1%, 2%, . . . , 5%), we compute centrality and evaluation statistics on
the induced subgraph of the sample and compare those with the original net-
work (evaluation criteria are described in the next section). When evaluating
eigenvector centrality, we employ the PageRank variant (PageRank is a variant
of eigenvector centrality, as described in Section 2).

Measuring Sample Quality. We employ two evaluation criteria to measure
the quality of samples. First, we perform a rank correlation between the central-
ity ranking in the sample and the true centrality ranking in the original network
using Kendall’s Tau [21]. This measure (which ranges in value from −1 to 1)
evaluates the extent to which the relative ordering by centrality of all nodes in
the sample is consistent with that of the original network. A value of 1 indi-
cates the rankings are perfectly consistent, and a value of −1 indicates they are
inversely consistent. However, in most cases, it is the set of high centrality indi-
viduals in the network that is of the most interest. A sample exhibiting a high
rank correlation, but consisting only of low centrality individuals is not of inter-
est in most cases. Therefore, we employ a second, more informative, evaluation
criterion based on the Jaccard measure of set similarity [22], which is the size of

1 For all networks, we extract the giant component as an undirected, unweighted

graph.
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the intersection of two sets divided by the size of the union. A Jaccard similarity
of 1 indicates that all the elements are shared between the sets, and a score of
0 indicates that none of the elements are shared. We take the top k individuals
in the sample centrality ranking and the top k individuals in the ranking of the
original network and measure the Jaccard set similarity. This measure indicates
how well each sampling algorithm is able to determine the identity of the top k
highest centrality individuals. For our experiments, we use k = 50.

4.2 Experimental Results

Identifying High Betweenness Individuals. Figure 1a shows the extent to
which each sampling algorithm is able to identify individuals with the highest
betweenness scores in the network. On all datasets, the expansion sampling al-
gorithm consistently (and significantly) outperforms all other approaches. Recall
that, in expansion sampling, nodes selected for inclusion in the sample are those
that maximize the expansion of the sample at each step: argmaxv∈N(S) |N({v})−
(N(S)∪S)|. By sampling nodes that contribute most to the expansion, the algo-
rithm seeks out individuals with the most dissimilar neighborhood. These nodes,
then, should be brokers or bridges between different neighborhoods or clusters
of individuals, which captures the notion of betweenness.

The random walk sampling, in some cases, also identifies high betweenness
fairly well (though, not as well as expansion sampling). Intuitively, high between-
ness individuals will appear with high frequency on the paths between other
individuals. Performing a random walk, then, should tend to traverse through
high betweenness nodes, thereby, including them in the sample. Finally, we see
that BFS and OPIC sampling perform particularly poorly when being used to
find high betweenness individuals.

Identifying High Closeness Individuals. As shown in 1b, expansion sam-
pling also outperforms other methods in its ability to sample high closeness
individuals. Recall that closeness centrality is a measure of how close an individ-
ual is to all other individuals in the network. Why should expansion sampling
also perform best on this centrality measure? Consider a sample S with high
expansion (i.e. |N(S)|

|S| is significantly large). This means that the sample S, as a
whole, is one hop away from many other individuals in the network, which, by
definition, is closeness. In addition, as with betweenness, BFS sampling again
performs poorly in identifying high closeness individuals.

Identifying High PageRank Individuals. Figure 1c shows the performance
of each sampling technique in sampling PageRank. Surprisingly, expansion sam-
pling again outperforms other methods (although, not as dramatically as with
betweenness and closeness). This result is quite unexpected, as the Web crawling
algorithms have been specifically designed to sample high PageRank individuals
quickly. Moreover, one would expect a random walk sampling strategy to per-
form much better (if not the best) because, by the very formulation of PageRank
centrality, high PageRank individuals will tend to be visited more frequently by
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(a) Betweenness
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0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1
Cond−Mat

Ja
cc

ar
d 

S
im

ila
rit

y

Sample Size

 

 

XS

BFS

DFS

RW

BLC

OPIC

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1
Enron

Ja
cc

ar
d 

S
im

ila
rit

y

Sample Size
0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1
Epinions

Ja
cc

ar
d 

S
im

ila
rit

y

Sample Size
0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1
Slashdot

Ja
cc

ar
d 

S
im

ila
rit

y

Sample Size

(c) PageRank

Fig. 1. Jaccard set similarity between Top 50 of original network and Top 50 of sample

for each centrality measure on each dataset. For all datapoints, standard error is very

low, and, for ease of illustration, the standard error bars are omitted. Key: XS =
Expansion Sampling, BFS = Breadth-First Search, DFS = Depth-First Search, RW =
Random Walk, BLC = Backlink Count, OPIC = OPIC algorithm.

a random walker. But, clearly, this property holds only in the limit and not for
a small sample. Overall, once again, it is expansion sampling that identifies high
PageRank individuals most effectively.

On the Concordance Across Centrality Measures. Thus far, we have
shown that expansion sampling performs best in identifying influential individ-
uals by all three centrality measures evaluated. A single sample produced by
the expansion sampling algorithm, then, includes individuals ranking highly on
multiple centrality measures. This begs the question: to what extent do these dif-
ferent centrality measures coincide or correspond with one another in real-world,
social networks? That is, does expansion sampling simply find individuals that
simultaneously rank highly on all three of the centrality measures? Upon closer
inspection, we find this to not always be the case. Although we do find some
agreement or overlap across the centrality measures (i.e. there exist individuals
ranking highly on multiple measures), expansion sampling does, in fact, find indi-
viduals over and above this overlap. We compute the Jaccard similarity between
the sets of the top 50 ranked individuals in the entire network by each centrality
measure (i.e. the similarity between each of the true, global centrality rankings).
For instance, in the Enron dataset, we find that the Jaccard similarity of the
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betweenness ranking and the closeness ranking (both of the entire Enron net-
work) is 0.37. However, as shown in Figure 1b, the Jaccard similarity between
the closeness ranking of the entire network and the closeness ranking of the
sample produced by expansion sampling ranges from 0.6 to 0.75 (over and above
0.37). This indicates that the expansion sampling method does, in fact, find in-
dividuals ranked highly only on closeness and not on betweenness. Using similar
analysis, expansion sampling also finds individuals ranking highly on between-
ness and not on closeness. Although expansion sampling does indeed identify
individuals ranking highly on multiple measures, remarkably, this method also
finds individuals that each rank highly on different measures of centrality. This
is striking, as one would not expect a single, biased sampling strategy to be able
to find high ranked nodes across multiple (and diverse) measures of centrality.
The expansion sampling method, however, does just this.

Consistency in Relative Ordering of Sample and Original Network. Fi-
nally, we show the Kendall’s Tau rank correlation between the centrality ranking
of the samples and the true centrality ranking in the original network (over all
individuals in the sample). Due to space constraints, we only show the results for
the Enron network in Figure 2. Although results vary slightly across measures
and datasets, all sampling algorithms seem to exhibit a relatively strong consis-
tency in the relative ordering of sampled individuals by centrality in comparison
to the true centrality ranking. The key to effectively identifying the top ranked
individuals, then, is finding and including them early in the sampling process.
As discussed in Sections 4.2, 4.2, and 4.2, it is expansion sampling that is most
effective in this regard.
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Fig. 2. [Enron Dataset] Kendall’s Tau rank correlation between the sample centrality

rankings and the true ranking in the original network for each centrality measure

5 Conclusion

In this work, we have studied the use of online sampling to identify the set of
individuals exhibiting the highest centrality in large social networks. We showed
that, by sampling nodes to maximize the expansion of the sample, the set of most
influential individuals can be approximated across multiple centrality measures.
For future work, we plan to investigate the effect of network and graph-theoretic
properties on the performance of these and other sampling strategies.
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Abstract. Finding the most influential nodes is an important issue in

social network analysis. To tackle this issue, Kempe et al. proposed the

natural greedy strategy, which, although provides a good approximation,

suffers from high computation cost on estimating the influence function

even if adopting an efficient optimization. In this paper, we propose a

simple yet effective evaluation, the expectation, to estimate the influence

function. We formulate the expectation of the influence function and

its marginal gain first, then give bounds to the expectation of marginal

gains. Based on the approximation to the expectation, we put forward a

new greedy algorithm called Greedy Estimate-Expectation (GEE), whose

advantage over the previous algorithm is to estimate marginal gains via

expectation rather than running Monte-Carlo simulation. Experimental

results demonstrate that our algorithm can effectively reduce the running

time while maintaining the influence spread.

1 Introduction

Information diffusion is one of the most important issues in social network anal-
ysis. A problem in this field is to find a k -nodes subset S that nodes in S can
influence the largest number of nodes in the whole network. This problem, re-
ferred as influence maximization problem, can be applied to many areas such as
product marketing and application promotion in online communities.

Domingos and Richardson [1][2] first investigated the influence propagation
in the area of viral marketing [3][4]. Then, Kempe et al. [5] formulated the influ-
ence maximization problem. They proposed a natural greedy algorithm to solve
the influence maximization problem, which provided a (1− 1/e)-approximation.
However, their greedy algorithm was quite time-consuming to evaluate the in-
fluence spread, as it needed to run random process for a large amount of times
to guarantee an accurate estimate on the influence spread.
� This work is supported in part by the National High-Tech Research and Development

Plan of China (863) under Grant No. 2006AA01Z177, the 973 Program of China

under Grant No. 2009CB320705, the NSFC Project under Grant No. 60873027 and

Jiangsu Provincial NSF Project under Grant No. BK2006115.
�� Corresponding author.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 99–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



100 Y. Zhang et al.

Recent researches have focused on solving this drawback, and several im-
provements have been proposed. Leskovec et al. put forward an optimization
called Cost-Effective Lazy Forward (CELF) [6]; Kimura and Saito posed a bond-
percolation based improvement [7] and a model called SPM (Shortest Path
Model) [8]; Chen et al. [9] studied the influence maximization from two com-
plementary directions: one was to improve the simple greedy algorithm, and the
other was to design new efficient heuristics.

In this paper, we propose a novel evaluation, the expectation, to the influence
spread, whose advantage is that it avoids running Monte-Carlo simulation. We
formulate the expectation of influence function and its marginal gain, and give
bounds to the expectation of marginal gains in theory. Then, we show that a
good estimate on the expectation can be obtained by graph-based algorithms,
and furthermore, a pruning technique is proposed for estimating the expectation.

Based on the expectation, a new greedy algorithm, referred as GEE (Greedy
Estimate-Expectation), is put forward for the influence maximization problem.
Experimental results demonstrate that GEE is well-performed in the influence
spread and running time for both independent cascade (IC) model and weighted
cascade (WC) model compared to the simple greedy algorithm with CELF op-
timization (10-140 times faster in running time and only at most 2.4% lower in
influence spread). And moreover, the running time would be even faster if we
apply CELF optimization to our GEE algorithm.

The main contributions of this paper can be concluded as follows: first, we
provide a novel evaluation, the expectation, to estimate the influence function,
which, to the best of our knowledge, is the first time that using expectation to
circumvent a large amount of computation on running random process; second,
we give a theoretical explanation to the effectiveness of SPM (Shortest Path
Model) [8]; third, we put forward the first expectation-based greedy algorithm
and demonstrate its effectiveness on real-life networks.

2 Background

Influence Maximization Problem. We define σ(S) as the number of nodes
that are influenced by k-nodes set S, then the influence maximization problem
is formulated as finding a subset Ŝ in V, where |Ŝ| = k, to maximize σ(Ŝ). The
computation of σ(S) is based on information diffusion models.

Information Diffusion Models. We discuss two information diffusion models:
independent cascade model and weighted cascade model [5]. In both of them,
node v is influenced by its neighbor u with a probability pu,v. In IC model, pu,v

is an independent parameter, and in WC model, pu,v is assigned to 1/dv.
The information diffusion process for two models is described below [5]. First,

the initiate set S is given. We call nodes in S active nodes, while nodes in V \S
inactive. Nodes can transform from active state to inactive state, but can not
switch verse vice. When node u first becomes active at step t, it provides only
a single chance to activate each currently inactive neighbor v with probability
pu,v. If u succeeds, v will become active at step t + 1, and u can not activate
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v any more after step t. If v has multiple active neighbors at step t, neighbors’
activations are sequenced in an arbitrary order. The diffusion process stops when
there are no more activities in the network.

General Greedy Algorithm. Kempe et al. proposed a simple greedy algorithm
to approximate the solution [5], which starts with an empty set S = ∅, and
iteratively, selects a node u for set S to maximize the marginal gain δs(u) =
σ(S ∪ {u})− σ(S), then the algorithm stops until |S| = k.

σ(S) is computed by simulating the random process for R times (R could be
very large in order to guarantee efficiency). Leskovec et al. [6] proposed a CELF
optimization, which can get the same result but is much faster than Kempe et
al.’s algorithm, for its great reduction of computing δs(u). But it still costs for
hours on large-scale networks.

3 Proposed Method

In this section, we use expectation to estimate the influence function σ(S) and
the marginal gain δs(u), and give an approximation to the expectation of δs(u).
Then we propose an algorithm called Greedy Estimate-Expectation(GEE) for the
influence maximization problem.

3.1 Estimate on Expectation

We denote p(S, v) as the propagation probability that v is influenced by Set S.
Suppose the probabilities that other nodes influence node v are independent,
according to information diffusion models described above, we have p(S, v) =
1−∏∀u∈S (1− p(u, v)).

The expectation of σ(S), formulated as E(σ(S)), is:

E(σ(S)) =
∑
∀v∈V

p(S, v) ∗ |{v}| =
∑
∀v∈V

p(S, v) (1)

According to δs(u) = σ(S ∪ {u}) − σ(S) and the above equations, we have
E(δs(u)) =

∑
∀v∈V (1 − p(S, v)) ∗ p(u, v). Suppose R(u, G) is the set of nodes

which are reachable from u, so:

E(δs(u)) =
∑

v∈R(u,G)

(1− p(S, v)) ∗ p(u, v) (2)

We denote ppathi(u, v) as the propagation probability from u to v through
path i. Let p̂(u, v) = max{ppathi(u, v)|v ∈ R(u, G)}, and λu = max{λu,v|v ∈
R(u, G)}, where λu,v is the number of paths from u to v.

Theorem 1. For IC model and WC model, if p(S, v) is given, then:∑
v∈R(u,G) (1− p(S, v)) ∗ p̂(u, v) ≤ E(δs(u))

≤ min{1, λu

∑
v∈R(u,G) (1− p(S, v)) ∗ p̂(u, v)}.
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We define ku,v as the distance(shortest path) from u to v, and then, for IC
model with uniform propagation probability p, we have p̂(u, v) = pku,v .

If we denote ti as the number of path whose length is i from node u to node
v, then in IC model, p(u, v) ≤ ∑l

i=ku,v
tip

i, where l is the maximum length of
paths from u to v.

Theorem 2. For IC model with uniform propagation probability p, if p(S, v) is
given, and t = max(tku,v , tku,v+1, ..., tl), then:

E(δs(u)) ≤ t ∗ pn−1−1
p−1

∑
v∈R(u,G) (1 − p(S, v))pku,v .

Theorem 1 gives bounds to the expectation of δs(u) for both IC model and
WC model. Theorem 2 provides an upper bound that is closer to the expectation
of δs(u) for IC model. In a sparse graph with a small value of p, tpn−1−1

p−1 is
close to 1, which means E(δs(u)) can be estimate by

∑
v∈R(u,G) (1− p(S, v))pku,v

effectively. It is an amazing result that theoretically interprets why Shortest Path
Model (SPM: the model where each node is activated only through the shortest
paths) [8] works well.

Theorem 1 and Theorem 2 show that the expectation of δs(u) can be esti-
mate by computing p̂(u, v). Suppose Ê(σ(S)) is the estimate of E(σ(S)) through
estimating p(u, v) by p̂(u, v), then Ê(δs(u)) =

∑
v∈R(u,G) (1 − p(S, v))p̂(u, v).

According to the equation that p(S ∪ {u}) = p(S, v) + (1 − p(S, v))p(u, v),
p(S ∪ {u}, v) can be estimated by previous p(S, v) in a greedy approximate
algorithm. The value of p(u, v) can be effectively approximated by p̂(u, v). For
IC model, we are able to obtain p̂(u, v) by ku,v through Breadth-First Search
(BFS), which takes O(n(n + m)) time. For WC model, the algorithm to get
p̂(u, v) is resemble to shortest-path algorithm in a weighted graph, such as the
Dijkstra Algorithm. Using Fibonacci heap, the running time is O(n(n log n+m)).

We denote du,max as the maximum degree of node v ∈ R(u, G). Let z =
p ∗ (du,max − 1).

Theorem 3. For IC model with uniform propagation p, if z < 1, ∀ε > 0, ∃K =
�logz (ε ∗ 1−z

dup + zn)�, for all node v ∈ R(u, G) and ku,v ≤ K, then

Ê(δs(u))−∑v∈R(u,G)
ku,v≤K

(1− p(S, v))pku,v < ε.

Theorem 3 suggests that under the condition of z < 1, Ê(δs(u)) in IC model
can be approximated effectively in the case that ku,v ≤ K, which means BFS for
computing p̂(u, v) can be terminated within K layers! We call this BFS pruned
BFS. For those networks whose K are not large, pruned BFS makes progress in
running time compared to original BFS that takes O(n(n + m)) time.

3.2 GEE Algorithm

We put forward an algorithm called Greedy Estimate-Expectation(GEE) for in-
fluence maximization problem. There are two phases in GEE : calculating p̂(u, v)
and greedily obtaining the set Sk.
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Algorithm 1. Greedy Estimate-Expectation Algorithm
Phase One

1: If MODEL=IC, then Get p̂(u, v) for all (u, v) by full BFS or pruned BFS
2: If MODEL=WC, then Get p̂(u, v) for all (u, v) by Fibonacci heap or pruned BFS

Phase Two

1: Input p̂(u, v) for all (u,v)

2: Initialize S := ∅, and p(S, v) := 0 Foreach v ∈ V
3: for i := 1 to k do
4: Foreach u ∈ V \S, Ê(δs(u)) :=

∑|V |
v=0 p̂(u, v)(1 − p(S, v)), if p̂(u, v)! = 0

5: Select a node u with maximum Ê(δs(u))

6: S := S ∪ {u}
7: p(S, u) := 1

8: Foreach v ∈ V \S, update p(S, v) := p(S, v) + p̂(u, v)(1 − p(S, v))

9: end for
10: return S

The running time of the first phase depends on its implementation. As men-
tioned above, p̂(u, v) for all nodes (u,v) can be obtained by running BFS or
pruned BFS with O(n(n + m)) time or O(n d̄K−1

d̄−1
) time, and by using Fibonacci

heap with O(n(n log n + m)) time. We also take pruned BFS as a complement
for WC model, and it performances well in our experiments.

The second phase of GEE is to get a node u for Sk once at a time with
the maximum Ê(δs(u)). Instead of running random process for sufficient times,
Phrase Two takes O(kn2) in running time, and if we only consider K layers in
BFS, the average running time could be O(kn d̄K−1

d̄−1
). Moreover, we can also use

the CELF optimization to accelerate Phrase Two.
Ê(σ(S)), the estimate function of E(σ(S)), is a submodular function, which

means GEE algorithm provides a (1−1/e)-approximation according to the prop-
erty of submodular function [10].

4 Experiments

We employ two collaboration networks from paper-lists in sections of the e-
print arXiv. The first network is from the ”General Relativity and Quantum
Cosmology” (Gr-Qc) section with 5242 nodes and 28980 edges1. The second
network is from the ”High Energy Physics - Theory” (Hep) section with 15233
nodes and 58891 edges [9]. All experiments are implemented on a PC with Intel
2.20GHz Pentium Dual E2200 processor and 4GB memory.

Table 1 lists algorithmsused in our experiments.Degree andDistance are simple
heuristics used in [5]. Note that in GEE with pruned BFS, if initializing ε = 10−8

and using d̄, then we haveK = 6 in Gr-Qc graph and K = 5 in Hep graph.To make
experiment results convincing, we simulate the random process for R = 20000

1 http://snap.stanford.edu/data/ca-GrQc.html
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Table 1. Algorithms used in experiments

Algorithm Applied Model Description

Degree IC, WC Degree heuristic

Distance IC, WC Distance heuristic

Greedy with CELF IC, WC CELF optimization(R = 20000)

GEE with pruned BFS IC, WC Algorithm 1 (ε = 10−8)

GEE with full BFS IC Algorithm 1

GEE with Fibonacci heap WC Algorithm 1

(a) IC Model for Gr-Qc Graph (b) IC Model for Hep Graph

(c) WC Model for Gr-Qc Graph (d) WC Model for Hep Graph

Fig. 1. Influence spread. (a) IC model for Gr-Qc graph. (b) IC model for Hep graph.

(c) WC model for Gr-Qc graph. (d) WC model for Hep graph.

times (the same as times in [9]), and then, take the average of the influence spread
numbers as the influence spread results for each algorithm.

In IC model, we mainly discuss experiments with an uniform p = 0.01. We
also consider p = 0.02. We do not report its result as its trends on influence
performance and running time are similar to the situation that p = 0.01.

Influence spread. In all figures, we discuss about percentages of influence
spread for the case of k = 40. Figure 1(a)(b) demonstrate the influence spread
results of different algorithms with probability p = 0.01 in IC model. Our GEE
with pruned BFS and GEE with full BFS, performs quite well. They are only
about 1.5% and 2.4% lower than the Greedy with CELF in the Gr-Qc graph
and Hep graph respectively. And the differences between two GEE algorithms
are less than 1%, which means our pruning technique works well as we expect.
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(a) Gr-Qc Graph (b) Hep Graph

Fig. 2. Running time(sec.). (a) Gr-Qc graph. (b) Hep graph.

Figure 1(c)(d) demonstrate the influence spread results of different algorithms
in WC model. The performance of our GEE with pruned BFS and GEE with
Fibonacci heap are quite close to Greedy with CELF. GEE with Fibonacci heap
is only 1.4% and 2.3% lower than the Greedy with CELF in the Gr-Qc graph
and Hep graph respectively. It is surprising that GEE with pruned BFS with
much faster running time, outperforms GEE with Fibonacci heap for some value
of k when k < 40.

Running time. Figure 2 demonstrates the running time of various algorithms.
We do not list running times of Degree and Distance for their poor performances
on the influence spread. Our GEEs run orders of magnitude faster compared to
Greedy with CELF. Specifically, when k = 40, GEE with Fibonacci heap is 11
times and 19 times faster than Greedy with CELF in the Gr-Qc and Hep graph
respectively, and GEE with full BFS is 119 times and 43 times faster than Greedy
with CELF in the Gr-Qc and Hep graph respectively. GEE with pruned BFS,
for its pruning technique, impressively saves the running time for about 80 to
140 times in the Gr-Qc and Hep graph!

5 Discussion

Our GEEs show very impressive experiment results for both IC model and WC
model: they further improve the running time (range from 10 times to 140 times
faster when 40 nodes is selected), while almost match the influence spread of
Greedy with CELF (only 1.4% to 2.4% lower).

There are other well-performed algorithms for the influence maximization
problem: shortest path model(SPM) [8], bond-percolation based algorithm(BP)
[7], and degree discount heuristic [9]. We do not list these experimental results
for the following reasons: degree discount heuristic, although almost matches the
influence spread in much faster time compared to the simple greedy algorithm,
is only limited to the IC model; BP is similar to the improvement of the greedy
algorithm discussed in [9], which costs as much time as the CELF optimization;
SPM can only apply to IC model, and moreover, it can get the similar result as
our GEE with full BFS in slower time due to the implementation of SPM.
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6 Conclusion

In this paper, we propose a new evaluation, the expectation, to estimate the influ-
ence function and its marginal gain for the influence maximization problem. We
give bounds to the expectation of δs(u), and further, theoretically interpret the
effectiveness of Shortest Path Model(SPM) [8]. Then we put forward an expec-
tation based algorithm called Greedy Estimate-Expectation(GEE). Using two
collaboration networks, we experimentally demonstrate that our GEE algorithm
impressively shortens the running time while maintaining the influence results
that obtained by the simple greedy algorithm with the CELF optimization.

Future research will try to use the expectation to estimate the influence func-
tion on other diffusion models. Another direction is to explore the internal struc-
tures of networks to improve the influence spread.
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Abstract. This paper introduces a new cost function for evaluating the

multi-class classifier. The new cost function facilitates both a way to vi-

sualize the performance (expected cost) of the multi-class classifier and a

summary of the misclassification costs. This function overcomes the lim-

itations of ROC in not being able to represent the classifier performance

graphically when there are more than two classes. Here we present a

new scalable method for producing a scalar measurement that is used to

compare the performance of the multi-class classifier. We mathematically

demonstrate that our technique can capture small variations in classifier

performance.

Keywords: Multi-class, Receiver operating characteristics, classifier

evaluation, cost-function.

1 Introduction

Receiver Operating Characteristic (ROC) analysis [1] [2] [3] is a widely used
technique for evaluating classifiers. The technique considers the confusion ma-
trix in order to generate a plot and compare the performance of the classifiers.
While evaluating the classifier, the ROC plot considers all possible operating
(decision) points in the classifier’s prediction as a means of identifying the oper-
ating point at which the best performance is achieved. A confusion matrix forms
at the operating point that consists of ”True positive”, ”True Negative”, ”False
positive” and ”False negative” values. The ROC plot is obtained for a classifier
by plotting the true-positive rate (TPR) over the y-axis and the false-positive
rate (FPR) over the x-axis. The points obtained on the plot are connected to the
points where the values of both TPR and FPR are extreme: i.e. the points will
be (0,0) and (1,1). This is done to form a complete curve. The area under the
curve (AUC) is a scalar measurement used to evaluate the classifier, while the
plot provides the visual representation that is used to compare the classifiers’
performances.

Challenges: The ROC plot and AUC have been a popular technique for eval-
uating classifiers, however their application is limited to binary class problems.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 107–120, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Although the ROC and AUC have been developed in theory to deal with multi-
dimensional problems, their inherent computational complexity and representa-
tional comprehensibility hinders their use in practice. For instance, a confusion
matrix obtained from a problem of ’M’ classes is an M × M matrix, and d =
(M.(M −1)) dimensions: i.e. to evaluate a classifier, all the possible misclassifica-
tion combinations are needed [4]. The ROC plot for a binary classifier facilitates
a visual comparison of binary classifiers, however, the ROC method is a tedious
task if a plot is to be drawn for a multi-class classifier, as the dimensionality of
the plot increases dramatically with just a small increase in the number of classes.
For example, if we were to generate a plot for a three-class classifier the number
of dimensions we have to deal is six while that of binary class classifier is two. The
problem is not only limited to the representation or visualization, but also to the
computational complexity. This cost is O(nd) for a convex hull of n points for d
dimensions.

Contributions: Our main contributions in this paper are as follows:

- Developing a new method for visualizing the performance of multi-class clas-
sifiers on a single plot;

- Developing a new method for representing the performance of multi-class
classifiers using a scalar measurement with reduced computational cost; and

- Experimental investigation of the developed methodologies that demonstrates
that our methods can compare classifiers both visually and numerically.

Organization: The remainder of the paper is organized as follows. Section 2
lists the studies that developed cost function for multi-class problem using AUC.
In Section 3 we briefly describe the receiver operating characteristics curves. Sec-
tion 4 describes the proposed methodology in details. Section 5 details about the
experimental setup and generation of dataset. In Section 6 we analyze the results
obtained using our method and compare with one of the existing techniques. Fi-
nally, in Section 7 we conclude the paper.

2 Related Work

In recent years, a few approaches have been developed that have extended the
AUC measure for multi-class problems. Srinivasan [5] developed a 6-dimensional
ROC surface for a three-class problem. These six dimensions represent six mis-
classification cells. However, the challenge was to compute the volume of the
convex hull in multi-dimensional space. There are computational approaches for
calculating the volume of the convex hull however, there is the possibility of
missing some points in the construction of the convex hull due to the high di-
mensional surfaces [6] [2]. Amongst the existing approximations for the AUC
measure for more than two classes are: Hand and Till [2], Mossman [7] and
Ferri et al. [4]. Hand and Till [2] extended the AUC for two classes to multiple
classes by averaging the AUCs of all the possible combinations of pairs of classes.
Mossman [7] prioritized one class over the others and demonstrated his approx-
imation for only three classes. Ferri et al. [4] used the Monte Carlo method for
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their approximation for the AUC. They also introduced the method called the
Hyperpolyhedron Search Algorithm (HSA). These existing approximations have
the nature of intuitive extensions however, they lack a solid theoretical justifica-
tion. Other limitations of these approaches include the theoretical limitation of
computing the maximum volumes in the high-dimensional problem, and the fact
that at least d(d − 1) dimensional variable for d classes is needed for obtaining
their volumes.

3 Receiver Operating Characteristics Curves

The fundamental issue for rating a classifier’s performance is the confusion ma-
trix where the numbers represent the total number of actual classes and predicted
classes. However, the usual applications of the confusion matrix are limited to
two-class classifiers because the classifier’s performance can be easily represented
using a two-dimensional matrix. In this matrix the numbers along the rows are
the actual class and the numbers along the columns are the predicted class. The
classes are predicted considering an operating point that divides the data into
the respective classes. Usually, the numbers in the confusion matrix are known
as the ”true positive (TP)”, ”false positive (FP)”, ”true negative (TN)” and
”false negative (FN)”. The definitions of these terms are as follows:

– True Positive (TP)= the number of classified positive data that are positive
in the actual data set.

– True Negative (TN)= the number of classified negative data that are negative
in the actual data set.

– False Positive (FP)= the number of classified positive data that are negative
in the actual data set.

– False Negative (FN)= the number of classified negative data that are positive
in the actual data set.

The Receiver Operating Characteristics (ROC) plot is obtained for a binary
class classifier by plotting the true-positive rate (Sensitivity) over the y-axis and
false-positive rate (1- Specificity) over the x-axis. The true-positive and false
positive rates are calculated using the following equations:

True positive rate (Sensitivity) = TP/(TP + FN)

False-positive rate(1− Specificity) = FP/(FP + TN)

Figure 1 shows one such ROC plot where they sweep through all the possi-
ble operating points, and plot the corresponding false-positive and true-positive
rates. There is also a simple three-point ROC curve (for discrete classifiers),
where there are three points considered in order to obtain the plot. These three
points are: (0,1), (FP, TP) and (1,0).The point (0,1) refers to a classifier where
every instance has been classified as correct: i.e. a perfect classifier is represented
by the point (0,1). The point (1,0) refers to a classifier where every instance is
classified as wrong: i.e. this point refers to the worst classifier. The point (FP,
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Fig. 1. A typical ROC plot

TP) represents the classifier where the values of FP and TP are obtained from
the confusion matrix. The Area Under the Curve (AUC) is a scalar value that
can be used to order which ROC curves are better than others.

4 Our Method

To extend the existing ROC plot and AUC for multi-class classifiers, we use the
properties of the ROC plot for binary classifiers. In this extension we calculate
all the possible pairwise (pair of classes) AUCs of the multiple classes.

Let us consider three classes - 1, 2 and 3 - and assume that for an operating
point P1 (i.e. if the predicted output is Y � P1 classify the instance as class 1,
and if the predicted output is Y > P1 classify the instance as class 2), between
the two classes 1 and 2, the values of TP and FP are 0.9 and 0.2 respectively.
For these TP and FP we obtain the AUC of 0.85. Similarly, we obtain the values
of TP and FP for an operating point P2, while classifying classes 2 and 3, as 0.8
and 0.2. The AUC value for classes 2 and 3 is 0.8. In a similar way we obtain
the AUC value for classes 3 and 1 as 0.75 (for the operating point considered as

P3). For this three-class problem we obtain
(

3
2

)
= 3 AUC values for the three

pair-wise classes.
To visualize this performance using the usual ROC plot we should consider

a surface/curve plotted on a six-dimensional surface, as there are six features
(i.e. three pairs of true positive and false positive rates) that need to be consid-
ered to plot the curve. Even though there are a few studies that have provided
methodologies for generating the surface for multi-class problems, these plots are
not helpful in comparing the classifiers’ performances through visualization. An
alternative solution is to represent the pairwise AUCs onto a multidimensional
surface. However, the problem still remains as to how to analyze the surface
for multiple classes. In our method we consider representing the AUCs using
polar co-ordinates. This representation is somewhat similar to the cobweb plot,
although there is some notable dissimilarity.
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Initially, we consider that the range of angle is 0 → 2π. Because there are
three AUC values, we divide the maximum angle (2π) by three. For a three-class
problem after the division the angle becomes 2

3π (i.e., 120◦). There will be three
lines that form a 120◦ angle with each other. We consider that the maximum
length of each of the lines is 1 because the maximum achievable value of an
AUC for a binary class problem is 1. In our method we consider the binary AUC
values for each of the pair of classes and draw the plot using these AUC values
on an equiangular line drawn on a polar co-ordinate. The equiangular lines for
a three-class problem are shown in Fig. 2. In this figure the length of each line
is 1, assuming that the AUC values for each of the pair of classes are maximum.

Each radius (r) on the plot represents the AUC value for a different pair

of classes. If there are m classes, there will be q =
(

m
2

)
AUC values for q

number of pairs of classes; hence, to visualize the performance of a classifier
for an m-class problem we must have q number of equiangular lines. Let us
assume that these AUC values are: r1, r2, r3, · · · , rq. The corresponding angles
are: θ1, θ2, θ3, · · · , θq, where, θ1 = θ2 = θ3 = · · · = θq = 2π/q. If we consider all
the AUC values are equal, i.e., ∀iri = r where 1 � i � q, the area covered by
the AUC values is:

Area =
qr2

2
sin

(
2π

q

)
(1)

If the values of pairwise AUCs are not equal to each other as shown in Fig. 3
(i.e., r1 	= r2 	= r3 	= · · · 	= rq), the area covered by the AUC values is:

area =
1
2
sinθ

((
q−1∑
i=1

ri × ri+1

)
+ rq × r1

)
(2)

In Eq. 2, AUC values r1, r2, · · · , rq are plotted such that r1 is neighbor to r2, r2

is neighbor to r3, · · · , rq is neighbor to r1.
Before using the area formed through connecting the neighboring points on

the plot as a classifier performance measurement, we must address the following
issues:

1. What is the range of the minimum-maximum area obtained for a different
number of classes; and

2. How the calculated area is affected by the ordering of the AUC values plotted
on the graph.

The range of minimum-maximum area for multiple classes: The maxi-
mum area for a given number of classes is obtained, if we consider all the AUC
for each pairwise classes are 1 (because the maximum AUC for a binary class

problem is 1). Thus, for an m-class problem and q =
(

m
2

)
AUC values, the

maximum area is:

areamax =
q

2
r2sin

(
2π

q

)
(3)
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Fig. 2. Visual representation for a three-

class classifier using pairwise(class) AUC

values where each of the AUC values is 1

Fig. 3. The area covered by the

three points for a three-class classi-

fier where the values of pairwise AUC

are: AUC(1,2) = 0.76, AUC(2,3) =

0.84, AUC(3,1) = 0.65

Similarly, the minimum area is obtained, if we consider all the AUC for each
pairwise classes are 0.5 (because the minimum AUC for a binary class problem
is 0.5). We obtain the minimum area for an m-class problem from the following
equation:

areamin =
q

2

( r

2

)2

sin

(
2π

q

)
(4)

Table 1 lists the minimum and maximum values of areas for a different number
of classes.

The ordering of the AUCs: The maximum and minimum area is calculated
considering the maximum (r = 1) AUC of each pair of classes and minimum (r
= 0.5) AUC of each pair of classes. As a result the radius value remains the same
and the value of total area is not affected by the ordering of the AUC values
when plotting them onto the equiangular graph. However, in the real world we
obtain varying AUC values for different pairs of classes.

Let us consider the q AUC values are: r1, r2, r3, · · · , ri−1, ri, rj , rj+1, · · · , rq,
where r1 � r2 � r3 � · · · � rq and j = i + 1. The area γ for these values is:

γ ∝ r1 × r2 + r2 × r3 + · · · + ri−1 × ri + ri × rj + rj × rj+1 + · · · rq−1 × rq + rq × r1

Let us interchange the positions of AUC values ri with rj in the above ordering.
Now, the area γ′ is:

γ ∝ r1 × r2 + r2 × r3 + · · · + ri−1 × rj + rj × ri + ri × rj+1 + · · · rq−1 × rq + rq × r1
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Fig. 4. Arranging AUC values such that the maximum area is found

By subtracting γ′ from γ we find that γ 	= γ′.
This example shows that the ordering of the AUC values affects the calculated

area that we use to compare the performances of the classifiers. We propose to use
the maximum area, achieved through re-ordering the AUC values, to compare
the performances of the classifiers. The maximum area is found if we arrange
the AUC values following lemma.

Lemma 1. The maximum area is found if the AUC values are ordered on the
plot in a way such that the neighboring value of a given point (or AUC value) is
the next available large value. That is, while calculating the area, the large values
will be multiplied to each other.

Proof. Let us consider the AUC values are: r1, r2, r3, · · · , ri−1, ri, rj , rj+1, · · · , rm.
Here, r1 � r2 � r3 · · · ri � rj � rj+1 � · · · rm−1 � rm and j > i. According to
the lemma, a maximum area will be found if the values are arranged as in Fig. 4.
In this figure, the neighboring points of r1 are the next available large values r2

and r3, while the neighboring point of r2 (the largest of r2 and r3) is r4, which is
the next available large value to r2. As there is no other neighboring space of r2

on which to put any other values we move forward to r3 and put the next large
value r5 as its neighboring point. The process is continued until all AUC values
are allocated.

If the AUC values are arranged as described according to this lemma, the area
covered by the AUC values is obtained using the following equation:

area = (r1 × r2) +
i<k∑
i=1

(r2i−1 × r2i+1) +
i<k∑
i=1

(r2i × r2i+2) + (rq−1 × rq) (5)

Here, k = q
2 − 1.
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There are the following two scenarios that can affect the area:

– Replace any pair of neighboring points with each other in the above list
– Replace any pair of points with each other, where the points are not neighbor

to each other in the above list.

Let us replace any pair of neighboring points ri with rj in the above list (where,
j > i). The area α is calculated using Eq. 2 for this list. The area difference
between α and γ is:

case i = 1 and j=2

γ − α = ri × ri+2 − rj × ri+2 + rj × rj+2 − ri × rj+2

= (ri − rj)(ri+2 − rj+2) ≥ 0

case i = 1 and j= 3

γ − α = ri × ri+1 − rj × ri+1 + rj × rj+2 − ri × rj+2

= (ri − rj)(ri+1 − rj+2) ≥ 0

case i = 2 and j=4

γ − α = ri × ri−1 − rj × ri−1 + rj × rj−2 − ri × rj−2

= (ri − rj)(ri−1 − rj−2) ≥ 0

case i = q-1 and j=q

γ − α = ri × ri−2 − rj × ri−2 + rj × rj−2 − ri × rj−2

= (ri − rj)(ri−2 − rj−2) ≥ 0

case i = q-3 and j=q-1

γ − α = ri × ri−2 − rj × ri−2 + rj × rj+1 − ri × rj+1

= (ri − rj)(ri−2 − rj+1) ≥ 0

case i = q-2 and j=q

γ − α = ri × ri−2 − rj × ri−2 + rj × rj−2 − ri × rj−2

= (ri − rj)(ri−2 − rj−2) ≥ 0

All other cases

γ − α = ri × ri−2 − rj × ri−2 + rj × rj+2 − ri × rj+2

= (ri − rj)(ri−2 − rj+2) ≥ 0

Let us replace any pair of points (other than the neighboring points) ri with rj

in the above list (where, j > i). The area α is calculated using Eq. 2 for this list.
The area difference between α and γ is:
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case i = 1 and j = q

γ − α = (ri − rj)(ri+1 − rj−2 + ri+2 − rj−1) ≥ 0

case i = 1 and j = q-1

γ − α = (ri − rj)(ri+1 − rj−2 + ri+2 − rj+1) ≥ 0

case i = 1 and j = any other values

γ − α = (ri − rj)(ri+1 − rj−2 + ri+2 − rj−2) ≥ 0

case i = 2 and j = q

γ − α = (ri − rj)(ri−1 − rj−2 + ri+2 − rj−1) ≥ 0

case i = 2 and j = q-1

γ − α = (ri − rj)(ri−1 − rj−2 + ri+2 − rj+1) ≥ 0

case i = 2 and j = any other values

γ − α = (ri − rj)(ri−1 − rj−2 + ri+2 − rj+2) ≥ 0

case i = any other values and j = q

γ − α = (ri − rj)(ri−2 − rj−2 + ri+2 − rj−1) ≥ 0

case i = any other values and j = q-1

γ − α = (ri − rj)(ri−2 − rj−2 + ri+2 − rj+1) ≥ 0

All other cases

γ − α = (ri − rj)(ri−2 − rj−2 + ri+2 − rj+2) ≥ 0

Therefore, it is proved that the maximum area is found if the AUC values are
ordered on the plot in a way such that the neighboring value of a given point
(or AUC value) is the next available large value.

It should be noted that the AUC values needed to be arranged while computing
the area to represent the performance using a scalar value. To compare the
performances of different classifiers visually, there is no need to rearrange the
AUC values.
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Advantages of Our Method Compared with the Generalized AUC

In generalized AUC, the AUC that signifies a classifier’s performance is obtained
through a linear combination of individual AUC values for each pair of classes.
Our method, on the other hand, considers a nonlinear combination among the
individual AUC values. As a result, our method can find the differences in the
performances of two classifiers if, the change in one pairwise AUC value is equal
to the change of another pairwise AUC value for these two classifiers.

Let us assume we have n (n =
(

m
2

)
for m-class problem) AUC values of

r1, r2, ..., rn (here the values are ordered randomly). The area γ obtained using
our method is: γ ∝ r1 × r2 + r2 × r3 + · · · + rn−1 × rn + rn × r1. The area
AUCgeneralized is obtained as follows: AUCgeneralized ∝ r1 + r2 + ... + rn.

Let us take a small change δ in r1 that is compensated by r2 The area
AUC′

generalized is obtained as follows:

AUC′
generalized ∝ (r1 − δ) + (r2 + δ) + ... + rn

∝ r1 + r2 + ... + rn ∝ AUCgeneralized (6)

The area γ′ in this case is

γ′ ∝ (r1 − δ)× (r2 + δ) + (r2 + δ)× r3 + · · ·+ rn−1 × rn + rn × (r1 − δ) (7)
∝ r1 × r2 + δ(r1 − r2)− δ2 + r3 × δ + r2 × r3 + · · ·+ rn−1 × rn

+ rn × r1 − δ × rn

We see that the generalized AUC has not been affected through the changes in
AUC values as mentioned above. However, in our method these changes have
the effect of changing the area (since, γ 	= γ′) which is −{δ × (r1 − r2) + δ2 +
δ × r3 − δrn}. This quality does not have to be zero and does allow us to find
differences in the performance of two classifiers unlike the generalized AUC[3].

Complexity of the Proposed Method

The overall complexity of computing the scalar measurement for a multi-class
ROC consists of the complexity of computing AUC for all pairs of classes. For
a dataset D of n examples (points) the algorithm would need an O(nlogn) com-
putation to compute AUC for a pair of classes. For M classes there will be a
total MC2 pairs of classes. Therefore, MC2 pairwise AUC values will require
O(MC2log(MC2)) computation to arrange the AUCs for the calculation of a
maximum area. Thus the total complexity is O(MC2nlogn +M C2log(MC2)).

5 Experimental Design and Data Sets

Initially we have generated a synthetic dataset by randomly generating numbers.
These numbers are generated following normal distribution where the mean and
standard deviations were varied to generate a three class dataset. This dataset



A Novel Scalable Multi-class ROC 117

consists of three classes where each of the classes has 100 data instances. We
classified the dataset using four classifiers: Random Forest, Support Vector Ma-
chine (SVM), Random Tree and Decision Tree (C4.5). We have also classified
the Segment dataset [8] using above classifiers. There are 2310 data instances
and 7 classes in this dataset.

6 Results and Discussion

Results: Figure 5 shows the area covered by the maximum AUC values obtained
for each of the pairs of classes. For this dataset, we obtained the performance
using a generalized AUC as 0.92833, while our method produces a scalar value
of 1.1188. Table 3 lists the pairwise AUC values for Segment dataset for each
of the classifiers and provides the generalized AUC and AUC calculated using
our method. Fig. 7 compares the performances of four classifiers (SVM, Random
Forest, Random Tree and C4.5) for the segment dataset.

Fig. 5. The total area that signifies the performance of the classifier

Fig. 6. Comparison of classifiers’ performances using visual representation for ran-

domly generated 3-class dataset
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Fig. 7. Comparison of classifiers’ performances using visual representation for Segment

dataset

Discussion:The experimental results show that our method can measure the per-
formance of a classifier while classifying more than two classes. As shown in Tab. 2,
for the synthetically generateddataset, the performance measurementusing a gen-
eralized AUC cannot differentiate the performances between SVM and Random
Forest. It is interesting that our method can rank these classifiers according to
their performances. Fig. 6 also represents the performance variation visually.

Table. 3 presents the pair-wise AUC values for the four classifiers: SVM, Ran-
dom Forest, Random Tree and C4.5 when classifying the segment dataset. The
overall performance using our method for these classifiers is: SVM: 3.00, C4.5:
3.04, Random Tree: 2.95 and Random Forest: 3.06. The performances using gen-
eralized AUC are: SVM: 0.98, C4.5: 0.99, Random Tree: 0.98 and Random Forest:
0.99. We see that the generalized AUC [2] cannot differentiate the performances
of SVM and Random Tree, while our method can distinguish between the per-
formances of these two classifiers. As indicated by the area, C4.5 performs better
than does SVM for the dataset. Similarly, we find that amongst the four clas-
sifiers, Random Forest performs the best. According to the area obtained using
our method the rank of the classifiers is (from the best to the worst): Random
Forest, C4.5, SVM and Random Tree.

Fig. 7 represents the visual comparison of the performances of four classifiers
(SVM, Random Forest, Random Tree and C4.5) for the segment dataset that has
seven classes. The plot shows that the SVM performs worse than other classifiers
when classifying between class 3 and class 4. The classification performances for
both Random Tree and SVM are the same for most of the pairs of classes except
at a few points (e.g. for the pair class 1 versus class 7, where Random Tree is
worse than SVM; and for the pair class 3 versus class 4, where Random Tree
performs better than SVM). This plot reveals that the performance of Random
Forest is the best among the all classifiers.
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Table 1. The minimum and maximum

values of areas for a different number of

classes

# of Minimum Maximum

Classes Area Area

3 0.3248 1.2990

4 0.6495 2.5981

5 0.7347 2.9389

6 0.7626 3.0505

7 0.7737 3.0949

8 0.7788 3.1153

9 0.7814 3.1257

10 0.7828 3.1314

11 0.7837 3.1348

12 0.7842 3.1368

13 0.7845 3.1382

14 0.7848 3.1391

15 0.7849 3.1397

16 0.7850 3.1402

Table 2. The comparison of perfor-

mances measurement between our method

and Generalized AUC [2] using synthetic

dataset

Class X Vs. SVM C4.5 Rand Tree RF

Class Y

X=1, Y=2 0.82 0.70 0.60 0.78

X=1,Y=3 0.84 0.90 0.7 0.86

X=2,Y=3 0.85 0.90 0.90 0.87

Generalized 0.837 0.833 0.733 0.837

AUC [2]

Our method 0.908 0.896 0.689 0.909

Table 3. The comparison of per-

formances measurement between our

method and Generalized AUC [2] using

segment dataset [8]

Class X vs. SVM C4.5 Rand Tree RF

Class Y

X=1, Y=2 1 0.998 0.994 1

X=1, Y=3 1 0.998 0.993 1

X=1,Y= 4 0.998 1 0.981 1

X=1, Y= 5 1 0.998 0.993 1

X=1, Y= 6 1 1 0.995 1

X=1, Y= 7 1 0.999 0.942 1

X=2 , Y= 3 1 0.998 0.985 1

X=2, Y= 4 1 1 0.981 1

X=2 , Y= 5 1 0.998 1 1

X=2,Y= 6 1 1 0.985 1

X=2, Y=7 1 0.995 0.984 1

X=3, Y= 4 0.837 0.941 0.881 0.97

X=3, Y= 5 1 0.995 0.991 1

X=3, Y= 6 0.983 0.998 0.978 1

X=3, Y=7 0.967 0.984 0.965 0.95

X=4, Y=5 1 0.998 0.998 1

X=4, Y= 6 0.988 0.96 0.971 0.990

X=4 ,Y= 7 0.92 0.977 0.914 0.994

X=5, Y=6 1 0.998 1 1

X=5, Y= 7 1 0.998 0.993 1

X=6, Y=7 0.995 0.99 0.974 0.990

Generalized 0.98 0.99 0.98 0.99

AUC [2]

Our method 3.00 3.04 2.95 3.06

7 Conclusion

In this paper, we have proposed a new method to represent performance of a
classifier both visually and numerically when there are more than two classes
in dataset. Using the proposed method, classifiers can be compared and ranked
according to their cost performance. The method considers optimal configuration
of pairwise AUC values of a classifier providing more accurate performance of the
classifier. Furthermore, the computational cost of the method is O(MC2nlogn+M

C2log(MC2)) that is far less than O(nd); d = M.(M − 1) (if we consider d-
dimensions to plot and compute the volume under ROC surface) for a dataset of
M classes and n datapoints. This method is a milestone to fill up the limitation
of the existing AUC and ROC plot for binary class problem.
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Abstract. Emerging patterns are itemsets whose frequencies change

sharply from one class to the other. PCL is an example of efficient clas-

sification algorithms that leverage the prediction power of emerging pat-

terns. It first selects the top-K emerging patterns of each class that match

a testing instance, and then uses these selected patterns to decide the

class label of the testing instance. We study the impact of the parameter

K on the accuracy of PCL. We have observed that in many cases, the

value of K is critical to the performance of PCL. This motivates us to de-

velop an algorithm to find the best value of K for PCL. Our results show

that finding the best K can improve the accuracy of PCL greatly, and

employing incremental frequent itemset maintenance techniques reduces

the running time of our algorithm significantly.

1 Introduction

Classification is the task of learning from one data set and making predictions
in another data set. The learning data is called training data which consists of
entities with their labels. The other data set is called testing data which consists
of entities without labels, and the classifying task is to make prediction of their
labels based on what we learn from the training data. Many classifiers have been
proposed in the literature. Here, we focus on pattern-based classifiers.

Frequent patterns are patterns that appear frequently in the dataset. Fre-
quent patterns whose supports in the training data set change significantly from
one class to the other are used to construct the classifiers. These patterns are
called emerging patterns (EP) [9,10,16] and these patterns are applied to test-
ing instances to predict their class memberships. As a classifier may generate
many rules for the same class, aggregating their discrimination power gives bet-
ter prediction results [4,8,10,20]. Using EPs has the advantage that they not
only predict the class labels but also provide explanation for the decision.

Jumping emerging patterns (JEP) are a special type of EPs that have non-zero
occurrence in one class and zero occurrence in all other classes [10,11]. PCL [9,10]
is a classifier based on aggregating the prediction power of frequent JEPs. Given

� Supported by A*STAR grant (SERC 072 101 0016).

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 121–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a test instance t, PCL selects the top-K JEPs with the highest supports that
are contained in t from each class and then computes the score for each class
using these selected patterns. PCL assigns the class label with the highest score
to the testing instance. The choice of a good value for K is tricky and its optimal
value varies on different datasets, as shown in Fig. 1. Remarkably, the problem
of choosing the best value of K has not been investigated previously.

Fig. 1. Accuracy of PCL on four datasets with different values of K. X-axis shows

different values of K and Y-axis shows the accuracy. When K increases, the accuracy

does not always increase.

Here, to avoid overfitting K to the data, we sample many subsets of the train-
ing data to get the value of K that appears the best on average. By this method,
we maximize the likelihood that the chosen K will produce the best results in the
whole dataset. Our main contributions are summarized as follows: (i) We revisit
the PCL algorithm [9,10] and propose a method to find the most appropriate
parameters to improve the performance of PCL. (ii) We introduce a method
to speed up the proposed algorithm as well as cross-validation methodology for
frequent-pattern-based classification algorithms in general.

2 Related Work

Emerging patterns are a special type of frequent patterns. They occur frequently
in one class but rarely in other classes. Emerging pattern-based classification ben-
efits enormously from the advancement of frequent pattern mining algorithms
and better understanding of the patterns space. Many methods have been pro-
posed to select a good set of patterns for constructing classifiers [15]. Most of
these algorithms first generate frequent patterns satisfying a certain minimum
support constraint, and then select patterns based on some criteria and make
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predictions based on the selected patterns. These algorithms mainly differ in
how patterns are selected and how class labels are determined.

The first class of methods pick the best pattern to classify testing instances,
like CBA [14] and MMAC [18]. CBA first derives classification rules from fre-
quent patterns, and then ranks the rules in descending order of their confidence.
A very small set of rules is then selected to maximize the classification accuracy
on the training data. The class label of a new instance is decided by the first rule
that matches the instance. MMAC extends CBA to multiple classes and labels.
Only a small set of patterns are selected for classification. So it is possible that
a new testing instance does not contain any EP that is selected.

The second class of methods treats frequent patterns as additional features
and then use classical algorithms to classify the data [2,3]. Cheng et al. [2,3]
build a connection between pattern frequency and discriminative measures such
as information gain score, and develop a strategy to set minimum support in
frequent pattern mining for generating useful patterns for classification. Based
on this strategy, coupled with a proposed feature selection algorithm, selected
EPs are used as additional features to build high quality classifiers. The results
show that using EPs as additional features can improve the accuracy of C4.5
and SVM. The main drawback of this approach is that the intuitiveness of the
pattern-based classifiers may be lost.

The last class of methods selects the top-K patterns and aggregates the pre-
dictive power of the selected patterns. They include CAEP [4], iCAEP [20],
PCL [9,10], CEP [1], CPAR [17], CMAR [8] and HARMONY [19]. CAEP uses
EPs with high growth rate to do classification. iCAEP aggregates the prediction
power of EPs based on information theory. PCL uses only JEPs. JEPs occur in
one and only one class, which may be too restrictive in some cases. CEP relaxes
this constraint by putting an upper bound on the number of occurrences of the
EPs in other classes. CPAR uses the expected accuracy to select classification
rules. It compares the average expected accuracy of the best K rules of each class
and chooses the class with the highest expected accuracy as the predicted class.
CMAR uses a weighted measure to select rules, and the score of a class is also
calculated using this weighted measure. HARMONY directly mines the final set
of classification rules by using an instance-centric rule generation approach.

The aggregation-based algorithms generally show better performance than
other algorithms. However, the value of K is critical to their performance in many
cases. Here, we use PCL as an example to study how to select proper values for
parameter K to maximize the accuracy of the aggregation-based algorithms.

3 Preliminaries

Let I = {i1, i2, .., in} be a set of distinct literals called items. An itemset or
a pattern is a subset of I. A transaction is a non-empty set of items. Let
C = {C1, C2, .., Ck} be a set of distinct labels called class labels. A transac-
tional database consists of a set of transactions associated with their labels. A
classification task involves two phases: training and testing. In training, the class
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labels are revealed and in testing, class labels are hidden. The classifier builds a
model based on the training set and uses this model to predict the class labels
of transactions in the testing set. The accuracy of a classifier A is the proportion
of test-instances which are correctly classified by A.

A pattern P covers a transaction t if P ⊆ t. The support of P is the number
of transactions that are covered by P . We use sup(P, D) to indicate the support
of P in the dataset D. We use P |D to indicate the set of transactions in D
that contain P . Given a 2-class dataset, jumping emerging patterns (JEP) are
patterns whose frequency in one class is non-zero and in other class is zero. An
EPi is called a JEP from class A to class B if its support in class A is zero. A
pattern P is a generator if and only if for every P ′ ⊂ P , sup(P ′, D) > sup(P, D).
A JEP generator is both a generator and a JEP.

4 Algorithms

4.1 PCL

We present here an overview of PCL [9,10]. The dataset D is divided into
positive and negative classes. Given a test-instance t, two sets of JEPs that
cover t are used: EP+

t1 , EP+
t2 , .., EP+

tn from negative to positive classes and
EP−

t1 , EP−
t2 , .., EP−

tn from positive to negative classes. The K most frequent
JEPs that cover t are sorted in descending order of their supports. Suppose
the set of JEPs (based on the training set) from negative to positive classes
are EP+

1 , EP+
2 , .., EP+

n in descending order of their supports. Similarly,
EP−

1 , EP−
2 , .., EP−

n is the set of JEPs from positive to negative. It is hypoth-
esized that if t belongs to one class, it should contain more JEPs of this class
than the other class. So Li and Wong [9] formulated the scores of t with respect
to the two classes as below.

Score(t, +) =
∑k

i=1 sup(EP+
ti , D)∑k

i=1 sup(EP+
i , D)

Score(t,−) =
∑k

i=1 sup(EP−
ti , D)∑k

i=1 sup(EP−
i , D)

4.2 PSM

Maintenance of EPs was first introduced in [11], though a complete solution
for insertion and deletion was not discussed. Here, we describe a more efficient
method called PSM for complete maintenance introduced recently in [5].

PSM is a maintenance algorithm for frequent pattern space. It is based on the
GE-tree, an effective data structure described in [6,7] for enumerating genera-
tors. Frequent generators are stored in the GE-tree and the tree is incrementally
adjusted when new transactions are added or existing transactions are removed.
Each node in the tree represents a generator. To find EPs, we modify the GE-tree
so that each node stores both positive and negative supports of the correspond-
ing generator. In addition to frequent generators, GE-tree maintains a negative
border which comprises infrequent generators whose immediate subsets are all
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frequent [5,6]. The negative border helps generate new frequent generators and
equivalence classes efficiently when transactions are added or removed.

Computating frequent generators is expensive. The benefit of PSM is that a
new set of frequent generators does not need to be computed from scratch when
the data is modified. As a small change in dataset seldom causes a big change
in the set of frequent patterns, PSM is effective for pattern space maintenance.

4.3 rPCL and ePCL

A good choice of K has a big impact on prediction results in PCL. We propose a
method to tackle this problem as follows. According to the Central Limit The-
orem, the distribution of accuracy will behave like normal distribution. Indeed,
Fig. 2 suggests the convergence of average classification accuracy in training data
to the real value of accuracy in the whole dataset. So we simulate the actual pro-
cess of classification in training set and choose the value of K that maximizes
the mean accuracy. The simulation is run repeatedly to determine which value
of K appears as the best on average. By the Central Limit Theorem, the average
accuracy of each K approaches the true accuracy of that value of K, given suf-
ficient number of simulation runs. Thus, the value of K that has the best mean
accuracy in the simulation runs will also perform well in the whole set of data.

Fig. 2. Distribution of accuracies across 100 runs given a fixed K=10 over training set.

The vertical red line indicates the actual value of accuracy when we evaluate the same

K in the whole dataset. The means are shown to be close to the actual accuracy.

We describe two algorithms rPCL and ePCL. Algorithm rPCL is a direct but
naive solution for the method above. We use it as a benchmark to understand
where inefficiencies might be and to assess the improvement of a more efficient
method using maintenance. ePCL is the fast version where PSM is used. It
produces the same results as rPCL but runs many times faster.
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Fig. 3. The rPCL algorithm

In rPCL (Fig. 3) we use a technique called repeated random sub-sampling
validation as a framework to assess the best parameter for PCL. It involves
several rounds, in each round the training set is randomly divided into new
complementary testing and training set. For each K, we perform this procedure
to determine the expected accuracy of the classifier wrt this K. The chosen K is
the one which returns the best average accuracy over these runs. 10-fold cross
validation is popular for accessing classifier performance. So, we subsample 10%
of training set as testing subsample and 90% as training subsample.

In rPCL, makeDecision simply decides if the classifier with ScoreK [t, +] and
ScoreK [t,−] correctly predicts the class of t, wrt to the current K. At step 9, we
can compute ScoreK [t, +] from Score(K − 1)[t, +] in constant time. To achieve
this, we use a vector to store ScoreK [t, +] and ScoreK [t,−] for all t ∈ Dt. To
determine a good value of K, a significantly large number of iterations maxtime
is performed and all values of K in the range 1..maxK are considered.

Constructing a set of frequent EPs from the training set (step 4) is compu-
tationally very expensive. It involves frequent pattern mining. And this step is
repeated many times with different Dt and Dn. Because the testing-training sep-
arations are largely similar among all the runs, we should not need to construct
the set of EPs from scratch in such a naive fashion. PSM [5,6] is used to achieve
this purpose. PSM allows us to adjust the set of frequent patterns when the
training fold is changed. We only need to construct the frequent patterns space
at the beginning and repeatedly use PSM to maintain the set of rules when the
sub-sampling folds are changed. That is, we only need to mine frequent patterns
once at the beginning. With this innovation, we present an improved algorithm
called ePCL (Fig. 4) which stands for enhanced PCL.
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Fig. 4. ePCL algorithms. The highlighted codes indicate the involvement of PSM.

Fig. 5. Workflow for rPCL and ePCL. EP set indicates the set of EPs used to construct

PCL.
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The set of frequent generators are incrementally maintained. Line 5 and 17
show the execution of PSM: PSM.delete is invoked when a fold is removed from
the training set and PSM.add is invoked to add this fold into original set. That
eliminates building a new set of frequent patterns when we run the simulation
with a new testing-training separation. Fig. 5 is the workflow of rPCL and ePCL.

4.4 Complexity Analysis

We compare the theoretical improvement of ePCL from rPCL. In rPCL, the
outer loop repeats maxtime, which is the number of runs needed to find the
best K. In each loop, we need to run PCL classifier which involves a frequent
pattern mining step (FPM) and evaluation for all K from 1 to maxK. The
total time is maxtime ∗ (FPM + PCL(maxK)). PCL(maxK) is the time to
compute scores for K = 1..maxK. This step evolves visiting entire frequent pat-
tern set to get the top K patterns and compute scores accordingly for each test
instance. In ePCL, we only need to build frequent patterns once and incremen-
tally adjust the pattern space. The total time is FPM + maxtime ∗ (|D|/10 ∗
maintenance+PCL(maxK)), where maintenance is the running time for main-
taining one transaction, |D| is the size of the dataset. According to [5], PSM is
much more efficient than mining-from-scratch algorithms. At 10% of the data
size, the speed-up is at least 3 times faster for incremental and 5 times faster for
decremental maintenance than mining from scratch.

5 Experimental Studies

5.1 Experiment Setup

Experiments are conducted using 18 data sets of various sizes from UCI reposi-
tory. Continuous attributes are discretized by the entropy method. Table 1 gives
details of these data sets. We evaluate the performance on two-class datasets. For
multi-class datasets, we select one class as positive and the remaining as negative.
The process is done for all classes. PCL can be extended to handle multiple-class
datasets; however, the method of choosing parameter is still applicable. 10-fold
cross validation is used to assess the efficiency and average accuracies are re-
ported. The datasets are separated in such a way that the proportion of each
class is consistent in both testing and training.

For the original PCL, we use the frequent pattern mining algorithm provided
by [13]. The experiments are done in Windows machine with 2.6 GHz processor
and 1G memory. We assess the accuracy improvement of rPCL over PCL and
running time comparison of ePCL and rPCL. Time is measured in seconds.

When we compute the score of an instance in two classes, it is possible that
the scores are both zero. Such a test-instance is not covered by any pattern
and therefore unclassifiable by both PCL and ePCL. The average percentage of
unclassified data is 11% and there is no dataset with more than 20%. We do not
include these cases in our accuracy computation. The purpose is to evaluate the
improvement of rPCL over the original PCL only.
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Table 1. Datasets information

Dataset # attributes # instances # continuous attributes # nomial attributes

mushroom 4 8124 4 0

iris 8 150 8 0

Glass 22 214 0 22

zoo 16 101 0 16

Promoter 18 106 0 18

Vote 10 435 10 0

Splice 19 3190 0 19

Hepatitis 59 155 0 59

Pima 61 768 0 61

Hypothyroid 25 3163 7 18

Breast 16 3190 0 16

Cleve 10 2727 0 10

German 12 2700 0 12

Lymph 19 1332 0 19

Vehicle 19 3809 0 19

Waveform 20 9000 0 20

Wine 14 178 0 14

Tic-tac-toe 10 4312 0 10

5.2 Parameters Setting

All the patterns used in PCL and its improved versions are JEP generators [10].
The exception is an early paper [8]; it uses the “boundary” JEPs, which are
defined in [9] as those JEPs where none of their proper subsets are JEPs. Here,
we use JEP generators as discriminative patterns because:

– It is known that the JEP space is partitioned into disjoint equivalence
classes [9,10]. So the set of JEP generators (which correspond to the most
general patterns in each equivalence class) adequately characterizes the data.
In contrast, boundary JEPs are insufficient to capture all equivalence classes.

– The minimum description length principle is a well-accepted general solution
for model selection problems. The choice of JEP generators is in accord with
this principle [12]. Also, our experiments show that JEP generators are less
noise-sensitive than boundary JEPs.

– JEP generators are efficient to compute. We can make use of many efficient
frequent patterns mining algorithms [12].

For rPCL and ePCL, we set maxtime to 50 and we run K in a range from 1
to 50. We limit the range to 50 because small-frequency patterns have minimal
prediction power over the top ones. Patterns ranked higher than 50 generally
have low support. As shown in Fig. 1, the predictions stabilize after K = 50,
so no need to consider K > 50. For original PCL, we use K = 10 as suggested
in [9]. Minimum support is set to make sure enough EPs are found.
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5.3 Efficiency

PCL with generators and boundary EPs. For PCL, we have choices over
which type of frequent patterns are used to make predictions. We have done
experiments to justify our choice of JEP generators, as suggested in [9], rather
than boundary JEPs. We want to test the robustness of PCL in the case of noise
with these two types of patterns. When a part of the original dataset is missing,
the noisy dataset reduces the accuracy of the classifier. Fig. 6 shows accuracy
of PCL with generators (gen PCL) and boundary JEPs (boundary PCL) for
different levels of missing rate (We assume items in the dataset are missing with
certain rate): 0%, 10%, 20%, 30%, 40% and 50%. The accuracies are average
over 18 datasets. Gen PCL is less noise-sensitive than boundary PCL.

Fig. 6. Accuracy of gen PCL and boundary PCL in the presence of missing information

PCL and ePCL. We compare the accuracy of the original PCL and ePCL.
Since rPCL and ePCL give the same results, we do not show the accuracy of
rPCL here. Table 2 shows accuracy of ePCL and the original PCL in 18 datasets.
Overall, the improvement is 3.19%. In some datasets like Promoters, Wine and
Hepatitis, we get improvement of 26%, 11% and 15% respectively.

Table 2. Accuracy comparison of ePCL and PCL

Datasets ePCL PCL Improve (%) Datasets ePCL PCL Improve (%)

Mushroom 1 1 0 Iris 0.9999 0.9658 3.534591

Glass 0.9714 0.9675 0.404967 Zoo 0.9997 0.9528 4.925911

Promoter 0.8216 0.6525 25.92549 Vote 0.9439 0.9492 -0.55892

Splice 0.6667 0.6667 0 Hepatitis 0.8872 0.7716 14.98068

Pima 0.8192 0.8331 -1.67043 Hypothyroid 0.9962 0.9861 1.017527

Breast 0.9912 0.9907 0.050572 Cleve 0.9644 0.9959 -3.16567

German 0.9644 0.994 -2.97462 Lymph 1 1 0

Vehicle 0.9569 0.9437 1.390222 Waveform 0.8347 0.8053 3.643507

Wine 0.97892 0.8789 11.3941 Tic-tac-toe 0.9512 0.965 -1.42591
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Table 3. Accuracy comparison of ePCL and PCL in difficult cases

Datasets Difficult PCL ePCL Datasets Difficult PCL ePCL

cases (%) cases (%)

mushroom 0 - - Iris 0 - -

Glass 33.94 0.9071 0.9183 zoo 26.53 0.8274 0.9989

Promoter 49.02 0.3123 0.647 Vote 16.31 0.6978 0.6663

Splice 100 0.6667 0.6667 Hepatitis 100 0.7716 0.8872

Pima 12.10 0 0 Hypothyroid 20 0.9327 0.9813

Breast 10.90 0.917 0.9214 Cleve ¡1 - -

German 10.60 0.9449 0.6745 Lymph 0 - -

Vehicle 3.7453 0 0 Waveform ¡2 - -

Wine 31 0.8788 0.9789 Tic-tac-toe 30.2 0.553 0.578

Recall in PCL, to classify one test instance, one score is computed for each
class. Some instances received zero score in one class and non-zero score in the
other class; thus the association rules vote unanimously to one class. We call these
the easy cases and the rest are difficult cases. The value of K has a much greater
impact on the difficult cases. Table 3 shows the accuracy of original PCL and
ePCL in difficult cases. Although we do not show statistics for easy cases here,
the accuracy is close to 100% for most easy cases. We do not show datasets with
too few difficult cases since there are not enough samples to evaluate accurately.

Performance. We compare the running time of rPCL, ePCL and original PCL.
The performance of ePCL compared to rPCL is good, demonstrating the supe-
riority of using pattern maintenance. Table 4 shows that ePCL is an order of
magnitude faster in many cases. In one case (vehicle.dat), rPCL could not com-
plete after more than one day, but ePCL completed within 4 hours. Nevertheless,
ePCL takes more time than PCL due to the repeating part; fortunately, this is
compensated by the much better accuracy of ePCL.

Table 4. Performance comparison

Datasets PCL rPCL ePCL Speed up Datasets PCL rPCL ePCL Speed up

(rPCL/ (rPCL/

ePCL) ePCL)

mushroom 2.75 84 35 2.4 Iris 2 99 3 33

glass 8.5 120 2 60 zoo 5 291 7 41.5

promoters 1 51 7 7.2 Vote 0.75 47 11 4.2

splice 2.5 129 4 32.2 hepatitis 0.5 38 3 12.6

pima 0.75 42 9 4.6 hypothyroid 2 105 43 2.4

breast 2.5 109 60 1.8 cleve 4.25 181 123 1.4

german 11 513 611 0.8 lymph 27.5 1224 512 2.3

vehicle 2518 too long 6966 A lot waveform 117 5738 2507 2.3

wine 3.25 188 17 11.1 tictactoe 13 88 43 2
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6 Discussion and Conclusion

Cross-validation is a technique to assess the performance of classification algo-
rithms. Typically the testing set is much smaller than the training set and a
classifier is built from the training set which is largely similar between runs. Our
framework of maintenance can be applied to efficiently perform cross-validation
for pattern-based classification. Recall PSM allows us to maintain the set of
frequent generators while adding or deleting a relatively small portion of the
dataset. We only need to maintain a single frequent pattern set and incremen-
tally adjust using PSM. In addition, for more efficient computation, PSM can be
extended to handle multiple additions/deletions at the same time by organizing
transactions in a prefix tree.

We showed the importance of finding the top K patterns for PCL. We intro-
duced a method to perform the task efficiently, making use of the PSM main-
tenance algorithm [5]. The maintenance framework can be applied to general
cross-validation tasks which involve frequent update of the pattern space. Our
experiments showed improvement in accuracy. However, we compromised on
complexity. We hope to get a better implementation for ePCL, thus minimiz-
ing the running time to close to original PCL and implement the mentioned
extensions.
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Abstract. 1The recently proposed rough margin based support vector

machine (RMSVM) could tackle the overfitting problem due to outliers

effectively with the help of rough margins. However, the standard solvers

for them are time consuming and not feasible for large datasets. On the

other hand, the core vector machine (CVM) is an optimization tech-

nique based on the minimum enclosing ball that can scale up an SVM

to handle very large datasets. While the 2-norm error used in the CVM

might make it theoretically less robust against outliers, the rough margin

could make up this deficiency. Therefore we propose our rough margin

based core vector machine algorithms. Experimental results show that

our algorithms hold the generalization performance almost as good as

the RMSVM on large scale datasets and improve the accuracy of the

CVM significantly on extremely noisy datasets, whilst cost much less

computational resources and are often faster than the CVM.

1 Introduction

People in computer science societies have been questing for faster algorithms
since long before. When come to mind the solving techniques of SVMs, there
are several approaches ranged from the chunking method [1] to the sequential
minimal optimization [2], as well as scaling down the training data and low-rank
kernel matrix approximations [3]. Eventually, the Core Vector Machine (CVM)
algorithms [4, 5, 6, 7] have gone to an extreme that they have linear asymptotic
time complexity and constant asymptotic space complexity, since they transform
the quadratic programming (QP) involved in SVMs to the minimum enclosing
ball (MEB) problems. In order to perform this transformation the CVM takes
the 2-norm error, which may cause it less robust and thus hurt the accuracy.
Fortunately the notion of the rough margin in the Rough Margin based Support
Vector Machine (RMSVM) [8] could make SVMs less sensitive to noises and
outliers, and consequently reduce the negative effects of outliers. For this reason
we propose our Rough Margin based Core Vector Machine (RMCVM), which
unites the merits of the two aforementioned methods.
1 Supported by National Natural Science Foundation of China (No. 60775046) and

Natural Science Foundation of Jiangsu Province (No. BK2009233).
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After brief introductions to the CVM and the RMSVM in Section 2 and 3, we
will first of all define the primal problem of the RMCVM. Next we shall elaborate
how to solve an RMCVM through the approximate MEB finding algorithm. We
will also investigate the loss functions used by the RMSVM and RMCVM. In
the end experimental results are shown in Section 5.

2 Core Vector Machine with Minimum Enclosing Ball

Given a set of points S = {x1, . . . ,xm}, where xi ∈ R
d for some integer d,

the minimum enclosing ball of S (denoted MEB(S)) is the smallest ball which
contains all the points in S [5]. Formally, let ϕ be a kernel induced feature map,

min
R,c

R2 s.t. ‖c− ϕ(xi)‖2 ≤ R2, i = 1, . . . , m. (1)

Let B(c∗, R∗) be the exact MEB(S). Given an ε > 0, a (1 + ε)-approximation
of B(c∗, R∗) is a ball B(c, (1+ ε)R) such that R ≤ R∗ and S ⊂ B(c, (1+ ε)R). A
subset Q of S is called a core-set, if S ⊂ B(c, (1+ε)R) where B(c, R) is MEB(Q).
The approximate MEB finding algorithm [9] uses a simple iterative scheme: at
the t-th iteration, Qt is expanded by including the farthest point of S from ct,
then optimize (1) to get B(ct+1, Rt+1); this is repeated until S ⊂ B(ct, (1+ε)Rt).
A surprising property is that the number of iterations, and thus the size of the
final core-set, depend only on ε but not on d or m [9, 5].

The dual of (1) is maxα α�diag(K)−α�Kα s.t. α ≥ 0, α�1 = 1, where α is
the Lagrange multiplier and K is the kernel matrix. Conversely, any QP of this
form can be regarded as an MEB problem [4]. In particular when

k(x,x) = κ, (2)

where κ is a constant (this is true for many popular kernels), we can drop the
linear term α�diag(K) and obtain a simpler QP,

max
α
−α�Kα s.t. α ≥ 0, α�1 = 1. (3)

Definition 1 (CVM [4])

min
w,b,ξ,ρ

‖w‖2+b2−2ρ+C

m∑
i=1

ξ2
i s.t. yi(w�ϕ(xi)+b) ≥ ρ−ξi, i = 1, . . . m, (4)

where C is a regularization parameter and ξi are slack variables.

The dual of (4) is analogous to the dual (3), in which K is replaced with K̃
that K̃ij = ϕ̃(xi, yi)�ϕ̃(xj , yj) where ϕ̃(xi, yi) = [yiϕ(xi)�, yi,

1√
C
e�i ]� (ei is all

0 except that the i-th component is 1). Hence the CVM is an MEB if (2) is
true. To deal with the situation that (2) is not satisfied, Tsang et al. extend
the MEB to the center-constrained MEB [10], and propose the generalized core
vector machine [11] which is applicable for any kernel and can also be applied
to kernel methods such as SVR and ranking SVM.

Note that the 2-norm error is used here. It could be less robust in the presence
of outliers in theory to some extent [5].
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3 Rough Margin Based Support Vector Machine

The rough set theory, which is based on the concept of the lower and upper
approximation of a set, is a mathematical tool to cope with uncertainty and
incompleteness [12]. The rough margins [8] are expressed as a lower margin 2ρl

‖w‖
and an upper margin 2ρu

‖w‖ where 0 ≤ ρl ≤ ρu. They are corresponding with the
lower and upper approximations of the outlier set, such that the samples in the
lower margin are considered as outliers, the samples outside the upper margin are
not outliers, and the samples between two rough margins are possibly outliers.

When the training procedure takes place, the RMSVM tries to give major
penalty to samples lying within the lower margin, and give minor penalty to
other samples [8]. Notice that the Universum SVM [13] uses a similar strategy.
In practice, the RMSVM introduces slack variables ζi and penalize them τ times
larger than ξi, since ζi > 0 means that ϕ(xi) is in the lower margin. Formally,

Definition 2 (RMSVM [8])

min
w,b,ξ,ζ,ρl,ρu

1
2
‖w‖2 − νρl − νρu +

1
m

m∑
i=1

ξi +
τ

m

m∑
i=1

ζi

s.t. yi(w�ϕ(xi) + b) ≥ ρu − ξi − ζi,

0 ≤ ξi ≤ ρu − ρl, ζi ≥ 0, ρl ≥ 0, ρu ≥ 0, i = 1, . . . m,

(5)

where ν ∈ (0, 1), τ > 1 are regularization parameters and ξi, ζi are slack variables.

3.1 Justification of the Rough Margin

Apparently the RMSVM should encounter severer overfitting problem since it
emphasizes more on outliers than the ν-SVM. However, the dual of (5) is

min
α

1
2
α�Qα s.t. y�α = 0, α�1 ≥ 2ν, 0 ≤ αi ≤ τ

m
, i = 1, . . . m, (6)

where Qij = yiyjϕ(xi)�ϕ(xj). Hence 2ν/τ is the fraction of samples permitted to
lie within the lower margin. For fixed ν, the larger the τ is, the less overfitting the
RMSVM is, and ultimately the RMSVM would become an underfitting classifier.

Likewise the loss function, which was an absent topic in [8], could justify the
rough margin well. Let f(xi) = w�ϕ(xi) + b,

Proposition 1. The loss function of the RMSVM is

Lρl,ρu

1 (xi, yi, f) =

⎧⎪⎨
⎪⎩

ρu + (τ − 1)ρl − τyif(xi) , yif(xi) ≤ ρl

ρu − yif(xi) , ρl < yif(xi) ≤ ρu

0 , yif(xi) > ρu

Proof. (Sketch) In fact ξi increases before ζi, while ζi has to stay at zero until
ξi arrives at ρu − ρl, since ξi suffers less penalty in (5). ��
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In other words, though 1
m < αi ≤ τ

m when yif(xi) ≤ ρl, ρl is smaller than
ρ, the loss Lρl,ρu

1 (xi, yi, f) may still not be large, and the number of samples
satisfying yif(xi) ≤ ρl is usually smaller than the number of samples satisfying
yif(xi) ≤ ρ in the ν-SVM. Therefore the notion of the rough margin is a tool
and technique to avoid the overfitting problem.

There is a side effect that ρu is usually larger than ρ, which makes the RMSVM
generate much more support vectors satisfying ρl < yif(xi) ≤ ρu such that ϕ(xi)
lies between two rough margins with tiny αi. This phenomenon slows down the
speed and increases the storage of the RMSVM.

4 Rough Margin Based Core Vector Machine

For the sake of using the approximate MEB finding algorithm to solve the rough
margin based SVM, we use 2-norm error because it allows a soft-margin L2-SVM
to be transformed to a hard-margin one. Subsequently we have

Definition 3 (RMCVM)

min
w,b,ξ,ζ,ρl,ρu

‖w‖2 + b2 − 2ρl − 2ρu + C

m∑
i=1

ξ2
i + τC

m∑
i=1

ζ2
i

s.t. yi(w�ϕ(xi) + b) ≥ ρu − ξi − ζi, ξi ≤ ρu − ρl, i = 1, . . . m,

(7)

where C > 0, τ > 1 are regularization parameters and ξi, ζi are slack variables.
The dual of (7) is

max
α,β

−α�
(
K ◦ yy� + yy� +

1
τC

I
)

α− 1
C
‖α− β‖2

s.t. α�1 = 2, β�1 = 1, α ≥ 0, β ≥ 0,

(8)

where y = [y1, . . . , ym]� and the operator ◦ denotes the Hadamard product.

Remark 1. We omit the constraint ζi ≥ 0 since it is dispensable for L2-SVMs.
We omit the constraints ρl, ρu ≥ 0 based on the fact that certain inequality
constraints in the dual problem can be replace by the corresponding equality
constraints [14, 15]. Finally we omit ξi ≥ 0, otherwise there will be 1

C ‖α−β+γ‖2
in the objective and additional constraint γ ≥ 0, and the optimal γ∗ = 0
obviously. The constraint ρu ≥ ρl is indeed implicated by (7) already.

Remark 2. Note that the regularization parameter of the original SVM [16] and
the ν-SVM [17] is C and ν respectively. In the CVM it is C through which we
control the trading off between the flatness and training errors. Since the order of
‖w‖ and ξi are equal in (4), their coefficients would change simultaneously under
scaling, which means that the coefficient of ρ does not influence very much.

Remark 3. It is obvious that there is only ν-RMSVM insofar as it applies 1-norm
error. Similarly the RMSVM using 2-norm error would be C-RMSVM inherently.
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Therefore we demonstrate that Definition 3 is proper. Furthermore,

Proposition 2. The loss function of the RMCVM is

Lρl,ρu

2 (xi, yi, f) =

⎧⎪⎨
⎪⎩

(ρu − ρl)2 + τ(ρl − yif(xi))2 , yif(xi) ≤ τ+1
τ ρl − 1

τ ρu

τ
τ+1 (ρu − yif(xi))2 , τ+1

τ ρl − 1
τ ρu <yif(xi)≤ρu

0 , yif(xi) > ρu

Proof. (Sketch) We have ξi = τζi when 0 < ξi < ρu−ρl, by equalling the partial
derivatives of the objective function of (7) w.r.t. ξi and ζi respectively. ��

4.1 Solving Rough Margin Based CVM

From now on we will proof that (7) can be solved approximately by the CVM.

Proposition 3. The RMSVM cannot be transformed to an MEB problem unless
we drop the group of constraints αi ≤ τ

m in (6).

Lemma 1. Given a non negative vector α ∈ R
m, the optimal value of

minβ ‖α− β‖2 s.t. β�1 = 1
2α�1, β ≥ 0 (9)

is between 1
4m (α�1)2 and 1

4‖α‖2.
Proof. (Sketch) The upper bound is quite straightforward by setting β = 1

2α.
Let V = {β : β�1 = 1

2α�1}, then V consists of a hyperplane in R
m. The lower

bound is given by minβ∈V ‖α− β‖ = |α�1− 1
2 α�1|√

1�1
= |α�1|

2
√

m
. ��

Actually βi = 0 iff cot(α, ei) ≥
√

2 + 1. In other words, β is even sparser than
α, which is consistent with that there are less outliers than support vectors.

Theorem 1. The optimum of (8) is bounded by

max
α
−α�

(
K ◦ yy� + yy� +

τ + 4
4τC

I
)

α s.t. α�1 = 2, α ≥ 0, (10)

max
α
−α�

(
K ◦ yy� + yy� +

11�

41�1C
+

1
τC

I
)

α s.t. α�1 = 2, α ≥ 0. (11)

Proof. (Sketch) Denote the objective function of (8) as maxα,β−h(α, β) =
−minα,β h1(α) + h2(α, β) where h1(α) = α� (K ◦ yy� + yy� + 1

τC I
)
α and

h2(α, β) = 1
C ‖α− β‖2. Then

min
α,β

h(α, β) ⇐⇒ min
α

(
h1(α) + min

β
h2(α, β)

)

since h(α, β) is convex. According to Lemma 1, minβ h2(α, β) for given α is
bounded by 1

4mC (α�1)2 and 1
4C α�α. ��
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Corollary 1. The RMCVM can be solved approximately using the approximate
MEB finding algorithm.

Proof. Let Q(1), ϕ1,Q(2), ϕ2 be

Q(1)
ij = ϕ1(xi, yi)�ϕ1(xj , yj), ϕ1(xi, yi) =

[
yiϕ(xi)�, yi,

√
τ + 4
4τC

e�i

]�
,

Q(2)
ij = ϕ2(xi, yi)�ϕ2(xj , yj), ϕ2(xi, yi) =

[
yiϕ(xi)�, yi,

1
2
√

mC
,

1√
τC

e�i

]�
.

Then (10) and (11) can be regarded as MEB problems with parameters

Rt =

√
1
2
α�diag(Q(t))− 1

4
α�Q(t)α, ct =

1
2

m∑
i=1

αiϕt(xi, yi), t = 1, 2. ��

The convergence of (10) and (11) are as same as the CVM but we omit the proof
here. Hence the approximate RMCVM algorithms based on (10) and (11) have
linear asymptotic time complexity and constant asymptotic space complexity.
Recall that the RMSVM is slower than the ν-SVM since it generates more sup-
port vectors. Surprisingly the RMCVM most often generates less core vectors
and are faster than the CVM, even though we solve two MEB problems.

5 Experiments

We implement the RMSVM using LibSVM [18] and the RMCVM using LibCVM.
The parameters are fixed to τ = 5 as [8] suggested, and ε = 10−6 as [5] rec-
ommended. We tune ν ∈ {0.1, 0.2, . . . , 0.9} providing it is feasible. The kernel is
Gaussian and its width is the better one computed by the default methods of
LibSVM and LibCVM. The computation method of kernel width is kept unchanged
over one dataset.

The notation RCl stands for the solution fl(x) =
∑

αiyik(x,xi)+b from (10)
and RCu for fu(x) from (11), where b = y�α respectively. We denote RCavg

as the average solution of them. For multi-class tasks the default one-versus-one
strategy is used. The datasets2 are listed in Table 1.

To begin with, we conduct experiments on a small dataset shown in Table 2.
Our accuracy is almost always higher than the CVM. We find that RCavg is
not always the best and RCu is usually better than RCl. The next are results
on large datasets in the top of Table 3, where the time for reading input and
writing output files is excluded from the training time. Note that the CVM and
the RMCVM are very fast on extended-usps, on which all the RMSVM fail
to give a solution in 24 hours. Moveover, the RMCVM is usually better than
the CVM and even beat the RMSVM once on web. At last we display results
2 Download from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

and http://www.cse.ust.hk/~ivor/cvm.html
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Table 1. Data sets

name #class #training #testing #feature

satimage 6 4,435 2,000 36

web 2 49,749 14,951 300

ex-usps 2 266,079 75,383 676

intrusion 2 4,898,431 311,029 127

SensIT Vehicle: acoustic 3 78,823 19,705 50

SensIT Vehicle: seismic 3 78,823 19,705 50

Table 2. Experimental results on satimage (accuracy (%))

ε = 10−5 ε = 10−6

C CVM RCl RCu RCavg CVM RCl RCu RCavg ν ν-SVM RMSVM

0.1 82.5 83.5 84.8 84.1 82.5 83.5 84.8 84.1 0.5 81.9 88.8

1 85.7 86.9 87.7 86.8 85.6 86.9 87.8 86.9 0.4 84.8 89.5

10 89.0 88.3 88.8 88.3 88.6 89.2 89.4 89.3 0.3 87.2 89.8

100 89.3 88.3 84.9 88.4 89.6 89.8 90.0 90.1 0.2 88.9 89.6

Table 3. Experimental results on large datasets

accuracy (%) training time (seconds)

C CVM RCl RCu RCavg RMSVM CVM RCl RCu RCavg RMSVM

web

10 98.6 98.7 98.8 98.7 423 218 79 295

100 98.9 99.0 98.9 99.1 39 29 23 53

1,000 96.2 97.1 97.3 98.2
98.9

20.7 11.6 12.9 24.6
134

10,000 95.9 96.1 93.0 97.4 8.88 7.75 4.53 12.22

extended-usps

100 99.46 99.50 99.49 99.49 166 121 109 229

1,000 99.45 99.47 99.46 99.47
-

81 92 108 201
> 1 day

intrusion

100 91.8 92.0 92.1 92.1 209 36 13 49 not

10,000 91.8 91.7 91.8 92.1 - 3.61 3.45 3.58 6.77 enough

1,000,000 91.8 92.0 88.3 92.3 2.41 1.65 1.61 2.84 memory

SensIT Vehicle: acoustic

100 50.0 26.7 31.9 41.9 3923 706 138 832

1,000 39.4 37.1 52.4 58.4 68.5 23.6 15.1 38.2

10,000 40.9 42.1 41.0 46.6
66.1

9.47 7.46 6.98 14.1
79434

1,000,000 40.6 50.6 42.4 47.7 4.90 5.45 4.37 9.64

SensIT Vehicle: seismic

100 50.1 23.2 23.5 26.2 3882 796 164 951

1,000 28.1 46.5 59.1 57.3 55.0 21.5 11.6 33.3

10,000 51.2 41.6 50.3 55.0
64.6

8.50 7.17 6.61 13.7
35194

1,000,000 34.6 46.7 41.1 45.9 4.60 4.25 4.67 8.70
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on the extremely noisy SensIT Vehicle in the bottom of Table 3. Perhaps the
RMCVM could always choose the right core vector and have less iteration before
convergence as a result. When C is too small the RMCVM is inferior to the CVM
since it is underfitting.

6 Conclusion

Motivated by the rough margin, we propose the rough margin based core vector
machine and demonstrate that it can be solved efficiently. Experimental results
show that the derived algorithms can handle very large datasets and the accuracy
is almost comparable to the rough margin based SVM.
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Abstract. A Nearest Neighbor (NN) classifier assumes class conditional

probabilities to be locally smooth. This assumption is often invalid in

high dimensions and significant bias can be introduced when using the

nearest neighbor rule. This effect can be mitigated to some extent by us-

ing a locally adaptive metric. In this work we propose an adaptive metric

learning algorithm that learns an optimal metric at the query point. We

learn a distance metric using a feature relevance measure inspired by

boosting. The modified metric results in a smooth neighborhood that

leads to better classification results. We tested our technique on major

UCI machine learning databases and compared the results to state of

the art techniques. Our method resulted in significant improvements in

the performance of the K-NN classifier and also performed better than

other techniques on major databases.

Keywords: Adaptive Metric Learning, Nearest Neighbor, Bias-Variance

analysis, Curse-of-Dimensionality, Feature Relevance Index.

1 Introduction

Nearest Neighbor (NN) methods for pattern recognition are widely applicable
and have proven to be very useful in machine learning. Despite their simplicity,
their performance is comparable to other, more sophisticated, classification and
regression techniques. A nearest neighbor classifier works by assigning to a query
point the label of the majority class in its neighborhood. Their only assumption
is smoothness of the target function to be estimated. Therefore each point in the
neighborhood votes for the prediction based on its distance from the query point.

The performance of a nearest neighbor classifier depends critically on two
major factors: (a) the distance metric used and (b) K, size of the neighbor-
hood. K denotes the number of nearest neighbors. The size of the neighborhood
controls the smoothness of the predicted function and is usually tuned through
cross-validation. A small K implies small bias but high variance, and vice-versa.
Typical ‘Metric Learning’ algorithms aim at finding a metric that results in small
intra-class and large inter-class distances [1,2]. ‘Metric Learning’ has also been

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 142–149, 2010.
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introduced as a bias reduction strategy in high dimensions [3]. In this paper we
focus on the latter version, that is optimizing a distance metric to reduce bias.
Our goal is an optimal metric that depends on the problem at hand, as charac-
terized by the respective class distribution and, within a given problem, on the
location of the query point in that space.

Bias can be introduced due to a variety of reasons. The primary reason for the
introduction of bias is the ‘curse-of-dimensionality’ (COD) effect. Let us consider
training data of size N drawn from a uniform distribution in a p-dimensional unit
hypercube. The expected diameter of a K = 1 neighborhood using Euclidean

distance is d1(p, N) = 2
(

pΓ (p/2)
2πp/2N

)1/p

. It can be seen that even for a moderate
number of dimensions, a very large amount of training data is required to make
even a K = 1 nearest neighborhood relatively small. This has the consequence
that the bias can be large even for the smallest possible value of K. Bias can
be reduced by learning a metric that gives no influence to the irrelevant fea-
tures (feature selection). This removes irrelevant features, thereby reducing the
dimensionality. This in turn reduces the diameter of the K-NN neighborhood
hence lowering the bias.

In order to understand why metric learning can improve classification perfor-
mance, we need to analyze the classification performance itself. In a classifica-
tion scenario, all that is required to obtain an optimal decision is that largest
estimated class probability correspond to the class with the largest true prob-
ability, irrespective of its actual value or the values (or the order) of the esti-
mated probabilities for the other classes, as long as the following equation holds:
∀j : max f̂j(x) = maxfj(x) where j is class index, f̂ is the estimated probability,
and f is the unknown true probability. It can often be the case that bias, though
very large, affects each of f̂j(x) in same way so that their order relation is similar
enough to that of true underlying probabilities {fj(x)}J1 to realize an optimal
class assignment [3]. But the requirement of a large neighborhood for high di-
mensions and the presence of irrelevant features can affect bias differentially for
the respective class probability estimates enough to cause non-optimal assign-
ment, therefore decreasing classification performance. This differential bias can
be reduced by taking advantage of the fact that the class probability functions
may not vary with equal strength or in the same manner in all directions in
the measurement space. Elongating a neighborhood in the directions in which
class probabilities do not change and constricting along those dimensions where
class probabilities do change—by choosing an appropriate metric—not only re-
duces bias, but will also result in smoother class conditional probabilities in the
modified neighborhood, resulting in better classification performance (refer to
figure 1).

In this paper we propose a technique for local adaptive metric learning to
reduce bias in high dimensions. As will be discussed in section 2, current work
in adaptive metric learning determines feature relevance at a query point using
some numerical index. This index gauges the relevance of a feature and controls
the form of the metric around the query point. Our proposed index is inspired by
work in the field of boosting [4], where at each iteration data is partitioned across
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the most discriminative dimension. The index is based on the logit-transform
of the class probability estimate. In our work using this index, we pick the
dimension that is most discriminative. This is similar to ‘boosting classifiers’
where at each iteration a feature is selected on which the data can be classified
most accurately based on the weight distribution.

2 Related Work

Friedman in [3] proposed a technique for reducing bias in high dimensional ma-
chine learning problems. Our work is inspired by this paper. The main difference
of our work from [3] is feature relevance determination at each step. We have
used a measure inspired by the boosting literature, whereas in [3] a GINI-like
(entropy-based) index is used for feature relevance. In our work a feature is
deemed more relevant if it is more discriminatory, but in [3] a feature is consid-
ered relevant if the class label varies the most.

In [5], Hastie and et al. proposed an adaptive metric learning algorithm
(DANN) based on linear discriminant analysis. A distance metric is computed as
a product of properly weighted within- and between-class sum-of-squares matri-
ces. The major limitation of their method is that, in high dimensions there may
not be sufficient data to fill in p× p within-class sum-of-square matrices (due to
sparsity). In our work we estimate only the diagonal terms of the matrix.

Some other notable techniques for adaptive metric learning are proposed
in [6,7,8,9]. In [6] an algorithm is proposed for adaptive metric learning based on
analysis of the chi-squared distance. Similarly, an algorithm for metric learning
has been proposed in [7] that uses SVM-based analysis for feature relevance.
A similar, but slightly modified, method for metric learning based on SVMs
is proposed in [9]. As will be discussed in section 3, our method differs from
these methods in the sense that it is recursive. We recursively home in around
the query point and the estimated metric is modified iteratively. In the above
mentioned methods, however, a metric is estimated in a single cycle.

Other research on query-sensitive metric methods includes Zhou et al. [10],
who investigated a query-sensitive metric for content-based image retrieval.

3 Approach

In this section we describe our two algorithms, BoostML1 and BoostML2, for
adaptive metric learning. BoostML2 is a variant of BoostML1. In the following
discussion we will denote the query point by x0 and training points by xn, where
n = [1, . . . , N ], and N is the number of training data. P denotes the number of
features, and x0p and xnp denote the value at the pth feature of the x0 and xn

data points respectively.

3.1 Feature Relevance

We start by describing our local feature relevance measure technique. The fea-
ture used for splitting is the one that maximizes the estimated relevance score
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p(x0) as evaluated at query point x0. The estimate of relevance is: p∗(x0) =
argmax1≤p≤P cp(x0) where cp(x0) is defined as:

cp(x0) = Ip(x0p)/
P∑

p=1

Ip(x0p) (1)

and Ip(x0) is defined in the following equation:

Ip(x0) =
C∑

c=1

abs
(

1
2
ln
(

Pr(c|xnp = x0p) + ε

Pr(c|xnp 	= x0p) + ε

))
(2)

The ε in equation 2 is introduced for numerical tractability. Small Ip (close
to zero) implies that there is an equal split of positive and negative training
data points in the neighborhood of x0, whereas large Ip implies that one class
dominates the other class. The computation of Pr(c|xnp 	= x0p) in equation 2 is
not trivial, as we may not have sufficient data in the neighborhood of the query
point to accurately define the probability. The probabilities in equation 2 are
computed as in equation 3.

Pr(c|xnp = x0p) =

∑
xn∈N(x0)

1(|xnp − x0p| ≤ δp)1(yn = c)∑
xn∈N(x0)

1(|xnp − x0p| ≤ δp)
(3)

A small neighborhood around query point x0 denoted by N(x0) is defined and
a value of δp is chosen to make sure that the neighborhood contains L points:

N∑
n=1

1(|xnp − x0p| ≤ δp) = L (4)

In other words, we look for L points that are close to the query point on feature
p and compute the probabilities in equation 2 using these points. The output
of feature relevance analysis is a p × p diagonal matrix, the diagonal terms of
which are the estimated relevances of the features. Based on equation 1 we can
write the distance metric as a matrix A for local relevance (equation 5). This
local metric is used to measure distances.

A(x0) =

⎛
⎜⎜⎜⎝

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cp

⎞
⎟⎟⎟⎠ (5)

3.2 Details of the Algorithm

Given a query point x0 and training data {(xn, yn)}Nn=1, the goal is to estimate
the label of the query point. Our method starts by initializing the neighborhood
of the query point to be the entire measurement space (R0). The neighborhood
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is split in two based on the feature that maximizes the relevance score. Thus
for the same training data, different features can be selected for this split for
different query points x0 based on the relevance of that feature at that location
in the input measurement space. The split divides the input measurement space
into two regions: R1(x0), that contains the query point and the M1 training
points that are closest to it on the chosen feature, and other (complement)
region R2(x0), that contains the N −M1 points that are farthest from x0 on
that feature. R2(x0) is removed from further consideration. Thus the result of
the split is just one region, R1(x0). The above procedure is then applied again on
region R1(x0). We have named this method BoostML1 and its outline is given
in algorithm 1. Refer to figure 1 for an illustration of BoostML1 algorithm.

Algorithm 1. BoostML1: Local Adaptive Metric Learning Algorithm

Require: Testing data: x0, Training data: {xn, yn}N
n=1, k : Number of elements in

final neighborhood, α: Stepping size. Initialize K = N and A as a p dimensional unit

matrix. NK(x0) denotes neighborhood of x0 consisting of K points.

while flag do
- Find all x in NK(x0).

- Get Feature Relevance index cp(x0) at x0 (equation 1), update A (equation 5).

- Choose feature r = argmaxpc.
- Modify neighborhood by setting K = αK.

- Find all x in NK(x0) using feature r. (Note: In case of BoostML2, metric A is

used to find K neighbors)

if NK(x0) < k then
flag = false.

end if
end while
- Do K-NN classification in the final neighborhood of k points using metric A.

As can be seen in algorithm 1, the splitting procedure is recursively applied
until there are only k training observations left in the final neighborhood. The
metric A (equation 5) obtained at the final step is used to measure the distance
to the k nearest neighbors that predict the label of query point. At each step, a
region is split on the feature that is estimated to be most relevant in terms of
capturing the variation of the target functions within that region. All diagonal
terms of the A matrix in equation 5 are ignored except the one with the maximum
value, which is retained to split the region at each step. This is a greedy approach
which is not necessarily effective all the time. BoostML2 is a variant of the above
method, but at every iteration it splits the region based on the metric defined
by matrix A in equation 5, as computed in the current iteration. As will be
shown in section 4, BoostML2 is an improvement on algorithm 1 and results in
an improvement in classification performance.
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Fig. 1. Left: Illustration of Adaptive Metric Learning on synthetic two class 2-D data.

Round curves depicts the Euclidean metric. The assumption of isotropy is not valid

near class boundaries and a modified metric depicted as elliptical curves seems more

accurate, Right: Demonstration of our algorithm BoostML on synthetic two class 2-D

data. Green ellipses shows the learnt metric at different points in the measurement

space.

4 Experimental Results

In this section we show the results of our adaptive metric learning algorithm
on some well known databases from UCI Machine Learning Repository [11].
Databases were selected such that the competing techniques perform best on at
least one of the databases. The other competing local adaptive metric learning
techniques against which we tested our algorithms are as follows:

– k-NN: k nearest neighbor classifier with Euclidean distance.
– DANN: Discriminative Adaptive Nearest Neighbor classifier based on [5]

as described in section 2.
– ADAMENN: Adaptive metric nearest neighbor classification technique

based on chi-squared analysis as implemented in [6].
– Machette: Recursive partitioning algorithm as described in [3].
– Scythe: This is a generalization of the Machette algorithm in which fea-

tures influence each split in proportion to their estimated local relevance, in
contrast to the ‘winner-takes-all’ strategy of Machette.

– BoostML1: Algorithm 1. The implementation details regarding tuning of
input parameters are described in following discussion.

– BoostML2: Variant of BoostML1 as described in section 3.2.

To obtain error rates, we used leave-one-out cross-validation for the Iris, Ionosh-
phere, Dermatology, Echocardiogram and Heart data sets. 10 rounds of two-fold
cross-validation were used for the Credit and Diabetes data sets.

Our metric learning algorithm results in an improvement of k-NN classifica-
tion. This improvement, however, does come at an extra cost. BoostML1 has
introduced two new tuning parameters. The value of L in equation 4 determines
bias-variance trade-off but does not effect the performance provided it is neither
too small nor too large. A value of 20 for L was used in our experiments. The



148 N.A. Zaidi, D.McG. Squire, and D. Suter

Table 1. Average classification error rates for different techniques across various

databases, k = 10

Iris Ionosphere Dermatology Credit Echocardiogram Heart Sonar Diabetes
150,4,3 351,34 2 358,34,6 653,15,2 61,12,2 270,13,2 208,60,2 768,8,2

K-NN 4.66 16.52 3.35 13.47 8.19 20 23.07 25.91
DANN 4.66 12.53 3.35 14.09 6.55 17.4 13.46 26.17

ADAMENN 4.66 15.95 5.58 15.15 10.11 21.48 18.75 26.56
Machete 4 12.53 3.07 16.23 24.59 24.81 21.15 29.55
Scythe 4 16.8 2.51 15.62 9.83 19.62 19.23 23.43

BoostML1 3.333 8.83 2.79 15.62 18.03 23.33 20.67 29.16
BoostML2 3.333 11.68 3.07 13.32 4.91 19.25 18.75 25.13

Fig. 2. Box plots for various techniques

α parameter which controls the size of the neighborhood at each step is critical
to the performance. A large value of α results in a better performance at an
increased computational cost. A small value of α results in poorer performance,
but will be faster. A tradeoff has to be achieved between computational cost and
performance. A value of 0.8 is used in all our experiments.

Table 1 shows the average classification error rates for different techniques. Each
database’s name is followed by number of data, features and classes. It can be seen
that BoostML1 and BoostML2 perform well on the majority of data sets. It re-
sults in significant improvement over the performance of the basic k-NN classifier,
and also performs better than the competing algorithms in some cases.

To compare the robustness of our algorithm with other algorithms we used
the technique described in [3]. This test measures how well a particular method
m performs on average in situations that are most favorable to other procedures.
Robustness can be measured by computing the ratio bm of its error rate em and
the smallest error rate over all other methods that are compared in that example.
That is:

bm =
em

min1≤k≤7ek
(6)
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The best method m∗ will have b∗m = 1 and all other methods will have values
larger than 1. The larger the value of bm the worse the performance is of the
mth method in relation to the best one for that data set. Figure 2 shows the
distribution of bm for each method over all data sets considered. BoostML2
turned out to be most robust among all the methods, with DANN coming second.

5 Conclusion

In this work we introduced an adaptive metric learning algorithm based on an
index inspired by work on boosting for reducing bias in high dimensional spaces.
We tested our algorithm on a variety of well-known machine learning databases
and found that our system performs better than several well known techniques
for adaptive metric learning. This improvement, however, comes at an extra
cost. Our algorithm is computationally expensive compared to simple k-NN. We
had to introduce two new parameters, the values of which should be optimized.
Though this complicates matters, other competing algorithms also have one or
more tuning parameters, so it should not be taken as a major drawback of our
algorithm.
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Milton Garćıa-Borroto1,2, José Francisco Mart́ınez-Trinidad2,
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Abstract. Obtaining an accurate class prediction of a query object is an

important component of supervised classification. However, it could be

important to understand the classification in terms of the application do-

main, mostly if the prediction disagrees with the expected results. Many

accurate classifiers are unable to explain their classification results in

terms understandable by an application expert. Emerging Pattern clas-

sifiers, on the other hand, are accurate and easy to understand. However,

they have two characteristics that could degrade their accuracy: global

discretization of numerical attributes and high sensitivity to the support

threshold value. In this paper, we introduce a novel algorithm to find

emerging patterns without global discretization, which uses an accurate

estimation of the support threshold. Experimental results show that our

classifier attains higher accuracy than other understandable classifiers,

while being competitive with Nearest Neighbors and Support Vector Ma-

chines classifiers.

Keywords: Emerging pattern mining, Understandable classifiers,

Emerging pattern classifiers.

1 Introduction

The main goal of a supervised classification algorithm is to build a model based
on a representative sample of the problem classes [1]. This model can be used to
predict the class of new objects or to gain understanding of the problem domain.
In many cases, the result of the classification is not enough; the user could need
to understand the classification model and the classification results, mostly if
the classification disagrees with the expected results.

Many accurate classifiers, like Neural Networks [2] or Support Vector Ma-
chines [3], are unable to explain their classification results in terms understand-
able by an application expert. Emerging Pattern classifiers, on the other hand,
build accurate and easy to understand models. An emerging pattern is a com-
bination of feature values that appears mostly in a single class. This way, an
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emerging pattern can capture useful contrasts among the problem classes [4],
which can be used to predict the class of unseen objects.

Emerging pattern classifiers are very valuable tools to solve real problems in
fields like Bioinformatics [5], streaming data analysis [6], and intruder detec-
tion [7].

Current methods for finding Emerging Patterns in a database have two main
drawbacks:

– Global discretization of numerical attributes, which could seriously degrade
the classification accuracy

– High sensitivity to the support threshold value, which makes very hard for
the user to select a good value

In this paper, we introduce the Crisp Emerging Pattern Mining (CEPM), a novel
algorithm to find emerging patterns, which does not apply global discretiza-
tion of numerical attributes. CEPM extracts patterns using a special procedure,
from a collection of C4.5 decision trees. To find a representative collection of
patterns, our algorithm uses a novel object weighting scheme. CEPM applies
local discretization, using only such attribute values appearing in the objects on
each tree node. Additionally, CEPM finds an accurate estimation of the min-
imal support threshold, testing different values decrementally. It starts from a
high enough value and ends when the threshold attains the expected abstention
ratio. CEPM returns a set of emerging patterns with the highest support value
associated with the lowest expected abstention ratio.

The rest of the paper is organized as follows: Section 2 presents a brief revi-
sion about classification using emerging patterns, Section 3 introduces the new
algorithm for mining emerging patterns without global discretization, Section
4 presents the algorithm to estimate the minimal support threshold, Section 5
shows the experimental results, and Section 6 presents our conclusions.

2 Classification Using Emerging Patterns

A pattern is an expression, defined in a language, which describes a collection
of objects; the amount of objects described by a pattern is the pattern support.
In a supervised classification problem, we say that a pattern is emerging if its
support increases significantly from one class to the others [4]. Emerging patterns
(EPs) are usually expressed as combinations of feature values, like (Color =
green, Sex = male, Age = 23) or as logical properties, like [Color = green] ∧
[Sex = male] ∧ [Age > 23].

Most algorithms for emerging pattern mining have the goal of finding the
patterns that satisfy a desired property: being supported by a single class, min-
imality over subset inclusion, or tolerance to noisy objects. These algorithms
have the following general steps:

1. Selection of the minimal support threshold μ
2. Global discretization of numerical attributes
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3. Representation of the transformed objects using a particular structure
4. Traversing the structure to find emerging patterns
5. Pattern filtering

Using this traditional algorithm has two important drawbacks:

1. Global discretization of numerical attributes could drastically degrade the
classifier accuracy, since an emerging pattern relates a combination of feature
values with a class. Therefore, discretizing a numerical attribute without
considering the values of other features could hide important relations.
In Table 1, we can see that SJEP [8], one of the most accurate emerging
pattern classifiers, obtains very poor accuracies in databases like Iris, while
all other classifiers attain accuracies above 93%. In some other databases,
SJEP is unable to extract even a single pattern, because most numerical fea-
tures are discretized into a single categorical value. This behavior is mainly
due to using the Entropy discretization method [9], but other discretization
methods obtain similar results, maybe in different databases.

2. High sensitivity to the support threshold value. The accuracy of the classifier
could have a serious degradation on small variations of the minimal support
value. For example, in chess and census databases, the accuracy drops 3%
with a variation of 2 in the threshold value [10].

3 Crisp Emerging Pattern Mining (CEPM)

In this section, we introduce CEPM, a new emerging pattern mining algorithm
with local discretization of numerical features. CEPM extracts patterns from
a collection of C4.5 decision trees [11], using a special pattern mining proce-
dure during the tree induction. To guarantee that CEPM finds a representative
collection of patterns, it uses a novel object weighting scheme.

The tree induction procedure has the following characteristics:

– Candidate splits are binary. Nominal attributes use properties like [Feature
= a] and [Feature 	= a] for each one of their values; numerical attributes use
properties like [Feature > n] and [Feature ≤ n] for all candidate cut points

– If a node has less than μ objects, it is not further split because it cannot
generate emerging patterns

– To select the best split, our algorithm evaluates the weighted information
gain. The weighted information gain is similar to the classical information
gain but there is a weight associated to each object. This way, PClass and
Pchild are calculated using (1). Note that objects with weight close to 0 have
low influence in the determination of the best split.

PClass =
∑

o∈Class wo∑
wo

, Pchild =
∑

o∈child wo∑
wo

. (1)
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Fig. 1. Example of an emerging pattern appearing in a non-optimal candidate split

During the tree induction, every tree node that (A) has at least μ objects in a
class, and (B) has at most one object in the complement of that class, generates a
new emerging pattern. Each pattern consists in the conjunction of the properties
from the node to the root.

Additionally, CEPM extracts patterns while evaluating the splits, even if a
split does not have the highest gain; any tree node that fulfills (A) and (B)
generates an emerging pattern. For example, Fig. 1 shows two candidate splits,
using different properties. Although the first one has the highest information
gain, the second contains the emerging pattern (Age < 20). So, this pattern is
extracted although the split is discarded.

CEPM iteratively induces several decision trees, updating the object weights
after each induction. The algorithm updates the weights using (2).

wo =
arccot

(
5 · Supporto

averageSupport

)
π

. (2)

where

– Supporto is the sum of the support of such patterns contained in o. If a
pattern belongs to a different class than o, its support is multiplied by −1

– averageSupport is the average support of the patterns in the database, which
is estimated based on the patterns found in the first built tree.

We can describe CEPM using the following pseudocode:

1. Initialize object weights to 1
2. Induce the first decision tree with the initial weights and extract the first

emerging patterns
3. Calculate the average support, used in weight recalculation
4. Repeat while a new pattern is added in the last iteration

(a) Recalculate object weights
(b) Induce the new decision tree with current weights and extract the emerg-

ing patterns
(c) Add the new patterns to the pattern collection

5. Return mined patterns

It is worth to mention that CEPM returns a set of the most general emerging
patterns with support greater or equal to μ. A pattern P is more general than
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a pattern Q if the set of objects described by Q is strictly contained in those
described by P , considering all the objects in the universe. Additionally, CEPM
returns the abstention ratio, which is the ratio of objects that are not covered
by the resultant patterns.

The CEPM based classifier, named CEPMC, uses the following decision rule:
to assign an object to the class with maximum value of the total votes given
by the patterns contained in the object. Every pattern contained in the object
votes for its own class with its total support. If no pattern supports the object
or there is a tie in the votes, the classifier refuses to classify the object.

4 Estimating the Minimal Support Threshold for CEPM

Selecting the minimal support threshold for an emerging pattern classifier is a
difficult task; a classifier using patterns with higher μ values, is a more accurate
classifier, but could reject to classify more objects. On the contrary, a classifier
using patterns with lower μ values might contain many useless patterns, which
could degrade the classification accuracy.

The algorithm proposed for calculating the minimal support value infers
the initial support (MaxSupport) and the minimal expected abstention rate
(MinAbstRate). Then, it tests support values, starting from μ = MaxSupport,
until a μ value produces an abstention rate lower than MinAbstRate. The value
of μ is decremented using a calculated Step = MaxSupport/10, because if
MaxSupport is high, decrementing μ by 1 could be too costly.

Some important remarks:

1. MaxSupport is inferred based on two criteria. If it is higher than the op-
timum, the algorithm makes unnecessary iterations; if it is lower, better
models (with higher μ) are disregarded.

2. MinAbstRate is inferred using μ = 2, so it measures the minimal expected
abstention ratio of a pattern based classifier using CEPM. The algorithm
searches for more accurate classifiers (having patterns with higher μ values)
with the same abstention level.

5 Experimental Results

To compare the performance of the CEPMC classifier, we carried out some ex-
periments over 22 databases from the UCI Repository of Machine Learning [12].
We selected six state-of-the-art classifiers: Nearest Neighbors [13], Bagging and
Boosting [14], Random Forest [15], C4.5 [11] and Support Vector Machines [3].
For each classifier, we used the Weka 3.6.1 implementation [16] with its default
parameters. We also tested SJEP [8], which is one of the most accurate emerging
pattern based classifiers, using the minimal support threshold suggested by their
authors.

We performed 10-fold cross validation, averaging the results. In both SJEP
and CEPMC we reported abstentions as errors. In these objects, the classifier
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Table 1. Accuracy results of the classifiers in the selected databases. The highest

accuracy per database is bolded.

DBName 3NN AdaBoost Bagging C4.5 RandFor SVM SJEP CEPMC

balance-scale 85.4 71.7 82.6 77.6 79.4 87.5 16.0 79.5

breast-cancer 70.3 72.4 71.0 73.4 65.8 70.7 44.5 72.0

breast-w 96.7 94.9 96.0 94.9 95.1 96.7 96.1 96.0

cleveland 82.5 84.2 79.9 78.2 78.6 84.5 77.9 81.2

haberman 70.6 70.9 72.5 68.0 67.6 72.5 0.0 68.6

hayes-roth 71.4 53.6 75.0 89.3 85.7 53.6 0.0 78.6

heart-c 81.2 83.2 81.9 76.2 80.9 82.8 78.6 81.2

heart-h 83.6 81.6 79.9 79.6 79.3 82.6 46.3 81.0

heart-statlog 79.3 80.7 79.3 79.3 79.3 83.0 64.8 80.0

hepatitis 82.0 81.2 82.0 78.8 81.3 86.5 77.5 82.5

iris 96.0 96.7 93.3 94.0 94.7 96.0 66.7 95.3

labor 90.7 87.0 84.0 80.0 86.7 90.7 82.0 89.0

liver-disorders 65.5 66.1 68.7 68.7 70.7 57.7 0.0 69.3

lymph 85.9 75.7 77.7 78.5 79.9 87.9 51.5 83.7

mp1 50.0 50.0 50.0 50.0 50.0 50.0 57.9 100.0
mp2 51.4 50.0 55.1 59.7 58.6 50.5 34.0 83.8
mp3 50.0 50.0 50.0 50.0 50.0 50.0 63.7 97.5
shuttle 60.0 65.0 60.0 60.0 55.0 45.0 0.0 50.0

spect 64.7 66.8 61.5 66.8 62.0 67.9 0.0 78.1
tic-tac-toe 98.5 73.5 91.0 83.8 91.9 98.3 91.3 96.5

vote 92.0 94.7 95.2 96.1 96.1 95.9 91.1 94.0

wine 96.1 87.5 94.3 92.7 97.2 98.9 55.1 93.3

Average 77.4 74.4 76.4 76.2 76.6 76.8 49.8 83.2

is unable to assign a class; returning the majority or a random class could hide
these undesirable cases. In Table 1, we can find the accuracy results, in percent.

Experimental results show that SJEP has low accuracy values in some da-
tabases, compared to other classifiers. In those databases, most numerical at-
tributes were discretized into a categorical attribute with a single value, so they
were useless for mining patterns. CEPMC has higher accuracies than SJEP
in most databases. It also has the highest average accuracy from all tested
classifiers.

In order to determine if the differences in accuracy are statistically signifi-
cant, we performed a pairwise comparison between our classifier and the oth-
ers. Each cell in Table 2 contains the number of databases where our classi-
fier Win/Lose/Tie to each other classifier. We detect ties using a two-tailed
T-Test [17] with significance of 0.05. The pairwise comparison shows that, in the
tested databases, CEPMC is more accurate than other understandable classifiers,
while being competitive with Nearest Neighbors and Support Vector Machines
classifiers.

The model built by CEPMC is very easy to understand in terms of the problem
domain, unlike Nearest Neighbors and Support Vector Machines models. Each
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Table 2. Pairwise comparison between our classifier and the others. Each cell shows

the number of Win/Loss/Tie of CEPMC with respect to the corresponding classifier

over the selected 22 databases.

3NN 7NN AdaBoost Bagging C4.5 RandFor SVM SJEP

CEPMC 6/5/11 6/6/10 10/3/9 8/3/11 10/3/9 9/4/9 7/7/8 21/0/1

Table 3. Classifier model built by CEPMC for one of the folds in database Iris

iris-setosa
[PetalLength ≤ 1.90]
[PetalWidth ≤ 0.60]

iris-versicolor
[PetalLength > 1.90] ∧ [PetalLength ≤ 4.90] ∧ [PetalWidth ≤ 1.60]

iris-virginica
[PetalLength > 1.90] ∧ [PetalWidth > 1.60]
[PetalLength > 4.90]

class is described as a collection of discriminative properties, as you can see in
the example appearing in Table 3.

6 Conclusions

In this paper, we introduced CEPM, a new algorithm for mining Emerging Pat-
terns. It uses local discretization of numerical values for solving the global dis-
cretization drawback of previous emerging pattern classifiers. CEPM extracts
patterns from a collection of decision trees, using a special extraction proce-
dure during the tree induction. To obtain a collection of representative patterns,
CEPM uses a novel object weighting scheme. Furthermore, this paper proposes
an algorithm for accurately estimate the minimal support threshold.

Experimental results show that CEPMC, a classifier based on CEPM, is more
accurate than one of the most accurate emerging pattern classifiers in the ma-
jority of tested databases. A pairwise comparison reveals that CEPMC is more
accurate than other understandable classifiers, and as accurate as Nearest Neigh-
bors and Support Vector Machines, while the model built by CEPMC for clas-
sification is easy to understand in terms of the problem domain.

In the future, we will work on speeding up the algorithmto estimate the minimal
support threshold, which is the slowest component of the current algorithm.
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Abstract. Establishing strategic partnership often requires organizations to pub-
lish and share meaningful data to support collaborative business activities. An
equally important concern for them is to protect sensitive patterns like unique
emerging sales opportunities embedded in their data. In this paper, we contribute
to the area of data sanitization by introducing an optimization-based local recod-
ing methodology to hide emerging patterns from a dataset but with the underlying
frequent itemsets preserved as far as possible. We propose a novel heuristic solu-
tion that captures the unique properties of hiding EPs to carry out iterative local
recoding generalization. Also, we propose a metric which measures (i) frequent-
itemset distortion that quantifies the quality of published data and (ii) the degree
of reduction in emerging patterns, to guide a bottom-up recoding process. We
have implemented our proposed solution and experimentally verified its effec-
tiveness with a benchmark dataset.

Keywords: Emerging patterns, pattern hiding, data sanitization, frequent
itemsets.

1 Introduction

Organizations often publish and share their data to support business collaboration. In
the context of marketing and sales, companies can leverage on the customer pools of
each other for cross-selling so that the involved parties can gain sales volume increase.
Due to the equally important need of privacy protection, customers often expect their
data to be anonymized before sharing [27] and studies on privacy-preserving data pub-
lishing have bloomed [12]. Furthermore, trade secrets embedded in data are valuable to
organizations [6] and needed to be properly protected. For instance, patterns like recent
increase in the sales volume of a product line for a certain customer group (emerging
marketing trends) can be an example. Leaking of related intelligence could cause com-
pany loss in gaining the first-mover advantage. Even though companies understand that
data sharing is unavoidable to support collaborative activities like cross-selling, they
may face a great hindrance to data sharing if the emerging sales opportunities of their
own business cannot be hidden.

Among others, emerging patterns [19] embedded in data carry sensitive information,
that data owners may prefer to hide. In fact, previous studies have revealed that emerg-
ing patterns are highly discriminative when used as features for classification [31,11,8],
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and thus carry salient features of the data. The hiding, however, is technically challeng-
ing as collaborative data analysis is still often expected to facilitate collaboration. That
is, some statistical properties of the data to-be-shared are preserved as far as possible.
In particular, frequent itemset mining has already been well-supported in most com-
mercial data-mining packages. Therefore, in this paper, we study how to hide emerging
patterns while preserving frequent itemsets.

To hide emerging patterns, we adopt recoding generalization methods. In particular,
we adopt local recoding which is (intuitively) a value-grouping generalization process,
given an attribute generalization hierarchy. To ensure that the generalized data neither
(i) reveal sensitive information nor (ii) produce a highly distorted mining result, we
propose metrics for quantifying the two competing objectives. With the metrics, we
present an iterative, bottom-up optimization framework. Compared with hiding frequent
itemsets [25], hiding emerging patterns is more technically challenging. In particular,
the a priori anti-monotone property does not hold in emerging patterns. Thus, the search
space of emerging patterns is huge. Worst still, a local recoding may hide an emerging
pattern while generating new emerging patterns. To the best of our knowledge, there
has not been work on hiding emerging patterns.

2 Related Work

Studies on data sanitization can be dated back to the earlier work on statistical disclo-
sure control [1]. Recent development in privacy preserving data mining [26] has con-
tributed to some advances in privacy measure and data sanitization method. For example,
to avoid personal identity to be recovered from an anonymized demographic dataset,
a number of privacy measures were proposed in the literature, e.g., k-anonymity [27]
and �-diversity [22]. Other privacy measures include km-anonymity [28] and (h,k,p)-
coherence [33]. Given a particular measure, recoding generalization [19,14,18,26,9,32,20]
and perturbation [2,10,17] are two commonly adopted data sanitization approaches. Re-
coding generalization is often preferred over the perturbation approach as the dataset
sanitized by recoding generalization is still semantically consistent with the original one,
even though it is “blurred”. While this study aims at hiding emerging patterns instead of
personal identities, the concepts like equivalence classes and recoding generalization are
adopted in the proposed methodology.

To control the distortion of the data caused by the sanitization, attempts have been
made to preserve as much information of the original dataset as possible to, say, pre-
serve the subsequent classification accuracy [15] and clustering structure [13]. In addi-
tion, there has been some recent work studying the tradeoff between privacy and utility
[21] in the context of privacy-preserving data publishing. In this work, we try to pre-
serve the frequent itemsets of the data as far as possible.

Recently, there has been work [25,24] on hiding patterns like frequent itemsets where
users specify a subset of frequent itemsets, namely sensitive frequent itemsets, that are
not supposed to be disclosed to the public. In our study, we focus on hiding emerging
patterns, which makes a unique contribution to the area of pattern hiding. Emerging
patterns (EP) are features that are distinctive from one class to another and has been
found to be effective for building highly accurate classifiers [16,31,11,8]. Mining EPs
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from large databases is technically intriguing as the total number of EPs, in the worst
case, is exponential to the total number of attributes in transactions, and there has not
been a corresponding notion of the apriori anti-monotone property of frequent itemsets
in EPs so that the search space can be pruned. Previous work on EPs mainly focuses
only on the mining efficiency, e.g., using a border-based approach [4], a constraint-
based approach [34], or focusing only on jumping EPs [3]. So far, there exists no related
work on emerging pattern hiding.

3 Background and Problem Statement

In the following, we present the definitions, notations used and the problem statement.
A transactional dataset is a set of transactions. Let I = {i1, i2, ..., in} be a finite set

of distinct items in D. A transaction t has a set of nominal attributes A = {a1, a2, ...,
am} and each attribute ai takes values from a set Vi ⊆ I . We make two simple remarks
about these notations. (i) While we assume transactional data with nominal attributes,
data of a continuous domain can be cast into nominal data, for example by defining
ranges. (ii) One may consider a relation as a set of transactions of a fixed arity.

An itemset X is a (proper) subset of I . SuppD(X) denotes the support of an itemset
X in a dataset D, which can be computed as |{t | X∈t∧t∈D}|

|D| . Given a support thresh-
old σ, X is said to be a σ-frequent itemset if SuppD(X) ≥ σ. The growth rate of an
itemset is the ratio of its support in one dataset to that in the other.

Definition 1. [7] Given two datasets, namely D1 and D2, the growth rate of an itemset
X , denoted as GR(X , D1, D2), from D1 to D2 is defined as GR(X , D1, D2) =⎧⎪⎪⎨

⎪⎪⎩
0 , if SuppD1 = 0 and SuppD2 = 0

∞ , if SuppD1 = 0 and SuppD2 > 0
SuppD2 (X)

SuppD1 (X)
, otherwise.

Definition 2. [7] Given a growth rate threshold ρ and two datasets D1 and D2, an
itemset X is a ρ-emerging pattern (ρ-EP) from D1 to D2 if GR(X , D1, D2) ≥ ρ.
Intuitively, given two datasets, emerging patterns (EPs) [7] are the itemsets whose sup-
port increases significantly from one dataset to another. The formal definition of EPs is
presented in Defintion 2. An emerging pattern with a growth rate∞ (i.e., itemset that
appears in one dataset but not the other) is called a jumping emerging pattern.

For ease of presentation, we may skip σ, ρ, D1 and D2 of EPs when they are not
essential to our discussions.

Example 1. Figure 1 (a) shows a simplified hypothetical dataset D of the Adult dataset
[30]. It contains some census information of the United States. More description of the
dataset can be found in Section 7. We opt to present some nominal attributes of Adult
for discussions. Each record (or transaction) represents a person. Consider two subsets
D1 containing married people and D2 containing those who do not. From Figure 1 (a),
we find the following emerging patterns, among many others.

– The pattern (MSE, manager) has a support of 75% in D1 and 20% in D2. Therefore,
the growth rate of (MSE, manager) from D1 to D2 is 3.75. When we set ρ to 3, (MSE,
manager) is a ρ-emerging pattern in D2.
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ID Edu. Martial Occup. Rel. Race Sex

1 BA married executive wife black F
2 MSE married manager husband black M
3 MSE married manager wife white F
4 MSE married manager husband black M
5 BA never manager NA white M
6 MSE never manager NA white F
7 HS never repair NA black M
8 BA never manager NA white M
9 BA never manager NA black F

(a) (b)

Fig. 1. (a) A hypothetical subset of Adult and (b) The problem statement illustration

– High-school graduate (HS) has a support of 0% in D1 but 20% in D2. Hence, its
growth rate from D2 to D1 is infinite. (HS) is a jumping emerging pattern in D1.

Next, we state the formal problem statement of this paper below (Figure 1 (b)).

Problem statement. Given two datasets (D1, D2), σ and ρ, we want to sanitize (D1,
D2) to (D′

1, D′
2) such that no ρ-EPs from D′

1 to D′
2 can be mined while the distortion

between σ-frequent itemsets of (D1, D2) and those of (D′
1, D′

2) is minimized. ��

4 Multidimensional Local Recoding

Our algorithm for hiding emerging pattern is based on local recoding generalization
(multi-local-recode in Figure 3). In this section, we give an overview of recoding
generalization, or recoding for simplicity.

Recoding. As discussed in Section 1, recoding has been proposed for anonymization.
The idea of recoding is to modify values into more general ones such that more tuples
will share the same values and cannot be distinguished individually. Thus, anonymiza-
tion can be achieved. Here, we recode values in emerging patterns with some non-
emerging values. Thus, the recoded patterns become less emerging.

Multidimensional local recoding. In this work, we adopt the notion of multidimen-
sional local recoding [9,32,20], from the context of k-anonymity. It recodes values at
“cell level”. It relies on equivalence classes. An equivalence class of attributes A is a
set of tuples T , where πA(T ) is a singleton. That is, the tuples in T have the same value
in attributes A. In a recoding, the tuples in an equivalence class (of a set of attributes)
and those in another equivalence class are recoded into the lowest common ancestors
along the hierarchies. One subtle point is that this recoding does not require the entire
equivalence class to be recoded, as long as anonymity can be achieved. Hence, both
original and generalized values may co-exist in the recoded dataset.

Example 2. Let us revisit the dataset in Figure 1 (a) and the emerging pattern (MSE,
manager). The emerging pattern is related to the attributes of education background
(Edu.) and occupation (Occup.). Regarding (Edu., Occup.), the equivalence classes
in D2 are {{5, 8, 9}, {6}, {7}}, where the numbers are the IDs. In multidimensional
lcoal recoding, we may recode the Edu. attribute of the subset of {2, 3, 4} and {5, 8,
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9}. For example, we may recode {2, 3, 4} with {8, 9}. and we may recode BA and MSE
into degree holder Deg. The growth rate of (Deg., manager) in the recoded dataset is
75%/40% = 1.875. Hence, (Deg., manager) is not ρ-emerging when ρ = 3. In addition,
after such a recoding, all BA, MSE and Deg. appear in the recoded dataset.

Other notions of recoding, including single-dimensional global recoding [5,14,18,26]
and multidimensional global recoding [19], generalize values in a relatively coarse gran-
ularity and very often result in over-generalization.

5 Metric for Multidimensional Local Recoding

In this section, we define an utility gain (util gain) to quantify the effectiveness
of a local recoding. util gain will guide the process for hiding emerging patterns
local-recoding, in Figure 3. A recoding is effective if (i) the distortion of frequent
itemsets is small and (ii) the reduction in the growth rate of emerging patterns is large.

Metric for the distortion of frequent itemsets. For presentation clarity, we will present
our proposed metric for global recoding followed by its adaption for local recoding.

(A) Distortion metric for single-dimensional global recoding. Single-dimensional global
recoding performs recoding on the domain of an attribute in a dataset. It recodes a value
of the domain to another (generalized) value. That is, if a particular value is recoded, the
attribute of all the tuples containing that particular value will be recoded. No frequent
itemsets disappear but may appear in a generalized form after a recoding (Figure 2 (a)).

Inspired by the distortion metric proposed in [20], we propose a metric for measur-
ing the recoding distance (RDist) between the original and generalized form of a tuple.
Then, we define a metric called value distance (V D) which measures the distance be-
tween the original and generalized form of a single attribute value. We will use V D as
a building block for the definition of distortion (RD). Since a recoding always assumes
an attribute hierarchy, we may skip the hierarchy H when it is clear from the context.

Definition 3. Recoding Distance (RDist): Consider a recoding G which generalizes a
set of non-generalized values V to a single generalized value vg , where V is the set of
values under vg in an attribute hierarchy. The recoding distance of G RDist(G) is |V |.
Definition 4. Value Distance (V D): Let h be the height of an attribute hierarchy H ,
where level h and 0 is the most generalized and specific level, respectively. Consider
a value v at level p which is generalized to a value v′ at level q. Let Gi denotes the
recoding that generalizes an attribute from level i− 1 to i, where 0 < i ≤ h. The value
distance between v and v′ is: V D(v, v′) =

∑q
i=p

i·RDist(Gi)
h .

Value distance is unfavorable to recoding (i) many values into one single generalized
value; and (ii) a value into a generalized value that is close to the top of the hierarchy.
This gives a measure for the distortion of a value due to a recoding. Next, we extend
V D to measure the distortion of a tuple and frequent itemsets due to recoding.

Definition 5. Tuple Distance (TD): Suppose a tuple f = (v1, v2, . . . , vn) is gener-
alized to f ′ = (v′1, v′2, . . . , v′n). The tuple distance between f and f ′ is defined as:
TD(f, f ′) =

∑n
i=1 V D(vi, v

′
i).
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All

Deg

BA MSE PHD HS

(a) (i) (ii)

F

F’F

F’

(b)

Fig. 2. (a) An attribute hierarchy of Edu.; and (b) the relationship between F and F ′ in (i) global
recoding and (ii) local recoding

Definition 6. Recoding Distortion (RD): Let F = {f1, f2 . . . fn} be a set of σ-frequent
itemsets in D and F ′ = {f ′

1, f ′
2 . . . f ′

m} be the set of σ-frequent itemsets in D′, where
m ≤ n. The corresponding frequent itemset of fi due to global recoding is denoted
as f ′

j = G(fi). The recoding distance between F and F ′ is defined as: RD(F, F ′) =∑n
i=1 TD(fi, G(fi)).

Example 3. Following up Example 2, we compute the (global) recoding distortion of
generalizing (MSE, manager) to (Deg., manager). Figure 2 shows the attribute hier-
archy of Edu.The recoding distortion RD({(MSE, manager)}, {(Deg., manager)}),
RD, can be computed as follows: RD = TD((MSE, manager), (Deg., manager)) =
V D(MSE, Deg.) + V D(manager, manager) = ∑ 2

i=0
i·RDist(Gi)

h = 1×3
2 + 2×0

2 = 1.5

(B) Distortion metric for local recoding. Since single-dimensional global recoding may
often lead to over-generalization, we adopted local recoding. We remark that there are
two unique challenges in computing recoding distance for local recoding (Figure 2 (b)).

(B.i) An itemset in F having no correspondence in F ′. Local recoding allows part of
the tuples that share the same attribute values to be generalized. Such recoding may
generalize some supporting tuples of a frequent itemset which makes the itemset (in the
original or generalized form) not frequent anymore. To address this, we measure the
distortion of the disappeared frequent itemset to the most general form. The reason is
that the frequent itemset can be trivially recovered when the entire dataset is generalized
to the most general form.

Specifically, given a f in F , if we cannot find a corresponding frequent itemset in
F ′, we first create an itemset, fmax, which contains the most generalized value of each
value in f . Then, RD of f is the recoding distance between f and fmax.

Example 4. Reconsider the dataset in Figure 1 (a). Suppose we recode the Edu. at-
tribute of Records 1 and 2 to Deg. When σ is 40%, {BA} and {MSE} were frequent
itemsets (not minimal for illustration purposes) before recoding and there is no frequent
itemset after recoding.

(B.ii) An itemset in F having more than one corresponding itemset in F ′. As discussed,
local recoding may generalize a frequent itemset f in F into more than one correspon-
dence in F ′, denoted as Ff . In this case, we calculate the tuple distance of each of the
corresponding itemsets in Ff and take the minimum tuple distance as the tuple distance
of f . This is because the itemset with the minimum tuple distortion has been revealed
in F ′, even when there may be more distorted itemsets.
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With the above, we have the following recoding distance for local recoding:

Definition 7. Recoding Distance for Local Recoding (RDlocal): Let F = {f1, f2 . . .
fn} be a set of σ-frequent itemsets in D and F ′ = {f ′

1, f ′
2 . . . f ′

m} be the set of
σ-frequent itemsets in D′. The corresponding frequent itemset(s) of fi due to local
recoding is denoted as Ff = G(fi). The recoding distance between F and F ′ is:
RDlocal(F, F ′)= 1

n

∑n
i=1

TDlocal(fi,G(fi))
T Dlocal(fi,fmax) , where TDlocal(fi, G(fi)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θq × TD(fi, G(fi)), if f has 1 correspondent in F ′

(1 − θq) × TD(fi, fmax), if f has no correspondent in F ′

θq × min(TD(fi, fj)),

where fj ∈ G(fi), otherwise,

θq is a parameter that specifies the relative importance of the itemset distortion and
missing itemsets, due to G, and TDlocal(fi, fmax) is for normalizing RDlocal.

Example 5. Following up Example 4, when σ is 30%, the frequent itemset {(BA)} cor-
responds to the frequent itemsets {(BA), (Deg)} in the recoded datasets.

Metric for the change in growth rate. The second component of our heuristics con-
cerns the growth rate of the emerging patterns. Intuitively, we aim at a recoding that
significantly reduces the growth rate of the emerging patterns in order to hide them.
Given an emerging pattern e and the result of a local recoding e′, the reduction in
growth rate due to the recoding can be easily defined as the growth rate of e minus
the growth rate of e′. Then, the growth rate reduction of E due to a local recoding G,
denoted as RGlocal(G, E), can be defined as the total reduction in the growth rate of e
in E divided by the total growth rate of e in E.

Putting all these together. Based on the derivations above, the utility gain due to a
local recoding G for a set of emerging patterns E is defined as:

util gain(G, E) = θpRGlocal(G, E) − (1 − θp)RDlocal(F, F ′
).

The two parameters θp and θq , where θp, θq ∈ [0,1], are specified by users.

6 Algorithm for Hiding Emerging Patterns

In this section, we present the overall algorithm hide-eps (shown in Figure 3) for
hiding emerging patterns with a minimal distortion in frequent itemsets.

Overview of hide-eps. The main ideas of hide-eps can be described as follows.
First, we determine the emerging patterns to be hidden (Line 02) and the frequent item-
sets (incrementally) to be preserved (Line 04). We refer the details of Lines 02 and 04
to previous works [29,34], since our focus is on hiding emerging patterns. For each se-
lected emerging pattern (Line 05), we carry out a local recoding local-recoding-sa
(Line 06, more details soon). This process (Lines 03-08) is repeated until there is no
more emerging pattern to hide (Line 03). To avoid sub-optima, we present hide-eps
in the style of simulated annealing search (Lines 01, 07 and 18).

Next, we discuss the details of the major steps of the algorithm.

Mining emerging patterns (mine-eps, Lines 02 and 08). During recoding, we in-
voke mine-eps [34] to determine if all the emerging patterns have been hidden (Line
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Procedure hide-eps
Input: two datasets, Di and Dj , the threshold of growth rate and frequent itemsets ρ and σ,

the heuristic parameters p and q, an initial temperature t0 and the cooling parameter α
Output: transformed datasets (Di , Dj )

01 t = t0 H.init() // initialization
02 E := mine-eps(Di, Dj , ρ) // [34]
03 while E �= ∅
04 F := incr-mine-fis(Di ∪ Dj , σ) // [29]
05 e := next-overlapping-ep(E)
06 if e is not null

(Di , Dj ) := local-recoding-sa(Di, Dj , e, F , t, α, H)
07 if t > 0.01 then t = α × t
08 E := mine-eps(Di, Dj , ρ)
09 return (Di , Dj )

Procedure local-recoding-sa
Input: two datasets, Di and Dj , an emerging pattern e, a frequent itemset F , a temperature t, a hashtable H for caching

the utility gain of local recodings
Output: transformed datasets (Di , Dj )

10 let Di be the dataset where e has a higher support
11 denote ce be the equiv. class of e in Di

12 compute equiv. classes C of Dj of the attributes of e
// compute the utility gain of the local recoding of each equiv. class ck in C with ce

13 for each ck in C
14 if determine-missing-FIS(G(ce,ck), F ) = ∅ then
15 if determine-new-singleton-eps(G(ce,ck) , E) = ∅ then
16 if H[ce][ck] is null then
17 H[ce][ck] := util gain(G(ce,ck), E) // Section 5

18 ck := get-next-step-sa(ce, H, t)
19 Di := multi-local-recode(Di, ce, ck) // Section 4
20 Dj := multi-local-recode(Dj , ce, ck)
21 return (Di , Dj )

Fig. 3. The overall algorithm

08). To the best of our knowledge, there does not exist any incremental algorithm for
mining emerging patterns. As verified by our experiments, mine-eps is a bottleneck of
runtime of hide-eps. However, it should be remarked that the emerging patterns may
often be altered slightly by most local recodings, in practice. To address this perfor-
mance issue, in Section 7, we tested another version of hide-eps, where mine-eps is
invoked only when all previously mined emerging patterns have been hidden.

Incremental mining of frequent itemsets (incr-mine-fis, Line 04). A local re-
coding may alter the existing frequent itemsets. Figure 2 (b) (ii) shows an example.
Since a local recoding changes only part of D1 and D2, we need not mine the dataset
from scratch but do it incrementally using algorithms like [29].

Selecting emerging patterns for recoding (next-overlapping-ep, Line 05). Given
a set of emerging patterns E, next-overlapping-ep determines the emerging pat-
tern e in E such that it overlaps with the remaining emerging patterns the most. The
intuition is that reducing the growth rate of e may indirectly reduce the growth rate of
the overlapping emerging patterns as well. We verify with some experiments that this
approach consistently outperforms a number of other strategies (see Section 7).

Determining the next local recoding (local-recoding-sa, Lines 06, 10-21). As-
sume that ce is the equivalence class of the emerging pattern e. We first compute the
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equivalence classes of the attributes of e to generalize with ck (Line 12). We apply the
utility gain defined in Section 5 to determine the goodness of local recodings (Line 16).
Since there can be many equivalence classes, this is another bottleneck of runtime. We
speed up that step using (i) a hashtable (Lines 01 and 16-17) to cache the utility gain
values computed, and (ii) two filters on equivalence classes (Lines 14 and 15). The first
filter is that we ignore the equivalence classes that would result in missing frequent item-
sets, which is obviously undesirable. This can be computed by the change in support of
itemsets in F due to a local recoding. Second, we discard a local recoding that would
yield new single-attribute emerging patterns. This can be computed by determining the
growth rate of the equivalence classes with the attributes of e. We did not compute
possible new multi-attribute emerging patterns because of its daunting complexity.

With the utility gain of equivalence classes, we use a simulated annealing search
(get-next-step-sa, Line 18), as a black box, to get the next local recoding.

Analysis. Given that AE is the set of attributes of the emerging pattern E, and D and
H are the overall domain size and the maximum height of the hierarchy of all possible
AE’s, respectively. In the worst case, there can be O(D ×H) possible recodings. Also,
local recoding allows tuple-wise recoding and thus in the worst case, |D1| + |D2| recod-
ing operations can be carried out. Thus, the search space of finding the optimal recoding
is O((|D1|+ |D2|)×D ×H). This work proposes a heuristic search for this problem.
While the loop (Lines 03-08) may repeat many times in the worst case, the number of
iterations needed was found small in practice. As discussed, mine-eps and the compu-
tation of util gain are the bottlenecks of runtime. The runtime of the former is exper-
imentally evaluated in [34]. The time complexity for the latter is O(|Ae|×D×H×|F |),
where e ∈ E, |Ae| ×D×H is the number of possible equivalence classes and for each
class, O(|E|) and O(|F |) are used to compute RGlocal and RDlocal, respectively.

7 Experimental Evaluation

To verify the effectiveness and efficiency of our proposed algorithms, we conducted
several experiments on Adult dataset [30] using the attribute hierarchies from [14].

We implemented our algorithm in JAVA SDK 1.61. We have run our experiments on
a PC with a Quad CPU at 2.4GHz and 3.25GB RAM. The PC is running Windows XP
operating system. We have used system calls to invoke the implementations from [34]
and [23] to determine emerging patterns and frequent itemsets, respectively.

The simplified Adult dataset contains 8 attributes. We removed the records with
missing values. The records in the dataset were divided into two classes - people who
have more than $50k/year (7508 records) and people who do not (22654 records).

The effect of the parameters θp and θq . The first experiment is to verify the effects on
the parameters θp and θq on the heuristic algorithm. In this experiment, we do not apply
any filter (i.e., Lines 14-15 in hide-eps) and SA search (Line 18) in order to observe the
effects on the parameters clearly. Instead, we used a Greedy search. The performance
was presented in “distortion on the frequent itemsets / the number of missing frequent

1 The implementation is available at http://www.comp.hkbu.edu.hk/∼michael/source.rar
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itemsets”, unless otherwise specified. When σ and ρ were set to 40% and 5, respec-
tively, the frequent itemsets obtained are: {(Husband, Married-civ-spouse, Male),
(Married-civ-spouse,White), (Married-civ-spouse,United-States), (Male,
Private, White), (Male, Private, United-States), (Male, White, United-

States), (Private, White, United-States)}.
When we recode all attributes to All in the frequent itemsets, we obtain the maxi-

mum distortion of the frequent itemsets of Adult 623.1.
To illustrate the possible effect of recodings on the resulting frequent itemsets, we list

the frequent itemsets after we applied Greedy, where θp and θq were both set to 0.8:
{(Relationship, United-States), (Married, White, United-States), (Male,
Private, White), (Male, Private, United-States), (Male, White, United-

States), Private, White, United-States)}. The distortion obtained is 21.5 (out
of 623.1).

Next, we varied θp and θq and measured the performance of Greedy. The perfor-
mance is shown in Table 1 (LHS). The average runtime is 58 mins and 16 out of 58
mins is spent on mining EPs. The average number of local recodings is 14.

Table 1. The effect of the parameters in util gain on Greedy’s performance (LHS) and the
performance of the determine-new-singleton-eps filter (RHS)

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 73.3/1 50.0/1 50.0/1 50.0/1 50.0/3 50.0/1
0.2 73.3/1 59.7/1 38.2/1 38.2/1 46.5/1 11.5/4
0.4 73.3/1 59.7/1 38.2/1 21.5/1 46.5/1 11.5/4
0.6 73.3/1 59.7/1 21.5/1 38.2/1 46.5/1 11.5/4
0.8 73.3/1 59.7/1 21.5/1 21.5/1 38.2/1 0/5
1.0 11.5/3 11.5/3 11.5/3 11.5/3 11.5/3 11.5/3

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 62.7/0 43.7/1 43.7/1 35.8/3 35.8/3 11.1/4
0.2 62.7/0 32.0/1 32.0/1 15.7/2 9.7/3 7.5/4
0.4 62.7/0 32.0/1 16.8/1 21.9/2 9.7/3 7.5/4
0.6 71.5/0 32.0/1 16.8/1 21.9/2 7.2/3 0/5
0.8 71.5/0 32.0/1 16.8/1 15.7/2 7.2/3 0/5
1.0 73.1/1 73.1/1 73.1/1 73.1/1 73.1/1 73.1/1

We make four observations from Table 1 (LHS). Firstly, when θp is set to 0, the algo-
rithm concerns only distortion (regardless the corresponding reduction in growth rate)
during local recodings. In such a case, the distortion on frequent itemsets of various θq’s
is in general large. The reason is that when θp is 0, the heuristics does not effectively re-
duce the growth rate and the search takes more recodings that are not relevant to hiding
emerging patterns. Secondly, when θp is 1, the algorithm concerns only the reduction
in growth rate. Note that 3 out of 7 frequent itemsets have disappeared. Thirdly, when
we set θq to 1, we do not concern the missing frequent itemsets. Hence, more frequent
itemsets were lost. Similarly, when we set θq to 0, we concern only the frequent item-
sets that do not disappear. Since there is one missing frequent itemset during recodings,
overlooking this led to more distortion. Fourthly, we found that a significant runitme
(42 mins) was spent on calculating the utility gain of equivalence classes. The reason is
that no filters had been applied yet.

In all, we found that on Adult, Greedy yields frequent itemsets with a distortion
21.5 (out of 623.1) and 1 missing frequent itemset when both θp and θq are moderate.

The effect of the determine-new-singleton-eps filter. This filter is used to avoid
recoding equivalence classes that would yield new single-attribute EPs (Line 15 of
hide-eps). The performance of Greedy with this filter is shown in Table 1 (RHS).
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We observe from Table 1 (RHS) that there are similar trends on the performance
with various θp and θq . The distortion is sometimes smaller but the missing frequent
itemsets may sometimes be more. However, the average runtime of this experiment is
26 mins (compared to 58 previously). Specifically, the time for computing utility gain
has been reduced from 42 to 15 mins. The number of recodings reduces from 14 to 9.
The runtime improvement is due to (i) the smaller number of equivalence classes for
computing the utility gain and (ii) fewer (if any) new EPs generated during hide-eps.

The effect of the determine-missing-FIS filter. From the previous experiments,
we note that there are missing frequent itemsets in most cases. Here, we test the ef-
fectiveness of determine-missing-FIS filter (Line 14). The performance is shown
in Table 2 (LHS). The average runtime for computing the utility gain increased from
15 to 21 mins and the number of recodings increased from 9 to 14. At first glance, the
distortion might have increased. However, there is no missing frequent itemset for all
θp’s and θq’s. This improvement comes at the expense of a slight increase in runtime.

Table 2. The performance of the determine-missing-FIS filter (LHS) and the perfor-
mance of invoking mine-eps only when E is empty (RHS)

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 NA 89.2/0 89.2/0 89.2/0 71.5/0 71.5/0
0.2 105.3/0 89.2/0 78.6/0 78.6/0 41.5/0 41.5/0
0.4 105.3/0 78.6/0 50/0 50/0 41.5/0 41.5/0
0.6 105.3/0 78.6/0 50/0 50/0 41.5/0 41.5/0
0.8 105.3/0 78.6/0 61.3/0 61.3/0 41.5/0 41.5/0
1.0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 NA 97.2/0 97.2/0 81.3/0 70.1/0 81.3/0
0.2 105.3/0 97.2/0 97.6/0 81.3/0 59.3/0 59.3/0
0.4 105.3/0 97.6/0 64.9/0 64.9/0 59.3/0 59.3/0
0.6 105.3/0 78.6/0 64.9/0 64.9/0 59.3/0 59.3/0
0.8 105.3/0 78.6/0 64.9/0 70.1/0 59.3/0 59.3/0
1.0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0

The effect of calling mine-eps when E is empty. In the last experiment, 15 out of 36
mins was spent on mining EPs. In this experiment, we attempt to improve the runtime by
hiding all existing EPs first before calling mine-eps, as opposed to calling mine-eps

after each recoding. The performance is shown in Table 2 (RHS). From the result, we
found that there is a slight increase in distortion. However, the time for mining EPs is
reduced from 15 to 8 mins. The average runtime for computing the utility gain increased
from 21 to 23 mins and the number of iterations remains unchanged.

The effect of hiding the EP with the minimum overlapping. To justify the decision
of hiding the maximum overlapping EP in Line 05 of hide-eps, we conducted an
experiment which first hides the EP with the minimum overlapping. The result is shown
in Table 3 (LHS). We observed that the distortion is slightly larger than that of the
maximum overlapping. However, the average runtime for computing the utility gain
increased from 23 to 39 mins and the time for mining EP increased from 8 to 23 mins.

Simulated annealing search. After demonstrating the effects of various settings with
Greedy, we applied SA on the algorithm (Line 18 of hide-eps). We set a low tem-
perature (T =10) of SA with a high cooling rate (α=0.4). Hence, SA initially has some
chances to avoid local sub-optima and then converges to Greedy quickly. To explore
the search space more, each SA was allowed to restart fifty times. The results are shown
in Table 3 (RHS). SA introduces some randomness in the performance. Compared to
the best versions (Table 2), SA often produces better results, at the expense of runtime.
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Table 3. The performance of hiding the EP with the minimum overlapping (LHS) and the perfor-
mance of simulated annealing search (RHS)

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 NA 101.8/0 101.8/0 95.6/0 95.6/0 95.6/0
0.2 127.1/0 98.3/0 75.8/0 75.8/0 53.7/0 53.7/0
0.4 127.1/0 98.3/0 50.0/0 50.0/0 53.7/0 53.7/0
0.6 127.1/0 78.6/0 67.2/0 58.5/0 53.7/0 53.7/0
0.8 127.1/0 80.2/0 61.3/0 65.3/0 48.1/0 48.1/0
1.0 127.1/0 127.1/0 127.1/0 127.1/0 127.1/0 127.1/0

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0

0 67.4/0 27.8/0 58.5/0 50.0/0 44.3/0 23.6/0
0.2 80.1/0 62.5/0 22.4/0 53.8/0 47.8/0 52.1/0
0.4 84.1/0 81.4/0 55.7/0 29.3/0 53.7/0 37.4/0
0.6 85.0/0 50.0/0 97.0/0 31.8/0 40.5/0 22.8/0
0.8 64.9/0 45.2/0 30.0/0 59.6/0 39.5/0 32.3/0
1.0 84.1/0 31.7/0 47.9/0 44.1/0 28.9/0 51.6/0

8 Conclusions

We presented a heuristic local-recoding algorithm for hiding emerging patterns of a
dataset while preserving its frequent itemsets as far as possible. We tested our algorithm
with a benchmark dataset and showed its effectiveness.
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Abstract. Privacy protection in publishing transaction data is an im-

portant problem. A key feature of transaction data is the extreme spar-

sity, which renders any single technique ineffective in anonymizing such

data. Among recent works, some incur high information loss, some result

in data hard to interpret, and some suffer from performance drawbacks.

This paper proposes to integrate generalization and suppression to re-

duce information loss. However, the integration is non-trivial. We pro-

pose novel techniques to address the efficiency and scalability challenges.

Extensive experiments on real world databases show that this approach

outperforms the state-of-the-art methods, including global generaliza-

tion, local generalization, and total suppression. In addition, transaction

data anonymized by this approach can be analyzed by standard data

mining tools, a property that local generalization fails to provide.

Keywords: Anonymity, privacy, information security, transaction data.

1 Introduction

Transaction data, such as shopping transactions [1], web query logs [11], and
movie ratings [10], are important sources for knowledge discovery. People are
increasingly releasing transaction data to the data mining research community
for discovering knowledge that helps improve services. However, transaction data
contains significant amount of personal and sensitive information. The release of
such data to the public or a third party could breach privacy, as highlighted by
recent incidents [2][10]. Transaction data must be anonymized before release.

Recently, several works started to address the transaction data anonymization
problem [4][5][13][14]. However, these works suffer from a few limitations, namely,
incurring high information loss, failing to enable standard data mining tools, and
introducing invalid analysis results. Let us examine those prior works using the
transaction data in Fig. 1 (a) and the taxonomy in Fig. 1 (b).

Global generalization [13]. The km-anonymity in [13] requires that every sub-
set of no more than m items is contained in at least k transactions. The global
generalization technique (a.k.a. full subtree generalization [6]) is employed in [13],
which is vulnerable to excessive distortion in the presence of outliers. Let k∞-
anonymity denote km-anonymity with m being the longest transaction length.
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Fig. 1. Transactional database D, anonymizations of D, and taxonomy tree HP

For example, to achieve 2∞-anonymity, as in the 4th column in Fig. 1 (a), all
items are generalized to the top level because of the outlier, {e, i}.

Suppression [14]. The (h, k, p)-coherence in [14] demands that every subset of
no more than p public items must be contained in at least k transactions and
no more than h percent of these transactions contain a common private item.
km-anonymity is its special case with h = 100% and p = m. [14] employs the
total item suppression technique to enforce (h, k, p)-coherence, which incurs high
information loss when the data is sparse. E.g., in the 5th column in Fig. 1 (a),
all occurrences of b, c, i, x, y, and z, are removed as indicated by *.

Local generalization [5]. The transactional k-anonymity in [5] requires that
each transaction has at least k duplicates. Such a requirement is stronger than
k∞-anonymity and introduces much more distortion than necessary. The multi-
dimensional generalization technique [7] is employed in [5]. But, it destroys the
domain exclusiveness property, e.g., the 3rd column in Fig. 1 (a) shows the data
anonymized by [5] where items T, P, and K coexist in the anonymized data, but
their domains are not exclusive of each other. The analysis result based on such
data are hard to interpret, e.g., according to such data, whenever a transaction
contains K, it also contains f. But it is not true with the original data, e.g., the
first transaction contains c and d (and hence K), but it does not contain f.

Band matrix method [4]. A method for grouping transactions and permuting
the private items in each group to enforce l-diversity [9] is presented in [4]. How-
ever, invalid analysis results could be derived from the anonymized data. The
example in [4] explained this: in the original data, all customers who bought
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cream but not meat have also bought a pregnancy test ; while in the data
anonymized by [4], only a half of such customers have bought a pregnancy test.

This paper, motivated by the limitations of the prior works, proposes to
integrate the global generalization technique with the total item suppression
technique for enforcing km-anonymity. Our observation is that suppression can
remove outlier items that otherwise will cause substantially generalization of
many other items, and generalization can slightly generalize items that other-
wise must be suppressed. While a single technique could not perform well, the
integration can greatly reduce the overall information loss. Our approach has
two strong properties: the anonymized data can be analyzed by standard data
mining tools, and results derived from it are true in the original data. This is
because both techniques preserve the domain exclusiveness property. For exam-
ple, the last column in Fig. 1 (a) shows the data anonymized by our approach
which suppresses item i and generalizes some other items.

Integrating generalization and suppression is non-trivial because the search
space is much larger than only employing one of them. We propose a multi-round,
top-down greedy search strategy to address the challenge. Extensive comparative
experiments showed that our approach yields better data utility than the prior
works and is efficient and scalable in anonymizing real world databases.

The rest of the paper is organized as follows. Section 2 describes the privacy
requirement and the anonymization model, Section 3 presents the basic approach
that integrates generalization with suppression, Section 4 proposes the key tech-
niques that make our approach efficient and scalable, Section 5 evaluates the
applicability of our approach, and Section 6 concludes the paper.

2 Privacy and Anonymization Model

A publisher wants to release a transaction database D = {t1, t2, . . . , tn}, where
each transaction ti corresponds to an individual and contains items from an
item universe I = {i1, i2, . . . , iq}. An adversary tries to link a target individual
to his/her transaction with a high probability. To do so, the adversary acquired
knowledge from external sources. That is, the adversary knows that the transac-
tion is in the released data and knows some items of the target individual. The
publisher wants to prevent such a linking attack.

Definition 1 (Privacy threats and km-anonymity): A subset of items is
called an itemset. An itemset X with |X | ≤ m is called a privacy threat if the
number of transactions in D that support X, denoted by sup(X), is less than a
user specified anonymity threshold k, i.e., sup(X) < k. A transaction t supports
X if X is a subset of t; D observes km-anonymity [13] if there is no privacy
threat supported by D. �

Enforcing the privacy notion in Definition 1 assures that the adversary’s cer-
tainty in making any linking attack is no more than 1/k.

Anonymization solutions: To enforce the privacy notion, the full subtree
generalization technique [6][13] and the total item suppression technique [14] are
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integrated to anonymize D. We assume that a taxonomy tree HP for generalizing
items is available. With the full subtree generalization technique, a generalization
solution is defined by a cut on HP . A cut contains exactly one item on every
root-to-leaf path on HP , and is denoted by the set of such items. E.g., {P, f, g,
M, e, i} denotes the cut depicted by a dash line on HP in Fig. 1 (b). With the
total item suppression technique, to eliminate privacy threats in the generalized
data, some constituent items of Cut are totally removed from all transactions.
The set of items to be removed is called a suppression scenario of Cut.

In other words, an anonymization is defined by Cut and SS, a generalization
cut and the suppression scenario associated with the cut. The anonymized data
D′′ is derived in two steps: first the original items in D are generalized to their
taxonomic ancestors in Cut to get D′ = g(D, Cut), and then items in SS are
suppressed from D′ to eliminate threats, which results in D′′ = s(D′, SS).

Running Example: Consider the transaction database D in the 2nd column
in Fig. 1 (a) and the taxonomy HP in Fig. 1 (b). Suppose that we enforce 2∞-
anonymity . By generalizing D to the cut {P, f, g, M, e, i}, only one privacy
threat, {e, i}, exists in the generalized data D′ = g(D, {P, f, g, M, e, i}). If we
suppress item i from D′, we get the anonymized data D′′ = s(D′, {i}) where no
privacy threat exists, as shown in the last column in Fig. 1 (a). �
Anonymization causes information loss. Given Cut and SS, a generalization cut
and its associated suppression scenario, costG(Cut) denotes the information loss
incurred by generalizing D to get D′ = g(D, Cut), and costS(SS) denotes that
incurred by suppressing items in SS from D′ to get D′′ = s(D′, SS). The total
cost is cost(Cut, SS) = costG(Cut) + costS(SS).

Anonymization can be measured by a variety of metrics. As most cost met-
rics are additive, we can write costG(Cut) =

∑
x∗∈Cut O(x∗) · ILG(x∗), and

costS(SS) =
∑

x∗∈SS O(x∗) · ILS(x∗), where O(x∗) is the total number of oc-
currences in D of all leaf items that are descendants of x∗, ILG(x∗) is the gen-
eralization cost per occurrence of x∗, and ILS(x∗) is an extra suppression cost
in addition to ILG(x∗) if x∗ is suppressed.

We use LM [6] in our discussion, and assume that D only contains leaf items
on HP . With LM, ILG(x∗) = (#leaves(x∗) − 1)/(#leaves(HP ) − 1), where
#leaves(x∗) and #leaves(HP ) denotes the number of leaves in the subtree
rooted at x∗ and that in the taxonomy HP respectively. If x∗ is suppressed,
it is deemed that all descendants of x∗ are generalized to the top level of HP ,
the overall information loss per occurrence of x∗ is 1, so the extra suppression
cost is ILS(x∗) = 1 − ILG(x∗). For example, for D′′ in the last column in
Fig. 1 (a), Cut = {P, f, g, M, e, i}, SS = {i}. With LM, costG(Cut) = 3.6, and
costS(SS) = 2. The total cost is cost(Cut, SS) = 5.6.

3 Integrating Generalization and Suppression

An anonymization is defined by (Cut, SS ), a generalization cut with its associ-
ated suppression scenario, and can be found by two nested loops.
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As the number of cuts is exponential in the number of items and so is the
number of suppression scenarios for a cut, a complete enumeration for either loop
is intractable. Therefore, we present a basic approach, heuristic generalization
with heuristic suppression, namely HgHs.

3.1 Top-Down Greedy Search of the Lattice of Cuts

The outer loop of HgHs enumerates generalizations (cuts) by a top-down greedy
search of a lattice of all possible cuts [8], where a specific cut (child) is derived
from a general cut (parent) by replacing one constituent item of the parent cut
by its child items on the taxonomy tree.

Starting from the top-most cut which consists of only the root (item) of the
taxonomy tree, the outer loop continues with the most promising child cut of
the current cut, which is achieved by evaluating the suppression scenario for
each child of the current cut by running the inner loop (detailed in the next
subsection), and computing the anonymization cost. The outer loop stops when
no child cut reduces the anonymization cost.

For example, Fig. 2 (a) describes the searching process. The outer loop starts
from cut1={T} with cost(cut1, SS1) = 23 where the suppression scenario SS1 for
cut1 = {}. The only child of cut1 is cut2 = {P, Q, e, i}. There is one privacy threat,
{e, i}, in D′ = g(D, cut2). The suppression scenario SS2 for cut2 (computed by
the inner loop described in the next subsection) is {i}. So cost(cut2, SS2) =
costG(cut2) + costS(SS2) = 6.6 + 2 = 8.6. The search continues to evaluate
the children of cut2. The best child is cut4 since cost(cut4, SS4) = 6.2 while
cost(cut3, SS3) = 10.2. The search stopped at cut6 ={P, f, g, M, e, i} with SS6

= {i} as no child of cut6 reduces the cost. So, (cut6, SS6) defines the anonymized
data D′′ as shown in the last column in Fig. 1 (a).

3.2 Finding a Good Suppression Scenario for a Cut

The inner loop of HgHs is responsible for finding an item suppression scenario SS
to eliminate privacy threats from D′ = g(D, Cut) where Cut is the cut currently
being enumerated by the outer loop. SS is a subset of Cut, all occurrences of
items in SS will be suppressed from D′.

To determine SS, the inner loop greedily searches the so called suppression
scenario enumeration tree, which is built per cut. Each node on the suppression
scenario enumeration tree is denoted by a headlist and a taillist. The items in
headlist are to be kept, and the items not in headlist are to be suppressed. We
also use the set notation to represent headlist and taillist. Thus, the suppression
scenario represented by a node N is Cut - N.headlist. And its suppression cost
is
∑

x∗∈Cut−N.headlist O(x∗) · ILS(x∗). For the root node, headlist = {} and
taillist = Cut, i.e., all items are suppressed. The jth child node C of a parent
node P is derived based on the jth item, ij, in P.taillist such that C.headlist =
P.headlist∪ {ij} and C.taillist = the suffix of P.taillist after ij.

For example, Fig. 2 (b) is the suppression scenario enumeration for cut3 in
Fig. 2 (a). N1 is the root with N1.headlist = {} and N1.taillist = cut3 where
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Fig. 2. Searching the cut lattice and finding the suppression scenario for each cut

items are listed in the descending order of suppression costs. N2 is derived from
N1, by moving the first item Q from taillist to headlist, which means that all
items except Q are suppressed.

Clearly, a suppression scenario represented by a node N is valid if and only if
no threat in D′ is contained by N.headlist. Moreover, if a threat X is contained
by N.headlist, then X is also contained by the headlist of any descendant of N.
Therefore, if N is invalid, all its descendants are invalid, we can stop searching
the subtree rooted at N. If items in headlist and taillist are in the descending
order of suppression costs, the first valid child of any node is the most promising
child of the node, as it is valid and reduces the suppression cost most.

For example, Fig. 2 (b) shows how the suppression scenario SS3 for eliminating
the threats, {H,K,Q} and {e,i}, from D′ = g(D, cut3) is found. The inner loop of
HgHs starts with N1 which is valid. N2 is the first child of its parent and is valid,
and so is N3. And N4 is the first child of N3 but it is invalid. The inner loop
stoped at N5 with N5.headlist = {Q, K, e}. So, the final suppression scenario
SS3 = cut3 −N5.headlist = {H, i}.

4 Addressing Efficiency and Scalability Issues

Although our basic approach HgHs presented in Section 3 enumerates a limited
number of anonymizations, the work for examining each enumerated anonymiza-
tion is still non-trivial. In this section, we propose the key techniques to address
the efficiency and scalability issues in this regard.
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4.1 Minimal Privacy Threats

The outer loop of HgHs needs to know the set of privacy threats in D′ =
g(D, Cut) for the current Cut. If such a set is empty, all threats are already
eliminated by generalizing D. If it is not, we have to suppress some generalized
items to eliminate all privacy threats from D′. First, we claim that it suffices to
generate the set of minimal privacy threats.

Definition 2 (Minimal privacy threats): A privacy threat X is a minimal
threat if there is no privacy threat that is a subset of X. �
Since every privacy threat contains some minimal privacy threat, if we eliminate
all minimal privacy threats, we also eliminate all privacy threats. However, find-
ing the set of minimal privacy threats on-the-fly is inefficient, since every threat
occurs in multiple versions of the generalized data derived by different cuts and
hence will be repeatedly generated while the number of cuts to be enumerated
is still quite large.

Our approach is to generate the set of the minimal privacy threats sup-
ported by all cuts on the taxonomy HP in an initialization step. For Cut being
enumerated by the outer loop, we can retrieve privacy threats relevant to Cut
from that set instead of generating D′ = g(D, Cut) and mining D′ on-the-fly.
Given a suppression scenario SS for Cut, to see if all threats are removed from
D′′ = s(D′, SS), we check if no relevant threat is contained in Cut - SS.

For the running example, there are 25 threats in the set of the minimal privacy
threats, from which we can retrieve the threats, {H, K, Q} and {e, i}, relevant
to cut3 in Fig. 2 (a), for searching suppression scenarios in Fig. 2 (b).

4.2 A Multi-round Approach

The set of the minimal privacy threats supported by all cuts on the taxonomy
HP could be huge when HP is of a large scale and the maximum size m of
privacy threats is large, which makes HgHs not scalable. We propose a multi-
round approach, mHgHs, to address the scalability issue.

To find a solution, mHgHs runs HgHs in m rounds. The 1st round finds
(Cut1best, SS1

best) on the original taxonomy HP , which defines an anonymization
observing k1-anonymity. The i-th round finds (Cutibest,SSi

best), which defines an
anonymization observing ki-anonymity, on the reduced taxonomy Hi−1

P that is
derived by removing nodes under Cuti−1

best. Clearly, Cutibest is above Cuti−1
best. In

other words, mHgHs performs anonymization progressively. Each round works
on a reduced taxonomy based on the precedent round, so the set of the minimal
privacy threats supported by all cuts for each round is under control.

For the running example, mHgHs first finds Cut1best = {a, b, c, d, f, g, M, e, i}
with SS1

best = {}, and gets H1
P by removing nodes under Cut1best. Then, mHgHs

works on H1
P , and so on. After five rounds, mHgHs finds Cut5best = {P, f, g, M,

e, i} with SS5
best = {i}, which conforms 25-anonymity.
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5 Experimental Evaluation

Our major goal is to investigate if our approach preserves more data utility than
others approaches, and if our algorithm is scalable and efficient. We evaluate our
algorithm mHgHs by comparing it with several state-of-the-art algorithms, the
local generalization algorithm LG [5], the global generalization algorithm AA
[13], and the suppression algorithm MM [14]. The executables of AA and MM
were provided by the authors. We implemented LG as it is not available.

The POS dataset [15] and the AOL web query log dataset [11] are used in the
experiments. The taxonomy tree for the POS dataset was created by [13]. We
preprocessed the AOL dataset using WordNet [3] in creating the taxonomy tree.
The AOL dataset is divided into 10 subsets. We use the first subset to evaluate
the basic features of all algorithms, and use all subsets to evaluate scalabilities.
We measure information loss by NCP, a variant of LM [6], as it was used by
AA and LG. Experiments were performed on a PC with a 3.0 GHz CPU and
3.2 GB RAM. In the experiments, the default setting is k = 5, m = 7.

5.1 Information Loss Evaluation

Fig. 3(a)-(b) show the information loss on the POS dataset. Fig. 3(c)-(d) show
that on the AOL dataset. Among all the 4 algorithms, the information loss by
MM is the highest for all cases with m ≥ 2, which is between 7.5% and 70% on
POS and between 46% and 96% on AOL. This is consistent with the finding in
[14] that MM is not good for sparse datasets as the POS dataset is quite sparse
while the AOL dataset is even sparser.

The information loss by AA is the second highest in general. In some cases on
POS (with a small m and a large k), LG incurs a little bit more. The information
loss by AA on AOL is strikingly high, all around 39% even for m=1. Because
the AOL dataset is extremely sparse, a lot of very infrequent items spread over
the taxonomy. They have to be generalized to high levels, which brings their
siblings to the same ancestors by AA. This situation is similar to our motivation
example where as items e and i are infrequent, their siblings, P and Q, although
quite frequent, have to be generalized to the top level together with e and i by
AA. In such cases, suppressing a few outlier items will reduce information loss.
This motivates our approach.

The information loss by LG is the third highest. As we pointed out in Section
1, LG exerts excessive distortion as it enforces the transactional k-anonymity
principle which is too strong to be necessary. LG does not make use of m. So,
the curves of LG with a varying m are all horizontal lines.

Our algorithm, mHgHs, incurs the least information loss which is the ad-
vantage of integrating suppression and generalization. The data utility gain of
mHgHs over LG is moderate on POS, but it is significant on AOL. All the infor-
mation loss with mHgHs is under 10% on AOL, while the worst case with LG is
27%, e.g., that by mHgHs is around 7.9% with k = 5 and m ≥ 5 on AOL as in
Fig. 3(d), while that with LG is 12%. The gap increases when enforcing a more
restrictive privacy requirement, e.g., that by mHgHs with k = 50 and m ≥ 5 on
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Fig. 3. Information loss of algorithms MM, AA, LG, and mHgHs on POS and AOL

AOL is 9% as in Fig. 3(c), while that by LG is 17%. Notice that the information
loss reported for mHgHs is also computed on the original taxonomy.

5.2 Efficiency and Scalability Evaluation

We evaluated the efficiencies of all the algorithms. LG is the most efficient be-
cause it employs a divide-and-conquer approach. But, it comes with an expense,
i.e., the anonymized data does not observe the domain exclusiveness as dis-
cussed in Section 1. Our algorithm, mHgHs, is the second most efficient. Al-
though mHgHs is less efficient than LG, the significant gain in data utility by
mHgHs over LG is worth the longer runtime. AA and MM are less efficient. This
is because the breadth-first search approaches they employ are not efficient in
dealing with privacy threats with a large size. One exception is that AA is as
efficient as LG on AOL because the search space is greatly pruned by AA, which
unfortunately results in the second highest information loss on AOL.

We also evaluated the scalabilities of algorithms on all the 10 subsets of the
AOL query logs. The result showed that our algorithm mHgHs is quite scalable.

6 Conclusion

This paper proposed to integrate generalization and suppression to enhance data
utility in anonymizing transaction data. We presented a multi-round, top-down
greedy search algorithm to address the performance issues. Extensive experi-
ments show that our approach outperforms the state-of-the-art approaches.
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Abstract. In this paper, we study a problem of privacy protection in

large survey rating data. The rating data usually contains both ratings of

sensitive and non-sensitive issues, and the ratings of sensitive issues in-

clude personal information. Even when survey participants do not reveal

any of their ratings, their survey records are potentially identifiable by

using information from other public sources. We propose a new (k, ε, l)-
anonymity model, in which each record is required to be similar with at

least k−1 others based on the non-sensitive ratings, where the similarity

is controlled by ε, and the standard deviation of sensitive ratings is at

least l. We study an interesting yet nontrivial satisfaction problem of

the (k, ε, l)-anonymity, which is to decide whether a survey rating data

set satisfies the privacy requirements given by users. We develop a slice

technique for the satisfaction problem and the experimental results show

that the slicing technique is fast, scalable and much more efficient in

terms of execution time than the heuristic pairwise method.

1 Introduction

The problem of privacy-preserving data publishing has received a lot of attention
in recent years. Privacy preservation on tabular data has been studied exten-
sively. A major category of privacy attacks on relational data is to re-identify
individuals by joining a published table containing sensitive information with
some external tables. Most of existing work can be formulated in the follow-
ing context: several organizations publish detailed data about individuals (e.g.
medical records) for research or statistical purposes [14,10,9,13].

Privacy risks of publishing microdata are well-known. Famous attacks include
de-anonymisation of the Massachusetts hospital discharge database by joining it
with a public voter database [14] and privacy breaches caused by AOL search
data [5]. Even if identifiers such as names and social security numbers have
been removed, the adversary can use linking [12], homogeneity and background
attacks [10] to re-identify individual data records or sensitive information of in-
dividuals. To overcome the re-identification attacks, k-anonymity was proposed

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 181–188, 2010.
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[12,14]. Specifically, a data set is said to be k-anonymous (k ≥ 1) if, on the quasi-
identifier attributes, each record is identical with at least k − 1 other records.
The larger the value of k, the better the privacy is protected. Several algo-
rithms are proposed to enforce this principle [2,6,7,8]. Machanavajjhala et al.
[10] showed that a k-anonymous table may lack of diversity in the sensitive at-
tributes. To overcome this weakness, they propose the l-diversity [10]. However,
even l-diversity is insufficient to prevent attribute disclosure due to the skewness
and the similarity attack. To amend this problem, t-closeness [9] was proposed
to solve the attribute disclosure vulnerabilities inherent to previous models.

Recently, a new privacy concern has emerged in privacy preservation research:
how to protect individuals’ privacy in large survey rating data. Though several
models and many algorithms have been proposed to preserve privacy in relational
data (e.g., k-anonymity [12,14], l-diversity [10], t-closeness [9], etc.), most of the
existing studies are incapable of handling rating data, since the survey rating
data normally does not have a fixed set of personal identifiable attributes as
relational data, and it is characterized by high dimensionality and sparseness.
The survey rating data shares the similar format with transactional data. The
privacy preserving research of transactional data has recently been acknowledged
as an important problem in the data mining literature [3,15,16]. To our best
knowledge, there is no current research addressing the issue of how to efficiently
determine whether the survey rating data satisfies the privacy requirement.

2 Motivation

On October 2, 2006, Netflix, the world’s largest online DVD rental service, an-
nounced the $1-million Netflix Prize to improve their movie recommendation
service [4]. To aid contestants, Netflix publicly released a data set containing
100,480,507 movie ratings, created by 480,189 Netflix subscribers between De-
cember 1999 and December 2005. Narayanan and Shmatikov shown in their
recent work [11] that an attacker only needs a little information to identify the
anonymized movie rating transaction of the individual. They re-identified Netflix
movie ratings using the Internet Movie Database (IMDb) as a source of auxil-
iary information and successfully identified the Netflix records of known users,
uncovering their political preferences and other potentially sensitive information.

We consider the privacy risk in publishing survey rating data. For example, in
a life style survey, ratings to some issues are non-sensitive, such as the likeness
of a book. Ratings to some issues are sensitive, such as the income level. Assume
that each survey participant is cautious about his/her privacy and does not
reveal his/her ratings. However, it is easy to find his/her preferences on non-
sensitive issues from publicly available information sources, such as personal
weblog. An attacker can use these preferences to re-identify an individual and
consequently find sensitive ratings of a victim. An example is given in the Table
1. In a social network, people make comments on various issues, which are not
considered sensitive. Some comments can be summarized as in Table 1(b). We
assume that people are aware of their privacy and do not reveal their ratings,
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Table 1. (a) A published survey rating data (b) Public comments on some non-sensitive

issues of some survey participants

non-sensitive sensitive

ID issue 1 issue 2 issue 3 issue 4

t1 6 1 null 6

t2 1 6 null 1

t3 2 5 null 1

t4 1 null 5 1

t5 2 null 6 5

(a)

non-sensitive issues

name issue 1 issue 2 issue 3

Alice excellent so bad -

Bob awful top -

Jack bad - good

(b)

either non-sensitive or sensitive ones. However, individuals in the supposedly
anonymized survey rating data are potentially identifiable based on their public
comments from other sources. For example, Alice is at risk of being identified,
since the attacker knows Alice’s preference on issue 1 is ‘excellent’, by cross-
checking Table 1(a) and (b), s/he will deduce that t1 in Table 1(a) is linked to
Alice, the sensitive rating on issue 4 of Alice will be disclosed. This example
motivates us the following research question: Given a survey rating data set T
with the privacy requirements, how to efficiently determine whether T satisfies
the given privacy requirements?

3 (k, ε, l)-Anonymity

We assume that a survey rating data set publishes people’s ratings on a range of
issues. Each survey participant is cautious about his/her privacy and does not
reveal his/her ratings. However, an attacker may find a victim’s preference (not
exact rating scores) by personal familiarity or by reading the victim’s comments
on some issues from personal weblog. We consider that attackers know prefer-
ences of non-sensitive issues of a victim but do not know exact ratings and want
to find out the victim’s ratings on some sensitive issues.

The auxiliary information of an attacker includes: (i) the knowledge of a victim
being in the survey rating data; (ii) preferences of the victims on some non-
sensitive issues. The attacker wants to find ratings on sensitive issues of the
victim. In practice, knowledge of Types (i) and (ii) can be gleaned from an
external database [11]. For example, in the context of Table 1(b), an external
database may be the IMDb. By examining the anonymized data in Table 1(a),
the adversary can identify a small number of candidate groups that contain the
record of the victim. It will be the unfortunate scenario where there is only one
record in the candidate group. For example, since t1 is unique in Table 1(a),
Alice is at risk of being identified. If the candidate group contains not only the
victim but other records, an adversary may use this group to infer the sensitive
value of the victim. For example, although it is difficult to identify whether t2
or t3 in Table 1(a) belongs to Bob, since both records have the same sensitive
value, Bob’s private information is identified.
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In order to avoid such attack, we propose a (k, ε, l)-anonymity model. The first
step is to require that in the released data, every transaction should be similar
with at least k − 1 other records based on the non-sensitive ratings so that no
survey participants are identifiable. For example, t1 in Table 1(a) is unique, and
based on the preference of Alice in Table 1(b), her sensitive issues can be re-
identified. Jack’s sensitive issues, on the other hand, is much safer. Since t4 and
t5 in Table 1(a) form a similar group based on their non-sensitive rating. Second
is to prevent the sensitive rating from being inferred by requiring the sensitive
ratings in a similar group be diverse. For instance, although t2 and t3 in Table
1(a) form a similar group, their sensitive ratings are identical. Therefore, an
attacker can immediately infer Bob’s preference on the sensitive issue without
identifying which transaction belongs to Bob. In contrast, Jack’s preference on
the sensitive issue is much safer than both Alice and Bob.

Given a rating data set T , each transaction contains a set of numbers indicate
the ratings on some issues. Let (o1, · · · , op, s1, · · · , sq) be a transaction, oi ∈
{1 : r, null}, i = 1, 2, · · · , p and sj ∈ {1 : r, null}, j = 1, 2, · · · , q, where r is
the maximum rating and null indicates that a survey participant did not rate.
o1, · · · , op stand for non-sensitive ratings and s1, · · · , sq denote sensitive ratings.
Let TA = {oA1 , · · · , oAp , sA1 , · · · , sAq}, TB = {oB1 , · · · , oBp , sB1 , · · · , sBq} be
the ratings for participants A and B, then dissimilarity of non-sensitive ratings
(Dis(oAi , oBi) and sensitive ratings (Dis(sAi , sBi)) between TA and TB is defined
as follows:

Dis(oAi , oBi) =

⎧⎨
⎩
|oAi − oBi | oAi , oBi ∈ {1 : r}
0 oAi = oBi = null
r otherwise

(1)

Dis(sAi , sBi) =

⎧⎨
⎩
|sAi − sBi | sAi , sBi ∈ {1 : r}
r sAi = sBi = null
r otherwise

(2)

Definition 1 (ε-proximate). Given a survey rating data set T with a small
positive number ε, two transactions TA = {oA1 , · · · , oAp , sA1 , · · · , sAq} ∈ T and
TB = {oB1 , · · · , oBp , sB1 , · · · , sBq} ∈ T . TA and TB are ε-proximate, if ∀1 ≤
i ≤ p, Dis(oAi , oBi) ≤ ε. The set of transactions T is ε-proximate, if every two
transactions in T are ε-proximate.

If two transactions are ε-proximate, the dissimilarity between their non-sensitive
ratings is bound by ε.

Definition 2 ((k, ε)-anonymity). A survey rating data set T is said to be
(k, ε)-anonymous if and only if every transaction is ε-proximate with at least
k − 1 other transactions. The transaction t with all the other transactions that
are ε-proximate with t in T form a (k, ε)-anonymous group.

Although (k, ε)-anonymity can protect identity, it fails to protect sensitive infor-
mation. For example, in Table 1(a), t2 and t3 are in a (2, 1)-anonymous group,
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but they have the same rating on the sensitive issue, thus Bob’s private informa-
tion is breaching. This example reflects the shortcoming of the (k, ε)-anonymity.
To mitigate this limitation, sufficient diversity of the sensitive values in each
(k, ε)-anonymous group should be allowed.

For a sensitive issue s, let the vector of ratings of the group be (s1, · · · , sg),
where si ∈ {1 : r, null}. The mean of the ratings is s̄ = 1

Q

∑g
i=1 si, where Q is

the number of non-null values, and si ± null = si. The standard deviation of
the rating is then defined as SD(s) =

√
1
g

∑g
i=1(si − s̄)2.

Definition 3 ((k, ε, l)-anonymity). A survey rating data set is said to be (k, ε, l)-
anonymous if and only if the standard deviation of sensitive ratings is at least l in
each (k, ε)-anonymous group.

4 The Algorithm

In this section, we formulate the satisfaction problem and develop a slicing tech-
nique to determine the following Satisfaction Problem.

Satisfaction problem: Given a survey rating data T and k, ε, l, the satisfaction
problem of (k, ε, l)-anonymity is to decide whether T satisfies k, ε, l requirements.

The satisfaction problem is to determine whether the user’s given privacy re-
quirement is satisfied by the given data set. If the data set has already met the
requirements, it is not necessary to make any modifications before publishing.
As follows, we propose a novel slice technique to solve the satisfaction problem.

Algorithm 1: Slicing(ε, T, t0)(C)
1 Can← {t0}; S ← ∅
2 / ∗ To slice out the ε-proximate of t0 ∗ /
3 for j ← 1 to n
4 do if |tj − t0| ≤ ε
5 then Cand← Cand ∪ {tj}
6 S ← S ∪ {j}
7 / ∗ To trim the ε-proximate of t0 ∗ /
8 PCand← Cand
9 for i← 1 to |S|

10 do for j ← 1 to |S|
11 do if |tS(i) − tS(j)| > ε
12 then PCand← PCand \ {tS(i)}
13 return PCand

We illustrate the slicing technique using an example in 3-D space. Given
t = (t1, t2, t3) ∈ T , our goal is to slice out a set of transactions T (t ∈ T ) that are
ε-proximate. Our approach is first to find the ε-proximate of t, which is the set of
transactions that lie inside a cube Ct of side 2ε centered at t. Since ε is typically
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small, the number of points inside the cube is also small. The ε-proximate of
C′

t can be found by an exhaustive comparison within the ε-proximate of t. If
there are no transactions inside the cube Ct, we know the ε-proximate of t is
empty, so as the ε-proximate of the set C′

t. The transactions within the cube can
be found as follows. First we find the transactions that are sandwiched between
a pair of parallel planes X1, X2 and add them to a candidate set. The planes
are perpendicular to the first axis of coordinate frame and are located on either
side of the transaction t at a distance of ε. Next, we trim the candidate set by
disregarding transactions that are not also sandwiched between the parallel pair
of Y1 and Y2, that are perpendicular to X1 and X2. This procedure is repeated
for Z1 and Z2 at the end of which, the candidate set contains only transactions
within the cube of size 2ε centered at t. Slicing(ε, T, t0) (Algorithm 1) describes
how to find the ε-proximate of the set Ct0 with t0 ∈ Ct0 .

5 Experiments

Our experimentation deploys the MovieLens data downloadable at
http://www.grouplens.org/taxonomy/term/14, which was made available by
the GroupLens Research Project at the University of Minnesota. In the data set,
a user is considered as an object while a movie is regarded as an attribute and
many entries are empty since a user only rated a small number of movies.

Data used for Fig. 1(a) is generated by re-sampling the Movielens data set
while varying the percentage of data from 10% to 100%. We evaluate the running
time for the (k, ε, l)-anonymity model with default setting k = 20, ε = 1, l = 2.
The execution time for (k, ε, l)-anonymity is increasing with the increased data
percentage. This is because as the percentage of data increases, the computation
cost increases too, since the overhead is increased with the more dimensions.
Next, we evaluate how the parameters affect the cost of computing. In these
experiments, we use the whole MovieLens data and evaluate by varying ε. With
k = 20, l = 2, Fig. 1(b) shows the computational cost as a function of ε, in
determining (k, ε, l)-anonymity. At the initial stage, when ε is small, more com-
putation efforts are put into finding ε-proximate of the transactions, but less
used in exhaustive search for ε-proximate of the set, and this explains the initial
decent of overall cost. As ε grows, the searching time for ε-proximate is reduced,
but the number of transactions in the ε-proximate is increased, which results in
huge exhaustive search effort and this causes the eventual cost increase.

In addition to the scalability, we experimented the comparison between the
slicing algorithm (Slicing) and the heuristic pairwise algorithm (Pairwise), which
works by computing all the pairwise distances to construct the dissimilarity ma-
trix and identify the violation of privacy requirements. We implemented both
algorithms and studied the impact of the execution time on the data percentage
and ε. Fig. 2(a) describe the trend of the algorithms by varying the percentage
of the data set. From the graph, the slicing algorithm is far more efficient than
the heuristic pairwise algorithm especially when the volume of the data becomes
larger. This is because, when the dimension of the data increases, the disadvan-
tage of the heuristic pairwise algorithm, which is to compute all the dissimilarity

http://www.grouplens.org/taxonomy/term/14
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Fig. 1. Running time comparison on Movielens data set vs. (a) data percentage varies;
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Fig. 2. Running time comparison of Slicing and Pairwise methods (a) data percentage

varies; (b) ε varies

distance, dominates the execution time. On the other hand, the smarter group-
ing technique used in the slicing process makes less computation cost for the
slicing algorithm. The similar trend is shown in Fig. 2(b) by varying ε.

6 Conclusion

We have studied the problem of protecting individuals’ sensitive ratings in the
large survey rating data. We proposed a novel (k, ε, l)-anonymity model and
studied the satisfaction problem. A novel slicing technique was proposed to solve
the satisfaction problem by searching closest neighbors in large, sparse and high
dimensional survey rating data. The experimental results confirm the slicing
technique is fast and scalable in practical.
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Abstract. In this paper, we focus our attention on the problem of Gibbs sam-
pling for privacy-preserving Latent Dirichlet Allocation, which is equals to a 
problem of computing the ratio of two numbers, both of which are the summa-
tions of the private numbers distributed in different parties. Such a problem has 
been studied in the case that each party is semi-honest. Here we propose a new 
solution based on a weaken assumption that some of the parties may collaborate 
together to extract information of other parties. 

Keywords: Privacy, Data Mining, Latent Dirichlet Allocation, Collusion. 

1   Introduction 

In recent years, with the increased concerns on privacy protection of personal infor-
mation, a number of techniques such as randomization and homomorphic encryption 
have been suggested in order to perform data mining with the private information 
preserved. In this paper, we propose a new privacy preserving data mining method 
with m parties from a general problem in data mining: Latent Dirichlet Allocation 
model (LDA, Blei et al. [1]). LDA is a generative probabilistic model for collections 
of discrete data such as text corpora, which can be seen as a special mixture model, in 
which each document is generated by choosing a distribution over topic and then 
choosing each word in the document from a distribution according to the topic se-
lected. We can employ a Markov chain Monte Carlo algorithm (Griffiths et al. [2]) for 
inference in this model. 

This paper is organized as follows. We introduce the terminology of privacy-
preserving data mining and Latent Dirichlet Allocation in section 2. In section 3, we 
formulate the main problem. And in section 4, we describe our main protocol: RSS 
protocol, and evaluate the security and efficiency of this protocol. Section 5 illustrates 
how to assemble our protocol to solve the problem of privacy-preserving LDA  
described in section 2. In section 6, we present experimental evaluations of these 
techniques. Finally, we conclude with a summary in section 7. 
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2   Preliminary 

Large numbers of conclusions in privacy-preserving data mining have been obtained 
by researchers, and almost all of them are under the assumption of semi-honest. In 
particular, one is a semi-honest party means that the party follows the protocol prop-
erly with the exception that it keeps a record of all its intermediate computation re-
sults and tries to deduce additional information from them other than the protocol 
result. In this paper, we also consider a problem called collusion that a subset of the 
participants, a coalition, might get together after the execution of the protocol in an 
attempt to deduce additional information of non-coalition parties, although every 
party also follows the protocol properly, as same as in semi-honest assumption. 

A protocol is called t-private if no coalition containing at most t parties can get any 
additional information from its execution. 

We will utilize some standard cryptographic tools and secure protocols to preserve 
privacy in our protocols. For convenience, we name the two parties "Alice" and 
"Bob" in the case of 2-party system. 

Homomorphic encryption. Public key encryption is a fundamental and widely used 
technology. The asymmetric key algorithm generates a pair of encryption keys – a 
public key and a private key. The public key used to encrypt a message is different 
from the private key used to decrypt it. The private key is kept secret, while the public 
key may be widely distributed. Given a key pair (sk, pk) and a message msg, 
c=Epk(msg) denotes an encryption of msg, and d=Dsk(c) denotes the decryption of c. In 
particular, we call such an encryption system a homomorphic encryption, if there is an 
operation *, satisfying the following condition for any msg1 and msg2: 

Epk(msg1+msg2) = Epk(msg1)*Epk(msg2).  

Secure linear function evaluation (SLFE). Alice has b, while Bob has c and d. After 
running the secure linear function evaluation protocol, called SLFE(b,c,d), Alice 
learns the value of d-bc, and Bob learns nothing. 

Protocol SLFE: 
1.Alice generates pk and sk, computes E=Epk(-b), then sends E and pk to Bob; 
2.Bob computes E'=Epk(d)*Ec, then sends E' back to Alice; 
3.Alice decrypts E' by sk, D=Dpk(E'). 

Here Epk and Dsk denote the encrypt function and the decrypt function of a homomor-
phic encryption system respectively. From the homomorphism, we can get Ec = Epk(-b)c 

=Epk(-b)*Epk(-b)*…*Epk(-b) = Epk(-bc), hence D=d-bc. 

2.1   Latent Dirichlet Allocation 

Typically, LDA model is a generative probabilistic model proposed to research text 
corpora. A document is seen as a sequence of words. A corpus is a collection of M 
documents, then we can also see a corpus as a sequence of N words, denoted by 
w=(w1,w2,…,wN). A document can deal with multiple topics, and the words that ap-
pear in that document reflect the particular set of topics it addresses. Each topic is 
treated as a probability distribution over words in the vocabulary. Thus we can view a 
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document as a probabilistic mixture of these topics. If there are T topics in total, we 
can write the probability of the ith word in a document as 

∑ =
=== T

j iiii jzPjzwPwP
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)()|()(  (1) 

where zi is a latent variable indicating the topic from which the ith word wi was drawn. 
P(wi|zi=j) is the probability of the word wi under the jth topic, whereas P(zi=j) is the 
probability of that the topic of ith word, zi, is equal to j. In other words, each word is 
generated by drawing a topic zi from P(z) first, and then drawing a word from P(wi|zi). 

2.1.1   Gibbs Sampling for LDA  
To infer zi for each word wi using Gibbs sampling, we need only compute the poste-
rior probabilities that wi is assigned to topic j, for j from 1 to T, which were derived by 
Griffiths et al. [2]: 
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ber of words in the current document di except the current assignment of zi. 
To draw a sampling for a latent variable of a word wi, we only need to compute T 

probabilities: P(zi=1|z-i,w), …, P(zi=T|z-i,w), each of which means the probability that 
zi is equal to j under the condition of z-i and w. 

2.1.2   Distributed LDA  
Now we consider a scenario in which more than one parties hold their own data, re-
spectively. They attempt to run Gibbs sampling to infer all zi with respect to the whole 
corpus spreading around them without revealing anything. In this case, because any 
single document is located in just one party, this party can compute )(
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thus compute the second item of (2) locally. Then the only remaining problem is 
computing the first item of (2) in m parties setting. Because the first item of (2) is 
only related to i and j, we can express it as a function of i and j: 
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When the data size is quite large, we propose the following approximation: 
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Here we notice that q'(wi,j) is dependent only on wi and j but not on i. And because 
the number of words in vocabulary is less than the number of words in corpus, we 
attempt to approximate q(i,j) by q'(wi,j), then draw a sampling with privacy being 
protected. From (4) and (5), 
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which means that this kind of approximation always make q'(wi,j) keep the value of 
q(i,j) except that q'(wi,j) is a little bigger than q(i,j) when j is equal to current topic. 
This means that the value of zi is a little harder to be changed when sampling. Hence, 
it will somewhat cause a slow convergence. However, this kind of approximation 
always does keep the convergence in Gibbs sampling because of the following rea-
sons: 1) It is so near to the real value if data size if big enough; 2) The second term of 
right hand side of formula (2) is still intact. 3) When converged, this approximation 
holds because all the values of probabilities are proportional to the real values except 
what corresponds to current topic. This will be verified by experiments in section 6. 

In the rest of the paper, the index attached to the left-top of a variable denotes the 
party which the variable belongs to. For instance, knj

(w) denotes the number of times 
that word w has been assigned to topic j in all documents in party k. So we can get: 
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The variables with nothing being attached to the left-top denote the variables corre-
sponding to the whole m parties, as shown in (8). 

To draw a sampling for a word w, we need to compute q'w=(q'(w,1),…, q'(w,T))T. 
Hence, it is sufficient for sampling all the words in the corpus that we only compute 
q'w for w from 1 to W. In other words, we need not compute anything for all words in 
the entire corpus. Therefore, our whole strategy of sampling is a 2-step iteration: one 
step is securely computing q'w for w from 1 to W, and the other step is locally sam-
pling each word in each party using q'w. Since sampling step is similar to original 
LDA, we concentrate our attention on the computation of q'1,…,q'W, expressed as: 
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3   Problem Formulation 

The problem of privacy-preserving LDA encountered the problem that how to se-
curely compute the ratio of two summations of the data spreading around m parties 
with nothing of each party being revealed. We formulate our problem as below. 

Problem of RSS (Ratio of Secure Summations): 
Input: 

Party 1 has a pair of data (1x, 1y); 
Party 2 has a pair of data (2x, 2y); 
…… 
Party m has a pair of data (mx, my). 

Output: 
All the m parties collaborate to compute: 
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Condition: 
Neither ix nor iy of party i is revealed to any party other than i. 
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 are revealed to nobody. 

Here it is worthy emphasizing that although the ratio of summations r is known to 
each party after this computation, ix and iy and any other function of them could not 
be evaluated by any party other than i. 

4   Protocol 

We propose a symmetric protocol solving the RSS problem. 

Stage 1. Each party generates 2m+1 random numbers in this stage. 
Protocol 2-1: 
1. Each party defines 2m+1 variables of : 

Party 1: 1b1, 
1b2, …, 1bm, 1c1, 

1c2, …, 1cm, 1d; 
Party 2: 2b1, 

2b2, …, 2bm, 2c1, 
2c2, …, 2cm, 2d; 

…… 
Party m: mb1, 

mb2,…, mbm, mc1, 
mc2,…, mcm, md. 

And then generates a random value uniformly to each variable, except 
1b1, 

2b2,…, mbm and 1c1, 
2c2,…, mcm are reserved to be decided; 

2. For each party i, where i from 1 to m: 
2-1.Party i runs SLFE(ibj,

 jci,
 jd) with the collaboration of party j where 

j=1,…,i-1,i+1,…,m, hence computes the values: iej=
jd-ibj

 jci, where 
j=1,…,i-1,i+1,…,m; 

2-2.Party i views ibi
ici as a single variable, and decides the value of ibi

ici from 
the following equation, where only ibi

ici is unknown: 
ie1+

 ie2+…+ iei-1+(id-ibi
ici)+

iei+1+…+ iem=0. 
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Therefore, each party generated 2m+1 numbers satisfying the following condition: 

dcb j
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    (j=1,2,…,m), (11) 

where 

d=1d+2d+…+md. (12) 

In next stage, We only use the value of ibi
ici but not ibi and ici, so we do not com-

pute the values of ibi and ici, even though they are two variables actually. 

Stage 2. In this stage, each party collaborate to compute the value of dx
m
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Protocol 2-2: 
1. For i from 1 to m, party i computes ib1

ix, ib2
ix,…, ibm

ix, and sends ib1
ix to 

party 1, ib2
ix to party 2, …, ibm

ix to party m, respectively; 
2. For i from 1 to m, party i receives 1bi

1x from party 1, 2bi
2x from party 2, … , 

mbi
mx from party m, respectively, and then computes 1bi
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1x, 2bi

ic2
2x, …, 

mbi
icm

mx locally, by multiplying ic1,
 ic2,…, icm, to each number respectively. 

Then summates these m numbers to if and publish it. 
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3. All parties compute the summation f, 
 i.e. f = 1f + 2f +…+ mf. 

In the case that i=j, since ibi
ici is known to party i, ibi

ici
ix can be computed locally. 

Actually, f is the summation of jbi
icj

jx, for i and j from 1 to m. In addition, from (11), 
we can get that f is just what we want: 
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Stage 3. In terms of iy, we achieve the operators in stage 1 to regenerate another series 
of bs, and cs, with the values of 1d, 2d,…, md not being changed, such that 
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where d=1d+2d+…+md. Hence we can compute the following value by protocol 2-2: 
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Therefore, the value of f/f' is just the ratio r in (10), which we want to evaluate: 
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The value d=1d+2d+…+md is known to nobody unless all the m parties publish their 
own id. Thus all parties can deduce nothing. In addition, we achieve stage 1 for only 
two times, and achieve stage 2 repeatedly. 
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Security. Following theorem ensures the security of the RSS protocol. 
Theorem. The RSS protocol is (m-1)-private. 

Performance. For convenience, we denote ta, tc, tr, te and td the time of arithmetic, 
communication, random number generation, encryption and decryption, respectively. 

Because of the symmetry of RSS protocol, all parties can execute the protocol in 
parallel. Thus the running time of one party is equal to the global running time. We 
summarize the running time of RSS protocol in Table 1.  

Table 1. The running time of the RSS protocol  

 Stage1 Stage2 Stage3 Total 
ta 2m 5m 1 14m+1 
tr 2m m - 6m 
te 2m - - 4m 
td m - - 2m 
tc 2m 3m - 10m 

 
In summary, The running time with respect to each operation is O(m). 
To compute R ratios, RSS protocol needs just two times stage 1, 2R times stage 2 

and R time stage 3. Thus we summarize the result in Table 2.  

Table 2. Running time of the RSS protocol corresponding to the R times of computations  

ta tr te td tc 
O(Rm) O(Rm) O(m) O(m) O(Rm) 

 
Compared with tc, te and td, the values of ta and tr are so small that we can ignore it 

in our protocols. So we can say that te and td are O(m) in RSS protocol. 

5   Implementations and Performance 

Our main task of distributed LDA is to securely compute a matrix Q defined by (9) 
which contains WT ratios of secure summations defined by (6). We can utilize our 
protocol to compute one ratio in terms of w by setting the variables as follows: 
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Hence we can securely compute one ratio as 
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Sampling can be drawn, after all the WT values in Q are computed. 
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6   Experiments 

In our 2-step iteration of distributed LDA, sampling step is as same as original LDA. 
As we have mentioned, the approximation in our method makes convergence slower 
than original LDA. To evaluate it, we compare the results of these two methods in the 
same machine. The experiment data is a corpus with 300 documents. All documents 
contain about 200,000 words. The number of words in vocabulary is W=20, where the 
words occurring in almost every document are omitted. The number of topics is T=5. 
Here we just evaluate and compare generated assignments of both methods. As shown 
in Figure 1, more than 167,000 data are changed in first round of both methods. 
Original LDA converges after about 10th round, while approximate LDA converges 
after about 18th round. The final results of sampling of both methods are also the same 
as each other in terms of generated assignments corresponding to each of them. 

 

Fig. 1. Speeds of convergence of original LDA and approximate LDA. Horizontal axis denotes 
the times of sampling, while vertical axis denotes the number of data being changed each time. 

In multi-computer environment, sampling step is achieved by m parties in parallel, 
and without updating parameters, so the 1-round cost of sampling step in distributed 
LDA is less than 1/m of original LDA. 

Now we discuss the computing step. Since original LDA does not contain this step, 
the efficiency of this step is with strong relation to the whole efficiency of distributed 
LDA. By the limitation of number of computers, we just simulate such a system in a 
single computer by running all the necessary steps in sequence, recording the running 
time of each step, and then overlapping the time of parallel steps to compute the 
whole running time. Splitting all experiment data into m parties, we implement just 
one round of secure computation in computing step. To compare the cost in different 
cases, we simulate the cases that m is 5, 10 and 30, and T is 5, 10 and 50, where the 
data are different from experiment of text analysis above. The result is shown in Table 
3. Here, we just fixed W=10 in each case. We notice from Table 3 that the cost of RSS 
protocol is proportional to m, because the total cost is O(m) when T is fixed. In addi-
tion, the increment of the cost of RSS protocol is not so fast when T increases, since te 
and td is independent on T.  
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Table 3. Running time (sec.) of one round of RSS protocol  

 m=5 m=10 m=30 
T=5 89 178 548 

T=10 165 329 989 
T=50 774 1547 4644 

7   Conclusions 

In this paper, we have introduced a protocol of computation of ratio of secure summa-
tions. Our RSS protocol has higher security in the case of coalition. Furthermore, we 
also discussed the performance of the RSS protocols in this paper. 

We have also introduced the Privacy-Preserving distributed LDA model which can 
be applied by the RSS protocol. Moreover, the RSS protocol can be utilized in large 
numbers of secure computation problems in privacy-preserving data mining, which 
require computing ratios of secure summations. 
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Abstract. Consider the scenario where information about a large network is dis-
tributed across several different parties or commercial entities. Intuitively, we
would expect that the aggregate network formed by combining the individual
private networks would be a more faithful representation of the network phe-
nomenon as a whole. However, privacy preservation of the individual networks
becomes a mandate. Thus, it would be useful, given several portions of an under-
lying network p1 . . . pn, to securely compute the aggregate of all the networks pi

in a manner such that no party learns information about any other party’s network.
In this work, we propose a novel privacy preservation protocol for the non-trivial
case of weighted networks. The protocol is secure against malicious adversaries.

1 Introduction

As the collection of social network data by enterprises increases, so too does the in-
cidence of proprietary network data. One simple example arises from so-called “viral
marketing” campaigns, which exploit the social networks of individuals for targeted
marketing. In such a program, a new product is distributed to a few (hopefully influen-
tial) individuals with the goal that friends will then buy the product on their recommen-
dation. If the success of recommendations can be tracked, future campaigns can take
advantage of the previously-collected network information by targeting “influential”
viral marketers, as identified by network structure.

Another scenario comes from the analysis of transactional data as a network of prod-
ucts, where the edge between two products pi and pj has a weight wij equal to the
number of times pi and pj are purchased together. It has been shown that the structure
of such a network can be exploited in order to discover meaningful complex relation-
ships between products and propose potentially profitable promotions [13].

In both cases outlined above, any one view of the network may be biased [1,7],
meaning that it is an incomplete or unfaithful representation of the underlying “true”
relationships. The simplest way to overcome such a bias is to combine networks from
multiple sources on the principle that two networks are unlikely to suffer the same bias,
or that the combination of networks will offer a more complete view of the true network.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 198–207, 2010.
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When networks are highly proprietary or private, participants may not be comfortable
disclosing their networks to each other. For instance, an aggregate social network may
be useful in collecting product recommendations (if you trust your friends and their
friends more than the general population), but the structure of individual social net-
works is often considered private. In the product networks scenario, while different
stores may benefit from sharing, they would still like to preserve their proprietary in-
formation such as exact sales and product information. It is with this motivation that
we discuss secure methods for network aggregation. Specifically, given a series of net-
works G1 = (V1, E1), . . . ,Gn = (Vn, En) from participants P1, . . . ,Pn, we show how
to produce an aggregate network G in a manner such that no participant learns anything
about another participant’s network. We then develop a novel protocol for the case of
weighted networks that is secure in the presence of malicious adversaries.

In this paper, we use the product networks scenario of [13] as the driving scenario.
Specifically, we develop a protocol with which a set of n stores, selling � products be-
tween them, participate in joint computation to securely determine cjk , the number of
times product j and product k have sold together in all stores combined (without reveal-
ing any information about the products that any one store sells). Each store chooses the
products about which it would like to learn, and the stores jointly compute the cjk with-
out leaking unintended information to any of the participants. That is, each store only
learns the total counts for products of its interest and other stores do not learn any of the
inputs. In addition to the full protocol, we present strategies for efficient implementation
and timing results based on real-world data.

It is worth noting that the protocol developed is general and can be applied to any
application requiring a secure aggregation of networks. Our focus on product networks
is driven by our ability to conduct empirical experiments, since we have data available.

The remainder of the paper is organized as follows: Section 2 describes the problem
of secure network aggregation in general and outlines the difficulties associated with
weighted networks. Section 3 describes our protocol for secure aggregation of weighted
networks, makes suggestions for efficient implementation, and provides timing results
on real-world data. Finally, Section 4 offers concluding remarks.

2 Secure Network Aggregation

Assume a series of participants P1 . . .Pn wish to combine their private networks G1 =
(V1, E1) . . .Gn = (Vn, En). These networks can be either weighted or unweighted, but
we assume that if any network has edge weights, all do.

In the case of unweighted networks, we can define an aggregate network as the
“union” of individual constituent networks: a vertex or edge appears in the aggregate
network if it appears in any individual network. In this case, aggregation is simply a
union of the sets of vertices and edges, where edges are ordered pairs of vertices. Pro-
tocols exist [6] to compute this union efficiently and securely even in the presence of
malicious adversaries. Alternatively, one could specify that a vertex or edge appears in
the aggregate network only if it appears in at least some number k of individual net-
works. This is simply a formulation of the secure over-threshold set union problem,
which has been solved in [9] for the case of semi-honest adversaries.
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The case of weighted networks is more difficult. There is no obviously correct way to
aggregate edge weights (one could take the minimum, maximum, sum, average, or any
other quantity) and no existing secure protocols permit the combination of information
such as edge weights during the computation of a set union. If we assume that the de-
sired aggregate is “sum”, as in the case of the product networks mentioned above, one
could adapt a secure association-rules protocol (i.e. [8,15]) to our problem in the fol-
lowing manner: For each edge (a, b) of weight w, produce w copies of the transaction
{a, b}. Then run a secure association rules protocol with support s and zero confi-
dence. The two-item association rules in the result will be the edges in the aggregate
network whose total weight is at least s.

There are several problems with this approach. First, the size of the transaction
database (and therefore the complexity of the algorithm) will depend on the edge
weights, which may be arbitrarily large. Second, in these protocols, one participant
learns the answer and must forward it to all others rather than informing all participants
simultaneously. Third, these protocols do not preserve the actual aggregate (sum), but
merely whether the sum exceeds a threshold. Our approach, which we present in the
next section, addresses all these concerns.

Furthermore, we provide a mechanism whereby participants commit upfront to the
vertices (i.e. products or individuals) about which they would like to learn. This com-
mitment, which can be omitted for efficiency if deemed unnecessary, provides added
privacy in that participants can only learn about what they already know. In a viral mar-
keting scenario, for example, participant Pi could obtain more complete neighborhood
information about individuals already in their network but would learn nothing about
individuals in Pj’s network that Pi had never encountered. Thus Pj’s competitive ad-
vantage is sustained.

3 Privacy-Preserving Solution

In this section, after providing background information, we present our solution, which
we call Private Product Correlation (PPC) protocol. We analyze its complexity, pro-
pose several efficiency improvements and demonstrate performance on real data. Due
to space constraints, the formal security proof has been deferred to [12].

3.1 Preliminaries

Homomorphic encryption. Our solution utilizes semantically secure homomorphic
encryption that allows computation on encrypted data without knowledge of the cor-
responding plaintext. In particular, we use public-key additively homomorphic en-
cryption such as Paillier [11]. Suppose there is a public-private key pair (pk, sk);
we denote encryption of message m as Epk(m) and decryption of ciphertext c as
Dsk(c). The additive property gives us Dsk(Epk(m1) · Epk(m2)) = m1 + m2 and
Epk(m)a = Epk(m · a). It is also possible, given a ciphertext c = Epk(m), to com-
pute a re-encryption of m such that it is not feasible to tell whether the two ciphertexts
correspond to the same message or not; this is done by multiplying the ciphertext by an
encryption of 0.
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Our protocols use a threshold version of homomorphic encryption. In an (n, k)-
threshold encryption scheme, the decryption key is distributed among n parties and
the participation of k of them (k ≤ n) is required to decrypt a ciphertext.

Zero-knowledge proofs. Our protocols rely on zero-knowledge proofs of knowledge
from prior literature. In particular, we use a proof of plaintext multiplication defined as
follows: given ciphertexts c1 = Epk(a), c2 = Epk(b), and c3 = Epk(c), the prover
proves that c corresponds to multiplication of a and b, i.e., c = a · b. Cramer et al. [2]
give a zero-knowledge protocol for this proof using Paillier homomorphic encryption,
which is the type of encryption used in this work.

Privacy-preserving set operations. Prior literature [5,6,9] contains results that permit
privacy-preserving operations on sets (or multi-sets). A set S = {s1, s2, . . ., s�} is rep-
resented as the polynomial fS(x) = (x− s1)(x− s2) · · · (x− s�). This representation
has the property that fS(s) = 0 if and only if s ∈ S.

Privacy-preserving operations on sets use encrypted representations of sets. Given a
polynomial f(x) = a�x

� + a�−1x
�−1 + . . . + a1x + a0, its encryption is formed as

encryption of each coefficient ai: Epk(f) = (Epk(a�), . . ., Epk(a0)). This representa-
tion can be used to perform set operations in privacy-preserving manner. One such an
operation used in our solution is polynomial evaluation, which given Epk(f), y, and
public parameters allows one to compute Epk(f(y)). This is done by computing the
product

∏�
i=0 Epk(ai)yi

. We also utilize the set union protocol of [6], which is the
fastest protocol for computing the union of two sets.

3.2 Private Product Correlation Protocol

In our solution we assume that there are n participants (i.e., stores) P1, . . .,Pn. Each
participant Pi sells a number of products to which we refer as Li. We assume that a
unique naming convention is used, and different participants will use the same name
for a particular product.

Overview of the solution. A natural solution to the product correlation problem in a
non-private setting proceeds as follows: each participant counts the number of instances
two products were sold together at its store, across all pairs of products the participant
offers. Given these counts, the aggregate counts are computed for each pair of products
the participants collectively carry. Each participant then saves the aggregate counts cor-
responding to the products it is interested in. The same logic could be used in construct-
ing a privacy-preserving protocol for product correlation: each participant computes the
counts privately, all of them then engage in a variant of a set union protocol preserving
(and summing) the counts during the protocol, and finally each participant performs a
set intersection on the result to recover the counts for the products of interest.

The existing techniques do not allow this functionality to be implemented in the
above form. That is, while privacy-preserving protocols for both set union and set in-
tersection exist, they are not composable, i.e., they cannot be used as sub-protocols in a
larger solution which is required to be secure. Furthermore, the way sets are represented
in these protocols does not permit additional information (such as a count) to be stored
with an element of the set. These limitations led us to design alternative mechanisms
for achieving the above task.
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Our protocol first requires that the participants agree on an (n, n)-threshold homo-
morphic encryption scheme and a naming convention for vertices. The simplest choice
would be some sort of hashed unique identifier, such as UPC codes for product net-
works, or e-mail addresses, social security numbers, or ID codes in the more general
case. Then, every participant commits to the set of products about which it would like to
learn without revealing this set to others. Next, we employ a secure set-union protocol
to determine the set of products on which we need to compute. Each participant pre-
pares counts for all pairs of products in the set union and broadcasts encrypted counts
to others. The participants jointly add the counts using the homomorphic properties of
the encryption scheme. To allow a participant to learn information about the products to
which he or she committed (without others learning anything), all parties will aid with
the decryption of necessary (unknown to others) counts.

It is conceivably possible to construct a simpler protocol to achieve similar aims.
One could repeatedly apply a secure sum protocol to compute the counts we desire,
or could omit the commitment step and simply have participants learn about all pairs
of products. However, we would argue that these solutions lack potentially desirable
security properties. Our full protocol provides added security by preventing participants
from learning an arbitrary amount of information regarding products other stores stock
(which could result in stores refusing to participate). That is, by limiting the number
of products about which a participant learns, we provide the stores with a useful utility
without giving anyone the ability to abuse the knowledge they gain.

Protocol description. The participants agree on a (n, n)-threshold homomorphic en-
cryption scheme and generate a public-private key pair (pk, sk) for it.

PPC Protocol:

1. Each participant Pi creates a list of products Di = {d1, . . ., dmi} about which
it would like to learn. Pi commits to this set by committing to the polynomial
Qi(x) = (x − d1) · · · (x − dmi) = qmix

mi + qmi−1x
mi−1 + · · · + q1x + q0

for constants qmi , . . . , q0. (Qi may be padded with fake items to hide the size of
the set Di). More specifically, Pi posts Epk(qmi), . . . , Epk(q0) along with a zero-
knowledge proof that qmi is non-zero as described in sub-protocol NZProof below.
The proof is necessary to provide a bound on the size of mi.

2. Each participant Pi prepares a list of its products Li. The participants engage in a
privacy-preserving set union protocol to determine the set of products all of them
sell. Let L = {p1, . . ., p�} denote the outcome of the protocol.

3. For each pair of products pj , pk ∈ L, Pi computes Epk(ci
jk), where ci

jk is its count
for the number of times products pj and pk were sold together for Pi. Note that if at
least one of pj and pk is not in Li, ci

jk will be 0. Pi broadcasts the values Epk(ci
jk)

for each 0 ≤ j, k ≤ � (j 	= k).
4. Each Pi locally computes the encryption of the sum of all counts for each product

pair pi, pk as Epk(cjk) =
∏n

i=1 Epk(ci
jk)). Pi then rearranges the values to form

tuples (pj , Epk(cj1), . . . , Epk(cj�)) for each pj ∈ L.
5. Now each Pi obtains the decryption of counts of the products to which Pi commit-

ted in step 1 (i.e., all counts cjk such that pj ∈ Di, 1 ≤ k ≤ �, and k 	= j). To
accomplish this, perform the following in parallel for each Pi:
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(a) One party posts Epk(Qi(p1)), Epk(Qi(p2)), . . . , Epk(Qi(p�)). Note that

Epk(Qi(pj)) = Epk(qmi)
p

mi
j · Epk(qmi−1)

p
mi−1
j · · ·Epk(q0), and since this

is a deterministic process, everyone can verify the result of the computation.
Also, note that Qi(pj) will be 0 iff pj was in Di.

(b) For each value Epk(Qi(pj)), j = 1, . . ., �, the participants randomize the un-
derlying plaintext by engaging in a NZRM (non-zero random multiplication)
protocol described below (each participant executes the NZRM protocol in or-
der). In this protocol each participant multiplies each plaintext by a random
non-zero value and proves correctness of the computation. We denote the re-
sult of the computation by Epk(bi

j). Note that bi
j is 0 if pj ∈ Di and a random

value otherwise.
(c) For each 0 ≤ j, k ≤ � (j 	= k), one party computes the values Epk(bi

j) ·
Epk(cjk) = Epk(bi

j + cjk). Note that the encrypted value is cjk if pj ∈ Di and
is a random value otherwise.

(d) The parties engage in a joint decryption protocol to reveal the values bi
j + cjk

to the Pi for all 0 ≤ j, k ≤ �.

Sub-protocols. NZProof Protocol: A user has a ciphertext c and would like to prove
that the corresponding plaintext a (where c = Epk(a)) is non-zero.

1. The prover chooses a random value b and posts Epk(b) and Epk(ab).
2. The prover proves in zero knowledge that the decryption of Epk(ab) corresponds

to the multiplication of the decryptions of Epk(a) and Epk(b).
3. The prover decrypts Epk(ab) and posts ab (this value is jointly decrypted in case of

threshold encryption). If ab is non-zero, so must a.

NZRM Protocol: Given a ciphertext c = Epk(a), a participant multiplies the underlying
plaintext by a random non-zero value b, outputs c′ = Epk(ab) and proves correctness
of the computation.

1. The participant chooses a random value b and posts Epk(b) and c′ = Epk(ab).
2. The participant proves in zero knowledge that the decryption of Epk(ab) corre-

sponds to the multiplication of the decryptions of Epk(a) and Epk(b).
3. The participant also proves that Epk(b) encrypts a non-zero value using the

NZProof protocol.

Complexity Analysis. To simplify the analysis, let m be the upper bound on the num-
ber of items to which a participant commits (i.e., m = maxi{mi}). The total work and
communication for participantPi in step 1 of the protocol is O(m+n), which amounts
to O(mn+n2) communication across all parties. The computation and communication
associated with the proof of nonzero qmi is constant with respect to m and n and does
not affect the complexity. In step 2, the overhead associated with the semi-honest (ma-
licious) version of the set union protocol is bounded by O(n�) (O(n�2 + n2�), resp.)
computation and communication per person and therefore O(n2�) (O(n2�2 + n3�),
resp.) overall communication. In step 3, each participant’s work and communication
is O(�2) resulting in O(n�2) overall communication. Step 4 involves O(�2) cheaper
operations (modular multiplications) per participant and no communication.
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To determine the output for a single participant Pi in step 5, the overhead is as
follows: step 5a requires O(m�) operations and the same amount of overall commu-
nication. Step 5b requires O(�) work and communication per participant, resulting in
the total of O(n�) communication. Here the work and communication added by the
NZProof protocol is constant per participant and per product, so the additional com-
plexity introduced is O(n�), which does not affect the asymptotic running time. Step
5c involves O(�2) computation and overall communication. Finally, step 5d involves
O(�2) threshold decryptions, which amounts to O(�2) work and communication per
participant resulting in O(n�2) total communication. Since this part is executed for
each participant, the total communication of step 5 over all participants is O(n2�2).

Thus, if the protocol is built to resist malicious adversaries, the work per participant
is O(n�2 + n2�) and the overall communication is O(n2�2 + n3�).

3.3 Efficiency Improvements

Polynomial multiplication and evaluation. As described in [5], polynomial evalu-
ation can be performed more efficiently by applying Horner’s rule. Recall from sec-
tion 3.1 that computing Epk(f(y)) amounts to calculating

∏�
i=0 Epk(ai)yi

. More
efficient computation can be performed by evaluating it from “the inside out” as
Epk(f(y)) = ((· · · (Epk(a�)yEpk(a�−1))y· · ·)yEpk(a1))yEpk(a0). Considering that
the polynomial is always evaluated on small values (compared to the size of the encryp-
tion modulus), this results in a significant performance improvement.

The set union protocol we utilize [6] also uses polynomial multiplication, which
for large polynomials becomes inefficient. Given an encrypted polynomial Epk(f1) =
(Epk(a�1), . . ., Epk(a0)) and another polynomial f2(x) = b�2x

�2 + · · ·+ b0, the multi-
plication consists of computing (encrypted) coefficients ci of their product: Epk(ci) =∏min{i,�1}

j=max{0,i−�2} Epk(aj)bi−j for i = 0, . . ., �1 +�2. This can be performed faster by us-
ing multi-base exponentiation (see, e.g., [10]), where instead of computing exponentia-
tions gx1

1 , . . ., gxk

k separately, exponentiation is performed simultaneously as gx1
1 · · · gxk

k

for a fixed (small) value of k. This can speed up computation by several times.

Packing. Assume that the (total) cjk values are at most 2M . It is likely that M � ρ,
where ρ is the number of bits in the modulus of the encryption scheme. In Step 3 of the
PPC protocol, a participant posts � encryptions. We can reduce this number by storing
s = � ρ

M � values in a single encryption, which would require only � �
s� encryptions.

To do the compression, suppose we want to place M -bit values x1, ..., xs into a
single encryption. We then compute Epk(

∑s
i=1 2M(i−1)xi). Note that as long as indi-

vidual results do not get larger than M bits, we can add to such compressed encryptions
(to obtain the value representing the pairwise values) and we can multiply them by con-
stants. In the protocol, addition is the only operation performed on the counts. Such
compressed encryptions of counts can also easily be used in Step 5 of the protocol if
only the counts that correspond to the same product are combined together (e.g., cjk

and cjk′ can be included in the same ciphertext for any k, k′). Doing this compression
does not reduce the asymptotic communication of the protocol (as this has no effect on
the set union), but it does improve the performance of Steps 3–5 in the protocol.

Leaking products with zero sales. In our data, there are many products that never sell
together, either because they are relatively unpopular or because they are not available
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at the same time. If this information is not valuable to an adversary, pairs of products
with zero sales can be excluded from the protocol, meaning that their counts do not
need to be encrypted, combined, or decrypted.

3.4 Performance

One persistent concern with privacy-preserving data mining protocols is that they tend
to be unacceptably computation-intensive. We now present a discussion of the perfor-
mance of our protocol and the optimizations that were required to make it tractable in
practice. Such a discussion serves both to demonstrate the feasibility of our algorithm
and to serve as a baseline for evaluating privacy-preserving data mining techniques.

We implemented the protocol in C using (n, n)-threshold Paillier encryption [2,3,4]
as the encryption scheme and the protocol of [6] for set union. For efficiency, we extend
the set union protocol as follows: the participants decide on a number, B, of buckets,
and each participant divides its products among the B buckets according to a hash
function. The participants run the set union protocol B times and combine the results
of the runs. This can be accomplished without leaking additional information since the
combination of several unions is the same as the final union. If the participants split
the products uniformly among B = �

log(�) buckets, the buckets will contain log(�)
products on average, reducing the time complexity of the set union from O(n�2) to
O(n� log(�)). In practice, the participants do not know the size of the union beforehand,
so we approximated � with n · �i where �i is the number of products in each store. We
find that this significantly reduces the running time of the set union.

In conducting the experiments, we accounted for the parallelism afforded by the pro-
tocol (each participant doing computation in parallel). However, in situations where the
computation must be serialized we time the computation of all participants. Specifically
we do not include key generation, the construction of unencrypted polynomials for the
set union, or the construction of the commitment polynomials. These are pre-processing
steps outside the context of PPC. For steps that can be done by all participants simulta-
neously (steps 2, 3, 4, 5d), we only time the effort of one participant. In steps 4 and 5d,
the effort to combine results is also timed.

All experiments were done with a 1024-bit key in keeping with modern standards for
public-key encryption, and are run on real-world transaction data from a convenience
store at the University of Notre Dame. For the purposes of the experiment, we con-
structed several stores from a single dataset by randomly assigning products to each
store from a pre-determined list of top-selling products. The size of the set union de-
pends on how much overlap there was between the selections of the different stores and
is, therefore, random.

Table 1 shows performance as a function of the number of participants n, the size of
the set union �, and the size of each store. We present timing results for (i) the full pro-
tocol carried out on all pairs of products and (ii) when pairs of products that were never
sold together were excluded, as mentioned in Section 3.3. We also report the speedup
obtained from the second scenario over the first. The time taken to complete the protocol
in both cases scales most significantly with the size of the set union. While increases in
the number of participants has some effect, it is partially offset by the increase in the
amount of available parallelism afforded by the participation of multiple entities.
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Table 1. Timing results for protocol execution

Participants Products Per Products in Time Time Speedup
Participant Union (all pairs) (no zeros)

3 100 239 105:25 14:21 7.35
3 200 461 386:14 45:40 8.46
3 400 942 1,637:09 98:42 16.69

5 100 312 293:33 61:57 4.74
5 200 601 1,097:21 167:49 6.54
5 400 1231 4,794:07 338:49 14.14

10 100 375 939:17 336:15 2.79
10 200 744 1,883:04 844:42 2.22
10 400 1502 7,191:15 1506:02 4.77

Improvement as a result of leaking zero counts is substantial, achieving at least 2.22
times speedup. In general, the benefit to leaking zeros increases with the size of the
union as zeros become more likely and decreases with the number of participants, as the
overhead of each computation is larger. The only exception was the case with 10 stores
and 200 products, in which we observe a decrease in speedup from 2.79 to 2.22. Based
on other results, this seems to be an aberration, perhaps caused by unusual activity on
the machine running the experiment. In all, we observe that leaking zero counts makes
the computation substantially more tractable. Whereas computing all O(�2) counts takes
almost five days with ten participants and 1500 products in the union, leaking zero
counts reduces computation time to just over one day.

4 Conclusion

The goal of this work was to design solutions that utilize the power of networks while
ensuring that privacy of the affected parties is preserved and no unintended information
leakage takes place. We considered a family of product networks where the stores want
to share information about their product/item networks to form a global network, such
that they can query this global network for efficient marketing and pricing. The collec-
tion of large volumes of customer transaction data is commonplace among both large
and small retailers of consumer products. The data collected by any one retailer may
potentially be biased, i.e., it does not accurately reflect the level of demand for products
in the store, for any number of reasons. Moreover, competitive enterprises can mutually
improve their standing in a market by sharing information with rivals [14].

To address these concerns, we developed the Private Product Correlation (PPC) pro-
tocol for the secure exchange of aggregate network information. The protocol provides
more information to participants (namely, a sum of counts) and is secure against mali-
cious as well as semi-honest adversaries. While our work targeted the product networks,
it is general enough for applicability to any scenario that requires an aggregation of net-
works such that no participant learns anything about another participant’s network.

We empirically demonstrate the efficacy of the developed protocol by present-
ing timing results, which show that our framework is tractable for participants with
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reasonable computing power. Our results suggest that execution of the protocol would
take on the order of days for participants with a modest number of products using widely-
available off-the-shelf hardware. Furthermore, if participants are comfortable with leak-
ing pairs of products that they do not sell together at all, they will see significant gains in
performance.

We hope that the above-described analytical techniques and privacy-preserving pro-
tocol lead to the increased availability of transactional datasets for scientific study. Prod-
uct networks contain significantly less information than transaction databases, because
some information is lost in the aggregation process. The combination of several prod-
uct networks, then, should reveal almost nothing about one store’s marketing model. As
such, retailers could consider an aggregated product network to be devoid of proprietary
information and may allow this information to be released and studied.
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Abstract. In many privacy preserving applications, specific variables
are required to be disturbed simultaneously in order to guarantee cor-
relations among them. Multivariate Equi-Depth Swapping (MEDS) is a
natural solution in such cases, since it provides uniform privacy protec-
tion for each data tuple. However, this approach performs ineffectively
not only in computational complexity (basically O(n3) for n data tu-
ples), but in data utility for distance-based data analysis. This paper
discusses the utilisation of Multivariate Equi-Width Swapping (MEWS)
to enhance the utility preservation for such cases. With extensive the-
oretical analysis and experimental results, we show that, MEWS can
achieve a similar performance in privacy preservation to that of MEDS
and has only O(n) computational complexity.

Keywords: Private data publication, data swapping, equi-width par-
titioning, multivariate data perturbation.

1 Introduction

Private data publication has been widely studied in statistical disclosure control
and privacy preserving data mining areas. The core task for a qualified publi-
cation is to disturb data in a way that does not lead to disclosure of sensitive
information, but maintains data utility as much as possible. Many existing stud-
ies [1,10,7,11] are focused on developing algorithms performing univariate data
perturbation, which operates each variable in a dataset individually. However,
many real-world applications with multivariate data are required to guarantee
data utility of several variables (or attributes), which have closer correlations
than with others. This paper discusses the utilisation of data swapping for mul-
tivariate data perturbation.

As the name implies, data swapping is to disturb a dataset by exchanging
values of sensitive variables among data tuples. This method is a natural so-
lution to protect confidential information from identity disclosure [10,7], while
maintains lower-order statistics of a dataset with its value-invariant property.
Equi-depth swapping is a widely used solution to guarantee each bin contain-
ing roughly the same number or frequency of data tuples, so as to provide the
same level of privacy protection for all entities. However, this approach intro-
duces the computational complexity as O(n3), where n is the size of dataset in
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multivariate scenarios. In addition, it performs ineffectively on preserving data
utility for distance-based applications, such as data mining on interval data and
multivariate density estimation with histogram, where bins are determined by
their relative distances rather than relative orders.

This paper considers the use of data swapping with equi-width partitioning,
which ensures the width of each bin approximately the same, to overcome the
drawbacks above. However, Equi-Width Swapping (EWS) can preserve data
privacy at the similar level as EDS for large datasets. It is motivated by the
idea that, the value-invariant method hides the detailed partitioning information
such as swapping distance. Our analysis shows that, this approach can achieve
good tradeoff between data utility and privacy.

The remainder of this paper is organized as follows. Section 2 presents a
brief overview of the related literature. In Section 3, we provide algorithms for
both MEDS and MEWS. Section 4 presents an exclusive analysis on privacy
for the methods above. Section 5 discusses experimental results to justify the
effectiveness of MEWS. Finally, we conclude this paper in Section 6.

2 Related Work

Data swapping was first introduced in [4] as an efficient value-invariant approach
for statistical disclosure control, and the following work [9] extends the idea
to preserve numerical data. Moore et al. [8] described a popular local swap-
ping method based on equi-depth partitioning with univariate ranking. In this
method, a term called swapping distance defines the depth of each swapping
domain, i.e., the number of tuples in each interval for swapping. Then it ranks
and localizes data tuples in the light of a specified variable in each iteration, and
then swaps candidates in each interval randomly. However, this study is limited
with its assumption that the data is uniformly distributed.

The work in [3] follows the idea of ranking but performs random sampling
as localization. Although it provides good maintenance of correlations among
variables, this technique has been proved highly inefficient [6] and provides prac-
tically no protection from attacks. A recent work [11] proposes a swapping-like
method named data shuffling, which is based on joint and/or conditional distri-
bution of variables in the original dataset, in order to minimize disclosure risk
of sensitive data. A comprehensive study of data swapping and its applications
can be found in [5].

3 Multivariate Data Swapping

In this section we first introduce some basic notation that will be used in the
remainder of this paper. Let X = {x1, x2, . . . , xn} be a dataset. Let A de-
note the set of all attributes {A1, A2, . . . , Am} and x[Ai] denote the value
of attribute Ai for a tuple x. We define swapping set as a set of attributes
{Ai, . . . , Aj} ⊂ A (i < j) for simultaneous perturbation, denoted by S, and
let S represent the set of all other attributes. Then we use x[S] to denote a
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Algorithm 1. Multivariate EDS
Input: The input dataset X, the swapping set S, and swapping distance k
Output: A perturbed dataset Y
1: xr = xs = 0, Y = φ;
2: while |X| ≥ 2k do
3: select xr, xs, where ‖xr[S] − xs[S]‖ is the largest;
4: form two bins br and bs containing xr and xs with their k−1 nearest neighbours;
5: for each group do
6: select pairs of elements randomly;
7: swap swapping set values for each pair;
8: Y ← br ∪ bs and remove them from X;

partial tuple (x[S1 = Ai], . . . , x[Sp = Aj ]) (p < m), which is the projection of
x onto the attributes in S. Without loss of generality, we assume there is only
one swapping set containing the first p attributes A1, A2, . . . , Ap, and it is not
a unique set to identify individuals.

3.1 Multivariate EDS

This section presents a heuristic method for multivariate equi-depth swapping.
The idea is to cluster tuples based on Euclidean distance between each other and
then swap attribute values in the swapping set simultaneously. We define k =
(k[A1], k[A2], . . . , k[Am]) as a vector of swapping distance for each attribute.
As the assumption that the swapping set consists of the first p attributes, the
swapping distances for these attributes are equal, i.e., k[A1] = k[A2] = . . . =
k[Ap] = k. Algorithm 1 describes the process of perturbing a dataset according
to its swapping set. The perturbation for attributes in S is omitted here since it
is exactly the same as in univariate EDS [7].

In Algorithm 1, the computational complexity of computing the most distant
tuples xr and xs is O(n2). The swapping process only costs O(k

2 ). There are⌊
n
2k

⌋
iterations. Therefore, the total computational complexity of Multivariate

EDS is O(n3

k ), where k is the swapping distance. In real-world cases, k � n, thus
the complexity is O(n3) finally. We can improve this algorithm by calculating a
symmetrical distance matrix in advance. This will reduce the time complexity to
O(n2). However, such matrix introduces the storage complexity as O(n(n−1)

2 ),
while the original method only has O(n). As the size of data set growth, the
distance matrix becomes impractical to be stored in memory.

Since MEDS only considers the relative ordering among tuples for clustering,
it inherently leads to errors in many distance-based applications, such as data
mining on interval data and density estimation with histogram. These require
a perturbation method to maintain not only the ordering but also quantitative
properties of the bins including bin width, distance between bins and relative
distance between tuples. Moreover, this method only guarantees data utility in
bins formed with the p variables in swapping set. That is, if a data user is willing
to explore the published data in lower-dimension (e.g., a subset of swapping set),
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Algorithm 2. Multivariate EWS
Input: The input dataset X, the swapping set S, and swapping distance t
Output: A perturbed dataset Y
1: partition domain of X according to S and t;
2: allocate each tuple into its corresponding bin;
3: for each non-empty bin do
4: select pairs of elements randomly;
5: swap swapping set values for each pair;
6: end for
7: Y ← X.

it may cause unacceptable errors. In the following section, we shall discuss a
multivariate swapping technique to improve data utility in the cases above while
preserving data privacy.

3.2 Multivariate EWS

To get around of the deficiencies of MEDS, we propose Algorithm 2 by redefining
swapping distance as bin width, denoted by t = (t[A1], t[A2], . . . , t[Am]), where
t[Ai] is the width on Ai. It implies that the value change for each swapping
candidate is at most t. Moreover, to split a dataset with continuous attributes,
every bin resulted by univariate partitioning will not be empty if partition degree
is larger than a threshold. However, for a multivariate partitioning, many bins
may not hold any tuple even with a very small threshold. These empty bins have
no use for analysis of utility and privacy. Therefore, we modify the definition of
partition degree [7] for MEWS as follows:

Definition 1 The partition degree is the number of non-empty bins formed by
splitting the original dataset, denoted by d ∈ N.

Let dtotal denote the total number of bins and for a partitioning PTi, we have
d(i) ≤ d

(i)
total. Then, the complexity of partitioning dataset is O(dtotal), and that

of allocating process is O(n). The worst case of the iteration step is when d− 1
bins contain one tuple each, and the other bin contains the rest n− d+1 tuples.
Thus, the computational complexity of Algorithm 2 is O(dn). While in real-world
applications, d� n, we have the complexity as O(n).

The Pruning Scheme. Although the idea of Algorithm 2 is straightforward,
it is even challenged by selecting swapping distance t. Theoretically, there exist
infinite possibilities for t within the range (0, domain(x)

2 ] due to t ∈ R
+. However,

many partitionings with small differences are duplicate and meaningless. We
introduce the Pruning scheme that determines a proper domain of swapping
distance efficiently.

Step 1: Calculate or assign a upper bound tub for t;
Step 2: Compute a lower bound tlb for t;
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Step 3: Reduce the number of partitionings to a finite number.

The first step guarantees data utility of a published dataset, since a too-large t
can make perturbed data useless due to its unacceptable bias. Step 2 considers
data privacy of a published dataset. The idea behind is to ensure that each non-
empty bin must hold at least two tuples for data exchanging. The final step is to
further remove the redundant candidates. we define Minimal Depth Bin (MDB)
to represent a bin that contains the least number of tuples corresponding to t
and let N∗ represent the number of an MDB. Then, we say two partitionings
with t ∈ [tr, ts] are similar if N∗

r−1 < N∗
r = . . . = N∗

s < N∗
s+1. Since the similar

partitionings lead to the same swapping result in MDB and the number of sets
of similar partitionings are limited in a finite dataset, the Pruning scheme finally
reduces the number of partitionings to a finite number. (The details of selections
can be found in the extended version due to space limits.)

4 Privacy Analysis

MEWS theoretically guarantees zero-loss of utility among variables in swapping
set, which makes this approach applicable to a large category of applications of
multivariate data analysis. We dedicate this section to discuss how good MEWS
is in terms of preserving privacy.

As the concept of privacy may have various concerns, we describe the privacy,
P , for the entire dataset as the probability of revealing a swapping pair who has
the highest disclosure risk in the database, which is P = max(Pr(X = xi)) (1 ≤
i ≤ n). The disclosure risk for a tuple can be computed as,

Pr(X = xj [S]) =
q∑

l=1

Pr(dl)Pr(X = xj [S] | dl) (1)

where (xi[S], xj [S]) is a swapping pair, q indicates the number of valid parti-
tionings according to the Pruning scheme. Then, we can compute the privacy
for MEDS and MEWS with the following lemmas.

Lemma 1. Given n data tuples and swapping distance k, the privacy for MEDS
is

Ped =
1

qed
× (

qed/2∑
i=1

1
i

+
qed

2(qed + 2)
) ! ln(qed) + c1

qed
(2)

where qed is the number of possible partitionings and c1 is a small constant in
the range of [γ + 0.2, 1.2].

The proof of Lemma 1 is omitted here and a similar process can be found in
[7] if interest. The above Lemma shows that, if a dataset is large, the privacy
provided by MEDS is only relative to the number of possible partitionings rather
than the number of tuples in a bin.
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Lemma 2. Given a dataset X and swapping distance t, the privacy for MEWS
is,

Pew =
1

qew
×

qew∑
i=1

1
N∗

i − 1
! ln(qew) + c2

qew
, (3)

where qew is the number of possible partitionings and c2 is a small constant
within the range [γ, 1].

Although the proof of the lemma is omitted due to space constraints, one can
see the privacy provided by MEWS is only relative to the number of possible
partitionings which is the same as MEDS.

Based on Lemma 1 and 2, let us consider perturbing a large database, which is
quite common in data mining. Generally speaking, MEDS provides more possible
partitionings than MEWS does, i.e., qed ≥ qew . But for a dataset with large size
of tuples, the domain of swapping distance will be large even with the Pruning
scheme. That is, qew can still be large enough for protecting data. Moreover, with
the same size of MDB N∗, the two approaches result in different partition degree
ded and dew, where ded ≥ dew in usual. However, degree is not a deterministic
parameter for privacy measuring. It also implies that MEWS can provide good
performance on preserving privacy as MEDS. We will show further analysis on
privacy based on specific distributed datasets in the experimental part.

5 Experiments

5.1 Privacy on Binormal Distribution

As the privacy for MEWS is sensitive to data distribution, it is deserved to
explore relations between privacy and distribution parameters by generating a
dataset with normalized bivariate normal distribution fXY (x, y; 1, 1, 0, 0, ρXY ),
where ρ is the correlation coefficient of attributes X and Y . In addition, a data
suppression is adopted to restrict domains of attributes within the range [−2, 2],
which is reasonable because most of sparse data will be cleaned before data
analysis.

The results in Table 1 show that the privacy P for MEWS has direct relation-
ships with three factors: ρ, tub and n. For a large dataset (e.g., n = 100, 000),
the disclosure probability is very small (P ≤ 7%) even the attributes are not
highly related, and turns to large (P ≥ 30%) while the correlations of attributes
are small and the size of data is not large (e.g., the up-left corner of the table).

Table 1. The impact of distribution on privacy P for MEWS

n = 10, 000 n = 100, 000

tub ρ = 0.1 0.5 0.9 0.1 0.5 0.9

0.2 0.3466 0.2986 0.1450 0.1324 0.0635 0.0250

0.4 0.1973 0.1060 0.0461 0.0359 0.0172 0.0069

0.8 0.0443 0.0254 0.0125 0.0066 0.0036 0.0017
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Since most datasets for data mining are very large, and attributes in a swapping
set generally have very close relations (otherwise the swapping set will make no
sense for data analysis), we can observe that the MEWS method can provide
good data protection. This is not intuitive but reasonable because constraints
on equi-width partition is much more relaxed than that on equi-depth partition.
This property is held only in the context of local data swapping rather than
other local perturbation approaches.

5.2 Comparison of Data Utility

Since swapping distance has various definitions for MEDS and MEWS, we con-
sider the impact of partition degree on the correlation matrix here. Given a
multivariate dataset X , let ρij be correlation coefficient of Xi and Xj and ρ

′
ij

be the corresponding coefficient once data have been swapped using a specified
method. Then, the bias of the correlation is Δρij =

∣∣∣ρij − ρ
′
ij

∣∣∣. We compute the

average Δρ and the standard deviation σΔρ as utility metrics. The experiments
are run over one synthetic and two real datasets: 1) Syn100k, contains 100, 000
data tuples and four variables, which the first two variables are generated with
the standard binormal distribution with ρ = 0.5 and others are generated indi-
vidually with the standard normal distribution; and 2) Abalone and MagicTele,
are both formed by their continuous variables in [2].

Table 2 shows that, the Δρ decreases as the partition degree increases, which
is intuitive and reasonable. In most cases, MEWS performs better than MEDS,
especially when the partition degree is not large. For example, the Δρ resulted
by MEDS is twice more than that by MEWS in both sythetic datasets and
much higher in the real datasets. In addition, during the experiment, we find
that MEWS provides more steady performance than MEDS. It implies that the
variance of σΔρ for MEDS is larger than that for MEWS.

It should notice that, even the experimental results show that MEWS can
achieve a better parametric utility in our tested data, this can not be guaranteed
in other cases. We can easily construct some datasets that fit better to MEDS.
However, the MEWS method is still a good alternative for commonly used data
distributions.

Table 2. Impact of Partition Degree on Correlations

d = 100 d = 500 d = 1000

Dataset Method Δρ σΔρ Δρ σΔρ Δρ σΔρ

Syn100k MEWS 0.40 0.16 0.20 0.08 0.11 0.08
MEDS 0.61 0.25 0.37 0.18 0.18 0.11

Abalone MEWS 0.20 0.06 0.15 0.05 0.10 0.05
MEDS 0.51 0.10 0.30 0.08 0.18 0.07

MagicTele MEWS 0.30 0.09 0.21 0.10 0.12 0.08
MEDS 0.62 0.20 0.41 0.18 0.20 0.10
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6 Conclusion

This paper explores the use of multivariate equi-width swapping as a tool for
private data publication. It makes primary benefits on two different grounds.
First, the time complexity of the algorithm is linearly proportional to the size of
a dataset, which makes this approach quite efficient especially for applying on
very large datasets. Then, it provides excellent preservation on distance-based
data utilities, which has great potential for use in the real-world data analy-
sis. Compared to the multivariate equi-depth swapping which provides uniform
privacy protection for each tuple, the proposed method still performs quite rea-
sonably on privacy protection. In our future work, the basic MEWS method
can be optimized to achieve more efficient variants for specified applications.
Applying this approach in distributed private data publication offers another
interesting direction.
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Abstract. Domain experts are frequently interested to analyze multiple related 
spatial datasets. This capability is important for change analysis and contrast 
mining. In this paper, a novel clustering approach called correspondence clus-
tering is introduced that clusters two or more spatial datasets by maximizing 
cluster interestingness and correspondence between clusters derived from  
different datasets. A representative-based correspondence clustering framework 
and clustering algorithms are introduced. In addition, the paper proposes a nov-
el cluster similarity assessment measure that relies on re-clustering techniques 
and co-occurrence matrices. We conducted experiments in which two earth-
quake datasets had to be clustered by maximizing cluster interestingness and 
agreement between the spatial clusters obtained. The results show that corres-
pondence clustering can reduce the variance inherent to representative-based 
clustering algorithms, which is important for reducing the likelihood of false 
positives in change analysis. Moreover, high agreements could be obtained by 
only slightly lowering cluster quality. 

Keywords: Spatial Data Mining, Mining Related Spatial Datasets, Variance in 
Clustering, Representative-based Clustering Algorithms, Change Analysis. 

1   Introduction 

Domain experts are frequently interested to compare clustering results of two or more 
related datasets. For example, meteorologists may want to understand the change in 
this year’s sea water temperature patterns with respect to those observed in previous 
years. Zoologists may attempt to relate animals’ habitats and their source of foods. 
We can use traditional clustering algorithms to cluster each dataset separately and 
compare the results, but this approach frequently will not lead to good results due to 
the following reasons: 

1. The clustering algorithms do not take into consideration the correspondences 
between the datasets. 

2. The randomness inherent in most clustering algorithms further complicates 
the correspondence analysis of clusterings. For example, K-means is sensi-
tive to initialization, noise, and outliers.  
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In this paper, we introduce a novel spatial clustering approach called correspondence 
clustering. Correspondence clustering clusters two or more spatial datasets by taking 
the correspondence between the different clustering into consideration. Therefore, the 
obtained clusterings relate to one another; that is, the clustering of one dataset depends 
on the clusterings of the other datasets. Consequently, variances in clusterings  
produced by traditional clustering algorithms are reduced. Moreover, the hidden rela-
tionships between related clusterings can be discovered. 

Applications for correspondence clustering include: 

1. Change analysis [7] where changes between two datasets are compared;  
correspondence clustering reduces the likelihood of identifying false change 
patterns by enhancing agreement between the clustering results for different 
datasets. 

2. Regional co-location mining [2] that seeks for regions in which two types of 
events are co-located; for example, correspondence clustering can find  
regions where deep and severe earthquakes co-locate. 

3. Correspondence clustering can help dealing with missing values. For exam-
ple, when identifying clusters with high ozone concentration, failures of 
ozone measurement equipments result in missing values. Correspondence 
clustering can use past clusterings to guide clustering when missing values 
are present. 

Challenges to develop a good correspondence clustering framework include: 

1. Techniques have to be developed to deal with the variance inherent to most 
clustering algorithms. If it is not dealt properly, false changes, and false no-
velties will be detected.  

2. Methods have to be developed that measure the correspondence between two 
clusterings which is a non-trivial problem if object identity is not known.  

3. Clustering algorithms have to be extended to cluster multiple datasets jointly 
considering cluster agreement or other relationships between the clustered 
datasets.  

4. Measuring cluster correspondence is usually quite expensive, and efficient 
techniques have to be developed to keep its overhead in check. 

The main contributions of the presented paper include:  

1. A unique framework for correspondence clustering is introduced. 
2. Representative-based correspondence clustering algorithms that allow for 

plug-in fitness functions are introduced. 
3. Novel techniques that measure the agreement between two clusterings are 

proposed.  

2   Correspondence Analysis Framework 

In this section, we propose a correspondence analysis framework. Basically, our 
framework is designed for spatial data, especially for geo-referenced datasets.  
The challenges of discovering interesting patterns in spatial data include the complex-
ity of spatial data types, the presence of hidden spatial relationships, and spatial  
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autocorrelation. Moreover, spatial space is continuous and contains many patterns at 
different levels of granularities. 

Let us assume that a set of related spatial datasets O={O1,…,On} are given. We are 
interested in finding interesting relationship among these datasets. In general,  
our framework seeks for clustering results that maximize two objectives: (1) the inte-
restingness in each clustering, (2) the correspondence between the set of obtained 
clusterings. Correspondence clustering is defined as follows. 

Definition 1. A correspondence clustering algorithm clusters data in two or more 
datasets O={O1,…,On} and generates clustering results X={X1,…,Xn} such that for 
1≤i≤n, Xi is created from Oi and the correspondence clustering algorithm seeks for 
Xi’s such that each Xi maximizes interestingness i(Xi) with respect to Oi as well as 
maximizes the correspondence Corr(X1,…,Xn) between itself and the other clusterings 
Xj for 1≤j≤n, j≠ i. 

In summary, correspondence clustering can be viewed as a multi-objective optimiza-
tion problem in which the interestingness of clustering and their correspondence are 
maximized. Moreover, different interestingness functions i and correspondence func-
tions Corr can be used for different correspondence clustering tasks. In the next  
section, a representative-based correspondence clustering approach is introduced. The 
approach allows for plug-in fitness functions that are capable to capture different 
interestingness functions i and correspondence functions Corr. 

3   Representative-Based Correspondence Clustering Algorithms 

Since our representative-based correspondence clustering approach employs a region 
discovery framework, we first introduce the region discovery framework. 

3.1   Region Discovery Framework 

The region discovery framework [1] gears towards finding scientifically interesting 
places in spatial datasets. The framework adapts clustering algorithms for the task of 
region discovery by allowing plug-in fitness functions to support variety of region 
discovery applications corresponding to different domain interests. The goal of region 
discovery is to find a set of regions X that maximize an externally given fitness func-
tion q(X); q is assumed to have the following structure: ∑   ∑  | |                       (1) 

where i(c) is the interestingness of a region c and |c| is the number of objects belong-
ing to a region c is denoted by |c|. The reward associated with region sizes is con-
trolled by parameter β (β>1). 

3.2   Representative-Based Correspondence Clustering Algorithms 

In general, representative-based clustering algorithms seek for a subset of the objects 
in the dataset⎯called the “representatives”—and form clusters by assigning the  
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remaining objects to the closest representative. In this section, representative-based 
correspondence clustering algorithms are introduced. The proposed algorithms are 
modifications of a region discovery algorithm named CLEVER [2]. CLEVER is a 
representative-based clustering algorithm that applies randomized hill climbing to 
maximize the fitness function q. Figure 1 gives the pseudo-code of CLEVER. 

Inputs: Dataset O, k’, neighborhood-size, p, p’,β 
Outputs: Clustering X, fitness q 
Algorithm:  

1. Create a current solution by randomly selecting k’ representatives from O.  
2. Create p neighbors of the current solution randomly using the given neighborhood 

definition.  
3. If the best neighbor improves the fitness q, it becomes the current solution. Go back 

to step 2.  
4. If the fitness does not improve, the solution neighborhood is re-sampled by  

generating p’ more neighbors. If re-sampling does not lead to a better solution,  
terminate returning the current solution; otherwise, go back to step 2 replacing the 
current solution by the best solution found by re-sampling.

Fig. 1. Pseudo-code of CLEVER  

Given two datasets O1 and O2, the goal of correspondence clustering is to discover 
sets of clusterings X1 and X2 that maximize the compound fitness function q(̃X1,X2). 
The compound fitness function q(̃X1,X2) is defined as follows: , 1 ,      (2) 

where q is a fitness function that assess the quality of X1 and X2. The correspondence 
parameter α is a user-defined parameter. The correspondence function Corr(X1,X2) 
measures the correspondence between X1 and X2. 

CLEVER is modified to maximize the compound fitness function q ̃ instead of the 
fitness function q. Two approaches that implement correspondence clustering are 
introduced in the following: (1) The Interleaved approach (C-CLEVER-I), and (2) 
The Concurrent approach (C-CLEVER-C). The algorithms of C-CLEVER-I and C-
CLEVER-C are given in Figure 2 and 3, respectively.  

The C-CLEVER-C uses the compound fitness function (equation 2) to cluster two 
data sets concurrently. For the C-CLEVER-I, dataset O1 and O2 are clustered one at a 
time—not concurrently— therefore, the compound fitness function (equation 2) sim-
plifies to (3) and (4) when clustering the first and second dataset, respectively. 1 ,              (3) 1 ,              (4) 

In general, there are many possible choices in selecting initial representatives of C-
CLEVER-I and C-CLEVER-C. Our current implementation supports three options: 
The first option is to randomly select a subset of size k’ from O as in CLEVER. The 
second option uses the final set of representative R from the previous iteration as the 
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initial set of representatives. The third option uses the set of representatives R’ of its 
counterpart clustering X’ to compute a set of “nearby” representatives R taken from 
the dataset O as follows:  

1. For each r’ in R’ determine its (1-)nearest neighbor in O obtaining a set R 
2. Remove duplicates from R.  

There are many choices for termination condition (TCond). The possible choices are: 
(1) fix the number of iterations; (2) terminate the program if the compound fitness 
function in the present iteration does not improve from the previous iteration. 

Input: O1 and O2, TCond, k’, neighborhood-size, p, p’,α, β 
Output: X1, X2, q(X1), q(X2), q ̃(X1,X2), Corr(X1,X2) 
Algorithm: 

1. Run CLEVER on dataset O1 with fitness function q and get clustering result X1 and 
a set of representative R1:  

(X1,R1) :=Run CLEVER(O1, q);  
2. Repeat until the Termination Condition TCond is met. 

a. Run CLEVER on dataset O2 with compound fitness function q2̃ that uses 
the representatives R1 to calculate Corr(X1,X2): 
(X2,R2) :=Run CLEVER(O2,R1, q2̃) 

b. Run CLEVER on dataset O1 with compound fitness function q1̃ that uses 
the representatives R2 to calculate Corr(X1,X2): 
(X1,R1) :=Run CLEVER(O1,R2, q1̃)

Fig. 2. Pseudo-code of C-CLEVER-I 

Input: O1 and O2, TCond, k’, neighborhood-size, p, p’, α, β 
Output: X1, X2, q(X1), q(X2), q ̃(X1,X2), Corr(X1,X2) 
Algorithm: 

1. Run CLEVER on dataset O1 with fitness function q and get clustering result X1 and 
a set of representative R1:  

(X1,R1) :=Run CLEVER(O1, q);  
2. Run CLEVER on dataset O2 with fitness function q and get clustering result X2 and 

a set of representative R2:  
(X2,R2) :=Run CLEVER(O2, q);  

3. Repeat until the Termination Condition TCond is met. 
a. Run CLEVER on datasets O1 and O2 concurrently maximizing the  

compound fitness function q:̃ 
(X1,R1,X2,R2):=Run CLEVER(O1,R1,O2,R2, q)̃

Fig. 3. Pseudo-code of C-CLEVER-C 

4   Agreement Assessment by Forward and Backward  
Re-clustering Techniques and Co-occurrence Matrices 

Using agreement between two clusterings X1 and X2 is a popular choice for a corres-
pondence function. In applications such as change analysis [7] or co-location mining 
[2], domain experts want to discover clusterings that are good and agree at least to 
some extent. In such case, Agreement(X1,X2) would be used as the correspondence 
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function. In addition, domain experts might be interested to discover regions with 
disagreement between the two datasets in anti-co-location or novelty detection. In the 
later case, Corr(X1,X2) can be defined as (1-Agreement(X1,X2)). For the remaining of 
the paper, Agreement(X1,X2) will be used as correspondence function Corr(X1,X2); in 
the section we will introduce a measure to assess agreement. 

First, we introduce re-clustering techniques that use the clustering model of one 
clustering to cluster the data in another dataset. In case of representative-based clus-
tering, the cluster models are sets of representatives. Given two clusterings X1 and X2 
of two datasets O1 and O2 and two sets of representatives of R1 and R2 of the two 
clusterings X1 and X2, forward and backward re-clusterings can be created using the 
representatives of one dataset to cluster the other dataset. More formally:  

Definition 2. Let O be a dataset and R be an arbitrary set of representatives. Then 
χREC(O,R) denotes the result of re-clustering dataset O using the set of representatives 
R. The clusters of χREC(O,R) are created by assigning objects o∈O to the closest rep-
resentative r∈R obtaining |R| clusters. 

Definition 3. χREC(O2,R1) is called forward re-clustering and  χREC(O1,R2) is called 
backward re-clustering.  

To assess cluster similarity, the similarity between two representative-based cluster-
ings X1 and X2 is computed by comparing X1 with χREC(O1,R2) and X2 with 
χREC(O2,R1).To assess the similarity of two clusterings, we construct a co-occurrence 
matrix MX for each clustering X of O as follows: 

1. If oj and oi belong to the same cluster in X, entries (i,j) and (j,i) of MX are set 
to 1. 

2. If oi is not an outlier in X, set (i,i) in MX to 1 
3. The remaining entries of MX are set to 0 

Let MX and MX’ be two co-occurrence matrices that have been constructed for two 
clusterings X and X’ of the same dataset O; then the similarity between X and X’ can 
be computed as follows:  , ’    ,   ≤               ,   ≤               

(5) 

Sim(X,X’) in equation (5) is a generalization of the popular Rand Index [8] that ad-
ditionally takes outliers into consideration. Finally, we define agreement between 
clustering X1 and X2, by comparing the clusterings of the two datasets with their re-
spective forward and backward re-clusterings as follows:  1, 2   , ,   , ,

        (6) 

The advantage of the proposed agreement assessment method based on re-
clustering techniques and co-occurrence matrices is that it can deal with: (1) datasets 
with unknown object identity, (2) different number of objects in two datasets, (3) 
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different number of clusters in the two clusterings. Therefore, we claim that it is suit-
able for most types of spatial data. 

5   Experiments 

In the first experiment, we show that correspondence clustering provides comparable 
or better results than the traditional clustering. Moreover, the experimental results 
show that by enhancing agreement between two corresponding datasets, correspon-
dence clustering produces clusterings that have lower variance than a traditional clus-
tering algorithm. In the second experiment, we evaluate and compare different cluster 
initialization strategies for correspondence clustering. 

5.1   Earthquake Dataset and Interestingness Function 

We run our experiments on an earthquake dataset that is available on website of the 
U.S. Geological Survey Earthquake Hazards Program http://earthquake.usgs.gov/. 
The data includes the location (longitude, latitude), the time, the severity (Richter 
magnitude) and the depth (kilometers) of earthquakes. We uniformly sampled earth-
quake events from January 1986 to November 1991 as dataset O1 and earthquake 
events between December 1991 and January 1996 as dataset O2. Each dataset contains 
4132 earthquakes. 

Suppose that a domain expert interests in finding regions where deep and shallow 
earthquakes are in close proximity; that is, he/she is interested in regions with a high 
variance for the attribute earthquake depth. The following interestingness function 
captures the domain expert’s notion of interestingness.  0 ,,,,                (7) 

where                     , | | ∑           (8) 

The attribute of interest z(o) is depth of earthquake o; |c| is the number of objects in 
region c and µz is the average value of z in region c; th≥1 is the reward threshold that 
captures what degree of earthquake depth variance the domain expert find news wor-
thy; in general, regions with i(c)=0 are considered outliers. Finally, η with ∞>η>0 is 
the reward function form parameter.  

5.2   Experiment Investigating Variance Reduction 

We run the interleaved approach of the representative based correspondence cluster-
ing, C-CLEVER-I, and the traditional clustering algorithm, CLEVER, and compare 
the results with respect to cluster quality and agreement.  

First we run CLEVER on dataset O1 and O2 five times to generate five clusterings 
for each dataset. Then we run C-CLEVER-I for five iterations with α=1.0e-4 and  
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α=2.0e-6 for five times each. Figure 4 summarizes the experiments conducted. Each 
circle represents each clustering. The dashed lines between Clustering X1 and X2 in 
CLEVER show that fitness values (q(X1)+q(X2)), and Agreement(X1,X2) of CLEVER 
are computed from all twenty five possible pairs of X1 and X2. When correspondence 
clustering is used, those values are only computed for the five pairs of clusterings 
obtained by C-CLEVER-I (one for each run; indicated by solid lines with two ways 
arrows). For each clustering of C-CLEVER-I, the representatives from the previous 
iteration of its own clustering are used as initial representatives of the present itera-
tion. The parameter settings of CLEVER and C-CLEVER-I are shown in Table 1 and 
Table 2. All parameters for CLEVER and C-CLEVER-I are set to the same values 
except for the values of p and p’. Since C-CLEVER-I is run for five iterations for 
each pair of clustering X1 and X2, for a fair comparison, we set the p and p’ of CLEV-
ER to be five times higher than C-CLEVER-I. The experiment is evaluated by fitness 
function (equation (1)), agreement (equation (6)) and similarity (equation (5)). Table 
3 shows average values of all the experimental results. The computation time meas-
ures the average wall clock time in milliseconds used by the algorithms to generate a 
pair of clusterings X1 and X2. We use similarity measure Sim(X,X’) in equation (5) to 
assess variance between two clusterings generated using the same dataset. In general, 
the algorithm that produces higher Sim(X,X) creates clusterings that are more similar 
in different runs, thus, exhibiting lower variance. 

Table 1. Parameter settings of CLEVER 

 

Table 2. Parameter settings of C-CLEVER-I 

 

 

Fig. 4. Illustration of the experiment 
 

=2.0 p=100 =100 =2.0 th=1.2
Neighborhood size = 3 Probabilities for add, delete, and replace representatives : 0.2, 0.2, 0.6

TCond = 5 iterations =2.0 p=20 =20 =2.0 th=1.2
Neighborhood size = 3 Probabilities for add, delete, and replace representatives : 0.2, 0.2, 0.6
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Table 3. Comparison of average results of CLEVER and C-CLEVER-I 

 CLEVER 
 

C-CLEVER-I 
(α=1.0e-5) 

C-CLEVER-I 
(α=2.0e-6) 

Fitness q(X1) 1896492 1896821 1870152 
Fitness q(X2) 1756189 1713519 1685332 
q(X1) + q(X2) 3652681 3610341 3555485 
Agreement(X1,X2) 0.332909 0.349231 0.776172 
Sim(X1,X1) 0.665973 0.703770 0.663314 
Sim(X2,X2) 0.344895 0.623614 0.619446 
Computation Time 5.48E+06 2.18E+06 2.30E+06 

 

From Table 3, C-CLEVER-I with α=1.0e-5 produces higher fitness values for 
clustering X1 and but lower fitness values of X2 than CLEVER. For Agreement(X1,X2) 
and Sim(X1,X1), C-CLEVER-I with α=1.0e-5 produces slightly higher values than 
CLEVER but for Sim(X2,X2), C-CLEVER-I produces significantly higher value than 
CLEVER. From this point of view, the higher values of Sim(X1,X1) and Sim(X2,X2) 
indicate than each run of C-CLEVER-I creates more similar clustering results for 
each clustering X1 and X2 which means that C-CLEVER-I produces lower variance 
than CLEVER. With α=2.0e-6, C-CLEVER-I is forced to emphasize agreement. 
Therefore, the fitness values of clustering X1 and X2 of C-CLEVER-I are slightly 
lower than CLEVER but Agreement(X1,X2), and Sim(X2,X2) of C-CLEVER-I are sig-
nificantly higher than CLEVER. Moreover, C-CLEVER-I computes its results about 
half of the runtime CLEVER uses. 

From the experimental results, we conclude that correspondence clustering can re-
duce the variance inherent to representative-based clustering algorithms. Since the 
two datasets are related to each other, using one dataset to supervise the clustering of 
the other dataset can lead to more reliable clusterings by reducing variance among 
clusterings that would have resulted from using traditional representative-based clus-
tering algorithms, as they are more susceptible to initial representatives and outliers. 
Moreover, obtaining higher agreement could be accomplished with only a very slight 
decrease in cluster quality. 

5.3   Experiment for Representative-Based Correspondence Clustering with 
Different Methods of Initial Representative Settings 

We run experiments to compare results of three initialization strategies for C-
CLEVER-I; the three tested strategies are as follows : (1) random representatives (C-
CLEVER-I-R), (2) representatives from the nearest neighbor of representatives of the 
counterpart clustering (C-CLEVER-I-C), and (3) the final representatives from the 
previous iteration are used as the initial representatives for the next iteration (C-
CLEVER-I-O). For each option of the initial representative setting techniques, five 
pairs of clustering X1 and X2 are generated, similar to the previous experiment. Table 
4 shows parameter settings used in the experiments. The average values of the expe-
rimental results are shown in Table 5.  
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Table 4. Parameter settings of C-CLEVER-I  

TCond = 5 iterations α=2.0e-8 β=2.8 p=20 p’=20 η=2.0 th=1.2  
Neighborhood size = 3 Probabilities for add, delete, and replace representatives : 0.2, 0.2, 0.6 

Table 5. Comparison of average results of C-CLEVER-I with different means of initial repre-
sentative settings 

 C-CLEVER-I-C C-CLEVER-I-O C-CLEVER-I-R 
Compound Fitness q ̃(X1,X2)  9.857655 10.10406 9.952686 
Fitness q(X1) 2.3E+08 2.66E+08 2.46E+08 
Fitness q(X2) 2.14E+08 2.17E+08 2.13E+08 
q(X1) + q(X2) 4.44E+08 4.82E+08 4.59E+08 
Agreement(X1,X2) 0.977259 0.459206 0.771505 
Computation Time 3.23E+06 2.72E+06 7.10E+06 

 
 

From Table 5, C-CLEVER-I-C produces clusterings with the highest agreement 
but the lowest compound fitness value. This is because C-CLEVER-I-C uses initial 
representatives that are closest to the representatives of its counterpart clustering. 
Then C-CLEVER-I-C generates clusterings X1 and X2 that are very similar which 
results in very high agreement. Though, the agreement is very high, the low fitness 
values lead to the low compound fitness value. For C-CLEVER-I-O, the initial repre-
sentatives used are the final representatives from the previous iteration. In contrast to 
C-CLEVER-I-C, with α=2.0e-8, C-CLEVER-I-O favors increasing fitness values 
rather than increasing agreement between the two clusterings. This is indicated by the 
highest fitness values but the lowest agreement value. As for C-CLEVER-I-R, it pro-
duces comparable fitness values and intermediate agreement value but consumes the 
highest computation time. This is due to the fact that C-CLEVER-I-R randomizes its 
initial representatives, which allows the algorithm to explore the dataset more tho-
roughly than the others but in return, it needs more time to find the solution. 

6   Related Work 

Correspondence clustering relates to coupled clustering, and co-clustering which both 
cluster more than one dataset at the same time. Coupled clustering [3] is introduced to 
discover relationships between two textual datasets by partitioning the datasets into 
corresponding clusters where each cluster in one dataset is matched with its counter-
part in the other dataset. Consequently, the coupled clustering requires that the num-
ber of clusters in two datasets be equal. In general, the coupled clustering ignores 
intra-dataset similarity and concentrates solely on inter-dataset similarity. Our ap-
proach, on the other hand, provides no limitation on number of clusters. It considers 
both intra-dataset and inter-dataset similarities. The intra-dataset similarity is included 
through interestingness measures and the inter-dataset similarity is included through 
correspondences in sets of representatives. 

Co-clustering has been successfully used for applications in text mining [4], mar-
ket-basket data analysis, and bioinformatics [5]. In general, the co-clustering clusters 
two datasets with different schemas by rearranging the datasets. In brief, datasets are 
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represented as a matrix with one dataset is organized into rows while the other dataset 
is organized into columns. Then, the co-clustering partitions rows and columns of the 
data matrix and creates clusters which are subsets of the original matrix. In case of 
spatial data mining, re-organizing the data into data matrix causes spatial relationships 
related to location of data points to be lost: clusters are no longer guaranteed to be 
contiguous. Accordingly, co-clustering is not applicable to spatial clustering.  

Correspondence clustering is also related to evolutionary clustering [6] that is used 
for multi-objective clustering. Evolutionary clustering clusters streaming data based on 
two criteria: the clustering quality of present data and its conformity to historical data.  

In conclusion, the three reviewed clustering techniques cluster data based on dis-
tances alone whereas the correspondence clustering approach allows to cluster multiple 
datasets based on a domain expert’s definition of interestingness and correspondence. 
Consequently, correspondence clustering is more general and can serve a much larger 
group of applications. For example, none of the three approaches can be used for the 
earthquake clustering problem we used in the experimental evaluation; in the experi-
ment, clusters are formed by maximizing the variance of a continuous variable and not 
by minimizing the distances between objects that belong to the same cluster.  

7   Conclusion 

In this paper, we introduce a novel clustering approach called correspondence clustering 
that clusters two or more related spatial datasets by maximizing cluster interestingness 
and correspondence between clusters for the different datasets. A representative-based 
correspondence clustering framework is introduced and two representative-based cor-
respondence clustering algorithms are proposed. We conducted experiments in which 
two datasets had to be clustered by maximizing cluster interestingness and agreement 
between the spatial clusters obtained. The results show that correspondence clustering 
can reduce the variance inherent to representative-based clustering algorithms. Moreo-
ver, high agreements could be obtained by only slightly lowering clustering quality. In 
general, correspondence clustering is beneficial for many applications, such as change 
analysis, co-location mining and applications that are interested in analyzing particular, 
domain-specific relationships between two or more datasets. 

In addition, the paper proposes a novel agreement assessment measure that relies 
on re-clustering techniques and co-occurrence matrices. The agreement assessment 
technique proposed is applicable for (1) datasets with unknown object identity, (2) 
different number of objects in two datasets, (3) different number of clusters in two 
clusterings. Therefore, it is suitable for most types of spatial data. 
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Abstract. With technology advancement and increasing popularity of

location-aware devices, trajectory data are ubiquitous in the real world.

Trajectory corridor, as one of the moving patterns, is composed of con-

catenated sub-trajectory clusters which help analyze the behaviors of

moving objects. In this paper we adopt a three-phase approach to dis-

cover trajectory corridors using Fréchet distance as a dissimilarity mea-

surement. First, trajectories are segmented into sub-trajectories using

meshing-grids. In the second phase, a hierarchical method is utilized to

cluster intra-grid sub-trajectories for each grid cell. Finally, local clus-

ters in each single grid cell are concatenated to construct trajectory

corridors. By utilizing a grid structure, the segmentation and concatena-

tion need only single traversing of trajectories or grid cells. Experiments

demonstrate that the unsupervised algorithm correctly discovers trajec-

tory corridors from the real trajectory data. The trajectory corridors us-

ing Fréchet distance with temporal information are different from those

having only spatial information. By choosing an appropriate grid size,

the computing time could be reduced significantly because the number

of sub-trajectories in a single grid cell is a dominant factor influencing

the speed of the algorithms.

Keywords: Trajectory, Fréchet Distance, Meshing Grids.

1 Introduction

With the technology progress and popularity of location-aware devices, vast data
of moving objects have been collected. Trajectory data are ubiquitous in the
real world including tropical cyclones data, transportation system data, flock-
ing sheep data, migrating birds data, to name a few. Consequently, trajectory
analysis has become a pragmatic tool to discover moving objects patterns. Tra-
jectory corridor, through which the moving objects frequently pass, is one of the
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Fig. 1. An example of trajectories, clusters and corridors

moving patterns. In this paper, we address the trajectory corridor as concate-
nated sub-trajectory clusters which could help identify and predict the behaviors
of the moving objects. An example to illustrate trajectories, local clusters and
trajectory corridors is shown in Fig.1.

Because not only may a trajectory belong to multiple trajectory corridors
simultaneously, but trajectory corridors are also composed by different groups of
trajectories at different parts. In this paper, we adopt a three-phase approach to
mine the trajectory corridors using Fréchet distance and meshing grids. Firstly,
trajectories are segmented into sub-trajectories according to the meshing-grids.
In the second phase, a hierarchical method is utilized in each grid cell separately
to cluster intra-grid sub-trajectories. Finally, the local clusters in each single grid
cell are concatenated to construct trajectory corridors.

Summarizing, the contributions presented in this paper are:

– We introduce discrete Fréchet distance as a novel dissimilarity measurement
between trajectory clustering because it is generally regarded as a more
appropriate distance function for polygonal curves and could easily consider
not only shapes, relative positions and orientations, but also velocities of
trajectories.

– We propose a meshing grid structure. By utilizing grid structure, the seg-
mentation and concatenation need only single traversing of trajectories or
grid cells. When choosing appropriate grid size, the computing time could
be reduced significantly since the dominant factor of the computing time is
the amount of sub-trajectories in a single grid cell.

2 Related Work

Gaffney and Smyth[7] propose a method of trajectory clustering using mixture
of regression models. Nanni and Pedreschi[10] propose a density-based trajectory
clustering algorithm based on OPTICS[2]. In the above work, the object to be
clustered is the whole trajectory, namely, one trajectory can be only in one
cluster. Thus, trajectory corridors are not their objective.

In the trajectory clustering algorithm proposed by Lee et al.[9], trajectories are
partitioned into a set of line segments which are clustered by using DBSCAN[6]
algorithm. However, because Fréchet distance could handle polygonal curves
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well, we need not to simplify the trajectories into line segments but only cut
off trajectories into several short polygonal curves. And we adopt a hierarchical
method for clustering to avoid distance accumulation discussed in Section 5.2.

3 Preliminary Definition

In reality, a moving object trajectory is a finite set of observations at discrete
time stamps t1, t2, · · · , tn. It could be assumed that an object moves between
two consecutive time steps on a straight line and the velocity is constant along
the segment. Hence we define the trajectory τ as a polygonal line with n vertices
having time stamps.

Definition 1 (Trajectory). τ = 〈(t1, p1), (t2, p2), · · · , (tn, pn)〉, where pi ∈ R
d.

The space is partitioned by meshing-grids. Every grid cell Gj has an id j to
label it. The sub-trajectory is recorded in τ ′

i,j,mark where i represents the original
trajectory τi it belongs to, j represents the grid cell Gj it falls into and mark is
the mark to differentiate the different part of the same trajectory in the same
grid. The definition of sub-trajectories is the same as that of trajectories.

Definition 2 (Local Cluster in Grid Cell Gj). Cj = 〈 τ ′
i1,j,mark1

, τ ′
i2,j,mark2

,
· · · , τ ′

im,j,markm
〉, where τ ′

ik,j,markk
(1 ≤ k ≤ m) is a sub-trajectory in grid

cell Gj .

The local cluster in a certain grid cell is a set of sub-trajectories in that cell, so
the cluster has no shape or range. However, the cluster has its own origin and
destination. The position and velocity at origin and destination of a cluster are
average values of sub-trajectories in that cluster.

Definition 3 (Trajectory Corridor). TC = 〈 Cj1 , Cj2 , · · · , Cjl
〉, where Cji

(1 ≤ i ≤ l) is a local cluster in grid cell Gji , and the consecutive local clusters
Cji and Cji+1 need to follow concatenating criteria discussed in Section 5.3.

The trajectory corridor is a sequence of local clusters and the order of the se-
quence indicates the direction of the trajectory corridor. Every trajectory corri-
dor is composed of either one local cluster or more. Moreover, different trajectory
corridors may share the same local cluster.

4 Computing Fréchet Distance

Distance function is the key component of mining trajectory corridors because
dissimilarity measurement is necessary to group similar trajectories. The Fréchet
distance is a measurement for curves and surfaces. It is defined using reparam-
eterizations of the shapes. The Fréchet distance is generally regarded as being
a more appropriate distance function than the Hausdorff distance or other dis-
tances for curves[1] because it takes the continuity of the shapes into account.
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Due to high complexity of computing Fréchet distance, the discrete Fréchet dis-
tance as a natural variant for polygonal curves is more proper for computing.
Eiter and Mannila[5] proposed a dynamic programming algorithm to compute
discrete Fréchet distance in O(mn) time.

Consider two polygonal curves P , Q in R
d given by the sequences of their

vertices 〈p1, · · · , pn〉 and 〈q1, · · · , qm〉, respectively. Computing discrete Fréchet
distance only uses coupling C which is a sequence of pairs of vertices C=〈C1,
· · · , Ck〉 with Cr=(pi, qj) for all r=1, . . ., k and some i∈{1, . . ., n}, j∈{1, . . .,
m}, fulfilling

– C1=(p1, q1) and Ck=(pn, qm)
– Cr=(pi, qj) ⇒ Cr+1∈{(pi+1, qj), (pi, qj+1), (pi+1, qj+1)} for r=1, . . ., k− 1

Definition 4 (Discrete Fréchet Distance[3]). Let P , Q be two polygonal
curves in R

d, and let | · | denote an underlying norm in R
d. Then the Discrete

Fréchet Distance δdF (P, Q) is defined as

δdF (P, Q) = min
couplingC

max
(pi,qj)∈C

|pi − qj |

where C ranges over all couplings of the vertices of P and Q.

If the distance computation | · | between vertices ignores velocities of trajectories,
the distance function is shape dependent only like DTW[8], LCSS[11], EDR[4]
and so on. However, the two trajectories may have similar shapes, but actually
they represent totally different moving patterns when considering velocities il-
lustrated in Fig.2. Yanagisawa et al.[12] propose a measurement combined DTW
distance with Euclidean distance which considers both velocities and shapes of
moving objects, whereas the distance is sensitive to the grouping parameter μ
and they require time duration of different trajectories to be the same length.
Hence another merit brought by Fréchet distance is that it could easily take
account of velocities. By substituting | · | between vertices, not only spatial in-
formation of trajectories but also temporal information of trajectories can be
considered. In our paper, a simply solution is provided that the distance | · |
between two vertices in two dimensions is defined as

√
ωs(Δx2 + Δy2) + ωtΔv2,

and weights ωs and ωt differentiate the effects of spatial properties and temporal

Y

p1

p2

p4
p5

q1

q2

q3

q5
t

X
q4

p3

Fig. 2. The trajectories with similar shapes but different velocities
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properties. v is the instant velocity at the vertex. If ωt = 0, | · | is translated into
Euclidean norm. The experiments in Section 6 illustrates the trajectory corri-
dors considering velocities are quite different from those using ωt = 0. Actually,
adjusting weights to make spatial and temporal properties equally important is
empirical and influenced by spatial and temporal units.

5 Mining Trajectory Corridors

The procedure of mining trajectory corridors which is composed of three phases
is illustrated in Fig.3. In the first phase, trajectories are segmented into sub-
trajectories according to the meshing-grids. In the second phase, the hierarchi-
cal clustering algorithm based on discrete Fréchet distance is implemented in
each grid cell. Finally, the local clusters in abutting grid cells are concatenated
according the concatenation criteria to discover trajectory corridors.

Segmentation ConcatenationClustering

Fig. 3. An example of mining trajectory corridors

In this paper, we usee meshing grids structure to segment trajectories and
concatenate local clusters because by utilizing grids, the segmentation and con-
catenation need only single traversing of trajectories or grid cells. Furthermore
when changing grid size appropriately, the computing time could be reduced
significantly since the dominant factor of the computing time is the amount of
sub-trajectories in a single grid cell. This advantage is theoretically and experi-
mentally analyzed and discussed in Section 6.

5.1 Segmentation

Since the different parts of a certain trajectory may belong to different trajec-
tory corridors, segmenting trajectory into sub-trajectories is indispensable. In
the process of segmentation, the size of grid cells are assigned in advance. As
illustrated in Fig.4, when traversing each vertex in a trajectory, no segmentation
will be executed until consecutive vertices pair (pi, pi+1) are not in the same grid
cell. The intersections between the line segment pipi+1 and edges of grid cells
are computed. The trajectory is partitioned at each intersection. After segmenta-
tion, only the sub-trajectories in those grid cells which potentially contain local
clusters will be preserved for the next phase. This process may reduce comput-
ing time dramatically when many grid cells include sparse sub-trajectories. The
algorithm of segmentation costs O(n) time, where n is the sum of the vertices
of all trajectories.
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Fig. 4. Illustration of Segmentation

5.2 Intra-grid Sub-trajectory Hierarchical Clustering

τ1

τ2

τ3

τ4

τ5τ6

τ7

τ8

Fig. 5. Illustration of dis-

tance accumulation

In this paper, we adopt an agglomerative hierarchi-
cal clustering method and use two cluster distances
dmin and dmax at the same time to avoid distance
accumulation illustrated in Fig.5. In the example, τ1

and τ8 are almost in the opposite directions but may
be merged into the same cluster because each pair
of nearby trajectories τi and τi+1 has a small dis-
tance. Two cluster distances dmin and dmax are defined
as follow: dmin(Ci, Cj) = mind(p, q), dmax(Ci, Cj) =
maxd(p, q), where p ∈ Ci, q ∈ Cj , d(p, q) is mod-
ified discrete Fréchet distance between p, q. In this
phase, the computing is only executed in the grid cells that have sufficient sub-
trajectories. For each hierarchy, the nearest clusters are merged according to
dmin. Namely, two clusters are merged when they have the minimal dmin. How-
ever, while dmax between the nearest clusters exceeds an certain threshold, no
merging executes and the algorithm continues to the next hierarchy. Until the
minimal dmin exceeds an termination condition, clustering ceases. Finally, the
local clusters which do not have sufficient sub-trajectories are pruned. The algo-
rithm for each grid can be computed in O(n2l2+n2 log n+n2m2) time, where n is
the amount of sub-trajectories, l is the amount of vertices of one sub-trajectory,
m is the amount of sub-trajectories in one cluster. An example of intra-grid
sub-trajectory clustering using distance matrix and index is illustrated in Fig.6.

5.3 Inter-grid Concatenation

In this phase, we propose an algorithm of concatenating local clusters to discover
trajectory corridors. The concatenation criteria is defined as follow: When posi-
tions and velocities between the origin of one cluster and the destination of the
other cluster in the adjacent grid cell are similar, we call the two local clusters
are connectable. And we consider concatenation that does not require the adja-
cent local clusters sharing the sufficient same trajectories or even same amount
of trajectories. Trajectory corridors are continuous channels with directions that
moving objects frequently visit but enter and leave freely.
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Fig. 6. Illustration of intra-grid sub-trajectory clustering using distance matrix and

index
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Fig. 7. Illustration of inter-grid concatenation

In the phase of local clusters concatenation, traversing all grid cells that have
local clusters only once could find all possible trajectory corridors. In each step,
we check one grid cell Gj and the local clusters in it. If there exists local clusters
Cq in neighbor cells having the origins connectable with the destinations of the
local clusters Cp in Gj , all trajectory corridors including Cp are catenated to
all trajectory corridors including Cq. This approach can be computed in O(nk)
time, where n is the amount of local clusters and k is the amount of trajectory
corridors. An example of concatenation is illustrated in Fig.7 and trajectory
corridors with only one cluster are hidden.

6 Experiments

In this paper, all experiments were conducted by using the tropical cyclone best
track data set1. And for all experiments, parameters including pruning criteria,
termination condition and concatenation criteria are constant.

Fig.8(a) is the result of clustering which considers both spatial and temporal
similarity, whereas, Fig.8(b) is the result of clustering which ignores the velocity.

1 http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html
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Cluster CorridorTrajectory

(a) velocity is considered (b) velocity is ignored

Fig. 8. Trajectory corridors considering velocity or not

5× 5 meshing grids 10× 10 meshing grids 15× 15 meshing grids

Fig. 9. Trajectory corridors in different grid sizes

The experiments successfully demonstrate that by considering temporal proper-
ties, the sub-trajectory clusters are different from those that have only spatial
properties.

From Fig.9, it is obvious that more grid cells produce more sub-trajectories,
local clusters and trajectory corridors. However, the computing time is reduced
significantly, when the amount of sub-trajectories per cell decreases from 21 to
5.(see Fig.10(a)). Since building index runtime is the dominant factor in the
overall runtime illustrated in Fig.10(b), the overall running time could be ap-
proximated to O(kn2 log n), where n is the amount of sub-trajectories in one grid
cell and k is the amount of grid cells. Thus when choosing appropriate grid size,
the computing time could be reduced, because the amount of sub-trajectories
per cell may decrease. The grid size may affect both computing time and clus-
tering quality. The quality of the results may decrease when grid size is larger
due to more noises. So to keep the quality of the clustering results and to reduce
computing time requires a trade-off which vary from data to dada.

The experiments successfully validate our algorithm to discover trajectory cor-
ridors. The tropical cyclones in Western North Pacific and the South China Sea
often have parts of their trajectories in such a corridor: start from the position
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Fig. 10. Runtime in different meshing-grid sizes

around 135 ◦E−150 ◦E, 10 ◦N, move towards northwestern to the location about
120 ◦E−135 ◦E, 25 ◦N, then towards northeastern and finally end approximately
at 145 ◦E, 40 ◦N.

7 Conclusions

In this paper, we adopt a three-phase approach to discover trajectory corridors
using Fréchet distance as a dissimilarity measurement. The experiments success-
fully discovered tropical cyclone corridors by segmenting, clustering and concate-
nating various components of a trajectory. The trajectory corridors discovered
by using Fréchet distance with temporal information may be more significant.
The use of meshing grid structure could reduce computing time effectively by
choosing an appropriate grid size.
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Abstract. Time series data appears in numerous applications including

medical data processing, financial analytics, network traffic monitoring,

and Web click-stream analysis. An essential task in time series mining

is efficiently finding matches between similar time series or parts of time

series in a large dataset. In this work, we introduce a new definition of

subseries join as a generalization of subseries matching. We then propose

an efficient and robust solution to subseries join (and match) based on a

non-uniform segmentation and a hierarchical feature representation. Ex-

periments demonstrate the effectiveness of our approach and also show

that this approach can better tolerate noise and phase-scaling than pre-

vious work.

Keywords: time series, similarity-based match, subseries join.

1 Introduction

Time series are composed of sequences of data items measured at (typically)
uniform intervals. Time series arise frequently in many scientific and engineer-
ing applications, including finance, medicine, digital audio, and motion capture.
Efficiently searching for similarities in a large time series dataset is a challenging
problem, especially when partial or subseries matches are needed. Most previous
work has focused on either whole match or subseries match problems. Whole
matches find a time series similar to a given (query) time series in a dataset
consisting of a collection of time series. Such matches are one-to-one. Subseries
match, in contrast, finds similar segments (which we will call subseries) in a time
series dataset to given a single query time series, and is a one-to-many match.
However, when time series are very long and contain complex features, whole
matches will find meaningless matches. Subseries matches are more specific but
still depend on matching the whole of a specific query time series. This form of
match still cannot deal with two timeseries that may have subseries pairs that
are similar but are not similar as a whole. To deal with this case, we introduce
an operation called subseries join which matches pairs of similar subseries in a

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 238–245, 2010.
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set of time series. Subseries join is a symmetric operation and produces many-to-
many matches. It is a generalization of both whole match and subseries match.
It is potentially useful in many data mining applications such as motif detection
and anomaly detection [1]. In this work, we also present a non-uniform indexing
method for time series based on intrinsic structure, and a search technique based
on this structure that can efficiently compute subseries join. When restricted to
matching, our approach can also tolerate both impulsive noise and additive noise
better than previous approaches to these problems.

2 Related Work

In order to define the similarity of time series, we need to define a distance met-
ric. The Euclidean distance metric has been used widely in the time series mining
area. Various normalizations of the Euclidean distance have also been proposed,
such as shifting, scaling, linear trend elimination, noise removal, and moving
average filtering. However, Euclidean distance can only be used for measuring
the similarity of two time series of the same length. It is also sensitive to noise
and time shifting. Dynamic time warping (DTW) [2] defines another distance
measure based on dynamic programming. It can detect similar time series even
when they are subject to transformations along the time axis. DTW can also
tolerate a limited amount of length variation, insertions and deletions, and addi-
tive noise. However, DTW often fails when the differences of the lengths of time
series are large, it handles changes in length by replication or deletion of samples
(which is a poor interpolation method), and it cannot handle impulsive noise.
An approximate normalized information distance (ANID) based on Kolmogorov
complexity has been studied in [3] but was found to be sensitive to impulsive
noise. To overcome such limitations above, we will define a new distance function
based on a feature segmentation and continuous feature warping.

Given a long time series and a short time series, most existing subseries match
methods first segment the long time series. The common segmentation method
is based on sliding windows. There are three major sliding-window based seg-
mentation methods: FRM [4], Dual Match [5], and General Match [6]. All these
methods are based on uniform segmentation. However, uniform segmentation
requires the user to manually select the length of the segments, and is not sensi-
tive to the actual behavior of the data. This arbitrary segmentation may cause
undesirable division of important features in the data into different segments
and involves an assumption of a particular scale for features. Although over-
lapping sliding windows can avoid division of features (at least at one scale), it
introduces additional costs and a redundant representation.

In this work, we propose an alternative approach that divides time series data
into non-uniform segments of arbitrary length based on intrinsic smoothness
properties. Pairs of candidate matches are found using a spatial search, and
then a dynamic programming approach is used to align candidate subsequences
by continuous warping.
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3 Subseries Join

Subseries join is a symmetric operation that returns all pairs of subseries drawn
from two datasets that satisfy a given similarity threshold relative to some metric
d and are also of maximal length:

Definition 1. Subseries join: Given two sets of time series X and Y, the
subseries join is the set of all pairs (Xi,k, Yj,�) of subseries Xi,k ⊆ Xk for Xk ∈ X
and Yj,� ⊆ Y� for Y� ∈ Y such that d(Xi,k, Yj,�) ≤ ε, and for which there does
not exist any X ′

i,k ⊃ Xi,k and Y ′
j,� ⊃ Yj,� where X ′

i,k is longer than Xi,k and
contains Xi,k as a proper subset and where Y ′

j,� is longer than Yj,� and contains
Yj,� as a proper subset for which d(X ′

i,k, Y ′
j,�) < ε or for which d(Xi,k, Y ′

j,�) < ε
or for which d(X ′

i,k, Yj,�) < ε.

Note that a subseries join computes a subseries match if one of the input datasets
X is a singleton set {X}.

We now present our approach to solve the subseries join problem. First, each
time series in the dataset is smoothed and segmented by an anisotropic diffu-
sion scale-space analysis [7,8]. Anisotropic diffusion, unlike Gaussian smoothing,
“pins” zero crossings of the second derivative across scales: their positions are
invariant, although they are progressively eliminated. We exploit this property
to create a strict hierarchy of segments that can be used as an index. Zero cross-
ings of the second derivative are present at discontinuities in the data, but not
all such zero crossings are useful discontinuities. Therefore, we only segment the
data at zero-crossings where the gradient magnitude is also large [9].

Next, to represent features of a segment A of time series X , we use a polyno-
mial P (A, t) to approximate its shape, but with the parameter space rescaled to
the interval [0, 1]. We can generalize this to an envelope by adding an interval
to P (A, t) that allows us to compute conservative distance bounds. To evaluate
the similarity between two segments A and B, which may be of different lengths
|A| and |B|, we define the (square of the) distance function d as follows:

d2(A, B) = γ

∫ 1

0

(P (A, t)− P (B, t))2dt + (1− γ)
( |A| − |B|

max{|A|, |B|}
)2

, (1)

The first term compares shape, the second length; the ratio between these is con-
trolled by varying γ over [0, 1]. This distance can be computed analytically from
the coefficients of the polynomials and the lengths of the segments. In fact, the
polynomial coefficients and the segment lengths can be placed in a single vector,
and this vector can be linearly transformed so that the ordinary Euclidean dis-
tances on the transformed coefficients can be used [10]. We can also transform
polynomial envelopes (polynomials plus intervals which can conservatively bound
the original data) into axis-aligned line segments (in the higher-dimensional ab-
stract feature space) and compute minmax distance between them for conserva-
tive distance bounds between functions bounded by the original envelopes. Note
that we do not apply the Euclidean distance directly into the original time series
data, instead we use the Euclidean distance over the feature representations in a
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higher-dimensional parameter space. This distance function can deal with time
series of different lengths easily and interpolation of shape is continuous.

We then build an index by inserting features at all scales of the dataset into
an R-tree in the transformed feature space. Every time series in the dataset is
represented as a feature sequence. An R-tree join operation [11] can be used
to obtain candidate pairs of features whose distance is less than a predefined
threshold. Based on the associated leaves of the R-trees, pairs of feature se-
quences can be found by counting the number of pairs of matching features from
each sequence. If this number is greater than a predefined threshold, these two
feature sequences are taken as a pair of candidate matching feature sequences.
Finally, we use a sequence alignment algorithm based on dynamic programming
[10] to align two candidate matching feature sequences; from this alignment we
can compute an overall metric for the entire match by summing the metrics for
the matching features.

4 Experimental Evaluations

To evaluate effectiveness of our approach (SJ in the following), we consider two
baseline approaches: dynamic time warping (DTW) [2] and approximate normal-
ized information distance (ANID) [3]. We will limit our comparisons to clustering
and matching problems since previous solutions did not include the concept of
subseries join.

All testing time series data are extracted or synthesized from the UCR Time
Series Data Mining Archive [12]. A set of 40 time series D were extracted from
the UCR Time Series Data Mining Archive. The total number of samples in this
dataset is 1, 091, 465. The average number of samples per time series is 27, 287.
The dataset is used to generate other synthetic testing datasets in a way that
lets us know the correct answers for testing purposes.

We first generate data for a clustering problem. For each time series X ∈ D,
50 variations are generated from X by uniformly scaling them by γ times the
original length of X . Given xi ∈ X , define a variation x′ ∈ X ′ computed by:

x′
i = x�i/(γ)� (2)

where γ is a random value with γ ≥ 1.
Given this synthetic construction of testing datasets, the correct clustering

and ranking results can be represented by an evolutionary tree that can be
easily computed in advance. The correct clustering result is that each of the 50
synthetic time series should be clustered into the same set with its seed time
series. The correct ranking result is that each of the 50 synthetic time series
should be ranked according to the distance to its seed time series. The rank is
defined as the order in a sequence sorted according to the Euclidean distance
metric in one cluster.

Two metrics are used to evaluate the errors of the search results, where ec is
called the clustering error and er is called the rank error.

ec =
the number of time series that should be in Ci but are not

the number of time series in Ci
(3)
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er =
the number of time series in Ci that are in the wrong rank

the number of time series in Ci
(4)

The values of ec and er of DTW, ANID, and SJ are shown in Figure 1. Given
two seed time series and two variations computed from (2), Figure 2 shows the
clustering results returned by DTW, ANID and SJ. The results show that our
approach produces fewer clustering and ranking errors than DTW and ANID.
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(a) Clustering errors. 2.0 < γ ≤ 2.5.
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(b) Rank errors. 2.0 < γ ≤ 2.5.

Fig. 1. Clustering errors ec and rank errors er produced by DTW, ANID and SJ
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(b) Clustering results.

Fig. 2. Clustering results returned by SJ, ANID, and DTW

To evaluate the robustness of the proposed approach to additive noise, we
generated 50 variations for each time series X ∈ D by adding a factor μ of
additive noise. Given xi ∈ X , define a variation x′ ∈ X ′ computed by:

x′
i = xi + μ(max(X)−min(X)) (5)

where μ is a uniform random value over various ranges to be defined. The values
of ec and er for DTW, ANID, and SJ are shown in Figure 3. Figure 4 shows
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(a) Clustering errors. 0.6 < |μ| ≤ 1.0.
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(b) Rank errors. 0.6 < |μ| ≤ 1.0.

Fig. 3. Clustering errors ec and rank errors er with additive noise
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(b) Clustering results.

Fig. 4. Clustering results with additive noise

clustering results returned by DTW, ANID, and SJ for two seed time series and
two variations computed from (5). Our approach again produces fewer clustering
and ranking errors than DTW and ANID. The clustering result of SJ is in fact
exactly the same as the correct answer, while the clustering results of DTW and
ANID are quite different. This experiment demonstrates that our approach is
more robust to additive noise in time series than either DTW or ANID.

Similarly, we generate 50 synthesized time series for each time series X ∈ D

by adding impulsive noise to some elements of X . Given some element xj ∈ X ,

x′
j = xj + ρ(max(X)−min(X)) (6)

where ρ is a random value with ρ > 0. The number of such elements is much
less than the total number of elements in the time series. The values of ec and
er of DTW, ANID, and SJ are shown in Figure 5. Our approach produces no
clustering errors and the percentages of ranking errors are less than 5%. However,
the percentages of both clustering errors and ranking errors produced by DTW
and ANID are above 40%. Figure 6 shows clustering results returned by SJ,
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(a) Clustering errors. 0.7 < ρ ≤ 1.5.
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(b) Rank errors. 0.7 < ρ ≤ 1.5.

Fig. 5. Clustering errors ec and rank errors er with impulsive noise
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Fig. 6. Clustering results with impulsive noise

ANID, and DTW, given two seed time series and four variations computed from
(6). According to the correct answer, the clustering result of SJ is correct, while
the clustering results of DTW and ANID are not. This experiment demonstrates
that DTW and ANID cannot tolerate impulsive noise but our approach can
tolerate impulsive noise effectively.

The experimental results show that our approach produces fewer clustering
errors and rank errors than ANID and DTW no matter whether the data is
uniformly scaled, has additive noise, or has impulsive noise. ANID can tolerate
more uniform scaling and additive noise than DTW. However, both ANID and
DTW fail in the presence of impulsive noise. In all experiments our approach
demonstrated a much greater tolerance to uniform scaling, additive noise, and
impulsive noise than either DTW or ANID and so we conclude that it is a more
robust approach.
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5 Conclusion

In this work, we proposed a new definition of subseries join that finds similar
subseries in two or more time series. We also proposed a method to efficiently
compute subseries join based on a hierarchical feature representation and non-
uniform segmentation. Experiments have demonstrated the effectiveness and ef-
ficiency of our approach by testing on a set of synthetic time series. Compared
with previous work, our approach is observed to be relatively immune to changes
in length, additive noise, and impulsive noise.
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3. Cilibrasi, R., Vitányi, P.M.: Clustering by compression. IEEE Transactions on

Information Theory 51(4), 1523–1545 (2005)

4. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching

in time-series databases. In: Proceedings of 1994 ACM SIGMOD International

Conference on Management of Data, pp. 419–429 (1994)

5. Moon, Y.S., Whang, K.Y., Loh, W.K.: Duality-based subsequence matching in

time-series databases. In: Proceedings of the 17th International Conference on Data

Engineering, pp. 263–272 (2001)

6. Moon, Y.S., Whang, K.Y., Han, W.S.: General match: a subsequence matching

method in time-series databases based on generalized windows. In: Proceedings of

the 2002 ACM SIGMOD International Conference on Management of Data, pp.

382–393 (2002)

7. Lin, Y., McCool, M.D.: Nonuniform segment-based compression of motion capture

data. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M.,

Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.)

ISVC 2007, Part I. LNCS, vol. 4841, pp. 56–65. Springer, Heidelberg (2007)

8. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.

IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639

(1990)

9. Canny, J.: A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

10. Lin, Y.: Subseries join and compression of time series data based on non-uniform

segmentation. PhD thesis, University of Waterloo (2008)

11. Shekar, S., Chawla, S.: Spatial Databases: a Tour, 1st edn. Prentice-Hall, Engle-

wood Cliffs (2003)

12. Keogh, E.: The UCR time series data mining archive. Department of Com-

puter Science and Engineering, University of California, Riverside (2006),

http://www.cs.ucr.edu/~eamonn/time_series_data



 

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 246–253, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

TWave: High-Order Analysis of Spatiotemporal Data 

Michael Barnathan1, Vasileios Megalooikonomou1, Christos Faloutsos2,  
Feroze B. Mohamed3, and Scott Faro3 

1 Data Engineering Laboratory (DEnLab), Department of Computer and Information Sciences, 
Temple University, 1805 N. Broad St., Philadelphia, PA, USA 19122 

2 School of Computer Science, Carnegie Mellon University, 
5000 Forbes Ave., Pittsburgh, PA 15213 

3 Department of Radiology, Temple University School of Medicine, 
3401 N. Broad St. Philadelphia, PA 19140 

{mbarnath,vasilis}@temple.edu, christos@cs.cmu.edu,  
{feroze,faros}@temple.edu 

Abstract. Recent advances in data acquisition and sharing have made available 
large quantities of complex data in which features may have complex interrela-
tionships or may not be scalar. For such datasets, the traditional matrix model is 
no longer appropriate and may fail to capture relationships between features or 
fail to discover the underlying concepts that features represent. These datasets 
are better modeled using tensors, which are high-order generalizations of ma-
trices. However, naive tensor algorithms suffer from poor efficiency and may 
fail to consider spatiotemporal neighborhood relationships in analysis. To sur-
mount these difficulties, we propose TWave, a wavelet and tensor-based  
methodology for automatic summarization, classification, concept discovery, 
clustering, and compression of complex datasets. We also derive TWaveClus-
ter, a novel high-order clustering approach based on WaveCluster, and compare 
our approach against WaveCluster and k-means. The efficiency of our method 
is competitive with WaveCluster and significantly outperforms k-means. 
TWave consistently outperformed competitors in both speed and accuracy on a 
9.3 GB medical imaging dataset. Our results suggest that a combined wavelet 
and tensor approach such as TWave may be successfully employed in the anal-
ysis of complex high-order datasets.  

Keywords: Tensors, matrix models, wavelets, spatiotemporal mining. 

1   Introduction 

The traditional approach to data representation utilizes a matrix structure, with obser-
vations in the rows and features in the columns. Although this model is appropriate 
for many datasets, it is not always a natural representation because it assumes the 
existence of a single target variable and lacks a means of modeling dependencies 
between other features. Additionally, such a structure assumes that observed variables 
are scalar quantities by definition. This assumption may not be valid in certain do-
mains, such as diffusion tensor imaging, where higher-order features predominate. 
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Traditionally, these problems have been solved by reducing the features to scalars 
and fitting the dataset to a matrix structure. However, as well as potentially losing 
information, this strategy also employs a questionable approach from a philosophical 
standpoint: attempting to fit the data to an imprecise model rather than attempting to 
accurately model the existing structure of the data. Finally, while it may be possible to 
model dependencies between features by making many runs, each with a different 
target variable, this yields suboptimal performance and may not be computationally 
feasible when real-time performance is required or when the dataset is very large. 

To address these issues, we propose to model such datasets using tensors, which 
are generalizations of matrices corresponding to r-dimensional arrays, where r is 
known as the order of the tensor. Using a combination of wavelet and tensor analysis 
tools, we propose a framework for summarization, classification, clustering, concept 
discovery, and compression, which we call TWave. Applying our technique to analy-
sis of the MNIST digit recognition dataset [6] and a large real-world spatiotemporal 
dataset, we compare the performance of TWave against voxelwise, SVD-based, 
wavelet-only, and tensor-only techniques and demonstrate that TWave achieves supe-
rior results and reduces computation time vs. competing methodologies. 

2   Background 

2.1   Tensor Tools 

Tensors are defined within the context of data mining as multidimensional arrays. The 
number of indices required to index the tensor is referred to as the rank or order of the 
tensor, while each individual dimension is referred to as a mode. The number of ele-
ments defined on each mode is referred to as the mode’s dimensionality. The dimen-
sionality of a tensor is written in the same manner as the dimensionality of a matrix; 
for example, 20x50x10. Tensors represent generalizations of scalars, vectors, and 
matrices, which are respectively orders 0, 1, and 2. 

An important operation applicable to our analysis is the tensor product (also the 
outer product). This product generalizes from the Kronecker product, but results in 
another tensor rather than a block matrix. Given order r and s tensors  and , their 
tensor product  is a tensor of order  :: 

, ,…, , , ,…, , ,…, , ,…,  

Singular value decomposition (SVD) is a unique factorization by which an  
matrix is decomposed into two projection matrices and a core matrix, as follows: 

 

where  is an  matrix,  is an  column-orthonormal projection matrix,  
is an  column-orthonormal projection matrix, and  is a diagonal  core 
matrix, where  is the (matrix) rank of matrix . 

SVD is used in Latent Semantic Analysis (LSA), an unsupervised summarization 
technique [1]. Here  is treated as a term-document matrix. In this context, singular 
value decomposition automatically derives a user-specified number of latent concepts 
from the given terms, each representing a linear combination. The projection matrices 
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 and  contain term-to-concept and document-to-concept similarities, respectively. 
Thus, SVD can be used to provide simple yet powerful automatic data summarization. 

The natural extensions of singular value decomposition to tensors are the Tucker 
and PARAFAC decompositions [2,3]. Let  be an order-r tensor. Tucker decomposi-
tion is a factorization into a core tensor  and projection matrices : …  

Though the Tucker decomposition provides SVD-like data summarization, evaluat-
ing it requires computing ’s covariance matrix. This can come at a memory cost of Ω , which, for large datasets such as ours, may be prohibitive. Fortunately, PA-
RAFAC avoids this problem. PARAFAC is a generalization of PCA [2] and forms the 
basis of our tensor analysis approach. Given a user-specified number of concepts c, 
PARAFAC decomposes an order-r tensor  into a columnwise sum of the tensor 
product of  projection matrices, denoted … , as follows: λ :, :, … :,  

Where the  matrices represent projection matrices containing mode-to-concept 
similarities and  represents a c-element scaling vector, in which each element 
represents the strength of a concept. The notation :,  refers to the ith column of . 

Both the Tucker and PARAFAC decompositions may be computed using alternat-
ing least squares (ALS) [4], as shown below: 

 
1. Given an order-  tensor , declare projection matrices , , … , . 
2. Let 1. 
3. Holding all other matrices constant, solve the following equation for : 

 ..  ..   

Where  represents the n-ary Khatri-Rao product, * represents the Moore-
Penrose pseudoinverse, and  represents  matricized [4] on mode i. 

4. Repeat for all  from 1 to  until convergence is attained. 

The resulting PARAFAC decomposition is illustrated in Figure 1 below: 

 
Fig. 1. Illustration of a third-order PARAFAC decomposition 
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3   Proposed Method 

3.1   Overview 

Our methodology makes use of both wavelets and tensors. Because spatiotemporal 
data tends to exhibit a high degree of spatial locality, the spatiotemporal modes of the 
dataset are first preprocessed using an m-dimensional discrete wavelet transform 
(obtained through cascading), where m is the number of spatiotemporal modes. For 
applications other than clustering, we utilize the Daubechies-4 wavelet; clustering 
itself is optimally paired with a hat-shaped wavelet such as the (2,2) biorthogonal 
wavelet, as these wavelets boost the strengths of dense clusters of points while  
suppressing outliers. We then linearize the wavelet coefficients to form a vector 
representing all spatiotemporal voxels in the dataset, reducing the order of the tensor 
by d-1; this overcomes many of the performance issues associated with a high-order 
pure tensor approach and allows us to threshold the discovered wavelet coefficients, 
storing the results in a sparse matrix to achieve a significant compression rate. 

PARAFAC is then performed using alternating least squares and the resulting pro-
jection matrices are stored and analyzed, either by direct inspection or as input to a 
classifier. This method provides a general framework for further tensor and wavelet 
analysis, including concept discovery, compression, clustering, and classification. 

3.2   Other Methods 

It is also possible to analyze data using wavelets and tensors alone, or by using neither 
preprocessing method (the voxelwise approach). Singular value decomposition run on 
the dataset in matrix representation additionally provides a benchmark for comparison 
of the tensor model and techniques. 

We performed voxelwise classification by linearizing each image in the dataset and 
using the normalized values of an image’s voxels as a feature vector in classification. 
Similarly, we performed wavelet classification by using each image’s linearized 3-
level wavelet coefficient vector (using the Daubechies-4 wavelet) as a feature vector 
representing that image. Both approximation and detail coefficients at each resolution 
were included in this analysis. 

3.3   Classification 

To perform classification using TWave, we wavelet-transform the dataset, run a  
tensor decomposition such as PARAFAC or Tucker, and directly use each wavelet 
coefficient’s similarity to each concept as an element in the feature vector. We then 
perform k-nearest neighbor classification, which assigns a class to each image based 
on the majority class of that image’s k nearest neighbors (using Euclidean distance). 

When classifying on a variable other than the principal variable of the dataset, we 
subtract the mean of the principal variable from the dataset. We have empirically 
observed this to boost accuracy. 

3.4   TWaveCluster 

We extended the WaveCluster algorithm to use the PARAFAC decomposition rather 
than a connected component algorithm to grow the clusters, calling our algorithm 
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TWaveCluster. Our approach exhibits a number of advantages, including the ability to 
create a fuzzy clustering (where each voxel’s degree of membership in cluster c is its 
similarity to concept c in the decomposed tensor), the ability to cluster noncontiguous 
voxels based on patterns in the projected concept space, and even the ability to  
discover clusters that extend across modes of the tensor. Our approach also has the 
advantage of simple cluster validation, as the terms in the  vector automatically 
represent cluster variance. 

The first few steps of our algorithm are identical to WaveCluster: 

• Quantize data, using the counts of each grid cell in place of the original data. 
• Apply a wavelet transformation using a hat-shaped wavelet (such as the (2,2) 

or (4,2) biorthogonal wavelets), retaining the approximation coefficients. 
• Threshold cells in the transformed space. Cells with values above a user spe-

cified density threshold are considered “significant”. 

However, the remaining steps in our algorithm differ: 

• Model significant cells as a tensor … . 
• For a user-specified k, run a k-concept PARAFAC-ALS analysis on :  ∑ λ :, :, … :, . 

• For each  from 1 to k, recompose a tensor using only column  of each pro-
jection. The resulting tensor  contains voxel similarities to concept c: λ :, :, … :,  

• Assign every voxel the cluster label of its most similar concept:  arg max  

4   Results 

4.1   Dataset 

We analyzed each approach on a high-order motor task fMRI dataset consisting of 11 
subjects performing 4 simple motor tasks: left finger-to-thumb, left squeeze, right 
finger-to-thumb, and right squeeze. Classification was also performed on 10,000 ran-
domly-sampled observations from the low-order MNIST digit recognition dataset, 
split into 5,000 element training and test sets [6]. Acquisition of the fMRI dataset took 
place using one scanner and one common set of acquisition parameters. Data was 
acquired from each subject over 120 time points, each 3 seconds long. The period of 
each task was 30 seconds. Each acquired volume consisted of 79 95 69 voxels. 
Thus, the dataset was most easily represented as a 6th order tensor of dimensionality 79 95 69 120 4 11, of which the first four modes were spatiotemporal 
and the remaining two were categorical. 
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4.2   Discovered Concepts 

When summarizing the data using a 2-concept TWave analysis, we noticed two out-
liers among the subject-to-concept similarities, which we found corresponded exactly 
to the 2 left-handed subjects in the dataset. This pattern was made even more explicit 
when subtracting the subject means from each subject’s set of images, suggesting that 
the task residuals discriminate better between left and right handed subjects than 
when task activations are biased by subjects’ means. The results of TWave using the 
Daubechies-4 wavelet and mean subtraction are shown in Figure 2. These results 
suggest that PARAFAC may be employed as a powerful concept-discovery and fea-
ture extraction tool on complex datasets, though we caution that a larger dataset may 
be necessary to adequately confirm these findings.  

 

Fig. 2. A 2-concept projection using TWave. The two rightmost points are left-handed. 

4.3   Classification 

Use of wavelets in particular greatly improved subject classification accuracies, given 
a complex enough wavelet (to 98% using the Daubechies-4 wavelet but only to 82% 
for the Haar wavelet). We were able to threshold up to the weakest 98% of wavelet 
coefficients without any loss of subject or task classification accuracy, greatly im-
proving time and space costs while preserving the discriminative power of the clas-
sifier. Further compression is possible in the decomposed tensor through truncation of 
weak concepts (though computation of these concepts is expensive). 

Task classification was more difficult because the intra-subject between-task va-
riance ( 179.29) was less than the between-subject variance ( 9066.85). 
Initial results yielded only 2% accuracy for voxelwise analysis and 27% accuracy for 
wavelet-based analysis. However, by subtracting the voxelwise mean of each subject 
across all tasks, we were able to improve classification substantially. Use of 
MPCA+LDA [7] as a preprocessing step further improved accuracy. As the sampled 
MNIST digit recognition dataset is a dense low-order dataset, less difference is seen 
between low and high-order approaches than in the fMRI dataset, though wavelet 
preprocessing still did significantly boost accuracy. 

4.4   Clustering 

We analyzed two subjects on all four spatiotemporal modes of the fMRI tensor using 
the k-means (k=4) and TWaveCluster (k=5, density threshold=85th percentile)  
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approaches. Average running times for each method were 53 seconds and 23 seconds, 
respectively. Discovered clusters are shown in Figure 3. A demarcation can be seen 
between the frontal and temporal regions of the brain in the TWaveCluster results; 
this distinction is less clear in k-means. The clusters discovered by TWaveCluster 
show a greater degree of symmetry and homogeneity than the k-means clusters, and 
also yield a clustering in-line with domain expectations. 

 

          (a)             (b)                 (c) 

Fig. 3. (a) Activation in a right-handed subject performing a left finger-to-thumb task and the 
clusters discovered by (b) k-means and (c) TWaveCluster. Only significant voxels are shown. 

4.5   Speed and Summary of Results 

Runtime was assessed for the voxelwise, wavelet-based, and TWAVE approaches on 
a dual-processor 2.2 GHz Opteron system with 4 GB of memory. The SVD and pure 
tensor approaches were measured on an 8 processor (16 core) 2.6 GHz Opteron su-
percomputer with 128 GB of memory. Despite running on a much more powerful 
system, the tensor and SVD approaches still took significantly longer to complete 
than other approaches, as shown in Tables 1 and 2: 

Table 1. High-order fMRI dataset runtimes, subject and task classification accuracies, com-
pressed dataset size, and ability to automatically identify left-handed subjects 

 Voxels Wavelets SVD PARAFAC TWave TWave+MPCA/LDA 
Runtime 95 min 112 min 3 days 8 days 117 min 130 min 
Subjects 52% 98% 80% 88% 96% 100% 
Tasks 34% 68% 56% 52% 72% 93% 

Size 9.3 GB 181 MB 9.3 GB 9.3 GB 181 MB 181 MB 

Lefties? No No No Yes Yes N/A 

Table 2. Low-order MNIST digit recognition dataset runtimes and classification accuracies 
(after random sampling to training set size = 5000, test set size = 5000. k=2 in all cases) 

 Voxels Wavelets SVD PARAFAC TWave 
Runtime 250 sec 422 sec 20 min 25.3 min 512 sec 
Accuracy 47% 88% 53% 53% 88% 

5   Conclusions 

From these results, we may conclude that the combination of wavelets and tensor 
tools in the analysis of fMRI motor task datasets yields better performance in space, 
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time, and accuracy than the voxelwise approach or either technique alone, achieving 
benefits such as sensitivity to locality while avoiding the prohibitive space and time 
costs of using only tensors. Additionally, such an approach provides powerful auto-
matic data summarization techniques, as demonstrated through discovery of left-
handed subjects in our dataset. Potential avenues for future research include use of 
different wavelet functions, extension of our methods to streaming and sparse tensor 
data, and applications to high-order datasets in other fields.  
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Abstract. Spatial clustering with constraints has been a new topic in spatial 
data mining. A novel Spatial Clustering with Obstacles Constraints (SCOC) by 
dynamic piecewise-mapped and nonlinear inertia weights particle swarm opti-
mization is proposed in this paper. The experiments show that the algorithm can 
not only give attention to higher local constringency speed and stronger global 
optimum search, but also get down to the obstacles constraints and practicalities 
of spatial clustering; and it performs better than PSO K-Medoids SCOC in 
terms of quantization error and has higher constringency speed than Genetic K-
Medoids SCOC. 

Keywords: Spatial Clustering with Obstacles Constraints, Particle Swarm Op-
timization, Dynamic Piecewise Linear Chaotic Map, Dynamic Nonlinear Inertia 
Weights. 

1   Introduction 

Spatial clustering with constraints has been a new topic in spatial data mining. Spatial 
clustering with constraints has two kinds of forms [1]. One kind is Spatial Clustering 
with Obstacles Constraints (SCOC), such as bridge, river, and highway etc. whose 
impact on the result should be considered in the clustering process of large spatial 
data. Ignoring the constraints leads to incorrect interpretation of the correlation among 
data points. The other kind is spatial clustering with handling operational constraints, 
it consider some operation limiting conditions in the clustering process. In this paper, 
we mainly discuss SCOC. 

Since K.H.Tung put forward a clustering question COE (Clustering with Obstacles 
Entities) [2] in 2001, a new studying direction in the field of clustering research have 
been opened up. To the best of our knowledge, only four clustering algorithms  
for clustering spatial data with obstacles constraints have been proposed very re-
cently: COD-CLARANS [2] based on the Partitioning approach of CLARANS, 
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AUTOCLUST+ [3] based on the Graph partitioning method of AUTOCLUST, 
DBCluC [4-5] based on the Density-based algorithm, and GKSCOC [6] based on  
Genetic algorithms (GAs) and Partitioning approach of K-Medoids. Although these 
algorithms can deal with some obstacles in the clustering process, many questions 
exist in them [6].  

PKSCOC based on Particle Swarm Optimization (PSO) and K-Medoids is pre-
sented [7] by us. However, the performance of simple PSO depends on its parameters, 
it often getting into local optimum and fails to converge to global optimum. A lot of 
improved methods were presented by many scholars, e.g. the paper [8-9] presented 
the Quantum PSO algorithm, and the paper [10-12] presented the Chaotic PSO algo-
rithm. Recently, Dynamic Piecewise-mapped and Nonlinear Inertia Weights PSO 
(PNPSO) is proposed in [13]. Experiments and comparisons demonstrated that 
PNPSO outperformed several other well-known improved PSO algorithms on many 
famous benchmark problems in all cases. 

This article developed a novel spatial clustering with obstacles constraints by 
PNPSO to cluster spatial data with obstacles constraints, which called PNPKSCOC. 
The contrastive experiments show that PNPKSCOC is better than PKSCOC in terms 
of quantization error and has higher constringency speed than GKSCOC. 

The remainder of the paper is organized as follows. Section 2 introduces PNPSO 
algorithm. Section 3 presents PNPKSCOC. The performances of PNPKSCOC are 
showed in Section 4, and Section 5 concludes the paper. 

2   Dynamic Piecewise-Mapped and Nonlinear Inertia Weights PSO 

2.1   Classical PSO  

PSO is a population-based optimization method first proposed by Kennedy and Eber-
hart. The mathematic description of PSO is as the following. Suppose the dimension 
of the searching space is D, the number of the particles is n. Vector 

1 2( , , , )i i i iDX x x x= K  represents the position of the thi particle and 

1 2( , , , )i i i iDpbest p p p= K is its best position searched by now, and the whole particle 

swarm's best position is represented as 1 2( , , , )Dgbest g g g= K .Vector 

1 2( , , , )i i i iDV v v v= K is the position change rate of the thi particle. Each particle updates 

its position according to the following formulas: 

1 2
( 1) ( ) ()[ ( ) - ( )]  + ()[ ( ) - ( )]id id id id d idv t wv t rand p t x t rand g t x tc c+ = +         (1) 

( 1) ( ) ( 1) ,  1 ,  1id id idx t x t v t i n d D+ = + + ≤ ≤ ≤ ≤                            (2) 

where 
1

c and 
2

c are positive constant parameters, ()Rand  is a random function with 

the range [0, 1], and w  is the inertia weight. Eq.1 is used to calculate the particle's 
new velocity, the particle flies toward a new position according to Eq.2.  
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2.2   Coordinate PSO with Dynamic Piecewise Linear Chaotic Map and Dynamic 
Nonlinear Inertia Weights 

2.2.1   Dynamic Piecewise Linear Chaotic Map 
The well-known Piecewise linear chaotic map is defined as follows [10]: 

1

/ , (0, )

(1 ) / (1 ), ( ,1)

c ct t
t

c ct t

x p x p
x

x p x p+

∈⎧
= ⎨ − − ∈⎩

                                (3) 

where cp  is the control parameter and X  is a variable. Although Eq.3 is determinis-

tic, it exhibits chaotic dynamics in (0, 1) when (0, 0.5) (0.5,1)cp ∈ ∪ . The newly in-

troduced dynamic Piecewise linear chaotic map [14] is incorporated into the PSO 
inertia weight which is described in equations (4) and (5). 

  max max min
max

( )
iterα α α α

iter

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
                                  (4) 

(1 )w α α Pmap= + −                                                     (5) 

where α  is the dynamic chaotic inertia weight adjustment factor, maxα  and minα  rep-

resent the maximum and minimum values of α  respectively, iter  is the current itera-
tion number, maxiter  is the maximum iteration number, and Pmap  is the result of 

Piecewise linear chaotic map. 

2.2.2   Dynamic Nonlinear Equations 
To achieve trade-off between exploration and exploitation, two types of dynamic 
nonlinear inertia weights are introduced [13]. In this paper, the first type is proposed 
in equations (6) and (7): 

                   min max min
max

( )
iter

dnl dnl dnl dnl
iter

⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠
                         (6) 

 max
min max min

max

( )
dnl

iter iter
w w w w

iter

⎛ ⎞−
= + − ⎜ ⎟

⎝ ⎠
                             (7) 

where dnl represents the dynamic nonlinear factor, w  represents the inertia weight, 

maxw  and minw  represent the maximum and minimum value of w  respectively, maxdnl  

and mindnl  represent the maximum and minimum value of dnl  respectively, 

iter represents the current iteration number, and maxiter  represents the maximum itera-

tion number. 

2.2.3   Parallel Inertia Weight Adjustment 
To avoid the premature convergence problem and to achieve the balance between 
global exploration and local exploitation, dynamic Piecewise linear chaotic map and 
dynamic nonlinear equations are used in parallel to dynamically adjust PSO inertia 
weight w, which is described as follows[13]: 
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Initialize all the parameters. 
repeat 

Evaluate the fitness values of all the particles 
if i avgf ff  

Equations (4), (5), (1) and (2) are employed 
Elseif i avgf f≤  

Equations (6), (7), (1) and (2) are employed 
endif 

until (a termination criterion is met) 
where if is the fitness value of particle i  and avgf  is the average fitness value of the 

whole population. 

3   Spatial Clustering with Obstacles Constraints by PNPSO  

3.1   Motivating Concepts 

To derive a more efficient algorithm for SCOC, the following definitions are first 
introduced. 

Definition 1 ( Visibility graph). Given a set of m obstacle, 1 2( , , , )mO o o o= K ,the visi-

bility graph is a graph ( , )VG V E=  such that each vertex of the obstacles has a corre-

sponding node in V , and two nodes 1v and 2v  in V are joined by an edge in E if and 

only if the corresponding vertices they represent are visible to each other. 
To generateVG , we use VPIA (VGRAPH Point Incorporation Algorithm) as pre-

sented in [14].  

Definition 2 (Obstructed distance). Given point p and point q , the obstructed distance 

( , )od p q is defined as the length of the shortest Euclidean path between two 

points p and q  without cutting through any obstacles. 

We can use Dijkstra Algorithm to compute obstructed distance. The simulation re-
sult is in Fig.1 and the red solid line represents the obstructed distance we got. 

O1 

p q

v1 

v2 

v3 v5 

O2 

v4 

  

O1 

p q 

v1 

v2 

v3 v5 

O2 

v4 

 

Fig. 1. Visibility graph and Obstructed distance 
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3.2   Spatial Clustering with Obstacles Constraints by Improved K-Medoids 

K-Medoids algorithm is adopted for SCOC to avoid cluster center falling on the ob-
stacle. Square-error function is adopted to estimate the clustering quality, and its defi-
nition can be defined as: 

                      2( ( , ))
1

Nc
E d p m j

j p C j

= ∑ ∑
= ∈

                                    (8) 

where N c is the number of cluster C j , m
j

is the cluster centre of cluster C j , ( , )d p q  is 

the direct Euclidean distance between the two points p and q . 

To handle obstacle constraints, accordingly, criterion function for estimating the 
quality of spatial clustering with obstacles constraints can be revised as: 

  2( ( , ))
1

o o

N
c

E d p m
j

j p C
j

= ∑ ∑
= ∈

                                           (9) 

where ( , )od p q is the obstructed distance between point p and point q . 

The method of IKSCOC is adopted as follows [4]. 

1. Select N c objects to be cluster centers at random;  

2. Assign remaining objects to nearest cluster center; 
3. Calculate oE according to Eq.9; 

4. While ( oE changed) do {Let current oE E= ;  

5.   Select a not centering point to replace the cluster center m
j

 randomly;  

6.   Assign objects to the nearest center; 
7.   Calculate E according to Eq.8; 
8.   If E > current E , go to 5;  
9.   Calculate oE ; 

10.   If oE < current E , form new cluster centers}. 

While IKSCOC still inherits two shortcomings, one is selecting initial value randomly 
may cause different results of the spatial clustering and even have no solution, the 
other is that it only gives attention to local constringency and is sensitive to an outlier.  

3.3   Spatial Clustering with Obstacles Constraints Based on PNPSO and 
Improved K-Medoids  

In the context of clustering, a single particle represents the N c cluster centroid. That 

is, each particle iX  is constructed as follows: 

                      1( ,..., ,..., )
ci i ij iNX m m m=                                           (10) 

where ijm refers to the thj cluster centroid of the thi  particle in cluster ijC . Here, the 

objective function is defined as follows: 
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                           1( )f x Ji i
=                                                   (11) 

                      ( , )  
1

c

i o j

ij

N
J d p m

j p C
= ∑ ∑

= ∈
                                  (12) 

The PNPKSCOC is developed as follows. 

1. Execute the IKSCOC algorithm to initialize one particle to contain N c  selected 
cluster centroids; 

2. Initialize the other particles of the swarm to contain N c  selected cluster cen-
troids at random; 

3.  For 1t =  to 
max

t do { 

4.    For i = 1 to no_of_particles do { 
5.       For each object p do { 

6.         Calculate ( , )o ijd p m ;  

7.   Assign object p  to cluster ijC  such that { }( , ) ( , )min 1,...,o ij o icc
d p m d p mc N= ∀ = ; 

8.       Evaluate fitness of particle according to Eq.11; 
9.       if i avgf ff Update particles using equations (4), (5), (1) and (2);  

10.      Elseif i avgf f≤ Update particles using equations (6), (7), (1) and (2) ; 

11.      Update Pbest  ; 
12.      Update Pgbest ; 

13.      If ||v|| ε≤ , terminate } 

14.   Select two other particles j  and k  ( i j k≠ ≠ ) randomly; 

15.   Optimize new individuals using IKSCOC} 
16. Output. 

where 
max

t is the maximum number of iteration for PNPSO. STEP 16 is to improve 

the local constringency speed of PNPSO. 

4   Results and Discussion  

We have made experiments separately by K-Medoids, IKSCOC, GKSCOC, 
PKSCOC, and PNPKSCOC. 50n =  , 1 2 2c c= = , max 100t = . Fig.2 shows the results 

on real Dataset. Fig.2 (a) shows the original data with river obstacles. Fig.2 (b) shows 
the results of 4 clusters found by K-Medoids without considering obstacles con-
straints. Fig.2(c) shows 4 clusters found by IKSCOC. Fig.2(d) shows 4 clusters found 
by GKSCOC. Fig.2 (e) shows 4 clusters found by PNPKSCOC. Obviously, the results 
of the clustering illustrated in Fig.2(c), Fig.2 (d) , and Fig.2(e) have better practicali-
ties than that in Fig.2 (b), and the ones in Fig.2 (e) and Fig.2 (d) are both superior to 
the one in Fig.2(c). So, it can be drawn that PNPKSCOC is effective and has better 
practicalities. 
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Fig.3 is the value of J showed in every experiment on Dataset1 by IKSCOC, 
PKSCOC, and PNPKSCOC respectively. It is showed that IKSCOC is sensitive to 
initial value and it constringes in different extremely local optimum points by starting 
at different initial value while PNPKSCOC constringes nearly in the same optimum 
points at each time, and PNPKSCOC is better than PKSCOC.  

Fig.4 is the constringency speed in one experiment on Dataset1. It is showed that 
PNPKSCOC constringes in about 12 generations while GKSCOC constringes in 
nearly 25 generations. So, it can be drawn that PNPKSCOC is effective and has 
higher constringency speed than GKSCOC.  

Therefore, we can draw the conclusion that PNPKSCOC has stronger global con-
stringent ability than PKSCOC and has higher convergence speed than GKSCOC. 

         
(a)                                                     (b)                                                    (c) 

           
 (d)                                                      (e)                                                    (f) 

Fig. 2. Clustering Dataset 

   

Fig. 3. PNPKSCOC vs. IKSCOC, PKSCOC        Fig. 4. PNPKSCOC vs. GKSCOC 

5   Conclusions 

In this paper, we developed a novel spatial clustering with obstacles constraints by 
dynamic piecewise-mapped and nonlinear inertia weights particle swarm optimization 
to cluster spatial data with obstacles constraints. The proposed method is also  
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compared with some other algorithms to demonstrate its efficiency and the experi-
mental results are satisfied. 
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Abstract. Negative sequential pattern mining has attracted increasing concerns
in recent data mining research because it considers negative relationships between
itemsets, which are ignored by positive sequential pattern mining. However, the
search space for mining negative patterns is much bigger than that for positive
ones. When the support threshold is low, in particular, there will be huge amounts
of negative candidates. This paper proposes a Genetic Algorithm (GA) based al-
gorithm to find negative sequential patterns with novel crossover and mutation
operations, which are efficient at passing good genes on to next generations with-
out generating candidates. An effective dynamic fitness function and a pruning
method are also provided to improve performance. The results of extensive ex-
periments show that the proposed method can find negative patterns efficiently
and has remarkable performance compared with some other algorithms of nega-
tive pattern mining.

Keywords: Negative Sequential Pattern, Genetic Algorithm, Sequence Mining,
Data Mining.

1 Introduction

The concept of discovering sequential patterns was firstly introduced in 1995 [1], and
aimed at discovering frequent subsequences as patterns in a sequence database, given
a user-specified minimum support threshold. Some popular algorithms in sequential
pattern mining include AprioriAll [1], Generalized Sequential Patterns (GSP) [10] and
PrefixSpan [8]. GSP and AprioriAll are both Apriori-like methods based on breadth-
first search, while PrefixSpan is based on depth-first search. Some other methods, such
as SPADE (Sequential PAttern Discovery using Equivalence classes)[12] and SPAM
(Sequential PAttern Mining)[4], are also widely used in researches.

In contrast to traditional positive sequential patterns, negative sequential patterns
focus on negative relationships between itemsets, in which, absent items are taken into
consideration. We give a simple example to illustrate the difference: suppose p1=<a b c
d> is a positive sequential pattern; p2=<a b ¬c e> is a negative sequential pattern; and
each item, a, b, c, d and e, stands for a claim item code in the customer claim database

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 262–273, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of an insurance company. By getting the pattern p1, we can tell that an insurant usually
claims for a, b, c and d in a row. However, only with the pattern p2, we are able to find
that given an insurant claim for item a and b, if he/she does NOT claim c, then he/she
would claim item e instead of d. This kind of patterns cannot be described or discovered
by positive sequential pattern mining.

However, in trying to utilize traditional frequent pattern mining algorithms for min-
ing negative patterns, two problems stand in the way. (1) Huge amounts of negative
candidates will be generated by classic breath-first search methods. For example, given
10 distinct positive frequent items, there are only 1,000 (=103) 3-item positive can-
didates, but there will be 8,000 (=203) 3-item negative candidates because we should
count 10 negative items in it. (2) Take a 3-item data sequence <a b c>, it can only
support candidates <a>, <b>, <c>, <a b>, <a c>, <b c> and <a b c>. But in the
negative case, data sequence <a b c> not only supports the positive candidates as the
above, but also can match a large bunch of negative candidates, such as <a ¬a>,<b
¬a>,<b ¬b>, <a ¬a c>, <a ¬c c> etc. There are thus still huge amounts of negative
candidates even after effective pruning.

Based on Genetic Algorithm (GA) [5], we propose a new method for mining neg-
ative patterns. GA is an evolvement method, which simulates biological evolution. A
generation pass good genes on to a new generation by crossover and mutation, and the
populations become better and better after many generations. We borrow the ideas of
GA to focus on the space with good genes, because this always finds more frequent
patterns first, resulting in good genes. It is therefore more effective than methods which
treat all candidates equally, especially when a very low support threshold is set. It is
equally possible to find long negative patterns at the beginning stage of process.

Our contributions are:

– A GA-based algorithm is proposed to find negative sequential patterns efficiently. It
obtains new generations by crossover and mutation operations without generating
candidates, and uses dynamic fitness to control population evolution. A pruning
method is also provided to improve performance.

– Extensive experimental results on 3 synthetic datasets and a real-world dataset
show that our algorithm has better performance compared with PNSP[11] and Neg-
GSP[14] especially when the support threshold min sup is very low.

This paper is organized as follows. Section 2 talks about related work. Section 3 briefly
introduces negative sequential patterns and presents formal descriptions of them. Our
GA-based algorithm is then described in Section 4. Section 5 shows experimental re-
sults on some datasets. The paper is concluded in the last section.

2 Related Work

Most research on sequential patterns has focused on positive relationships. In recent
years, some research has started to focus on negative sequential pattern mining.

Zhao et al. [13] proposed a method to find negative sequential rules based on SPAM
[4]. However the rules are limited to formats such as <A⇒¬B>, <¬A⇒B>,
<¬A⇒¬B>. Ouyang & Huang [7] extended traditional sequential pattern definition
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(A,B) to include negative elements such as (¬A,B), (A,¬B) and (¬A,¬B). They put for-
ward an algorithm which finds both frequent and infrequent sequences and then obtains
negative sequential patterns from infrequent sequences. Nancy et al. [6] designed an al-
gorithm PNSPM and applied the Apriori principle to prune redundant candidates. They
extracted meaningful negative sequences using the interestingness measure; neverthe-
less the above works defined some limited negative sequential patterns, which are not
general enough. Sue-Chen et al. [11] presented more general definitions of negative se-
quential patterns and proposed an algorithm called PNSP, which extended GSP to deal
with mining negative patterns, but they generated negative candidates in the appending
step, which then may produce a lot of unnecessary candidates.

Some existing researches have used GA for mining the negative association rule and
positive sequential pattern. Bilal and Erhan [2] proposed a method using GA to mine
negative quantitative association rules. They generated uniform initial population, and
used an adaptive mutation probability and an adjusted fitness function. [9] designed a
GA to mine generalized sequential patterns, but it is based on SQL expressions. It is an
instructive work since there are few research works using GA for negative sequential
pattern mining.

3 Problem Statement

3.1 Definitions

A sequence s is an ordered list of elements, s =<e1 e2 ... en>, where each ei, 1≤i≤n,
is an element. An element ei (1≤i≤k) consists of one or more items. For example,
sequence <a b (c,d) f> consists of 4 elements and (c,d) is an element which includes
two items. The length of a sequence is the number of items in the sequence. A sequence
with k items is called a k-sequence or k-item sequence.

Sequence is a general concept. We extend sequence definition to positive/negative
sequence. A sequence s=<e1 e2 ... en> is a positive sequence, when each element
ei(1≤i≤n) is a positive element. A sequence s=<e1 e2 ... en> is a negative sequence,
when ∃i, ei(1≤i≤n) is a negative element, which represents the absence of an element.
For example, ¬c and ¬(c,d) are negative elements, so <a b ¬c f> and <a b ¬(c,d) f>
are both negative sequences.

A sequence sr=<er1 er2 ... erm> is a subsequence of another sequence sp=<ep1

ep2 ... epn>, if there exists 1≤i1≤i2≤...≤ik≤pn, er1⊆epi1
, er2⊆epi2

, ..., erk
⊆epik

.
A sequence sr is a maximum positive subsequence of another sequence sp, if sr

is a subsequence of sp, and sr includes all positive elements of sp. For example, <a b
f> is maximum positive subsequence of <a b ¬c f> and <a b ¬(c,d) f>.

Definition 1: Negative Sequential Pattern. If the support value of a negative sequence
is greater than the pre-defined support threshold min sup, and it also meets the following
constraints, then we call it a negative sequential pattern.

1) Items in a single element should be all positive or all negative. The reason is that
a positive item and negative item in the same element are unmeaning. For example, <a
(a,¬b) c> is not allowed since item a and item ¬b are in the same element.

2) Two or more continuous negative elements are not accepted in a negative se-
quence. This constraint is also used by other researchers [11].
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3) For each negative item in a negative pattern, its positive item is required to be
frequent. For example, if <¬c> is a negative item, its positive item <c> is required to
be frequent. It is helpful for us to focus on the frequent items.

In order to calculate the support value of a negative sequence against the data se-
quences in a database, we need to clarify the sequence matching method and criteria. In
other words, we should describe what kinds of sequence a data sequence can support.

Definition 2: Negative Matching. A negative sequence sn=<e1 e2 ... ek> matches
a data sequence s=<d1 d2 ... dm>, iff:

1) s contains the max positive subsequence of sn

2) for each negative element ei(1≤i≤k), there exist integers p, q, r(1≤p≤q≤r≤m)
such that: ∃ei−1⊆dp∧ei+1⊆dr, and for ∀dq, ei 	⊂dq

For example, see Table 1, sn=<b ¬c a> matches <b d a c>, but does not match <b
d c a>, since the negative element c appears between the element b and a.

Table 1. Pattern matching

Pattern match Sequence
<b ¬c a>

√
<b d a>

<b ¬c a>
√

<b d a c>
<b ¬c a> × <b d c a>

Table 2. Encoding

Sequence Chromosome
gene1 gene2 gene3

<a b ¬(c,d)> ⇒ +a +b ¬(c,d)

3.2 Ideas of GA-Based Method

As introduced in Section 1, negative sequential pattern mining may encounter huge
amounts of negative candidates even after effective pruning. It will take a long time to
pass over the dataset many times to get the candidates’ support.

Based on GA, we obtain negative sequential patterns by crossover and mutation,
without generating candidates; high frequent patterns are then selected to be parents to
generate offspring. It will pass the best genes on to the next generations and will always
focus on the space with good genes. By going through many generations, it will obtain
a new and relatively high-quality population.

A key issue is how to find all the negative patterns since the GA-based method cannot
ensure locating all of them. We therefore use an incremental population, and add all
negative patterns, which are generated by crossover and mutation during the evolution
process, into population. A dynamic fitness function is proposed to control population
evolution. Ultimately, we can secure almost all the frequent patterns. The proportion
can reach 90% to 100% in our experiments on two synthetic datasets.

4 GA-Based Negative Sequential Pattern Mining Algorithm

The general idea of the algorithm is shown as Fig. 1. We will describe the algorithm
from how to encode a sequence, and then introduce population, selection, crossover,
mutation, pruning, fitness function and so on. A detailed algorithm will then be
introduced.
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Fig. 1. Algorithm Flow

4.1 Encoding

Sequence is mapped into the chromosome code in GA. Both crossover and mutation
operations depend on the chromosome code. We need to define the chromosome to
represent the problems of negative sequential pattern mining exactly. There are many
different methods to encoding the chromosome, such as binary encoding, permutation
encoding, value encoding and tree encoding [5]. The permutation encoding method
is suitable for ordering problem and its format is consistent with the format of the
sequence data, so we use it for sequence encoding.

Each sequence is mapped into a chromosome. Each element of the sequence is
mapped into a gene in the chromosome, no matter whether the element has one item or
more. Given a sequence <e1 e2 ... en>, it is transformed to a chromosome which has
n-genes. Each gene is composed of a tag and an element. The element includes one or
more items, and the tag indicates that the element is positive or negative. For example,
a negative sequence <a b ¬(c,d)> is mapped into a 3-gene chromosome, see Table 2.

4.2 Population and Selection

In the classical GA method, the number of populations is fixed [5]. We using a fixed
number of populations to produce the next generation, but the populations tended to
contract into one high frequent pattern, and we can only obtain a small part of frequent
patterns. To achieve as many sequential patterns as possible, we potentially needed
a population to cover more individuals. We therefore adjusted the basic GA to suit
negative sequential pattern mining in the following ways.

Initial Population. All 1-item frequent positive patterns are obtained first. Based on
the 1-item positive patterns, we transform all of them to their corresponding 1-item
negative sequences, such as transforming the frequent positive sequence <e> to the
negative sequence <¬e>. We then take all positive and negative 1-item patterns as the
initial population.

Population Increase. We do not limit population to a fixed number. When we acquire
new sequential patterns during the evolvement, new patterns are put into the population
for the next selection. If the population has already included the patterns, we ignore
them. To improve the performance of this process, a hash table is used to verify whether
a pattern has already appeared in the population.
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Selection. The commonly used selection method is roulette wheel selection [3]. We
have an increased population and the population number depends on the count of se-
quential patterns; thus, we can not use roulette wheel selection because the selection
will be too costly if the population number is huge. We select the top K individuals
with high dynamic fitness (see Section 4.5), where K is a constant number showing
how many individuals will be selected for the next generation. To improve the perfor-
mance of this selection method, we sort all individuals in population in descending order
by dynamic fitness value. In every generation, we only select the first K individuals.

4.3 Crossover and Mutation

Crossover. Parents with different lengths are allowed to crossover with each other,
and crossover may happen at different positions to get sequential patterns with varied
lengths. For example, a crossover takes place at a different position, which is shown by
’%’ in Table 3. After crossover, it may acquire two children. Child1 <b ¬c e> consists
of the first part of parent1 and the second part of parent2. Child2 <d a> consists of
the second part of parent1 and the first part of parent2. So we get two children with
different lengths. If a crossover takes place both at the end/head of parent1 and at the
head/end of parent2, as Table 4 shows, child2 will be empty. In that case, we shall set
child2 by reverse. A Crossover Rate is also used to control the probability of cross
over when parents generate their children.

Table 3. Crossover

parent1 b ¬c � a ⇒ child1 b ¬c e
parent2 d � e ⇒ child2 d a

Table 4. Crossover at head/end

parent1 b ¬c a � ⇒ child1 b ¬c a d e
parent2 � d e ⇒ child2 d e b ¬c a

Mutation. Mutation is helpful in avoiding contraction of the population to a special
frequent pattern. To introduce mutation into sequence generation, we select a random
position and then replace all genes after that position with 1-item patterns. For example,
given an individual <b ¬c a>, after mutation, it may change to <b d ¬e> if <d> and
<¬e> are 1-item patterns. Mutation Rate is a percentage to indicate the probability
of mutation when parents generate their children.

4.4 Pruning

When a new generation is obtained after crossover and mutation, it is necessary to verify
whether the new generation is valid in terms of the constraints for negative sequential
patterns before passing over the whole dataset for their supports.

For a new individual c=<e1 e2 e3 ... en>, c’=<ei ej ... ek> (0<i≤j≤k≤n) is the
max positive subsequence of c, that is to say, ei, ej , ... and ek are all positive elements,
and other elements in c are negative. If c′ is not frequent, c must be infrequent and
should be pruned. This method is simple but effective for pruning invalid candidates
without cutting off possible valid individuals by mistake.

4.5 Fitness Function

In order to evaluate the individuals and decide which are the best for the next generation,
a fitness function for individuals is implemented in GA. We use the fitness function
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shown in Eqn.(1):

ind.fitness = (ind.support − min sup) × DatasetSize. (1)

Fitness. The fitness function is composed of two parts. Support is the percentage that
indicates how many proportion records are matched by the individual. If support is high,
fitness will be high, so that the individual has good characteristics to pass down to next
generation. min sup is a threshold percentage value for verifying whether a sequence is
frequent. Dataset size is the record count of whole dataset.

Dynamic Fitness. Because the characteristics of the individual have been transmitted
to the next generation by crossover or mutation, the individual should exit after a few
generations. The result will tend to contract to one point if the individual doesn’t exit
gradually. We therefore set a dynamic fitness dfitness to every individual in the popu-
lation, shown in Eqn.(2). Its initial value is equal to fitness, but decreases during the
evolvement. It indicates that the individuals in the population will gradually ceased to
evolve. It is like a life value. When an individual’s dynamic fitness is low or close to
0(<0.01), we set it to 0 because we regard it as a wasted individual which cannot be
selected for the next generation.

ind.dfitness =

{
ind.fitness, initial set
ind.dfitness×(1 − DecayRate), if ind is selected

(2)

Decay Rate. We set a decay rate to indicate the decrease speed of individual’s fitness.
The decay rate is a percentage value between 0% and 100%. If an individual is selected
by the selection process, its dynamic fitness will decrease by the speed of the decay
rate. If the decay rate is high, dynamic fitness will decrease quickly and individuals will
quickly cease to evolve. Thus, we may get less frequent patterns through a high decay
rate. If we want to obtain the maximum frequent patterns, we can set a low decay rate,
such as 5%, but this will give rise to a longer running time.

4.6 Algorithm Description

Our algorithm is composed of the following six steps.
Step 1:We obtain the initial population which includes all frequent 1-item positive

and 1-item negative sequences. Step 2: Calculate all initial individuals’ fitness. Their
dynamic fitness is set to their fitness. Step 3: We select the top K individuals with
high dynamic fitness from the population. After selection, the dynamic fitness of the
selected individuals is updated by Eqn.(2). Step 4: Crossover and mutation between
the selected individuals to produce the next generation. Step 5: After obtaining the
next generation, we first prune invalid individuals and then calculate the frequency and
fitness of remained individuals in new generation. If the frequency of an individual is
greater than min sup, we add it into the population, and set its fitness and dynamic
fitness, but if the population has included this individual, we ignore it. Step 6: Go back
to step 3 and iterate the above process until all individuals in the population are dead
(i.e., their dynamic fitness has become close to 0). The dead individuals are still in
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population, but they ceased to evolve. In the end, we obtain the final result - whole
population, which is composed of all dead individuals.

The pseudocode of our algorithm is given as follows.

RunGA(min sup, decay rate, crossover rate, mutation rate){
pop = initialPopulation();
for (each individual ind in pop){

ind.fitness = calculateFitness(ind);
ind.dfitness = ind.fitness
pop.sum dfitness = pop.sum dfitness + ind.dfitness

}
while ( pop.sum dfitness > 0 ){

popK = Selection(pop);
if (Random()<crossover rate) Crossover(popK);
if (Random()<mutation rate) Mutation(popK);
for (each individual ind in popK)

if (Prune(ind) ! =true && ind.sup >= min sup) pop.add(ind);
}
return pop;

}

Selection(pop){ //Subfunction for selecting top K individuals from population
for (each ind with top K dfitness in pop){

popK.add(ind);
ind.dfitness = ind.dfitness ∗ (1-decay rate);
if (ind.dfitness < 0.01) ind.dfitness = 0;

}
return popK;

}

5 Experiments

Our algorithm was implemented with Java and tested with three synthetic sequence
datasets generated by an IBM data generator [1] and a real-world dataset. We also im-
plemented the PNSP algorithm [11] and Neg-GSP algorithm [14] with Java for perfor-
mance comparison. All the experiments were conducted on a PC with Intel Core 2 CPU
of 2.9GHz, 2GB memory and Windows XP Professional SP2.

Dataset1(DS1) is C8.T8.S4.I8.DB10k.N1k, which means the average number of
elements in a sequence is 8, the average number of items in an element is 8, the average
length of a maximal pattern consists of 4 elements and each element is composed of 8
items average. The data set contains 10k sequences, the number of items is 1000.

Dataset2(DS2) is C10.T2.5.S4.I2.5.DB100k.N10k.
Dataset3(DS3) is C20.T4.S6.I8.DB10k.N2k.
Dataset4(DS4) is real application data for insurance claims. The data set contains

479 sequences. The average number of elements in a sequence is 30. The minimum
number of elements in a sequence is 1, and the maximum number is 171.

Experiments were done to compare the different Crossover Rate, Mutation Rate
and Decay Rate on two synthetic datasets, DS1 and DS2. Each experiment was run
10 times and then the average value was got as the final result. We focused on comparing
runtime, the number of patterns and the runtime per pattern, which indicates how long
it takes to get one pattern. The total number of all patterns was determined by PNSP and
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Fig. 2. Different Crossover Rates

Fig. 3. Different Mutation Rates
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Fig. 4. Different Decay Rates

Neg-GSP algorithm, and it was then easy to know the proportion of patterns we could
get by using our algorithm. The Y axis (see the 3rd and 4th chart of Fig. 2) indicates
the proportion of patterns.

Crossover Rate. We compared different crossover rates from 60% to 100%. Fig. 2
shows the effect of different crossover rates on DS1 and DS2. With low crossover
rates, such as 60%, we obtained almost the same proportion of patterns as with high
crossover rates (see the 2nd and 5th charts in Fig. 2). The least runtime per pattern is
achieved when the crossover rate is low, so 60% is the best choice for the two datasets
in our experiments.

Mutation Rate. We compared different mutation rates from 0% to 20% on DS1 and
DS2 (see Fig. 3). They show that the mutation rate will not have an outstanding effect,
but if it is set to 0%, it will result in missing a lot of patterns. A Mutation rate of 5-10%
is a good choice because it can produce around 80% patterns for DS1 and above 90%
patterns for DS2. When the mutation rate is 5%, the average runtime per pattern is
lower. We therefore set a mutation rate of 5% for the following experiments.

Decay Rate. Decay rate is a variable that we used to control evolution speed. If the decay
rate is high, individuals will die quickly, so we can get only small proportion of patterns.
If the decay rate is low, we can get more patterns, but a longer runtime is necessary (see
Fig. 4). In order to get all negative sequential patterns, we always choose decayrate=5%,
which enables us to obtain around 90% to 100% patterns on the two datasets.
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Fig. 5. Comparison with PNSP and Neg-GSP Algorithms

Performance Comparison. We compared our algorithm with PNSP and Neg-GSP,
which are two algorithms proposed recently for negative sequential pattern mining. The
tests are based on Crossover Rate=60%, Mutation Rate=5% and Decay Rate=5%.
The results (see Fig. 5) on 4 different datasets show that the performance of the GA-
based algorithm is better than PNSP and Neg-GSP when the support threshold is low.
Our algorithm is not better than others when min sup is high, because most patterns
are very short and the GA-based method cannot demonstrate its advantage.

When min sup is high, there are not as many patterns and the patterns are short, so
it is very easy to find the patterns with existing methods. However, when min sup is
low, the patterns are longer and the search space is much bigger, so it is time-consuming
to find patterns using traditional methods. Using our GA-based algorithm, it is still can
obtain the patterns quickly even though min sup is very low.
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6 Conclusions and Future Work

Based on GA, we have proposed a method for negative sequential pattern mining. Ex-
tensive experimental results on synthetic datasets and a real-world dataset show that
the proposed method can find negative patterns efficiently, and it is better than existing
algorithms when the support threshold min sup is low or when the patterns are long.

In our future work, we will focus on studying new measures including fitness func-
tion, selection and crossover method to make our algorithm more efficient. There should
also be some better methods for pruning. Other work will be to explore post mining to
find interesting patterns from the discovered negative sequential patterns. As we have
obtained many negative sequential patterns, the means of finding interesting and inter-
pretable patterns from them is valuable in industry applications.
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Abstract. Association rule mining is an important data mining task that dis-
covers relationships among items in a transaction database. Most approaches to
association rule mining assume that all items within a dataset have a uniform
distribution with respect to support. Therefore, weighted association rule min-
ing (WARM) was introduced to provide a notion of importance to individual
items. Previous approaches to the weighted association rule mining problem re-
quire users to assign weights to items. This is infeasible when millions of items
are present in a dataset. In this paper we propose a method that is based on a
novel Valency model that automatically infers item weights based on interactions
between items. Our experimentation shows that the weighting scheme results in
rules that better capture the natural variation that occurs in a dataset when com-
pared to a miner that does not employ such a weighting scheme.

Keywords: weighted association rule mining, valency, principal components.

1 Introduction

Association rule mining was introduced by [1] and is widely used to derive meaningful
rules that are statistically related. It aims to extract interesting correlations, frequent pat-
terns, associations or casual structures among sets of items in transaction databases. The
relationships are not based on the inherent properties of the data themselves but rather
based on the co-occurrence of the items within the database. The original motivation
for seeking association rules came from the need to analyze supermarket transaction
data also known as market basket analysis. An example of a common association rule
is {bread} → {butter}. This indicates that a customer buying bread would also buy
butter. With traditional rule mining techniques even a modest sized dataset can produce
thousands of rules, and as datasets get larger, the number of rules produced becomes
unmanageable. This highlights a key problem in association rule mining; keeping the
number of generated itemsets and rules in check, whilst identifying interesting rules
amongst the plethora generated.

In the classical model of association rule mining, all items are treated with equal
importance. In reality, most datasets are skewed with imbalanced data. By applying the
classical model to these datasets, important but critical rules which occur infrequently
may be missed. For example consider the rule: {stiff neck, fever, aversion to light} →
{meningitis}. Meningitis occurs relatively infrequently in a medical dataset, however if
it is not detected early the consequences can be fatal.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 274–285, 2010.
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Recent research [2,3,4,5] has used item weighting to identify such rules that rarely
manifest but are nonetheless very important. For example, items in a market basket
dataset may be weighted based on the profit they generate. However, most datasets
do not come with preassigned weights, the weights must be manually assigned in a
time consuming and error-prone fashion. Research in the area of weighted associa-
tion rule mining has concentrated exclusively on formulating efficient algorithms for
exploiting pre-assigned weights rather than deducing item weights from a given trans-
actional database. We believe that it is possible to deduce the relative importance of
items based on their interactions with each other. In application domains where user’s
input on item weights is either unavailable or impractical, an automated approach to as-
signing weights to items can contribute significantly to distinguishing high value rules
from those with low value.

In this paper we make two contributions to the field of association rule mining.
Firstly, we present a novel scheme that automates the process of assigning weights
to items. The weights assignment process is underpinned by a “Valency model” that
we propose. The model considers two factors: purity and connectivity. The purity of
an item is determined by the number of items that it is associated with over the entire
transactional database, whereas connectivity represents the strength of the interactions
between items. We will elaborate on the Valency model later in the paper in section
3. Secondly, association rules produced by the Valency model are evaluated through a
novel scheme based on Principal Components Analysis. The formulation of this inter-
est measure was motivated by the fact that none of the popularly used interest measures
such as Confidence and Lift was able to capture differences between rules with highly
weighted items from those with lowly weighted ones.

The rest of the paper is organized as follows. In the next section, we look at previ-
ous work in the area of weighted association rule mining. In section 3 we give a formal
definition of the weighted association rule mining problem. Section 4 describes our pro-
posed Valency model while Section 5 presents the evaluation scheme used to assess the
performance of the Valency model. Our experimental results are presented in Section 6.
Finally we summarize our research contributions in Section 7 and outline directions for
future work.

2 Background

The classical association rule mining scheme has thrived since its inception in [1] with
application across a very wide range of domains. However, traditional Apriori-like ap-
proaches were not designed to deal with the rare items problem [6,7]. Items which are
rare but have high confidence levels are unlikely to reach the minimum support thresh-
old and are therefore pruned out. For example, Cohen [8] noted that in market basket
analysis rules such as {caviar}→ {vodka}will not be generated by traditional associa-
tion rule mining algorithms. This is because both caviar and vodka are expensive items
which are not purchased frequently, and will thus not meet the support threshold.

Numerous algorithms have been proposed to overcome this problem. Many of these al-
gorithms follow the classical framework but substitute an item’s support with a weighted
form of support. Each item is assigned a weight to represent the importance of individual
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items, with items that are considered interesting having a larger weight. This approach
is called weighted association rule mining (WARM) [2,4,5,9,10]. Sanjay et al. [9] intro-
duced weighted support to association rule mining by assigning weights to both items
and transactions. In their approach rules whose weighted support is larger than a given
threshold are kept for candidate generation, much like in traditional Apriori [1]. A sim-
ilar approach was adopted by [2], but they applied weights to items and did not weigh
transactions. They also proposed two different ways to calculate the weight of an itemset,
either as the sum of all the constituent items’ weights or as the average of the weights.
However, both of these approaches invalidated the downward closure property [11].

This led Tao et al. [10] to propose a “weighted downward closure property”. In their
approach, two types of weights were assigned, item weight and itemset weight. The
goal of using weighted support is to make use of the weight in the mining process and
prioritize the selection of targeted itemsets according to their perceived significance in
the dataset, rather than by their frequency alone.

Yan and Li [5] working in the domain area of Web mining proposed that weights be
assigned on the basis of the time taken by a user to view a web page. Unlike the previous
approaches [2,4,9,10] that assumed a fixed weight for each item, Yan and Li[5] allowed
their weights to vary according to the dynamics of the system, as pages became more
popular (or less popular) the weights would increase (or decrease), as the case may be.

Recently Jian and Ming[12] introduced a system for incorporating weights for min-
ing association rules in communication networks. They made use of a method based on
a subjective judgements matrix to set weights for individual items. Inputs to the matrix
were supplied by domain specialists in the area of communications networks.

Thus it can be seen in previous work that the weight assignment process relies on
user’s subjective judgements. The major issue with relying on subjective input is that
rules generated only encapsulate known patterns, thus excluding the discovery of un-
expected but nonetheless important rules. Another issue is that the reliance on domain
specific information constrains the range of applicability to only those domains where
such information is readily available. There is no published work that is known to the
authors that addresses these two issues. This motivated us to formulate a generic solu-
tion for the weight assignment problem that can be deployed across different application
domains.

3 The Weighted Association Rule Mining (WARM) Problem

Given a set of items, I = {ii, i2, . . . , in}, a transaction may be defined as a subset of
I and a dataset as a set D of transactions. A set X of items is called an itemset. The
support of X , sup(X), is the proportion of transactions containing X in the dataset.
An association rule is an implication of the form X → Y , where X ⊂ I , Y ⊂ I , and
X∩Y = ∅. The rule X → Y has support of s in the transaction set D, if s = sup(XY ).
The rule X → Y holds in the transaction set D with confidence c where c = conf(X →
Y ) = sup(XY )/sup(X). Given a transaction database D, a support threshold minsup
and a confidence threshold minconf, the task of association rule mining is to generate all
association rules that have support and confidence above the user-specified thresholds.

In weighted association rule mining a weight wi is assigned to each item i, where
−1 ≤ wi ≤ 1, reflecting the relative importance of an item over other items that it is
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associated with. The weighted support of an item i is wisup(i). Similar to traditional
association rule mining, a weighted support threshold and a confidence threshold is
assigned to measure the strength of the association rules produced. The weight of a
k-itemset, X , is given by: (∑

i∈X

wi

)
sup(X) (1)

Here a k-itemset, X , is considered a frequent itemset if the weighted support of this
itemset is greater than the user-defined minimum weighted support (wminsup) thresh-
old. (∑

i∈X

wi

)
sup(X) ≥ wminsup (2)

The weighted support of a rule X → Y is:( ∑
i∈X∪Y

wi

)
sup(XY ) (3)

Algorithm: Weighted Association Rule Mining (WARM)
Input: Transaction database D, weighted minimum support wminsup,

universe of items I
Output: Weighted Frequent itemsets

Lk ← {{i}|i ∈ I, weight(c) ∗ support(c) > wminsup}
k ← 1
while (|Lk| > 0) do

k ← k + 1
Ck ← {x∪y|x, y ∈ Lk−1, |x∩y| = k − 2}
Lk ← {c|c ∈ Ck, weight(c) ∗ support(c) > wminsup}

Lk ← ⋃
k Lk

An association rule X → Y is called an interesting rule if X∪Y is a large itemset and
the confidence of the rule is greater than or equal to a minimum confidence threshold. A
general weighted association rule mining algorithm [10] is shown above. The algorithm
requires a weighted minimum support to be provided. In this algorithm Lk represents
the frequent itemsets also known as the large itemsets and Ck represents the candidate
itemsets. Candidate itemsets whose weighted support exceeds the weighted minimum
support are considered large itemsets and will be included in the rule generation phase.

Thus it can be seen that item weighting enables items with relatively low support
to be considered interesting (large) and conversely, items which have relatively high
support may turn out to be uninteresting (not large). This adds a new dimension to the
classical association rule mining process and enables rules with high weights in their
rule terms to be ranked ahead of others, thus reducing the burden on the end user in
sifting through and identifying rules that are of the greatest value.

4 Valency Model

The Valency model is based on the intuitive notion that an item should be weighted
based on the strength of its connections to other items as well as the number of items
that it is connected with. We say that two items are connected if they have occurred
together in at least one transaction. Items that appear often together when compared
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Fig. 1. Items Graph

to their individual support have a high degree of connectivity and are thus weighted
higher. At the same time, an item that is contained in a small clique of items is said
to have a high degree of purity and is given a proportionally higher weight. We will
formally define the notions of connectivity and purity with the help of the following
example.

Figure 1 is an example transaction dataset which can be represented as a graph
whereby the nodes represent an item and the edges represent the support of the two
items as an itemset. For example, the edge between node A and node B has a strength of
2, meaning that A and B occur together twice in the dataset. The Valency model we de-
veloped for our research is inspired by the Inverse Distance Weighting function (which
was proposed by Shepard [13]. Inverse distance weighting is an interpolation technique
which generates values for unknown points as a function of the values of a set of known
points scattered throughout the dataset. In defining purity we took into account the im-
portance of an item being featured in a rule term. In general, we prefer rules that have
items that are not merely associated with each other strongly but also are distinctive in
the sense that they appear with relatively few items. Such distinctive items add value to
rules as they are more likely to capture genuine affinities, and possibly causal effects
than an item that is selected only on the basis of a strong statistical correlation [14]. A
strong statistical correlation between two items does not always indicate that a natural
affinity exists between them. Consider, for example an item X having very high sup-
port that ends up being associated with many items Y , Z , etc merely because of the fact
that it occurs in a very large fraction of the transactions, thus making the associations
between (X, Y ) and (X, Z) spurious, even though the correlations between X and Y
on the one hand and X and Z on the other hand are high. Keeping these facts in mind,
we formally define the purity, p, for a given item k as:

pk = 1− log2(|Ik|) + log2(|Ik|)2
log2(|U |)3

(4)

Where |U | represents the number of unique items in the dataset and |Ik| represents
the number of unique items which are co-occurring with item k. Purity as defined in
Equation 4 ensures that the maximum purity value of 1 is obtained when the number
of items linked with the given item is 1, whereas the purity converges to the minimum
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value of 0 as the number of linkages increases and become close to the number of items
in the universal set of items. We chose to model purity with a non-linear logarithmic
function as we wanted it to decrease sharply with the number of linkages. The log(|U |)3
term in the denominator ensures that the rate of decrease in purity is sensitive to the
size of the universal set. For databases with a larger number of items (larger |U |) the
gradient of descent is steeper when compared to databases with a smaller pool of items
(smaller |U |)and so a smaller number of items will acquire high purity values. The
second contribution to an item’s valency relies on how strongly it is connected to its
neighboring items, or its connectivity. Given an item k which is connected to n items in
its neighborhood, the connectivity, ck is defined as:

ck =
n∑
i

count(ik)
count(k)

(5)

We can now define the valency contained by an item k, denoted by vk as the combi-
nation of both the purity and the connectivity components:

vk = β.pk + (1− β).
n∑
i

count(ik)
count(k)

.pi (6)

where β is a parameter that measures the relative contribution of the item k over the
items that it is connected with in the database. The objective of the Valency model is
to capture rules over small cliques of items such that items within a given clique have
high purity and connectivity with other items contained within that clique. Since all
items within a given clique are connected to each other, it follows from our definition
of purity that all items within a clique have the same purity. Thus we can re-write the
above equation as:

vk = β.pk + (1− β).pk.

n∑
i

count(ik)
count(k)

(7)

Thus, for a given item k, the relative contribution made to the valency by other items in
the clique is dependent on both the value of the parameter β as well as the sum of the
connectivity values from item k. We set the value of β as:

β =
1
n

n∑
i

count(ik)
count(k)

(8)

With this setting of β we can re-write Equation 7 as:

vk = β.pk + nβ(1− β).pk (9)

With this setting of β we can see from the above expression that the relative contribu-
tion of the neighboring items of k over itself is 1− β, which means that as the value of
β increases the item k itself assumes more importance in relation to its neighbors. We
use the valency of an item as its weight. The weight calculation for an item is thus a
computationally straightforward process as the weight for an item is independent of the
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weights of other items. Also, the weight assignment process for items can be accom-
plished in the first pass through the dataset as the local neighborhoods for each item
can be computed on the fly together with the reading of the dataset. In the next section
we discuss our evaluation criteria for determining the quality of the rules obtained by
applying the Valency model.

5 Rule Evaluation Methodology

A vast array of metrics for evaluating the quality of association rules have been proposed
in the literature. Apart from the standard metrics of rule Support and Confidence, other
measures such as Lift, Information Gain, Conviction, and Correlation have been used.
The standard metrics are excellent at evaluating rules at the individual level in terms of
the strength of correlation between terms and in assessing predictive accuracy. However,
in the context of weighted association rule mining it is necessary that the contribution
from each rule item is quantified and the contribution that it makes to the overall rule
quality be assessed. Existing metrics tend to operate on the rule level rather than on the
individual item level. This motivated us to investigate the use of Principal Components
Analysis (PCA) to evaluate the quality of our weighted association rule miner.

PCA is a mathematical technique that has been widely used in the data mining arena.
Basically, PCA takes a set of variables and finds a set of independent axes (the Principal
Components) which explain all or most of the variation that occurs within the dataset.
Its main application is in the area of classification and clustering where it is used as
a pre-processing technique for dimensionality reduction. It has also been used before
in association rule mining, but in a limited context where items are defined on a true
numerical scale [15]. However, our use of PCA is quite different.

We concentrate solely on the right hand sides (RHSs) of rules as they encapsulate
the actionable components of rules. Focussing on rule consequents allows us to test the
degree of diversity amongst the actionable components discovered by the rule generator
without the confounding effect of diversity amongst the left hand sides (LHSs) of rules.
A set of rules with exactly the same RHS does not yield as much knowledge as rules
that are diverse in their RHSs. For example, a set of rules egg, bread → milk; butter,
bread→ milk; and tuna, egg→ milk, can be considered less interesting than rules with
a greater diversity such as diaper → baby food; ham → cheese; and chips → soda.
In a medical database containing information about a number of different diseases a
rule generator that has poor coverage of the set of diseases (i.e. only identifies a small
fraction of the diseases in the RHSs of the rules) is not as useful as one that has a better
coverage with respect to the set of diseases.

We first apply PCA to the transaction dataset and obtain the Eigen vectors for the
first two principal components. These vectors will be a linear function of the form:
ek1I1 + ek2I2 + .....eknIn where ekp is the Eigen value for the pth item on the kth
principal component (k is either 1 or 2). We process the rule set by removing LHS of
each rule. This results in a collection of rule consequents (RHSs) containing duplicates
entries as the LHS terms have been eliminated. After duplicate elimination we obtain
a more compact representation of the rule set, R. We project the rule set R on its first
two principal components and obtain a quantified version of the rule set, which we



Valency Based Weighted Association Rule Mining 281

denote by S. The set S contains a set of ordered pairs (X, Y ) where X, Y are vectors
representing principal components 1 and 2 respectively for each rule.

PCA enables us to capture the amount of variance that is explained by each rule term
for each rule. The greater the amount of variance that is captured by a rule term, the
higher the value of that term and the higher the contribution it makes to the rule as a
whole. Thus PCA provides us with an independent method of evaluating the efficacy of
our Valency model. If our Valency model is to outperform an unweighted association
mining scheme such as Apriori then the delineation of the rules in PCA space produced
by our Valency model should be better. In order to assess the quality of the delineation
we applied the K-means clustering algorithm to the (X, Y ) vectors and then visualized
the clusters. We also quantified the degree of delineation by calculating a cluster purity
measure along the axis that provided the better delineation, which happened to be the
first principal axis (rather than the second) in most of the experiments that we carried
out. In the next section we present the results of our experimentation with our Valency
model.

6 Experimental Results

Our motivation in introducing the Valency model was to facilitate the automatic assign-
ment of weights from a given transaction dataset without requiring additional infor-
mation from users. As such we were interested in examining the impact of the weight
assessment process in an environment where user input is not available, and this led us
to compare our algorithm with the classical Apriori approach. Our experimentation was
conducted in two steps, firstly a performance comparison with Apriori, and secondly an
examination of the impact of key parameters of the Valency model. We used seven UCI
datasets [16]. We also experimented with synthetic data for which we used the data
generator proposed by [11]. Datasets D,were created with the following parameters:
number of transactions |D|, average size of transactions |T |, number of unique items
|I|, and number of large itemsets |L|.

6.1 Principal Components Analysis of the Rule Bases

Table 1 shows the results of running both Apriori and our algorithm on the datasets
mentioned above. Each row shows the dataset, the number of rules produced, the num-
ber of RHSs produced (bracketed), and the cluster purity obtained by clustering the
resulting rule bases on the first two principal components. We see from the results that
the effect of weighting is to produce a much more compact rule base as Valency’s rule
base, with the exception of Soybean, is much smaller than Apriori’s. In order to keep
the comparison fair we ran the two algorithms at minimum support thresholds so that
they produced rules bases which had approximately the same support distributions. The
compact nature of Valency’s rule base vis-a-vis Apriori is due to the influence of the
purity component that reduces the weighted support of an item sharply as the number
of items that it interacts with increases. We verified this by substituting the non linear
purity function with a linear one. The linear function did not punish highly connected
items as severely as its non linear counterpart, thus resulting in a rule base that exploded
in size and became very similar to that of Apriori in both qualitative and quantitative
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Table 1. Clustering Results for First Two Principal Components

Dataset Apriori Valency Improvement
No. of Rules Cluster Purity No. of Rules Cluster Purity

Bridges 1875(15) 100 505(15) 100 0.0
Flag 486500(719) 86.6 119948(121) 94.2 8.8
Flare 244753(1052) 90.9 715(32) 100 10.0
Hepatitis 720633(2065) 87.9 45850(233) 96.6 9.9
Mushroom 61515(1064) 92.5 4005(134) 92.5 0.0
Soybean 188223(1211) 82.9 456753(1310) 99.7 20.3
Synthetic (T25I200D1K) 618579(2195) 89.7 266914(853) 98.4 9.7
Zoo 644890(3128) 89.7 5475(127) 99.2 10.6

Fig. 2. PC1 and PC2 Clusters for Zoo Dataset
based on Apriori

Fig. 3. PC1 and PC2 Clusters for Zoo Dataset
based on Valency

terms. The effect of the linear function was to dilute the effect of purity and hence
the weighting scheme was not as effective in discriminating between different items,
thus resulting in a larger proportion of items assuming higher purity and higher weight
values.

The second interesting aspect of the results is that Valency produced a better set
of clusters when compared to Apriori. The cluster purity improvement measure for
Valency ranges from 0% for the relatively sparse Bridges and Mushroom datasets to
20.3% for the denser Soybean dataset. This improvement is due to the fact that the items
that feature in Valency’s rules capture a higher proportion of variance that occurs over
the underlying dataset in relation to Apriori. This result confirms our hypothesis that
it is possible to automatically deduce weights from the interactions that occur between
items in a transactional database. The result for the experimentation with various types
of synthetic datasets were broadly similar to that of the real-world datasets. As the
density of the dataset increased so did the improvement in cluster purity value between
Valency and Apriori. We do not report on all synthetic datasets due to lack of space.
Instead we present the result for one such dataset (T25I200D1K) that is representative
of the experimentation that we conducted with synthetic data.

Figures 2 and 3 shows the clusters generated in PCA space for the Apriori and Va-
lency schemes on the Zoo dataset. For the Zoo dataset the 2nd principal component
produced the cleaner demarcation between the clusters. The figures show that Valency
produces a visibly better separation of clusters around the point of intersection with the
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Fig. 4. Weights, Purity, and Connectivity for
Mushroom Dataset

Fig. 5. Weights, Purity, and Connectivity for
Soybean Dataset

second principal axis. The other visualizations which we could not include due to lack
of space, were similar except that the axis of greater separation was the first principal
component for both of the algorithms.

6.2 Impact of Purity and Connectivity on Item Weight

In this part of the experimentation we investigated the simultaneous effects of purity
and connectivity on item weight. For each of the datasets that we experimented with
we plotted item weight versus purity and connectivity in a 3D representation in order to
assess the simultaneous effects of purity and connectivity on weight.

Figures 4 and 5 show the results for two representative datasets, namely Mushroom
and Soybean. It is clear from the plots that high weights only result if both purity and
connectivity are high at the same time (the ovals on the north east corner of the cubes).
We can also see the filtering effect of purity on weight. Items with high connectivity but
low purity end up with lower weight (denoted by the ovals on the south west corners
of the cubes). Algorithms such as Apriori (and all such un-weighted association rule
mining algorithms) that do not discriminate on purity will tend to capture rules that
contain items that occur with a large number of other items thus producing rules that
are unlikely to be novel or useful to the decision maker.

6.3 Case Study Zoo Dataset

We compare the results on the zoo dataset based on the rule bases produced by the
Apriori and the Valency schemes. Using Apriori, we found that the item toothed = 1
occurs with 33/40 (or 82.5%) of the other items, and that it appears in 431079/644890
(or 66.8%) of the rules. The item toothed = 1 thus serves to dilute the effects of all
rules that it participates in, which happens to be the majority (66.8%) of the Apriori
rule base. The subrule {eggs = 0, legs = 4} → {toothed = 1} appeared in all of the top
20 rules when ranked by Lift. Considering that all three items within this subrule have
low weights, and given the fact that all of Apriori’s top 20 rules embed this subrule, it
follows that the degree of diversity captured by Apriori’s top ranked rules happens to
be low. With the Valency scheme, we noticed that toothed = 1 occurs with 1508/5474
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(27.5%) of the other rules. When we ranked the rules by lift, we noticed that toothed =
1 first appeared in rule 317 with a lift value of 2.06.

For Apriori, the items which appeared in the first 20 rules were: eggs = 0, legs = 4,
airborne = 0, fins= 0, hair = 0, toothed = 1, milk = 1, backbone=1, breathes = 1, type
= 1, and feathers = 0. Out of the 11 items only 4 items are of high weight. The average
weight for the items was 1.16. With the Valency scheme, the items that appeared in the
first 20 rules were backbone = 1, breathes = 1, milk = 0, venomous =0, eggs = 1, fins
= 0, tail = 1, and domestic = 0. The average weight for the items was 1.34.

The above results illustrate the extent to which items that are not distinctive can
dilute the efficacy of rules produced by an association miner that does not utilize item
weighting. On the other hand the Valency model is more discriminative in its use of
items such as toothed = 1. Whenever such items feature in its rule base, it tends to
include items with higher weight to compensate, thus mitigating the effects of such
lowly weighted items.

7 Conclusions and Future Work

In this paper, we propose a new item weighting scheme based on the Valency model.
We fit the weights to items based on the notions of connectivity and purity. The va-
lency weighting function consists of two different parts: weights of an item based on
its strength of connections and weights of its neighboring items. We used PCA to in-
vestigate the degree of variation captured by the rule bases. Overall, the Valency model
produces better rules than traditional Apriori. In terms of future work we would like to
investigate the effects of not just the immediate neighbors on an item’s weight but to
also capture the effects of non-neighboring items that are not directly connected to the
given item under consideration.
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Abstract. We present a reliable universal method for ranking sequential

patterns (itemset-sequences) with respect to significance in the problem

of frequent sequential pattern mining. We approach the problem by first

building a probabilistic reference model for the collection of itemset-

sequences and then deriving an analytical formula for the frequency for

sequential patterns in the reference model. We rank sequential patterns

by computing the divergence between their actual frequencies and their

frequencies in the reference model. We demonstrate the applicability of

the presented method for discovering dependencies between streams of

news stories in terms of significant sequential patterns, which is an im-

portant problem in multi-stream text mining and the topic detection and

tracking research.

1 Introduction

1.1 Motivation

Frequent sequential pattern mining, introduced in [1], has established itself as
one of the most important data mining frameworks with broad applications
including analysis of time-related processes, telecommunications, bioinformatics,
business, software engineering, Web click stream mining, etc [9]. The problem is
defined as follows. Given a collection of itemset-sequences (sequence database of
transactions) and a minimum frequency (support) threshold, the task is to find
all subsequence patterns, occurring across the itemset-sequences in the collection,
whose frequency is greater than the minimum frequency threshold. The main
focus of the research on sequential pattern mining has been on devising efficient
algorithms for discovering frequent sequential patterns (see [9] for a review).
Although state of the art mining algorithms can efficiently derive a complete set
of frequent sequential patterns under certain constraints, the main problem is
that the set of frequent sequential patterns is still too large for effective usage [9].
The two most effective methods for reducing the large set of frequent sequential
patterns have been: closed sequential pattern mining [12] and maximal sequential
pattern mining [5]. However no methods for assessing interestingness of sequential
patterns have been proposed while such methods are very important to advance
the applicability of frequent sequential pattern mining. By comparison, such
methods have been proposed for subsequence patterns in the sliding window
model [6] and for itemsets (see [11] for a review).

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 286–299, 2010.
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1.2 Overview of the Method

We approach the problem by first building a probabilistic reference model for the
collection of itemset-sequences and then deriving an analytical formula for the
relative frequency for sequential patterns. Given such a model we discover se-
quential patterns that are under-represented or over-represented with respect to
the reference model, where a pattern is under-represented if it is too infrequent
in the input collection of itemset-sequences and a pattern is over-represented
if it is too frequent in the input collection of itemset-sequence. According to
this notion a sequential pattern is significant if the probability that it would
occur by chance a specific number of times, in the reference model, is very
small. Note that the frequency of occurrence alone is not enough to determine
significance, i.e., an infrequent sequential pattern can be more significant than
a frequent one. Furthermore an occurrence of a subsequence pattern may be
meaningless [6] if it occurs in an sequence of an appropriately large size. Our
algorithm for ranking sequential patterns with respect to significance works as
follows: (I) we find frequent sequential patterns using PrefixSpan [10] for a given
minimum support threshold; (II) we compute their frequencies and variances of
the frequencies in the reference model and (III) we rank the frequent sequential
patterns with respect to significance by computing the divergence (Z-score) be-
tween the empirical (actual) frequencies and frequencies in the reference model.
Given the reference model a presence of significant divergence between the ac-
tual and computed frequency of a sequential pattern indicates that there is a
dependency between itemsets/items in that pattern. In order to capture these
dependencies our reference model consists of two sub-models: (I) sequence-wise
reference model: treats itemsets as alphabet symbols and represents an indepen-
dence model where itemsets occur independently of their order in an itemset-
sequence and (II) itemset-wise reference model: provides decorrelated frequencies
of itemsets for the sequence-wise reference model. By decorrelated frequencies we
mean that given an attribute (item) a1 and attribute a2 the frequency of itemset
(a1, a2) is computed using a maximum entropy model, where the marginal em-
pirical probabilities are preserved. The reason we use such a model for itemsets
is that unlike in the case of frequent itemset mining, we do not consider empty
itemsets (empty attribute sets) and therefore the independence model for item-
sets [3] is inappropriate as an itemset-wise reference model. In particular, using
the independence model for sparse non-empty itemsets (the average number of
ones in a row is much smaller than the number of attributes) would artificially
overestimate the probability of the empty itemset causing a distortion of proper
proportions of probabilities of non-empty itemsets. Note, that the sequence-wise
reference model can be easily extended to Markov models in the spirit of [7].
The reason we consider the sequence-wise model to be independence model in
this paper is because of the following reasons: (I) it is the model of choice if
the Markov reference model is not known; (II) it has an intuitive interpretation
as a method for discovering dependencies and (III) it leads to exact polynomial
formulas for computing the frequencies of sequential patterns.
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1.3 Multi-stream of News Stories and the Reference Model

We demonstrate the applicability of the presented method for discovering de-
pendencies between streams of news stories, which is an important problem in
multi-stream text mining and the topic detection and tracking research [2]. For
this purpose we generated a collection of itemset-sequences from a multi-stream
of news stories that was gathered from RSS feeds of major world news agencies
[8]. Every itemset-sequence in that collection consists of stream identifiers of
stories in a cross-stream cluster of news stories reporting the same news event,
where the sequence is ordered according to the timestamps of the stories. Every
itemset contains stream identifiers of documents published within the same time
granularity. As an example itemset-sequence in that collection consider [(AP,
MSNBC), UPI] that corresponds to three articles on the same news event (e.g.,
an earthquake in Italy), where the first two of them were published by AP and
MSNBC within the same time granularity and followed by an article by UPI.
Thus, clearly the empty itemset () does not occur in our data set. We stated the
following research questions with respect to this collection of itemset-sequences:
(I) what is the relationship between frequency, significance and content similarity
in the discovered significant sequential patterns? and (II) what are the depen-
dencies between the news sources in terms of sequential patterns of reporting
the same news events?

As an example of the application of the reference model consider a case where
the input collection of itemset-sequences contains a frequent sequential pattern
s =[(AP, MSNBC), UPI], that consist of two itemsets s1 =(AP, MSNBC) and
s2 =UPI that are correlated by occurring frequently together. Then since the
sequence-wise reference model assumes independence between the elements, the
frequency of s computed from the sequence-wise reference model will be much
smaller then its actual frequency leading to a high significance rank of s. Further-
more, s1 =(AP, MSNBC) contains two items a1 =AP and a2 =MSNBC which
are correlated by occurring frequently together in the same itemsets. Then there
are two possibilities for computing the frequency of s in the sequence-wise refer-
ence model: (I) we use the empirical frequency of s1 or (II) we use a frequency
of s1 provided by the itemset-wise reference model. Then since the itemset-wise
reference model provides decorrelated frequencies of itemsets while preserving
marginal frequencies of the items (the publishing rates of AP and MSNBC), the
frequency of s1 computed from the itemset-wise reference model will be smaller
that its empirical frequency leading to an even higher significance rank of s.

1.4 Related Work and Contributions

Thus, we present a reliable universal method for ranking sequential patterns
with respect to significance that builds on the previous work [6], where a frame-
work for assessing significance of subsequence patterns in the sliding window
model was presented. The challenges of analysing itemset-sequences with re-
spect to the previous work on sequences in [6] stems from the following facts:
(I) itemset-sequences have variable sizes; (II) itemset-sequences contain itemsets
(unordered sets) and (III) we do not consider empty itemsets. We address the
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first problem by modeling the frequency of an itemset-sequence using a proba-
bilistic discrete mixture model and we approach the second and third problem
by using an appropriate maximum entropy itemset-wise reference model.

To the best of our knowledge this is the first algorithm for ranking sequential
patterns with respect to significance while there has been an extensive research
on mining frequent sequential patterns (see [9] for a review).

The paper is organized as follows. Section 2 reviews theoretical foundations,
Section 3 defines the problem, Section 4 presents the sequence-wise reference
model, Section 5 presents the itemset-wise reference model, Section 6 presents
the algorithm for ranking sequential patterns with respect to significance, Section
7 presents experimental results and finally Section 8 presents conclusions.

2 Theoretical Foundations (Review)

In this section we review some concepts that are necessary in order to explain
our framework.

2.1 Sequential Pattern Mining

In this section we review the problem of sequential pattern mining [1]. Let
A = {a1, a2,. . . , a|A|} be a set of items (alphabet). A subset I ⊆ A, where
I = {a1, a2,. . . , a|I|} is called an itemset or element and is also denoted by
(a1, a2,. . . , a|I|). An itemset-sequence s = [s1, s2,. . . , sm] is an ordered list of
itemsets, where si ⊆ A. The size of the itemset-sequence is denoted by |s| and
the length of itemset-sequence s is defined as l =

∑m
i=1 |si|. An itemset-sequence

s = [s1, s2,. . . , sm] is a subsequence of itemset-sequence s′ = [s′1, s
′
2,. . . , s

′
m′ ], de-

noted s � s′, if there exist integers 1 ≤ i1 ≤ i2 . . . ≤ im such that s1 ⊆ s′i1 ,
s2 ⊆ s′i2 ,. . . , sm ⊆ s′im

. We also say that s′ is a supersequence of s and s is
contained in s′. Given a collection of itemset-sequences S = {s(1), s(2), . . . , s(|S|)}
the support (frequency) of an itemset-sequence s, denoted by supS(s), is defined
as the number of itemset-sequences s(i) ∈ S that contain s as a subsequence.
The relative support (relative frequency) rsupS(s) = supS(s)

|S| is the fraction of
itemset-sequences that contain s as a subsequence. Given a relative support
threshold minRelSup an itemset-sequence s is called a frequent sequential pat-
tern if rsupS(s) ≥ minRelSup. The problem of mining sequential patterns is to
find all frequent sequential patterns in S given minRelSup. The support has an
anti-monotonic property meaning that supS(s) ≥ supS(s′) if s � s′. A pattern s
is called a closed frequent sequential pattern if none of its frequent supersequences
has the same support. A pattern s is called a maximal frequent sequential pattern
if none of its frequent supersequences is frequent. Table 1 presents an example
collection of itemset-sequences, where itemset-sequence id = 1 has size s = 3,
length l = 4 and consists of three elements (itemsets): (1, 3), 1 and 1. Given
minRelSup = 0.5, s = [(1, 3), 1] is a frequent sequential pattern that is con-
tained in itemset-sequences: id = 1, 3, where rsupS(s) = 0.5.
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Table 1. A collection of itemset-sequences

id itemset-sequence

0 [2, 0]
1 [(1, 3), 1, 1]
2 [2, 3, (0, 2)]
3 [(1, 3), (2, 3), 0, 1]

2.2 Significance of Subsequence Patterns

In this section we review the framework introduced in [6]. Let e = [e1, e2, . . . , em]
be a sequence of symbols. Let Ωn(e|w) =

∑n
i=1 Ii be a random variable that rep-

resent the actual frequency (support) of size w windows containing at least one
occurrence of e as a subsequence in an event sequence of size n + w− 1 (n shifts
of the window), where Ii is an indicator function equal to 1 if the i-th shift con-
tains e. Clearly E[Ωn(e|w)] = nP ∃(e|w), where P ∃(e|w) is the probability that a
window ending at a given position in the event sequence contains at least one oc-
currence of e as a subsequence. The superscript ∃ means “at least one occurrence
as a subsequence” and is used to distinguish this probability from a probability
of e as a string. Clearly, I1, I2, . . . , In is a sequence of dependent random vari-
ables because a given subsequence pattern occurring in the input sequence may
occur in many consecutive windows depending on its span. Therefore, because
of the sliding window overlap Ωn(e|w) does not have a Binomial distribution
meaning Var[Ωn(e|w)] �= nP ∃(e|w)(1 − P ∃(e|w)). Let Ωn(e|w) = Ωn(e|w)

n be a
random variable that represents the actual relative frequency of size w windows
containing at least one occurrence of e as a subsequence in an event sequence,
where E[Ωn(e|w)] = P ∃(e|w) and Var[Ωn(e|w)] ≤ 1

nP ∃(e|w)(1 − P ∃(e|w)).
Let W∃(e|w) be the set of all distinct windows of length w containing at least

one occurrence of pattern e as a subsequence. Then P ∃(e|w) =
∑

x∈W∃(e|w) P (x),
where P (x) is the probability of string x in a given Markov model. W∃(e|w)
can be enumerated using an enumeration graph. The enumeration graph for a
subsequence pattern e = [e1, e2, . . . , em] is shown in Figure 1. In particular for
the 0-order Markov reference model P ∃(e|w) can be expressed as follows

P ∃(e|w) = P (e)
w−m∑
i=0

∑
∑

m
k=1 nk=i

m∏
k=1

(1 − P (ek))nk , (1)

e1 e2 em
0 1 2 m

e2
n2 em

nm Anm+1e1
n1

Fig. 1. Enumeration graph for a subsequence pattern e = [e1, e2, . . . , em], where e =

A− e and A is the alphabet. The exponents n1, . . . , nm+1 above the self-loops denote

the number of times the corresponding self-loops are selected.
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where P (e) =
∏m

i=1 P (ei) and P (ei) is the probability of symbol ei in the refer-
ence model. Then P ∃(e|w) is the probability of getting from state 0 to m in w
steps. Paper [6] also presented an efficient O(w2) dynamic programming algo-
rithm for computing P ∃(e|w) from (1). It was shown that if Var[Ωn(e|w)] > 0
then Ωn(e|w) satisfies the Central limit theorem (CLT) and this fact was used
to set a lower and upper significance thresholds for Ωn(e|w).

3 Problem Definition

The problem of ranking sequential patterns (itemset-sequences) with respect to
significance can be defined as follows.

Given: (I) collection of itemset-sequences S = {s(1), s(2),. . . , s(n)}, where
s(i) = [s(i)

1 , s
(i)
2 ,. . . , s

(i)

|s(i)|], s
(i)
t ⊆A = {a1, a2,. . . , a|A|} and M = max1≤i≤n |s(i)|

and (II) minimum relative support threshold minRelSup for sequential patterns.
Task: rank the discovered sequential patterns with respect to significance.
Note that in our method the main purpose of the support threshold for se-

quential patterns is to limit the search space of possible significant patterns.

4 Sequence-Wise Reference Model

The sequence-wise reference model treats itemsets as alphabet symbols and rep-
resents an independence model where itemsets occur independently of their order
in an itemset-sequence. In order to present the sequence-wise reference model we
introduce the element-wise representation of a collection of itemset-sequences,
that is a sequence of itemset-sequences R = [r(1), r(2), . . . , r(|R|)] over an item-
set alphabet Ξ = {ξ1, ξ2, . . . , ξ|Ξ|}, where r(i) is the i-th itemset-sequence and
r
(i)
t ∈ Ξ is the element (itemset) at time point t. As an example, Figure 2

presents the element-wise sequence of itemset-sequences for the collection from
Table 1, where Ξ = {0, 1, 2, 3, (1, 3), (2, 3)} and the itemsets are represented as
decimal numbers. Note that for the sequence-wise reference model Ξ is provided
by the itemset-wise reference model and includes all non-empty subsets of A.

4.1 Generative Process

Now consider the sequence-wise reference model as a generative process, that
generates itemset-sequences in R as follows:

1. it first generates the size of the itemset-sequence from a distribution α =
[α1, α2, . . . , αM ], where αm is the probability of generating an itemset-
sequence of size m and

2. it generates a sequence of itemsets r(i) of size m from distribution θ =
[θ1, θ2, . . . , θ|Ξ|], provided by the itemset-wise reference model, where θj =
P (r(i)

t = ξj), for ξj ∈ Ξ.
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Fig. 2. Element-wise sequence of

itemset-sequences representing the

collection of itemset-sequences from

Table 1. The streams correspond to

itemset-sequences, where a decimal

number at a given time point corre-

sponds to an itemset (e.g., 10 = 21+3

for itemset (1, 3)).
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1

Fig. 3. Item-wise multi-attribute se-

quence representing the collection from

Table 1. The streams correspond to

items, every time point corresponds to

an itemset, where digit 1 in the i-th
stream means a presence of the i-th
item.

Let P (r(i), m) be the joint probability of a particular itemset sequence r(i) of
size m to be generated by the process. Then given the independence assumption
of the presented generative process we factorize P (r(i), m) as follows

P (r(i), m) = αm · P (r(i)|m), (2)

where P (r(i)|m) =
∏m

t=1 P (r(i)
t ) is the probability of a particular itemset-sequence

r(i) to be generated given the size m.
We compute the parameters of the sequence-wise reference model from S

as follows: (I) αm = Nn(|s(i)|=m)
n (ML estimator), where Nn(|s(i)| = m) is the

number of occurrences of itemset-sequences of size m in S and (II) θ is computed
form the itemset-wise reference model, that is presented in Section 5 and whose
purpose is to provide decorrelated frequencies of itemsets. Note that we could
compute θj as θj = Nn(ξj)

nΞ
(ML estimator), where nΞ is the number of itemsets

in S and Nn(ξj) is the number of occurrences of itemset ξj in S. However the
ML estimator for the itemsets does not provide decorrelated frequencies.

4.2 Relative Frequency

In this section we consider occurrences of a sequential pattern as a subsequence
(gaps between elements of the sequential pattern are allowed) in the sequence-
wise reference model represented by its element-wise representation R. Let Ωn(s)
be a random variable representing the actual relative frequency of a sequential
pattern s occurring as a subsequence in R. Recall that the relative frequency of
a sequential pattern s is equal to the fraction of itemset-sequences in R that
contain it as a subsequence. This means that even if s occurs many times
in a given itemset-sequence s′ ∈ R we count it only as one occurrence. Let
Ωn(s) =

∑n
i=1 Ii be a random variable that represent the actual frequency of

s occurring as a subsequence in R (supR(s)), where Ii is an indicator function
equal to 1 if the i-th itemset-sequence contains s. Then clearly, I1, I2, . . . , In is
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a sequence of independent random variables because occurrences of a pattern
as a subsequence in itemset-sequences are independent of each other. Therefore,
Ωn(s) has the Binomial distribution and Ωn(s) = Ωn(s)

n is a Binomial propor-
tion, where E[Ωn(s)] = P ∃(s), Var[Ωn(s)] = 1

nP ∃(s)(1−P ∃(s)) and P ∃(s) is the
probability that s exists as a subsequence in an itemset-sequence in R. Thus,
clearly Ωn(s) and Ωn(s) both satisfy CLT. However, since itemset-sequences
have variable sizes, for a given s, P ∃(s) depends on the distribution of the sizes
of itemset-sequences in R.

Let P ∃(s, m) be the joint probability that an itemset-sequence s of size |s|
exists as a subsequence in another itemset-sequence s′ of size m ≥ |s| in R. Then
following (2) we factorize P ∃(s, m) as follows

P ∃(s, m) = αm · P ∃(s|m), (3)

where P ∃(s|m) is the probability that s occurs given an itemset-sequence of size
m in R. In order to obtain the formula for P ∃(s) we marginalize from (3) as
follows:

P ∃(s) =
M∑

m=|s|
αm · P ∃(s|m). (4)

Thus, P ∃(s) is expressed as a discrete mixture model, where the mixing coeffi-
cients (α1, α2,. . . , αM ) model the fact that an occurrence of s as a subsequence
in an itemset-sequence s′ depends on the size of s′ and may possibly occur in any
itemset-sequence s′ ∈ R for which |s′| ≥ |s|. In other words, P ∃(s) is a weighted
combination of contributions from itemset-sequences of all possible relevant sizes
in R.

Finally, the formula for P ∃(s|m) for an itemset-sequence s = [s1, s2,. . . , s|s|]
given an itemset-sequence of size m in R can be obtained as follows. Let Xi =⋃

ξj∈Ξ,si⊆ξj
ξj be the set of all supersets of itemset si in itemset alphabet Ξ.

Then clearly, the enumeration graph for W∃(s|m) can be obtained from the
enumeration graph for a sequence of items e = [e1, e2, . . . , em] by substitut-
ing X1,X2, . . . ,X|s| for items e1, e2, . . . , em in Figure 1. Then the formula for
P ∃(s|m) can be obtained from (1) by substituting marginal probabilities of item-
sets PM(si) = P (Xi) for probabilities of items in (1). Thus, P ∃(s|m) in a 0-order
Markov sequence-wise reference model, can be obtained from (1) as follows:

P ∃(s|m) = PM(s)
m−|s|∑
i=0

∑
∑ |s|

k=1 nk=i

|s|∏
k=1

(1 − PM(sk))nk , (5)

where PM(s) =
∏|s|

i=1 PM(si) and PM(si) is the marginal probability computed
from the itemset-wise reference model. Formula (5) can be computed in O(m2)
using the dynamic programming algorithm given in [6]. Thus computing P ∃(s)
from (4) takes O(M3) time.

The presented sequence-wise reference model can be easily extended to
more application specific models. As a first extension, we could assume that
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itemset-sequences are generated using a Markov model and use the algorithm
for computing P ∃(s|m) from [7] for Markov models. As another extension, we
could assume that the distribution of itemsets θ depends on the size of an
itemset-sequence (e.g., itemsets having large cardinality are more likely to occur
in shorter itemset-sequences).

5 Itemset-Wise Reference Model

The itemset-wise reference model treats itemsets as binary vectors and provides
decorrelated frequencies of itemsets. In order to present the itemset-wise refer-
ence model we introduce the item-wise representation, that is a multi-attribute
binary sequence B = {b(1), b(2), . . . , b(|A|)} of size |A|, where: b(i) is a binary
sequence corresponding to attribute (item) ai ∈ A and b

(j)
t ∈ {0, 1} is the value

at time point t. Thus, B represents S as a sequence of time ordered itemsets.
Figure 3 presents the item-wise multi-attribute sequence for the collection from
Table 1.

Note that we do not consider empty itemsets (binary vectors consisting of all
zeros in B) because a lack of attributes is meaningless in our framework. There-
fore the streams in B are inherently dependent, i.e., P (b(1)

t , b
(2)
t , . . . , b

(|A|)
t ) �=∏(|A|)

j=1 P (b(j)
t ) and the independence model is inappropriate in our framework.

Therefore we build a maximum entropy model of the form [4]

P (b(1)
t , b

(2)
t , . . . , b

|A|
t ) = Z

⎛
⎝ |A|∏

i=1

μI(i)

i

⎞
⎠μ

|A|−∑ |A|
i=0 I(i)

c , (6)

where Z is the normalizing constant, I(i) is an indicator function equal to one
if b

(i)
t = 1. We build (6) using Generalized Iterative Scaling (GIS) algorithm

by finding μi for i = 1, . . . |A|, μc and Z under constraints that empirical
marginal probabilities of items are preserved, i.e,

∑
P (b(1)

t , b
(2)
t , . . . , b

|A|
t )I(i)=

P (b(i)
t = 1), where μc is the correction feature that ensures that the num-

ber of parameters (features) for every binary vector in (6) is constant. Let
Sum =

∑
b
(i)
t ∈{0,1},

∑
i b

(i)
t >0

P (b(1)
t , b

(2)
t , . . . , b

(|A|)
t ), let p(i) = P (b(i)

t = 1) and

let p
(i)
M = Z · ui

∑
nj∈{0,1}

(∏
j �=i μ

nj

j

)
μ
|A|−1−∑ j �=i n(j)

c be the marginal proba-
bility of attribute i computed from the model given the current estimates of the
parameters.

The iterative scaling algorithm proceeds as follows: (I) initialization: μi = 1,
μc = 1, Z = 1

Sum ; and (II) iteration: repeat for i = 1 to |A| do begin

μn+1
i = μn

i

(
p(i)

p
(i)
M

) 1
|A|

, μn+1
c = μn

c

(
1

Z·Sum

) 1
|A| , Z = 1

Sum end until for i = 1 to

|A| |p(i)
M−p(i)|

p(i) < ε. Thus, the maximum entropy model satisfies our requirements:
(I) it preserves empirical marginal probabilities; (II) it is defined only for all
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Table 2. Comparison of marginal probabilities of the itemsets of size two and the

probability of the empty itemset for the collection from Table 1 obtained using the

independence model and the maximum entropy model

Itemset Independence model Maximum Entropy model
(0,2) 8.33e-02 2.35e-01
(1,3) 1.39e-01 3.81e-01
(2,3) 1.11e-01 3.08e-01
() 1.94e-01 0

non-empty subsets of A and (III) it gives as much independence to the attribute
streams as possible given the constraints.

Table 2 presents marginal probabilities of the itemsets of size two from Figure
3 obtained using the independence model and the maximum entropy model.
Thus, Table 2 shows the following facts: (I) although the empty itemset does not
occur in Figure 3 the independence model assigns a bigger probability (1.94e−01)
to the empty itemset than to the occurring itemsets of size two; and (II) the ME
model, as expected, assigns greater probabilities to the occurring itemsets than
the independence model.

6 Ranking Algorithm

Given a collection of itemset-sequences S = {s(1), s(2),. . . , s(n)}, where
s(i) = [s(i)

1 , s
(i)
2 ,. . . , s

(i)

|s(i)|], the ranking algorithm proceeds as follows:

1. run PrefixSpan for a given value of minRelSup to obtain a set of frequent
sequential patterns F .

2. compute α = [α1, α2, . . . , αM ], where αm = Nn(|s(i)|=m)
n and Nn(|s(i)| = m)

is the number of itemset-sequences of size m in S.
3. for every frequent sequential pattern s =[s1, s2,. . . , s|s|], where s ∈ F and

rsupS(s) ≥ minRelSup do the following:
(a) compute the marginal probability vector [θ1, θ2,. . . , θ|s|] (θi = PM(si))

for elements of s from the itemset-wise reference model.
(b) compute P ∃(s) from (4) and compute the significance rank as follows

sigRank(s) =
√

n(rsupS(s)−P∃(s))√
P∃(s)(1−P∃(s))

.

The reference model will be violated in S in two cases: (I) the sequence-wise
reference model is violated by correlated itemsets and (II) the itemset-wise ref-
erence model is violated by correlated items in itemsets.

7 Experiments

In this section we present our experimental results on the multi-stream of news
stories of size 224062 stories that have been retrieved, via RSS feeds, from
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the following thirteen news sources: ABC news (ABC), Aljazeera (ALJ), As-
sociated Press (AP), British Broadcast Co. (BBC), Canadian Broadcast Co.
(CBC), Xinhua News Agency (CHV), Central News Agency Taiwan (CNE),
CNN, MSNBC, Reuters (REU), United Press International (UPI), RIA Novosti
(RIA) and Deutsche Welle (DW). The stories were retrieved over a period of
thirteen months from the 12-th of November 2008 to the 3rd of January 2010.
We implemented a clustering algorithm that uses a time-window of a given dura-
tion (e.g., 24 hours) and is an incremental variant of a non-hierarchical document
clustering algorithm using a similarity measure based on nearest neighbors. We
ran the algorithm for the following parameters: (I) the time-window size w = 24
hours; (II) the document similarity threshold τd = 0.5 that is used to identify
nearest neighbors for a new arriving document to the window and (III) the time
quantization step size Qt = 1 hour. As a result we obtained a collection of
itemset-sequences S of size |S| = 32464, where there are 109964 itemsets, the
maximum itemset-sequence size M = 25, the average itemset-sequences size is
3.5 and the average itemset size is 1.2.

7.1 From Clusters to Itemset-Sequences

Let D = {d(1), d(2), . . . , d(|D|)} be a multi-stream of news stories (documents),
where d

(i)
t is a document in stream i at a time point t and has three attributes: (I)

the exact publishing timestamp d
(i)
t .timestamp; (II) stream identifier d

(i)
t .stream

= i; and (III) text content d
(i)
t .content. The publishing timestamp d

(i)
t .timestamp

is unique in each stream d(i). Let C = [d1, d2, . . . , d|C|] be a cluster of documents
(reporting the same event in our case) defined as a sequence of documents or-
dered with respect to publishing timestamp di.timestamp. We convert C to an
itemset-sequence s = [s1, s2, . . . , s|s|], where si ⊆ A and A = {0, 1, . . . , |D| − 1}
is the set of all stream identifiers of the news sources in D. As a result of the con-
version each itemset si contains stream identifiers of documents with the same
timestamp (di.timestamp) and the itemset-sequence s is ordered with respect
to the timestamps of the itemsets. As an example consider itemset-sequence
[(1, 3), 1, 1] in Table 1, where s1 = (1, 3) means that two documents: the first
from source 1 and the second from source 3 were published (within the time
granularity Qt) before a document from streams 1 and 1 respectively. Further-
more, for every itemset-sequence, we recorded content similarity between the
stories corresponding to its elements in terms of the cosine similarity measure.
In order to asses the nature of content similarity between documents in a given
itemset-sequence s we define the average content similarity AvgSimS(s) and the
variance of the content similarity V arSimS(s) between documents in an itemset-
sequence s of length l occurring as a subsequence over the whole collection of
itemset-sequences S are expressed as follows

AvgSimS(s) =
2 · supS(s)

l2 − l

∑
s′∈S,s�s′

l∑
k=1

jk−1∑
i=j1

sim(s′i, s
′
jk

) (7)
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Table 3. Baseline: Top-20 most

frequent sequential patterns of size

greater than one

Pattern rsupS

1 [AP, MSNBC] 1.78e-01
2 [MSNBC, UPI] 1.20e-01
3 [BBC, UPI] 1.06e-01
4 [AP, UPI] 1.06e-01
5 [REU, UPI] 1.06e-01
6 [AP, ABC] 9.03e-02
7 [BBC, ALJ] 8.78e-02
8 [REU, BBC] 8.71e-02
9 [CNN, UPI] 8.56e-02
10 [REU, CNE] 8.55e-02
11 [REU, MSNBC] 8.41e-02
12 [BBC, CNE] 8.15e-02
13 [ABC, UPI] 8.09e-02
14 [ABC, MSNBC] 8.07e-02
15 [CNE, UPI] 7.87e-02
16 [AP, REU] 7.83e-02
17 [BBC, REU] 7.51e-02
18 [MSNBC, REU] 7.49e-02
19 [MSNBC, ABC] 7.20e-02
20 [CNE, BBC] 7.05e-02

Table 4. Top-20 most significant se-

quential patterns for minRelSup =

0.01

Pattern sigRank
1 [BBC, ALJ, ALJ, ALJ] 25.5
2 [ALJ, ALJ, ALJ, CNE] 19.1
3 [CNE, ALJ, ALJ, ALJ] 18.6
4 [BBC, CNE, ALJ, ALJ] 18.1
5 [ALJ, ALJ, CNE, ALJ] 17.7
6 [CNE, ALJ, ALJ, CNE] 16.4
7 [BBC, ALJ, ALJ, UPI] 16.3
8 [BBC, CNE, ALJ, ALJ] 16.1
9 [AP, MSNBC] 15.7
10 [ALJ, ALJ, BBC, ALJ] 15.1
11 [ALJ, CNE, ALJ, ALJ] 14.5
12 [CNE, BBC, ALJ, ALJ] 14.2
13 [BBC, ALJ, ALJ, BBC] 14.1
14 [ALJ, BBC, ALJ, ALJ] 13.9
15 [BBC, ALJ, ALJ, CNN] 13.2
16 [ALJ, ALJ, CBS] 13.1
17 [ALJ, ALJ, ALJ, UPI] 12.9
18 [REU, ALJ, ALJ, ALJ] 12.8
19 [ALJ, ALJ, ALJ, BBC] 12.7
20 [BBC, ALJ, CNE, ALJ] 12.4

and

V arSimS(s) =
2 · supS(s)

l2 − l

∑
s′∈S,s�s′

l∑
k=1

jk−1∑
i=j1

(AvgSimS(s) − sim(s′i, s
′
jk

))2, (8)

where j1 ≤ j2 . . . ≤ jl are the positions where s occurs in s′ as a subsequence
and sim(di, dj) is the cosine similarity or content similarity between documents
i and j. Thus, (7) computes the average content similarity over all itemset-
sequences containing s as a subsequence. We also use StdDevSimS(s) to denote√

V arSimS(s).

7.2 Baseline: Most Frequent Patterns

As a baseline against which we compare the performance of the ranking algo-
rithm we use the top-20 most frequent sequential patterns of size greater than
one, where we also removed patterns containing the same symbol, which corre-
sponds to frequent updates of the same news event. Table 3 presents the top-20
most frequent sequential patterns of size greater than one.

7.3 Significant Patterns

In the first experiment we rank the top-20 most frequent patterns from Table
3 with respect to significance. Figure 4 presents the results. As it turns out the
most frequent pattern in Table 3 is also the most significant one but for the
following patterns there is not any obvious relationship between the significance
rank and the frequency rank. The dependency between AP and MSNBC can be
explained by the fact that as we saw in the recorded stories MSNBC is reusing
some content from AP.
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In the second experiment we set minRelSup = 0.01 and found the most
significant over-represented (sigRank > 0) sequential patterns. Table 4 presets
the top-20 most significant sequential patterns, where among the top patterns
we removed patterns containing the same symbol and patterns having significant
supersequences. Note however that the top-20 most significant patterns for the
whole collection may not be the same since the patterns in Table 4 were obtained
using minRelSup = 0.01. In general the lower the value of minRelSup the
higher the chance that the reference model will discover long significant patterns
having low support. By comparing the results from Table 3 and from Table 4
we can make the following observations: (I) the most significant patterns are
generally longer than the most frequent ones since the sequence-wise reference
model leverages rank of correlated longer patterns and (II) there is a prevalence
of patterns involving BBC in the first position and ALJ in the following positions.
The dependency between BBC and ALJ may be related to the fact that, as we
found out from the BBC web site, BBC signed a news exchange agreement with
ALJ and as the pattern suggests this exchange seems to be really “one-way”
from BBC to ALJ. Furthermore, ALJ tends to provide many updates of the
same news event. Also, although [AP, MSNBC] is the most frequent pattern it
has significance rank nine in Table 4 as a result of the reference model leveraging
rank of the longer patterns involving BBC and ALJ.

Figure 5 presents a graph of the significance rank (x-axis) versus the average
content similarity AvgSimS and the standard deviation StdDevSimS (y-axis)
for the top-20 most significant sequential patterns from Table 4. Figure 5 shows
two facts: (I) the average content similarity is above the document similarity
threshold τd = 0.5 and (II) the value of the standard deviation is relatively low
for all patterns. These results suggest that temporally correlated news streams
tend to be also correlated with respect to their content.
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8 Conclusions

We presented a reliable general method for ranking frequent sequential patterns
(itemset-sequences) with respect to significance. We demonstrated the appli-
cability of the presented method on a multi-stream of news stories that was
gathered from RSS feeds of the major world news agencies. In particular we
showed that there are strong dependencies between the news sources in terms of
temporal sequential patterns of reporting the same news events and content sim-
ilarity, where the frequency and significance rank are correlated with the content
similarity.
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Abstract. Discovering interesting patterns in long sequences, and find-

ing confident association rules within them, is a popular area in data

mining. Most existing methods define patterns as interesting if they oc-

cur frequently enough in a sufficiently cohesive form. Based on these

frequent patterns, association rules are mined in the traditional man-

ner. Recently, a new interestingness measure, combining cohesion and

frequency of a pattern, has been proposed, and patterns are deemed in-

teresting if encountering one event from the pattern implies with a high

probability that the rest of the pattern can be found nearby. It is quite

clear that this probability is not necessarily equally high for all the events

making up such a pattern, which is why we propose to introduce the con-

cept of association rules into this problem setting. The confidence of such

an association rule tells us how far on average from a particular event, or

a set of events, one has to look, in order to find the rest of the pattern.

In this paper, we present an efficient algorithm to mine such association

rules. After applying our method to both synthetic and real-life data, we

conclude that it indeed gives intuitive results in a number of applications.

Keywords: association rules, sequences, interesting itemsets.

1 Introduction

Pattern discovery in sequences is a popular data mining task. Typically, the
dataset consists of a single event sequence, and the task consists of analysing
the order in which events occur, trying to identify correlation among events. In
this paper, events are items, and we look for association rules between itemsets.
Usually, an itemset is evaluated based on how close to each other its items occur
(cohesion), and how often the itemset itself occurs (frequency).

Recently, we proposed to combine cohesion and frequency into a single mea-
sure [2], thereby guaranteeing that if we encounter an item from an itemset
identified as interesting, there is a high probability that the rest of the itemset
can be found nearby. The proposed algorithm suffered from long runtimes, de-
spite the efficient pruning of candidates. We now propose relaxing the pruning
function, but making it much easier to compute. As a result, we prune less, but
the algorithm runs much faster.

We further propose to introduce the concept of association rules into this
setting. We wish to find itemsets that imply the occurrence of other itemsets

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 300–309, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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nearby. We present an efficient algorithm to mine such rules, taking advantage
of two factors that lead to its efficiency — we can mine itemsets and rules in
parallel, and we only need to compute the confidence of a simple class of rules,
and use them to evaluate all other rules.

2 Related Work

The concept of finding patterns in sequences was first described by Mannila et
al. [7]. Patterns are described as episodes, and can be parallel, where the order in
which events occur is irrelevant, serial, where events occur in a particular order,
or a combination of the two. We limit ourselves to parallel episodes containing no
more than one occurrence of any single event type — in other words, itemsets.
In this setting, Mannila et al. propose the Winepi method to detect frequent
itemsets. The method slides a window of fixed length over the sequence, and
each window containing the itemset counts towards its total frequency, which
is defined as the proportion of all windows that contain it. The confidence of
an association rule X ⇒ Y , denoted c(X ⇒ Y ), is defined as the ratio of the
frequency of X ∪ Y and the frequency of X . Once the frequent itemsets have
been found, rules between them are generated in the traditional manner [1].

Mannila et al. propose another method, Minepi, to search for frequent item-
sets based on their minimal occurrences [7]. Here, however, association rules are
of the form X [win1] ⇒ Y [win2], meaning that if itemset X has a minimal oc-
currence in a window W1 of size win1, then X∪Y has a minimal occurrence in a
window W2 of size win2 that fully contains W1. As we plan to develop rules that
tell us how likely we are to find some items nearby, we do not wish to use any
fixed window lengths, so these are precisely the sort of rules we wish to avoid.

Generating association rules based on a maximum gap constraint, as defined
by Garriga [4], was done by Méger and Rigotti [8], but only for serial episodes
X and Y , where X is a prefix of Y . Most other related work has been based
on the Winepi definitions, and only attempted to find the same rules (or a
representative subset) more efficiently [3, 5].

Consider sequence s = cghefababcidjcgdlcmd, that will be used as a running
example throughout the paper. Assume that the time stamps associated with
the items are integers from 1 to 20. This short sequence is enough to demonstrate
the unintuitiveness of the Winepi method for evaluating association rules. We
see that for each occurrence of an a, there is a b right next to it. Similarly, for
each g, there is a c right next to it. Logically, association rules a ⇒ b and g ⇒ c
should be equally confident (to be precise, their confidence should be equal to
1). Winepi, with a window size of 2 (the number of possible windows is thus
21, as the first window starts one time stamp before the sequence, and the last
one ends one time stamp after the sequence), results in fr(a) = 4

21 , fr(ab) =
3
21 , fr(g) = 4

21 , fr(cg) = 2
21 . and therefore c(a ⇒ b) = 0.75, c(g ⇒ c) = 0.5. A

larger window always gives similar results, namely c(g ⇒ c) < c(a ⇒ b) < 1.
Due to space restrictions, we only present related work on association rules.

A more extensive discussion of related work on discovering patterns in sequences
can be found in [2] and [6].
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3 Problem Setting

As our work is based on an earlier work [2], we now reproduce some of the
necessary definitions and notations that we will use here. An event is a pair
(i, t), consisting of an item and a time stamp, where i ∈ I, the set of all possible
items, and t ∈ N. Two items can never occur at the same time. We denote a
sequence of events by S. For an itemset X , the set of all occurrences of its items
is denoted by N(X) = {t | (i, t) ∈ S and i ∈ X}. The coverage of X is defined
as the probability of encountering an item from X in the sequence, and denoted

P (X) = |N(X)|
|S| .

The length of the shortest interval containing itemset X for each time stamp in
N(X) is computed as

W (X, t) = min{t2 − t1 + 1 | t1 ≤ t ≤ t2 and ∀i ∈ X, ∃(i, t′) ∈ S, t1 ≤ t′ ≤ t2}.

The average length of such shortest intervals is expressed as

W (X) =
∑

t∈N(X) W (X, t)

|N(X)| .

The cohesion of X is defined as the ratio of the itemset size and the average
length of the shortest intervals that contain it, and denoted

C(X) = |X|
W (X)

.

Finally, the interestingness of an itemset X is defined as I(X) = C(X)P (X).
Given a user defined threshold min int, X is considered interesting if I(X)
exceeds min int. An optional parameter, max size, can be used to limit the
output only to itemsets with a size smaller or equal to max size.

We are now ready to define the concept of association rules in this setting.
The aim is to generate rules of the form if X occurs, Y occurs nearby, where
X ∩ Y = ∅ and X ∪ Y is an interesting itemset. We denote such a rule by
X ⇒ Y , and we call X the body of the rule and Y the head of the rule. Clearly,
the closer Y occurs to X on average, the higher the value of the rule. In other
words, to compute the confidence of the rule, we must now use the average length
of minimal windows containing X ∪ Y , but only from the point of view of items
making up itemset X . We therefore define this new average as

W (X, Y ) =
∑

t∈N(X) W (X∪Y, t)

|N(X)| .

The confidence of a rule can now be defined as

c(X ⇒ Y ) = |X∪Y |
W (X,Y )

.

A rule X ⇒ Y is considered confident if its confidence exceeds a given threshold,
min conf .

We now return to our running example. Looking at itemset cd, we see that
the occurrence of a c at time stamp 1 will reduce the value of rule c ⇒ d, but
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not of rule d ⇒ c. Indeed, we see that W (cd, 1) = 12, and the minimal window
containing cd for the other three occurrences of c is always of size 3. Therefore,
W (c, d) = 21

4 = 5.25, and c(c ⇒ d) = 2
5.25 = 0.38. Meanwhile, the minimal

window containing cd for all occurrences of d is always of size 3. It follows that
W (d, c) = 9

3 = 3 and c(d ⇒ c) = 2
3 = 0.67. We can conclude that while an

occurrence of a c does not highly imply finding a d nearby, when we encounter a
d we can be reasonably certain that a c will be found nearby. We also note that,
according to our definitions, c(a ⇒ b) = 1 and c(g ⇒ c) = 1, as desired.

4 Improved Interesting Itemsets Algorithm

The algorithm proposed in [2] and given in Algorithm 1, finds interesting itemsets
as defined in Section 3 by going through the search space (a tree) in a depth-first
manner, pruning whenever possible. The first call to the algorithm is made with
X empty, and Y equal to the set of all items.

Algorithm 1. INIT(〈X, Y 〉) finds interesting itemsets
if UBI(〈X, Y 〉) ≥ min int and size(X) ≤ max size then

if Y = ∅ then
output X

else
Choose a in Y
INIT(〈X ∪ {a}, Y \ {a}〉)
INIT(〈X, Y \ {a}〉)

end if
end if

The algorithm uses the UBI pruning function, that returns an upper bound
of the interestingness of all itemsets Z such that X ⊆ Z ⊆ X ∪ Y . If this upper
bound is lower than the chosen min int, the subtree rooted at 〈X, Y 〉 can be
pruned. The UBI function is defined as

UBI(〈X,Y 〉) =
|N(X∪Y )|2×|X∪Y |∑
t∈N(X) W (X, t)×|S| .

This pruning function prunes a large number of candidates, but the algorithm
still suffers from long runtimes, due to the fact that each time a new itemset X is
considered for pruning, W (X, t) needs to be computed for almost each t ∈ N(X).
For large itemsets, this can imply multiple dataset scans just to decide if a single
candidate node can be pruned.

We propose a new pruning function in an attempt to balance pruning a large
number of candidates with the effort needed for pruning. As the main problem
with the original function was computing the exact minimal windows for each
candidate, we aim to estimate the length of these windows using a much simpler
computation. To do this, we first compute the exact sum of the window lengths
for each pair of items, and we then use these sums to come up with a lower
bound of the sum of the window lengths for all other candidate nodes.
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We first note that∑
t∈N(X) W (X, t) =

∑
x∈X

∑
t∈N({x}) W (X, t).

We then note that each window around an item x ∈ X must be at least as
large as the largest such window containing the same item x and any other item
y ∈ X . It follows that∑

t∈N({x}) W (X, t) ≥∑t∈N({x}) maxy∈X\{x}(W (xy, t)).

Naturally, it also holds that∑
t∈N({x}) W (X, t) ≥ maxy∈X\{x}(

∑
t∈N({x}) W (xy, t)).

To simplify our notation, from now on we will denote
∑

t∈N({x}) W (xy, t) by
s(x, y). Finally, we see that∑

t∈N(X) W (X, t) ≥∑x∈X maxy∈X\{x}(s(x, y)),

giving us a lower bound for the sum of windows containing X around all occur-
rences of items of X . This gives us a new pruning function:

NUBI(〈X, Y 〉) =
|N(X∪Y )|2×|X∪Y |∑

x∈X maxy∈X\{x}(s(x,y))×|S| .

This new pruning function is easily evaluated, as all it requires is that we store
s(x, y), the sum of minimal windows containing x and y over all occurrences of
x, for each pair of items (x, y), so we can look them up when necessary.

The exact windows will still have to be computed for the leaves of the search
tree that have not been pruned, but this is unavoidable. Even for the leaves, it
pays off to first check the upper bound, and then, only if the upper bound exceeds
the threshold, compute the exact interestingness. The new algorithm uses NUBI
instead of UBI, and is the same as the one given in Algorithm 1, with

if I(X) ≥ min int then output X

replacing line 3.
Let us now return to our running example, and examine what happens if we

encounter node 〈{a, b, c}, {d, e}〉 in the search tree. We denote X = {a, b, c} and
Y = {d, e}. With the original pruning technique, we would need to compute the
exact minimal windows containing X for each occurrence of a, b or c. After a fair
amount of work scanning the dataset many times, in all necessary directions, we
would come up with the following:

∑
t∈N(X) W (X, t) = 7 + 5 + 4 + 3 + 3 + 3 +

7 + 11 = 43. The value of the UBI pruning function is therefore:

|N(X∪Y )|2×|X∪Y |∑
t∈N(X) W (X, t)×|S| = 144×5

43×20 = 0.84.

Using the new technique, we would first compute s(x, y) for all pairs (x, y). The
relevant pairs are s(a, b) = 4, s(a, c) = 8, s(b, a) = 4, s(b, c) = 6,
s(c, a) = 27, s(c, b) = 25. We can now compute the minimal possible sum of
windows for each item, giving us
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maxy∈X\{a}(s(a, y)) = 8, maxy∈X\{b}(s(b, y)) = 6, maxy∈X\{c}(s(c, y)) = 27

resulting in a sum of
∑

x∈X maxy∈X\{x}(s(x, y)) = 41. The value of the NUBI
pruning function is therefore

|N(X∪Y )|2×|X∪Y |∑
x∈X maxy∈X\{x}(s(x,y))×|S| = 0.88

We see that by simply looking up a few precomputed values instead of scanning
the dataset a number of times, we get a very good estimate of the sum of the
window lengths.

5 Association Rules Algorithm

Unlike the traditional approaches, which need all the frequent itemsets to be
generated before the generation of association rules can begin, we are able to
generate rules in parallel with the interesting itemsets. When finding an inter-
esting itemset X , we compute the sum of all minimal windows W (X, t) for each
x ∈ X apart, before adding them up into the overall sum needed to compute
I(X). With these sums still in memory, we can easily compute the confidence of
all association rules of the form x ⇒ X \{x}, with x ∈ X , that can be generated
from itemset X . In practice, it is sufficient to limit our computations to rules
of precisely this form (i.e., rules where the body consists of a single item). To
compute the confidence of all other rules, we first note that∑

t∈N(X) W (X ∪ Y, t) =
∑

x∈X

∑
t∈N({x}) W (X ∪ Y, t).

A trivial mathematical property tells us that∑
t∈N({x}) W (X ∪ Y, t) = W (x, Y ∪ X \ {x})|N(x)|.

As a result, we can conclude that

W (X, Y ) =
∑

x∈X W (x,Y ∪X\{x})|N(x)|
|N(X)| ,

which in turn implies that

c(X ⇒ Y ) = |X∪Y ||N(X)|∑
x∈X W (x,Y ∪X\{x})|N(x)| .

Meanwhile, we can derive that

c(x ⇒ Y ∪ X \ {x}) = |X∪Y |
W (x,Y ∪X\{x}) ,

and it follows that

c(X ⇒ Y ) =
|N(X)|∑

x∈X
|N(x)|

c(x⇒Y ∪X\{x})
. (1)

As a result, once we have evaluated all the rules of the form x ⇒ X \ {x}, with
x ∈ X , we can then evaluate all other rules Y ⇒ X \ Y , with Y ⊂ X , without
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Algorithm 2. AR(〈X, Y 〉) finds interesting itemsets and confident association
rules within them

if NUBI(〈X, Y 〉) ≥ min int and size(X) ≤ max size then
if Y = ∅ then

if I(X) ≥ min int then
output X
for all x ∈ X do

compute and store c(x ⇒ X \ {x})
if c(x ⇒ X \ {x}) ≥ min conf then output x ⇒ X \ {x}

end for
for all Y ⊂ X with |Y | ≥ 2 do

if c(Y ⇒ X \ Y ) ≥ min conf then output Y ⇒ X \ Y
end for

end if
else

Choose a in Y
AR(〈X ∪ {a}, Y \ {a}〉)
AR(〈X,Y \ {a}〉)

end if
end if

further dataset scans. The algorithm for finding both interesting itemsets and
confident association rules is given in Algorithm 2.

Looking back at our running example, let us compute the confidence of rule
ab ⇒ c. First we compute c(a ⇒ bc) = 3

4 = 0.75 and c(b ⇒ ac) = 3
3.5 = 0.86.

From Eq. 1, it follows that c(ab ⇒ c) = 4
2

0.75 + 2
0.86

= 4
5 = 0.8. It is easy to check

that this corresponds to the value as defined in Section 3.

6 Experiments

In our experiments, we aim to show three things:

1. our algorithm for finding interesting itemsets works faster than the one given
in [2] and can handle much longer sequences.

2. our algorithm for finding association rules gives meaningful results, without
generating spurious output.

3. our algorithm for finding association rules runs very efficiently, even with a
confidence threshold set to 0.

To do this, we designed a dataset that allowed us to demonstrate all three claims.
To generate a sequence in which some association rules would certainly stand
out, we used the Markov chain model given in Table 1. Our dataset consisted of
items a, b, c, and 22 other items, randomly distributed whenever the transition
table led us to item x. We fine tuned the probabilities in such a way that all
items apart from c had approximately the same frequency, while c appeared
approximately twice as often. The high probability of transitions from a to b
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Table 1. A transition matrix defining a Markov model

a b c x

a 0 0.45 0.45 0.1

b 0.45 0 0.45 0.1

c 0 0 0.1 0.9

x 0.025 0.025 0.05 0.9

and c, and from b to a and c should result in rules such as a ⇒ c and b ⇒ c
having a high confidence. However, given that c appears more often, sometimes
without an a or a b nearby, we would expect rules such as c ⇒ a and c ⇒ b to
be ranked lower. Later on we show that our algorithm gave the expected results
for all these cases.

First, though, let us examine our first claim. We used our Markov model
to generate ten sequences of 10 000 items and ran the two algorithms on each
sequence, varying min int, at first choosing max size of 4. Figures 1(a) and 1(c)
show the average runtimes and number of evaluated candidate nodes for each
algorithm, as well as the actual number of identified interesting itemsets. While
our algorithm pruned less (Figure 1(c)), it ran much faster, most importantly
at the thresholds where the most interesting itemsets are found (see Figure 1(b)
for a zoomed-in version). Naturally, if min int = 0, the algorithms take equally
long, as all itemsets are identified as interesting, and their exact interestingness
must be computed. In short, we see that the runtime of the original algorithm is
proportional to the number of candidates, while the runtime of our new algorithm
is proportional to the number of interesting itemsets.

To support the second claim, we ran our association rules algorithm with both
min int and min conf equal to 0. We set max size to 4. We now simply had
to check which rules had the highest confidence. In repeated experiments, with
various 500 000 items long datasets, the results were very consistent. The most
interesting rules were a ⇒ c and b ⇒ c, with a confidence of 0.52. Then followed
rules a ⇒ bc, b ⇒ ac and ab ⇒ c, with a confidence of 0.34. Rules a ⇒ b and
b ⇒ a had a confidence of 0.29, while rules ac ⇒ b and bc ⇒ a had a confidence
of 0.2. Rule c ⇒ ab had a confidence of around 0.17, while rules not involving a,
b or c had a confidence between 0.13 and 0.17. We can safely conclude that our
algorithm gave the expected results.

To confirm this claim, we ran our algorithm on three text datasets: English1,
Italian2 and Dutch3. In each text, we considered the letters of the alphabet and
the space between words (denoted �) as items, ignoring all other symbols. In all
three languages, rule q ⇒ u had a confidence of 1, as q is almost always followed
by u in all these languages. In all three languages, there followed a number of
rules with � in the head, but the body varied. In Italian, a space is often found
near f , as f is mostly found at the beginning of Italian words, while the same is
true for j in English. Rules involving two letters revealed some patterns inherent

1 http://www.gutenberg.org/files/1999/1999.txt
2 http://www.gutenberg.org/dirs/etext04/7clel10.txt
3 http://www.gutenberg.org/files/18066/18066-8.txt
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Table 2. Some interesting rules found in three different languages

English Italian Dutch
two c(q ⇒ u) = 1 c(q ⇒ u) = 1 c(q ⇒ u) = 1

letters c(z ⇒ i) = 0.61 c(h ⇒ c) = 0.75 c(j ⇒ i) = 0.75
c(v ⇒ e) = 0.58 c(h ⇒ e) = 0.51 c(d ⇒ e) = 0.61
c(x ⇒ e) = 0.53 c(z ⇒ a) = 0.5 c(g ⇒ e) = 0.57

three c(q ⇒ eu) = 0.63 c(q ⇒ eu) = 0.6 c(q ⇒ iu) = 14

letters c(z ⇒ ai) = 0.52 c(h ⇒ ce) = 0.57 c(j ⇒ ei) = 0.46
c(q ⇒ nu) = 0.4 c(q ⇒ au) = 0.52 c(g ⇒ en) = 0.44

with c(y ⇒ �) = 0.85 c(q ⇒ �) = 0.84 c(z ⇒ �) = 0.78
� c(w ⇒ �) = 0.84 c(f ⇒ �) = 0.7 c(w ⇒ �) = 0.74

c(j ⇒ �) = 0.83 c(a ⇒ �) = 0.7 c(v ⇒ �) = 0.73
... ... ...

c(� ⇒ e) = 0.35 c(� ⇒ a) = 0.39 c(� ⇒ n) = 0.35

10

100

1000

 0  0.2  0.4  0.6  0.8  1

se
co

nd
s 

(lo
g 

sc
al

e)

interestingness threshold

new runtime
old runtime

(a)

10

100

1000

 0  0.02  0.04  0.06  0.08  0.1

1

100

10000

se
co

nd
s 

(lo
g 

sc
al

e)

in
te

re
st

in
g 

ite
m

se
ts

 (
lo

g 
sc

al
e)

interestingness threshold

new runtime
old runtime

interesting itemsets

(b)

1

10

100

1000

10000

1e+05

 0  0.2  0.4  0.6  0.8  1

ca
nd

id
at

es
 / 

in
t. 

ite
m

se
ts

 (
lo

g 
sc

al
e)

interestingness threshold

new candidates
old candidates

interesting itemsets

(c)

100

200

400

 0  0.2  0.4  0.6  0.8  1

1

100

10000

se
co

nd
s 

(lo
g 

sc
al

e)

co
nf

id
en

t a
ss

oc
ia

tio
n 

ru
le

s 
(lo

g 
sc

al
e)

confidence threshold

AR runtime
confident rules

(d)

Fig. 1. (a) Runtime comparison of the two itemset algorithms with max size set to 4.

(b) Zoomed-in version of Figure 1(a). (c) Pruning comparison with max size set to 4.

(d) Runtime of the AR algorithm with a varying confidence threshold.

in these languages. For example, rule h ⇒ c was ranked high in Italian (where h
appears very rarely without a c in front of it), while rule j ⇒ i scored very high
in Dutch (where j is often preceded by an i). A summary of the results is given
in Table 2.

To prove our third claim, we ran the AR algorithm on ten Markov chain
datasets (each 10 000 items long), using min int of 0.025 and max size of 4, each
time varying min conf . The average runtimes and number of found association

4 This is due to a short dataset, rather than an actual rule in the Dutch language.
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rules are shown in Figure 1(d). We can see that the exponential growth in the
number of generated rules had virtually no effect on the runtime of the algorithm.

7 Conclusion

In this paper we presented a new way of identifying association rules in sequences.
We base ourselves on interesting itemsets and look for association rules within
them. When we encounter a part of an itemset in the sequence, our measure of the
rule’s confidence tells us how likely we are to find the rest of the itemset nearby.

On our way to discovering association rules, we found a way to improve the
runtime of the algorithm that finds the interesting itemsets, too. By relaxing the
upper bound of an itemset’s interestingness, we actually prune fewer candidates,
but our new algorithm runs much faster than the old one. To be precise, the
runtime of the new algorithm is proportional to the number of identified item-
sets, while the runtime of the old algorithm was proportional to the number of
evaluated nodes in the search tree. Due to being able to generate association
rules while mining interesting itemsets, the cost of finding confident association
rules is negligible.

Experiments demonstrated the validity of our central claims — that our al-
gorithm for finding interesting itemsets runs much faster than the original one,
particularly on long datasets, and that our algorithm for finding association rules
gives meaningful results very efficiently.
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Abstract. Recent studies have proposed different methods for mining frequent 
episodes. In this work, we study the problem of mining closed episodes based 
on minimal occurrences. We study the properties of minimal occurrences and 
design effective pruning techniques to prune non-closed episodes. An efficient 
mining algorithm Clo_episode is proposed to mine all closed episodes follow-
ing a breadth-first search order and integrating the pruning techniques. Experi-
mental results demonstrate the efficiency of our mining algorithm and the  
compactness of the mining result set.  

Keywords: Episode, closed episode, frequent pattern, sequence. 

1   Introduction 

Frequent episode mining in event sequences is an important mining task with broad 
applications such as alarm sequence analysis in telecommunication networks [1], 
financial events and stock trend relationship analysis [4], web access pattern analysis 
and protein family relationship analysis [5]. An event sequence is a long sequence of 
events. Each event is described by its type and a time of occurrence. A frequent epi-
sode is a frequently recurring short subsequence of the event sequence.  

Previous studies on frequent itemset mining and sequential pattern mining show 
that mining closed itemsets [10] or closed sequential patterns [11] is not only an in-
formation lossless compression of all frequent patterns, but also an effective way to 
improve the mining efficiency. A frequent itemset (or sequence) is closed if there is 
no super itemset (or super sequence) with the same support. To the best of our knowl-
edge, there are some research work on frequent episode or generalized frequent epi-
sode mining [2, 3, 7-9], but there is no existing method for mining closed episodes. 
Therefore, it is natural to raise two questions: (1) what is a closed episode? and (2) 
how to find closed episodes efficiently?  

Following the definitions of closed itemset and closed sequence, we can define 
closed episode similarly. For example, in Table 1, as event B always co-occurs with 
event A, we say event B is not closed (the formal definition is given in Section 2) 
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given a time span constraint of 4 (i.e., the maximum window size threshold) and a 
frequency constraint of 2 (i.e., the minimum support threshold).  

Table 1. An example sequence of events 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
Event A B C A B D F E F C E D F A B C E A B 

Though the concept of closed episode is similar with that of closed itemset and 
closed sequence, mining closed episode efficiently is much more challenging. The 
challenge is caused by two properties in frequent episode mining: (1) there is tempo-
ral order among different events in an episode; and (2) we take into account repeated 
occurrences of an episode in the event sequence.  

In this paper, we define a concept of minimal occurrence (a similar concept was 
defined in [1]) and use minimal occurrence to model the occurrences of an episode in 
the event sequence. Based on this model, we will develop several pruning techniques 
to reduce the search space on closed episodes. We propose an efficient algorithm to 
mine all closed episodes by exploiting the pruning techniques.  

The remainder of this paper is organized as follows. We give the problem defini-
tion in Section 2. Section 3 presents the novel mining algorithm and our proposed 
pruning techniques. We demonstrate the performance of our algorithm through exten-
sive experiments in Section 4. Section 5 concludes the paper. 

2   Problem Definition 

The framework of mining frequent episode was first proposed by Mannila et al. [1]. 
In [1], two kinds of episodes, serial and parallel episodes, were formally defined. In 
this paper, we focus on serial episode mining, and we call it episode for simplicity. 
  Given a set E of event types (or elements), E={e1, e2, …, em}, an event sequence (or 
event stream) S is an ordered sequence of events, denoted by S=<(A1, t1), (A2, t2), …, 
(AN, tN)>, where Ai∈E is the event that happens at time ti (we call it the occurrence 
time of Ai), and Ts≤ti≤ti+1<Te for i=1, 2, …, N-1. Ts is called the starting time of S, and 
Te the ending time. Thus an event sequence can be denoted by (S, Ts, Te). An episode 
α is an ordered collection of event types, α=<B1, B2, …, Bn>, where Bi∈E (i=1, 2, …, 
n) and n<N. An episode with n events is called an n-length episode, or n-episode. A 
window on an event sequence (S, Ts, Te) is an event sequence (w, ts, te), where ts>Te 
and te<Ts. Window w consists of those events (A, t) from S where ts≤t<te. The time 
span te−ts is called the size of the window w. 

Definition 1 (Minimal occurrence). Given an event sequence S and an episode α, a 
minimal occurrence of α is such a time interval [ts, te) that (1) α occurs in [ts, te); (2) 
there exists no smaller time interval [t’s, t’e)⊂[ts, te) that α occurs in it. ts is the start-
ing time of this occurrence and te the ending time; and (3) te−ts<win, where win is a 
user-defined maximum window size threshold, and te−ts is called the time span of this 
minimal occurrence. That is, each occurrence of an episode must be within a window 
no larger than win.  
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For an episode α, all of its minimal occurrences are denoted as a set MO(α)={[ts, 
te)| [ts, te) is a minimal occurrence of α}. The support of an episode is the number of 
its minimal occurrences, i.e., sup(α)=|MO(α)|. Given a minimum support threshold 
minsup, if sup(α)≥minsup, α is called a frequent episode, or α is frequent. 

Definition 2 (Sub-episode and super episode). An episode β=<B1, B2, …, Bm> where 
m<n is called a sub-episode of another episode α=<A1, A2, …, An>, if there are m 
integers 1≤i1<i2<…<im≤n such that B1= Ai1, B2= Ai2, …, Bm= Aim. Episode α is called 
the super episode of episode β. If we have i1=1, i2=2, …, im=m, then α is called the 
forward-extension super episode of β. If we have i1=n−m+1, i2 = n−m+2, …, im=n, 
then α is called the backward-extension super episode of β. If α is a super episode 
of β but is neither a forward-extension nor backward-extension super episode of β, α 
is called the middle-extension super episode of β. 

Definition 3 (Closed episode). Given an event sequence S, an episode α is closed if 
(1) α is frequent; and (2) there exists no super episode β⊃α with the same support as it.  

Definition 4 (Forward-closed episode). Episode α is forward-closed if (1) α is fre-
quent; and (2) there is no forward-extension super episode of α with the same support 
as α. Similarly we can define another two kinds of closed episodes. 

Definition 5 (Backward-closed episode). Episode α is backward-closed if (1) α is 
frequent; and (2) there is no backward-extension super episode of α with the same 
support as α. 

Definition 6 (Middle-closed episode). Episode α is middle-closed if (1) α is frequent; 
and (2) there is no middle-extension super episode of α with the same support as α. 

A closed episode should be forward-closed, backward-closed and middle-closed 
simultaneously.  
Mining Task: Given an event sequence S, a minimum support threshold minsup, and 
a maximum window size threshold win, the mining task is to find the complete set of 
closed episodes from S.   

3   Mining Closed Episodes  

To enumerate potential closed episodes, we perform a search in a prefix tree as shown 
in Figure 1. We assume that there is a predefined order, denoted by ≺, among the set 
of distinct event types. In our example sequence, we use the lexicographical order, 
i.e., A ≺B ≺C ≺D ≺E ≺F.  

The mining process follows a breadth-first search order. Starting from the root 
node with the empty episode α= ∅ , we can generate length−1 episodes at level 1 by 
adding one event to α. Similarly we can grow an episode at level k by adding one 
event to get length−(k+1) episodes at level k+1. For each candidate episode, we com-
pute its minimal occurrence set from the minimal occurrence sets of its sub-episodes 
through a “join” operation. Since the episode mining and checking are based on 
minimal occurrences of episodes, we will first give some properties of minimal occur-
rences and show how they can be used for pruning search space. 

 



 Mining Closed Episodes from Event Sequences Efficiently 313 

 

Fig. 1. A tree of episode (sequence) enumeration  

Property 1. In an event sequence S, if [ts, te) is a minimal occurrence of episode 
α=<A1, A2,…, An>, then there must exist two events, (A1, ts) and (An, te−1) in S. 

Property 2. Assume [ts, te) and [us, ue) are two minimal occurrences of episode α. If ts 
< us, then we have te < ue; if te < ue, then we have ts < us. 

Based on Property 2, minimal occurrences in MO(α) can be sorted in the ascending 
order of their starting time. Then the order among an episode’s minimal occurrences 
is strict. If one occurrence starts ahead of another, then it must end earlier.  

According to Definition 1, the time span of an episode’s minimal occurrence is 
bounded by the window size threshold win. Therefore, given a minimal occurrence [ts, 
te), if te−ts=win, the episode cannot be extended forward or backward in the time win-
dow [ts, ts+win), although some events might be inserted in the middle of it. We de-
fine such minimal occurrences as saturated minimal occurrences.  

Definition 7 (Saturation and expansion). A minimal occurrence [ts, te) of an episode 
α is saturated if the time span te−ts=win, the user-specified maximum window size 
threshold. Otherwise, it is an unsaturated minimal occurrence. An episode α’s satura-
tion, denoted as α.saturation, is defined as the number of saturated minimal occur-
rences, and its expansion, denoted as α.expansion, is the number of unsaturated 
minimal occurrences.  

Apparently, α.saturation+α.expansion=sup(α) holds. For a saturated minimal occur-
rence of an episode, no additional events can be inserted before the first event or after 
the last event; otherwise, the maximum window size constraint will be violated. This 
means, for an episode α we can find its forward-extension or backward-extension 
super episode γ only in the unsaturated minimal occurrences. The upper bound of γ’s 
support is the number of α’s unsaturated minimal occurrences. Therefore, if γ is fre-
quent, the number of unsaturated minimal occurrences in MO(α) must be no smaller 
than minsup. If one episode has less than minsup unsaturated minimal occurrences, 
then none of its forward-extension or backward-extension super episodes is frequent. 
In this case, it is unnecessary to generate and check its super episodes. Therefore, we 
have following two lemmas. 

Lemma 1: If the expansion of an episode α is smaller than the minimum frequency 
threshold minsup, i.e., α.expansion<minsup, then all forward-extension and backward-
extension super episodes of α are infrequent. 

A C

AA AB AC AD 

B

BA BB BC BD

D 

ABA ABB ABDABC BAB BAC

∅

…
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Lemma 2: Given a frequent episode α and its minimal occurrence set MO(α), if (1) 
α.saturation>0, and (2) there is a saturated minimal occurrence ω∈MO(α) that cannot 
be extended in the middle, then α must be closed. 
The algorithm, Clo_episode, is developed to find all closed episodes in an event se-
quence. Its major steps are given in Figure 2.  

The algorithm structure is as follows. It first generates the set of length-1 frequent 
episodes F1 (lines 1-4). The event sequence S is scanned and all distinct single events 
are generated as length−1 episodes with their minimal occurrences. Then, 
Clo_episode generates closed episodes level by level in an iterative way through the 
while loop (lines 5-19).  

Each iteration in the while loop generates the set of candidate episodes Ck and the 
set of frequent episodes Fk. This process iterates until Fk is empty. For a non-empty 
set Fk, it produces Fk+1 which is the frequent episode set of length−(k+1) and CFk 
which is the set of length−k closed episodes. Episodes in Fk are processed in a prede-
fined order as we explained above. 

Algorithm Clo_episode 
Input: Event sequences S, maximum window size threshold win, minimum support threshold minsup; 
Output: the set of closed episodes CF 
Method: 
1. C1= the set of length−1 episodes in S 
2. scan S and compute MO(α) for all α∈C1 ; 
3. k=1; 
4. F1={α∈C1 | α is frequent} 
5. while Fk != Φ do 
6.    for each episode α∈Fk such that α.forward!=0 do     
7.      Ck+1=Gen_candiate(α, Fk); 
8.      Ck+1=Prune(Ck+1); 
9.      Ck+1=Gen_MO(Ck+1);    
10.      for each candidate episode γ∈Ck+1 do 
11.          if sup(γ)≥minsup, put γ into Fk+1 
12.          if there is length−k subepisode β of γ such that β.closed=-1 and sup(γ)=sup(β) do 
13.             set β.closed=0  
14.             if γ is a middle-extension super episode of β, call Clo_prune(α, β, γ);   
15.      end for 
16.    end for 
17.    CFk={α∈Fk |α.closed!= 0} 
18.    k=k+1; 
19. end while 
20. CF={α |α∈CFi (1≤i<k) and there is no super episode β of α such that sup(β)=sup(α)}; 

Output CF 

Fig. 2. Major steps of Algorithm Clo_episode 

For each episode α∈Fk which can be extended forward (line 6), function Gen_candiate(α, 
Fk) is called to generate α’s candidate super episodes of length−(k+1) (line 7). A super 
episode is generated by combining α and another length−k episode in Fk that shares the 
first (k−1) events with α. Then function Prune(Ck+1) is called to prune those candidates 
that cannot be frequent (line 8). Next Gen_MO(Ck+1) is invoked to generate the minimal 
occurrences for each candidate episode. It also computes saturation and expansion of 
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each candidate episode and checks whether they can be extended forward or back-
ward and whether they are closed. Due to space limitation, we omit the details of the 
two functions. Based on the computed information, each frequent episode γ is added 
into Fk+1 (line 11); the sub-episodes of γ that have the same support as γ will be 
marked not closed (lines 12-13). For those sub-episodes β of γ that share the first and 
last events with γ, function Clo_prune(α, β, γ) is invoked to see if it can be pruned 
(line 14). The details of function Clo_prune are given in Figure 3. 

Clo_prune(α, β, γ) 
1 Sort minimal occurrences in MO(β) and MO(γ) respectively by starting time ascendingly  
2 Initialize flag=true 
3 for i=1 to |MO(β)| do 
4    if MO(γ)[i].ts!=MO(β)[i].ts or MO(γ)[i].te!=MO(β)[i].te do 
5        flag=false 
6        break 
7 end for 
8 if flag=true do 
9    Remove β from Fk; 

10   if (β≺α) remove all β’s forward-extension super episodes from Fk+1;  
11 return  

 

Fig. 3. Major steps of Function Clo_prune 

Function Clo_prune compares the minimal occurrences of episode β and that of its 
middle-extension super episode γ. If MO(γ)=MO(β), then β is not closed. All of β’s 
forward-extension super episodes are not closed either. Due to space limitation, we 
omit the detail of proof. 

4   Experiments 

In this section we will present experimental results on synthetic datasets. We also 
conducted experiments on a real dataset. But due to space limitation, we will only 
report the results of synthetic datasets. We evaluate the efficiency of our proposed 
algorithm as well as the reduction in the number of episodes generated, comparing 
with MINEPI proposed by Mannila et al. [1] for frequent episode mining. To test the 
effectiveness of the pruning techniques for pruning non-closed episodes, we disable 
the function Clo_prune and get another algorithm called Clo_episode_NP without the 
pruning techniques. All of our experiments were performed on a PC with 3Ghz CPU, 
2GB RAM, and 300GB hard disk running windows XP. 

We design a synthetic dataset generator, by which we can evaluate the perform-
ance of different algorithms with different data characteristics. The generator takes 
five parameters. The parameter NumOfPatterns is the number of potentially closed 
episodes in the final sequence, MaxLength and MinLength are the maximum and 
minimum length of potential episodes respectively, NumOfWindows is used to control 
the length of the whole sequence, and win is the size of a window. Due to space limi-
tation, we omit the detail of the generator. 
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To generate event sequences, we fix the value of MinLength, and vary the other 
five parameters: NumOfPatterns(P), MaxLength(L), NumOfWindows(N), win(W) and 
minsup. Thus we create five groups of datasets, each of which is generated by varying 
one parameter and fixing the other four parameters as shown in Table 2. 

Table 2. Five groups of synthetic datasets 

Group Datasets P L N W Minsup 
1 PxL12N4000W14 100-200 12 4000 14 15 
2 P200L12NxW14 200 12 3200-4800 14 20 
3 P200LxN4000W16 200 9-14 4000 16 15 
4 P200L12N4000Wx 200 12 4000 10-16 20 
5 P200L12N4000W14 200 12 4000 14 10-35 

For each group of datasets, we plot the running time and the number of frequent/closed 
episodes in two figures. The results are shown in Figures 4 to 13. The y-axes are in 
logarithmic scales in Figures 5, 7, 9, 11 and 13.  

From Figure 4 we can see that Clo_episode significantly outperforms MINEPI and 
Clo_episode_NP. This shows that the pruning techniques in Clo_episode are very 
effective. In addition, the running time of Clo_episode is not affected much as P in-
creases, but that of the other two algorithms increases dramatically. Figure 5 shows 
that the number of closed episodes found by Clo_episode is much smaller than the 
number of frequent episodes output by MINEPI.  

Figures 6 and 7 show a similar result. As N increases, the sequence becomes 
longer. For a fixed minsup threshold, the number of frequent episodes by MINEPI 
increases a lot, but the number of closed episodes does not increase as much.  

Figures 8 and 9 show that the number of frequent episodes output by MINEPI in-
creases significantly with L. Accordingly the running time increases. Figure 8 shows 
that Clo_episode is much more efficient than MINEPI and Clo_episode_NP. 

 Figures 10 and 11 show that when win increases from 10 to 14, the running time 
becomes longer, the number of frequent episodes becomes larger, but the number of 
closed episodes does not increase much. When win is greater than 14, the running 
time of all three algorithms does not increase. This is because the average length of 
potential closed episodes is fixed at 12 in the sequence.  

Figures 12 and 13 show that, as minsup increases, the number of frequent and 
closed episodes decreases. The running time decreases accordingly. 

  

Fig. 4. Running time vs P Fig. 5. No. frequent/closed episodes vs P 
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Fig. 6. Running time vs N Fig. 7. No. frequent/closed episodes vs N 

  

Fig. 8. Running time vs L Fig. 9. No. frequent/closed episodes vs L 

  

Fig. 10. Running time vs W Fig. 11. No. frequent/closed episodes vs W 

  

Fig. 12. Running time vs minsup Fig.13. No. frequent/closed episodes vs minsup 

Overall, from these five groups of experiments we can see that our algorithm 
Clo_episode performs much better than MINEPI and Clo_episode_NP.  

5   Conclusion 

Frequent episode mining is an important mining task in data mining. In this paper, we 
study how to mine closed episodes efficiently. We proposed a novel algorithm 
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Clo_episode, which incorporates several effective pruning strategies and a minimal 
occurrence-based support counting method. Experiments demonstrate the effective-
ness and efficiency of these methods.  
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Abstract. Given the vast reservoirs of sequence data stored worldwide,

efficient mining of string databases such as intrusion detection systems,

player statistics, texts, proteins, etc. has emerged as a great challenge.

Searching for an unusual pattern within long strings of data has emerged

as a requirement for diverse applications. Given a string, the problem

then is to identify the substrings that differs the most from the expected

or normal behavior, i.e., the substrings that are statistically significant

(i.e., less likely to occur due to chance alone). To this end, we use the

chi-square measure and propose two heuristics for retrieving the top-k

substrings with the largest chi-square measure. We show that the al-

gorithms outperform other competing algorithms in the runtime, while

maintaining a high approximation ratio of more than 0.96.

1 Motivation

A recent attractive area of research has been detecting statistically relevant se-
quences or mining interesting patterns from a given string [1,2]. Given an input
string composed of symbols from an alphabet set with a probability distribu-
tion defining the chance of occurrence of the symbols we would like to find the
portions of the string which deviate from the expected behavior and can thus
be potent sources of study for hidden pattern and information. An automated
monitoring system such as a cluster of sensors sensing the temperature of the
surrounding environment for fire alert, or a connection server sniffing the net-
work for possible intrusion detection provides a few of the applications where
such pattern detection is essential. Other applications involve text analysis of
e-mails and blogs to predict terrorist activities or judging prevalent public sen-
timents and studying trends of the stock market. Similarly, another interesting
field of application can be the identification of good and bad career patches of a
sports icon. For example, given the runs scored by Sachin Tendulkar in each in-
nings of his one-day international cricket career, we may be interested in finding
his in-form and off-form patches.

A statistical model is used to determine the relationship of an experimental
or observed outcome with the factors affecting the system, or to establish the
occurrence as pure chance. An observation is said to be statistically significant

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 319–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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if its presence cannot be attributed to randomness alone. The degree of unique-
ness of a pattern can be captured by several measures including the p-value and
z-score [3,4]. For evaluating the significance of a substring, it has been shown
that the p-value provides a more precise conclusion as compared to that by the
z-score [1]. However, computing the p-value entails enumerating all the possible
outcomes, which can be exponential in number, thus rendering it impractical.
So, heuristics based on branch-and-bound techniques have been proposed [5].
The log–likelihood ratio G2 provides such a measure based on the extent of devi-
ation of the substring from its expected nature [6]. For multinomial models, the
χ2 statistic approximates the importance of a string more closely than the G2

statistic [6,7]. Existing systems for intrusion detection use multivariate process
control techniques such as Hotelling’s T 2 measure [8], which is again computa-
tionally intensive. The chi-square measure, on the other hand, provides an easy
way to closely approximate the p-value of a sequence [6]. To simplify compu-
tations, the χ2 measure, unlike Hotelling’s method, does not consider multiple
variable relationship, but is as effective in identifying “abnormal” patterns [2].
Thus, in this paper, we use the Pearson’s χ2 statistic as a measure of the p-value
of a substring [6,7]. The χ2 distribution is characterized by the degrees of free-
dom, which in the case of a string, is the size of the alphabet set minus one. The
larger the χ2 value of a string, the smaller is its p-value, and hence more is its
deviation from the expected behavior.

Formally, given a string S composed of symbols from the alphabet set Σ with
a given probability distribution P modeling the chance of occurrence of each
symbol, the problem is to identify and extract the top-k substrings having the
maximum chi-square value or the largest deviation within the framework of p-
value measure for the given probability distribution of the symbols. Näıvely we
can compute the χ2 value of all the substrings present in S and determine the
top-k substrings in O(l2) time for a string of length l. We propose to extract
such substrings more efficiently.

Related Work: The blocking algorithm and its heap variant [9] reduce the
practical running time for finding such statistically important substrings, but
suffers from a high worst-case running time. The number of blocks found by this
strategy increases with the size of the alphabet set and also when the proba-
bilities of the occurrence of the symbols are nearly similar. In such scenarios,
the number of blocks formed can be almost equal to the length of the given
string, thereby degenerating the algorithm to that of the näıve one. The heap
variant requires a high storage space for maintaining the separate max and min
heap structures and also manipulates a large number of pointers. Further, the
algorithm cannot handle top-k queries. In time-series databases, categorizing a
pattern as surprising based on its frequency of occurrence and mining it effi-
ciently using suffix trees has been proposed in [10]. However, the χ2 measure,
as discussed earlier, seems to provides a better parameter for judging whether a
pattern is indeed interesting.

In this paper, we propose two algorithms, All-Pair Refined Local Maxima
Search (ARLM) and Approximate Greedy Maximum Maxima Search (AGMM)
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to efficiently search and identify interesting patterns within a string. We show
that the running time of the algorithms are better than the existing algorithms
with lesser space requirements. The procedures can also be easily extended to
work in streaming environments. ARLM, a quadratic algorithm in the number
of local maxima found in the input string, and AGMM, a linear time algorithm,
both use the presence of local maxima in the string. We show that the approx-
imation ratio of the reported results to the optimal is 0.96 or more. Empirical
results emphasize that the algorithms work efficiently.

The outline of the paper is as follows: Section 2 formulates the properties
and behavior of strings under the χ2 measure. Section 3 describes the two pro-
posed algorithms. Section 4 discusses the experimental results, before Section 5
concludes the paper.

2 Definition and Properties

Let S = s1s2 . . . sl be a given string of length l composed of symbols si from
the alphabet set Σ = {σ1, σ2, . . . , σm}, where |Σ| = m. To each symbol σi ∈
Σ is associated a pσi (henceforth represented as pi), denoting the probability
of occurrence of that symbol, such that

∑m
i=1 pi = 1. Let θσi,S (henceforth

represented as θi,S) denote the observed number of symbol σi in string S.
The chi-square value of a string S ∈ Σ∗ of length l is computed as

χ2
S =

m∑
i=1

(pil − θi,S)2

pil
(1)

We now state certain observations and lemmas, the formal proofs of which are
in the full version of the paper [11].

Observation 1. Under string concatenation operation (.), for two arbitrary
strings S and T drawn from the same alphabet set and probability distribution
of the symbols (henceforth referred to as the same universe), the χ2 measure of
the concatenated string is commutative, i.e., χ2

S.T = χ2
T.S.

Lemma 1. The χ2 value of the concatenation of two strings drawn from the
same universe is less than or equal to the sum of the χ2 values of the individual
strings.

Lemma 2. The χ2 value of a string composed of only a single type of symbol
increases with the length of the string.

We next define the term local maxima and describe the procedure for finding
such a local maxima within a given string.

Definition 1 (Local maxima). The local maxima is a substring, such that
while traversing through it, the inclusion of the next symbol does not decrease
the χ2 value of the resultant sequence.
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Let s1s2 . . . sn be a local maxima of length n. Then the following holds: χ2
s1s2

≥
χ2

s1
, . . . , χ2

s1s2...sn
≥ χ2

s1s2...sn−1
and χ2

s1s2...sn+1
≤ χ2

s1s2...sn
.

The process of finding the local maxima involves a single scan of the entire
string. We consider the first local maxima to start at the beginning of the string.
We keep appending the next symbol to the current substring until there is a
decrease in the chi-square value of the new substring. The present substring
is then considered to be a local maxima ending at the previous position. The
last symbol appended that decreased the chi-square value signifies the start of
the next local maxima. Thus, the running time is O(l) time for a string of
length l.

Lemma 3. The expected number of local maxima in a string of length l is O(l).

However, practically the number of local maxima is less than l, as all adjacent
positions of dissimilar symbols may not correspond to a local maxima boundary.
We further optimize the local maxima finding procedure by initially blocking
the string S, as described in [9], and then searching for the local maxima. A
contiguous sequence of the same symbol is considered to be a block, and is
replaced by a single instance of that symbol representing the block. If a symbol
is selected, the entire block associated with it is considered to be selected. The
next lemma shows that a local maxima cannot end in the middle of a block.

Lemma 4. If the insertion of a symbol of a block increases the chi-squared value
of the current substring, then the chi-squared value will be maximized if the entire
block is inserted.

3 Algorithms

Based on the observations, lemmas and local maxima extracting procedure dis-
cussed previously, in this section we explain the All-Pair Refined Local Maxima
(ARLM) and Approximate Greedy Maximum Maxima (AGMM) search algo-
rithms for mining the most significant substring based on the chi-square value.

3.1 All-Pair Refined Local Maxima Search (ARLM)

Given a string S of length l and composed of symbols from the alphabet set Σ,
we first extract all the local maxima present in it in linear time, as described
earlier. With S partitioned into its local maxima, the global maxima can either
start from the beginning of a local maxima or from a position within it. Thus, it
can contain an entire local maxima, a suffix of it or itself be a substring of a local
maxima. It is thus intuitive that the global maxima should begin at a position
such that the subsequent sequence of characters offer the maximum chi-square
value. Otherwise, we could keep adding to or deleting symbols from the front of
such a substring and will still be able to increase its χ2 value. Based on this, the
ARLM heuristic finds within each local maxima the suffix having the maximum
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chi-square value, and considers the position of the suffix as a potential starting
point for the global maxima.

Let xyz be a local maxima, where x is a prefix, y is a single symbol at position
ψ, and z is the remaining suffix. For a local maxima the chi-square value of all
its suffices is computed. The starting position of the suffix having the maximum
chi-square value provides the position ψ for the component y, i.e, yz will be the
suffix of xyz having the maximum chi-square value.

For each local maxima, the position ψ is inserted into a list α. If no such proper
suffix exists for the local maxima, the starting position of the local maxima xyz
is inserted in the list. After populating α with position entries of y for each of
the local maxima of the input string, the list contains the prospective positions
from where the global maxima may start.

The string S is now reversed and the same algorithm is re-run. This time, the
β list is similarly filled with positions y′ relative to the beginning of the string.

For simplicity and efficiency of operations, we maintain a table C having m
rows and l columns, where m is the cardinality of the alphabet set. The rows
of the table contain the observed number of each associated symbols present in
the length of the string denoted by the column. The observed count of a symbol
between two given positions of the string can be easily computed from this table
in O(1) time.

Given the two α and β lists, we now find the chi-square value of substrings
from position g ∈ α to h ∈ β, and g ≤ h. The substring having the maximum
value is reported as the global maxima. While computing the chi-square values
for all the pairs of positions in the two list, the top-k substrings can be main-
tained using a heap of k elements.

Conjecture 1. The starting position of the global maxima is always present in
the α list.

Corollary 1. From the above conjecture, it follows that the ending position of
the global maxima is also present in the β list.

Finding all the local maxima in the string requires a single pass, which takes
O(l) time for a string of length l. Let the number of local maxima in the string be
d. Finding the maximum valued suffix for each local maxima using the C table,
requires another pass of each of the local maxima, and thus also takes O(l) time.
Since, each local maximum contributes one position to the lists, the number of
elements in both the lists is d. We then evaluate the substrings formed by each
possible pair of start and end positions, which takes O(d2). So, in total, the time
complexity of the algorithm is O(l + d2).

3.2 Approximate Greedy Maximum Maxima Search (AGMM)

In this section, we propose a linear time greedy algorithm for finding the maxi-
mum substring, which is linear in the size of the input string S. We extract all
the local maxima of the input string and its reverse, and populate the α and
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β lists as discussed previously. We identify the local maxima suffix max hav-
ing the maximum chi-square value among all the local maxima present in the
string. AGMM assumes this local maxima suffix to be completely present within
the global maxima. We then find a position g ∈ α for which the new substring
starting at g and ending with max as a suffix has the maximum χ2 value, for
all g. Using this reconstructed substring, we find a position h ∈ β such that
the new string starting at the selected position g and ending at position h has
the maximum chi-square measure for all positions of h. This new substring is
reported by the algorithm as the global maxima.

The intuition here is that the global maxima will contain the maximum of the
local maxima to maximize its value. Although this is a heuristic, the assumption
is justified by empirical results in Section 4, which shows that we always obtain
an approximation ratio of 0.96 or more.

Using the C table, AGMM takes O(d) time, where d is the number of local
maxima found. The total running time of the algorithm is thus O(d + l). Thus,
being a linear time algorithm, it provides a order of increase in the runtime as
compared to the other algorithms.

4 Experiments

To assess the performance of the two proposed heuristics ARLM and AGMM,
we conduct tests on multiple datasets and compare it with the results of the
näıve algorithm and the blocking algorithm [9]. The heap variant of the blocking
algorithm is not efficient as it has a higher running time and uses more memory,
and hence has not been reported. We compare the results based on the following
parameters: (i) search time for top-k queries, (ii) number of local maxima found,
and (iii) accuracy of the result based on the ratio of the optimal χ2 value to that
returned by the algorithms.1

Table 1. Results of (a) Sachin’s records. (b) Uniform dataset

Form Date Avg. Runs scored

22/04/98 143,134,33,18,100*

Best to 84.31 65,53,17,128,77

patch 13/11/98 127*,29,2,141,8,3

118*,18,11,124*

Worst 15/03/92 14,39,15

patch to 21.89 10,22,21

19/12/92 32,23,21

Parameters Variable Blocks Local maxima

m=5, l=103 831 742

k=1 l=104 7821 6740

l=105 77869 66771

l=104, m=5 7821 6740

k=1 m=25 8104 7203

m=50 8704 7993

(a) (b)

1 The experiments were conducted on a 2.1GHz desktop PC with 2GB of memory

using C++ in Linux.
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Fig. 1. (a) Time for finding the top-k query in Sachin’s run dataset. (b) Approximation

ratio of the top-k query in Sachin’s run dataset.

4.1 Real Datasets

We used the innings-by-innings runs scored by Sachin Tendulkar in one-day
internationals (ODI)2 as a real dataset. We quantized the runs scored into 5
symbols as follows: 0-9 is represented by A, 10-24 by B, 25-49 by C, 50-99 by D,
and 100+ by E. The actual probability of occurrences of the different symbols
were 0.28, 0.18, 0.22, 0.22 and 0.10 respectively for the five symbols, and the
overall average is 45.5 runs per innings. Table 1(a) summarizes the results. We
find that during his best patch he had scored 8 centuries and 3 half-centuries
in 20 innings with an average of 84.31, while in the off-form period he had an
average of 21.89 in 9 innings without any score of above 40.

Figure 1(a) show the times taken by the different algorithms for different
values of k. The AGMM algorithm requires the least running time as compared to
the other procedures, while the ARLM is faster than the näıve and the blocking
ones. The number of local maxima found was 281, which is lesser than 319, the
number of blocks constructed by the blocking algorithm. So, the heuristic prunes
the search space more efficiently. Figure 1(b) plots the approximation factor for
the heuristics. The accuracy of the ARLM heuristic is found to be 100% for
the top-1 query, i.e., it provides the correct result validating the conjecture we
proposed in Section 3. As the value of k increases we find an increase in the
approximation ratio of both the heuristics.

4.2 Synthetic Datasets

We now benchmark the ARLM and AGMM heuristics against datasets gener-
ated randomly using a uniform distribution. To simulate the deviations from the
expected characteristics as observed in real applications, we perturb the random
data with chunks of data generated from a geometric distribution with param-
eter p = 0.3. The parameters that affect the performance of the heuristics are:
(i) length of the input string, l, (ii) size of the alphabet set, m, and (iii) num-
ber of top-k values. For different values of these parameters we compare our
2 http://stats.cricinfo.com/ci/engine/player/35320.html?class=2;template=results;

type=batting;view=innings

http://stats.cricinfo.com/ci/engine/player/35320.html?class=2;template=results;type=batting;view=innings
http://stats.cricinfo.com/ci/engine/player/35320.html?class=2;template=results;type=batting;view=innings
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Fig. 2. (a) Effect of length on search time. (b) Effect of size of alphabet on search time.
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Fig. 3. (a) Effect of value of k for top-k query on search time. (b) Effect of probability

in two symbol string on search time.

algorithms with the existing ones on the basis of (a) time to search, (b) approx-
imation ratio of the results, and (c) the number of blocks evaluated in case of
blocking algorithm to the number of local maxima found by our algorithm.

Fig 2(a) shows that with the increase in the length of the input string l, the
time taken for searching the top-k queries increases. The number of blocks or
local maxima increases with the size of the string and, hence, the time increases.
The time increases more or less quadratically for ARLM and the other existing
algorithms according to the analysis shown in Section 3.1. ARLM takes less
running time than the other techniques, as the number of local maxima found is
less than the number of blocks found by the blocking algorithm (see Table 1(b)).
Hence, it provides better pruning of the search space and is faster. On the other
hand, AGMM being a linear time heuristic, runs an order of time faster than the
others. We also find that the accuracy of the top-k results reported by AGMM
show an improvement with the increase in the string length (graph not shown).
The approximation factor for ARLM is 1 for the top-1 query in all the cases
tested, while for other top-k queries and for AGMM it is always above 0.96.

The time taken for searching the top-k query as well as the number of blocks
formed increases with the size of the alphabet m (Table 1(b) and Fig 2(b)). As
m increases, the number of blocks increases as the probability of the same sym-
bol occurring contiguously falls off. A local maxima can only end at positions
containing adjacent dissimilar symbols. So the number of local maxima found
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increases as well. There seems to be no appreciable effect of m on the approxi-
mation ratio of the results returned by the algorithms. We tested with varying
values of m with l = 104 and k = 2, and found the ratio to be 1 in all cases.

Fig 3(b) shows the effect of varying probability of occurrence of one of the
symbols in a string composed of two symbols only. The approximation ratio
remained 1 for both heuristics for the top-1 query.

We next show the scalability of our algorithms by conducting experiments for
varying values of k for top-k substrings. Fig 3(a) shows that search time increases
with the increase in the value of k. This is expected as more computations are
performed. The accuracy of the results for the heuristics increases with k. For
k = 2, it is 0.96, and increases up to 1 when k becomes more than 10.

5 Conclusions

In this paper, we proposed the problem of finding top-k substrings within a
string with the maximum chi-square value for mining interesting patterns. The
chi-square value represents the deviation of the observed from the expected.
We used the concept of local maxima and proposed two efficient heuristics that
run in time quadratic and linear in the number of local maxima. Experiments
showed that the heuristics are faster than the existing algorithms, are scalable,
and return results that have an approximation ratio of more than 0.96.
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Abstract. We investigate supervised prediction tasks which involve

multiple agents over time, in the presence of drifting concepts. The moti-

vation behind choosing the topic is that such tasks arise in many domains

which require predicting human actions. An example of such a task is

recommender systems, where it is required to predict the future ratings,

given features describing items and context along with the previous rat-

ings assigned by the users. In such a system, the relationships among

the features and the class values can vary over time. A common chal-

lenge to learners in such a setting is that this variation can occur both

across time for a given agent, and also across different agents, (i.e. each

agent behaves differently). Furthermore, the factors causing this varia-

tion are often hidden. We explore probabilistic models suitable for this

setting, along with efficient algorithms to learn the model structure. Our

experiments use the Netflix Prize dataset1, a real world dataset which

shows the presence of time variant concepts. The results show that the

approaches we describe are more accurate than alternative approaches,

especially when there is a large variation among agents. All the data and

source code would be made open-source under the GNU GPL.

1 Introduction

In this article we investigate prediction problems in which there are multiple
evolving entities, which we refer to as agents. We address two complications
that frequently arise in problems that involve modeling agents: variation among
(1) agents and (2) within an agent across time. Let’s consider the problem of
estimating the probability of a movie reviewer’s rating. Here we have features
describing the context such as genre, release time, reviewer’s preferences etc. In
this problem we may have both kinds of variation. Clearly, there will be variation
among the agents, as every person is different. Also, there will be variation in
the user’s ratings because of his tastes, mood etc. which vary with time.

These variations pose problems to the modeler. One approach would be to
learn a single model that applies to all agents. This approach has the advantage
that training examples from all agents can be pooled together. Given plentiful

1 http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
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training observations for an agent, another approach is to learn a different model
for each agent from only that agent’s examples, and then use the appropriate
agent specific model when making predictions. However, if training examples
are scarce, this agent specific approach is susceptible to overfitting. Even when
training data is relatively plentiful for a given agent there may be contexts that
have not been observed very often.

Our approach takes the middle ground between these two extremes. Like
the agent specific or heterogeneous approach, we learn a different model for
each agent, but unlike it, training observations of multiple agents may have an
influence on the learned probabilities for a given agent. We do this by identifying
a neighborhood of agents with similar probability profiles and then combining
their models if training data is scarce.

In addition to variation across agents, we consider patterns of change within
a single agent over time. Problems in which class distributions change with time
are said to exhibit concept drift. See, for example, Widmer [15]. Our approach
to modeling concept drift utilizes hidden Markov models [12], that have found
widespread use in many sequential processing tasks.

2 Related Work

We investigate the approaches to model multiple evolving users or entities over
time. Our approach is closely related to previous work in Concept drift and
Collaborative Filtering.

Concept Drift has received considerable attention both in the field of Data
Mining [16,11,15,14] and Computational Learning Theory [1,5]. Previous work
on concept drift have addressed the problem of concept drift over time, but
concept drift across agents has not received particular attention. Incremental
(or online) concept drift was discussed by [15]. Widmer and Kubat’s FLORA
framework used a window based learning system. The FLORA2 algorithm and
the FLORA3 algorithm addressed the issue of recurring contexts. [7], addressed
concept drift with the CVFDT algorithm, which uses flexible windowing and
decision trees. [11] have also used Decision Trees for online concept learning, the
algorithm OnlineTree2 introduces multiple flexible windows. Concept Drift has
also been applied in the field of Network Security to model the user behavior
and to use it for Anomaly Detection.[9].

Collaborative Filtering Methods have become a popular system on the In-
ternet and are often used as techniques to complement content-based filtering
systems [6]. [10] uses a Collaborative Framework based on Fuzzy Association
Rules and Multiple-level Similarity (FARAMS). Recommender Systems often
rely heavily on Collaborative filtering, where past transactions are analyzed to
establish connections between users and products [8]. [8] introduces an approach
which uses Neighborhood models and Latent factor models to do Collaborative
Filtering. The filtering methods uses both implicit and explicit feedback from
user (agents), to improve results. Current Recommender Systems consider the
relations between the various users (agents), but do not consider the Concept
Drift over time.



330 V. Bhardwaj and R. Devarajan

Other work similar to what we present here include approaches for training
probabilistic models by combining examples from multiple contexts. Interpo-
lated Markov models [3] are models that combine different order Markov mod-
els based, in part, on the number of training examples observed in each case.
This approach was originally developed for finding genes in microbes. More re-
cently variable length HMMs [14] were introduced. These models dynamically
adapt the length of an HMM memory using context trees. Interpolated hidden
Markov models have also been used in many domains such as finding genes and
in automatic instrument recognition [13].

3 Overview

Figure 1 shows diagrams of some of the graphical probability models we use here.
In this example there are N agents. For each agent we have multiple observations
at various time points. We use Y t

a to represent the output random variable for
agent a at time t. Each Y is associated with M observable features, denoted by
the feature vector X .

When we are learning a classifier to predict the output Y of each agent, there
can be two extreme cases, (i) the Homogeneous Case, where we learn a single
model for all agents (Fig. 1 A) and (ii) the Heterogeneous Case, where we learn
a model for each agent, (Fig. 1 B).

Both these approaches are flawed in many real world scenarios, as there is
usually some difference between the behavior of each agent, but yet its never
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Fig. 1. Illustration of Bayesian Probabilistic Models used in our approach. Solid lines

with arrows represent probabilistic dependencies. Dashed lines in C and D represent

influences between agent models on learned probability parameters. A: A single model

is learned for all agents viz. Homogeneous Model. B: A model is learned for each agent

viz. Heterogeneous Model. C: An Interpolated Model near beginning of training. D: An

Interpolated Model later during training, strength of ties have weakened, and new ties

are found. Influences change with more training. See difference between C and D.
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Fig. 2. Illustration of Hidden Markov Models used in our approach. A: An HMM is

learned for each agent (similar to the Heterogeneous Model, but captures concept drift
over time). B: An Interpolated HMM near beginning of training. C: An Interpolated

HMM later during training, strength of ties have weakened, and new ties are found.

true that all agents are entirely different from each other. Thus to model pre-
dictive classifiers close to real world scenarios, we choose an approach which is
somewhere in between the two extreme cases.

Figure 1 C and D illustrate our approach to modeling variation among agents.
In this example we have three agents and a set of three features per agent.
Early on during training, or when a new agent appears, and training data for
individual agent is scarce, its probabilities are influenced heavily by neighboring
agents. This is illustrated in the figure with dashed lines connecting the nodes.
Outputs(class) of Agent1 and Agent3 are similar, but X(1) of Agent1 is closer to
X(1) of Agent2. As we have more training data, we learn that output of Agent1
is closely tied to Agent2, and closeness between X(3)’s of Agent1 and Agent3 has
grown weaker.

To model concept drifts over time, we investigate Hidden Markov Models, as
shown in Fig. 2. Figure 2 A illustrates the case where we learn one HMM for
each agent. Variables Ht

i represent the Hidden Variable for Agenti at time t.
The Hidden Variables capture the drift over time as each hidden variable

relearns its probability distribution for state transitions and emissions, as new
training data is encountered. Figure 2 B and C, illustrate an Interpolated HMM,
in which we have a model for each agent and an agent’s prediction probabilities
are influenced both by its own training data and that of other agent’s in its
neighborhood similar to the static HMM explained above.

Thus, these Interpolated models attempt to capture the real world scenario,
where there are varying relationships among agents. Agent1 may be closer to
Agent2 in some ways and closer to Agent3 in some ways.



332 V. Bhardwaj and R. Devarajan

4 Methods

As our setting involves multiple agents over time, we assume that we have labeled
data for N agents through time t. For our models in Figure 1, we estimate a
naive Bayes model for each agent.

For agent a at time t′ we have the labeled data set {(xt
a, yt

a)|t ≤ t′} where
1 ≤ yt

a ≤ C is a discrete class value (C possible class values) with feature values
xt
a = (xt

a(1), ..., xt
a(M)) where xt

a(j) is the value of feature j for an observation
at time t.

Assumptions

– Throughout this article, we shall assume that each of the features X(j) take
discrete values 1, 2, . . . , sj where sj is the size of the domain for X(j). Our
approach, however, is general and can be applied to the continuous case as
well.

– We assume the number of features and their domains are constant across
agents and time.

– We use a value of 0 to denote a missing feature value.
– We do not require the observations of different agents to be aligned in time.

Homogeneous and Heterogeneous Models
To learn the homogeneous model we pool all examples from all agents into a
single training set T = {(xt

a, yt
a)|∀a, t < t′}. We compute counts nj(k, c), the

number of examples in which feature j had a value of k with class c, and n(c),
the total number of observations of class c. Then we compute the maximum
a-posteriori (MAP) estimates with pseudo-counts of 1 for all parameters:

P̂ (X(j) = k|Y = c) =
nj(k, c) + 1(∑

1≤k′≤sj
nj(k′, c)

)
+ sj

(1)

and
P̂ (Y = c) =

n(c) + 1(∑
1≤c′≤C n(c′)

)
+ C

(2)

Here we have dropped the agent subscripts because we use the same model for
each agent.

Learning in the heterogeneous case is the same as the homogeneous case with
the exception that each agent’s model is learned from a training set consisting
of only that agent’s examples.

Interpolated Model
Given plentiful training data (and assuming stationary concepts) we would ex-
pect the heterogeneous model P̂a(Ya|Xa) to be more accurate than the homo-
geneous model P̂ (Y |X) on predictions for any agent a. On the other hand, if
training data for agent a is scarce there is concern of over-fitting. Even if train-
ing data for a is scarce, however, we may have many examples for other agents.
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This happens if the numbers of observations for each agent is skewed so that
some agents have many observations while others have few. In this case, we’d
like to be able to use training examples from the other agents to help estimate
the model for a. Our approach is to form a model for a by combining its own
MAP estimate with the MAP estimates of other agents in the neighborhood of
a. We call this the interpolated approach.

Since learning naive Bayes models from complete data is just a set of separate
estimation problems, one for each conditional distribution and one for the prior
of the class variable, we describe our approach in terms of estimating just a
single distribution for a discrete domain.

Let W be the random variable we are estimating a distribution for (i.e.,
P (W ) is either Pa(Y ) or P (Xa(j)|Ya = c)) and K be the number of values in
W ’s domain. We begin with the table of counts, where n(a, k) is the number of
observations of value k for agent a, and first compute the agent specific MAP
estimates P̂a(W ) using equations analogous to Equations 1 or 2 (but of course
using only a’s observations). This estimate is identical to the estimate used in
the heterogeneous model for a.

We construct the interpolated distribution for a, P̂ I
a (W ) as a mixture of its

MAP estimate and its “neighborhood” distribution PN
a (W ) (described below):

P̂ I
a (W ) = λa × P̂a(W ) + (1 − λa)PN

a (W ) (3)

where 0 ≤ λa ≤ 1 is the mixing coefficient that determines the relative contri-
butions of a’s MAP distribution and its neighborhood distribution. We set λa

using the logistic function so that it smoothly varies as its number of observa-
tions grows. M here is a tuneable parameter that controls how fast we transition
from the neighborhood distribution to the MAP distribution. A large value of
M causes a slow transition.

λa =
1

1 + exp(M −∑1≤k≤K n(a, k))
(4)

An agent’s neighborhood distribution is a combination of the MAP distribu-
tions of its eligible neighbors and an average agent distribution. We represent
the “distance” d(a, a′) between agents a and a′ (for estimating W ) with the
Kullback-Leibler divergence:

d(a, a′) =
∑

1≤k≤K

P̂a(W = k) log

(
P̂a(W = k)
P̂a′(W = k)

)
(5)

Next, we form an “average agent” model P̄ (W ) that is the average of the MAP
models for all agents:

P̄ (W ) ∝
∏
a

P̂a(W ) (6)

where the product is a normalized point-wise product of distributions. Notice
that P̄ is not the same as the estimate learned by the homogeneous model be-
cause P̄ is influenced equally by all agents whereas in the homogeneous model
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an agent’s influence is proportional to how many observations it has. Our rea-
soning is that when little or nothing is known about an agent, which is when P̄
has influence, we believe it is more reasonable to model it more like the average
agent than the average training example.

An agent a′ is an eligible neighbor of a if both (i) λa′ > 0.5 and (ii) d(a, a′)
is less than the distance between a′s MAP distribution P̂a(W ) and the agent
average distribution P̄ (W ). The first condition ensures that eligible neighbors
have seen enough training examples so that their MAP estimates are more likely
to be reliable and the second condition prevents distant “neighbors” from having
any influence. We define the neighborhood of a, N a, to be its D closest eligible
neighbors. If there are less than D eligible neighbors then N a contains all eligible
neighbors, which could be zero. Finally, we construct the neighborhood distri-
bution Pn

a by taking the normalized point-wise product of the average agent
distribution with the MAP distributions of all neighbors:

Pn
a (W ) =

( ∏
a′∈N

P̂a′(W )

)
× P̄ (W ) (7)

We now compute the interpolated model with Equation 3. In this way we com-
pute all distributions for all agents. Before we move on, we stress a few important
details about this approach:

– The neighborhood for a is distribution specific. It is possible that a has a
different set of neighbors when estimating P (X(i)|Y = c) than it has when
estimating P (X(i)|Y = c′). Although, this can be seen as a virtue, this
may be exasperating problems associated with using a generative model for
discriminative classification.

– The neighborhood distribution behaves like an evolving bias or prior. Implicit
in this formulation is that while agents may be diverse, the distributions tend
to cluster.

– If the MAP distribution for an agent is near the center of its neighborhood
the interpolated distribution will be similar to the MAP. On the other hand if
most of an agent’s neighbors are in the same direction then the neighborhood
distributions combine to pull the interpolated distribution toward that center.

Hidden Markov Models
We now turn toward our approach for representing changes within an agent over
time. For this we use hidden Markov models. We explore both a regular HMM
with one model for each agent and an Interpolated version which applies the
interpolated approach to an agent’s HMM.

Our HMM consists of two states. These state represent different modes of the
agent’s distribution over class labels. In the domain of our dataset, the hidden
states could correspond to changes in a reviewers’ calibration or even changes
in actual human reviewer associated with a given user ID, though we have no
definite knowledge of what these states maybe, we can learn their behavior. To
learn the parameters of the HMM for agent a at time t we train an HMM using
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the expectation-maximization algorithm [4] using the single sequence y1
a, ..., yt

a.
Thus, this approach is similar to the heterogeneous method, in which each agent’s
model is trained using only examples from that agent. But, of course, it is differ-
ent, as here we allow the agent’s probability distribution over the class to change
with time.

In the Interpolated hidden Markov model, we learn an interpolated distribu-
tion for the emissions, similar to the method explained above. For each agent,
the probability distribution of the emissions are learned by using its distribution
and the distributions of its “neighbors”.

The HMMs we consider here, is in some ways the simplest possible in that
the emissions involve a single variable. More complex HMMs in which emissions
include both the class and features are possible as well.

5 Evaluation

We conducted a set of experiments to assess that how well our approaches model
evolving heterogeneous agent behavior in real world domains. We wish to (i)
compare the predictive accuracies of the various models, (ii) investigate the effect
of the training set size, and (iii) use HMMs to model concept drift over time We
have have assembled a publicly available real world data set involving humans.
Our set is derived from the Netflix prize2 data. This data set contains over 100
million movie ratings (integer values 1-5) for 400,000+ users and 17,770 movies
from 1999 to 2005. We use a subset of this data in our experiments. We extracted
all the ratings from 2000 randomly selected users (the agents in this problem) for
a total of 422,692 ratings. The rating is the class variable, and we divided ratings
such that ratings (1,2,3) are classified as low or ’0’ and ratings (4,5) are classified
as high or ’1’. Making it a binary class problem We have 103 features for each
rating: (i) The day of week of the rating, (ii) The month of the rating (iii) The
movie’s year of release. The remaining features are the ratings (if available) of
100 “heavy” users who have rated more than 1,000 movies. These 100 users are
disjoint from the agents.

The first experiment was designed to see how well the interpolated method
models the prior distribution P (Ya). In this experiment the 30% of the examples
with greatest time index were held aside for evaluation. We trained models with
successively more training data. We use all data from the time of the earliest
instance through t where t is set so that 1%, 2%, ..., 70% of the available labeled
examples are in the training set. Each trained model predicts the value of the
held aside 30%. We measure the performance of each trained model with the
test set log-likelihood. The parameter M was set to 20.

Figure 3 shows the results of this experiment. As expected, the heterogeneous
model shows the most improvement as the size of the training set increases and
the homogeneous model shows the least with the interpolated model in between.
The interpolated model surprisingly continues to slightly improve throughout the
whole range. Given the large amount of data it is unlikely that this trend is caused
2 http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
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Model

by estimation error, but suggests that drift may be present. Comparing the inter-
polated curve to the others, we see that performance begins close to the homoge-
neous model and then improves as the individual agent models begin to diversify.

These trends suggest high inter-agent variability. We see that the interpolated
models perform best in settings with diverse agents. From these results we con-
clude that the interpolated approach can lead to more accurate estimation of
probability distributions, especially if agents are diverse.

To compare the predictive accuracy of the interpolated model, we compute
ROC curves (Fig. 4) for each of our static models. In this experiment we use all
features (as well as class labels) to train the models with the first 70% of the data
and predict the labels on the final 30%. Although the interpolated model was
the most accurate in terms of test-set log likelihood this doesn’t translate into
a clear win in the ROC curves. It is only slightly better than the homogeneous
and heterogeneous models.

Our investigations into using HMMs to model concept drift focus on the pre-
dicting the class values using only the priors and not the features. Similar to the
first experiment, 30% of the examples with greatest time (in total, not per agent)
index were held aside for evaluation. A separate HMM is trained from the first
40% using only that agent’s observed label sequence. We also learn an Interpo-
lated HMM for each agent by applying the interpolated approach to the emission
distributions. We compare the results of the HMM to the heterogeneous model
and the Interpolated-HMM to the Interpolated Model. We measure the perfor-
mance of each trained model with the test set log-likelihood. Figure 5 shows
the results of the 2 types of HMMs learned. The results showed strong evidence
of concept drift, as the difference in the test set log likelihoods (summed over
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all agents) of the interpolated model and the HMMs was in favor of the HMMs.
We see that initially the heterogeneous HMM starts lower than the interpolated
HMM, which can be attributed to lack of training data for each agent. As more
training data is made available, both models almost tie with each other, but still
increasing, which suggests the presence of concept drift. Observing the agent
specific log likelihoods shows that most of the difference between that static
models and the HMMs is accounted for by a relatively small number of agents.
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It might be that these agents are strongly drifting while the others are weakly
or not drifting. This suggests an alternate approach in which some agents are
modeled with HMMs while others are modeled with static models.

6 Conclusion and Future Work

In this paper we investigated probabilistic models for multiple evolving agents.
We addressed the common complications that may arise in such a setting, viz.
(i) concept drift over time for a given agent, (ii) varying relationships among
different agents. We compare and contrast 3 different static models, viz. (i)
the homogeneous model in which we learn a single model for each agent, (ii)
a heterogenous model where we learn a different model for each agent. (iii)
an interpolated model where similar to the heterogeneous approach, we have
a different model for each agent, but unlike it, observations from other agents
can have an influence on an agent’s model. Then we investigate hidden Markov
models to address the issue of concept drift over time. Lastly we applied the
interpolated approach to HMM to get an interpolated hidden Markov model for
each agent. The contribution of this paper is the introduction of a novel method
for learning agent models that involves combining the models of multiple agents
in the same neighborhood.

Importantly, the concept of neighborhood is context specific, so the neigh-
boring agents that combine to form one distribution may be distinct from those
that combine in another. We demonstrated the validity and need of such models
in real world scenarios. In settings with diverse agents, models learned with our
interpolated approach proved to be empirically better than purely homogeneous
or purely heterogeneous models. Concept drift over time was investigated using
hidden Markov models and strong evidence of concept drift was found.

Our Interpolated Hidden Markov Model , that is used in conjunction with hid-
den variables, can be used to represent cases where there are time varying con-
cepts affected by unknown factors. For example, such models may find use in risk
assessment in financial data such as stocks. Thus, modeling the evolving relation-
ship among various agents together with accounting for time varying concepts can
prove to be very useful in several fields like finance, marketing or medicine. This
work can be further extended by considering models where there are more than
one type of hidden variable, each type affecting different observable features of the
agent. Hence this can effectively model cases where certain features of an agent
vary over time and others remain consistent. A typical setting would be a behav-
ioral analysis of a multi-agent system which integrates models into an intelligent
structure that improves the efficiency of an agent[2].
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Abstract. Recommender systems are widely used online to help users

find other products, items etc that they may be interested in based on

what is known about that user in their profile. Often however user profiles

may be short on information and thus it is difficult for a recommender

system to make quality recommendations. This problem is known as

the cold-start problem. Here we investigate using association rules as a

source of information to expand a user profile and thus avoid this prob-

lem. Our experiments show that it is possible to use association rules to

noticeably improve the performance of a recommender system under the

cold-start situation. Furthermore, we also show that the improvement in

performance obtained can be achieved while using non-redundant rule

sets. This shows that non-redundant rules do not cause a loss of informa-

tion and are just as informative as a set of association rules that contain

redundancy.

1 Introduction

Recommender systems are designed to understand a user’s interests, learn from
them and recommend items (whether they be products, books, movies etc) that
will be of interest to the user. This requires them to personalise their recom-
mendations. Recommendation systems usually work most effectively when user
profiles are extensive and/or the applicable dataset has a high information den-
sity. When the dataset is sparse or user profiles are short, then recommender
systems struggle to provide quality recommendations. This is often known as
the cold-start problem.

We propose expanding a user profile (eg. so it contains more ratings) through
the use of association rules derived from the dataset. By doing so we expand
profiles based on patterns and associations of items, topics, categories etc and
thus give more information to a recommender system. This would reduce the
effect of the cold-start problem and result in better quality recommendations
earlier on. We also investigate the performance of both non-redundant rules and
rules that contain redundancy. The idea behind non-redundant rules is that the
removed redundant rules should not cause a loss of information [11] [12]. If there
is no information loss, then the performance should be similar to that of a ruleset
with redundant rules.
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The paper is organised as follows. Section 2 discusses related works. Our
proposed approach for solving the cold-start problem is presented in Section 3.
In Section 4 we outline our experiments to test our approach. Lastly, Section 5
concludes the paper.

2 Related Work

Here we briefly review works related to our proposed approach. We consider
works that have focused on recommender systems and redundancy in associa-
tion rules.

Much work has been done in the area of recommender systems. A survey un-
dertaken in [1] details many different approaches that have been proposed. It is
shown that the cold-start problem heavily affects content-based and
collaborative-based systems [1]. In the case of collaborative-based systems, pro-
posed solutions include getting the user to rate specific items [1]. However this
places a burden on the user. Our proposed approach does not. Thus work focus-
ing on solving the cold-start problem includes collaborative & content hybrids
[2] [7], ontology based systems [5] and taxonomy driven recommender systems
[10] [13]. However, all of these proposals have drawbacks. Hybrid systems can
lack novelty, resulting in recommendations that are excessively content centric
[13]. Onotolgy based system requires a well defined ontology to be created, some-
thing that can be difficult and limiting. Taxonomy based systems work better,
but still have low performance. Also the HTR system proposed in [10] performs
only marginally better than the TPR system proposed in [13], although it is
more time efficient. The taxonomy based approach in [13] does have the advan-
tage of being able to be applied to many domains. Work in [4] proposed a system
that uses fuzzy cross-level rules to enhance a collaborative based recommender
to solve this cold-start problem. Our work focuses on the cold-start problem of
users not items.

Much work in the field of association rule mining has focused on finding more
efficient ways to discover all of the rules. However, complete rule enumeration is
often intractable in datasets with a very large number of multi-valued attributes.
One approach is to determine which rules are redundant and remove them, re-
ducing the number of rules a user has to deal with while not reducing information
content [6] [11] [12]. The MinMax algorithm proposed in [6] uses the closure of
the Galois connection to define non-redundant rules. These non-redundant rules
have a minimal antecedent and maximal consequent and were selected as the
most relevant because they are the most general. The ReliableBasis algorithm
proposed in [11] [12] argued that MinMax still contained redundant rules. They
propose that by using the same technique as MinMax, but relaxing the defi-
nition for redundancy, further redundant rules could be removed. Work in [11]
shows a reduction of over 80% can be achieved in some situations. Recent work
in [8] [9] proposed taking the MinMax and ReliableBasis approaches developed
for single level datasets and extend them to remove hierarchical redundancy
found in multi-level datasets. The proposed extensions, MinMax with HRR and
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ReliableBasis with HRR [8] [9] were developed to find rules that not only had
a minimal antecedent and maximum consequent, but also comprimsed of high
level concepts or items. These approaches have been shown to yield further re-
ductions in the size of rule sets. In this paper we demostrate an application
where non-redundant rule sets can be used in place of other rule sets which are
redundant.

3 Using Association Rules to Expand User Profiles

In this section we outline our proposed approach and investigation into solving
the cold-start problem in recommender systems.

For our investigation we use the Taxonomy-driven Product Recommender
(TPR) system first proposed in [13]. The user profiles are created through the
process described in [13] (which has been omitted here due to space) to generate
taxonomy-driven profiles. A taxonomy T containing topics (or categories) t in
a multi-level structure, where each topic has one parent or supertopic, but may
have many children or subtopics. Thus the taxonomy can be visualised as a tree.
By doing this the profiles represent the user’s interests in topics, rather than
items. Although we have used the taxonomy in the profile generation, we still
have the issue of short profiles. By using the rules to expand the profile we bring
other topics in that similar users have shown an interest in.

From the user profiles we can construct a transactional dataset, where each
transaction is a user and each topic is an attribute. Thus each transaction consists
of the topics that a user is interested in. We then mine the transactional dataset
for frequent patterns and derive association rules from these patterns. This will
give us association rules between topics that interest users. These rules allow us
to discover topics that frequently appear together as part of a user’s interest. This
rule set will then be used to expand user profiles to solve the cold-start problem.

Finally, we expand the user profiles. For this we take the set of user profiles
P and the association rule set we derived in the second step. For each user
profile p(ux) we extract all of the topics t within and generate a list of all the
combinations possible from the group of topics. Each combination represents a
possible antecedent of an association rule. We take each combination and search
the set of association rules for any rules that have a matching antecedent. If
such a rule exists we can then take the topics in its consequent and add them to
the profile p(ux). Each new topic added is assigned a weight, which is calculated
based on the weights of the topics in that rule’s antecedent.

Weighttx =
∑|A|

i=1 Weightti

|A| × Rconf (1)

where |A| represents the number of topics in the antecedent of the rule R : A →
C. Then as per the design of the TPR approach the values of the topics in the
expanded profile need to be normalised. All topic scores within a profile p are
normalised through the following formula.
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NormalisedWeighttx =
Weighttx∑n
i=1 Weightti

× Limit (2)

where Limit is the value to which a profile of normalised topic values is to sum
to. Thus this generates a set of expanded user profiles which we show in our
experiments have the potential to improve recommendations over profiles that
have not been expanded.

We have outlined our proposal for using association rules to expand user
profiles in order to improve recommender system quality. However, it is possible
that we may want to place limitations on the expansion of user profiles.

1. Restrict the expansion to short profiles. The idea behind this proposal is
to expand users who have very few ratings and thus suffer from the cold-
start problem. Users with many ratings do not have this problem. Thus a
restriction should be imposed on how many topics can be in the user profile
p before there is too many to warrant expansion.

2. Restrict the number of rules used when expanding a user profile. It is en-
tirely possible that when deriving the association rules from the transactional
dataset that a large list may be generated. It is also possible that from this,
when expanding a user profile that a large number of rules and their con-
sequents will be considered for inclusion in the expanded user profile. This
may lead to poorer performance as many more topics are added and more
items from a wider selection become recommended. Our experiments will
test the effect of using 1 to 5 rules during expansion.

4 Experiments and Evaluation of User Profile Expansion

Here we outline the experiments we undertook to study the value of our proposal
to use association rules in expanding user profiles to improve recommendation
quality, as well as the effect redundant and non-redundant rule sets have. We aim
to show that non-redundant rule sets give a similar improvement when compared
to rule sets containing redundant rules.

4.1 Evaluation Metrics and Datset

In order to evaluate the performance of the baseline set of profiles and the
expanded set of profiles we follow the same approach detailed in [10]. The past
ratings of each user u ∈ U have been randomly divided into training and test
components. For the experiments, the recommender system will recommend a
list of n items for user ui based on the training set and will be evaluated against
the test set. For our experiments we use exactly the same training and test sets
as used in [10].

To evaluate redundant and non-redundant rule sets we use 4 different rule
mining algorithms to extract a set of rules. The algorithms used are the ones
previously introduced in Section 2; MinMax [6], ReliableBasis [11] [12], MinMax
with HRR [8] [9] and ReliableBasis with HRR [8] [9].
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In our work we use precision, recall and F1-measure to determine the overall
performance of the recommender system [3]. This allows us to compare the
standard approach against our proposal of using association rules for user profile
expansion.

For this investigation we use the BookCrossing dataset (obtained from
http://www.informatik.uni-freiburg.de/˜cziegler/BX/) which contains users,
books and the ratings given to those books by the user. The taxonomy tree and
descriptors are orginally sourced from Amazon.com and are exactly the same
as those used in [10]. From this we build a transactional dataset that contains
92,005 users (transactions) and 12,147 topics from the taxonomy. The dataset
is populated using the descriptors that belonged to 270,868 unique books. This
dataset is then mined to derive the association rules from it. For our experiments
here, all ratings of items are considered to be positive. From the BookCrossing
dataset we also build the base set of user profiles P. This set of profiles contains
85,415 distinct users. As already mentioned the ratings for each user are divided
into a training set and a test set. The set of user profiles P is based on the
training set. The average number of ratings in a user profile is 27.08. This set of
user profiles will serve as the baseline input in our experiments and is also the
set that will be expanded.

4.2 Experiment Results

To validate our proposal we conducted a series of experiments to see whether
using association rules to expand user profiles improves recommendation quality.
From the transactional dataset we set the minimum confidence threshold to 50%
and are able to derive 37,827 association rules using the MinMax algorithm [6].
We then go through the user profiles in the training set and for any profile
p ∈ P (train) that has 5 or less ratings we attempt to expand our approach.
This yields a total of 15,912 user profiles which we consider to be short profiles.
We chose to restrict profile expansion to those with 5 ratings or less as these
are the users most likely to suffer from the cold-start problem. This falls in
line with the first restriction proposed in section 3. Long profiles do not usually
suffer from the cold-start problem, so expanding them is likely to result in a high
computation cost for minimal gain. We then make up to 10 recommendations
for these 15,912 users and measure the overall performance of the recommender
system. We compare our approach against the baseline of the same 15,912 user
profiles with no expansion. All experiments use the TPR recommender[13].

As shown in Table 1 the baseline set of user profiles (no expansion) scores
only 0.00619, 0.0571 and 0.0112 for precision, recall and F1-measure respectively.
When using expanded profiles we manage to achieve up to 0.00815, 0.0754 and
0.0147 for precision, recall and F1-measure. This is an improvement of around
31.5% over the baseline. Also the efficiency of the recommender is not negatively
impacted, as while our expanded profiles naturally take longer to make recom-
mendations for, it is no different to that of a longer profile without expansion.
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Table 1. Results for TPR using the short user profiles with rules ranked by confidence

Approach Precision % Recall % F1-Measure %

Baseline 0.00619 0.0571 0.0112

Expanded (1 Top Rule) 0.00649 4.77% 0.0595 4.28% 0.0117 4.72%

Expanded (2 Top Rules) 0.00714 15.21% 0.0655 14.66% 0.0128 15.16%

Expanded (3 Top Rules) 0.00732 18.15% 0.0672 17.77% 0.0132 18.12%

Expanded (4 Top Rules) 0.00792 27.79% 0.0729 27.75% 0.0143 27.79%

Expanded (5 Top Rules) 0.00815 31.54% 0.0749 31.22% 0.0147 31.51%

To test the hypothesis that non-redundant rule sets perform as well as rule
sets that contain redundancy we conducted a series of experiments to determine
the improvement in a recommender system obtained using various rule sets.

We mine the transactional dataset using four different rule mining algorithms
all with the same minimum support and confidence thresholds. Initially we used
the MinMax algorithm to extract all of the possible rules, including redundant
ones by using the proposed recovery algorithms [6]. However, the entire ruleset
and the non-redundant ruleset generated by the MinMax algorithm are actually
identical. This means that none of the rules discovered by the MinMax algorithm
are considered redundant and thus the ruleset derived using MinMax becomes
our baseline ruleset, which based on the ReliableBasis redundancy definition,
contains redundant rules.

The other three algorithms all derive smaller rule sets indicating that they
deem some of the rules that MinMax derived to actually be redundant. The
ReliableBasis with HRR [8] [9] derives the smallest set of rules and thus Reli-
ableBasis and MinMax with HRR still contain some redundant rules. Table 2
shows the size of each ruleset derived using these algorithms. Again we follow
the same procedure previously outlined. The same 15,912 ’short profile’ users
are then used to test the performance of the TPR recommender.

Table 3 clearly shows that the performance of the four algorithms is not that
different, except for the case of the top 3 rules, where ReliableBasis with HRR
(RBHRR) outperformed the worst rule mining algorithm, MinMax (MM) by
8%. We believe Table 3 strongly support our hypothesis that non-redundant rule
sets can be used in place of larger rule sets which contain redundancy, without
degrading performance. It also supports the theory behind these algorithms.

Table 2. Size of ruleset derived for each algorithm

Algorithm No. of rules Reduction

MinMax 37,827

ReliableBasis 36,852 2.58%

MinMax with HRR 37,555 0.72%

ReliableBasis with HRR 36,604 3.23%



346 G. Shaw, Y. Xu, and S. Geva

Table 3. Results for TPR using the short user profiles with different derived rule sets

and rules ranked by confidence

Approach Precision % Recall % F1-Measure %

Baseline 0.00619 0.0571 0.0112

Expanded (1 Top Rule) - MM 0.00649 4.77% 0.0596 4.28% 0.01171 4.72%

Expanded (1 Top Rule) - RB 0.00649 4.77% 0.0596 4.28% 0.01171 4.72%

Expanded (1 Top Rule) - MMHRR 0.0066 6.49% 0.0606 6.04% 0.0119 6.45%

Expanded (1 Top Rule) - RBHRR 0.0066 6.49% 0.0606 6.04% 0.0119 6.45%

Expanded (2 Top Rules) - MM 0.00714 15.21% 0.0655 14.66% 0.0129 15.16%

Expanded (2 Top Rules) - RB 0.00714 15.21% 0.0655 14.66% 0.0129 15.16%

Expanded (2 Top Rules) - MMHRR 0.00717 15.72% 0.0658 15.21% 0.01293 15.67%

Expanded (2 Top Rules) - RBHRR 0.0072 16.13% 0.066 15.65% 0.01298 16.08%

Expanded (3 Top Rules) - MM 0.00732 18.15% 0.0673 17.77% 0.0132 18.12%

Expanded (3 Top Rules) - RB 0.00734 18.46% 0.0674 18.1% 0.01323 18.42%

Expanded (3 Top Rules) - MMHRR 0.00772 24.65% 0.0711 24.57% 0.01393 24.64%

Expanded (3 Top Rules) - RBHRR 0.00782 26.17% 0.0721 26.17% 0.01411 26.17%

Expanded (4 Top Rules) - MM 0.00792 27.79% 0.073 27.75% 0.01428 27.79%

Expanded (4 Top Rules) - RB 0.00798 28.8% 0.0736 28.8% 0.0144 28.8%

Expanded (4 Top Rules) - MMHRR 0.00805 29.92% 0.0741 29.78% 0.0145 29.91%

Expanded (4 Top Rules) - RBHRR 0.00802 29.41% 0.0738 29.21% 0.01446 29.39%

Expanded (5 Top Rules) - MM 0.00815 31.54% 0.0749 31.22% 0.0147 31.51%

Expanded (5 Top Rules) - RB 0.00819 32.15% 0.0754 31.97% 0.0148 32.13%

Expanded (5 Top Rules) - MMHRR 0.00808 30.43% 0.0743 30.07% 0.01458 30.39%

Expanded (5 Top Rules) - RBHRR 0.00811 30.83% 0.0745 30.51% 0.01462 30.8%

5 Conclusions

In this paper we proposed the idea of using association rules to expand user
profiles in order to improve recommendations. We outline an approach whereby
the rules can be discovered and used, increasing the number of topics in a user
profile that only has a few existing ratings. Our experiments show that the pro-
posed approach can improve the performance of a recommender system under
the cold-start problem. We also argued that the performance of non-redundant
and redundant rulesets in this application should be very similar. Results ob-
tained show that non-redundant rulesets, which contain fewer rules, performing
on par with larger rulesets still containing redundancy.
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Abstract. Tag recommender systems are often used in social tagging systems, a
popular family of Web 2.0 applications, to assist users in the tagging process. But
in cold-start situations i.e., when new users or resources enter the system, state-of-
the-art tag recommender systems perform poorly and are not always able to gen-
erate recommendations. Many user profiles contain untagged resources, which
could provide valuable information especially for cold-start scenarios where
tagged data is scarce. The existing methods do not explore this additional informa-
tion source. In this paper we propose to use a purely graph-based semi-supervised
relational approach that uses untagged posts for addressing the cold-start prob-
lem. We conduct experiments on two real-life datasets and show that our approach
outperforms the state-of-the-art in many cases.

1 Introduction

Recently Web 2.0 applications like social tagging systems (or folksonomies) are getting
more and more popular. One service often provided by these sites are tag recommender
systems that help simplifying the process of tagging for the user. Given that users are
free to tag, i.e., the same resource can be tagged differently by different people, it is
important to personalize the recommended tags for an individual user. But state-of-the-
art methods are not always able to suggest personalized tags for a new user or a new
resource. Often these situations are handled by using the content of the new resource
or just recommending the most popular tags. But these approaches have several draw-
backs, first the recommended tags are not personalized and second, using content is
not a generic approach, one needs to use different algorithms for each type of resource,
e.g., in Last.fm1 information needs to be extracted from the audio files, in Flickr2 im-
ages need to be analyzed, in YouTube3 knowledge from videos has to be extracted and
for Delicious4 and BibSonomy5 the text of bookmarked web pages or publications be-
longing to a BIBTEX entry needs to be assessed. Thus, this is a costly solution if one
needs different approaches for several types of resources.

We propose a content independent, purely graph-based approach, which is based on
the observation that user profiles usually contain many untagged posts that could be

1 http://www.last.fm
2 http://www.flickr.com
3 http://www.youtube.com
4 http://delicious.com
5 http://www.bibsonomy.org

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 348–357, 2010.
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exploited for improving the recommendations, especially when there are only a few
tagged examples available. We investigate two scenarios, first where a new user enters
the system and second, where among the untagged posts, there are new resources, i.e.,
resources that were not tagged by any other user in the system. We will address these
problems by means of semi-supervised relational classification, whereby we can benefit
from the structural information of untagged posts.

As presented in [1], we first cast the problem of personalized tag recommendations
as a relational classification problem, where we use relational semi-supervised classi-
fication to profit from the potentially valuable information carried by other untagged
resources. In contrast to our approach submitted to the ECML/PKDD Discovery Chal-
lenge 2009 (task 2) that achieved the second place, in this paper we focus on the cold-
start problem (that did not occur in the challenge dataset).

In this paper our contributions are as follows:
1. We formally define the cold-start (in terms of new user/resource) problem in social

tagging systems.
2. To address this problem we propose and compare different semi-supervised rela-

tional methods, which exploit the structural information of untagged posts in the
post graph.

3. Finally, we show empirically that our approaches outperform the current state-of-
the-art algorithms (FolkRank and PITF, a tensor factorization model), as well as
other simpler baselines such as KNN and most popular tags in many cases.

2 Related Work

In [2] the authors compared several personalized tag recommendation algorithms, the
best results, were achieved by the FolkRank algorithm [3], an adaptation of PageRank
for retrieving information and recommending tags in social tagging systems. More re-
cently Rendle et al. [4] introduced RTF (Ranking with Tensor Factorization), a method
for learning a tensor factorization model optimized for the best personalized tag ranking.
The model also handles missing values by introducing a new interpretation of the data
and learns from pairwise ranking constraints through a gradient descent algorithm. The
prediction runtime is independent of the number of observations and only depends on the
factorization dimensions but the training time is huge. Another new factorization model
for tag recommendation PITF (Pairwise Interaction Tensor Factorization) was introduced
in [5,6], it tries to find latent interactions between users, items and tags by factorizing the
observed tagging data. Similar to [4] the model is learned by optimizing the Bayesian
Personal Ranking method with gradient decent. Although the methods discussed above
provide high quality recommendations, they are not robust against new user/resource sce-
narios. Furthermore, RTF and PITF strictly operate over ternary relations, and thereby are
not able to exploit the information of untagged posts. For item recommendation a semi-
supervised approach for cold-start problems has been recently published, the authors of
[7] have introduced the tied Boltzmann machine that captures pairwise interactions be-
tween items. To our best knowledge for cold-start problems in tag recommendation no
graph-based, semi-supervised approach has been introduced so far.

Since tagging data forms relations between users, resources and tags, it is natural
to exploit these relations by adapting relational methods to the tag recommendation
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scenario, in [1] we showed that relational classification methods perform very well on
the ECML/PKDD Discovery Challenge 2009 dataset (which did not contain new users
or resources). Originally relational methods have been applied to areas where entities
are linked in an explicit manner, like hypertext documents and scientific publications.
Especially iterative semi-supervised relational methods, which use collective inference
and exploit relational autocorrelation of class labels of related entities, received atten-
tion. One of the earliest iterative semi-supervised relational approaches was proposed
by Chakrabarti et al. [8], where a probabilistic model for classification of web pages was
introduced. In [9,10] the authors presented different semi-supervised iterative models
and showed that collective inference increases accuracy.

Here we will focus on the cold-start problem, where we expect that simple iterative
semi-supervised relational methods outperform supervised approaches, since they allow
the usage of unlabeled data, which is particularly important for cold-start scenarios.

3 Tag Recommendations

In this section we formalize the general problem of tag recommendations in social tag-
ging systems, and formalize the new user/resource problem.

3.1 Problem Formulation

Social tagging systems data usually comprises a set of users U , a set of resources R, a
set of tags T , and a set Y of ternary relations between them, i.e., Y ⊆ U × R × T . Let

X := {(u, r) ∈ U × R | ∃t ∈ T : (u, r, t) ∈ Y }
be the set of all posts in the data. Let T (x = (u, r)) := {t ∈ T | (u, r, t) ∈ Y } be
the set of all tags assigned to a given post x ∈ X . We consider train/test splits based
on posts, i.e., Xtrain, Xtest ⊂ X are disjunct and covering all of X : For training, the
learner has access to the set Xtrain of training posts and their true tags T |Xtrain . Semi-
supervised methods also could exploit the set Xtest of untagged posts, but of course not
their associated true tags. The tag recommendation task is then to predict, for a given
x ∈ Xtest, a set T̂ (x) ⊆ T of tags that are most likely to be used by the respective user
for the respective resource.

3.2 New User/Resource

An issue that remains unaddressed by the current literature on personalized tag recom-
mendations refers to the new user/resource problems. A new user u refers to the user
who posted for the first time in the system, i.e.,

|Xtest ∩ ({u} × R)| ≥ 1 and Xtrain ∩ ({u} × R) = ∅
In other words, all posts of a new user are in the test set. A new resource r, on the other
hand, refers to a resource that has never been tagged before by any other user:

Xtrain ∩ (U × {r}) = ∅
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Currently, there are no suitable purely graph-based6 approaches for providing recom-
mendations whenever these situations occur. Unpersonalized content-based approaches
are usually used in such scenarios, but since the resource’ format can vary across dif-
ferent social tagging systems one would need to develop a specific method for each
possible kind of resource.

4 Semi-supervised Relational Methods

In this section we present the types of relations we use and introduce several semi-
supervised relational methods for tag recommendation. Here we especially focus on
the new user/resource scenario.

We propose to represent folksonomy data as a homogeneous, undirected relational
graph over the post set, i.e., G := (X, E) in which edges are annotated with a weight
w : X × X → R denoting the strength of the relation. Besides making the input data
more compact – we have only a binary relation R ⊆ X × X between objects of the
same type – this representation will allow us to cast the problem of personalized tag
recommendations as a relational classification problem.

Relational classifiers usually consider, relations between objects instead of only tak-
ing into account the conventional attribute-value data of objects. A scientific paper, for
example, can be related to another paper that has been written by the same author or be-
cause they share common citations. It has been shown that relational classifiers usually
perform better than purely attribute-based classifiers [8,11,12].

In our case, we assume that posts are related to each other if they share the same
user: Ruser := {(x, x′) ∈ X × X | user(x) = user(x′)} or the same resource: Rres :=
{(x, x′) ∈ X × X | res(x) = res(x′)} as an alternative we can use both relations to-
gether, i.e, posts either share the same user or resource (see Figure 2): Rres

user := Ruser ∪
Rres. For convenience, let user(x = (u, r)) := u and res(x = (u, r)) := r denote the
user and resource of post x respectively. Iterative relational methods have been shown
to work very well because of the following three assumptions [13]: first, the first-order
Markov assumption, i.e., in the tag recommendation scenario, only the direct neigh-
borhood is necessary for accurate tag recommendations, second, the assumption of ho-
mophily, i.e., similar posts are more likely to be tagged alike and third, the assumption
of simple belief propagation, i.e., tags can be propageted to untagged posts.

We are especially interested in the situation where related posts are untagged, thus
differently from other approaches (e.g., [2,4]) that use Xtrain and T |Xtrain allowing us
to exploit the structural information of untagged posts using semi-supervised iterative
relational methods. One simple relational classification method for tag recommendation
is the WeightedAverage (WA) which sums up all weights of neighboring posts x′ ∈ Nx

that share the same tag t ∈ T and normalizes this by the sum over all weights in the
neighborhood:

P (t|x) =

∑
x′∈Nx|t∈T (x′) w(x, x′)∑

x′∈Nx
w(x, x′)

(1)

6 By graph-based we mean algorithms that do not rely on resources’ content but only on the
graph induced by the folksonomy data.
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with Nx := {x′ ∈ X | (x, x′) ∈ R} being the neighborhood. This algorithm (in the
following denoted as WA) is similar to collaborative filtering, which is based on the
k-Nearest Neighbor algorithm, the difference here is that k, does not need to be deter-
mined but is given by the number of neighbors.

But what if some of the neighboring posts are untagged, how should we handle this
situation? State-of-the-art methods just ignore untagged posts. Semi-supervised iter-
ative methods in contrast do exploit them and thus, increase classification accuracy.
One simple way of considering untagged posts is to transform WA into an iterative al-
gorithm, i.e., in the first iteration we classify test posts by only using direct neighbors
from the training set, in the second iteration, the still unclassified test posts are classified
by extracting tag information from neighbors that have been classified in the previous
iteration. The procedure stops when all the test instances are classified. This iterative
version of WA is denoted as WAOneShot since all test posts are classified only once, i.e.,
already classified posts are not re-classified in the following iteration. Note that eq. (1)
considers the tags of the neighborhood in a deterministic way i.e., probabilities are not
taken into account, so that even if the probability of a estimated tag is very low it is
considered in the same way as a high probability tag. To overcome this limitation one
can extend eq. (1) to PWA (Probabilistic Weighted Average):

P (t|x) =

∑
x′∈Nx

w(x, x′)P (t|x′)∑
x′∈Nx

w(x, x′)
(2)

Now, instead of only summing up edge weights of direct neighbors, we additionally take
into account the probability of the tags belonging to those neighbors. Combining eq. (2)
with the aforementioned iterative algorithm leads to a probabilistic semi-supervised
iterative method which makes use of the uncertainty of tag estimations in previous
iterations. This algorithm is denoted as PWAOneShot. The algorithms, WA, WAOneShot,
PWA and PWAOneShot use only the first two properties of relational methods, namely
the first-order assumption and the homophily but not the third property. Thus, for both
algorithms test posts are not re-classified even if tags of neighbors have changed, i.e.,
the information cannot be spread in the graph.

To resolve this problem relaxation labeling [8] can be used, i.e., we make use of the
third property of simple belief propagation, here the tag probability of all test posts are
re-estimated simultaneously in each iteration, i.e., the infomation spreads in the graph
which helps to increase accuracy. PWA combined with relaxation labeling is denoted
as PWA*. The algorithm for PWA* is depicted in Figure 1. There we first initialize the
untagged posts with the prior probability calculated using the training set, then we com-
pute the probability of each tag t given x iteratively using PWA. The procedure stops
when the algorithm converges (i.e., the difference of the tag probability between itera-
tion i and i + 1 is less than a very small ε) or a certain number of iterations is reached.
Note that eq. (1) and eq. (2) have been introduced in [14] and applied to relational
datasets. The weight w in eq. (1) and (2) is an important factor in the estimation of tag
probabilities, since it describes the strength of the relation between x and x′. We used
the weight schemes described in [1]. Since we want to recommend more than one tag
we need to cast the tag recommendation problem as a multilabel classification problem,
i.e., assign one or more tags to a test post. We accomplish the multilabel problem by
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(1) learn-PWA*(Xtrain, Xtest, T, ε) :
(2) P (t |x)0 := 1, P (t′ |x) := 0 for all x ∈ Xtrain, t ∈ T (x), t′ /∈ T (x)
(3) P (t |x)0 := prior(t) for all x ∈ Xtest, t ∈ T
(5) for i := 0, . . . , I do

(6) for x ∈ Xtest do

(7) for t ∈ T do

(8) P (t |x)i+1 := 1
Z

∑
x′∈Nx

w(x, x′)P (t |x′)i

(9) od

(10) od

(11) od until
√

1
|Xtest|·|T |

∑
x∈Xtest

∑
t∈T (p(t |x)i+1 − p(t |x)i)2 < ε

(12) return (P (t |x))x∈Xtest,t∈T

Fig. 1. Algorithm PWA*
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Fig. 2. Relational graph for the new user u8 and
new resource r6

sorting the calculated probabilities P (t|x) for all x ∈ Xtest and recommend the top n
tags with highest probabilities.

In terms of runtime complexity, PWA* is in O(I · (|T | ·Nx)) for prediction and O(1)
for training. I.e., the runtime is only dependent on the number of iterations, number of
tags and the size of the neighborhood.

4.1 Cold-Start Problem

Semi-Supervised relational classification is especially usefull for addressing cold-start
problems where users have untagged resources in their profiles, since, in contrast to the
current state-of-the-art, it is able toexploit the structural informationofuntaggedpostsand
to propagate this information in the post graph. In general our semi-supervised approach
is able to extract information from two sources and two relations, from the tagged posts
and untagged posts over Rres or Ruser which is very beneficial for the coldstart problem.

In figure 2 we illustrate the new user/resource problem. The gray nodes in the given
post graph represent the untagged posts, the white nodes belong to the training set. In
our example user u8 is a new user, she has several untagged posts. In order to recom-
mend tags for post (u8, r7) for example, we can make use of both information sources,
training and test set. First, through Rres with (u1, r7) from the training set and (u3, r7)
from the test set (this post is an untagged post of user u3). Second, through Ruser with
her own untagged posts (u8, r2) and (u8, r6). Thus, the system can profit from both,
the training set over the resource relation and from the untagged posts belonging to the
users own profile. For the new resource problem in contrast we cannot use Rres, but only
Ruser. In figure 2 r6 is a new resource, so if we want to recommend tags for (u8, r6) one
can exploit (u8, r2) and (u8, r7). Although (u8, r2) and (u8, r7) are initially untagged,
our methods still benefit from them, because they are connected to other posts and this
information spreads over the graph. Since our graph can be composed by two kinds of
relations at the same time, when one relation is missing (e.g., new user or resource),
there is always another relation as backup. The only scenario where this does not hold
is when all the resources uploaded by a new user are new.

5 Experiments

The main issues we want to address here is the new users/resources scenario. We con-
duct two main experiments to show that our semi-supervised methods are able to cope
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Table 1. Characteristics of 5-core BibSonomy and 10-core Last.fm

Dataset |U | |R| |T | |Y | |X| |Euser| |Eres| |Eres
user|

BibSonomy 116 361 412 10,148 2,522 64,669 9,108 73,777
Last.fm 2,917 1,853 2,045 219,702 75,565 1,088,023 4,149,862 5,237,885

with these issues. We compare several semi-supervised relational models (WAOneShot,
PWAOneShot, PWA*) with state-of-the-art methods like WA, FolkRank7, PITF (tensor
factorization model), and the most popular tags on two real-world datasets.

5.1 Datasets

In order to evaluate our approach we use two real-life datasets, BibSonomy and Last.fm8.
BibSonomy is a social tagging system that allows users to manage and annotate book-
marks and publication references simultaneously. Last.fm on the other hand, is a social
online radio station where people can upload, share and tag music/artists/albums they
like. Since these systems represent different domains and are evtl. used by different
people, we assume that our findings can also be carried over to other social tagging
systems. We follow the conventional approach of using the dense part of Y by means
of a p-core9. Similarly to [2,4], we used the 5-core for BibSonomy and the 10-core
for Last.fm. Table 1 summarizes the characteristics of the datasets we used. For conve-
nience, let |Eres|, |Euser| and |Eres

user| denote the number or edges according to the Rres,
Ruser, Rres

user relations respectively.

5.2 Experiment Setting

We analyzed two situations, one where only new users, and a second where new users
and new resources were present in the data. For the first situation (new user problem),
the test set is composed by only new users (we sampled 30% of the users in U to be in
the test set, the rest is used for training) but no new resources. For the second scenario,
i.e., new user and new resource problem, we sampled for each user a percentage of
test resources to be new. We evaluated our methods on data where 1% and 10% of
the test posts contain new resources. In reality many users have untagged resources in
their profiles but those untagged posts are usually removed from the standard datasets,
thus we simulated this situation. We use the standard LeavePostOut [2] protocol, but
additionally exploit the untagged posts, i.e., while recommending tags for one post, the
other sampled posts are used as untagged posts (their tags are removed).

We used the standard F1 measure on top-5 tag lists, similar to [5] we estimate the
optimal number of tags to be recommended (i.e., we do not always recommend 5 tags).
As in [1] we rewarded the best relation by a weight of c10. We optimized c as well as

7 Parameters d := 0.4, #iterations:=10.
8 We have used the same data snapshots as in [2,4].
9 A p-core of X is the largest subset of X where each user, resource and tag must occur in at

least p posts.
10 BibSonomy c = 2.5 for Rres, Last.fm c = 2.5 for Ruser.
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the hyperparameters for PITF on a holdout set. Moreover, we restricted the maximum
number of iterations for the PWA* algorithm to 75.

5.3 Results and Discussion

New User Problem. Figure 3 shows the results achieved with PWA*, WAOneShot,
PWAOneShot, FolkRank, PITF, WA and the most popular 11 algorithm for various num-
bers of recommendations (1-5) applied to BibSonomy. All users in the test set are new
but all resources are known in the system already. This is reflected in the results, the
difference among the results is small, PWAOneShot, WAOneShot and WA perform very
similar. WA performs well since every test post is connected to at least one training
post, thus recommendation of tags is possible for each test post. But even in this situa-
tion where there are more connections between test and training set, PWA* outperforms
the other algorithms, i.e., can still profit from label propagation and initialization of test
posts. The situation changes for Last.fm (see Figure 4). Here both FolkRank and PITF
outperform all other methods. PWA* performs best among the semi-supervised meth-
ods, but seems not to profit so much from label propagation and initialization of test
posts. PWAOneShot, WAOneShot and WA achieve again very similar results. The rea-
son lies in the nature of this dataset, here the user relation contains the more valuable
information, the same phenomena was observed in [2]. So, in this case, proposing tags
that the user already used in the past instead of tags other users attached to the resource,
may provide a better chance to suggest the tags the user finally chose. Since, the most
valuable tag information is contained in Ruser, but all the users in the test set are new
andRres yields low quality recommendations, unpromising labels are propagated, hence
leading to poor results. FolkRank and PITF on the other hand, does not suffer from ill
propagated labels and moreover, FolkRank can explore other users, resources and tags
that are only indirectly connected to the test posts, which in this dataset at least, seems
to yield a great benefit.
New User/Resource. Figure 5 shows the results for the second scenario on the Bib-
Sonomy dataset, where both the new user and new resource problem occurs. In general
one can see that as the number of new resources increases the results deteriorate, but in
both cases (1% and 10% of new resources) the semi-supervised relational methods out-
perform the state-of-the-art methods, while PWA* achieves the best result. As expected
WA does not perform very well since some test posts are only connected to other test
posts, so that in some cases it cannot recommend any tags. The reason why PWA* per-
forms particularly good in this dataset, is because here the Rres relation already contains
usefull tag assignments, and since this relation is the only training information avail-
able, it leads to the propagation of promising labels. Folkrank performs similar to WA
and WAOneShot but is slightly outperformed by PITF. Again, for Last.fm (see figure 6)
things are a little different. For both situations (1% and 10% of the resources are new),
PWA* still achieves the best result. In the 1% case PWAOneShot too, achieves better re-
sults than the state-of-the-art. PWA* and PWAOneShot perform better because they use
probabilities, which is not the case for WAOneShot. WA performs poorly, since, for many

11 This baseline refers to the most popular tags of the folksonomy, i.e., it recommends, for any
user u ∈ U and any resource r ∈ R, the same set: T̂ (u, r) := argmaxn

t∈T (|Yt|).
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test posts no tags can be recommended since many test instances are only connected to
test posts. FolkRank and PITF on the other hand, do not maintain the same performance
achieved on the new user problem. This happens because the number of connected tag
assignments to the test posts decreases proportionally to the number of new resources
inside the posts of a new user, thus making it difficult to compute a good set of tags. In
this particular situation, the simple most popular method performs surprisingly good,
showing that in special cold-start cases, like this, it is a good alternative.

In general the re-estimation and propagation of labels in the post graph as well as
the initialization of test posts seems to be the main reason for the good results of PWA*
(since PWA* performed better than PWAOneShot). Furthermore, we see that the new
user problem is easier to handle than situations where both new users and new resources
occur, since the graph is less sparse, and therefore supervised methods work almost as
well (or better) as semi-supervised methods.

6 Conclusions and Future Work

In this paper we have introduced an approach for tag recommendations that is par-
ticularly suitable for the cold-start problem. Our model is based on semi-supervised
relational classification, that allows to exploit the structural information of untagged
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posts. We evaluated our approach against state-of-the-art methods in two real world
datasets. We showed that semi-supervised relational methods which are based on label
propagation are achieving very good results. In some special cases though, where the
available training relations are of low quality, unpromising labels can be propagated
thus deteriorating the results. In future work we want to investigate automatic ways
of detecting more informative relations as well as other semi-supervised methods and
new kinds of relations between the posts (e.g. content-based) for further improvement
of cold-start related issues.
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Abstract. This paper addresses listwise approaches in learning to rank

for Information Retrieval(IR). The listwise losses are built on the prob-

ability of ranking a document highest among the documents set. The

probability treats all the documents equally. However, the documents

with higher ranks should be emphasized in IR where the ranking order

on the top of the ranked list is crucial. In this paper, we establish a frame-

work for cost-sensitive listwise approaches. The framework redefines the

probability by imposing weights for the documents. The framework re-

duces the task of weighting the documents to the task of weighting the

document pairs. The weights of the document pairs are computed based

on Normalized Discounted Cumulative Gain(NDCG). It is proven that

the losses of cost-sensitive listwise approaches are the upper bound of

the NDCG loss. As an example, we propose a cost-sensitive ListMLE

method. Empirical results shows the advantage of the proposed method.

1 Introduction

Learning to rank is a popular research area due to its widespread applications.
This paper focuses on document retrieval. When learning to rank has been ap-
plied to document retrieval, it aims to learn a real-valued ranking function that
induces a ranking order over the documents set of a query.

The existing ranking approaches can be summarized into three categories:
pointwise, pairwise and listwise. The pointwise and pairwise methods[1,2] trans-
form ranking problem into regression or classification problem. The listwise
approaches[3,4,5] minimize the loss functions defined between the ranked list
and the ground truth list. Theoretical analysis about the properties of the list-
wise loss functions are also conducted. Fen Xia[3] studied the consistency and
soundness of the listwise loss functions, and Yanyan Lan[6] investigated the gen-
eralization bound of the listwise loss functions based on Rademacher Averages.

Many listwise algorithms are developed, but no research is conducted to elab-
orate the common characteristic of the listwise loss functions. What is more,
the listwise losses are inadequate for IR where the high performance of the top
documents in the ranked list is preferred, measure by NDCG. In this paper, we
propose a framework for cost-sensitive listwise approaches. The cost-sensitive
� Corresponding author.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 358–366, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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listwise loss functions are constructed based on the documents with weights.
The framework reduces the task of setting weights for the documents to the task
of setting weights for the document pairs. The weights of the document pairs
are computed based on the NDCG. As an example, we develop a cost-sensitive
ListMLE algorithm. Experimental results show that the proposed method out-
performs ListMLE[3], RankCosine[5], AdaRank[7] and Ranking SVM[2].

2 Normalized Discount Cumulative Gain (NDCG)

NDCG[8] evaluates the performance of the top documents in the ranked list.
Suppose n candidate documents are retrieved for a query. Each candidate docu-
ment di is represented as a pair (xi, yi), where xi denotes the query-document
pair feature vector and yi is the relevance level. The NDCG@k is defined as:

NDCG@k =
DCGπ@k

DCGg@k
=

n∑
j=1

2yj − 1
log2 (1 + π(j))

I[π(j) ≤ k]

n∑
j=1

2yj − 1
log2 (1 + g(j))

I[g(j) ≤ k]

(1)

where k denotes the truncation level. π is the ranked list generated by a ranking
function. g denotes the ground truth list obtained in the document relevance
level descending order. g(j) and π(j) denote the ground truth ranking position
and the ranked position of the document dj respectively. I[x] yields one if x is
true and zero otherwise. Assume that the ranking function is f , then the ranked
position π(j) is computed from:

π(j) = 1 +
n∑

i=1

I[f(xi) > f(xj)] (2)

where f(xi) denotes the rank score of the document di. If there are many doc-
uments sharing the same relevance level with the document dj , it is impossible
to state the definite value of g(j). So the approximate value ĝ(j) is given.

ĝ(j) = 1 +
n∑

i=1

I[yi > yj] (3)

It is obvious that ĝ(j) ≤ g(j) for each j , which implies the inequality.

DCGg@k ≤ DCGĝ@k (4)

Then the NDCG@k loss, abbreviated Lndcg@k, has a upper bound.

Lndcg@k = 1 − NDCG@k ≤ 1
DCGĝ@k

(DCGĝ@k − DCGπ@k) (5)
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3 Listwise Approach

3.1 Existing Listwise Loss Function

The listwise approaches take documents lists as an instance, and minimize the
loss functions defined between the ranked list and the ground truth list. Typical
methods include ListNet[4], RankCosine[5] and ListMLE[3]. We review their loss
functions. For the sake of describing simply, the documents have been ranked by
the relevance level in descending order, i.e., y1 � y2 . . . � yn.

RankCosine L =
1
2

⎛
⎝1 −

∑n
j=1 φ(yj)φ(f(xj))√∑n

j=1 φ(yj)
2
√∑n

j=1 φ(f(xj))
2

⎞
⎠

ListMLE L = − log
n∏

i=1

exp (φ(f(xi)))∑n
j=i exp (φ(f(xj)))

ListNet L = −
∑
π∈Y

n∏
i=1

φ
(
ψy(xπ(ti)

)
∑n

j=i φ
(
ψy(xπ(tj))

) log
n∏

i=1

φ
(
f(xπ(ti)

)
∑n

j=i φ
(
f(xπ(tj))

)
where φ is a positive and strictly increasing function. f(xi) is the rank score of
the document di computed by the ranking function f . ψy is a mapping function
defined on the relevance level and preserves ground truth list, i.e., ψy(y1) ≥
ψy(y2) . . . ψy(yn). xπ(ti) denotes the query-document pair feature vector of the
document with ranked position being at i.

3.2 Analysis of Listwise Loss Function

Several listwise approaches are developed, but no analysis is studied to elaborate
the common characteristic of the listwise loss functions. In this study, we point
out that the listwise loss functions are in essence built upon the probability of
ranking a document highest among the documents set, defined as

h(xi|x1, x2, . . . , xn; ψ) =
exp (ψ(f(xi)))∑n

j=1 exp (ψ(f(xj)))
(6)

where ψ denotes an increasing function. The existing listwise loss functions can
be expressed in terms of the function h.

RankCosine L =
1

2

⎛
⎝1 −

n∑
j=1

φ(yj)√∑n
i=1 φ(yi)

2
·
√

h (xj |x1, x2, . . . , xn ; 2 log φ)

⎞
⎠

ListMLE L = − log

n∏
i=1

h(xi |xi , xi+1, . . . , xn ; φ)

ListNet L =−
∑
π∈Y

n∏
i=1

φ
(
ψy(xπ(ti)

)
∑n

j=i φ
(
ψy(xπ(tj))

) log n∏
i=1

h(xπ(ti)|xπ(ti+1). . . ,xπ(tn); φ)
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To minimize the listwise loss function is equivalent to minimizing the function
h. The reason for the goodness of these loss functions is that h is closely re-
lated to the pairwise classification error. The conclusion is simply proved in the
following.

1

n − i

n∑
j=i+1

I [φ(f(xj)) > φ(f(xi))] ≤ 1

n − i

n∑
j=i+1

log2 [1 + exp (φ(f(xj )) − φ(f(xi)))]

≤ log2

(
1 +

1

n − i

n∑
j=i+1

exp(φ(f(xj)) − φ(f(xi)))

)
≤ −log2 h(xi |xi , xi+1, . . . , xn ; φ)

The I[φ(f(xj) > φ(f(xi)] is the pairwise classification error because of yi � yj .
The above inequalities can be verified with I[z > 0] ≤ log2 (1 + exp(z)) and
1
n

∑n
j=1 log2 (zj) ≤ log2 (

∑n
j=1 zj/n) when each zj is nonnegative. The [1] shows

that the pairwise classification error is inadequate for IR where the ranking
order on the top of the ranked list is crucial. Hence, the listwise losses are also
inadequate for IR since their key component h is closely related to the pairwise
classification error.

4 Cost-Sensitive Listwise Approach Framework

4.1 Cost-Sensitive Listwise Loss Function

To make the listwise losses focus on the ranking order on the top of the ranked
list, a good way is to take account of cost-sensitive in the listwise losses, more
precisely, to set different weights for the documents. The function h is redefined
by imposing weights for the documents:

h(xi|x1, x2, . . . , xn; ψ, αi) =
αi,i exp (ψ(f(xi)))∑n

j=1 αi,j exp (ψ(f(xj)))
(7)

where αi = (αi,1, . . . , αi,n) and its components are nonnegative. αi,j is the
weight of the document dj . The function h can be also expressed as in the form
based on the document pairs with weights.

h(xi|x1, x2, . . . , xn; ψ, αi) =
1∑n

j=1 αi,j/αi,i exp (ψ(f(xj)) − ψ(f(xi)))
(8)

where αi,j/αi,i is the weight of the document pair (di,dj). The cost-sensitive
listwise approaches focus on the performance of the top documents in the ranked
list, measured by NDCG. Therefore, one important issue is to relate the weights
of the documents with the NDCG. We formulate the problem of setting weights
for the documents into the problem of setting weights for the document pairs.
In this study, the weights of the document pairs are theoretically given.
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4.2 Bound NDCG Errors by Cost-Sensitive Listwise Loss Function

In this section, it is proven that the cost-sensitive listwise losses are the upper
bound of NDCG loss. The theorem states definite values of the document pairs’
weights. Theoretical proof is based on the lemma 1. For notational simplicity,
let a(i) = 2yi − 1, b(j) and its gradient ∇b(j) are defined as:

b(j) =
{

1/log2 (1 + j) j ≤ k
1/log2 (1 + k) j > k

∇b(j) =

⎧⎨
⎩

− log 2
(1 + j) [log (1 + j)]2

j ≤ k

0 j > k
(9)

It is simple to prove that the NDCG@k loss Lndcg@k has the following upper
bound on the basis of equation (5). Due to space limitation, we omit the proof.

Lndcg@k ≤ 1
DCGĝ@k

(
n∑

i=1

a(i) (b(ĝ(i)) − b(π(i)))

)
+

1
DCGĝ@k

n∑
i=1

a(i)
log2 (1 + k)

Lemma 1. The NDCG@k loss Lndcg@k is upper bounded by weighted pairwise
classification loss.

Lndcg@k ≤ 1
DCGĝ@k

∑
yj�yi

[−a(j)∇b(ĝ(j)) − a(i)∇b(ĝ(i))]I [f(xj) < f(xi)]+C2

where C2 denotes a constant. The proof is given in the Appendix A. For each
query in the training set, the ranking position ĝ(j) of the document dj is easily
computed. Therefore, the weights of the document pairs of each query can be
calculated at once in training. Based on the lemma, we can justify the correlation
between cost-sensitive listwise loss and NDCG@k loss1.

Theorem 1. The cost-sensitive listwise loss is the upper bound of NDCG loss
Lndcg@k.

Lndcg@k ≤ − 1
DCGĝ@k

n∑
j=1

βj log2 h(xj |xj+1, xj+2, . . . , xn; ψ, αj) + C2 (10)

C2 denotes a constant that is same to the constant in the lemma 1. Based on
lemma 1, the above inequality is easily verified with I[z > 0] ≤ log2 (1 + exp(z))
and

∑n
j=1 wj log2(zj) ≤

(∑n
j=1 wj

)
·
(
log2 (

∑n
j=1 wjzj/

∑n
t=1 wt)

)
when each

zj and wj are nonnegative. The theorem demonstrates that many cost-sensitive
listwise approaches can be proposed to directly optimize NDCG. For example, we
can transform the existing listwise approaches to cost-sensitive listwise methods.
Meanwhile, the theorem states definite values for all the weights βj and αj .

4.3 Differences from Cost-Sensitive Ranking SVM

The cost-sensitive Ranking SVM[1] and the framework for cost-sensitive listwise
approaches both make use of cost-sensitive learning in learning to rank, but there
are several differences between them.
1 In this paper, we use NDCG loss and NDCG@k ranking loss exchangeably.
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First, the training instance assigned weights is different. The cost-sensitive
Ranking SVM weights on the document pairs. The framework credits the weights
for the documents. To solve the problem of setting weights for the documents,
the framework reduces it into the task of setting weights for document pairs.

Second, the way to calculate the weights of the document pairs is different.
The cost-sensitive Ranking SVM sets the weights by the heuristic method. The
framework directly computes the weights based on NDCG@k.

Third, the relationship between the loss functions and NDCG loss is also differ-
ent. The cost-sensitive Ranking SVM do not solve the problem. The framework
proves that the listwise losses are the upper bound of the NDCG loss.

4.4 A Case: Cost-Sensitive ListMLE Ranking Approach

To verify the framework, we propose a novel cost-sensitive approach named CS-
ListMLE(cost-sensitive ListMLE). The loss function on a query is defined as:

L =
1

DCGĝ@k

n∑
j=1

βj log2

⎛
⎝1 +

n∑
t=j+1,yj�yt

αj,t exp (f(xt) − f(xj))

⎞
⎠ (11)

The weights are computed according to Theorem 1. The ranking function of CS-
ListMLE is linear, i.e., f(x) =< w, x >, where < ·, · > is the inner product and
w denotes model parameters. We takes gradient descent method to optimize the
loss function. Since the loss function is convex, the model parameters converge
to a global optimal solution. The algorithm is provided in Figure 1.

Input: training set, learning rate η, tolerance rate ε, NDCG@k

Initialize: w and compute the weights with respect to each query using Eq. (10)

Repeat: do gradient descent until the change of the loss function is below ε
Return w

Fig. 1. Cost-sensitive ListMLE Ranking Approach

5 Experiments

The experiments are conducted on three datasets OHSUMED, TD2003 and
TD2004 in Letor2.02. The experiments validate the two points. The one is that
whether CS-ListMLE outperforms the ListMLE. The other is that whether CS-
ListMLE can obtains higher performance than the other baselines on the top
documents of the ranked list. MAP and NDCG@k(N@k) are used as evaluation
measures. The truncation level k in NDCG@k is usually 1, 3, 5 and 10. The
performances of ListMLE and RankCosine are directly taken from [9], where
both approaches do not provide their performance at NDCG@5 and MAP.
2 https://research.microsoft.com/en-us/um/beijing/projects/letor/Letor2.0

/dataset.aspx

https://research.microsoft.com/en-us/um/beijing/projects/letor/Letor2.0/dataset.aspx
https://research.microsoft.com/en-us/um/beijing/projects/letor/Letor2.0/dataset.aspx
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To validate the effectiveness of CS-ListMLE, we train the algorithm with dif-
ferent parameters. CS-ListMLE@k claims that cost-sensitive ListMLE focuses on
the top k documents rank order in the ranked list. It means that CS-ListMLE@k
directly optimizes NDCG@k. In the experiments, the k takes 1, 3, 5 and 10.

5.1 Ranking Accuracy of ListMLE and Cost-Sensitive ListMLE

We report the performance of cost-sensitive ListMLE and ListMLE on three
datasets in Table 1, 2 and 3. The cost-sensitive ListMLE significantly outper-
forms ListMLE on the datasets TD2003 and TD2004 in terms of all evaluation
measures, while their performance is comparable on OHSUMED.

Table 1. Ranking accuracies on OS-

HUMED

Methods N@1 N@3 N@5 N@10 MAP

ListMLE 0.548 0.473 —– 0.446 —–

CS-ListMLE@1 0.555 0.482 0.464 0.446 0.442

CS-ListMLE@3 0.539 0.480 0.458 0.446 0.444

CS-ListMLE@5 0.548 0.468 0.453 0.438 0.443

CS-ListMLE@10 0.536 0.471 0.452 0.439 0.443

Table 2. Ranking accuracies on TD2003

Methods N@1 N@3 N@5 N@10 MAP

ListMLE 0.24 0.253 —– 0.261 —–

CS-ListMLE@1 0.48 0.400 0.362 0.359 0.262

CS-ListMLE@3 0.48 0.400 0.364 0.358 0.253

CS-ListMLE@5 0.48 0.391 0.358 0.355 0.264

CS-ListMLE@10 0.48 0.398 0.362 0.350 0.262

Table 3. Ranking accuracies on TD2004

Methods N@1 N@3 N@5 N@10 MAP

ListMLE 0.4 0.351 —– 0.356 —–

CS-ListMLE@1 0.467 0.427 0.422 0.444 0.364

CS-ListMLE@3 0.467 0.429 0.419 0.449 0.366

CS-ListMLE@5 0.467 0.420 0.407 0.444 0.366

CS-ListMLE@10 0.453 0.409 0.406 0.445 0.364

Table 4. Test Results on OSHUMED

Methods N@1 N@3 N@5 N@10 MAP

ListNet 0.523 0.478 0.466 0.449 0.450
RankCosine 0.523 0.475 —– 0.437 —–

AdaRank 0.514 0.462 0.442 0.437 0.442

RSVM 0.495 0.465 0.458 0.441 0.447

CS-ListMLE@1 0.555 0.482 0.464 0.446 0.442

Table 5. Test Results on TD2003

Methods N@1 N@3 N@5 N@10 MAP

ListNet 0.46 0.408 0.382 0.374 0.273
RankCosine 0.36 0.346 —– 0.322 —–

AdaRank 0.42 0.291 0.242 0.194 0.137

RSVM 0.42 0.379 0.347 0.341 0.256

CS-ListMLE@1 0.48 0.400 0.362 0.359 0.262

Table 6. Test Results on TD2004

Methods N@1 N@3 N@5 N@10 MAP

ListNet 0.440 0.437 0.420 0.458 0.372
RankCosine 0.439 0.397 —– 0.405 —–

AdaRank 0.413 0.402 0.393 0.406 0.331

RSVM 0.44 0.410 0.393 0.420 0.350

CS-ListMLE@1 0.467 0.427 0.422 0.444 0.364

We explain why CS-ListMLE remarkably outperforms ListMLE on datasets
TD2003 and TD2004. On one hand, each query in datasets TD2003 and TD2004
has 1000 documents. The ratio of the queries containing at most 15 relevant doc-
uments in all queries is 95% and 89.3% respectively. Since ListMLE considers
all the document pairs, 95% and 89.3% queries loss functions of ListMLE in-
duces the losses caused by 484620 irrelevant document pairs. As is well known,
the NDCG loss is not sensitive to the losses generated by the irrelevant document
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pairs. Thus, ListMLE introduces a large deviation from the NDCG loss. How-
ever, CS-ListMLE only cares about the document pairs composed of relevant
documents and irrelevant documents. On the other hand, ListMLE treats the all
documents equally. But CS-ListMLE assigns the weights for the document based
on NDCG@k. In summary, the loss of CS-ListMLE is more close to NDCG@k
loss than ListMLE on datasets TD2003 and TD2004.

As far as dataset OHSUMED, 81.1% queries have less than 200 documents,
while 85.89% queries contain at least 10% relevant documents. Under such situ-
ation, the weights of the documents does not affect much in CS-ListMLE. The
loss of CS-ListMLE is approximate to the loss of ListMLE.

5.2 Comparison with the Other Baselines

We take CS-ListMLE@1 as an example to compare the performance with the
other baselines, including RankCosine[5], ListNet[4], RSVM[2] and AdaRank[7].
Experimental results are presented in Table 4, 5 and 6. CS-ListMLE almost out-
performs RankCosine, AdaRank and Ranking SVM on three datasets at all eval-
uation measures. Compared to ListNet, CS-ListMLE obtains higher performance
at NDCG@1. We conduct t-test on the improvement of CS-ListMLE over List-
Net, Ranking SVM and AdaRank on the three datasets in terms of NDCG@1.
The results indicate that the improvement of NDCG@1 over Ranking SVM and
AdaRank on dataset OHSUMED is statistically significant(p-value<0.05). There
is no statistically significant difference on dataset TD2003 in spite of rising 6%
over AdaRank and Ranking SVM.

Experiments results demonstrate that the CS-ListMLE can achieve high per-
formance on NDCG@1, which meets the goal that the CS-ListMLE focuses on
the top one documents ranking order of the ranked list. Meanwhile, the cost-
sensitive ListMLE obtains comparable performance to the baselines at MAP.

6 Conclusion

In this paper, we point out that the existing listwise losses are inadequate IR
where the documents with higher ranks should be emphasized. To address the
issue, we propose a framework for cost-sensitive listwise approaches. The frame-
work credits weights for the documents. The framework reduces the problem
of setting weights for the documents to the problem of setting weights for the
document pairs. The weights of the document pairs are computed based on the
NDCG. It is proven that the cost-sensitive listwise loss is the upper bound of
NDCG loss. As an example, we develop a cost-sensitive ListMLE approach. Ex-
perimental results show that the cost-sensitive ListMLE outperforms ListMLE
on two benchmark datasets in terms of all evaluation measures. In addition, the
cost-sensitive ListMLE almost outperforms the baselines, such as RankCosine,
AdaRank and Ranking SVM, on the three datasets at all evaluation measures.
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A Theoretical Justification of Lemma 1

Lndcg@k ≤
1

DCGĝ@k

(
n∑

i=1

a(i) (b(ĝ(i)) − b(π(i)))

)
+

1
DCGĝ@k

n∑
i=1

a(i)
log2 (1 + k)

C1 =
1

DCGĝ@k

n∑
i=1

a(i)
log2 (1 + k)

C2 = C1 +
1

DCGĝ@k

∑
yj=yi

[−a(j)∇b(ĝ(j)) − a(i)∇b(ĝ(i))]

∵ b is convex function ⇐⇒ b(x) − b(y) ≤ ∇b(x)(x − y)

≤
1

DCGĝ@k

n∑
j=1

a(j) · ∇b(ĝ(j)) · (ĝ(j) − π(j)) + C1

=
1

DCGĝ@k

n∑
j=1

a(j) · (−∇b(ĝ(j))) ·

{(
1 +

n∑
i=1

I[f(xi) > f(xj)]

)
−

(
1 +

n∑
i=1

I[yi > yj ]

)}
+ C1

∵ I[x > 0] − I[y > 0] ≤ I[xy < 0] + I[y = 0]

≤
1

DCGĝ@k

∑
yj�yi

[−a(j)∇b(ĝ(j)) − a(i)∇b(ĝ(i))] I[f(xj) < f(xi)] + C2



Mining Wikipedia and Yahoo! Answers

for Question Expansion in Opinion QA

Yajie Miao and Chunping Li

Tsinghua National Laboratory for Information Science and Technology (TNList)

School of Software, Tsinghua University,

Beijing 100084, China

yajiemiao@gmail.com, cli@tsinghua.edu.cn

Abstract. Opinion Question Answering (Opinion QA) is still a rela-

tively new area in QA research. The achieved methods focus on combin-

ing sentiment analysis with the traditional Question Answering methods.

Few attempts have been made to expand opinion questions with external

background information. In this paper, we introduce the broad-mining
and deep-mining strategies. Based on these two strategies, we propose

four methods to exploit Wikipedia and Yahoo! Answers for enriching rep-

resentation of questions in Opinion QA. The experimental results show

that the proposed expansion methods perform effectively for improving

existing Opinion QA models.

Keywords: Opinion QA, Question Expansion, Wikipedia, Yahoo!

Answers.

1 Introduction

Question Answering (QA), which aims to retrieve answers to human-generated
questions automatically, is an important research area in text mining and infor-
mation retrieval. Many of the methods in this area have been proposed mostly for
the task of answering fact-based questions, e.g., “When was the Kyoto Protocol
adopted?”. However, in many cases, users are more interested in the opinions to-
wards specific events or objects. Questions querying about opinions or attitudes
are defined as opinion questions, e.g.,“How do the Chinese regard the human
rights record of the United States?”.

The existing methods for Opinion QA focus on utilizing sentimental infor-
mation to obtain desirable results. However, a key problem for Opinion QA is
that the information needs expressed by an opinion question is much more com-
plicated than a fact-based question. The lexical elements (i.e., words) in the
opinion questions are usually unable to express such needs completely. One way
to address this problem is to enrich the representation of an opinion question
with information from some external knowledge repositories.

In this paper, we exploit Wikipedia and Yahoo! Answers to expand the ques-
tions in Opinion QA. We adopt two mining strategies, i.e., broad-mining and

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 367–374, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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deep-mining in both Wikipedia and Yahoo! Answers, and propose four expand-
ing methods: Wiki-broad, Wiki-deep, Yahoo-broad and Yahoo-deep. Experiments
show that all of these four methods boost the performance of the state-of-the-
art Opinion PageRank [4] model. Also, we observe that Wiki-deep is the most
effective method for question expansion in Opinion QA.

The rest of the paper is organized as follows. Section 2 reviews previous work.
Section 3 formulates the proposed expansion methods. In Section 4, we present
and discuss the experimental results. We have the concluding remarks and future
work in Section 5.

2 Previous Work

Opinion QA is still a new area in QA research. Stoyanov et al. [1] trained a sub-
jectiveness classifier which filters out the objective sentences from the answer
candidates and therefore improves the quality of the answers to opinion ques-
tions. Kim et al. [2] proposed that the opinion holders in the opinion question
and its answers should be the same. Based on this, they improved the perfor-
mance of Opinion QA by identifying opinion holders in the sentences. In the
TAC 2008 Opinion QA track [3], most participants found answers to opinion
questions through combining linearly the topic and opinion weights of answer
candidates. Li et al. [4] proposed the Opinion PageRank and Opinion HITS mod-
els for answering opinion questions. In both models, the topical relevance and
sentimental information are combined in a unified graph-based framework.

There has been a growing amount of research on employing Wikipedia to
enhancing traditional text mining tasks. Gabrilovich et al. [5] proposed a method
to improve text classification through enriching document representation with
Wikipedia concepts. Banerjee et al. [6] proposed to improve clustering of short
texts by using Wikipedia concepts as additional features. Hu et al. [10] proposed
two mapping strategies for enriching document representation with Wikipedia
concept and category information. The enriched documents are used for the task
of text clustering.

Wikipedia and Yahoo! Answers have also been applied for Question Answer-
ing. Ye et al. [7] proposed to summarize a series of definitions from Wikipedia,
which serve as answers to definition questions. Wang et al. [8] proposed an ana-
logical reasoning approach for measuring the linkage between questions and their
answers. Through exploiting the previous Yahoo! Answers data, their approach
can build links between a new question-answer pair. Wang et al. [9] proposed a
syntactic tree matching method for retrieving similar questions from Yahoo! An-
swers when given a new question. However, these works have made no attempts
to use Wikipedia or Yahoo! Answers for question expansion.

3 Question Expansion

In this section, we first formulate a method for generating topic words for opinion
questions. Then, we present our methods for question expansion.



Mining Wikipedia and Yahoo! Answers for Opinion Question Expansion 369

3.1 Topic Word Generation

Wikipedia and Yahoo! Answers can receive queries from users and return a
list of relevant (Wiki) articles or (Yahoo) questions. However, their retrieval
modules are design for the query which consists of several keywords. If the query
is sentences in natural language, Wikipedia and Yahoo! Answers are quite likely
to return no relevant results. Therefore, the opinion questions should not be
submitted to Wikipedia and Yahoo! Answers directly. To address this problem,
we first generate topic words for the questions and use these topic words as
the query.

Usually several questions can be about the same topic, though they are per-
taining to various aspects. For a topic T , there are n questions which make up
the question set QT = {q1, q2, ..., qn}. All the words in the n questions are ranked
according to their frequencies of appearing in QT . The top K non-stop words are
chosen as the topic words for T . For instance, in the MPQA dataset [1], there
are totally 4 questions under the topic “kyoto”. With the above procedures, we
can get topic words such as “Kyoto”, “US”, “Protocol”, etc.

3.2 Expansion with Wikipedia

Wikipedia is a huge document corpus which contains more than three millions
articles. In addition, Wikipedia undergoes constant development, so its breadth
and depth steadily increase over time. The topic words generated in Section
3.1 are combined into the Wikipedia query. After searching in its database,
Wikipedia returns relevant Wiki articles, which are ranked according to their
relevance to the query.
Wiki-broad. We adopt a broad-mining strategy for exploring the ranking list.
The M most relevant articles are selected out as the Wikipedia article set WA.
In Wikipedia, each article has a title which summarizes the most essential ideas.
From WA, we only extract the titles to form the title set WT . Also, the redirect
titles in WA, which show explicitly the articles which redirect to the ones in
WA, are also included in WT . All the non-stop words in WT are extracted to
form the title word set TW . If a word appears more than once in TW , it is
considered to be a single word (rather than multiple words). Then the set TW
is viewed as the expansion set for the questions.
Wiki-deep. In addition to text contents, Wikipedia also constructs links be-
tween articles. These links provide valuable information about the relation be-
tween concepts1. If there is a link from the article p1 to the article p2, we can
conclude that p2 presents relevant information about the concept of p1. There-
fore, p2 can be further exploited to extend the contents of p1. This is the basic
idea for our Wiki-deep method. In Wiki-broad, the top M articles are selected
from the retrieval results. However, in Wiki-deep, we only focus on the first ar-
ticle which is also the most relevant one. The first paragraph of a Wiki article

1 In Wikipedia research, the title of a Wikipedia article is usually referred to as a

concept.
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Fig. 1. An example of Wiki-deep

usually serves to summarize the definition of the concept or the main points
of the article. All the Wiki articles, which the links in the first paragraph of
the most-relevant article point to, are selected to form the link article set LA.
Then, all the non-stop words in the titles of the articles in LA and in the title
of the most-relevant article are extracted to form a word set. Duplicate words
are considered to be a single word. This set is used as the expansion set for the
questions. Figure 1 gives the process of Wiki-deep for the questions whose topic
words are “Kyoto”, “US” and “Protocol” (see Section 3.1).

3.3 Expansion with Yahoo! Answers

Besides Wikipedia, we also use Yahoo! Answers as external knowledge for ques-
tion expansion. The topic words generated in Section 3.1 are combined into the
query which is submitted to Yahoo! Answers. With the APIs provided by Ya-
hoo! Developer Network2, we get a list of Yahoo questions which are also ranked
according to their relevance to the query. For each question, Yahoo! Answers
returns various forms of information, e.g., subject (a brief statement of the ques-
tion), content (a more detailed statement of the question), chosen-answer (the
best answer chosen by users), etc.
Yahoo-broad. The broad-mining strategy is adopted for expanding questions
with the retrieved Yahoo questions. The N most relevant questions in the ranking
list are selected and their subjects form the set Y S. We only use the subjects in
order to cover more Yahoo questions. Then, all the non-stop words in Y S are
used as the expansion set for the opinion questions. Similarly, duplicate words
are considered to be a single one.
Yahoo-deep. Also, we propose the Yahoo-deep method to mine the retrieved
Yahoo questions. In this method, we only focus on the most relevant ques-
tion retrieved from Yahoo! Answers, e.g., “Why dont the US government rat-
ify Kyoto protocol?” in Fig. 2. The subject, content and chosen-answer of this
2 http://developer.yahoo.com/answers/
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Fig. 2. An example of Yahoo-deep

most-relevant question are concatenated together as the expansion of this ques-
tion. All the non-stop words in the concatenation are extracted to form the ex-
pansion set for the opinion questions. In this method, by exploiting more details
about the most-relevant Yahoo question, we mine the Yahoo! Answers archive
at the deeper level. Figure 2 shows an example for the process of Yahoo-deep.

With each of the above methods, we get the expansion set for the opinion
questions. Note that the questions under one topic have the same expansion set.

4 Experiments

4.1 Experimental Setup

In [4], the experimental results show that the Opinion PageRank model outper-
forms all the systems in TAC 2008. Therefore, Opinion PageRank is currently
one of the most effective methods for Opinion QA. In our experiments, we use
Opinion PageRank as the Opinion QA method.

The MPQA dataset [1] is used as the benchmark in this study. MPQA contains
15 opinion questions and has been widely used in Opinion QA research. We
adopt the evaluation metrics used in the TAC Opinion QA track [3]. For each
opinion question in MPQA, annotators have given a list of answer segments. Each
segment is assigned a confidence value which shows its relative importance. The
Recall of the answers is calculated as Recall = r/R, where r is the sum of the
confidence of segments in the answers, and R is the sum of the confidence of
segments for the question. The Precision of the answers is calculated as

Precision = 1 − ((l − A) /l) . (1)

where l is the number of non-whitespace characters in the answers, A is the
allowance of the answers, and A = 100 ∗ a (a is the number of segments in the
answers). The final F-score is calculated with the TAC official value β=3 [3],
which means Recall is three times as important as Precision.



372 Y. Miao and C. Li

F − score =
(
β2 + 1

) ∗ Recall ∗ Precision/
(
β2 ∗ Precision + Recall

)
β = 3.

(2)
The overall Recall, Precision and F-score are the average of their corresponding
values over the 15 questions.

4.2 Performance Evaluation

We expand each opinion question in MPQA with Wiki-broad, Wiki-deep, Yahoo-
broad and Yahoo-deep respectively. For each method, the expanded questions
are “answered” by Opinion PageRank and the retrieved answers are evaluated.
We take the no-expansion method, in which the original questions are inputted
into Opinion PageRank without any expansion, as our baseline.

The parameters are set in the following way. The parameter K, which denotes
the number of selected topic words, is set to 3. The parameters M (Wiki-broad)
and N (Yahoo-broad) are both set to 10. Figure 3 gives the results for the var-
ious methods. In the figure, we can see that all of the four expansion methods
outperform the no-expansion method which adopts no question expansion op-
erations. When using the Wiki-deep method, Opinion PageRank performs best
(F-score: 0.1872) and achieves around 12.5% improvements over no-expansion.
This demonstrates that our methods indeed take effects in improving the per-
formance of Opinion Question Answering. Also, we notice from the figure that
Wiki-deep is the most effective expansion method when considering F-score.
From Section 3.2, we know that when using Wiki-deep, we put more emphasis
on links between articles than textual contents. These links are able to represent
the relation between concepts at the semantic level. Therefore, a question ex-
panded by Wiki-deep can embody the information needs of the original question
more accurately and comprehensively.

Another observation from Fig. 3 is that expansion with Wikipedia (Wiki-broad
and Wiki-deep) obtains higher F-score than expansion with Yahoo! Answers
(Yahoo-broad and Yahoo-deep). This is partly because the contents in Yahoo! An-
swers are generated by users in a free way. Therefore, the expansion sets generated

Fig. 3. Performance comparison among the methods
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Table 1. P-values in t-tests

Expansion Methods P-value

Wiki-broad 0.048

Wiki-deep 0.039

Yahoo-broad 0.118

Yahoo-deep 0.086

Table 2. F-score for the combination models

Combination Methods F-score

Wiki-deep + Yahoo-broad 0.1872

Wiki-deep + Yahoo-deep 0.1872

Wiki-broad + Yahoo-broad 0.1862

Wiki-broad + Yahoo-deep 0.1862

with Yahoo-broad and Yahoo-deep contain noisy words (e.g., “guys”, “because”,
etc.), which contribute little to enriching the representation of the questions. On
the contrary, Wikipedia articles are created and edited under strict guidelines, and
thus the expansion sets are relatively “purer”.

To determine whether these improvements are statistically significant, we per-
form several single-tailed t-tests. Table 1 shows the P-values of various methods
compared with the no-expansion baseline on the F-score metric. Wiki-deep
achieves themost significant improvements (the lowestP-value) over no-expansion.
Both Wiki-deep and Wiki-broad perform significantly better than the baseline at
a 95% confidence level, while the improvements of Yahoo-broad and Yahoo-deep
are not significant.

In the above evaluations, we consider the four methods separately. Next, we
will investigate whether combining these methods can achieve better results.
When combining two methods, we simply merge the expansion sets of the two
methods together and get the new set. Table 2 shows the F-score values for the
combination methods. From the table, we can see that these four combination
methods fail to outperform the best non-combination method, i.e., Wiki-deep.
Each combination method achieves the same performance as its corresponding
Wikipedia method, e.g., Wiki-deep+Yahoo-broad has the same F-score as Wiki-
deep. Moreover, each combination method performs better than its correspond-
ing Yahoo! Answers method. This further proves that expansion with Wikipedia
is more effective than that with Yahoo! Answers for opinion questions.

5 Conclusion and Future Work

In this paper, we propose various methods to exploit Wikipedia and Yahoo!
Answers for enriching question representation in Opinion QA. The experimental
results show that these methods boost the performance of Opinion QA to a
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great extent. Also, performance comparison reveals that Wiki-deep is the most
effective expansion method.

In our future work, we will consider applying our methods to other types of
questions. Also, we will investigate other forms of information, such as Outlines
and Infobox in Wikipedia, to enrich sentences in Question Answering.

Acknowledgments. This work was supported by National Natural Science
Funding of China under Grant No. 90718022.
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Abstract. We present a novel graph ranking model to extract a diverse set of 
answers for complex questions via random walks over a negative-edge graph. 
We assign a negative sign to edge weights in an answer graph to model the re-
dundancy relation among the answer nodes. Negative edges can be thought of 
as the propagation of negative endorsements or disapprovals which is used to 
penalize factual redundancy. As the ranking proceeds, the initial score of the 
answer node, given by its relevancy to the specific question, will be adjusted 
according to a long-term negative endorsement from other answer nodes.  We 
empirically evaluate the effectiveness of our method by conducting a compre-
hensive experiment on two distinct complex question answering data sets. 

Keywords: Answer diversification, answer reranking, random walk, negative-
edge graph, complex question answering. 

1   Introduction 

Automatically generating a set of answers for complex questions, e.g. definition, opi-
nion, and online community questions, remains a challenging task for several reasons. 
First, the information needs underlying this type of questions are often subjective and 
ill-defined [15]. Hence, it requires one or more answer passages to generate a com-
plete response to complex questions. Furthermore, the answers themselves do not 
easily fall into predictable semantic classes [10]. So, name-entity style answer extrac-
tion techniques are not likely to be effective. Moreover, it is more desirable for the 
automatic response to return a set of factually diverse answers.  

Suppose that there are two sets of answers, A and B, generated by two different 
systems that response to a given question “what effect does steroid use have on ath-
letes’ performance?” Set A consists of two answers {steroid helps boost athletic per-
formance by improving muscle mass, steroids can cause many harmful effects} while 
set B contains {steroids enhance athletic performance, athletes use steroids to im-
prove their performance}.  An information seeker would find answers in set A to be 
more useful than those in set B. As illustrated, the two facts in the first set are relative-
ly more novel than those in the second set. In other words, the factual coverage of the 
second set is less diverse than that of the first one.  
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1.1   Contributions 

In this research, we utilize a graph topology to rerank the answers according to their 
relevance and novelty. The summary of our contributions is as follows: 

 
1. We propose a graph ranking model called DiverseRank to extract a diverse set of 

answers for complex questions. Our method is motivated by the ideas that a good 
answer set should contain facts which are highly relevant as well as novel.   The 
main contribution of our work is in the use of a graph topology to reduce redun-
dancy among answers. We represent a set of answers as a set of vertices whose 
edges correspond to the similarity between answer nodes. A negative sign is as-
signed to the edge weights to model the redundancy relationship between nodes. 
Then, the final ranking score for each answer node is derived from its long-term 
negative endorsement. 

2. We conduct a comprehensive experiment on two distinct question answering data 
sets: a subset of Yahoo! Answers data and TREC 2006’s complex questions data, to 
evaluate the performance of the proposed method. To measure the quality of the ex-
tracted answers, we use a nugget pyramid [14] evaluation and a recall-by-length 
curve as the performance metrics. Specifically, we measure diversity in terms the 
amount of common information nuggets, a small text fragment that describes a cer-
tain fact about a given question, between the extracted sets and the gold standard set. 

1.2   Paper Organization 

The rest of the paper is organized as follows. First, we review related work in section 
2. Next, we describe the proposed method in section 3. In section 4, we present the 
experimental evaluation, including data sets, evaluation metrics, and procedures. 
Finally, we discuss about the results and conclude the paper in section 5 and 6,  
respectively. 

2   Related Work 

Several issues in web community question answering have been investigated, e.g. 
finding high-quality answers [9][19], maximizing the facet coverage [16], etc. How-
ever, answer diversity issue has not been explored as much. Diversity in ranking has 
long been one of the major issues in many research areas, such as text summarization 
and information retrieval. Many information retrieval researchers have attempted to 
establish several theoretical frameworks of diversity ranking and evaluation [2][7]. 
There are a growing amount of works in text summarization area [6][9][12][20] 
which try to integrate diversity as part of the ranking function’s properties. For exam-
ple, Zhu et al. [20] proposes a unified ranking algorithm called GRASSHOPPER 
which is based on random walks over an absorbing Markov chain. Their method 
works by iteratively transforming the top-ranking nodes into absorbing nodes, effec-
tively reducing the transition probabilities to zero. The absorbing nodes will drag 
down the scores of the adjacent nodes as the walk gets absorbed. On the other hand, 
the nodes which are far away from the absorbing nodes still get visited by the random 
walk, thus ensuring that the novel nodes will be ranked higher. Li et al [12]  
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approaches the diversity ranking from the optimization under constraints perspective. 
They propose a supervised method based on structural learning which incorporates 
diversity as a set of subtopic constraints. Then, they train a summarization model and 
enforce diversity through the optimization problem. 

Our method differs from other diversity ranking methods in the rank propagation. 
Since most graph ranking models [6] [18][20] are inspired by the PageRank algorithm 
[4], they rely on eigenvector centrality to measure the importance of nodes. In con-
trast, our method uses the negative edges to propagate negative endorsements among 
nodes. High redundant nodes are those which receive a substantial amount of disap-
proval votes. Furthermore, the applications of negative edges in ranking model have 
been explored in related domains, such as trust ranking [8], social network mining 
[11][12], and complex question answering [1]. On the other hand, our method consid-
ers the negative edges to represent redundancy relationship among answers. 

3   The Proposed Method 

Our method focuses on two key aspects to find a diverse set of answer. First, a set of 
answer should contain many relevant facts pertaining to an information need. Second, 
Each answer should be novel or contain a distinct fact with respect to the other an-
swers. To achieve that, we employ a graphical model to rank the relevant answers 
according to the balance between relevance and novelty. Two set of relations are 
represented by two signed graphs. First, the relevance relation is denoted by the posi-
tive edges between the question node and the answer nodes. On the other hand, the 
redundancy relation is represented by the negative edges between answer nodes. The 
negative sign is used to propagate a negative endorsement or disapproval vote be-
tween the nodes. The absolute value of edge weight represents the degree of similarity 
between answers. A formal description of our method is described as follows. 

Given a question q and a set of n relevant answers, we first define G = (V,E) as an 
undirected graph where VV  is a set of vertices representing the relevant answers, EE  is a 
set of edges representing the similarity between vertices where . Next, we 
can represent G as an n x n weighted matrix S where Sij is a similarity score sim(i,j) of 
node i and j and sim(i,j) has a non-negative value. If i and j are unrelated, then Sij = 0.  
Given S, we can derive an n x n normalized adjacency matrix A such that each ele-
ment Aij in A is the normalized value of Sij such that  and

. Next, given the question q, we define a vector r where each element ri is 
the relevance score rel(i,q) of node i given q. Then, we transform r into an n x n ma-
trix B from the outer product of an all-1 vector and rT such that each element 

 and . Given two probability distributions, we define the 
transition matrix P as: 

 (1) 

where d is a damping factor with a real value from [0,1], A is the initial answer adja-
cency matrix, B is the question-answer relevance matrix. Since all rows in P have 
non-zero probabilities which add up to 1, P is a stochastic matrix where each element 
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Pij corresponds to the transition probability from state i to j in the Markov chain. 
Thus, P satisfies ergodicity properties and has a unique stationary distribution 
. At this stage, each answer can then be ranked according to its stationary distribution. 
At this point, we have derived a random walk model over the answer graph which 
incorporates both answer relevance and answer similarity. However, it does not take 
into account factual redundancy between answers. 

In order to employ the negative edges to reduce factual redundancy, we modify the 
aforementioned graph G such that all edge weights in G have a negative sign.  As 
such, we define G- = (V,E-) as an undirected graph where V is a set of n relevant an-
swer vertices, E- is a set of negative edges where . Then, an adjacency 
matrix M, corresponding to edge weights in G-, is defined as an all-negative matrix of 
S where  and .  

Next, similar to the process of deriving the transition matrix P, we define a mod-
ified transition matrix Q to incorporate the negative adjacency weights defined in M 
and the answer relevance defined in B. To ensure that Q is still ergodic, we multiply 
matrix B with a scaling factor c. The value of c is determined by the conditions that 
all elements in Q should be non-negative and each i-th row of Q should add up to 1. 

That is, . Since all rows of M sum to -1 and all rows of B add up to 1, c is 
a function of d where . 

 (2) 

where M is an all-negative answer adjacency matrix. Since ergodicity properties still 
hold, Q has a unique stationary distribution . Finally, we rank each node i 
according to its stationary probability . From the matrix notations, the simplified 
equation of the DiverseRank score can be formulated as follow: 
 

 
(3) 

 
Where d is a damping factor with a real value in [0,1] range. Additionally, d serves as 
a penalty factor of redundancy. c is a scaling factor defined as a function of d where 

. rel(i,q) is the relevance score of answer i given the question q. And 
sim(i,j) is a similarity score of answer i and j. To estimate the value of rel(i,q), we 
employ a sentence weighting function described in Allen et al. [3] as it is shown to 
consistently outperform other relevance models at the sentence level. 

4   Experimental Evaluation 

4.1   Data Sets 

Two question answering data sets are used in the evaluation: a subset of Yahoo! An-
swers data set (YahooQA) used in Liu et al.’s work [15] and a complex interactive 
question answering test set (ciQA) used in TREC 2006 [10]. YahooQA data comprises 
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subjective and ill-defined information needs formulated by the community members. 
The subjects of interests span widely from mathematics, general health, to wrestling. 
In contrast, ciQA data largely focus on the complex entity-relationship questions. 
Their information needs reflect those posed by intelligence analysts. From data quali-
ty perspective, YahooQA data are much noisier than ciQA data as they contain mostly 
informal linguistic expressions. To prepare YahooQA data set, we randomly select 
100 questions and 10,546 answers from the top 20 most frequent categories (meas-
ured in terms of a number of responded answers) to use as a test set. A set  
of information nuggets for YahooQA is automatically created by matching relevant 
answers with the corresponding questions. The best answer chosen by askers for each 
question is marked as a vital nugget while the other answers are marked as an  
okay nugget. In the case of ciQA data set, 30 question topics and their free-form  
description are prepared by human assessors at National Institute of Standards and 
Technology (NIST). 

4.2   Evaluation Settings 

We employ the nugget pyramid metric to evaluate the diversity of the answer set. 
Generally, we assume that the factual diversity of the extracted answers can be meas-
ured in terms of a number of information nuggets the extracted sets have in common 
with the benchmark nuggets. The formulas to compute the pyramid F-score are de-
scribed in [14]. In summary, the pyramid F-score is computed as a weighted harmonic 
mean (F-score) between nugget recall (NR) and nugget precision (NP). NR and NP 
are derived from summing the unigram co-occurrences between terms in each infor-
mation nugget and terms from each extracted answer set. Following the standard 
procedure in TREC 2006, we set the evaluation parameters to  and l = 7,000 and 
use Pourpre [14] script version 1.1c to automatically compute the scores. Additional-
ly, we further perform a fine-grained analysis of the algorithmic performance at vary-
ing sizes of answer set using a recall-by-length performance curve [13]. Better me-
thods will produce curves that rise faster as more relevant and novel facts are included 
in the answer set. 

Starting from the preprocessing step, we extract word features from a collection of 
answers by splitting answers into unigram tokens, removing non content-bearing 
words, e.g., articles, conjunctions, prepositions, etc., and stemming the tokens using 
Porter Stemmer. After the preprocessing step, we use a vector-space model to retrieve 
the relevant answers. Free-form narrative field associated with each question is used 
as a query. The relevance scores between the answers and query are computed from 
the TFIFS weighting function [3]. The next step is to rerank the list of relevant an-
swers obtained from the retrieval step. To achieve that, we first transform the list of 
relevant answers into an undirected graph with negative edges. Different edge weight-
ing schemes based on inter-sentence similarity measures are employed. Next, the 
relevance scores of the retrieved answers and a query are calculated using various 
relevance models.  

We compare the effectiveness of four baseline methods against the proposed me-
thod. The baselines include maximal marginal relevance (MMR) [5], SumBasic [17], 
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topic-sensitive LexRank [18], and a backward ranking of topic-sensitive LexRank 
(henceforth LexRankInv). The last baseline method is used to test whether diversity 
can be promoted by simply reversing the ranking of eigenvector centrality method. 
Once the ranking scores are calculated, we select top-k answers into the answer set. 
The default cut-off level for answer length is 7,000 characters. 

5   Results and Discussion 

5.1   Pyramid F-Scores  

Table 1 shows the average pyramid F-scores of the baseline methods and the best 
DiverseRank variants. In both data sets, the proposed method significantly outper-
forms all baseline methods, p-value<0.05. Considering the performance between 
random-walk based methods (LexRank vs. DiverseRank), DiverseRank also outper-
forms LexRank in both data sets although the improvements are relatively minor 
(6.65% and 2.69%), compared to those of other baselines. Furthermore, LexRankInv 
produces inferior scores to DiverseRank in both data sets. 

Table 1. The average F-Scores of the baseline and DiverseRank methods. The best methods are 
in bold. 

Method 
YahooQA ciQA 

F-Score % Improvement F-Score % Improvement 
MMR 0.2946 +14.52% 0.2486 +48.30% 
SumBasic 0.2895 +16.54% 0.2956 +24.71% 
LexRank 0.3163 +6.65% 0.3590 +2.69% 
LexRankInv 0.2391 +41.12% 0.3516 +4.82% 

DiverseRank 0.3374 - 0.3686 - 

5.2   Recall-by-Length Performance Curves 

Figure 1 shows recall-by-length curves of the baselines and the proposed method in 
each data set. In YahooQA case (figure 1a), DiverseRank starts to produce a signifi-
cantly better performance than the best baseline method (LexRank) at the answer 
length of 1,200 characters. On the other hand, DiverseRank does not perform quite 
well in ciQA case (figure 2b). In this case, DiverseRank starts to outperform LexRank 
after the answer length of 1,800 characters. This outcome is not entirely unexpected. 
As a smaller answer set contains fewer number of information nuggets, therefore 
there are fewer items to be diversified. As the answer set continues to grow, Diverse-
Rank continues to gain a better performance. Note that our results confirm the pre-
vious results in [10] in which a method that produces the best F-score at a predefined 
answer length does not necessarily perform equally effective across all incremental 
lengths. 
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1a. YahooQA 1b. ciQA 

Fig. 1. The recall-by-length performance curve on YahooQA (A) and ciQA (B) data sets 

6   Conclusion 

We propose a graph ranking model to find a diverse set of answers based on random 
walks over a negative-edge graph. Our main contribution is in the utilization of a 
graphical model to reduce redundancy within the answer set. First, given a complex 
question and a set of relevant answers, we represent the relevant answers as an answer 
graph whose nodes correspond to answers and edges correspond to the similarity 
between answers. Then, we assign a negative sign to edge weights in the answer 
graph to model the redundancy relationship between nodes. Then, the final ranking 
score for each answer node is derived from its long-term negative endorsement. The 
evaluation results show that our method outperforms most baseline methods. The 
analysis of recall-by-length performance curves suggests that the best baseline me-
thod performs better than DiverseRank at smaller answer lengths. This is explained by 
the fact that a smaller set of answers contains fewer facts, thus its content can hardly 
be diversified further. As the size of answer set increases, DiverseRank eventually 
outperforms the baseline methods. 
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Abstract. This paper proposes the notion of vocabulary filtering in a term weight-
ing framework that consists of three filters at the document level, collection level,
and vocabulary level. While term frequency and document frequency along with
their variations are respectively the dominant term weighting factors at the docu-
ment level and collection level, vocabulary level factors are seldom considered
in current models. In a way, stopword removal can be seen as a vocabulary
level filter, but it is not well integrated into the current term-weighting models.
In this paper, we propose a vocabulary filtering and multi-level term weighting
model by integrating point-wise divergence based measure into the commonly
used TF-IDF model. With our proposed model, the specificity of the vocabu-
lary is captured as a new factor in term weighting, and stopwords are naturally
handled within the model rather than being removed according to a separately
constructed list. Experiments conducted on searching for similar questions in a
large community-based question answering archive show that: (a)our proposed
term weighting model with multiple levels is consistently better than those with
single level for retrieval task; (b)the proposed vocabulary filter well distinguishes
salient and trivial terms, and can be utilized to construct stopword lists.

1 Introduction

As large Community-based Question Answering (cQA) archives are built up through
user collaboration, the knowledge is accumulated and made ready for sharing. Research
on archived questions has emerged recently [5,14,15]. An application that facilitates
knowledge sharing and diversity maintaining is Archived Question Search (AQS). It is
a function that makes the huge resource reusable by returning relevant answered ques-
tions given a new question as a query. If good matches are found, the lag time involved
with waiting for a personal response can be avoided, thus improving user satisfaction
and avoiding repeating questions.

As a specific application of IR, AQS in cQA repository is distinct from the search
of web pages or news articles because it deals with long queries and short documents
that are both in the form of questions (for simplicity, we call query questions in AQS as
queries, and candidate questions to be searched as documents thereafter):

Long query: each AQS queries consist of natural language sentences that are supposed
to be understood and answered by other community members. This kind of queries is
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usually longer, noisier, and more verbose than keyword queries. Thus the salient terms
and trivial terms are weaved together and the information needs are usually more specific.

Short document: AQS documents are essentially the same as its queries since both are
cQA questions. Shorter document length means that most terms might appear only once
in a document, resulting in term frequency (tf ) approximates a weak binary factor.

This characteristic of cQA data makes the existing term weighting schemes, such as
TF-IDF model [13], Okapi BM25 [10], and Divergence From Randomness [2], less ca-
pable if directly applied. The major difficulty is that documents and collections statistics
are not adequate to provide enough information. The proper functioning of the existing
term weighting schemes is under the assumption that documents are long and queries
are short. The same difficulty may also be encountered by other forms of community
content,like blogs and forums, which have the concise and noise-prone nature.

This motivates us to explore beyond the document and collection. We propose the
notion of vocabulary filtering as a complementary dimension of term weighting. By def-
inition, a vocabulary refers to the body of words used on a particular setting or in a par-
ticular domain. Although different vocabularies may share a similar set of terms, their
respective weights are specific. Given the underlying setting or domain, the weights can
be determined, independent of any specific collection and document that instantiates the
vocabulary. In a way, stopword removal can be seen as a simple binary vocabulary filter,
in that it assigns 0 or 1 score to a term in additional to a weighting scheme.

We propose to measure term saliency in a vocabulary by estimating a heuristic
evaluation function that accepts terms’ point-wise divergence feature as input. The
assumption under the point-wise divergence feature is that terms that have distinct
distributions in a specific vocabulary vs. the general vocabulary are important. For
instance, we expect “ipod” to have a much higher frequency in a vocabulary about
music & music players than it does in the general vocabulary, whereas the universal
stopword “the” would have similar frequencies in the two vocabularies. The vocabulary
filter, in the form of a heuristic term saliency evaluation function, is integrated into the
existing term weighting schemes as an enhancement.

2 Related Work

Archived Question Search (AQS) in cQA repository was investigated recently by [5]
and [15] using translation-based language model. The translation probability trained on
similar collections can be seen as a form of collection-level filtering of term weights. We
attribute the success of their proposed model to the integration of the collection-level
evidence into the document-level language model.

In related research on term weighting models, the TF-IDF model has been widely
used and accepted. Recently, the justification and interpretation of TF-IDF has been
studied in [1,4,12], from the perspectives of information theory, probabilistic language
modeling, binary independence retrieval, and Poisson distribution. [11] tried to interpret
the Okapi BM25 model from the perspective of poisson model, the language model, the
TF-IDF model, and a Divergence From Randomness model. However, none of these ef-
forts attempt to separate the evidences between document-level and the collection-level
in term weighting. Since our investigation is focused on the vocabulary-level evidences,
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it further raises question on the roles of document level, collection level as well as vo-
cabulary level analysis in term weighting and IR effectiveness.

As for the vocabulary-level filtering for term weighting, the building of a customized
stopword list [7,8] and the extraction of domain-specific keywords [3] can be seen as the
most relevant work. [6] evaluated the interestingness of a term using the KL divergence
and the JS divergence from the distribution of the human interested corpora. This work
inspires the method we use for vocabulary filtering.

3 Proposed Vocabulary-Level Filter

Our goal to build a vocabulary-level filter is to quantitatively measure term saliency for
a specific vocabulary. We thus emphasize the specificity of vocabularies in construct-
ing the vocabulary-level filters. Term distribution in a specific collection is biased as
compared to that in a general collection. This specificity of term distribution in a col-
lection reflects the specificity of its vocabulary, and enables us to highlight the specific
important terms for a vocabulary.

3.1 Divergence Feature for Vocabulary Filtering

To capture the vocabulary level term importance, we propose to take a novel point-wise
divergence feature for each individual term, rather than divergence of two distributions.
We see the term distribution of a vocabulary as the background knowledge to instanti-
ate vocabulary filtering. More broadly, the combining of all vocabularies consists of a
general background that can be used to compare against a specific vocabulary.

Jensen-Shannon(JS) divergence is a well adopted distance measure between two
probability distributions. It is defined as the mean of the relative entropy of each distri-
bution to the mean distribution, with the following formula:

DJS(S||G) =
1
2

∑
ps log

ps

1
2 (ps + pg)

+
1
2

∑
pg log

pg

1
2 (ps + pg)

(1)

where S and G denote the specific and general vocabularies, and ps(ti) and pg(ti)
denote their corresponding probability distribution.

As we evaluate the divergence at term level rather than at the whole sample set, we
examine the point-wise function as follows:

dJS(t) =
ps(t) log 2ps(t)

ps(t)+pg(t) + pg(t) log 2pg(t)
ps(t)+pg(t)

2
(2)

The point-wise JS function is an appropriate choice since it is symmetric and ranges
over �+. Specifically, dJS(t) assigns a point-wise divergence score to term t highest,
when either ps(t) is much higher than pg(t), or pg(t) is much higher than ps(t), which
means the specialized terms in the vocabulary and generally recognized content repre-
sentative terms are ranked high; lower, when ps(t) and pg(t) get closer to each other.
These properties suggest that dJS emphasizes divergence at both the most frequent
terms in the specific vocabulary and the most frequent terms in the general vocabu-
lary. ps(t) and pg(t) are estimated using the Maximum Likelihood Estimator over the
specific vocabulary and the general vocabulary respectively.
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3.2 Estimating Term Saliency from Divergence Feature

Given a point-wise divergence feature, we aim to estimate the term saliency score,
which can be integrated with any existing term weighting scheme. More specifically,
we define a mapping function fv : dJS → Wv , which produces as output an estimation
Wv(denotes the term saliency score on �+) given dJS as input.

We propose a heuristic evaluation function based on logistic function L(x) as below.

fv(x) = 1 + τL(x), (3)

where L(x) = 1
1+e−x is the logistic function that maps �+ to [0.5, 1) monotonically.

Logistic function grows more slowly as |x| increases. This property enables us to
control the rate of normalization by shifting the curve along the horizontal axis. Thus a
tuning parameter α is introduced.Equation 4 represents the final form of the the heuristic
evaluation function of vocabulary level term saliency.

fv(dJS) = 1 + τ
1

1 + e−(dJS+α)
(4)

where the parameters τ and α are tuned in Section 5.2. Since there is no direct obser-
vation of term saliency available, we tune the parameters by using the retrieval perfor-
mance as an indirect guidance.

4 Three-Level Filtering for Term Weighting

After discussing the method for term weighting accounts for the vocabulary-level infor-
mativeness of a term, we next investigate on how it can be naturally integrated into an
IR framework.

Term weighting lies in the core of current bag-of-word IR algorithms. Terms weights
discriminate the importance of terms for content representation as document descrip-
tors. The general form of the bag-of-words retrieval function with regards to term
weighting is given as:

Score(Q, D) =
∑

ti∈(Q∩D)

W (ti) (5)

where ti is the ith query term that appears in both the query Q and the document D, and
W (·) is the term weighting model. Generally, W (·) is a function that takes in evidences
such as term frequency, document length, document frequency, etc.

Figure 1 illustrates the pipeline of our proposed three-level filtering framework.
Given a term ti as input, the pipeline of three filters outputs Wt(ti), a quantity that
indicates ti’s importance. Accordingly, we break down the term weighting model into
three components. The scoring function in Equation (5) is thus rewritten as

Score(Q, D) =
∑

ti∈(Q∩D)

fv(ti) × fc(ti) × fd(ti) (6)

where fv(ti), fc(ti), and fd(ti) are the Vocabulary-Level Filter, Collection-Level Fil-
ter, and Document-Level Filter respectively. The sequence of filters in the pipeline is
naturally decided by the scope of the filters and the implementation process.
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Fig. 1. A general framework for term weighting schemes is represented in a pipeline of three
filters, the vocabulary level filter, collection level filter, and document level filter

5 Experiment

5.1 Data Collection and Evaluation Method

We assembled a collection of 325,274 questions posted on Yahoo! Answers(YA) cate-
gory Consumer Electronics from March 2008 to December 2008 using YA APIs1.
The archived questions have an average length of approximately 60 words, consisting
of “subject” and “content”. The statistic for replicating the term distribution in the gen-
eral vocabulary was acquired from a project called Web Term Document Frequency and
Rank, a joint effort of the UC Berkeley and Stanford WebBase Projects2.

For evaluation, 100 questions were assembled by randomly selecting questions from
the whole collection. 93 questions were finally used after manually removing the noisy
and redundant ones. The top 20 results of the 93 queries by all the experimented models
were labeled by two independent assessors to be relevant or not. The evaluation system,
as well as the testing set and the archive, are publicly accessible3.

We use Terrier [9] for indexing and retrieving, and Porter Stemmer to stem the cQA
collection, the queries, and the general web vocabulary. The evaluation metrics are
Mean Average Precision(MAP) and Mean Reciprocal Rank (MRR).

5.2 Archived Question Search with Vocabulary Filters

Experimental Setup. In this suit of experiment, we use vocabulary filtering to re-
place the role of stopword lists in order to test the overall quality of the new retrieval
function. The efficiency aspect of stopword removal is not considered here. The com-
parison systems are (1)D.(tf ); (2) C.D.(idf -tf ); (3) V.D. (js-tf ); and (4) V.C.D.
(js-idf -tf ), where V. denotes the proposed vocabulary-level filter fv(dJS); C. denotes
the collection-level filtering (fc(t) = ln(1+ N

df )), D. denotes the document-level filter-

ing (fd(t) = 1 + ln tf
dl ).

Parameter Tuning for Term Salience Function. A small set of 20 queries are used
for tuning the parameters of the term salience estimation function as in in Equation 4.
For simplicity, we fix τ to be 1.0 as it does not influence the shape of the function.
Therefore, only the optimal α is studied in this section.

Figure 2 shows the influence of α on MAP for V.C.D. term weighting scheme. At
the point α = 2.0, the MAP starts to approach its maximum. This is because the logistic

1 http://developer.yahoo.com/answers/
2 http://www.comp.nus.edu.sg/∼rpnlpir/
3 http://www.comp.nus.edu.sg/∼g0601820/aqs/
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Fig. 2. MAP at different normalization level of α for V.C.D.

function begins to saturate around 2 and grows slowly thereafter as the input increases
on �+. This slow growth satisfies the requirement for a deep normalization on dJS(t).
It is worth noticing that this optimal α ranges over [2.0, 2.9]. This relatively wide range
suggests the stability and tolerance of the proposed heuristic term salience estimation
function. For the rest of the experiments, α is set to be 2.0.

Table 1. The MAP and MRR of V.C.D. and improvement over two baselines D. and C.D.

MAP D. C.D. MRR D. C.D.
0.1874 0.3182 0.5856 0.6987

V.D. 0.2942 56.99% -7.54% V.D. 0.7396 26.30% 5.85%
V.C.D 0.3622 93.28% 13.83% V.C.D 0.7616 30.05% 9.00%

Overall Results and Discussion. Table 1 presents the overall results in term of MAP
and MRR. MAP is based on the top 20 returned results and MRR evaluates the quality
of the top results returned. We draw following observations from the table:

1) Vocabulary Filter in conjunction with collection and document level filters (i.e.
V.C.D), boosts tf and idf.tf significantly in both MAP and MRR. MAP comparison
in Table 1 shows that V.C.D. improves over D. by 93.28%, and C.D. by 13.83%. The
consistent improvement suggests that vocabulary level evidence is complimentary to
collection level and document factors for term weighting. The scale of improvement
over C. is higher than that over C.D., which indicates V.D. is a much stronger baseline
than D.. In other words, collection level evidence is also critical for measuring term
importance. The only negative improvement is V.D. over C.D., which shows that V.D.
is not as effective as the classical tf.idf model. This also suggests that V., C., and D.
are three orthogonal factors critical for term weighting.

2) Vocabulary Filter improves the top results when the baselines are already very
high. By examining MRR comparison in Table 1, we find that two baseline systems both
have MRR of over 0.5, which suggests that YA archives have considerable number of
similar questions and it is relatively easy to find a similar one with a high ranking. The
two systems with V., i.e., V.D. and V.C.D. both have MRR of over 0.7, which shows
that both systems have most of their top retrieval results correct. We also notice that
V.D. has a higher MRR than C.D., while the latter has higher MAP, which confirms
our assertion of the orthogonal of V., C., and D..
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Table 2. Highest and lowest ranked 10 terms in music & music players category by fv(dJS)

Top 10 Lowest 10
1 ipod 6 home -1 us -6 at
2 itune 7 servic -2 of -7 thi
3 page 8 provid -3 in -8 on
4 my 9 mail -4 by -9 all
5 song 10 copyright -5 new -10 be

5.3 Study on Rank Terms Using Vocabulary Filtering

To examine the effect of the two divergence kernels, we utilize them to rank terms from
a subcategory of ConsumerElectronics, i.e., the music & music players question
archive. From the top 10 terms in Table 2, we find that the vocabulary filter has suc-
cessfully captured the salient terms of the recent music & music players vocabulary,
such as “ipod”, “itune”, and “sync”. We may guess that if the archive was collected
years earlier, the top terms might be “walkman”, “tape” and the like. It suggests that
the vocabularies are evolving, or more generally, are specific. We notice that terms like
“my” is ranked high, because of the user-collaborative nature of the YA archive. fv(djs)
also ranks some general terms high, such as “mail” and “copyright”. This is because
“mail” and “copyright” have high probabilities in the general web vocabulary, but low
probabilities in the music & music players vocabulary. They are considered to be
informative though relatively less frequent in the specific vocabulary. This shows that
fv(dJS) is capable of capturing term importance in a vocabulary.

The stopwords are expected be among the lowest in a descending ranked list. Left
part of Table 2 lists the lowest 10 terms by fv(dJS). Generally this lowest 10 terms meet
our expectation of the commonly recognized stopwords. We thus think of eliminating
the lowest ranked terms from indexing, as what stopword removal does, for the purpose
of improving the efficiency of the whole retrieval system. As a complementary explo-
ration, we construct stopword lists by taking the lowest 5%, 10%, and 15% fv(dJS)
ranked terms. In stead of implementing the full-fledged V.C.D. filtering term weight-
ing scheme, we use the 3 stopword lists of different size upon C.D. term weighting
scheme and find that the retrieval performance at 5% removal actually improves over
those without stopword removal and with standard stopword list removal. Moreover,
10% removal is slightly worse than 5% removal since less terms are used for indexing,
but still acceptable considering that the efficiency is improved at a small price.

6 Conclusions

In this paper, we proposed a novel notion of vocabulary-filtering to capture term im-
portance by using the whole vocabulary as the background knowledge. JS divergences
are utilized to characterize a specific vocabulary by contrasting its term distribution to
that of of a general vocabulary. The normalized vocabulary filters are integrated into a
framework that consists of a pipeline of three filters at the document level, collection
level, and vocabulary level. Our proposed model has been empirically shown to be sig-
nificantly better than TF-IDF model in tackling the archived question search problem.
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In future work, we plan to explore the use of vocabulary filtering and the three-level
term weighting schemes in other text processing tasks like document clustering and
categorization.
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Abstract. It is important to identify the “correct” number of topics

in mechanisms like Latent Dirichlet Allocation(LDA) as they determine

the quality of features that are presented as features for classifiers like

SVM. In this work we propose a measure to identify the correct number

of topics and offer empirical evidence in its favor in terms of classifica-

tion accuracy and the number of topics that are naturally present in the

corpus. We show the merit of the measure by applying it on real-world

as well as synthetic data sets(both text and images). In proposing this

measure, we view LDA as a matrix factorization mechanism, wherein a

given corpus C is split into two matrix factors M1 and M2 as given by

Cd∗w = M1d∗t x Qt∗w. Where d is the number of documents present in

the corpus and w is the size of the vocabulary. The quality of the split

depends on “t”, the right number of topics chosen. The measure is com-

puted in terms of symmetric KL-Divergence of salient distributions that

are derived from these matrix factors. We observe that the divergence

values are higher for non-optimal number of topics – this is shown by a

’dip’ at the right value for ’t’.

Keywords: LDA Topic SVD KL-Divergence.

1 Introduction

Topic Modelling is a widely used technique in information retrieval, data mining
etc. The idea behind it is the fact that a small number of latent topics are
enough to effectively represent a large corpus. As this is often the case with
real world corpus such as text which have a large vocabulary, such models have
proved to be very effective. However finding the right number of latent topics in a
given corpus has remained an open ended question. Almost all previous methods
including Latent Semantic Analysis [1], Probabilistic Latent Semantic Analysis
[2], Latent Dirichlet Allocation [3], Non-Negative Matrix Factorization [4] which
try to model the latent topics either as probability distributions or as a set of
basis vectors in the topic space make the implicit assumption that the number
of topics is known beforehand. While estimating the right number of topics for
a small image or text corpus might seem easy, it becomes unreasonable to guess
the same when the corpus size is huge. However the accuracy of all of the above
mentioned methods is senstive to the number of topics.
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In this paper, we consider the Latent Dirichlet Allocation (LDA) [3] model as
the basis for our work. We view LDA as a matrix factorization method which
factorizes a document-word frequency matrix M into two matrices M1 and M2
of order T ∗W and D∗T respectively where T is the number of topics and W is the
size of the vocabulary of the corpus. We propose a new measure that computes
the symmetric Kullback-Leibler divergence of the Singluar value distributions of
matrix M1 and the distribution of the vector L ∗ M2 where L is a 1 ∗ D vector
containing the lengths of each document in the corpus. We show that under
certain conditions these distributions are comparable and these conditions are
expected to determine the ‘right’ number of topics. We also present empirical
results that indicate that the proposed measure dips down and hits a low for the
‘right’ number of topics and increases again as the number of topics increase.
The number of topics that is considered ‘right’ is any number in a small range
that gives the best accuracy on a held out dataset.

This work is organized into the following sections: In Section 2, we review some
related work in topic modelling and some methods proposed to choose the ‘right’
number of topics. In section 3, we motivate the rationale behind the measure
proposed and explain how it is computed. In section 4 , we give experimental
evidence to illustrate the robustness of the measure across text and image corpus.
Finally we conclude in section 5 with a few points of discussion.

2 Background

2.1 Latent Dirichlet Allocation

LDA is a probabilistic generative model which assumes that every document is a
distribution over topics and every topic is a distribution over words. Each word
in a document is generated by first sampling a topic from the topic-distribution
associated with the document and then sampling a word from the word distribu-
tion associated with the topic. Thus, given a corpus, LDA tries to find the right
assignment of topic to every word such that the parameters of the generative
model are maximized.

Topic Similarity. There have been a couple of approaches in the past which
have tried to take advantage of the fact that the topics arising in read world
data are correlated. Correlated Topic Models [12] is one such approach which
tries to capture relation between topics using a covariance matrix. The Pachinko
Allocation Model [14] on the other hand considers an acyclic graph where a topic
is a node and is considered as a distribution over not only words but also other
topics.

There have also been approaches like Hierarchical Dirichlet Process (HDP)
[11] which try to find the right number of topics by assuming that the data has
a hierarchical structure to it. Here, both HDP as well as LDA models for the
same dataset are built and compared to find the right number of topics.

More recently [10] proposes a method to learn the right size of an ontology
by measuring the change in the average cosine distance between topics found as
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the number of topics increase. A similar idea is found in [5] where the average
correlation between (n

2 ) pairs of topics at each stage is considered.
The disadvantage we feel with both [10] and [5] is that they consider only the

information in the stochastic topic-word T ∗W matrix and ignore the document-
topic D ∗T matrix. In the present work, we make use of properties of both these
matrices to come up with a robust measure that will help in identifying the right
number of topics.

3 Proposed Measure

3.1 Matrix Row Sums

Though LDA is a probabilistic generative model, it can be viewed as a non-
negative matrix factorization method that breaks a given Document-Word
Frequency Matrix M into a Topic-Word matrix M1 of order T ∗ W and a
Document-Topic matrix M2 of order D ∗ T where D, T and W represent the
number of documents, topics and words respectively. Both M1 and M2 are
stochastic matrices where the k th row in M1 is a distribution over words in the
kth topic and nth row in M2 is a distribution of topics in the nth document. If
these were not stochastic matrices, but just represented counts i.e if the (i, j)th

element in matrix M1 indicated the number of the times word j has been as-
signed topic i and if the (i, j) th element in matrix M2 indicated the number of
times topic j is assigned to a word in document i, then it is clear that∑W

v=1 M1(t, v) =
∑D

d=1 M2(d, t) ∀t = 1 to T .

This is nothing but the number of words assigned to each topic looked in two
different ways - one as row sum over words and other as column-sum over doc-
uments. However, when both these matrices are row normalized (as done by
LDA), this equality will not hold anymore.

The idea behind the proposed measure is to take advantage of the simple fact
that both these sums represent proportion of topics assigned to the corpus and
hence can be compared with each other. However, a mere comparison between
these values is useless as they always will be the same irrespective of the number
of topics considered. Hence, we seek a measure which while trying to compare
similar properties of these matrices will also be low only when the ‘right’ number
of topics is reached.

3.2 Distribution over Singular Values

Singular Value Decomposition (SVD) [8] is a matrix factorization technique that
breaks (uniquely) any rectangular matrix M of order m ∗n , m <= n into three
matrices U , Σ and V or orders m ∗m, m ∗ n and n ∗ n respectively such that

M = U ∗ Σ ∗ V
′

where V
′
denotes the transpose of V . The matrix Σ is diagonal matrix and the

matrices U and V are unitary. Also U contains the eigenvectors of matrix M ∗M
′

and V contains the eigenvectors of the matrix M
′ ∗ M .
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The diagonal entries of Σ are called the singular values , denoted by σi , i =
1 to m.

Geometrically, the singular values represent the length of the semi-axes of the
hyper-ellipsoid that encloses all the vectors in the matrix. So, a distribution of
these singular values will give the distribution of the variance in direction of
each axis of the hyper-ellipsoid. Now, if we consider the T ∗ W matrix M1, its
distribution of singular values will be the distribution of variance in topics.

For simplicity, let us consider a case where the words in the vocabulary set
are well separated in M1. By this we mean that the words in the vocabulary are
partitioned into T sets Vi, i = 1 to T such that Vi ∩ Vj = ∅ when i �= j . Now
if each topic Ti (a row in matrix M1) contains words only from set Vi, then the
following proposition holds for M1

Proposition: If the words in the vocabulary are well separated, then the singular
value σi is equal to the L2 norm of row-i vector of M1, ∀ i = 1 to m

Proof: This is easy to see both geometrically and algebraically. Geometrically, we
observe that when the rows are well separated, the row vectors are orthogonal to
each other. Thus, the axes of the hyper-ellipsoid will be be row vectors themselves
which means the singular values will be their distance from origin, or in other
words the L2 norm.

Algebraically, we see that for any well separated matrix M1, the matrix (M1)∗
(M1)

′
will be a diagonal matrix with the standard basis as the eigenvectors.

Thus if SVD of M1 = U ∗Σ ∗ V
′
, then as columns of U are the eigenvectors of

(M1) ∗ (M1)
′
i.e the standard basis. Hence the (i, j)th entry (i, j = 1 to m) in

V is given by

(V )ij = (M1)ij/σi

As the matrix V is a unitary matrix, we need V ∗ V
′

to be I and equating
each element of V ∗ V

′
to elements of I proves the proposition.

Thus if in the ideal case, when the topics are well separated, the Singular
values will equal the row L2 norms. Also note that the distribution over singular
values will not change by making the matrix stochastic if and only if the number
of words assigned to each topic is the same. This can be proved by breaking
the matrix into product of a diagonal matrix and the normalized matrix and
considering when the distributions of singular values will be the same. But un-
fortunately both the notion of ’well-separatedness’ and same number of words
getting assigned to each topic are not likely to hold in real world datasets. Still
we can hope that increasing the number of topics will make the topic vectors
more and more orthogonal to each other, and hence the distribution over singu-
lar values will be close enough to the distribution over the row L2 norms when
the ‘right’ number of topics is reached.

3.3 Topic Splitting

We observe that the following phenomenon holds for the vectors got from LDA
for well separated datasets. If a dataset contains K well separated topics and
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when LDA is run with K
′

> K topics, the K
′

word distributions over topics
obtained are also orthogonal to each other. This can happen when topics ’split’
which means that a set of words assigned (with high probability) to a particular
topic gets assigned to the new topic(s). Thus the new set of topics will still
remain orthogonal to each other i.e the new set of topic vectors will form a
orthogonal basis in the bigger topic space as well . This becomes an issue if
we wish to compare the singular value distributions with the L2 row norms as
they will remain close even after the topics get nearly orthogonal to each other.
Of course, we could look at the first topic number where the topics get nearly
orthogonal to each other, but this is difficult to judge on real world datasets.
So, we require a measure which will increase once the ‘right’ number of topics is
identified.

3.4 Norms in Higher Dimension

As mentioned in section 3.1 , the sums of rows of matrix M1 is equal to the
sums of columns of matrix M2. This of course will not hold once the matrices
are made stochastic. Let M1 and M2 be row-stochastic. Now consider the prod-
uct of vector L which contains the length of each document with matrix M2. We
get a vector of length T with components indicating the fraction of each topic
present in the corpus. Let the normalized version of this vector be called CM1.
(to indicate distribution of topics in the corpus C got from the matrix M1). If
the lengths of all the documents were the same, this would be equal to the L1
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Fig. 1. Plot showing how divergence between L1 and L2 norm distributions vary with

topics for different vocabulary sizes. As seen, for high vocabulary, the divergence is

almost zero.
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norm of the row vectors in M2. Also let CM2 be the distribution over singular
values of matrix M1.

As the best use of topic models such as LDA arise when the dimension (i.e
vocabulary size) is large, we shall assume that the datasets that we deal with are
vectors in high dimension. In such cases, we observe that for a random matrix R
of order T ∗W , the vector Rl1 which is the distribution of row L1 norms and the
vector Rl2 , the distribution over row L2 norms look very similar component-wise
when W is large enough. An example is given in Figure 1 where, as the topics are
varied from T = 1 to 100, the Symmetric Kullback-Leibler (KL) divergence [9]
is calculated for four different values of W . It can be seen that as W becomes
large enough, the Symmetric KL divergence goes towards zero. This will happen
when the components of both the vectors are very close to each other so that
every term in the Symmetric KL divergence of Rl1 and Rl2 which is defined as
KL(Rl1||Rl2) =

∑T
i=1 Rl1(i)∗log(Rl1(i)/Rl2(i))+

∑T
i=1 Rl2(i)∗log(Rl2(i)/Rl1(i))

goes to zero.
However, this behavior need not hold true when we consider divergence be-

tween distributions generated from non-random matrices such as M1 and M2.
In fact what we observe empirically is that this divergence between the L1 dis-
tribution and the singular value distribution (which is close to the L2 norm
distribution if topics are orthogonal) start to increase once the right number of
topics is reached. The reason we believe is the fact that once topic-splitting hap-
pens after topics become nearly orthogonal, the L1 norm acts as a penalty term
in the sense that more and more noise gets added in terms of low probability
values for words not belonging to a topic which contribute to the increase in
divergence value.

3.5 Divergence Measure

We summarize the proposed divergence measure here. For a given corpus C and a
given topic T , LDA outputs two stochastic matrices M1 and M2. The proposed
measure is the following:

ProposedMeasure(M1,M2) = KL(CM1||CM2) + KL(CM2||CM1)

where ,
CM1 is the distribution of singular values of Topic-Word matrixM1 ,
CM2 is the distribution obtained by normalizing the vector L ∗ M2 (where L is
1∗D vector of lengths of each document in the corpus and M2 is the Document-
Topic matrix).

A point to be mentioned here is that both the distributions CM1 and CM2

are in sorted order so that the corresponding topic components are expected to
match.

In the next section, we give results for various experiments conducted on
both image and text data on toy as well as real world datasets that illustrate
the efficacy of the proposed measure in finding the right number of topics.
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4 Experiments

4.1 Image Data

Color Palette. We conducted a simple toy experiment on an palette image
containing various colors as shown in the left panel of Figure 2. A document in
this case was a row of pixel values in the image. Each pixel had three component
values for Red, Green and Blue, in the range 0-255. These three component
values were concatenated together to form a single value. (For example RGB
values of 220,245,230 was made into a single number 220245230) .The image
was in jpg format and hence the pixels values are not all the same even in a
palette with a single perceived color. The number of dimensions (or unique pixel
values) for this image is 27777. But as we can see, the number of latent topics
is smaller by a huge magnitude. The values of the proposed measure is plotted
against various topic values. As we observe from the right pane of Figure 2, the
measure dips down close to zero in the range 30 - 40 which in fact is the number
of perceived colors (’latent topics’) in the palette image.

This simple experiment where the intuitive number of topics is the number
of palettes (36 in this case) clearly demonstrates the efficacy of the proposed
measure.

Gray-Scale Palette. The immediate idea was to check the effect of dimension-
ality on the same image. To this end, we converted the image to a gray scale and
hence reduced the number of dimensions from 27777 to 255. The same measure
for the gray scale image is plotted in Figure 3 . As we see, the dip and rise though
not wrong, is not as indicative as it was in the previous case. This suggests that
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Fig. 2. Number of Topics Vs Symmetric KL Divergence for Color Palette. The dip in

divergence is obtained when the number of topics is in the range of 30-40 which is same

as the perceived number of 36. (to be viewed in color).
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Fig. 3. Number of Topics Vs Symmetric KL Divergence for Gray scale Palette. Note

that the range for right number of topics is correct, but not as indicative as in the

Color Palette case.

the proposed measure is a good indicator of right number of topics for datasets
involving high dimensions.

4.2 Text Data

We conducted several experiments on toy as well as real world text data sets.
Each of these is explained below.

Toy Dataset. In this experiment, 12 documents of average length of 500 words
were considered. The number of dimensions (vocabulary) was 1525. The doc-
uments were wikipedia articles on 3 broad topics (Science , Dance and Dos-
toyevsky) with 4 documents in each. Each of these topics had sub-topics (such
as Quantum Mechanics, Probability, Electromagnetism etc under Science - Salsa,
Mambo, Tango etc under Dance - Crime and Punishment, Brothers of Karama-
zov,Prison Experiences etc under Dostoyevsky). The Measure values are plotted
in the left pane of Figure 4. We see a dip starting at around 20 , which is roughly
a reasonable number of low level noise free topics to expect from this dataset.

Authorship Dataset. Usually, the top few words in every topic is indicative
whether the topics are well split or not. If the right number of topics is reached,
the words belonging to every topic are expected to be semantically close to each
other. While this might help in deciding the right number of topics for small
datasets, it becomes tough to decide the same on abstract datasets. To verify
this, we built a dataset containing literary works of 12 authors. Each work was
broken up into 5000 word per document and the total number of documents
was 834. The details of the dataset are given in table 1. We then stripped off
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Table 1. Statistics of the Authorship dataset

Author Genre1 Timeline Stop-words Content Words

Daniel Defoe A,F,Hi 1808-1894 477201 210550

Jane Austen F,Hu,Ps 1811-1818 474305 248676

Allen Grant B,F,Sc,Ph 1848-1899 215001 148670

George Elliot F,Ps 1859-1871 520661 311030

Harold Bindloss Ro,F 1866-1945 525724 321902

James Otis A,C,F,Hi 1883-1899 252518 136089

George Bernard Shaw D,F,Hi,Hu,W 1885-1912 145385 85476

Hamlin Garland A,F,Ps,Ro,Sp,T 1897-1921 349296 229164

Captain Ralph Bonehill A 1902 175659 105169

Phillips Oppenheim F,M,Po 1902-1920 415892 243386

G K Chesterton M,Ph,Ps,Re 1905-1916 186409 111290

Baronness Orczy A,Hi,Po,Ro 1905-1921 392127 261019

Total 18 1808-1921 4130178 2307252

the content words and retained words which fell in a small set of 555 stop-
words (words such as ’and’, ’the’ , ’it’ etc). We ran LDA on this dataset to
test its efficacy in classifying the authors. As the vocabulary contains only stop
words, it is not easy to identify the cohesion in a topic by looking at the top
few words. Though, the implementation details and other stylometric properties
studied from this dataset are explained elsewhere, we just mention here that
the accuracy on a held out testset was highest when the number of topics was
15-25. The plot in the right pane of Figure 4 shows the variation of the proposed
measure with topics. As we see, the graph seems to linearly increase with a very
small dip at around the right number of topics. The reason for the dip not being
significant can again be attributed to the number of dimensions being not very
large (555 in this case). However, it is easy to infer a broad range for the right
number of topics from the plot.

NIPS Dataset/ AP corpus. We now present our results on two real world
text datasets. The first one is a standard collection of bag-of-words from NIPS
corpus [15] containing 1500 documents with a total of 1932365 words and 12419
dimensions (vocabulary). The plot of our measure for this dataset is shown in left
pane of Figure 5 has a dip in the range 100 - 120. [13] compares LDA performance
on the same dataset using different number of processors. They consider topics
till 80 and observe that irrespective of the processor count,LDA perplexity value
goes down from 20 topics to 80 topics on a held out dataset.

1 A - Adventure, Au - Autobiography, B - Biography, C - Children, D - Drama, F -

Fiction Hi - History, Hu - Humour, M - Mystery, Ph - Philosophy, Po - Politics, Ps

- Psychology R - Religion, Ro - Romance, Sc - Science, Sp - Spirituality, T - Travel,

W - War.
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Fig. 4. Plot showing how the proposed measure varies with number of topics for Toy

Dataset (Left) and Authorship Dataset(Right)

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Topics

S
ym

m
et

ric
 K

L 
D

iv
er

ge
nc

e

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of Topics

S
ym

m
et

ric
 K

L 
D

iv
er

ge
nc

e

Fig. 5. Plot showing how the proposed measure varies with number of topics for NIPS

abstract Dataset (Left) and Associated Press corpus Dataset(Right). The dip is seen

the right number of topics for which lowest perplexity is reported.

The second is a collection of articles from the Associated Press dataset [15]
containing 2246 documents with 435839 words and 10473 dimensions. The pro-
posed measure plot is shown in the right pane of Figure 5. The best number
of topics is seen at around 140. [3] reports that the perplexity reduces until the
number of topics is 100 and then there seems to be very little change in the range
100 to 200. But in our case, we observe a steady increase after 130 to 140 topics
which is a smaller range for fixing the topic number than what the perplexity
values indicate.

5 Discussions and Conclusion

While it might seem that in using the proposed measure, LDA has to be run
once for every topic to get to the right number of topics. But this need not
be the case always. In most real world datasets, we observe that the variance
between divergence values decreases significantly when the right number of topics
is reached. This could be taken as a cue to jump appropriately to get nearer to
the correct topic number.
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Also we mention two points for clarification and emphasis. The first is that
comparing the Singular value distribution with the row L2 norm distribution
is not very useful as the measure will not increase once the right number of
topics is reached and so it becomes tough to guess the right range of topics. The
second point is that Singular value distribution cannot be compared directly
with the row L1 norm of the M1 matrix because of its stochasticity. Hence we
need to reconstruct the corpus topic distribution from the matrix M2. Also it
is not correct to compare the singular value distribution (or the row L2 norm)
with the column L2 norm of M2 as the components in a column vector of M2
represent distribution over individual documents which will not be same as the
distribution over words.

To summarize, we have proposed a new measure for identifying the right
number of topics in a give corpus by looking at distributions generated from
Topic-Word and Document-Topic matrix outputs of LDA. We showed that the
distribution over singular values is close to the distribution over row L2 norm
when the topics become orthogonal . Further, in high dimension the distribution
over L1 and L2 norms tend to converge for random matrices and hence become
candidates for comparison. The measure proposed combines these two facts and
compares the singular value distribution of Topic-Word matrix with the row
L1 norm of the Document-Topic matrix. to We illustrated the efficacy of the
measure by testing it on several real world and synthetic datasets and on both
text and images.

In the future, We hope to explore further in the direction of arriving at more
robust theoretical justifications and possible worst case bounds for the proposed
measure.
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Abstract. In this paper, we investigate the text classification and regression prob-
lems: given a corpus of text documents as training, each of which has a response
label, the task is to train a predictor for predicting its response of any given docu-
ment. In previous work, many researchers decompose this task into two separate
steps: they first use a generative latent topic model to learn low-dimensional se-
mantic representations of documents; and then train a max-margin predictor using
them as features. In this work we demonstrate that it is beneficial to combine both
steps of learning low-dimensional representations and training a predictor into
one step of minimizing a singe learning objective. We present a novel step-wise
convex optimization algorithm which solves this objective properly via a tight
variational upper bound. We conduct an extensive experimental study on public
available movie review and 20 Newsgroups datasets. Experimental results show
that compared with state of art results in the literature, our one step approach
can train noticeably better predictors and discover much lower-dimensional rep-
resentations: a 2% relative accuracy improvement and a 95% relative number of
dimensions reduction in the classification task on the Newsgroups dataset; and a
5.7% relative predictive R2 improvement and a 55% relative number of dimen-
sions reduction in the regression task on the movie review dataset.

1 Introduction

With tremendous text information made available online, there is a growing demand
to analyze and manage large corpuses of electronic text. Learning low-dimensional se-
mantic representations of text documents is a common and often necessary step for
various applications and text analyses. For example, this low-dimensional semantic rep-
resentation has been used for structurally browsing a text corpus and categorizing and
clustering text documents in information retrieval domain.

A recent trend in learning low-dimensional semantic representations focuses on gen-
erative latent probabilistic models based on so-called topics. The belief behind those
latent topic models is that a document consisting of a large number of words might be
concisely described as a smaller number of semantic themes. A topic is a probability
distribution over words of a vocabulary, and is used to statistically describe a semantic
theme. Then, a document is semantically represented as a mixture of topics.

In the literature, most popular latent topic models are Latent Dirichlet Allocation
(LDA) [2] and Probabilistic Latent Semantic Analysis (pLSA) [5]. Particularly, LDA

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 403–414, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is a Bayesian version of pLSA. Both models are unsupervised to simultaneously dis-
cover topics and low-dimensional topic representations of documents, and have been
successfully used in various applications [7,3].

Unfortunately, semantic representations produced in this unsupervised manner may
not necessarily be good features for classification and regression tasks. The reason is
that topics are learned without considering document labels to be predicted, for exam-
ple the categories of news postings. Those unsupervised learned topics describe seman-
tic themes that generally happen in all documents and don’t describe semantic themes
discriminative across document categories. Therefore, semantic representations of doc-
uments based on general topics are not well distinctive against document categories and
those two-step approaches of building predictors subsequently on them would result in
sub-optimal performance. We believe that topics should contain as much discriminative
information as possible from document labels such that semantic representations based
on them are suitable for prediction.

In this paper, we propose an approach to integrate the latent topic model for learning
low-dimensional semantic representations and support vector machine or regression for
training max-margin predictors into one single learning objective. By coupling them
together, we are able to supervise the latent topic model with benefits of the maximum
margin principle, and guide it to discover topics describing discriminative information
and generate semantic representations more suitable for prediction tasks. Due to the op-
timization hardness of the single learning objective, we propose a tight variational upper
bound for the single learning objective and develop a novel step-wise convex algorithm
for optimizing the upper bound. For both classification and regression tasks, we present
experiments showing that our approach can achieve better predictive power and is able
to discover much lower dimensional representations than two-step approaches and also
three state of art methods.

2 Preliminaries

We first introduce notations that will be used throughout the paper; then review latent
topic models and max-margin classifier and regressor.

A text document d is a sequence of N words <w1w2 . . . wN>, where each word is from
a fixed vocabulary with totally V words. Following a common bag-of-word assumption,
we represent this document as a bag of words. The document could have a response
label y, which is either a categorical class, or a continuous real number. Let D be a
corpus of M labeled documents. The problem in this work is to learn a good predictor
using D as training data for predicting the response label of a new document.

2.1 Latent Topic Model

To represent a document by semantic topics, we define a K-topic vocabulary T . Each
topic t of T is a multinomial distribution of all words in the vocabulary, i.e. {p(w|t)}w=1..V ,
simply denoted as βt,:. We also let β be the set of all topics, i.e., {βt,:}t=1..K . Then, we
can represent the document by a topic mixture proportion θ = {p(t)}t=1..K .

This topic representation implies a generative process to documents. For each word
wn in a document d, we
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1. draw a topic assignment zn|θ ∼ Mult(θ), where zn has the 1-of-K representation;
2. draw the word wm|zn, β ∼ Mult(βzn,:).

Both LDA and pLSA are based on the above generative process. The difference is that
LDA introduces a Dirichlet prior to θ for alleviating the potential overfitting problem
of pLSA. For classification and regression tasks, both models show no difference in
prediction performance. Therefore, to keep our approach simple, we recruit pLSA as
the topic model in our approach.

Given a corpus D with M documents, pLSA minimizes the following negative log
likelihood to learn topics β and also estimate topic proportion θ for each document:

min
Θ,β

−L(D; Θ, β) = −
M∑

m=1

Nm∑
n=1

log
K∑

zm,n=1

p(zm,n|θm)p(wm,n|βzm,n,:),

where Θ = {θm}m=1..M denotes the collection of all topic proportions. We let z̄m =
1

Nm

∑Nm
n=1 zm,n, which is the empirical topic proportion of document m, and let Z̄ =

{z̄m}m=1..M denote the set of all empirical topic proportions of D.

2.2 Max-margin Classification and Regression

The empirical topic proportion z̄m from the latent topic model and the document label
ym are used to build max-margin predictors, for example support vector machine (SVM)
[4] for classification and support vector regressor (SVR) [10] for regression.

For example, if ym ∈ {−1, 1} is a binary categorical label, we can learn a SVM <ω, b>

from the corpus D for classification by minimizing the following loss function:

min
ω,b

C(ω, b, Z̄) =
1

M

M∑
m=1

max{0, 1 − ym(ωT z̄m + b)} + λ||ω||2,

where the first term measures the classification error of < ω, b > and the second is a
penalty term on ω to avoid over-fitting. Similarly, if ym is continous, we can learn a
SVR <ω, b> with a pre-defined precision ε from Corpus D for regression by minimizing
the following loss function:

min
ω,b

R(ω, b, Z̄)=
1

M

M∑
m=1

{max{0,ym−ε−ωTz̄m−b} + max{0,ωT z̄m+b−ym−ε}}+λ||ω||2,

where the first term measures the prediction error of <ω, b> on the ε precision, and the
second is a penalty term on ω too.

Because z̄m is a hidden variable, we need to minimize the expected two loss functions
EZ̄(C(ω, b, Z̄)) and EZ̄(R(ω, b, Z̄)). But, it is hard to compute them because of the non-
integrable max function in two loss functions. To circumvent this difficulty, two-step
approaches minimize C(ω, b, E(Z̄)) and R(ω, b, E(Z̄)) instead. Because E(Z̄) has a closed
form Θ, this alternative makes possible using standard SVM and SVR solver.

However, we find that both R(ω, b, Z̄) and C(ω, b, Z̄) are convex on Z̄. Therefore,
C(ω, b, E(Z̄)) and R(ω, b, E(Z̄)) are lower bounds of EZ̄ (C(ω, b, Z̄)) and EZ̄(R(ω, b, Z̄)) re-
spectively according to Jensen’s inequality. It is obvious that minimizing lower bounds
of EZ̄(C(ω, b, Z̄)) and EZ̄(R(ω, b, Z̄)) in two-step approaches are problematic and doesn’t
guarantee EZ̄(C(ω, b, Z̄)) and EZ̄ (R(ω, b, Z̄)) themselves to be minimized too.
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3 Framework of Supervising Latent Topic Model

As discussed in the introduction, the goal is to learn semantic topics β describing dis-
criminative themes among documents in the corpus D such that representations of doc-
uments by those discriminative topics could be suitable for prediction purpose.

To achieve this goal, two requirements should be satisfied together. On one hand,
topics β should be common to make possible a to-be-predicted document be well de-
scribed by them too. This suggests that the negative log likelihood of the latent topic
model −L(D; Θ, β), which measures how data fits those topics β, should be minimized.
On the other hand, the empirical topic proportions Z̄ can be used to build good pre-
dictors. It implies that the expected loss functions EZ̄(C(ω, b, Z̄)) and EZ̄(R(ω, b, Z̄)) of
SVM and SVR, which measure how well they are used for prediction, should be mini-
mized too.

To satisfy both requirements together, we intuitively couple them linearly by a posi-
tive tradeoff η to a single learning objective. For classification and regression tasks, we
need to minimize the following single learning objectives respectively:

min
Θ,β,ω,b

−L(D; Θ,β) + ηEZ̄ (C(ω, b, Z̄)) (1)

min
Θ,β,ω,b

−L(D; Θ, β) + ηEZ̄ (R(ω, b, Z̄)) (2)

Therefore, in the single learning objectives, the expected losses of max-margin predic-
tors are used to penalize or supervise the latent topic model to generate discriminative
topics suitable for prediction. We name this framework maximum margin latent topic
model, shortly denoted as MMpLSA.

To solve those two learning problems, we have to remove or integrate out hidden
variables zm,n so that convex optimization could be applied to them.

In the log likelihood function, it is easy to remove hidden variables zm,n by utiltizing
the multinomial distribution of zm,n. We have the following alternative form of the log
likelihood function:

−L(D; Θ,β)=−
M∑

m=1

Nm∑
n=1

log
K∑

zm,n=1

p(zm,n|θm)p(wm,n|βzm,n,:)=−
M∑

m=1

Nm∑
n=1

log θT
mβ:,wm,n ,

where β:,wm,n={βk,wm,n
}k=1..K is the vector of probabilities of word wm,n in all topics

respectively.
However, no closed forms exist for EZ̄(C(ω, b, Z̄)) and EZ̄ (R(ω, b, Z̄)) because of

non-integrable max functions involved in them. One way to circumvent this closed
form trouble as two-step approaches is using C(ω, b, E(Z̄)) and R(ω, b, E(Z̄)) to replace
EZ̄(C(ω, b, Z̄)) and EZ̄(R(ω, b, Z̄)) in the learning objectives. But, this way will have the
same problem as two step approaches: minimizing lower bounds of single learning ob-
jectives doesn’t guarantee they will be small too.

Instead, in this work, we propose tight closed form upper bounds of EZ̄(C(ω, b, Z̄))

and EZ̄(R(ω, b, Z̄)) such that when tight upper bounds are minimized, single learning
objectives are approximately minimized too.
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3.1 Variational Upper Bounds for Expected Max-margin Loss Functions

We first propose a variational upper bound for the max function max{0, x}, and then give
upper bounds of EZ̄(C(ω, b, Z̄) and EZ̄(R(ω, b, Z̄)).

The function max{0, x} has an upper bound gγ(x) [12], which is defined as below:

gγ(x)=
x

2
+

1

γ
log(exp(−γx

2
)+exp(

γx

2
)). (3)

It is easy to show that max{0,x} < gγ(x) when γ > 0. This upper bound is tight because
for any x, limγ→∞(gγ(x)−max{0,x}) = 0. Let fγ(x) = 1

γ log((exp(−γx
2 ) + exp(γx

2 ))). It is
a concave function to the variable x2 [6], and thus its first order Taylor expansion at the
variable x2 is a global upper bound,

fγ(x) ≤ fγ(ψ) +
1

4γψ
tanh(

γψ

2
)(x2 − ψ2). (4)

Note that this upper bound is exact whenever ψ2 = x2. Combining Eq.3 and 4 yields the
desired variational upper bound of max{0, x},

max{0, x} <
x

2
+ fγ(ψ) +

1

4γψ
tanh(

γψ

2
)(x2 − ψ2), (5)

where ψ is a variational variable which gives the upper bound one degree of freedom to
tightly approximate the max function.

Based on the variational upper bound of max function, we then give the variational
upper bound of EZ̄(C(ω, b, Z̄)). For a document m and its empirical topic proportion z̄m,
we have E(z̄m) = θm and E(z̄mz̄T

m) = (Nm−1)/Nm ·θmθT
m +1/Nm diag(θm), denoted as

Ωm. Putting them with Eq. 5 and knowledge of y2
m = 1 together leads to an expected

upper bound of max{0,1−ym(ωTz̄m+b)}:

E(max{0,1−ym(ωT z̄m+b)})

<E{1−ym(ωT z̄m+b)

2
+fγ(ψm)+

tanh(γψm/2)

4γψm
[(1−ym(ωT z̄m+b))2−ψ2

m]}

=
1−ym(ωTθm+b)

2
+fγ(ψm)+

tanh(γψm/2)

4γψm
[ωTΩmω+2ωTθm(b−ym)+(b−ym)2−ψ2

m].

We define this upper bound as Bγ(θm, ω, b, ψm), and then the variational upper bound of
EZ̄(C(ω, b, Z̄)) is 1

M

∑M
m=1 Bγ(θm, ω, b, ψm) + λ||ω||2.

Similarly, for regression, we have an expected upper bound max{0,ym−ε−ωTz̄m−b}+

max{0,ωT z̄m+b−ym−ε}:

E(max{0,ym−ε−ωTz̄m−b} + max{0,ωT z̄m+b−ym−ε})

< −ε+fγ(ψm)+
tanh(γψm/2)

4γψm
[ωTΩmω+2ωTθm(b−ym+ε)+(b−ym+ε)2−ψ2

m]

+ fγ(ψ∗
m)+

tanh(γψ∗
m/2)

4γψ∗
m

[ωTΩmω+2ωTθm(b−ym−ε)+(b−ym−ε)2−ψ∗2
m ].

We define this upper bound as Uγ(θm, ω, b, ψm, ψ∗
m), and then the variational upper

bound of EZ̄(R(ω, b, Z̄)) is 1
M

∑M
m=1 Uγ(θm, ω, b, ψm, ψ∗

m) + λ||ω||2.
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4 Optimization Procedure for Classification

Armed with the variational upper bound of the expected classification loss function
proposed in the previous section, we can approximately minimize the single learning
objective for classification (Eq. 1) by minimizing its following upper bound:

min
Θ,β,ω,b,Ψ

−
M∑

m=1

Nm∑
n=1

log θT
mβ:,wm,n + λ1

M∑
m=1

Bγ(θm, ω, b, ψm) + λ2||ω||2

subject to : θm,k > 0, m = 1 . . . M, k = 1 . . . K;

βk,v > 0, k = 1 . . . K, v = 1 . . . V ;

ΣK
k=1θm,k = 1, m = 1 . . . M ;

ΣV
v=1βk,v = 1, k = 1 . . . K;

where λ1 and λ2 are absorbed terms of the objective tradeoff η and constant 1/M and
parameter λ in the variational upper bound of the expected classification loss. Because
Θ and β are parameters of multinomial distributions, self-explained constraints as above
must be satisfied in this minimization.

It could be proved that this objective upper bound is variable-wise convex1. There-
fore, we could iteratively minimize it with respect to one of variables with the rest of
variables fixed. Because every iteration reduces its overall value, this iterative mini-
mization procedure will cause the value of objective upper bound to converge to a local
minimum. Next, we describe this iterative procedure below starting from the simplest
iterating step:

OPTIMIZE Ψ : Because variational variables are uncoupled to each other in the objec-
tive upper bound, we can divide the optimization for Ψ into M subproblems, one per
variational variable. There is only one term involving the variational variables in the
objective upper bound. Therefore, the objective upper bound is simplified to the below
for optimizing each variational variable:

min
ψm

Bγ(θm, ω, b, ψm),

which turns out to have a closed form solution ψm =
√

ωTΩmω+2ωTθm(b−ym)+(b−ym)2.

OPTIMIZE ω AND b: The first term of the objective upper bound doesn’t involve ω

and b and also all constraints don’t. With them dropped, the optimization for <ω,b> is
simplified to the following unconstrained optimization problem:

min
ω,b

λ1

M∑
m=1

Bγ(θm, ω, b, ψm) + λ2||ω||2,

which tries to choose <ω,b> for good prediction. The Hessian matrix of <ω,b> is:

H(<ω,b>) = λ1

M∑
m=1

{
tanh(γψm/2)

2γψm

[
Ωm θm

θT
m 1

]}
+ 2λ2

[
IK×K 0K×1

01×K 0

]
,

1 Due to the space limitation, we skip the proof in this writing. Please refer to [11] for details.
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where IK×K is the identity matrix and 0K×1 and 01×K are vectors with only 0s. This
Hessian matrix involves γ, which is supposed to be large enough for well approximating
the max function as shown in Sec 3.1. But when γ is big, the Hessian matrix could be ill-
conditioned, which will lead to the instability of our algorithm solving this optimization
problem. Our stable solution is that we first solve the minimization problem for a small
γ to get optimal ω and b, and based on them we solve this problem again for a bigger γ

to update optimal ω and b, and so on. In implementation, we start γ from 10 and increase
it by 20 until it reaches 200.

OPTIMIZE Θ: Topic proportion θms are uncoupled to each other. Therefore, we can di-
vide the optimization for Θ into M subproblems, one per topic proportion. By dropping
the third term of objective upper bound without involving Θ and constraints on β, the
optimization for Θ is simplified to the following constrained optimization problem:

min
θm

−
Nm∑
n=1

log θT
mβ:,wm,n +λ1Bγ(θm, ω, b, ψm)

subject to : θm,k > 0, k = 1 . . . K;

ΣK
k=1θm,k = 1.

The Hessian of θm is:

H(θm) =

Nm∑
n=1

β:,wm,nβT
:,wm,n

(θT
mβ:,wm,n)2

+ λ1
tanh(γψm/2)

2γψm
· Nm − 1

Nm
· ωωT,

which involves γ too and has the same ill-conditioned problem when γ is large as the
Hessian Matrix of <ω,b>. We use the same solution for stability as optimizing <ω,b>.

OPTIMIZE β: Only the first term of objective upper bound involves β. By keeping it and
also constraints on β, we simplify the optimization for β to the following constrained
optimization problem:

min
β

−
M∑

m=1

Nm∑
n=1

log θT
mβ:,wm,n

subject to : βk,v > 0, k = 1 . . . K, v = 1 . . . V

ΣV
v=1βk,v = 1, k = 1 . . . K.

Based on those optimization steps, the iterative optimization procedure for classifi-
cation is given in Algorithm 1. We discuss the implementation detail in the next section.

4.1 Implementation

In the beginning of the optimization procedure, for each topic t, we initialize its multino-
mial word distribution βt,: by sampling a dirichlet distribution with parameter (1, . . . , 1);
we also initialize each value of ω and b by sampling a standard normal distribution.

Every time when the optimization procedure optimizes β and ω and b, we do cross
validation to check whether currently learned β are good topics for prediction and <ω, b>

is a good classifier. In the cross validation of β, topic proportion θc of a document c
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Alg1: Optimization Procedure for Classification
Input: corpus D, model parameters λ1 and λ2,
and topic number K.
Output: β, ω and b.

1: Initialize β, ω and b;
2: repeat
3: for γ = 10; γ < 200; γ = γ + 20 do
4: repeat
5: Optimize Θ; Optimize Ψ ;
6: until convergence
7: end for
8: Optimize β;
9: for γ = 10; γ < 200; γ = γ + 20 do

10: repeat
11: Optimize ω and b; Optimize Ψ ;
12: until convergence
13: end for
14: Cross Validation on β.
15: until convergence
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Fig. 1. Experimental results of text classifica-
tion: Mean and variance of accuracies of the
proposed approach MMpLSA and the two-
step approach pLSA+SVM. MMpLSA per-
forms significantly better than pLSA+SVM.

preselected for cross validation is estimated by minimizing the negative log likelihood
with β fixed:

min
θc

−
Nc∑

n=1

log θT
cβ:,wc,n

subject to : θc,k > 0, k = 1 . . . K;

ΣK
k=1θc,k = 1.

Let z̄c be its empirical topic proportion. We predict its label by sign(E(ωTz̄c + b)), i.e.,
sign(ωTθc + b).

5 Optimization Procedure for Text Regression

Similar to classification, by utilizing the variational upper bound of the expected re-
gression loss function, we can approximately minimize the single learning objective for
regression (Eq. 2) by minimizing its following upper bound:

min
Θ,β,ω,b,Ψ,Ψ∗ −

M∑
m=1

Nm∑
n=1

log θT
mβ:,wm,n + λ1

M∑
m=1

Uγ(θm, ω, b, ψm, ψ∗
m) + λ2||ω||2

subject to : θm,k > 0, m = 1 . . . M, k = 1 . . . K;

βk,v > 0, k = 1 . . . K, v = 1 . . . V ;

ΣK
k=1θm,k = 1, m = 1 . . . M ;

ΣV
v=1βk,v = 1, k = 1 . . . K.

Due to space limitation, please refer to [11] for the detail of the optimization procedure,
which shares many commons with the optimization procedure for classification.
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Fig. 2. Experimental results of text classification: (Left) Accuracy mean of five runs of MMpLSA
and the accuracy of the run with best cross validation at different numbers of topics v.s. the best
result 0.830 of state of art model DiscLDA achieved at 60 topics; MMpLSA achieved the best
accuracy 84.7% with 3 topics, a 2% percent relative accuracy improvement and a 95% relative
number of topics reduction; (Right) Relative improvement ratio of accuracy mean of MMpLSA
against pLSA+SVM v.s. best relative ratio achieved by MedLDA

6 Experiments

In this section, we conducted experiments to evaluate our apporach MMpLSA with state
of art methods and also a baseline from two-step approaches; we report extensive per-
formance results on both text classification and regression. Our experiments are able
to demonstrate the advantages of applying the max-margin principle to supervise la-
tent topic models. MMpLSA can learn from data a compacter latent representation that
contains more plentiful information for prediction.

6.1 State of Art Approaches

There have been moderate efforts on supervising latent topic models for classification
and regression in the literature. The most earliest work is sLDA [1], which supervises
LDA for regression by assuming a normal distribution of the response y of a document
and also assuming y linearly dependent on its empirical topic proportion z̄, i.e., y ∼
N(μT z̄, σ2). But this normality assumption doesn’t hold for many real datasets. DiscLDA
[8] is a discriminative variant for classification. It assumes that topic proportions of each
class after a linear transformation should be nearby to each other. Parameters of linear
transformations are learned by maximizing the conditional likelihood of the response
classes. But DiscLDA can’t guarantee that topic proportions of different classes after
linear transformations are well separated, which is critical for classification.

Applying the max-margin principle to supervise latent topic models could avoid
drawbacks of sLDA and DiscLDA. For example, SVR doesn’t require document la-
bels to be normally distributed and SVM could help forcing topic proportions of dif-
ferent classes to be well separated by a good margin. The most recent MedLDA [13]
is an approach utilizing the max-margin principle. However, MedLDA uses the lower
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bounds of expected SVM and SVR loss functions to supervise latent topic models. It ex-
tremely simplifies inference algorithms, but it is problematic as we discuss in Section 3.
Our approach MMpLSA also recruits the max-margin principle to supervise latent topic
models. But different to MedLDA, we propose tight variational upper bounds of ex-
pected loss functions. Based on upper bounds, we develop a stepwise convex algorithm
for optimization, totally different to EM algorithms used by those existing approaches.

6.2 Text Classification

To be able to compare MMpLSA with DiscLDA and MedLDA, we also evaluated MM-
pLSA on the 20 Newsgroups dataset containing postings to Usenet newsgroups. As Dis-
cLDA and MedLDA, we formulated the same classification problem for distinguishing
postings from two newsgroups: alt.atheism and talk.relgion.misc, a hard task due to the
content similarity between them. We also used the training/testing split provided in the
20 Newsgroups dataset to make possible a fair comparison among them.

To obtain a baseline from two-step approaches, we first fit all the data to pLSA
model, and then used empirical topic proportions as features to train a linear SVM for
prediction. This baseline is denoted as pLSA+SVM for the rest of section.

For both pLSA+SVM and MMpLSA, 30% of training postings were randomly chosen
for cross validation. For the number of topics from 2 to 10, we ran the experiment
five times and report accuracies in the Fig. 1. We can observe that MMpLSA performs
much better than unsupervised pLSA+SVM. In other words, supervising the latent topic
model can discover discriminative topics for better classification.

We further compared MMpLSA with MedLDA and DiscLDA. Lacoste-Julien et al.[8]
reported that DiscLDA achieves best accuracy 83.0% at 60 topics. Zhu et al. [13]
didn’t report the accuracy of MedLDA, but reported the relative improvement ratio of
MedLDA against a two-step approach. The best relative improvement ratio is around
0.2, achieved at 20 topics. We show results of comparison between MMpLSA and them
in the Fig. 2.

Fig. 2 (Left) reports both the accuracy mean of five runs of MMpLSA and the accu-
racy of the run with best cross validation against the best accuracy of DiscLDA. We
can see that when the number of topics is small, MMpLSA is noticeably better than Dis-
cLDA. MMpLSA achieved the best accuracy 84.7% with 3 topics, a 2% relative accuracy
improvement and a 95% relative number of topics reduction. Therefore, compared with
DiscLDA, the max-margin principle used by MMpLSA helps in discovering much fewer
topics but with more discriminative information. However, when the number of topics
increased, the performance of MMpLSA downgraded. The possible reason is that dis-
criminative information is limited and using more than necessary topics to describe it
could cause over-fitting.

Fig. 2 (Right) illustrates relative improvement ratio of accuracy mean of MMpLSA
against pLSA+SVM v.s. best relative improvement ratio of MedLDA achieved at 20
topics. MMpLSA is better than MedLDA in all cases. It suggests that MMpLSA has ad-
vantages of learning more discriminative topics by using the upper bound of expected
classification loss in optimization not the lower bound as MedLDA.
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Fig. 3. Experimental results of text regression: (Left) Mean and variance of Predictive R2s from an
5-fold experiment of the proposed approach MMpLSA and the two-step approach pLSA+SVR;
(Right) Predictive R2 mean of MMpLSA at different numbers of topics v.s. the best result 0.50 of
state of art approach sLDA achieved at 20 topics. MMpLSA achieved the best pR2 0.5285 with 9
topics, a 5.7% relative pR2 improvement and a 55% relative number of topics reduction.

6.3 Text Regression

To compare MMpLSA with sLDA and MedLDA on regression, we evaluated MMpLSA
on the public available movie review dataset [9], in which each review is paired with a
rating within [0, 1]. The regression task is to predict the rating of a movie review.

To obtain a baseline from two-step approaches, we first fit training reviews to pLSA
model, and then used empirical topic proportions as features to train a linear SVR . We
denote this baseline as pLSA+SVR.

Following sLDA and MedLDA, we also ran an 5-fold experiment on the same dataset
to evaluate pLSA+SVR and MMpLSA, and assessed the quality of predictions by Pre-
dictive R2 (pR2) as sLDA and MedLDA. In this 5-fold experiment, when one fold was
for test, the rest were for training with 25% of reviews randomly chosen for tuning
parameters.

Fig. 3 (Left) shows the results. We can see that the supervised MMpLSA can get
much better results than the unsupervised two-step approach pLSA+SVR. Moreover,
the performance of MMpLSA is consistent for numbers of topics ranging from 5 to 25.
It suggests that MMpLSA can discover most discriminative information with few topics
and simply increasing number of topics won’t improve performance.

We further compared MMpLSA with sLDA and MedLDA. Zhu et al. [13] showed
that sLDA and MedLDA have similar performance and MedLDA is only better than
sLDA when the number of topics is small. For the 5-fold experiment, the best pR2 mean
was 0.50, achieved by sLDA with 20 topics. Fig. 3 (Right) compares the pR2 mean of
MMpLSA to this best result in the literature. MMpLSA is noticeably better than this best
result for all numbers of topics. MMpLSA achieved the best pR2 mean 0.5285 with 9
topics, a 5.7% relative pR2 improvement and a 55% relative number of topics reduction.

The experimental result shows again that applying the max-margin principle to su-
pervise latent topic models helps in discovering a much compacter semantic represen-
tation with more discriminative information for prediction than state of art approaches.
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7 Conclusions and Future Work

We have proposed MMpLSA that applies the max-margin principle to supervise latent
topic models for both classification and regression. MMpLSA integrates learning latent
topic representations and training a max-margin predictor into one single learning ob-
jective. This integration generates topics describing discriminative themes in the corpus
so that topic representations of documents are more suitable for prediction. Due to the
optimization hardness of single learning objectives, we proposed tight variational upper
bounds for them and developed step-wise convex procedures for optimizing those upper
bounds. We studied the predictive power of MMpLSA on movie review and 20 News-
groups data sets, and found that MMpLSA performed noticeably better in prediction with
significantly fewer topics than state of art models. These results illustrate the benefits
of the max-margin supervised latent topic model when dimension reduction and predic-
tion are the ultimate goals. However, discriminative information in documents is always
limited. MMpLSA could possibly over-fit documents if it is asked to discover more dis-
criminative topics than real discriminative topics existing in documents. Therefore, one
of future work could be introducing priors to topics in the MMpLSA for alleviating pos-
sible over-fitting.
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Abstract. We present a general framework for the task of extracting

specific information “on demand” from a large corpus such as the Web

under resource-constraints. Given a database with missing or uncertain

information, the proposed system automatically formulates queries, is-

sues them to a search interface, selects a subset of the documents, ex-

tracts the required information from them, and fills the missing values

in the original database. We also exploit inherent dependency within the

data to obtain useful information with fewer computational resources.

We build such a system in the citation database domain that extracts

the missing publication years using limited resources from the Web. We

discuss a probabilistic approach for this task and present first results. The

main contribution of this paper is to propose a general, comprehensive

architecture for designing a system adaptable to different domains.

1 Introduction

The goal of traditional information extraction is to accurately extract as many
fields or records as possible from a collection of unstructured or semi-structured
text documents. In many scenarios, however, we already have a partial database
and we need only fill in its holes. This paper proposes methods for finding such
information in a large collection of external documents, and doing so efficiently
with limited computational resources. For instance, this small piece of informa-
tion may be a missing record, or a missing field in a database that would be
acquired by searching a very large collection of documents, such as the Web.
Using traditional information extraction models for this task is wasteful, and in
most cases computationally intractable. A more feasible approach for obtaining
the required information is to automatically issue appropriate queries to the ex-
ternal source, select a subset of the retrieved documents for processing and then
extract the specified field in a focussed and efficient manner. We can further en-
hance our system’s efficiency by exploiting the inherent relational nature of the
database. We call this process of searching and extracting for specific pieces of
information, on demand, Resource-bounded Information Extraction (RBIE). In
this paper, we present the design of a general framework for Resource-bounded
Information Extraction, discuss various design choices involved and present ex-
perimental results.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 415–427, 2010.
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1.1 Example

Consider a database of scientific publication citations, such as Rexa, Citeseer
or Google Scholar. The database is created by crawling the web, downloading
papers, extracting citations from the bibliographies and then processing them
by tagging and normalizing. In addition, the information from the paper header
is also extracted. In order to make these citations and papers useful to the
users, it is important to have the year of publication information available. Even
after integrating the citation information with other publicly available databases,
such as DBLP, a large fraction of the papers do not have a year of publication
associated with them. This is because, often, the headers or the full text of the
papers do not contain the date and venue of publication (especially for preprints
available on the web). Approximately one third of the papers in Rexa are missing
the year of publication field. Our goal is to fill in the missing years by extracting
them from the web.

We chose this particular example task, since it demonstrates the relational
aspect of RBIE. Along with extracting headers, the bibliographic information
is often extracted, creating a citation network. This network information can
be further exploited by noting that in almost all cases, a paper is published
before (or the same year) as other papers that cite it. Using these temporal con-
straints, we obtain 87.7% of the original F1 by using only 13.2% of computational
resources such as queries and documents.

1.2 Motivation

The knowledge discovery and data mining community has long struggled with
the problem of missing information. Most real-world databases come with holes
in the form of missing records or missing feature values. In some cases, the values
exist, but there is considerable uncertainty about their correctness. Incomplete-
ness in the database provides incomplete responses to user queries, as well as
leads to less accurate data mining models and decision support systems. In order
to make the best use of the existing information, it is desirable to acquire missing
information from an external source in an efficient manner. The external source
can be another database that is purchased, or a large collection of free docu-
ments, such as the web. In the latter case, we may run information extraction
to obtain the missing values in our database. However, the traditional models of
information extraction can not be directly applied in this “on demand” setting.

Note that, in the setting described above, we are often not interested in obtain-
ing the complete records in the database, but just filling in the missing values.
Also, the corpus of documents, such as the web, is extremely large. Moreover, in
most real scenarios, we must work under pre-specified resource constraints. The
resource constraints may be computational, such as processors, network band-
width, or related to time and money. Any method that aims to extract required
information in the described setting must be designed to work under the given
resource constraints.
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Many of these databases are relational in nature, e.g. obtaining the value of
one field may provide useful information about the remaining fields. Similarly,
if the records are part of a network structure with uncertain or missing values,
as in the case of our example task, then information obtained for one node can
reduce uncertainty in the entire network. We show that exploiting these kinds
of dependencies can significantly reduce the amount of resources required to
complete the task.

In this paper, we propose a general framework for resource-bounded informa-
tion extraction, along with the design of a prototype system used to address the
task of finding missing years of publication in citation records. We also present
first results on this task.

2 Related Work

Resource-bounded Information Extraction encompasses several different types
of problems. It deals with extracting information from a large corpus, such as
the web; it actively acquires this information under resource constraints; and
it exploits the interdependency within the data for best performance. Here we
discuss various related tasks and how RBIE is uniquely positioned between them.

2.1 Traditional Information Extraction

In the traditional information extraction settings, we are given a database schema,
and a set of unstructured or semi-structured documents. The goal is to automat-
ically extract records from these documents, and fill in the values in the given
database. These databases are then used for search, decision support and data
mining. In recent years, there has been much work in developing sophisticated
methods for performing information extraction over a closed collection of doc-
uments, e.g. [3]. Several approaches have been proposed for different phases of
information extraction task, such as segmentation, classification, association and
coreference. Most of these proposed approaches make extensive use of statistical
machine learning algorithms, which have improved significantly over the years.
However, only some of these methods remain computationally tractable as the
size of the document corpus grows. In fact, very few systems are designed to
scale over a corpus as large as, say, the Web [2,15].

2.2 Information Extraction from the Web

There are some large scale systems that extract information from the web.
Among these are KnowItAll [2], InfoSleuth [11] and Kylin [14]. The goal of
the KnowItAll system is a related, but different task called, “Open Information
Extraction”. In Open IE, the relations of interest are not known in advance, and
the emphasis is on discovering new relations and new records through extensive
web access. In contrast, in our task, what we are looking for is very specific
and the corresponding schema is known. The emphasis is mostly on filling the
missing fields in known records, using resource-bounded web querying. Hence,
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KnowItAll and RBIE frameworks have very different application domains. In-
foSleuth focuses on gathering information from given sources, and Kylin focuses
only on Wikipedia articles. These systems also do not aim to exploit the inherent
dependency within the database for maximum utilization of resources.

The Information Retrieval community is rich with work in document relevance
(TREC). However, traditional information retrieval solutions can not directly be
used, since we first need to automate the query formulation for our task. Also,
most search engine APIs return full documents or text snippets, rather than
specific feature values.

A family of methods closely related to RBIE, is question answering systems
[8]. These systems do retrieve a subset of relevant documents from the web, along
with extracting a specific piece of information. However, they target a single piece
of information requested by the user, whereas we target multiple, interdependent
fields of a relational database. They formulate queries by interpreting a natural
language question, whereas we formulate and rank them based on the utility of
information within the database. They do not address the problem of selecting
and prioritizing instances or a subset of fields to query. This is why, even though
some of the components in our system may appear similar to that of QA systems,
their functionalities differ. The semantic web community has been working on
similar problems, but their focus is not targeted information extraction.

2.3 Active Information Acquisition

Learning and acquiring information under resource constraints has been studied
in various forms. Consider these different scenarios at training time: active learn-
ing selects the best instances to label from a set of unlabeled instances; active
feature acquisition [10] explores the problem of learning models from incomplete
instances by acquiring additional features; budgeted learning [9] identifies the
best set of acquisitions, given a fixed cost for acquisitions. More recent work
[12] deals with learning models using noisy labels. At test time, the two common
scenarios are selecting a subset of features to acquire [13,1,7], and selecting the
subset of instances for which to acquire features [6,5].

The interdependency within the data set is often conveniently modeled using
graphs, but it poses interesting questions about selection of instances to query
and propagating uncertainty through the graph [4]. In [5], the test instances are
not independent of each other, and the impact of acquisition in the context of
graph partitioning is studied. The general RBIE framework described in this pa-
per aims to leverage these methods for both train and test time for optimization
of query and instance selection.

In summary, RBIE requires a comprehensive architecture for efficiently inte-
grating multiple functionalities, such as instance and query selection, automatic
query formulation, and targeted information extraction by exploiting inherent
data dependency under limited resources. This leads us to the new framework
presented in this paper.
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3 A General Framework for Resource-Bounded
Information Extraction

As described in the previous section, we need a new framework for performing
information extraction to automatically acquire specific pieces of information
from a very large corpus of unstructured documents. Fig. 1 shows a top-level
architecture of our proposed framework. In this section, we discuss the general
ideas for designing a resource-bounded information extraction system. Each of
these modules may be adapted to suit the needs of a specific application, as we
shall see for our example task.

Fig. 1. General Framework for Resource-bounded Information Extraction

3.1 Overview of the Architecture

We start with a database containing missing values. In general, the missing
information can either be a complete record, or values of a subset of the features
for all records, or a subset of the records. We may also have uncertainty over the
existing feature values that can be reduced by integrating external information.
We assume that the external corpus provides a search interface that can be
accessed automatically, such as a search engine API.

The information already available in the database is used as an input to the
Query Engine. The basic function of the query engine is to automatically formu-
late queries, prioritize them optimally, and issue them to a search interface. The
documents returned by the search interface are then passed on to the Document
Filter. Document Filter removes documents that are not relevant to the original
database and ranks the remaining documents according to the usefulness of each
document in extracting the required information.

A machine learning based information extraction system extracts relevant
features from the documents obtained from the Document Filter, and combines
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them with the features obtained from the original database. Hence, information
from the original database and the external source is now merged, to build a
new model that predicts the values of missing fields. In general, we may have
resource constraints at both training and test times. In the training phase, the
learned model is passed to the Confidence Evaluation System, which evaluates
the effectiveness of the model learned so far and recommends obtaining more
documents through Document Filter, or issuing more queries through the Query
Engine in order to improve the model. In the test phase, the prediction made by
the learned model is tested by the Confidence Evaluation System. If the model’s
confidence in the predicted value crosses a threshold, then it is used to fill (or to
replace a less certain value) in the original database. Otherwise, the Confidence
Evaluation System requests a new document or a new query to improve the
current prediction. This loop is continued until either all the required information
is satisfactorily obtained, or we run out of a required resource. Additionally,
feedback loops can be designed to help improve performance of Query Engine
and Document Filter.

This gives a general overview of the proposed architecture. We now turn to a
more detailed description for each module, along with the many design choices
involved while designing a system for our specific task.

3.2 Task Example: Finding Paper’s Year of Publication

We present a concrete resource-bounded information extraction task and a prob-
abilistic approach to instantiate the framework described above: We are given a
set of citations with fields, such as, paper title, author names, contact informa-
tion available, but missing year of publication. The goal is to search the web and
extract this information from web documents to fill in the missing year values.
We evaluate the performance of our system by measuring the precision, recall
and F1 values at different confidence levels. The following sections describe the
architecture of our prototype system, along with possible future extensions.

3.3 Query Engine

The basic function of query engine is to automatically formulate queries, pri-
oritize them optimally, and issue them to a search interface. There are three
modules of query engine. The available resources may allow us to acquire the
values for only a subset of the fields, for a subset of the records. Input selection
module decides which feature values should be acquired from the external source
to optimize the overall utility of the database. The query formulation module
combines input values selected from the database with some domain knowledge,
and automatically formulates queries. For instance, a subset of the available
fields in the record, combined with a few keywords provided by the user, can
form useful queries. Out of these queries, some queries are more successful than
others in obtaining the required information. Query ranking module ranks the
queries in an optimal order, requiring fewer queries to obtain the missing values.
In the future, we would like to explore sophisticated query ranking methods,
based on the feedback from other components of the system.
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In our system, we use existing fields of the citation, such as paper title and
names of author, and combine them with keywords such as “cv”, “publication
list”, etc. to formulate the queries. We experiment with the order in which we
select citations to query. In one method, the nodes with most incoming and
outgoing citation links are queried first. We issue these queries to a search API
and the top n hits (where n depends on the available resources) are obtained.

3.4 Document Filter

The primary function of the document filter is to remove irrelevant documents
and prioritize the remaining documents for processing. Following are the two
main components of the Document Filter. Even though queries are formed using
the fields in the database, some documents may be irrelevant. This may be due
to the ambiguities in the data (e.g. person name coreference), or simply imper-
fections in retrieval engine. Initial filter removes documents which are irrelevant
to the original database. The remaining documents are then ranked by docu-
ment ranker, based on their relevance to the original database. Remember that
the relevance used by the search interface is with respect to the queries, which
may not necessarily be the same as the relevance with respect to the original
database. In the future, we would like to learn a ranking model, based on the
feedback from the information extraction module (via Confidence Evaluation
System) about how useful the document was in making the actual prediction.

In our system, many of the returned documents are not relevant to the orig-
inal citation record. For example, a query with an author name and keyword
“resume” may return resumes of different people sharing a name with the paper
author. Hence, even though these documents are relevant to an otherwise use-
ful query, they are irrelevant to the original citation. Sometimes, the returned
document does not contain any year information. The document filter recognizes
these cases by looking for year information and soft matching the title with body
of the document.

3.5 Information Extraction

The design of this module differs from traditional information extraction, posing
interesting challenges. We need a good integration scheme to merge features from
the original database with the features obtained from the external source. As
new information (documents) arrives, the parameters of the model need to be
updated incrementally (at train time), and the confidence in the prediction made
by the system must be updated efficiently (at test time).

Probabilistic Prediction Model. In our task, the field with missing values
can take one of a finite number of possible values (i.e. a given range of years).
Hence, we can view this extraction task as a multi-class classification problem.
Features from the original citation and web documents are combined to make
the prediction using a maximum entropy classifer.

Let ci be a citation (i = 1, . . . , n), qij be a query formed using input from
citation ci and dijk be a document obtained as a result of qij . Assuming that we
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use all the queries, we drop the index j. Let yi be a random variable that assigns
a label to the citation ci. We also define a variable yik to assign a label to the
document dik. If Y is the set of all years in the given range, then yi, yik ∈ Y .
For each ci, we define a set of m feature functions fm(ci, yi). For each dik, we
define a set of l feature functions flk(ci, dik, yik). For our model, we assume that
fm(ci, yi) is empty. This is because the information from the citation by itself is
not useful in predicting the year of publication. In the future, we would like to
design a more general model that takes these features into account. We can now
construct a model given by

P (yik|ci, dik) =
1
Zd

∑
l

exp(λlfl(ci, dik, yik)), (1)

where Zd =
∑

y exp(λlfl(ci, dik, yik))

Combining Evidence in Feature Space vs. Output Space. The above
model outputs yik instead of the required yi. We have two options to model
what we want. We can either merge all the features flk(ci, dik, yik) from dik’s to
form a single feature function. This is equivalent to combining all the evidence
for a single citation in the feature space. Alternatively, we can combine the
evidence from different dik’s in the output space. Following are two possible
schemes for combining the evidence in the output space. In the first scheme, we
take a majority vote, i.e., the class with the highest number of yik is predicted
as the winning class and assigned to yi. In the second scheme, highest confidence
scheme, we take the most confident vote, i.e., yi = argmaxyik

P (yik|ci, dik)

3.6 Uncertainty Propagation in Citation Graph

The inherent dependency within the given data set can be exploited for better
resource utilization. In our case, the citation link structure can be used for infer-
ring temporal constraints. For example, if paper A cites paper B, then assuming
that papers from future can’t be cited, we infer that B must have been published
in the same or earlier year than A. Initially, we have no information about the
publication year for a citation. As information from the web arrives, this uncer-
tainty is reduced. If we propagate this reduction in uncertainty (or belief) for
one of the nodes through the entire graph, we may need fewer documents (or
fewer queries) to predict the publication year of the remaining nodes. Selecting
the citations to query in an effective order may further improve efficiency.

Notation. Let c ∈ C be the citation which is currently being queried. Let
a → b denote that citation a cites citation b. Let CB = {cb|cb → c} and CA =
{ca|c → ca}. Let X be the random variable that represents year of publication
of c; Pc(X = x) be the probability that it takes one of finite values in the given
range, and P ′(X = x) be the posterior probability from the Document Classifier.

Propagation Methods. The method Best Index passes the uncertainty mes-
sage to the neighbors of c as follows:

∀cb ∈ CBPcb
(X = x) = P (X = x|x ≥ y) (2)
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∀ca ∈ CAPca(X = x) = P (X = x|x < y) (3)

Where y = argmaxyP ′
c(X = y). P (X = x|x ≥ y) and P (X = x|x < y) are given

by one of the update methods described below. The method Weighted Average
takes a weighted average over all possible y′s:

∀cb ∈ CBPcb
(X = x) = P ′

c(X = y)
∑

y

P (X = x|x ≥ y) (4)

∀ca ∈ CAPca(X = x) = P ′
c(X = y)

∑
y

P (X = x|x < y) (5)

Update Methods. If we know that the given paper was published after a
certain year, then we can set the probability mass from before the corresponding
index to zero and redistribute it to the years after the index. We only show update
in one direction here for brevity. The first update method, Uniform Update,
simply redistributes the probability mass, P (x ≥ y) uniformly to the remaining
years. The second update method, Scale Update, uses conditional probability.

P (X = x|x ≥ y) = 0, x < y (6)

= P (X = x) +
1

P (x ≥ y)
, x ≥ y (7)

P (X = x|x ≥ y) = 0, x < y (8)

=
P (X = x)
P (x ≥ y)

, x ≥ y (9)

Combination Methods. Along with passing a message to its neighbors, the
node updates itself by combining information from the Document Classifier and
the graph structure.

Pc(X = x) = P ′
c(X = y)

∑
y

P (X = x|x = y) (10)

The following options can be used for computing Pc(X = x). Basic, P (X =
x|x = y) Product Pc(X = x) ∗ P ′

c(X = x) and Sum Pc(X = x) + P ′
c(X = x)

3.7 Confidence Evaluation System

At train time, after adding each new training document, the Confidence Eval-
uation System can measure the ‘goodness’ of the model by evaluating it on a
validation set. At test time, confidence in the prediction improves as more in-
formation is obtained. It sets a threshold on the confidence, to either return
the required information to the database, or to request more information from
external source. It also makes the choice between obtaining a new document or
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to issue a new query at each iteration, by taking into account the cost and util-
ity factors. Finally, it keeps track of the effectiveness of queries and documents
in making a correct prediction. This information is useful for learning better
ranking models for Query Engine and Document Filter.

In our system, we train our model using all available resources, and focus on
evaluating test time confidence. For merging evidence in the output space, we
employ two schemes. In max votes, we make a prediction if the percentage of
documents in the winning class crosses a threshold. In highest confidence, we
make a prediction if P (yik|ci, dik) value of the document with the highest P in
the winning class passes a threshold. These schemes help determine if we have
completed the task satisfactorily. For combining evidence in feature space, we
use the Entropy Method, in which we compute the value H = −∑i pi log pi of
the current distribution, and compare it against the confidence threshold.

4 Experimental Description and Results

4.1 Dataset and Setup

Our data set consists of five citation graphs (462 citations) , with years of pub-
lication ranging from 1989 to 2008. The sampling process is parameterized by
size of the network (20-100 citations per graph) and density (min in-degree = 3
and min out-degree = 6). We use five-fold cross validation on these data sets for
all our experiments. We use the Mallet infrastructure for training and testing,
and the Google search API to issue queries. The queries formed using the in-
formation from input citations include the raw title, title in quotes, and author
names combined with keywords like “publication list”, “resume”, “cv” , “year”
and “year of publication”. We issue queries in a random order, and obtain top 10
hits from google. We use around 7K queries and obtain around 15K documents
after filtering. The documents are tokenized and tokens are tagged to be possi-
ble years using a regular expression. The document filter discards a document
if there is no year information found on the webpage. It also uses a soft match
between the title and all n-grams in the body of the page, where n equals the
title length. The selected documents are passed on in a random order to the
MaxEnt model, which uses the following features for classification: Occurrence
of a year on the webpage; the number of unique years on the webpage; years on
the webpage found in any particular order; the years that immediately follow
or precede the title matches; the distance between a ‘surrounding’ year and its
corresponding title match and occurrence of the same ‘following’ and ‘preceding’
year for a title match.

4.2 Results and Discussion

We first run our RBIE system without exploiting the citation network informa-
tion. We first present the results for combining evidence in the feature space. We
measure Precision, Recall and F1 based on using a confidence threshold, where
F1 is the harmonic mean of precision and recall. As seen in table 1, as we increase
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Table 1. Baseline results

Entropy Threshold Precision Recall F1 #Queries #Docs

0.1 0.9357 0.7358 0.8204 4497 9564

0.3 0.9183 0.8220 0.8666 3752 8010

0.5 0.9013 0.8718 0.8854 3309 7158

0.7 0.8809 0.9041 0.8909 2987 6535

0.9 0.8625 0.9171 0.8871 2768 6088

Fig. 2. The change in F1 v.s. the change in use of resources

(a) Highest Confidence Vote (b) Highest Confidence Vote

Highest Confidence Max Votes Confidence

(c) Majority Vote (d) Majority Vote

Highest Confidence Vote Max Votes Confidence

Fig. 3. Different combinations of voting and confidence evaluation schemes

the entropy threshold, precision drops, as expected. F1 peaks at threshold 0.7.
Note that the number of documents is proportional to the number of queries,
because in our experiments, we stop obtaining more documents or issuing queries
when the threshold is reached.

Next, we present the results of exploiting citation network information for
better resource utilization. Fig. 2 shows F1 as well as the fraction of the total
documents used for the baseline method, and for one of the graph based method
(Weighted Avg propagation, Scaling update, and Basic combination). The F1
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Table 2. Comparison of Uncertainty Propagation Methods

Update Combination F1 for Best Index F1 for Weighted Avg

Uniform Basic 0.7192 0.7249

Uniform Sum 0.7273 0.5827

Uniform Product 0.6475 0.3460

Scaling Basic 0.7249 0.7249

Scaling Sum 0.6875 0.5365

Scaling Product 0.6295 0.4306

values are smaller compared to the baseline because we use far fewer resources,
and the uncertainty propagation methods are not perfect. Using this method,
we are able to achieve 87.7% of the baseline F1, by using only 13.2% of the
documents. This demonstrates the effectiveness of exploiting relational nature of
the data. Table 2 shows the results of different uncertainty propagation methods
at entropy threshold 0.7.

We also experiment with combining evidence in the output space using the
two schemes described in section 3.5, and the confidence evaluation schemes
described in section 3.7. Fig. 3 shows the four precision-recall curves. We see
that for High Confidence Confidence evaluation scheme (fig. 3(a),(c)), we obtain
high values of precision and recall for reasonable values of confidence. That is,
in the confidence region below 0.9, we obtain a good F1 value. Especially, the
Majority Vote - High Confidence scheme (fig. 3(c)) performs exceptionally well
in making predictions. However, in the confidence region between 0.9 to 1.0, the
Max Vote scheme (fig. 3(b),(d)) gives a better degradation performance.

5 Conclusion and Future Work

We propose a new framework for targeted information extraction under resource
constraints to fill missing values in a database. We present first results on an
example task of extracting missing year of publication of scientific papers, along
with exploiting the underlying citation network for better resource utilization.
The overall framework is flexible, and can be applied to a variety of problem do-
mains and individual system components can be adapted to the task. The specific
methods recommended here can also be generalized in many different relational
domains, especially when the dataset has an underlying network structure. In
future, we would like to explore more sophisticated uncertainty propagation
methods, such as belief-propagation. We would also like to develop individual
components like Query Engine and Document Filter, by using good ranking
procedures. Finally, it would be interesting to see how these methods extend to
extracting multiple interdependent fields.
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Abstract. Deep web refers to the hidden part of the Web that remains unavail-
able for standard Web crawlers. To obtain content of Deep Web is challenging 
and has been acknowledged as a significant gap in the coverage of search en-
gines. To this end, the paper proposes a novel deep web crawling framework 
based on reinforcement learning, in which the crawler is regarded as an agent 
and deep web database as the environment. The agent perceives its current state 
and selects an action (query) to submit to the environment according to Q-
value. The framework not only enables crawlers to learn a promising crawling 
strategy from its own experience, but also allows for utilizing diverse features 
of query keywords. Experimental results show that the method outperforms the 
state of art methods in terms of crawling capability and breaks through the  
assumption of full-text search implied by existing methods.  

Keywords: Hidden Web, Deep Web Crawling, Reinforcement Learning. 

1   Introduction 

Deep web or hidden web refers to World Wide Web content that is not part of the 
surface Web, which is directly indexed by search engines. Studies [1] show deep web 
content is particularly important. Not only its size is estimated as hundreds of times 
larger than the so-called surface Web, but also it provides users with high quality 
information. However, to obtain such content of deep web is challenging and has been 
acknowledged as a significant gap in the coverage of search engines [2]. Surfacing is 
a common solution to provide users deep web content search service1, in which the 
crawler pre-computes the submissions for deep web forms and exhaustively indexes 
the response results off-line as other static HTML pages. The approach enables lever-
aging the existing search engine infrastructure hence adopted by most of crawlers, 
such as HiWE (Hidden Web Exposer) [3], Hidden Web crawler [4] and Google’s 
Deep Web crawler [2]. 

One critical challenge in surfacing approach is how a crawler can automatically 
generate promising queries so that it can carry out efficient surfacing. The challenge 
has been studied by several researches such as [2], [4], [5], [6], [7]. In these methods, 
                                                           
1 We may use crawl and surface interchangeably in the rest of the paper. 
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candidate query keywords are generated from the obtained records, and then their 
harvest rates, i.e. the promise to obtain new records, are calculated according to their 
local statistics, such as DF (Document Frequency) and TF (Term Frequency). The one 
with the maximum expected harvest rate will be selected for the next query. Their 
basic idea is similar while the difference is that they choose different strategies to 
derive the estimated harvest rate of each query candidate. 

However, to the best of our knowledge, existing methods suffer from the following 
three deficiencies. Firstly, the future reward of each query is ignored, which is also 
known as “myopia problem” [8]. The next query is selected according to the harvest 
rate defined as the immediate reward at current step. This inherent deficiency makes 
the existing methods fail to look ahead to future steps thus cannot make a decision of 
long-term interest. Secondly, the existing methods solely utilize the statistic of ac-
quired data records while ignoring the experience gained from previous queries, 
which usually results in reducing the efficiency of crawling. For example when a 
crawler issues an unpromising keyword which brings few or even no response re-
cords, as the acquired data record hardly accumulates, the statistic of the data will 
remain the same. Therefore, it is likely that the crawler will make the same mistakes 
in its future decisions. Finally, existing methods relied on a critical assumption that 
full-text search are provided by deep web databases, in which all of the words in 
every document are indexed. However, this assumption is too strong to hold in the 
cases of databases providing non full-text search interfaces, in which some words 
appearing on the pages e.g. noisy words and template words are excluded from the 
index. The disagreement leads to that the existing estimation techniques for full-text 
databases, e.g. Zipf’ Law [4], [9] can hardly be applied to non full-text databases. E.g. 
Fig. 1 illustrates the keywords distribution on AbeBooks (www.abebooks.com), in 
which x-axis represents document frequency ranks of keywords in the data corpus and 
y-axis denotes the percent of response records brought by the keywords. As one can 
see, the Zipf curve fails to simulate the distribution of keyword response. 

 

Fig. 1. Keywords distribution on AbeBooks 

In this paper, we present a formal framework based on the RL (Reinforcement 
Learning) [10] for deep web crawling. In the framework, a crawler is regarded as an 
agent and deep web database as the environment. The agent perceives its current state 
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and selects an action (query) to submit to the environment according to long-term 
reward. The environment responds by giving the agent some reward (new records) 
and changing it into the next state. Each action is encoded as a tuple using its linguis-
tic, statistic and HTML features. The rewards of unexecuted actions are evaluated by 
their executed neighbors. Because of the learning policy, a crawler can avoid using 
unpromising queries, as long as some of them have been issued. The experimental 
results on 5 real world deep web sites show that the reinforcement learning crawling 
method relaxes the assumption of full-text search and outperforms existing methods. 
To sum up, the main contributions of our work are: 

1) We introduce a formal framework for the deep web surfacing problem. To the 
best of our knowledge, ours is the first work that introduces machine learning 
approaches to the deep web surfacing problem. 

2) We formalize the problem in the framework and propose an efficient and ap-
plicable surfacing algorithm working well on both full-text and non full-text 
databases. 

3) We develop a Q-value approximation algorithm allows for a crawler selecting 
a query according to the long-term reward, which overcomes the myopia 
problem to some extent. 

The rest of this paper is organized as follows: Section 2 gives a brief introduction of 
related work. Section 3 presents the formal reinforcement learning framework. Sec-
tion 4 discusses the crawling algorithm and key issues in it. The experimental results 
are discussed in Section 5 whereas conclusions and future work are presented in the 
final section. 

2   Related Work 

The sate-of-the-art deep web crawling approaches generate new keywords by analyz-
ing statistic of current acquired records returned from previous queries. Barbosa L. et 
al. first introduced the ideas, and presented a query selection method which generated 
the next query using the most frequent keywords in the acquired records [5]. How-
ever, queries with the most frequent keywords in hand do not ensure that more new 
records are returned from the deep web database. Ntoulas A. et al. proposed a greedy 
query selection method based on the expected harvest rate [4]. In the method, the one 
with the maximum expected harvest rate will be selected for the next query. Ping W. 
et al. modeled each web database as a distinct attribute-value graph and a greedy link-
based query selection method was proposed to approximate the optimal solution [8]. 
Lu J. et al. resolved the problem using set-covering sampling method [7]. Liu J. et al. 
extended the Ntoulas’s method to entire form by introducing a novel concept MEP 
(Minimum Executable Pattern). In the method, a MEP set is build and then promising 
keywords are selected by joint harvest rate of a keyword and its pattern. By selecting 
among multiple MEPs, the crawler achieves better results [6]. Jayant M. et al.  
improved the keyword selection algorithm by ranking keywords by their TFIDF 
(Term Frequency Inverse Document Frequency) [2]. Jiang L. et al. present a method 
to evaluate a keyword by its HTML features besides TF and DF using supervised 
learning [11]. 
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3   Reinforcement Learning Framework 

In this section, we propose a formal framework for the deep web crawling based on 
RL and formalize the crawling problem under the framework. First of all we give an 
overview of the RL framework.  

 

Fig. 2. Overview of the reinforcement learning framework 

The relation between a crawler and a deep web database is illustrated in Fig. 2. 
From the figure, one can conclude that at any given step, an agent (crawler) perceives 
its state and selects an action (query). The environment responds by giving the agent 
some (possibly zero) reward (new records) and changing the agent into the successor 
state. More formally we have 

Definition 1. Suppose  and  are two sets of states and actions respectively. A state 
 represents the acquired portion of the deep web database records at the step . 

An action  (  for short) denotes a query to the deep web database with the 
keyword , which causes a transition from state  to some successor state  with 
the probability . 

Definition 2. The process of deep web crawling is defined as a discrete Decision 
Process  consisting of a set of states , a set of actions  and transition 
probabilities distribution . A crawling process follows a specific issue policy 

, which is a mapping from the set of states to the set of actions. 
In the paper, we assume that the decision process is a deterministic process i.e.  

is subjected to a uniform distribution. During the process, after execution of an action 
the agent is responded by giving a collection of data records by the environment. The 
response record can be defined as: 

Definition 3. Suppose  is the collection of all data records residing in deep web 
database. After execution of action  at state , the response record set  
represents the collection of data records responded by the environment. Likewise the 
portion of the new records in the response record set retrieved by action  at state  is 
denoted as  ( ). 
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Suppose a crawling process follows an issue policy , the portion of new records in 
the response records of action  at state  can be formulated as 

 (1) 

Note that the response record set of an action is irrelevant to the state hence , 
. 

There are two important functions in the process. Transition function 
 denotes the successor state of the given state and action. Reward func-

tion is the reward received at the transition from state  to state  by exe-
cuting action , i.e. the portion of new records brought by executing , computed 
from equation 

 (2) 

Though in some cases  is either unknown or cannot be obtained beforehand, the 
absence of the value does not influence the calculation of the reward as they are rela-
tive values to rank actions in the same baseline. 

The transition of actions causes a cost. In the paper, the cost is measured in terms 
of time consumed, i.e. . is the cost of issuing an 
action and is proportional to the average time of handling a response record. 

The expectation conditioned on the current state  and the policy  is called state-
value function  of state , computed from 

 (3) 

in which  is referred as the step length and  is the discount factor. Among all po-
lices, there must exist an optimal policy, noted  defined as  ( , 

). To simplify notations, we write . 
Based on the presentations above, the formal definition of deep web crawling prob-

lem can be defined as: 

Problem. Under the constraint ,  find such policy 
 that maximizes the accumulative reward value. Here  

is the maximum cost constraint. 

4   Algorithm 

In this section we discuss how to resolve the deep web crawling problem defined in 
Section 3. There are two crucial factors in solving the problem i.e. the reward of each 
action r and the reward of an issue policy Q-value. Section 4.1 and 4.2 introduces the 
methods for the action reward calculation and Q-value approximation respectively. 
Finally an adaptive algorithm for surfacing deep web is presented in the end of  
Section 4.2. 

4.1   Reward Calculation 

Before specifying the method for the action reward calculation, we need the definition 
of the document frequency. 
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Definition 4. Suppose on the current state  and the issue policy , the document 
frequency of action  denoted by  (  for short) is the 

number of documents containing keyword  in acquired record set . 
Note that the document frequency of each action is a known statistic. Since records 

of  having been retrieved at the step , the number of documents 
containing keyword  can be counted up in the acquired record set. Relying on Def. 4, 
the following theorem can be established. 

Theorem 1. At state , the reward of each action  in  can be calculated from 

. (4) 

Proof: By incorporating Eq. (1) into Eq. (2) we have 

. (5) 

Eq. (5) can be further rewritten as 

. (6) 

The intersection part in Eq. (6) denotes the collection of documents containing the 

keyword of action a in the data set . According to the Def. 4 the 
value equals to the document frequency of the action, i.e. 

 (7) 

Consequently the Eq. (4) could be proved by incorporating Eq. (7) into Eq. (6). 
The absence of  in Eq. (4) does not affect the final result for the same reason de-

scribed in Section 3. According to Eq. (4) for an executed action, as response record 
set  is acquired, the reward can be calculated. In contrast, the reward calcula-
tion for an unexecuted action directly through Eq. (4) is infeasible. Nevertheless, the 
response record set of an unexecuted action can be estimated by generalizing from 
those executed. Before proceeding any further, we define the action training and can-
didate set. 

Definition 5. Suppose at state , training set  is a set of executed actions, . 
Similarly, candidate set  is a set of available action candidates for submission in the 
current state. Each action in either  or  is encoded in the same vector space. 

Based on Def. 4, for an action  in , its reward can be estimated as: 

. (8) 

in which  is a kernel function used to evaluate the distance between the given 
two actions. Since the response record set  of an action is irrelevant to the 
state , the response record set can be rewritten to the current state  i.e. 

. Accordingly, the intuition behind the Eq. (8) is to estimate the 
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reward for an action in  by evaluating those in . As all response record sets of 
executed action are at the current state, the size of response record set of an action in 

 can be learnt from those sharing the similar features in . Once the size of  
response record set of an unexecuted is calculated by Eq. (8), the value can then be 
applied in Eq. (4) to calculate its reward. 

Now the action rewards for both executed and unexecuted actions can be calcu-
lated from Eq. (4). In the rest of the subsection, we will discuss how to calculate  
kernel function  in Eq. (8). Calculating the similarity of actions requires 
encoding them in a feature space. We incorporate three types of features i.e. linguistic 
features, statistical features and HTML features to establish the feature space [11].  

Linguistic features consist of POS (Part of Speech), length and language of a  
keyword (action). Length is the number of characters in the keyword. Language 
represents the language that a keyword falls into. It takes effect in multilingual deep 
web database.  

Statistical features include TF (Term Frequency), DF (Document Frequency) and 
RIDF (Residual Inverse Document Frequency) of a keyword in the acquired records. 
The value of RIDF is computed as: 

 (9) 

RIDF tends to highlight technical terminology, names, and good keywords and to 
exhibit nonrandom distributions over documents [12].  

The HTML format usually plays an important role in indicating the semantics of 
the presented data. This brings us to consider the HTML information of keywords. 
We propose two HTML features tag-attribute and location. Tag-attribute feature en-
codes HTML tag and attribute information of a keyword, and location represents the 
depth of the keyword’s node in the DOM tree derived from the HTML document. The 
features may imply the semantic information of a keyword hence is useful in distin-
guishing unpromising keywords.  

For linguistic and HTML features whose values are discrete, the liner kernel is as-
signed. Considering that value of statistical feature tends to a Gaussian distribution 
over documents, the Gaussian kernel is adopted to evaluate similarity upon the statis-
tical features, which is formulated as 

. (10) 

The final kernel function is hybrid of these kernels. Suppose , and  
( ) are weights for linguistic, HTML and statistical kernel respectively, 
the kernel function to evaluate similarity of two actions is 

. (11) 

In experiments the weight of statistical features usually accounts for a larger part. 

4.2   Q-Value Approximation and Surfacing Algorithm 

Once the reward of each action is obtained, given the problem definition in Section 3, 
the agent can find an optimal policy  if the  of each state can be calculated. The 
calculation of could be well solved when the agent uses Q-function [13], [14]: 
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. (12) 

Here Q-function  represents the reward received immediately upon executing 
action  from state , plus the value discounted by  thereafter. Using Eq. (3), we can 
rewrite Q-function as 

. (13) 

To simplify the notion, here we let  i.e. the reward for the future steps are re-
garded as important as those for the present.  is a critical parameter denoting the step 
length looking ahead to the future reward. If , the future reward is ignored and 
Q-value equals to the immediate reward i.e. . When , Q-value 
represents the long-term reward. However, as the action reward at state  is un-
available at state , the Q-value has to be approximated. To estimate the Q-value, we 
make the following assumption: assume at the current state, the action set  will not 
enlarge in the next  steps ( ). When  is not very large the assumption is 
reasonable. Under the assumptions, Theorem 2 could be established. 

Theorem 2. At state  when  the Q-value of an action  ( , ) 
can be estimated as: 

 (14) 

Proof: To simplify the notion, let , , 
. First of all, because the action set will not enlarge, the optimal Q-

value can be searched in the action set at the current state. According to the Eq. (13), 
when h =1 the Q-value can be formulated as 

. (15) 

Following the method described in Section 4.1,  can be calculated; whereas 
is unknown at state . Therefore rewrite the Eq. (15) as 

. (16) 

Because the response records are independent with each others, the capture-mark-
recapture [15] method can be applied to estimate the overlaps records: 

. (17) 

Further Eq. (17) can be transformed into 

. (18) 

By incorporating Eq. (18) into Eq. (16) we have 

 (19) 

Note that according to the characteristics of response record set in Def. 3 and Eq. (5): 

. (20) 
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Following Eq. (5) and Eq. (20), Eq. (19) can be reformulated as  

 (21) 

Then the Theorem 2 can be derived by incorporating Eq. (7) into Eq. (21). 
As all the factors in the Eq. (14) are either calculated or can be statistically numer-

ated, the Q-value of each action can be approximated based on the acquired data set. 
Now, we can approximate Q-value with a given step length by iteratively applying 
Eq. (14). Due to the lack of space, we cannot present the details here. Note if h goes 
too big, the assumption may not hold and the future state may diverge from the  
experienced state rendering the approximation for future reward imprecise.  

We develop an adaptive algorithm for deep web surfacing based on the framework, 
as shown in Algorithm 1. The algorithm takes the current state and last executed  
action as input and outputs the next optimal action.  

 

Algorithm 1: Adaptive RL surfacing algorithm 

Input: ,       Output:  

1:   calculate the reward of action following Eq.(4); 

2:   for each document  

3:      for each keyword  in  do 

4:          if action  then ; 

5          else then update TF and DF of action ; 

6:      end for 

7:   end for 

8:   change the current state to ; 

9:   ;  update candidate set ; ; 

10:  for each  update its reward using Eq. (8) and Eq. (4); 

11:  for each  calculate its Q-value using Eq. (14); 

12:  return ; 

 
Specifically, the surfacing algorithm first calculates the reward of the last executed 

action and then updates the action set through Step 2 to Step 7, which causes the agent 
to transit from its state  to the successor state . Then the training and candidate 
set are updated in accord with the new action set in Step 9. After that the algorithm 
estimates the reward and Q-value for each action in candidate set in Step 10 and Step 
11 respectively. The action that maximizes Q-value will be returned as the next to be 
executed action. 

5   Experiments 

To demonstrate the efficiency of our proposed approach for deep web crawling, we 
execute our algorithm on five real world deep web databases with different scales and 
domains. The detailed information about these databases is listed in Tab.1. In the case 
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of AbeBooks, as its large scale, the agent restricted to crawling the “historical fic-
tions” category to accelerate the experiment. Queries to the site are applied to the 
textbox “keywords”. Regarding Wikicfp, Yahoo movie, which are the typical medium 
Deep Web databases, we utilize the only generic search textboxes as their query inter-
faces. As for Baidu Baike and Google Music, the sites are multilingual sites consist-
ing of both English and Chinese. On the sites we select the rewarding textbox  
“Keyword Tag” and “Singer” as their query interfaces. 

To compare our RL method with existing ones, we choose following three methods 
as baseline methods: (Suppose at state , the agent is to evaluate an action ) 

 Random [4], [7], [8]: the reward of an action is assigned to a random float i.e.  
. 

 GF (Generic Frequency) [5], [7], [8]: the reward of an action is evaluated by 
the generic DF of the action at current state, i.e. . 

 Zipf [4], [6], [9]: The size of response record set of each action is estimated 
by Zipf-Mandelbrot’s Law [16]:  ,where ,  and  
are parameters and  is the DF rank of the action. 

All methods above (including RL) share the same candidate set generation policy 
which selects the top 500 actions with highest RIDF. It is interesting to note that RL is 
more general compared with the baseline methods. If future reward of an action is 
ignored i.e.  and the reward of an action is determined by a presumed distribu-
tion, the RL degenerates to Zipf, i.e. . Further if the acquired  
portion of an action is ignored too i.e. , the RL degenerates to the GF, 
i.e. . 

Table 1. Experiment web sites and their experimental results 

DB Name URL Domain Harvest 
Estimated 
Database 

#Queries 

AbeBooks www.abebooks.com Book 90,224 110,000 322 
Wikicfp www.wikicfp.com Conference 4,125 5,200 499 

Yahoo movie movies.yahoo.com/mv/search Movie 126,710 128,000 367 
Google music www.google.cn/music/ Music 85,378 110,000 592 
Baidu Baike Baike.baidu.com Wikipedia 820,180 1,000,000 1,950 

5.1   Effectiveness of RL Method 

Our interest is to discover their records as many as possible with affordable cost. To 
make the results more intelligible, we roughly use harvest (Fourth column) i.e. the 
number of actual retrieved records and number of queries (Sixth column) to evaluate 
the crawling effects. Tab. 1 shows that our method is quite efficient. In the first four 
cases the agent achieves more than 80% coverage by issuing around 500 hundred 
queries. 

5.2   Performance Comparison with Baseline Method 

We performed our method as well as the baseline methods on the experiment sites. 
The experimental results are displayed in Fig. 3 in which the y-axis denotes the  
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                 (a) Experiment on Baidu Baike                       (b) Experiment on Wikicfp 

Fig. 3. Performance Comparisons with baseline methods 

database coverage, while the x-axis represents the query number (due to the lack of 
space we only present some results here). In experiments step length was set to 1. As 
can be seen, the result shows that RL method is more efficient than baseline methods 
on the experiment websites. We analyzed the queries logs and summarized two rea-
sons accounting for excellence of RL method. Firstly because the RL method selects a 
keyword according to the long-term rather than immediate reward, it is able to acquire 
a better awareness of the environment leading to more accurate estimation for suc-
ceeding rewards. As we found in experiments the rewarding keywords are issued 
earlier in RL than other methods. Secondly the keywords issued in RL are more rele-
vant to the pattern selected, e.g. “keywords” on Baidu Baike. This suggests that the 
agent using RL learns the experience from its previous queries and hence sticks on the 
keywords matching against more records; whereas the agent using other methods do 
not make any adjustment when the presumed assumption is not applied. 

6   Conclusion and Future Work 

In this paper we tackle the problem of deep web surfacing. The paper first presents a 
formal reinforcement learning framework to study the problem and then introduce an 
adaptive surfacing algorithm based on the framework and its related methods for 
reward calculation and Q-value approximation. The framework enables a crawler to 
learn an optimal crawling strategy from its experienced queries and allows for it mak-
ing decisions on long-term rewards. Experimental evaluation on 5 real deep web sites 
suggests that the method is efficient and applicable. It excels the baseline method and 
works well on both full-text and non full-text databases. In general, it retrieves more 
than 80% of the total records by issuing a few hundreds of queries. 

We are studying the issues of deep web crawling in practical and developing an 
open source platform for Deep Web crawling: DWIM (Deep Web Intelligent Miner). 
DWIM is the first open source software in the respect Deep Web crawling and inte-
grates many crawling policies and keywords selection criteria which can be used as an 
experimental platform for researches and a crawler engine for developers.  
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Abstract. In this paper, we study topic decomposition and summarization for a
temporal-sequenced text corpus of a specific topic. The task is to discover dif-
ferent topic aspects (i.e., sub-topics) and incidents related to each sub-topic of
the text corpus, and generate summaries for them. We present a solution with
the following steps: (1) deriving sub-topics by applying Non-negative Matrix
Factorization (NMF) to terms-by-sentences matrix of the text corpus; (2) detect-
ing incidents of each sub-topic and generating summaries for both sub-topic and
its incidents by examining the constitution of its encoding vector generated by
NMF; (3) ranking each sentences based on the encoding matrix and selecting top
ranked sentences of each sub-topic as the text corpus’ summary. Experimental
results show that the proposed topic decomposition method can effectively detect
various aspects of original documents. Besides, the topic summarization method
achieves better results than some well-studied methods.

Keywords: Non-negative Matrix Factorization, Topic Decomposition, Topic
Summarization, Singular Value Decomposition.

1 Introduction

Users nowadays are overwhelmed by the vast amount of information on the Web. Al-
though they can find information for a specific topic easily using search engines, they
still have difficulty in finding more detailed aspects of a topic before reading dozens of
Web documents returned. For example, it is a non-trivial task to make a comprehensive
survey of a topic such as “9/11 attacks”. Related reports may cover various aspects (i.e.,
sub-topics) including “attackers and their motivation”, “the rescue attempts”, “9/11 in-
vestigations”, etc. Each sub-topic may further contain a set of related incidents, e.g.,
“9/11 investigations” has a series of related incidents along the timeline, such as “the
NSA intercepted communications that pointed to bin Laden on Sep.11, 2001”, “FBI
released photos of the 19 hijackers on Sep.27, 2001”, etc. Thus, discovering sub-topics
and related incidents for a specific topic in a text corpus and summarizing them will
greatly facilitate user’s navigation in the corpus space.

The above problems can be partially solved by topic decomposition and text summa-
rization, which was first proposed systematically by Chen and Chen[1]. Their solution
is called TSCAN (Topic Summarization and Content ANatomy). TSCAN equals to la-
tent semantic analysis (LSA) based on the singular value decomposition (SVD)[2]. We
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also study this problem in this paper. However, our solution is based on Non-negative
Matrix Factorization (NMF)[3]. NMF has been demonstrated advantages over SVD in
latent semantic analysis, document clustering [4]. In our work, we model the documents
of a specific topic as a terms-by-sentences matrix. NMF is used to factorize the matrix
into a non-negative sub-topic matrix and a non-negative encoding matrix. Each row of
the encoding matrix is examined to extract incidents and their summaries. Summary for
each sub-topic is generated by composing its incidents’ summaries. We rank sentences
by analyzing the encoding matrix, and the top ranked sentences of each sub-topic are
selected as the summary for the text corpus.

2 Related Work

For a given temporal documents of a specific topic, TSCAN has following steps: Firstly,
the documents are decomposed into a set of blocks. Then, a m × n terms-by-blocks
matrix A is constructed. Ai, j is the weight of term i in block j, which is computed by
TF-IDF weighting scheme. The block association matrix B = AT A, it is factorized as
follow:

B ≈ TrDrTT
r Tr ∈ R

n×r,Dr ∈ R
r×r, (1)

where Dr is a r × r diagonal matrix where the diagonal entries are the top r eigenvalues
of B. And Tr is a n × r matrix in which each of the r columns represents a sub-topic.
By examining the constitution of each columns of Tr, the significant incidents of each
topic aspect are detected and their summaries are generated. Then, the summary of the
topic documents is obtained by combining all detected incident’s summary.

We assume the SVD of the terms-by-blocks matrix A as follow:

A = UΣVT U ∈ R
m×m,Σ ∈ R

m×n,V ∈ R
n×n, (2)

where both U and V are orthogonal matrices, and Σ is a diagonal matrix. The diagonal
entries of Σ are the singular values of the matrix A. Each column of matrices U and V
are called left-singular and right-singular vectors. Then,

B = AT A = (UΣVT )T (UΣVT ) = VΣT UT UΣVT = V(ΣTΣ)VT . (3)

The squares of singular values of the matrix A (i.e., ΣTΣ) are equal to the eigenvalues
of the matrix AT A (i.e., B) [5]. In LSA, the r largest singular values with corresponding
singular vectors from U and V are used to approximation the matrix A[2], i.e.,

A ≈ UrΣrVT
r Ur ∈ R

m×r,Σr ∈ R
r×r,VT

r ∈ R
r×n, (4)

Then, B can be approximated as follow:

B = AT A ≈ Vr(ΣT
r Σr)VT

r . (5)

Because ΣT
r Σr are the top r eigenvalues of the matrix B, the matrix Vr is equal to the

sub-topic matrix Tr derived by TSCAN. That is, the sub-topics derived by TSCAN
corresponds to the right singular vectors with most significant singular values of A.
In this paper, we focus on extractive multi-document summarization which are widely
studied[6,7,8,9]. It extracts top significant sentences calculated by a set of ranking meth-
ods from the documents set.
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3 The Proposed Solution Based on NMF

Given a pre-specified topic t, it is represented as D = {d1, d2, . . . , di, . . .}, where di

is a document at time point i. We call various topic aspects as sub-topics and define
them as S T = {st1, st2, . . . , stk, . . . , str}. The series of incidents corresponding to sub-
topic stk is defined as S T Ik = {stik,1, stik,2, . . . , stik,i, . . . , stik,l}. Our task of topic de-
composition is to find out sub-topics S T , the incidents S T Ik related to sub-topic stk.
Besides, we generate summaries for the text corpus D, sub-topics S T and incidents
S T I. Each document in D is decomposed into a sequence of sentences using sentence
separation software provided by DUC[10]. 425 Rijsbergen’s stopwords are removed
and stemming is performed. The documents in D is represented by a m × n terms-by-
sentences matrix M, where m is the number of terms and n is the number of sentences
respectively. Mi, j is computed by TF-IDF weighting scheme. The terms set is defined
as T = {t1, t2, . . . , ti, . . . , tm} while the sentences set is S = {s1, s2, . . . , s j, . . . , sn}.

3.1 Topic Decomposition Based on NMF

Non-negative Matrix Factorization (NMF) is a matrix factorization method that gener-
ates positive factorization of a given positive matrix[3]. It represents object as a non-
negative linear combination of part information extracted from plenty of objects and is
able to learn parts of semantic features from text. Given the matrix M, NMF decom-
poses M into a non-negative matrix B and a non-negative matrix E so that

M ≈ BE B ∈ R
m×r,E ∈ R

r×n. (6)

We can find out B and E by minimizing the following cost function:

arg min
B,E
‖M − BE‖2F , (7)

where ‖ · ‖F denotes the Frobenius norm. The above constrained optimization problem
can be solved by continuously updating B and E until the cost function converges under
the predefined threshold or exceeds the number of repetitions[3,4]. The update rules are
as follows (1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ r):

Bi,k ← Bi,k
(MET )i,k

(BEET )i,k
Ek, j ← Ek, j

(BT M)k, j

(BT BE)k, j
. (8)

The r columns of B embed the so called sub-topics and each column of E is the en-
coding. We refer B as the sub-topic matrix and E as the encoding matrix. Each sentence
s j can be represented by a linear combination of sub-topics. i.e.,

m j = Be j, (9)

where m j is j-th sentence (i.e., j-th column of M) and e j represents the j-th column of
matrix E. The entry Bi,k indicates that the degree of term ti belongs to sub-topic k, while
Ek, j represents that the degree of sentence s j associates with sub-topic k.

Because the sentences set S = {s1, s2, . . . , s j, . . . , sn} is indexed chronologically, the
row k of encoding matrix E (i.e., ek, j, 1 ≤ j ≤ n, we refer it as sub-topic encoding
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Fig. 1. A sub-topic’s encoding vector of the document cluster ‘d30001t’ in DUC 2004

vector) also denotes the relative strength of sub-topic stk along the timeline. Herein, a
list of continuous elements of ek, j(1 ≤ j ≤ n) with high bursty values can be regarded as
an incident related to sub-topic k. Fig. 1 shows a sub-topic encoding vector of document
cluster ‘d30001t’ in DUC 2004[10] after applying NMF with r = 10. In Fig. 1, the
encoding value is bursty around the sentence 170. It means that the sub-topic has a
significant development around the sentence 170 (i.e., an incident breaks out).

The bursty detection problem is well studied in stream mining community [11]. For-
mally, given an aggregate function G(here is sum), a sliding window of size w and
corresponding thresholds γ, the problem is to discover all these sub-sequences such
that the function G applied to ek, j: j+w−1(1 ≤ j ≤ n − w + 1) exceeds threshold γ, i.e.,
check if

G(ek, j: j+w−1) =
i=w−1∑

i=0

ek, j+i ≥ γ. (10)

The threshold is set as γ = mean(G(ek, j: j+w−1))+ε×std(G(ek, j: j+w−1)), (1 ≤ j ≤ n−w+1),
where mean() and std() are the average and standard deviation function respectively.
We set ε as 3 and w as 7 in our experiments. Finally, the detected bursty sequences are
recognized as incidents.

3.2 Topic, Sub-topics and Incidents Summarization

An interesting by-product of topic decomposition is that the produced information can
also be used to generate summary. Lee et al. [9] also use NMF to do generic document
summarization. In their work, the rank of each sentence is calculated as follows:

rank(s j) =
r∑

k=1

(Ek, j × weight(ek,1:n)), (11)

weight(ek,1:n) =

∑n
y=1 Ek,y∑r

x=1
∑n

y=1 Ex,y
. (12)

The weight(ek,1:n) is the relative relevance of k-th sub-topic among all sub-topics. Fi-
nally, the top-x sentences with highest rank are chosen as summaries. We refer this
method as NMF in our experiments. As point out by [8], a good summary should con-
tain as few redundant sentences as possible while contain every important aspects of the
documents. However, the solution of Lee et al. [9] doesn’t satisfy above requirements
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sometimes. The top-x sentences with highest rank may belong to the same sub-topics
and contain some overlapping information. In fact, most of the traditional summariza-
tion methods select sentences from different sub-topics [6,7]. We design a generic multi-
document summarization method based on NMF (We refer it as INMF). Before going
on, we give the definition of a sentence’s main topic:

main topic(s j) = arg max
k

(Ek, j), (13)

That is, the main topic of sentence s j is the sub-topic with the maximum encoding
value in column j of encoding matrix E [4]. The function topic() returns the union of
each sentence’s main topic of a sentences set, e.g.,

topic(S ) = main topic(s1) ∪ main topic(s2) ∪ . . . ∪ main topic(sn). (14)

The proposed multi-document summarization method INMF is described in Algo-
rithm 1. Most of the summarization evaluations require the generated summaries in
limited size or limited sentences number. In Algorithm 1, we limit the number of sen-
tences of the summary. It can be easily revised to control the size of final summary.
Different from [9], the INMF algorithm selects sentences with most significant ranking
scores from different sub-topics in order to ensure the coverage and diversity of the
summary. For each incident stik,i, we can straightforwardly choose the sentences with
the largest or top-x encoding values of stik,i as the summary. Then, the summary for
sub-topic stk can be generated by composing all the summaries of S T Ik.

Algorithm 1. The proposed multi-document summarization method based on NMF
Input: S = {s1, s2, . . . , sn}; ns, the limitation of sentences number in summary
Output: a string array S S = {ss1, ss2, . . . , ssns}, sentences set of summary
1: Sort sentences in S using equation 11: rank(s1) ≥ rank(s2) ≥ . . . ≥ rank(sn)
2: k = 1; T S = ∅; // TS is the sub-topics set
3: for k ≤ ns do
4: i = 1;
5: for i ≤ size(S ) do // size() returns the number of elements in set S
6: if main topic(si) � T S then
7: ssk ← si; S = S − si; T S = T S ∪main top(si); k + +; break;
8: end if
9: i + +;
10: end for
11: if size(T S ) == r then // r is total sub-topics number
12: T S = ∅;
13: end if
14: end for

4 Experimental Studies

In the following, we first evaluate the proposed topic summarization method. And then,
we give a case study of topic decomposition. The dataset of multi-document summa-
rization task in DUC 2004[10] is used to evaluate the proposed methods.
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4.1 Summarization Evaluations

We implement four baseline summarization systems: FORWARD(extracts the initial
sentences of all documents of a topic); BACKWARD(generates summaries by selecting
the end sentences of a topic); TSCAN; NMF(method of Lee et al., [9]). The number of
sentences of summary generated by TSCAN is indeterminate. To ensure the comparison
is fair, the evaluation procedure is as follows [1]: For each r, we firstly apply TSCAN
to each document cluster to select a set of sentences as summary. Then, we use other
methods to extract the same number of sentences for each r and document cluster. Both
ROUGE-1 [12] and summary-to-document content coverage[1] metrics are used.

Table 1. Overall performance comparison of ROUGE-1 on DUC 2004

r INMF NMF TSCAN FORWARD BACKWARD
2 0.31161 0.29707 0.23983 0.23875 0.18211
3 0.33475 0.32156 0.25342 0.25383 0.19766
4 0.36529 0.35522 0.27096 0.27092 0.22081
5 0.39042 0.38238 0.29288 0.29061 0.24342
6 0.39739 0.40410 0.30370 0.31152 0.25867
7 0.43594 0.42632 0.31636 0.32451 0.28100
8 0.46620 0.45518 0.33862 0.34409 0.29974
9 0.47680 0.47117 0.35014 0.35653 0.31159

10 0.48975 0.48382 0.36947 0.36348 0.32110

The overall performance comparison of ROUGE-1 on DUC 2004 is listed in Ta-
ble 1. It shows that the two NMF based summarization methods get much better results
than other methods for all r. This is because both the two NMF based methods try to
cover all content as much as possible. However, TSCAN may not consider sub-topics
successfully, FORWARD extracts beginning sentences and BACKWARD takes the end
sentences. As r increase, TSCAN extracts more sentences as the summary. Because
ROUGE is recall-oriented, the ROUGE-1 scores of all methods increase with the in-
creasing of summary size as showed in Table 1. The proposed INMF method increase
summary coverage by selecting sentences from different sub-topics explicitly. As a re-
sult, INMF outperforms NMF in most cases except r = 6.

A good summary should contain important aspects of original topic documents as
much as possible [8]. Herein, we apply summary-to-document content similarity to
measure the coverage of summary according to [1]. That is, given a document cluster
of a specific topic and its summary which are represented by TF-IDF term vectors. It
computes the average cosine similarity between each of the document clusters and its
summary. The higher the similarity, the better the summary represents document cluster.
We show the summary-to-documents similarity corresponding to table 1 in table 2.

In table 2, both INMF and NMF achieve much better results than TSCAN, FOR-
WARD, BACKWARD for all r. It is easy to understand that all the three latter methods
lose some information and the coverage is poor. However, Non-negative Matrix Factor-
ization decomposes all of topic’s information into r sub-topics, and the two NMF based
summarization method extract the sentences with as much information as possible.
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Table 2. Summary-to-document content similarity corresponding to table 1

r INMF NMF TSCAN FORWARD BACKWARD
2 0.126703 0.123421 0.105427 0.103786 0.102524
3 0.128219 0.122003 0.107548 0.103958 0.104369
4 0.126229 0.121232 0.105550 0.104454 0.100763
5 0.127125 0.122199 0.108460 0.107260 0.102478
6 0.127987 0.122781 0.103569 0.104365 0.101695
7 0.128505 0.124848 0.102935 0.101614 0.102715
8 0.130945 0.126131 0.108045 0.105535 0.101850
9 0.127965 0.123313 0.106552 0.105038 0.099187

10 0.128130 0.124492 0.111100 0.109034 0.107870

Table 3. Sub-topic’s description and the sentence id of each sub-topic’s summary

S T id sub-topic description sentence id
1 Hun Sen and Ranariddh often clashed over power-sharing and the integration

of guerrilla fighters from the crumbling Khmer Rouge.
74,119

2 King Norodom Sihanouk called Ranariddh and Sam Rainsy to return to Cam-
bodia and wanted to preside over a summit meeting of the three party leaders.

20,46,56,57

3 Norodom Ranariddh and Sam Rainsy, citing Hun Sen’s threats to arrest op-
position figures, said they could not negotiate freely in Cambodia.

3,30,141,163

4 In July election, Hun Sen’s party collected 64 of the 122 parliamentary seats,
but was short of the two-thirds majority needed to set up a new government.

8,25,44,85,111

5 The violent crackdown in Cambodia, at least four demonstrators were killed. 40,64,69
6 Hun Sen and Ranariddh agreed to form a coalition that leave Hun Sen as sole

prime minister and make Ranariddh president of the National Assembly.
83,123,152,175

7 People’s Party criticized the resolution passed earlier this month by the U.S.
House of Representatives.

59

8 King Norodom Sihanouk praised agreements by Cambodia’s top two politi-
cal parties previously bitter rivals to form a coalition government.

172

9 Sam Rainsy wanted to attend the first session of the new National Assembly
on Nov. 25, but complained that his party members’ safety.

160

10 The Cambodian People’s Party gave a statement about supporting the police
action of violent crackdown to protesters.

70

Besides, the proposed INMF summarization method explicitly tries to select sentences
belong to different topic aspects. That’s why INMF outperforms NMF in all cases.

4.2 Topic Decomposition

The documents set ‘d30001t’ of DUC 2004 is used as a case study for topic decompo-
sition. It includes 10 documents and 179 sentences about “political crisis in Cambodia
in October 1998”. The detailed description about each sub-topic and sentence id of its
summary is showed in table 3. We manually compared each sub-topics’ summaries with
reference summaries(‘D30001.M.100.T.A’, ‘D30001.M.100.T.B’, ‘D30001.M.100.T.C’
and ‘D30001.M.100.T.D’ with size 658, 661, 647 and 656 bytes respectively) created
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by DUC assessors. For ‘D30001.M.100.T.C’ and ‘D30001.M.100.T.D’, the information
coverage is 100%. The text “the opposition tried to cut off his access to loans” (total
51 bytes) in ‘D30001.M.100.T.A’ and “Opposition parties ask the Asian Development
Bank to stop loans to Hun Sen’s government”(total 87 bytes) in ‘D30001.M.100.T.B’
are lost in the generated summaries. Then, the average information coverage of the
generated sub-topics’ summary to the reference summaries is ((658− 51)/658+ (661−
87)/661+ 100 + 100)/4 = 94.75%.

Some sub-topics contain a series of incidents while others contain only one. For ex-
ample, sub-topic 6 is about the process of forming a coalition government which con-
tains several incidents. Sub-topic 8 has only one incident, which is about King Norodom
Sihanouk’s praise about the agreements by Cambodia’s top two political parties. We
also compare our results with TSCAN for topic decomposition with r = 10. TSCAN
detects total 23 incidents. 5 incidents are the same (some incidents duplicate more than
2 times), with only 15 sentences left as the incidents’ summary. The 15 sentences are
from 7 documents while the incidents’ summaries of our method are from all 10 doc-
uments. Besides, our method covers more aspects than TSCAN, e.g. sub-topic 5 and
sub-topic 10 are not included in the result of TSCAN.

5 Conclusion

In this paper, we study the problem of topic decomposition and summarization for a
temporal-sequenced text corpus of a specific topic. We represent the text corpus as a
terms-by-sentences matrix and derive sub-topics by factorize the matrix using
Non-negative Matrix Factorization. By analyzing the encoding matrix, we can detect
incidents of each sub-topic and generate summaries for both sub-topics and their re-
lated incidents. The summary for the text corpus is generated by firstly ranking each
sentences based on the encoding matrix, and then selecting most significant sentences
from each sub-topics. Experimental results show that our method can effectively
find out different topic aspects of a documents set and generate promising results in
summarization.
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Abstract. This paper proposes a new neural network method for classifying un-
certain data (UNN). Uncertainty is widely spread in real-world data. Numerous 
factors lead to data uncertainty including data acquisition device error, ap-
proximate measurement, sampling fault, transmission latency, data integration 
error and so on. The performance and quality of data mining results are largely 
dependent on whether data uncertainty are properly modeled and processed. In 
this paper, we focus on one commonly encountered type of data uncertainty - 
the exact data value is unavailable and we only know the probability distribu-
tion of the data. An intuitive method of handling this type of uncertainty is to 
represent the uncertain range by its expectation value, and then process it as 
certain data. This method, although simple and straightforward, may cause 
valuable information loss. In this paper, we extend the conventional neural net-
works classifier so that it can take not only certain data but also uncertain prob-
ability distribution as the input. We start with designing uncertain perceptron in 
linear classification, and analyze how neurons use the new activation function 
to process data distribution as inputs. We then illustrate how perceptron gener-
ates classification principles upon the knowledge learned from uncertain train-
ing data. We also construct a multilayer neural network as a general classifier, 
and propose an optimization technique to accelerate the training process.  
Experiment shows that UNN performs well even for highly uncertain data and 
it significantly outperformed the naïve neural network algorithm. Furthermore, 
the optimization approach we proposed can greatly improve the training  
efficiency.  

Keywords: Uncertainty, classification, neural network. 

1   Introduction 

Data tends to be uncertain in many applications [1], [2], [3], [4], [5]. Uncertainty can 
originate from diverse sources such as data collection error, measurement precision 
limitation, data sampling error, obsolete source, network latency and transmission 
error. The error or uncertainty in data is commonly treated as a random variable with 
probability distribution. Thus, uncertain attribute value is often represented by an 
interval with a probability distribution function over the interval [6], [7]. It is impor-
tant to cautiously handle the uncertainty in various data mining applications, as the 
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data uncertainty is useful information which can be leveraged in order to improve  
the quality of the underlying results [17]. However, many traditional data mining 
problems become particularly challenging for the uncertain case. For example, in a 
classification application, the class which a data point belongs to may be changing as 
a result of the vibration of its uncertain attributes’ values. Furthermore, the uncer-
tainty over the whole dataset may blur the boundaries among different classes, which 
brings extra difficulties to classify uncertain datasets. Thus, data mining algorithms 
for classification, clustering and frequent pattern mining may need to integrate data 
uncertainty models to achieve satisfactory performance. 

Classification is one of the key processes in machine learning and data mining. 
Classification is the process of building a model that can describe and predict the 
class label of data based on the feature vector [8]. An intuitive way of handling uncer-
tainty in classification is to represent the uncertain value by its expectation value and 
treat it as a certain data. Thus, conventional classification algorithms can be directly 
applied. However, this approach does not effectively utilize important information 
such as probability function or distribution intervals. We extend data mining  
techniques so that they can take uncertain data such as data interval and probability 
distribution as the input. In this paper, we design and develop a new classifier named 
uncertain neural network (UNN), which employs new activation function in neurons 
to handle uncertain values. We also propose a new approach to improve the training 
efficiency of UNN. We prove through experiments that the new algorithm has satis-
factory classification performance even when the training data is highly uncertain. 
Comparing with the traditional algorithm, the classification accuracy of UNN is  
significantly higher. Furthermore, with the new optimization method, the training 
efficiency can be largely improved.  

The paper is organized as follows. In section 2, we discuss related work. Section 3 
defines the classification problem for uncertain data. In section 4, we first analyze the 
principle of uncertain perceptron in linear classification, and then construct the  
multilayer uncertain neural network, and discuss the training approach. Section 5 
introduces an optimized activation function to improve the efficiency. The experi-
ments results are shown in section 6, and section 7 makes a conclusion for the paper. 

2   Related Works 

There has been a growing interest in uncertain data mining.  A number of data mining 
algorithms have been extended to process uncertain dataset. For example, UK-Means 
[9], uncertain support vector machine [10], and uncertain decision tree [11]. The key 
idea in [10] is to provide a geometric algorithm which optimizes the probabilistic 
separation between the two classes on both sides of the boundary [7]. And [11]  
extends the decision tree to handle interval inputs and takes probability cardinality to 
select the best splitting attribute. However, both these two uncertain classifiers use a 
simple bounded uncertain model, and in our work, we use Gaussian noise instead to 
model the uncertainty, which is more common in realistic world. Artificial neural 
network has been used in model-based clustering with a probability gained from ex-
pectation-maximization algorithm for classification-likelihood learning [12]. We 
adopt the concept to estimate the probability of membership when the uncertain data 
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are covered by multiples classes. However, probability estimation presented here is 
unprecedented.  

In fuzzy neural network models for classification, either attributes or class labels 
can be fuzzy and are presented in fuzzy terms [13]. Given a fuzzy attribute of a data 
tuple, a degree (called membership) is assigned to each possible class, showing the 
extent to which the tuple belongs to a particular class. Some other fuzzy systems [18] 
build reasoning mechanisms based on rules, and try to simulate the fuzzy cases inside 
the network. But they do not take the detailed uncertainty information as probability  
distribution into account in neuron level. Our work differs from previous work in that 
we revise the activation functions to compute the membership based on uncertain data 
distribution information, instead of using Fuzzy logic for tuning neural network train-
ing parameters. Our approach can work on both certain and uncertain data. 

3   Problem Definition 

In our model, a dataset D consists of d training tuples, {t1,t2,…,td}, and k numerical 
attributes, A1,…, Ak. Each tuple ti is associated with a feature vector Vi = (fi,1, fi,2, …, 
fi,k), and a class label ci ∈ C. Here, each fi,j is a pdf modeling the uncertain value of 
attribute Aj in tuple ti. Table. 1 shows an example of an uncertain dataset. The first 
attribute is uncertain. The exact value of this attribute is unavailable, and we only 
know the expectation and variance of each data tuple. This type of data uncertainty 
widely exists in practice [1], [2], [5], [6], [7].  

Table. 1. An example of uncertain dataset 

ID Class Type Attribute #1  
(expectation, standard variance) 

1 Yes (105, 5) 
2 NO (110,10) 
3 No (70,10) 
4 Yes (120,18) 
5 No (105,10) 
6 No (60,20) 
7 Yes (210,20) 
8 No (90,10) 
9 No (85,5) 
10 No (120,15) 

 
The classification problem is to construct a relationship M that maps each feature 

vector (fx,1, fx,2, …, fx,k) to the membership Px on class label  C, so that given a test 
tuple t0=(f0,1, f0,2, …, f0,k), M(f0,1, f0,2, …, f0,k) predict the membership to each class. If 
the test instance has positive probability to be in different classes, then it will be pre-
dicted to be in the class which has the highest probability.  The work in this paper is 
to build a neural network when only uncertain training data tuples are available, and 
the goal is to find the model with the highest accuracy despite of the uncertainty.  
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4   Algorithm 

4.1   Uncertain Perceptron 

We start with perceptron, which is a simple type of artificial neural network. Percep-
tron is a classical model which constructs linear classifier as: 
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Where x = (x1,…,xn) is the input vector, ω = (ω1,…,ωn) is the weight vector, F is the 
activation function, and y is the perceptron’s output.  

For data sets with uncertain attributes, we need revise the functions and develop an 
uncertain perceptron for linear classification. We will illustrate our approach through 
a simple 2-dimensional dataset. Assume dataset has two attributes X = (x1, x2) and one 
class type y, and assume each uncertain attribute has a distribution as xi ~N (μi, σi), 
and the class type can be +1 or -1, Fig. 1 is a geometric representation of linear classi-
fication for a 2-dimensional uncertain dataset. In this figure, each data instance is 
represented by an area instead of a single point because each dimension/attribute is an 
uncertain distribution, not an accurate value.  

The straight line L in Fig 1 represents the equation: 

                                 1 1 2 2 0 .x xω ω θ+ + =                                           (4.2) 
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Fig. 1. Geometric representation of uncertain Perceptron 
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where x1, x2 are uncertain attributes. We define a parameter t as 

       1 1 2 2 .t x xω ω θ= + +                                          (4.3) 

As mentioned earlier, attributes (x1, x2) follow the distribution xi~ N (μi, σi
2). Since 

these attributes are independent, t will have a distribution as: 

            
1 1 2

2 2 2 2
1 1 2 2 2( ) ~ ( ,  ) .f t N ω μ ω μ θ ω σ ω σ+ + +              (4.4) 

Let s = P(t>0) represent the probability of t larger than 0. If P(t>0) = 1, t is defi-
nitely larger than 0, which means this tuple is in class +1,  and locates above the line 
L in Fig. 1, for example, like Point P. If P(t>0) = 0, t is less than or equal to 0, which 
means this tuple is in class -1, and it is below line L such as Point R. For uncertain 
data, it is possible that the uncertain range of a data instance may cover the linear 
classification line L, for example, Point Q is one such instance. In this case, Q has 
positive probability to belong to both classes, and the membership of class will be 
determined by which class has a high probability. Therefore, we construct an activa-
tion function as equation (4.5). 
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Where, s = P(t>0). Fig. 2 is structure of the uncertain perceptron model. In Fig.2, (μi, 
σi) is the expectation and standard deviation of uncertain attributes, as inputs. When 
the distribution is Gaussian, s can be calculated as: 
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Based on the single uncertain neurons, we can develop a multilayer neural network.  

( 1, 1)

( 2, 2)
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Fig. 2. Uncertain perceptron structure 
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4.2   Uncertain Neural Network 

An uncertain multilayer feed-forward neural network is constructed by adding a hid-
den layer which contains the uncertain neurons between input and output layers. We 
call this algorithm as UNN (for uncertain neural network). Fig. 3 is an instance of the 
layer structure of neural network. Here, the hidden layer has a transfer function as  

                                             ( , ) ( 0) .F P tμ σ = >                                           (4.7) 

Where, 
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P(t>0) will be computed based on uncertain data distribution function, For exam-
ple, if the data follows Gaussian distribution, then  
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The output layer can have an activation function as Sigmoid, since the output val-
ues fall in the range (0,1), to represent the membership of every class.  
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Fig. 3. Multilayer neural network structure 

4.3   Algorithm Analysis 

A straight-forward way to deal with the uncertain information is to replace the prob-
ability distribution function with its expected value. Then the uncertain data can be 
treated as certain data and the traditional neural network can be used for classifica-
tion. We call this approach AVG (for Averaging). This approach, as mentioned  
earlier, does not utilize valuable uncertain information and may result in loss of accu-
racy. We illustrate the reason with the following example. Fig. 4 is an example of  
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classifying an uncertain dataset. Line L1 and L2 reflect the training result of the hid-
den layers of a neural network. Suppose P is a test data instance and we need predict 
the class type of P. Because the expectation of P locates in area II, it will be assigned 
to class II if using AVG algorithm. However, from Fig. 4, it is obvious that if we 
consider the distribution of P, it has a larger probability to be in area I than in area II. 
Therefore, it should be classified to class I. UNN will perform the classification  
correctly since it computes the probability of P belonging to both classes I and II 
according to the probability distribution information and predicts it to be in the class 
which has a larger probability. In this sense, the uncertain neural network can achieve 
higher classification accuracy. 

x1

x2

+

+

+

P

L1

I

I

II

II

L2
+

+

 

Fig. 4. Classifying a test tuple P 

4.4   Network Training 

We adopt a Levenberg-Marquardt back propagation algorithm [14], to train this su-
pervised feed-forward neural network. It requires all the activation function has a 
derivative. Suppose Equation (4.7) is the hidden layer activation function of the un-
certain neural network, then its derivative is like: 
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Therefore, by substituting Equation (4.8) (4.9) into Equation (4.10), we can get the 

activation function’s derivatives.  
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When we have the derivatives of these activation functions, it is intuitive to train the 
network based on traditional method such as gradient decent.  After training, we can 
then use the model for prediction for uncertain data.  

5   Improve on Activate Function 

The hidden layer’s activate function, in Equation (4.7), has an output ranging between 
0 and 1. When we consider two different data instances that are absolutely in the same 
class, their function output will both be 1. This may cause the network training to be 
time consuming in some scenarios. In order to improve the training efficiency, we can 
design new hidden layer activate functions. For example, when the uncertainty is 
represent by Gaussian distribution, we devise a new hidden layer activate function, as 
Equation (5.1) to accelerate the training process.  
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Here F2 (μ, σ) is continuous at ut = 0, since  
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F2 (μ, σ) also has a derivative: 
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Thus, substitute Equation (5.2) (5.3) (5.4) into Equation (5.5), we get the derivative  
of F2. 
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Equation (5.5) then can be used in Levenberg-Marquardt back propagation training 
algorithm.  

6   Experiments  

6.1   Experiment on Accuracy  

We have implemented the UNN approach using Matlab6.5[15], and applied them to 5 
real data sets taken from the UCI Machine Learning Repository [16]. The results are 
shown in Table. 2. For the datasets except “Japanese Vowel”, the data uncertainty is 
modeled with a Gaussian distribution with a controllable parameter ω, which is a 
percentage of the standard deviation to the value of expectation. In our experiments, 
we vary the ω value to be 0.1, 0.3 and 0.5. For “Japanese Vowel” data set, we use the 
uncertainty given by the original data to estimate its Gaussian distribution. 

Table 2. Accuracy experiment results 

Japanese Vowel Uncertainty Train Test 
UNN Distribution based raw data 98.50% 94.95% 
AVG  99.17% 94.31% 

 
Iris  Uncertainty Train Test 
UNN ω=0.1 98.05% 99.93% 
 ω=0.2 98.33% 99.93% 
 ω=0.5 97.78% 99.38% 
AVG  99.17% 98.89% 

 
Ionosphere Uncertainty Train Test 
UNN ω=0.1 92.75% 93.71% 
 ω=0.2 94.50% 90.73% 
 ω=0.5 99.13% 92.05% 
AVG  97.17% 87.86% 

 
Magic Telescope Uncertainty Train Test 
UNN ω=0.1 96.93% 80.01% 
 ω=0.2 97.50% 76.58% 
 ω=0.5 97.50% 80.56% 
AVG  99.67% 73.17% 

 
Glass Uncertainty Train Test 
UNN ω=0.1 77.05% 65.75% 
 ω=0.2 76.00% 69.59% 
 ω=0.5 79.02% 65.57% 
AVG  74.02% 65.22% 
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Fig. 5. Accuracy Comparison of UNN and AVG 
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Fig. 6. Performance comparison 
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In our experiments, we compare UNN with the AVG (Averaging) approach, which 
process uncertain data by simply using the expected value. The results are shown in 
Fig 5. From the figure, we can see that UNN outperforms AVG in accuracy almost all 
the time. For some datasets, for example, Ionosphere and Magic Telescope datasets, 
UNN improves the classification accuracy by over 6% to 7%. The reason is that UNN 
utilizes the uncertain data distribution information and computes the probability of 
data being in all different classes. Therefore, the classification and prediction process 
is more sophisticated and comprehensive than AVG, and has the potential to achieve 
higher accuracy.  

6.2   Experiment on Efficiency 

In section 5, we have discussed an alternative activate function for improving the 
efficiency of network training process. Here, we present an experiment which com-
pares the efficiency of two networks with different hidden layer activate functions. In 
this experiment, we name the network using the original function (Equation 4.7) as 
UNN-O, and the network using activate function (5.1) as UNN-M. 

The training time of UNN-O and UNN-M is shown in Fig. 6 (a) and the training 
epochs of UNN-O and UNN-M is shown in Fig 6. (b). Because of the more complex 
calculations in handling uncertainty, UNNs generally require more training time and 
epochs than AVG. However, the figures also indicate that efficiency of UNN-M is 
highly improved, compared with UNN-O. The training of UNN-M requires much 
fewer epochs than UNN-O, and is significantly faster.  

7   Conclusion 

In this paper, we propose a new neural network (UNN) model for classifying and 
predicting uncertain data. We employ the probability distribution which represent the 
uncertain data attribute, and redesign the neural network functions so that they can 
directly work on uncertain data distributions. Experiments show that UNN has higher 
classification accuracy than the traditional approach. The usage of probability distri-
bution can increases the computational complexity, and we propose new activation 
function for improved efficiency. We plan to explore more classification approaches 
for various uncertainty models and find more efficient training algorithms in the  
future. 
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Christian Böhm1, Annahita Oswald1, Claudia Plant2,
Michael Plavinski1, and Bianca Wackersreuther1

1 University of Munich
2 Technische Universität München

{boehm,oswald,plavinski,wackersreuther}@dbs.ifi.lmu.de,
plant@lrz.tum.de

Abstract. The skyline operator is a well established database primitive which is
traditionally applied in a way that only a single skyline is computed. In this pa-
per we use multiple skylines themselves as objects for data exploration and data
mining. We define a novel similarity measure for comparing different skylines,
called SkyDist. SkyDist can be used for complex analysis tasks such as clus-
tering, classification, outlier detection, etc. We propose two different algorithms
for computing SkyDist, based on Monte-Carlo sampling and on the plane sweep
paradigm. In an extensive experimental evaluation, we demonstrate the efficiency
and usefulness of SkyDist for a number of applications and data mining methods.

1 Introduction

Skyline queries are an important area of current database research, and have gained
increasing interest in recent years [1,2,3,4,5]. Most papers focus on efficient algorithms
for the construction of a single skyline which is the answer of a user’s query. This paper
extends the idea of skylines in such a way that multiple skylines are treated as objects
for data exploration and data mining.

One of the most prominent applications of the skyline operator is to support complex
decisions. As an example consider an online marketplace for used cars, where the user
wants to find out offers which optimize more than one property of the car such as
p (price) and m (mileage), with an unknown weighting of the single conditions. The
result of such a query has to contain all offers which may be of interest: not only the
cheapest offer and that with lowest mileage but also all offers providing an outstanding
combination of p and m.

However, not all of these offers are equally attractive to the user. For instance, con-
sider an offer A that has both a lower price and a lower mileage than another offer G
and many other offers. Therefore, we say that A dominates G (in symbols A ≺ G), be-
cause A is better than G w.r.t. any possible weighting of the criteria price and mileage.
The skyline contains all objects which are not dominated by any other object in the
database.

For the used car market, the skyline of each car model has a particular meaning:
Many arbitrarily bad offers may be present in the database but only the offers in (or
close to) the skyline have a high potential to find a customer. The skyline of the offers
marks to some degree the fair value of a car for each mileage in the market. Therefore,

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 461–470, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the skyline characterizes a car model (or higher-order objects of other applications) in
a highly expressive way.

This high expressiveness leads us to the idea

BMW 7 3.0

Audi A8 3.3

Ford Focus 1.6

Audi A3 1.6

p

m

Fig. 1. Skylines of different carmodels

of treating the skylines themselves as a measure
of similarity. Figure 1 illustrates the skylines of
four different car models derived from real data
of an online automotive market. Car models which
exhibit similar skylines (like Audi A3 1.6 and
Ford Focus 1.6) may be considered as similar:
A recommender system might find out that the
Focus is a perfect alternative for the Audi A3.
The different car models may be subject to clus-
tering, classification, outlier detection, or other supervised or unsupervised data mining
tasks, using a similarity measure which is built upon the skyline.

The remainder is organized as follows. We review related work in Section 2. Our
novel distance measure for skylines is described in Section 3. We present an experi-
mental evaluation in Section 4 and conclude the paper in Section 5.

2 Related Work

Besides introducing studies on skyline computation we briefly survey clustering algo-
rithms which are applied to demonstrate the potential of data mining on skylines for
knowledge discovery in Section 4.

Skyline computation. Many different methods for skyline computation have been emer-
ged in recent years. Brzsnyi et al. [1] proposed a SQL syntax for skyline queries and
developed the Block-Nested-Loops (BNL) algorithm and the Extended Divide-Conquer
algorithm. The Sort-Filter-Skyline algorithm by Chomicki et al. [6] improves BNL by
pre-sorting the entire dataset. Tan et al. [2] presented Bitmap and Index. Kossmann et
al. [3] developed a nearest neighbor search technique by browsing the data set indexed
by an R-tree.

Clustering. In iterative partitioning clustering k-medoid methods such as PAM [7] or
CLARANS [8] aim at finding a set of k representatives among all objects that charac-
terize the objects in the data set best. Clusters are created by assigning each object to
the cluster of the medoid that is closest to that object. One of the most wide spread ap-
proaches to hierarchical clustering is the Single Link algorithm [9]. Starting with single-
ton clusters for each object, the algorithm merges in each step the closest pair of clusters
until it ends up with the root which is one large cluster containing all objects. The hier-
archy obtained by the merging order is visualized as a tree which is called dendrogram.
In density-based clustering, clusters are regarded as areas of high object density which
are separated by areas of lower object density. The algorithm DBSCAN [10] formalizes
this idea by two parameters: MinPts specifying a number of objects and ε specifying
a volume. An object is called core object if it has at least MinPts objects within its
ε-neighborhood. DBSCAN determines a non-hierarchical, disjoint partitioning of the
data set into clusters.
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3 SkyDist

In this paper we describe SkyDist, a novel distance function for skyline objects. At the
beginning of this section we define the essential concepts underlying SkyDist in general.
Then we motivate the idea behind assigning SkyDist for 2-dimensional skylines and
conclude with a generalization according n-dimensional skylines, where n > 2.

3.1 Theoretical Background

Consider a set of database objects, each of which is already associated with an indi-
vidual skyline. For instance, each car type is associated with the skyline of the offers
posted in a used car market. An effective distance measure for a pair of skyline objects
should be useful in the sense that the characteristic properties of the skyline concept are
suitably reflected. Whenever two skylines are similar in an intuitive sense, then SkyDist
should yield a small value. In order to define such a reasonable distance measure, we
recall here the central concept of the classical skyline operator, the dominance rela-
tion which can be built on the preferences on attributes D1, . . . ,Dn in a n-dimensional
numeric space D.

Definition 1 (Dominance). For two data points u and v, u is said to dominate v, de-
noted by u ≺ v, if the following two conditions hold:
∀ dimensions Di∈{1,...,n}: u.Di ≤ v.Di

∃ dimension Dj∈{1,...,n}: u.Dj < v.Dj .

Definition 2 (Skyline Point / Skyline). Given a set of data points DB, a data point u
is a skyline point if there exists no other data point v ∈ DB such that v dominates u.
The skyline on DB is the set of all skyline points.

Two skylines are obviously equal when they consist of identical points. Intuitively, one
can say that two skylines are similar, whenever they consist of similar points. But in
addition, two skylines may also be considered similar if they dominate approximately
the same points in the data space. This can be grasped in a simple and efficient way by
requiring that the one of the two skylines should not change much whenever the points
of the other skyline are inserted into the first one and vice versa. This leads us to the
idea to base SkyDist on the set-theoretic difference among the parts of the data space
which are dominated by the two skylines. For a more formal view let us define the terms
dominance region and non-dominance region of a skyline.

Definition 3 (Dominance Region of a Skyline Point). Given a skyline point xi∈{1,...,n}
of a skyline X = {x1, . . . , xn}. The dominance region of xi, denoted by DOMxi , is
the data space, where every data point u ∈ DOMxi complies the condition xi ≺ u.

Definition 4 (Dominance Region of a Skyline). Given the set of all skyline points of
a skyline X . The dominance region of the skyline X , denoted by DOMX , is defined
over the union of the dominance regions of all skyline points xi∈{1,...,n}.

Figure 2 illustrates this notion for two given skylines X and Y . The green and blue
areas show the dominance regions of skylines X and Y , respectively.
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Definition 5 (Non-Dominance Region of a Skyline). Given a numeric space D =
(D1, . . . ,Dn) and the dominance region DOMX of a skyline X . The non-dominance
region of X , denoted by DOMX , is D \ DOMX .

The basic idea behind SkyDist is to determine the data space that is represented by
all possible data points that are located in the dominance region of one skyline and, at
the same time, the non-dominance region of the other skyline. More formally we can
say that SkyDist is the volume of the distance area between two skylines which can be
specified by the following equation.

SkyDist(X, Y ) = Vol((DOMX \ DOMY ) ∪ (DOMY \ DOMX)) (1)

In order to determine the value of the distance of two skylines X and Y based on the
concept described above, we have to limit the corresponding regions in each dimension.
Therefore we introduce the notion of a bounding skyline point.

Definition 6 (Bounding Skyline Point). Given a skyline X in a n-dimensional nu-
meric space D = (D1, . . . ,Dn), where xi ∈ [0, 1]. The bounding skyline point of
skyline X in dimension i, denoted by xBoundi , is defined as follows.

xBoundi .Dj =

{
1, if j = i

0, otherwise

The bounding skyline points for two 2-dimensional

1.0

1.0

D1

D2
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x4

y4

y3 y2
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y5 x3
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Fig. 2. Dominance regions of two sky-
lines X and Y

skyline objects X and Y are marked in Figure 2
in red color. We remark that this concept is also
applicable if the domain of one or more dimen-
sions is not bounded. In this case the affected di-
mensions are bounded by the highest value that
occurs in either skyline object X or Y in the
according dimension. The coordinates of the re-
maining skyline points are then scaled
respectively.

3.2 SkyDist by Monte-Carlo Sampling

First we want to give an approximation of the distance of two skylines (cf. Equation 1)
by a Monte-Carlo Sampling approach (MCSkyDist). SkyDist is approximated by ran-
domly sampling points and computing the ratio between samples that fall into the region
defined by Equation 1 and the ones that do not. Let us consider Figure 3(a). The region
marked in red illustrates the region underlying SkyDist of two Skylines X and Y . This
region is the dominance region of skyline X and simultaneously the non-dominance re-
gion of skyline Y , thus the distance of skyline X to Y . A user defined number of points
is randomly sampled and the amount of samples that fall into the SkyDist region is de-
termined. The ratio between the samples located in the SkyDist region and the ones that
do not give an approximation of the distance of the two skylines. We use this technique
in our experiments as a baseline for comparing a more sophisticated approach.
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(a) SkyDist in 2D space. (b) SkyDist in 2D
as sum of rectangles.

(c) Exemplary computation of a
rectangle area.

Fig. 3. SkyDist Computation in 2-dimensional space

3.3 SkyDist for 2-Dimensional Skylines

Now we describe the method of computing the exact distance of two skylines X and Y
in 2-dimensional space. Let the skyline points of both skylines X and Y be ordered by
one dimension, e.g. D2. Note that the dominance region of a skyline X is composed by
the dominance regions of all of its skyline points. For the computation of SkyDist, we
consider only the dominance regions that are exclusive for each skyline point. Meaning
that when we look at a particular skyline point xi, we assign the dominance region of
xi and discard all dominance regions of skyline points xj , where xj .D2 > xi.D2.

Figure 3(a) illustrates in red the region underlying SkyDist according to skyline ob-
jects X and Y . This region can be considered as a sum of rectangles as illustrated
in Figure 3(b). To calculate the region between the skylines X and Y and thus their
distance we use the concept of a sweep-line approach. For this purpose we store the
skyline points of both skylines X and Y in a heap structure called event point schedule
(EPS), ordered by one of the two dimensions (e.g. D2) ascending. The general idea be-
hind the sweep-line algorithm is that a line traverses across the plane, stopping at every
point that is stored in the EPS. In our example, the sweep line moves along the axis of
D2. Due to the ordering of the skyline points in the EPS we can determine the area of
the rectangle at every stop of the sweep-line and calculate SkyDist in an incremental
way. Figure 3(c) demonstrates for example the calculation process wenn the sweep-line
holds on the skyline point y2. Now we can calculate the area of the rectangle horizontal
limited by the skyline points y2 and x2 as (x2.D1 − y1.D1)(y2.D2 − x2.D2).

3.4 A Sweep-Plane Approach for the High-Dimensional Case

In this section we describe how to exactly determine the SkyDist between skylines
based on a sweep-plane paradigm referred to as SPSkyDist. We consider a d-dimensional
skyline as a sequence of skylines with dimensionality (d − 1) (see Figure 4): Here, we
use D3 (in decreasing order) as the ordering dimension and build a sequence of 2-
dimensional skylines (each in the D1/D2-plane).

Traversal. The event point schedule (EPS) contains all points, ordered by the last co-
ordinate (decreasingly). In each stop of the sweeping plane, we want to obtain a valid
skyline in the space spanned by the remaining coordinates. This sub-skyline is stored in
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the sweep-plane status (SPS). In Figure 4, this refers to the four sub-skylines X1, ..., X4.
More precisely, in each stop of the sweep-plane, this (d− 1)-dimensional sub-skyline
is updated by (1) projecting the current point of

X1

X2X3

X4

X1X2
X3

X4

D3

D1 D2

A

B
C

D E

Fig. 4. A sequence of 2-
dimensional skylines, forming
a 3-dimensional skyline

the EPS into the (d − 1)-dimensional space, (2) in-
serting the projected point into the skyline in the
SPS, (3) deleting those points from the skyline in
the SPS which are dominated by the new point in
the (d − 1)-dimensional space, and (4) calling the
traversal-algorithm recursively for the obtained (d−
1)-dimensional skyline. In our example, the EPS has
the order (A, B, C, D, E). We start with an empty
SPS, and at the first stopping point, the D1/D2-
projection of A is inserted into the SPS to obtain X1.
No point is dominated. Hence, we call the traver-
sal algorithm for the obtained 2-dimensional skyline
(A). At the next stop, the projection of B is inserted. Since the projection of B domi-
nates the projection of A (in our figure this fact is symbolized by the canceled-out copy
of A), X2 contains only point B. After the recursive call, in the next stop, the projec-
tion of C is inserted which does not dominate object B in the skyline, and, therefore,
the next skyline X3 = (B, C). Finally, D and E are inserted into the skyline in the
SPS (which can be done in one single stop of the sweep-plane or in two separate stops
in any arbitrary order), to obtain X4 = (D, C, E), since B is dominated by D in the
(d − 1)-dimensional projection.

Simultaneous Traversal for SkyDist. The computation of SkyDist(X, Y ) requires a
simultaneous traversal of the two skylines X and Y to be compared. That means that the
EPS contains the points of both X and Y , simultaneously ordered by the last coordinate.
Each of the stops of the sweep-plane corresponds either to a point of X or a point
of Y , and the corresponding sub-skyline in the SPS must be updated accordingly, as
defined in the last paragraph by (1) projecting the point, (2) inserting the point in the
corresponding sub-skyline for either Xi or Yi, (3) cancelling out the dominated points
of the sub-skyline, and finally making the recursive call for (d − 1). Having developed
this algorithmic template, we can easily obtain SkyDist(X, Y ), because each stop of the
sweep-plane defines a disklet, the thickness of which is given by the difference between
the last and the current event point (taking only the coordinate which is used to order
the EPS). This thickness must be multiplied with the (d−1)-dimensional volume which
is returned by the recursive call that computes SkyDist of the (d− 1)-dimensional sub-
skylines Xi and Yi. All volumes of all disklets of the obtained sub-skylines have to be
added. This works no matter whether current and the previous event points belong to
the same or different skylines. Also in the case of tie situations where both skylines
have identical values in the ordering coordinates or where some points in the same
skyline have identical values, our algorithm works correctly. In this case, some disklets
with thickness 0 are added to the overall volume, and, therefore, the order in which the
corresponding sub-skylines are updated, does not change anything.
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4 Experimental Evaluation

We present an extensive experimental evaluation on synthetic and real world data. We
demonstrate that SkyDist is highly effective and efficient and that data mining on sky-
lines provides novel insights in various application domains. For skyline construction,
the approach of [1] is applied.

All experiments are performed on an Asus Z92J which is equipped with an Intel
Dual-Core T2050 Processor and has 2 GByte of RAM.

4.1 Efficiency

To evaluate the stability of the baseline approach MCSkyDist and the scalability of
SkyDist, we generate synthetic data of various number of objects and dimensions. Un-
less otherwise specified, the skyline is constructed from 1,000 uniformly distributed
2-dimensional data objects and for MCSkyDist we use a sample rate of 1,000.

Accuracy of MCSkyDist w.r.t. Sample Rate. We vary the sample rate in a range of 1
to 50,000 and quantify the accuracy of SkyDist in each run. These experiments indicate
that the accuracy of MCSkyDist is very robust w.r.t. the number of samples. Its results
achieve a constant value even with a small sample rate. Actually with 1,000 samples
the same result as using SPSkyDist can be achieved.

Runtime w.r.t. Number of Objects and Dimensionality
We use data sets with varying number of

0

5000

10000

15000

20000

0 100000 200000 300000 400000

pr
ic

e
(E

ur
o)

mileage (km)

Audi A8 3.3
BMW 7 3.0
BMW 316
MB C180

Audi A3 1.6
Toyota Avensis 1.6
Honda Accord 1.8

VW Golf 3 1.6
Opel Astra 1.6
Ford Focus 1.6

Fig. 5. Clustering of car models represented
by their skyline

points and dimensionality and generate sky-
lines for each data set. In most real world
applications, we are interested in the sky-
line w.r.t a few selected dimensions. Hence,
in this experiments, we focus on skylines
up to dimensionality d = 4. All results
are summarized in Table 1. In the 2- di-
mensional case the runtime of SkyDist re-
mains constant even with increasing data
size. This is due to the fact, that despite in-
creasing database size the number of sky-
line points remains relatively constant. It
has been shown in [5] that for independent
distributed data the number of skyline ob-
jects is O(log2 n).

Also in the 3- and 4-dimensional case it is evident that considering the skyline points
instead of all data points is very efficient. It takes 78 and 266 ms for SPSkyDist and
MCSkyDist respectively to return the result when comparing two skylines X and Y
each determined out of 10,000 data points. MCSkyDist and SPSkyDist both scale linear
with increasing dimensionality. The sweep-plane approach outperforms the baseline by
a factor of two which confirms the effectivity and scalability of an exact computation
of SkyDist even for large data sets with more than two dimensions.
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Table 1. Runtime analysis for SPSkyDist and MCSkyDist

# data points # skyline points # skyline points SPSkyDist MCSkyDist
of skyline X of skyline Y

2D data 10 4 3 15 ms 47 ms
100 5 6 16 ms 47 ms

1000 9 5 15 ms 63 ms
10000 7 12 15 ms 78 ms

3D data 10 5 5 31 ms 62 ms
100 18 16 47 ms 109 ms

1000 29 19 63 ms 125 ms
10000 68 39 78 ms 266 ms

4D data 10 5 8 47 ms 78 ms
100 25 36 172 ms 141 ms

1000 80 61 203 ms 297 ms
10000 187 151 609 ms 1078 ms

4.2 Clustering Skylines of Real World Data

In addition to synthetic data we used real world data to demonstrate the potential of
SkyDist for data mining. We demonstrate that interesting reasonable knowledge can
be obtained by clustering skylines with SkyDist. In particular, we focus on two case
studies from different applications and we apply three different clustering algorithms
(PAM, Single Link and DBSCAN) with SkyDist.

Case Study 1: Automotive Market. The data used in this experiment is obtained from
the online automotive market place (http://www.autoscout24.de). The result-
ing data set comprises in total 1,519 used cars constructed in the year 2000. Thus, each
data point represents a specific offer of a used car which are labeled to one of three
classes compact, medium-sized and luxury, respectively. This information allows for an
evaluation of the results. Each car model is represented by one 2-dimensional skyline
using the attributes mileage and price. Hence each skyline point represents a specific
offer that provides an outstanding combination of these attributes, and therefore it is
interesting for the user. PAM, DBSCAN and Single Link combined with SkyDist create
an identical clustering result (cf. Figure 5) using the following parameterization: PAM
(K = 3), DBSCAN (ε = 10, MinPts = 2) and the dendrogram Single Link with a
vertical cut at maxDistance = 90.

All algorithms produce 100% class-pure clusters w.r.t the labelling provided by the
online market place. As expected the Audi A8 and BMW 7 of class luxury are clustered
together in the blue cluster with a very low distance. Also the Mercedes Benz C180 (MB
C180) and the Audi A3 belong to a common cluster (marked in red) and show a larger
distance to the Toyota Avensis or the Honda Accord. These two car models are clus-
tered together in the green cluster, whose members usually have a cheaper price. The
clustering result with SkyDist is very informative for a user interested in outstanding
combinations of mileage and price but not fixed on a specific car model. By clustering,
groups of models with similar skylines become evident.

http://www.autoscout24.de
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(a) SkyDist. (b) Euclidean.

(c) Manhattan. (d) Cosine.

Fig. 6. The dendrogram of Single Link using SkyDist in comparison to conventional metrics

SkyDist vs. Conventional Metrics. Conventional metrics can in principle be applied
for clustering skylines. For this purpose we represent each car model as a vector by cal-
culating the average of the skyline points of the respective car model in each dimension.
Then we cluster the resulting vectors with Single Link using the Euclidean, Manhattan
and Cosine distance. In contrast to clustering skylines using SkyDist (cf. Figure 6(a)),
Figures 6(b), 6(c) and 6(d) demonstrates that no clear clusters are identifiable in the
dendrogram and the result is not very comprehensible. In Figure 6(b) and 6(c) it can
easily be seen that Euclidean and Manhattan distance lead to similar results. Both show
the so called Single Link effect, where no clear clusters can be identified. Using the
Cosine distance avoids this effect but does not produce meaningful clusters either. For
example, the luxury car model BMW 7 has minimum distance to the Opel Astra of class
compact but has an unexpected high distance to the luxury Audi A8.

Case Study 2: Performance Statistics of Basketball Players. The NBA game-by-
game technical statistics are available via http://www.NBA.com. We focus on the
years 1991 to 2005. To facilitate demonstration and interpretation, we select players
who have played at minimum 500 games and are noted for their skills and got vari-
ous awards. The players are labeled with the three different basketball positions guard
(G), forward (F) and center (C). The individual performance skyline of each player
represents the number of assists and points. We cluster the skylines using SkyDist. Sin-
gle Link with a vertical cut of the dendrogram at maxDistance = 96 and DBSCAN
(ε = 4, MinPts = 2) result in the same clustering. Figure 7(b) shows that the play-
ers cluster very well in three clusters that refer to the labels G, F and C. With PAM
(K = 3) (cf. Figure 7(a)) only Steve Nash (G) clusters into the red forward cluster.
This can be explained by the fact, that this player has performance statistics as a player
in the position forward concerning number of points and assists.

http://www.NBA.com
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Fig. 7. Clustering of NBA Players represented as skylines

5 Conclusions

This is the first approach to data mining on skyline objects. Inspired by the success
of the skyline operator for multi-criteria decision making, we demonstrated that the
skyline of a data set is a very useful representation capturing the most interesting char-
acteristics. Hence, data mining on skylines is very promising for knowledge discovery.
As an essential building block, we proposed SkyDist, which is a novel distance func-
tion for skylines. We presented a baseline approach that approximates the distance and
an exact plane sweep based computation. SkyDist can easily be integrated into many
data mining techniques. Real world case studies on clustering skylines demonstrated
that data mining on skylines enabled by SkyDist yields interesting novel knowledge.
Moreover, SkyDist is efficient and thus scalable to large data sets.
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Abstract. This paper studies the problem of optimizing skyline queries with
respect to multiple sources in the multidimensional space (MDMS skyline). It
is challenging to process such kinds of queries efficiently due to the difficulties
arising from both multi-source preferences and multi-dimensional analysis. We
propose a new query evaluation model, called BitStructure, to answer MDMS
skyline queries efficiently. Based on the BitStructure, we develop efficient query
algorithms. The main intuition and novelty behind our approaches is that we ex-
ploit the unified BitStructure structure to seamlessly integrate multi-dimensional
selection and multi-source skyline analysis. Our experimental evaluation using
various synthetic datasets demonstrates that the proposed algorithms are efficient
and scalable.

Keywords: Multi-Source, Skyline Query Processing, Multi-Dimension.

1 Introduction

There has been fruitful research work on efficiently processing skyline queries
[2,4,6,12,1,8] in database systems. However, current methods have only considered so-
called min/max attributes like price and quality which a user wants to minimize or
maximize. Actually, in addition to the min/max attributes, objects can also have spa-
tial attributes like x, y coordinates that can be used to represent relevant constraints on
the query results. Paper [7] distinguished these two types of attributes (attributes such
as quality and price are called min/max attributes and attributes such as x and y are
called spatial attributes) and proposed a new family of query types, neighborhood dom-
inant queries (NHDQs), which consider the relationship between min/max and spatial
attributes. One limitation of the paper is that they only consider to process queries with
respect to one reference point. However, there are many applications that demand to
consider multiple reference points at the same time. Moreover, in most of scenarios,
the desired decisions are described with some qualifying boolean constraints, which
specify what subsets of data should be considered valid.

This paper studies the problem of MDMS skyline query (Multi-Dimensional Multi-
Source skyline query), which optimizes skyline query with respect to multiple sources
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in the multi-dimensional space. We propose a new query evaluation model, called Bit-
Structure, to answer MDMS skyline queries efficiently. We store compressed bit vector
in the structure to capture our goal of responding to multi-source and multi-dimensional
analysis. Based on the BitStructure, we develop efficient query algorithms.

The rest of the paper is organized as follows. We give the problem statement and
present challenges for processing it in Section 2. In Section 3, we present an overview of
our solution, introduce the BitStructure data structure, and provide our query processing
framework based on BitStructure. The experimental results are discussed in section 4.
Section 5 surveys the related work and Section 6 concludes the paper.

2 Problem Statement

Let B be a set of boolean dimensions, D be a set of min/max dimensions, and S be a
set of spatial dimensions of the dataset P . The three sets of dimensions are not neces-
sarily exclusive. To ensure easier discussion later on in the paper, a min/max or spatial
dimension is also called a preference dimension, and a tuple is also called a point. For
the min/max attributes, we assume, without loss of generality, that users prefer minimal
values.

Definition 1. Given a point p ∈ P , and a set of query points Q = {q1, q2, ..., qn} in
the space of S. The multi-source distance between p and Q is defined as:

MSDist(p, Q) =
∑
q∈Q

dist(p, q)

where dist(p, q) means the Euclidean distance between points p and q.

Definition 2. Given two points p ∈ P , p′ ∈ P , and a set of query points Q =
{q1, q2, ..., qn} in the space of S. Let p[i] be the value of p on dimension i. we say
p dominates p′ with respect to Q if:

1. p[i] ≤ p′[i] for all dimensions Di, Di ∈ D, 1 ≤ i ≤ |D|.
2. MSDist(p, Q) ≤ MSDist(p′, Q).
3. p[i] < p′[i] for at least one dimension Di, 1 ≤ i ≤ |D| or MSDist(p, Q) <

MSDist(p′, Q).

Problem Statement: Given a set of boolean predicates gi over dimensions in B in
which 1 ≤ i ≤ u (if not empty) and u is a positive integer, a set of query points
Q = {q1, q2, ..., qn} in the space of S, a MDMS skyline query with respect to Q returns
the set Sky of those points in P which satisfy gi, for all 1 ≤ i ≤ u, and are not
dominated by any other point of P .

A straightforward approach to address MDMS skyline query is to, (1)materialize
MSDists for each point in P ; (2)evaluate the skyline query using an existing method;
(3)check for the boolean conditions and return the result. However, such an approach
can be very expensive due to the fact that we need to compute MSDist for all points
although we only need the skyline ones.

3 Our Approach

In this section, we first specify the data structure of BitStructure, its block constructing
and filtering, and then introduce our query processing framework based on it.
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3.1 BitStructure

Given a data set P , we assume that its first |B| attributes are the boolean attributes, the
next |D| attributes are the min/max attributes and the remaining |S| attributes are the
spatial attributes.

Definition 3. Given a data set P , a set of boolean attributes B = {B1, . . . , B|B|},
and a set of preference attributes R = {R1, . . . , R|R|}, a BitStructure consists of
|B| materialized selection cuboids CS(Bi)(i = 1, . . . , |B|) and |R| materialized bin
cuboids binRi (i=1, . . . , |R|).

The BitStructure is efficient if the data set P is small. However, when P has a huge
number of points, the BitStructure would be very large. The common method to the
problem is to use a compact tuple ID list as an alternative. We choose to compress the
bit vectors using the WAH compression method [17] to reduce the BitStructure size
instead.

3.2 Block Constructing and Filtering

We propose to generate a grid to speed up the processing of our queries. Instead of
intersecting bins on all attributes and generating one unified grid, we intersect bins on
min/max attributes and spatial attributes respectively and generate an asymmetrical grid:
G = {bD

1 , . . . , bD
yD ; bS

1 , . . . , bS
yS}, where bD

i (i = 1, . . . , yD) is the block formed by

intersecting bins over min/max attributes and bS
j (j = 1, . . . , yS) over spatial attributes.

Note that in implementation, there is no need to generate a grid and materialize
it. Since most of the blocks can be pruned during query processing even before they
are constructed, we adopt the policy to construct blocks on-the-fly when needed. Once
constructed, a block is assigned a blockid. In addition, a block b in a N attributes space
can also be represented by two points bl = {bl1, .., blN} and bu = {bu1, .., buN} where
bli and bui is the lower bound and upper bound value for the block along attribute i
respectively.

To perform boolean filtering on b, we only need to intersect the bit vector of b with
that of corresponding selection cuboids.

3.3 Query Processing

Given a data set P , a set of boolean selections B, and a set of query points Q, our
algorithm for processing MDMS skyline query consists of two phases: min/max search
phase and spatial search phase. The intuition behind this two-phase query processing
idea is that the intermediate result obtained in the first phase can be used to prune the
search space of the second phase.

Min/max Search phase: This phase searches the min/max space and returns a subspace
skyline SkyD. The algorithm follows the branch-and-bound principle to progressively
retrieve data blocks [12]. It consists three steps: pre-process, search, and evaluate (Al-
gorithm 1). We briefly explain each step as follows. Having initialized the result set
SkyD (line 1), the pre-process step computes the first candidate block and inserts it
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Algorithm 1. Min/max Searching Algorithm for MDMS skyline query

INPUT: Boolean selections set B = {v1, · · · , v|B|},
OUTPUT: Skyline point set SkyD

ALGORITHM:
/* I. PRE-PROCESS */

01: SkyD={};
02: Compute the first candidate block and insert it into heap;

/* II. SEARCH */
03: while exist blocks in heap do
04: Extract a block b from heap;
05: if DominatePrune(b) then
06: continue;
07: else
08: tempset = BooleanFilter(b);
09: Insert neighboring blocks of b into heap;

/* III. EVALUATE */
10: if tempset is not empty then
11: Sky′=ComputeBlockSkyline(tempset);
12: SkyD = SkyD ∪ Sky′;
13: Output SkyD ;

into the heap (line 2). The first candidate block corresponds to the block which has the
smallest MinDist to the origin point o in the min/max space.

The search step finds the next candidate block for query processing. The blocks in
the heap are ordered in ascending order of MinDist to the original point o. Initially, the
heap only contains the first candidate block found in the pre-process step. Iteratively,
the algorithm picks the top block b of the heap as the next candidate block and removes
it from the heap (line 4). b is examined by the procedure DominatePrune() against the
already computed skyline points (line 5). If the lower bound of block b in the min/max
space is dominated by some point s ∈ SkyD, all points in b can be dominated by s and
b can be safely pruned.

Line 8 checks whether b is pruned by the boolean predicate. As discussed in Section
3.2, the only operation we need to do here is to intersect the bit vector of boolean
condition and that of the block b. A temporal variable tempset is used to record those
points that pass the dominate and boolean checking. The algorithm further retrieves
all neighboring blocks of candidate block b and inserts them into the heap (line 9).
Since each block can be neighboring with multiple blocks, a hash-table is maintained
to ensure each block will only be inserted once.

Given the tempset computed in the search step, procedure ComputeBlockSkyline() in
the evaluate step performs the task of computing the skyline for all points in tempset. If
tempset is not empty, the algorithm first performs similar dominate pruning on all points
in it against the already computed skyline points, and then does pair-wise Comparison
to compute the skyline Sky′. Sky′ is further merged into the final result SkyD (line
12). The algorithm terminates when there is no more blocks in the heap.
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Lemma 1. Given any point p ∈ SkyD, if p is non-duplicate in subspace D, p is a
MDMS skyline point in the full space (B ∪ D ∪ S).

PROOF: Omitted for space limitation. �
Based on the lemma, we know that any non-duplicate skyline point in subspace D is a
MDMS skyline point in the full space. For those duplicate points in SkyD, we further
compare their MSDist to Q and then delete those points who have larger MSDists. From
now on, we assume SkyD only including non-duplicate points.

Spatial Search Phase: This phase searches the spatial space and computes the final
MDMS skyline Sky. Given the intermediate result SkyD returned in the first phase, we
define two bound variables distlb and distub as the minimal and maximal MSDist over
all points in SkyD. Based on this, we have the following lemmas.

Lemma 2. Any block b can not contain a MDMS skyline point if:
MinMinDist(b, RQ) > distub

|Q|
where RQ represents the minimum bounding rectangle (MBR) formed by points in Q.

PROOF: Omitted for space limitation. �
According to lemma 2, if the minimal distance between block b and RQ is greater than
distub

|Q| , then b can be safely pruned. Lemma 2 incurs minimum overhead, since for every
block it requires a single distance computation. However, as mentioned in [11], the
condition is not very tight. It leads to unnecessary block access. For example, assuming
distub = 7, since MinMinDist(b, RQ) = 6 < distub = 7, according to lemma 2, block
b in Fig. ?? needs to be visited although it cannot contain MDMS skyline points. We
presents a tighter bound to avoid such visits.

Lemma 3. Any block b can not contain a MDMS skyline point if:∑
q∈Q

MinDist(b, q) > distub.

PROOF: Straightforward. Omitted. �
We will now explain how to employ lemma 2 and 3 to prune the spatial space, and how
to get the final MDMS skyline. The pseudo code of Algorithm 2 is used to perform
this task. The main differences between Algorithm 2 and Algorithm 1 lie in: (1)how to
locate the first candidate block; (2)how to order candidate blocks in the heap; (3)how to
do the dominant pruning; (4)how to compute the block skyline.

At the very beginning of Algorithm 2, we set the values for two bound variables,
distlb and distub. At the same time, we initialize another two variables SkyS

1 and SkyS
2

to be empty. SkyS
1 and SkyS

2 are used for computing the block skyline and will be
explained later.

Recall in min/max space, the first candidate block is corresponding to the one that is
closest to the origin. In contrast, in spatial space, the block who has the most powerful
pruning ability is the one that is nearest to Q. Therefore, we locate the first candidate
block to be that whose centroid is nearest to all points in Q. For the same reason, in
the heap, candidate blocks with nearer centroids to Q are ordered before blocks with
farther centroids.
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Algorithm 2. Spatial Searching Algorithm for MDMS skyline query

INPUT: SkyD , B, Q
OUTPUT: Skyline point set
ALGORITHM:
01: Let distlb be the minimal MSDist over all points in SkyD;

Let distub be the maximal MSDist over all points in SkyD;
SkyS

1 = SkyS
2 = ∅;

02-11: The same as in Algorithm 1
12: Merge SkyS

1 , SkyS
2 , SkyD, and Output;

Procedure DominatePrune(b)
13: if MinMinDist(b, RQ) > distub

|Q| then
14: Return 1; /* LEMMA 2 */
15: else if

∑
q∈Q

MinDist(b, q) > distub then

16: Return 1; /* LEMMA 3 */
17: Return 0;

Procedure ComputeBlockSkyline(tempset
18: for each point p ∈ tempset do
19: if p.MSDist < distlb then
20: if p is not dominated by SkyS

1 ) then
21: Add p to SkyS

1

Remove any dominated points from SkyS
1 ∪ SkyS

2 ;
22: else
23: if p is not dominated by SkyD ∪ SkyS

2 then
24: Add p to SkyS

2

Remove any dominated points from SkyS
1 ∪ SkyS

2 ;

Now we explain how the procedure DominatePrune() works in the spatial space. If
lemma 2 is satisfied (line 13-14), DominatePrune() returns value 1 which indicates that
block b can be pruned safely. Otherwise, we need further check if lemma 3 is satisfied
(15-16). Please note that once a block b is pruned, we need not consider the neighboring
blocks of b any more. The reason is, for those neighboring blocks of b that are farther to
Q than b is, they must satisfy the pruning condition also and can be pruned safely; for
those neighboring blocks of b that are nearer to Q than b is, they must have been visited
before since our block visiting order is from near to far.

If both lemma 2 and 3 fail, DominatePrune() returns value 0 which means that b
cannot be pruned and need to be processed further. Procedure ComputeBlockSkyline()
is called to process those blocks that pass the dominate pruning and boolean filtering.
For each point p ∈ b, it can either be dominated by at least one point in Sky, and
therefore fails to affect Sky, or can not be dominated by any point in Sky and should
become part of Sky itself. In that case, p might also dominate points currently in Sky,
which must of course be removed. Therefore, Procedure ComputeBlockSkyline() in the
spatial space must efficiently support two operations: first, checking whether a point p is
dominated by the current Sky; second, removing the points in Sky that are dominated
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by p. The ability of any technique to perform these two tasks can be augmented by
utilizing the following observations.

Lemma 4. Given any point p ∈ P , if:
MSDist(p, Q) < distlb,

then, p can not be dominated by any point p′ ∈ P if p′ satisfies MSDist(p′, Q) ≥ distlb.

PROOF: Straightforward. Omitted. �
Lemma 5. Given any point p ∈ P , p cannot dominate any point p′ ∈ SkyD.

PROOF: Straightforward. Omitted. �
These lemmas imply that a number of points in Sky is irrelevant for the checking tasks.
We divide all points in Sky into three separate subsets: SkyD, SkyS

1 , and SkyS
2 . The

last two subsets maintain skyline points generated in the spatial search phase; SkyS
1

represents those points whose MSDists are smaller than distlb, and SkyS
2 represents

those points whose MSDists are equal to or larger than distlb. Thus, to do dominant
checking, we only need to consider points in the corresponding subsets instead of the
entire Sky. line 18-24 of Algorithm 2 summarizes the high level strategy that is em-
ployed to keep SkyS

1 and SkyS
2 up to date. Please note that SkyD is only used for

pruning here, and it will not change when the algorithm is proceeding.
Finally, SkyD, SkyS

1 and SkyS
2 are merged together to form the final skyline result.

4 Performance Study

To evaluate the efficiency and scalability of our query processing algorithms, extensive
experiments are conducted. In this section, we report only part of our results due to
space limitation. All our experiments are conducted on a PC with an Intel Pentium
IV 1.6GHz CPU and 1G main memory, running Microsoft Windows XP. Experiment
results are reported on synthetic datasets. All run time reported here includes I/O time.

The default values of dimensionality is 6, data size is 100k, the number of query
points in |Q| is 5. For simplicity, we used the same number of boolean dimensions,
min/max dimensions and spatial dimensions. As an example, for 6 dimensions, we
chose 2 dimensions as boolean dimensions, 2 dimensions as min/max dimensions, and
the remaining 2 dimensions as spatial dimensions.

We compare our proposed query processing algorithm based on an asymmetrical
grid (referred as ASYM MDMS) against the following alternative methods: (1)Straight-
forward method (referred as STR MDMS) implemented using the method discussed
in Section 2; (2)Query processing algorithm based on a symmetrical grid (referred as
SYM MDMS).

We randomly generate 100 different MDMS skyline queries. Each query has a num-
ber n of points, distributed uniformly in the space of S. Figure 1(a) shows the aver-
age run time of the three algorithms for answering a MDMS skyline query when n is
increased from 2 to 7. Obviously, from the results, we can see that SYM MDMS out-
performs STR MDMS. Among the algorithms, ASYM MDMS performs best as expected
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Fig. 1. Performance for MDMS Skyline Query

due to the asymmetrical partition for different types of attributes and the early pruning
strategies applied in the spatial search phase.

Next, we look at the run time of three algorithms as the number of dimension in-
creases from 3 to 12. Figure 1(b) depicts the experiment result. We observe that with
increasing number of dimension, the runtime of STR MDMS and SYM MDMS increases
more significantly than that of ASYM MDMS. This is again due to the fact that the prun-
ing is more effective in the ASYM MDMS approach.

Figure 1(c) shows run time of the three algorithms as the number of points in-
creases from 20,000 to 100,000. From the results, we can see that the run time of both
STR MDMS and SYM MDMS algorithms increases dramatically with respect to the size
of data sets. However, the ASYM MDMS method increases modestly.

To evaluate possible impacts by different distributions of query points, we generate
100 different MDMS skyline queries with clustered query points. Figure 1(d) depicts
the experiment result over two different query distributions (Cluster and Random) with
different boolean selectivity. Since the trends are the same for all three algorithms, we
only show the results of ASYM MDMS as it is the most efficient. Boolean selectivity
determines the filtering power by boolean predicates and is defined as the number of
points that pass the boolean checking as a proportion of |P |. We observe that Cluster
outperforms Random. The difference between them increases with selectivity. This is
because cluster query distribution has high possibility to generate a small |RQ| which
results in effective pruning in spatial space.

5 Conclusions
In this paper, we have introduced a novel type of skyline queries, so-called MDMS
skyline queries, which optimizes skyline query with respect to multiple sources in the
multi-dimensional space. Such queries support a micro-economic approach to decision
making, considering not only min/max attributes but also spatial attributes. We propose
a new query evaluation model, called BitStructure, to answer MDMS skyline queries
efficiently. Based on the BitStructure, we develop efficient query algorithms. Our exper-
imental evaluation demonstrates that the proposed algorithms are efficient and scalable.
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Abstract. Mining frequent itemsets from transactional datasets is a

well known problem with good algorithmic solutions. In the case of un-

certain data, however, several new techniques have been proposed. Un-

fortunately, these proposals often suffer when a lot of items occur with

many different probabilities. Here we propose an approach based on sam-

pling by instantiating “possible worlds” of the uncertain data, on which

we subsequently run optimized frequent itemset mining algorithms. As

such we gain efficiency at a surprisingly low loss in accuracy. These is

confirmed by a statistical and an empirical evaluation on real and syn-

thetic data.

1 Introduction

In frequent itemset mining, the transaction dataset is typically represented as
a binary matrix where each line represents a transaction and every column cor-
responds to an item. An element Mij represents the presence or the absence
of the item j in transaction i by the value 1 or 0 respectively. For this basic
traditional model, where an item is either present or absent in a transaction,
many algorithms have been proposed for mining frequent itemsets; i.e., sets of
columns of M that have all ones in at least a given number of transactions (see
e.g. [5] for an overview on frequent itemset mining).

In many applications, however, an item is not present or absent in a trans-
action, but rather an existence probability of being in the transaction is given.
This is the case, for example, for data collected from experimental measurements
or from noisy sensors. Mining frequent patterns from this kind of data is more
difficult than mining from traditional transaction datasets. After all, computing
the support of an itemset now has to rely on the existence probabilities of the
items, which leads to an expected support as introduced by Chui et al. [4].

If the binary matrix is transformed into a probabilistic matrix, where each
element takes values in the interval [0, 1], we have the so called uncertain data
model. Under the assumption of statistical independence of the items in all
transactions in the dataset, the support of an itemset in this model, as defined
by Chui et al. [4], is based on the possible world interpretation of uncertain
data. Basically, for every item x and every transaction t there exist two sets of
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possible worlds, one with the worlds in which x is present in t and one with
the worlds where x is not present in t. The probability of the first set of worlds
is given by the existence probability of x in t (P (x, t)) and the probability of
the second set of worlds by 1−P (x, t). The probability of a single world is then
obtained by multiplying the probabilities for all its individual items; i.e., P (W ) =∑

t∈W

∏
x∈t P (x, t)

∏
x 	∈t(1 − P (x, t)). The expected support of an itemset can

be obtained by summing the support of that itemset over all possible worlds,
while taking into consideration the probability of each world. There exist 2|D|×|I|

worlds, where |D| is the total number of transactions in the probabilistic dataset
and |I| is the total number of items. This rather complicated formula can be
reduced to:

expSup(X) =
∑
t∈D

∏
x∈X

P (x, t)

Every transaction thus supports an itemset with the probability given by the
product of existence probabilities of all items in the itemset and in that trans-
action. The expected support of an itemset over the entire dataset is the sum of
the existence probabilities of that itemset in every transaction of the dataset.

In the remainder of this paper we revisit the related work, then we present
our proposed method based on sampling, followed by theoretical and empirical
analysis of the quality of the results.

2 Related Work

The efficient data structures and techniques used in frequent itemset mining
such as TID-lists [2], FP-tree, which adopts a prefix tree structure as used in
FP-growth [6], and the hyper-linked array based structure as used in H-mine [8]
can no longer be used as such directly on the uncertain data. Therefore, recent
work on frequent itemset mining in uncertain data that inherits the breadth-first
and depth-first approaches from traditional frequent itemset mining adapts the
data structures to the probabilistic model.

U-Apriori [4] is based on a level wise algorithm and represents a baseline
algorithm for mining frequent itemsets from uncertain datasets. Because of the
generate and test strategy, level by level, the method does not scale well.

UCP-Apriori [3] is based on the decremental pruning technique which con-
sists in maintaining an upper bound of the support and decrementing it while
scanning the dataset. The itemset is pruned as soon as its most optimistic value
falls below the threshold. This approach represents the state of the art for mining
frequent patterns from uncertain data with a generate-and-prune strategy.

UF-growth [7] extends the FP-Growth algorithm [6]. It is based on a UF-tree
data structure (similar to FP-tree). The difference with the construction of a FP-
tree is that a transaction is merged with a child only if the same item and the
same expected support exist in the transaction and in the child node, leading to a
far lower compression ratio as in the original FP-tree. The improvements consist
in discretization of the expected support to avoid the huge number of different
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values and in adapting the idea of co-occurrence frequent itemset tree (COFI-
tree). The UF-trees are built only for the first two levels. It then enumerates the
frequent patterns by traversing the tree and decreasing the occurrence counts.

Aggarwal et al. [1] extended several existing classical frequent itemset mining
algorithms for deterministic data sets, and compared their relative performance
in terms of efficiency and memory usage. The UH-mine algorithm, proposed in
their paper, provides the best trade-offs. The algorithm is based on the pattern
growth paradigm. The main difference with UF-growth is the data structure
used which is a hyperlinked array.

The limitations of these existing methods are the ones inherited from the
original methods. The size of the data for the level-wise generate-and-test tech-
niques affects their scalability and the pattern-growth techniques require a lot
of memory for accommodating the dataset in the data structures, such as the
FP-tree, especially when the transactions do not share many items. In the case
of uncertain data, not only the items have to be shared for a better compression
but also the existence probabilities, which is often not the case.

3 Sampling the Uncertain Dataset

The first method we propose, called Concatenating the Samples, takes the un-
certain dataset and samples according to the given existential probabilities. For
every transaction t and every item i in transaction t we generate an independent
random number 0 ≤ r ≤ 1 (coin flip) and we compare it with the probability
p associated with the item i. If p ≥ r then item i will appear in the currently
sampled transaction. For every transaction in the uncertain dataset we repeat
the step above n times, for a given n. The result is a dataset which can be mined
with any traditional frequent itemset mining algorithm. To obtain the estimated
support of an itemset in the uncertain dataset, its support in the sampled dataset
still needs to be divided by n.

The difficulty of this method resides in the fact that we physically instantiate
and store the sampled “certain” dataset which can be up to n times larger than
the original uncertain dataset. Fortunately, for most efficient itemset mining al-
gorithms, we do not actually have to materialize this samples database. After
all, most efficient techniques read the database from disk only once, after which
their advanced data structures contain the database in the main memory. There-
fore, the sample can be generated immediately in memory when the database is
being read from disk for the first time. We call this method Inline Sampling.

To this end, we made minor modifications of the frequent itemset mining
algorithms. We will briefly describe U-Eclat and UFP-growth, the modified
versions of the ECLAT and FP-growth algorithms.

U-Eclat is an adaptation of the ECLAT algorithm [11] with an improvement
based on diffsets as described in [10]. In only one scan of the dataset the relevant
items are stored into memory together with the list of transactions where the
items appear, called tid-list. The candidates are then generated using a depth-
first search strategy and their support is computed by intersecting the tid-list of
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the subsets. The only adaptation for U-Eclat consists in reading the uncertain
transactions and instantiating them as described above. More specifically, given
the number of iterations n, for every transaction t and every item i in transaction
t we generate n independent random numbers r1, . . . , rn betweeen 0 and 1 and
we compare them with the probability p associated with the item i. If p ≥ rj ,
for 1 ≤ j ≤ n, then n · t + j will appear in the tid-list of item i. From there on,
the standard Eclat algorithm is being executed.

UFP-growth extends the initial FP-growth algorithm [6]. The FP-tree con-
struction needs two scans of the dataset. The first scan collects the frequent items
and their support and in the second scan every transaction is accommodated in
the FP-tree structure. The frequent itemsets are then generated recursively from
the FP-tree. In order to adapt this algorithm to our method, the first scan com-
putes the expected support of every itemset exactly by computing their support
as the sum of existential probabilities in every transaction where it occurs. In
the second scan, every transaction is instantiated n times, according to the ex-
istential probability of the items in the transaction and then it is inserted in
FP-tree structure. The algorithm then extracts the frequent itemsets the same
way as the FP-growth algorithm.

4 Statistical Bounds on the Quality of the Approximation

As before, D denotes the set of transactions, and I the set of items. P (x, t)
denotes the probability assigned to item x by transaction t. We extend this
notation to itemsets X ; i.e., P (X, t) will denote

∏
x∈X P (x, t). Our whole analysis

will be based on the numbers P (X, t) only and hence, will not depend on the
assumption of independence between the items. Notice that this implies that our
sampling-based method, in contrast to the other existing proposals, could also
be applied when a more involved probabilistic model is assumed. We first start
our analysis for a single itemset X and will extend it later on for the complete
collection of itemsets.

Suppose that, for every transaction t ∈ D, we sample n deterministic versions
of this tuple, t1, . . . , tn. Let X i

t be the stochastic variable denoting if X ⊆ ti; i.e.,
X i

t = 1 if X ⊆ ti, and X i
t = 0 otherwise. Notice that the variables X i

t are statis-
tically independent as they are sampled using independent coin flips. X i

t follows
a Bernoulli distribution with mean P (X, t). It is easy to see that the stochastic
variable Xt =

∑n
i=1 X i

t follows a binomial distribution with mean nP (X, t) and
variance nP (X, t)(1 − P (X, t)). Consider now the sum: S(X) :=

∑
t∈D Xt

n The
expected value and variance of this sum are as follows:

E[S] = expSup(X)

V [S] = V

[∑
t∈D Xt

n

]
=
∑

t∈D V [Xt]
n2

=
∑

t∈D nP (X, t)(1 − P (X, t))
n2

≤ |D|
4n

.

Hence, not surprisingly, the sum S we use to approximate the expected support
is an unbiased estimator with a variance that decreases linearly with n. For the
relative version, rS = S

|D| , we get V [rS] = V
[

S
|D|
]

= V [S]
|D|2 ≤ 1

4n|D| .
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We now apply Hoeffding’s inequality. This inequality is as follows: given
independent (but not necessarily identically distributed) stochastic variables
X1, . . . , Xm such that for all i = 1 . . . n, P (ai ≤ Xi − E[Xi] ≤ bi) = 1, then

p

[∣∣∑
i

Xi − E

[∑
i

Xi

] ∣∣ ≥ mε

]
≤ 2 exp

(
− 2m2ε2∑n

i=1(bi − ai)2

)
.

In our case, for all X i
t , X i

t − E(X i
t) is in the interval [−1, 1], and hence we get:

p

[∣∣∣∑
t∈D

n∑
i=1

X i
t − E

[∑
t∈D

n∑
i=1

X i
t

] ∣∣∣ ≥ n|D|ε
]

≤ 2 exp

(
−2(n|D|)2ε2∑n|D|

i=1 22

)

= 2 exp
(
−n|D|ε2

2

)
.

If we now rewrite in function of rS(X) and rsupp(X) := expSup(X)
|D| , we get:

p[|rS(X) − rsupp(X)| ≥ ε] ≤ 2 exp
(
−n|D|ε2

2

)
.

Hence, for given ε, δ > 0, we have: If δ ≥ 2 exp
(
−n|D|ε2

2

)
, i.e., n ≥ − 2 ln(δ/2)

|D|ε2 ,
then p[|rS(X) − rsupp(X)| ≤ ε] ≥ 1 − δ .

The significance of this result can best be illustrated by an example. Suppose
D contains 100 000 probabilistic transactions and X is an itemset. In order to
guarantee that the support of X is approximated with 99% probability with
less than 1% error, we need to have n ≥ − 2 ln(0.01/2)

100 000(0.01)2 ≈ 1. Hence, we need
approximately 1 sample per transaction in D to achieve this result. Furthermore,
suppose that we have a collection of 1 000 000 frequent itemsets. In order to
guarantee that all these itemsets have less than 1% error with 99% probability,
we need to have (using the union rule) n ≥ − 2 ln(1/200 000 000)

100 000(0.01)2 ≈ 3.8; i.e., less
than 4 samples per transaction.

As a side note, even tighter bounds can be gotten by approximating the distri-
bution of rS with a normal distribution, using a weaker form of the Central Limit
Theorem, called Lyapunov’s central limit theorem. That is, S−supp(X)

nV [S] converges
in probability to N(0, 1).

5 Experiments

The experiments were conducted on a GNU/Linux machine with a 2.1GHz CPU
with 2 Gb of main memory. We used the datasets and the executables for com-
parison from [1]. Kosarak contains anonymized click-stream data. It is a very
sparse dataset, with a density of less than 0.02%, about 1 million transactions,
42170 distinct items and an average of 8 item per transaction. The dataset
T40I10D100K was generated using the IBM synthetic data generator, having
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Fig. 1. kosarak Dataset

100K transactions, 942 distinct items and a density of 4.2%. The original datasets
were transformed by Aggarwal et al. [1] into uncertain datasets by assigning to
every item in every transaction existential probabilities according to the nor-
mal distribution N(μ, σ2), where μ and σ were randomly and independently
generated with values between [0.87, 0.99] and [1/21, 1/12] respectively.

For different values of the minimum support, we ran our implementations of
U-Eclat and UFP-growth. The number of times we instantiate the uncertain
dataset varies between 1 and 50. The higher the number of instantiations, the
better the accuracy of the results becomes, at the cost of an increase in exe-
cution time. We also experimented with the original ECLAT and FP-growth
algorithms after materializing the sampled datasets. Obviously the size of these
datasets become very large for multiple iterations, and thus, those experiments
always resulted in a decrease in performance as compared to their inline versions.
Experimentally we show that for relatively low number of instantiations we reach
highly accurate results. The gain in time motivates the use of our method which
outperforms in execution time the existing state of the art methods mentioned
in [1]. For every dataset, we plot the execution times we obtained for different
values of the minimum support and for some different numbers of iterations. It
turns out that U-Eclat always outperformed UFP-growth. In many cases, the
FP-tree simply became too large to handle [5]. In the experiments, for clarity,
we thus only show the results for U-Eclat. For a fair comparison we also only
show the best performing implementations of the algorithms mentioned in [1],
being UCP-Apriori and UH-mine. The execution times are depicted in Figures
1(a) and 2(a).

For low support threshold, our U-Eclat outperforms UCP-Aprori and UH-
mine for up to 5 sampling iterations of the dataset. Note that more efficient
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Fig. 2. t40 Dataset

kosarak
precision recall

Iter min avg max min avg max
1 97.67 98.95 100 97.93 99.28 100
2 98.27 99.41 100 98.88 99.62 100
5 99.13 99.63 100 99.10 99.70 100
10 99.43 99.77 100 99.34 99.74 100
20 99.32 99.74 100 99.60 99.83 100
30 99.53 99.79 100 99.60 99.83 100
40 99.69 99.87 100 99.60 99.84 100
50 99.60 99.83 100 99.75 99.92 100

t40
precision recall

Iter min avg max min avg max
1 92.88 96.16 100 93.66 96.95 100
2 94.22 97.25 99.54 95.91 97.73 100
5 97.10 98.52 100 96.88 98.48 100
10 98.16 99.12 100 98.43 99.14 100
20 98.87 99.37 100 95.25 98.70 100
30 99.39 99.65 100 99.26 99.64 100
40 99.46 99.65 100 99.42 99.71 100
50 99.63 99.82 100 99.68 99.80 100

Fig. 3. Summary of Precision and Recall

frequent set mining algorithms as can be found in the FIMI repository will per-
form even better, also for a higher number of iterations. As our theoretical results
already indicated that 2 iterations already result in a very accurate approxima-
tion of the expected supports of all itemsets. This also shows in practice.

To this end, we compare the collections of frequent patterns and their support
obtained using the exact method and our sampling method. First, the collection
of frequent itemsets is generated using UCP-Aprori [1]. Based on this, we eval-
uate the errors in support computed with the sampling method.

In terms of support error, we compute the average of the absolute difference
between the support of itemsets found by both methods. The error is depicted
in Figures 1(b) and 2(b). It can be seen that, as expected and predicted by
the statistical evaluation, the higher the number of iterations grows, the lower
the error becomes. But even for relatively low number (5 or 10 iterations), the
average error in support estimation drops below 1%.
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For itemsets having the support close to the minimum support threshold,
small variations of support can introduce false positives when the real support
is overestimated or false negatives when the real support is underestimated.
To evaluate the impact of this, we report Precision and Recall of our method
w.r.t. the true collection in terms of patterns found as frequent. We plot in
Figures 1(c), 1(d), 2(c) and 2(d) the values of precision and recall for different
number of iterations. A summary of these values is reported in Figure 3 as the
overall minimum, average and maximum for each dataset and different numbers
of iterations. The values confirm the quality of the approximation.

Acknowledgements. We thank to the authors of Aggarwal et al. [1] for making
available the executables and datasets. This research was partially founded by
FWO project “Foundations for Inductive Databases”.
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Abstract. Currently available algorithms for data stream classification are all
designed to handle precise data, while data with uncertainty or imperfection is
quite natural and widely seen in real-life applications. Uncertainty can arise in
attribute values as well as in class values. In this paper, we focus on the classi-
fication of streaming data that has different degrees of uncertainty within class
values. We propose two types of ensemble based algorithms, Static Classifier En-
semble (SCE) and Dynamic Classifier Ensemble (DCE) for mining uncertain data
streams. Experiments on both synthetic and real-life data set are made to compare
and contrast our proposed algorithms. The experimental results reveal that DCE
algorithm outperforms SCE algorithm.

1 Introduction

Mining on streaming data draws more and more attentions in research community in
recent years. One of the most challenge issues for data stream mining is classifica-
tion analysis with concept drift [4,5,6,7,8]. The currently available algorithms for data
stream classification are all dedicated to handle precise data, while data with uncertainty
is quite common in real-life applications. Uncertainty can appear in attributes in some
applications. In a sensor network system, the information such as humidity, temperature
and weather usually contains massive uncertainty during the processes of data collect-
ing and transmitting [2]. Uncertainty can also appear in class values. For example, in
medical diagnosis, it’s hard for the doctor to decide the exact disease of a patient. It’s
wise to predict all the possibilities of each candidate diseases rather than give a crisp
result.

In this paper, we study the data stream classification tasks with uncertain class val-
ues. Firstly, we extend the NS-PDT algorithm [1], a decision tree algorithm dealing with
categorical attributes and uncertainty in class values, to handle continuous attributes fol-
lowing the scheme of C4.5 [10]. Secondly, we propose two ensemble based algorithms,
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Static Classifier Ensemble (SCE) and Dynamic Classifier Ensemble (DCE), to classify
uncertain data streams with concept drift. Experiments on both synthetic data and real-
life data set are made to validate our proposed methods. The experimental results show
that DCE outperforms SCE.

This paper is organized as following: Section 2 reviews the related work on data
streams and uncertainty. Section 3 describes NS-PDT algorithm for data with uncer-
tainty in class values. Section 4 presents our ensemble based algorithms for classifying
uncertain data streams. Section 5 shows our experimental results on both synthetic and
real-life data set. And Section 6 concludes this paper and gives our future work.

2 Related Work

To the best of our knowledge, there is no work so far on classifying uncertain data
streams, while both studies on mining of data stream and uncertain data have been well
investigated in recent years.

At present, the classification algorithms for the data stream scenario are all dedicated
to precise data only. A classical approach for data stream classification follows ensem-
ble based scheme [4,5,6,7,8], which usually learns an ensemble of classifiers from the
streaming data, and then uses all the classifiers to predict the newly coming instances.
The way to integrate classifiers can be distinguished into two categories:

– Static classifier ensemble. The weight of each base classifier is decided before the
testing phase.

– Dynamic classifier ensemble. The weight of each base classifier is decided by the
testing instance.

It is concluded in [7] that dynamic methods outperform the static methods [4].
For the classification task on uncertain data, a few decision tree algorithms have been

proposed [1,2,3]. Both DTU algorithm [2] and UDT algorithm [3] model the uncertainty
in attribute values by probability distribution functions (pdf). This is different from our
algorithm, for our goal is to deal with data uncertainty in class values. NS-PDT [1] is
a decision tree algorithm to handle data with uncertain class values. However, it can
only handle categorical attributes. Hence, in this paper, we firstly extend the initial NS-
PDT algorithm [1] to handle continuous attributes and then use it as a base classifier for
ensemble classification of data streams.

3 NS-PDT for Uncertain Data

We briefly describe NS-PDT algorithm [1] for uncertainty here. Given an uncertain data
set with M classes, the possibility distribution π = {π(L1), π(L2), . . . , π(LM )} rep-
resents how likely an instance belongs to each class. More specifically, π(Li) accesses
the possibility that an instance belongs to class Li, i ∈ [1, M ].

Compared with the state-of-the-art tree building algorithm C4.5 [10], NS-PDT re-
places the Information Gain by the Non-Specificity Gain (NSG), and uses the maxi-
mum Non-Specificity Gain Ratio (NSGr) to decide which attribute to be selected as
the next splitting attribute. NSG is defined as [1]:

NSG(T, Ak) = U(πT
Rep) − UAk

(πT
Rep) (1)
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Here, NSG(T, Ak) represents the amount of information precision obtained after split-
ting the data set T according to attribute Ak; U(·) accesses the information precision of
the data set. Please refer to [1] for more details.

As NS-PDT can only deal with categorical attributes, here we simply follow the
schemes utilized in C4.5 algorithm [10] to extend NS-PDT to handle continuous at-
tributes. The detailed algorithm is omitted here for lack of space.

4 Mining Uncertain Data Streams

In this paper, we follow the assumption that in data stream scenario, data arrives as
batches with variable length [11]:

d1,1, d1,2, · · · , d1,m1 ;
d2,1, d2,2, · · · , d2,m2 ;
· · · ;
dn,1, dn,2, · · · , dn,mn ;
· · · ;

(2)

Here, di,j represents the j-th instance in the i-th batch. In our paper, we learn a NS-PDT
classifier from each batch of uncertain data, and then the base classifiers are combined
to form an ensemble. To keep the population capacity of the ensemble, following [6],
we delete the oldest classifier when the number of classifiers in the ensemble exceeds
a predefined parameter EnsembleSize. In the testing phase, our goal is to output a
possibility distribution of test instance x over all possible classes.

4.1 Static Classifier Ensemble

We proposed a static classifier ensemble algorithm to classify the uncertain data streams,
which is illustrated in algorithm 1.

In algorithm 1, the function Ci.dis(x) in step 3 returns a possibility distribution over
different classes of x. In steps 4-6, the possibility for each class is accumulated. In step
8, we normalize the possibility by formula π(Li) = π(Li)

max
|M|
i=1{π(Li)}

[1], so that the

maximum possibility in π is 1.
Note that in algorithm 1, weii represents the weight of classifier Ci, and it is decided

in the most up-to-date data batch. Let’s write |NUM | for the total number of testing
instances; D(xi) for the accuracy while predicting instance xi; πres(Lj(xi)) for the
real possibility distribution of instance xi on category j; π(Lj(xi)) for the predicted
resulting possibility distribution of instance xi on category j. Then the weight weii is
computed by the PCC dist metric given by [1]:

PCC dist =
∑|NUM|

i=1 D(xi)
|NUM | (3)

D(xi) = 1 −
∑|M|

j=1(π
res(Lj(xi)) − π(Lj(xi)))2

|M | (4)



Classifier Ensemble for Uncertain Data Stream Classification 491

Algorithm 1. Classifying Uncertain Data Streams by Static Classifier Ensemble
Input:

En : Ensemble of classifiers;
x : Testing instance ;
wei : An array of each classifier’s weight;

Output:
π = {π(L1), π(L2) . . . , π(LM )}: The possibility distribution of x;

1: Initialize π(Li) = 0, i ∈ [1, M ];
2: for each Ci ∈ En do
3: pre[] = Ci.dis(x);
4: for j = 1 to M do
5: π(Lj) = π(Lj) + weii × prej;
6: end for
7: end for
8: Normalize π;
9: return π;

Here, PCC dist criterion takes into account the average of the distances between the
resulting possibility distribution and the real possibility distribution. Note that high
value of the PCC dist criterion implies not only that the algorithm is accurate, but
also that the possibility distributions outputted by the algorithm is of high quality and
faithful to the original possibility distribution [1].

4.2 Dynamic Classifier Ensemble

In our DCE algorithm, the weight of each base classifier is decided by test instance x.
The weighted Euclidean distance between two instances with m attributes is given by :

d(x1, x2) =

√√√√ m∑
Ai=1

wAi · diff(xAi
1 , xAi

2 )2 (5)

For a continuous attribute Ai, we have diff(xAi
1 , xAi

2 ) = x
Ai
1 −x

Ai
2

rangeAi
. And for a categor-

ical attribute Ai, we have diff(xAi
1 , xAi

2 ) =
{

0 if xAi
1 = xAi

2

1 if xAi
1 �= xAi

2

. Here, wAi represents

the weight of attribute Ai, and it is decided by the non-specificity gain (NSG) [1] of
the attribute Ai. Algorithm 2 gives the details of our DCE algorithm.

In algorithm 2, in step 2 we retrieve Knei neighbors of x from validation data set
V according to formula (5). And the most up-to-date data batch from the stream is
used as V . In steps 3-9, the weight of each base classifier is determined. The function
Ci.Acc(neij) in step 6 returns the accuracy of classifier Ci while predicting the instance
neij , and the accuracy is decided according to formula (4). The function d(neij, x)
in step 7 returns the distance following formula (5). After predicting an instance, the
weight of the corresponding base classifier is accumulated together. Accuracy and dis-
tance are the main factors that affect weii. In steps 10-14, some base classifiers with
lower weight are ignored following [6]. The function predict(E, x, wei) in step 14
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Algorithm 2. Classifying Uncertain Data Streams by Dynamic Classifier Ensemble
Input:

En : Ensemble of classifiers;
x : Testing instance ;
V : Validation Set;

Output:
π = {π(L1), π(L2) . . . , π(LM )}: The possibility distribution of x;

1: Initialize π(Li) = 0, i ∈ [1, M ];
2: Retrieve Knei neighbors from V to form data set Nei;
3: for each Ci ∈ En do
4: weii = 0;
5: for each neij ∈ Nei do
6: acc = Ci.Acc(neij);
7: weii = weii + acc/d(neij , x);
8: end for
9: end for

10: m1 = max{weii}, i ∈ [1, |En|];
11: m2 = min{weii}, i ∈ [1, |En|];
12: mid = (m1 + m2)/2;
13: E = {ei|weii ≥ mid, ei ∈ En};
14: π = predict(E,x,wei);
15: return π;

returns the predicted result of x by a weighted voting scheme. The weighted voting
scheme is the same as in algorithm 1.

5 Experiments

In this section, we report our experimental results. We deal with the data streams with
uncertain class information and concept drift, which is regarded as an important issue in
mining data streams [4,5,6,7]. Since no benchmark uncertain data set can be found in the
literature, we simulate the uncertain data on synthetic data and real-life data set. Here,
moving hyperplane concept [4,7] was used as the synthetic data set with continuous
attributes, and RCV1-v21 was used as the real-life data set with categorical attributes in
our experiments.

The uncertain data set was generated by using the approach described in [1]. We
simulated various levels of uncertainty (X%) when generating possibilistic training
data. Firstly, we randomly selected X% of instances in each data batch as uncertain
set. Secondly, for each instance in the uncertain set, if the instance belongs to the i-th
class, we set π(ωi) = 1, and π(ωj) = ϕ, ∀j �= i. Here, ϕ is a random value distributed
uniformly in range of [0, 1]. Thirdly, for each instance of the remaining (100 − X)%
instances, we assigned a certainly sure possibility distribution (if the instance belongs
to the i-th class, we set π(ωi) = 1, and π(ωj) = 0, ∀j �= i). The data set used for test
in our experiments was also with a certainly sure possibility distribution, following [1].

1 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004 rcv1v2 README.htm
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PCC dist is used as the evaluation metric in our experiments for measuring the
classification performance of classifiers on uncertain data set. Note that high value of
PCC dist implies not only that the algorithm is accurate, but also that the distribution
possibility is faithful to the original possibility distribution [1] .

In our experiments, we set EnsembleSize=25, following [7]; and we set Knei=5.
Meanwhile, we set ChunkSize, the number of instances in each batch, to 500.

Our experiments were made on a PC with Pentium 4 3.0 GHz CPU and 1G memory.
All of the algorithms were implemented in Java with help of WEKA2 software package.

5.1 Moving Hyperplane Concept with Gradual Concept Drift

Moving hyperplanes have been widely used to simulate time-changing concepts [4]. In
this subsection, we report our experiments on moving hyperplane concept. A moving
hyperplane in d-dimensional space is denoted by:

∑d
i=1 aixi = a0.

We followed the same procedure in [4] to simulate concept drift. We used K for the
total number of dimensions whose weights are changing; S for the magnitude of the
change (every N instances) for weights a1, · · · , ak. For more detailed descriptions of
moving hyperplanes, please refer to [4].

We set d=10, N=1000 in our experiments. For each parameter setting, we generated
100 batches of data. The averaged results on the 100 batches are reported in Table 1.

From Table 1, it could be concluded that, DCE outperforms SCE in all scenarios,
with averaged improvement being about 2%. It could be also seen that, with the in-
creasing of X , the performances of both SCE and DCE decline. It is shown that the
higher the level of uncertainty in the training set is, the more imprecise the training set
will be, and therefore the more difficult for the classifier to learn an accurate model.

We also study the impact of the parameter Knei. Here, we set S=0.1, X=20 and K
was selected from [1,10] randomly. We conducted 10 trails and the averaged result is
shown in Fig. 1. It can be shown in Fig. 1 that Knei can not be neither too small nor too
large. We set Knei=5 in other experiments as it usually gives us good results.

Table 1. Experiments on Moving Hyperplane
Concept

X% S
K=2 K=5 K=8

SCE DCE SCE DCE SCE DCE
0.1 0.770 0.787 0.768 0.785 0.768 0.783

20 0.5 0.773 0.789 0.764 0.781 0.763 0.778
1.0 0.771 0.790 0.761 0.778 0.762 0.777
0.1 0.749 0.767 0.748 0.766 0.748 0.764

40 0.5 0.749 0.768 0.743 0.760 0.743 0.759
1.0 0.752 0.770 0.738 0.756 0.741 0.758
0.1 0.725 0.744 0.723 0.741 0.720 0.738

60 0.5 0.725 0.744 0.715 0.733 0.717 0.735
1.0 0.726 0.746 0.712 0.732 0.717 0.735
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Fig. 1. Experiment with Knei

2 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2. Experiments on RCV1 v2 Set for Abrupt Concept Drift

5.2 Experiments on RCV1-v2 Text Data Set

In this section, we report our experimental results on a real-life text dataset. RCV1-v2
is a new benchmark collection for text categorization [9]. The news stories in RCV1-v2
were divided into two datasets, training set and testing set. The training dataset was
used and four largest categories, CCAT, ECAT, GCAT, and MCAT were considered as
the main topics in our experiments to simulate concept drift. After preprocessing, each
document was presented by a binary vector, and information gain algorithm was used
to select 100 most predictive features.

The data set in our experiments was decomposed into 46 batches. We vary uncer-
tainty X% as follow: 20, 40, 60. In each scenario of our experiments, we selected one
category as TopicA and others as TopicB. Concept drift occurs between TopicA and Top-
icB. Therefore, there are 12 possible combination for 4 categories. We experiment 12
trails and the averaged result is reported.

We simulate abrupt drift in our experiments as follows: In the batches 0-24, all the
instances of TopicA were labeled as positive, others were labeled as negative. In batches
25-46, all the instances of TopicB were labeled as positive, others were labeled as neg-
ative. The experimental results for abrupt concept drift are given in Fig. 2.

As expected, from Fig. 2, it could be seem that in batch 25 when abrupt drift occurs,
both DCE and SCE have a dramatic decline in PCC dist. However, DCE recovers
much faster than SCE in the later batches. In all levels of uncertainty, DCE outper-
forms SCE. It reveals that DCE outperforms SCE in handling abrupt concept drift with
uncertainty.

5.3 Time Analysis

Both SCE and DCE consume the same time in training, because the ways to construct
the ensemble is the same. Here we compare the testing time. We generated data streams
with varied ChunkSize on hyperplane concept (K=10, S=1). Consider 100 batches of
data with X=20. Fig. 3 shows that large ChunkSize offers better performances. The
DCE also performs better than SCE. However, the testing time of the two methods on
the whole streams is significantly different. From Fig. 4 we can see that with a large
ChunkSize, DCE consumes much more testing time than SCE. It is because when
predicting an instance, DCE needs to traverse the whole validation set to get some
nearest neighbors. So it’s a tradeoff between good performance and faster responding
action.
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Fig. 3. PCC dist on varying ChunkSize Fig. 4. Testing time on varying ChunkSize

6 Conclusion and Future Work

In this paper, we propose two types of ensemble based approaches to classify data
streams with uncertainty in class values. We also extend the decision tree (NS-PDT)
approach to handle data with continuous attributes. Experiments on both synthetic and
real-life datasets are made to validate our proposed methods. Our experimental results
show that the dynamic classifier ensemble (DCE) for uncertain data stream outperforms
the static classifier ensemble (SCE).

Attribute uncertainty is also natural and prevalent in many real-life applications, we
plan to study this kind of uncertain data streams in future work.
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