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Preface

The 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining was
held in Hyderabad, India during June 21-24, 2010; this was the first time the
conference was held in India.

PAKDD is a major international conference in the areas of data mining (DM)
and knowledge discovery in databases (KDD). It provides an international fo-
rum for researchers and industry practitioners to share their new ideas, original
research results and practical development experiences from all KDD-related
areas including data mining, data warehousing, machine learning, databases,
statistics, knowledge acquisition and automatic scientific discovery, data visual-
ization, causal induction and knowledge-based systems.

PAKDD-2010 received 412 research papers from over 34 countries includ-
ing: Australia, Austria, Belgium, Canada, China, Cuba, Egypt, Finland, France,
Germany, Greece, Hong Kong, India, Iran, Italy, Japan, S. Korea, Malaysia,
Mexico, The Netherlands, New Caledonia, New Zealand, San Marino, Singapore,
Slovenia, Spain, Switzerland, Taiwan, Thailand, Tunisia, Turkey, UK, USA, and
Vietnam. This clearly reflects the truly international stature of the PAKDD
conference.

After an initial screening of the papers by the Program Committee Chairs, for
papers that did not conform to the submission guidelines or that were deemed
not worthy of further reviews, 60 papers were rejected with a brief explana-
tion for the decision. The remaining 352 papers were rigorously reviewed by
at least three reviewers. The initial results were discussed among the reviewers
and finally judged by the Program Committee Chairs. In some cases of con-
flict additional reviews were sought. As a result of the deliberation process, only
42 papers (10.2%) were accepted as long presentations (25 mins), and an addi-
tional 55 papers (13.3%) were accepted as short presentations (15 mins). The
total acceptance rate was thus about 23.5% across both categories.

The PAKDD 2010 conference program also included seven workshops: Work-
shop on Data Mining for Healthcare Management (DMHM 2010), Pacific Asia
Workshop on Intelligence and Security Informatics (PAISI 2010), Workshop on
Feature Selection in Data Mining (FSDM 2010), Workshop on Emerging Re-
search Trends in Vehicle Health Management (VHM 2010), Workshop on Behav-
ior Informatics (BI 2010), Workshop on Data Mining and Knowledge Discovery
for e-Governance (DMEG 2010), Workshop on Knowledge Discovery for Rural
Systems (KDRS 2010).

The conference would not have been successful without the support of the
Program Committee members (164), external reviewers (195), Conference Orga-
nizing Committee members, invited speakers, authors, tutorial presenters, work-
shop organizers, reviewers, authors and the conference attendees. We highly
appreciate the conscientious reviews provided by the Program Committee
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members, and external reviewers. The Program Committee members were
matched with the papers using the SubSift system (http://subsift.ilrt.bris.ac.uk/)
for bid matching; we thank Simon Price and Peter Flach, of Bristol University,
for developing this wonderful system. Thanks also to Andrei Voronkov for host-
ing the entire PAKDD reviewing process on the easychair.org site.

We are indebted to the members of the PAKDD Steering Committee for their
invaluable suggestions and support throughout the organization process. We
thank Vikram Pudi (Publication Chair), Pabitra Mitra (Workshops Chair), Ka-
mal Karlapalem (Tutorials Chair), and Arnab Bhattacharya (Publicity Chair).
Special thanks to the Local Arrangements Commitee and Chair R.K. Bagga, and
the General Chairs: Jaideep Srivastava, Masaru Kitsuregawa, and P. Krishna
Reddy. We would also like to thank all those who contributed to the success of
PAKDD 2010 but whose names may not be listed.

We greatly appreciate the support from various institutions. The conference
was organized by IIIT Hyderabad. It was sponsored by the Office of Naval Re-
search Global (ONRG) and the Air Force Office of Scientific Research/Asian
Office of Aerospace Research and Development (AFOSR/AOARD).

We hope you enjoy the proceedings of the PAKDD conference, which presents
cutting edge research in data mining and knowledge discovery. We also hope
all participants took this opportunity to share and exchange ideas with each
other and enjoyed the cultural and social attractions of the wonderful city of
Hyderabad!

June 2010 Mohammed J. Zaki
Jeffrey Xu Yu
B. Ravindran
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Empower People with Knowledge:
The Next Frontier for Web Search

Wei-Ying Ma

Microsoft Research Asia, China
wyma@microsoft.com

The Web has continued to evolve quickly. With the emergence of cloud comput-
ing, we see a new opportunity of creating a cloud platform to leverage developer
ecosystem and enabling the development of millions of micro-vertical services
and applications to serve users’ various information need. In this new world,
there is an opportunity to build a more powerful and intelligent search engine
that understands what users are trying to accomplish and helps them learn,
decide and take actions. In this talk, I will first discuss a few new trends from
cloud computing that will impact web search, and then I will share my thoughts
on possible directions to tap into this new wave and develop not only innovative
but also potentially disruptive technologies for Web search.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, p. 1, 2010.

© Springer-Verlag Berlin Heidelberg 2010



Discovery of Patterns in Global Earth
Science Data Using Data Mining

Vipin Kumar

University of Minnesota, Minneapolis, USA
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The climate and earth sciences have recently undergone a rapid transformation
from a data-poor to a data-rich environment. In particular, climate and ecosys-
tem related observations from remote sensors on satellites, as well as outputs of
climate or earth system models from large-scale computational platforms, pro-
vide terabytes of temporal, spatial and spatio-temporal data. These massive and
information-rich datasets offer huge potential for understanding and predicting
the behavior of the Earth’s ecosystem and for advancing the science of climate
change.

However, mining patterns from Earth Science data is a difficult task due to
the spatio-temporal nature of the data. This talk will discuss various challenges
involved in analyzing the data, and present some of our work on the design of
algorithms for finding spatio-temporal patterns from such data and their appli-
cations in discovering interesting relationships among ecological variables from
various parts of the Earth. A special focus will be on techniques for land cover
change detection (and their use in assessing the impact on carbon cycle) and
finding teleconnections between ocean and land variables.
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Y. Narahari

Indian Institute of Science, Bangalore, India
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Game theory is replete with brilliant solution concepts such as the Nash equi-
librium, the core, the Shapley value, etc. These solution concepts and their ex-
tensions are finding widespread use in solving several fundamental problems in
knowledge discovery and data mining. The problems include clustering, classifi-
cation, discovering influential nodes, social network analysis, etc. The first part
of the talk will present the conceptual underpinnings underlying the use of game
theoretic techniques in such problem solving. The second part of the talk will
delve into two problems where we have recently obtained some interesting results:
(a) Discovering influential nodes in social networks using the Shapley value, and
(b) Identifying topologies of strategically formed social networks using a game
theoretic approach.
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Abstract. This paper introduces GlobalRSC, a novel formulation for
partitional data clustering based on the Relevant Set Correlation (RSC)
clustering model. Our formulation resembles that of the K-means cluster-
ing model, but with a shared-neighbor similarity measure instead of the
Euclidean distance. Unlike K-means and most other clustering heuristics
that can only work with real-valued data and distance measures taken
from specific families, GlobalRSC has the advantage that it can work
with any distance measure, and any data representation. We also discuss
various techniques for boosting the scalability of GlobalRSC.

Keywords: Clustering, correlation, shared neighbor, RSC, SASH.

1 Introduction

Clustering is the art of partitioning a data set into groups such that objects from
the same group are as similar as possible, and objects from different groups are
well differentiated. To support clustering, a measure of similarity (or distance)
between data objects is needed. Popular distance measures for clustering include
the class of general L, norms (which includes the Euclidean distance Ls), and
the cosine similarity measure. The k£ objects most similar to a data item v are
often referred to as the k-nearest-neighbor (k-NN) set of v.

An interesting and appealing class of ‘secondary’ similarity measures, the
so-called shared-neighbor (SN) measures, can be derived from any other (‘pri-
mary’) similarity measure. SN measures typically are expressed as a function
of the intersection size of the k-NN sets of the two objects whose similarity
is to be computed, where the neighborhoods are computed using the primary
similarity measure. The use of SN-based similarity in clustering can be traced
back to the merge criterion of the agglomerative algorithm due to Jarvis and
Patrick [I]. Other agglomerative clustering methods with SN-based merge crite-
ria include the hierarchical algorithm ROCK [2] and the density-based algorithm
SNN (Shared Nearest Neighbor) [3]. SNN is essentially an improved version of
the well-known DBSCAN [4] clustering algorithm; like DBSCAN, SNN is able

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 4 2010.
© Springer-Verlag Berlin Heidelberg 2010
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to produce clusters of different sizes, shapes and densities. However, the perfor-
mance of SNN greatly depends on the tuning of several non-intuitive parameters
by the user. In practice, it is difficult (if not impossible) to determine appropriate
values for these parameters on real datasets.

A common requirement of most SN-based clustering methods is that a fixed
neighborhood size — either in terms of the number of neighbors k as in SNN and
in Jarvis & Patrick’s method, or in terms of the radius r of the neighborhood
ball as in ROCK — needs to be chosen in advance, and then applied equally
to all items of the data set. However, fixed choices of neighborhood sizes k or
radius r are known to lead to bias in the clustering process [5], the former with
respect to the sizes of the clusters discovered, and the latter with respect to the
density of the regions from which the clusters are produced.

Recently, an SN-based clustering model was proposed that allows the sizes
of the neighborhoods to vary. The Relevant Set Correlation (RSC) model [3]
defines the relevance of a data item v to a cluster C' in terms of a form of ‘set
correlation’ between the memberships of |C| and the |C|-nearest-neighbor set
of v. RSC quality measures can be used to evaluate the relative importance of
cluster candidates of various sizes, avoiding the problems of bias found with
other shared-neighbor methods that use fixed neighborhood sizes or radii. The
same paper introduced a clustering algorithm based on RSC, called GreedyRSC,
that generates cluster candidates in the vicinity of every object of the dataset,
evaluates the quality of the candidates according to the model, and greedily
selects them in decreasing order of their quality. GreedyRSC is a ‘soft’ clustering
algorithm, in that the clusters produced are allowed to overlap. It does not
require that the user choose the neighborhood size or specify a target number
of clusters; instead, the user simply specifies the minimum allowable cluster
size, and the maximum allowable correlation between any two clusters. Unlike
many other clustering algorithms, GreedyRSC uses only local criteria for the
formation of cluster candidates — the clustering process is not guided by a
global optimization criterion.

In this paper, we present a new RSC-based partitional clustering algorithm,
GlobalRSC, that allows the user to specify the number of clusters to be generated,
K. Unlike GreedyRSC, GlobalRSC emulates the well-known K-means clustering
algorithm in that it seeks to optimize a global objective function. Given an initial
clustering configuration, both K-means and GlobalRSC attempt to optimize
their objective function through an iterative hill-climbing improvement process.
GlobalRSC, however, replaces the Euclidean distance of K-means by a shared-
neighbor similarity measure, and can therefore be applied (in principle) to any
form of data, and using any appropriate similarity measure.

This paper is organized as follows. In Section 2] we review those elements of
the RSC model upon which GlobalRSC is based, and introduce the GlobalRSC
clustering criterion. In Section Bl we give the details of the GlobalRSC cluster-
ing algorithm. Experimental results are presented in Section Fl and concluding
remarks appear in Section
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2 Shared Neighbor Similarity and the RSC Model

In this section, we present a brief introduction to the Relevant Set Correlation
(RSC) model for clustering, and the set correlation similarity measure upon
which it is based.

Let S be a dataset of |S| = n data items {s1,S2,...,Sp}. Any subset A of
S can then be represented as a m-dimensional zero-one characteristic vector,
where the value of the i-th coordinate is 1 if and only if s; € A. The simplest
SN-based similarity measure between the two sets A and B is the ‘overlap’ or
intersection size |A N BJ, which can be expressed as the inner product between
the two characteristic vectors. Another popular measure, the cosine similarity
cos(A, B) = IANBl s the inner product of the normalized characteristic vectors

—VAlBY

for A and B, which in turn equals the cosine of the angle between them. Values of
the cosine measure lie in the range [0, 1], with 1 attained whenever A is identical
to B, and 0 whenever A and B are disjoint.

In [5], the set correlation measure was proposed as the value of the Pearson
correlation between the coordinate pairs of characteristic vectors of A and B.
After derivation and simplification, this expression becomes:

: 15] VIAllB|
R(4,B) = cos(A. B) — | 1
BT Jisi = 140s1 - 1) ( AB)= g ) (1)

Values of the set correlation lie in the range [—1, 1]. A value of 1 indicates that A
and B are identical, and a value of —1 indicates that A and B are complements
of each other in S.

Despite their simplicity and their popularity in practice, the overlap and cosine
measures both have the disadvantage of bias relative to the sizes of the two sets
A and B. To see this, let A be fixed with size |A| = a, and let B be selected
uniformly at random from the items of S with the constraint that | B| equals some
fixed value b > 0. Let a = |A|. Under these assumptions, the overlap is known to
be hypergeometrically distributed with expected value E[|AN B[] = ‘ﬁ’, and the

expected value of the cosine measure is therefore E[cos(A4, B)] = EH\?;BH = ‘/sb.

When used to rank the similarity of sets with respect to A, both measures are
biased towards sets B of larger sizes. On the other hand, the expected value of the
set correlation under the same assumptions can be shown to be E[R(A, B)] = 0,
indicating no bias with respect to the sizes of A and B. Therefore, of these three
SN-based similarity measures, the set correlation measure is best suited for those
applications in which the neighborhood size is variable.

Under the RSC model, the quality of a given cluster candidate set A is assessed
in terms of the set correlation between the candidate and neighborhood sets (the
‘relevant sets’) based at its members. Let @}, denote the set of k-nearest neigh-
bors of v with respect to S. The RSC model uses the set correlation R(QfA‘,A)
between Q”A‘ and A as a measure of relevance of item v to the cluster can-
didate A. Note that in this formulation, the neighborhood size is taken to be
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the cardinality of A. This definition eliminates the need for specifying a fixed
neighborhood size, and avoids the bias associated with such choices.
For more details concerning the quality measures of the RSC model, see [5].

3 The GlobalRSC Clustering Algorithm

3.1 GlobalRSC and K-Means

The GlobalRSC clustering criterion has the same general form as that of K-means.
In the standard K-means formulation, a partition A = {41, As,..., Ak} of the
data set is sought which maximizes the following objective function:

1 K
= 33 Dlve(an), )

i=1 vEA;

where ¢(A) is a function which returns the center of mass of a cluster A (com-
puted as ¢(A) = ‘i‘ > wea V), and the distance measure D is generally taken
to be the square of the Euclidean distance. The proposed formulation of Glob-
alRSC replaces the distance measure D(v,c(A4;)) by the average set correlation
between cluster A; and the neighborhood Ql Al based at v, as follows:

Z Z (Qfa;- A (3)

i=1 vEA,

Both D and R serve as measures of the relevance of an item to its assigned
cluster. However, unlike R, D can only be computed when the data can be
represented as real-valued vectors. As discussed earlier, the use of set correlation
in the formulation of GreedyRSC is preferred over that of the overlap or cosine
measure, due to the bias of the latter measures with respect to set sizes.

3.2 A Hill-Climbing Heuristic

The problem of optimizing the GlobalRSC objective function (3)) greatly resem-
bles that of optimizing the K-means objective function (2)). Despite its simple
appearance, the K-means clustering problem with squared Euclidean distance
is known to be NP-hard even for K = 2 [6]. Although the hardness of the Glob-
alRSC optimization problem is still an open question, a heuristic approach seems
to be indicated.

In this section, we propose an iterative hill-climbing solution, which we simply
refer to as GlobalRSC. The core idea is as follows: at each round the algorithm
iterates through the items of .S looking for items whose reassignment to a differ-
ent cluster leads to an improvement in the value of the objective function R. As
is the case with K-means, two reassignment schemes can be employed for Glob-
alRSC: incremental update, in which reassignment is performed as soon as an im-
provement is detected, and batch update, in which all the membership changes are
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applied only at the end of each round, when the algorithm has completed a full it-
eration through all data items. The advantage of the batch update scheme is that
the recomputation of R can be performed very efficiently through the use of in-
verted neighborhood sets (as defined in Fig. 1). However, it is possible that delaying
the reassignment of items until the end of each round could result in a decrease in
the value of the objective function, even if each reassignment would have led to an
increase if it were applied individually. In practice we often observe that first few
rounds of the batch update scheme quickly improves the objective value. It would
therefore be beneficial to begin with several rounds of batch updating, followed
by an incremental update phase to further refine the clustering.

It should be noted that in an incremental reassignment of v from cluster A; to
cluster Aj, the contributions R(A) = >, -4 R(Q&‘,A) to R for an individual
cluster A do not need to be recomputed except for A = A; and A = A;. To verify
whether the reassignment would increase the value of R, it suffices to perform
the test R(A; U{v}) + R(A; \ {v}) — R(4;) — R(4;) > 0.

The recomputation of R after the reassignment of a single item v would be
relatively expensive if all K — 1 possible reassignments were considered. We
therefore limit the tentative reassignment of v to those candidate clusters found
in the vicinity of v; that is, those clusters containing at least one element in
the neighborhood lequl’ where A; is the cluster to which v currently belongs.
If one of these tentative reassignments of v would result in an increase in the
value of R, then the reassignment that results in the greatest such increase is
applied. Otherwise, v is not reassigned. If the size of the new cluster A; is larger
than that of the currently-stored neighborhood of v, then that neighborhood
would need to be expanded. Accordingly, whenever it is necessary to recompute
a neighborhood for item v € A;, we choose the size to be min{[(1 +b)|A4;|], m}
for some fixed real parameter values b > 0 and m > 0. In our implementation of
GlobalRSC, b is set to a default value of 0.5, and m is set to 50.

A pseudocode description of the basic GlobalRSC heuristic is shown in Fig. 1.
The heuristic can easily be shown to converge within a finite number of steps.

3.3 Complexity Analysis

The algorithm requires storage for the neighbor lists of all n data items, each of
which has size proportional to that of the cluster to which it has been assigned.
The total space required is of order Zfil |A;]%. Let u and o be respectively the
mean and standard deviation of the cluster sizes; in terms of u and o, the space
required is proportional to K (o2 + p?).

At the initialization step, the neighborhood list for each data item must be
calculated. A straightforward implementation requires the computation of O(n?)
distances. Once computed, these distances can also be used to generate an ini-
tial clustering. Since the neighborhoods must be constructed in sorted order, the
total time required for preparing neighborhoods is Zf; |A; (| A+ | As| log | Ai])
= O((¢% + p?)K logn) using linear-time methods for determining order statis-
tics [7]. The total time required for initialization is thus O(dn?+(o?+u?)K logn),
where d is the cost of computing a single distance.
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Input: The data set S; the number of desired clusters K; (optionally) a hard initial clustering
A={A1,As,..., Ak} on S; minimum neighborhood set size m; neighborhood set buffer size b.

0. Initialization: If no initial clustering was provided, compute an initial clustering A =
{A1,As,..., Ak} as follows:
(a) Select K items of S uniformly at random as the seeds of the K clusters.
(b) Assign each data item v to the cluster corresponding to the seed closest to v.
(c) Build the neighborhood Q" for each item v € A;, with size equal to min{[(1+b)|A;|], m}.
1. Batch phase:
(a) Calculate R(A1),R(Az2),...,R(Ak) and set the termination flag halt «— FALSE.
(b) Repeat until halt = TRUE:
i. Set halt «— TRUE.
ii. For each v € S, build the inverted neighborhood I”, where r € IV if and only if
veEQ".
iii. For each data item v currently in cluster A;:
A. Build the list € of clusters (other than A;) containing at least one item of Q.
B. Tentatively reassign v to each of the Aj; in €.
C. Using the inverted neighborhood sets, calculate the index j for which the im-
provement value R(A; U {v}) + R(A;\{v}) — R(A;) — R(A;) is maximized.
D. If the improvement value is positive, record (v, j) for future reassignment.
iv. Tentatively apply all the recorded reassignments for this round, and let A’ =
{A}, AL, ..., A%} be the resulting clustering. Calculate R(A"). If R(A") > R(A),
set halt «— FALSE and A «— A’. Otherwise, proceed to the incremental phase.
2. Incremental phase:
(a) Set halt — FALSE.
(b) Repeat until halt = TRUE:
i. Set halt «— TRUE.
ii. For each data item v currently in cluster A;:
A. Build the list € of clusters (other than A;) that contribute items to Q".
B. Tentatively reassign v to each of the A; in €, and calculate the index j for which
the improvement value R(A; U{v})+R(A;\{v}) —R(A;)—R(A;) is maximized.
C. If the improvement value is positive, reassign v to A; immediately, adjust the
values of R(A;) and R(A;), and set halt — FALSE.

Fig. 1. A pseudocode description of the basic GlobalRSC variant

During each round of the batch phase, building the inverted neighbor sets
requires that the values of K (02 + u?) integer variables be copied. Recalculating
R for the tentative reassignment of item v from cluster A; to cluster A; requires
time proportional to |A;| + |A4;| + 2|I,| when using the inverted neighbor lists.
Assuming that v needs to be tentatively reassigned to each of the other K — 1
clusters, the cost of reassignment is O(n). Adding the cost over all choices of
v, the total cost of reassignment per phase is at most O(n?). The neighbor
list can be reconstructed in O(nlogn + nd) time if required; the total cost of
reconstruction will be no worse than that of initialization, which is O(dn?+ (o2 +
1?) K log n). The worse case complexity of each batch phase iteration through the
data set is therefore O(dn? + (02 + u?) K logn). However, in practice we expect a
much lower time cost, since there are typically only a limited number of nearby
clusters for each data item, and few if any neighborhoods require reconstruction.

In the incremental phase, tentatively moving an item v from a cluster A;
to another A; requires O(|A;|* 4+ |4;]?) operations for the direct recalculation
of the objective function. If v is tentatively reassigned to each of the other
K — 1 clusters, the cost is O(K (02 + p?)); over all possible choices of v (one
full round), the total cost of reassighment becomes O(nK (o + p?)). Recon-
struction of the neighborhood for each item, if required, can be performed in
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O(dn? +n?logn) total time. The worst case complexity of a full round is there-
fore O(dn®+n?logn+nK (o + u?)). However again, the observed cost should be
much lower in practice. Since the incremental phase is often considerably more
expensive than the batch phase, to improve time efficiency for large data sets,
we employ a ‘reduced’ variant of the incremental phase, in which a data item
v is considered for reassignment to another cluster if and only if that cluster
already contains the majority of the neighbors of v. This variant scheme focuses
on items with neighborhoods of low consistency, with the worst case complexity
of each round being reduced to that of the batch phase.

In practice, the standard deviation of the cluster size, o, is typically of the
same order of the mean cluster size u = n/K, leading to an overall space com-
plexity of 6(712 /K), and a time complexity (for the reduced incremental phase
variant) of O(dn2 + n(logn)/K). Optionally, if a full distance matrix is to be
stored in order to speed up neighborhood list computation, then the space com-
plexity would attain its worst-case value of ©(n?).

3.4 Scalability

In this section we present several techniques that can boost the scalability of
GlobalRSC for large, high dimensional data sets. The challenges faced by Glob-
alRSC (and other SN-based clustering algorithms) as the dimensionality in-
creases are: (i) the construction of neighborhoods becomes more expensive, due
to an effect known as the ‘curse of dimensionality’ []; (ii) the optimization of
the objective function becomes more difficult, as local optimization approaches
such as hill-climbing are more easily trapped at local maxima that may be far
from the global optimum.

In order to accelerate the construction of neighborhoods, we propose the use
of the Spatial Approximation Sample Hierarchy (SASH) developed in [§].

If the data set contains many large clusters, the calculation of set correlation
scores with respect to these clusters may be prohibitively expensive. One of the
simplest ways of avoiding the high costs associated with large cluster candidates
is through the restriction of neighborhood sizes. In our implementation of Glob-
alRSC, we restricted the maximum size of the neighborhood to be 1000. Only
the average relevance score for items in cluster of size smaller than this thresh-
old is calculated exactly, while the membership of larger clusters are ‘frozen’.
Items are permitted to be reassigned from smaller clusters to frozen clusters and
vice-versa, as long as such a movement increases the average relevance score of
the smaller clusters.

4 Experimental Results

In this section we report the results of our experiments on various real data sets
taken from several domains. GlobalRSC, implemented in C++ and tested on a
Pentium IV 3.2GHz workstation equipped with 4Gb of main memory, was com-
pared against a MATLAB implementation of ‘Fast’ K-means [9] (available from
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the author’s website), and the ‘bisecting’ K-means algorithm available as part
of the CLUTO clustering toolkit [I0]. CLUTO was run with its default distance
measure, the cosine similarity, using repeated bisecting clustering followed by
a final global optimization phase. For large data sets, we used GreedyRSC to
initialize GlobalRSC, as well as the SASH to speed up neighborhood construc-
tion. We report the mean and standard deviation values of the quality metrics,
plus the average execution time and the number of iterations performed by each
algorithm (if known). We did not include the SNN clustering algorithm, due to
the difficulty in tuning its parameters, and since it often leaves a large number
of items unassigned to any cluster. For interested readers, a comparison between
SNN, K-means and GreedyRSC on several data sets can be found in [5].

For each of the data sets considered, the clustering results are assessed against
a ground-truth classification according to 5 different quality measures: the well-
known Adjusted Rand Index (ARI) from statistics [I1]; the recently developed
Adjusted Mutual Information (AMI) [12] from information theory; the Expected
Precision (EPrec), Recall (ERec) and Cosine (ECos) measures [5] from informa-
tion retrieval. For all these measures, higher values represent better clusterings,
with a maximum possible value of 1. A low expected precision score is an indi-
cation of cluster fusion, occurring when too few clusters are produced, whereas
a low expected recall indicates cluster fragmentation, occurring when too many
clusters are generated. A high expected cosine score can be taken as evidence
that the clustering avoids extremes of cluster fusion and cluster fragmentation.
Due to lack of space, we do not give details of these measures here. Interested
readers are referred to the original publications for more information.

4.1 Biological Data
We tested the algorithms on several gene expression microarray data sets:

— B1: This set consists of 384 genes whose expression level peak at different
time points corresponding to the five phases of a cell cycle [13].

— B2: This set consists of 237 genes corresponding to four categories in the
MIPS database. The four categories (DNA synthesis and replication, or-
ganization of centrosome, nitrogen and sulphur metabolism and ribosomal
proteins) were shown to be reflected in clusters from the yeast cell cycle data
[13]. These four functional categories form the four classes in the external
criterion for this data set.

— B3: A subset of 205 genes from the yeast galactose data set [14]. The expres-
sion patterns reflect four functional categories in the Gene Ontology (GO)
listings.

As is popular practice in microarray data analysis, the data was row-normalized
to have zero mean and unit variance. Under this normalization scheme, the
Euclidean distance and cosine similarity are equivalent. From the experiment
results shown in Table [l averaged over 100 runs, CLUTO appears to perform
best, closely followed by GlobalRSC and then K-means.
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Table 1. Experimental results (the highest quality index values are in bold)

Data Algorithm ARI AMI EPrec ERec ECos Loops Time (s)
K-means 0.424+0.05 0.48+0.02 0.554+0.02 0.56£0.04 0.554+0.03 11+4 0+0

B1 CLUTO 0.50+0.00 0.52+0.00 0.59+0.00 0.614+0.00 0.60+0.00 N/A 0+0
GlobalRSC 0.484+0.01 0.50£0.01 0.56+0.01 0.62£0.02 0.58+0.01 11+£3 2+1
K-means 0.494+0.03 0.33£0.01 0.654+0.01 0.54£0.02 0.594+0.01 8+3 0+0

B2 CLUTO 0.51£0.00 0.34£0.00 0.6540.00 0.56+0.00 0.60+0.00 N/A 0£0
GlobalRSC 0.504+0.02 0.29£0.01 0.69+0.01 0.48+0.01 0.56+0.01 11+£3 1+1
K-means 0.83+0.09 0.78+0.08 0.924+0.02 0.83£0.09 0.86+0.06 7+4 0£0

B3 CLUTO 0.96£0.00 0.91£0.00 0.95+0.00 0.964+0.00 0.96+0.00 N/A 0£0
GlobalRSC 0.924+0.04 0.84£0.07 0.924+0.05 0.96£0.01 0.93+0.03 3+0 0£1

K-means 0.484+0.01 0.72£0.00 0.664+0.01 0.56£0.01 0.564+0.01 204 1278+£347
K-means*  0.4940.01 0.74£0.00 0.61+0.01 0.5940.01 0.55+0.01 23+5 9931416
CLUTO 0.53£0.00 0.75+0.00 0.67+0.00 0.61£0.00 0.59£0.00 N/A 1015+51
CLUTO* 0.53£0.00 0.75+0.00 0.62+0.00 0.62£0.00 0.58+0.00 N/A 84719

GreedyRSC 0.5940.00 0.77£0.00 0.6440.00 0.684+0.00 0.624+0.00 N/A 328424
GlobalRSC 0.61+0.01 0.78+£0.00 0.66+0.00 0.71£0.00 0.64+0.00 17£3  417+£29
CLUTO 0.41£0.00 0.73£0.00 0.48+0.00 0.52+0.00 0.48+0.00 N/A 7893+16
CLUTO* 0.48+0.00 0.69+0.00 0.80+0.00 0.35+0.00 0.50+£0.00 N/A 27302+192
GreedyRSC 0.56£0.00 0.72£0.00 0.82£0.00 0.42+0.00 0.56£0.00 N/A  4352+53
GlobalRSC 0.59£0.00 0.74+0.00 0.85+0.00 0.46+0.00 0.59+0.00 284+3 5002+£127
CLUTO* 0.0240.00 0.24+0.00 0.60£0.00 0.02+0.00 0.10+£0.00 N/A 1201+14
T2 GreedyRSC 0.044+0.00 0.264+0.00 0.614+0.00 0.04+0.00 0.12+0.00 N/A  495+2

GlobalRSC 0.0940.00 0.29+£0.00 0.64+0.01 0.07+0.00 0.16+0.00 17+4 1616£167
GreedyRSC 0.01£0.00 0.254+0.00 0.71£0.00 0.014+0.00 0.06+0.00 N/A 106574334
GlobalRSC 0.02+40.00 0.26+0.00 0.7240.00 0.024+0.00 0.084+0.00 18+5 19044+756
*: K-means and CLUTO run using the number of clusters K as determined by GreedyRSC
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4.2 Image Data

We tested the clustering algorithms on the Amsterdam Library of Object Images
(ALOI) [15], which consists of 110,250 images of 1000 common objects. Each
image is represented by a dense 641-dimensional feature vector based on color
and texture histograms (see [I6] for details on how the vectors were produced).
The following data sets were used:

— I1-ALOI-var: A subset of 13943 images, generated by selecting objects
unevenly from among the classes, with the i-th object class having approxi-
mately 40000/(400 + ) image instances selected.

— I2-ALOI-full: The entire ALOI library.

Since the appearance of individual objects varies considerably with the van-
tage points of the images, almost every class would be expected to generate
several natural clusters. Over 20 runs, GreedyRSC estimated the number of
clusters to be 843 & 8 for the I1 data set, and 3724 + 25 for the 12 data set.
Fast K-means and CLUTO were executed twice with random initialization, for
both the true numbers of clusters (K = 1000) and the number of clusters as
determined by GreedyRSC. GlobalRSC was initialized using GreedyRSC, and a
SASH was used to construct the neighborhood sets. All runs except those involv-
ing CLUTO were conducted using the Euclidean distance measure. Over 20 runs,
GreedyRSC consistently achieves good clustering quality which is then further
refined by GlobalRSC, as observed in Table [[l For the ALOI-full data set, the
execution of Fast K-means failed to terminate due to insufficient main memory.
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It can be observed that when a good initialization is provided and SASH is used,
the execution time of GlobalRSC is significantly shorter, comparable to that of
K-means and CLUTO.

4.3 Text Data

We tested the clustering algorithms on the Reuters Corpus Volume I (RCV1),
an archive of over 800,000 manually categorized newswire stories recently made
available by Reuters, Ltd. for research purposes [I7]. The document class struc-
ture was simplified into 57 distinct classes. We then selected a subset T1 con-
sisting of 200,000 documents classified to either exactly one subtopic or exactly
one meta topic. We also constructed a smaller data set T2 consisting of 20,000
documents selected uniformly at random from T1. For both T1 and T2, TF-IDF
weighting was used to construct the feature vectors, resulting in sparse vectors
of length 320,648. Fast K-means was excluded in this experiment due to its lack
of support for sparse numerical data. Since the number of external classes of
these data sets was not as reliable as of the ALOI image data set, we first ran
GreedyRSC to estimate the number of natural clusters K. The clustering result
of GreedyRSC was used for the initialization of GlobalRSC, while CLUTO was
run with the desired number of clusters also set to K. The cosine similarity
measure was used for all runs. The clustering scores, averaged over 20 runs, are
reported in Table [l While all the algorithms successfully processed the small
T2 set, on T1 CLUTO gave a memory failure message after a few hours of
execution, leaving only the results of GreedyRSC and GlobalRSC available for
evaluation. The observed low agreement between the clustering result and the
class information in this experiment can be attributed to natural fragmentation
of the classes within the data domain.

4.4 Categorical Data

The mushroom data set, drawn from the UCI machine learning repository
[18], contains 8124 varieties of mushrooms, each recorded with 22 different cate-
gorical physical attributes (such as color, odor, size, and shape). Each record is
classified as to whether its associated mushroom is poisonous or edible. The dis-
tance measure for this data set is taken as the straightforward mismatch count,
with missing values treated as contributing to the count.

The mushroom data set was previously analyzed with ROCK [2], which in
their paper was reported as finding 21 clusters. Most of the clusters consist
of only one type of mushroom, either edible or poisonous. Only 32 mushrooms
were misclassified by ROCK. On 20 runs with random initialization, GreedyRSC
produced 22 + 1 clusters, with 87 & 120 mushroom instances misclassified. The
result is further refined with GlobalRSC, which brought the number of mushroom
species misclassified down to 46 4+ 97. The classification errors of the 20 runs
are reported in table 2l All the algorithms greatly outperformed the traditional
hierarchical clustering implemented in [2], which produced 20 clusters within
which 3432 out of 8124 items were misclassified. K-means was excluded from
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Table 2. Experimental results on the Mushroom data set: classification errors over
20 runs

Classification errors
GreedyRSC 32 69 69 32 289 484 69 33 44 33 32 32 278 32 32 52 32 32 32 32
GlobalRSC 13333 1257289331 1 1 1 1271101111

this experiment as it can not handle categorical data. A clustering algorithm
from CLUTO, which operates on the similarity matrix, was tested but did not
yield competitive results, with 1339 misclassified species. It should be noted
that whereas ROCK required an estimate of the number of clusters, GreedyRSC
automatically determined this number.

5 Conclusion

In this paper we have introduced a novel shared-neighbor clustering algorithm
based on the Relevant Set Correlation (RSC) model. The key difference in our
approach to clustering, compared to other shared-neighbor-based approaches,
is that it requires the setting of only one main parameter — the number of
clusters. The objective function greatly resembles that of K-means, and like
K-means, the GlobalRSC method aims to discover compact, globular clusters.
While this class of clusters appears to be restrictive, Dasgupta [19] has shown
that for high dimensional data, random projection can transform highly eccentric
clusters into more spherical ones, which in turn can be discovered by K-means
or GlobalRSC. The techniques we presented for improving the scalability of our
proposed GlobalRSC algorithm allow for practical application of the method
for large, high-dimensional generic data sets under any reasonable measure of
similarity.
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Abstract. Given a pairwise dissimilarity matrix D of a set of n objects,
visual methods (such as VAT) for cluster tendency assessment generally
represent D as an n X n image I(f)) where the objects are reordered
to reveal hidden cluster structure as dark blocks along the diagonal of
the image. A major limitation of such methods is the inability to high-
light cluster structure in I(]j) when D contains highly complex clusters.
To address this problem, this paper proposes an improved VAT (iVAT)
method by combining a path-based distance transform with VAT. In
addition, an automated VAT (aVAT) method is also proposed to au-
tomatically determine the number of clusters from I(f)) Experimental
results on several synthetic and real-world data sets have demonstrated

the effectiveness of our methods.

Keywords: Visual cluster analysis, cluster tendency assessment, VAT,
path-based distance, chamfer matching.

1 Introduction

A general question in the pattern recognition and data mining community is how
to organize observed data into meaningful structures or taxonomies. As such,
cluster analysis aims at grouping objects of a similar kind into their respective
categories. Given a data set O comprising n objects {01,02,--,0,}, (crisp)
clustering partitions the data into ¢ groups C1,Cs,---,Ce, so that C; N C; =
¢,if i #£ j and C; UCy U ---UC. = O. There have been a large number of
clustering algorithms reported in the recent literature [I]. In general, clustering
of unlabeled data poses three major problems: (1) assessing cluster tendency, i.e.,
how many groups to seek or what is the value of ¢? (2) partitioning the data into ¢
groups; and (3) validating the c¢ clusters discovered. Given a pairwise dissimilarity
matrix D € R™ ™ of O, this paper addresses the problem of determining the
number of clusters prior to clustering.

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 16 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Most clustering algorithms require the number of clusters ¢ as an input, so the
quality of the resulting clusters is largely dependent on the estimation of ¢. Vari-
ous attempts have been made to estimate c¢. However, most existing methods are
post-clustering measures of cluster validity [2ITI34I5I6/7]. In contrast, tendency
assessment attempts to estimate ¢ before clustering occurs. Visual methods for
cluster tendency assessment [SIOITOITTIT2IT3ITAITS] generally represent pairwise
dissimilarity information about a set of n objects as an n x n image, where the
objects are reordered so that the resulting image is able to highlight potential
cluster structure in the data. A “useful” reordered dissimilarity image (RDI)
highlights potential clusters as a set of “dark blocks” along the diagonal of the
image, and can be viewed as a visual aid to tendency assessment.

Our work is built upon one method for generating reordered dissimilarity
images, namely VAT (Visual Assessment of cluster Tendency) of Bezdek and
Hathaway [8]. Several algorithms extend VAT for related assessment problems.
For example, bigVAT [13] and sVAT [I1] offer different ways to approximate the
VAT reordered dissimilarity image for very large data sets. CCE [16] and DBE
[I7] use different schemes to automatically estimate the number of clusters in
the VAT images. In addition, Havens et al. [I§] perform data clustering in or-
dered dissimilarity images, and coVAT [I0] extends the VAT idea to rectangular
dissimilarity data. Naturally, the performance of these VAT-based methods is
greatly dependent of the quality of the VAT images. However, while VAT has
been widely used for cluster analysis, it is usually only effective at highlighting
cluster tendency in data sets that contain compact well-separated clusters. Many
practical applications involve data sets with highly irregular structure, which in-
validate this assumption. In this paper, we propose an improved VAT (iVAT)
approach to generating RDIs that combines VAT with a path-based distance
transform. The resulting iVAT images can clearly show the number of clusters
and their approximate sizes for data sets with highly complex cluster structures.
We also propose a new strategy for automated determination of the number of
clusters ¢ from RDIs, by detecting and counting dark blocks along the main di-
agonal of the image. Experimental results on both synthetic and real-world data
sets validate our methods.

The remainder of the paper is organized as follows: Section 2 briefly reviews
the VAT algorithm. Section 3 illustrates our iVAT algorithm. Section 4 presents
our strategy for automatically determining the number of clusters c. The experi-
mental results on both synthetic and real-world data sets are given and analyzed
in Section 5, prior to conclusion in Section 6.

2 VAT

Let O = {01,092, +,0,} denote n objects in the data and D a pairwise matrix
of dissimilarities between objects, each element of which d;; = d(o;,0;) is the
dissimilarity between objects o; and o;, and generally, satisfies 1 > d;; > 0;d;; =
dji;di; = 0, for 1 < 4,5 <n. Let m() be a permutation of {1,2,---,n} such that
7(7) is the new index for o;. The reordered list is thus {ox(1), -, 0r(n)}. Let P
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be the permutation matrix with p;; = 1 if j = 7(i) and 0 otherwise, then the
matrix D for the reordered list is a similarity transform of D by P, i.e.,

D =P"DP.

The reordering idea is to find P so that D is as close to a block diagonal form
as possible. The VAT algorithm [8] reorders the row and columns of D with
a modified version of Prim’s minimal spanning tree algorithm, and displays a
reordered dissimilarity matrix Dasa gray-scale image. If an object is a member
of a cluster, then it should be part of a sub-matrix with low dissimilarity values,
which appears as one of the dark blocks along the diagonal of the VAT image
(D), each of which corresponds to one potential cluster.

Figureis a scatter plot of 2000 data points in R2. The 5 visually apparent
clusters are reflected by the 5 distinct dark blocks along the main diagonal in
Figure which is the VAT image of the data. Given the image of D in the
original input order in Figure reordering is necessary to reveal the under-
lying cluster structure of the data. VAT reordering produces neither a partition
nor a hierarchy of clusters. It merely reorders the data to (possibly) reveal its
hidden structure, which can be viewed as an illustrative data visualization for
estimating c. Sometimes, hierarchical structure can be detected by the presence
of diagonal sub-blocks within larger diagonal blocks.

() (b)

Fig.1. An example of the VAT algorithm

3 Improved VAT (iVAT)

At a glance, a viewer can estimate the number of clusters ¢ from a VAT image
by counting the number of dark blocks along the diagonal if these dark blocks
possess visual clarity. However, this is not always possible. Note that a dark block
appears only when a compact group exists in the data. For complex-shaped data
sets where the boundaries between clusters become less distinct due to either
significant overlap or irregular geometries, the resulting VAT images may fail to
produce dark blocks even when cluster structure is clearly present. See Figures
and for examples. Different viewers may deduce different numbers of
clusters from such poor-quality images, or worse, not be able to estimate ¢ at
all. This raises the question of whether we can transform D into a new form D’
so that the VAT image of D’ is clearer and more informative about the cluster
structure.
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In [12], SpecVAT combines VAT with graph embedding [19/20] to solve this
problem. SpecVAT first embeds the data into a k-dimensional subspace spanned
by the eigenvectors of the normalized Laplacian matrix and then re-computes
a new pairwise dissimilarity matrix in the embedding subspace as the input of
the VAT algorithm. However, this method depends on two main parameters, one
of which is r for the r-th nearest neighbor based local scale computation when
constructing the affinity matrix from D [21] (for deriving the Laplacian matrix),
and the other is k, the number of eigenvectors used. In particular, k largely
depends on the number of clusters c. Figure 2] gives an example of SpecVAT
images with respect to different values of k. Since ¢ is unknown, a range of k
values need to be used for generating a series of SpecVAT images to find the
‘best’ SpecVAT image that is truly informative of the real structure in the data
(e.g., k = 3 in this case). In contrast, this work adopts a parameter-free method
(called iVAT) by combining VAT with a path-based distance transform.

XN
N

Fig. 2. An example of SpecVAT on synthetic three-circle data set S-3 (¢ = 3)

The path-based dissimilarity measure was introduced in [22]. The intuitive
idea is that if two objects 0;,0; are very far from each other (reflected by a
large distance value d;;), but there is a path connecting them consisting of other
objects such that the distances between any two successive objects are small,
then d;; should be adjusted to a smaller value to reflect this connection. The
adjustment of d;; reflects the idea that no matter how far the distance between
two objects may be, they should be considered as coming from one cluster if
they are connected by a set of successive objects forming dense regions. This
reflects the characteristic of elongated clusters.

Let us treat D as a fully connected graph G, where each vertex corresponds
to an object and the edge weight between vertices ¢ and j is the distance d;;.
Suppose that P;; is the set of all possible paths from o; to o4, then for each
path p € P;;, the effective dissimilarity between objects o; and o; along p is the
maximum of all edge weights belonging to this path. The path-based distance
d;; is defined as

)

d;; = min { max dyp1phe1
iy = min { max dpppppn+1)}
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where p[h] denotes the object at the h-th position in path p and |p| denotes
the length of path p. After obtaining D' = d;;], we reorder it using the VAT
algorithm to obtain the iVAT image (see examples in Figures and. The
iVAT images are almost always clearer and more informative than the original
VAT images in revealing the data structure.

4 Automated VAT (aVAT)

A viewer can simply estimate the number of clusters ¢ (i.e., count the number
of dark blocks along the diagonal of a RDI image if these dark blocks possess
visual clarity). However, as the boundaries between different clusters become
less distinct, the RDI image will degrade considerably with confusing bound-
aries between potential dark blocks. Accordingly, different viewers may deduce
different numbers of clusters from such poor-quality images. Can we automati-
cally determine the number of clusters ¢, as suggested by I(D’), in an objective
manner, without viewing the visual display? To answer this interesting question,
two methods have been developed, i.e., DBE [I7] and CCE [16] (see the algo-
rithm details and comparison in Section 5.3). Here we propose an alternative
method, called aVAT, using some image processing techniques. The process of
aVAT is illustrated in Figure Bl The individual steps are all well known in the
field of image processing, so we do not describe their underlying theories.

Fig. 3. Illustration of the aVAT algorithm. From left to right: scatter plot (n = 100, ¢ =
5), VAT image of (a), iVAT image of (a), binarized image of (c), edge map of (d), DT
image of (e), and detected squares in (f) imposed using red lines.

Since information about possible cluster structure in the data is embodied in
the square dark blocks along the diagonal of a RDI, we propose to detect and
count them using shape-based Chamfer matching [23]. As a preprocessing step,
the RDI is firstly binarized to extract regions of interest (Figure Bl(d)). Otsu’s
method [24] is used to automatically choose a global threshold. To make within-
cluster distances smaller and between-cluster distances larger (i.e., increasing
contrast) to obtain a more reliable threshold, we transform the image intensities
using a “monotonic” function

fltoy) =1 = exp(~t3,/0?)

where ¢, denotes the intensity value of the image pixel on the location (z,y),
and o is empirically set as the mean value of all pixel intensities.
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Chamfer matching was first proposed by Barrow et al. [25]. Assume that two
point sets are Y = {w;}Y; and V = {VZ}Z 1, the chamfer distance is defined as

cham u V Z mln HuZ VJ”

The symmetric chamfer distance can be obtained by adding depam(V,U). The
chamfer distance between two shapes can be efficiently computed using a dis-
tance transform (DT, Figure B(f)), which takes a binary image as input, and
assigns to each pixel in the image the distance to its nearest feature. We use
Canny edges as image feature points (Figure Be)) and the Euclidean distance
for DT, and the model points are the projected contours of a 2D (rigid) square
template. The distance between the template and the edge map can then be
computed as the mean of the DT values at the template point coordinates.

In general, matching consists of translating, rotating and scaling the template
shape at various locations of the distance image. Fortunately, in the RDI, we
just need to search for squares along the diagonal axis and scale the template
to different sizes to adapt to various cluster sizes. There is no need for template
rotation, because there are no orientation changes in VAT RDIs. This greatly
reduces the complexity of common shape detection using Chamfer matching.
The exact matching cost is ideally 0, but in practice the edges in an image are
slightly displaced from their ideal locations. Thus in our experiments, when the
matching cost lies below a certain threshold 7, the target shape is considered to
have been detected (Figure Bl(g)).

5 Experimental Results

In order to evaluate our methods, we have carried out a number of experiments
on 6 artificially generated data sets, as well as 6 real-world data sets. Unless oth-
erwise mentioned, in the following experiments the (Euclidean) distance matrix
D was computed in the attribute space (if the object vectorial representation is
available). All experiments were implemented in a Matlab 7.2 environment on a
PC with an Intel 2.4GHz CPU and 2GB memory running Windows XP.

5.1 Test Datasets

Six synthetic data sets were used in our experiments, whose scatter plots are
shown in Figure These data sets involve irregular data structures, in which
an obvious cluster centroid for each group is not necessarily available. Six real-
world data sets were also considered to evaluate our algorithms, 3 of which were
taken from the UCI Machine Learning Repository, i.e., Iris, Vote and Multiple
Features. The Face data set [26] contains 1755 images of 3 individuals, each of
which was down-sampled to 30 x 40 pixels. The Gene data set [27] is a 194 x 194
matrix consisting of pairwise dissimilarities of a set of gene products from 3
protein families. The Iris data set contains 3 types of iris plants, 50 instances
each. The Vote data set consists of 435 vote records (267 democrats and 168
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e) Corresponding detected squares using aVAT

Fig. 4. Visual analysis on 6 synthetic data sets

republicans). Votes were numerically encoded as 0.5 for “yea”, -0.5 for “nay” and
0 for “unknown disposition”. The Action data set [28] is an 198 x 198 pairwise
dissimilarity matrix derived from 198 human action clips. The Multiple- Features
(MF) data set consists of binary image features of 10 handwritten numerals, 200
patterns per class. The characteristics of these synthetic and real data sets are
summarized in Table [I

5.2 Results and Analysis

For each of the data sets, we first applied the VAT algorithm. The VAT im-
ages are shown in Figure for synthetic data and Figure for real data,
respectively. It can be seen that the cluster structure of the data in the VAT
images is not necessarily clearly highlighted, especially for complex-shaped data.
Accordingly, viewers have difficulties in giving a consistent result about the num-
ber of clusters, and different viewers may deduce different estimates of c. Next
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Table 1. Summary of results of estimating ¢ using different methods

Data VAT iVAT

Name # attri. n  Manual DBE CCE aVAT Manual DBE CCE aVAT

o
bS]

S1 2 2 2000 >1 6 8 6 2 2 2 2
s2 3 2 26 >2 5 3 3 3 3 3 3
s3 3 2 1800 >1 10 11 11 3 3 3 3
S4 3 33000 - 8 9 7 3 3 3 3
S5 4 2 512 >1 5 5 5 4 4 4 4
S6 5 2 2500 >5 8 6 5 5 5 5 5
Vote 2 16 435 >2 2 2 3 2 2 3 2
Iis 3 4 150 2 3 2 2 2 2 2 2
Gene 3 - 194 >3 3 4 3 3 5 3
Face 3 1200 1755 3ord 4/ 3 6 4 4 5 5
Action 10 - 198 >9 8§ 7 7 o 7 7 7
MF 10 649 2000 >8 9 5 12 8 76 9

AAE - 217 225 225 033 0.83 0.92 0.67

ARE - 0.73 059 0.66 0.07 0.16 0.18 0.14

we carried out our iVAT algorithm for each of the data sets used. The resulting
iVAT images are shown in Figure for synthetic data and Figure for real
data, respectively. In contrast to the original VAT images, the iVAT images have
generally clearer displays in terms of block structure, thus better highlighting
the hidden cluster structure.

Table [l summarizes the number of clusters determined from iVAT images
automatically, along with the results estimated from the VAT and iVAT images
using manual inspection by the authors for comparison. From Table [Il we can
see that

1. The results estimated from the iVAT images by manual inspection are clearly
better than those estimated from the original VAT images by manual inspec-
tion, whether for synthetic or real-world data sets.

2. The results of cluster number estimation from the iVAT images for all syn-
thetic data sets are accurate in terms of the number of real physical classes
(¢p), whether it was estimated automatically by our aVAT algorithm or by
manual inspection.

3. For real-world data sets, some estimates deviate slightly from the number of
real physical classes using our aVAT algorithm.

Overall, these results highlight the benefits of converting D to D’ by the path-
based distance transform for obtaining a good estimation of ¢ (whether auto-
matically or manually). We would like to note several points:

1. Though some estimates are imperfect for the real data, the aVAT algorithm
correctly detected all squares in the binarized images (see Figure . This
suggests that we may need to seek more sophisticated methods of image
binarization (e.g., multiple local thresholds) for avoiding the loss of some
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VAT images. From left to right: Vote iris, gene, face, actlon and MF

Hiﬂa\K

b) Corresponding iVAT images

iiﬂhﬂ

¢) Corresponding binarized images of iVAT images

d) Corresponding detected squares using aVAT

Fig. 5. Visual analysis on 6 real data sets

physically meaningful blocks (e.g., for Action data, some small blocks corre-
sponding to different action classes were transferred into a bigger block after
binarization).

2. We could use a ‘square size’ threshold to filter some detected very ‘small’
blocks corresponding to either noise/inliers or subtle sub-structures (e.g., for
Face and Gene data sets).

3. As aside product, for ‘perfect’ iVAT images (such as those of the 6 synthetic
data sets), the exactly detected squares may be directly used to retrieve data
partitions (i.e., each square corresponds to one potential cluster and its size
corresponds to the cluster size).

5.3 Algorithm Comparison

We compared our aVAT algorithm with CCE [I6] and DBE [17] in terms of es-
timating the number of clusters. Note that we did not compare aVAT to index-
based methods for post-clustering assessment of cluster validity, as our interest
is in estimating the number of clusters before clustering. The major steps for
CCE are summarized as follows: 1) Threshold the VAT image with Otsu’s al-
gorithm; 2) Apply the FFT to the segmented VAT and a correlation filter of
size s and multiply the transformed image with the complex conjugate of the
transformed filter; 3) Compute the inverse FFT for the filtered image; 4) Take
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the ¢-th off-diagonal pixel values of the back-transformed image and compute its
histogram; and 5) Cut the histogram at a horizontal line y = b, and count the
number of spikes. The major steps of DBE are summarized as follows: 1) Perform
intensity transform and segmentation of the VAT image, followed by directional
morphological filtering with size of an; 2) Apply a distance transform to the
filtered image and project the pixel values onto the main diagonal axis to form
a projection signal; 3) Smooth the projection signal by an average filter with a
length of 2an, compute its first-order derivative, and then detect the number of
major peaks by ignoring minor ones using a filter with size of 2amn.

As suggested in [I6/17], we used s = 20, ¢ = 1 and b = 0 for CCE and a =
0.03 for DBE. We used both VAT and iVAT images to make our comparisons,
and the results are summarized in Table [l in which we used bold figures to
show that the estimate is equal to the number of real physical classes ¢, and
italic figures to show results that are relatively closer to ¢,. AAE and ARE
represent average absolute error and average relative error between the number
of estimated clusters and the number of real physical classes, respectively. From
Table [ it can be seen that:

1. For synthetic data sets, all of these three methods give correct results when
using the iVAT images, while aVAT and CCE are slightly better than DBE
when using the original VAT images (i.e., 2 correct and 2 closer for aVAT,
1 correct and 3 closer for CCE, and 2 closer to DBE).

2. For real-world data sets plus the use of VAT images, DBE performs best,
then CCE and finally aVAT (i.e., 3 correct and 3 closer for DBE, 2 correct
and 2 closer for CCE, and 1 correct and 2 closer for aVAT); while for real-
world data sets plus the use of iVAT images, aVAT is a little better than
both CCE and DBE (i.e., 1 correct and 4 closer for aVAT, and 1 correct and
3 closer for both CCE and DBE).

3. Specifically, when using iVAT images, aVAT, CCE and DBE yield the same
estimate for the Iris and Action data sets. They all yield acceptable (but
different) estimates for the Gene and Face data sets. They disagree for the
Vote and MF data sets.

Overall, these three methods are comparable to each other and there is no clear
winner (at least based on the results on these data sets used currently). However,
we can see that the positions of peaks and valleys in the projection signal in DBE
implicitly correspond to centers and ranges of sub-blocks (or clusters). It is hard
to see a similar phenomena from the CCE histograms. In contrast, aVAT is
better in this aspect because it ezplicitly shows the number of clusters, positions
and ranges of each block (or clusters) within the image itself, in a more intuitive
manner.

6 Conclusion

This paper has presented a new visual technique for cluster tendency assess-
ment. Our contributions include: 1) The VAT algorithm was enhanced by using
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a path-based distance transform. The iVAT algorithm can better reveal the hid-
den cluster structure, especially for complex-shaped data sets. 2) Based on the
iVAT image, the cluster structure in the data can be reliably estimated by vi-
sual inspection. As well, the aVAT algorithm was proposed for automatically
determining the number of clusters c. 3) We performed a series of primary and
comparative experiments on 6 synthetic data sets and 6 real-world data sets,
and our methods obtained encouraging results.

In addition to further performance evaluation on more data sets with various
structures, future work will mainly focus on increasing the robustness of our
algorithms; e.g., exploring more sophisticated image thresholding methods [29)
and robust path-based distance computation [30].
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Abstract. Finding correlation clusters in the arbitrary subspaces of high-
dimensional data is an important and a challenging research problem. The cur-
rent state-of-the-art correlation clustering approaches are sensitive to the initial
set of seeds chosen and do not yield the optimal result in the presence of noise.
To avoid these problems, we propose RObust SEedless Correlation Clustering
(ROSECC) algorithm that does not require the selection of the initial set of seeds.
Our approach incrementally partitions the data in each iteration and applies PCA
to each partition independently. ROSECC does not assume the dimensionality of
the cluster beforehand and automatically determines the appropriate dimension-
ality (and the corresponding subspaces) of the correlation cluster. Experimental
results on both synthetic and real-world datasets demonstrate the effectiveness of
the proposed method. We also show the robustness of our method in the presence
of a significant noise levels in the data.

Keywords: Correlation clustering, principal component analysis.

1 Introduction

Clustering is one of the most popular techniques in the field of data mining [9]. The ba-
sic idea of clustering is to partition the data in such a way that the members of a partition
are closer to each other and the members of different partitions are far apart. But many
real-world applications often suffer from the “curse of dimensionality” and the mea-
sure of nearness becomes meaningless. In such scenarios, many feature selection and
dimensionality reduction methods have been proposed to aid clustering [7]. However,
these methods reduce the dimensionality by optimizing a certain criterion function and
do not address the problem of data clustering directly. The result of using dimension-
ality reduction techniques for clustering high-dimensional data is far from satisfactory
and rarely used in such scenarios. Moreover, it is possible that different clusters lie in
different subspaces and thus cannot be identified using any dimensionality reduction or
feature selection method (see Fig.[I(a)). To deal with such cases, subspace clustering
methods such as CLIQUE [4]], ENCLUS [6], SUBCLU [10] etc. have been proposed
in the literature (see Fig.[I(b)). These methods attempt to find clusters in different sub-
spaces. Searching every possible subspace is a computationally intensive task due to
exponentially large search space. Thus, most of these methods use some form of an
Apriori-based approach to identify the most interesting subspaces. Projected clustering
[3U12] is one form of subspace clustering that uses the concept of projection. How-
ever, these subspace clustering or projected clustering methods have the following two
limitations:

M.J. Zaki et al. (Eds.): PAKDD 2010, Part I, LNAI 6118, pp. 28532.12010.
(© Springer-Verlag Berlin Heidelberg 2010
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1. They are only able to separate clusters that are oriented in axis-parallel manner.
They cannot find cluster in arbitrary-oriented subspace (see Fig. [dlc)).
2. They can only find clusters in the sense of locality.

(a) (b) (© ()

Fig. 1. Different kinds of correlation clusterings. (a) Projected clustering (b) Axis-Parallel corre-
lation clusters. (c) Arbitrary oriented subspace clusters. (d) Arbitrary oriented subspace clusters
with different dimensionality.

In subspace clustering, the clusters are formed in the subspaces rather than the full-
dimensional space [46]]. Finding arbitrary-oriented subspace cluster (Fig.[Ilc)) involves
exponential search space. To efficiently address the problem, most correlation based ap-
proaches use PCA to avoid searching unwanted regions of the search space. ORCLUS
[2], which uses the same idea of axis-parallel PROCLUS [3]], is the first PCA based
method to find correlation clusters. 4C [3] also uses PCA, however it incorporates a
density-based approach and hence, the number of clusters need not be pre-specified.
Although these methods are able to keep the computational complexity low and do not
suffer from a potentially infinite search space, their success in finding correlation clus-
ters is highly dependent on the initial choice of the seeds. In addition, they usually do
not produce optimal results in the presence of noise. Another problem with these meth-
ods is that the dimensionality of the correlation has to be pre-defined which is usually
difficult for the end-user from the practical viewpoint. Yip et al. [13]] proposed an algo-
rithm called HARP [13]], which exploits the data to adjust the internal threshold values
dynamically at the runtime. However, this method faces difficulties in obtaining a low-
dimensional cluster [[11]. To avoid the problem associated with PCA-based methods
such as choosing the initial set of seeds and susceptibility to noise, CASH algorithm [[1]]
uses Hough transform to find correlations. Though this method does not use any ini-
tial seeds, its worst case time complexity is exponential, thus making it impractical for
high-dimensional data. To solve these issues, we propose a novel PCA based algorithm
which eliminates the problem of susceptibility to noise and the need for initial seeds to
find correlation clusters. It can also simultaneously find correlation clusters of different
dimensionality (see Fig.[Il(d)) and the computational complexity is relatively low.

In this paper, we propose RObust SEedless Correlation Clustering (ROSECC) algo-
rithm to find the correlation clusters in high-dimensional data. The main advantages
of the ROSECC algorithm compared to the state-of-the-art methods proposed in the
literature are:

1. It does not require initial seeds for the clustering and hence it is deterministic.
2. It can simultaneously identify correlation clusters with different number of
dimensions.
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3. Itis robust to handle noise in the data and can obtain the desired correlation clusters
despite the presence of significant noise levels in the data.

The rest of this paper is organized as follows: Section 2 describes the necessary defi-
nitions and notations. The proposed algorithm along with its computational complexity
is described in Section 3. Section 4 outlines the experimental results on both synthetic
and real-world datasets. Finally, Section 5 concludes our discussion.

2 Preliminaries

In this section, we will introduce some definitions that are needed to comprehend our
algorithm. Our method is based on the projection distance of a point onto the principal
vectors. Let dp € D is a datapoint and v is the principal vector of a member P; of Par-
titionset P, then the projection distance of dp and P; is given by the following equation:

PDist(dp. P,) dp.v if || > 1.
(& sy ) = . .
P dist(dp,x) if |P;| = 1.

where dist(dp,x) = \/Zj(dpj — x;)2. dp; and x; corresponds to the j' feature

of the data points dp and = respectively. At the beginning of the generation of parti-
tions, there will be only one single point x without any principal component. In such
cases, the Euclidean distance from the point x will be used as the projection distance.
A “Partitionset” (denoted by F;) is defined