

Lecture Notes in Computer Science 6131
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rajmohan Rajaraman Thomas Moscibroda
Adam Dunkels Anna Scaglione (Eds.)

Distributed Computing
in Sensor Systems

6th IEEE International Conference, DCOSS 2010
Santa Barbara, CA, USA, June 21-23, 2010
Proceedings

13

Volume Editors

Rajmohan Rajaraman
Northeastern University
College of Computer and Information Science (CCIS)
202 WVH, Boston, MA 02115, USA
E-mail: rraj@ccs.neu.edu

Thomas Moscibroda
Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
E-mail: moscitho@microsoft.com

Adam Dunkels
Swedish Institute of Computer Science
Isafjordsgatan 22, 164 29, Kista, Sweden
E-mail: adam@sics.se

Anna Scaglione
University of California Davis
Department of Electrical and Computer Engineering
One Shields Avenue, Davis, CA 95616, USA
E-mail: ascaglione@ucdavis.edu

Library of Congress Control Number: 2010927968

CR Subject Classification (1998): C.2, H.4, D.2, C.2.4, F.2, H.3

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-642-13650-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13650-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Message from the General Chair

We are pleased to present the proceedings of DCOSS 2010, the IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems, the sixth event
in this annual conference series. The DCOSS meeting series covers the key as-
pects of distributed computing in sensor systems, such as high-level abstractions,
computational models, systematic design methodologies, algorithms, tools and
applications.

We are greatly indebted to the DCOSS 2010 Program Chair, Rajmohan Ra-
jaraman, for overseeing the review process and composing the technical program.
We appreciate his leadership in putting together a strong and diverse Program
Committee covering various aspects of this multidisciplinary research area.

We would like to thank the Program Committee Vice Chairs, Thomas Mosci-
broda, Adam Dunkels, and Anna Scaglione, as well as the members of the Pro-
gram Committee, the external referees consulted by the Program Committee,
and all of the authors who submitted their work to DCOSS 2010. We also wish
to thank the keynote speakers for their participation in the meeting.

Several volunteers contributed significantly to the realization of the meeting.
We wish to thank the organizers of the workshops collocated with DCOSS 2010
as well as the DCOSS Workshop Chair, Sotiris Nikoletseas, for coordinating
workshop activities. We would like to thank Neal Patwari and Michael Rab-
bat for their efforts in organizing the poster and demonstration session. Special
thanks to Chen Avin for handling conference publicity, to Animesh Pathak for
maintaining the conference website, and to Zachary Baker for his assistance in
putting together this proceedings volume. Many thanks also go to Germaine
Gusthiot for handling the conference finances. We would like to especially thank
Jose Rolim, DCOSS Steering Committee Chair. His invaluable input in shap-
ing this conference series, making various arrangements and providing overall
guidance are gratefully acknowledged.

Finally, we would like to acknowledge the sponsors of DCOSS 2010. Their
contributions enabled this successful conference. The research area of sensor
networks is rapidly evolving, influenced by fascinating advances in supporting
technologies. We sincerely hope that this conference series will serve as a forum
for researchers working in different, complementary aspects of this multidisci-
plinary field to exchange ideas and interact and cross-fertilize research in the
algorithmic and foundational aspects, high-level approaches as well as more ap-
plied and technology-related issues regarding tools and applications of wireless
sensor networks.

June 2010 Bhaskar Krishnamachari

Message from the Program Chair

This proceedings volume includes the accepted papers of the 6th International
Conference on Distributed Computing in Sensor Systems. DCOSS 2010 received
76 submissions in three tracks covering the areas of algorithms, systems and
applications. During the review procedure three (or more) reviews were solicited
for all papers. After a fruitful exchange of opinions and comments at the final
stage, 28 papers (36.8% acceptance ratio) were accepted.

The research contributions in this proceedings span diverse important as-
pects of sensor networking, including energy management, communication, cov-
erage and tracking, time synchronization and scheduling, new programming
paradigms, medium access control, sensor deployment, data security, and mo-
bility. A multitude of novel algorithmic design and analysis techniques, system-
atic approaches and application development methodologies are proposed for
distributed sensor networking, a research area in which complementarity and
cross-fertilization are of vital importance.

I would like to thank the three Program Vice-Chairs, Thomas Moscibroda
(Algorithms), Adam Dunkels (Systems and Applications), and Anna Scaglione
(Signal Processing and Information Theory) for agreeing to lead the review pro-
cess in their track and for an efficient and smooth cooperation. I would also like
to thank the members of the strong and broad DCOSS 2010 Program Commit-
tee, as well as the external reviewers who worked with them. I wish to thank
the Steering Committee Chair Jose Rolim and the DCOSS 2010 General Chair
Bhaskar Krishnamachari for their trust and valuable contributions in organizing
the conference, as well as the Proceedings Chair, Zachary Baker, for his tireless
efforts in preparing these conference proceedings.

June 2010 Rajmohan Rajaraman

Organization

General Chair

Bhaskar Krishnamachari University of Southern California, USA

Program Chair

Rajmohan Rajaraman Northeastern University, USA

Program Vice-Chairs

Algorithms and Performance Analysis

Thomas Moscibroda Microsoft Research, USA

Systems and Applications

Adam Dunkels Swedish Institute of Computer Science,
Sweden

Signal Processing and Information Theory

Anna Scaglione University of California at Davis, USA

Steering Committee Chair

Jose Rolim University of Geneva, Switzerland

Steering Committee

Sajal Das University of Texas at Arlington, USA
Josep Diaz UPC Barcelona, Spain
Deborah Estrin University of California, Los Angeles, USA
Phillip B. Gibbons Intel Research, Pittsburgh, USA
Sotiris Nikoletseas University of Patras and CTI, Greece
Christos Papadimitriou University of California, Berkeley, USA
Kris Pister University of California, Berkeley, and Dust,

Inc., USA
Viktor Prasanna University of Southern California, Los

Angeles, USA

X Organization

Poster and Demo Session Chairs

Neal Patwari University of Utah, USA
Michael Rabbat McGill University, Canada

Workshops Chair

Sotiris Nikoletseas University of Patras and CTI, Greece

Proceedings Chair

Zachary Baker Los Alamos National Lab, USA

Publicity Chair

Chen Avin Ben Gurion University, Israel

Web Publicity Chair

Animesh Pathak INRIA Paris-Rocquencourt, France

Finance Chair

Germaine Gusthiot University of Geneva, Switzerland

Sponsoring Organizations

IEEE Computer Society Technical Committee on Parallel Processing (TCPP)
IEEE Computer Society Technical Committee on Distributed Processing (TCDP)

Held in Cooperation with

ACM Special Interest Group on Computer Architecture (SIGARCH)
ACM Special Interest Group on Embedded Systems (SIGBED)
European Association for Theoretical Computer Science (EATCS)
IFIP WG 10.3

Organization XI

Program Committee

Algorithms and Performance

Stefano Basagni Northeastern University, USA
Alex Dimakis USC, USA
Eric Fleury INRIA, France
Jie Gao Stony Brook University, USA
Rachid Guerraoui EPFL, Switzerland
Indranil Gupta UIUC, USA
Anupam Gupta CMU, USA
Ed Knightly Rice, USA
Kishore Kothapalli IIIT Hyderabad, India
Li Erran Li Bell Labs, USA
Mingyan Liu University of Michigan, USA
Andrew McGregor University of Massachussets Amherst, USA
Boaz Patt-Shamir Tel Aviv University, Israel
Sriram Pemmaraju University of Iowa, USA
Yvonne-Anne Pignolet IBM, Switzerland
Dan Rubenstein Columbia University, USA
Paolo Santi Unversity of Pisa, Italy
Stefan Schmid T-Labs Berlin, Germany
Aravind Srinivasan University of Maryland, USA
Berthold Voecking RWTH Aachen, Germany
Dorothea Wagner KIT, Germany
Guoliang Xing Michigan State University, USA
Haifeng Yu University of Singapore, Singapore

Applications and Systems

Jan Beutel ETH, Switzerland
Qing Cao University of Tennessee, USA
Peter Corke QUT, Australia
Kasun De Zoysa University of Colombo, Sri Lanka
Stefan Dulman TU Delft, The Netherlands
Lewis Girod MIT, USA
Omprakash Gnawali Stanford, USA
Olaf Landsiedel KTH, Sweden
Luca Mottola SICS, Sweden
Lama Nachman Intel, USA
Edith Ngai Uppsala University, Sweden
Bodhi Priyantha Microsoft Research, USA
Michele Rossi University of Padova, Italy
Antonio Ruzzelli UCD, Ireland
Utz Roedig University of Lancaster, UK
Thomas Schmid UCLA, USA

XII Organization

Thanos Stathopoulus Bell Labs, USA
Cormac Sreenan UCC, Ireland
Nigramanth Sridhar Cleveland State University, USA
Yanjun Sun Texas Instruments, USA
Andreas Terzis John Hopkins University, USA
Andreas Willig TU Berlin, Germany

Signal Processing and Information

J. Francois Chamberland Texas A&M , USA
Biao Chen Syracuse University, USA
Mark Coates McGill, Canada
Gianluigi Ferrari University of Parma, Italy
Carlo Fischione KTH, Sweden
John W. Fisher III MIT, USA
Massimo Franceschetti UCSD, USA
Martin Haenggi University of Notre Dame, USA
Peter Y-W. Hong NTHU, Taiwan
Tara Javidi UCSD, USA
Vikram Krishnamurty UBC, Canada
Tom Luo UMN, USA
Urbashi Mitra USC, USA
Yasamin Mostofi UNM, USA
Angelia Nedic UIUC, USA
Michael Rabbat McGill, Canada
Bruno Sinopoli CMU, USA
Youngschul Sung KAIST, Republic of Korea
A. Kevin Tang Cornell, USA
Parv

Venkitasubramaniam Lehigh University, USA
Venu Veravalli UIUC, USA
Azadeh Vosoughi University of Rochester, USA
Aaron Wagner Cornell, USA

Referees

Ehsan Aryafar
Navid Azimi
Niels Browers
Binbin Chen
Yin Chen
Geoff Coulson
Declan Delaney
Mike Dinitz
Ian Downes
Joshua Ellul

Giancarlo Fortino
Radhakrishna Ganti
Anastasios Giannoulis
Ryan Guerra
Bastian Katz
JeongGil Ko
O. Patrick Kreidl
Yee Wei Law
HyungJune Lee
Gaia Maselli

Stanislav Miskovic
Asal Naseri
Michael O.Grady
Boris Oreshkin
Saurav Pandit
Paul Patras
Arash Saber
Rik Sarkar
Dennis Schieferdecker
Simone Silvestri

Organization XIII

Konstantinos Tsianos
Nicolas Tsiftes
Deniz Ustebay
Sundaram Vanka

Markus Voelker
Meng Wang
Zixuan Wang
Kevin Wong

Junjie Xiong
Yuan Yan
Mehmet Yildiz

Table of Contents

Tables: A Spreadsheet-Inspired Programming Model for Sensor
Networks . 1

James Horey, Eric Nelson, and Arthur B. Maccabe

Optimized Java Binary and Virtual Machine for Tiny Motes 15
Faisal Aslam, Luminous Fennell, Christian Schindelhauer,
Peter Thiemann, Gidon Ernst, Elmar Haussmann,
Stefan Rührup, and Zastash Afzal Uzmi

ZeroCal: Automatic MAC Protocol Calibration . 31
Andreas Meier, Matthias Woehrle, Marco Zimmerling, and
Lothar Thiele

Programming Sensor Networks Using Remora Component Model 45
Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi,
Romain Rouvoy, Quan Le-Trung, and Frank Eliassen

Stateful Mobile Modules for Sensor Networks . 63
Moritz Strübe, Rüdiger Kapitza, Klaus Stengel, Michael Daum, and
Falko Dressler

Design and Implementation of a Robust Sensor Data Fusion System for
Unknown Signals . 77

Younghun Kim, Thomas Schmid, and Mani B. Srivastava

Control Theoretic Sensor Deployment Approach for Data Fusion Based
Detection . 92

Ahmad Ababnah and Balasubramaniam Natarajan

Approximate Distributed Kalman Filtering for Cooperative Multi-agent
Localization . 102

Prabir Barooah, Wm. Joshua Russell, and João P. Hespanha

Thermal-Aware Sensor Scheduling for Distributed Estimation 116
Domenic Forte and Ankur Srivastava

Decentralized Subspace Tracking via Gossiping . 130
Lin Li, Xiao Li, Anna Scaglione, and Jonathan H. Manton

Building (1 − ε) Dominating Sets Partition as Backbones in Wireless
Sensor Networks Using Distributed Graph Coloring 144

Dhia Mahjoub and David W. Matula

XVI Table of Contents

On Multihop Broadcast over Adaptively Duty-Cycled Wireless Sensor
Networks . 158

Shouwen Lai and Binoy Ravindran

A Novel Mobility Management Scheme for Target Tracking in
Cluster-Based Sensor Networks . 172

Zhibo Wang, Wei Lou, Zhi Wang, Junchao Ma, and Honglong Chen

Suppressing Redundancy in Wireless Sensor Network Traffic 187
Rey Abe and Shinichi Honiden

Ensuring Data Storage Security against Frequency-Based Attacks in
Wireless Networks . 201

Hongbo Liu, Hui Wang, and Yingying Chen

Time-Critical Data Delivery in Wireless Sensor Networks 216
Petcharat Suriyachai, James Brown, and Utz Roedig

MetroTrack: Predictive Tracking of Mobile Events Using Mobile
Phones . 230

Gahng-Seop Ahn, Mirco Musolesi, Hong Lu, Reza Olfati-Saber, and
Andrew T. Campbell

Mobile Sensor Network Localization in Harsh Environments 244
Harsha Chenji and Radu Stoleru

AEGIS: A Lightweight Firewall for Wireless Sensor Networks 258
Mohammad Sajjad Hossain and Vijay Raghunathan

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks . . . 273
Shane B. Eisenman, Hong Lu, and Andrew T. Campbell

Optimal Data Gathering Paths and Energy Balance Mechanisms in
Wireless Networks . 288

Aubin Jarry, Pierre Leone, Sotiris Nikoletseas, and Jose Rolim

Programming Sensor Networks with State-Centric Services 306
Andreas Lachenmann, Ulrich Müller, Robert Sugar, Louis Latour,
Matthias Neugebauer, and Alain Gefflaut

Fast Decentralized Averaging via Multi-scale Gossip 320
Konstantinos I. Tsianos and Michael G. Rabbat

Wormholes No More? Localized Wormhole Detection and Prevention
in Wireless Networks . 334

Tassos Dimitriou and Athanassios Giannetsos

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges . . . 348
Zhenhua Liu, Hongbo Liu, Wenyuan Xu, and Yingying Chen

Table of Contents XVII

Self-stabilizing Synchronization in Mobile Sensor Networks with
Covering . 362

Joffroy Beauquier and Janna Burman

Sensor Allocation in Diverse Environments . 379
Amotz Bar-Noy, Theodore Brown, and Simon Shamoun

Data Spider: A Resilient Mobile Basestation Protocol for Efficient Data
Collection in Wireless Sensor Networks . 393

Onur Soysal and Murat Demirbas

Author Index . 409

Tables: A Spreadsheet-Inspired Programming Model for
Sensor Networks

James Horey1, Eric Nelson2, and Arthur B. Maccabe1

1 Oak Ridge National Laboratory
{horeyjl,maccabe}@ornl.gov

2 The Aerospace Corporation
eric.j.nelson@aero.org

Abstract. Current programming interfaces for sensor networks often target ex-
perienced developers and lack important features. Tables is a spreadsheet inspired
programming environment that enables rapid development of complex applica-
tions by a wide range of users. Tables emphasizes ease-of-use by employing
spreadsheet abstractions, including pivot tables and data-driven functions. Us-
ing these tools, users are able to construct applications that incorporate local and
collective computation and communication. We evaluate the design and imple-
mentation of Tables on the TelosB platform, and show how Tables can be used
to construct data monitoring, classification, and object tracking applications. We
discuss the relative computation, memory, and network overhead imposed by the
Tables environment. With this evaluation, we show that the Tables programming
environment represents a feasible alternative to existing programming systems.

1 Introduction

End-user programming interfaces for sensor networks must be greatly improved. Cur-
rently, creating and managing applications for sensor networks is too complex for casual
users. Many existing programming interfaces assume that end-users are expert program-
mers that prefer advanced techniques. Although collaborating with experts can relieve
some of these problems, this is neither scalable or cost-effective. In addition, users may
find that built-in functionality of current management tools is too limited. In order to
facilitate the adoption of this technology by new users, sensor network programming in-
terfaces must be usable by a wide array of users with varying programming experience
while remaining flexible and powerful.

Adapting existing tools, such as relational databases and spreadsheets, and applying
them to sensor networks has great potential and allows users to transfer their existing
knowledge base and skills. The challenge associated with this approach is to limit cer-
tain interactions while keeping the interface flexible enough to create interesting appli-
cations. Query-based tools, including TinyDB [14] and Cougar [24] adapt the database
model by employing an SQL-like language [6]. These techniques allow users to gather
data and specify aggregation behavior. However, it can be difficult to express complex
applications, such as object tracking, using these models.

Prior work in spreadsheet-inspired programming environments, including the au-
thor’s initial work [13] and subsequent work by Woo et al. [23], demonstrate the chal-
lenges of adapting the spreadsheet model. For example, the work by Woo et al. lacks an

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 J. Horey, E. Nelson, and A.B. Maccabe

Fig. 1. Tables supports queries, functions, and collective functions with in-network aggregation

integrated programming model, thus limiting their interface to simple data collection. In
order to successfully incorporate spreadsheet actions with sensor networks, we propose
a new programming model based on data-driven functions and implicit communication
between event-driven sensor groups. Data-driven functions are declarative statements
that refer to named data, such as Photometer and can include arithmetic, mathematical,
and conditional operators. These functions can be chained together by assigning data,
similar to tasks in Tenet [10].

In addition, event-driven groups can be formed using the pivot table tool. This tool
allows users to create sophisticated queries and visually organize data. With these tools,
users can specify groups of nodes that share a common data constraint. Once these
groups are created, data can be implicitly transferred between groups and the basesta-
tion to facilitate collective computation. Using this programming model, our software,
Tables, combines the best aspects of both query-based and programmatic approaches
(Figure 1).

In this paper, we present a novel programming model that integrates implicit tiered
communication, event-driven sensor groups, and data-driven computation (Section 2).
We discuss how this model can be integrated with spreadsheet-inspired tools and discuss
our current prototype implementation on the TelosB platform (Section 3). Using these
tools, we show how users can construct applications including periodic monitoring,
data classification, in-network aggregation, and object tracking. We then analyze the
memory, computational, and communication overheads of our prototype. Finally, we
compare our system to related work (Section 4) and offer a brief conclusion (Section 5).

2 Programming Model

The main abstractions used by Tables are data-driven functions, event-based groups, and
implicit, tiered communication. These abstractions are specified using a combination
of spreadsheet-inspired tools. In order to support these abstractions, Tables excludes

Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks 3

explicit data sampling and neighbor communication. In Tables, sensor data is automat-
ically sampled and queued, although the user is able to modify the sampling periods.
Although the lack of neighbor communication appears to be limiting, it is important to
note that Tables does support in-network aggregation. Also, not including such features
allows Tables to be potentially ported over non-networked sensors.

Because these programming abstractions are difficult to illustrate apart from the pro-
grammatic mechanisms, both mechanisms and abstractions will be discussed together.
Two of the most important tools are the pivot table and the viewing area where the data
is displayed. The viewing area resembles a typical spreadsheet: a two-dimensional table
of cells. Each of these tables (aka: sheet), resides in a uniquely named tab, allowing the
user to display data along three dimensions (row, column, and sheet).

Fig. 2. Pivot table to view Photometer and Thermistor data organized by Node ID and Time.
Results are collected and reflect the pivot table organization.

The pivot table is a dialog that displays a miniature view of the spreadsheet. The di-
alog consists of a list of data names (aka: sensor list), a metadata pane for each spread-
sheet axis, and a data pane. Items in the sensor list are populated with the names of
sensor values, such as Photometer, and user assigned data. The user creates a query
by dragging items from the sensor list onto one of the three metadata and data panes.
Items contained in the metadata panes specify how the items in the data pane is to be
organized. Each pane (with the exception of the sheet) is capable of containing multiple
items, allowing users to create complex multi-dimensional queries.

4 J. Horey, E. Nelson, and A.B. Maccabe

Fig. 3. Pivot table to view ID organized by Photometer data with the threshold and constraint
options. The pivot table is also configured to regularly transmit results every 10 seconds.

Once constructed, the pivot table is propagated to the sensor network and the results
are displayed onto the viewing area. Figure 2 illustrates a pivot table requesting Pho-
tometer and Thermistor data organized by the node ID, timestamp, and the name of the
data. For those more familiar with SQL syntax, this pivot table is similar to:

SELECT Thermistor, Photometer FROM Nodes
SORT BY ID, Time, Sensor Type

Unlike SQL, pivot tables have the additional advantage of organizing the data visu-
ally. Also, pivot tables are not limited to traditional sensor queries. It is just as easy to
construct a pivot table to display node ID organized by Photometer data, etc. This is
equivalent to the query:

SELECT ID FROM Nodes SORT BY Photometer

Users can also specify various options on pivot table items similar to the WHERE
operator (Figure 3). The user can choose to display data within a certain range or specify
a minimum number of elements that must be present. Because pivot tables normally
execute immediately, the user can also create a reactive table. These tables are stored
by sensor nodes until all the conditions are met. The user can also specify a recurrence
so that the pivot table is reevaluated periodically. This option can be combined with
reactive tables to create periodic pivot tables that occur only after the requirements
have been met.

2.1 Data-Driven Functions

In addition to pivot tables, the user can also create data-driven functions that operate
over sensor data. Unlike procedural functions, data-driven functions are only activated
when data the function relies on is updated. For example, if a function refers to pho-
tometer data, the function will be executed when new photometer data is collected.
Since all available sensor data is periodically collected, functions that rely on that data
are also periodically evaluated. Unlike a normal spreadsheet function, functions in Ta-
bles must specifically refer to a data name instead of a cell reference. Currently, Tables

Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks 5

τ

τ δ

τ

Fig. 4. Tables supports arithmetic, boolean, and vector operations. Users refer to data elements
using a string-based name and employ assignment and conditional functions to create new data.

supports arithmetic, boolean, several vector functions, and conditionals (Table 4). Func-
tions can also be chained together using assignment functions (Figure 2.1). Although
there are no explicit looping commands, recursive functions can be created using a con-
ditional function that relies on its own data (Figure 5(b)).

(a) Chained Functions

if(Data ...)
 Data := ...

(b) Recursive Function

Fig. 5. Functions are associated with a data element and activated when new data arrives. Func-
tions can be chained (a) and looped using a self-referential conditional function (b).

In order to create a new function, the user types the function into an empty cell.
Initially the interface is populated with a sheet for every node in the network along
with a non-constrained sheet. By placing a function in one of the node-specific sheets,
the user explicitly tasks a particular sensor node with that function. If the function is
placed in the non-constrained sheet, the function is tasked for all sensor nodes. Because
these functions operate locally, data comes directly from the sensor node. For example,
a function that manipulates Photometer data will get the data directly from the sensor
node photometer queue. Similarly, if the function assigns a new value, the value is
stored locally on the sensor node.

In combination with pivot tables, we envision these functions being used for both
stand-alone data processing (ie: data filtering, classification, etc.) and in the context of
more complex applications with both querying and collective elements. Because func-
tions are data-driven, functions can be written independently allowing applications to
be created piece-meal. Users can start out by only using pivot tables and later add local
functions. This type of iterative interaction resembles the way typical spreadsheets are
constructed and encourages experimentation.

6 J. Horey, E. Nelson, and A.B. Maccabe

2.2 Event-Based Groups

Users are also able to construct collective functions that operate over data from multi-
ple sensor nodes. In order to create a collective function, the user must define a data-
constrained sheet. Unlike node-constrained sheets, a data-constrained sheet is associ-
ated with a data element and a value. Once defined, the sheet represents all sensor
nodes where the data element is equal to the specified value. For example, if a sheet has
the data constraint “Photometer 100”, then all nodes where the latest Photometer value
is equal to 100 will be represented by that sheet.

The user can create a data-constrained sheet manually or by using a pivot table. For
pivot tables, the user drags a data element from the sensor list onto the sheet pane. This
implicitly creates a set of data-constrained sheets. After the pivot table is created, all
unique values associated with that data element will be associated with a sheet. For
example, if the user specified User Value as the sheet data element, and assuming every
node recorded a User Value of 1 or 2, the result will be a data-constrained sheet for 1
and 2.

After creating a data-constrained sheet, the user can type in a function on the sheet.
Unlike local functions, these functions will operate over data from multiple nodes.
When possible Tables will perform in-network aggregation. Because a sheet represents
a subset of sensor nodes, only nodes that satisfy the data constraint will transmit data
for the aggregation. In combination with in-network aggregation, this can greatly re-
duce the number of messages transmitted (40− 50% in many cases). Although our sys-
tem currently executes collective functions on the basestation, the Tables programming
model does not preclude alternative implementations. We hope to explore alternative
implementations that focus on executing collective functions in the network in the near
future.

2.3 Convenience Functions

In order to facilitate integration with other tools, Tables supports both a macro mode and
csv output. Macro mode is initiated when the user clicks on the macro icon. All actions,
including pivot tables and functions, are recorded. Later after the user saves the macro,
the user can replay the macro either via the GUI or command-line interface. In either
mode, interactive or macro, results from pivot tables are stored in comma-separated-
variable files. This is done transparently without the user’s explicit input. These features
can be used to interactively design applications and deploy them at future times.

2.4 Applications: Weather Classification and Object Tracking

Using a combination of pivot tables, local functions, and collective functions, the user
can create applications that are difficult to express in other query-based languages. Two
such applications, weather classification and object tracking, are straightforward to ex-
press in Tables. For weather classification, the goal is to organize the sensor nodes into
three groups: one for dark, dim, and light areas and to examine the average photometer
value in a particular group. The user starts by typing the following local functions into
a non-constrained sheet.

Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks 7

Fig. 6. Example of a complete application. Local functions classify sensor data, pivot tables create
data-constrained sheets, and collective functions aggregate data from dynamic groups.

if(Photometer < 20 & dark != 1) dark := 1
if(Photometer > 20 & Photometer < 70 & dark !=2)

dark := 2
if(Photometer > 70 & dark !=3) dark := 3

Since these functions refer to Photometer data, each function is periodically evaluated.
Depending on the latest photometer value, one of three values are assigned to the dark
variable. Like the sensor values, Tables will keep a short history of user-defined values,
enabling users to view historical dark values from each node. Note that even if the user
stops here, this is still a useful application.

After compiling these functions, the user must define a set of data-constrained sheets
using the dark values. This is most easily accomplished using a pivot table and select-
ing the dark variable along the sheet axis. For convenience, the user can also view other
data during this process (ie: photometer values). After receiving the data from this pivot
table, the user is left with three data-constrained sheets (one for each of the three dark
values). The user can now construct collective functions that aggregate data from within
these groups. In this specific instance, the collective function averages photometer val-
ues from the first group.

av := average(2, Photometer)

Since a collective function is specific to a particular dynamic group, the nodes partici-
pating in the collective function will change automatically. Finally, the user can create
a pivot table to view the averaged photometer values. Screenshots of this application
running over TelosB motes are shown in Figure 6. Although technically finished, users
are free to continue experimenting with additional pivot tables and functions.

Others collective applications are similar in structure. For example, for object-
tracking, the user would employ the following local functions:

8 J. Horey, E. Nelson, and A.B. Maccabe

if(Magnetometer > 20 & detection != 1)
detection := 1 &
wx := Magnetometer * x & wy := Magnetometer * y

if(Magnetometer < 20 & detection != 0) detection := 0

These functions assume that the sensor nodes have a proximity sensor and that each
node stores its location in the x and y variables. When an object approaches one of the
sensor nodes, the detection bit is set and a weighted location is calculated. Afterwards,
the user can use a pivot table to create two data-constrained sheets (for each detection
value).

To find the centroid of the all nodes in proximity of the object, the user can specify
the following set of functions in the detection 1 sheet:

fx := sum(3, WX) / sum(3, Magnetometer)
fy := sum(3, WY) / sum(3, Magnetometer)

These functions average the locations while requiring a minimum of three weighted
locations. Finally, the user can construct a pivot table to view the centroids.

3 Implementation and Evaluation

Tables consists of two major components: the graphical user interface (GUI) that re-
sides on the basestation and the runtime that resides on the sensor nodes. The GUI also
executes collective functions and interacts with the sensor network via a USB-tethered
mote. Having a single point of interaction with the sensor network could pose a scal-
ability problem and we plan to experiment with a multi-master scheme in the future.
Finally, the mote runtime contains communication services, and an interpreter for local
functions and group management.

The Tables runtime is available for the TelosB mote [1]. The motes are equipped with
a modified version of Mantis OS [3], although the Tables runtime can also be ported to
other operating systems (TinyOS [12], Contiki [7]). In addition, the Tables runtime
makes minimal demands on the communication subystem and can communicate over
multiple protocols. Our current implementation employs a tree-based routing protocol
similar to the Collection Tree Protocol [9] with link-layer acknowledgements, end-to-
end retransmissions, out-of-order packet arrival, and in-network aggregation. The com-
munication subsystem does not support flow control or packet loss, but these are areas
that we expect to improve. Performance evaluation was performed over a local 25 node
testbed with each node equally spaced out over approximately 20 by 15 feet. The nodes
were set to the lowest radio power setting resulting in a maximum of 3 to 4 hops.

3.1 CPU

For CPU overhead, we compare the duty cycle of several applications. We caution,
however, that the duty cycle in real deployments will be heavily influenced by the envi-
ronment and system configuration (MAC protocols, routing, etc.). Therefore, we con-
centrate on the relative increases incurred by our system. Power management in Mantis

Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks 9

(a) Minimal sampling (b) No functions

(c) Threshold function (d) Aggregating data

Fig. 7. Duty cycles and histograms (in timesteps) of active and sleep periods on a node

(a) Minimal sampling application

(b) Tables while aggregating collective data

(c) Tables while aggregating collective data (zoomed in)

Fig. 8. Activity levels on a node over time while performing sampling (a) and aggregation (b)

10 J. Horey, E. Nelson, and A.B. Maccabe

OS is implicit; the node automatically enters a low-power sleep mode if there are no
active threads. Threads are deactivated if the thread initiates a sleep command or in-
vokes a blocking call (ie: to receive sensor or networking data). The first application
we construct is a minimal sensor sampling application that runs directly on top of the
operating system. This application features a single thread that sits in an infinite loop
reading photometer, thermistor, and humidity data every three seconds for nine seconds.
It then waits for six seconds between these sampling windows. Immediately after read-
ing the sensor data, the values are printed over USB. As Figure 7(a) indicates, the node
is active approximately 24% of the time.

A Tables application that collects and stores sensor data but does not have any func-
tions or pivot tables, is active approximately 26% of the time (Figure 7(b)). This modest
increase is due to the additional processing used to queue the sensor data, and the addi-
tional threads created by the Tables runtime. If the user includes a local filtering function
for one or more of the sensors, the node becomes active 27% of the time (Figure 7(c)).
Because this function refers to one of the sensor values, the function is executed when-
ever new sensor data is sampled. Finally, when a sensor node is performing in-network
aggregation, the activity level jumps to 39% (Figure 7(d)). Although the increase is
large, most applications will not perform in-network aggregation very often.

A more detailed view of the activity levels of the applications are shown in Figure 7.
As visible, the minimal application exhibits a very regular structure. The node is active
for a short time and then enters a low-power state. The aggregation application exhibits
a less regular structure with longer active periods. Due to the resolution of the figure,
some areas appear to be in both the active and sleep state. However, when the figure
is zoomed in (Figure 8(c)), it is apparent there are many extremely short active states
followed by periods in the lower power state.

3.2 Memory

The Tables runtime features a dynamic memory manager that initially has access to
7898 bytes (the remainder is used by the OS). The available memory is used to allocate
stack space for user threads, store queued data, store local and collective functions, and
to maintain group state. Tables, by default, is configured to store up to 30 sensor values
per sensor queue (Photometer, Thermistor, and Humidity). After initializing the Tables
runtime, the memory manager has access to 4274 bytes.

There are several sources of dynamic memory consumption in Tables. First, Tables
allocates memory to store user values. Unlike a simple array of values, values in Ta-
bles are referenced by name, include a timestamp, and are used to trigger computation.
Consequently, adding a data element to an existing queue uses 12 bytes. Creating a new
queue uses 32 bytes. With respect to group management, the smallest group (with a
single assignment function) will use 106 bytes. This is used to store group membership
information, the sheet constraint, and to allocate stack space for a publication thread
that transmits data for the collective function.

The memory used for local functions is determined by the complexity of the func-
tion. We illustrate the number of bytes consumed for a variety of assignment functions
(Figure 9(a)). Simple assignments consume as little as 38 bytes (y := 3). Functions
that reference a sensor value (y := Photometer) are evaluated periodically and

Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks 11

(a) Functions of varying complexity (b) Pivot tables with varying number of
metadata (MD) and data items

Fig. 9. Dynamic memory consumption of different programming components

therefore allocate space to store the function for future evaluation. For more complex
assignments involving vector operations (y := average(2, Photometer)), the
memory consumption increases to 86 bytes. Unlike other arithmetic operators, vector
functions must accommodate a minimum history of values. A simple conditional involv-
ing arithmetic operations consumes 64 bytes and memory usage increases to 70 bytes
for conditionals that assign a vector operation. Conditionals evaluating a vector func-
tion, however, consume 102 bytes. Like other vector functions, this conditional must be
periodically re-evaluated and maintain a history of minimum values.

The Tables runtime must also allocate memory for pivot table processing (Figure
9(b)). Because pivot tables may request data with many elements, copying and storing
all the values for the responses may easily exceed the amount of available memory.
Consequently, Tables processes and transmits responses in batches to limit memory
consumption. The most simple pivot table, one requesting sensor data without any meta-
data, consumes a total of 50 bytes. Adding a data element adds an additional 22 bytes.
The first metadata element, however, adds an additional 34 bytes, while each additional
metadata element adds 22 bytes.

3.3 Network

Although both pivot table processing and in-network aggregation dominate communi-
cation in Tables, publishing data for collective functions exhibits relatively low packet
overhead. Because the data is aggregated in the network, only a few data values are
stored in the packet. Consequently, publications for collective functions are transmitted
in a single packet. Pivot tables, however, allocate more dynamic memory and must be
transmitted using multiple packets. Currently, each Tables network packet has access to
88 bytes. However, after allocating space for packet processing, pivot table replies use
a maximum of 74 bytes for transmission.

The number of packets used to transmit the reply will largely depend on the num-
ber of elements in the data queue. For a pivot table requesting one data item and two
metadata items, and with 5 elements, it takes one packet to transmit the entire response.

12 J. Horey, E. Nelson, and A.B. Maccabe

Increasing the number of elements to 10 doubles the number of packets. 20 elements
takes 3 packets, and 30 elements takes 4 packets to transmit the entire response. This
overhead is due to the unique structure of pivot table replies. Each data element includes
a timestamp and a list of metadata used to describe that data. This flexible structure is
used because Tables does not differentiate system values (sensor values, ID, etc.) from
user values, and users may freely mix these values in a pivot table. Also not all nodes
may contain the same data and metadata elements.

4 Related Works

Tables can be compared to both typical programming models and end-user environ-
ments (Mote View [20], Microsoft SensorWeb [17], SensorBase [4]). Many features
offered by end-user environments are complementary to Tables (online collaboration,
user management, etc.). However unlike these environments, Tables offers a complete,
integrated programming model. Typically sensor network applications are developed
using low-level programming languages, such as NesC [8] to create programs with
minimal overhead. Although powerful, this makes NesC a challenging programming
environment even for experienced programmers using integrated development environ-
ments (Viptos [5], TOSDev [16]).

For advanced programmers, macroprogramming models offer powerful abstractions
that simplify communication and tasking (Tenet [10]). Some of these models abstract
neighbor information (Abstract Regions [15], Hoods [21]) or offer a single global view
of the network (Kairos [11]). The EnviroSuite programming model [2] abstracts events,
similar to sheet groups and users assign computation to mobile events similar to collec-
tive functions. Other functional programming models (Regiment [19]) combine declar-
ative programming with stream processing (WaveScript [18]). Similarly, Tables can be
viewed as a comprehensive macroprogramming model featuring declarative tasks, dy-
namic event-groups, and implicit communication with an emphasis on an iterative mode
of operation.

Tables can also be compared to interactive debugging tools. Marionette [22] provides
users with the ability to probe data values and dynamically invoke functions. Values
from the sensor node are transmitted to the basestation, which in turn, executes the
function that normally runs on the sensor node. Although Marionette adds important
features to TinyOS, it does not fundamentally alter the TinyOS programming model.

5 Conclusion

We described Tables, a spreadsheet-inspired programming environment that combines
data-driven functions, event-based groups, and implicit, tiered communication. We
showed how to create several applications, including data monitoring and classifica-
tion, with simple-to-use graphical tools. We also analyzed our prototype system for
computational, memory, and networking overhead. Although our system exhibits mod-
est overhead, we believe this overhead is acceptable for users that will benefit from our
programming interface.

Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks 13

Tables is not necessarily ideal for all sensor network deployments. Some applica-
tions will require fine hardware control. Likewise, scenarios in which limited control
is desirable, may require simple end-user interfaces. Tables sits between these two ex-
tremes. Like spreadsheets, we do not believe that Tables will or should replace low-level
programming paradigms, but instead, should make sensor network programming more
accessible to a larger number of people. To that end, we believe that Tables has an
exciting future.

Acknowledgements

This research was partially funded by the Department of Homeland Security-sponsored
Southeast Region Research Initiative (SERRI) at the Department of Energy Oak Ridge
National Laboratory.

References

1. Crossbow, http://www.xbow.com
2. Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He,

T., Krishnamurthy, S., Luo, L., Son, S., Stankovic, J., Stoleru, R., Wood, A.: Envirotrack:
Towards an environmental computing paradigm for distributed sensor networks. In: Interna-
tional Conference on Distributed Computing Systems (ICDCS) (2004)

3. Abrach, H., Bhatti, S., Carlson, J., Dai, H., Rose, J., Sheth, A., Shucker, B., Han, R.: Mantis:
System support for multimodal networks of in-situ sensors. In: Workshop on Wireless Sensor
Networks and Applications (WSNA) (2003)

4. Chang, K., Yau, N., Hansen, M., Estrin, D.: Sensorbase.org - a centralized repository to
slog sensor network data. In: Euro-American Workshop on Middleware for Sensor Networks
(EAWMS - DCOSS) (2006)

5. Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation environ-
ment for tinyos-based wireless sensor networks. In: ACM Conference on Embedded Net-
worked Sensor Systems (SenSys) (2005)

6. Date, C.J.: A guide to the SQL standard. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1986)

7. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system
for tiny networked sensors. In: IEEE International Conference on Local Computer Networks
(LCN) (2004)

8. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc language: A
holistic approach to networked embedded systems. In: Programming Language Design and
Implementation (PLDI) (2003)

9. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In:
ACM Conference on Embedded Networked Sensor Systems (SenSys) (2009)

10. Gnawali, O., Greenstein, B., Jang, K.-Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan,
R., Kohler, E.: The tenet architecture for tiered sensor networks. In: ACM Conference on
Embedded Networked Sensor Systems (SenSys) (2006)

11. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor networks
using kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005.
LNCS, vol. 3560, pp. 126–140. Springer, Heidelberg (2005)

http://www.xbow.com

14 J. Horey, E. Nelson, and A.B. Maccabe

12. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System Architecture
Directions for Networked Sensors. In: Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2000)

13. Horey, J., Bridges, P., Maccabe, A., Mielke, A.: Work-in-progress: The design of a spread-
sheet interface. In: Information Processing in Sensor Networks, IPSN (2005)

14. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query
processing system for sensor networks. ACM Transaction Database Systems, 122–173
(2005)

15. Mainland, G., Welsh, M.: Programming sensor networks using abstract regions. In:
Symposium on Networked Systems Design and Implementation, NSDI (2004)

16. McCartney, W.P., Sridhar, N.: Tosdev: a rapid development environment for tinyos. In: ACM
Conference on Embedded Networked Sensor Systems (SenSys) (2006)

17. Nath, S., Liu, J., Zhao, F.: Sensormap for wide-area sensor webs. IEEE Computer Maga-
zine 40(7), 90–93 (2007)

18. Newton, R.R., Girod, L.D., Morrisett, J.G., Craig, M.B., Madden, S.R.: Design and evalua-
tion of a compiler for embedded stream programs. In: ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES) (2008)

19. Newton, R.R., Morrisett, J.G., Welsh, M.: The regiment macroprogramming system. In: In-
formation Processing in Sensor Networks (IPSN) (2007)

20. Turon, M.: Mote-view: A sensor network monitoring and management tool. In: Workshop
on Embedded Networked Sensors (EmNets) (2005)

21. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for sen-
sor networks. In: International Conference on Mobile Systems, Applications and Services,
MobiSys (2004)

22. Whitehouse, K., Tolle, G., taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta, P., Culler,
D.: Marionette: Using rpc for interactive development and debugging of wireless embedded
networks. In: Information Processing in Sensor Networks (IPSN) (2006)

23. Woo, A., Seth, S., Olson, T., Liu, J., Zhao, F.: A spreadsheet approach to programming and
managing sensor networks. In: Information Processing in Sensor Networks (IPSN) (2006)

24. Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor
Networks. In: ACM SIGMOD Conference (2002)

Optimized Java Binary and Virtual Machine for
Tiny Motes

Faisal Aslam1, Luminous Fennell1, Christian Schindelhauer1, Peter Thiemann1,
Gidon Ernst1, Elmar Haussmann1, Stefan Rührup1, and Zastash A. Uzmi2

1 University of Freiburg, Germany
{aslam,fennell,schindel,thiemann,ernst,haussmann,

ruehrup}@informatik.uni-freiburg.de
2 Lahore University of Management Sciences, Pakistan

zartash@lums.edu.pk

Abstract. We have developed TakaTuka, a Java Virtual Machine opti-
mized for tiny embedded devices such as wireless sensor motes. TakaTuka1

requires very little memory and processing power from the host device.
This has been verified by successfully running TakaTuka on four different
mote platforms. The focus of this paper is TakaTuka’s optimization of pro-
gram memory usage. In addition, it also gives an overview of TakaTuka’s
linkage with TinyOS and power management. TakaTuka optimizes stor-
age requirements for the Java classfiles as well as for the JVM interpreter,
both of which are expected to be stored on the embedded devices. These
optimizations are performed on the desktop computer during the linking
phase, before transferring the Java binary and the corresponding JVM in-
terpreter onto a mote and thus without burdening its memory or computa-
tion resources. We have compared TakaTuka with the Sentilla, Darjeeling
and Squawk JVMs.

1 Introduction

A common way of programming an application for wireless sensor motes is by
using a low level programming language such as Assembly, C and NesC [3].
These languages tend to have a steep learning curve and the resulting programs
are difficult to debug and maintain. In contrast, it is attractive to program these
motes in Java, a widely used high level programming language with a large devel-
oper community. Java is highly portable and provides many high level concepts
including object oriented design, type safety, exception handling and runtime
garbage collection. However, Java portability requires a virtual machine, which
comes with significant memory and computation overhead [7]. Therefore, it is
difficult to run such a virtual machine on a wireless sensor mote which typically
has a 16 or an 8 bit microcontroller with around 10KB of RAM and 100KB of
flash [18]. Furthermore, these motes cannot perform computation intensive tasks
due their limited battery lifetime. Therefore, a Java Virtual Machine (JVM) de-
signed for such tiny embedded devices must have low computation requirements,
1 The complete source of TakaTuka is available athttp://takatuka.sourceforge.net

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 15–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

16 F. Aslam et al.

a small RAM footprint, and small storage requirements. To satisfy these strin-
gent requirements, we have designed TakaTuka, a JVM for wireless sensor motes.

The focus of this paper is TakaTuka’s optimization for reduction in flash
storage requirements of the Java classfiles and virtual machine. The main con-
tributions described in this paper are: 1) Extensive Java bytecode and constant
pool optimizations. As part of these, we present a novel optimal bytecode replace-
ment algorithm (Section 3.3.2). 2) A condensed Java binary format (called Tuk).
Beside providing size reduction, the Tuk file format reduces RAM and compu-
tation requirements by enabling constant time access to preloaded information
stored in flash. 3) A novel design for dynamically sizing the JVM interpreter.
4) TakaTuka Java interfaces for typical mote hardware and an implementation
based on TinyOS. The current version of TakaTuka can supports all mote plat-
forms using TinyOS that either have MSP430 or AVR family processors. We have
acquired four of those platforms and successfully tested TakaTuka on them. This
includes Crossbow’s Mica2, Micaz, TelosB and Sentilla’s JCreate [18] [17].

Outline: We present related work and background information in Section 2. Java
bytecode optimization is described in Section 3 and constant pool optimization
in Section 4. The Tuk file format, is discussed in, Section 5 and our JVM design is
presented in Section 6. We discuss TakaTuka’s linkage with TinyOS in Section 7.
We present results in Section 8 and finally, in Section 9, we draw the conclusions.

2 Related Work and Background

This section summarizes the existing JVMs for tiny embedded devices and byte-
code size reduction techniques.

JVM for Motes: Recently, Sun Microsystems has developed Squawk, a JVM for
embedded systems [7], which overcomes some of the shortcomings of traditional
JVMs by employing a Split VMArchitecture (SVA). In SVA, resource-hungry tasks
of the JVM, including class file loading and bytecode verification are performed on
the desktop [14] [7]. This process reduces the memory and CPUusage requirements
for the execution of the program on the mote, because no runtime loading and veri-
fication is required. When compared to standard JVMs, Squawk has less stringent
requirements for resources; it is, however, still not feasible to run Squawk on a typ-
ical mote equipped with an 8-bit microcontroller, a few hundred KB of flash and
around 10KB of RAM [7]. For these typical motes, Sentilla Corp. has developed a
JVM, but it is not open-source and currently does not support any devices other
than Sentilla motes [17]. Darjeeling, is an open source JVM designed for motes [11].
It does support a good part of the JVM specification but sacrifices some features
like floating point support, 8-byte data types and synchronized static-method calls
for efficiency [11]. There are a few other JVMs available for embedded devices, such
as NanoVM [1], and VM* [10], but these are either limited in functionality by not
fully supporting JVM specifications or are closed source with a limited scope of
operation only on specific devices. TakaTuka aims to remain small, open source
and suitable for a wide variety of embedded devices while providing all features of

Optimized Java Binary and Virtual Machine for Tiny Motes 17

a fully CLDC-compliant JVM 2. The current version of TakaTuka supports all but
two of the Java bytecode instructions and most of the CLDC library. We also sup-
port threading, synchronized method calls, 8-byte data types and 4-byte floating
point arithmetic on motes.
Bytecode Optimization: The two primary methods for bytecode size reduc-
tion are compression and compaction [6][5]. A typical compression technique
requires partial or full decompression at runtime [6]. Any decompression always
results in computation and memory overhead. Therefore, performing decom-
pression at runtime is not desirable for embedded devices. In contrast to com-
pression, compaction involves identifying and factoring out recurring instruction
sequences and creating new customized bytecode instructions to replace those
sequences [2]. These customized instructions do not require decompression and
are interpretable because they share the characteristics of normal bytecode in-
structions. The process of compaction produces a smaller code that is executable
or interpretable with no or little overhead. The compaction scheme given in [2] is
shown to produce bytecode that is about 15% smaller and runs 2 to 30% slower
than the original bytecode. Rayside et al. [5] compaction scheme produces byte-
code that is about 20% smaller. In contrast to above mentioned compaction
approaches, TakaTuka comprehensive compaction scheme produces a bytecode
reduction of about 57% on average and the resultant bytecode runs faster with-
out using any extra RAM.

3 TakaTuka Bytecode Compaction

We employ three bytecode compaction techniques, each of which replaces a sin-
gle bytecode instruction or a sequence of bytecode instructions with a new cus-
tomized bytecode instruction such that the total size of the bytecode is reduced.
A customized bytecode instruction, like any other bytecode instruction, is com-
posed of an opcode and an optional set of operands. In the following, we first
explain the process of choosing an opcode for a customized instruction. Then,
we provide the details of the compaction processes and relevant algorithms used
in TakaTuka.

3.1 Available Opcodes

Each customized instruction uses an opcode that is not used by any other byte-
code instruction. Hence the cardinality of the set of available opcodes impacts
the extent of compaction. The Java specification has reserved one byte to rep-
resent 256 possible Java opcodes but uses only 204 of those for corresponding
bytecode instructions [14]. Thus, there are 52 unused opcodes that are avail-
able for defining customized instructions. Furthermore, the Java specification
includes many bytecode instructions with similar functionalities but different
data-type information. The type information of such instructions is only used
2 We might never actually obtain formal CLDC-compliance due to the high price tag

associated with the license of the CLDC Technology Compatibility Kit (CLDC TCK).

18 F. Aslam et al.

in Java bytecode verification and is not required by the JVM interpreter. Since
the Split VM architecture (SVA) does not require run-time verification (see
Section 2) additional 29 opcodes for a compaction algorithm are available af-
ter completing bytecode verification during linking phase. Finally, many Java
programs may not use all the 204 standard Java instructions, depending upon
the functionality of the program. Hence a custom-made JVM interpreter such
as the one offered by TakaTuka can make use of additional opcodes, not used
by the Java program, for the purpose of defining customized instructions during
the bytecode compaction process.

3.2 Single Instruction Compaction

In this technique of compaction, size of a single bytecode instruction is reduced
by replacing it with a smaller customized instruction. That is, in single instruc-
tion compaction, each customized instruction replaces only a single bytecode
instruction. The single instruction compaction in TakaTuka can either be a re-
duction in the memory footprint needed to represent an operand (called Operand
reduction) or a complete removal of the Operand from the bytecode instruction
(called Operand removal).
Operand reduction: Many instructions in standard Java use either a 2-byte
constant pool (CP) index or a 2-byte operand as a branch offset [14]. In TakaTuka,
we introduce a new custom instruction with a reduced operand size of one byte, if
the operand value is smaller than 256. In order to maximize the savings resulting
from the use of this technique, we sort the information in our set of global CPs3

such that most referred entries of a CP from the bytecode are stored at a numer-
ically small CP index. This leads to a large number of reduced size constant pool
instructions in the bytecode.
Operand removal: In TakaTuka, we also combine the opcode and operand
to form a customized instruction with implicit operand(s). For example, the
instruction ILOAD 0x0010 could be converted to ILOAD 0x0010 and the two bytes
originally used by the operand may be saved. Note, however, that we do not apply
operand removal on offset-instructions as their offset usually changes after any
kind of bytecode compaction.

3.3 Multiple Instruction Compaction (MIC)

In multiple instruction compaction (MIC), a recurring sequence of instructions,
called a pattern, is replaced by a single customized instruction. For example,
a pattern {GOTO 0x0030, LDC 0x01, POP} in bytecode could be replaced by
a single customized instruction GOTO LDC POP 0x003001, providing a reduction
of two bytes per occurrence. Note that, the MIC technique perform compaction
in the opcodes only, without affecting the storage needed for operands. The MIC

3 Global constant pool is explained in detail in Section 4.

Optimized Java Binary and Virtual Machine for Tiny Motes 19

technique involves finding a set of valid patterns and then replacing a subset
of those patterns with customized instructions. First, we define the criteria that
must be met for a pattern to be replaceable and then we discuss the valid pattern
search and replacement algorithms used in TakaTuka.
Valid Pattern Criterion: A sequence of bytecode instructions or a pattern is
said to be valid if it can be replaced by a single customized instruction. A valid
pattern fulfils the following two criterion: 1) A branch-target instruction can
only be the first instruction of a pattern, and 2) Any Java bytecode instruction
designed to invoke a method can only be a last instruction of a pattern. Note that
above restrictions are imposed to avoid extra computation or RAM required for
decoding a customized instruction during runtime for finding a return or branch
offset target inside it.

3.3.1 Pattern Identification
The pattern identification algorithm finds and selects a number of patterns of
instruction sequences from the original bytecode of the Java program, up to a
maximum number of available opcodes. These patterns are stored in a hash-map
which is used as an input to the pattern replacement algorithm. The pattern re-
placement algorithm then constructs customized instructions and replaces the
input patterns with those customized instructions in the bytecode. We use the
following terminology to explain the pattern identification and replacement al-
gorithms.

m : Total number of opcodes that may be used by a customized instruction.
k : Maximum number of single instructions in any pattern.
li : Number of single instructions in a pattern i that can potentially be

replaced by a customized instruction. We also refer to this parameter as
the length of the pattern i.

εi : Reduction in bytecode achieved when one occurrence of a pattern i in
the bytecode is replaced by a customized instruction. εi equals li − 1
when a pattern i is replaced by a MIC customized instruction.

ζi : Frequency of a pattern i, that is to be replaced by a customized instruc-
tion, in the entire bytecode of the Java program.

ηi : Total reduction (i.e. εi · ζi) in bytecode achieved when a pattern i is
replaced by a customized instruction, in the entire bytecode of the Java
program.

ξ(y) :
∑
i∈y

ηi where y is a set of patterns.

In TakaTuka, pattern generation for multiple instruction compaction uses a
Multi-pass greedy algorithm, which is based on a simple Single-pass greedy al-
gorithm.
Single-pass greedy algorithm: The Single-pass greedy algorithm creates a
list of patterns of length ≤ k by traversing the bytecode exactly once. When
a valid pattern i of any length is encountered the first time, it is added to the
hash map with ζi = 1. Then, ζi is incremented whenever the same pattern i

20 F. Aslam et al.

is found again while traversing the remaining bytecode. Consequently, after a
single traversal of the Java bytecode, the hash map contains all possible pat-
terns of length ≤ k with their corresponding frequencies. The algorithm returns
a subset σ of patterns from within the hash map such that |σ| ≤ m and ξ(σ) is
maximized. This algorithm has one major flaw: it returns many patterns that
are not new pattern but subset of other longer patterns, undermining the extent
of bytecode reduction.
Multi-pass greedy algorithm: The multi-pass greedy algorithm mitigates
the limitation described above by traversing the bytecode multiple times, mak-
ing temporary changes in each iteration, and using that changed bytecode in
subsequent iterations. In the first iteration, the single-pass greedy algorithm is
used on a copy of the bytecode and the resulting patterns are stored in a set
y. A pattern i is then selected, such that ηi ≥ ηj ∀j ∈ y, and replaced as a
customized instruction in the copy of the bytecode. Subsequent iterations are
similar except that the single-pass greedy algorithm is called on the modified
copy of bytecode from the previous iteration. This continues until either m pat-
terns of length ≤ k are selected or additional patterns cannot be found. The
customized instructions introduced in a given iteration may become a part of a
new pattern in subsequent iterations, as long as the constraint of maximum k
original single instructions per customized instruction is not violated.

3.3.2 Pattern Replacement
The pattern replacement algorithm takes the bytecode and a set of patterns
and replaces those patterns, as they appear in the byteode, by new customized
instructions. The primary goal in this replacement process is to maximize the
bytecode reduction, leading to the maximum savings in storage. While our pat-
tern generation algorithm is greedy and may not generate an optimal set of
patterns, our pattern replacement algorithm is not only optimal but also runs in
polynomial time. First, we describe our algorithm, then we show its polynomial
complexity in Theorem 1, finally proving its optimality in Theorem 2.

Algorithm: The pattern replacement algorithm keeps track of many temporary
solutions in order to produce the replacement with the maximum savings. The
algorithm is applied on each class method within the bytecode one by one and
produces the maximum reduction possible for that method with the given set
of pattern. The inputs to the pattern replacement algorithm are: 1) the num-
ber k indicating the maximum number of single instructions in any pattern, 2)
a set of patterns σ generated by a pattern identification algorithm and 3) the
bytecode of a method. The pattern replacement algorithm creates a tree with
different replacement possibilities. One branch of this tree contains the bytecode
sequence corresponding to the maximum reduction in bytecode, and the algo-
rithm uses this branch to update the bytecode of the method. To demonstrate
the replacement algorithm, assume that the instruction at index i in the byte-
code of a method μ is represented by τi. That is, {τ1, τ2, ..., τλ} represents the
method bytecode, where λ is the total number of instructions in μ. Each level
in the tree corresponds to the index in the bytecode, hence the tree has depth

Optimized Java Binary and Virtual Machine for Tiny Motes 21

λ. Within the tree, each node located at level j corresponds to either τj , or to a
customized instruction that ends at τj . Each node x in the tree has exactly one
incoming edge whose weight w(x) is given by:

w(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 x is the root node
0 x corresponds to a

customized instruction,
min (k − 1, w(xp) + 1) x corresponds to τj itself

(1)

where xp is the immediate parent of node x. Note that each node x, other than
root node, has exactly one immediate parent node. Each node x in the tree has
at most w(x) + 1 child nodes each corresponding to instructions with unique
lengths ranging from 1 to w(x) + 1. If node x exists at a level j in the tree,
then one of its child nodes corresponds to the instruction τj+1 which has length
1; each of the other w(x) child nodes corresponds to a customized instruction
c that represents a pattern obtained by traversing node x and parents further
above in the tree, such that 2 ≤ lc ≤ w(x) + 1. Each node of the tree maintains
the total bytecode reduction achieved by the tree branch ending at it.

The tree is built level by level, where addition of each level is done in two
phases: the creation phase and the pruning phase. The creation phase of a level j
is carried out simply by finding the children of all the nodes at level j − 1. In
the pruning phase of level j, first we prune all those nodes from level j which
represent an invalid customized instruction i.e. its corresponding pattern is not
a member of σ. Subsequently, additional nodes are pruned such that no two
nodes have the same weight on their incoming edge: if multiple nodes have w
as the weight on their incoming edge, the one corresponding to the leaf of the
branch with highest total bytecode reduction is kept and the remaining nodes
are pruned. In this additional pruning, random selection is made if there is a tie.

Each level of the final tree has at most k nodes because the weight allowed
on any incoming edge is between 0 and k-1 (see Equation 1) and after prun-
ing nodes on each level have edges with distinct weights. Thus, the resulting
tree is a linear sized structure with depth λ and a constant span k. After
the tree with level λ is completely constructed, the leaf node with the highest
saving is identified and the corresponding tree branch is used to replace the
bytecode.

Theorem 1. The time complexity of the replacement algorithm is O(k2·
λ).

Proof. The complexity of the algorithm depends on the size of the tree and
the number of operations performed on each node. From the description of the
algorithm, we note that the depth of the tree is exactly λ and each level of
the tree has at most k nodes. The final tree has at most k · λ nodes. However,
in the worst case, before a pruning phase, a level j may have a total of up to
1 + 2 + 3 + ... + k nodes. Pruning nodes at level j means finding the node with
the maximum reduction for each weight 0 ≤ w ≤ k − 1. This can be done with

22 F. Aslam et al.

an effort proportional to the number of nodes at this level, i.e. 1
2k(k + 1) nodes

in the worst case, which is bounded by O(k2). Since there are exactly λ levels
in the tree, the worst case complexity of the algorithm is O(k2 · λ).

Lemma 1. All nodes with same weight w on their edge at level j will
have same sub-tree originating from them.

Proof. We prove our claim by contradiction: assume that all nodes with the
same weight w on their incoming edges at level j do not have the same sub-tree
originating from them. This is possible if and only if their immediate children
are different. We now consider two situations: (i) when w is zero, each node has
only one child node corresponding to the instruction τj+1. Thus, all sub-trees
are the same, contradicting the original assumption, and proving the lemma. (ii)
when w is non-zero, a child node either has a customized instruction composed
of at most w parent nodes or a simple instruction τj+1. Based on Equation (1),
all of those w parents of each node will always be simple instructions instead
of customized instructions. The algorithm says that a simple instruction τi can
only occur at level i in tree. Hence all of those w parents nodes must be equal. In
summary, the immediate children of each node with same w at level j will have
the same w parents and, therefore, will have the same child nodes. Hence the
sub-tree emanating from each node with same weight w at level j will always be
the same.

Theorem 2. Given a set of patterns, the pattern replacement algo-
rithm finds the replacement with maximum overall reduction in the
size of bytecode.

Proof. First, we note that the complete tree without pruning contains all com-
binations of solutions including the optimal one identified by the leaf node with
the highest total reduction. Next, we argue that the branch corresponding to
the optimal solution is not affected by pruning. Using Lemma 1, all nodes with
the same weight w on their incoming edge at level j have the same sub-tree em-
anating from them. Therefore, pruning all nodes with the same weight w except
the one with maximum saving achieved so far, implies that the optimal solution
is still part of the tree.

4 TakaTuka Constant Pool Optimization

Each class file has a collection of distinct constant values of variable size called
the Constant Pool (CP). These constant values either define the characteristics
of the class or are used by the class itself. A two byte index is used to access
a given CP value which is usually larger than two bytes and is used multiple
times from the class file. The aggregated CP size of a project is usually much
larger compared to its total bytecode size. Hence, reducing CP size is critical in
the overall size reduction of a Java program. Our constant pool design is based
on some of the ideas given in [5] and [13] with improvements drawn using the

Optimized Java Binary and Virtual Machine for Tiny Motes 23

characteristics of a Split-VM architecture, which is not considered in above ref-
erences. In the following sub-sections we present the optimizations we used in
TakaTuka for reducing the CP size.

Global Constant Pool: Each value of a CP entry could be of one of the
eleven different types as specified in the Java specification [14]. In traditional
designs, the CP values of a single class appear in an arbitrary order within the
CP, where a leading one byte tag is used for type identification. This design,
however, has the following shortcomings: 1) One byte is consumed to specify the
type with each CP entry. 2) Since a CP is unordered, an index has to be built
in RAM in order to index its entities in a constant-time. 3) Although CP values
are distinct for one class, there can be many redundant occurrences in the scope
of a given project.

The above mentioned shortcomings lead to excessive flash and RAM require-
ment, both of which are scarce resources in sensor motes. To address this in
TakaTuka, we use the preloading characteristic of SVA and create one global
pool per type, during the linking phase. As compared to traditional CPs, our set
of Global Constant Pools (GCPs) have no redundant information per project.
We keep a common header for these GCPs specifying the start address of a pool
and corresponding type. As all entries of a GCP have the same type, no tag is
required per constant pool entry. Keeping a separate CP per type enables a con-
stant time lookup for any CP’s entry in the flash and does not require loading the
complete CP in RAM. This is because each CP type has only fixed size values4

hence given a constant pool type one can directly jump to a specify CP index by
computing the offset from the first entry of the same type. This constant time
lookup is possible because each Java CP-instruction always accesses the same
type of CP (e.g., INVOKEVIRTUAL always access CP of type 10). However, there
are three exceptions to this namely the instructions LDC, LDC W and LDC2 W. We
have introduced five additional bytecode instructions so that in TakaTuka each
CP instruction, including the ones mentioned above, implicitly contain the CP
type information.

Reference Resolution: Traditional JVMs apply dynamic loading, also called
on-demand loading. Whenever a class method or a field needs to be accessed,
the corresponding class file has to be loaded into RAM after performing veri-
fication, preparation and resolution [14]. To resolve references during runtime,
fully qualified names are required to identify components (i.e. methods, fields
and, classes). In TakaTuka, we have used the preloading characteristic of SVA to
resolve names during linking. Hence a preloaded, preverified and resolved Java
program is transferred to a mote. This allows us to remove all the UTF-8 strings
traditionally required for name resolution but not used by the application. Fur-
thermore, we can also remove all the other constant pool entries (e.g., all entries
of type 12) typically used for resolving names during runtime[14].

4 UTF-8 constant pool type has variable length values but they are never directly used
from within the bytecode [14].

24 F. Aslam et al.

5 Tuk File Format

The classfile has three important parts: the bytecode, the CP and the structure
information. We observed that the structure information usually makes up for
half the size of classfiles of a program. We use a special format called Tuk for
storing the set of classfiles used by a user-program and corresponding Java library
components. The Tuk format has two main characteristics. First, it only contains
information required during program execution in a reduced format, forgoing any
information required during linking phases. Second, the Tuk format contains
preloaded information stored in an easy to access manner, obviating the need to
load the Tuk file in a mote’s RAM. This implies that different portions of a Tuk
file can be accessed in constant time using pre-calculated addresses, relieving the
computation resources of the host device. It may be noted that the addresses and
indexes that make up part of the preloaded information are created by processing
on a desktop computer, before transferring a small preloaded and preverified Tuk
file to the host device. For example, in a Tuk file a CP entry for a class or a
method reference contains the address of the location inside the Tuk file where
actual data (i.e., the classfile or the method) resides. All the addresses in a Tuk
file are relative to its starting address and are therefore platform independent.
We use either 2-byte or 4-byte addresses depending upon the total size of the
Tuk file.

6 TakaTuka JVM Design

In this section, we present the design of TakaTuka’s dynamically customizable
JVM interpreter, and its bytecode compaction support.

Customized JVM: The flash memory in some tiny embedded devices may
be too small to contain a complete JVM. To address this limitation, the default
behavior of TakaTuka is to reduce the size of the interpreter depending upon
the set of bytecode instructions used by a given Java program. To this end,
TakaTuka removes all unused components from the JVM, stripping the JVM
bytecode support down to the bytecode set used by the given program. For a
given Java program, the initial step of compilation is to generate a header file
enlisting the set of bytecode instructions used by that program. This step is com-
pleted on the desktop computer. Subsequently, the JVM recompiles to shrink
itself based on the information contained in the header file. This default behavior
leads to a very small JVM interpreter, albeit the one that is capable of running
only a subset of Java programs. If a more generic interpreter, capable of support-
ing additional bytecode instructions, is needed, TakaTuka allows this through a
configuration file. For example, it is possible to have a JVM interpreter version
that supports the complete set of bytecode instructions except the ones which
involve floating point operations. Similarly, a user can also completely turn off
the JVM customization, resulting in the generation of a general purpose JVM
that supports any CLDC-compliant Java program.

Optimized Java Binary and Virtual Machine for Tiny Motes 25

Bytecode Compaction Support: The TakaTuka interpreter is implemented
by using the labels-as-values approach [4] to provide direct threading. Each byte-
code instruction translates into a source code snippet following a correspond-
ing label. To this end, TakaTuka treats the customized instructions, resulting
from single instruction compaction and multiple instruction compaction, like
any other bytecode instruction that could not be compacted. However, because
some instructions are only generated during the compaction process a ’static’ set
of labels is not applicable. TakaTuka addresses this problem by dynamically gen-
erating the labels supporting the required set of bytecode instructions. In case
a user wishes to generate a general purpose JVM interpreter that can run any
CLDC-compliant program then a set of fixed customized instructions is used,
instead of generating new customized instruction per application.

7 TakaTuka Linkage with TinyOS

TakaTuka can run on all devices currently supported by TinyOS. Furthermore,
TakaTuka provides a Java interface for each driver and a user can access the
class implementing such an interface using only a factory-method [8], making the
actual implementation hidden from the users of the driver. Therefore, TakaTuka
can run on any platform that provides an implementation of those Java interfaces
using any operating system, including but not limited to TinyOS 5.

To work with TinyOS, the TakaTuka interpreter is allowed to execute n byte-
code instructions in a scheduling cycle before returning the control back to the
TinyOS scheduler. This is accomplished by posting a TinyOS Task [12] that calls
the TakaTuka interpreter which is written in C. We keep n small so that TinyOS
remains responsive in between TakaTuka scheduling cycles. TinyOS is an event
driven operating system. In contrast Java language functions are generally block-
ing and it is up to Java user to create threads when multitasking is required.
Hence when a TakaTuka user calls a method that is written as event in TinyOS
then that method blocks until the corresponding event is generated in TinyOS.
When TinyOS receives an event, then the Java thread waiting for that event is
notified. A TakaTuka user can access any of the TinyOS Commands [12] using
TakaTuka native method support. For a Split-phase TinyOS Command [12], the
current thread is put into a waiting state after calling the Command and is no-
tified when latter is completed. TakaTuka also supports thread synchronization,
that is used for sharing resources (e.g. radio) between multiple user threads.
Power Management: The current version of the TakaTuka JVM uses the same
power management strategies as implemented in TinyOS but in future versions,
we intend to provide a more comprehensive power management. In the current
version, when all Java threads are sleeping or waiting for events then TinyOS
could go to the low power state and TakaTuka follows through. In case an event
arrives, then any thread waiting for that event is notified and and TakaTuka
resumes. Furthermore, TakaTuka uses TinyOS radio drivers, thereby supporting
the low-power listening implemented by TinyOS.
5 The current version of TakaTuka has also limited support for Contiki OS.

26 F. Aslam et al.

Fig. 1. Left-Fig: RAM available (in bytes) for a user program. Unlike the Sentilla
and Darjeeling JVMs, the RAM available for a user program in TakaTuka and TinyOS
depends on drivers used by it. We have presented two kinds of results for TinyOS and
TakaTuka. a) When only serial drivers are used and b) When serial, radio and LED
drivers are used. Right-Fig: Time (in ms) required to sort an array of 1500 bytes using
the Quicksort algorithm. TakaTuka results are shown when no Bytecode Compaction
(no BC), Full Compaction (FC) and Limited Compaction (LC) is used.

8 Discussion and Results

This section presents TakaTuka storage results as compared to the Darjeeling,
Sentilla and Squawk JVMs.

8.1 Execution Speed and RAM

We show that our storage optimization does not have an adverse effect on RAM
usage and performance. In contrast the bytecode optimization results in en-
hanced performance.
RAM available for a user program: The TakaTuka interpreter and the low
level drivers require a few hundred bytes of statically allocated data memory.
The exact amount depends on the used functionality. Furthermore we assume
a worst case upper bound of 500 bytes for the stack memory required by the
interpreter’s routines. The remaining RAM is available as Java heap and stack
memory for the user program and the runtime library. It is shown in Fig. 1, that
TakaTuka has 81.44%, TinyOS has 94.18% and Sentilla JVM has 20% of the
total RAM available for a program that uses serial, radio and LED drivers on a
JCreate mote. For the Mica2 mote Takatuka has 62.30%, TinyOS has 87.13%,
and Darjeeling has 50% of the total RAM available for the user program when
LED, radio and serial drivers are used. The Darjeeling JVM does not adjust
the amount of RAM available automatically. It can be set at compile time and
defaults to 2048 bytes for Mica2.
Execution speed: The increase of execution speed when using bytecode com-
paction is shown in Fig. 1. On JCreate, the TakaTuka JVM runs 47.59% faster
with Full Compaction and 11.6% faster with Limited Compaction as compared
to when no compaction is used. Bytecode compaction results in a similar speed
increase on Mica2.

Optimized Java Binary and Virtual Machine for Tiny Motes 27

Fig. 2. Left-Fig. Percentage reduction in GCP and Tuk-GCP sizes as compared to
original CP sizes of classfiles. Right-Fig. Percentage reduction in bytecode using full
compaction (FC) and limited compaction (LC).

8.2 Storage

In this section we present TakaTuka storage optimization results.
Input applications: In addition to simpler well known algorithms (Quick-
sort, Bubblesort, MD5) we have used DYMO and collection tree (CTP) rout-
ing protocols as input to our optimization algorithms[9][16]. Both Dymo and
CTP are completely written in Java using multiple threads. Our input files to
the TakaTuka optimization framework for above mentioned applications include
user defined classfiles as well as all other linked library files used by the user
program. We have also used CLDC library packages and Sun-Spot Demos to
produce storage results. However, in this case, the input files do not include
external packages and no dead-code removal is applied.
CP optimizations: We first create a set of 11 Global Constant Pools (GCPs)
with no redundant information for each application, subsequently the reference
resolution information is removed (Tuk-GCPs). On average the aggregated size
of GCPs are 48.96% and the Tuk-GCPs are 94.24% smaller then the original
corresponding classfiles aggregated CPs (Fig. 2).
BC optimizations: Our bytecode optimization not only reduces the overall
Java binary size but also increases execution speed, as shown in the previous Sec-
tion 8.1. In case a customized TakaTuka JVM is used, the bytecode compaction
results in regenerating the interpreter’s labels for new customized instructions
(Section 6). Hence we define the net reduction in the Java binary size due to
bytecode compaction for a given pattern x by:

R(x) = ηx − γx (2)

where η is defined in Section 3.3.1 and used here in the context of all three
compaction techniques. γx is the total change (increase or decrease) in the size
of the label’s block for supporting a customized instruction that is replacing
a given pattern x of original Java instructions. Through configuration, we al-
low two compaction strategies in TakaTuka: Limited Compaction (LC) and Full

28 F. Aslam et al.

Fig. 3. Left-Fig. Overall reduction in Java binary for TakaTuka applications, Sun-
Spot demos and CLDC libraries when LC is used. The applications include user and
corresponding library code. In contrast, the Sun-Spot demos as well as the CLDC
libraries do not include classfiles from external packages. Right-Fig. Overall reduction
in Java binary for TakaTuka compared to the Sentilla (Senti) and Darjeeling (Darj)
JVMs. The different configurations for TakaTuka are: without bytecode compaction
(No BC), with Limited Compaction (LC), with Full Compaction (FC), and without
dead-code removal (NDR).

Fig. 4. Left-Fig. Overall size (in bytes) of the customized TakaTuka JVM for different
applications. Right-Fig. The percentage increase in customized TakaTuka JVM size
when Full Compaction (FC) is used.

Compaction (FC). In LC the change in size of the label’s block is taken into
account and compaction is only performed when the compaction reduction func-
tion of Equation 2 returns a positive value. In contrast, in FC any change in the
size of the label’s block is ignored and compaction is always performed if unused
opcodes are available. As shown in Fig. 2, on average FC reduces the size of
the Java bytecode by 62.39% and LC by 30.14%. By default we use LC instead
of FC on JCreate as the net size of the Java binary and the JVM interpreter
is increased when FC is used as shown in Fig 4. On Mica2 we can use FC to
profit from the performance increase as its bigger flash memory can tolerate the
storage increase more easily.

Optimized Java Binary and Virtual Machine for Tiny Motes 29

Overall Java binary reduction: It is shown in Fig. 3, that for the given pro-
grams, TakaTuka’s Java binary file, called Tuk, is on average 24.12% smaller
compared to corresponding Suite files. Furthermore the Tuk file size is reduced
by 95.22% for applications and 83.57% for libraries compared to corresponding
uncompressed Jar files. The right part of Fig. 3 compares the size of Tuk files
resulting from different compaction configurations with the Java binaries pro-
duced by Sentilla and Darjeeling. In the comparisons with Sentilla only the user
application is considered, as the library is already present on the Sentilla motes
and generally not recompiled. In the comparisons with Darjeeling we also com-
pare the size of the Tuk file without dead-code removal, as the Darjeeling JVM
do not perform dead-code removal. TakaTuka always shows significant reduction
in the size of the Java binary when using bytecode compaction.
Customized JVM reduction: As discussed in Section 6, TakaTuka supports
both customized JVM per user program as well as general purpose JVM that can
run any CLDC program. The overall size of the general purpose JVM for Mica2 is
56914 bytes and 34538 bytes for JCreate mote. Hence a customized JVM for the
Null Program is 58.70% and 37.80% smaller compared to the general purpose
JVM on a Mica2 and JCreate respectively, as shown in Fig. 4. The figure also
shows customized JVM sizes for other programs. Darjeeling produces a general
purpose JVM of 60800 bytes.

9 Conclusion

We have developed TakaTuka, a JVM that runs on platforms with RAM as small
as 4KB and flash as small as 48KB. Using TakaTuka, we also developed a num-
ber of Java WSN applications and verified that their storage requirements are
kept small on tiny platforms without increasing CPU and RAM usage. TakaTuka
takes several measures to curtail the storage requirements, that include: 1) A
condensed format for classfiles called Tuk. 2) Comprehensive CP reduction tech-
niques. 3) Various bytecode reduction strategies including single and multiple
bytecode compaction and a novel optimal bytecode replacement algorithm. 4) A
JVM that may be customized for a user application.

These measures have resulted in an average size reduction of 95.22% for the
resulting Tuk files, given a set of user Java applications, as compared to the
original classfiles. Furthermore, the customized TakaTuka JVM size is shown to
reduce up to 58.70%.

TakaTuka bytecode compaction results in a performance gain of 47.59% on
average. This is because the customized instructions reduce the overall time
needed for instruction dispatch and fetching instruction operands, which are the
primary time-consuming tasks of typical JVM interpreters [15]. Furthermore,
each entry in a global CP or any other part of Tuk file is accessable in a constant
time, leading to reduced computation and RAM requirements at run-time.

30 F. Aslam et al.

In summary, our results for a variety of applications on a multitude of hard-
ware platforms indicate that TakaTuka is a very promising platform for WSN
applications.

References

[1] AREXX engineering. The NanoVM - Java for the AVR,
http://www.harbaum.org

[2] Clausen, et al.: Java bytecode compression for low-end embedded systems. ACM
Trans. Program. Lang. Syst. (2000)

[3] Gay, D., et al.: The nesc language: A holistic approach to networked embedded
systems. In: ACM SIGPLAN PLDI (2003)

[4] Gregg, D., et al.: A fast java interpreter. In: The Workshop on Java (2001)
[5] Rayside, D., et al.: Compact java binaries for embedded systems. In:

CASCON (1999)
[6] Saougkos, D., et al.: Revisiting java bytecode compression for embedded and mo-

bile computing environments. IEEE Trans. Softw. Eng. (2007)
[7] Simon, D., et al.: Java on the bare metal of wireless sensor devices: the squawk

java virtual machine. In: ACM SIGPLAN VEE (2006)
[8] Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley, Reading (1994)
[9] Chakeres, I., et al.: Dynamic MANET On-demand (DYMO) Routing. IETF (2008)

[10] Koshy, J., et al.: Vmstar: Sythesizing scalable runtime environments for sensor
networks. In: SenSys (2005)

[11] Brouwers, N., et al.: Darjeeling, a feature-rich vm for the resource poor. In: SenSys
(2009)

[12] Levis, P., et al.: TinyOS Programming. Cambridge University Press,
Cambridge (2009)

[13] De Wang, S., et al.: Jato: A compact binary file format for java class. In: ICPADS
(2001)

[14] Lindholm, T., et al.: The Java Virtual Machine Specification. Prentice-Hall, En-
glewood Cliffs (1999)

[15] Shi, Y., et al.: Virtual machine showdown: Stack versus registers. In: VEE (2005)
[16] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree proto-

col. In: Culler, D.E., Liu, J., Welsh, M. (eds.) SenSys, pp. 1–14. ACM, New York
(2009)

[17] Sentilla, http://www.sentilla.com
[18] Crossbow Technology. Wireless Sensor Networks, http://www.xbow.com

http://www.harbaum.org
http://www.sentilla.com
http://www.xbow.com

ZeroCal: Automatic MAC Protocol Calibration

Andreas Meier, Matthias Woehrle, Marco Zimmerling, and Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
{a.meier,woehrle,zimmerling,thiele}@tik.ee.ethz.ch

Abstract. Sensor network MAC protocols are typically configured for
an intended deployment scenario once and for all at compile time. This
approach, however, leads to suboptimal performance if the network con-
ditions deviate from the expectations. We present ZeroCal, a distributed
algorithm that allows nodes to dynamically adapt to variations in traf-
fic volume. Using ZeroCal, each node autonomously configures its MAC
protocol at runtime, thereby trying to reduce the maximum energy con-
sumption among all nodes. While the algorithm is readily usable for
any asynchronous low-power listening or low-power probing protocol, we
validate and demonstrate the effectiveness of ZeroCal on X-MAC. Exten-
sive testbed experiments and simulations indicate that ZeroCal quickly
adapts to traffic variations. We further show that ZeroCal extends net-
work lifetime by 50% compared to an optimal configuration with identical
and static MAC parameters at all nodes.

1 Introduction

The medium access control (MAC) protocol is the core component of the sensor
network protocol stack. It is responsible for turning the radio device on and off at
regular intervals. This duty-cycling functionality entails a fundamental trade-off
between energy consumption and bandwidth: While the radio should be asleep
as much as possible to save energy, sufficient bandwidth must be provided to
achieve a target delivery rate. Numerous MAC protocols have been devised [5],
but up to date it is unclear how to configure these protocols.

One possible approach is to define a network-wide trade-off at compile time;
that is, the parameters of the MAC protocol are the same for all nodes and
remain unchanged once the sensor network has been deployed. We call this an
identical MAC configuration. Finding such a configuration is a nontrivial task,
as it requires detailed knowledge about the protocol and the network conditions.
Moreover, an identical configuration does not account for different traffic volumes
at different nodes, e.g., increased routing traffic towards the sink. To illustrate
this consider Figure 1(b), showing the average power consumption of four dif-
ferent MAC configurations with identical parameters for the same topology and
data rate. While the energy consumption varies considerably for different con-
figurations, we also see that nodes closer to the sink consume more energy as
they carry a higher load. With an identical MAC configuration the sink’s one-
hop neighbors will potentially run out of energy long before the other nodes.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 31–44, 2010.
� Springer-Verlag Berlin Heidelberg 2010

32 A. Meier et al.

S

1

2

3

4

(a) Topology (partial)
S 1 2 3 4 S 1 2 3 4 S 1 2 3 4 S 1 2 3 4

0

2

4

6

8

A
ve

ra
ge

 p
ow

er
 [m

W
]

Ts = 50ms Ts = 100ms Ts = 200ms Ts = 500ms

(b) Identical parameter configurations
S 1 2 3 4

Adaptive Ts

(c) ZeroCal

Fig. 1. The MAC configuration with identical parameters results either in a very high
or imbalanced power consumption. ZeroCal instead adapts the sleep interval Ts to
minimize the maximum, which results in a well-balanced average power consumption.
Results from testbed experiments with 21 nodes running X-MAC (see Section 5).

These energy bottlenecks greatly reduce the network lifetime, which is defined
as the time until the first node runs out of energy. Furthermore, sensor networks
operate in very dynamic environments. Channel characteristics change due to
varying environmental conditions, traffic volume increases or decreases with the
frequency of change in the sensed phenomena, and nodes are potentially added
or removed. These dynamics are likely to render an identical MAC configura-
tion inefficient over time, suggesting that nodes should continuously adapt their
settings to maintain satisfactory performance.

We present ZeroCal, a Zero Configuration algorithm. ZeroCal is a distributed
algorithm that automatically configures the MAC protocol at runtime according
to the current traffic volume and network conditions (e.g., packet loss, interfer-
ence, and network topology). Using ZeroCal, each node decides autonomously on
its own parameter setting, thereby trying to increase the network lifetime (i.e.,
reduce the maximum energy consumption among all nodes). The algorithm is
based on the observation that a node’s MAC configuration does not only influ-
ence its own energy consumption but also the one of its children. For example,
a node can decide to spend more energy for receiving messages (by waking up
more often) in exchange for a reduced transmission energy at its child nodes.

ZeroCal tries to extend network lifetime. Hence, it looks at the maximum
energy consumption of a node and its children: The MAC parameters are set
such that this maximum is minimized. This results in a well-balanced energy
consumption across the network, as shown in Figure 1(c). ZeroCal’s configuration
process repeats regularly and adapts to changes in traffic volume, independent
of whether the change is due to a higher packet loss along an incoming link, an
increased sending rate, or a change in the routing topology.

We make the following contributions: i) We present ZeroCal, a distributed
algorithm that automatically configures the MAC protocol at runtime. Assuming
many-to-one data traffic, ZeroCal is readily usable for any asynchronous low-
power listening or low-power probing protocol. ii) We validate ZeroCal on a

ZeroCal: Automatic MAC Protocol Calibration 33

testbed and in simulation, using X-MAC [2] as a case study. iii) We demonstrate
that ZeroCal quickly adapts to traffic variations and extends network lifetime
by 50% compared to an optimal, identical MAC configuration.

The remainder of this paper is organized as follows: Section 2 provides more
background on sensor network MAC protocols and reviews related work on MAC
protocol adaptation. Section 3 presents the design and underlying models of
ZeroCal, which we validate in simulation in Section 4 and demonstrate on a
testbed in Section 5. We conclude the paper in Section 6.

2 Background and Related Work

Low-power operation and energy management are of utmost importance. By
putting the radio of a sensor node into sleep mode, the energy consumption can
be reduced by orders of magnitude from mA to �A. Since the radio’s wake-up
time is rather short (<2ms), it is possible to wake up the radio for only a very
short time to exchange messages. This duty cycling is the primary task of the
MAC protocol. A multitude of duty-cycling MAC protocols for sensor networks
exist [5]. In the following, we briefly discuss two of the most prominent classes: i)
low-power listening (LPL) and ii) low-power probing (LPP). Both Contiki and
TinyOS feature default MAC protocols based on these two approaches. TDMA-
based and slotted protocols are described elsewhere (e.g., in [5]), and are outside
the scope of this paper.

Using LPL nodes sleep most of the time and wake up regularly to quickly
poll the channel. If a node detects a carrier, it keeps its radio on to receive a
message; otherwise, it goes back to sleep. As nodes wake up asynchronously,
the sender must transmit a preamble for a period slightly exceeding the sleep
interval so that the receiver can detect the carrier. In X-MAC [2] the preamble is a
sequence of short advertisement packets that contain the address of the receiver,
as shown in Figure 2. After sending an advertisement, the sender listens for
an acknowledgment from the receiver. If the sender hears an acknowledgment,
it sends the data packet. LPP-based protocols (e.g., RI-MAC [10]) take the
inverse approach. Instead of polling the channel, nodes send an announcement
when they are awake and subsequently listen for a data packet. The sender
must wait for such an announcement from the intended receiver before it can
send the data packet. LPP occupies the channel less than LPL because no long
preambles are transmitted. The active period, however, is longer with LPP as it
must accommodate an announcement and an incoming message.

LPL and LPP have one parameter in common: the sleep interval Ts. This is
the time the radio is put to sleep between two active periods. The sleep interval
greatly influences the average power consumption of a node, as illustrated in
Figure 1(b). A short sleep interval reduces the energy consumption for sending
messages but results in an increased energy consumption for polling the channel.
Moreover, the sleep interval determines the available bandwidth. In fact, there
exists an optimal sleep interval for a given traffic volume that minimizes energy
consumption and provides sufficient bandwidth.

34 A. Meier et al.

t

t

RX

Regular channel polls

TX

T s

Tcs

Ack

Adv Adv Adv

Tp

Data

Tmsg

Receiving

Radio activity:

Sending

Idle listening

Fig. 2. Basic concept of LPL using the example of X-MAC. The receiver is sleeping
most of the time, waking up every sleep interval Ts to poll the channel for Tcs. The
sender transmits consecutive advertisement packets, waiting after each of them for an
acknowledgment from the receiver that allows it to send the data packet.

Polastre et al. [9] discuss the benefit of adapting B-MAC based on varying
network conditions. They derive an analytical model of node lifetime and argue
that other services could use this model to recompute check interval and pream-
ble length. ZeroCal provides such a service and uses an energy model to optimize
and adapt the MAC configuration as traffic volume changes.

Buettner et al. [2] adapt the sleep interval of X-MAC for a single sender-
receiver pair. Using the estimated probability of receiving a packet, the receiver
chooses its sleep interval such that the sum of transmit and receive energy is
minimized. In contrast, ZeroCal works on any mesh or tree topology and respects
the influence on the sender when choosing a new sleep interval at the receiver.
More importantly, ZeroCal ensures that the sender’s preamble is long enough so
that it can be detected by the receiver. This reliability issue is inherent if nodes
adapt their sleep interval autonomously but is not addressed in [2].

Jurdak et al. [4] propose a cross-layer framework for network-wide energy
optimization and load balancing through greedy local decisions. We show that
it is indeed beneficial not to optimize energy in a greedy fashion, but to consider
both parent and children in the optimization. Merlin et al. [7] present a control-
theoretic approach to adapt the duty cycle, which is however only suited for
single-hop topologies.

3 ZeroCal

Asynchronous low-power listening and low-power probing MAC protocols feature
a trade-off between bandwidth and energy consumption for a specific node and all
nodes communicating with it. In data collection, one can either have the parent
node spending a lot of energy for idle listening or the child nodes for sending
messages. ZeroCal extends network lifetime by minimizing the maximum energy
consumption of each parent-children pair in the network. To this end, ZeroCal
optimizes the sleep interval of a parent at runtime based on its traffic volume.
Since every parent is also a child (except for the sink), this adaptive approach
results in a well-balanced energy consumption across the whole network.

ZeroCal adapts the MAC configuration as illustrated in Figure 3. The opti-
mization uses an energy model (see Section 3.3) that is based on records collected

ZeroCal: Automatic MAC Protocol Calibration 35

 Optimization

Local
Record

Per Child
RecordPackets

from
Children

Energy Model

 Optimization

Constraints

From
MAC

Protocol

Tr
ig

ge
rs

T c
s

Ts

Cc
p

Crx

ID

Cc
tx Ctx

Tep

Ts,opt

Ts,opt∗

E,EcT ′
s

Cc
p,abs

Cp,abs

Cp,ep

Cp

Fig. 3. ZeroCal architecture. ZeroCal keeps records of local and child MAC parameters.
Periodically, an optimization process is triggered. Using an energy model, a new optimal
sleep interval Ts,opt∗ is computed respecting bandwidth and protocol constraints.

from the local MAC and the child nodes (see Section 3.2). The optimization ex-
plores the effect of a new sleep interval T ′

s on the maximum energy consumption
of the node-children pair and returns an optimal sleep interval Ts,opt. Further-
more, the MAC protocol itself imposes certain constraints on its parameters,
which require to adapt Ts,opt to Ts,opt∗.

ZeroCal performs the optimization over time windows, called epochs. The op-
timization is triggered when either the transmission count of a child node Cc

tx

exceeds the threshold Ceval or the epoch time Tep exceeds the maximum du-
ration of an epoch Tep,max. The traffic-dependent trigger is needed to react to
a (sudden) increase in traffic volume, whereas the timed trigger ensures that
ZeroCal periodically updates the MAC configuration when only few or no mes-
sages arrive, e.g., at leaf nodes.

3.1 Parameter Optimization

We now describe how ZeroCal uses the energy estimation to determine an opti-
mal MAC configuration at runtime.

In general, a node can save energy by increasing the length of its sleep inter-
val Ts. Indeed, it could sleep as long as possible to maximize its own lifetime.
Such an approach is however very selfish, since it increases the energy consump-
tion for sending messages at child nodes. This raises the question whether it is
more important to save energy for oneself or at the child nodes. Since the goal is
to prolong the lifetime of both the parent and its children, ZeroCal chooses the
sleep interval Ts,opt at the parent such that the maximum of the parent’s energy
consumption E and of its children Ec is minimized:

Ts,opt = argmin
T ′

s∈[Ts,min,Ts,max]
max [E, max

∀ children c
(Ec)] . (1)

Additionally, ZeroCal has to ensure that the parent is able to detect the preamble
of its children. Therefore, the parent’s sleep interval Ts,opt∗ must be chosen to
be shorter or equal to the longest sleep interval of its child nodes:

Ts,opt∗ ≤ T c
s , ∀ children c . (2)

36 A. Meier et al.

Moreover, the sleep interval also limits the available bandwidth at a node. There-
fore, it might be necessary to further reduce the sleep interval Ts,opt∗ to increase
the bandwidth. For instance, by requiring

Ts,opt∗ ≤ 1/(Ctx + Crx)/n , (3)

we ensure that at most in every n-th sleep interval a packet is being sent or
received.

3.2 Collecting MAC Statistics

To compute up-to-date energy estimates during the optimization task, each node
keeps a record of counters and sleep intervals of itself and all its children, as
shown in Figure 3. Locally the following information is available: The number of
sent Ctx and received messages Crx, the current sleep interval Ts, and the epoch
time Tep. The number of transmitted preamble packets Cp is determined by the
absolute preamble count Cp,abs in reference to the one at the beginning of the
epoch Cp,ep via Cp = Cp,abs − Cp,ep.

From the child node the number of sent messages Cc
tx is readily available

as it corresponds to the number of messages received from the child. Here, we
neglect lost data packets along incoming links. We further simplify and set Cc

rx =
Cc

tx, approximating that child nodes are pure forwarders and do not generate
messages themselves. The sleep interval T c

s and the absolute preamble count
Cc

p,abs are piggybacked on data packets. Since we are interested in the number
of preamble packets sent during the current epoch, we additionally maintain
the preamble count Cc

p that is updated at every packet reception: Assuming a
node received the k-th packet in an epoch (i.e., the received absolute value is
Cc

p,abs(k) and the previous one locally stored is Cc
p,abs(k − 1)), we can determine

the difference ΔCc
p = Cc

p,abs(k) − Cc
p,abs(k − 1) and subsequently update the

preamble count Cc
p(k) = Cc

p(k − 1) + ΔCc
p. After running the optimization,

a node resets the epoch time and all counters, except for its local preamble
count Cp,abs which is stored in Cp,ep. The overhead for collecting estimation
information is low. In our current implementation, a parent reserves 9 bytes per
child, and 3 additional bytes are piggybacked on each data packet.

3.3 Energy Model

ZeroCal needs to estimate a node’s energy consumption given its MAC configu-
ration. In this work, we use a refined estimation method based on our previous
work [6]. We only consider the energy consumption of the radio device, which is
a reasonable assumption since the radio is usually the main consumer of energy
in the system.

The radio is active while performing regular channel polls Tcp, transmitting
messages Ttx, and receiving messages Trx. We opt to neglect the effect of in-
terference, assuming that the impact on the overall energy budget is minimal

ZeroCal: Automatic MAC Protocol Calibration 37

compared to Tcp, Ttx, and Trx. Given these times and the corresponding average
power consumptions, we can estimate a node’s energy consumption using

E = Ttx · Ptx + Trx · Prx + Tcp · Pcp . (4)

We note that Ptx, Prx, and Pcp are not the power levels of the radio device in
transmit, receive, and idle mode. Instead, they correspond to the average power
consumption of the logical states of the MAC protocol: sending, receiving, and
channel polling. For instance, while sending a message (preamble stream, ac-
knowledgment reception, plus data packet transmission), the radio switches sev-
eral times between transmit and receive mode. The average power levels depend
on hardware platform and protocol implementation, and are measured offline.

We estimate the residence times in the different protocol states using the sleep
interval Ts, the number of received Crx and sent messages Ctx, and the number
of transmitted preamble packets Cp:

Ttx = Cp · Tp + Ctx · Tmsg ,

Trx = Crx · Tmsg ,

Tcp = (Tep − Ttx − Trx) · Tcs/(Ts + Tcs) , (5)

where Tp, Tcs, and Tmsg are constants specific to the radio device and the MAC
protocol as illustrated in Figure 2. The time spent for sending messages depends
on the number of transmitted preamble packets and the number of sent data
packets. Sending a data packet takes Tmsg, which includes the actual data packet,
its acknowledgment, and the radio switching times. For every received message,
the radio is active for Tmsg. If there is no traffic, nodes wake up regularly every
Ts and go back to sleep after Tcs. The length of Tcs also includes the time for
switching the radio between sleep and receive mode.

The energy estimation according to Equation 5 depends on the current sleep
interval Ts; choosing a new sleep interval T ′

s affects the times spent in the dif-
ferent logical states of the MAC protocol at both the parent and its child nodes.
Assuming a linear relation between the number of preamble packets and the
parent’s sleep interval, ZeroCal estimates the new times as follows:

– At the parent, the times for receiving Trx and transmitting Ttx do not change,
whereas the new channel-polling time Tcp is given by

Tcp = (Tep − Ttx − Trx) · Tcs/(T ′
s + Tcs) . (6)

– At the child nodes, only the time for transmitting messages T c
tx is affected:

T c
tx = Cc

p · T c
p · T ′

s/Ts + Cc
tx · Tmsg . (7)

To validate the accuracy of our modeling, we run simulations in Castalia [8] on a
binary tree topology (see Section 4 for details) and compare the estimated energy
with the energy measured by the simulator. We observe that for both low and
high data rates the energy consumption is well estimated across all simulated

38 A. Meier et al.

MAC configurations: The maximum estimation error ranges between 1.8% (low
data rate) and 4.1% (high data rate).

Our energy estimation model is general enough to accommodate other MAC
protocols as well. For example, to adapt the model to a LPP-based protocol
(e.g., RI-MAC [10]), we have to replace the preamble counter Cp in Equation 5
with a counter that keeps track of the number of time intervals (with length Tp)
a node waits for an announcement from the receiver.

3.4 System Integration

As for the routing, we assume many-to-one data traffic that flows toward a com-
mon sink node. On each intermediate node, messages are forwarded to a parent
that is closer to the sink with respect to some routing metric (e.g., hop count or
ETX [3]). Our approach works on any mesh and tree topology. Furthermore, we
do not require a dedicated interface between the MAC and routing layers. How-
ever, we assume that unicast transmissions take place only between a child and
its parent. ZeroCal optimizes for the current amount of traffic, which typically
differs across the network. Hence, ZeroCal’s operation is independent of whether
traffic originates from local data generation or packet forwarding.

In sensor networks, the sink node typically has unlimited power supply from a
base station, which is responsible for additional tasks, such as providing a back
channel via GPRS to a central monitoring system [1]. This setup allows for a so-
called always listening sink that runs a 100% duty cycle. ZeroCal adapts to this
scenario: The always listening sink reduces the average transmission time of its
one-hop neighbors to a minimum, and the repeated execution of the algorithm
propagates this benefit down to the leaf nodes, eventually reducing the energy
consumption of all nodes.

4 Simulation

We implement ZeroCal and X-MAC in Castalia [8], a state-of-the-art sensor
network simulator. Castalia features a detailed model of the radio device that also
accounts for the transition times between the different operational modes and
their individual power consumptions. Furthermore, Castalia provides a realistic
model of the wireless channel with random packet loss and interference.

For illustration purposes, we use a perfect binary tree of depth 3 in our sim-
ulations, as shown in Figure 4(a). In the binary tree, we have one sink with two
children (level 1), four grandchildren (level 2), and eight leaf nodes (level 3).
Child nodes interfere with each other, and a grandparent is a hidden terminal
for a child. We use Castalia’s CC2420 radio model and set the packet reception
rate of all links to 90% to see whether ZeroCal can cope with packet loss.

Every node but the sink samples and generates data packets with an inter-
packet interval R, ranging from 5 s (high data rate) to 120 s (low data rate). To
study the long-term behavior of ZeroCal, we run simulations that correspond to

ZeroCal: Automatic MAC Protocol Calibration 39

S

1

2

3

(a) Simulation topology
S 1 2 3 S 1 2 3 S 1 2 3 S 1 2 3

0

1

2

3

4

A
ve

ra
ge

 p
ow

er
 [m

W
]

R = 5 s R = 10 s R = 30 s R = 120 s

Cp
Tx
Rx

(b) Average power consumption with ZeroCal

Fig. 4. Simulation with binary tree topology: ZeroCal shows a well balanced average
power consumption within the network. For every hop, the node with the highest
average power consumption is depicted.

one day in real time. We use the following inputs for the parameter optimization:
Ts,min = 20ms, Ts,max = 500ms, Tep,max = 500 s, Ceval = 50 packets, and n = 3
sleep intervals. Unless otherwise stated, the sink is duty cycled.

4.1 Adaptive Behavior

We first look at the adaptive behavior of ZeroCal for different traffic volumes.
Figure 4(b) plots for each level in the binary tree (i.e., hop-distance from the
sink) the maximum energy consumption. We see that ZeroCal achieves a well-
balanced energy consumption across all levels; the remaining differences are due
to the upper bound on the sleep interval (Ts,max = 500ms). For instance, at
a sampling interval of R = 5 s the energy consumptions differ only by 7.5%
among all nodes. This demonstrates ZeroCal’s capability to evenly distribute
the workload across the entire network.

In fact, ZeroCal gradually aligns the energy consumptions by distributing the
type of workload. To see this, we take a closer look at the composition of energy
consumption at different levels in Figure 4(b): The portion of transmit (Tx)
energy increases with hop-distance, whereas the portions of receive (Rx) and
channel-polling (Cp) energy decrease. For example, the nodes on level 3 spend
relatively more transmit energy than the nodes on level 1, even though they send
seven times fewer messages. The rationale behind this behavior is justified by
the following reasoning. The sink does not send any messages and can therefore
invest more energy into frequent wake-ups and receiving (T S

s = 35ms). This in
turn reduces the transmission energy for the nodes on level 1, which choose a
shorter sleep interval (T 1

s = 96ms) than the nodes on level 2 (T 2
s = 385ms). Fi-

nally, the nodes on level 3 select the longest possible sleep interval (T 3
s = 500ms).

ZeroCal’s periodic parameter optimization results in a step-by-step adaptation
toward this optimal point of operation, as changes in the MAC configuration on
one level eventually propagate to all other levels in the tree.

40 A. Meier et al.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8
A

ve
ra

ge
 p

ow
er

 [m
W

]

Sleep interval Ts [s]

Sink Hop 1 Hop 2

Sink Hop 1 Hop 2

R=5s, Identical Ts
R=120s, Identical Ts
R=5s, ZeroCal
R=120s, ZeroCal

(a) Duty-cycled sink

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

A
ve

ra
ge

 p
ow

er
 [m

W
]

Sleep interval Ts [s]

Sink Hop 1 Hop 2

Sink Hop 1 Hop 2

R=5s, Identical Ts
R=120s, Identical Ts
R=5s, ZeroCal
R=120s, ZeroCal

(b) Always listening sink

Fig. 5. Average power consumption for the network-wide, static (solid lines) and
ZeroCal’s adaptive (dashed lines) sleep interval. ZeroCal outperforms all static con-
figurations by choosing different sleep intervals at different hop-distances.

4.2 Static versus Adaptive Configuration

We now want to quantify the benefit of ZeroCal. What do we gain from the
adaptation as compared to an identical MAC configuration?

With an identical configuration, we face the problem of finding the optimal
MAC parameters in advance, which depend on application and deployment char-
acteristics, such as sampling interval, routing topology, and interference. The
best we can do is to carry out preliminary experiments on the deployment site
to make an educated guess on these ever-changing variables.

Figure 5(a) highlights the importance of choosing the right configuration. The
solid lines show the average power consumption as a function of the sleep interval
for both a high (R = 5 s) and a low data rate (R = 120 s), again on the perfect
binary tree. The optimal sleep intervals for an identical configuration correspond
to the minima indicated by markers. We see that the curve for the high data
rate is very steep; that is, our system would be very inefficient for high traffic
even if we are only slightly off the optimal sleep interval. This dependency is
more moderate for low traffic. Additionally, we have to consider that the sleep
interval limits the available bandwidth. For instance, if we choose a sleep interval
longer than 100ms for the high data rate, packets are potentially lost as nodes are
overloaded by incoming traffic. Overall, finding a suitable identical configuration
is critical and hard to achieve.

ZeroCal outperforms all identical MAC configurations in our simulations. This
can also be seen in Figure 5, where we show ZeroCal’s maximum energy con-
sumption with a dashed line. Furthermore we indicate the average sleep intervals
chosen by ZeroCal at each hop-distance. For a duty-cycled sink in Figure 5(a),
the adaptive sleep interval reduces the maximum energy consumption by 30.6%
(R = 5 s) and 32.7% (R = 120 s) compared with the corresponding optimal,
identical configuration. If we have an always listening sink, we see in Figure 5(b)
that ZeroCal adapts well to this situation: the energy savings are 32.0% (R = 5 s)

ZeroCal: Automatic MAC Protocol Calibration 41

and 13.3% (R = 120 s) in comparison to the static configuration. We note again
that ZeroCal distributes the workload evenly, avoiding energy hot spots that
would otherwise limit the network lifetime.

Looking at the sleep intervals chosen by ZeroCal, we observe that they are
shorter for an always listening sink than for a duty-cycled sink (i.e., nodes save
energy while polling the channel more frequently). This might surprise at first,
but is explained by the fact that the always listening sink allows the sink’s one-
hop neighbors to save a lot of transmit energy. ZeroCal’s periodic adaptation
propagates these energy savings eventually to the nodes farther away, which can
then reduce their sleep interval to wake up more frequently.

4.3 Large and Irregular Topologies

We also perform simulations on large and irregular topologies to see whether
ZeroCal scales. ZeroCal automatically optimizes for the subtree with the highest
data load: the corresponding nodes show a well-balanced energy consumption
and hence the network lifetime is maximized. The nodes in subtrees with less
traffic also balance their energy consumption, yet on a lower energy level.

For instance, with 100 nodes on an area of 160 by 160 meters and up to 8
hops to the sink, we observe the same trend as with the binary tree topology.
For high, medium, and low data rates, ZeroCal reduces the maximum energy
consumption by 28.7%, 33.7%, and 33.5% compared to an optimal, identical
MAC configuration. The energy consumption averaged over all nodes is reduced
by 61.7%, 55.3%, and 51.2%, which indicates that ZeroCal optimizes the energy
consumption for nodes with little traffic even further.

5 Testbed Experiments

To demonstrate the effectiveness of ZeroCal on real sensor nodes, we implement
ZeroCal in Contiki on top of X-MAC. We run experiments on a testbed of 21
Tmote Sky nodes deployed over several offices. We use an irregular tree topology
with a maximum hop distance to the sink of 5, as shown in Figure 1(a). We fix the
topology to be able to compare the results of different runs. However, there are
two types of network dynamics that affect ZeroCal’s operation: i) varying packet
loss due to various sources of interference (e.g., WLAN and moving people), and
ii) varying traffic volume as nodes change their sampling rate at runtime.

ZeroCal performs an exhaustive parameter search on the sleep interval during
the parameter optimization, using the same settings as in our simulations. To
speed up the process at nodes with high incoming degree, ZeroCal considers only
two of their children during the search: the one with the lowest sleep interval
and the one with the highest preamble count. These two nodes are likely to
carry the highest energy load among all children and thus matter most when
minimizing the maximum energy consumption. Furthermore, ZeroCal uses an
adaptive granularity during the search. For a sleep interval close to the minimum
Ts,min = 20ms ZeroCal makes steps of 4ms, whereas for a sleep interval close to

42 A. Meier et al.

the maximum Ts,max = 500ms it evaluates in steps of 30ms. We find that the
computational speed-up outweighs the slight loss in accuracy.

5.1 Static versus Adaptive Configuration

In a first series of experiments, we compare ZeroCal with an identical X-MAC
configuration. All nodes generate data packets with a constant inter-packet inter-
val of R = 30 s. As shown in Figure 1, ZeroCal outperforms the optimal, identical
setting (Ts = 200ms) by 32.6%, which translates in an increase of 48.4% in net-
work lifetime. We see that ZeroCal achieves a well-balanced energy consumption
across all hop-distances. This indicates that ZeroCal configures X-MAC nearly
optimal. We also see in in Figure 1(b) that Contiki’s default X-MAC configura-
tion (Ts = 500ms) can lead to poor performance. If an inexperienced user simply
uses the default settings, radio communication requires 60.8% more energy in
comparison to ZeroCal’s adaptive configuration.

5.2 Adaptation to Network Dynamics

Finally, we analyze how ZeroCal adapts to varying network conditions, which is
impossible for an identical MAC configuration. To this end, we let nodes change
their sampling interval dynamically every two hours. Starting with a medium
rate (R = 30 s), nodes switch after two hours to a high rate (R = 10 s), followed
by another change to a low rate (R = 120 s) after four hours. At the same time,
sporadic packet losses occur.

Figure 6(a) shows how ZeroCal adapts X-MAC’s sleep interval at different
hop-distances over time, and Figure 6(b) shows the corresponding trend in the
average power consumption. At the beginning, all nodes have the same sleep in-
terval (Ts = 150ms). While the sink quickly adapts to a stable Ts, it takes about
25 minutes until the two-hop neighbors adapt their Ts. This is because a node
is not allowed to have a longer Ts than its children, as enforced by Equation 2.
Hence, the adaptation from the initial (far from optimal) Ts toward a longer Ts

starts at the leaf nodes and then propagates step-by-step upward in our tree
topology of depth 5 (see Figure 1(a)). Conversely, adapting to the high traffic
volume after two hours is very fast. First, the optimization task is performed
more often at high data rates and, second, there are no constraints when reduc-
ing Ts. Note that the adaption latency mainly depends on the duration of an
epoch, which we set conservatively (Tep,max = 500 s) to avoid system instabili-
ties. The variations in Ts after adapting to a new data rate are mainly inflicted
by external effects, such as packet loss and interference.

Looking at the evolution of power consumption in Figure 6(b), we note that
ZeroCal distributes the load evenly as network conditions change. Only atR=10 s,
we note a 7% difference in energy consumption between the sink and the other
nodes. This is because our energy estimation model ignores effects like overhear-
ing and collisions, which happen more frequently at high data rates. However,
as sensor networks typically sample at low data rates, we prefer a simpler model
inducing less overhead. When the traffic volume drops, there is a slight adapta-
tion latency. More importantly, however, ZeroCal quickly adapts to a (sudden)

ZeroCal: Automatic MAC Protocol Calibration 43

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Time [h]

S
le

ep
 in

te
rv

al
 T

s [s
]

R = 30 s R = 10 s R = 120 s

2 Hop
1 Hop
Sink

(a) Sleep interval

0 1 2 3 4 5 6
1

2

3

4

5

6

A
ve

ra
ge

 p
ow

er
 [m

W
]

Time [h]

R = 30 s R = 10 s R = 120 s

2 Hop
1 Hop
Sink

(b) Average power over last 10 minutes

Fig. 6. Testbed experiments with changing data rates. ZeroCal adapts especially
quickly if the data rate increases and bandwidth is required.

increase in traffic volume when additional bandwidth is needed while keeping
the energy consumption as low as possible.

6 Conclusions

There has been considerable research on sensor network MAC protocols. Until
now, their proper configuration has been mostly neglected. While network dy-
namics make it hard to define an appropriate configuration at deployment time,
we showed that the MAC configuration has indeed a wide impact on energy con-
sumption and available bandwidth. Particularly if expert knowledge is missing,
the MAC protocol is often used with its default parameters, which can result
in very poor energy efficiency. In the worst case, application-specific bandwidth
and lifetime requirements are not satisfied.

To tackle these challenges, we proposed ZeroCal, a distributed algorithm that
automatically configures the MAC parameters at runtime in order to increase
the network lifetime. The configuration is repeated regularly and ensures that
the nodes adapt to variations in traffic volume.

We validated ZeroCal on X-MAC in simulation and testbed experiments.
ZeroCal quickly adapts toward a stable operating point, in particular when addi-
tional bandwidth is needed. Moreover, ZeroCal outperforms an optimal, identical
MAC configuration, extending network lifetime by about 50%.

Acknowledgements

The work presented in this paper was supported by the National Competence
Center in Research on Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322. We thank Koen Langendoen and Thiemo Voigt for
their feedback on draft versions of this paper.

44 A. Meier et al.

References

1. Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I., Thiele,
L., Tschudin, C., Woehrle, M., Yuecel, M.: PermaDAQ: A scientific instrument for
precision sensing and data recovery in environmental extremes. In: Proc. 8th Int’l
Conf. Information Processing Sensor Networks (IPSN 2009), San Francisco, CA,
USA, April 2009, pp. 265–276. ACM/IEEE (2009)

2. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: Proc. 4th ACM Conf. Em-
bedded Networked Sensor Systems (SenSys 2006), pp. 307–320. ACM Press, New
York (2006)

3. Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric
for multi-hop wireless routing. Wireless Networks 11(4), 419–434 (2005)

4. Jurdak, R., Baldi, P., Lopes, C.V.: Adaptive low power listening for wireless sensor
networks. IEEE Transactions on Mobile Computing 6, 988–1004 (2007)

5. Langendoen, K.: Medium access control in wireless sensor networks. In: Wu,
H., Pan, Y. (eds.) Medium Access Control in Wireless Networks, May 2008,
pp. 535–560. Nova Science Publishers, Inc., Bombay (2008)

6. Langendoen, K., Meier, A.: Analyzing MAC protocols for low data-rate applica-
tions. ACM Transactions on Sensor Networks (2010) (accepted for publication)

7. Merlin, C.J., Heinzelman, W.B.: Duty cycle control for low-power-listening MAC
protocols. In: 5th IEEE International Conference on Mobile Ad Hoc and Sensor
Systems, MASS 2008, September/October 2008, pp. 497–502 (2008)

8. Pham, H.N., Pediaditakis, D., Boulis, A.: From simulation to real deployments in
WSN and back. In: IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks, WoWMoM 2007, June 2007, pp. 1–6 (2007)

9. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys
2004), pp. 95–107. ACM Press, New York (2004)

10. Sun, Y., Gurewitz, O., Johnson, D.: RI-MAC: A receiver-initiated asynchronous
duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks.
In: Proc. 1st ACM Conf. Embedded Networked Sensor Systems (SenSys 2003),
Raleigh, NC, November 2008, pp. 1–14 (2008)

Programming Sensor Networks Using
REMORA Component Model

Amirhosein Taherkordi1, Frédéric Loiret2, Azadeh Abdolrazaghi1,
Romain Rouvoy1,2, Quan Le-Trung1, and Frank Eliassen1

1 University of Oslo, Department of Informatics
P.O. Box 1080 Blindern, N-0314 Oslo

{amirhost,azadeha,rouvoy,quanle,frank}@ifi.uio.no
2 INRIA Lille – Nord Europe, ADAM Project-team,

University of Lille 1, LIFL CNRS UMR 8022,
F-59650 Villeneuve d’Ascq

{frederic.loiret,romain.rouvoy}@inria.fr

Abstract. The success of high-level programming models in Wireless Sensor
Networks (WSNs) is heavily dependent on factors such as ease of programming,
code well-structuring, degree of code reusability, and required software devel-
opment effort. Component-based programming has been recognized as an effec-
tive approach to meet such requirements. Most of componentization efforts in
WSNs were ineffective due to various reasons, such as high resource demand
or limited scope of use. In this paper, we present REMORA, a new approach to
practical and efficient component-based programming in WSNs. REMORA offers
a well-structured programming paradigm that fits very well with resource limi-
tations of embedded systems, including WSNs. Furthermore, the special atten-
tion to event handling in REMORA makes our proposal more practical for WSN
applications, which are inherently event-driven. More importantly, the mutual-
ism between REMORA and underlying system software promises a new direc-
tion towards separation of concerns in WSNs. Our evaluation results show that a
well-configured REMORA application has an acceptable memory overhead and a
negligible CPU cost.

Keywords: Wireless sensor networks, component model, event-driven.

1 Introduction

The recent increase in the number and size of WSN applications makes high-level pro-
gramming an essential need to the development of WSN platforms. However, this con-
cept is still immature in the context of WSNs for various reasons. Firstly, the existing
diversities in WSN hardware and software platforms have brought the same order of
diversity to programming models for such platforms [1]. Moreover, developers’ exper-
tise in state-of-the-art programming models become useless in WSN programming as
the well-established discipline of program specification is largely missing in this area.
Secondly, the structure of programming models for WSNs are usually sacrificed for re-
source usage efficiency, thereby, the outcome of such models is usually a piece of tan-
gled code maintainable only by its owner. Finally, application programming in WSNs

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 45–62, 2010.
© Springer-Verlag Berlin Heidelberg 2010

46 A. Taherkordi et al.

typically requires learning low-level system programming languages, which imposes a
significant burden on the programmer.

Software componentization has been recognized as a well-structured programming
model able to tackle the above concerns. Separation of concerns, module reusability,
controlling cohesion and coupling, and provision of standard API are some of the main
features of component-based software engineering [2,3]. Although using this paradigm
in earlier embedded systems was relatively successful [4, 5, 6, 7], most of the efforts in
the context of WSNs remain inefficient or limited in the scope of use. TINYOS pro-
gramming model, NESC [8], is perhaps the most popular component model for WSNs.
Whereas NESC eases WSN programming, this component model is tightly bound to
the TINYOS platform. Other proposals, such as OPENCOM [14] and THINK [20], are
either too heavyweight for WSNs, or not able to support event-driven programming,
which is of high importance in WSNs.

In this paper, we present REMORA, a lightweight component model designed for
resource-constraint embedded systems, including WSNs. The strong abstraction pro-
moted by this model allows a wide range of embedded systems to exploit it at differ-
ent software levels from Operating System (OS) to application. To achieve this goal,
REMORA provides a very efficient mechanism for event management, as embedded ap-
plications are inherently event-driven. REMORA components are described in XML as
an extension of the Service Component Architecture (SCA) model [10] in order to make
WSN applications compliant with the state-of-the-art componentization standards. Ad-
ditionally, the C-like language for component implementation in REMORA attracts both
embedded system programmers and PC-based developers to programming for WSNs.
Finally, REMORA features a coherent mechanism for component instantiation and
property-based component configuration in order to facilitate lightweight event-driven
programming in WSNs.

We demonstrate the promising result of deploying REMORA components on Contiki—
a leading operating system for WSNs [11]. The efficient use of Contiki features, such
as process management and event distribution [12], on the one hand, and the abstraction
layer linking REMORA to Contiki, on the other hand, promise a very effective and generic
approach towards practical high-level programming in WSNs.

The rest of the paper is organized as follows. In Section 2, the specification of the
REMORA component model is presented. Section 3 describes how REMORA is imple-
mented, while the evaluation results are reported in Section 4 including the assessment
of a real REMORA-based deployment. A survey of existing approaches and a discussion
on REMORA future work are presented in Section 5 and Section 6, respectively.

2 REMORA Component Model

In this section, we first discuss the primary design concepts in REMORA and then we
explain the specifications of this component model. The design principles of REMORA

include:

XML-based Component Description. To achieve simplicity and generality, we adopt
XML to describe components. The XML schema in REMORA conforms to the Ser-
vice Component Architecture (SCA) notations in order to accelerate standardization

Programming Sensor Networks Using REMORA Component Model 47

of component-based programming in WSNs. As SCA is originally designed for large-
scale systems-of-systems, REMORA extends SCA with its own architectural concerns
to achieve realistic component-based programming in WSNs.

C-like Language for Component Implementation. REMORA components are written
in a C-like language enhancing the C language with features to support component-
based and structured programming. This enhancement also attracts both embedded
systems programmers and PC-based developers towards high-level programming in
WSNs.

OS Abstraction Layer. The REMORA component framework is integrated with under-
lying operating system through a well-defined OS-abstraction layer. This thin layer can
easily be developed for all WSN operating systems supporting the C language like Con-
tiki. This feature ensures portability of REMORA components towards different OSs.
The abstraction of REMORA becomes more valuable when the component framework
is easily configured to reuse OS-provided features, such as event processing and task
scheduling.

Event Handling. Besides the support of events at operating system level in embedded
systems, we also need to consider event handling at the application layer. REMORA

proposes a high-level support of event generation and event handling. Indeed, the event-
processing model of REMORA is one of its key features.

To describe our component model, we first define the basic terms used throughout this
paper. Figure 1 illustrates the development process of REMORA-based applications. A
REMORA application consists of a set of REMORA Components, containing descriptions
and implementations of software modules. The REMORA engine processes the compo-
nents and generates standard C code deployable within the REMORA framework. The
framework is an OS-independent module supporting the specification of the REMORA

component model. Finally, the REMORA application is deployed on the target sensor
node through the REMORA runtime, which is an OS-abstraction layer integrating the
application to the system software.

REMORA Framework

Description
<xml>

Implementation
C-like

REMORA Components

REMORA Runtime

Operating System
Sensor Hardware

ApplicationREMORA
Engine

Sensor N
ode

Deployable
Components

Fig. 1. Development process of REMORA-based applications

2.1 Component Specification

A REMORA component contains two main artifacts: component description and com-
ponent implementation. The component description is an XML document describing
the specifications of the component including services, references, producedEvents,
consumedEvents, and properties. A service describes the operations provided by the
component, while a reference indicates the operations required by the component. Like-
wise, a producedEvent identifies an event type generated by a component, whereas

48 A. Taherkordi et al.

a consumedEvent specifies component’s interest on receiving a particular event. The
component implementation is a C-like program containing three types of operations:
i) operations implementing the component’s services, ii) operations processing events,
and iii) component’s private operations.

BlinkB k

Reference Consume
ProduceService Property

ISensApp
toggle

S iS

Timer
TimerEvent

Ti

Leds ILeds

R
S
ReRRRRRRR

Fig. 2. A simple REMORA-based ap-
plication

To overview the REMORA specification, we
first present the REMORA-based implementation of
the traditional blink application, then we discuss
REMORA features in details. Figure 2 depicts the
components involved in this application which are
in charge of blinking a LED on sensor node every
three seconds.

We here focus on the Blink component and de-
scribe it according to the REMORA component model. Figure 3 shows the XML de-
scription of this component. Blink provides an ISensorApp interface to start applica-
tion execution and requires an ILeds interface to switch LEDs on and off, which is
implemented by the Leds component. It also exposes a property to toggle a LED on
the sensor node. As Blink produces no event, the producer tag is empty, while it is
subscribed to receive TimerEvent and process it in the timerExpired function.

Figure 4 presents the excerpt of the Blink implementation. This C-like code imple-
ments the only function of the ISensorApp interface (runApplication) and handles
TimerEvent within the timerExpired function. In the runApplication function, we
specify that the TimerEvent generator (aTimeEvent.producer) is configured to gen-
erate periodically TimerEvent every three seconds. The last command in this function
is used to notify the TimerEvent generator to start time measurement. When time is
expired, Timer sets the attributes of aTimeEvent (e.g., latency) and then the REMORA

framework calls the timerExpired function.
Services and References. Components offer their function as services and may also de-
pend on services provided by other components, so called references. A service consists
of an interface, described in a separate XML with a name and the associated operations.
Figure 5 presents the simplified ILeds interface used by the Blink component as a ref-
erence.
Component Properties. Properties are the editable parameters provided by each com-
ponent, converting components from a dead unit of functionality to an active entity
tractable during the application lifespan. In particular, this enhancement occurs in event
producer components, where we need to retain the state of the event producer to gener-
ate accurate events, e.g., the Timer component in the Blink application. Properties also
enable components to become either stateless or stateful. A component is stateful if
and only if it defines a property, e.g., the Blink component is stateful, while Leds is a
stateless component.
Component Implementation. REMORA components are implemented by using a
dialect of C language with a set of new commands. This C-like language is mainly
proposed to support the unique characteristics of REMORA, namely, component instan-
tiation, event processing, and property manipulation. Therefore, for pure component-
based programming without the above features, the programmer can almost rely on C
features. We implicitly introduced a few of these commands within the Blink component
implementation, while the complete description of commands is available in [22].

Programming Sensor Networks Using REMORA Component Model 49

<componentType name="app.BlinkApp">
<service name="iSensorApp">

<interface.remora name="core.boot.api.ISensorApp"/>
</service>
<reference name="iLeds">

<interface.remora name="core.peripheral.api.ILeds"/>
</reference>
<property name="toggle" type="xsd:short">0</property>
<producer/>
<consumer operation="timerExpired">

<event.remora type="core.sys.TimerEvent" name="aTimeEvent"/>
</consumer>

</componentType>

Fig. 3. XML description of Blink component

void runApplication(){
aTimeEvent.producer.configure(3*CLOCK_SECOND, 1/*periodic*/);
aTimeEvent.observation.start();

}
void timerExpired(){
if (this.toggle == 0){

iLeds.onLeds(LEDS_RED);
this.toggle = 1;

}else{
iLeds.offLeds(LEDS_RED);
this.toggle = 0;

}
printf("Time elapsed after interval: %d", aTimeEvent.latency);

}

Fig. 4. C-like implementation of Blink component

<interface.remora name="core.peripheral.api.ILeds">
<operation name="getLeds" return="xsd:unsignedByte"/>
<operation name="onLeds">

<in name="leds" type="xsd:unsignedByte"/>
</operation>
<operation name="offLeds">

<in name="leds" type="xsd:unsignedByte"/>
</operation>

</interface.remora>

Fig. 5. A simplified description of ILeds interface

2.2 Component Instantiation

Component instantiation is essentially proposed to manage efficiently event producer
components. The REMORA engine greatly benefits from component instantiation when
linking one producer to several consumers. For example, in the Blink application, the
producer (Timer) of TimerEvent should be instantiated per consumer component, while
the UserButtonEvent generator is a single-instance component publishing an event to
all subscribed components when the user button on a sensor node is pressed.

Component instantiation is based on two principles: i) The component’s code is al-
ways single-instance, and ii) the component’s context is duplicated per new instance.
By component context, we mean the data structures required to handle the properties
independently from the component’s code. Thus, a REMORA component becomes a
statically reconfigurable and reusable entity and the memory overhead is kept very low
by avoiding code duplication.

50 A. Taherkordi et al.

REMORA proposes three multiplicity types for the component’ context: raw-instance
(stateless component), single-instance, and multiple-instances. The REMORA engine
features an algorithm determining the multiplicity type of a component based on: i)
whether the component owns any property, ii) whether the component is an event pro-
ducer, and iii) the number of components subscribed to a specific event. When the mul-
tiplicity type is determined, the REMORA engine statically allocates memory to each
component instance.

2.3 Event Management

The REMORA design comprehensively supports event-based interactions between com-
ponents. The event design principles in REMORA include:

Event Attributes. An event type in our approach can have a set of attributes with spe-
cific types. By defining attributes, the event producer can provide the event-specific
information to the event consumer, e.g., the latency attribute of TimerEvent in the
Blink application.

Application Events vs OS Events. Events in REMORA are either application-level
events or OS-events. Application events are generated by the REMORA framework (like
Timer in the Blink application), while the latter are generated by OS. The REMORA

runtime features mechanisms to observe OS-events, translate them into corresponding
application-level events, and publish them through REMORA components.

Event Observation Interface. This interface is proposed to specify the time period dur-
ing which events should be observed by producers, e.g., the listening period of a TCP/IP
event is the whole application lifespan (automatic observation), while a Timer event is
observed according to the user-configured time (manual observation). REMORA pro-
poses the event observation interface in order to control the manual observations. This
generic interface includes operations, such as start, pause, resume, and terminate.
If an event type is manually observable, the associated event producer should implement
this interface. By doing that, the event consumer can handle the lifecycle of the observa-
tion process by calling operations in this interface without being aware of the associated
event producer.

Event Configuration Interface. An event type can have an interface enabling the event
consumer to configure event generation. Each component producing an event should
implement the associated configuration interface identified in the specification of the
event. This interface is designed to decouple completely the consumer and the producer.

Single Event Producer per Event Type. An event type in REMORA is produced by
one and only one component. Instead of imposing the high overhead of defining event
channels and binding manually event consumers and producers, the REMORA frame-
work autowires producers and consumers. We believe that this constraint does not affect
event-related requirements of applications. In case of having two producers generating
one event type, we can define a new event type, extended from the original event, for
one of the producers.

Event Casting. Events in our proposal can be either unicast, or multicast. Unicast
is a one-to-one connection between an event producer and an event consumer (e.g.,

Programming Sensor Networks Using REMORA Component Model 51

TimerEvent), while a multicast event may be of interest to more than one compo-
nent (e.g., UserButtonEvent). The REMORA framework distinguishes between these two
types in order to improve the efficiency of processing and distributing events. We also
need to clear how multiplicity type of components on the one side, and unicast events
and multicast events on the other side are related. To this end, we define two invariants:
Invariant1: The consumer of a unicast event should be a raw-instance or single-instance

component.
Invariant2: The producer of a multicast event should be a raw-instance or single-instance

component.
These invariants are mainly proposed to boost the efficiency of event processing in

the REMORA framework. We do not support other event communication schemes since
it implies to reify at runtime the source and the destination of an event and to maintain
complex routing tables within the REMORA framework, which will induce significant
overheads in term of memory footprints and execution time. We believe these invariants
do not limit event-related logic of embedded applications.

Events Description. Similar to components, events have their own descriptions, which
are in accordance to the event specification in REMORA, discussed above. Figure 6
presents a simplified events description document of the Blink application. This docu-
ment consists of two outer tags: event.remora and event.os, corresponding to the
application events and the OS-events, respectively.

<eventType>
<event.remora type="core.sys.TimerEvent" observation="manual" castType="unicast">
<attribute name="latency" type="xsd:int"/>
<configInterface>
<operation name="configure">
<in name="interval" type="xsd:int"/>
<in name="periodic" type="xsd:short"/>
</operation>

</configInterface>
</event.remora>
<event.os/>
</eventType>

Fig. 6. Application events description

2.3.1 Event Management Illustration
Figure 7 illustrates the event management mechanism implemented in REMORA. We
explain the mechanism based on the steps labeled in the figure. During the first two
steps, the event consumer can configure event generation and control event observation
by calling the associated interfaces realized by the event producer component. These
steps in our sample application are achieved in the Blink component (event consumer)
by the code below:

aTimeEvent.producer.configure(3*CLOCK SECOND, 1);

aTimeEvent.observation.start();

Note that the programmer is not aware of the TimerEvent producer. She/he only
knows that the TimerEvent generator is expected to implement the configure func-
tion defined in the description of TimerEvent (cf. Figure 6). The TimerEvent producer
should also implement the observation interface as the observation type of TimerEvent
is manual.

52 A. Taherkordi et al.

Whereas the above steps are initiated by the programmer, the next two steps are
performed by the REMORA framework. Step 3 is dedicated to polling the producer
component to observe event occurrence. The event producer is polled by the REMORA

framework through a dispatcher function in the producer. In fact, the event observation
occurs in this function. The polling process is started, paused, resumed, and terminated
based on the programmer’s configuration for the event observation, performed in step 2.

For application-level events, the REMORA framework is in charge of calling period-
ically this function, while for OS-events, REMORA invokes this function whenever an
OS-event is observed by the REMORA runtime. The REMORA runtime listens to only
application-requested OS-events, and delivers the relevant ones to the framework. The
REMORA framework then forwards the event to the corresponding OS-event producer
component by calling its dispatcher function.

Finally, in step 4, upon detecting an event in the dispatcher function, the producer
component creates the associated event, fills the required attributes, and publishes it to
the REMORA framework. The framework in turn forwards the event to the interesting
components by calling their event handler function.

REMORA Framework

1

2

3
4

REMORARuntime
OS-events

Event Producer

Event
Attribute 1

t realize

Attribute n realize

dispatcher

Event
ConsumerCConf. Interface

Obsrv. Interface

handler

Fig. 7. Event management mechanism in REMORA

2.4 Components Assembly and Deployment

A typical WSN application may contain several implementations of a certain com-
ponent type due to the existing heterogeneity in such platforms. To configure an ap-
plication according to the target platform, REMORA introduces components assembly
(equivalent to composite component in SCA). This XML document lists the application
components, as well as bindings between their references and services. Figure 8 shows
the configuration of Blink application in which there is only one binding from Blink
to the Leds component implementing the ILeds interface for the MSP430 microcon-
troller. Note that the event-binding between Blink and Timer is created automatically by
the REMORA framework.

Figure 9 demonstrates the four main phases of application deployment. The REMORA

Development Box encompasses specification-supporting artifacts, as well as External
Types Definition—a set of C header files containing application’s type definitions. It
should be noted that the component implementation can call OS libraries through a
set of system APIs implemented by REMORA runtime components. Therefore, there
is no hard-coded dependencies between REMORA implementers and the native API
of the underlying OS. In the next phase, the REMORA engine reads the elements of

Programming Sensor Networks Using REMORA Component Model 53

<composite name="app.BlinkAppConfigurer">
<component name="ledControl">

<implementation.remora implementer="cmu.telosb.peripheral.Leds"/>
</component>
<component name="blink">

<implementation.remora implementer="app.BlinkApp"/>
</component>
<component name="timer">

<implementation.remora implementer="core.sys.Timer"/>
</component>
<wire source="blink/iLeds" target="ledControl/iLeds"/>

</composite>

Fig. 8. Blink application configuration

Events
Description

<xml>
Interface

Description

<xml>
External Types

Definition

C code

Component
Description

<xml>

Component
Implementation

C-likecode
Components
Configuration

<xml>

REMORA Development Box REMORA Engine

OS
Libs REMORA Runtime

Operating System

Sensor Hardware

.c .h
REMORA Application

Application

pppp

Sensor Node

make
include

generateimport
OS

support

Remora-based
System APIs

Fig. 9. REMORA-based development process

the development box and also OS libraries in order to generate the REMORA frame-
work including the source code of components and OS-support code (for deployment).
Then, application object file will be created through OS-provided facilities and finally
deployed on sensor nodes.

3 Implementation

In this section, we discuss the key technologies, techniques, and methods used for the
implementation of REMORA. We structure this section according to the phases proposed
for REMORA-based application development.

3.1 REMORA Engine

The REMORA engine is designed to analyze the implementations of components and
generate the equivalent C code, as well as OS-support code. The engine is written in
Java because of its cross-platform capabilities, as well as its strong support for XML
processing. Additionally, the object-oriented nature of Java simplifies the complex pro-
cess of code analyzing and code generation. We briefly discuss the key design issues of
the engine below.

The first concern of the REMORA engine is the mechanism for parsing the C-like
implementation of components. To this end, we have developed a parser module, which
is originally generated by ANTLR—a widely used open-source parser generator [13].
We have modified the generated parser to extract REMORA-required information, such
as name, signature, and body of implementation functions.

54 A. Taherkordi et al.

Dealing with events, component instantiation and component configuration is the
other key part of the REMORA engine. This unit deduces the multiplicity type of com-
ponents and generates the necessary data structures. It also features a set of well-defined
techniques, such as in-component call graph analyzer and cross-component call tracker
to support stateful components. The former concept is concerned with discovering
context-dependent functions of a component, and the latter tracks the interactions be-
tween components in order to retain the state of components. Finally, the major task of
this part is to embed framework-support patches in the component implementation.

3.2 REMORA Framework

The REMORA framework is mainly designed to facilitate event management tasks, in-
cluding scheduling and dispatching. To explain these tasks, we first introduce two queue
data structures supporting our event model. The first queue is dedicated to the event
producer components (PQ), while the second one is designed to maintain the event
consumers (CQ). We discuss here how the REMORA framework is built based on these
data structures.

Scheduling in REMORA refers to all arrangements required to enqueue and dequeue
event producers and event consumers. In particular, the main concern is when to en-
queue/dequeue a component and who should perform these tasks. The REMORA frame-
work addresses these issues based on the observation model of events. For example,
if an event is automatically observable, the associated producer component and all
the subscribed consumers are enqueued by the framework core during the application
startup, while in a manual observation, producer and consumer are placed respectively
in PQ and CQ when the consumer component calls the start function of observation
interface.

Figure 10 illustrates the dispatching mechanism in the framework including the sup-
porting data structures. In Polling, the REMORA framework continuously polls the Event-
Producer components through dispatcher—the globally known callback function.
Whenever a producer dispatches an event (AbstEvent), the framework casts this event to
the actual event type, which is either UCastEvent(unicast event) or MCastEvent(multicast
event). UCastEvent will be directly forwarded to the subscribed consumer through the
callback function pointer stored in the UCastEvent. If a MCastEvent is generated, the
framework delivers it to all the interesting components formerly enqueued. For OS-
events, the same procedure is followed except the polling phase, which is performed
by the operating system.

Distributing Multicast Event

Forwarding Unicast Event

Polling

Unicast EventUUniicastt EEve tnt
callback

EventProducer 1 EventProducer n

g

EventProducer 2 …

AbstEvent

MCastEvent

UCastEvent
calcallbalbackckcallllcalcac lblblblbalba kkkckck

UCastConsumer

MCastConsumer MCastConsumer

produce

…

Fig. 10. REMORA event processing mechanism

Programming Sensor Networks Using REMORA Component Model 55

3.3 REMORA Runtime

The current implementation of the REMORA runtime is a Contiki-compliant process
running together with all other autostart processes of Contiki. This process undertakes
two tasks: i) periodically scheduling the REMORA framework (for polling event gener-
ator components) to run, and ii) listening to the OS-events and delivering the relevant
ones to the REMORA framework. By relevant, we mean the REMORA runtime recog-
nizes those OS-events that are of interest to the application. To achieve such filtering,
the source code of this part is generated by the REMORA engine according to the events
description (cf. Section 2.3) of target application and then imported to the REMORA

runtime. By doing that, we provide a lightweight event distribution mechanism inter-
preting only application-specific OS-events.

Additionally, the application code may need to use OS-provided libraries. REMORA

proposes system API wrapper components for this purpose. In fact, these components
delegate all high-level system calls to the corresponding OS-level functions, e.g., the
currentTime() function call in the system API is delegated to the Contiki function
clock time(). We offer this API to fully decouple the application components from
OS modules and ensure the portability of REMORA. If an application is not expected
to be ported to other platform types, the OS libraries can be directly called within the
component implementation.

4 Evaluation

In this section, we first demonstrate and assess a real REMORA-based application, then
we focus on the general performance figures of REMORA.

4.1 A Real REMORA-Based Deployment

Our real application scenario is a network-level application suite consisting of a set of
mini applications bundled together. This suite is basically designed to provide services,
such as code propagator and web facilities in WSNs. We focus here on the first one and
design it based on the REMORA approach.

Code propagation becomes a very important need in WSNs when we need to update
remotely the running application’s software [27]. The code propagator application is
responsible for receiving all segments of a running application’s object code over the
network and loading the new application image afterwards. The code propagator ex-
ploits the TCP and UDP protocols to propagate code over the network. At first, TCP is
used to transfer new code, block by block, to the sink node connected to the code repos-
itory machine, and then UDP is used to broadcast wirelessly new code from a sink node
to other sensor nodes in the network. When all blocks are received, the code propagator
loads the new application.

Figure 11 shows the components involved in the first part of our application scenario.
TCPListener is a core component listening to TCP events. This multiple-instances event
generator is created for each TCP event consumer component with unique listening port
number. For example, CodePropagator receives data from port 6510 (codePropPort),
while WebListener is notified for all TCPEvents on port 80 (webPort). CodePropagator

56 A. Taherkordi et al.

stores all blocks of new code in the external flash memory through the IFile interface
implemented by the FileSystem component. When all blocks are received, CodePropa-
gator loads the new application by calling the ILoader interface from the ELFLoader
component. These two interfaces are system APIs that delegate all application-level re-
quests to the OS-specific libraries. The INet interface, implemented by the Network
component, is also the other system API providing the low-level network primitives to
TCPListener.

FileSystem

TCPListener

codePropPort

CodePropagatorC

TCPEvent

FiFFF

Web Listener

ELFLoaderELEEcurrentOffsett
dataLength

C

h
listenPort

packetNum
t

TCPEvent

ISensorApp

webPortwwwwwwwwwww

ILoader

IFile
Network

INet
ELFFileNameee
ELFFileIddd
fileOffsettt

Fig. 11. Code propagation application architecture

As mentioned before, we adopt Contiki as our OS platform to assess the REMORA

component model. Contiki is being increasingly used in both academia and industrial
applications in a wide range of sensor node types. Additionally, Contiki is written in the
standard C language and hence REMORA can be easily ported to this platform. Finally,
the great support of Contiki on event processing and process management motivate us
to design and implement the REMORA runtime on this OS. Our hardware platform is
the popular TelosB mote equipped with a 16-bit TI MSP430 MCU with 48KB ROM
and 10KB RAM.

The concrete separation of concerns in this application is the first visible advantage
of using REMORA. The second improvement is the easy reuse of TCPListener for other
TCP-required applications, which is not the case in a non-componentized implementa-
tion. In particular, for each new application, we only need to instantiate the context of
TCPListener and configure its properties (like port number) accordingly, e.g., WebLis-
tener in Figure 11.

Table 1 reports the memory requirement of REMORA and Contiki programming
model (protothreads) for implementing the code propagation application. As indicated
in the table, the REMORA-based development does not impose additional data memory
overhead, while it consumes extra 532 bytes of code memory, which is essentially re-
lated to the cost of framework and runtime modules. This cost is paid once and for all,
regardless of the size and the number of applications running on the sensor node. The
code memory cost can be even further reduced by removing system APIs (Network,
FileSystem, and ELFLoader) and calling directly the Contiki’s libraries within Code-
Propagator. Note that the overhead of TCPListener can also be decreased when this
component is shared for the use of other applications, e.g., WebListener. Therefore,
we can conclude that the memory overhead of REMORA is negligible compared to the
high-level features it provides to the end-user.

The rest of this section is devoted to the assessment of two main performance figures
of REMORA, namely, memory footprints and CPU usage.

Programming Sensor Networks Using REMORA Component Model 57

Table 1. The memory requirement of code propagation application in REMORA-based and
Contiki-based implementations

Code Data
Programming Memory Memory
Model (bytes) (bytes)

Contiki 722 72
Code Propagation Components

CodePropagator 252 36
TCPListener 310 0

System API Components
ELFLoader 38 0

REMORA Network 92 0
FileSystem 68 0

REMORA Core
Framework and Runtime 494 14
Total 1254 50

REMORA overhead +532 -22

4.2 Memory Footprint

High memory usage has been one of the main reasons behind unsuccessfulness of
component-based proposals for embedded systems. In REMORA, we have made a great
effort to maintain memory costs as low as possible. The first step of this effort is to avoid
creating meta-data structures, which are not beneficial in a static deployment. Distin-
guishing unicast events and multicast events has also led to a significant reduction in
memory footprints as REMORA does not need to create any supporting data structure
for unicast events.

The memory footprints in REMORA is categorized into a minimum overhead and
a dynamic overhead. The former is paid once and for all, regardless of the amount of
memory is needed for the application components, while the latter depends on the size
of application. Table 2 shows the minimum memory requirements of REMORA, which
turn out to be quite reasonable with respect to both code and data memory. As men-
tioned before, our sensor node, TelosB, is equipped with 48KB of program memory
and 10KB of data memory. As Contiki consumes roughly 24KB (without µIP sup-
port) of both these memories, REMORA has a very low memory overhead considering
the provided facilities and the remaining space in the memory.

Table 3 shows the memory requirement of different types of modules in the REMORA

framework. The exact memory overhead of REMORA depends on how an application is
configured, e.g., an application, containing one single instance event producer and one
unicast event, needs extra 56 bytes (38+8+10) of both data and code memory. Ordinary
components do not impose any memory overhead as REMORA does not create any meta
data structures for them. For other types of modules, REMORA keeps the data memory
overheads very low as this memory in our platform is really scarce. We also believe
that the code memory overhead is not significant since a typical WSN application is
small in size and it may contain up to a few tens of components, including ordinary

58 A. Taherkordi et al.

Table 2. The minimum memory require-
ment of REMORA

Code Data
Memory Memory

Module (bytes) (bytes)

Framework Core 374 4
Runtime Core 120 10
Total 494 14

Table 3. The memory requirement of dif-
ferent entities in REMORA

Code Data
Memory Memory

Entity (bytes) (bytes)

Ordinary Component 0 0
Event Single Ins. 38 8
Producer Multiple Ins. 42 10
Event Unicast 0 10

Multicast 0 10
Multicast Event Consumer 30 6
OS Event 28 4
System API 4 0

components. It should be noted that componentization itself reduces the memory usage
by maximizing the reusability degree of system functionalities like the one discussed in
the code propagation application.

4.3 CPU Usage

As energy cost of REMORA core is limited to only the use of the processing unit, we
focus on the processing cost of our approach and show that REMORA keeps the CPU
usage at a reasonable level, and in some configurations it even reduces CPU usage
compared to the Contiki-based application development.

To perform the evaluation, we set up a Blink application in which a varying number
of mirror components (1 to 15) switch LEDs on and off every second. The two im-
plementations of this application, Contiki-based and REMORA-based, were compared
according to a CPU measurement metric. The metric was to measure the amount of
time required by one REMORA component and one Contiki process to switch LEDs
six times: three times on and three times off. With the less number of switches, we
cannot extract the exact timing differences as our hardware platform provides a timing
accuracy of the order of one millisecond.

We started our evaluation by deploying an application like the one presented in Sec-
tion 2.1 and measuring the CPU usage based on our metric. In each next evaluation
step, we added a mirror Blink component to the application and measured again the
time. This experiment was continued for 15 times. We made the same measurement for
a Contiki-based Blink application and added a new Contiki Blink process in each step.
Figure 12 shows the evaluation result of our scenario. When we have one Blink compo-
nent/process, the CPU overhead of both approaches is almost the same, indicating that
the REMORA runtime and framework impose no additional processing overhead. When
the number of components/process increases towards 15, reduction in CPU usage is
achieved in two dimensions.

Firstly, the number of CPU cycles for REMORA is slightly less than for the Con-
tiki application. This difference reaches 13 milliseconds when Contiki undertakes run-
ning 15 Blink processes. Therefore, we can conclude that REMORA does not impose

Programming Sensor Networks Using REMORA Component Model 59

additional processing overhead affecting the performance of the system. Secondly, the
CPU usage of REMORA application is reduced when the number of Blink components
is increased. This improvement is achieved because the number of context switches
between the REMORA runtime and the REMORA framework is significantly decreased
when there are more event producer components (Timer) in PQ.

To clarify this issue, we assume that the application running time is T and Contiki
periodically allocates CPU to the REMORA runtime in this period. In each allocation
round, the runtime module invokes the event manager in the REMORA framework to
poll the application level event producers. Given that there are K producers in PQ, the
polling process consumes K × t1 of CPU, where t1 is the average processing cost of
one element. Therefore, the frequency of event manager calling (equal to the number of
context-switches) is in the order of T /K × t1. Therefore, as the value of K is increased
the number of context-switches is decreased accordingly. Figure 13 shows the changes
in the number of context-switches when the number of Timer components is increased
to 15. As a result, the maximum performance in REMORA relies on the average number
of event producer components enqueued during the application lifespan, while in the
worst case (a very few producers in the queue) REMORA does not impose any additional
processing cost.

5500

5600

5700

5800

5900

6000

2 4 6 8 10 12 14 16

C
P

U
 U

sa
ge

 (
m

s)

Number of components

Remora
Contiki

Fig. 12. The REMORA-based implementation
does not impose additional CPU overhead
compared to the Contiki-based implementa-
tion

3000

4000

5000

6000

7000

8000

9000

10000

11000

2 4 6 8 10 12 14 16

N
um

be
r

of
 c

on
te

xt
-s

w
itc

he
s

Number of components

Context-switch overhead

Fig. 13. As the number of producer compo-
nents in the queue is increased, the number of
context switches is significantly decreased

5 Existing Approaches

In this section, we survey the existing component-based approaches for node-level pro-
gramming on embedded system and WSNs. Most of these component models mainly
aim at building entire operating systems as an assembly of components.

In the area of WSNs, NESC [8] is perhaps the best known component model being
used to develop TINYOS [9]. As mentioned earlier, the main downside of NESC is
that it is tightly bound to the TINYOS platform. Moreover, although NESC efficiently
supports event-driven programming, events in NESC are not considered as independent
entities with their own attributes and specifications. Therefore, the binding model of

60 A. Taherkordi et al.

event-related components is not well-described as it is not essentially described based
on the specification of events. Additionally, the unique features of REMORA, such as
multiplicity in component instance and property-based reconfiguration of components
bring significant improvements to component-based programming in WSNs compared
to NESC.

Coulson et al. in [14] propose OPENCOM as a generic component-based program-
ming model for building system applications without dependency on any target-specific
platform environment. The authors express that they have tried to build OPENCOM with
negligible overhead for supporting features specific to a development area, however it
is a generic model and basically developed for platforms without resource constraints
and tends to be complex for embedded systems. To evaluate OPENCOM, we deployed
a sample beacon application [15], including Radio, Timer and Beacon components, on
a TelosB node with Contiki. Based on our measurements, the memory footprint of this
application is significantly high, so that it consumes 4, 618 bytes of code memory and
28 bytes of data memory.

The OSGi model [16] is a framework targeting powerful embedded devices, such as
mobile phones and network gateways along with enterprise computers. OSGi features
a secure execution environment, support for runtime reconfiguration, lifecycle man-
agement, and various system services. While OSGi is suitable for powerful embedded
devices, the smallest implementation, Concierge [17] consumes more than 80KB of
memory, making it inappropriate for resource-constrained platforms.

OSKIT [18] is a set of ready-made components for building operating systems. OS-
KIT is developed with a language called KNIT [19]. In contrast to NESC, KNIT is not
limited to OSKIT. OSKit has adapted the Microsoft COM model and is not primarily
focused on embedded systems.

The THINK framework [20] is an implementation of the FRACTAL [21] component
model applied to operating systems. The choice of the THINK framework is motivated
by the fact that it allows fine-grained reconfiguration of components. Although the ex-
periments on deploying THINK components on WSNs have been quite promising in
terms of memory usage [23], the lack of application-level event support is the main
hurdle for using THINK in WSNs. LOOCI [24] is another component-based approach,
providing a loosely-coupled component infrastructure focusing on an event-based bind-
ing model for WSNs. However, the Java-based implementation of LOOCI limits its
usage to the SunSPOT sensor node.

6 Discussion, Conclusion and Future Direction

We presented REMORA, a novel programming abstraction for resource-constrained em-
bedded systems. The main motivation behind proposing REMORA is to simplify high-
level event-driven programming in WSNs by a component-based approach. Moreover,
involving PC-based developers in WSN programming and considering the state-of-the-
art technologies for component development are two other challenges addressed by
REMORA. The special consideration paid to the event abstraction in REMORA makes
it a practical and efficient approach for WSN applications development. The other key
features of REMORA include: applicability on a wide range of embedded OSs, rich

Programming Sensor Networks Using REMORA Component Model 61

support of component reusability and instantiation, and reduced effort and resource us-
age in WSN programming.

Careful restrictions on the REMORA component model, including the lack of dynamic
memory allocation and avoiding M-to-N communications between event producers and
event consumers bring significant improvements to the static deployments in WSNs.
Since one of our main future directions is to support dynamic component reconfiguration
in REMORA [25, 26, 27], we encounter a new major challenge on how to efficiently
provide such a feature in REMORA so that the overhead of dynamic memory allocation
is carefully minimized.

As mentioned earlier, the current goal of REMORA is to be exploited only in
application-level programming. However, we believe that the efficient support of event
processing in REMORA potentially enables it to componentize system level function-
alities. In the Blink application, we implicitly demonstrated this capability by redevel-
oping the Timer component, which is essentially developed at the OS level. To address
precisely this issue, we need to enhance the current REMORA implementation with fea-
tures like concurrency support, task scheduling, and interrupts handling.

In our current implementation, a REMORA process cannot be preempted by any other
process in the operating system. This issue becomes critical when a component execu-
tion takes a long time to complete and it causes large average waiting times for other
processes waiting for the CPU. The event handling model of REMORA can be used to
provide preemption by defining a new event type per preemption-required point of ap-
plication, while in this case the component implementation and the event management
become quite complicated. This concern will also be considered in the future extensions
for REMORA. In particular, we intend to promote the native Contiki macros, handling
process lifecycle, to the REMORA application level. In this way, the REMORA compo-
nent becomes preemptable by explicitly yielding the running process.

Beside the fact that REMORA provides a strong abstraction for single node pro-
gramming, the same level of programming abstraction is expected to occur at the net-
work level. This challenge opens up another key area for future work: how to make
REMORA components distributed by the provision of a well-defined remote invocation
mechanism.

Acknowledgments. This work was partly funded by the Research Council of Norway
through the project SWISNET, grant number 176151.

References

1. Sugihara, R., Gupta, R.K.: Programming models for sensor networks: A survey. ACM. Trans.
Sensor Networks 4(2), 1–29 (2008)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn. ACM
Press and Addison-Wesley, New York (2002)

3. Bachmann, F.L., et al.: Technical Concepts of Component-Based Software Engineering, 2nd
edn. Carnegie Mellon Software Engineering Institute (2000)

4. Ommering, R., Linden, F., Kramer, J., Magee, J.: The Koala component model for consumer
electronics software. IEEE Computer 33(3) (2000)

5. Winter, M., et al.: Components for embedded software: the PECOS approach. In: Proc. of
the CASES 2002. ACM Press, New York (2002)

62 A. Taherkordi et al.

6. Hansson, H., Akerholm, M., Crnkovic, I., Torngren, M.: SaveCCM-a component model for
safety-critical real-time systems. In: Proc. of the IEEE Euromicro Conference (2004)

7. Plsek, A., Loiret, F., Merle, P., Seinturier, L.: A Component Framework for Java-Based
Real-Time Embedded Systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS,
vol. 5346, pp. 124–143. Springer, Heidelberg (2008)

8. Gay, D., et al.: The nesC Language: A Holistic Approach to Networked Embedded Systems.
In: Proc. of the SIGPLAN Conference on Prog. Language Design and Impl. (2003)

9. Levis, P., et al.: TinyOS: An Operating System for Sensor Networks. Ambient Intelligence
(2005)

10. http://www.oasis-opencsa.org/sca
11. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for

tiny networked sensors. In: Proc. of 1st Workshp. on Embedded Networked Sensors (2004)
12. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying Event-Driven Pro-

gramming of Memory-Constrained Embedded Systems. In: Proc. ACM SenSys (2006)
13. ANTLR, http://www.antlr.org
14. Coulson, G., et al.: A generic component model for building systems software. ACM Trans.

Computer Systems, 1–42 (2008)
15. Wisebed, http://www.wisebed.eu/wiki/pmwiki.php?n=Main.Osaapp1
16. The OSGi Alliance. The OSGi framework (1999), http://www.osgi.org
17. Rellermeyer, J., Alonso, G.: Concierge: A Service Platform for Resource-Constrained De-

vices. ACM SIGOPS Operating Systems Review 41(3), 245–258 (2007)
18. Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., Shivers, O.: The Flux OSKit: A Substrate

for Kernel and Language Research. Operating Systems Principles (1997)
19. Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: Knit: Component Composition for Sys-

tems Software. In: Operating Systems Design and Implementation (OSDI) (2000)
20. Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G.: Think: A software framework for

component-based operating system kernels. In: Proc. of the USENIX Annual Conference
(2002)

21. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal component
model and its support in Java. Softw., Pract. Exper. (2006)

22. Remora. Website, http://folk.uio.no/amirhost/remora
23. Lobry, O., Navas, J., Babau, J.: Optimizing Component-Based Embedded Software. In: 2nd

IEEE Workshop on Component-Based Design of Resource-Constrained Sys., COMPSAC
2009 (2009)

24. Hughes, D., et al.: LooCI: A loosely-coupled component infrastructure for networked em-
bedded systems. Mobile computing Multimedia (2009)

25. Taherkordi, A., et al.: WiSeKit: A Distributed Middleware to Support Application-Level
Adaptation in Sensor Networks. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS,
vol. 5523, pp. 44–58. Springer, Heidelberg (2009)

26. Taherkordi, A., Rouvoy, R., Le-Trung, Q., Eliassen, F.: A Self-Adaptive Context Processing
Framework for Wireless Sensor Networks. In: Proc. of ACM MidSens 2008, Belgium (2008)

27. Mottola, L., et al.: Selective Reprogramming of Mobile Sensor Networks through Social
Community Detection. In: Proc. of EWSN 2010, Portugal (2010)

http://www.oasis-opencsa.org/sca
http://www.antlr.org
http://www.wisebed.eu/wiki/pmwiki.php?n=Main.Osaapp1
http://www.osgi.org
http://folk.uio.no/amirhost/remora

Stateful Mobile Modules for Sensor Networks

Moritz Strübe, Rüdiger Kapitza, Klaus Stengel, Michael Daum, and Falko Dressler

Dept. of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Germany
{struebe,rrkapitz,stengel,daum,dressler}@cs.fau.de

Abstract. Most sensor network applications are dominated by the acquisition of
sensor values. Due to energy limitations and high energy costs of communication,
in-network processing has been proposed as a means to reduce data transfers.
As application demands may change over time and nodes run low on energy,
get overloaded, or simply face debasing communication capabilities, runtime
adaptation is required. In either case, it is useful to be able to migrate
computations between neighboring nodes without losing runtime state that
might be costly or even impossible to recompute. We propose stateful mobile
modules as a basic infrastructure building block to improve adaptiveness and
robustness of in-network processing applications. Stateful mobile modules are
binary modules linked on the node itself. Even more importantly, they can
be transparently migrated from one node to another, thereby keeping statically
as well as dynamically allocated memory. This is achieved by an optimized
binary format, a memory-efficient linking process and an advanced programming
support.

1 Introduction

A large fraction of Wireless Sensor Network (WSN) applications target long-term
monitoring of environmental conditions. Typical examples are monitoring of trees,
volcanoes, glaciers, and buildings [1]. All these applications collect various sensor
values and transport them to more powerful gateway nodes at the edge of the sensor
network. Energy is commonly the limiting factor of long-term monitoring experiments
in the context of WSNs. Therefore, reducing communication, which is one of the
most energy-intensive tasks in this domain, is crucial. In-network processing, the pre-
processing of sensor data inside the network is a powerful technique to significantly
reduce the amount of data to be transferred [2, 3]. However, in many scenarios, the
optimal pre-processing has to be determined at runtime. Furthermore, nodes in this
domain can run low on energy, get overloaded, or face worsening network conditions.
In all these cases, the relocation of pre-processing operators is a basic building block
to continue service provisioning. The demand to keep application state is especially
challenging in the context of in-network processing, despite relocation. Otherwise, the
result is data loss, which can cause blind spots in monitoring experiments decreasing
the overall data quality and in the worst case losing important events thereby rendering
them useless. Even if it is possible to replace lost data, this can take a considerable
amount of time and resources, e.g., using a pause-drain-resume strategy [4].

In order to address the aforementioned demands for adaptability and to minimize
data loss, resource-efficient system support has to be provided that enables the dynamic

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 63–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

64 M. Strübe et al.

deployment and migration of applications in a state preserving manner. However, even
the most basic task to fulfill the goal of dynamic stateful migration, the software
deployment, is cumbersome in sensor networks. Code has to be transferred to target
nodes, requiring non-negligible communication and energy efforts. As a consequence,
several research activities targeted to provide mechanisms and infrastructures to
efficiently deploy software in WSNs at the level of system images [5], modules (pre-
linked or linked at runtime) [6, 7, 8], and byte code [9, 10]. Only, a limited number of
systems thereby preserve the execution state of updated code [11, 7], and they all fall
short on migration support. Thus, application developers have to do this manually by
providing custom serialization routines [12] or rely on a high level byte code language,
which has the drawback of a resource-intensive interpretation and a considerable
overhead due to the required runtime environment [13].

Taking these facts into account, we propose the concept of stateful mobile modules.
It enables dynamic migration of stateful, native modules inside a WSN. This is achieved
by combining a set of techniques starting with a size-optimized binary format and
a memory-efficient linking process. The latter provides the freedom to deploy the
same native code on multiple nodes and migrate code inside a WSN as needed. To
enable transparent migration of in-memory module state, we provide a programming
model similar to high-level languages, such as Java and C#, for supporting serialization.
All relevant statically allocated variables that have to survive a migration are marked
in the source code. For dynamically allocated memory and pointer variables therein,
additional actions are needed. Here, we use a smart-pointer approach provided by
an easy to use API. We implemented stateful mobile modules and the associated
programming model as a resource-efficient layer on top of the Contiki Operating
System [14] and evaluated its benefits in a realistic in-network processing scenario.

In the remainder of the paper, we first outline an introductory application scenario.
Sections 3 and 4 introduce our system support for resource-efficient linking and for
runtime migration. Next, we detail evaluation results (Section 5) and briefly summarize
related approaches (Section 6). Finally, Section 7 concludes the paper.

2 Overview

In the following, we outline a data stream processing example, which represents a
typical use case for stateful mobile modules. Next, we summarize the derived goals
that we took into account for building the proposed system support.

2.1 Environmental Monitoring Stream Processing Example

Fig. 1 depicts a distributed stream processing query targeting the long-term monitoring
of microclimate changes on a rock. The query is composed of a set of connected stream
operators distributed over seven nodes: one taking the role of a gateway to the sensor
network and six additional nodes that build the actual WSN. Besides receiving data
from the network, a server connected to the gateway controls the placement and the
wiring of the stream processing operators. These operators are structured as stateful
mobile modules so they can be dynamically distributed.

Stateful Mobile Modules for Sensor Networks 65

S3

FUNCTION_MERGE AGGREGATE

AGGREGATE

X
JOIN

S2

S1

O1

O2

O3

GW

Fig. 1. Migrating of the AGGREGATE operator due to system resource shortage at its current node

In our example scenario, the outer left nodes create three streams each providing
temperature data: S1, S2, and S3. The distributed query creates outputs values if the
temperature of S3 provided by a sensor placed near the ground is lower than in the area
of S1 and S2, both located on top of the rock. A JOIN operator (O1) delivers these
items to a sensor node that is connected to the gateway (GW). In our scenario the values
of S1 and S2 might be erroneous due to isolation (e.g., only one sensor is exposed to
direct sunlight), so we implemented a simple way of sensor data cleaning by using a
minimum function provided by FUNCTION MERGE and an AGGREGATE operator for
smoothing outliers (e.g., caused by clouds). Both are placed on an intermediate node on
the stream path (O1).

In the following, the migration of the AGGREGATE operator instance is described.
It calculates the mean of a configurable number of samples. For example, due to
energy reasons and worsening communication, the central server decides to integrate
a neighboring node (O3) into the distributed query by initiating the migration of this
operator. This includes transferring the module and its state, and rerouting the data flow.
Furthermore, the new node has to receive the results of FUNCTION MERGE and to
deliver the results to the host of the JOIN operator. Other scenarios might include the
migration of FUNCTION MERGE or relocation of the JOIN operator. In all these cases,
stateful mobile modules enable a code and run-time state migration that is transparent
from an operator’s point of view.

2.2 Goals

From the described scenario and targeted more complex ones [15], we derived the
following goals and requirements for providing stateful mobile modules:
Distribution of modules. Modules generated on a host outside the WSN can be sent
to one or more sensor nodes. Furthermore, module code can be shared among nodes
by direct exchange. Modules should only require minimal runtime support besides the
Operating System (OS) and need to be provided in a space-efficient format. The former
avoids overhead during execution, e.g., opposed to a byte-code-based approach, the
latter targets low communication costs.
Linking, loading, and running of modules. Consequently, modules should be linked
on the node. This allows the use of the same module on nodes with slightly different
kernels, e.g., different minor versions or supported hardware. Additionally, the linking
process should be memory-efficient and fast. The former leaves more space for

66 M. Strübe et al.

applications the latter enables faster integration and therefore implicitly aims at
reducing energy demand.
Migration of modules. It should be possible to migrate a module to a new node with
minimal disruption, thereby preserving its execution state. This means that in-memory
data, including static variables as well as dynamically allocated memory, is automat-
ically copied to the new node and can be utilized right away. The rationale behind
this requirement is not to lose costly computed state information, e.g., gained by long-
term monitoring, to relief application developers from the burden to provide custom
operations to preserving data, and, lastly, to keep services permanently available.

3 System Support for Mobile Modules

In the following, we detail our support for resource-efficient distribution of native
modules using our custom object format (Minilink) and a memory-optimized node-level
linking process.

3.1 Background: Linking and Loading in WSNs

When compiling a C/C++ file into an object file, the compiler translates the source code
into binary code whereas the linker is responsible for the actual memory layout making
the code ready for execution. Thus, the compiler writes placeholders into the code and
adds an entry for each variable and function to the relocation table. Further on, all
functions and variables that might be externally accessed are added to the symbol table.
Next, the linker uses the symbol tables and the target memory location of the code to
resolve all references in the relocation table for substituting the placeholders.

For adding a new module to a sensor node, it must be placed in memory and linked
against the functions provided by the kernel. If both the modules and the kernel are
known in advance, this can be performed at a different machine outside the WSN (pre-
linking) [7]. However, even slight differences, such as the use of different compiler
or linker versions, can cause incompatible modules. Additionally, the placement of
modules is fixed, which can lead to collisions due to the limited available memory if
further modules are added over time.

Alternatively, one can link on the node itself (runtime-linking), which has been
proven an effective way of distributing code in a network with slightly heterogeneous
kernels [8]. Dunkels et al. implemented a linker for the Executable and Linking Format
(ELF) format, which they identified as too resource consuming for sensor nodes (see
also Section 5). For this reason, they increased the efficiency by introducing Compact
ELF (CELF), a custom ELF inspired binary format that is tailored to a 16-bit address
space instead of 32 bit. However, a small code size is only one aspect that has to be taken
care of, because the symbol table of a typical sensor OS kernel is several kilobytes and
the linking process requires random access to the symbol table and the linked module.
Whereas the first aspect substantially reduces the available memory, the second leads
to a time and energy consuming linking process. This is even worsened by the fact
that an ELF binary is subdivided into multiple sections, e.g., different program section
like code (.text) and variables (.data). This design was made for flexibility and is

Stateful Mobile Modules for Sensor Networks 67

not suitable for resource-restricted systems that rely on flash memory. First, flash can
typically only be modified at the granularity of segments and, secondly, it is usually not
possible to buffer the whole program section of a module in RAM. Due to the use of
multiple sections, this causes a lot of costly random access during the linking process
of a module that usually has to reside on a slow external flash.

We address both problematic aspects of runtime-linking by an optimized symbol
table and a further compacted binary format. In combination, this enables an efficient
linking process building the essential basis for supporting dynamic migratable modules.

3.2 Resource-Efficient Linking Using Minilink

In the following, we describe the different aspects of Minilink.
Placement of the Symbol Table. The symbol table of our implementation basis, the
Contiki OS kernel, occupies about 5 to 6 KB of memory. This is rather large compared
to the 48KB internal flash of the TelosB1 node, the platform we used for evaluations.
However, most sensor nodes are equipped with external storage. The TelosB platform,
for example, has an external flash of 1MB, dedicated to store data. As the symbol table
is only accessed during the process of linking, it can be placed on the external flash.
The latter saves valuable internal memory for running applications.
Optimizing the Symbol Table. Many functions provided by the kernel have a
common name prefix to indicate their relation to a module, e.g., eeprom read and
eeprom write. As a consequence, we order the symbol table alphabetically and,
instead of repeating a matching prefix, we store the size of the common prefix and
the remainder of the function name. The symbol table in Fig. 2 shows an example for
the eeprom function set. Each of the three functions starts with eeprom . The first
entry shares no characters with its previous entry, the following two the leading 7. Thus,
11byte can be saved (14 saved by compression, 3 lost for indicating the prefix size).

In addition, we take advantage of the fact that symbol names are encoded in the
7-bit ASCII character set [16] by using the unused last bit to terminate them. This
saves one byte per table entry. Finally, we exploit that symbols are sorted by name and,
therefore, symbols of the same module are in consecutive order. Accordingly, they are
also co-located within the code and can, under some checked precondition, be addressed
relative to the previous symbol. This demands for only one byte instead of two bytes
for the absolute address.
Stream-based Sequential Linking. Due the outlined memory-intensive linking
process of ELF binaries, we propose a stream-based sequential linking approach,
meaning that each byte needs only to be read once. Our linking process works in two
stages: First, an address index is built. Secondly, the different sections are linked to
their destination in a sequential order. To achieve this, our Minilink format structures
modules in three sections: A header containing general information about the module,
an alphabetically sorted and compressed list of used symbols, and the binary data itself.
In contrast to the ELF file format, we do not have a relocation table as the relocation
entries are directly woven into the binary data. The header contains only information
that is essentially needed to link the module: the size of each section, the module name,

1 The Xbow TelosB was formerly sold by Moteiv under the name Tmote Sky.

68 M. Strübe et al.

0x1022

0x1033
0x1055

<0>eeprom_init<0x1022>
<7>read<0x1033>
<7>write<0x1044>
<1>timer_set<0x1055>

<0>eeprom_init
<7>read
<1>timer_set

00 4d4c 3d53 ceea 000a 0206 000a 000c 0000
10 0000 000f 4500 5f56 4f4d 5544 454c 435f
20 444d 0000 494d 5f47 4f44 454e 0400 4552
30 5551 5345 0054 6500 6974 656d 5f72 6572
40 6573 0074 7307 7465 0800 6f74 0070 6d00
50 6769 6d5f 0502 005f 6e65 0064 7000 6972
60 746e 0066 6f02 6563 7373 635f 7275 6572
70 7405 0500 0700 6e08 006f 050c 0001 7200
80 6d69 6165 6464 5f72 6d63 0070 6f0a 7970
90 0900 756e 6c6c 0000 6573 736e 726f 5f73

Address index

Memory sectionSymbol table (Kernel)

Symbol list (Module)

Building the address index Linking against the address index

0x05 05 00 07 00
\ESC, (3 + 2), 7

Address of read + 7

0x05 02 00
\ESC, 2

Address of read

0x05 0c 00
\ESC, (2 * 3 + 6)
Program section + 5

1

2
3

Fig. 2. Mapping used for relocation

the entry point, and the number of required external symbols. Based on this information,
the linker ensures that the node offers enough memory to link the module.
Building the Symbol Index. A module starts with a list of symbols required for linking.
They are saved applying the same concepts as used for compacting the symbol table
but miss address information. The latter is provided by matching the module symbols
against the symbol table. As a result, we get the address index that contains all resolved
symbol addresses of a module and builds the input for the linking phase (see Fig. 2).
As both lists are ordered alphabetically, they can be processed in a sequential order.
Together with the module header, the address index is the only data that has to reside in
RAM during this process.
Linking Using the Symbol Index Using Minilink, all relocation entries are directly
woven into the binary data. To identify them, these two bytes large entries are marked
by a preceding escape sequence. We chose the escape sequence to be h05 as this is
neither a binary command on the TelosB platform nor is the escape-character itself
commonly used in ASCII strings. Still h05 can be encoded by h050000. The access
to the address index starts with one, as zero is already reserved.

Fig. 2, (1) shows the escape sequence for the second symbol. Accordingly, the
sequence h050200 is replaced by the second value of the address index h3310 that
further on is written to memory. Sometimes, not only a symbol is referenced by a
relocation entry, but additionally an offset is added, e.g., when accessing an element
of a struct or array. For these cases, we reference the address index with an offset, and
this time the value of the word following is added (2). Higher escaped values map to
the different sections of the module containing the program code or variables (3).

4 Stateful Migration

In the context of in-network data processing, the migration of state in terms of statically
and dynamically allocated variables is important as these often capture long-term
execution results. In contrast, the execution stack representing the call history is of
minor importance as applications in this domain are rather small and moderately

Stateful Mobile Modules for Sensor Networks 69

complex. Furthermore, transferring the stack would introduce additional costs in terms
of data transfer. Therefore, we support weak migration [17], meaning only application
state is transferred but no execution-dependent state, such as values on the stack and
CPU registers. This is also in line with the lightweight thread model of Contiki. Here,
so-called Protothreads [18] lose their stack and register values when yielding the CPU
in favor of another thread. However, once a Protothread is resumed, it still continues ex-
ecution at the same position the CPU was released. Accordingly, we keep this behavior
by restarting an application at the same point where it was suspended before migration.
Thus, from an application programmer’s perspective, releasing the CPU for another
application and migrating to a different node are equivalent: in both cases, the stack is
lost and the execution is continued immediately after the last executed statement.

In contrast to the execution stack, the handling of pointers still needs special attention
when migrating modules using Protothreads. To keep them valid despite migration,
one option would be to place data at the same memory address. Due to the limited
available resources and the use of multiple modules as well as the absence of a
Memory Management Unit, this is not practical for sensor nodes. However, if variables
are dynamically allocated, there is no way to avoid the use of pointers. Therefore,
mechanisms must be provided to properly access the data despite relocation. If the
placement of pointers is known, they can be adjusted to the new memory layout. This
reduces the burden for the developer to the necessary minimum.

4.1 General Process and Programming Model

In general, it is not reasonable to migrate all statically and dynamically allocated
variables. If values can be easily recomputed or are dispensable to provide a
service, they should be excluded from migration. We therefore provide two macros
(MIGRATABLE and MIGRATABLE POINTER), which assign a section attribute to
the variable. This attribute instructs the compiler to put a variable in a special
memory section. These extra memory sections are supported by our linker and handled
separately. During migration only those two sections are copied to the target node, and
the one containing the pointers is adjusted to the new memory layout.

Frequently, dynamic memory is used, which is allocated at run-time from heap
space. To support the migration of dynamically allocated memory, we built two
wrapper functions (migmem malloc and migmem free). Two extra bytes are used
to add the newly allocated memory block to a linked list, which is managed by our
framework and assigned to the module. Finally, when implementing a linked list and
similar complex dynamic data structures, it is very likely that pointers reside inside
the dynamically allocated memory. We provide a function (migmem register) to
make pointers placed in heap memory known to our framework. It saves the address
of the pointer in a special array. The memory for the array is also taken from heap
memory and dynamically adjusted in size. The list of registered pointers is transmitted
and the pointers adjusted during the migration process. Of course, it is also possible
to “unregister” a pointer. Furthermore, pointers are automatically removed from the list
when freeing memory containing a registered pointer.
Preparation. Although we are able to migrate variables and execution state, it is not
possible to migrate state that is directly bound to the node itself, such as a network

70 M. Strübe et al.

connection and a file handle. For this reason, a module is informed by a MIG REQUEST
event that it is about to be migrated. It then has the option to take appropriate actions,
e.g., to close open sockets, before it is moved to a new node. In the case of ongoing
communication with external hardware, the module is able to postpone migration by
calling mig delay(). It will automatically get a new migration request a few seconds
later. The module can also deny migration by calling mig deny().
Migration. Before the actual migration, the module is linked, but not started on the
target node. The linker already allocates both memory sections containing the data
and pointers. The source node serializes all memory blocks and also transmits the old
memory address to the target. The static sections are copied to the memory allocated by
the linker while memory for the other blocks is allocated from the heap memory. The
old addresses are used to build a lookup table to map the addresses of the source node to
the target node. Using this lookup table, the pointers in the pointer section are adjusted.
In a next step, the list of pointers registered at runtime is transmitted. The lookup table
must be used to find their new location, before they can be adjusted. Finally, the state
of the Protothread is received and the local thread structure is updated accordingly.
Continuation. After the module is successfully migrated to the new node, it continues
to run and receives a MIG SUCCESS event so it can reestablish its connections and
perform other preparations, e.g., initialize variables omitted from migration. The thread
on the old node will be terminated and its memory freed. If an error occurred during
migration, e.g., as there is not sufficient memory on the target node, the migration is
aborted and the module continues to run at the original node. To notify the module that
the migration was aborted, it receives a MIG FAILED event.

4.2 Application Example

To illustrate our programming support, we describe an application example based on
the environmental monitoring stream processing example presented in Section 2.1. We
concentrate on the AGGREGATE operator as this one is migrated in the scenario.

Fig. 3 shows the simplified listing of the AGGREGATE operator. It takes a number
of samples (window), calculates the average, and forwards the result. The number
of samples taken to calculate the average can be adjusted at runtime. Therefore,
the memory used to save these variables is dynamically allocated. Our data stream
framework abstracts the network traffic and sends commands either directly to an
operator or broadcasts incoming data to all operators hosted by the node.

In the first three lines, the necessary variables are defined. The in-variable is a
pointer and is therefore marked as such. The other two save the window size and the
position to write the next incoming data. Lines 5-7 and 23 contain macros generating
the structures needed by the Contiki OS to manage the Protothread. In line 11, the
operator waits for an incoming event. If the event is a command, the data pointer
contains additional data. If the operator is instructed to resize its window size, the old
memory is freed (line 16) and a new memory is allocated (line 17). For simplicity of the
example, the data is lost upon window resize. As connection handling and all further
system-dependent tasks are performed by our framework, there is no need to inform
the operator about a migration. Thus, due to migration support of statically as well as
dynamically allocated memory, a migration is fully transparent to the operator.

Stateful Mobile Modules for Sensor Networks 71

1 MIGRATABLE_POINTER static u16 * in;
MIGRATABLE static u8 pos;

3 MIGRATABLE static u8 window;

5 PROCESS(p_migagg, "Mig.Aggr");
AUTOSTART_PROCESSES(&p_migagg);

7 PROCESS_THREAD(p_migagg, ev, data)
{

9 PROCESS_BEGIN();
while(1) {

11 PROCESS_WAIT_EVENT(); // Wait for an event
if(ev == EV_MODULE_CMD) { // A command event

13 if(*data == MOD_CMD_SIZE) { // Resize window command
window = *(++data); // Set window size

15 pos = 0; // Reset write position
if(in != NULL) migmem_free(in); // Free old window

17 in = migmem_alloc(window * 2); // Allocate new window
}

19 else if(ev == EV_MODULE_DATA) { // Handle incoming data
in[pos++ % window] = *(u16 *)data; // Copy data

21 // Calculate average and send it
} } }

23 PROCESS_END();
}

Fig. 3. Simplified listing of the data stream AGGREGATE module

5 Evaluation

While our implementation runs on the native TelosB hardware, we performed most
of our evaluations on top of the Cooja [19] simulator. Cooja utilizes the MSPsim
simulator [20], an instruction level simulator for the MSP430 micro controller. Thus,
code can be added and executed at runtime. For our evaluation, we considered the basic
characteristics of our binary format, the linking process and the support for migrating
stateful modules.

5.1 Support for Linking and Loading

Overall Resource Demand. Our system support for sending, receiving, linking,
starting and stopping modules as well as migration is 7KB in size and has a memory
footprint of 160B. It also includes helper functions such as for remote monitoring (e.g.,
listing the currently installed modules) as well as commands for managing the external
flash.
Symbol Table Footprint. To measure the memory savings provided by our compres-
sion of the symbol table we analyzed the symbols of a “hello world” kernel using the
default kernel for the TelosB platform, having 316 symbols in total (see Table 1).

The Contiki ELF-Linker stores all kernel symbols in an array containing the address
and a pointer to the string. While this improves performance when searching for a
certain symbol, we omit this additional pointer, which saves two bytes per symbol. The
reason why the use of the Minilink format reduces the size not by 623B (symbols × 2),
but only 573B, is because of our slightly larger header and 4 symbols2 that are excluded

2 bss size, data load start, data size and stack

72 M. Strübe et al.

Table 1. Comparison of the Contiki symbol table and the Minilink symbol table

Size Saved (relative) Saved (total)
Contiki 5732 B
Minilink 5159 B 10.00 % 10.00 %
Minilink+option(prefix) 3399 B 34.12 % 40.70 %
Minilink+option(prefix,7bit) 3083 B 9.30 % 46.21 %
Minilink+option(prefix,7bit,offset) 2918 B 5.35 % 49.09 %

in the Contiki symbol list. The largest savings are achieved using our simple prefix-
compression (prefix). As the character set for symbols is limited to 7 bit ASCII, we
can use the 8th bit to substitute the NULL-terminator (7 bit). Finally, we are able to
save some extra bytes by using relative addressing where possible (offset). In sum,
our symbol table is almost half the size of the Contiki symbol table. This speeds up the
linking process as only half the data must be transferred from the external flash. These
savings are even more valuable if the symbol table must be saved together with the
kernel on internal flash, e.g., if there is no external flash available.
Minilink Module Footprint. We also compared the size of ELF modules provided
by Contiki and their optimized variant CELF with our Minilink format (see Table 2).
As a first sample, we chose a hello world module, which basically outputs a “Hello
World” string. The next sample is a module implementing the AGGREGATE operator,
as outlined in the stream processing example (mod agg). For evaluating a larger module,
we also linked the rudolph2 (and polite) network protocol [21] to the AGGREGATE
operator as one module. Further on, we added a call to watchdog periodic() to
this module to evaluate the symbol table lookup performance (see following paragraph
on Minilink linker performance for details).

The code size represents the size of the program and the data section (not .bss).
This is the minimum size even a prelinked module must have without its header. We
also list the number of used symbols and relocations. The numbers in braces represent
the overhead compared to the minimum prelinked module. Apparently, the ELF has a
big static overhead. This has a huge impact on small modules, as can be seen for the
hello world example, with an overhead of over 900%. While CELF performs much
better, Minilink has an overhead of only about 30%.
Minilink Linker Performance. Table 3 compares the time required to link a module
using the previously introduced examples. We measured the duration to build up
the address index and the linking process independently. Contiki OS provides the

Table 2. Comparison of ELF modules and Minilink modules for modules of three different sizes

Application hello world mod agg mod agg + rudolph2
code size 74B 910B 2230 B
symbols 1 15 36
relocations 5 48 145
ELF (overhead) 752B (+916%) 2956 B (+225%) 6028 B (+170%)
CELF (overhead) 179B (+142%) 1611 B (+77%) 3793 B (+70%)
Minilink (overhead) 96B (+30%) 1164 B (+28%) 2772 B (+24%)

Stateful Mobile Modules for Sensor Networks 73

Coffee file system, which has a high standard deviation when opening file handles
(132 ± 36.6ms according to Tsiftes et al. [22]) therefore we excluded these from our
measurements. However, the time to access the actual data on the external flash is
included. When calculating the percentage of relocations, it has to be taken into account
that each relocation results in a memory address and is therefore two bytes in size. It
can be seen, that the time to build up the address index does not entirely depend on the
number of different symbols, but where the last used symbol is located in the symbol
table. The reason for this, are the sorted symbols. Once a symbol is found, the next
symbol in the module must be further down the symbol table and there is no need to
restart the search. The linking process itself scales with the size of the module. This is
mainly due to the slow access to flash. Half the time is spent writing to internal flash.

5.2 Stateful Migration

The migration support is responsible for 2 of the 7KB needed for the whole framework.
It includes all functions required for the serialization of modules.

We analyzed the migration of the mod aggr-module. It has 8 B of data, one pointer
and 10B allocated from heap, which totals in 20byte that must be migrated. The
size of the serialized data was 44 byte. This is mainly caused by static overhead, like
the individual sizes and addresses of the different memory sections (6 × 4B), the
total number of dynamically allocated memory blocks and registered pointers. The
only additional overhead is 4 byte (address and size) for every additional dynamically
allocated memory block.

A single-hop migration takes about 1 s. Almost all of the time is spent due to the
network stack: To save power, each node has a short listening period every 300ms.
Also, the route is not previously known to the mesh network stack and has to be
found first. Even under optimal conditions (route known, and the target listening), the
migration would take at least 19ms. Thereby, less then 2ms is caused by our migration
support. The serialization itself takes about 0.4ms and the deserialization – including
the allocation of additional memory and adjustment of the pointer – takes 0.6ms.

We also compared our approach to the one suggested by [12]: Their framework
provides a buffer and the module does the serialization by itself. We implement a very
simple serialization using memcopy() and all variables placed in a struct without any
error handling. This approach adds another 183B to the mod aggr Minilink module
(+208B in the case of ELF).

Table 3. Comparison of the time to build the address index and linking for different modules

Module hello world mod agg mod agg + rudolph2
Symbols 1 14 27
Last symb. puts rimeaddr copy watchdog periodic
Match symb. 55ms 82ms 114ms
Size (text + data) 78B 910 B 2230 B
Relocations 5 (12.8 %) 48 (10.6 %) 119 (10.7 %)
Link 5ms 67ms 159ms
Bytes/ms 14.4 13.6 14.0

74 M. Strübe et al.

6 Related Work

We approach related work by examining how code modules are deployed and updated
in WSNs and then investigate systems supporting state migration.
Loading Code at Runtime. Using a Virtual Machine (VM) is one of the most flexible
solutions for code deployment as it typically employs some form of high-level byte
code that is less machine and OS dependent than plain native code. Furthermore, due to
its higher expressiveness, the code size of a module is usually smaller and consequently
less data needs to be transferred. In consequence, several VMs are available for sensor
networks, e.g., Maté [9] and VM* [23]. In [8], VMs are compared against runtime
linking of native modules, showing that installing a module using a VM can be more
efficient than linking in terms of integration time, but offers less performance at runtime.
Our work reduces the downsides of runtime linking while retaining the performance
offered by native execution.

SOS [6] is one of the first WSN-class OSs that has native support for modules. Thus,
single modules can be added without affecting the rest of the system. A limited number
of kernel functions are exported using a jump table. All other function addresses are
resolved at runtime using string comparison and a lookup table. Once resolved, function
addresses are cached to speed up calling functions. Still, this entails a runtime overhead
for every function call. Further on, all strings that are needed to resolve function calls
must be saved in the internal flash.

Dunkels et al. [8] have built a runtime linker for ELF-based modules on top of
the sensor OS Contiki. However, the ELF binary format is rather resource consuming.
The symbol table for a standard Contiki kernel requires about 5KB of flash memory
and an ELF-module is normally more than twice the size of the resulting binary file.
Accounting these facts, Dunkels et al. proposed an ELF inspired binary format called
CELF, which is optimized for 16 bit microcontrollers. Dong et al. [24] also proposed
an optimizing the ELF format that kept the basic design. However, they pre-fill the
placeholders of a module with concrete addresses. This combines the advantages of
pre- and runtime linking: If the correct kernel is installed, the module can be copied
without linking; otherwise, the module can still be linked.

Based on the BTnut3, we have built a host-based linker, which generates binary
modules that are custom-tailored for a remote node [7]. This solution misses the
flexibility provided by a node-based linker. However, only the final code has to be
transferred, which further on can be directly executed. In sum, none of the presented
approaches offers such a highly optimized binary layout for native modules like
Minilink and a tailored memory-efficient linking process.
Stateful Migration. Chien-Liang et al. [13] proposed system support enabling the
mobile agent paradigm in sensor networks. This was achieved using a VM concept with
a dedicated instruction set that is based on Maté [9]. This way, code can be immediately
executed; and it is portable so it can be shared between different nodes. However, this
higher layer of abstraction adds a considerable run time overhead.

The closest related work to our knowledge is UbiMASS [12]. UbiMASS is a
framework for Contiki OS supporting migration of agents at runtime – something, that

3 http://www.btnode.ethz.ch/

Stateful Mobile Modules for Sensor Networks 75

can easily implemented with our approach. We believe our approach is superior in three
main aspects: Firstly, the Contiki linker, which’s file format we have proven inefficient,
is used. Secondly, the developer of the agent must do the serialization of data. Meaning,
instead of just marking each variable as migratable it must be passed to special function
and recovered manually after migration. Thirdly, UbiMASS only supports the migration
of integer and string variables, while we can migrate any data type and even pointers if
there were made known to the framework.

7 Conclusion

In-network processing of sensor data is a powerful technique to enable long-term
monitoring using WSNs. However, changing runtime-conditions demand for flexible
state-preserving relocation of pre-processing modules to enable continuous monitoring.
We presented a resource-efficient solution based on stateful mobile modules. At its
core, we provide a size-optimized binary format and a memory-efficient linking process
together with runtime support to migrate statically allocated variables as well as
dynamically allocated memory. Finally, stateful mobile modules can be seen as a
novel approach, which give application programmers the convenience to implement
migration-enabled stateful applications using a simple API.

References

1. Hart, J.K., Martinez, K.: Environmental sensor networks: A revolution in the earth system
science? Earth-Science Reviews 78, 177–191 (2006)

2. Gehrke, J., Madden, S.: Query Processing in Sensor Networks. IEEE Pervasive Computing 3,
46–55 (2004)

3. Edara, P., Limaye, A., Ramamritham, K.: Asynchronous in-network prediction: Efficient
aggregation in sensor networks. ACM Transactions on Sensor Networks (TOSN) 4, 1–34
(2008)

4. Zhu, Y., Rundensteiner, E., Heineman, G.: Dynamic Plan Migration for Continuous Queries
over Data Streams. In: ACM SIGMOD Conference 2004, Paris, France, pp. 431–442 (2004)

5. Jeong, J., Culler, D.: Incremental Network Programming for Wireless Sensors. In: 1st IEEE
International Conference on Sensor and Ad hoc Communications and Networks (IEEE
SECON 2004), Santa Clara, CA, USA (2004)

6. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system for
sensor nodes. In: Proceedings of th 3rd ACM International Conference on Mobile Systems,
Applications, and Services (ACM MobiSys 2005), Seattle, WA, USA, pp. 163–176 (2005)

7. Dressler, F., Strübe, M., Kapitza, R., Schröder-Preikschat, W.: Dynamic Software Man-
agement on BTnode Sensors. In: 4th IEEE/ACM International Conference on Distributed
Computing in Sensor Systems (IEEE/ACM DCOSS 2008): IEEE/ACM International
Workshop on Sensor Network Engineering (IWSNE 2008), pp. 9–14 (2008)

8. Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogramming
wireless sensor networks. In: 4th ACM Conference on Embedded Networked Sensor Systems
(SenSys 2006), Boulder, CO, pp. 15–28 (2006)

9. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. ACM SIGOPS
Operating Systems Review 36, 85–95 (2002)

76 M. Strübe et al.

10. Brouwers, N., Langendoen, K., Corke, P.: Darjeeling, a feature-rich vm for the resource
poor. In: 7th ACM Conference on Embedded Networked Sensor Systems (SenSys 2009),
pp. 169–182. ACM, New York (2009)

11. Felser, M., Kapitza, R., Kleinöder, J., Schröder-Preikschat, W.: Dynamic Software Update
of Resource-Constrained Distributed EmbeddedSystems. In: IFIP International Embedded
Systems Symposium (IESS 2007), Irvine, CA, USA, vol. 231, pp. 387–400 (2007)

12. Bagci, F., Wolf, J., Ungerer, T., Bagherzadeh, N.: Mobile Agents for Wireless Sensor
Networks. In: International Conference on Wireless Networks (ICWN 2009), Las Vegas, NV,
USA (2009)

13. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of adaptive
wireless sensor network applications. In: 25th IEEE International Conference on Distributed
Computing Systems (ICDCS 2005), Columbus, OH, USA, pp. 653–662 (2005)

14. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for
tiny networked sensors. In: 1st IEEE Workshop on Embedded Networked Sensors (Emnets-
I), Tampa, FL (2004)

15. Dressler, F., Kapitza, R., Daum, M., Strübe, M., Schröder-Preikschat, W., German, R., Meyer-
Wegener, K.: Query Processing and System-Level Support for Runtime-Adaptive Sensor
Networks. In: 16. GI/ITG Fachtagung Kommunikation in Verteilten Systemen (KiVS 2009),
Kassel, Germany, pp. 55–66. Springer, Heidelberg (2009)

16. TIS Committee: Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification (1995)

17. Fuggetta, A., Picco, G., Vigna, G.: Understanding code mobility. IEEE Transactions on
Software Engineering 24, 342–361 (1998)

18. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying event-driven
programming of memory-constrained embedded systems. In: 4th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO (2006)

19. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level simulation in cooja.
In: European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft,
The Netherlands (2007)

20. Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.: Mspsim – an extensible simulator
for msp430-equipped sensor boards. In: European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The Netherlands (2007)

21. Dunkels, A.: Rime — a lightweight layered communication stack for sensor networks. In:
European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft,
The Netherlands (2007)

22. Tsiftes, N., Dunkels, A., He, Z., Voigt, T.: Enabling Large-Scale Storage in Sensor Networks
with the Coffee File System. In: 8th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN 2009), San Francisco, USA (2009)

23. Koshy, J., Pandey, R.: Vmstar: synthesizing scalable runtime environments for sensor
networks. In: 3rd International Conference on Embedded Networked Sensor Systems
(SenSys 2005), San Diego, CA, USA, pp. 243–254 (2005)

24. Dong, W., Chen, C., Lie, X., Bu, J., Liu, Y.: Dynamic Linking and Loading in Networked
Embedded Systems. In: 6th IEEE International Conference on Mobile Ad Hoc and Sensor
Systems 2009 (MASS 2009), Macau SAR (2009)

Design and Implementation of a Robust Sensor
Data Fusion System for Unknown Signals

Younghun Kim, Thomas Schmid, and Mani B. Srivastava

Electrical Engineering Department
University of California, Los Angeles

{kimyh,thomas.schmid,mbs}@ucla.edu
http://nesl.ee.ucla.edu

Abstract. In this work, we present a robust sensor fusion system for
exploratory data collection, exploiting the spatial redundancy in sen-
sor networks. Unlike prior work, our system design criteria considers
a heterogeneous correlated noise model and packet loss, but no prior
knowledge of signal characteristics. The former two assumptions are both
common signal degradation sources in sensor networks, while the latter
allows exploratory data collection of unknown signals. Through both a
numerical example and an experimental study on a large military site,
we show that our proposed system reduces the noise in an unknown sig-
nal by 58.2% better than a comparable algorithm.

Keywords: Exploratory Data Collection, Robust Distributed Sensing,
Data Fusion.

1 Introduction

Battery powered wireless sensing systems allow us to observe unknown signals in a
large field of interest. A popular practice to collect information about the unknown
signals involves (1) deploying a set of wireless sensor nodes, (2) collecting data, and
(3) performing data analysis. This approach is particularly useful in two scenarios:
exploratory sensing applications where no prior knowledge about the signal exists,
and collecting training data for a sensing system prior to actual deployment. De-
signing an event detector using hypothesis testing is a good example. To design
the detector, event signatures, such as statistical significance, signal energy, band-
width, and so forth, need to be identified prior to the final system deployment [13].
Another example is the observation of large scale natural phenomena. Researchers
often need unbiased signals to apply their domain expertise or to study the phe-
nomena itself. Filter design is yet another example where one first needs to identify
the bandwidth and noise characteristics of the signal1.

In small scale experiments, the initial data gathering task is usually performed
in a controlled environment where the necessary signal characteristics can easily

1 When signals of interest are well understood, one can use models. Instead, our system
is used to build models for the unknown.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 77–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://nesl.ee.ucla.edu

78 Y. Kim, T. Schmid, and M.B. Srivastava

Fig. 1. Sensors suffer from different levels of noise (left). Data loss due to network
congestion decreases signal integrity further (middle). The objective of our system
design is to minimize the measurement noise and to cope with packet losses without
knowing the characteristics of the signal (right).

be identified (we call this the sensor calibration, system training, and/or sys-
tem identification phase). Unfortunately, this becomes very difficult at larger
scales. Moreover, it is well understood that networked sensing systems suffer
significantly from two major sources of signal degradation: packet loss due to
congestion and unreliable communication links, and measurement noise due to
low quality sensors.

Common solutions to this initial data gathering use well-defined signal and
noise models in order to apply an effective filter. However, this modeling often
introduces signal bias, while successful signal characterization needs unbiased
estimation. Therefore, popular signal and noise models are to be avoided as
not to add bias to the sensing system. For example, unless we pick the right
bandwidth, an assumption of a slow varying signal compromises the integrity
of the system as it cuts off high frequency components. Similarly, the popular
Gauss-Markov assumption is not desired as collocated sensors can be subject to
similar noise sources, resulting in correlated noise characteristics. Therefore, it is
often desirable to have an initial data gathering system an unbiased distributed
sensing system such that we can later on use more sophisticated algorithms
[3,7,20,21,22].

This paper describes a sensing architecture for exploratory data collection and
develops a robust sensor information fusion method (Figure 1). Our method ex-
ploits the added redundancy in a large scale sensor network. Our algorithm fuses
the information of collocated sensors monitoring the same signal of interest by
solving an optimization problem. The result is an unbiased, robust signal. Unlike
other prior work, our proposed architecture tolerates heterogeneous correlated
noise and missing data. We evaluate our system numerically, as well as with a
real data set collected during a large military field experiment.

2 Exploratory Sensing System Design

Figure 2 depicts the sensing system architecture consisting of two tiers of nodes
and a database server. The sensor nodes consist of several sensing clusters. The
nodes in a cluster observe the same signal of interest, are time synchronized, and

Robust Sensor Data Fusion System 79

Server Class

Higher Tier

Lower Tier

Sensing Cluster

Fig. 2. Tiered Sensing Architecture. Fusing the data from each sensing cluster provides
a more robust and reliable signal.

send their samples to a higher tier node also part of the cluster. The higher tier
node is responsible for fusing the signals from the sensing cluster. The collocation
of the sensor nodes within a sensing cluster adds redundancy and robustness
towards measurement noise and data loss. The sensing cluster and the higher
tier node is thus the basic sensing entity2. The next paragraphs describe the
sensing and fusion model for this basic sensing unit; although the model looks
like a centralized fusion mechanism, it applies to each small sensing cluster, and
not over the whole network.

Let us define yi(t) as the measurement from a node in a sensing cluster.

yi(t) = κi(t) (αis(t) + βi + ni(t)) , (1)

where yi is the observation of the i-th sensor, κi is a boolean random variable
indicating missing data with probability P (κi = 0) = pi, αi is a scaling factor,
βi is an offset error, ni is zero-mean additive noise (not necessarily Gaussian),
and t is a discrete time variable. This sensing model is a generalization of the
sensing model yi(t) = s(t) + ni(t) used in [7, 20, 21, 22] adding scale αi and
offset βi representing the effect of uncalibrated sensors, and κi(t) to capture
network data loss. It thus allows to have a more complex noise model, unlike the
homogeneous noise model assumed in earlier work [3,7, 15, 16].

Balzano et al. [1] showed that the scale αi and the offset βi can be estimated
with small manual intervention. To simplify notation, but without loss of gener-
ality, we can set the observation as 3

yi = κi(s + ni). (2)

For succinct notation, we omit the time constant. Note that the implication of
the normalization for αi is that the noise characteristics change, i.e. the noise
covariance matrix can be an arbitrary positive definite matrix. The goal of our
2 Several sensing clusters can share the same higher tier node. But the higher tier

node fuses each cluster individually.
3 This changes the noise characteristics, which we will take into account by using its

covariance matrix. Errors in this process, however, would add bias to the system,
which is found to be minimal in our experiment. Nevertheless, further investigation
at coping with the bias issue is of future interest.

80 Y. Kim, T. Schmid, and M.B. Srivastava

fusion algorithm is to estimate ŝ(t) ∼ s(t) using the set of observations Yobs =
{yi(t) : i ∈ I}, where I is the node index set.

2.1 Fusion Mechanism Design

We consider the simple problem of a robust sensor fusion mechanism where we
want to estimate the true signal s. Our problem is to find a function f(Yobs)
that minimizes the error variance and mean value of s,

min
f

V ar(s − ŝ|Yobs)

s.t. E(ŝ|Yobs) = s
where f(Yobs) = ŝ : Estimation of s.

(3)

To motivate this particular problem, we want to note that the second order
moments fully characterize Gaussian processes and are often sufficient to char-
acterize stochastic processes that are not heavy tailed (e.g. the second moments
exist) [12]. For example, even if the error distribution is not Gaussian, the mean
and variance of a signal represent the quality of estimation (also known as the
empirical risk minimization [4]).

Since problem (3) is an implicit problem, we cannot solve it without casting
it into an explicit form. We follow steps to perform this transformation 4.

We choose to use the best linear unbiased filter form f for a set of observations
Yobs = {yi : i ∈ I} because it achieves the minimum error variance [10],

f(Yobs) = ŝ =
N∑

i=1

wiyi. (4)

We now follow three steps to develop a new mechanism that selects the optimal
weights that tolerates both missing packets and correlated noise.

I. Optimal Weighting. First, let us assume that we do not have missing data,
i.e. P (κi = 0) = 0, which we will generalize later on. Thus, the observation
becomes

yi = s + ni. (5)

We then want to estimate the signal, s, by combining all the yis. A simple, yet
efficient method to estimate s is to average all the observations, i.e., 1

N

∑N
i=1 yi,

regardless of the noise characteristics. In fact, many consensus algorithms have
explored efficient methods for this particular problem [3, 6, 22]. However, we
cannot use averaging because collocated sensors have heterogeneous correlated
noise, i.e. it’s covariance matrix is not necessarily a diagonal matrix.

Therefore, we formulate a different problem where we choose the optimal
weights wi given a correlated heterogeneous covariance matrix. To determine

4 This follows Best Linear Unbiased Estimators (BLUE) [10] except that the steps
explicitly incorporate missing data and non-homogeneous noise cases.

Robust Sensor Data Fusion System 81

each sensor’s weight, we first set up a metric that captures the quality of the
estimation. The signal quality can be described by using different metrics, e.g.
signal-to-noise ratio, error variance, asymptotic stability, etc. We chose to use a
well established metric, the error variance5.

Let ε be the estimation error defined as ε
def
= s − ŝ. It follows that

ε = s − ŝ

= s −
∑N

i=1 wiyi

= s −
∑N

i=1 wis −
∑N

i=1 wini

= −
∑N

i=1 wini

(6)

Now, the second order moments of the error becomes

V ar(s − ŝ|Yobs) = V ar(−
N∑

i=1

ni) = wT Σw, (7)

where Σ is the covariance matrix of n = [n1n2...nN]T , and w = [w1w2...wN]T .
Now, the following problem chooses the optimal w such that the error variance

is minimized.
min
w

wT Σw

s.t.
∑N

i=1 wi = 1.
(8)

Note that the constraint
∑N

i=1 wi = 1 ensures E(ŝ|Yobs) = s.

II. Coping with Missing Data. Now we shall generalize (8) to capture miss-
ing data. Missing or lost data is a common artifact in wireless sensor networks.
Causes range from RF interference to sensor malfunction. Additionally, retrans-
mission might not be feasible because it introduces an unpredictable packet delay
and increases the energy consumption.

However, while data loss is unpredictable, we can detect it at the fusion center
with simple measures such as message timestamps or sequence numbers. In other
words, in yi = κi(s + ni), κi is a random Boolean variable indicating packet
loss with a probability P (κi = 0) = pi. Nevertheless, we know that κi can be
determined by the network layer.

The implication of this deterministic behavior of missing data is that the
fusion node can dynamically tune the fusion parameters according to packet
loss dynamics. For example, if the k-th sensor fails to transmit its packet, the
solution can be formulated as the following optimization problem:

min
wI\{k}

wT
I\{k}ΣI\{k}wI\{k}

s.t.
∑

i∈I\{k} wi = 1,
(9)

where I is the sensor index set, wI\{k} is a vector of wi excluding wk, ΣI\{k} is
a covariance matrix of nis except for nk (i.e. eliminate the k-th column and row

5 Another interpretation of the error variance is the empirical risk.

82 Y. Kim, T. Schmid, and M.B. Srivastava

of Σ). The solution to Equation (9) is the optimal weight in case the k-th data
sample is missing.

We define the following terminology to generalize this idea: Let Γ ⊂ I be a set
of indices of missing data, wI\Γ be a vector of wi, where i ∈ I\Γ , and ΣI\Γ be
the covariance matrix of a vector of ni’s, where i ∈ I\Γ . Using this terminology,
we can rewrite the optimization problem as

min
wI\Γ

wT
I\ΓΣI\ΓwI\Γ

s.t.
∑

i∈I\Γ wi = 1
(10)

The weight calculated from Equation (10) is the optimal weight vector for the
measurements that are available at a given instance.

III. Robust Estimation via Quadratic Program. Let us consider the prob-
lem of a time sequence of missing data. Let Γ (t) ⊂ I be the set of indices of
missing data, where t is the discrete time index. The Quadratic Program Equa-
tion (11) is a time-varying sequence as the sequence of the set of missing data
Γ (t)6 changes over time. Therefore, we have

min
wI\Γ(t)

wT
I\Γ (t)ΣI\Γ (t)wI\Γ (t)

s.t.
∑

i∈I\Γ (t) wi = 1.
(11)

Analytic Solution Sequence We can solve (11) analytically and show that the
solution to this time-varying quadratic program is the optimal spatial filter in
the mean square sense.

Equation (11) is an equality constraint convex quadratic program. We want
to find a solution that satisfies the Karush-Kuhn-Tucker (KKT) conditions for
optimality [4]. The KKT conditions for Equation (11) are

1T w∗
I\Γ(t) = 1

ΣI\Γ (t)w∗
I\Γ(t) + 1ν∗ = 0,

(12)

where ν∗ is a Lagrange multiplier. This is equivalent to[
ΣI\Γ (t) 1

1T 0

] [
w∗

I\Γ(t)
ν∗

]
=

[
0
1

]
.7 (13)

By solving this set of (|I\Γ (t)|+1) linear equations the fusion mechanism obtains
the optimal weights. The left matrix has a non-trivial determinant, since[

ΣI\Γ (t) 1
1T 0

]
=

[
ΣI\Γ (t) 0

1T 1

] [
I Σ−1

I\Γ (t)1
0T −1T Σ−1

I\Γ (t)1

]
(14)

6 Γ (t) can be seen as a realization of a stochastic process of intermittent communica-
tion failure.

7 1 and 0 are column vectors of 1 and 0 in an appropriate dimension, whereas 1 and
0 are scalar.

Robust Sensor Data Fusion System 83

and det(ΣI\Γ (t))det(−1T Σ−1
I\Γ (t)1) �= 0. It is therefore always invertible as the

covariance matrix is positive definite, and thus the optimal weight vector exists.
We can interpret this analytic solution as following. By observing the net-

work dynamics, the fusion node dynamically tunes the weights for each sensor
in the cluster to achieve the minimum error variance. The implementation is
simple because only a matrix inversion and a multiplication are needed, whose
computational complexity is O(n3), where n is the number of nodes if we use
the Gauss-Jordan elimination, or it can be O(n2.376) if we use the Coppersmith-
Winograd algorithm [5].

3 Evaluation

We show two evaluation studies using a simulation result and a large-field ex-
perimental data set. In the simulation, we pick a simple signal that has both low
frequency data and an impulse train emulating ambient signal and a sequence of
extreme events. We show that our fusion mechanism removes noise to a certain
level without compromising any signal characteristics.

In the field experiment on a large military site, we evaluated two different
sensor types: humidity and magnetic field sensors. The goal of this data collec-
tion is to identify the characteristics of the signals of both natural phenomena
and an event. The humidity sensor is an example sensing modality of natural
phenomena. The magnetic sensor is used to identify the event signatures from a
moving military tank. This experiment shows how our algorithm maintains the
signal of interest, while maintaining resilience to measurement noise and packet
loss.

3.1 Synthetic Signal Evaluation

Figure 3a represents our synthetic sample signal, which is the sum of a low-
frequency sinusoidal wave and a pulse train. The pulse train represents a sporadic
event of interest and the sinusoidal wave represents ambient signal changes.

We use nine sensors with a randomly chosen covariance noise matrix to evalu-
ate the system. Packet loss rate for each sensor node is set to 5%, and we assume
that packet loss is independent 8. Thus the probability of not getting any packets
is 0.059, which means that the chance of not getting data from all the sensors
in the numerical evaluation is extremely small.

Figure 3c represents the sampled data from the best sensor whose error vari-
ance is minimum among other sensors, i.e. the sensor with the smallest noise
level within the sensing cluster, corresponding to the base line. We compare the
performance of our fuser with three different filtering schemes: a conventional
consensus algorithm, a steady-state Kalman filter, and a low-pass filter. Figure
3e shows the conventional consensus algorithm over the nine sensors [3]. We
8 Radio congestion can be more complicated [24]. While the simulation uses the simple

model, our experimental data set shows our proposed architecture works in a real
environment. We evaluate the implication of this later in this section.

84 Y. Kim, T. Schmid, and M.B. Srivastava

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−60

−40

−20

0

20

40

60

80
Original Signal

Time[s]

A
D

C

(a) Original Signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−60

−40

−20

0

20

40

60

80
Our Proposed Algorithm

Time[s]

A
D

C

(b) Our proposed fusion algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−60

−40

−20

0

20

40

60

80
Best Single Sensor

Time[s]

A
D

C

(c) Single Best Sensor

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−60

−40

−20

0

20

40

60

80
Low Pass Filtering

Time[s]

A
D

C

(d) Low Pass Filtering. This filtering re-
moves the events.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−60

−40

−20

0

20

40

60

80
Conventional Consensus Algorithm

Time[s]

A
D

C

(e) Conventional Consensus Algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−60

−40

−20

0

20

40

60

80
Kalman Filter: Steady State

Time[s]

A
D

C

(f) Steady State Kalman Filter. The
Kalman Filter removes the event signa-
tures.

Fig. 3. Synthetic Signal evaluation. While some filters can easily reproduce the slow-
varying signals, they remove the spikes.

can see that the conventional consensus algorithm significantly suppresses the
noise if we compare the output with the original signal shown in Figure 3c. The
problem is that some of the sensors have much more noise than the others, and
the bad quality sensors and the correlated noise prevent the consensus algo-
rithm from suppressing the noise further. In comparison, our proposed system

Robust Sensor Data Fusion System 85

Table 1. Performance Comparison

Methods Error STD Improvement(%)
Best Sensor 4.07 0(Base)
Our System 0.79 80

Normal Consensus 1.89 53
Kalman Filter 6.09 -50
Low Pass Filter 7.07 -74

rejects noise more efficiently (Figure 3b). This is obtained because the weight
associated with each sensor is optimized for the correlated noise characteristics,
thus suppressing the measurement noise more efficiently from noisier sensors.
In addition, notice that the event at t=1850s is much clearer in our proposed
algorithm (Figure 3b) than in the conventional consensus algorithm (Figure 3e).
This is because the conventional consensus algorithm is not made to deal with
correlated heterogeneous noise while ours is specifically designed for it.

Note that the traditional approaches work well for the slow varying signals
including a good noise level reduction. However, they also filter out most of the
events, thus rendering the signals unusable for training of an event detection
algorithm. For example, Figure 3d and 3f show the signals from a low pass filter
and a discrete Kalman Filter realization. The low pass filtering is able to remove
most of the measurement noise, though it fails to recover the spikes, which is
to be expected. The optimal Kalman filter reconstructs the low frequency signal
even better, but it too removes the events. Unless we know the bandwidth of the
signal ahead of filtering, we can not improve the situation. Thus, our approach
can reduce measurement noise and give a good idea of the signal bandwidth,
such that other filters can be run on the data in a second pass.

Table 1 summarizes the performance for each algorithm. (-) improvement indi-
cates that the performance has become worse. This is partly due to the low-pass
filter changing the phase of the signal. The conventional consensus algorithm has
a performance increase of 53% from the base, while our approach has a perfor-
mance increase of 80%. The performance gain of our proposed algorithm from
the normal consensus algorithm is 58.2% (Error STD from 1.89 to 0.79). This is
because the sensors with increased noise contribute equally to the fusion mecha-
nism in the normal consensus mechanism, whereas our mechanism accounts for
the sensing quality when computing the weights.

3.2 Field Experiment

Experimental Setup. Figure 4a depicts the field sensor deployment in a
108, 000m2 military field, Southern Maryland, USA. The system consists of
five sensing groups. Each group includes a cluster head and nine mote class
nodes. The sensing modalities included magnetic, temperature, light intensity,
acoustics, and humidity. For each sensing modality, we used three collocated
nodes that synchronously sample the sensors. The cluster head runs a custom
embedded Linux software on a Gumstix VerdexTM . It has a long-range Wi-Fi

86 Y. Kim, T. Schmid, and M.B. Srivastava

160m

(a)

Cluster Head

Sensing Cluster
Military Tank passing by Sensing Cluster

(b)

Fig. 4. Field Sensor Deployment Floor Plan: Each colored bubble indicates a sensing
cluster (a). Collocated sensor nodes sample the same phenomena. In this example, the
goal was to identify signals from a military tank driving by the sensors (b).

connection to a local server. Two base station nodes, which collect data from
remote sensor nodes, are connected to each cluster head. Each cluster head
was responsible to collect the data from three individual clusters. Each clus-
ter consists of three sensor nodes that synchronously sample the same physical
phenomena.

We used an extension of the TPSN Synchronization Protocol [9] for inter-
node time synchronization, achieving < 2ms time-synchronization accuracy. The
cluster head forwarded the collected data to a central server via a long range
WiFi connection. The central server was equipped with a high-gain sectorized
antenna to achieve the long distance connections. The physical distance between
the local server and each cluster head varied between 190m to 410m. The distance
between the sensor nodes and their respective cluster head varied between 2m
to 50m. The central server stored the data in a custom database front-end.

By having three identical collocated sensor nodes that synchronously sample
the physical phenomena, we can employ our fusion mechanism to achieve a better
signal-to-noise ratio and resilience to packet losses (Figure 4b).

Humidity Sensor Data. Because of windy conditions and the direct sun ex-
posure of the sensors, the ambient sensors exhibit an interesting noise character-
istic. The sampling interval for the humidity sensor was 30 seconds, and three
identical sensors at each sensing spot (Fig. 4a) sampled their sensors at the same
time. Figure 5a shows the noisy behavior from a humidity sensor. By applying
the proposed fuser, we can reduce the noise (top graph in Figure 5a).

However, a simple Kalman Filter realization can provide a better quality of in-
formation as such natural phenomena are slow-varying, and the basic knowledge
of the weather patterns is useful for their design. As we can see in Figure 5a, the
Kalman filtered signal gives a good understanding of the field data. However, the
Kalman Filtering can be tuned even better knowing the specific characteristics
of the weather conditions in the field. For example, if we fine-tune the Kalman
Filter by using the data from our robust fuser, an even better signal-to-noise
ratio (23% improvement) can be achieved. This shows the utility of our robust
fuser as a first filter of exploratory data gathering.

Robust Sensor Data Fusion System 87

Fig. 5. For slow-varying signals, the Kalman filter works well even if the modeling is
not precise (a). This shows that our proposed algorithm suppresses measurement noise,
while preserving the event signature from the tank (b). The Kalman filter effectively
removes measurement noise but it also filters out the event signature (bottom of (b)).

Magnetic Sensor Data. For identifying unknown event signatures, our system
is much more valuable as we do not have prior knowledge of the signature. In this
data, the sampling rate for the magnetic sensors was 1Hz, which is at the limit
for detecting a military tank. Three identical magnetometers are synchronized
and sample the magnetic field at the same time. However, unlike ambient tem-
perature or humidity, the movement of a vehicle can be sudden, and therefore we
don’t want to remove this event with improper filtering. Figure 5b illustrates the
case of a tank passing our sensors cluster. Our proposed algorithm minimizes the
measurement noise while maintaining the event signature. As we can see from
the bottom plot of Figure 5b, it is difficult to design a good Kalman filter as
the dynamics of the signal is not known. As a result, it filters out the signature
of the vehicle passing event, which means the inadequately designed filter could
fail to meet the application requirement.

3.3 Empirical Study on a Redundancy and Performance Trade-Off

A valid practical question is how many sensors are necessary in order to optimize
the outcome of the fuser performance? If the communication channel had infinite
capacity, adding an infinite number of sensors would become better and better.

In reality, however, adding more sensor nodes congests the wireless channel.
Therefore, there is a break-even point where more sensors marginally increase
the performance. Although this is not the main focus of this paper, we conduct
an additional experiment on the platform deployed in the field experiment to
investigate the trade-offs.

88 Y. Kim, T. Schmid, and M.B. Srivastava

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Number of Sensors

N
or

m
al

iz
ed

 E
rr

or
 V

ar
ia

nc
e

Normalized Performance Improvement

Fig. 6. Trade-off between sensor redundancy and channel congestion: With more than
three sensors, packet loss due to congestion degrades any possible gain

Each sensor node was sampling light intensity at 35Hz and sent the samples
over the radio to the cluster head. For each experiment we change the number
of nodes and compute the normalized noise variance after the fusion mechanism
is applied to the data. Figure 6 illustrates the performance improvements with
an increasing number of sensors. The noise level decreases with the increasing
number of nodes. But with more than three sensors, packet loss due to congestion
degrades any possible gain. Note that the optimal number of nodes changes
depending on the network traffic. We leave a further investigation of this problem
to future work.

4 Related Work

While our paper tackles a specific sensing problem, it is part of a larger class
of information fusion problems in sensor networks. Information fusion in sensor
networks has a broad context varying from event detection to high-level contex-
tual information inference. For a good summary, Nakamura et al. [14] provide a
comprehensive collection of information fusion mechanisms in sensor networks.

In the context of robust signal fusion, control theory is concerned highly with
reliable estimation and detection. The theory usually exploits the laws of prob-
ability to compute a state vector from a sequence of measurement vectors that
are corrupted by measurement noise. In control theory, many state estimators [8]
make use of well-defined system dynamic models. By using the systems dynamic
model, one can design a state observer. Recently, Sinopoli et al. [19] developed an
extension to the Kalman Filter that estimates states with intermittent observa-
tion loss. They show the conditions under which the estimation error covariance
is bounded. It uses a state-space representation to model a dynamic system, and
designs a robust estimation method. Our system is different in that we do not
use any knowledge about the dynamics of the system.

The average consensus algorithm [3] has been widely used for aggregation in
sensor networks. Several publications [7, 20, 21, 22] developed different versions

Robust Sensor Data Fusion System 89

of the average consensus algorithm. The basic idea is to average all the sensor
readings from multiple sensor nodes to achieve a better quality of signal from
noisy measurements. Many papers have addressed the development of efficient
distributed algorithms. For example, the Gossip algorithm [3] has received at-
tention in sensor network applications, because of its simplicity and robustness
in noisy and uncertain environments. In a similar context, Speranzon et al. [20]
have proposed an adaptive consensus algorithm. Dimakis et al. [6] have devel-
oped an efficient method that minimizes the number of packet exchanges for the
distributed consensus mechanism by exploiting a geographical topology among
sensor nodes. More recently, Xiao et al. [22,23] have developed a distributed con-
sensus algorithm that estimates the global state information under a network
topology. All these methods deal more about in-network signal processing while
our system is used to understand the unknown signals first.

Krause et al. [11] developed a spatial interpolation method that minimizes
the number of sensors to cover a field of interest. They use the fact that the
temperature field change in a building is a Gaussian process where values be-
tween sensor nodes can be approximated. Their work intended to minimize the
number of sensors and thus redundancy, while our approach explicitly makes use
of redundancy for robust data fusion.

Rao et al. [16, 17] discuss a fusion algorithm that combines information from
various sensors to reliably detect events. They show that a simple fusion algo-
rithm performs better than a single expensive sensor. Our approach is different
because their algorithm uses a set of wired sensors and an i.i.d. training sample
hence does not incorporate the loss of data packets nor identify unknown signals.

5 Conclusion

We proposed a distributed sensing architecture and fusion mechanism that fuses
synchronous samples from collocated sensor nodes. By exploiting spatial corre-
lation and redundancy, our system minimizes the second order moments of mea-
surement noise in the presence of packet losses. Unlike prior work, our fusion
design does not assume any temporal signal characteristics, an important prop-
erty for exploratory data collection and sensing system training, where the ob-
served signals are unknown. Additionally, we use a heterogeneous noise model to
account for different and cross-correlated noise characteristics across distributed
sensors in the tiered sensing architecture. The solution is simple (Equation (13))
consisting of a matrix inversion and multiplication. Both simulation and experi-
mental data show that our system achieves these properties well under significant
noise and unreliable communication environments.

Acknowledgments

The authors would like to thank Zainul M. Charbiwala and Rahul Balani for
their help in the field experiment. This research was sponsored by US Army
Research laboratory and the UK Ministry of Defense and was Normalized Error

90 Y. Kim, T. Schmid, and M.B. Srivastava

Variance accomplished under Agreement Number W911NF-06-3-0001.The views
and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the U.S. Government, the UK Ministry of
Defense, or the UK Government. The U.S. and UK Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References

1. Balzano, L., Nowak, R.: Blind calibration of sensor networks. In: IPSN (2007)
2. Bellman, R.: Dynamic Programming. Dover Publications, Mineola (2003)
3. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analysis

and applications. In: IEEE INFOCOM (2005)
4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Press, Cambridge

(2004)
5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation 9 (1990)
6. Dimakis, A., Sarwate, A., Wainwright, M.: Geographic gossip: efficient aggregation

for sensor networks. In: IPSN (2006)
7. Fischione, C., Speranzon, A., Johansson, K.H., Sangiovanni-Vincentelli, A.:

Peer-to-peer estimation over wireless sensor networks via lipschitz optimization.
In: IPSN (2009)

8. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic
Systems. Prentice-Hall, Englewood Cliffs (2002)

9. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor net-
works. In: SenSys (2003)

10. Kay, S.M.: Fundamentals of Statistical Signal Processing. Prentice-Hall, Englewood
Cliffs (1993)

11. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements:
maximizing information while minimizing communication cost. In: IPSN (2006)

12. Mallat, S., Papanicolaou, G., Zhang, Z., Mallat, S.E.: Adaptive covariance estima-
tion of locally stationary processes. Ann. Statist. 26, 1–47 (1995)

13. McDonough, R.N., Whalen, A.: Detection of Signals in Noise, 2nd edn. Academic
Press, London (1995)

14. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless
sensor networks: Methods, models and classifications. ACM Comput. Surv. 39(3),
9 (2007)

15. Olfati-Saber, R., Shamma, J.: Consensus filters for sensor networks and distributed
sensor fusion. In: IEEE CDC-ECC (2005)

16. Rao, N.: On fusers that perform better than best sensor. In: IEEE Trans. on PAMI
(2001)

17. Rao, N., Oblow, E., Glover, C., Liepins, G.: N-learners problem: fusion of concepts.
In: IEEE Trans. on Systems, Man and Cybernetics (1994)

18. Scharf, L.: Statistical Signal Processing. Prentice-Hall, Englewood Cliffs (1990)

Robust Sensor Data Fusion System 91

19. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry,
S.: Kalman filtering with intermittent observations. IEEE Trans. on Automatic
Control (2004)

20. Speranzon, A., Fischione, C., Johansson, B., Johansson, K.: Adaptive distributed
estimation over wireless sensor networks with packet losses. In: IEEE CDC (2007)

21. Speranzon, A., Fischione, C., Johansson, K., Sangiovanni-Vincentelli, A.: A
distributed minimum variance estimator for sensor networks. IEEE Journal on
Selected Areas in Communications (2008)

22. Xiao, L., Boyd, S., Kim, S.-J.: Distributed average consensus with least-mean-
square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

23. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on
average consensus. In: IPSN (2005)

24. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: SenSys (2003)

Control Theoretic Sensor Deployment Approach
for Data Fusion Based Detection

Ahmad Ababnah and Balasubramaniam Natarajan�

Kansas State University, Manhattan KS 66506, USA
ababnah@ksu.edu, bala@ksu.edu

Abstract. In this paper, we study the sensor deployment problem in a
value fusion based distributed sensor network (DSN) detection system.
More specifically, we study the problem of determining the positions at
which a fixed number of sensors can be deployed in order to minimize the
squared error (SE) between achieved and required detection probabilities
while satisfying false alarm requirements. We show that this deployment
problem can be modeled as a linear quadratic regulator problem (LQR).
Subsequently, we develop two deployment algorithms; an optimal con-
trol based and a suboptimal deployment algorithm. We compare the
performance of the proposed algorithms to that of a greedy deployment
algorithm. Results indicate that the proposed algorithms have a faster
SE convergence rate than that of the greedy algorithm. As a result, the
proposed algorithms can use as much as 25% fewer number of sensors
than the greedy algorithm to satisfy the same detection and false alarm
requirements.

1 Introduction

Distributed sensor networks (DSN’s) have a wide range of applications. One of
these applications is in detection and surveillance systems. In these systems, the
presence of a target/phenomena is detected by processing information (e.g., mea-
surements) provided by sensors that are deployed within the area of interest. As
in any detection system, the system’s performance can be characterized in terms
of false alarm and detection probabilities. In practice, a detection system is de-
signed such that upper bounds on false alarm probabilities and lower bounds on
detection probabilities are met. In systems where the target information obtained
by a sensor depends on its relative position to the target, the spatial distribution
of sensors plays an important role in determining the detection performance of
the system.

The problem of minimizing the number of sensors required to satisfy the de-
tection requirements was examined in [1] and [2]. The detection rule was such
that, if at least one sensor reports a detection decision then a target was as-
sumed detected. This is a simple detection rule, in which effectively sensors do

� This work was partially funded through the award of a contract from the Marine
Corps Systems Command (MCSC) to M2 Technologies Inc.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 92–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Control Theoretic Sensor Deployment Approach 93

not collaborate. Moreover, in [1] and [2], false alarm requirements were not con-
sidered. For a distributed detection system (i.e., multiple sensors), data fusion
methods [3] are used to simultaneously meet both false alarm and detection
probability requirements. In [4], the sensor deployment problem was examined
with the goal of minimizing the number of sensors needed to meet both false
alarm and detection requirements. Sensors measure energy emitted within their
vicinity and report the noisy energy measurements to a fusion center (FC). The
FC uses value fusion, which is a simple data fusion method, in order to decide
on the presence/ absence of the target or phenomena. The resulting false alarm
and detection probabilities are nonlinearly related to the number and positions
of the deployed sensors, which complicates the treatment of the problem. The
authors propose a stochastic optimization algorithm called the D&C algorithm.
This algorithm is heuristic in nature and can not guarantee optimality of result-
ing solutions. Additionally, it does not accommodate systems with non-uniform
false alarm/detection requirements.

In this paper, our goal is to deploy a fixed number of sensors such that the
squared error (SE) between achieved and required detection probabilities within
the area of interest is minimized, while false alarm requirements are met. We
consider a collaborative DSN system, in which sensors take amplitude measure-
ments that are corrupted by additive Gaussian noise and report these measure-
ments to an FC, where a value fusion detection rule is employed. We propose
a novel sequential sensor deployment framework that employs concepts from
optimal control theory. In particular, we model the deployment problem as a
linear quadratic regulator (LQR) problem. This is achieved by approximating
the evolution of the difference between achieved and required detection proba-
bilities as a linear function of the position of the sensor being deployed. In our
LQR formulation, the control vectors at each discrete step in the evolution of
the system correspond to the positions of the sensors being deployed. Addition-
ally, the SE between achieved and required detection probabilities corresponds
to our LQR cost function, which we need to minimize. However, we do not incur
penalty for satisfying/exceeding the detection requirements. False alarm proba-
bility requirements are not incorporated in the cost function, since they can be
satisfied by choosing a suitable detection threshold at the FC after each sensor
deployment. In an LQR problem, the optimal control vectors minimize the cost
function and can be calculated by solving a set of optimality conditions (i.e.,
Karush-Kuhn-Tucker (KKT) conditions). These conditions can be solved using
the sweep method, which is commonly used to solve for the optimal control
vectors in an LQR problem.

2 System Model

The area of interest is modeled as a grid G of Nx ×Ny points. Although the tar-
get can be any where in the area of interest, we focus our attention at detecting
the target at grid points. By increasing the number of grid points, the resolu-
tion of target detection can be improved. Each point is associated with a pair of

94 A. Ababnah and B. Natarajan

false alarm and detection probability requirements. False alarm and detection re-
quirements can be arranged in two NxNy ×1 vectors preq

f and preq
d , respectively.

Sensors are allowed to be deployed on the grid points in order to detect the
presence (hypothesis H1) or absence (hypothesis H0) of a target/phenomena.
We assume that sensors measure the amplitude of the signal emitted by the
target/phenomena and that each measurement is corrupted by additive Gaus-
sian noise. Therefore, the measurement (Ui) of the i-th sensor, under the two
hypothesis, is given as

Ui = Ni | H0 true (1)
Ui = A(di) + Ni | H1 true (2)

where, Ni ∼ N (0, σ2). Furthermore, we assume that sensor measurement noise
is i.i.d. The signal amplitude A(di) is distance dependent, and is given as

A(di) =

⎧⎨
⎩

A0 if di ≤ d0
A0

(di/d0)κ if d0 < di ≤ dmax

0 if di > dmax

(3)

where; di is the distance between the i-th sensor and the target/phenomena, dmax

is the detection radius and κ is a decay factor that depends on the environment.
We note however, that our proposed deployment framework is general and does
not depend on any particular choice of the signal amplitude function.

A detection decision is made regarding the presence or absence of a target
at the j-th point on the grid by combining the available sensor measurements.
This is done at a fusion center (FC), which calculates a decision statistic Tj and
compares it to a decision threshold η(j, nj), where nj is the number of sensors
reporting measurements regarding the j-th point (i.e., less than dmax meters from
the j-th point). A decision is made according to the following non-randomized
decision rule,

δ(Tj) =
{

H0 if Tj ≤ η(j, nj)
H1 if Tj > η(j, nj).

(4)

In this paper, we adopt the value fusion detection strategy. The decision statistic
Tj is given as the average of the measurements reported by the nj sensors, i.e.,

Tj =
1
nj

nj∑
i=1

Ui (5)

therefore, the detection probability at the j-th point, denoted as pd(j, nj), is
given as

pd(j, nj) = Pr(Tj ≥ η(j, nj)| H1 true) (6)

= Pr(
1
nj

nj∑
i=1

[A(di) + Ni] ≥ η(j, nj)) (7)

= Q(
√

njη(j, nj)
σ

− 1
σ
√

nj

nj∑
i=1

A(di)) (8)

Control Theoretic Sensor Deployment Approach 95

where, Q(x) is given as Q(x) = 1√
2π

∫∞
x e

−t2
2 dt. Similarly, the false alarm prob-

ability, denoted as pf (j, nj), at point (j) is given as

pf (j, nj) = Pr(Tj ≥ η(j, nj)| H0 true) (9)

= Pr(
1
nj

nj∑
i=1

Ni ≥ η(j, nj)| H0 true) (10)

= Q(
√

njη(j, nj)
σ

). (11)

The FC calculates the decision statistics associated with each point on the grid.
The decision threshold is calculated using knowledge of the number of sensors
that are within the detection radius, the noise variance and the false alarm
requirement associated with every point. In practice, the FC receives measure-
ments from all sensors in the grid and performs a series of sensor measurement
averages corresponding to each point on the grid.

The deployment problem that we examine in this work can now be stated as
follows: Given preq

f and preq
d and a fixed number of sensors K, how can we deploy

these sensors in a value fusion based detection system, such that the squared
error (SE) between achieved and required detection probabilities is minimized
while satisfying false alarm requirements? If we denote the achieved false alarm
and detection probability vectors after K sensor have been deployed as pf,K and
pd,K , then we can mathematically state our problem as

argmin
u

∑
j:pd,K(j)<preq

d (j)

(pd,K(j) − preq
d (j))2

subject to

{
pf,K = preq

f

1T u = K
(12)

where, u is the deployment vector. The deployment vector is an NxNy ×1 vector.
Its entries indicate the number of sensors at each point on the grid, and take
values of either 0 or 1. 1T indicates the transpose of an NxNy ×1, with all entries
set to 1.

3 Optimal Control Formulation

The deployment problem stated earlier can be thought of as a optimal control
problem. The SE between achieved and required detection probabilities can be
mapped into the cost function to be minimized in an optimal control problem.
Furthermore, the set of optimal control vectors correspond to the sensor positions
on the grid (i.e., the deployment vector). In an LQR problem, the optimal con-
trol vectors are solved sequentially, this means that in the proposed framework
sensors are sequentially placed on the grid. In the next section, we illustrate
that it is indeed possible to approximate the deployment problem as a linear
quadratic regulator (LQR) problem. We will also discuss solving for the optimal
control vectors (i.e., deployment vector in our problem) in the LQR problem.

96 A. Ababnah and B. Natarajan

3.1 System Linearization

In an LQR problem, the evolution of the state of the system (i.e., difference
in detection probabilities in our problem) is governed by a linear relationship.
In this section, we show that it is possible to linearly approximate the change
in the difference between ln(1

1−pd(j,nj)
− 1) and ln(1

1−preq
d (j) − 1). Due to the

monotone nature of the logarithmic function, minimizing the difference between
these two quantities is equivalent to minimizing the difference between pd(j, nj)
and preq

d (j). Furthermore, we quantify the effect each entry in the control vector
will have on the system’s evolution.

Noting that we can approximate the Q(·) function as [5]

Q(x) ≈ 1 − 1
1 + e−

√
2x

, (13)

we can approximate ln(1
1−pd(j,nj)

− 1) as follows

ln(
1

1 − pd(j, nj)
− 1) ≈

√
2

σ2nj

nj∑
i=1

A(di) −
√

2nj

σ2 η(j, nj). (14)

Eqn.(14), illustrates that for a fixed nj and η(j, nj), the change in ln(1
1−pd(j,nj)

−
1) is approximately linear with respect to the signal amplitudes measured by the
nj sensors.

Define m(j, nj) = ln(1
1−pd(j,nj)

− 1) and mreq(j) = ln(1
1−preq

d (j) − 1). Having
nj = k − 1, then it is possible to write x(j, k) = m(j, k) − mreq(j) after the k-th
sensor has been added within the detection radius of point (j), as follows

x(j, k) = x(j, k − 1) +

√
2

σ2k
A(dk)

+

√
2
σ2 (

1√
k

− 1√
k − 1

)
nj−1∑
i=1

A(di)

+

√
2k

σ2 η(j, k) +

√
2(k − 1)

σ2 η(j, k − 1). (15)

It is possible to write Eqn.(15) in matrix form as follows

xk = xk−1 + Bkuk. (16)

where, xK = [x(j, nj), ∀j ∈ G]T . k is the total number of sensors in the grid.
We note that, depending on the detection radius, the number of sensor cover-
ing a point (j) might be in general less than k. The matrix B is of dimension
NxNy × NxNy. The elements of the B, quantify the contribution of possible
sensor positions to the detection probability. For example, the (r, c)th element
of B is given as

Control Theoretic Sensor Deployment Approach 97

B(r, c) =

√
2

σ2(nr + 1)
A(d(r, c)) −

√
2(nr + 1)

σ2 η(j, nr + 1)

+

√
2
σ2 (

1√
nr + 1

− 1
√

nr
)

nr∑
i=1

A(d(r, i))

+

√
2(nr)
σ2 η(j, nr) (17)

where, d(r, c) is the distance between points r and c on the grid. The deployment
vector u is an NxNy × 1 vector, with either 0 or 1 entries. The entry value
indicates the number of sensors at the point on the grid that corresponds to
that entry.

Note that the SE between achieved and required detection probabilities, can
be described as the weighted quadratic norm of the state (xk) of the system de-
scribed in Eqn.(16). Assuming that the weighted quadratic norm of the system’s
state is chosen as the cost function and the deployment vector corresponds to
a control vector, we are motivated to solve the deployment problem as an opti-
mal control problem. Here, the objective is to determine the control vector that
would minimize the cost function. That is, the deployment problem in Eqn.(12)
can be restated as

argmin
uk

J =
1
2
xT

KQfxK +
1
2

K−1∑
k=1

(xT
k Qxk + uT

k Ruk)

subject to

⎧⎪⎨
⎪⎩

pf,K = preq
f

xk = xk−1 + Bkuk, k = 1, . . . , K

1T u = K

(18)

where, Q,Qf and R are symmetric positive definite weighing matrices. The
squared error cost function penalizes both positive and negative deviations from
the required detection probability profile. To avoid incurring a penalty for sat-
isfying/exceeding detection requirements, the error terms corresponding to a
point where the detection requirement has been met/exceeded is set to zero
in J . The optimal control problem corresponding to our system is the linear
quadratic regulator (LQR) problem. We note here, that the cost function J does
not incorporate the false alarm requirements. However, false alarm requirements
can be always met by choosing a suitable detection threshold at the FC. In the
next section, we discuss the dynamic optimization method of solving the LQR
problem.

3.2 Dynamic Optimization

Our system equation corresponds to

xk = xk−1 + Bkuk, (19)

98 A. Ababnah and B. Natarajan

and the cost function J that we wish to minimize is given as

J =
1
2
xT

KQfxK +
1
2

K−1∑
k=0

(xT
k Qxk + uT

k Ruk). (20)

Applying the discrete KKT conditions, results in the following optimality con-
ditions:

x0 = xinitial (21)
xk+1 = xk + Bkuk (22)

λk = λk+1 + Qxk (23)
λK = QfxK (24)
uk = −R−1BT

k λk (25)

The optimal uk can be found using the sweep method. In the sweep method,
the Lagrange multiplier λk is assumed to be given as

λk = Pkxk (26)

where, Pk is a matrix of dimension NxNy × NxNy. The optimal vector uk is
then given as:

uk = −R−1BT
k λk+1 (27)

but in terms of xk, Eqn.(26) can be written as follows

uk = −R−1BT
k Pk+1xk+1 (28)

= −R−1BT
k Pk+1xk

− R−1BT
k Pk+1Bkuk (29)

uk can now be expressed in terms of xk as follows

uk = −S−1R−1BT
k Pk+1xk (30)

where, the matrix S is of dimension NxNy × NxNy and is defined as

S = I + R−1BT
k Pk+1Bk (31)

In order to have a binary integer solution, a 1 is placed at the index where uk

is maximum and a 0 is placed at the remaining positions. That is, a sensor is
placed at the location corresponding to the index where uk is maximum. The
resulting vector is denoted as uo

k. The use of the sweep method involves several
matrix operations , with a complexity of O(K(3N3 + 4N2)) where N = NxNy.
In the next section we propose a second deployment algorithm that circumvents
the need to operate on several matrices.

Control Theoretic Sensor Deployment Approach 99

4 Suboptimal Deployment Algorithm

Our system equation is as follows

xk = xk−1 + Bkuk. (32)

Ideally, it is desirable to deploy sensors such that the resulting xk is equal to the
zero vector (i.e., xk = 0 implies the detection requirements have been satisfied).
Substituting xk = 0 in Eqn.(32) and solving for uk, we get the following ;

uk = −B−1
k xk−1. (33)

Similar to the optimal control based algorithm, the resulting deployment vector
consists of continuous real-valued elements. Therefore, a 1 is placed at the index
where uk is maximum and a 0 is placed at the remaining positions. Once again, a
sensor is placed at the location corresponding to the index where uk is maximum.
The computational complexity of the suboptimal algorithm is O(K(N3 + N2)),
where N is as defined earlier. Furthermore, simulation results show that the
performance of this algorithm is comparable to that of the optimal control based
algorithm.

5 Simulation Results

In this section, we compare the performance of the greedy, suboptimal and op-
timal control based algorithms. In the greedy algorithm, a sensor is placed at
the point with the largest difference between required and achieved detection
probability.

In the first experiment, the area of interest is modeled as a grid of 25 × 25
points. The false alarm and detection probability are uniform and are set to
preq

f = 0.01 and preq
d = 0.9, respectively. The noise variance is set to σ2 = 1

and d0 = 1. A discussion of the choice of dmax can be found in [4]. Table 1,
lists the number of sensors needed by each algorithm, to meet the false alarm
and detection requirements as the initial signal amplitude and detection radius
are varied. The minimum numbers of sensors can be found by assuming, in the
problem statement and LQR formulation, a large number of sensors K, and
deploying sensors till detection and false alarm requirements are met. Results in
Table 1 indicate, that the optimal control based algorithm uses 25% fewer sensors
than the greedy algorithm. This is due to the fact, that in the greedy algorithm
a sensor is deployed by anticipating the effect the sensor deployment will have
at a single point (i.e., the point with the largest difference between required and
achieved detection probabilities). In contrast, in the proposed algorithms, the
deployment process takes into account the effect of each sensor deployment on
the whole grid, which is embedded in the matrix B. Fig. 1 shows the convergence
of the SE between required and achieved detection probabilities as a function
of the number of sensors deployed in the network by each algorithm, for the
case of A0 = 100 and dmax = 5.26 meters. We note that the suboptimal and

100 A. Ababnah and B. Natarajan

Table 1. Number of sensors for uniform requirements

Parameters Greedy Sub-optimal Optimal

A0 = 30, dmax = 2.9 58 56 53

A0 = 50, dmax = 3.72 36 35 30

A0 = 100, dmax = 5.26 20 16 15

A0 = 250, dmax = 8.3 9 8 8

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sensors

N
or

m
al

iz
ed

 S
E

Greedy Algorithm
Suboptimal Algorithm
Optimal Algorithm

Fig. 1. SE convergence for uniform requirements

optimal control based algorithms have a faster convergence rate than the greedy
algorithm.

In the second experiment, we consider a setup similar to the first experiment
with a fixed initial amplitude of A0 = 50. However, the false alarm and detec-
tion requirements are not uniform over the grid (see Fig. 2). In Table 2, the
number of sensors needed by each algorithm to satisfy the same preq

d and preq
f

requirements is indicated. Results indicate that even with nonuniform require-
ments, the proposed algorithm uses fewer number of sensors than the greedy
algorithm.

Table 2. Number of sensors for uniform requirements

Requirements Greedy Suboptimal Optimal

pd1 = 0.9, pd2 = 0.7, pf1 = 0.01, pf2 = 0.001 35 33 31

pd1 = 0.9, pd2 = 0.7, pf1 = 0.001, pf2 = 0.01 30 27 26

pd1 = 0.9, pd2 = 0.9, pf1 = 0.01, pf2 = 0.001 40 37 34

Control Theoretic Sensor Deployment Approach 101

0 5 10 15 20 25
0

5

10

15

20

25

p
d1

p
f1

p
d2

p
f2

Fig. 2. Nonuniform requirements

6 Conclusion

In this paper, we study the sensor deployment problem in a distributed sensor
network employing value fusion. Our objective is to minimize the SE between
achieved and required detection probabilities while not exceeding false alarm
requirements. We propose modeling the problem as a linear quadratic regulator
(LQR) problem. Sensors are sequentially deployed by solving for the control vec-
tors in the LQR problem. We also propose a suboptimal deployment algorithm
with lower computational complexity than the optimal control based algorithm.
Simulation results indicate that the proposed algorithms have a faster SE conver-
gence rate in comparison to a greedy algorithm. That is, the proposed algorithms
use fewer sensors than the greedy algorithm to satisfy the same detection and
false alarm requirements requirements.

References

1. Zou, Y., Chakrabarty, K.: Uncertainty-aware and coverage-oriented deployment for
sensor networks. Journal of Parallel and Distributed Computing 64(7), 788–798
(2004)

2. Zhang, J., Yan, T., Son, S.H.: Deployment strategies for differentiated detection in
wireless sensor networks. In: 3rd Annual IEEE Communications Society on Sensor
and Ad Hoc Communications and Networks, SECON 2006, September 28, vol. 1,
pp. 316–325 (2006)

3. Viswanathan, R., Varshney, P.: Distributed detection with multiple sensors i. fun-
damentals. Proceedings of the IEEE 85(1), 54–63 (1997)

4. Yuan, Z., Tan, R., Xing, G., Lu, C., Chen, Y., Wang, J.: Fast sensor deployment
for fusion-based target detection. In: IEEE Real-Time Systems Symposium (RTSS
2008) (December 2008)

5. Raykar, V.C., Duraiswami, R., Krishnapuram, B.: A fast algorithm for learning a
ranking function from large-scale data sets. IEEE Transactions on Pattern Analysis
and Machine Intelligence 3(7), 1158–1170 (2008)

Approximate Distributed Kalman Filtering for
Cooperative Multi-agent Localization

Prabir Barooah1, Wm. Joshua Russell2, and João P. Hespanha2,�

1 University of Florida, Gainesville, FL 32611, USA
pbarooah@ufl.edu

2 University of California, Santa Barbara, CA 93106, USA
wjrussell@umail.ucsb.edu, hespanha@ece.ucsb.edu

Abstract. We consider the problem of estimating the locations of mo-
bile agents by fusing the measurements of displacements of the agents
as well as relative position measurements between pairs of agents. We
propose an algorithm that computes an approximation of the central-
ized optimal (Kalman filter) estimates. The algorithm is distributed in
the sense each agent can estimate its own position by communication
only with nearby agents. The problem of distributed Kalman filtering
for this application is reformulated as a parameter estimation problem.
The graph structure underlying the reformulated problem makes it com-
putable in a distributed manner using iterative methods of solving linear
equations. With finite memory and limited number of iterations before
new measurements are obtained, the algorithm produces an approxima-
tion of the Kalman filter estimates. As the memory of each agent and the
number of iterations between each time step are increased, the approx-
imation improves. Simulations are presented that show that even with
small memory size and few iterations, the estimates are quite close to
the centralized optimal. The error covariances of the location estimates
produced by the proposed algorithm are significantly lower than what is
possible if inter-agent relative position measurements are not available.

1 Introduction

Mobile autonomous agents such as unmanned ground robots and unmanned
aerial vehicles that are equipped with on-board sensing, actuation, computa-
tion and communication capabilities hold great promise for applications such as
surveillance, disaster relief, and scientific exploration. Irrespective of the appli-
cation, their successful use generally requires that the agents be able to obtain
accurate estimates of their positions. Although typically position information is
provided by GPS, in many scenarios GPS may be available only intermittently,
or sometimes not available at all. These situations include underwater operation,
� The research reported in this paper is based upon work supported by the Insti-

tute for Collaborative Biotechnologies through grant DAAD19-03-D-0004 from the
U.S. Army Research Office and by the National Science Foundation under Grant
No. CCR-0311084.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 102–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximate Distributed Kalman Filtering 103

presence of urban canyons, or hostile jamming. In such a situation, localization
is typically performed by integrating measurements of displacements, which can
be obtained from IMUs (inertial measurement units) or/and vision sensors [1–3].
Since these measurements are noisy, their integration over time lead to high rate
of error growth [3–5].

When multiple agents operate cooperatively, it is possible to reduce local-
ization errors if information on relative positions between pairs of agents are
available. Such measurements can be obtained by vision-based sensors such
as cameras and LIDARs, or RF sensors through AoA and TDoA measure-
ments. These measurements, although noisy, furnish information about the
agent’s locations in addition to that provided by displacement measurements.
The problem of fusing information on relative positions between mobile agents
for estimating their locations is commonly known as cooperative localization in
the robotics literature [6–8]. The typical approach is to use an extended Kalman
filter, to fuse both odometry data and robot-to-robot relative distance measure-
ments [8, 9].

However, computing the Kalman filter estimates requires that all the mea-
surements (inter-agent as well as displacement measurements of all the agents)
are made available to a central processor. Such a centralized approach requires
routing data though an ad-hoc network of mobile agents, which is a difficult
problem [10]. Therefore, a distributed scheme that allows agents to estimate
their positions accurately through local computation and communication in-
stead of relying on a central processor is preferable. In the sensor networks
and control literature, the problem of distributed Kalman filtering has drawn
quite a bit of attention [11–14]. The papers [12, 15] in particular present a
distributed Kalman filtering techniques for multi-agent localization. The pa-
per [16] addresses cooperative localization in mobile sensor networks with in-
termittent communication, in which an agent updates its prediction based
on the agents it encounters, but does not use inter-agent relative position
measurements.

In this paper we approach the problem of distributed Kalman filtering for co-
operative localization from a novel angle, by reformulating the problem as a pa-
rameter estimation problem. The Kalman filter computes the LMMSE estimates
of the states of a linear system given the measurements. It is a classical result
that under infinite prior covariance, the LMMSE is the same as the BLUE (best
linear unbiased estimator) [17]. For the problem at hand, the BLUE estimator
has a convenient structure that can be described in terms of a graph consisting
of nodes (agent locations) and edges (relative measurements). This structure can
be exploited to distribute the computations by using parallel iterative methods of
solving linear equations. The proposed method therefore is designed to compute
the BLUE estimates using iterative techniques, and is based our earlier work on
localization in static sensor networks [18, 19]. If the agents were to have infinite
memory and could run infinitely many iterations before they move and change
their positions, the estimates produced by the proposed algorithm are equal to
the centralized BLUE estimates, and therefore the same as the Kalman filter

104 P. Barooah, Wm.J. Russell, and J.P. Hespanha

estimates. Due to memory and time constraints, the proposed algorithm uses
only a small subset of all the past measurements and runs only one (or a few)
iterations. This makes the method an approximation of the Kalman filter. Fewer
the number of iterations and smaller the size of past measurements retained, the
easier it is to implement the algorithm in a distributed setting. Simulations show
the approximations are remarkably close to the centralized Kalman filter/BLUE
estimates even when a very small amount of past data is used and only one
iteration is executed between successive motion updates.

The rest of the paper is organized as follows. Section 2 describes the esti-
mation problem precisely. Section 3 describes centralized Kalman filtering for
cooperative localization and its reformulation as a problem of parameter esti-
mation in measurement graphs. Section 4 describes the proposed algorithm, and
simulations are presented in Section 5.

2 Problem Description

Consider a group of n mobile agents that need to estimate their own positions
with respect to a geostationary coordinate frame, whose origin is denoted by
x0. In the absence of GPS, we arbitrarily fix the initial position of one of the
agents, say, the first agent, as the origin. Time is measured with a discrete index
k = 0, 1, 2, . . . The noisy measurement of the displacement of agent j obtained
by its on-board sensors during the k-th time interval is denoted by uj(k), so that

uj(k) = xj(k + 1) − xj(k) − wj(k), (1)

where xj(k) is the position of agent j at time k, and {wj(k)} is a zero-mean
noise with the property that E[wj(k)wi()] = 0 unless i = j, k = . We assume
that certain pairs of agents, say i, j, can also obtain noisy measurements yij(k)
of their relative position

yij(k) = xi(k) − xj(k) + vij(k), (2)

where vij(k) is zero-mean measurement noise with E[vij(k)vmn()] = 0 unless
(ij) = (mn), k = . We assume that the agents are equipped with compasses,
so that all these measurements are expressed in a common Cartesian reference
frame. The goal is to combine the agent-to-agent relative position measurements
with agent displacement measurements to obtain estimates of their locations
that are more accurate than what is possible from the agent displacement mea-
surements alone. In addition, the computation should be distributed so that
every agent can compute its own position estimate by communication with a
small subset of the other agents, called neighbors. We assume that two agents
that can obtain each others’ relative position measurement at time index k can
also exchange information through wireless communication during the interval
from k to k + 1.

Approximate Distributed Kalman Filtering 105

3 Kalman Filtering vs. BLU Estimation from Relative
Measurements

The availability of the displacement measurements allow us to write the following
process model for the j-th vehicle:

xj(k + 1) = xj(k) + uj(k) + wj(k), (3)

where uj(k) is now viewed as a known input. One can stack the states xj(k), j =
1, . . . , n into a tall vector x(k) and write the system dynamics

x(k + 1) = xj(k) + u(k) + w(k), y(k) = C(k)x(k) + v(k)

where C(k) is appropriately defined so that entries of y(k) are the inter-agent
relative position measurements (2). When the control input and the measure-
ments {u(t)}, {y(t)}, t ∈ {0, 1, . . . , k} are made available to a central processor,
along with the initial conditions x̂(0| − 1) and P (0| − 1) = Cov(x̂(0| − 1) −
x(0), x̂(0|−1)−x(0)), and the noise covariances Q(t) := Cov(w(t),w(t)), R(t) :=
Cov(v(t),v(t)), a Kalman filter can be used to compute estimate x̂Kalman(k|k) =
E ∗ (x̂(k)|{u}, {y}) of the state x(t), where E ∗ (X |Y) denotes the LMMSE es-
timate of a r.v. X in terms of the r.v. Y [20].

To distribute the computations of the Kalman filter, we reformulate the prob-
lem into an equivalent, deterministic parameter estimation problem. We asso-
ciate the positions {x0} ∪ {xj(t)}, j ∈ {1, . . . , n}, t ∈ {0, 1, . . . , k} of the entities
until time k with the nodes V(k) of a measurement graph G(k) = (V(k),E(k)).
The edges E(k) of the graph correspond to the relative position measurements
between the nodes V(k). If an edge is between two nodes that correspond to
subsequent positions of same agent j, then the edge corresponds to a measure-
ment of the displacement of the agent between those two time instants. If , on
the other hand, the edge is between two nodes that correspond to the positions
of two distinct agents at a particular time instants, then the edge corresponds
to the noisy measurement of the relative position between the agents. All mea-
surements mentioned above are of the type

ζe = xu − xv + εe (4)

where u and v are nodes of the measurement graph G(k) and e = (u, v) is an
edge (an ordered pair of nodes). In particular, an edge exists between a node
pair u and v if and only if a relative measurement of the form (4) is available
between the two nodes. Since a measurement of xu −xv is different from that of
xv − xu, the edges in the measurement graph are directed. The edge directions
are arbitrary. Figure 1 shows an example of a measurement graph.

3.1 BLUE Estimation

We briefly review the BLUE (best linear unbiased estimator) from relative mea-
surements for graphs that do not change with time. The BLUE is optimal (min-
imal variance) among all linear unbiased estimators. Consider a measurement

106 P. Barooah, Wm.J. Russell, and J.P. Hespanha

(a) Measurement graph G(4).
k=4k=3

(b) Communication be-
tween k = 3 and k = 4.

Fig. 1. (a) An example of a measurement graph generated as a result of the motion of
a group of four mobile agents. The graph shown here is G(4), i.e., the snapshot at the
4th time instant. The unknown variables at current time k = 4 are the positions xi(t),
i ∈ {1, 2, . . . , 4}, at the time instants k ∈ {0, 1, . . . , 4}, except for the initial position
of agent 1: x1(0), which is taken as the reference. (b) The communication during the
time interval between k = 3 and k = 4. In the situations shown in the figure, 4 rounds
of communication occur between a pair of agents in this time interval.

graph G = (V,E), where the nodes in V correspond to variables and edges in E
correspond to relative measurement between node variables of the form (4). Let
Vr ⊂ V denote the non-empty subset of nodes whose variables are known, which
are called reference variables , and n = |V \ Vr| be the number of unknown
variables that are to be estimated. Let x be the vector obtained by stacking to-
gether the unknown variables. As described in [19], given a measurement graph
with n unknown variables, the BLU estimate x̂∗ is given by the solution of a
system of linear equations

Lx = b, (5)

where L and b depend on the measurement graph G, the measurement error
covariance matrices Pe, e ∈ E, the measurements ζe, e ∈ E and the reference
variables xr, r ∈ Vr. The matrix L is invertible (so that BLU estimate x̂∗ exists
and is unique) if and only if for every node, there is an undirected path between
the node and at least one reference node [21]. Under this condition, the covariance
matrix of the estimation error Σ := cov(x̂∗, x̂∗) is given by

Σ = L−1. (6)

By splitting the matrix L = M − N where M is a block diagonal degree matrix
and N is a generalized adjacency matrix of the network, the above system of
equations can be written as Mx = Nx + b, which leads to the following block-
Jacobi iterative method for solving it:

x̂(k + 1) = M−1N x̂(k) + M−1b. (7)

Approximate Distributed Kalman Filtering 107

where M is block diagonal and N is sparse. In particular, only those entries on
the i-th block row of N are non-zero that corresponds to i’s neighbors in G.
This structure makes it possible to compute the updates in (7) in a distributed
manner, so that each node only needs to communicate with its neighbors. The
resulting algorithm can be shown to converge under certain assumptions on the
measurement error covariance matrices, even when executed in an asynchronous
manner, and in the presence of temporary communication faults. The reader is
referred to [19, 21] for the details.

When the measurement graph is time-varying, if all the measurements corre-
sponding to the edges in G(k) are available to a central processor at time k, the
processor can compute the BLU estimates of all the node variables in the graph
G(k) (which correspond to the present as well as past positions of the agents)
by solving (5). The resulting estimate is denoted by x̂BLUE(k).

The following result, which follows from standard results in estimation theory
shows that under uninformative prior, the blue estimate is equivalent to the
Kalman filter estimates.

Lemma 1. If P−1(0|−1) = 0, then x̂Kalman(k|k) = x̂BLUE(k) for every k. �

For the problem at hand, we assume that no prior information on the agent
positions are available at time 0 except for inter-agent position measurements
y(0) and the position of one of the agents that is used as a reference. In that
case the information form of the Kalman filter can be used to compute the
LMMSE estimate of the agent positions [22]. The result above shows that under
the assumption of no prior information, the BLUE estimates are identical to the
Kalman filter estimates. Therefore, from now on we do not distinguish between
x̂Kalman(k|k) and x̂BLUE(k), and refer to them simply as the centralized optimal
estimate x̂∗(k).

In the next section we will utilize the BLUE formulation to devise distributed
algorithms to compute the estimates.

4 A Distributed Algorithm for Dynamic Localization

In this section we present a distributed algorithm to obtain estimates of the po-
sitions mobile agents that are close to the centralized BLU estimator described
in the previous section. By distributed we mean every agent should be able to
estimate its own position, and all the information needed to carry out the compu-
tation should come from local sensing and communication with its neighboring
agents.

4.1 Infinite Memory and Bandwidth

We first describe the algorithm by assuming that every agent can store and
broadcast an unbounded amount of data. We will relax this assumption later.

For every agent j, let Vj(k) contain all the nodes that correspond to the
positions of itself and the positions of the agents with whom j has had relative

108 P. Barooah, Wm.J. Russell, and J.P. Hespanha

i=1

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

V1(3)int

V1(3)bdy

Fig. 2. The subgraph G1(3) of agent 1 at time 3, for the measurement graph shown
in Figure 1

measurements, up to and including time k. Let Ej(k) be the subset of edges in
G(k) that are incident on nodes that correspond to j’s current or past positions.
By assumption, the relative measurements and their error covariances ζe, Pe, e ∈
Ej(k) are available to agent j at time k. We now define the local subgraph of
agent j at time k as Gj(k) = (Vj(k),Ej(k)). Figure 2 shows the subgraph
of agents 1 at time k = 3 corresponding to the measurement graph shown in
Figure 1.

The nodes in a local subgraph Gj(k) are divided into two categories - the
internal nodes Vj(k)int and the boundary nodes Vj(k)bdy. The internal nodes
are the nodes that correspond to the positions of the agent up and including time
t. The boundary nodes consist of the nodes in the local subgraph that correspond
to the positions of the neighboring agents. Thus, Vj(k) = Vj(k)int ∪ Vj(k)bdy

and Vj(k)int ∩ Vj(k)bdy = ∅.
To explain the algorithm, imagine first that the agents have stopped moving at

time tstop. We have proposed a distributed algorithm in [19, 23] for localization
of static agents that is based on the Jacobi iterative method of solving linear
equations [24]. If agents stop moving, they can use the Jacobi algorithm to
compute the optimal estimate of its entire position history in distributed manner.
We describe the procedure briefly, which will serve as a stepping stone into
developing the proposed algorithm.

Algorithm A.1: static agents. Let o be the global reference node. Consider
the set of past positions of agent j until time tstop, i.e., {xv, v ∈ Vj(tstop)int\{o}}.
The vector of the node variables in this set is denoted by xj(tstop). The set of
unknown node positions at time tstop is ∪jxj(tstop). Let x̂τ

j (tstop) be the estimate
of xj(tstop) obtained by agent j at the end of the τ th iteration. The estimates
are obtained and improved using the following distributed algorithm, starting
with an arbitrary initial condition:

At τ th iteration, every agent j does the following.

1. It broadcasts the current estimate x̂τ
j (tstop) to all of its neighboring agents.

Consequently, it also receives the current estimates x̂τ
i (tstop) from each of its

neighboring agents, i.
2. It (agent j) assigns the boundary nodes Vj(tstop)bdy as the reference nodes

of its local subgraph Gj(tstop) and sets the reference variables to be the es-
timates of those node variables that it has recently received from its neigh-
bors. With this assignment of reference node variables and with the relative

Approximate Distributed Kalman Filtering 109

measurements {ζe, e ∈ Ej(tstop)}, agent j then sets up the system of linear
equations (5) for its local subgraph Gj(tstop), and solves these equations to
obtain an updated estimate of x̂τ+1

j (tstop) of its “internal” node variables.
�

The following result about the behavior of the estimates follows from the con-
vergence property of the Jacobi algorithm (see [19, 23]).

Proposition 1. The estimates of all the node variables x(tstop) (i.e., all agents’
past positions up to time tstop) converge to their centralized optimal estimates:
x̂τ

j (tstop) → x̂∗
j (tstop) as τ → ∞. �

As a result, if agents stop moving, by communicating with its neighbors and
updating sufficiently many times, an agent can obtain an estimate of its en-
tire position history that is arbitrarily close to the optimal estimates. Note that
the description above implicitly assumes that the iterations are executed syn-
chronously, i.e., there is a common iteration counter τ among all the agents.
However, the result in Proposition 1 holds even if communication and computa-
tion is performed in an asynchronous way, where every agent has its own iteration
counter τ i. This follows from standard results in asynchronous iterations [23].

Now we are ready to describe the algorithm for localization of mobile agents
with finite memory and finite bandwidth.

Estimation with mobile agents: Algo A.2. In the description below, Tmem
is a fixed positive integer that denotes the “size” of a subgraph of G(k) every
agent maintains in its local memory at time k. The parameter Tmem is fixed
ahead of time and provided to all agents; its value is determined by the memory
in each agent’s local processor. The maximum number of iterations carried out
by an agent j during the interval between times k and k + 1, which is denoted
by τmax, depends on the maximum number of communication rounds between
j and its neighbors during this interval.

Let G(k)Tmem = (V(k)Tmem ,E(k)Tmem) be the subgraph containing nodes,
V(t)Tmem , that correspond to all agent positions from time max (k − Tmem, 0)
until time k and containing edges, E(k)Tmem , corresponding to relative measure-
ments between to nodes in G(k)Tmem . More simply, G(k)Tmem is the subgraph
containing all nodes and edges corresponding to positions of agents and rela-
tive measurements at the current and previous Tmem time instants. In this case,
x̂τ

j (k) is a vector of the estimates of the positions of agent j from time instant
max(k − Tmem, 0) to time k, obtained in the τ th iteration.

1. If GPS is not available to every agent at k = 0, one agent’s initial position
serves as the global reference. Every other agent starts with the initial esti-
mate that is obtained by adding the relative measurements on a path from
itself to the agent whose initial position is taken as the global reference. For
example, when agent 1 is the global reference and relative position measure-
ments are available between agents with successively increasing indices, we
have x̂j(0) := yj,j−1(0)+ yj−1,j−2(0)+ · · ·+ y2,1(0)+x1(0). We assume that

110 P. Barooah, Wm.J. Russell, and J.P. Hespanha

these measurements are transmitted to the agents initially before they start
moving.

2. During the time interval between time indices k and k + 1, each agent j
updates the estimate of xj(t) in the following way.
– initialization: x̂

(0)
j (k) = x̂

(τmax)
j (k − 1) + uj(k − 1).

– collect inter-agent measurements, i.e., obtain ζv,w for v = i(k) and w ∈
Nj(t).

– iterative update: node j now iteratively updates its position by the algo-
rithm described in the previous section. Specifically, it runs the algorithm
A.1 for the subgraph Gj(k)Tmem . �

(a) Tmem = 1 (b) Tmem = 3

Fig. 3. Truncated subgraphs, G3(4) of agent 3 at time 4 for the measurement graph
shown in Figure 1

The algorithm continues as long as the agents continue to move. Figure 3 shows
an example of the local subgraphs used by an agent (agent 3 in Figure 1) for two
cases, Tmem = 1 and Tmem = 3. Note that the proposed algorithm is particularly
simple when Tmem = 1, since in that case the iterative update is the solution to
the following equation:

Si(k − 1)x̂τ
j (k) = W−1

j (k − 1)
(
x̂τmax

j (k − 1) + uj(k − 1)
)
+∑

i∈Nj(k)

V −1
j,i (k)

(
x̂τ−1

i (k) + yj,i(k)
)
,

where Wj(k) := cov(wj(k), wT
j (k)) and Vj,i(k) := cov(vij(k), vT

ij(k)) are the er-
ror covariances in the displacement measurement uj(k − 1) and inter-agent rela-
tive measurement yij(k), respectively, and Si(k) := W−1

j (k)+
∑

i∈Nj(k) V −1
i,j (k).

When all the measurement error covariances are equal, the update is simply:

x̂τ
j (k) =

1
| Nj(k) + 1 |

(
x̂τmax

j (k − 1) + uj(k − 1) +
∑

i∈Nj(k)

(x̂τ−1
i (k) + yj,i(k))

)
When Tmem = ∞, the algorithm is simply the Jacobi iterations to compute the
BLUE estimates of all the node variables in the graph G(k), i.e., the past and

Approximate Distributed Kalman Filtering 111

0 1 2 3 4 5

0

10

20

30

40

50

x position (meters)

y

p
o
s
i
t
i
o
n

(
m
e
t
e
r
s
)

4 8 12 16 20
0

1

2

3

Time (k)

N
u
m
b
e
r

o
f

N
e
i
g
h
b
o
r
s

f
o
r

A
g
e
n
t

1

(a) (b)

Fig. 4. A snapshot of the measurement graph G(k) at time k = 5 created by the
motion of 5 mobile agents, for which the simulations reported here are conducted

present positions of the agents. In this case, Proposition 1 guarantees that the
estimates computed converge to the BLUE estimates as τmax → ∞. When the
algorithm is implemented with small values of Tmem, after a certain number
of time steps, measurements from times earlier than Tmem steps into the past
are no longer directly used. Past measurements are still used indirectly, since
they affect the values of the reference variables used by the agents for their
local subgraphs. With finite Tmem, the estimates are no longer guaranteed to
reach their centralized optimal. A further reduction in accuracy comes from the
fact that in practice τmax may not be large enough to get close to convergence
even in the truncated local subgraphs. The algorithm therefore produces an
approximation of the centralized optimal estimates; the approximation becomes
more accurate as τmax and Tmem increases.

Communication and computation cost. The amount of data an agent needs
to store and broadcast increases as the “size” of the truncated local subgraph
that the agent keeps in local memory increases, and therefore, on Tmem. When
the neighbors of an agent do not change with time, the number of nodes in its
local truncated subgraph of an agent at any given time is Tmem + NnbrTmem,
where Nnbr is the number of neighbors of the agent. In this case, the number of
edges in the truncated local subgraph is at most Tmem+TmemNnbr (the first term
is the number of odometry measurements and the second term is the number
of relative measurements between the agent and its neighboring agents that
appear as edges in the subgraph). Therefore, an agent needs a local memory
large enough to store [2Tmem(1 + Nnbr) + TmemNnbr] floating-point numbers,
where = 2 or 3 depending on whether positions are 2 or 3 dimensional vectors.
An agent has to broadcast the current estimates of its interior node variables, i.e.,
Tmem numbers, at every iteration. Thus, the communication, computation and
memory requirements of the algorithm are quite low for small values of Tmem.
We assume that the agents can obtain the error covariances of the measurements
on the edges that are incident on themselves, so these need not be transmitted.

112 P. Barooah, Wm.J. Russell, and J.P. Hespanha

5 Simulations

We illustrate the algorithm’s performance by numerical simulations. All simu-
lation results are shown for the case Tmem = 1. Five agents move in a zig-zag
trajectory; the resulting measurement graph is shown in Figure 4(a). A time
trace of the number of neighbors of agent 1 is shown in Figure 4(b). The initial
position of agent 1 (bottom left node in Figure 4) is taken as the reference. Every
measurement of xu − xv is obtained from noisy measurements of the distance
‖xu − xv‖ and the angle between xu and xv. The distance and angle measure-
ments are corrupted with additive Gaussian noise, with σr = 0.05m and σθ = 5o.
The measurement error covariances are estimated from the range and bearing
measurements and the parameters σr, σθ (as explained in [19]), which makes the
covariances of the errors on relative position measurements on distinct edges
distinct.

0 5 10 15 20 25
0

2

4

6

8

Dead Reckoning

Algo (1 Iterations)

Algo (3 Iterations)

Algo (Inf Iterations)

BLUE

‖Σ
5
(k

)
‖

Time (k)

Fig. 5. Covariance of the estimate of the current position of agent 5 (of Figure 4)
as a function of time. Agent 5 is the one farthest from agent 1, whose initial position
being the reference node. Dead reckoning provides an estimate of positions by summing
optometry data. Estimates from algorithm 2 are shown for τmax = 1, 3, and ∞. BLUE
refers to the centralized optimal.

0 5 10 15 20 25
0

2

4

6

8

Dead Reckoning

Algo (1 Iterations)

Algo (3 Iterations)

Algo (Inf Iter.)

BLUE

‖Σ
4
(k

)
‖

Time (k)

Fig. 6. Covariance of the estimate of the current position of agent 4 (of Figure 4) as a
function of time

Approximate Distributed Kalman Filtering 113

Covariances of agent position estimates produced by the proposed algorithm
are estimated from 1000 Monte-Carlo runs. Figure 5 shows the covariance of the
estimate of x5(t), the position of agent 5, as a function of t. Agent 5 is the one
farthest away from agent 1. The figure shows that the location estimates pro-
duced by the proposed algorithm are much more accurate than those produced
by integrating the displacement measurements alone (dead reckoning). It is seen
from the plot that the estimation error covariance of the algorithm (even with
Tmem = 1 and τmax = 1) is close to that of the centralized optimal estimator
(BLUE). Comparison among the plots for τmax = 1, 3 and ∞ shows that, as ex-
pected, the estimation accuracy improves with increasing number of iterations
between every time step. However, it is also seen that the improvement levels off
quickly. In fact, even with the minimal possible number of iterations τmax = 1,
the estimation accuracy is quite close to the best possible (with τmax = ∞).
This property of the algorithm enhances its applicability since good estimates
are obtained with little delay. Figure 6 plots these variables for the second agent.

6 Conclusion

We presented a distributed algorithm for mobile agents to estimate their posi-
tions by fusing their own displacement measurements with inter-agent relative
position measurements. The algorithm is distributed in the sense each agent can
estimate its own position by communication only with nearby agents. The al-
gorithm computes an approximation of the centralized optimal (Kalman filter)
estimates. The problem of distributed Kalman filtering for this application is
reformulated as a problem of computing the BLUE estimates. The graph struc-
ture of the BLUE estimation problem, which makes it computable using iterative
methods of solving linear equations, makes distributing the computations possi-
ble. With finite memory and limited number of iterations before new measure-
ments are obtained, the algorithm produces an approximation of the Kalman
filter estimates. As the memory of each agent and the number of iterations be-
tween each time step are increased, the approximation improves. Simulations
show, however, that even with small memory size and a single iteration, the
estimates are quite close to the centralized optimal. Simulations further show
that the error covariances of the state estimates that the proposed distributed
algorithm yield are significantly lower than what is possible by dead reckoning.

There are several aspects of the proposed algorithm that need further inves-
tigation. Although numerical simulations show that the estimates produced by
the algorithm are close to the centralized optimal estimates, a precise character-
ization of the difference is lacking. In particular, it will be useful to understand
the affect of the parameters Tmem and τmax on the performance of the algorithm.
Moreover, the evolution error covariance will depend on the number of agents
and the measurement graph, which is determined by agents’ motion. The rela-
tionship between the covariance and agent motion is a subject of future research.

114 P. Barooah, Wm.J. Russell, and J.P. Hespanha

References

[1] Borenstein, J., Everett, H.R., Feng, L., Wehe, D.: Mobile robot positioning:
Sensors and techniques. Journal of Robotic Systems, Special Issue on Mobile
Robots 14(4), 231–249 (1997)

[2] Nistér, D., Naroditsky, O., Bergen, J.R.: Visual odometry. In: Conference on Com-
puter Vision and Pattern Recognition (CVPR 2004), pp. 652–659 (2004)

[3] Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation
using stereo ego-motion. Robotics and Autonomous Systems 43(4), 215–229 (2003)

[4] Makadia, A., Daniilidis, K.: Correspondenceless ego-motion estimation using
an imu. In: IEEE International Conference on Robotics and Automation,
pp. 3534–3539 (2005)

[5] Oskiper, T., Zhu, Z., Samarasekera, S., Kumar, R.: Visual odometry system using
multiple stereo cameras and inertial measurement unit. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2007), June 17-22, pp. 1–8
(2007)

[6] Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple
robots. In: The IEEE International Conference in Robotics and Automation, pp.
1250–1257 (1994)

[7] Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-robot cooperative localization: a
study of trade-offs between efficiency and accuracy. In: The IEEE/RSJ Interna-
tional Conference on Intelligent Robots and System, vol. 3, pp. 2690–2695 (2002)

[8] Mourikis, A.I., Roumeliotis, S.I.: Performance analysis of multirobot cooperative
localization. IEEE Transactions on Robotics 22(4), 666–681 (2006)

[9] Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans-
actions on Robotics and Automation (5), 781–795 (2002)

[10] Mueller, S., Tsang, R.P., Ghosal, D.: Multipath routing in mobile ad hoc networks:
Issues and challenges. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS 2003.
LNCS, vol. 2965, pp. 209–234. Springer, Heidelberg (2004)

[11] Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed kalman
filtering in sensor networks with quantifiable performance. In: 4th International
Symposium on Information Processing in Sensor Networks (IPSN 2005) (2005)

[12] Alriksson, P., Rantzer, A.: Distributed kalman filtering using weighted averag-
ing. In: 17th International Symposium on Mathematical Theory of Networks and
Systems (MTNS) (2006)

[13] Olfati-Saber, R.: Distributed kalman filtering for sensor networks. In: 46th IEEE
Conference on Decision and Control (December 2007)

[14] Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: Distributed kalman filtering
using consensus strategies. In: 46th IEEE Conference on Decision and Control
(December 2007)

[15] Alriksson, P., Rantzer, A.: Experimental evaluation of a distributed kalman filter
algorithm. In: 46th IEEE Conference on Decision and Control (December 2007)

[16] Zhang, P., Martonosi, M.: LOCALE: collaborative localization estimation for
sparse mobile sensor networks. In: International Conference on Information Pro-
cessing in Sensor Networks (IPSN), pp. 195–206 (2008)

[17] Mendel, J.M.: Lessons in Estimation Theory for Signal Processing, Communica-
tions and Control. Prentice-Hall, Englewood Cliffs (1995)

[18] Barooah, P., da Silva, N.M., Hespanha, J.P.: Distributed optimal estimation from
relative measurements for localization and time synchronization. In: Gibbons,
P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026,
pp. 266–281. Springer, Heidelberg (2006)

Approximate Distributed Kalman Filtering 115

[19] Barooah, P., Hespanha, J.P.: Estimation from relative measurements: Algorithms
and scaling laws. IEEE Control Systems Magazine 27(4), 57–74 (2007)

[20] Rhodes, I.: A tutorial introduction to estimation and filtering. IEEE Transactions
on Automatic Control 16, 688–706 (1971)

[21] Barooah, P.: Estimation and Control with Relative Measurements: Algorithms and
Scaling Laws. PhD thesis, University of California, Santa Barbara (July 2007)

[22] Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Dover, Mineola (2005)
[23] Barooah, P., Hespanha, J.P.: Distributed optimal estimation from relative mea-

surements. In: Proceedings of the 3rd International Conference on Intelligent Sens-
ing and Information Processing (ICISIP), December 2005, pp. 226–231 (2005)

[24] Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

Thermal-Aware Sensor Scheduling for
Distributed Estimation

Domenic Forte and Ankur Srivastava

University of Maryland
Department of Electrical and Computer Engineering

College Park, Maryland
dforte@umd.edu, ankurs@umd.edu

Abstract. Recent work has shown that rising temperatures are increas-
ing failures and reducing integrated circuit reliability. Although such re-
sults have prompted development of thermal management policies for
stand-alone processors and on distributed power management, there is
an overall lack of research on thermal management policies and their
tradeoffs in sensor networks where sensors can overheat due to excessive
sampling. Our primary focus in this paper is to examine the relationship
between sampling, number of sensors, sensor node temperature, and state
estimation error. We devise a scheduling algorithm which can achieve a
desired real-time performance constraint while maintaining a thermal
limit on temperature at all nodes in a network. Analytical results and
experimentation are done for estimation with a Kalman filter for sim-
plicity, but our main contributions should easily extend to any form of
estimation with measurable error.

1 Introduction

1.1 Motivation

Rising temperatures are increasing failures and reducing integrated circuit relia-
bility. In particular, [1] discusses thermal related effects such as electromigration,
stress migration, and time-dependent dielectric breakdown and analyzes each ef-
fect’s contribution to an IC’s mean time to failure. Typically, such IC systems
are given a manufacturer specified constraint to limit operating temperature and
prevent permanent hardware damage. Traditionally, thermal issues within a chip
have been handled at the package level with sophisticated but expensive cooling
methods. However, current work is focusing on dynamic thermal management
policies for processors and stand-alone IC systems that can adapt resource uti-
lization and power dissipation to meet system demands. For example, dynamic
voltage and frequency scaling is a technique whereby the voltage or frequency of
a microprocessor can be automatically adjusted to conserve power or to reduce
the amount of heat generated by the chip. This is at the cost of performance
since the number of instructions that can be executed in a given amount of time
is reduced as a result.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 116–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Thermal-Aware Sensor Scheduling for Distributed Estimation 117

The majority of existing work addresses the thermal management problem in
stand-alone systems. However, recent reports [2] emphasize the need to perform
thermal management across stand-alone system boundaries, such as those in data
centers. A sensor network represents another distributed platform where indi-
vidual systems (i.e. sensor nodes) collaboratively solve complex tasks is an au-
tonomous fashion. Unlike data-centers, the temperature between compute nodes
in generally uncorrelated as sensor nodes are very far apart. However, sensor
nodes are smaller and cheaper self-contained systems that cannot be cooled by
fans or fluids due to cost- and energy-related resource constraints. Therefore,
without explicit management of some kind, they may overheat under heavy
workloads which includes obtaining measurements, processing or compressing
those measurements, and communicating measurements and results. Note that
most sensor network applications may not possess heavy enough workloads to re-
quire thermal management, but visual sensor networks (VSN) are one exception.
VSN’s require cameras (arrays of sensors) to acquire vast amounts of image data,
run intensive computer vision algorithms to extract information or compress
image data, and communicate results and/or images across bandwidth-limited
channels.

Ignoring sensor node temperature could result in failure of any one the node’s
hardware components for sensing, processing, or communication which would
require maintenance or replacement. When one considers sensor networks that
operate in remote or restricted regions and may not be easily accessible, replace-
ment is not a feasible solution. Aside from permanent damage, the measurements
obtained by overheated sensing hardware and perhaps even calculations done by
the processor could be corrupted by noise affecting the distributed computation
of the entire sensor network.

Sensor networks have other unique characteristics as well. They are commonly
formed via wireless communication, so power and temperature could easily be
affected by dynamic channel conditions. The underlying structure of the net-
work plays a key part in how energy is dissipated and consequently temperature
behaves as well. For example, in a centralized wireless network with direct com-
munication between nodes and some centralized hub, nodes farther away must
dissipate considerably more energy than nodes closer to the center. Alternatively,
in a multi-hop communication scenario where nodes communicate to the center
through each other, the opposite is the case. Many sensor network applications
in monitoring, tracking, and estimation also come with real-time constraints.
Therefore, in sensor networks, temperature in nodes may not be coupled in the
same sense as data-centers and multi-core processors, but is highly dependent on
communication, desired global performance, and local scheduling. We feel that
such complications make thermal management in sensor networks an interesting,
challenging, and relevant research agenda and hope to explore some avante-garde
solutions to them in this work and future research.

Existing work in sensor networks deals with resource constraints such as
power or energy [3] to increase network lifetime, but not temperature. While a
correlation between power and temperature exists, adhering to a power related

118 D. Forte and A. Srivastava

requirement, such as battery life, can still result in a failure to meet thermal con-
straints. This is a consequence of one key difference between temperature and
power. Unless there is some kind of energy harvesting mechanism, power in any
system does not get replenished whereas temperature is a dynamically varying
quantity and depends on the current power density. To clarify, consider a sensor
network where nodes have varying levels of energy remaining. Most energy-aware
management policies would re-distribute the workload among nodes so that those
with the highest remaining energy are given greater workloads. While this cer-
tainly would extend the lifetime of the network, a constraint on temperature at
the harder working nodes could easily be violated resulting in hardware damage.
This would actually decrease the lifetime and reliability of the entire network
even though the power constraints are satisfied. However, if the problem were
re-cast in a thermal aware setting, the goal would be to schedule work at nodes
over time such that no constraint is ever violated, but network lifetime is still
maximized.

Our primary goal is to develop a thermal management policy to improve
sensor reliability by constraining sensor temperature and examine its perfor-
mance trade-offs. In this work, we focus on the performance of sensor networks
that gather data individually, but collaboratively compute a state estimate. The
primary focus is on the relationship between sampling, number of sensors, lo-
cal sensor node temperature, and the global state estimation error. We devise a
scheduling algorithm to achieve a desired real-time performance constraint while
maintaining a thermal limit on temperature at all nodes in the network. For sim-
plicity, we develop our ideas for a distributed Kalman filter (KF) architecture
estimating a linear time-invariant system, but our policies should extend to any
estimation technique where an error can be reliably estimated over time. The
secondary goal of this work is to motivate future research to develop thermal
management techniques for distributed systems.

1.2 Contributions and Assumptions

Throughout this work, we consider a network where sensor nodes obtain and
directly transmit their measurements to a single KF hub estimating a linear
time-invariant system. We assume that all nodes in the network have identical
hardware and are measuring the same process. Therefore, the thermal charac-
teristics, system dynamics, and measurement noise are considered identical for
each node and independent among nodes. These assumptions are made to sim-
plify the notation and calculations, but the underlying structure of the solutions
should extend regardless.

Common solutions to thermal reliability issues include redundancy and grace-
ful performance degradation. We provide a simple method to find the number of
redundant sensors needed along with their sampling rate and temporal stagger-
ing to satisfy both thermal and performance related system constraints. Rather
than exhaustively test every scheme, we offer a rationale for omitting certain
configurations. Performance in our case refers to the confidence in state esti-
mates. Therefore, in order to compare the performance of any two solutions, we

Thermal-Aware Sensor Scheduling for Distributed Estimation 119

obtain steady state estimation error for both. This is a solid basis for comparison
provided that the system allows convergence to a stable state (see detectablility
in [4]) and the filters run long enough to reach it. Results show that our policy
can successfully balance the tradeoffs between thermal and performance related
constraints.

The rest of the paper is organized as follows: Section 2 contains a brief
overview of the Kalman Filter and a review of thermal modeling in electronic
systems. Sections 3 and 4 gives an extended look at the KF’s operation and
sensor thermal behavior with sub-sampling and additional sensors considered.
Section 5 summarizes the algorithms used to implement our policy. Section 6
contains a radar tracking example to evaluate our methods. We conclude with
section 7.

2 PRELIMINARIES

2.1 The Kalman Filter (KF)

The KF is a set of mathematical equations that recursively estimate the state
of a process, system, or environment by assuming the Markov property where
the true state is conditionally independent of all earlier states given the prior
state. Any KF operation begins with a system description of the process and
measurement models:

si = Asi−1 + qi−1 (1)
zi = Hsi + ui (2)

where si denotes the system state and zi corresponds to the sensor measurement
for each time step i. si is calculated recursively using a linear combination of
the previous state si and random system dynamics (sometimes referred to as
process noise) qi−1. zi is assumed to be related to the current system state by
H and measurement noise ui. Note that qi ∼ N(0, Q), ui ∼ N(0, U), and we
will assume that qi and ui are uncorrelated ∀ i.

The KF is composed of two distinct phases at each discrete time-step i: predict
and correct. The predict phase uses the state estimate from the previous time-
step to produce an estimate of the state at the current time-step. In the correct
phase, sensor information at the current time-step is used to refine this prediction
for a more accurate state estimate. The two predict and three correct phase
equations are:

ŝi|i−1 = Aŝi−1|i−1 (3)

Pi|i−1 = APi−1|i−1A
T + Q (4)

ŝi|i = ŝi|i−1 + Ki(zi − H ŝi|i−1) (5)
Pi|i = (I − KiH)Pi|i−1 (6)

Ki = Pi|i−1H
T (HPi|i−1H

T + U)
−1

(7)

120 D. Forte and A. Srivastava

ŝi|i and ŝi|i−1 represent the KF’s corrected and predicted state estimates given
z0, z1, . . . , zi and given z0, z1, . . . , zi−1 respectively while Pi|i−1 and Pi|i are the
respective error covariances (i.e. uncertainty in the estimate). The Kalman gain
matrix Ki controls the contributions of ŝi|i−1 and zi to ŝi|i. The derivation of
these general equations can be a found in any standard textbook such as [4].
Extensions are also available for a distributed architecture [5]. In this work, the
type of distributed network under consideration is one where sensor nodes obtain
and directly transmit their local measurements to a central KF node estimating
the global system state.

In this paper, we are primarily concerned with the steady state covariance
P∞. In short, P∞ is what the estimate uncertainty converges to as i → ∞.
When the error has converged, the Kalman gain essentially becomes a constant
and optimally balances the contributions of the previous state and the current
sensor measurements to the estimated state. P∞ is important to us because it
provides us with an upper bound on estimate uncertainty and allows us establish
any changes in KF fidelity under different network parameters such as sensor
sampling rate and number of sensor measurements.

2.2 Sensor Thermal Behavior

We define a sensor to be an electrical system made up of devices that mea-
sure a system state, communicate measurements to a central hub, and perform
some light-weight processing. An example would be a processor with radio com-
munication hardware. The thermal behavior of such electrical systems is often
modeled by an RC circuit [6,7] with voltage representing the temperature and
current representing power dissipation (see Figure 1(e)). The resistance R is the
potential heat path throughout the package, while capacitance C indicates the
ability of the processor to store heat [7].

The RC thermal model consists of the following relationship between the core
temperature T and power consumption p(t):

dT

dt
= − T

RC
+

p(t)
C

(8)

By running at a constant power pc ∀ t and assuming an initial temperature
T (0) = Tinit, we solve Equation (8) and find that:

T (t) = Tnat + Tdiffe−t/RC (9)

where Tdiff = Tinit − Tnat and Tnat = Rpc. Clearly, as t → ∞, T → Tnat.

3 Single Node Case

Consider the case with a single sensor that obtains and communicates its mea-
surements to a centralized hub. Assume that the sensor dissipates ec = pc × tc
units of energy to accomplish this sensing/communication task. Then assume

Thermal-Aware Sensor Scheduling for Distributed Estimation 121

(d)

(c)

(b)

(a)

p(t)

tt 2t 3t 4t 5t c c c c c

(a-d) (e)

Fig. 1. Power profiles for (a)x = 2, (b)x = 3, (c)x = 4, and (d)x = 5. (e) shows the
RC thermal model.

that the sensor rests for (x − 1)tc additional units of time. The goal of this
section is to determine if there exists an x to simultaneously meet a thermal
constraint ct limiting temperature and KF performance constraint cp which es-
tablishes how much estimation error can be tolerated.

3.1 Thermal Analysis

A manufacturer typically provides a constraint on the temperature that if vi-
olated will jeopardize the electronic system’s reliability. In the context of this
paper, this means that T (t) should not exceed ct. To satisfy the condition on
average, our thermal policy calls for a reduction in the sensor’s sampling rate
(i.e. increase in x). In this section, we will address the potential thermal savings.

The sensor sampling rate is reduced so that measurements are obtained and
sent every x steps each of duration tc, where x is an integer. To evaluate this
thermal policy, let p(t) be a modulated power signal for the sensor such that
pc is dissipated for tc time units during the active (sampling) state followed
by a shutdown state where power dissipated is zero (static power consumption
ignored for simplicity) for (x − 1)tc additional time units. See Figure 1(a-d) for
further clarification. In the first interval 0 ≤ t ≤ tc, the sensor dissipates pc and
T follows Equation (9). Then, the final temperature in the first interval T (tc)
(determined by Equation (9)) is used as the initial temperature for the next
interval tc < t ≤ xtc. The solution of (8) under these conditions now gives:

T (t) = T (tc)e−(t−tc)/RC , tc ≤ t ≤ xtc (10)

where T (tc) = Tnat + Tdiffe−
tc

RC . We consider a periodic sampling where the in-
terval pairs of active/shutdown repeat. During the ith active/shutdown interval
(ixtc < t ≤ (i + 1)xtc), T (t) actually obeys the same relationship as the first
sampling interval (0 < t ≤ xtc). Note that in this case, the final temperature
of the active (shutdown) state acts as the initial temperature of the shutdown
(active) state. Letting Tdiffi

= Tiniti
− Tnat and Tiniti+1 = T (ixtc) ∀ i and gener-

alizing Equations (9) and (10) in terms of i and x, we find that when a sensor
is active (p(t) = pc)

T (t) = Tnat + Tdiffie
−(t−(i−1)xtc)/RC , ixtc ≤ t ≤ (ix + 1)tc (11)

and when the sensor is resting (p(t) = 0).

122 D. Forte and A. Srivastava

T (t) = Tnate
−(t−((i−1)x+1)tc)/RC +Tdiffi

e−t/RC , (ix+1)tc ≤ t ≤ (i+1)xtc (12)

where

Tdiffi = Tnat

(
e−(tc(x−1))/RC − 1

)
+ Tdiffi−1e

−xtc/RC , i > 1 (13)

For our purposes, the sensor is operating for a long time so we are most interested
in the stable state behavior of these equations as t → ∞ or equivalently as
i → ∞. In the stable state, the temperature within each pair of intervals will
be the same. Therefore, we evaluate the average temperature as i → ∞ by only
including the behavior within one active/shutdown period:

Tavg∞(x) = lim
i→∞

1
xtc

∫ ixtc

(i−1)xtc

T (t)dt =
1

xtc

∫ xtc

0
T (t)|Tdiff∞dt (14)

=
1

xtc

(∫ tc

0
T (t)dt +

∫ xtc

tc

T (t)dt

)
(15)

=
1

xtc

(
Tnattc + RCTdiff∞(1 − e−tc/RC) + (16)

RCTnat(1 − e(x−1)tc/RC + RCTdiff∞(e−tc/RC − e−xtc/RC)
)

(17)

Tdiff∞ is a critical parameter and by knowing its value we can calculate Tavg∞ .
Fortunately, Equation (13) is a simple recurrence relation and it can be shown
(see Section 7) that

Tdiff∞ = lim
i→∞

Tdiffi
= Tnat

(
e−tc(x−1)/RC − 1

1 − e−xtc/RC

)
(18)

Then, substituting Equation (18) into Equation (17) and canceling, we find that

Tavg∞(x) =
Tnat

x
(19)

Note that Tavg∞ → 0 as x → ∞ which means the temperature is approaching
the environment’s ambient temperature Tamb. This is accurate behavior when
one considers a sensor that is active for tc time units then rests forever. Fig-
ure 2(a) shows Tavg∞ offset by the ambient temperature (we have chosen room
temperature 298 K) plotted against x.

In this paper, we will restrict a sensor’s Tavg∞ by a thermal constraint. With
any given ct, we now define a sub-sampling rate by x∗:

x∗ = min x s.t. Tavg∞(x) < ct (20)

Operating a sensor with x ≥ x∗ guarantees the sensor’s temperature remains
below the thermal constraint on average.

Thermal-Aware Sensor Scheduling for Distributed Estimation 123

0 10 20
300

350

x

T
av

g

(a)

0 10 20
10

2

10
4

10
6

x

A
vg

 tr
(P

∞
(x

))

(b)

0 10 20
200

400

600

m

simulated
approximated

(c)

Fig. 2. (a) shows Tavg∞(x) (in Kelvin) for typical R, C, and pH values obtained from
Hotspot [8]. (b) shows tr(Pavg∞(x)) on a log-linear scale and (c) compares tr(P∞(m))
and P̂ (m). Both plots are from the radar tracking example in section 6.

3.2 Sub-sampled KF

In this section, we examine the tradeoffs in KF performance from sub-sampling.
The goal is to find a sampling defined by x needed to fulfill a performance
constraint. For the sake of illustration, we assume that x = 2 and obtain a
version of the KF with sampling every 2 steps. The new process model including
the current state si expressed as a function of the previous state si−2 is:

si = Asi−1 + qi−1 (21)
= A (Asi−2 + qi−2) + qi−1 (22)

= A2si−2 + Aqi−2 + qi−1 (23)

This result can be generalized for any sub-sampling rate x:

si(x) = Axsi−x + qi,x (24)

where qi,x =
∑x−1

n=0 Anqi−n−1. Note that the measurement model remains un-
changed, but measurements are only sensed/communicated every x steps.

Given the new process model, the modified predict and correct phase equa-
tions are:

ŝi|i−x = Axŝi−x|i−x (25)

Pi|i−x = AxPi−x|i−xAxT + Q(x) (26)

Ki,x = Pi|i−xHT (HPi|i−xHT + R)
−1

(27)
ŝi|i = ŝi|i−x + Ki,x(zi − H ŝi|i−x) (28)
Pi|i = (I − Ki,xH)Pi|i−x (29)

where Q(x) =
x−1∑
k=0

AkQAkT
and was obtained by assuming cov(qi,qj) = 0

(system dynamics are uncorrelated) ∀ i �= j.
In this paper, we are primarily concerned with understanding the behavior of

the steady state covariance P∞ and its relationship to sampling rate. Therefore,
existence of the steady state is a requirement for applying these results. Finding

124 D. Forte and A. Srivastava

an analytic expression for a multi-rate system can be difficult or even impossible
for some cases. Therefore, we simulate our systems until P∞(x) is reached. To
make a fair comparison between the standard KF (sampling at every itc) and the
sub-sampled KF (sampling at every ixtc), we need to include all sample points
from the standard KF. Therefore, for the sub-sampled KF, we only perform
the prediction step (rather than predict and correct) for the missing samples.
Their error covariances correspond to predicted error covariances. Let us denote
timesteps for missing samples by k where 1 ≤ k ≤ x − 1. We take an average
trace (sum of the elements on the main diagonal) of the covariances and define:

Pavg∞(x) = 1
x tr

(
P∞(x) +

x−1∑
k=1

(AkP∞(x)AkT
) + Q(x)

)
(30)

which is shown in Figure 2(b) for the radar example in section 6. To maintain
KF fidelity, we constrain the system with a performance constraint cp. Then for
any given cp, we can define a sub-sampling rate x′:

x′ = max x s.t. Pavg∞(x) < cp (31)

If x′ ≥ x∗, any x chosen between x∗ and x′ results in a node operating below
the thermal constraint while maintaining the required level of performance. If
x′ < x∗, sub-sampling alone will not be enough to fulfill the desired constraints.
The next section will deal with this shortcoming.

4 Multiple Sensor Case

In this section, we study the benefits of using multiple sensors to estimate the
same state and how this method may be used to solve our constrained prob-
lem. The goal is to find the number of sensors needed to fulfill a performance
constraint along with their sampling rate and schedule to also meet the thermal
constraint. Rather than exhaustively test every scheme, we offer a rationale for
omitting certain configurations.

Let us first examine the potential improvements in error from using m identical
sensors to estimate the same state. In section 3.2, the sub-sampled KF called
for a modified process model. Here, the opposite is needed. Since sensors are
identical, we will assume identical noise covariances U and that the H matrix
relating current state si to the kth sensor’s measurement zi,k are the same as
well. We will also assume cov(ui,j ,ui,k) ∀ j �= k (uncorrelated noise between
sensors). The modified measurement model is given by:

zi = Hmult(m)si + ui (32)

where zi =
(
zi,1 . . . zi,m

)T
, Hmult(m) =

(
H . . . H

)T
, ui ∼ N(0, Umult(m)),

and Umult(m) =

(
U 0 0

0
. .

. 0
0 0 U

)
. Note that Hmult(m) and Umult(m) contain m total

Thermal-Aware Sensor Scheduling for Distributed Estimation 125

H and U block matrices respectively. For a system with synchronous sensors
operating in a centralized manner, its performance is the same as a system with
one composite sensor with smaller variance [9]. This means that under these
assumptions, Pi|i−1 and Pi|i can be obtained by using Equations (4) and (6)
with U replaced by 1

mU . Note that this approximation will be useful in the
results section to simplify simulations.

4.1 Thermal Analysis

Throughout this section, consider a multi-sensor network containing m identical
sensors that are sufficiently distant from one another. Then it is sensible to
assume that each sensor is thermally independent. Also, assume ct and Tamb
will be the same for identical sensors so the x∗ calculated previously is sufficient
for condition Tavg∞(x) < ct to hold for every sensor in the network. Our analysis
can be extended to support varying ct and Tamb in future works.

4.2 Multi-sensor Covariance

It is possible to obtain P∞ for any m through simulation or closed form solution
if it exists, but this becomes less computationally efficient as the system global
state or measurement vectors grow. Instead we provide an analytical method to
approximate tr(P∞) by P̂ for any m which seems to accommodate general system
solutions rather well. We have observed that for our assumptions, the covariance
seems to follow a decay proportional to 1/m. Therefore, the approximation is
given by:

P̂ (m) =
tr(P∞(1))

mk
+ lim

m→∞ tr(P∞(m)) (33)

The first term in the above accounts for the decay and the second term acts as an
offset which accounts for the error always introduced by process noise covariance
Q. k is a positive constant which depends strictly on problem parameters. We
find that one way to approximate k is to simulate the KF for several different
choices of m to obtain tr(P∞(m)), solve for k after each simulation, and take
an average. Figure 2(c) gives a plot of tr(P∞(m)) and P̂ (m) on the same set of
axes for the radar experiment in Section 6 to validate the approximation to the
reader.

4.3 Policy Synthesis

We are interested in a method for finding the total number of sensors and the
percentage of sensors that need to be active at any given time to fulfill a given
ct and desired cp. We assume a policy that calls for the same number of active
sensors at every time-step because uniform staggering of identical sensors was
proven in [9] to be optimal for radar tracking. Intuitively, the consistency in
the state estimate through uniform sampling should at least be close to the
best possible estimate even for more general problems. In fact, [9] also provided

126 D. Forte and A. Srivastava

numerical results for systems consisting of 2 sensors with different measurement
noise variance and found that uniform staggering is no more than 30% worse
than the optimal scheme even with a noise ratio among sensors as large as 10.

Let m be the number of active sensors. Then by comparing P̂ (m) with cp, we
will obtain the number of sensors, m′, needed at any given step to maintain KF
performance:

m′ = min m s.t. P̂ (m) < cp (34)

ct enforces that any sensor only be active every x∗ steps so the total number of
sensors required in this approach is x∗m′.

5 Design Methodology

5.1 Single Sensor Algorithm

Our first algorithm restricts itself to the steady state operation of single sensor
and returns the sensor’s sampling rate xs. While the thermal constraint is met,
this method requires applications that allow for relaxed performance constraints.
The steps are:

1. Compute Tnat = Rpc

2. Solve Equation (20) to obtain x∗.
3. Let xtest = x∗.
4. Simulate the system with the KF system parameters A, H , Q, U and obtain

Pavg∞(xtest) from (30).
5. Solve Equation (31) for x′.
6. If x′ �= xtest − 1, increment xtest and go back to step 4.
7. If x′ ≥ x∗, return xs = x′. Otherwise, return 0 because the performance

constraint cannot be met.

Upon failure of this algorithm, one may relax the performance constraint (if
possible) or apply our second algorithm.

5.2 Multiple Sensor Algorithm

The second algorithm considers additional sensors so that performance is main-
tained while meeting thermal constraints. This method returns the total number
of sensors needed ms and their sampling rates xs. The steps are:

1. Compute Tnat = Rpc

2. Evaluate Equation (33) with a suitable k to obtain P̂ (m).
3. Solve Equation (34) to obtain m′.
4. Solve Equation (20) to obtain x∗.
5. Return ms = x∗m′ and xs = x∗.

Thermal-Aware Sensor Scheduling for Distributed Estimation 127

60 70 80
100

110

120

130

Estimated
Actual

(a)x = 4, m = 1
60 70 80

100

110

120

130

Estimated
Actual

(b)x = 1, m = 1
60 70 80

100

110

120

130

Estimated
Actual

(c) x = 1, m = 16

Fig. 3. (a,b,c) Estimated trajectories plotted against true trajectory for 3 (x, m) pairs

6 Simulation Results

Let us examine a 2D radar tracking example with random-walk velocity [10].
Imagine a radar fan beam rotating continually through 360◦ with a period T.
The state vector si = (posh,i, velh,i, posv,i, velv,i)

T where posh,i, posv,i, velh,i,
velv,i are the target’s horizontal and vertical positions and velocities at time step
i. For the target’s measured position, zi = (posh,i, posv,i)

T . For sampling rate x
and one sensor, the generalized process and measurement models are given by:

si = Axsi−x + qi,x (35)
zi = Hsi + ui (36)

where Ax =
(

1 xT 0 0
0 1 0 0
0 0 1 xT
0 0 0 1

)
and H =

(
1 0 0 0
0 0 1 0

)
. This can easily be extended to a

multiple sensor scenario by applying the methods described in Section 4. The
state transition matrix Ax acts on si−x predicting si (which is x steps away)
assuming constant velocity in either direction. For example, posh,i = posh,i−x +
xTvelh,i−x + qi,x. It is the system dynamics or process noise qi,x which accounts
for randomness in the target trajectory (i.e. target accelerating or turning at
any given time). In the single and multi-sensor cases, increasing x should clearly
yield greater uncertainty in ŝi|i−x. In the multi-sensor case, an increase in m
should raise the confidence in ẑi and result in an improved estimate. Figures 3
(a-c) support these statements by showing the estimated trajectories for several
cases of x and m.

In figure 4, we report algorithm results for the radar tracking example with
varying thermal and performance constraints and fixed process and measure-
ment noise covariances. Note that the opposite case with fixed constraints and
varying noise covariances will highlight similar trends so the results are omit-
ted. For the single sensor case, relaxing cp increases xs (lowering the sampling
rate) and relaxing ct decreases xs (raising the sampling rate). These are an accu-
rate trends for the opposing constraints. For the multi-sensor case, the required
number of sensors, ms, decreases with more relaxed ct. It can be seen that our
algorithms provide an ms and xs that balance both thermal and performance
related constraints.

128 D. Forte and A. Srivastava

40 60 80
0

5

10

c
t

x s

c
p
 = 500

c
p
 = 550

c
p
 = 600

c
p
 = 650

c
p
 = 700

(a)

300 400 500 600
0

20

40

60

80

c
p

m
s

c
t
 = 32

c
t
 = 37

c
t
 = 47

c
t
 = 67

c
t
 = 77

(b)

Fig. 4. (a) Single Sensor Case and (b) Multiple Sensor Case. Note: ct is in oC in this
figure.

7 Conclusion

The effects of a thermal management policy on the steady state Kalman filter
were studied in this paper. The average temperature of sensors operating at
lower sampling rate x∗ was derived and compared with a manufacturer specified
constraint to satisfy a thermal requirement. Then we met both thermal and
desired performance related constraints by reducing the KF sampling rate to
xs or including ms sensors to estimate the same process. Rather than simulate
every filter for m sensors, we also contributed a general analytical method to
approximate tr(P∞(m)). Instead of evaluating every possible schedule, intuition
gave us a reasonable uniform sensor staggering method to fulfill performance
constraints. The analytical results and design methodology should extend to
any form of estimation with measurable error.

References

1. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: The impact of technology scaling
on lifetime reliability. In: DSN, pp. 177–186. IEEE Computer Society, Los Alamitos
(2004)

2. Ramos, L., Bianchini, R.: C-oracle: Predictive thermal management for data
centers. In: IEEE 14th International Symposium on High Performance Computer
Architecture, HPCA 2008, February 2008, pp. 111–122 (2008)

3. Soro, S., Heinzelman, W.: A Survey of Visual Sensor Networks. Advances in Mul-
timedia 21 (2009)

4. Simon, D.: Optimal State Estimation: Kalman, H Infinity and Nonlinear
Approaches. Wiley & Sons, Chichester (2006)

5. Rao, B.S.Y., Durrant-Whyte, H.F., Sheen, J.A.: A fully decentralized multi-sensor
system for tracking and surveillance. Int. J. Rob. Res. 12(1), 20–44 (1993)

6. Rao, R., Vrudhula, S., Chakrabarti, C.: An optimal analytical solution for processor
speed control with thermal constraints. In: Proc. Intl. Symp. Low Power Electronics
and Design (ISLPED), pp. 292–297 (2006)

7. Cohen, A., Finkelstein, L., Mendelson, A., Ronen, R., Rudoy, D.: On estimat-
ing optimal performance of cpu dynamic thermal management. IEEE Computer
Architecture Letters 2(1) (2003)

Thermal-Aware Sensor Scheduling for Distributed Estimation 129

8. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan,
D.: Temperature-aware microarchitecture: Modeling and implementation. ACM
Trans. Archit. Code Optim. 1(1), 94–125 (2004)

9. Niu, R., Varshney, P.K., Mehrotra, K., Mohan, C.: Temporally staggered sensors in
multi-sensor target tracking systems. IEEE Transactions on Aerospace and Elec-
tronic Systems 41(3), 794–808 (2005)

10. Brookner, E.: Tracking and Kalman Filtering Made Easy. Wiley-Interscience,
Hoboken (April 1998)

Appendix

Equation 13 can be shown by induction:

Tdiff1 = Tinit1 − Tnat

Tdiff2 = Tinit2 − Tnat = T (xtc) − Tnat

= Tnat

(
e−(tc(x−1))/RC − 1

)
+ Tdiff1e

−xtc/RC

.

.

.

Tdiffi
= Tnat

(
e−(tc(x−1))/RC − 1

)
+ Tdiffi−1e

−xtc/RC ∀ i > 1

Then to prove the recurrence, let us simplify the notation of Equation 13 with

ai = Tdiffi

c = Tnat

(
e−(tc(x−1))/RC − 1

)
d = e−xtc/RC

making the recurrence relation

ai = c + dai−1

Note that c and d are simply constants. Next, we rewrite the recurrence relation
in terms of a1

ai = c
i−2∑
j=0

dj + a1d
i−1

As i → ∞, the first term

c lim
i→∞

i−2∑
j=0

dj = c
di−1 − 1

d − 1

=
c

1 − d
, |d| < 1

and the second term clearly → 0 for |d| < 1. Therefore,

lim
i→∞

ai =
c

1 − d
→ lim

i→∞
Tdiffi

= Tnat

(
e−tc(x−1)/RC − 1

1 − e−xtc/RC

)

Decentralized Subspace Tracking via Gossiping

Lin Li1, Xiao Li1, Anna Scaglione1, and Jonathan H. Manton2

1 University of California, Davis, USA
{llli,eceli,ascaglione}@ucdavis.edu

2 University of Melbourne, Victoria, Australia
jmanton@unimelb.edu.au

Abstract. We consider a fully decentralized model for adaptively track-
ing the signal’s principal subspace, which arises in multi-sensor array de-
tection and estimation problems. Our objective is to equip the network
of dispersed sensors with a primitive for online spectrum sensing, which
does not require a central fusion node. In this model, each node updates
its local subspace estimate with its received data and a weighted average
of the neighbors’ data. The quality of the estimate is measured by the to-
tal subspace mismatch of the individual subspace component estimates,
which converge asymptotically in the Lyapunov sense.

1 Introduction

Subspace-based signal processing methods have been applied successfully to
both the spatial and temporal spectral analysis. Early approaches are based on
the batch singular value decomposition (SVD) or the eigenvalue decomposition
(EVD) of the data matrices [2]. However, they are unsuitable for the adaptive sig-
nal processing because repeated SVD/EVD is required and, thus, they are very
computationally expensive. For faster processing time, many adaptive subspace
estimation techniques have been proposed, such as modified SVD/ED [6,12,13],
Rank-one updating algorithm [14] and subspace estimation as a constrained or
unconstrained optimization problem [9,10,11]. The aforementioned literatures
have studied the subspace estimation problem in a centralized setting, where all
the information is available at a single location. There are situations, however in
a large sensor network, where the available information is not available centrally.

In these scenarios, communications place a premium on the cost of the com-
putation, not only because of the raw data transmission cost, but also due to the
need of maintaining reliable routes from the sensors to the fusion site, respond-
ing to failures and coordinating the data gathering process. Recently, several
authors [3,8] have considered alternative avenues for computation by means of
network diffusion using only local communications. These mechanisms require
minimal, if any, network knowledge, and are resilient to link failures or changes
in network topology. Examples of in-network signal processing via gossiping are
[1,15,16,17,18,19]. In particular, new frameworks to study distributed stochas-
tic optimization [20,22], Kalman filtering[21] and adaptive filtering [7,23] have
emerged, providing an alternative to the centralized data fusion model.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 130–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Decentralized Subspace Tracking via Gossiping 131

Fig. 1. Near-neighbor communication topology

Motivated by the significance of subspace estimation and tracking in signal
processing, we focus our attention on the principal subspace tracking problem in
a decentralized Wireless Sensor Network (WSN) setting. A typical WSN consists
of a large number of sensors located in the environment being monitored. Each
sensor has limited communication and computation resources. To overcome these
limitations, a decentralized data fusion protocol is an appealing option given its
resilience to node failure, mobility and its intrinsically low control overhead.

Fig.1 shows one possible information flow scheme of a decentralized WSN. To
simplify the model, we assume that all the sensors in the network are identical
and restricted to the near-neighbor communication with the same commnucation
range. The network can be considered a random geometric graph, with radius
equal to its communication range [24]. In this paper, we consider local commu-
nications performed through a static network and with synchronous updates.
Randomized gossip on time-varying topologies are a natural generalization that
will be pursued in a future study.

The organization of this paper is as follows. After briefly presenting the sys-
tem’s mathematical model and the average consensus protocol in the next sub-
sections, we derive adaptive algorithms for tracking the signal’s 1-dimensional
and p-dimensional principal subspaces via gossiping, and provide stability anal-
ysis along with the numerical results in Section 2. To motivate our study, Section
3 presents a case study on spectrum sensing in a decentralized cognitive radio
system. The application scenario considered for the proposed subspace track-
ing algorithm is to distributedly estimate the signal’s subspace in a given radio
frequency, and furthermore, to perform a decentralized detection on the spec-
trum’s band occupancy. In the rest of the paper, the signal’s principal subspace
is referred as the subspace.

1.1 Problem Setup

Let G = (N , E) represent an undirected graph associated to the given connected
decentralized network. The set N = {1, 2, · · · , N} denotes the nodes, and the set
E is a collection of edges {i, j} if the node i and j are connected for i �= j. Denote
ri,t as the ith node’s received data at time t and rt = [r1,t, r2,t, · · · , rN,t]T ∈ CN

132 L. Li et al.

as the sample vector from the N sensors. The subspace tracking problem consists
of adaptively computing the p-dimensional principal components of the data
covariance matrix R = E{r(t)rH(t)} ∈ CN×N . The well-known Karhunen’s
method [6] for computing the dominating principal component u, combined
with Oja’s learning rule [5] in a centralized network can be expressed as

ut =
ut−1 + γtrtr

H
t ut−1

‖ut−1 + γtrtrH
t ut−1‖

≈ ut−1 + γt

[
rtr

H
t ut−1 − ut−1u

H
t−1rtr

H
t ut−1

]
(1)

where u0 is initialized to an arbitrary unit vector.
The computation of the learning rule in (1) requires access to the entire vector

of observations rt. However, in a decentralized network, each node only knows
its received data ri,t. It is not possible for all the nodes to obtain the complete
received signal vector, nor to carry out the computation in (1). Therefore, it is
essential to seek a decentralized method to perform the computation with only
the data that are available. Our objective is to provide a method to implement
this learning rule in a decentralized fashion, by having each node compute via
near-neighbor communications only the corresponding ith component of the vec-
tor ut. The key idea is to decentralize the computation of the term rH

t ut−1 using
as a primitive the so called class of average consensus gossiping protocols, which
are going to be described in the next section.

1.2 Average Consensus Protocol

Recall that rHu =
∑N

i=1 r∗i ui. Suppose zi(0) = r∗i ui is the known information
at node i. The average consensus protocol [3,8] iteratively computes the average∑N

i=1 zi(0)/N by performing a weighted average of the neighbors’ data as follows

z(k) = Wz(k − 1) , (2)

given the initial condition z(0) = [z1(0), z2(0), · · · , zN(0)]T . The (i, j)th entry
W ij of the matrix W is the weight associated to the edge {i, j}, which is non-
zero if and only if {i, j} ∈ E , meaning node i and j are connected neighbors.

The undirected gragh G assumption implies W ij = W ji and W ii = 1 −∑
{i,j}∈E W ij . Therefore, the matrix W has the same sparsity as the network

graph, and it is a doubly stochastic matrix (i.e., 1N×1 = [1, 1, · · · , 1]T is a left
and right eigenvector of W). To achieve asymptotic average consensus, matrix
W must also satisfy limk→∞ W k = 1

N 11T = J [3] or equivalently, the spectral
radius satisfies ρ(W − J) < 1. This indicates the following,

z(k) = W kz(0) k→∞−−−−→ 1
N

N∑
i=1

zi(0) · 1N×1 . (3)

The value zi(k) at each node approaches the averaged value of z(0) as k increases.
In general, in order for the functions of interest to be computed through the

average consensus algorithm, they need to be separable in the form of g(z) =
g
(∑N

i=1 fi(xi)
)

and the value
∑N

i=1 fi(xi) can be simply obtained by all the

Decentralized Subspace Tracking via Gossiping 133

nodes via the average consensus algorithm. Setting the initial condition as z(0) =
[f1(x1), · · · , fN(xN)]T , then after the kth iteration, we get

Nz(k) = NW k
[
f1(x1) · · · fN(xN)

]T k→∞−−−−→
N∑

i=1

fi(xi)1N×1 . (4)

Remark 1. One possible construction of the weight matrix W is in terms of the
Lapacian matrix L, where W = I − δL. The value, δ, is selected such that each
element in W is non-negative.

2 Decentralized Subspace Tracking Algorithms

In this section, we propose the decentralized 1-dimensional and p-dimensional
subspace tracking algorithms. The 1-dimensional tracking algorithm is based on
the Karhunen-Oja’s updating rule [5,6] as presented in (1). The p-dimensional
tracking algorithm is based on the NOja’s algorithm [9,10], which is described in
Section 2.2. For each case, the algorithm is first explained and followed by the
stability analysis via its associated ordinary differential equation (ODE). Fur-
thermore, it can be shown that the equilibrium point of the ODE is stable under
certain conditions and it spans the principal subspace of the signal’s covariance
matrix, as corroborated by the numerical results presented in each case.

2.1 Decentralized 1-Dimensional Subspace Tracking

Consider the problem of 1-dimensional subspace tracking based on Karhunen-
Oja’s learning rule in (1), but restricted to the near-neighbor communications.
We propose decentralizing the learning rule using the average consensus protocol.
Specifically, the nework first seeks to reach a consensus on the inner product rHu
via gossiping, and then updates its principal component estimation using (1).

Let xi=ri,t and fi(xi)=r∗i,tui,t, then (f1(x1), . . . , fN(xN))T =r∗
t ◦ut, where A◦B

is the element by element product. Assume each node performs k iterations of av-
erage consensus, from (4) it is clear that {NW k (r∗

t ◦ ut)} are the estimates of the
inner product rH

t ut made at the individual nodes. Let ut,k denote the subspace es-
timate at time t assuming k average consensus iterations are performed. Using the
property, W (r∗◦u)◦r = (W ◦rrH)u, and the approximation,{NWk (r∗

t ◦ ut)},
in place of the actual rH

t ut, the decentralized Karhunen-Oja’s learning rule can
be reformulated into the following network wide update

ut,k = ut−1,k + γtdt,k , (5)

where dt,k = NW k ◦
[(

I − (NW k ◦ ut−1,kuH
t−1,k)

)
rtr

H
t

]
ut−1,k .

Algorithm 1 summarizes the proposed 1-dimensional subspace tracking of R.
Here, u0,0 is initialized arbitrarily with the property that uH

0,0u0,0 ≈ 1. For
convenience, we denote by AC (fi(xi)) the ith sensor’s output of the average
consensus algorithm given the initial value fi(xi), and γt is the stepsize.

134 L. Li et al.

Algorithm 1: 1-Dimensional Subspace Tracking (at the ith node)

input : A sequence of ri,t
output: The ith element of the principal component u

1 Initialization: t = 0;

2 ui =
√

1/N ;

3 Recursion:
4 foreach t = 1 : T do
5 aci ← N ·AC(uir

∗
i,t);

6 ui ← ui + γt(aci)(ri,t − ac∗i · ui);

7 end

Stability Analysis. The stability analysis of a stochastic approximation is
closely related to the asymptotic property of the solutions to its associated ODE
[27]. The stabilities of interest are the ODEs of u and uHu. The former is to
study the convergence of the subspace estimate and the latter is to test the unit
norm property of the estimate. Under certain conditions, the subspace estimate
u is globally asymptotically stable in the Lyapunov sense.

The associated ODE of the stochastic approximation of u derived in (5) is
du/dt = E{dt,k}. Assuming rt is stationary, we can write E{rrH} = R, and by
construction W k = J + (W − J)k. The ODE of u can be expressed as

du

dt
= E{dt,k} = (I − uuH)Ru + ΔODEu , (6)

where, by setting W̃ = W − J ,

ΔODE = N
(
W̃

k ◦ R − W̃
k ◦ uuHR − (W̃

k ◦ uuH)R
)

+ O(N2W̃
2k

) (7)

represents the deviation of the decentralized ODE from the centralized ODE of
u. To show the subspace approximation u converges to the principal component
of R, we need to first prove the following Lemma.

Lemma 1 (Stability of uHu). Let λ2,w be the 2nd largest eigenvalue of W
and λ2,w < 1 by construction. The ODE of uHu asymptotically converges to
1 + O(Nλk

2,w) if the number of the average consensus iterations k is sufficiently
large.

Proof. See Appendix A. ��

Notice that W̃
k ≈ 0N×N for k sufficiently large. Hence, the ODE of u reduces

to Oja’s ODE, du/dt = (I − uuH)Ru. Oja in [5] proves that u converges if
uHu = 1. Following similar arguments, Lemma 2 extends this result.

Lemma 2 (Convergence). The 1-dimensional subspace estimate u converges
to the principal component of the covariance matrix R asymptotically if uHu =
1 + O(Nλk

2,w) for k sufficiently large.

Proof. See Appendix B. ��

Decentralized Subspace Tracking via Gossiping 135

0 5000 10000 15000
−25

−20

−15

−10

−5

0

Time

S
ub

sp
ac

e
M

is
m

at
ch

 [d
B

]

Centralized Est.
Decentralized Est. k = 5

(a) Convergence

0 1000 2000 3000 4000 5000
−10

−9

−8

−7

−6

−5

−4

−3

−2

Time

||u
H

u−
1|

| [
dB

]

(b) Stability

Fig. 2. Numerical results for the 1-dimensional subspace tracking algorithm

Numerical Results. There are 10 sensors in the network. The source contains
a white noise corrupted narrowband signal at 20dB SNR. Fig. 2a illustrates the
performance of the decentralized 1-D subspace tracking algorithm. The average
consensus protocol is performed at k = 5 iterations per update. The quality
of the estimate is measured by the subspace mismatch, ‖(u⊥

true)
Huest‖2, which

is the Euclidean norm of the estimated 1-D subspace projected onto the non-
dominating eigenvectors of R, and it is compared to the null value. Fig. 2b shows
the stability of this algorithm (Lemma 1), which is measured by ||uHu−1||. We
observe that the trajectory of uHu approaches 1 asymptotically.

2.2 Decentralized p-Dimensional Subspace Tracking

Oja’s learning rule can be extended to a more general problem of tracking the
p-dimensional subspace [5,9,10] of the signal’s covariance. The derivation of the
decentralized algorithm is based on the NOja’s update [10] as shown below

U t = U t−1 + γt · Dt,k , (8)

where Dt,k = rtr
H
t U t−1(I − UH

t−1U t−1) + (I − U t−1U
H
t−1)rtr

H
t U t−1 .

The subspace estimate U t = [u(1)
t , · · · ,u(p)

t] ∈ C
N×p spans the p-dimensional

subspace of R, and U0 is an arbitrary initial matrix with the property of
UH

0 U0 = Ip×p. Similar to the decentralized 1-dimensional subspace estimate,
the computation of (8) requires the access to the entire vector of observations
rt to compute rH

t U t−1. In addition, each node also needs to estimate all the
elements in the Hermitian matrix UH

t−1U t−1. Hence, there are total number of
(p2 + p)/2 + p parameters which need to be distributedly computed via the av-
erage consensus protocol. Algorithm 2 summarizes the implementation of the
decentralized p-dimensional subspace tracking. Here, U0,0 is an arbitrary initial
matrix with the property that UH

0,0U0,0 = Ip×p.

136 L. Li et al.

Algorithm 2: p-Dimensional Subspace Tracking (at the ith node)

input : A sequence of ri,t
output: The ith row of the principal subspace U

1 Initialization: t = 0;
2 ui,1:p = 0, ui,i = 1;

3 Recursion:
4 foreach t = 1 : T do
5 aci,1:p ← N ·AC(r∗i,tui,1:p);
6 vi,1:p ← 2ri,t · aci,1:p;
7 vi,1:p ← vi,1:p −Nvi,1:p ·AC(uH

i,1:pui,1:p);

8 vi,1:p ← vi,1:p − ui,1:p(ac
H
i,1:paci,1:p);

9 ui,1:p ← ui,1:p + γtvi,1:p;

10 end

Stability Analysis. Without loss of generality, the mathematical model relat-
ing the centralized and the decentralized networks is as follows (t is omitted)

rrHU → [NW k ◦ (rrH)]U ; (9)
rrHUUHU → [NW k ◦ (NW k ◦ rrH)UUH]U ; (10)
UUHrrHU → [NW k ◦ (NW k ◦ UUH)rrH]U . (11)

Therefore, the ODE of (8) can be expressed as

dU

dt
= 2RU − RUUHU − UUHRU + Δ̃ODEU , (12)

where Δ̃ODE = N
[
2W̃

k ◦ R − (W̃
k ◦ R)UUH − W̃

k ◦ RUUH (13)

−W̃
k ◦ UUHR − (W̃

k ◦ UUH)R
]
+ O(N2W̃

2k
) .

Δ̃ODE is the trajectory deviation from the centralized ODE of U . Similar to the
1-dimensional case, we want to study the trajectory of the UHU in order to
learn the stability of (12), the result of which is stated in Lemma 3.

Lemma 3 (Convergence). The trajectory of UHU asymptotically converges
to Ip×p if the number of the average consensus iterations k is sufficiently large.
Furthermore, the columns in U span the p-dimensional principal subspace of R.

Proof. See Appendix C. ��

Numerical Results. The subspace estimate is defined to be the Euclidean
norm of the estimated p-dimensional subspace projected onto the (N − p)-
dimensional non-dominating subspace, ‖(U⊥

true)HU est‖2. Fig. 3 illustrates the
performance numerically for a data matrix associated to a 2-D subspace. The
source contains several white noise corrupted narrowband signals at 20dB SNR.
There are 10 sensors in the network and k = 5.

Decentralized Subspace Tracking via Gossiping 137

Fig. 3. Numerical results for the p-dimensional subspace tracking algorithm, p=2

Remark 2. A peculiar aspect of our protocol is that each node obtains an esti-
mate of a single component of the principal vectors. This information in itself
bears value to the node, since the magnitude of this component represents a
ranking of the relative proximity of the source to the specific node that can be
used directly to manage network operations. A more rigorous approach to use
the information to detect the source is discussed next.

3 Case Study : Decentralized Narrowband Signal
Detection in a Sensor Field

Recently the Federal Communications Commission (FCC) has launched tech-
nical reviews of cognitive radio (CR) devices as a way of better utilizing the
scarce spectrum resource. Such CRs are capable of sensing the spectral environ-
ment (e.g. the narrowband low power microphone signals in the TV band) and
exploiting the unoccupied spectrum. One possible approach to improve the spec-
tral estimation is by using a distributed model, in which the spectrum occupancy
is determined by the joint detection of all the CRs. Several papers have written
on this issue, e.g. [25,26]. Our idea here is to link more closely the detection of the
active primary user to the classic array processing problem of detecting sources
using a sensor array, albeit with a networked array in lieu of the traditional co-
located array. We propose to use the spatio-temporal covariance matrix of the
detected data to identify the presence of the low power narrowband signal.

3.1 Signal Model and Signal Subspace

Signal Model Suppose there are N sensors (CRs) in the network to measure the
temporal data. The received signal samples by the nth sensor is rn = ξns + wn,
for n = 1, · · · , N, where ξn is the signal attenuation and rn ∈ C

M is the received

138 L. Li et al.

samples, while s ∈ C
M is the narrowband signal and wn ∈ C

M denotes the
additive white Gaussian noise (AWGN) at the sensor. By stacking the received
samples into one vector as r =

(
rT

1 , · · · , rT
N)T , we have

r = (ξ ⊗ IM) · s + w , (14)

where ξ = (ξ1, · · · , ξN)T represents the steering vector of the spatially co-located
sensors. Then, the spatio-temporal covariance of the received samples is R =
E{rrH} = Rξ⊗Rs+Rw, where Rs � E{ssH} is the transmitted signal temporal
covariance and Rw is the noise covariance and is usually spatio-temporally white.

By eigenvalue-decomposition, we get Rs � U sΣsU
H
s and Rξ � U ξΣξU

H
ξ .

Due to the fact that Rξ is a rank-one matrix, we have the following decomposi-
tion for the spatio-temporal covariance R of the received samples

R = URΣUH
R , (15)

where UR = U ξ ⊗ U s and Σ = diag
(
‖ξ‖2Σs + σ2IM , σ2I(N−1)M

)
.

With N being sufficiently large, the eigenvalues (diagonal entries of Σs) only
peak at a few positions where the narrowband source signal sits. Thus, we can
first determine the eigenvectors that correspond to the active components (i.e.,
the signal subspace) and perform detection using the signal subspace.

Signal Subspace Tracking via Gossiping. The spatio-temporal covariance
of r in (14) is R = E{rrH} ∈ C

NM×NM . To adaptively track its subspace, we
apply the decentralized p-D subspace tracking algorithm with slight modifica-
tions. Since each sensor receives a vector of temporal data instead of a single
observation at each time, the decentralization of rHU and UHU in (8) are

rHU =
N∑

n=1

rH
n Un ← NW k

[
(rH

1 U1)T · · · (rH
NUN)T

]T ; (16)

[
UHU

]
�,j

=
N∑

n=1

[
UH

n Un

]
�,j

← NW k
[[

UH
1 U1

]T

�,j
· · ·

[
UH

NUN

]T

�,j

]T

, (17)

where U =
(
UT

1 · · ·UT
N

)T ∈ C
MN×p, Un ∈ C

N×p is a partial subspace estimate
computed at the nth node and []�,j denotes the {, j} element of the matrix. (16,
17) indicate that the network wide consensus is achieved by processing blocks
of data (i.e. UH

n Un) at each iteration. Even though the size of the covariance is
larger, the consensus rate should not be affected because the network topology
(or W) stays the same. The analysis on the p-D subspace estimate still applies.

3.2 Signal Detection

Now given the available signal subspace, denoted as U‖, that is tracked among
the nodes using the proposed algorithm, the signal detection problem becomes
a binary hypothesis testing problem as follows

H0 : r = w , H1 : r = U‖sU + w . (18)

Decentralized Subspace Tracking via Gossiping 139

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Time

G
LR

T
 [l

og
]

Signal is not present.

Signal is present.

(a) Ten-sensor network

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time

G
LR

T
 [l

og
]

Signal is not present.
Signal is present.

(b) One sensor

Fig. 4. Performance of the decentralized narrowband signal detection

Notice that (18) is a classic estimation and detection problem of unknown signal’s
amplitude in Gaussian noise of unknown variance. The Generalized Likelihood
Ratio Test (GLRT) [28] in this special case is as follows

LGLR(r) =
P (r|H1, ŝU , σ̂2

1)
P (r|H0, σ̂2

0)
=

σ̂2
0

σ̂2
1

. (19)

The maximum likelihood estimates of the unknown parameters are ŝU = UH
‖ r,

σ̂2
1 = ‖r−U‖ŝU‖2

MN , σ̂2
0 = ‖r‖2

MN . Hence the detection rule is LGLR(r) = rHr/(rHr−
‖rHU‖‖2) ≥ χ if the signal is present. Consider now the binary hypothesis
testing problem with T consecutive observations, rt with 1 ≤ t ≤ T . The log-
likelihood ratio for the binary hypothesis testing problem becomes,

ln(LGLR(r)) =
T∑

t=1

ln
(

rH
t rt

rH
t rt − ‖rH

t U‖‖2

)
≥ T ln χ . (20)

Thus, to make a distributed detection based on (20), each node must be able
to obtain the decentralized estimates of rHr and rHU‖ via gossiping and then
compute the log-likelihood ratio in (20).

Fig. 4 illustrates the performance of the decentralized subspace tracking and
detection algorithm in a sensor field. Fig. 4a displays the detection output in a
10-sensor network. The dashed line represents the threshold. Fig. 4b shows the
detection output of a single sensor. By comparing the two, we observe that the
separation between the GLRTs when the signal is present and it is not present
is significantly larger in the 10-sensor network. Especially when the separation
is as small as shown in Fig. 4b, not only it is difficult to set the threshold, but
also the detection is prone to high false alarm rate and missed detection rate.

4 Conclusion

This paper proposed a decentralized subspace tracking algorithm based on Oja’s
learning rule [5,9]. The key idea is to enable an in-network computation algorithm

140 L. Li et al.

via near-neighbor communication without setting routes to forward the data to
the fusion center. Through the stability analysis, we showed that given the num-
ber of consensus iteration k is sufficiently large, the system is self-stablizing
(UHU → I) and furthermore, it converges to the subspace asymptotically. To
motivate our study, we present a study case on cognitive radio system to dis-
tributedly detect the presence of a low power narrowband signal. By comparing
the proposed decentralized detection algorithm with a simple one-sensor sce-
nario, our algorithm shows a significant performance gain.

References

1. Scaglione, A., Pagliari, R., Krim, H.: The decentralized estimation of the sample
covariance. Asilomar, Pacific Grove (2008)

2. Stewart, G.: Matrix algorithms. SIAM, Philadelphia (1998)
3. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. System and

Control Letters (2004)
4. Olfati-Saber, R., Fax, A., Murray, R.M.: Consensus and cooperation in networked

multi-agent systems. Proc. of the IEEE 95(1), 215–233 (2007)
5. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology (15), 267–273 (1982)
6. Karhunen, J.: Adaptive algorithm for estimating eigenvectors of correlation type

matrices. In: Proc. ICASSP 1984, vol. 9, pp. 592–595 (March 1984)
7. Sayed, A.H., Lopes, C.G.: Adaptive processing over distributed networks. IEICE

Trans. Fund. Electron. Comm. Comput. Sci. E90-A(8), 1504–1510 (2007)
8. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on

average consensus. In: Proc. 4th IPSN, April 2005, pp. 63–70 (2005)
9. Manton, J., Mareels, I., Attallah, S.: An analysis of the fast subspace tracking

algorithm Noja. In: Proc. ICASSP 2002, vol. 2, pp. 1101–1104 (2002)
10. Attallah, S., Abed-Meraim, K.: Fast algorithm for subspace tracking. IEEE Signal

Processing Letters 8(7), 203–206 (2001)
11. Yang, B.: Projection approximation subspace tracking. IEEE Trans. on Sig.

Proc. 43(1), 95–107 (1995)
12. Owsley, N.L.: Adaptive data orthogonalization. In: Proc. ICASSP, pp. 109–112

(1978)
13. Sharman, K.C.: Adaptive algorithms for estimating the complete covariance eigen-

strcuture. In: Proc. IEEE ICASSP, pp. 1401–1404 (April 1986)
14. Bunch, J.R., Nielsen, C.P., Sorenson, D.: Rank-one modification of the symmetric

eigenproblem. Numerische Mathematik 31, 31–48 (1978)
15. Sardellitti, S., Giona, M., Barbarossa, S.: Fast distributed consensus algorithms

based on advection-diffusion processes. In: Sensor Array and Multichannel Signal
Processing Workshop (SAM) 2008, July 21-23, pp. 266–270 (2008)

16. Barbarossa, S., Scutari, G.: Decentralized maximum likelihood estimation for sen-
sor networks composed of nonlinearly coupled dynamical systems. IEEE Trans. on
Sig. Proc. 55(7), Part 1, 3456–3470 (2007)

17. Kar, S., Moura, J.M.F., Ramanan, K.: Distributed parameter estimation in
sensor networks: nonlinear observation models and imperfect communication. IEEE
Trans. on Info. Theory (August 2008) (submitted to), arxiv.org/abs/0809.0009

18. Rabbat, M., Nowak, R.D.: Distributed optimization in sensor networks. In: Proc.
3th IPSN 2004, Berkeley, CA, pp. 20–27 (April 2004)

arxiv.org/abs/0809.0009

Decentralized Subspace Tracking via Gossiping 141

19. Schizas, I.D., Giannakis, G.B., Roumeliotis, S.D., Ribeiro, A.: Consensus in Ad
Hoc WSNs with noisy links - Part II: Distributed estimation and smoothing of
random signals. IEEE Trans. on Sig. Proc. 56(4), 1650–1666 (2008)

20. Nedic, A., Ozdaglar, A., Parrilo, A.P.: Constrained consensus and optimization in
multi-agent networks. LIDS Technical Report 2779, MIT, Lab. for Information and
Decision Systems, IEEE Transactions on Automatic Control (2009) (to appear)

21. Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. In:
Proc. 44th IEEE Conf. Eur. Contr. Conf., Seville, Spain, pp. 8179–8184 (December
2005)

22. Veeravalli, V.V., Basar, T., Poor, H.V.: Minimax robust decentralized detection.
IEEE Trans. Inform. Theory 40(1), 35–40 (1994)

23. Cattivelli. F., Sayed, A.H.: Diffusion LMS strategies for distributed estimation.
IEEE Transactions on Signal Processing (2010) (to appear)

24. Penrose, M.: Random geometric graph. Oxford Studies in Probability (2003)
25. Chen, H.S., Gao, W., Daut, D.: Spectrum sensing for wireless microphone signals.

In: 5th IEEE SECON Workshops 2008, p. 15 (June 2008)
26. Unnikrishnan, J., Veeravalli, V.V.: Cooperative sensing for primary detection in

cognitive radio. IEEE Journal on Selected Topics in Signal Processing, Special
Issue on Dynamic Spectrum Access 2(1), 18–27 (2008)

27. Kailath, T.: Linear systems. Prentice-Hall, Englewood Cliffs (1980)
28. Kay, S.M., Gabriel, J.R.: An invariance property of the generalized likelihood ratio

test. IEEE Signal Proc. Letters 10, 352–355 (2003)
29. Yan, W.Y., Helmke, U., Moore, J.B.: Global analysis of Oja’s flow for neural net-

works. IEEE Trans. Neural Networks, 674–683 (September 1994)

Appendix

A. Proof of Lemma 1

Proof. From the ODE expression in (6,7), the trajectory of uHu is

duHu

dt
= uH du

dt
+

duH

dt
u = 2(uHRu)

(
1 − uHu + δODE

)
,

where δODE =
uH(ΔODE + ΔH

ODE)u
2 uHRu

(21)

δODE represents the trajectory of the decentralized uHu deviating from the
trajectory of centralized (i.e. k = ∞) estimate. From the preceding relation (21),
the equilibrium point is uH

eq.ueq. = 1 + δODE. Hence, studying the trajectory of
uHu is equivalent to learning its ODE deviation δODE.

Using the fact that Ŵ is dominated by the eigenpair (λ2,w , v2), then the
approximation Ŵ ≈ λ2,wv2v

T
2 holds. From the relation in (7), we have

uHΔODEu ≈ Nλk
2,wuH

(
v2v

T
2 ◦ R − v2v

T
2 ◦ uuHR − (v2v

T
2 ◦ uuH)R

)
u

= Nλk
2,wuH

(
v2v

T
2 ◦ R − 2�{(v2 ◦ u)HRu}diag(v2)

)
u .

Hence, plugging the preceding relation into (21) yields

δODE = Nλk
2,w

(
uH(v2v

H
2 ◦ R)u

uHRu
− 2uH�{(v2 ◦ u)HRu}diag(v2)u

uHRu

)
.

142 L. Li et al.

Since the spectral radius of the Hadamard product is bounded by ρ(v2v
H
2 ◦R) ≤

ρ(v2v
H
2)ρ(R) = ρ(R), then it can be easily derived that

uH(v2v
H
2 ◦ R)u

uHRu
≤ max

u

uH(v2v
H
2 ◦ R)u

uHRu
≤ 1. (22)

Using the properties (v ◦ u)Hu ≤ ||v||∞uHu and rayleigh quotient, we obtain

2uH�{(v2 ◦ u)HRu}diag(v2)u
uHRu

≤ max
u

2�{uHR−1/2diag(v2)R1/2u}
uHu

||v2||∞uHu

= 2||v2||∞uHu λmax{diag(v2)}
= 2||v2||2∞uHu . (23)

Using the results from (22, 23), we get an upper bound on δODE,

|δODE| ≤ Nλk
2,w(1 + 2||v2||2∞uHu) ,

where ||v2||∞ < 1 and λk
2,w → 0. Hence, uH

eq.ueq. approaches to 1 on the order
of Nλk

2,w. For k sufficiently large, specifically, {k ∈ N+|λk
2,w < 1/(2||v2||2∞N),

then uH
eq.ueq. ∈

(
1−Nλk

2,w

1+2||v2||2∞Nλk
2,w

,
1+Nλk

2,w

1−2||v2||2∞Nλk
2,w

)
k→∞−−−−→ 1 asymptotically. ��

B. Proof of Lemma 2

Proof. Ŵ is approximated by the 2nd largest eigenpair of W . Let the EVD of
R be R =

∑N
i=1 λiuiuH

i u for λ1 > λ2 > · · · > λN . Then the ODE of u in (6) is

du

dt
≈
[
R − uuHR + Nλk

2,w (v2v
H
2 ◦ R)︸ ︷︷ ︸

:=R̂v

−2Nλk
2,w �{(v2 ◦ u)HRu}︸ ︷︷ ︸

:=β

diag(v2)
]
u .

Decompose the 1-D subspace estimate u into u =
∑N

i=1 αiui, where ui’s are
orthonormal. The ODE in the direction of ui is computed independently,

dαi

dt
= λiαi − αi

(
uHRu

)
+ Nλk

2,w(uH
i R̂vui)αi − 2Nλk

2,kβ(uH
i diag(v2)ui)αi .

Let ζi = αi/α1 be the ratio of the coefficients of u along the ui and u1 directions,
and σ = uH

i R̂vui − uH
1 R̂vu1 + 2β(uH

1 diag(v2)u1 − uH
i diag(v2)ui),

dζi

dt
= E

(
1
α2

1
(
dαi

dt
α1 − dα1

dt
αi)

)
= −ζi

(
λ1 − λi − Nλk

2,wσ
)

(24)

with the solution ζi(t) ≤ ζm(t0) · e−(λ1−λi−Nλk
2,wσ), where λi is the eigen-

value of R associated to ui. Since σ is on the order of ||v2||2∞λ1, we have(
λ1 − λi − Nλk

2,wα
)

> 0 for k sufficiently large. Lemma 1 proves uHu = 1 +
O(Nλk

2,w), then limt→∞
∑N

j=1 α2
j (t) = 1 + O(Nλk

2,w). Hence the convergence of
ζi(t) in (24) for i = 2, · · · , p implies the convergence of αi to zero (i = 2, · · · , N),
limt→∞ α1(t)2 = 1+O(Nλk

2,w), thus ut = α1(t)u1. This concludes the proof. ��

Decentralized Subspace Tracking via Gossiping 143

C. Proof of Lemma 3

Proof. The trajectory of UHU can be expressed as

dUHU

dt
= UH dU

dt
+

dUH

dt
U (25)

= 2UHRU(I − UHU + δ̃ODE) + 2(I − UHU + δ̃
H

ODE)UHRU .

where δ̃ODE =
1
2
(UHRU)−1(UHΔ̃ODEU) =

1
2
(UHU)−1(UHR−1Δ̃ODEU) .

δ̃ODE represents the deviation of UHU in the decentralized approximation from
its centralized approximation. (25) implies that the trajectory of UHU ap-
proaches (I + δ̃ODE) asymptotically and the size of δ̃ODE is influenced by the
network topology. The Frobenius norm of δ̃ODE should diminish as k increases.
Apply the approximation Ŵ

k ≈ λk
2,wv2v

H
2 to (25), we obtain

Δ̃ODE ≈Nλk
2,w

[
(v2v

H
2 ◦R)(2I−UUH)−2�{v2v2◦RUUH}−(v2v

H
2 ◦UUH)R

]
.

Using the sub-multiplicative property, the Frobenius norms are bounded by

||Δ̃ODE||F ≤Nλk
2,w2||v2||2∞||R||F(1 + 2tr(UHU)) ;

||δ̃ODE||F ≤ 1
2
||(UHU)−1UH ||F||R−1||F||Δ̃ODE||F||U ||F

=Nλk
2,w||v2||2∞ tr((UHU)−1)tr(UHU)︸ ︷︷ ︸

δu

||R−1||F||R||F︸ ︷︷ ︸
δr

[1+2tr(UHU)]

=Nλk
2,w||v2||2∞δuδr(1 + 2tr(UHU)) .

The preceding inequality implies the effect of δ̃ODE diminishes as k increases.
Hence, from (25), the equilibrium point is UHU k→∞−−−−→ Ip×p, then

Δ̃ODEU ≈ Nλk
2,w(v2v

H
2 ◦ R − 2�{v2v2 ◦ RUUH} − (v2v

H
2 ◦ UUH)R)U

dU

dt
= RU(I − UHU) + (I − UUH + Δ̃ODER−1)RU .

Using the approximation tr(UHU) ≈ tr(I) = p, the norm ||Δ̃ODER−1||F is

||Δ̃ODER−1||F ≤ Nλk
2,w||v2||2∞

(
||R||F||R−1||F[1 + tr(UHU)] + tr(UHU)

)
= Nλk

2,w||v2||2∞ (δr(1 + p) + p)

Hence the ODE of U reduces to dU/dt = RU(I − UHU) + (I − UUH +
O(Nλk

2,wJ))RU . For k large enough, dU/dt reduces to the Oja’s flow, which
converges to the principal subspace of R [29]. This completes the proof. ��

Building (1 − ε) Dominating Sets Partition as
Backbones in Wireless Sensor Networks Using

Distributed Graph Coloring

Dhia Mahjoub and David W. Matula

Bobby B. Lyle School of Engineering
Southern Methodist University
Dallas, TX 75275-0122, USA

{dmahjoub,matula}@lyle.smu.edu

Abstract. We recently proposed in [19,20] to use sequential graph col-
oring as a systematic algorithmic method to build (1 − ε) dominating
sets partition in Wireless Sensor Networks (WSN) modeled as Random
Geometric Graphs (RGG). The resulting partition of the network into
dominating and almost dominating sets can be used as a series of rotat-
ing backbones in a WSN to prolong the network lifetime for the benefit
of various applications. Graph coloring algorithms in RGGs offer proven
constant approximation guarantees on the chromatic number. In this pa-
per, we demonstrate that by combining a local vertex ordering with the
greedy color selection strategy, we can in practice, minimize the num-
ber of colors used to color an RGG within a very narrow window of the
chromatic number and concurrently also obtain a domatic partition size
within a competitive factor of the domatic number. We also show that
the minimal number of colors results in the first (δ + 1) color classes
being provably dense enough to form independent sets that are (1 − ε)
dominating. The resulting first (δ + 1) independent sets, where δ is the
minimum degree of the graph, are shown to cover typically over 99%
of the nodes (e.g. ε < 0.01), with at least 20% being fully dominating.
These independent sets are subsequently made connected through vir-
tual links using localized proximity rules to constitute planar connected
backbones. The novelty of this paper is that we extend our recent work
in [20] into the distributed setting and present an extensive experimental
evaluation of known distributed coloring algorithms to answer the (1−ε)
dominating sets partition problem. These algorithms are both topology
and geometry-based and yield O(1) times the chromatic number. They
are also shown to be inherently localized with running times in O(Δ)
where Δ is the maximum degree of the graph.

Keywords: Domatic partition problem, (1 − ε) dominating sets parti-
tion, Wireless Sensor Network, Graph coloring, Distributed Algorithm.

1 Introduction

In a random dense deployment of sensor networks, we can take advantage of the
redundancy and physical proximity of nodes and require that only a subset of

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 144–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 145

them stay active at one time to fulfill the application’s objectives (e.g. coverage,
data gathering, monitoring) while the rest of the nodes stay in a sleep mode
to conserve their energy [27]. For this approach to be efficient, different sub-
sets of active nodes should be rotated successively. In a wireless sensor network,
the concept of constructing a collection of disjoint dominating sets whose activ-
ity can be duty-cycled/rotated/scheduled is becoming increasingly as attractive
as building a single minimum dominating set. In fact, having several disjoint
dominating sets at the disposal of the sensor application can offer better fault-
tolerance, load-balancing, and scalability as well as prolonged network lifetime.
It also raises the possibility of catering to several quality of service requirements
in terms of coverage accuracy, or traffic priorities.

1.1 Preliminaries

In this paper, we adopt the Unit Disk Graph (UDG) and Random Geometric
Graph (RGG) models as defined in [20] to represent a wireless sensor network.
Simply, random geometric graphs induce a probability distribution on unit disk
graphs [6]. In our work, we use properties and approximation results stemming
from both models. In general, the network is abstracted as an undirected graph
G = (V, E). We denote the number of nodes by n = |V |; the maximum degree
is Δ, the minimum degree is δ, and average degree is d. The distributed com-
putation model we adopt is the standard synchronous message passing model,
where time is split into discrete rounds. In each round, every node can perform
some local computations, send a message to each neighbor, and receive messages
from all neighbors. We assume that nodes exchange short messages of size O(log
n) bits and a message sent in round R arrives to its neighboring destination(s)
before the next round R+1 starts. All nodes start a computation synchronously
and the time complexity of an algorithm is the number of rounds from the start
until the last node terminates [30]. We also define a localized algorithm as an al-
gorithm where each node operates solely on information that is available within
a constant neighborhood of the node, typically the 1-hop neighborhood [17].

1.2 Related Work

Several recent works advocated the aforementioned strategy by putting it in the
context of the domatic partition (DP) problem: an NP-hard graph theoretical
problem whose objective is to find the largest number of disjoint dominating sets
[20,15,25,27,28,19]. This number is upper bounded by δ + 1. In [27] the authors
define the maximum cluster-lifetime problem and propose a distributed approx-
imation algorithm that finds a number of disjoint dominating sets within O(log
n) of the optimal solution in arbitrary graphs. In [28], the authors propose the
first centralized and distributed constant factor geometry-aware approximation
algorithms to the domatic partition problem in Unit Disk Graphs. In [26], the
authors propose a complex distributed topology-based solution to the connected
domatic partition (CDP) problem in UDGs and describe a simple mechanism
to rotate between the obtained disjoint connected dominating sets. Overall, the

146 D. Mahjoub and D.W. Matula

prior work on the subject consists in approximation algorithms both simple and
intricate that address several variations of the domatic partition problem. Some
works proposed to relax the node disjointness, where a node can participate
in more than one dominating set of the partition [14], or to relax the 1-hop
domination constraint by considering a set of vertices S dominating if any node
in V \ S is within k hops of S [31]. Algorithmically, some other works restricted
the DP problem by focusing on building a connected domatic partition (CDP)
of the network [26], which is then upper bounded by the connectivity of the
graph κ(G) rather than δ(G)+ 1 or to require redundant domination (coverage)
where any node in the network should be dominated by at least k backbones [27].
Algorithmically, graph coloring has been used to build a single small connected
dominating set to serve as a backbone for network layer routing [18,29] and also
to construct a series of dominating sets for MAC layer scheduling [4,16]. The
current authors in [19,20] showed that simple topology-based graph coloring
can, in practice, not only solve the domatic partition problem in RGGs with a
competitive performance ratio but also provide up to (δ+1) disjoint independent
sets that are (1−ε) dominating, where ε < 0.01 on a large range of experimented
graphs. In this work, we carry the study of [20] further by proposing a practical
solution to the distributed (1−ε) dominating sets partition problem that is based
on simple and localized hence scalable graph coloring algorithms.

1.3 Our Contributions and Outline

In light of the existing literature, the question to ask is what conditions can be
relaxed in the DP problem such that we can still have a practical and useful
model. In this work, we relax the objective that all (δ + 1) backbones cover all
nodes. We then experiment with fast and efficient localized coloring algorithms
to construct disjoint independent (1 − ε) dominating sets. These sets are further
made connected, by distinguishing selected two-hop virtual links, and planar
through localized rules and thus they can serve as virtual backbones with de-
sirable properties for the benefit of coverage and data dissemination in wireless
sensor networks. The aim of this work is to empirically study several existing
vertex coloring algorithms, both topology and geometry locally aware in the
distributed setting. We show that our experimental results are consistent with
the time complexity lower and upper bounds of distributed coloring algorithms
from [11]. Our primary contribution is to translate these good results on the
coloring performance ratio and running time into a systematic method to build
(δ + 1) (1 − ε) disjoint dominating backbones in wireless sensor networks mod-
eled as random geometric graphs with minimum degree δ. Another contribution
is that we empirically attain a competitive approximation factor comparable to
the best current distributed approximation algorithm to the domatic partition
problem [28]. We finally provide extensive experimental results on the localized
coloring algorithms implemented in our study with regard to the coloring perfor-
mance ratio, running time (number of rounds), domatic partition performance
ratio, quality of coverage of the first (δ + 1) backbones as well as the quality of
triangulation of a single backbone.

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 147

The remainder of the paper is organized as follows. Section 2 explains our
distributed algorithmic approach. Section 3 provides a theoretical analysis of
the algorithm and Section 4 describes the implementation and the experimental
results we obtained. We conclude and propose future work in Section 5.

2 Our Backbone Selection Algorithm

We propose a localized backbone selection algorithm to build a collection of
(δ + 1) disjoint fully and nearly dominating sets. The algorithm consists in two
phases: The first phase is a generic coloring phase where each node locally ac-
quires the smallest color that does not conflict with its neighbors. Color conflicts
are resolved differently depending on the coloring heuristic chosen. The coloring
heuristics we study in this paper are: Trivial Greedy [11], Largest First [11], Lex-
icographic [5], 3Cliques-Last [5] and randomized selection Δ + 1 coloring [11].
The coloring produces k color classes, i.e. k independent sets of vertices each
with the same color that are fully or nearly dominating. In the second phase,
for each independent vertex set, we build backbone links by using relay vertices
between every two independent vertices within distance 2. Then to ensure vir-
tual backbone planarity, we utilize the Gabriel Graph condition [24,20] on each
backbone virtual link. The Gabriel graph is locally definable [20,2], is not a dis-
tance spanner but is an efficient energy spanner [2,10]. In our work, planarity
is enforced on backbone virtual links, where a virtual link uv consists of two
communication links in the original graph connecting two independent nodes u
and v (with the same color) via a common relay node w. For future work, we
propose to minimize the sum d(u, w) + d(w, v) over candidate relay nodes so
that u, w and v are nearly co-linear and so that the collection of physical links
(edges in the original graph) through the relay nodes also form a planar graph
(with no crossing edges). We defer the thorough investigation of this problem to
future work. Notice that any efficient locally-definable planar proximity graph
can be applied on the generated backbones such as the Relative Neighborhood
Graph (RNG) or Restricted Delauney Graph (RDG). Moreover, let’s consider
the special class of G(n, r) known as well-distributed geometric graphs [2] where

if r >
√

32
3 rcon (rcon = O(

√
log n

n) to ensure connectivity of G(n, r) w.h.p) then

any convex area of size at least 3π
32 r2 (in the unit square) has at least one node in

it. In these graphs, the nodes are evenly distributed across the unit square and
do not contain large ”holes”: empty convex regions with area larger than 3π

32 r2

[2]. Therefore, we might get a better stretch factor for the Gabriel graph than the
θ(

√
n) worst case [2]. We defer the study of the quality of Gabriel graph-based

backbones in well-distributed RGGs to future work.

2.1 First Phase: Graph Coloring

Owing to the geometric structure of UDGs and consequently RGGs, it is possible
to approximate the chromatic number χ(G) within a constant factor. In fact,
any sequential greedy coloring is a 5-approximation algorithm of χ(G) in UDGs

148 D. Mahjoub and D.W. Matula

[20] and the ”lexicographic” ordering and Smallest Last are 3-approximation
algorithms [5,20]. In the distributed setting, lexicographic ordering can be im-
plemented locally if nodes are aware of their geometric locations [5]. Recently, the
authors of [5] proposed the first distributed, geometry-oblivious, 3-approximation
coloring algorithm on UDGs.

The details of our proposed first phase are given in Algorithm 1 which consists
in a generic coloring phase executed by every node u. The algorithm is adapted
from [8] with wake-up probability p=1. All the localized coloring algorithms we
studied in this paper with the exception of 3Cliques-Last [5] apply Algorithm 1,
and they differ in the way color conflicts between neighboring nodes are resolved.

Algorithm 1. Local algorithm for coloring G(n, r)

//Algorithm is executed independently by each node u;1

Wake up: Enter the coloring round with probability p.2

Pick a color: Select a tentative color c that is the smallest color not taken3

by any of u’s neighbors in previous rounds.
Resolve conflicts: If there is an uncolored neighbor v that has precedence4

in selecting its color, then u loses color and tries in next round, else
Terminate: If u’s selected color is final, then become colored and exit the5

coloring algorithm.

The five coloring heuristics investigated are:
1. Trivial Greedy: We denote this algorithm by GCOL [11]. In round i, a node
chooses a color then checks with its neighbors for a color conflict on the color
it chose. As it checks its neighbors one by one, it loses the color at the first
occurence of a conflict with a neighbor (who also may lose its color) and tries
again in round i + 1.
2. Largest First: Denoted by LFCOL [11], where vertices with larger degree have
precedence in keeping their selected colors.
3. Lexicographic: Denoted by LEXICO, where vertices with lower x coordinates
have precedence in keeping their selected colors. Ties on x are broken based on
the y coordinates [5].
4. 3Cliques-Last: Denoted by 3CL-LAST. This algorithm introduced in [5] uses
the property of small local neighborhood in UDG. If a node has a neighborhood
size of at most 3ω(u) − 3, where ω(u) is the size of the largest clique that u is
part of, then u is said to have a small neighborhood. Nodes with small neigh-
borhoods will pick their colors after their neighbors. The authors in [5] use an
O(n3) heuristic to approximate ω(u) where n is the size of the graph. In our
implementation of 3CL-LAST, we use Smallest Last [22,23], which runs faster in
O(n2) time and offers the interesting property of finding a terminal large com-
plete subgraph that often can be confirmed to be a maximum clique by Smallest
Last-coloring of the neighborhood induced subgraph of u [20].
5. Δ+1 coloring: A node selects a color uniformly at random from a color palette
{1..Δ + 1} which overrides step 3 in Algorithm 1.

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 149

2.2 Second Phase: Preparing the Backbone

This phase consists in applying two locally-definable procedures: a 2-Hop rule
that identifies relay nodes between near-by independent nodes and a Gabriel
graph rule that enforces backbone virtual links to be planar.

Algorithm 2. Local algorithm for preparing backbones
foreach independent set Sc of color c where c ∈ [1, δ + 1] do1

//Algorithm is executed independently by each node u;2

foreach node u in Sc do3

foreach node w in N(u) do4

build table T c(u) = {v|v ∈ N(w), v �= u, color(u) = color(v)}5

//after T c(u) is built6

foreach node v in T c(u) do7

foreach node w in T c(u)|w �= v do8

if d(u, v)2 < [d(u, w)2 + d(v, w)2] then9

T c(u) = T c(u) \ {v}10

break11

In each one of the first (δ +1) independent sets, every node u first requests from
its neighbors N(u) the list of their respective neighbors that have the same color
as u and creates its table T c(u). T c(u) represents the set of distance-2 backbone
neighbors v that u can reach through a common neighbor (relay node). u is
virtually adjacent to v via a link uv. Second, u checks that no two links uv cross
by enforcing that no third backbone node w resides inside the disk of diameter
uv (Gabriel rule [24]). This rule yields a planar virtual backbone which remains
connected if the set of distance-2 backbone neighbors provides a connected graph.
In each entry of T c(u), node u stores a distance-2 backbone neighbor v and the
associated set of relay nodes denoted Ruv that u can use to reach v. The size
of Ruv is upper bounded by Δ but in reality it is much smaller than that. The
size of Ruv is proportional to the upper bound on the area of intersection of
the two disks of radius r centered at u and v. That area is maximized when
d(u, v) = 1+ ε where ε is a very small value, i.e. u and v are barely independent,
in which case the overlap area would have an expected number of relays of about
40% of the average degree.

2.3 Rotating the Backbones

Building a collection of (δ +1) disjoint (1 − ε) dominating backbones allows any
single backbone to be active during only a small fraction of time compared to
the total time of system operation. The backbone rotation schedule can simply
correspond to the activation of the first (δ+1) color classes one after another. For
a period of time T (of the sensor network application), each one of the first (δ+1)

150 D. Mahjoub and D.W. Matula

backbones remains active for a period T
δ+1 . If it is possible to globally synchronize

the nodes in the network, then backbone 1 can autonomously go active in the
time interval [0, t1] and shuts down when time approaches t1. Similarly, any
backbone i is active in the interval [Σi−1

j=0tj , Σ
i
j=0tj] [27]. When backbone i nears

the expiration of its service period, nodes in backbone i locally send activation
messages to their neighbors in backbone i+1. After it receives acknowledgement
from backbone i+1, backbone i can go to sleep until the next service cycle. This
ensures the backbone activation signalling stays local. It is possible to run the
synchronized backbone rotation protocol on top of a more realistic asynchronous
network by using ”synchronizer” protocols [30] with the same time complexity
but incurring a larger message complexity.

3 Complexity Analysis

3.1 Conjecture on the Approximation of the Domatic Partition

We define the span of graph G [5,12] (or inductiveness as defined in other ref-
erences [9,7]) as span(G) = maxH⊆G δ(H). Smallest Last achieves a minimum
span and in UDGs, the minimum span is 3ω(G) − 3 thus Smallest Last gives a
3-approximation to the minimum coloring in UDGs. In this case, when a node
u is being colored, it has no more than 3ω(G) − 3 neighbors colored before it. If
we can also ensure this property in the distributed setting, then it means that
when a node tries to select a color, it can have at most 3ω(G) − 3 neighbors
conflicting with it on the color choice, and in the worst case, u might have to
choose one color more than the size of that conflicting neighborhood. A further
investigation of this property may lead to a proof on the expected number of
disjoint dominating sets in the neighborhood of any node by using graph coloring
in random geometric graphs.

3.2 Time and Message Complexities

In this section, we first give a general discussion on the time complexities and
approximation ratios of distributed graph coloring algorithms, then we give an
overview of the time and message complexities of our proposed backbone cre-
ation solution. Typically, (Δ + 1) coloring algorithms have time complexity of
the form O(f(Δ)+log∗n) [17], but most of these algorithms don’t specifically
attempt to economize the number of colors and focus mainly on speed. A simple
observation is that fast coloring algorithms can take advantage of the generosity
of the (Δ+1) upper bound on the chromatic number which practically decreases
the chances of color conflicts as vertices individually attempt to pick a color. Us-
ing Greedy − Color (i.e. a node always picks the smallest color not causing any
conflicts with its neighbors) increases color conflicts and slows down the algo-
rithm (as it attempts to resolve color conflicts). However, in [11], the authors
point out that Greedy − Color has the much desired local minimality property
described by Grundy, i.e. no single vertex may have its color value decreased
without affecting the color of some other (neighboring) vertex. Therefore, using

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 151

Greedy − Color generally leads to fewer colors used, and potentially denser ear-
lier color classes. In practice, we obtain that the first (δ + 1) color classes are all
practically fully and nearly dominating sets.
More generally, (Δ+1) coloring can run very fast in O(log n) or O(log∗n). GCOL
and LFCOL are refinements of (Δ + 1) coloring of a graph G and therefore are
not easier in computational time than (Δ + 1) coloring [11]. GCOL has a lower
bound of Ω(log n

log log n) and an upper bound of O(Δ+ τCOL) [11] where τCOL is a
known upper bound on the time complexity of (Δ + 1) coloring, typically O(log
∗n) [32]. LFCOL has a lower bound of Ω(Δ) and an upper bound of O(Δ.τCOL).
In this paper, we assume both GCOL and LFCOL run in O(Δ) and both LEX-
ICO and 3CL-LAST run in O(n) in the worst case.
Notice that GCOL and LFCOL are 5-approximation algorithms for coloring
UDGs [3] (and RGGs). LEXICO and 3CL-LAST are 3-approximation algorithms
for coloring UDGs and since ω(G) ≤ χ(G) and Δ(G) ≤ 6ω(G)−6 in UDGs then
any Δ + 1 coloring is a 6-approximation algorithm for coloring UDGs [5,21].

In our proposed algorithm, in order to initially collect complete one-hop neigh-
borhoods, every node broadcasts its status to all neighbors (ID and x,y coordi-
nates), which requires one round of communication and O(n) messages where
the message size is O(log n). The coloring phase takes O(Δ) time in the typical
case and O(Δn) messages of size O(log n) each, and results in every node know-
ing its neighbors’ final colors. For the backbone preparation phase defined in
Algorithm 2, each backbone node explores its distance-2 neighborhood for peer
backbone nodes reachable through common neighbors (relay nodes). This takes
constant time assuming negligible local processing in synchronous systems [30],
and O(Δ2) messages per backbone node and the message size is O(Δ.log n). We
denote by |MIS| the upper bound on the size of a backbone (relay nodes not
included) which is the size of a maximum independent set in a random geomet-
ric graph G(n, r) [19]. Since we focus on (δ + 1) backbones then Algorithm 2
takes O((δ +1).|MIS|.Δ2) messages. Notice that each backbone node u requires
O(1) storage since the number of distance-2 independent neighbors of u that are
colored the same is upper bounded by a constant (at most 23 [1]).

4 Experimental Results

In this section we discuss the experiments evaluating our solution. We imple-
mented our own purpose-built simulator in C�.Net (Microsoft Visual Studio
2005) using Windows Forms and tested our method on randomly generated
G(n, r) graph instances. We evaluated the performance of our backbone selec-
tion solution with 5 different distributed coloring algorithms (GCOL, LFCOL,
LEXICO, 3CL-LAST and Δ + 1). For all Figures of performance over random
geometric graphs G(n, r) in the unit square, the results are averaged over 20
instances with n ∈ [50, 3200]. In some cases, r is chosen such that the average
degree d = 40 and in other cases so that the minimum degree δ is either 20 or
40 for all samples.

152 D. Mahjoub and D.W. Matula

4.1 Performance of the Coloring Algorithms

Figure 1a shows the running times of the coloring algorithms applied on graphs
G(n, r) in the unit square where n ∈ [50, 3200] and d = 40. We observe that
GCOL, LFCOL, 3CL-LAST and Δ+1 coloring all have a running time in O(Δ)
with a typical running time equal to d. LEXICO shows a running time that
grows with increasing n with a lower bound of Δ rounds when n is small. These
experimental results are consistent with the theoretical bounds described above.
Figure 1b shows the relative coloring speed between algorithms. The time axis
represents the evolution of rounds scaled by the appropriate factor so that all
algorithms run from t=0 to 100% of their actual running times. The Colored
nodes axis shows the percentage of nodes colored. We observe that GCOL’s
coloring rate is linear, i.e. in every time window, a constant number of nodes
gets colored throughout the network. The other algorithms also color at a linear
rate but slower than GCOL. Δ + 1 coloring colors around 60% of the network
in the early rounds and is also the fastest since nodes choose colors randomly
from their entire Δ + 1 color palettes; therefore color conflicts are lower and the
algorithm converges faster. Figure 1c plots the number of colors used by each
algorithm as n grows with a constant δ = 20. We use Smallest Last (SL) [22,23]
as a benchmark for the coloring performance and also a lower bound on the size
of the largest clique (lg-cl) that SL delivers as well. We observe that LFCOL
and LEXICO have comparable performance, and so are GCOL and 3CL-LAST.
Δ + 1 coloring uses close to the upper bound number of colors Δ + 1.

4.2 Quality Evaluation of a Single Dominating Backbone

Figures 2a to 2d show sample triangulated dominating backbones obtained with
each one of the coloring algorithms combined with the virtual links creation
procedure (2-Hop rule and Gabriel rule). For a more detailed explanation of
the color codification, refer to [20]. LEXICO has the best triangulated packing
layout which also translates into a higher number of virtual links to connect the
initial backbone independent nodes (see Figure 3a). The links in LEXICO are
shorter with a median link length close to 1.2r. The other coloring algorithms
have similar behavior in their link length distributions. Figure 3b shows the
k − coverage performance of the sample backbones depicted that are obtained
by each coloring algorithm. Figure 3b indicates the percentage of vertices that
are at least covered by k backbone vertices for each one of Figures 2a to 2d
for k = 1, 2, 3, 4. Intuitively, LEXICO offers the highest coverage for each k. For
instance, more than 80% of the network nodes are covered by at least 2 backbone
nodes and around 40% of the nodes are covered by at least 3 backbone nodes.

4.3 Quality Evaluation of δ + 1 Backbones

In Figures 4a and 4b, we plot the number of disjoint independent dominating
sets obtained by the different coloring algorithms for graphs G(n, r) where δ=20
and 40. Figures 4c and 4d plot the respective performance ratio as n grows. The

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 153

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 R

ou
nd

s

Number of Nodes

Δ
GCOL

LFCOL
LEXICO

3CL-LAST
Δ+1

(a) Running time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 C

ol
or

ed
 N

od
es

Time

GCOL
LFCOL

LEXICO
3CL-LAST

Δ+1

(b) Relative speed

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 C

ol
or

s

Number of Nodes

Δ
SL

lg-cl
GCOL

LFCOL
LEXICO

3CL-LAST
Δ+1

(c) Minimum coloring

Fig. 1. Coloring algorithms performance

(a) GCOL (b) LFCOL (c) LEXICO (d) 3CL-LAST

Fig. 2. Layout of a single dominating backbone

performance ratio of the domatic partition is simply the number of obtained
disjoint independent dominating sets over the minimum degree δ plus 1. We
observe that for most coloring algorithms the performance ratio starts high at
0.7 for small graphs and then decreases slowly as n grows to reach at least 0.2
for values of n continuing beyond 1600 (not shown in the plot). LEXICO is the
least affected by the growing network size for a constant minimum degree. The
performance ratio of LEXICO stabilizes at 0.5 for large n. Notice that the per-
formance ratio for all coloring algorithms gets better for the same network sizes
but with a higher δ. The performance of Δ + 1 coloring is shown for complete-
ness, however, other than being the fastest to converge, this coloring procedure

154 D. Mahjoub and D.W. Matula

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 50 100 150 200 250

B
ac

kb
on

e
Li

nk
 L

en
gt

h

Backbone Link Index

GCOL
LFCOL

LEXICO
3CL-LAST

(a) Link lengths

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4

N
od

e
P

er
ce

nt
ag

e

k

GCOL
LFCOL

LEXICO
3CL-LAST

(b) k-coverage

Fig. 3. Quality measures for a single dominating backbone

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 200 400 600 800 1000 1200 1400 1600

In
de

pe
nd

en
t D

om
at

ic
 P

ar
tit

io
n

si
ze

Number of Nodes

δ+1
GCOL

LFCOL
LEXICO

3CL-LAST
Δ+1

(a) DP size for δ = 20

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600

In
de

pe
nd

en
t D

om
at

ic
 P

ar
tit

io
n

si
ze

Number of Nodes

δ+1
GCOL

LFCOL
LEXICO

3CL-LAST
Δ+1

(b) DP size for δ = 40

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 R
at

io

Number of Nodes

GCOL
LFCOL

LEXICO
3CL-LAST

Δ+1

(c) Performance ratio for δ = 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 R
at

io

Number of Nodes

GCOL
LFCOL

LEXICO
3CL-LAST

Δ+1

(d) Performance ratio for δ = 40

Fig. 4. Domatic partition size and performance ratio for variable density graphs

offers negligible advantages in domatic partition size as it degrades to 0 when
the network becomes very large. On the other hand, we observe in Figure 5a
that the (1 − ε) domination of the first δ + 1 backbones increases as n grows.
This happens concurrently as the strict domatic partition performance ratio de-
creases: as more independent sets lose in strict 100% domination (with growing
n values), more almost dominating sets (with more than 99% domination) are
obtained over the first δ+1 color classes. Intuitively, for the same set size of δ+1

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 155

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0 200 400 600 800 1000 1200 1400 1600

P
er

ce
nt

ag
e

D
om

in
at

io
n

Number of Nodes

GCOL
LFCOL

LEXICO
3CL-LAST

(a) Domination of δ + 1 backbones

Fig. 5. Performance of the dominating and almost dominating δ + 1 backbones

backbones, when n grows, the domination quality is spread out over most of the
backbones and rather than having a select few full dominating sets, we obtain
more near 100% dominating sets. This implies that as more better quality (i.e.
(1 − ε)) δ + 1 backbones are built in the network, any node in the network has
more chances of being covered by most of the δ + 1 backbones [20]. Conversely,
very few nodes in the network are missed by more than one δ + 1 backbone
and this number of missed nodes decreases when the network gets larger but
keeping a constant average degree [20]. In summary, LEXICO, which exploits
geometric packing properties, offers the best performance in (δ + 1) backbone
near domination quality (close to 100% for most backbones) and link length
distribution (short virtual links) as well as the strict domatic partition size (DP
performance ratio ≥ 0.5 for large graphs). This comes at the price that nodes
need to be aware of their locations and a non-localized running time (since the
running time increases as n grows for a constant density network). The other
coloring algorithms GCOL, LFCOL and 3CL-LAST are comparable and are not
better than LEXICO but they provide localized behavior. It is worth noting that
the maximum number of disjoint independent dominating sets in a graph G is
defined as the independent domatic number di(G) which is less than or equal
to the domatic number d(G) [13]. In this study, we are effectively finding an
experimental approximation of the independent domatic number.

5 Conclusions and Future Work

Our current focus is to perform a more rigorous investigation of the performance
guarantees of coloring algorithms in solving the independent domatic partition
problem in RGGs. We have shown in this paper that in the context of wireless
sensor networks’ backbone rotation, graph coloring yields a high quality (1 − ε)
dominating sets partition with ε < 0.01 even for very large graphs. We also
intend to integrate the fast log∗n coloring algorithm proposed in [32] in our
solution and analyze its performance. Further work involves the study of the
spanner properties of our generated backbones and the consideration of wireless
communication models other than the ideal unit disk model.

156 D. Mahjoub and D.W. Matula

References

1. Alzoubi, K.M., Wan, P., Frieder, O.: Message-optimal connected dominating sets
in mobile ad hoc networks. In: Proc. of MOBIHOC 2002, pp. 157–164 (2002)

2. Avin, C.: Fast and efficient restricted delaunay triangulation in random geomet-
ric graphs. In: Proc. of Workshop on Combinatorial and Algorithmic Aspects of
Networking, CAAN 2005 (2005)

3. Caragiannis, I., Fishkin, A.V., Kaklamanis, C., Papaioannou, E.: A tight bound for
online colouring of disk graphs. Theoretical Computer Science 384, 152–160 (2007)

4. Chatterjea, S., Nieberg, T., Zhang, Y., Havinga, P.: Energy-efficient data acquisi-
tion using a distributed and self-organizing scheduling algorithm for wireless sensor
networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007.
LNCS, vol. 4549, pp. 368–385. Springer, Heidelberg (2007)

5. Couture, M., Barbeau, M., Bose, P., Carmi, P., Kranakis, E.: Location oblivious
distributed unit disk graph coloring. In: Prencipe, G., Zaks, S. (eds.) SIROCCO
2007. LNCS, vol. 4474, pp. 222–233. Springer, Heidelberg (2007)

6. Diaz, J., Penrose, M.D., Petit, J., Serna, M.J.: Linear orderings of random geo-
metric graphs. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS,
vol. 1665, pp. 291–302. Springer, Heidelberg (1999)

7. Feige, U., Halldorsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the
domatic number. J. of Computing 32(1), 172–195 (2003)

8. Finocchi, I., Panconesi, A., Silvestri, R.: Experimental analysis of simple, dis-
tributed vertex coloring algorithms. In: Proc. of SODA 2002, pp. 606–615 (2002)

9. Fotakis, D., Nikoletseas, S., Papadopoulou, V., Spirakis, P.: Hardness results and
efficient approximations for frequency assignment problems: Radio labelling and
radio coloring. In: Proc. of Workshop on Algorithmic Issues in Communication
Networks, vol. 20(2), pp. 121–180 (2001)

10. Funke, S., Milosavljevic, N.: Infrastructure-establishment from scratch in wireless
sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.)
DCOSS 2005. LNCS, vol. 3560, pp. 354–367. Springer, Heidelberg (2005)

11. Gavoille, C., Klasing, R., Kosowski, A., Kuszner, L., Navarra, A.: On the complex-
ity of distributed graph coloring with local minimality constraints. Networks 54(1),
12–19 (2009)

12. Gräf, A., Stumpf, M., Weinβenfels, G.: On coloring unit disk graphs. Algorith-
mica 20, 277–293 (1998)

13. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. CRC Press, Boca Raton (1998)

14. Islam, K., Akl, S.G., Meijer, H.: Distributed generation of a family of connected
dominating sets in wireless sensor networks. In: Krishnamachari, B., Suri, S.,
Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp. 343–355.
Springer, Heidelberg (2009)

15. Islam, K., Akl, S.G., Meijer, H.: Maximizing the lifetime of a sensor network
through domatic partition. In: Proc. of the 34th IEEE Conference on Local Com-
puter Networks (LCN) (2009)

16. Kothapalli, K., Scheideler, C., Onus, M., Richa, A.: Constant density spanners for
wireless ad-hoc networks. In: Proc. of the SPAA 2005, pp. 116–125 (2005)

17. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: Self-stabilization on
speed. In: Proc. of 11th International Symposium on Stabilization, Safety and
Security of Distributed Systems (SSS), pp. 17–34 (2009)

Building (1 − ε) Dominating Sets Partition as Backbones in WSN 157

18. Lin, Z., Wang, D., Xu, L., Gao, J.: A coloring based backbone construction
algorithm in wireless ad hoc network. In: Chung, Y.-C., Moreira, J.E. (eds.) GPC
2006. LNCS, vol. 3947, pp. 509–516. Springer, Heidelberg (2006)

19. Mahjoub, D., Matula, D.W.: Experimental study of independent and dominating
sets in wireless sensor networks. In: Liu, B., Bestavros, A., Du, D.-Z., Wang, J.
(eds.) WASA 2009. LNCS, vol. 5682, pp. 32–42. Springer, Heidelberg (2009)

20. Mahjoub, D., Matula, D.W.: Employing (1− ε) dominating set partitions as back-
bones in wireless sensor networks. In: Proc. of the 11th Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 98–111 (2010)

21. Marathe, M., Breu, H., Ravi, S., Rosenkrantz, D.: Simple heuristics for unit disk
graphs. Networks 25, 59–68 (1995)

22. Matula, D.W., Beck, L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. of the ACM 30(3), 417–427 (1983)

23. Matula, D.W., Marble, G., Isaacson, J.: Graph Coloring Algorithms. In: Graph
Theory and Computing, pp. 109–122. Academic Press, London (1972)

24. Matula, D.W., Sokal, R.: Properties of gabriel graphs relevant to geographic vari-
ation research and the clustering of points in the plane. Geographical Analysis 12,
205–222 (1980)

25. Misra, R., Mandal, C.A.: Efficient clusterhead rotation via domatic partition in self-
organizing sensor networks. Wireless Communications and Mobile Computing 9(8),
1040–1058 (2008)

26. Misra, R., Mandal, C.A.: Rotation of cds via connected domatic partition in ad
hoc sensor networks. IEEE Trans. Mob. Comput. 8(4), 488–499 (2009)

27. Moscibroda, T., Wattenhofer, R.: Maximizing the lifetime of dominating sets. In:
Proc. of 5th IEEE WMAN 2005 (2005)

28. Pandit, S., Pemmaraju, S.V., Varadarajan, K.: Approximation algorithms for do-
matic partitions of unit disk graphs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX 2009. LNCS, vol. 5687, pp. 312–325. Springer, Heidelberg (2009)

29. Parthasarathy, S., Gandhi, R.: Distributed algorithms for coloring and domination
in wireless ad hoc networks. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004.
LNCS, vol. 3328, pp. 447–459. Springer, Heidelberg (2004)

30. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadel-
phia (2000)

31. Pemmaraju, S.V., Pirwani, I.A.: Energy conservation via domatic partitions. In:
Proc. of MobiHoc 2006, pp. 143–154 (2006)

32. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: Proc. of PODC 2008, pp. 35–44 (2008)

On Multihop Broadcast over Adaptively
Duty-Cycled Wireless Sensor Networks

Shouwen Lai and Binoy Ravindran

Virginia Tech, ECE Department, Blacksburg, VA 24060, USA
{swlai,binoy}@vt.edu

Abstract. We consider the problem of multihop broadcast over adap-
tively duty-cycled wireless sensor networks (WSNs) where neighborhood
nodes are not simultaneously awake. We present Hybrid-cast, an asyn-
chronous and multihop broadcasting protocol, which can be applied to
low duty-cycling or quorum-based duty-cycling schedule where nodes
send out a beacon message at the beginning of wakeup slots. Hybrid-
cast achieves better tradeoff between broadcast latency and broadcast
count compared to previous broadcast solutions. It adopts opportunis-
tic data delivery in order to reduce the broadcast latency. Meanwhile,
it reduces redundant transmission via delivery deferring and online for-
warder selection. We establish the upper bound of broadcast count and
the broadcast latency for a given duty-cycling schedule. We evaluate
Hybrid-cast through extensive simulations. The results validate the ef-
fectiveness and efficiency of our design.

1 Introduction

Multihop broadcast [17] is an important network service in WSNs, especially for
applications such as code update, remote network configuration, route discov-
ery, etc. Although the problem of broadcast has been well studied in always-on
networks [12,22] such as wireless ad hoc networks where neighbor connectivity is
not a problem, broadcast is more difficult in duty-cycled WSNs where each node
stays awake only for a fraction of time slots and neighborhood nodes are not
simultaneously awake for receiving data. The problem becomes more difficult in
asynchronous [24] and heterogenous duty-cycling [9] scenarios.

To support broadcast, synchronization of wakeup schedules is one promising
approach adopted by many duty-cycling MAC protocols, such as S-MAC [23]
and T-MAC [4]. Such protocols simplify broadcast communication by letting
neighborhood nodes stay awake simultaneously. However, this approach results
in high overhead for periodic clock synchronization when compared to the low
frequency of broadcast service in WSNs. Since energy is critical to WSNs, energy-
efficient asynchronous MAC protocols have become increasingly attractive for
data communication, as proposed in B-MAC [14], RI-MAC [18], Disco [5], and
quorum-based wakeup scheduling [24,10].

However, previous asynchronous MAC protocols for duty-cycled WSNs mostly
focus on unicast communication, and do not work well for broadcasting. One

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 158–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 159

straightforward way to support one-hop broadcast in such cases is to deliver data
multiple times for all neighbors, which results in redundant transmissions. With
multihop broadcasting to an entire network, the problems are more amplified,
as some neighbors attempt to forward the broadcast message while the original
transmitting node still attempts to transmit it to other nodes of its neighbors,
increasing collisions and wasting energy consumption for transmission.

There have been some efforts in the past to support multihop broadcasting
in duty-cycled WSNs. Wang et al. [21] transformed the problem into a shortest-
path problem with the assumption of duty-cycle awareness, which is not valid
for asynchronously duty-cycled WSNs. DIP [16], ADB [17], and opportunistic
flooding [6] were designed with a smart gossiping approach. Essentially, these
protocols use unicast to replace broadcast for flooding, toward reducing the
flooding latency in the entire network. However, they may lack efficiency in large-
scale networks or on delivering large chunks of data to entire network because
message cost and higher transmission energy consumption.

To overcome the disadvantages of replacement via pure unicast, we present
Hybrid-cast, an asynchronous broadcast protocol for broadcasting with low la-
tency and reduced message count. In Hybrid-cast, a node only forwards a mes-
sage to neighbors who wake up and send out beacon messages. A node defers
broadcasting by one or more time slot(s) after receiving the beacon message from
the first awake neighbor in order to wait for more nodes that may potentially
wake up, so that more nodes are accommodated in one broadcast. It also adopts
online forwarder selection in order to reduce the transmission redundancy. Com-
pared with previous protocols, Hybrid-cast can achieve less broadcast latency
and smaller message count.

The rest of the paper is organized as follows: We discuss related works in
Section 2. In Section 3, we state our models, assumptions, and preliminaries.
In Section 4, we present the design of Hybrid-cast. We theoretically analyze
the performance of Hybrid-cast in Section 5, and provide further discussions in
Section 6. Simulation results are presented in Section 7. We conclude in Section 8.

2 Past and Related Works

We review past and related efforts on broadcast solutions for duty-cycled WSNs.
Due to space constraints, we omit reviews for always-on multihop networks.
Gossip or opportunistic approach. Opportunistic unicast routing, like EXOR
[1], was proposed to exploit wireless broadcast medium and multiple opportunis-
tic paths for efficient message delivery. Regarding broadcasting, the main pur-
pose of opportunistic approach aimed at ameliorating message implosion. Smart
Gossip [8] adaptively determines the forwarding probability for received flooding
messages at individual sensor nodes based on previous knowledge and network
topology.

In Opportunistic Flooding [6] (abbreviated as OppFlooding), each node makes
probabilistic forwarding decisions based on the delay distribution of next-hop
nodes. Only opportunistic early packets are forwarded via the links outside of

160 S. Lai and B. Ravindran

the energy-optimal tree to reduce flooding delays and the level of redundancy.
To resolve decision conflicts, the authors build a reduced flooding sender set to
alleviate the hidden terminal problem. Within the same sender set, the solution
uses a link-quality-based backoff method to resolve and prioritize simultaneous
forwarding operations. The main problem of pure opportunistic flooding is the
overhead in terms of transmission times.
Synchronized or duty-cycle awareness. Wang et al. [21] present a central-
ized algorithm, mathematically modeling the multihop broadcast problem as a
shortest-path problem in a time-coverage graph, and also present two similar
distributed algorithms. However, their work simplifies many aspects necessary
for a complete MAC protocol, and may not be appropriate for real implemen-
tation. The work also assumes duty-cycle awareness, which makes it difficult to
use it in asynchronous WSNs since duty-cycle awareness needs periodic time-
synchronization due to clock drifting. RBS [20] proposes a broadcast service for
duty-cycled sensor networks and shows its effectiveness in reducing broadcast
count and energy costs.

All these works based on synchronization assume that there are usually mul-
tiple neighbors available at the same time to receive the multicast/flooding mes-
sage sent by a sender. This is not true in low duty-cycled asynchronous networks.
Asynchronous solution. B-MAC [14] can support single-hop broadcast in the
same way as it supports unicast, since the preamble transmission over an entire
sleep period gives all of the transmitting node’s neighbors a chance to detect
the preamble and remain awake for the data packet. X-MAC [3] substantially
improves B-MAC’s performance for unicast, but broadcast support is not clearly
discussed in that paper. X-MAC is not promising for broadcast since the trans-
mitter has to continually trigger the neighbors to wake up.

ADB [17] avoids the problems faced by B-MAC and X-MAC by efficiently
delivering information on the progress of each broadcast. It allows a node to
go to sleep immediately when no more neighbors need to be reached. ADB is
designed to be integrated with an unicast MAC that does not occupy the medium
for a long time, in order to minimize latency before forwarding a broadcast. The
effort in delivering a broadcast packet to a neighbor is adjusted based on link
quality, rather than transmitting throughout a duty cycle or waiting throughout
a duty cycle for neighbors to wake up. Basically, ADB belongs to the unicast
replacement approach and it needs significant modification to existing MAC
protocols for supporting broadcast.

3 Models and Preliminaries

3.1 Network Model and Assumptions

We model a multi-hop wireless sensor network as a directed graph G(V, E),
where V is the set of nodes, and E is the set of edges. If node vj is within
the transmission range of node vi, then an edge (vi, vj) is in E. We assume
bidirectional links. We use the term “connectivity” loosely in our model, in
the sense that a topologically connected network in our context may not be

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 161

connected at any time; instead, all nodes are reachable from a node within a
finite amount of time by the underlying MAC protocol. We define the one-hop
neighborhood of node ni as N(i).

We assume that time axes are arranged as consecutive short time slots, all slots
have the same duration Ts, and each node ni adopts a periodic wakeup schedule
every Li time slots. The wakeup schedule can be once every Li slots or based on
quorum schedules (i.e., cyclic quorum systems or grid quorum systems [11]). Li

is called cycle length for node ni. We assume that beacon messages are sent out
at the beginning of wakeup slots, as in [18,10]. When a node wants to transmit
messages, it will wait until beacons are received from neighbors.

We also make the following assumptions: (1) There is no time synchronization
between nodes (thus the time slots in two nodes are not necessarily aligned);
(2) The overhead of turning on and shutting down radio is negligibly small
compared with the long duration of time slots (i.e., 50ms ∼ 500ms); (3) There
is only one sink node in the network (but our solution can be easily extend to
the scenario of multiple sink nodes).

3.2 Heterogenous Wakeup Scheduling

Heterogenous wakeup scheduling means that nodes adopt different wakeup sched-
ules independently to reflect their remaining energy. How to configure this sched-
ule (i.e., the value of Li) has been described by past works such as [19], and is
outside the scope of our work.

We consider two types of heterogenouswakeup scheduling approaches: lowduty-
cycling schedule and quorum duty-cycling schedule. Low duty-cycling means that
a node wakes up one slot for every ni (ni is an integer) time slots. For example, in
Figure 1(a), receiver 1 has a schedule of [1, 0, 0], where 1 means wakeup slot, and
receiver 2 has the schedule of [1, 0, 0, 0]. They do not always overlap on wakeup
slots.

For quorum-based duty cycling, wakeup scheduling follows a quorum sys-
tem [11] design. In quorum-based duty cycling, two neighbor nodes can hear
each other at least once within limited time slots via the non-empty intersection
property of quorums. We choose cyclic quorum system [10] in this paper. But
our work can also be applied to other quorum systems.

We use the following definitions for briefly reviewing quorum systems (which
are used for wakeup scheduling).

Let n denote a cycle length and U = {0, · · · , n − 1}.

Definition 1. A quorum system Q under U is a superset of non-empty subsets
of U , each called a quorum, which satisfies the intersection property: ∀G, H ∈
Q : G ∩ H �= ∅. If ∀G, H ∈ Q, i ∈ {0, 1, ...n − 1}: G ∩ (H + i) �= ∅, where
H + i = {(x+ i) mod n : x ∈ H}. Q is said to have the rotation closure property

A cyclic quorum system (cqs) satisfies the rotation closure property, and is de-
noted as C(A, n) where A is a quorum and n is the cycle length. For example,
the cqs {{1, 2, 4}, {2, 3, 5} · · · , {7, 1, 3}} can be denoted as C({1, 2, 4}, 7). The

162 S. Lai and B. Ravindran

wakeup schedule complying with C({1, 2, 4}, 7) are [1, 1, 0, 1, 0, 0, 0] and its rota-
tions as shown in Figure 1(b).

For two different cyclic quorum systems C(A1, n1) and C(A2, n2), if two quo-
rums from them, respectively, have non-empty intersections even with drifting
clocks, they can be used for heterogenous wakeup scheduling in WSNs as proved
by in [10]. For example, given C({1, 2, 4}, 7) and C({1, 2, 4, 10}, 13), two quorums
from them, respectively, will have non-empty intersection for every 13 time slots.
Therefore, two nodes that wake up with schedules complying with any two quo-
rums from the two cyclic quorum systems can hear each other.

3.3 Problem Statement

Let us define the broadcast latency as the time between the beginning of a
broadcast and the time at which every node receives the broadcast message.
Also, let us define the broadcast count as the number of broadcasting via all
nodes to ensure that the entire network receives the message. Our goal is to
design a broadcast schedule, which can not only shorten the broadcast latency
but also the broadcast count for flooding a message to the entire network. The
protocol that we present, Hybrid-cast, is a heuristic solution to this problem.

4 The Hybrid-Cast Protocol

4.1 Overview

In Hybrid-cast, a transmitter will stay awake for long enough time to hear the
beacon message from its neighbors. Due to heterogenous wake-up scheduling,
for low duty-cycling, the node will stay awake for Lm time slots, which is the
largest cycle length of all neighbors. By doing this, it can hear beacons from all
neighbors. For quorum duty-cycling, the transmitter will switch to the wakeup
schedules which has the largest cycle length from all its neighbors.

Hybrid-cast adopts opportunistic forwarding with delivery deferring to shorten
broadcast latency and broadcast count: the transmitter will forward the message

Transmitter

Receiver 1

Receiver 2

Receiver 3

(a) low duty-cycling (b) quorum duty-cycling

beacon

wakeup slot

broadcast broadcast
broadcast

[1,0,0]

[1,0,0,0]

[1,0]

Fig. 1. Opportunistic broadcasting with delivery deferring (a) low duty-cycling case;
(b) quorum duty-cycling case with wakeup schedules of [1,1,0,1,0,0,0] and its rotations
which comply with (7,3,1) cqs design in [10]

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 163

within δ time after it hears the beacon messages from early-wakeup neighbors,
rather than forwarding immediately after hearing the beacon messages. An il-
lustration is given in Figure 1(a). Here, δ (i.e., δ = Ts for low duty-cycling) is
called the deferring time. By deferring, the first-awake neighbor can still receive
the broadcast message. Meanwhile, more neighbors which wake up during the de-
ferred time period can receive the broadcastmessage, so that less number of broad-
cast is necessary for one-hop broadcasting.

To further reduce redundant transmissions, Hybrid-cast adopts online for-
warder selection. “Online” means that a node selects the least relay node among
its instant one-hop awake neighbors, rather than all one-hop neighbors, to cover
its two hop neighbors, in order to reduce transmission redundancy and collision.

4.2 Wakeup Schedule Switching

Due to adaptive duty-cycling, neighbor discovery becomes more difficult. In order
to hear the beacon message from all neighbors, a node must switch its wakeup
schedule for staying awake for enough time slots.

For the case of low duty-cycling, in the idle state, a node ni follows its own
wakeup schedule. If the node needs to forward a broadcast message (i.e., the
node is selected as a relay node), ni should stay awake for at least Lm slots,
where Lm = maxnj∈N(i){Lj}. By doing this, ni can hear beacon messages from
all neighbors within the minimum necessary time slots.

For the case of quorum duty-cycling, ni just switches to the schedule of the
node which has the longest cycle length. Due to the non-empty intersection
property [10], ni can still hear all neighbors even when it does not stay awake
in every time slot of a whole cycle length.

A node needs to know the largest cycle length of its neighbors before schedule
switching. This can be achieved by either pre-setting the largest global cycle
length or by dynamic neighbor information exchange protocols.

4.3 Opportunistic Forwarding with Deferring

Opportunistic forwarding means that a transmitter forwards data immediately
to the neighbor which wake up earlier, for minimizing broadcast latency. Pre-
vious efforts on opportunistic flooding such as [6] use unicast for broadcasting.
However, opportunistic forwarding via pure unicast suffers from large broadcast
count.

In Hybrid-cast, broadcast deferring is adopted to minimize the one-hop broad-
cast count. By deferring, a transmitter will not broadcast messages immediately
after receiving the beacon from the first-awake neighbor. In order to ensure that
more neighbors receive the broadcast message, the transmitter defers the broad-
casting by δ = 1 time slot. By doing this, the first-awake neighbor can still
receive the message, and the neighbors which wake up before the deferring time
is due can also receive the broadcast message. Thus, deferring combines the ad-
vantages of opportunistic forwarding and the advantages of broadcasting over
wireless radio.

164 S. Lai and B. Ravindran

As shown in Figure 1, suppose there are three neighbors for the transmitter.
The transmitter only needs to broadcast two times (marked by the red arrow)
to ensure that all neighbors will receive the message. This is more efficient than
the pure opportunistic forwarding mechanism.

The only disadvantages of deferring is the additional latency (1 time slot for
one-hop broadcasting) for flooding to the entire network. Therefore, deferring
allows the tradeoff between the number of broadcast count and the broadcast
latency to be exploited. We show in Section 5.2 that such additional latency is
relatively small for the low duty-cycling case.

4.4 Online Forwarder Selection

In order to reduce the broadcast count or redundant transmission for multihop
broadcasting, it is necessary to select as small number of relay nodes as possible.
Many past efforts have formulated this problem as the Minimum Connecting
Dominating Set (MCDS) problem [2]. However, we argue that a static MCDS
cannot be applied for relay node selection in Hybrid-cast. First, to shorten the
latency, it is necessary to select the relay nodes or forwarders along the direction
of opportunistic forwarding, which results in online (or live) forwarder selection,
rather than a static topology control as done in MCDS. Secondly, MCDS does
not achieve minimum broadcast count in asynchronous duty-cycled WSNs due
to multiple delivery for single hop broadcasting.

Algorithm 1. Algorithm for all node nx:
set Nawake(x);1:

N2
reachable(x) = ∪y∈Nawake(x)N(y) − Nawake(x);2:

for ny ∈ Nawake(x) do3:
if node nu ∈ N2

reachable(x) which is only reachable by ny then4:
ny is selected into O-MPR(x);5:

N2
reachable(x) = N2

reachable(x) − nu;6:

while N2
reachable(x) �= ∅ do7:

for nu ∈ Nawake(x) - O-MPR(x) do8:
nm = nu which covers the most nodes in N2

reachable(x);9:

nm is selected into O-MPR(x);10:

N2
reachable(x) = N2

reachable(x) - node set covered by nm;11:

In Hybrid-cast, initially, each node maintains its one hop awake neighbors
(defined as N(x)) and the set of two hop neighbors N2(x) based on any under-
lying neighbor discovery protocols. The sink node or a relay node nx computes
the least number of relay nodes among its one-hop awake neighbors (defined as
Nawake(x)) to cover the reachable two hop neighbors (defined as N2

reachable(x)).

N2
reachable(x) = ∪y∈Nawake(x)N(y) − Nawake(x) (1)

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 165

The main purpose of the online forwarder selection algorithm in a transmitter
nx is to compute N2

reachable(x) as shown in Equation 1, and to compute the
minimum number of relays to cover N2

reachable(x).
We adopt a heuristic solution, which is similar to the minimum multipoint re-

lays (MPR) algorithm in [15]. The MPR problem is NP-Complete as shown
in [15]. Thus, the minimum online forwarder selection problem is also NP-
Complete. We denote the online MPR set for the transmitter nx as O-MPR(x).
We provide a heuristic algorithm for computing O-MPR(x) as described in Al-
gorithm 1. An illustration is given in Figure 2(a).

Let us define the delivery latency from node ni to node nj as the time between
when the data is ready in ni and time at which the broadcast data is received
by the neighbors, and denote the latency as τi,j(t) at time t (τi,j(t) is varying at
different time). We have the following property.

Theorem 1. Suppose node ni has two neighbor nj and nk which are one hop
away from each other. Then, at a time instant, ti, we have the triangular prop-
erty:

τi,j(ti) ≤ τi,k(ti) + τk,j(ti + τi,k(ti)) (2)

Proof. Suppose at time ti, the data arriving time slot at nj is tj , and the data
arriving time at nk is tk.

If tk ≤ tj , which means that the data arriving time at nk is earlier than the
data arriving time at nj , τi,k(ti + τk,j(ti + τi,k(ti)) = tk − ti + tj − tk = tj − ti =
τi,j(ti). Otherwise, if tk > tj , which means that the data arriving time at nk is
later than the data arriving time at nj, we have τi,k(ti) + τk,j(ti + τi,k(ti)) =
tk − ti + t

′
j − tk > tj − ti + t

′
j − tk > tj − ti > τi,j(ti). The theorem follows.

Fig. 2. Online forwarder selection and the triangular path condition

Theorem 1, as illustrated in Figure 2(b), illustrates that node ni will always
broadcast data to its one-hop neighbor nj directly, without through other nodes.

We also have the following property.

Lemma 1. Triangular Path Condition: For a node ni and its neighbor nj, at
any time, the one-hop broadcast latency ni → nj is always the minimum possible.

We omit the proof for the triangular path condition since it is a simple extension
from that of Theorem 2. An illustration is given in Figure 2(c). Note that the
triangular path condition does not exist in static networks. The triangular path
condition indicates that the one-hop direct broadcast always achieves the least
latency, in adaptively duty-cycled WSNs.

166 S. Lai and B. Ravindran

5 Performance Analysis

We now analyze the performance of Hybrid-cast in terms of the broadcast count
and the broadcast latency, in order to illustrate its design advantages.

5.1 Upper-Bound on One-Hop Broadcast Count

We consider two scenarios in analyzing the one-hop broadcast count. In the low
duty-cycling scenario, the schedule for a node ni is waking up once every Li time
slots. In the quorum duty-cycling scenario, the schedule for a node ni is waking
up q times for every Li consecutive time slots, where q is the quorum size.

Lemma 2. [low duty-cycling] In Hybrid-cast, for a node ni, the broadcast count
is at least one, and at most max{Δ, Lm}, where Δ is the node degree of ni and
Lm is the maximum cycle length of nodes in the neighborhood.

Proof. If all nodes wake up within the same time slot, then after broadcast
deferring, the transmitter can hear all neighbors, and one broadcast can cover
all neighbors.

Otherwise, if Δ ≥ Lm, the transmitter can hear all neighbors via staying
awake for Lm time slots. Therefore, the maximum broadcast count is Lm. If
Δ < Lm, the transmitter can hear neighbors for at most Δ times, and the
maximum broadcast count is Δ. Thus, the maximum number of broadcast count
is max{Δ, Lm}.

By the Lemma 2, the upper bound of broadcast count in Hybrid-cast is at most
n (where n is the network size) in the ideal case.

Lemma 3. [quorum duty-cycling] In Hybrid-cast, for node ni, the broadcast
count is at least one, and at most max{Δ, qm}, where Δ is the node degree
of ni and qm is the largest quorum size of the quorum systems adopted by nodes
in the neighborhood.

Proof. If all nodes wake up within one time slot, then after broadcast deferring,
the transmitter can hear all neighbors, and one broadcast can cover all neighbors.

Otherwise, if Δ ≥ qm, the transmitter can hear all neighbors via staying awake
in time slots scheduled by the quorum design. Therefore the maximum broadcast
count is qm. If Δ < q, the transmitter will hear neighbors for at most Δ times,
and the maximum broadcast count is Δ. Thus, the maximum broadcast count
is max{Δ, qm}.

5.2 Delivery Latency

Lemma 4. Suppose the depth of the network (i.e., maximum layers by breadth-
first-search) is Dmax. Then, the upper bound for delivery latency is Lm∗Dmax∗Ts
in low duty-cycling mode, where Lm is the maximum cycle length of nodes in the
network. The upper bound is qm∗Dmax∗Ts for quorum duty-cycling mode, where
qm is the largest quorum size of the quorum systems adopted by all nodes in the
network.

Proof. Based on the Triangular Path Condition in Lemma 1, a node always
broadcasts a message to its one-hop neighbors directly. Thus, for one hop broad-
casting, the latency is at most Lm ∗Ts. After Lm ∗Ts, all nodes in the first layer
will receive the broadcast message. Therefore, after Lm ∗ Dmax ∗ Ts time, all
nodes in the network will receive the broadcast message.

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 167

6 Discussion

Note that we do not assume local synchronization or duty-cycle awareness, which
is required by past works such as [6] and [21]. The assumption in Hybrid-cast is
neighbor-awareness. Such awareness can be achieved by neighbor discovery pro-
tocols, or by quorum-based duty-cycling [10]. Each node will inform its neighbors
after reconfiguration on the duty-cycling.

By adopting quorum duty-cycling, Hybrid-cast can be extended to mobile
WSNs, because neighbor discovery is guaranteed within bounded time in quorum
duty-cycling, as shown in [10].

Due to the problem of hidden terminal, it is possible that one node may receive
broadcast messages from two nodes simultaneously, which leads to collision. For
reliable broadcasting, if a node received the broadcast, it can set a mark field
in the beacon message. By checking the beacon message from the neighbor, a
transmitter can decide whether retransmission is necessary. We do not defer
broadcast for retransmission. The transmitter could backoff a random period
0 ≤ t ≤ Ts in order to avoid collision.

We do not explicitly consider reliability issues in Hybrid-cast. However, the
traditional ACK and NACK mechanisms for reliable data transmission can be
applied to Hybrid-cast to support reliable broadcasting.

7 Simulation Results

We simulated Hybrid-cast using the OMNET++ simulator [13] and compared it
against ADB [17] and opportunistic broadcasting [6] (denoted as OppFlooding).

Our experimental settings were consistent with the configurations in [6,7]. We
set the wireless loss rate as 0.1 and the duration of one time slot as 100 ms.
The wireless communication range was set to 10m. We adopted the wireless loss
model in [25], which considers the oscillation of radio. The size of the broadcast
message packets was fixed as 512 bytes.

We examined the two main factors that affect the performance of our algo-
rithms, including network size and duty-cycle setting. We generated a network
with different number of nodes. For each network size, we randomly generated 10
topologies. Each data point reported in this section is the average of 10 topolo-
gies, with 10 runs on each topology. We varied the network size to understand
its impact on the broadcast count and broadcast latency.

We measured the performance of the algorithms in a variety of duty cycle
settings. For the low duty-cycling scenario, we varied the duration of the total
periodic cycle length from 2Ts to 10Ts to generate heterogenous duty-cycling
in a network for different nodes. For the quorum duty-cycling case, we choose
the (7, 3, 1), (13, 4, 1), and (21, 5, 1) difference sets for the heterogenous schedule
settings. Since ADB, OppFlooding, and Hybrid-cast are independent of wakeup
scheuling, we argue that the comparison is fair, even though ADB and OppFlood-
ing do not explicitly support quorum duty-cycling.

168 S. Lai and B. Ravindran

7.1 Broadcast Count

We first measure the broadcast count which is the total number of broadcasting
for flooding a message to the whole network. In this set of experiments, the net-
work size was fixed by 200 nodes. The experimental results for different protocols
are shown in Figure 3(a). In the low duty-cycling case, Hybrid-cast outperforms
ADB by approximately 50%, because of the less number of unicasts involved,
due to the protocol’s deferring and online forwarder selection.

0.1 0.20 0.30 0.4

80

120

160

200

240

280

320

Duty Cycle Ratio
 (a) Low Duty−Cycling

B
ro

ad
ca

st
 C

ou
nt

Hybrid−cast

ADB

OppFlooding

(7,3,1) (13,4,1) (21,5,1)
40

80

120

160

200

240

280

320

Quourm−based Schedule
(b) Quorum Duty−Cycling

B
ro

ad
ca

st
 C

ou
nt

Hybrid−cast

ADB

OppFlooding

Fig. 3. Performance comparison on broadcast count

For the quorum-based duty cycle setting, all nodes in the network chose ho-
mogenous quorum schedules. The setting was varied simultaneously for all nodes
in different set of experiments. As shown in Figure 3(b), Hybrid-cast performs
better since broadcasting are aggregated within quorum slots in each cycle. For
example, for the (7, 3, 1) setting (i.e., a node will stay awake at the 1st, 2nd, and
4th slot on every 7 consecutive slots), there are at most 3 broadcasts to ensure
that all neighbor nodes receive the broadcast message. However, for ADB and
OppFlooding, the average one-hop broadcast count was 5 or 6, given the average
degree in the network that we configured. The results validate the performance
analysis in Section 5.1.

7.2 Broadcast Latency

Figure 4(a) shows the broadcast latency (defined as the time from broadcast
beginning to all nodes receiving the broadcast data). With deferring, Hybrid-
cast has slightly higher latency than ADB and OppFlooding, by about 10%,
when the duty cycle ratio is 0.4, and by about 5%, when the duty cycle ratio
is 0.1. As shown in Figure 4(a), as the duty cycle ratio decreases, the disadvan-
tages of Hybrid-cast become more negligible, since the broadcast latency is more
dominated by neighbor discovery latency.

For the case of quorum duty-cycling, as shown in Figure 4(b), we observe a
similar trend as that of low duty-cycling. The latencies for all three protocols tend
to increase with larger quorum cycle. However, the latencies tend to converge to
the same value when the quorum cycle increases. This is because, the neighbor

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 169

0.1 0.20 0.30 0.4

8

10

12

Duty Cycle Ratio
 (a) Low Duty−Cycling

B
ro

ad
ca

st
 L

at
en

cy
(s

ec
)

Hybrid−cast

ADB

OppFlooding

(7,3,1) (13,4,1) (21,5,1)

10

20

30

40

Quourm−based Schedule
(b) Quorum Duty−Cycling

B
ro

ad
ca

st
 L

at
en

cy

Hybrid−cast

ADB

OppFlooding

Fig. 4. Performance comparison on broadcast latency

discovery latency is approximately linearly increasing with quorum cycle, as
shown in [10] The results also validate the performance analysis in Section 5.2.

7.3 Impact of Network Size

We also evaluated the impact of network size and heterogenous duty-cycling on
message count and broadcast latency. For the low duty-cycling case, each node
randomly selected a duty cycle ratio in the range 0.1 to 0.4. For the quorum
duty-cycling case, we chose the (7, 3, 1), (13, 4, 1), and (21, 5, 1) difference sets
for the schedules of all nodes (the non-empty intersection property among these
sets was proved in [10]). In the simulation experiments, we varied the network
size from 200 nodes to 1600 nodes.

200 400 600 800 1000 1200 1400 1600

200

400

600

800

Duty Cycle Ratio
 (a) Low Duty−Cycling

B
ro

ad
ca

st
 C

ou
nt

Hybrid−cast

ADB

OppFlooding

200 400 600 800 1000 1200 1400 1600

200

400

600

800

Quourm−based Schedule
(b) Quorum Duty−Cycling

B
ro

ad
ca

st
 C

ou
nt

Hybrid−cast

ADB

OppFlooding

Fig. 5. Broadcast count with different network size

As shown in Figure 5, as the network size increases, the message count of
Hybrid-cast and the other two solutions exhibit an increasing trend. This is
because, more relay nodes will be selected in larger networks. The same trend
exists for broadcast latency as shown in Figure 6, as there are more hops along
the breadth-first-search tree. This is consistent with the analysis in Section 5.2.

We also evaluated the impact of network size for quorum-based duty cycle
setting. We observed similar trends for the broadcast count and broadcast la-
tency as that in the low duty-cycling setting. The performance comparisons thus
illustrate the performance tradeoff achieved by Hybrid-cast.

170 S. Lai and B. Ravindran

200 400 600 800 1000 1200 1400 1600
4

8

12

16

20

24

Duty Cycle Ratio
 (a) Low Duty−Cycling

B
ro

ad
ca

st
 L

at
en

cy

Hybrid−cast

ADB

OppFlooding

200 400 600 800 1000 1200 1400 1600
12

16

20

24

28

32

36

40

Quourm−based Schedule
(b) Quorum Duty−Cycling

B
ro

ad
ca

st
 L

at
en

cy

Hybrid−cast

ADB

OppFlooding

Fig. 6. Broadcast latency with different network size

8 Conclusions

In this paper, we designed an asynchronous broadcasting protocol, Hybrid-cast,
for WSNs with adaptively low duty-cycling or quorum-based duty-cycling sched-
ules. The main difficulty of this problem is that, sensor nodes are not time-
synchronized and do not stay awake simultaneously. Hybrid-cast broadcasts
messages to the neighbors who wake up early, in order to shorten the broadcast
latency. Previous solutions often use multiple unicasts for broadcasting, which
incurs high overhead. To overcome the disadvantages of such multiple unicasts,
Hybrid-cast defers broadcasting to ensure that the number of awake neighbors
is as large as possible. We also selected the minimum relay points online in order
to reduce broadcast count and collisions.

We mathematically established the upper bound of broadcast count and broad-
cast latency for a given duty-cycling schedule. We compared the performance of
Hybrid-cast with ADB and OppFlooding protocols. Our simulation results vali-
dated the effectiveness and efficiency of our design.

References

1. Biswas, S., Morris, R.: Exor: opportunistic multi-hop routing for wireless networks.
SIGCOMM Comput. Commun. Rev. 35(4), 133–144 (2005)

2. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor
networks and manets. In: Handbook of Combinatorial Optimization, pp. 329–369
(2005)

3. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-mac: a short preamble mac pro-
tocol for duty-cycled wireless sensor networks. In: ACM Conference on Embedded
Networked Sensor Systems (SenSys), pp. 307–320 (2006)

4. Dam, T.V., Langendoen, K.: An adaptive energy-efficient mac protocol for wireless
sensor networks. In: ACM SenSys (2003)

5. Dutta, P., Culler, D.: Practical asynchronous neighbor discovery and rendezvous
for mobile sensing applications. In: ACM SenSys, pp. 71–84 (2008)

6. Guo, S., Gu, Y., Jiang, B., He, T.: Opportunistic flooding in low-duty-cycle wireless
sensor networks with unreliable links. In: ACM Conference on Mobile Computing
and Networking (MobiCom), pp. 133–144 (2009)

7. Jurdak, R., Baldi, P., Lopes, C.V.: Adaptive low power listening for wireless sensor
networks. IEEE Transactions on Mobile Computing 6(8), 988–1004 (2007)

On Multihop Broadcast over Adaptively Duty-Cycled WSNs 171

8. Kyasanur, P., Choudhury, R.R., Gupta, I.: Smart gossip: An adaptive gossip-based
broadcasting service for sensor networks. In: IEEE International Conference on
Mobile Adhoc and Sensor Systems (MASS), pp. 91–100 (October 2006)

9. Lai, S., Ravindran, B.: On distributed time-dependent shortest paths over duty-
cycled wireless sensor networks. In: IEEE International Conference on Computer
Communications (INFOCOM) (2010)

10. Lai, S., Zhang, B., Ravindran, B., Cho, H.: Cqs-pair: Cyclic quorum system pair
for wakeup scheduling in wireless sensor networks. In: Baker, T.P., Bui, A., Tixeuil,
S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 295–310. Springer, Heidelberg (2008)

11. Luk, W.S., Huang, T.T.: Two new quorum based algorithms for distributed mutual
exclusion. In: Proceedings of the International Conference on Distributed Comput-
ing Systems (ICDCS), pp. 100–106 (1997)

12. Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., Sheu, J.-P.: The broadcast storm problem in
a mobile ad hoc network. In: 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pp. 151–162 (1999)

13. OMNET++, http://www.omnetpp.org/
14. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor

networks. In: SenSys, pp. 95–107 (2004)
15. Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast

messages in mobile wireless networks. In: 35th Annual Hawaii International Con-
ference on System Science, pp. 3866–3875 (2002)

16. Stann, F., Heidemann, J., Shroff, R., Murtaza, M.Z.: Rbp: robust broadcast prop-
agation in wireless networks. In: ACM SenSys, pp. 85–98 (2006)

17. Sun, Y., Gurewitz, O., Du, S., Tang, L., Johnson, D.B.: Adb: an efficient multihop
broadcast protocol based on asynchronous duty-cycling in wireless sensor networks.
In: ACM SenSys, pp. 43–56 (2009)

18. Sun, Y., Gurewitz, O., Johnson, D.B.: Ri-mac: a receiver-initiated asynchronous
duty cycle mac protocol for dynamic traffic loads in wireless sensor networks. In:
ACM Sensys, pp. 1–14 (2008)

19. Vigorito, C.M., Ganesan, D., Barto, A.G.: Adaptive control of duty cycling in
energy-harvesting wireless sensor networks. In: IEEE SECON 2007, pp. 21–30
(June 2007)

20. Wang, F., Liu, J.: Rbs: A reliable broadcast service for large-scale low duty-cycled
wireless sensor networks. In: IEEE International Conference on Communications
(ICC), pp. 2416–2420 (May 2008)

21. Wang, F., Liu, J.: Duty-cycle-aware broadcast in wireless sensor networks. In: IEEE
International Conference on Computer Communications (INFOCOM), pp. 468–476
(2009)

22. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc), pp. 194–205 (2002)

23. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adap-
tive sleeping for wireless sensor networks. IEEE/ACM Transactions on Network-
ing 12, 493–506 (2004)

24. Zheng, R., Hou, J.C., Sha, L.: Asynchronous wakeup for ad hoc networks. In:
MobiHoc, pp. 35–45 (2003)

25. Zuniga, M., Krishnamachari, B.: Analyzing the transitional region in low power
wireless links. In: IEEE SECON, pp. 517–526 (2004)

http://www.omnetpp.org/

A Novel Mobility Management Scheme for Target
Tracking in Cluster-Based Sensor Networks�

Zhibo Wang1, Wei Lou2, Zhi Wang1, Junchao Ma2, and Honglong Chen2

1 State Key Laboratory of Industrial Control Technology,
Zhejiang University, Hangzhou, P.R. China

{zbwang,wangzhi}@iipc.zju.edu.cn
2 Department of Computing,

The Hong Kong Polytechnic University, Hong Kong
{csweilou,csjma,cshlchen}@comp.polyu.edu.hk

Abstract. Target tracking is a typical and important application of wireless sen-
sor networks (WSNs). In the consideration of scalability and energy efficiency
for target tracking in large scale WSNs, it has been employed as an effective
solution by organizing the WSNs into clusters. However, tracking a moving tar-
get in cluster-based WSNs suffers the boundary problem when the target moves
across or along the boundary among clusters. In this paper, we propose a novel
scheme, called hybrid cluster-based target tracking (HCTT), which integrates
on-demand dynamic clustering into a cluster-based WSN for target tracking. To
overcome the boundary problem, when the target moves close to the boundary
among clusters, a dynamic cluster will be constructed for the management of tar-
get tracking. As the target moves, static clusters and on-demand dynamic clusters
alternately manage the tracking task. Simulation results show that the proposed
scheme performs better in tracking the moving target when compared with other
typical target tracking protocols.

Keywords: Wireless sensor networks; target tracking; mobility management;
boundary problem.

1 Introduction

Target tracking is considered important in WSNs as it is a base for many practical
applications, such as battlefield surveillance, emergency rescue, disaster response and
patient monitoring [1]. Generally speaking, target tracking aims to detect the presence
of a target and compute reliable estimates of the locations while the target moves within
the area of interest, and forward these estimates to the base station in a timely manner.

It is known that the cluster structure can provide benefits for large scale WSNs. For
example, it facilitates spatial reuse of resources to increase the system capacity [2];
it also benefits local collaboration and routing [3] [4]. Recently, cluster structure is
gradually adopted for solving the target tracking problem [5, 6, 7]. [5, 6] use dynamic
clustering approaches that dynamically wake up a group of nodes to construct a cluster

� This work is supported in part by grants NSFC No. 60873223, NSFC No. 90818010, ZJU-SKL
ICT0903, PolyU 5243/08E, PolyU 5253/09E, and 1-ZV5N.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 172–186, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Novel Mobility Management Scheme for Target Tracking 173

for local collaboration when the target moves into a region. As dynamic clustering only
actives the most appropriate nodes in a cluster at one time while keeping other nodes in
the sleep state, it is an energy-efficient way for target tracking. However, dynamic clus-
tering has several drawbacks. First, the dynamic clustering process, repeating as the
target moves, incurs much overhead for constructing and dismissing clusters. Second,
dynamic clustering mainly considers the aspect of energy-efficient local collaboration
without considering efficient data routing to the sink which is another important aspect
of target tracking. In contrast, [7] is based on the static cluster structure for the scala-
bility and energy efficiency of target tracking. It uses a predictive mechanism to inform
cluster heads about the approaching target, and then the corresponding cluster head
wakes up the most appropriate nodes right before the arrival of the target. Compared
with dynamic clustering, this approach takes advantages of the cluster-based structure.
It addresses the issue of a scalable architecture for coordinating a WSN for target track-
ing, and data can be easily routed to the sink with low time delay. Besides, the overhead
is saved as the tracking task is handed over from one static cluster to another with-
out the dynamic clustering process. The drawback is that the static cluster membership
prevents sensors in different clusters from sharing information, which causes a bound-
ary problem when the target moves across or along the boundary among clusters. The
boundary problem will result in the increase of tracking uncertainty or even the loss of
the target. Therefore, tradeoffs should be taken between the energy efficiency and local
collaboration.

In this paper, we propose a novel fully distributed mobility management scheme,
called hybrid cluster-based target tracking (HCTT), for efficient target tracking in large-
scale cluster-based WSNs. As shown in Fig.1, when the target is inside a cluster, the
static cluster is responsible for target tracking; as the target moves close to the boundary
among clusters, an on-demand dynamic clustering process will be triggered to manage
the tracking task to avoid the boundary problem. The on-demand dynamic cluster will
dismiss soon after the target moves away from the boundary. As shown in Fig.1, the
consecutive clusters for tracking the target are A � D1 � C � D2 � E. As the
target moves in the network, static clusters and on-demand dynamic clusters alternately

Fig. 1. Illustration of HCTT for target tracking in cluster-based WSNs

174 Z. Wang et al.

manage the tracking task. By integrating on-demand dynamic clustering into a scalable
cluster-based structure, the energy efficiency and local sensor collaboration are well
balanced.

The main contributions of this paper are summarized as follows: (1) We address the
boundary problem for target tracking in cluster-based WSNs. (2) We present a novel
hybrid cluster-based target tracking scheme, which balances well between the energy
efficiency and local sensor collaboration, to solve the boundary problem in cluster-based
networks. The proposed scheme is fully distributed with no help of global information
or prediction algorithms. (3) We conduct simulations to show the efficiency of the pro-
posed scheme compared with other typical target tracking solutions.

2 Related Work

The problem of target tracking with WSNs has received considerable attention from
various angles and a lot of protocols have been proposed [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21]. Zhao et al. propose an information-driven dynamic sen-
sor collaboration mechanism for target tracking [8]. Brooks et al. present a distributed
entity-tracking framework for sensor networks [9]. Vigilnet, an energy-efficient and
real time integrated system for target tracking is designed and implemented in [10, 11].
Recently, Bhatti and Xu present a survey of target tracking using WSNs [12]. In gen-
eral, target tracking protocols can be mainly classified into three categories: tree-based,
cluster-based and prediction-based tracking protocols.

Tree-based tracking protocols: Zhang and Cao propose a dynamic convoy tree-based
collaboration (DCTC) framework to detect and track the mobile target [14]. DCTC re-
lies on a tree structure called convoy tree to benefit sensor collaboration among multiple
nodes surrounding the target. To efficiently track the moving target, the convoy tree is
dynamically configured by adding and pruning some nodes as the target moves. In [15],
a pub/sub tracking method, called STUN, is proposed. The method employs a DAB tree
structure to handle a large number of tracked targets. The leaf nodes are responsible for
detecting the arrival and departure of a target, and only updated information will be
sent to the root through intermediate nodes. By eliminating redundant message passing,
the communication cost is reduced. In [16], Deviation-Avoidance Tree and Zone-based
Deviation-Avoidance Tree are further proposed to reduce the communication cost of
location update for in-network target tracking. The drawback of the tree-based tracking
protocols is that the tree structure in WSNs is easily broken and the maintenance of the
tree structure is costive.
Cluster-based tracking protocols: A static cluster-based distributed predictive tracking
(DPT) protocol is presented in [7]. The protocol uses a predictive mechanism to inform
the cluster head about the approaching target, and then the corresponding cluster head
wakes up the most appropriate nodes immediately before the arrival of the target. DPT
takes the advantages of the cluster-based structure which is especially suitable for large-
scale networks. However, this scheme suffers the problem of local sensor collaboration
as the target moves across or along the boundary among clusters. Wang et al. also pro-
pose a cluster-based hierarchical prediction algorithm (HPS) for energy efficient target
tracking in large-scale sensor networks [13]. In contrast, a decentralized dynamic clus-
tering protocol, relying on a static backbone of sparsely placed high-capacity sensors

A Novel Mobility Management Scheme for Target Tracking 175

(CHs), for acoustic target tracking is proposed in [5]. A high capacity sensor becomes
active when its detected acoustic signal strength exceeds a predetermined threshold.
The active CH then wakes up sensors in its vicinity to form a dynamic cluster for lo-
cal collaboration of sensing information. An adaptive dynamic cluster-based tracking
(ADCT) protocol is proposed in [6] for target tracking without the employment of high-
capability sensors. The protocol dynamically selects cluster heads and wakes up nodes
to construct clusters with the help of prediction algorithm as the target moves in the
network. As dynamic clustering algorithms always involve the most appropriate nodes
in a cluster at one time for local sensor collaboration while keeping other nodes in the
sleep state, they are energy efficient for local sensor collaboration. However, the dy-
namic clustering process is a costive operation which repeats as the target moves. Also,
it does not consider the efficient data routing issue for target tracking.
Prediction-based tracking protocols: In [17], Xu et al. propose a dual prediction-based
reporting mechanism (DPR), which reduces the energy consumption by avoiding un-
necessary long distance transmission between sensor nodes and the base station. A
prediction-based energy saving scheme (PES) is presented in [18]. Based on predictive
location, three heuristic wake-up mechanisms are introduced to balance energy con-
sumption and tracking accuracy. An energy efficient tracking algorithm, called predict
and mesh (PaM) is proposed in [19]. PaM is composed of n-step prediction, collabora-
tive prediction and a prediction failure recovery process called mesh. Simulation shows
PaM is robust against diverse motion changes. In [20], the particle filter is used to pre-
dict the target’s location so that the optimal sensor nodes can be waked up to detect the
target. Prediction-based algorithms suffer problems of tracking uncertainty and even the
loss of the target due to unavoidable prediction errors.

3 System Model and Problem Description

In this section, we first present the system model including a network model and a
sensing and communication model, then we describe the boundary problem for target
tracking in cluster-based WSNs.

3.1 System Model

We assume that a large-scale WSN is formed by n static sensor nodes randomly de-
ployed in a two dimensional area of interest. The sink node is deployed at a corner
of the network. The network is organized as m clusters by using any suitable cluster-
ing algorithm in [22]. Each cluster i has ni nodes including one cluster head and many
members. Each member can communicate with its cluster head directly. Each node is
aware of its own location and the information of its neighbors, but does not have global
topology information.

We assume that each node is equipped with an acoustic sensor, using an identical
sensing range rs for detecting targets. A general sensing model is adopted for an acous-
tic sensor and the monitoring region of a sensor node vi, denoted by R(vi� rs), is the
disk with the center vi and radius rs. A target will be detected by the sensor vi when it
appears in the monitoring region R(vi� rs).

176 Z. Wang et al.

We assume that each node has an identical communication range rc, which guaran-
tees the link of any pair of nodes be symmetrical. Each node operates in the active state
for transmitting packets, receiving packets and sensing the target, and in the sleep state
for energy saving. Cluster heads are responsible for selecting some members to monitor
the target. As the energy consumption of a node in the sleep state can be negligible, we
mainly consider the energy consumption of the node in the active state as the target
moves in the network.

3.2 Boundary Problem

When tracking a target in a surveillance area, multiple nodes surrounding the target col-
laborate to make the collected information more complete, reliable and accurate. There
is no problem when the target is inside a cluster. However, when the target moves across
or along the boundaries among multiple clusters, the boundary problem of local sensor
collaboration occurs. The sensor collaboration is not complete and reliable because
sensor nodes in the monitoring region belong to different clusters, which increases the
uncertainty of the localization or even results in the loss of the target. The target is lost
due to the insufficient sensing reports or the incorrect prediction of the target location
collected by the network.

Fig.2 shows two cases of the boundary problem for target tracking in cluster-based
WSNs. Cluster A is active whereas clusters B and C are in the sleep state. For the case
in Fig.2(a), when the target moves close to the boundary of clusters, nodes a� b� c� d� e
and f , which are in the monitoring region, belong to three different clusters A� B and
C. Only nodes a and b can sense the target as they are active while other nodes cannot
as they are in the sleep state. The network cannot successfully localize the target due to
insufficient information, which may affect the prediction accuracy of the target’s next
position or even result in the loss of the target. For the case shown in Fig.2(b), the
next location of the target is predicted in cluster B whereas the target actually moves
into cluster C. Nodes in cluster B are activated in advance according to the predicted
location of the target. However, none of them can sense the target since the target is

(a) (b)

Fig. 2. The boundary problem in a cluster-based WSN: (a) high localization uncertainty due to
insufficient active nodes, (b) loss of target due to incorrect prediction of the target location

A Novel Mobility Management Scheme for Target Tracking 177

moving into cluster C. Therefore, prediction error may also result in the loss of the
target.

The intuitive way for solving the boundary problem is to coordinate involved clusters.
When the target moves across or along the boundary of clusters, all involved clusters
cooperate for local collaboration [7] [13]. For the example shown in Fig.2(a), when the
target moves to the boundary among clusters, clusters A� B and C are all in the active
state. Nodes that sense the target report to their cluster heads independently. Cluster
heads exchange collected information with each other to make the final estimate of the
target’s location. However, this method is not effective as it requires both intra- and inter-
cluster communications, which incurs high communication cost and large time delay.

In this paper, we propose the hybrid cluster-based target tracking protocol (HCTT)
for effective target tracking in a cluster-based WSN. HCTT integrates on-demand dy-
namic clustering into scalable cluster-based structure with the help of boundary nodes.
That is, when the target moves inside a cluster, the static cluster is responsible for sen-
sor collaboration and target tracking, whereas when the target approaches the boundary
among clusters, a dynamic clustering process will be triggered to avoid the boundary
problem. The on-demand dynamic cluster will disappear soon after the target moves
away from boundaries. Static clusters and on-demand temporary dynamic clusters al-
ternately handle the tracking task as the target moves in the network.

4 Hybrid Cluster-Based Target Tracking Protocol (HCTT)

In this section, we first give an overview of HCTT, and then elaborate on the design and
implementation of HCTT.

Fig. 3 outlines the overview of the system and illustrates the flowchart of HCTT.
After being deployed, sensor nodes are organized into static clusters according to any
suitable clustering algorithm. Boundary nodes in each cluster are also formed. When a
target is in the network, a static cluster sensing the target wakes up to sense and track
the target. When the target approaches the boundary, the boundary nodes can detect
the target and an on-demand dynamic cluster will be constructed in advance before the
arrival of the target for smoothly tracking the target. As the target moves, static clus-
ters and on-demand dynamic clusters alternately manage the tracking task. Inter-cluster
handoffs take place between any two consecutive clusters (i.e., the S2DIC handoff from

Sensor netw ork
deploym ent

Static c lus ter
form ation

Boundary node
form ation

T arget detec tion
Static c lus ter m anage
target trac king task

Dynam ic
c lus tering

Dynam ic c lus ter m anage
target trac king task

S2DIC
HandoffD2SIC

Handoff

D2DIC
HandoffHCTT

Fig. 3. Overview of hybrid cluster-based target tracking protocol

178 Z. Wang et al.

a static cluster to a dynamic cluster, the D2SIC handoff from a dynamic cluster to a
static cluster, and the D2DIC handoff from an old dynamic cluster to a new dynamic
cluster). Moreover, the dynamic cluster will dismiss after the target moves away from
the boundary and enters another cluster. With the help of the boundary nodes, HCTT
integrates the on-demand dynamic clustering into a scalable cluster-based WSN for tar-
get tracking, which facilitates the sensors’ collaboration among clusters and solves the
boundary problem. In the following, we elaborate on the design and implementation
of three major components of HCTT, including the boundary node formation, dynamic
clustering and inter-cluster handoff.

4.1 Boundary Node Formation

Dynamic clusters will be constructed when the target approaches the boundary among
clusters. However, a challenging issue is how to know whether the target is approach-
ing the boundary, especially in a fully distributed way. As sensor nodes are randomly
deployed, static clusters are usually formed irregularly. It is difficult or even impossible
to calculate the geometrical boundary among irregular clusters. In this paper, we use
boundary nodes to solve this issue in a fully distributed way. A node i is a boundary
node if there exists at least one neighbor node j such that ��li�l j�� � rs and C(vi) � C(v j).
Here, C(v) denotes the cluster which node v belongs to. In contrast, a node is an inter-
nal node if it is not a boundary node. As each node is aware of its own location and
its neighbor information, it checks its neighbor list to determine whether there exists
a node belonging to another cluster within its sensing range. If yes, it is a boundary
node; otherwise, it is an internal node. The boundary node set of a cluster Ci, denoted
by B(Ci), is formed by all the boundary nodes in Ci. The internal node set of a cluster
Ci, denoted by I(Ci), is formed by all the internal nodes in Ci.

After boundary nodes are identified, each cluster can be partitioned into three parts:
safety region, boundary region, and alert region.

The safety region of a cluster Ci, denoted by RS (Ci), is the region in the cluster Ci

that can be monitored by at least one internal node of Ci, but not by any boundary node
of Ci. That is, RS (Ci) can be formulated as:

RS (Ci) �
�

�vi�I(Ci)

R(vi� rs) �
�

�vi�B(Ci)

R(vi� rs) (1)

The boundary region of a cluster Ci, denoted by RB(Ci), is the region that can be mon-
itored by the boundary nodes of itself and any of its adjacent clusters at the same time.
That is, RB(Ci) can be formulated as:

RB(Ci) �
�

�vi�B(Ci)��v j�B(C j)��C j�Ci

(R(vi� rs) � R(v j� rs)) (2)

The alert region of a cluster Ci, denoted by RA(Ci), is defined as the region that can be
monitored by any boundary node of Ci, but not belongs to the boundary region of Ci.
That is, RA(Ci) can be formulated as:

RA(Ci) �
�

�vi�B(Ci)

R(vi� rs) � RB(Ci) (3)

A Novel Mobility Management Scheme for Target Tracking 179

Fig.4 illustrates the three different regions. The white region denotes the safety region,
the light gray region denotes the alert region and the dark gray region with biases de-
notes the boundary region. Specifically, we have the following observations:

1. If the target moves into the safety region, all nodes sensing the target are internal
nodes of a cluster, and vice versa.

2. If the target moves into the boundary region, there are at least two nodes belonging
to different clusters that can detect it, and vice versa.

3. If the target moves into the alert region, there will be at least one boundary node
can detect it and all nodes detecting the target belong to the same cluster, and vice
versa.

In the following sections, we will describe in detail dynamic clustering and inter-cluster
handoff based on boundary nodes and these observations.

4.2 Dynamic Clustering

Dynamic clustering is triggered on demand in order to solve the boundary problem in
cluster-based WSNs. There are two cases that a dynamic cluster is needed. The first case
is shown in Fig.4(a) where the current active cluster is cluster A. When the target moves
from point a to point c via point b, a dynamic cluster D1 will be needed for smoothly
tracking the target. The second case is shown in the Fig.4(b) where the current active
cluster is a dynamic cluster D2. When the target moves along the boundaries from
point m to point q via point p, using only one dynamic cluster cannot satisfy the target
tracking requirements. Therefore, another dynamic cluster D3 will be needed when the
target moves to point p.

Although the dynamic cluster must be constructed in advance before the target moves
across the boundary of clusters, it is costive if the dynamic cluster is constructed too
early, which not only wastes nodes’ energy but also may be out of usage quickly. We
can see that, if no sensing report is sent from a boundary node, the target is still in the

(a) Case 1 (b) Case 2

Fig. 4. Dynamic clustering and handoffs between clusters

180 Z. Wang et al.

safety region of the cluster; if the target is sensed by any boundary node, it is in the
alert region, which means the target is closely approaching the boundary. Therefore,
the on-demand dynamic clustering process will be triggered once there is at least one
boundary node sensing the target.

The way of forming boundary node of dynamic cluster is different from that of static
cluster. A node vi is a boundary node of a dynamic cluster D if there exists at least one
neighbor node v j � D such that ��li � l j�� � rs.

The dynamic clustering process consists of three phases: leader selection, dynamic
cluster construction and boundary node formation. In the leader selection phase, the
active boundary node closest to the target is selected as the leader for constructing a
dynamic cluster. In the dynamic cluster construction phase, the selected leader broad-
casts a recruit message asking its neighbor nodes to join into the cluster. Each node
receiving the recruit message establishes a new table containing the information of the
dynamic cluster, e.g., the ID of the leader and the working state of the dynamic cluster.
Then each node replies a confirm message to the leader to form the dynamic cluster.
The boundary node formation phase builds the boundary nodes of the dynamic cluster
by checking each node’s neighbor list whether there exists a node within the sensing
range that does not belong to the dynamic cluster. If a node can find at least one such
kind of node, it is a boundary node of the dynamic cluster; otherwise, it is an internal
node of the dynamic cluster. When the dynamic cluster is constructed, it stays in the
waiting state for the coming of the target.

4.3 Inter-cluster Handoff

The tracking task should be handled by the most suitable cluster. As the target moves
in the network, the task should be handed over from the pervious cluster to another
most suitable one, which is taken charge of by the inter-cluster handoff process. The
inter-cluster handoff occurs under the three scenarios: handoff from a static cluster to
a dynamic cluster (e.g., from cluster A to cluster D1 as shown in Fig.4(a)), handoff
from a dynamic cluster to a static cluster (e.g., from D1 to D as shown in Fig.4(a)),
and handoff from a dynamic cluster to another dynamic cluster (e.g., from D2 to D3 as
shown in Fig.4(b)). In the following part, we will describe these three types of handoff
processes.

Fig. 5. Different moving trajectories of the target

A Novel Mobility Management Scheme for Target Tracking 181

Static to Dynamic Inter-Cluster Handoff (S2DIC Handoff). When the target locates
within a cluster, it is tracked by the current active static cluster. As the target moves into
the alert region, boundary nodes can sense the target. Upon detecting the target by a
boundary node, a dynamic cluster is constructed in advance for the coming of the tar-
get. The handoff should not take place right away once the new dynamic cluster is
constructed since the movement of the target is unpredictable. The target may move
towards the boundary, but it may also turn around and move away from the boundary.
As shown in Fig.5, when the target moves to point b in the alert region, a dynamic clus-
ter D1 is constructed before the target moves into the boundary region. If the target’s
trajectory is T1, the dynamic cluster is more suitable than the active static cluster for
tracking the target. However, the target may follow trajectories T2 or T3. For these tra-
jectories, it is inappropriate to perform the handoff since the target does not move into
the boundary region. Especially for the movement of T3, unnecessary dynamic cluster-
ing and handoff may take place frequently if we do not have an effective mechanism. To
minimize unnecessary dynamic clustering and handoff, the S2DIC handoff starts when
the target is confirmed to be in the boundary region. Before that, the dynamic cluster
may not suit for target tracking.

When the dynamic cluster is constructed, some members of the current active static
cluster join into the dynamic cluster. These nodes are in the waiting state while they
keep sensing the target. In case any of them detects the target, it sends the sensing result
to the cluster head of the dynamic cluster. When this cluster head receives the sensing
result, the target is confirmed to be in the boundary region and the handoff starts. The
S2DIC handoff procedure works as follows: The dynamic cluster head first sends a re-
quest message to the active static cluster head to ask for the handoff of the leadership.
The active cluster head replies a message containing the historical estimations of the
target’s locations and hands the leadership over to the cluster head of the dynamic clus-
ter. The dynamic cluster then becomes active and the new active cluster head broadcasts
a work message to activate all its member nodes. The previous cluster head broadcasts
a sleep message to its member nodes. Each member node not belonging to the active
dynamic cluster turns into the sleep state to save energy.

If the dynamic cluster is not suitable for tracking the target, it is not needed any more
and should be dismissed. As shown in Fig.5, when the target moves to point c follow-
ing the trajectory T2, the dynamic cluster D1 is not suitable anymore and should be
dismissed. The dynamic cluster dismissal procedure is as follows: If the cluster head of
the dynamic cluster receives sensing results from the boundary nodes of the dynamic
cluster, it confirms that the dynamic cluster is not needed any more and should be dis-
missed. Then the cluster head of the dynamic cluster sends a resign message to inform
the active cluster head. After getting the acknowledged message from the active cluster
head, it broadcasts a dismiss message to all its members. Each node receiving the dis-
miss message quits the dynamic cluster and deletes the information table built for the
dynamic cluster.

Dynamic to Static Inter-Cluster Handoff (D2SIC Handoff). When a dynamic cluster
is currently handling the tracking task, nodes sensing the target report their sensing
results to the active dynamic cluster head. If none of sensing nodes is a boundary node of
any static cluster, the target has moved away from the boundary region and has entered

182 Z. Wang et al.

the safety region of a static cluster. Then the D2SIC handoff is triggered: The active
cluster head sends a handoff message to the cluster head of the static cluster. After
receiving the message, the static cluster head first replies an acknowledge message,
then activates all nodes within its cluster. After receiving the acknowledge message,
the previous dynamic cluster head broadcasts a dismiss message. Each node receiving
the dismiss message quits the dynamic cluster and deletes the information table for the
dynamic cluster.

Dynamic to Dynamic Inter-Cluster Handoff (D2DIC Handoff). When a dynamic
cluster is currently active for the tracking task, the handoff condition for the S2DIC
handoff may not be met as the target moves. As shown in Fig.4(b), one dynamic cluster
D2 cannot satisfy the requirements of target tracking when the target just moves along
the boundaries among clusters. In this scenario, another new dynamic cluster D3 will be
needed for continuing the tracking task. If some boundary nodes of the active dynamic
cluster sense the target, a new dynamic cluster will be constructed. Note that the D2SIC
handoff has a higher priority than the D2DIC handoff as the latter one causes more cost
and larger delay than the former one.

Generally speaking, the new dynamic cluster is a more preferred choice than the
previous one. Therefore, the handoff takes place immediately after the new dynamic
cluster is constructed: The new cluster head sends a request message to ask for the
handoff of the leadership. The previous cluster head replies a message containing the
historical estimations of the target’s location to handover the leadership to the cluster
head of the new dynamic cluster. After receiving the leadership, the new active cluster
head broadcasts an activate message to inform its members to be responsible for target
tracking. Each node sensing the target reports the sensing results to the active cluster
head. The new cluster head then replies an acknowledge message to the previous dy-
namic cluster head. The previous dynamic cluster head broadcasts a dismiss message.
Each node receiving the dismiss message quits from the dynamic cluster and deletes the
information table for the dynamic cluster.

We can easily find that the process of boundary node formation has the largest com-
putation complexity and message complexity. We assume that the node density of the
network is �. The process of boundary node formulation needs to broadcast at most
n messages and compute at most n � (��r2

c) times. That is, for a sensor network with
fixed node density and communication range, the computation complexity and message
complexity are both O(n), which is proportional to the scale of the network. As for the
processes of dynamic clustering and inter-cluster handoff, the computation complexity
and message complexity will not be affected by the scale of the network. Therefore,
HCTT is a scalable algorithm with computation complexity of O(n).

5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm through simu-
lations. A total of 6000 sensor nodes are randomly deployed in the area of size 400 �
400m2. The sensing radius of each node is fixed at 10m. The transmission radius of each
node is set to be at least twice of the sensing radius, which varies from 20m to 80m. The

A Novel Mobility Management Scheme for Target Tracking 183

size of a control message for constructing dynamic clusters is 10 bytes. The size of a
sensing report generated by each node sensing the target is 40 bytes. The prediction
error varies from 0 to rs. We adopt the random-waypoint (RWP) model for the move-
ment of a target: The target waits for a predetermined pause time and then chooses a
destination randomly. The node moves toward this destination at a random speed in [5,
10] m/s. On arriving at the destination, the node pauses again and repeats the process.
Moreover, we adopt the energy consumption model presented in [23]. To transmit a
k-bit packet with a range rc, the consumed energy is E � Eelec � k � � f riss�amp � k � r2

c .
Typically, Eelec � 50 nJ�bit and � f riss�amp � 10 pJ�bit�m2.

We compare the performance of HCTT with three typical target tracking protocols:
DPT [7], DCTC [14] and ADCT [6]. The simulation study mainly concentrates on
three performance metrics: missing ratio, sensing coverage, and energy consumption.
The missing ratio is the probability of missing the target as the target moves in the
network. The sensing coverage is the ratio of the number of nodes sensing the target to
the number of nodes within the monitoring region. The energy consumption refers to
the energy consumed for transmitting control messages and sensing reports.

Note that though different localization algorithms affect the performance of target
tracking significantly, they are not the major concern of this paper. In order to evaluate
the localization performance of the proposed algorithm, we use the metric of the sensing
coverage to reflect the accuracy of estimates of the target’s location since the accuracy
of localization is related to the information collected from nodes surrounding the target.
In other words, larger sensing coverage usually means better estimate of the target’s
location. It is expected that all nodes detecting the target report their results to generate
reliable and accurate estimates of the target. However, many of them may not be able
to sense the target successfully as they are in the sleep state due to prediction error or
other factors.

5.1 Missing Ratio

Fig.6(a) shows the effects of the prediction error on missing ratio of four algorithms.
The prediction error refers to the distance difference between the estimated location

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Prediction error (r
s
)

M
is

si
ng

 r
at

io

(%
)

HCTT
DPT
ADCT
DCTC

(a)

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

100

Prediction error (r
s
)

S
en

si
ng

 c
ov

er
ag

e
 (

%
)

HCTT
DPT
ADCT
DCTC

(b)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Prediction error (r
s
)

E
ne

rg
y

co
ns

um
pt

io
n

 (
nJ

)

HCTT
DPT
ADCT
DCTC

(c)

Fig. 6. Performance evaluation among DPT, DCTC, ADCT and HCTT : (a) the missing ratio
vs. prediction error, (b) the sensing coverage vs. prediction error (c) the energy consumption vs.
prediction error

184 Z. Wang et al.

and the real location of the target with the upper bound of the sensing range rs. We can
see that the missing ratio of DPT is much higher than that of other three algorithms.
Even when the prediction error equals to zero, DPT still misses the target with high
probabilities. This validates the effects of the boundary problem in cluster-based sensor
networks. Besides, the missing ratio of DPT increases as the prediction error increases,
which implies that the boundary problem will be deteriorated in case that the prediction
mechanism does not work well for tracking the moving target. The same trend is also
observed on DCTC and ADCT. In comparison, the missing ratio of HCTT keeps zero all
the time. The reason is that HCTT relies on the boundary nodes instead of the prediction
algorithm to trigger dynamic clusters.

5.2 Sensing Coverage

As shown in Fig.6(b), the sensing coverage of DPT, ADCT and DCTC decreases when
the prediction error increases, while the sensing coverage of HCTT is not affected. That
is due to the fact that increasing the prediction error results in larger deviation from the
dynamic cluster to the expected cluster, which means more nodes that should be waked
up to sense the target are still staying in sleep state. We can also see that the sensing cov-
erage of DPT performs the worst among all algorithms even when the prediction error
is zero. That is why DPT has the worst missing ratio among all algorithms. Besides, the
sensing coverage of HCTT is nearly 100%, which means almost all nodes surrounding
the target contributes to the estimate of the target’s location. Therefore, the estimate of
the target’s location is in general more accurate and reliable than those of other three
algorithms. Note that the trend of the sensing coverage in Fig.6(b) is contrary to the
trend of the missing ratio in Fig.6(a).

5.3 Energy Consumption

Though HCTT outperforms DPT, DCTC, and ADCT in missing ratio and sensing cov-
erage, it sacrifices more energy consumption. As we know, energy efficiency is also
a critical factor on designing an effective target tracking protocol in sensor networks
as the sensor nodes are typically powered by batteries only. To evaluate the energy
efficiency of HCTT, we compare the energy consumption of HCTT to those three algo-
rithms. The energy consumption presented here does not include the energy consumed
of the failure recovery.

As shown in Fig.6(c), the energy consumption of DPT, DCTC and ADCT behaves
some drops when the prediction error increases. Since increasing the prediction error
results in the drops of the sensing coverage, the energy consumption drops accordingly
as the number of nodes sensing the target decreases. DCTC consumes more energy than
other algorithms as it relies on a tree structure which incurs more overhead than a one-
hop cluster structure. In contrast, DPT consumes the least energy among all algorithms
as it does not need to construct and dismiss dynamic clusters. The energy consump-
tions of ADCT and HCTT stand between the ones of DPT and DCTC. HCTT is not the
most energy efficient algorithm as there is a tradeoff between the energy consumption
and missing ratio/sensing coverage. Although DPT is the most energy efficient target
tracking algorithm, it suffers the boundary problem which results in a high probability

A Novel Mobility Management Scheme for Target Tracking 185

of the target loss. The performance between ADCT and HCTT are very close. How-
ever, HCTT is an algorithm designed for solving the boundary problem in cluster-based
networks, which implicitly takes the advantages of the cluster-based structure. For ex-
ample, data can be easily routed from a node to the sink or another node with a low
delay, which is also important for target tracking. Besides, we do not consider the en-
ergy consumption of the failure recovery of these algorithms when the network loses
the target. Obviously, the energy consumptions of the failure recovery of DPT, ADCT
and DCTC are much more than that of HCTT, especially for that of DPT.

6 Conclusions

In this paper, we propose a novel and fully distributed mobility management scheme
for effective target tracking in cluster-based WSNs. The scheme integrates on-demand
dynamic clustering into scalable cluster-based WSNs with the help of boundary nodes,
which facilitates the sensors’ collaboration among clusters and solves the boundary
problem when the target moves across or along the boundaries among clusters. The
efficiency of the proposed protocol is confirmed by the simulation results.

References

1. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor net-
works. IEEE Communications Magazine, 102–114 (2002)

2. Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless sensor networks. IEEE Journal
on Selected Areas in Communications, 1265–1275 (1997)

3. Pearlman, M.R., Haas, Z.J.: Determining the optimal configuration for the zone routing pro-
tocol. IEEE Journal on Selected Areas in Communications, 1395–1414 (1999)

4. Kozat, U.C., Kondylis, G., Ryu, B., Marina, M.K.: Virtual dynamic backbone for mobile ad
hoc networks. In: Proc. of IEEE ICC, pp. 250–255 (2001)

5. Chen, W.P., Hou, J.C., Sha, L.: Dynamic clustering for acoustic target tracking in wireless
sensor networks. IEEE Transactions on Mobile Computing, 258–271 (2004)

6. Yang, W.C., Fu, Z., Kim, J.H., Park, M.S.: An adaptive dynamic cluster-based protocol for
target tracking in wireless sensor networks. LNCS, pp. 156–167. Springer, Heidelberg (2007)

7. Yang, H., Sikdar, B.: A protocol for tracking mobile targets using sensor networks. In: Proc.
of IEEE IWSNPA, pp. 71–81 (2003)

8. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration for tracking
applications. IEEE Signal Processing Magazine, 61–72 (2002)

9. Brooks, R.R., Griffin, C., Friedlander, D.: Self-organized distributed sensor network entity
tracking. International Journal of High Performance Computer Application, 207–219 (2002)

10. He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao, Q., Vicaire, P.,
Stankovic, J.A., Abdelzaher, T.: Vigilnet: An integrated sensor network system for energy-
efficient surveillance. ACM Transactions on Sensor Networks, 1–38 (2006)

11. He, T., Vicaire, P., Yan, T., Luo, L.Q., Gu, L., Zhou, G., Stoleru, R., Cao, Q., Stankovic, J.A.,
Abdelzaher, T.: Achieving real-time target tracking using wireless sensor networks. In: Proc.
of IEEE RTAS, pp. 37–48 (2006)

12. Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network. In: Proc.
of ICWMC, pp. 110–115 (2009)

186 Z. Wang et al.

13. Wang, Z.B., Li, H.B., Shen, X.F., Sun, X.C., Wang, Z.: Tracking and predicting moving
targets in hierarchical sensor networks. In: Proc. of IEEE ICNSC, pp. 1169–1174 (2008)

14. Zhang, W.S., Cao, G.H.: DCTC: Dynamic convoy tree-based collaboration for target tracking
in sensor networks. IEEE Transactions on Wireless Communications, 1689–1701 (2004)

15. Kung, H.T., Vlah, D.: Efficient location tracking using sensor networks. In: Proc. of IEEE
WCNC, pp. 1954–1961 (2003)

16. Lin, C.Y., Peng, W.C., Tseng, Y.C.: Efficient in-network moving object tracking in wireless
sensor networks. IEEE Transactions on Mobile Computing, 1044–1056 (2006)

17. Xu, Y.Q., Winter, J.L., Lee, W.C.: Dual prediction-based reporting for object tracking sensor
networks. In: Proc. of MobiQuitous, pp. 154–163 (2004)

18. Xu, Y.Q., Winter, J.L., Lee, W.C.: Prediction-based strategies for energy saving in object
tracking sensor networks. In: Proc. of IEEE MDM, pp. 346–357 (2004)

19. Yang, L.Z., Feng, C., Rozenblit, J.W., Qiao, H.Y.: Adaptive tracking in distributed wireless
sensor networks. In: Proc. of IEEE ECBS, pp. 103–111 (2006)

20. Wang, X., Ma, J.J., Wang, S., Bi, D.W.: Cluster-based dynamic energy management for col-
laborative target tracking in wireless sensor netowrks. Sensors, 1193–1215 (2007)

21. Zhong, Z.G., Zhu, T., Wang, D., He, T.: Tracking with unreliable node sequences. In: Proc.
of IEEE INFOCOM, pp. 1215–1223 (2009)

22. Yu, J.Y., Chong, P.H.J.: A survey of clustering schemes for mobile ad hoc networks. IEEE
Communications Surveys & Tutorials, 32–48 (2005)

23. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Transactions on Wireless
Communications, 660–670 (2002)

Suppressing Redundancy
in Wireless Sensor Network Traffic

Rey Abe1 and Shinichi Honiden1,2

1 University of Tokyo, Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

Abstract. Redundancy suppression is a network traffic compression
technique that, by caching recurring transmission contents at receiving
nodes, avoids repeatedly sending duplicate data. Existing implementa-
tions require abundant memory both to analyze recent traffic for redun-
dancy and to maintain the cache. Wireless sensor nodes at the same time
cannot provide such resources due to hardware constraints. The diversity
of protocols and traffic patterns in sensor networks furthermore makes
the frequencies and proportions of redundancy in traffic unpredictable.
The common practice of narrowing down search parameters based on
characteristics of representative packet traces when dissecting data for
redundancy thus becomes inappropriate. Such difficulties made us devise
a novel protocol that conducts a probabilistic traffic analysis to identify
and cache only the subset of redundant transfers that yields most traffic
savings. We verified this approach to perform close enough to a solution
built on exhaustive analysis and unconstrained caching to be practicable.

1 Introduction

Unnecessary data transfers waste network resources and have long been subject
to studies on how to avoid them. Commonly used solutions include caching the
answers to frequent data requests [1], or applying bulk compression to compact
data before sending [2]. Redundancy suppression is one particular method that
prevents repeated transfers of identical data over network links. The basic idea is
to keep certain incoming data in memory at the receiving node. If another trans-
mission of the same data became necessary thereafter, it can be reconstructed
locally from the previously cached data instead of having it forwarded again.

This idea was first realized by Santos et al. [3] in a very simple form. Their
solution kept records of recent outgoing packets at the sending node by comput-
ing a single hash value over each packet’s payload content and counting repeated
hash occurrences. Above a certain count threshold, it replaced the payload of the
outgoing packet with its much smaller hash value. The node on the receiving end
equally tracked recurring payloads and stored in a cache table the incoming data
exceeding the threshold. It would then be able to replace subsequently arriving
hash values by their corresponding data from local memory.

This example illustrates the key design aspects of a redundancy suppression
protocol. First, traffic needs to be logged for analysis so that redundant parts can

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 187–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

188 R. Abe and S. Honiden

be identified. Furthermore, the sending and receiving nodes both have to agree
on a policy which redundant data to cache and how the reference to such dupli-
cate data is communicated. Recent publications [4,5,6,7,8] have focused on the
problem of how to identify identical data subcontents between arbitrary data sets
– instead of just matching complete packet payloads – using various fingerprint-
ing [9] and chunking [6] methods. Such related work – discussed more thoroughly
in Sect. 4 – is however aimed at optimizing protocol performance for high-speed
networks and does not fit the requirements of wireless sensor networks.

At the same time – to the best of our knowledge – the application of redun-
dancy suppression in wireless sensor networks has not yet been investigated at
this point in time. It is easily motivated as reducing the amount of data trans-
fers over the network saves transmission energy, an essential resource of battery
driven sensor nodes. Furthermore, redundancy suppression is for the most part
complementary to existing traffic saving methods and achieves traffic reduction
independently of the many sensor network protocols already in use. We will give
some illustrating examples for the above points in Sect. 2.

In this paper we present a redundancy suppression protocol that we devised
with the particulars of wireless sensor networks in mind. Our solution is novel
in so far as it analyzes traffic without presumptions on the features of redun-
dancy like its frequency or granularity of occurrence. It does not limit the search
space of the data analysis like existing solutions do, making it applicable for
unpredictable and arbitrary traffic contents. At the same time, our protocol is
geared towards finding only those overlaps in data that yield most savings when
suppressed. It caches the top end fraction of such redundancies as limited by
memory constraints of the nodes. On a technical level, our contribution lies in a
novel utilization of chunking for redundancy analysis and its combination with a
probabilistic frequency counting data structure to maintain redundancy informa-
tion just accurate enough to base selective caching decisions on it. We extended
an existing counting technique to deal with continuous data streams by evicting
the least relevant data and by making it adjust accuracy parameters at run-time.
For a detailed description of our proposed solution we refer to Sect. 3.

We evaluated our protocol in typical memory scarce environments by com-
paring it to a protocol that had no such resource constraints. Furthermore we
investigated different policies for adapting counting parameters at runtime, so
that memory was utilized efficiently enough to sufficiently identify redundant
data. We verified that our idea is practicable and discuss the results in Sect. 5
before concluding in Sect. 6 with a summary and brief outlook on future work.

2 Problem Motivation

Wireless sensor networks are typically comprised of resource and energy con-
strained nodes1. In contrast, redundancy suppression protocols have so far
1 Typical sensor nodes are battery-driven and equipped with microcontrollers that run

at several tens up to hundreds of MHz and command a few tens to hundreds of KB
RAM, as well as few hundred KB to a few MB of FLASH memory [10].

Suppressing Redundancy in Wireless Sensor Network Traffic 189

targeted network environments without such restricting properties. Existing so-
lutions for instance assume the availability of several hundreds of MB RAM to
keep track of and to cache traffic contents [5]. These protocols were also de-
signed to meet high-speed bandwidth requirements by keeping computational
overheads at a minimum. As such they do not match the wireless sensor net-
work domain characterized by low-bandwidth links between nodes limited in
their energy capacity. When operating such nodes, increased computational cost
is readily sacrificed for efficient communication, as wireless transmissions con-
sume several orders of magnitude more energy than computation does [10].

Furthermore, current methods rely on prevalent traffic patterns like stream-
based bulk transfers found in IP networks. A preliminary analysis of represen-
tative packet traces is in such cases used to limit the search space in regard to
proportions and frequencies of redundancy [5]. Sensor network traffic doesn’t nec-
essarily exhibit such homogeneity and carries unpredictable dynamics in terms
of its repeating contents. For instance, periodic monitoring of temperature in
a geographic region may cause identical sensor readings to be sent to a nearby
data aggregation node with low recurrence frequency but high regularity. Ad-hoc
event reporting on the other hand might result in irregular data bursts of re-
peated notifications over short time periods. Such diverse traffic features forestall
the use of above optimization methods and require an unbiased traffic analysis.

Sensor networks are also increasingly being used as a general networking in-
frastructure for arbitrary applications as opposed to being deployed for a single
specific application as in early days [10]. The variety of existing application types
comes with a multitude of highly optimized network-level and application-level
protocols [10]. Each of them uses arbitrary packet formats, meta-data and con-
trol messages that may cause redundant transmissions. For instance addressing
schemes like attribute-based addressing significantly increase header information
attached to the typically small data packets. In case of geographic addressing,
numerous packets might carry the same target address region defined by delimit-
ing border positions each represented by multiple byte length coordinates. Such
examples emphasize how redundancy suppression in sensor networks should be
generically applied to both meta-data and payloads, and not be protocol-specific
solutions like existing header compression techniques [11] are.

One may argue that the research community in the wireless sensor domain
has already explored an abundance of traffic saving methods, making the use of
redundancy suppression questionable. We will as part of related work in Sect. 4
survey such efforts and point out how they are insufficient in regard to – and
often also complementary to – the form of traffic redundancy discussed here.

2.1 Existing Techniques and Their Inadequacy

To suppress duplicate data transmissions, it is necessary to identify which por-
tions of transmitted data are recurring, and thus should be cached and recon-
structed at the receiver side. A naive approach to identify all such portions is
comparing all byte subsets of the data against each other. The computational
overhead of that approach however makes it impractical for online execution.

190 R. Abe and S. Honiden

The approach taken by existing protocols [4,5,8] is to initially only keep and
compare a selected small sample subset of the data in the form of their fingerprint
hashes. If two of these so called anchor fingerprints were identical and thus
pointed out identical data fragments between two data sets, their respective
positions would be used as starting points to compare the actual data in detail to
extract the complete matching data subsequence. The aspect in which protocols
differ is how they choose a small set of such fingerprints that ideally pinpoint
the positions of a rather large portion of redundancy with high probability.

A well established method is to divide packet data into partitions, so called
chunks [6] for comparison. To do so, Rabin fingerprints [9] – not to be mis-
taken for the above anchor fingerprints – of a small sliding data window over
the comparatively large data set are calculated first. The positions of a fixed
subset of these fingerprints – for example those whose values constitute a lo-
cal minimum [12] – are then selected to form boundaries of similarily sized
chunks. Hashes computed over such chunks are then kept as anchor fingerprints
for identifying matching partitions. Because the partitions are not set blindly –
for instance by dividing data into equally sized stretches – but rather aligned to
features of the underlying data, their endpoints attach to the boundaries of sim-
ilar data stretches regardless of such contents’ positioning inside the data set. To
further reduce computational costs, often only a sampled subset of anchor fin-
gerprints is kept for comparison [7,8]. Existing protocols combine different such
partitioning and sampling methods, but they all set parameters like the partition
or sample size based on experiments that preliminarily determined which set-
tings match a good amount of redundancy in typical traffic. While such methods
have proven to be practical in high-speed IP networks for their greatly reduced
computational overhead, they require tuning the above parameters to prevail-
ing traffic characteristics and storing both sampled fingerprints plus the original
data for analysis.

3 Proposed Solution

Wireless sensor nodes necessitate a drastic reduction of memory space used to
both identify and cache recurring data fractions. Our basic idea to meet this
requirement was to selectively cache only the subset of repeating information
that would yield most traffic savings when suppressed. It meant we had to find a
way to identify those data fragments that had the largest size to retransmission
frequency ratio without keeping the whole bulk of recent packet data for analysis
and to save only thereby selected fragments in cache. Furthermore the data
analysis process had to address the dynamic nature of redundancy and could
not be biased by preliminarily narrowing down search parameters. We will in the
following subsections present in detail how we have addressed these challenges.

3.1 Redundancy Analysis

We devised a novel approach to identifying redundancy that does not require
preliminary parameter tuning or keeping the actual data for comparison, and

Suppressing Redundancy in Wireless Sensor Network Traffic 191

at the same time keeps computational overheads well below the quadratic over-
head of naively comparing all potential data subsets. Our method first requires
several partitionings of the data each at a differently set chunk size. We used for
this task the well established Winnowing chunking algorithm [12] that imposes
a distance w on the consecutive cutpoints between partitions and seeks to pre-
vent chunks from being much shorter. By running the algorithm multiple times
with a step-wise decremented distance parameter w ranging from the total data
size n down to 1, we attain content-aligned chunks ranging from the single full
partition to a complete fragmentation into single bytes2. This process can be
interpreted as slicing data repeatedly into increasingly finer pieces at carefully
selected cutpoints. After each such cut we memorize what the pieces resulting
from the cut looked like by taking a fingerprint of the produced data chunks.

Just like existing protocols, we later compare these chunk fingerprints to iden-
tify matching data fragments and count their occurrence. We do however not
filter out fingerprints by sampling and we forego using such matches as anchor
positions for detailed comparison of the actual data. We instead discard the data
itself and rely on the assumption that the multitude of fingerprints taken from
chunks at different granularities will match a large enough portion of arbitrar-
ily long repeating data stretches. To identify the data fragments most worthy
of caching, we normalize the repetition count of each data chunk by the chunk
size. For a discussion of the computational overhead of our method due to the
increased amount of fingerprints to calculate, as well as the empirical verification
of the above assumption, we defer to Sect. 5.

3.2 Memory-Efficient Maintenance of Traffic History

While fingerprints map arbitrarily sized data to a small constant size representa-
tion, they still consume considerable memory if stored for a large number of data
fragments extracted from recently transmitted packets. Thus it was necessary to
devise a compact way to maintain fingerprint counts for ongoing traffic. Since
our primary design idea was to cache merely a top fraction of recurring data, we
were only interested in identifying a reasonably accurate set of most frequently
encountered chunks instead of explicitly keeping all fingerprints and their exact
counts. This led us to utilizing probabilistic frequency counting methods.

Estimating item frequencies in a data stream is a well known problem with
various solutions [13,14,15] that each differ in trade-off parameters, the guaran-
tees regarding the counting error and in memory utilization. Out of the available
options, we decided to use hCount [16], a data structure that in recent studies has
been attributed with superior performance under stringent memory limits [15].
In short, hCount is a sketch-based data structure consisting of h sets of m coun-
ters each. An item is counted by hashing its contents to one of the m counter
positions in each of the h sets independently, and then incrementing these coun-
ters. Its estimated count can later be retrieved by calculating the minimum value
of its corresponding counters. By varying h and m – which directly translate into
2 The underlying Rabin fingerprints used by the Winnowing algorithm were taken

based on a common 4 byte window setting, and a matching polynomial of degree 31.

192 R. Abe and S. Honiden

the allocated number of counters – memory use can be traded off against the
counting accuracy. The latter constitutes in a guaranteed error margin ε with
probability ρ on the count taken dependent on the total sum of item counts N
and the number of distinct items – also called item cardinality – M . We refer to
the original paper [16] for the exact relations between h, m, ε, ρ, N and M .

In the protocol scenario at hand, we faced two challenges associated with us-
ing existing frequency counting algorithms like hCount. For one, they depend
on preliminarily configuring parameters targeted at a certain count capacity and
quality. In a continuos data stream however, properties like N and M are un-
predictable and change dynamically. And second, these parameters also define a
capacity limit of the data structure, beyond which the counting accuracy cannot
be guaranteed. For an endless stream of packet data, one needs to keep track
and control the contention of the data structure, for instance by evicting old
entries at some point. We will now detail how we have dealt with these issues.

First, we extended hCount to allow adapting its parameters at run-time to
changing M and N while preserving its counting state and error guarantees.
Increasing capacity can be archived easily – and is also briefly suggested in [16]
– by incrementally creating and maintaining additional hCounts instances when
the current data structure runs out of capacity. We decided to add new instances
– which we call stages from here on – by creating a hCount for double the
item cardinality M the last stage had been set to. Starting with the first stage
S1 to meet a capacity M1, the next stage S2 would be allocated for a M2 =
2 ∗ M1, and so on. Furthermore, we round the parameter m necessary to meet
the demand of M up to a power of 2. This operation will over-allocate a stage
to have a capacity beyond the desired M to some extent, but is necessary for
the following functionality of also allowing sizing down the data structure. We
allow compacting two stages Sa and Sb with parameters ha ≤ hb, ma = 2x, mb =
2x+k(x ≥ 0, k ≥ 0) by discarding the hb − ha additional counter sets that Sb

maintains. Furthermore for each of the remaining counter sets of Sb that now
has its counterpart in Sa, we shift each counter’s binary index position value in
the set to the right by k bits and add its value to the counter at this shifted
index position in Sb. The result is that Sa now carries the counter state it would
have accumulated if all items had been added only to Sa to begin with. Any
additional counting accuracy that Sb had provided is lost in the compaction.

Next we devised a method to deal with the unbounded stream of data to
keep counts for. It necessitated purging content once the contention level of the
data structure had been reached due to memory limits. Removing counts for
specific elements from hCount is possible, but was out of the question since we
were discarding all original traffic data and therefore any information on its data
fragments was unavailable. The key to a solution lay in the fact that we were not
interested in exact element counts, but only in identifying the most recurring
data contents, and thus in discerning the recent top items ordered by their
counts. Considering this requirement we decided to govern the contention level
of the sketch by decreasing all its internal counters carrying positive values by
an equal amount until the contention level fell below what memory limits allow

Suppressing Redundancy in Wireless Sensor Network Traffic 193

for. This measure over time gradually discards the least frequent – thus least
relevant – elements to make room for incoming new ones. We have furthermore
implemented a dynamic memory allocation mechanism [17] for the counters to
keep minimal the bits necessary to encode a count.

The above functional extensions on the one hand gave us the ability to dynam-
ically filter and keep in the data structure only the most frequent item counts
in an ongoing data stream as dictated by memory limits. On the other hand it
allowed us to adjust the hCount parameters to best match the current properties
N and M of the maintained item counts, so that the memory space was utilized
efficiently despite dynamically changing count distributions. Our protocol con-
ducts the following steps to do so. Upon analyzing an outgoing data packet and
adding the counts of the extracted data chunks to the hCount, it measures the
contention level of the data structure by calculating an estimated counting error
for the currently maintained counts3. If that error exceeds the average count
difference between the currently cached top counting elements and thus is large
enough to significantly disturb the ranking of these top elements, or if mem-
ory limits have been reached due to necessary new counter bit allocations, the
following adaptations are carried out. If possible, a new hCount stage is added
to extend capacity. All counters are decremented until the error threshold and
memory limits are within allowed range again and any stages emptied in the
process are discarded. If contention levels of the hCount allow, stages are com-
pacted by merging. The details of this workflow are listed in the pseudo code of
our protocol in Fig. 1. The upshot of this process is that the data structure dy-
namically extends and shrinks to shift its memory allocation between bits used
for each counter and the number of counters maintained.

3.3 Protocol Structure and Workflow

In our proposal the sender conducts the computationally intensive redundancy
analysis for all outgoing traffic oblivious to which outgoing link is used. It syn-
chronizes its caching decisions with the receiving nodes that only maintain the
cache table for each incoming link. When an item is selected for caching, the
sender adds to the outgoing packet the cache table entry index, offset position
within the packet and the chunk length. The receiver inserts the denoted data
portion into its cache table at the given index for later reference. From that point
on, the sender replaces any further occurrences of that data fragment by its cache
table index and offset position within the packet, so that the receiver can insert
the missing data from its cache. The cache contents are thus completely sender
controlled and imposed on the receiver. The reason for this design decision is
that in our experiments we discovered that the memory requirements for hCount
are much higher than the memory demand for the cache table, making this syn-
chronized workflow more preferable to having both sender and receiver analyze
traffic independently. On the more trivial side of our protocol design, we not
3 We resorted to the error estimation method used for error correction in the original

hCount. This method defines the counting error as the average count for a fixed
number of virtual elements that are supposed to have a zero count [16].

194 R. Abe and S. Honiden

1 INITIALIZATION

2 instantiate hCount at sender node with a single stage // M = 64, rho = 0.99, epsilon = 0.001, size limit = 10 to 100 KB

3 instantiate empty cache table at both sender and receiver with a cache table content size limit // size limit = 1 to 10 KB

4
5 FUNCTION process outgoing packet

6 take all Rabin fingerprints of packet // window size = 4, polynomial degree = 31

7 FOR chunk size 1 to packet byte size DO

8 use Winnowing algorithm to partition packet data into chunks with window width w = chunk size

9 store data chunks identified by Winnowing in array

10 ENDFOR

11 FOR each chunk in array DO

12 IF chunk is in cache table THEN

13 remove chunk data from packet

14 attach cache table index of chunk and chunk offset position within the packet to the packet header

15 ENDIF

16 count increment = chunk size in bytes

17 add the count increment to the count value of chunk in hCount // to normalize the chunk frequency by its size

18 IF count value of chunk in hCount > chunk size // and thus indicates repetition

19 AND IF count value of chunk in hCount is higher than value of lowest entry in cache table THEN

20 insert chunk and count value as an entry into cache table

21 WHILE cache table size > cache table content size limit DO

22 evict cache table entry with the lowest count value

23 ENDWHILE

24 attach to packet header the chunk’s cache table index, chunk offset position within the packet and chunk size

25 ENDIF

26 ENDFOR

27 error estimate = average count of virtual elements // 20 elements, same as in original hCount paper

28 error threshold = average count difference between chunks in cache // an approximate error margin to roughly preserve ordering

29 IF error estimate > error threshold OR hCount size > hCount size limit THEN

30 IF hCount size limit - current hCount size >= memory size to create a new hCount stage THEN

31 instantiate a new hCount stage with double the parameter M of the currently largest stage and append it to current hCount

32 ENDIF

33 WHILE error estimate > error threshold OR hCount size > hCount size limit DO

34 decrement all positive value counters in hCount by n // n = 1

35 recalculate error estimate and error threshold

36 ENDWHILE

37 remove any hCount stages that had all their counter values reduced to zero in the above while loop

38 IF the smaller (in terms of M) of two adjacent stages has enough capacity (sum of distinct items in both stages < M) THEN

39 compact the contents of the larger stage into the smaller stage and discard the larger stage // as described in Sect. 3

40 ENDIF

41 IF hCount has only one stage and sum of current distinct items in the stage < half its M THEN

42 compact the contents of the stage into a new stage with half the M of the current stage and replace the current stage

43 ENDIF

44 ENDIF

45 send packet

46 ENDFUNCTION

47
48 FUNCTION process incoming packet

49 FOR each attached cache table index, chunk offset position and chunk size DO

50 insert chunk data (packet data from chunk offset position to chunk offset + chunk size) into cache table at cache table index

51 WHILE cache table size > cache table content size limit DO

52 evict cache table entry with the lowest count value

53 ENDWHILE

54 ENDFOR

55 FOR each attached cache table index and chunk offset position DO

56 insert chunk data from cache table at cache table index into packet at chunk offset position

57 ENDFOR

58 pass packet on in the protocol stack for further processing

59 ENDFUNCTION

Fig. 1. Pseudo-code to illustrate the workflow of the proposed protocol (structure is
not optimized for execution; sample parameters are given as used in our experiments)

only process packet payloads, but also header fields other than those required
by the link layer MAC protocol. We assumed reliable packet delivery to be im-
plemented based on acknowledgements or similar methods to keep cache tables
in sync. Figure 1 gives a detailed functional outline of the protocol workflow.

4 Related Work

4.1 Traffic Reduction in Sensor Networks

Reducing the amount and cost of information transfers over the wireless medium
to save energy consumption is a prevalent research issue in wireless sensor net-
working. A lot of solutions take advantage of specific sensor data qualities or ap-
plication level knowledge to achieve it. A well investigated method for instance is

Suppressing Redundancy in Wireless Sensor Network Traffic 195

aggregating information at intermediate nodes on their multi-hop transmission
path to the base station [10]. Such in-network processing techniques however
do not eliminate redundant transfers between the data source and aggregat-
ing nodes. Recent prediction-based methods transfer only the delta to predicted
sensor readings [18], but even if the predictions were perfect, periodic and often
redundant transmissions become necessary to distinguish node failures.

Traditional bulk compression methods have been optimized in their resource
consumption to be deployed in wireless sensor networks [2]. Distributed source
coding [10] further utilizes the correlation between spatially close sensor readings
to encode data coming from multiple sensors. These methods however do not
reflect overlaps in data that are sent over a link at consecutive points in time.

A simple variation of redundancy suppression regarding meta-data of IP pack-
ets is header compression [11]. It exploits predictable patterns in header fields
based on static rules and is thus not applicable for arbitrary data redundancy.
Generally speaking the variety of existing wireless sensor network protocols each
incorporate protocol specific optimizations to reduce traffic, for instance by de-
signing efficient control message interactions or caching meta-data like routing
table entries [10]. The upshot of the various above solutions is that they are very
application, protocol or data type specific, and that they insufficiently address
data redundancy on a network link level.

4.2 Fingerprinting for Duplicate Detection

Rabin fingerprints [9] have been applied in a variety of algorithms to identify
similarity or concrete overlaps in arbitrary data [3,4,7,8]. Recently, such fin-
gerprints have furthermore been utilized for chunking data into shift-invariant
partitions by orienting their boundaries on the data content [6,12]. Our protocol
utilizes one such chunking method in a novel way to build a representative set
of differently sized partitions for finding matching data contents.

4.3 Redundancy Suppression Protocols

The first redundancy suppression protocol for network links was proposed in [3].
This simple protocol based on matching whole packet payloads was later im-
proved by introducing novel, often chunk-based fingerprinting methods [6,12] to
detect duplicate data stretches between arbitrary data sets. A lot of effort was
put into analyzing redundancy in typical Internet traffic based on packet traces
to configure protocols to yield optimal results. For instance key questions that
have been answered by such studies included how to set the partition size of the
chunking algorithm, the sampling ratio of fingerprints, how much memory should
be allocated for caching and on which nodes to place the caching endpoints [4].

Redundancy in transmission data has been exploited for numerous other pur-
poses as well, for example to find multiple download sources for common data
content [7], or to combine it with load balancing and routing aspects [4,19]. The
above body of related work unfortunately has so far not addressed the specific
requirements of wireless sensor networks.

196 R. Abe and S. Honiden

4.4 Frequent Item Counting

The problem of identifying frequent items in data sets is a well known prob-
lem [13,14,15]. We extended one existing memory-efficient solution – namely the
hCount [16] data structure – to cope with dynamically changing frequency dis-
tributions. Using such sketch-based probabilistic data structures for measuring,
analyzing and classifying network traffic by itself is not a novel idea. Existing
research however focused on speedy filtering methods for high bandwidth net-
works [20] or off-line processing of large trace data in a memory-efficient way [5].

Governing contents in Bloom filters and sketches has so far been dealt with by
explicitly evicting elements to maintain for instance the temporally most recent
elements in a data stream [14]. Our solution in contrast aims at the slightly differ-
ent problem of purging least frequent elements without knowing item identities.
Our hCount implementation moreover integrates an existing dynamic counter
allocation technique based on partitioning [17]. To reflect the data chunk’s size
in its counts, we also applied the known concept of weighted counting [14].

5 Evaluation

5.1 Computational Overhead

The redundancy analysis we proposed entails a higher computational overhead
than existing solutions based on a preset partitioning size and fingerprint sam-
pling. Unlike the quadratic overhead of naively comparing all data subsets how-
ever, our method results in the following number of items to compare assuming
the data is split into uniformly sized chunks for each partitioning size:

f(n) =
n∑

w=1

n

w
= nHn w..chunk size, n..packet size (1a)

lim
x→∞Hn − ln(n) = γ γ..Euler-Mascheroni constant (1b)

=⇒ f(n) = O(n log n) (1c)

Chunking algorithms however do not partition the data absolutely uniformly and
deviate a certain amount from the targeted chunk length to ensure shift invari-
ance. The Winnowing scheme [12] we have used imposes a maximum distance w
between cutpoints, but can and will also produce shorter chunks. Chunks with a
length smaller than the targeted size w naturally remain valid for certain smaller
w depending on how much they deviated. It makes the above overhead a worst
case that is undercut in many cases. In our experiments the number of chunks big
enough to justify caching actually remained below n in most cases4. Considering
the absence of high-speed networking requirements, the small packet sizes, low
bandwidths and low duty cycles typical for wireless sensor networks, we found
this overhead in form of additional computational load and calculation time to
be of permissible dimension.
4 A data chunk is big enough to justify its caching, if it is larger than the number of

bits necessary to encode the index of the cache table in which it will be maintained.

Suppressing Redundancy in Wireless Sensor Network Traffic 197

5.2 Empirical Evaluation

Measuring the practical gains of redundancy suppression in wireless sensor net-
works is a difficult task, as the redundancy in data transfers depends on appli-
cation specific and potentially unpredictable traffic, but also on the presence of
other traffic reducing mechanisms like the ones discussed in Sect. 4. While evalu-
ating this aspect may be possible based on specific case studies, we did not focus
on this aspect for lack of representative network trace logs and the pointlessness
of constructing a scenario tailored to emphasize the benefits of our protocol.

Instead we investigated how much redundancy our protocol is able to identify
compared to a full-fledged protocol without memory limitations. We simulated
basic network traffic by dividing binary data files into typical packet dimensions
between 64 and 128 bytes for transmission. Without any further preprocessing
or encoding, we then transferred the raw data over a single link in succession.
To reflect varying degrees of redundancy in network traffic, we conducted sim-
ulations with real world sensor data logs5 carrying high degrees of correlation,
but also drew on standardized data corpora6 generally used for benchmarking
compression algorithms. Sensor data were fed to the simulator on a per node log
basis, and the data corpora evaluated for each single file of the respective data
set. The input streams each spanned several hundred KB of data and resulted in
several hundred to thousand packet transmissions, a traffic amount large enough
to observe distinct trends in suppression performance. Retransmission overheads
for cache misses caused by packet loss were not counted, as we assumed reliable
transport protocols to be in place. We did however account for overheads of
synchronizing and referencing cache contents as a result of our protocol design.

Chunking-based Redundancy Analysis. First we measured the loss of per-
formance when matching identical data fragments by comparing chunks only. As
a benchmark we calculated the computationally intensive optimal output of an-
alyzing all potential data subsequences off-line. We could verify that the amount
of redundancy identified by our method remains within a constant factor of
the maximum amount substantial enough to justify its suppression. Figure 2(a)
shows a sample result produced from a geophysical data set. The data in this
example contained very little redundancy to begin with, a condition for which
our chunking based approach delivered the worst results. In case of sensor data
logs that exhibited larger amounts of redundancy – in some SensorScope data
sets up to 50 percent of total traffic – we could measure results much closer to
the maximum amount, sometimes as close as 90 percent of the maximum.

Efficacy of Selective Redundancy Suppression. In the next set of experi-
ments we tested our hypothesis that redundancy has a skewed frequency distri-
bution and thus limiting the cache contents to a fraction of the most recurring
data is indeed meaningful. We evaluated how gradually limiting the capacity of

5 The sensor logs were taken from the SensorScope [21] and ZebraNet [22] projects.
6 The files used were taken from the Calgary Corpus and the Canterbury Corpus [23].

198 R. Abe and S. Honiden

0 200 400 600 800

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

packets processed

pe
rc

en
ta

ge
 o

f r
ed

un
da

nt
 b

yt
es

 id
en

tif
ie

d

matching all data subset fingerprints
matching chunk fingerprints only

(a) Amount of redundancy identified in
percentage of transferred data.

0 10 20 30 40 50 60 70

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cache size limit in kbytes

pe
rc

en
ta

ge
 o

f b
yt

es
 s

up
pr

es
se

d

(b) Effect on suppression when limiting
cache contents to a fixed memory limit.

packets processed

ab
so

lu
te

 c
ou

nt
in

g
er

ro
r

0 200 400 600 800

 0
10

20
30

40
50

estimated maximum error
estimated average error
true maximum error
true average error
guaranteed sketch error bound

(c) Comparison of true counting error
against estimated counting error of an
hCount sketch.

0 200 400 600 800 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

packets processed

pe
rc

en
ta

ge
 o

f b
yt

es
 s

up
pr

es
se

d

unlimited memory
10kb cache + 100kb sketch
10kb cache + 10kb sketch
sync overhead for unlimited memory
sync overhead for 10kb cache + 100kb sketch
sync overhead for 10kb cache + 10kb sketch

(d) Redundancy suppression performance
under realistic memory constraints.

Fig. 2. Experimental results - (a)(b) using the geophysical data file from the Canter-
bury Corpus - (c)(d) using a sensor node log from the SensorScope data set

the cache table down to 1 KB affects the overall amount of traffic savings. The
convex shape of the line in Fig. 2(b) representing the fraction of bytes suppressed
indicates that caching a small subset of redundant data indeed yields relatively
high traffic savings until the point where the line falls off steeply. Figure 2(b)
again shows a sample result, but experiments with different data sets all yielded
similar results, the drop-off happening between 1 KB and 10 KB in most cases.

Accuracy of Frequency Counting. Our final step consisted in limiting the
memory allocated for frequency counting. The challenge lay in deciding how
accurate the sketch had to be given a realistic amount of memory, a configuration
that directly affects how data chunks are ranked for caching, and trades off
against the amount of traffic history that can be tracked using hCount. It meant
defining a count error threshold that triggered the adaptation of the sketch and
how to actually measure the error. We have in Sect. 3 already foreclosed that
our solution uses an estimated error measure and the average count difference
between the cached elements for the threshold. This configuration – a result from
experiments with different error and threshold metrics – turned out to give the
best results in practice.

Since the error estimation method was only briefly mentioned in [16], we also
verified that it actually approximates the real error well enough. Figure 2(c)
shows a sample log of estimated and real average and maximum errors using 20
virtual elements. The nature of the above solution does not guarantee correct

Suppressing Redundancy in Wireless Sensor Network Traffic 199

ranking of elements, but it turned out to balance accuracy and capacity most
favorably for eventually tracking and identifying redundancy.

While we cannot present detailed results for all experiments due to space
restrictions, we summarize the results as follows. We were able to archive caching
performance close to a configuration with exact counting using between 10 KB
and 100 KB of memory space for hCount. Figure 2(d) depicts an example data
set for which 10 KB resulted in about half the performance of exact counting,
and 100 KB only about 10% performance loss. The cache itself usually performed
well even with an order of magnitude less memory than hCount, only a few KB to
tens of KB, which in practice would further be split among the receiving neighbor
nodes. Finally, we could also observe that selecting only a small top end of the
recurring chunks for caching naturally kept the cache synchronization overhead
within a few percent of the caching gain, making it a negligible overhead.

Conclusion of the Results. In our empirical evaluation we challenged our pro-
tocol’s various design aspects. Identifying redundancy solely based on matching
chunk fingerprints, selectively caching the most recurring data chunks, and bas-
ing that selection on probabilistic counts led to a practically feasible solution.

To further improve the protocol performance in the future, we see the necessity
to discern at run-time whether insufficient accuracy or too short a traffic history
is causing cache performance to fail, and to adapt to these possible cases more
precisely and radically. For instance, if even the minimally set counting accuracy
did not allow for enough history data to be kept for identifying any redundancy,
giving up on chunking granularity may be a potential way to further trade off
against the fraction and accuracy of repeating transfers identified.

6 Summary

In this paper we presented a first practical solution for realizing redundancy
suppression in wireless sensor networks. The main challenges were to address
the severe memory constraints on sensor nodes and finding a way to analyze
redundancy without any assumptions on its distribution and frequency in trans-
mitted data. We have in short devised a novel protocol by combining fingerprint
based chunking, an extended sketch-based frequency counting algorithm, and
by utilizing them to selectively cache an approximate top end subset of the re-
dundant data. To attain sufficient performance we optimized memory usage of
the hCount sketch by adapting its parameters and evicting its contents dynami-
cally. In our empirical evaluation we have demonstrated the practicability of our
protocol design by testing its performance under realistic memory constraints.

We are planning to further investigate open issues like the coordination of
caches for multiple incoming links of a node and extending the caching scope
over multiple hops. Potential functional extensions include the cross-layer co-
ordination with multi-path routing protocols. By dividing traffic in such a way
that similar data are routed along the same route we may be able to further
increase the amount of traffic savings achieved by redundancy suppression.

200 R. Abe and S. Honiden

References

1. Prabh, K.S., Abdelzaher, T.F.: Energy-conserving data cache placement in sensor
networks. ACM Transactions on Sensor Networks (TOSN) 1(2), 178–203 (2005)

2. Kimura, N., Latifi, S.: A survey on data compression in wireless sensor networks.
Information Technology: Coding and Computing 2, 8–13 (2005)

3. Santos, J., Wetherall, D.: Increasing effective link bandwidth by suppressing repli-
cated data. In: Proc. of USENIX ATEC, Berkeley, USA, pp. 18–18 (1998)

4. Anand, A., Gupta, A., Akella, A., Seshan, S., Shenker, S.: Packet caches on routers:
the implications of universal redundant traffic elimination. SIGCOMM Comp.
Comm. Rev. 38(4), 219–230 (2008)

5. Anand, A., Muthukrishnan, C., Akella, A., Ramjee, R.: Redundancy in network
traffic: findings and implications. In: Proc. of the ACM SIGMETRICS (2009)

6. Bjorner, N., Blass, A., Gurevich, Y.: Content-dependent chunking for differential
compression, the local maximum approach. Journal of Comp. and Sys. Sc. (2009)

7. Pucha, H., Andersen, D.G., Kaminsky, M.: Exploiting similarity for multi-source
downloads using file handprints. In: Proc. of the 4th USENIX NSDI (2007)

8. Spring, N.T., Wetherall, D.: A protocol-independent technique for eliminating re-
dundant network traffic. SIGCOMM Comp. Comm. Rev. 30(4), 87–95 (2000)

9. Rabin, M.: Fingerprinting by random polynomials. Technical report tr-15-81, Har-
vard University, Department of Computer Science (1981)

10. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks.
John Wiley & Sons, Chichester (2005)

11. Westphal, C.: Layered IP header compression for IP-enabled sensor networks. In:
Proc. of the IEEE ICC, vol. 8, pp. 3542–3547 (2006)

12. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: Proc. of the ACM SIGMOD, pp. 76–85 (2003)

13. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

14. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proc.
of the VLDB Endowment 1(2), 1530–1541 (2008)

15. Manerikar, N., Palpanas, T.: Frequent items in streaming data: An experimental
evaluation of the state-of-the-art. Data & Kn. En. 68(4) (2009)

16. Jin, C., Qian, W., Sha, C., Yu, J.X., Zhou, A.: Dynamically maintaining frequent
items over a data stream. In: Proc. of the 12th ACM CIKM, pp. 287–294 (2003)

17. Aguilar-Saborit, J., Trancoso, P., Muntes-Mulero, V., Larriba-Pey, J.L.: Dynamic
adaptive data structures for monitoring data streams. Data & Kn. En. 66 (2008)

18. Santini, S., Roemer, K.: An adaptive strategy for quality-based data reduction in
wireless sensor networks. In: Proc. of the 3rd INSS, pp. 29–36 (2006)

19. Gupta, A., Akella, A., Seshan, S., Shenker, S., Wang, J.: Understanding and ex-
ploiting network traffic redundancy. Technical report (2007)

20. Kirsch, A., Mitzenmacher, M., Varghese, G.: Hash-based techniques for high-speed
packet processing. Technical report (2008)

21. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., Parlange, M.:
Sensorscope: Out-of-the-box environmental monitoring. In: Proc. of the 7th IEEE
IPSN, Washington, DC, USA, pp. 332–343 (2008)

22. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Rubenstein, D.: Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences with
zebranet. In: Proc. of the 10th ASPLOS-X, New York, USA, pp. 96–107 (2002)

23. Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algorithms.
In: Proc. of the 7th DCC, pp. 201–210 (1997)

Ensuring Data Storage Security against
Frequency-Based Attacks in Wireless Networks

Hongbo Liu1, Hui Wang2, and Yingying Chen1

1 Dept. of ECE, Stevens Institute of Technology
Castle Point On Hudson, Hoboken, NJ, 07030, USA

{hliu3,yingying.chen}@stevens.edu
2 Dept. of Computer Science, Stevens Institute of Technology

Castle Point On Hudson, Hoboken, NJ, 07030, USA
hwang@cs.stevens.edu

Abstract. As wireless networks become more pervasive, the amount
of the wireless data is rapidly increasing. One of the biggest challenges
is how to store these data. To address this challenge, distributed data
storage in wireless networks has attracted much attention recently, as
it has major advantages over centralized approaches. To support the
widespread adoption of distributed data storage, secure data storage
must be achieved. In this work, we study the frequency-based attack,
a type of attack that is different from previously well-studied ones, that
exploits additional adversary knowledge to crack the encrypted data. To
cope with frequency-based attacks, the straightforward 1-to-1 substitu-
tion encryption functions are not sufficient. We propose a data encryp-
tion strategy based on 1-to-n substitution via dividing and emulating
techniques such that an attacker cannot derive the mapping relationship
between the encrypted data and the original data based on their knowl-
edge of domain values and their occurrence frequency. Our simulation
results show that our data encryption strategy can achieve high security
guarantee with low overhead.

1 Introduction

As the rapid advancement of wireless technologies has led to a future where
wireless networks are becoming a part of our social life, the collected wireless
data provides tremendous opportunities to support various applications ranging
from environmental sensing, to infrastructure monitoring, to mobile social net-
work analysis. However, as the amount of the wireless data is increasing, one of
the biggest challenges in wireless networks is how to store these data. There are
two possible ways: centralized and distributed. The traditional approach is to
store the collected wireless data in a centralized manner. For example, in wire-
less sensor networks (WSNs) the sensing data is collected from each individual
sensor and sent back to a central server for data access. However, the centralized
approaches may result in performance bottlenecks of data access, and a single
point of failure to both server compromise and intentional attacks.

To address these problems, distributed data storage [1,2,3,4,5] in wireless net-
works recently have attracted much attention. For instance, the sensed data can

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 201–215, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

202 H. Liu, H. Wang, and Y. Chen

be stored by its type at a group of storage nodes in the network to perform
data-centric storage or stored at each individual device that collects the data.
The distributed data storage has major advantages over centralized approaches:
storing the data on the collected wireless devices or in-network storage nodes
decreases the need of constant data forwarding back to centralized places, which
largely reduces the communication in the network and the energy consumption
on individual devices, and consequently eliminates the existence of centralized
storage and enables efficient and resilient data access. Furthermore, as wireless
networks become more pervasive, new-generation wireless devices with signif-
icant memory enhancement and powerful processing capabilities are available
(e.g., smart phones and laptops), making the deployment of distributed data
storage not only feasible but also practical.

However, secure data storage must be achieved before widespread adoption of
distributed data storage. Prior work in wireless network security has been focused
on network communication security such as key management, secure localization,
and intrusion detection [6, 7, 8, 9, 10]. None of these works have addressed the
problem of secure distributed data storage. To fulfill the security requirements
raised by the distributed data storage, recent research has started studying dis-
tributed access control, data confidentiality, and data integrity. [11] introduced a
redundancy-based key distribution scheme that utilizes secret sharing to achieve a
decentralized certificate authority. [12] studied to perform secure distributed data
storage by developing an adaptive polynomial-baseddata storage scheme. [13] pre-
sented a dynamic data integrity checking scheme for verifying the consistency of
data shares in a distributed manner, which is constructed based on the principle
of algebraic signatures to ensure the integrity of data shares.

Most of these current research aim to provide data confidentiality, depend-
ability, and integrity from the perspective that the adversaries will make efforts
to access the data by cracking the data encryption mechanisms with little prior
knowledge. None of these studies have investigated the problem of attackers
cracking the data encryption by exploiting additional adversary knowledge. In
particular, today with rapidly evolving adversarial activities, an attacker may
possess prior knowledge about the domain values and even the exact occurrence
frequencies of the data values. For instance, for the distributed data storage
that stores the coordinate values of locations that people visited, the attacker
may know: (1) where are the most popular locations, and (2) the fact that the
frequency of these locations should be higher than that of all the other loca-
tions. Then those encrypted data values of the highest frequency must map to
these popular locations. The problem gets even worse when we consider a more
conservative model that the attacker knows the exact frequency of some or all
original data values and utilizes such knowledge to crack the data encryption
by matching the encrypted data values with original data values based on their
frequency distribution. We call this kind of attack as frequency-based attack.
Frequency-based attacks are especially harmful in distributed data storage. For
instance, an attacker can derive the specific activities of an important officer if
the attacker knows the frequency of his visited places, or a hunter can wait at

Ensuring Data Storage Security against Frequency-Based Attacks 203

specific locations of an endangered animal by possessing the knowledge of the
frequency of the animal’s habitation-related movements.

To cope with frequency-based attacks, apparently 1-to-1 substitution encryp-
tion function is not enough. A stronger mechanism is needed to provide more
reliable data protection. However, little work has been explored to cope with
frequency-based attacks. [14] has developed a secure encryption scheme to mit-
igate frequency-based attacks in centralized database, making it not applicable
to support secure distributed data storage in wireless networks. In this paper, we
propose a data encryption strategy based on 1-to-n substitution to defend against
frequency-based attacks on distributed data storage in wireless networks. Our
data encryption strategy aims to transform the original frequency distribution
of the original data (i.e., plaintext) to a uniform distribution for the encrypted
data (i.e., ciphertext) so that the attacker cannot derive the mapping relation-
ship between the encrypted data and the original data based on their knowledge
of domain values and their occurrence frequency.

In particular, we develop two techniques, dividing and emulating, to achieve
the uniform distribution of encrypted data either on an individual device or
across the network to cope with two types of attackers: global frequency-based
attack, whereby the attacker only has the knowledge of the global occurrence of
the data in the network, and local frequency-based attack, whereby the attacker’s
knowledge is advanced knowing about the specific occurrence frequency of the
data on each individual device.

As the data is encrypted in the network for security purpose, another impor-
tant issue is how to efficiently evaluate queries over these encrypted data. A naive
method is to transfer all encrypted data in the network to the trusted nodes for
decryption and query evaluation, which will incur tremendous communication
overhead. Thus we design an efficient query evaluation procedure based on the
dividing and emulating techniques for both types of point and range queries that
are representative to support real-time data queries in wireless networks. Both
the theoretical analysis and simulation results show that our 1-to-n substitution
data encryption strategy can achieve high security guarantee, low computational
cost, and efficient query processing.

The remainder of the paper is organized as follows. In Section 2, we first set
up the network model, describe the attack model, and provide an overview of our
strategy. We then describe our 1-to-n substitution data encryption strategy and
present the details of the query evaluation procedure in Section 3. In Section 4 we
discuss our simulation methodology, evaluation metrics, and results that validate
our approach. Finally, we conclude in Section 5.

2 System Overview

2.1 Network Model

In our system, we consider wireless networks consisting of both static and mobile
nodes, where each node represents a wireless device that can take the form of
sensor, active RFID tag, laptop, or smart phone. We assume the collected data

204 H. Liu, H. Wang, and Y. Chen

will be stored within the network at each node unless it is required to be sent to
a centralized storage space for backup. By uploading data in a lazy fashion (i.e.,
on-demand only), distributed data storage enables real-time query evaluation
and avoids frequent data transfer from the wireless devices to the centralized
storage, and consequently reduces massive battery power consumption and vastly
decreases the communication overhead of the network.

To prevent the misuse of the data and provide the confidentiality of the data,
the data is encrypted in our network. We refer the original unencrypted data
values as plaintext and the encrypted values as ciphertext. When a user queries
the data in the network, all the nodes holding the data that matches the query
will respond to the user by sending back the corresponding ciphertext. The user
is responsible to perform the data decryption.

2.2 Attack Model

In this section, we first provide an example of frequency-based attacks. We then
categorize the knowledge and behavior of the adversaries.
Example. We assume there is a set of data collected by the wireless devices
where it represents the location information of animals usually appearing as
shown in Table 1 (a). The original data contains the animal type and the location
information.

Table 1. Data example: (a) the original data table; (b) after 1-to-1 encryption; and
(c) after 1-to-n substitution encryption via dividing and emulating

Animal Type Location

Panda river A
Panda river A
deer wood B
Panda wood C
deer wood B
Panda river A

(a)

Animal Type Location

123 river A
123 river A
128 wood B
123 wood C
128 wood B
123 river A

(b)

Animal Type Location

123 river A
123 river A
128 wood B
125 wood C
128 wood B
125 river A

(c)

As the panda is an endangered species, the information about panda’s activ-
ities is sensitive and should be protected to avoid the access by poachers. The
straightforward way is to use 1-to-1 encryption function to encrypt the animal
type in the data set (as in Table 1 (b)). However, if a poacher has the knowledge
of the animals’ occurrence frequency in the dataset, there are 4 panda’s record
entries and 2 deer’s record entries as depicted in Table 1 (a), the poacher can
map the occurrence frequency of the encrypted data (e.g., 4 times of 123) to
derive the corresponding animal type (e.g., panda) without decrypting the data,
and consequently access the location information. In this case, the poacher will
gain the sensitive information that the panda often appears at river A.

Based on the knowledge level of the original data’s occurrence frequency that
an adversary has, in this work we categorize the frequency-based attacks into
two types: global and local.

Ensuring Data Storage Security against Frequency-Based Attacks 205

Global Frequency-based Attack. An adversary only has the knowledge of
the overall distribution of the data in the network. In particular, the adversary
knows the occurrence frequency of a plaintext PTj as fj =

∑N
i=1 fj,i, where i =

1, 2, · · · , N and N is the number of nodes in the network. Thus, the occurrence
frequency of all the plaintext freq(PT) in the network can be expressed as:
freq(PT) =

∑k
j=1 fj, with j = 1, 2, · · · , k and k is the number of distinctive

plaintext values. However, the adversary does not have the knowledge of the
detailed occurrence frequency of the data on each individual wireless device.
Local Frequency-based Attack. An adversary has the advanced knowledge
of the distribution of plaintext values on each individual wireless device. Partic-
ularly, the adversary knows the occurrence frequency of a plaintext PTj as fj,i,
with j = 1, 2, · · · , k and i = 1, 2, · · · , N . k is the number of distinctive plaintext
values and N is the number of nodes in the network. The local frequency-based
attacks are more harmful as the attacker can derive the mapping between the
encrypted data and the original data on each individual device independently.

2.3 Approach Overview

Encrypting Data via Dividing and Emulating. Based on the simple ex-
ample in Table 1, we showed that simply encrypting the original sensitive data
values that we want to protect by using 1-to-1 encryption functions and storing
the ciphertext will result in encrypted values following the same distribution as
the original plaintext values, making it easy to launch frequency-based attacks
and disclosing the sensitive data to adversaries. To cope with frequency-based
attacks, we propose to divide each plaintext value into one or more ciphertext
values in such a way that regardless of the original data distribution, the tar-
get distribution remains close to flat, i.e., uniform. Furthermore, we propose
emulating on the divided data to fit the target distribution to a uniform dis-
tribution, so that the attacker cannot uniquely crack the identity of ciphertext
values, i.e., deriving the corresponding plaintext values, based on his knowledge
of data frequency. Table 1 (c) shows that after applying dividing and emulating
techniques, the distribution of the ciphertext values is uniform, i.e., 2 times for
123, 125, and 128 each, highly decreasing the probability for an adversary to
derive the plaintext values by launching a frequency-based attack.
Coping with Attacks. Under global frequency-based attacks, our dividing and
emulating techniques will exploit the global frequency distribution of plaintext
values in the network to achieve uniform frequency distribution of the ciphertext
values in the whole network, i.e., by examining the distribution of the encrypted
values, the frequency of each data value in the network will be nearly uniform
for the attacker. Whereas under local frequency-based attacks, the uniform dis-
tribution of the target ciphertext will be achieved on individual wireless device
independently. Thus, the occurrence frequency of ciphertext on different nodes
may be different.
Answering Data Query. We consider two types of queries on the data: point
queries that return all data values in the network that equal to a given value,
and range queries that return all data values in the network that fit in a range.

206 H. Liu, H. Wang, and Y. Chen

The query processing consists of three phases: (1) query translation at user
side that transforms the original queries containing plaintext values to the ones
with corresponding ciphertext values, (2) query evaluation at nodes in network
that issues the translated queries on the encrypted data. For both point and
range queries, since the ciphertext values are encrypted by order preserving
encryption function, the ciphertext values whose plaintext values matching the
original query will be returned, and (3) query post-processing at user side that
decrypts the returned ciphertext values to plaintext values as the answer of the
original queries.

3 Dividing and Emulating: 1-to-n Substitution
Encryption

In this section, we first describe our dividing and emulating techniques that
are used in 1-to-n Substitution Encryption. We then present our efficient query
processing over encrypted data by using dividing and emulating techniques.

3.1 Dividing

The basic idea of dividing is that, any plaintext value of frequency f is divided
into multiple ciphertext values such that the total frequency of these ciphertext
values equals to f . Intuitively, if k unique plaintext values are split into m > k
unique ciphertext values that are of the same frequency, none of these ciphertext
values can be explicitly mapped to their corresponding plaintext values by the
frequency-based attack. Indeed, the decipher probability P that these m cipher-
text values can be correctly mapped to k plaintext values by the frequency-based
attack equals

P =
1(

m−1
k−1

) . (1)

Number of Divided Ciphertext Values. To achieve a threshold σ of the
decipher probability, for k unique plaintext values that are encrypted into m
unique ciphertext values of the same frequency, they must satisfy P = 1

(m−1
k−1)

≤ σ.

Intuitively, the smaller σ is, the more robust the dividing scheme is when against
the frequency-based attack. Our goal is to calculate the appropriate value of m
(i.e., the number of unique ciphertext values), with given σ and k. However,
directly deriving m from the constraint 1

(m−1
k−1)

≤ σ is computationally hard.

Thus we consider Stirling’s approximation, i.e., m! ≈ mme−m
√

2πm. We thus
have:

P =
1(

m−1
k−1

) =
1

(m−1)!
(k−1)!(m−k)!

≈ 1
(m−1)(m−1)

√
2π(m−1)

2π(k−1)(k−1)(m−k)(m−k)
√

(k−1)(m−k)

≤ 1
(m−1)(m−1)

√
m−1√

2π((k−1)(k−1)(m−1)(m−k)
√

(k−1)(m−1))

= (
k − 1
m − 1

)(k−1)
√

2π(k − 1). (2)

Ensuring Data Storage Security against Frequency-Based Attacks 207

As it is required that P = 1
(m−1

k−1)
≤ σ, from Equation 2, we can infer that

m ≥ (k − 1)(
√

2π(k−1)
σ)

1
k−1 + 1. It is straightforward that larger m value implies

the more robustness of the dividing scheme against the frequency-based attack.
However, as we will discuss soon, larger m values will also result in more keys
needed for encryption and decryption. To balance the trade-off between the
robustness of the scheme and the cost for key management, we use

m = (k − 1)(

√
2π(k − 1)

σ
)

1
k−1 + 1 (3)

as the number of divided ciphertext values needed to achieve the required ro-
bustness of the scheme. Based on the valued m, next, we discuss how to split k
unique plaintext values into m unique ciphertext values.

Dividing Factor. We define the dividing factor in our dividing scheme as
following.

Definition 1. Given k unique plaintext values PTj(1 ≤ j ≤ k) that will be en-
crypted as m unique ciphertext values, let f = Σk

j=1fj, where fj is the frequency
of the plaintext value PTj. Then each PTj is encrypted as � fj

d � unique ciphertext
values, where

d = � f

m
�. (4)

We call d the dividing factor.

After dividing, k unique plaintext values are split into m unique ciphertext
values, such that m − �md−f

d � of them are of the same frequency d. If md = f ,
then all m ciphertext values are of the same frequency. Otherwise, out of these
m values, there will be �md−f

d � of them with frequency of fj − � fj

d � × d, where
fj is the frequency of their corresponding plaintext values.

Dividing Procedure. Next, we describe the details of our dividing procedure
that can achieve the goal mentioned above.
Step I. Sorting: We sort the plaintext values by their frequencies in ascending
order. Let δ = min(PTj+1−PTj)(1 ≤ j ≤ k−1) be the minimal interval between
any two successive frequency values.
Step II. Dividing: For each plaintext value PTj, we choose t distinct random
numbers w1, . . . , wt(1 ≤ t ≤ � fj

d �) as weight values, where fj is the frequency of
PTj, and d is the dividing factor. We require that w2 should be unique among
all the wis, as it is needed for value decryption (More details are in Section 3.3).
Then we partition fj number of PTj values into � fj

d � partitions, each partition
containing d number of PTj values, except the last one that contains fj −� fj

d �×d

number of PTj values. Then the PTj value in the i-th partition (1 ≤ i ≤ � fj

d �)
is encrypted to

CTi = enc(PTj +
∑

wiδ), 1 ≤ i ≤ �fj

d
�, (5)

208 H. Liu, H. Wang, and Y. Chen

3 16 22 35
0

10

20

30

40

50

60

Plaintext Value

O
ri
g

in
a

l
P

la
in

te
x
t

F
re

q
u

e
n

c
y

0

2

4

6

8

10

12

14

16

18

enc(3
,W 1

)

enc(3
,W 2

)

enc(1
6,W 1

)

enc(1
6,W 2

)

enc(1
6,W 3

)

enc(2
2,W 1

)

enc(3
5,W 1

)

enc(3
5,W 2

)

enc(3
5,W 3

)

enc(3
5,W 4

)

C
ip

h
e
rt

e
x
t
F

re
q
u
e
n
c
y
 a

ft
e
r

D
iv

id
in

g

0

2

4

6

8

10

12

14

16

18

enc(3
,W 1

)

enc(3
,W 2

)

enc(1
6,W 1

)

enc(1
6,W 2

)

enc(1
6,W 3

)

enc(2
2,W 1

)

enc(3
5,W 1

)

enc(3
5,W 2

)

enc(3
5,W 3

)

enc(3
5,W 4

)

C
ip

h
e
rt

e
x
t
F

re
q
u
e
n
c
y
 a

ft
e
r

E
m

u
la

ti
n
g

(a)Original plaintext freq. (b)Ciphertext freq. after dividing (c)Ciphertext freq. after emulating

Fig. 1. Dividing and Emulating

where wi is a distinct random number ∈ (0, 1/(� fj

d � + 1)) (i.e., Σwi < 1), and
enc() is an order-preserving encryption function [15]. More specifically, the first
partition of occurrence of PTj will be transformed to enc(PTj + w1δ); the l-th
partition of occurrences to enc(PTj +

∑
1≤i≤l(wiδ)). That is to say, the l-th

partition is displaced from PTj by a fraction of the gap δ given by the sum
w1 + w2 + · · · + wl. After dividing, there are � fj

d � number of ciphertext values
CT1, . . . , CTt(1 ≤ t ≤ � fj

d �), with their total frequencies equal to fj .
To illustrate the results of ciphertext values by applying our dividing tech-

nique, we show a simple example as following: Given two plaintext values PT1
and PT2 of frequency 12 and 21, f = 12 + 21 = 33. Assume Equation 3 has
returned m = 5. Then using Definition 1, the dividing factor d is calculated as 7.
Based on the dividing procedure, PT1 will be encrypted as 2 unique ciphertext
values, one of frequency 7, and one of frequency 5, by using 2 unique keys; PT2
will be encrypted as 3 unique ciphertext values, each of frequency 7.

Due to the use of order-preserving encryption function enc(), a nice property
of the dividing scheme is that the ciphertext corresponding to different plaintext
values will not straddle each other. More precisely, for any two values PTi < PTj ,
and for any ciphertext values CT m

i , CT n
j (i.e., the m-th and n-th ciphertext

values of PTi and PTj respectively), it is necessary that CT m
i ≤ CT n

j . This will
enable the efficient query evaluation over the ciphertext values (More details of
query evaluation will be discussed in Section 3.3).
Cost of Key Management. For each plaintext value that is divided into r
unique ciphertext values, we need r unique keys. To reduce the total number
of keys that are needed for dividing k unique plaintext values in the network,
we allow these plaintext values share keys for dividing. Therefore, the number
of keys r needed for the dividing scheme equals to r = max1≤j≤k� fj

d �, which
largely reduces the total number of unique keys during encryption.

3.2 Emulating

The dividing procedure cannot guarantee that all ciphertext values are of the
same frequency. Figure 1 (a) and (b) depict an example of dividing. The 4
plaintext values 3, 16, 22, and 35 of occurrence frequency 21, 41, 14 and 55

Ensuring Data Storage Security against Frequency-Based Attacks 209

(Figure 1 (a)) are divided into 10 unique ciphertext values (Figure 1 (b)), with
the dividing factor as 15. Figure 1 (b) shows some ciphertext values, including
the second ciphertext value of plaintext value 3, the third ciphertext value of
plaintext value 16, the first ciphertext value of plaintext value 22, and the last
ciphertext value of plaintext value 35, that are of different frequency from the
other ciphertext values. These ciphertext values may face the threat that their
encryption can be cracked by the frequency-based attack.

Thus, we apply emulating on these values, so that these ciphertext values are
indistinguishable from the others by their frequencies. In particular, for these
ciphertext values, they are duplicated so that their frequency also equals to d,
the frequency of the other ciphertext values. Figure 1 (c) shows the results of the
frequencies of these ciphertext values after emulating. Therefore, By performing
emulating, these ciphertext values are indistinguishable by the frequency-based
attack. However, it incurs additional space overhead for the duplicates, which is
called emulating noise. There exists a trade-off between the security guarantee
and the space overhead i.e., higher security guarantee may lead to more space
overhead. This trade-off will be studied in details in Section 4.

To cope with both global and local frequency-based attacks, we apply the
dividing and emulating encryption scheme on the plaintext values. For global
frequency-based attacks, we apply the scheme on the global distribution infor-
mation to achieve globally uniform frequency distribution of the ciphertext val-
ues (i.e., all unique ciphertext values in the network are of the same frequency).
While for local frequency-based attacks, we exploit the dividing and emulating
techniques locally on each individual device, so that the ciphertext values on
each device will achieve uniform frequency distribution.

3.3 Efficient Query Processing over Encrypted Data

We assume the users issue their queries that only contain plaintext values. In
this paper, we consider two types of queries: point queries that return all data
values in the network that equal to a given value, and range queries that return
all data values in the network that fit in a range [l, u]. Our goal is to translate
the plaintext queries to ciphertext queries that can be applied directly on the
encrypted data in the network. This mechanism has two advantages: (1) sending
ciphertext queries to the network will protect the queries, especially the plaintext
values in the queries, from the malicious attackers, and (2) it supports efficient
query evaluation, as data decryption in the network, which in general is costly,
is avoided. To achieve the goal, we design the query processing procedure that
consists of three phases: query translation at the user side, query evaluation at
the nodes in the network, and query post-processing at the user side. Next, we
discuss the details of these three phases.
Phase-1: Query translation at user side. We assume a user can access all the
auxiliary information including the weight values wi, the gap values δ, and the
order-preserving encryption function enc() that are used in the dividing scheme.
He/she will make use of these information to translate the plaintext queries as
following.

210 H. Liu, H. Wang, and Y. Chen

Point queries: Given a point query Q : V = v, the user will translate it to
Q′ by following the same dividing scheme for encrypting data values in the
network. In particular, the plaintext value v will be encrypted to r ciphertext
values CT1, . . . , CTr. Since these r ciphertext values follow the order that CT1 <
CT2 · · · < CTr, the query Q will be translated to Q′ : V ∈ [CT1, CTr], where
CT1 = enc(v + w1 ∗ δ), and CTr = enc(v +

∑r
i=1 wi ∗ δ). Here wi and δ are

pre-valued in the dividing scheme (see Section 3.1).
Range queries: Recall that our dividing technique performs order-preserving
encryption. Thus the range query Q : V ∈ [l, u] will be translated to another
range query Q′. In particular, let wl

i and wu
i be the i-th weight values assigned

for dividing l and u, and δl, δu be the gap values used for dividing l and u
values, then the query Q will be translated to Q′ : V ∈ [CT l

1, CT u
r], where

CT l
1 = enc(l + wl

1 ∗ δl), and CT u
r = enc(u +

∑r
i=1 wu

i ∗ δu). In other words, the
plaintext range [l, u] is translated to another range whose lower bound equals to
the smallest divided ciphertext value of l, and upper bound equals to the largest
divided ciphertext value of u.
Phase-2: Query evaluation at nodes in the network. After translation, the
range query Q′ : V ∈ [CTl, CTu] (for both point and range plaintext queries),
where CTl and CTu are the lower bound and upper bound ciphertext values, will
be sent to the network. Each node will check whether it has any ciphertext value
that satisfies the query Q′, and return these ciphertext values if there is any. To
ensure successful decryption in Phase-3, we require that there are at least two
unique ciphertext values to be returned; if there is only one ciphertext CT value
that satisfies Q′, the next ciphertext value that is greater than CT will also be
sent back, even though it may not satisfy Q′.
Phase-3: Query post-processing at user side. After the user receives the
returned ciphertext values CT1, CT2, · · · , CTt from the network, he/she will de-
crypt these values and obtain the plaintext values. In particular, with the knowl-
edge of the gap values δ, he/she calculates si = CTi+1 − CTi, the distance of
every two successive ciphertext values (we assume CT1 ≤ · · · ≤ CTt). If there
exists any si that equals to w2 ∗ δ, then the user deciphers CTi as (CTi −w1 ∗ δ).
The reason that only w2 is used for decryption is that if there exists any answer
PT , it must satisfy that for the first and the second divided values CT1 and CT2
of PT , CT1 = PT + w1 ∗ δ, and CT2 = PT + (w1 + w2) ∗ δ, thus there must
exist si = CTi+1 − CTi that equals to w2 ∗ δ. If there is no such si that equals
to w2 ∗ δ, then there is no answer to the queries. The success of the Phase-3
decryption is guaranteed by: (1) our design of the dividing scheme that requires
that w2 is unique among all weight values, so that is si = w2 ∗ δ, and (2) our
Phase-2 query evaluation procedure that requires that at least two ciphertext
values (i.e., at least the first and the second divided values) should be returned.

We illustrate the query post-processing procedure through the following exam-
ple: Given the plaintext values {10,11,13,14,17} with δ = 0.5, and the weights
{0.1, 0,3, 0.2, 0.1}, the divided ciphertext values will be CT = {10.05, 10.15, 11.05,
11.2, 11.3, 13.05, 14.05, 14.2, 14.3, 14.35, 17.05}. Let’s consider a plaintext query
Q : V ∈ [13.45, 14.15]. It is translated to the ciphertext query Q′ : V ∈ [13.5, 14.5].

Ensuring Data Storage Security against Frequency-Based Attacks 211

Applying Q′ on CT will return {13.05,14.05,14.2,14.3,14.35}. There exists two ci-
phertext values 14.05 and 14.2 whose distance equals to δ ∗ w2 = 0.15. Thus the
value 14.05 is deciphered as 14.05 − w1 ∗ δ = 14.05 − 0.1 ∗ 0.5 = 14.

4 Simulation Evaluation

4.1 Metrics

To evaluate the performance of our proposed 1-to-n encryption strategy for
coping with frequency-based attacks, we developed the following metrics.
Overhead by dividing. We would like to measure the additional number of
ciphertext values that are introduced during the dividing process. For the case
of global frequency-based attack, the overhead by dividing metric is defined as
m−k

k , where m and k are the total number of distinct ciphertext and plaintext
values in the network. For the case of local frequency-based attack, the overhead
by dividing metric is defined as

∑N
i=1 mi−

∑N
i=1 ki∑

N
i=1 ki

, where mi and ki are the number
of distinct ciphertext and plaintext values on node i(1 ≤ i ≤ N). Intuitively, the
more the additional number of ciphertext is introduced during dividing, the more
computational overhead is incurred. We will evaluate the overhead by dividing
under various decipher probability for both global and local frequency-based
attacks.
Overhead by emulating. In addition to evaluating the computational over-
head introduced by dividing, we are interested in quantifying the additional noise
amount for performing emulating in order to achieve uniform distribution of ci-
phertext values. We define the overhead by emulating as Se−So

So
, where So and

Se are the sizes of the data memory before and after emulating.

4.2 Methodology

We conducted simulation of a wireless network with multiple nodes using Matlab.
Each wireless node collects the data and stores it on itself. We tested on three
network sizes with number of nodes set to N = 20, 60 and 100 respectively. For
each simulation setup, we controlled the total number of distinct plaintext values
in the network to be less than or equal to 200. The occurrence frequencies of
plaintext values on each wireless node are positive integer in the range of [0, 100]
that follows a uniform distribution. Our simulation results are the average over
100 runs for each simulation setup.

4.3 Coping with Global Frequency-Based Attacks

When coping with global frequency-based attacks, we first study the effectiveness
of our scheme under various decipher probability. Figure 2 (a) and (b) present the
overhead by both dividing and emulating in the network under various decipher
probability when fixing the distinct plaintext values at 200. The key observation
in Figure 2 (a) is that the overhead by dividing is always small (under 10%)
even when the decipher probability goes to around 10−5. This is encouraging as

212 H. Liu, H. Wang, and Y. Chen

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Decipher Probability

O
v
e
rh

e
a
d
 b

y
 D

iv
id

in
g

20
60
100

1e−005 0.0001 0.001 0.01 0.1 1
0

0.02

0.04

0.06

0.08

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decipher Probability

O
v
e

rh
e

a
d

 b
y
 E

m
u

la
ti
n

g

20
60
100

40 50 60 70 80 90 100110120130140150160170180190200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Distinct Plaintext

O
v
e

rh
e

a
d

 b
y
 D

iv
id

in
g

(a) (b) (c)

Fig. 2. Effectiveness evaluation when coping with global frequency-based attacks: (a)
and (b) overhead by dividing and emulating under various decipher probability when
fixing the distinct plaintext values at 200; (c) overhead by dividing under various
distinct plaintext values when fixing the decipher probability to 0.01 and N = 60

it indicates that our scheme can achieve a robust security guarantee under global
frequency-based attacks with little overhead incurred by the dividing technique.
The other observation is that the curves for different network sizes overlap. This
is because the number of ciphertext values required for dividing does not depend
on the number of nodes in the network.

Additionally, we observed that the overhead by emulating is not sensitive to the
decipher probability. It goes up slightly from 22% to 25% as the decipher proba-
bility increases, which is not significant. We further found that the overhead by
emulating does not change with the network size. These discoveries suggest that
our scheme is robust in terms of the overhead noise produced by the emulating
process when achieving a high security guarantee under various network sizes.

We further investigated the overhead by dividing when varying the number
of distinct plaintext values in the network. Figure 2 (c) depicts the overhead
by dividing as a function of the number of distinct plaintext values when the
decipher probability P = 0.01 and the network size N = 60. We found that
the overhead by dividing is sensitive to the number of distinct plaintext val-
ues in the network. Particularly, the overhead by dividing decreases from 22%
to 8% when the number of distinct plaintext values increases from 40 to 200
in the network. This indicates that the more distinct plaintext values exist in
the network, the less additional computational cost is incurred when using our
encryption scheme.

4.4 Coping with Local Frequency-Based Attacks

Next, we turn to examine the performance of our scheme under local frequency-
based attacks. Figure 3 presents the total overhead introduced in the network by
applying our decryption scheme under local frequency-based attacks when fixing
the total number of distinct plaintext values at 200 (however, the number of dis-
tinct plaintext values on each node is less or equal to 200). As shown in Figure 3
(a), we observed that the overhead by dividing is comparable to that under global

Ensuring Data Storage Security against Frequency-Based Attacks 213

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Decipher Probability

O
v
e

rh
e

a
d

 b
y
 D

iv
d

in
g

20
60
100

1e−005 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decipher Probability

O
v
e

rh
e

a
d

 b
y
 E

m
u

la
ti
n

g

20
60
100

40 50 60 70 80 90 100110120130140150160170180190200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Distinct Plaintext

O
v
e

rh
e

a
d

 b
y
 D

iv
id

in
g

(a) (b) (c)

Fig. 3. Effectiveness evaluation when coping with local frequency-based attacks: (a)
and (b) overhead by dividing and emulating under various decipher probability when
fixing the distinct plaintext values at 200; (c) overhead by dividing under various
distinct plaintext values when fixing the decipher probability to 0.01 and N = 60

frequency-based attacks. In particular, the overhead by dividing decreases, from
16% to 4%, as the decipher probability increases in a large range from 10−5 to 1.
Furthermore, the overhead introduced by emulating when varying the decipher
probability is presented in Figure 3 (b). We found that the overhead by emulat-
ing is not sensitive to the changes of decipher probability and having a slightly
increasing trend from 22% to 25% when the decipher probability increases (from
10−5 to 1).

These observations are inline with those found in global frequency-based at-
tacks, and indicating that our scheme does not require more overhead when
coping with local frequency-based attacks than that under global frequency-
based attacks. Additionally, we observed that the overhead do not increase as
the network size increases, suggesting that both the additional computational
cost and memory overhead introduced by our scheme are stable and will not
vary with the network sizes.

Finally, we look at the overhead by dividing as a function of the number
of distinct plaintext values in Figure 3 (c) when P = 0.01 and N = 60. The
observation of the declining trend from 45% to 9% as the number of distinct
plaintext values increases from 40 to 200 in the network indicates that under
local frequency-based attacks, our scheme is sensitive to the number of distinct
plaintext values in the network. Furthermore, the overhead by dividing is larger
than the corresponding ones under global frequency-based attacks. This is based
on our observation that to achieve a given decipher probability, smaller number
of distinct plaintext values will require relatively more distinct ciphertext values.
Since the uniform distribution of ciphertext values is achieved on each individ-
ual node when coping with local frequency-based attacks as opposed to that
achieved in the network level under global frequency-based attacks. The overhead
ratio by dividing of local frequency-based attacks is higher than that of global
frequency-based attacks.

214 H. Liu, H. Wang, and Y. Chen

5 Conclusion

In this paper, we proposed a secure data storage scheme that can effectively
defend against frequency-based attacks in wireless networks. We considered a
sophisticated attack model that the attackers possess the knowledge of frequen-
cies of the original data in the network and utilize such knowledge to deci-
pher the encryption on these data. To cope with such frequency-based attacks,
we designed a novel 1-to-n encryption scheme that utilizes our proposed di-
viding and emulating techniques. We showed that our dividing and emulating
techniques not only provide robust security guarantee against frequency-based
attacks but also support efficient query evaluation over encrypted data. Our
extensive simulation results confirmed the effectiveness and efficiency of our
approach.

References

1. Pietro, R.D., Mancini, L.V., Soriente, C., Spognardi, A., Tsudik, G.: Catch me (if
you can): Data survival in unattended sensor networks. In: Proceedings of the IEEE
International Conference on Pervasive Computing and Communications (PerCom)
(2008)

2. Girao, J., Westhoff, D., Mykletun, E., Araki, T.: Tinypeds: Tiny persistent en-
crypted data storage in asynchronous wireless sensor networks. Ad Hoc Networks 5,
1073–1089 (2007)

3. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D.: Data-centric stor-
age in sensornets. ACM SIGCOMM Computer Communication Review archive 33
(2003)

4. Ghose, A., Grossklags, J., Chuang, J.: Resilient data-centric storage in wireless ad-
hoc sensor networks. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky,
A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 45–62. Springer, Heidelberg (2003)

5. Shao, M., Zhu, S., Zhang, W., Cao, G.: pdcs: Security and privacy support for data-
centric sensor networks. In: Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM) (2007)

6. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.: Spins: security protocols
for sensor netowrks. In: 7th ACM International Conference on Mobile Computing
and Networking (2001)

7. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In:
10th ACM Conference on Computer and Communications Security (2003)

8. Capkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application
to sensor networks. In: Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM), pp. 1917–1928 (2005)

9. Chen, Y., Trappe, W., Martin, R.P.: Detecting and localizing wirelss spoofing at-
tacks. In: Proceedings of the Fourth Annual IEEE Communications Society Con-
ference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON)
(May 2007)

Ensuring Data Storage Security against Frequency-Based Attacks 215

10. Yang, J., Chen, Y., Trappe, W.: Detecting sybil attacks in wireless and sensor
networks using cluster analysis. In: The Fourth IEEE International Workshop on
Wireless and Sensor Networks Security (IEEE WSNS) (2008)

11. Joshi, D., Namuduri, K., Pendse, R.: Secure, redundant and fully distributed key
management scheme for mobile ad hoc networks: an analysis. EURASIP Journal
Wireless Communnication Networks (4), 579–589 (2005)

12. Nalin, S., Yang, C., Zhang, W.: Securing distributed data storage and retrieval in
sensor networks. In: 5th Pervasive Computing and Communications (2007)

13. Wang, Q., Ren, K., Lou, W., Zhang, Y.: Dependable and secure sensor data stor-
age with dynamic integrity assurance. In: 28th IEEE International Conference on
Computer Communications (2009)

14. Wang, H., Lakshmanan, L.V.: Efficient secure query evaluation over encrypted xml
database. In: 32nd International Conference on Very Large Data Bases (2006)

15. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2010)

Time-Critical Data Delivery
in Wireless Sensor Networks

Petcharat Suriyachai, James Brown, and Utz Roedig

Lancaster University, UK
��������	
�	��������������������	�
	�����	
���

Abstract. A number of wireless sensor network (WSN) applications demand
timely data delivery. However, existing WSNs are designed to conserve energy
and not to support timely data transmission. This paper shows how WSNs can be
dimensioned, deployed and operated such that both reliable and timely data deliv-
ery is ensured while scarce energy is preserved. The presented solution employs
a novel Medium Access Control (MAC) protocol that incorporates topology con-
trol mechanisms to ensure timely data delivery and reliability control mechanisms
to deal with inherently fluctuating wireless links. An industrial process automa-
tion and control scenario at an oil refinery in Portugal is used to define protocol
requirements. The paper details a TinyOS implementation of the protocol and its
evaluation in a testbed. Under high traffic load, the protocol delivers 100% of data
in time using a maximum node duty cycle as little as 2.48%. In an idle network a
maximum node duty cycle of only 0.62% is achieved. This proposed protocol is
thus an extremely energy efficient solution for time-critical data delivery.

1 Introduction

Future application areas of wireless sensor networks (WSNs) may include industrial
process automation, aircraft control systems or traffic management systems. In such
systems, the WSN is part of a control loop, and predictable network performance in
terms of message transfer delay and reliability is required.

To construct functioning control loops, it is necessary to ensure that sensor data is
transported within a given time bound D. If too much sensor data arrives late or not
at all due to losses on the wireless links, the control loop is unable to function. Data
needs to be transported to the decision point (normally the sink) within a given time DS.
Thereafter, a command needs to be transferred within a given time DA from the sink to
an actuator. DA might be zero if the actuator is located at the sink. Data arriving late
cannot be used in the decision process and has to be considered lost. Early data delivery
is acceptable but not desirable as it implies that resources are used inefficiently. Instead
of delivering data early, the network may spend these resources to improve transmission
reliability or energy consumption of nodes.

This paper presents a MAC protocol that is capable of supporting applications with
the previously outlined communication requirements. The novel TDMA-based Medium
Access Control (MAC) protocol incorporates routing, topology control and reliability
control mechanisms to achieve the set goals. This protocol assumes that a small and

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 216–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Time-Critical Data Delivery in Wireless Sensor Networks 217

relatively static network with predictable traffic patterns is deployed in a known envi-
ronment. These assumptions hold true for the target area of industrial process automa-
tion and control. A network wide transmission schedule is determined before network
deployment, ensuring collision free and timely data delivery. During network operation
reliability control mechanisms are employed to cope with fluctuating characteristics of
the wireless channel.

Designing a protocol with the outlined performance goals in wireless communica-
tion is very challenging. The protocol must be able to provide stable data transport
performance using non-deterministic wireless links. Such performance is the main de-
sign goal, but energy consumption cannot be neglected as a reasonable network lifetime
must be achieved. Moreover, the protocol should not be too complex so that it can be
debugged easily and executed on resource constraint nodes. Finally, the protocol should
allow flexibility to enable the addition of new nodes and minor topology changes.

The paper gives a description of a real deployment scenario for which the protocol is
designed: industrial process automation and control for an oil refinery in Sines, Portu-
gal. This scenario and its requirements motivate the development of the communication
protocol described and evaluated in this paper. The main contributions of the paper are:

– GinMAC: A novel TDMA-based MAC protocol called GinMAC is presented, and
details of its implementation on TinyOS for TelosB nodes are provided.

– GinMAC Evaluation: The testbed evaluation validates that GinMAC can support
the target industrial process control and automation applications. The delay and
reliability requirements are met while achieving extremely low duty cycles, leading
to an acceptable network lifetime.

– Delay Conform Reliability Control: GinMAC incorporates a variety of strategies
to deal with inherently non-deterministic wireless links while adhering to the given
delay requirements. The effectiveness and associated energy cost of the different
reliability control strategies are evaluated and discussed.

The paper is organized as follows. Section 2 describes an industrial process control
and automation scenario which demands a protocol such as GinMAC. The analysis
of this real application scenario defines our network assumptions and requirements.
Section 3 provides a detailed description of GinMAC. Section 4 presents an evaluation
of GinMAC. Section 5 reports on related work dealing with the deployment of time-
critical sensor networks. Section 6 concludes the paper.

2 Assumptions, Requirements and Problem Definition

Most industrial process control and automation applications can be considered time-
critical. In these scenarios, control loops are mapped onto wireless sensor networks.
For such control loops to function, data needs to be delivered reliably and within a
given time bound [1]. Furthermore, it might be necessary to react upon the received
data, and a command needs to be delivered reliably and within a given time bound from
the sink to an actuator in the sensor network. As WSNs are considered to be relatively
unreliable, they so far have seen little use for such tasks. However, given the large cost
savings due to a wireless deployment in industrial settings, the feasibility of wireless
process control and automation is recently investigated.

218 P. Suriyachai, J. Brown, and U. Roedig

Fig. 1. The GALP oil refinery in Sines, Portugal and deployed sensors/actuators

In this section, we use the GALP oil refinery at Sines, Portugal as an example sce-
nario for industrial process control and automation. Oil refineries employ a large num-
ber of sensors to monitor their processes. Cabling cost is the main expense in installing
such systems. Moreover, cabled control systems are inflexible as installation time is
needed whenever production processes must be added or modified. Thus, it is desirable
to utilize WSNs as base for such control systems to circumvent this hurdle.

We visited the GALP oil refinery and spoke to technicians who have installed and
maintained the currently cabled process automation and control systems to identify
system requirements of a WSN.

2.1 The GALP Refinery Application Scenario

The GALP oil refinery at Sines, Portugal is a complex industrial facility that includes a
wide range of processing, and such processing needs careful monitoring and control of
operations. There are currently 35000 sensors (some shown in Figure 1) and actuators
in use in the refinery to perform real-time monitoring of industrial operations such as
leakage detection and measurement of pressure in the pipes, fluid levels and of the
overall environment. The monitoring of the environment in a refinery provides essential
information to ensure the good health of both the refinery and its production processes.
In such a typical section of the distribution system, a number of system conditions need
to be closely monitored by sensors:

– Pressure is monitored within each pipe not only for safety reasons to keep pipe
pressure within pipe tolerances but also to detect leakage and derive flow informa-
tion. Pressure is usually measured in Pascals. A typical pressure sensor can use a
32bit sample size. Pressure is typical sampled at a frequency of f = 1Hz.

– Temperature is monitored within each pipe and tank for safety reasons. In addition,
it is measured in degrees Celsius (C) at a typical frequency of f = 1Hz with a
sample size of 32bits.

– Shut-off valves are monitored to ensure that they are in functioning condition when
needed, and they are periodically partially closed to check that the closing mech-
anism is operational. Valve status can be encoded as 8bit value. The value is sent
periodically (f = 3 ·10−3Hz), which can be adjusted by plant technicians.

The plant also has a number of actuator systems that can be directly controlled from the
refineries control center. These actuators include the following:

Time-Critical Data Delivery in Wireless Sensor Networks 219

– Shut-off valves are integrated into pipes and are used to interrupt product flow
during day to day operations and in the case of emergency.

– Pumps can operate at different speeds to increase or decrease the pressure and thus
flow of product through the piping system.

Sensor samples should be transported to the control center within a few seconds. The
exact delay requirement depends on the production process, but delay bounds of up to
DS = 1s are required. Likewise, actuators must be reached within a few seconds, and a
delay bound of DA = 1s is a typical value. All data losses should be avoided, but small
loss rates in the order of 0.01% are deemed to be acceptable within control loops.

2.2 Assumptions and Requirements

The example refinery deployment can be used to determine which assumptions can be
made and which requirements a WSN has to fulfill. The requirements and assumptions
are derived from the investigated refinery process control and automation application.
However, we are confident that other large scale production facilities have very similar
structures, and therefore the communication protocol presented in this paper is valid for
not only the outlined application scenario but also other similar scenarios.

Deployment: Sensors and actuators are installed at carefully chosen positions. It is pos-
sible to change their location slightly by a few meters during deployment. During op-
eration nodes are static and do not move. In addition, the physical environment is fairly
static as well. Thus, sensor nodes equipped with wireless radios can be positioned such
that reasonable connectivity to a neighboring node is given. It is also possible to deter-
mine worst-case and best-case link reliability during deployment phase of the network.

Maintenance: Most sensors can be mains powered, but some sensors may still be bat-
tery powered. Thus, energy consumption patterns are important but not necessary for
all nodes. Sometimes additional sensors are deployed only for a few days to collect
additional data. The network must consequently provide some degree of flexibility.

Topology: The refinery has a large number of in-field control stations which are inter-
connected by a cabled network and have a power supply. All in-field control stations
forward data to the main refinery control room. The in-field control stations are cur-
rently used to aggregate data from cabled sensors and actuators in their vicinity. If a
WSN is used, the in-field control station can act as a sink to which sensors and ac-
tuators in the vicinity connect via wireless communication. An in-field control station
manages up to N = 25 nodes. Most nodes will be located one hop from the sink (de-
termined by on-site experiment) and at most a distance of 3 hops will be observed. All
nodes controlled by one in-field control station can use one frequency, while neigh-
boring in-field control stations use another transmission frequency. It is feasible to put
nodes in the refinery in small clusters that are interconnected via the in-field control
stations by a cabled network.

Traffic: Nodes might report data frequently with a relatively high data rate (up to f =
1Hz). However, the packet payload can be considered to be quite small. Data is expected
to reach the sink within a given time bound DS. This time bound can be expected to be
in the order of a few seconds; the tightest bound of DS = 1s must be considered. The
commands sent from the sink to actuators must arrive within a given time bound DA

220 P. Suriyachai, J. Brown, and U. Roedig

which can be as low as DA = 1s. The sink might also send commands to sensor node to
set sampling frequencies and to issue other configuration commands. These command
messages may not need to be delivered within a given delay bound. The traffic patterns
of the nodes in the network are reasonably known at deployment time.

3 Time-Critical Data Delivery with GinMAC

With the the target application domain and its requirements in mind, we choose to
implement the following main features in GinMAC:

1. Off-line Dimensioning: Traffic patterns and channel characteristics are known be-
fore network deployment. Thus, complex protocol operations such as calculation
of the transmission schedule is performed off-line and before network deployment.

2. Exclusive TDMA: Only a small number of nodes (N ≤ 25) need to be accommo-
dated. Nodes are placed close to each other, and a high level of interference can be
expected. A TDMA schedule with exclusive slot usage is consequently selected.

3. Delay Conform Reliability Control: The protocol must support delay bounds of DS

and DA while achieving very high data transport reliability. Hence, all available
flexibility in transport delays is used to improve reliability, given that our energy
consumption target permits.

3.1 Off-Line Dimensioning

A network dimensioning process is carried out before the network is deployed. The
input for the dimensioning process are network and application characteristics that are
known before deployment. The output of the dimensioning process is a TDMA schedule
with frame length F that each node has to follow.

The GinMAC TDMA frame consists of three types of slots: basic slots, additional
slots and unused slots. First, the frame contains a number of basic slots which are
selected such that within frame length F each sensor can forward one message to the
sink and the sink can transmit one message to each actuator. Second, the GinMAC
frame uses additional slots to improve transmission reliability. Finally, the frame may
contain unused slots which are purely used to improve the duty cycle of nodes.

The above types of slots within the GinMAC frame must be designed such that the
delay (F < min{DS,DA}), reliability and energy consumption requirements are met.
However, it may not always be possible to find a frame that simultaneously fulfills all
three requirements. If that is the case, some dimensioning assumptions must be relaxed.

To determine the number of basic slots required in a GinMAC frame, a topology
envelope is assumed. This topology envelope is specified as a tree rooted at the sink and
described by the parameters: maximum hop distance H and fan-out degrees Oh (0 ≤ h ≤
H) at each tree level h; we define O0 = 1. The topology envelope can accommodate a
maximum number of Nmax = ∑H

n=1 ∏n
m=1 Om nodes. However, in the actual deployment

a number of nodes N ≤ Nmax may be used. Nodes in the later deployment can take
any place in the network and even move as long as the resulting deployed topology
stays within this topology envelope. The maximum number of sensor nodes Nmax

S and
actuator nodes Nmax

A (with Nmax = Nmax
S + Nmax

A) must also be known.

Time-Critical Data Delivery in Wireless Sensor Networks 221

Possible node position

Sensor in deployment

Actuator in deployment

Level 0

Level 1 (O=4)

Level 2 (O=3)

Level 3 (O=2)

N-1-1-1 N-1-1-2 N-1-2-1 N-1-2-2 N-1-3-1 N-1-3-2 N-2-1-1 N-2-1-2 N-2-2-1 N-2-2-2 N-2-3-1 N-2-3-2

N-1-1-0 N-1-2-0 N-1-3-0 N-2-1-0 N-2-2-0 N-2-3-0

N-1-0-0 N-2-0-0

N-0-0-0
(SINK)

Sink

Fig. 2. Example topology with NA = 2 actuators and NS = 10 sensors

To determine the number of additional slots needed for reliability control, the worst-
case link characteristics in the deployment area must be known. As the network is de-
ployed in a known environment, it is possible to determine this value by measurement.
The configuration of basic and additional slots determines an energy consumption base-
line of nodes. Adding unused slots within the GinMAC frame can improve upon this
baseline. Next, we present how to obtain the GinMAC frame configuration.

3.2 TDMA Schedule and Reliability Control

GinMAC uses TDMA slots whose size is fixed and large enough to accommodate a data
transmission of a maximum length and an acknowledgement from a receiver. Moreover,
these slots are used exclusively; a slot used by one node cannot be re-used by other
nodes in the network. The protocol therefore does not scale to networks with many
nodes. However, as described in Section 2, this scalability restriction is not an issue
in the target application scenario. Furthermore, nodes are close together, resulting in
high levels of interference that would limit potential slot re-usage. Finally, exclusive
slot usage allows us to construct a protocol which is relatively simple to implement.
Basic Slots: The topology envelope, which is defined by the maximum hop distance H
and fan-out degrees Oh, is used to calculate the basic slot schedule within the GinMAC
frame. An example topology envelope for H = 3 and O1 = 4, O2 = 3, O3 = 2 is shown
in Figure 2; recall that we define O0 = 1. Basic slots SB are dimensioned under the
assumption that all positions in the topology envelope will be occupied by nodes.

The basic slots SB accommodate two different traffic flows. First, a number of basic
slots Sup

B are required to accommodate traffic flowing from all nodes to the sink; we
assume actuators might be used for sensing as well. Second, a number of basic slots
Sdown

B are required to accommodate traffic flowing from the sink to actuators (SB =
Sup

B + Sdown
B). A leaf node (level H) in the tree requires one basic TDMA slot within F

to forward data to its parent node. This parent node requires a slot for each child node
plus one slot for its own data for forwarding to its parent. Its slots must be located after
the slots used by its children to ensure that data can travel within one GinMAC frame
through the tree to the sink. The allocation of the transmission slots for the previously
given topology is depicted in Figure 3. The total number of slots in F needed to forward
data to the sink Sup

B can be calculated as follows. A node at tree level h requires Sup
B,h =

Oh+1 ·Sup
B,h+1 + 1 with Sup

B,H = 1. Consequently, Sup
B can be calculated as:

Sup
B =

H

∑
h=1

Sup
B,h ·

h

∏
i=1

Oi (1)

In the topology shown in Figure 2, Sup
B = 100 is required.

222 P. Suriyachai, J. Brown, and U. Roedig
N
-
1
-
1
-
1

N
-
1
-
1
-
2

N-1-1-0

N
-
1
-
2
-
1

N
-
1
-
2
-
2

N
-
1
-
3
-
1

N
-
1
-
3
-
2

N
-
2
-
1
-
1

N
-
1
-
2
-
2

N
-
4
-
3
-
0

N
-
4
-
3
-
0

N
-
4
-
2
-
0

N
-
4
-
2
-
0

N
-
4
-
1
-
0

N
-
4
-
1
-
0

N
-
4
-
0
-
0

N
-
4
-
0
-
0

N
-
3
-
3
-
0

N
-
3
-
3
-
0

N
-
3
-
2
-
0

N
-
3
-
2
-
0

N
-
3
-
1
-
0

N
-
3
-
1
-
0

N
-
3
-
0
-
0

N
-
3
-
0
-
0

N-1-2-0 N-1-3-0 N-1-0-0 N-1-2-0

UPSTREAM SLOTS DOWNSTREAM SLOTS

S1 S2 S3 S4 S5 S6 S7 S8 S9

Fig. 3. Transmission slot allocation for the topology shown in Figure 2

The sink must be able to send a data packet to each actuator within one GinMAC
frame. Thus, the sink requires some slots for these actuators. The slot allocation for
nodes at level h is the minimum between the maximum number of actuators (Nmax

A)
in the network and the number of nodes below this level h. The required number of
downstream slots Sdown

B,h for each node at level h can be calculated as Sdown
B,h = min

{Nmax
A ,∑H

i=h+1 ∏i
j=0 O j} with Sdown

B,H = 0. Hence, Sdown
B can be calculated as:

Sdown
B =

H−1

∑
h=0

Sdown
B,h ·

h

∏
i=0

Oi (2)

In the topology shown in Figure 2 where there is a maximum of Nmax
A = 2 actuators in

the network, Sdown
B = 34 is therefore required.

There could be configuration commands from the sink to nodes. In this case, we
assume that such commands are not time-critical. They thus can be broadcasted when
there is no actuation command to send, reusing the slots provisioned for the actuators.

Additional Slots: The basic slots can only assure data transport if no messages in the
network are lost due to an erroneous wireless channel. However, in an industrial set-
ting this erroneous channel is unavoidable, and consequently our protocol must provide
some transmission redundancy. GinMAC employs the so-called additional slots SA to
implement temporal and spatial transmission diversity.

To determine the number of additional slots, we first need to choose a worst-case
link reliability that GinMAC will support; the definition of reliability is elaborated in
the next paragraph. The deployed system will form a topology that fits into the topology
envelope and uses only links with reliability better than the selected worst-case link
reliability. These links are called good links. Pre-deployment measurements are used to
determine a reasonable value for the worst-case link reliability such that enough good
links are available for topology formation. GinMAC monitors link reliability during
operation and removes the links whose reliability becomes lower than the worst-case
reliability threshold.

We propose two methods for specifying good links. The first method simply uses the
Packet Reception Rate (PRR). A good link is defined as having a PRR above a specific
threshold. The second method applies burst lengths to define worst-case link reliability.
A good link must not have more than Bmax consecutive transmission errors and must
provide at least Bmin consecutive successful transmissions between two bursts. A recent
study has shown that this definition captures link quality better than PRR [3].

Temporal Transmission Diversity: In a scenario where good links can be characterized
with short Bmax and long Bmin, it is possible to efficiently add additional retransmission

Time-Critical Data Delivery in Wireless Sensor Networks 223

slots on the same link to deal with losses. Consider node N-1-1-0 in the example shown
in Figure 2, Bmax = 2 and Bmin = 2. The node requires 3 basic slots for upstream trans-
missions, and in a worst case any 2 of the 3 transmissions might be lost. However, if 4
additional transmission slots are allocated, all 3 packets are guaranteed to be delivered
within the 7 slots provided that the channel conforms to chosen Bmax and Bmin. The
number of necessary additional slots SA,h per node at level h can be calculated as:

SA,h =
⌈

SB,h

Bmin

⌉
·Bmax (3)

The additional upstream and downstream slots are added in the schedule directly after
the respective basic slots for each direction. If a node fails to transmit data in a basic
slot, it can use an additional slot for a retransmission. If links are good links as defined
by Bmax and Bmin, all messages are delivered successfully and in time.

There might be scenarios where only links can be found that have a relatively high
PRR but simultaneously have a long Bmax and short Bmin. In this case, these links are
generally of good quality, but sometimes transmissions are impossible for extended
periods of time. Thus, SA,h would become excessively large, and the delay target may
be violated as the GinMAC frame F might become too long. However, such scenarios
could still be supported using temporal and spatial transmission diversity.

Temporal And Spatial Transmission Diversity: It is possible to duplicate the basic sched-
ule m times within a GinMAC frame if the overall delay goal permits. Nodes in the de-
ployment are then able to join m+1 topologies in which each of them adheres to the set
topology envelope. When a node transmits a message, it sends a copy of the message
in each of the m+1 topologies. The concurrent topologies should be selected such that
they do not use the same links whenever possible. The assumption is that copies of the
same message use disjoint paths and are therefore not corrupted by infrequent but long
burst errors on one link. The number of necessary additional slots SA,h per node at level
h can be calculated as:

SA,h = m ·SB,h (4)

The number m must be selected such that an acceptable high packet delivery rate to the
sink and to actuators can be achieved. This temporal and spacial transmission diversity
clearly costs much more energy than the temporal transmission diversity.

Unused Slots and Energy Consumption: A GinMAC frame consisting of only basic
and additional slots may be shorter than the delay requirements would allow (F <
min{DS,DA}). In this case, it is useful to add the so-called unused slots SU after the
basic and additional slots such that F = min{DS,DA}. A node turns the transceiver off
in these unused slots, and thus the energy consumption of a node is improved.

The energy consumption of a node operating GinMAC can be calculated before net-
work deployment. This calculation is useful in industrial deployments where mainte-
nance schedules must be predictable. For each node position in the topology envelope,
the worst-case and best-case energy consumption can be determined. The worst-case is
incurred if nodes use all assigned slots. In contrast, the best-case is incurred when nodes
do not have to forward sensor data and only maintenance messages are transmitted.

As GinMAC is a TDMA protocol, time synchronization is necessary. For this pur-
pose, a node listens every k frames in the first slot that its parent node transmits data

224 P. Suriyachai, J. Brown, and U. Roedig

upstream. Thus, all nodes synchronize their time with the sink. Every node must always
transmit (a packet without payload if no data is available) in the first slot used for up-
stream data. The packet header contains information on how many packets the sender
has to transmit in the current GinMAC frame. Upon receiving the first packet, the re-
ceiver knows how many consecutive slots need to be activated for packet reception. If a
node does not receive a packet in this first slot, a packet loss is assumed. The node then
will listen in the next receive slot. A node might need to use provisioned additional slots
to receive all messages. Moreover, a node must transmit in the first slot used to send ac-
tuator data to each child node if actuators are located downstream. Again, if a child does
not receive data, it will assume a loss and listen in following slots for a retransmission.
However, even if no actuators are located downstream, a node still needs to listen in
the first downstream slot in case a parent node has to forward non time-critical control
messages. If these control messages are lost, they will not be retransmitted within the
same GinMAC frame.

Best-Case Energy Consumption: We assume that a transceiver requires the same power
p for transmission, reception and idle listening. The power also depends on the task
carried out that determines how long a transceiver is active within a slot. The time t
the transceiver is active determines the energy consumption e = p · t in a slot. It is as-
sumed that within time tl the transceiver can determine that no transmission occurs; an
acknowledged transmission of a packet without payload requires te ; the acknowledged
transmission of a full packet requires t f with tl < te < t f

1. The best-case energy con-
sumption Ebest

h of a node at level h in the topology that does not have to forward actuator
data and uses either only basic slots or Temporal Transmission Diversity is obtained as:

Ebest
h = (tl +(

1
k

+ 1 + Oh+1) · te) · p ∀h > 0 (5)

In the case that both Temporal and Spacial Transmission Diversity is used, the energy
consumption baseline given by Ebest

h must be multiplied by a factor of m+ 1.

Worst-Case Energy Consumption: If data is transmitted in all available slots, the worst-
case energy consumption Eworst

h of a node at level h in the topology is incurred as:

Eworst
h = (

1
k

+ 2 · (SB,h + SA,h)− 1) · t f · p ∀h > 0 (6)

The duty cycle δh of a node at level h is defined as the relation of transceiver on time to
total time and can be calculated as δh = Eh/(F · p). For example, assume retransmission
slots are not needed, and thus SA,h = 0. The energy consumption of a node at level 1
in Figure 2 is Ebest

1 = (tl +(1
k + 4) · te) · p and Eworst

1 = (1
k + 23) · t f · p. If a CC2420

transceiver, a slot size of 10ms, a frame length of F = 1s and k = 100 are assumed, the
duty cycles δ best

1 = 0.45% and δ worst
1 = 11.04% can be achieved.

3.3 Topology Control

A node added to the network must determine in which slots it must become active before
it can transmit or receive data. The steps used to achieve this are described below.

1 For example, a CC2420 transceiver requires approximately the same power for transmission,
reception and listening. It also uses task times of tl = 0.128ms, te = 1.088ms and t f = 4.800ms.

Time-Critical Data Delivery in Wireless Sensor Networks 225

After a node is switched on, it must first obtain time synchronization with the net-
work. Both control and data messages transmitted in the network can be used to obtain
this time synchronization. The node continuously listens to overhear a packet from the
sink or a node that is already operating in the network. After overhearing one message,
the node knows when the GinMAC frame starts as each message carries information
about the slot in which it was transmitted.

As a next step, the node must find its position in the topology which must stay within
the defined topology envelope. For this purpose, the new node listens for packets in
all slots. Transmitted data packets use a header field in which a node that is already a
member of the network advertises potentially available positions. For example, a node at
position N-1-1-0 shown in Figure 2 may advertise in a header of a data packet traveling
to its parent N-1-0-0 that position N-1-1-1 is available. The new node can claim an
advertised position by transmitting a data packet in the slot allocated by the advertising
node for a potential child node. If an acknowledgement for this transmission is received,
the new node has successfully claimed this position in the topology.

A node may be configured with a list of valid nodes that it is allowed to attach to.
This might be necessary to ensure that a node will only attempt to join the network
using known good links as determined by measurements before the deployment. If a
node observes during operation that a link does not fulfill the criteria of a good link,
it may decide to attach to the network using a different link. In such a case, a node
changing position in the topology must inform its potential child nodes of this event.

If a node looses connectivity to its parent node (determined by an unsuccessful data
transmission within one GinMAC frame), it will fall back into the previously described
pattern where a node listens on all slots to find a valid attachment point.

4 GinMAC Evaluation

An evaluation is carried out to verify if GinMAC can fulfill the application requirements
detailed in Section 2. The protocol is implemented on TinyOS 2.0.2 for TelosB nodes.

4.1 Setup

Ideally, the evaluation should be carried out in an industrial environment such as the
GALP oil refinery. However, due to health and safety regulations and possible interfer-
ence with production, we were not yet able to carry out long-term in situ experiments.
Thus, the evaluation testbed is deployed in a corridor of our office building. Nodes are
placed on top of metal door frames in a corridor, and consequently communication links
can have relatively high loss rates (up to 20%). Such link characteristics are present in
the envisioned target scenario where metal pipework obstructs communication paths.

The target platform uses a CC2420 transceiver, and a slot length of 10ms is selected.
This slot size provides enough time to process and transmit a packet of a maximum
payload size and to acknowledge this transmission using hardware acknowledgements.
All packets in the experiment have a size of 44bytes, and thus transmission, reception
and listening task times are tl = 0.128ms, te = t f = 1.952ms, respectively. Time syn-
chronization is obtained every k = 10 frames. The aim is to support a delay bound of
DS = 1s and traffic rates of up to f = 1Hz. Nodes are forced into a static binary tree

226 P. Suriyachai, J. Brown, and U. Roedig

topology with depth H = 3 containing N = 15 nodes that use links defined as “good
links” and by Bmax = 1 and Bmin = 1. The worst-case link reliability is found via pre-
deployment measurements. The automatic topology formation, which is described in
the previous section, is not used in this evaluation. In the experiments, three different
configurations are evaluated: (Config A) basic slots only, (Config B) basic and addi-
tional slots with temporal transmission diversity, and (Config C) basic and additional
slots with both temporal and spacial transmission diversity.

(Config A) For this configuration, the number of basic slots SB = 34 with Sup
B = 34

and Sdown
B = 0 is used as the network for evaluation does not contain actuators. The

system is provisioned such that a delay bound of DS = 1s can be provided. However,
no mechanisms are in place to handle packet losses. SU = 66 unused slots are added to
obtain a GinMAC frame size of F = 100slots, which translates with a slot size of 10ms
to the required delay bound DS. In an idle network where there is no data traffic, a leaf
node will have a best-case duty cycle of 0.21%. In contrast, under full traffic load where
all nodes send a data packet every GinMAC frame, a node directly under the sink will
incur a worst-case duty cycle of 2.56%.

(Config B) In this configuration SB = 34 basic slots and SA = 34 additional slots are
used to deal with the worst-case channel characteristic given by Bmax = 1 and Bmin = 1.
If a transmission fails, additional slots are used for retransmission. SU = 32 unused slots
are added to bring the GinMAC frame size to F = 100slots to provide a delay bound
of DS = 1s. In an idle network, a leaf node will have a best-case duty cycle of 0.21%.
If under full traffic load, a node directly under the sink will incur a worst-case energy
consumption of 5.09%.

(Config C) In this configuration SB = 34 basic slots and SA = 34 additional slots
are used again. The additional slots are used to implement a second disjoint topology.
Nodes transmit data using both binary tree topologies to compensate for losses. SU = 32
unused slots are added to bring the GinMAC frame size to F = 100slots to provide a
delay bound of DS = 1s. In an idle network, a leaf node will have a best-case duty cycle
of 0.41%. If under full traffic load, a node directly under the sink will incur a worst-case
duty cycle of 5.09%.

In all experiments, nodes emit data packets at the traffic rate f where (0.1Hz ≤ f ≤
1Hz). The achieved duty cycle δ of all nodes and the message delivery reliability r
at the sink are recorded. An experiment lasts for 15minutes for each traffic rate. In
addition, five experiments are repeated for each traffic rate to find an average of the
energy consumption and delivery reliability measurements.

4.2 Results

Configuration A: Before evaluating the first configuration in the corridor deployment,
a separate experiment setup on a table is carried out. The aim of this initial table top
evaluation is to determine how the protocol performs in a setting with negligible link
errors. In the table top deployment, all 15 nodes are placed in a grid with a spacing of
30cm , and the configuration similar to that in the corridor deployment is applied.

Figure 4 presents the evaluation results for both table top and corridor deployments.
These results are the average node duty cycle δ of all nodes, the average worst-case and
average best-case duty cycles of all nodes, and the achieved delivery reliability r.

Time-Critical Data Delivery in Wireless Sensor Networks 227

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1 1

A
ve

ra
ge

 N
od

e
D

ut
y

C
yc

le
 [%

]

Message Generation Frequency f [Hz]

Average Node Duty Cycle
Table Deployment

Corridor Deployment
Worst-Case

Best-Case

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0.1 1

D
at

a
D

el
iv

er
y

R
el

ia
bi

lit
y

[%
]

Message Generation Frequency f [Hz]

Message Delivery Reliability
Table Deployment

Corridor Deployment
100%

Fig. 4. Average node duty cycle δ and reliability r using configuration A

The achieved duty cycles in both deployments are close to the theoretical best-case
for low traffic loads and close to the theoretical worst-case for the maximum traffic
rate of f = 1Hz. In the table top deployment, delivery reliability r is close to the de-
sired reliability of 100% as transmission errors are rare. However, in the more realistic
corridor deployment reliability can drop as low as 97.2% (one leaf node was found to
have a high loss rate of 20%), resulting in an unacceptable performance for the appli-
cations described in Section 2. Nodes achieve slightly lower duty cycles in the corridor
deployment as less data, due to transmission losses, is transported to the sink.

Configuration B: Figure 5 shows the evaluation results for the deployment of config-
uration B. The delivery reliability is 100% which is desired for the target applications.
Thus, the temporal transmission diversity in configuration B is able to compensate link
errors seen in the configuration A. Although a price in terms of energy has to be paid
to achieve improved reliability, in this case such cost was negligible as only a small
number of retransmission slots were required over the duration of the experiment.

Configuration C: Figure 5 depicts the evaluation results for the deployment of config-
uration C. The delivery reliability is 100% similar to that in configuration B, meeting
the requirement of our target applications. However, this method is more costly in terms
of energy than configuration B. The increase in energy consumption compared to con-
figuration A is at most 0.53%.

4.3 Findings

The evaluation shows that i) GinMAC can support the target application scenario and
ii) the reliability control mechanisms as provided by GinMAC are essential to achieve
the required high delivery reliability.

Under the highest traffic load of f = 1Hz, the protocol can deliver 100% of data
in time with a node duty cycle of at most 2.48%, as observed by nodes at level 1 in
configuration B. The average node duty cycle δ of all nodes in this test scenario is only
0.76%. In an idle network a node duty cycle of at most 0.62% is achieved by nodes at
level 1, while its average node duty cycle δ of all nodes is as little as 0.38%. Common
MAC protocols aim for a duty cycle of approximately 2%, which increases with traffic
load. Our evaluation illustrates that GinMAC matches this aim at a comparable duty
cycle of 2.48% under high traffic load while providing timely and reliable data delivery.

228 P. Suriyachai, J. Brown, and U. Roedig

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 1

A
ve

ra
ge

 N
od

e
D

ut
y

C
yc

le
 [%

]

Message Generation Frequency f [Hz]

Average Node Duty Cycle
Corridor Deployment, Conf B
Corridor Deployment, Conf C

Worst-Case, Conf B and C
Best-Case, Conf B
Best-Case, Conf C

Fig. 5. Average node duty cycle δ using configurations B and C

The presented implementation would allow for a number of optimizations. For ex-
ample, sensor readings have only a size of a few bytes, but our 10ms slots can accom-
modate much larger packet sizes. Thus, a number of data readings could be transmitted
within one slot, which would reduce the number of slots per level. Such an optimization
would enable us to conserve more energy or to achieve much tighter delay bounds.

5 Related Work

The WSN research community has to date produced a number of solutions addressing
timely data delivery in wireless sensor networks [4]. However, most of these proposals
do not completely match the requirements outlined in Section 2. Recent work highlights
their shortcomings and points out that more research in this domain is required [2].

Closest to the presented work is the WirelessHART [5] protocol, which is specified
by the HART communication foundation. WirelessHART is designed to support indus-
trial process and automation applications. In addition, WirelessHART uses at its core a
synchronous MAC protocol called TSMP [6], which combines TDMA and Frequency
Division Multiple Access (FDMA). A central entity called Network Manager is used to
assign collision free transmission slots and to select redundant routing paths through a
mesh network. Thus, the protocol guarantees an upper delay bound while ensuring high
transport reliability. Our protocol uses off-line dimensioning to circumvent the com-
plexity and communication overheads that are introduced by this Network Manager.

Prabh [7] specifies a TDMA-based MAC protocol for constructing a network that
is dimensioned using scheduling theory. The protocol assumes that a network layout is
in a hexagonal shape and that only neighboring nodes in the topology interfere. Based
on these assumptions, a carefully designed schedule is devised to achieve the mini-
mum possible bound on message transfer delay. GinMAC is more flexible in terms of
topology, and Prabh’ s methods are evaluated using only simulations.

Dwarf [8] uses unicast-based partial flooding which limits the degree of transmission
redundancy to preserve energy while maintaining reliability. In contrast to our work, all
nodes are categorized into rings based on their distance to the nearest sink. The protocol
selects a fixed number of forwarding neighbors according to their ring level and wake-

Time-Critical Data Delivery in Wireless Sensor Networks 229

up times to decrease an end-to-end delay. When retransmission is needed, a packet is
resent to a different forwarding neighbor.

6 Conclusion

The paper details GinMAC that achieves time-critical data delivery in WSNs with ex-
tremely low energy expenditure. Hence, the protocol can support industrial process
automation and control applications required in the outlined GALP case study. Our
evaluation shows that the reliability control mechanisms are practical and essential to
deliver the high reliability requirement. In particular, these mechanisms of GinMAC
allow us to balance delay, reliability and energy consumption requirements before net-
work deployment. Such achievement is needed for carefully planned industrial control
networks. Our next step is to evaluate GinMAC in a deployment at the GALP refinery.

Acknowledgement

This work has been partially supported by the European Commission under the FP7
contract FP7-ICT-224282 (GINSENG).

References

1. Lian, F.L., Moyne, J., Tilbury, D.: Network Design Consideration for Distributed Control Sys-
tems. IEEE Trans. Control Syst. Technol. 10, 297–307 (2002)

2. Willig, A.: Recent and Emerging Topics in Wireless Industrial Communications: A Selection.
IEEE Trans. Ind. Informat. 4, 102–124 (2008)

3. Munir, S., Lin, S., Hoque, E., Nirjon, S., Stankovic, J., Whitehouse, K.: Addressing Burstiness
for Reliable Communication and Latency Bound Generation in Wireless Sensor Networks. In:
Proc. 9th Int. Conf. Information Processing in Sensor Networks, Sweden (April 2010)

4. Stankovic, J., Abdelzaher, T., Lu, C., Sha, L., Hou, J.: Real-time communication and coordi-
nation in embedded sensor networks. Proc. IEEE 91, 1002–1022 (2003)

5. HART Communication Foundation, WirelessHART Data Sheet (April 2010),
������������	��
��������

6. Pister, K.S.J., Doherty, L.: TSMP: time synchronized mesh protocol. In: Proc. IASTED Symp.
Parallel and Distributed Computing and Systems, Orlando, FL, USA (2008)

7. Shashi Prabh, K.: Real-Time Wireless Sensor Networks. Ph.D. Thesis, Department of Com-
puter Science, University of Virginia, Charlottesville, VA, USA (2007)

8. Strasser, M., Meier, A., Langendoen, K., Blum, P.: Dwarf: Delay-aWAre Robust Forwarding
for Energy-Constrained Wireless Sensor Networks. In: Proc. 3rd IEEE Int. Conf. Distributed
Computing in Sensor Systems, Santa Fe, NM, USA, pp. 64–81 (2007)

http://www.hartcomm.org/

MetroTrack: Predictive Tracking of Mobile
Events Using Mobile Phones

Gahng-Seop Ahn1, Mirco Musolesi2, Hong Lu3,
Reza Olfati-Saber3, and Andrew T. Campbell3

1 The City University of New York, USA
gahn@ccny.cuny.edu

2 University of St. Andrews, United Kingdom
3 Dartmouth College, Hanover, NH, USA

Abstract. We propose to use mobile phones carried by people in their
everyday lives as mobile sensors to track mobile events. We argue that
sensor-enabled mobile phones are best suited to deliver sensing services
(e.g., tracking in urban areas) than more traditional solutions, such as
static sensor networks, which are limited in scale, performance, and cost.
There are a number of challenges in developing a mobile event tracking
system using mobile phones. First, mobile sensors need to be tasked be-
fore sensing can begin, and only those mobile sensors near the target
event should be tasked for the system to scale effectively. Second, there
is no guarantee of a sufficient density of mobile sensors around any given
event of interest because the mobility of people is uncontrolled. This re-
sults in time-varying sensor coverage and disruptive tracking of events,
i.e., targets will be lost and must be efficiently recovered. To address
these challenges, we propose MetroTrack, a mobile-event tracking system
based on off-the-shelf mobile phones. MetroTrack is capable of tracking
mobile targets through collaboration among local sensing devices that
track and predict the future location of a target using a distributed
Kalman-Consensus filtering algorithm. We present a proof-of-concept
implementation of MetroTrack using Nokia N80 and N95 phones. Large
scale simulation results indicate that MetroTrack prolongs the tracking
duration in the presence of varying mobile sensor density.

1 Introduction

Urban sensing and tracking [1,5] is an emerging area of interest that presents a new
set of challenges for traditional applications such as tracking noise, pollutants, ob-
jects (e.g., based on radio signatures using RFID tags), people, cars, or as recently
discussed in the literature and popular press, weapons of mass destruction [16].
Traditional tracking solutions [4,7] are based on the deployment of static sen-
sor networks. Building sensor networks for urban environments requires careful
planning and deployment of possibly a very large number of sensors capable of
offering sufficient coverage density for event detection and tracking. Unless the
network provides complete coverage, it must be determined in advance where
the network should be deployed. However, it is challenging to determine where
the network should be deployed because events are unpredictable in time and

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 230–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 231

space. We believe the use of static networks across urban areas has significant
cost, scaling, coverage, and performance issues that will limit their deployment.

An alternative design of such a sensor system, which we propose in this pa-
per, is to use people’s mobile phones as mobile sensors to track mobile events.
Increasingly, mobile phones are becoming more computation capable and embed
sensors and communication support. Therefore, making a sensor network based
on mobile phones is becoming more of a reality. For example, many high-end
mobile phones, such as Nokia N95 phones, include a number of different radio
technologies (e.g., multiple cellular radios, WiFi, and Bluetooth), and sensors
(e.g., accelerometer, microphone, camera, and GPS) that are programmable.
We imagine that micro-electro-mechanical systems (MEMS) technology will al-
low for the integration of more specialized sensors (e.g., pollution/air quality
sensor, bio sensor, and chemical sensor) in the future. In our design, we assume
that we can exploit the mobile phones belonging to people going about their
daily lives or defined groups (e.g., federal employees, transit workers, police).
Ultimately, the more people who opt in to being a part of the sensor network,
the better the density and sensing coverage will be and the more effective urban
sensing system will become in delivering services.

There are several important challenges in building a mobile event tracking sys-
tem using mobile sensors. First, mobile sensors must be tasked before sensing [4].
Another issue that complicates the design of the system is that the mobility of
mobile phones (therefore, the mobile sensors) is uncontrolled. This work diverges
from mobile sensing systems that use the controlled mobility of a device (e.g., a
robot) as part of the overall sensor system design. In such cases, the system can be
optimized to drive the mobility of the sensors in response to detected events [11].
Due to the uncontrolled mobility of the mobile sensors, there is no guarantee that
there will always be high enough density of mobile sensors around any given event
of interest. The density changes over time so that sometimes there is a sufficient
number of devices around the event to be tracked, and at other times, there is lim-
ited device density. One can think of this as dynamic sensor network coverage. The
event tracking process has to be designed assuming that the process of tracking
will be disrupted periodically in response to dynamic density and coverage con-
ditions. Thus, a fundamental problem is how to recover a target when the system
loses track of the target due to changing coverage.

In this paper, we propose MetroTrack, a system capable of tracking mobile
events using off-the-shelf mobile phones. MetroTrack is predicated on the fact
that a target will be lost during the tracking process, and thus it takes compen-
satory action to recover the target, allowing the tracking process to continue.
In this sense, MetroTrack is designed to be responsive to the changing density
of mobile phones and the changing sensor network coverage. The MetroTrack
system is capable of tasking mobile sensors around a target event of interest and
recovering lost targets by tasking other mobile sensors in close proximity of the
lost target based on a prediction of its future location.

MetroTrack is based on two algorithms, namely information-driven tasking
and prediction-based recovery. The tasking is information-driven because each

232 G.-S. Ahn et al.

sensor node independently determines whether to forward the tracking task to
its neighbors or not, according to its local sensor state information. If the sen-
sor readings meet the criteria of the event being tracked, then the sensor node
forwards the task to its neighbors, informing them it detected the event.

The recovery is based on a prediction algorithm that estimates the lost target
and its margin of error. MetroTrack uses a geocast approach similar to the
algorithms in [12,8] to forward the task to the sensors in the projected area of the
target. In our prior work, Olfati-Saber [15] presented the Distributed Kalman-
Consensus filter (DKF) that defined the theoretical foundation of distributed
tracking of mobile events. In this paper, we extend this work and importantly
implement it in an experimental mobile sensing network. We adapt the DKF for
the prediction of the projected area of the target.

MetroTrack does not have to rely on a central entity (i.e., a tracking leader)
because MetroTrack tracks events based on local state and interactions between
mobile phones in the vicinity of a target. Therefore, MetroTrack is simple, flex-
ible, robust, and easy to deploy. However, we do not rule out the potential help
from infrastructure. Also, mobile phones occasionally interact with the back-end
servers using cellular or infrastructure-based Wi-Fi connectivity for initial task-
ing purposes or to inform the back-end of the targets progress. In this paper, we
focus on the interaction between mobiles and reserve the issues of the interaction
with the back-end servers as future work.

Also, we do not discuss what would provide the incentive for more people to
opt in (even if we believe mechanisms devised for peer-to-peer systems can be
exploited [13,17]), nor do we discuss the important privacy, trust, and security
issues that predicate the wide-scale adoption of these ideas. Rather, we leave
those issues for future work and focus on the proof of concept and evaluation of
a system that is capable of tracking mobile events using mobile phones. To the
best of our knowledge, this is the first sensor-based tracking system of mobile
events using mobile phones.

The paper is organized as follows. Section 2 describes the information-driven
tasking and the prediction-based recovery of MetroTrack. In Section 3, we present
the mathematical formulation of the prediction algorithm that is the basis for the
prediction-based recovery. In Section 4, we discuss the implementation and the
performance evaluation of MetroTrack. A proof-of-concept prototype of Metro-
Track is implemented using Nokia N80 and N95 phones to show that MetroTrack
can effectively track a mobile noise source in an outdoor urban environment.
Following this, in Section 5, we address the large-scale design space of Metro-
Track which cannot be analyzed from a small-scale testbed deployment. Section
6 presents some concluding remarks.

2 MetroTrack Design

2.1 Information-Driven Tasking

The tracking initiation can be done in two ways, i.e., user initiation or sentry
sensor [4] initiation. A user can request to track an event described by certain

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 233

attributes when the target event is encountered. Another way is to rely on sentry
nodes to detect the event to be tracked. The sentry nodes can be selected from
mobile nodes that have enough power to periodically turn on their sensors and
start sampling. When one of the sentry nodes detects an event that matches
the pre-defined event description, the node initiates the tracking procedure. The
device associated with the requesting user or first sentry node that has detected
the event becomes an initiator.

The tasking is a distributed process. Each neighboring sensor node that re-
ceives the task message performs sensing. The sensor node does not forward the
task message to its neighbors unless it detects the event. The task message is
forwarded by the sensors that are tasked and have detected the event. Hence,
the nodes in close proximity to the event are tasked and the size of the tasked
region is one hop wider than the event sensing range. As a result, the sensors just
outside the event sensing range are already tasked and ready to detect the event
wherever it moves. Each sensor node locally determines whether it has detected
the event by comparing the sensor reading and the description of the event in
the task message. As discussed earlier, the description of the event includes the
modality of the sensors that can detect the event and the methodology by which
the event can be detected (such as a threshold value). If the modality of the
sensor node matches one of the modalities specified in the task message (i.e.,
the device is able to sense the event), then the sensor node starts the sampling
process.

The responsibilities of the sensor that detects the event are as follows. The
sensor should keep sensing the event using a high sampling rate and report the
data to the back-end servers. In addition, the sensor should periodically forward
the task message to its neighboring sensor nodes. The sensors that are tasked
with one of the task messages containing the same event identifier form a tracking
group. We note that this algorithm is not based on the election of a leader.
Maintaining a leader for a group requires overhead. In addition, the failure of
the leader affects the overall operation of the tracking system. MetroTrack can
maintain the group and task the sensors to track the target without the need of
a leader.

2.2 Prediction-Based Recovery

This section describes the prediction-based recovery. First, the recovery initiation
is as follows. The task of tracking the event is distributed among multiple mo-
bile sensors. If a sensor is not detecting the event, this is not considered sufficient
to infer that the target is completely lost since other sensors may still be sensing
the event. In MetroTrack, a mobile sensor listens to other mobile sensors to min-
imize the false positives of such decisions. A sensor that has detected the event
previously but currently is not detecting the event listens to the task messages
forwarded from its neighboring nodes. If none of the neighboring nodes is forward-
ing the task message, the device infers that the target is lost. Assuming that the
speed of the target is comparable to that of a tracking node and the sampling rate
of sensors is high enough to detect the event, the overhearing will prevent false

234 G.-S. Ahn et al.

positives. However, there might still be false positives if the density of sensors is
not sufficient. If a sensor makes a wrong decision, each node will forward an unnec-
essary number of task requests. However, the penalty is bounded by limiting the
duration of the recovery process. In addition, MetroTrack performs suppression
to explicitly stop the sensors from forwarding unnecessary messages. When one
of the sensors declares that the target is lost, as described above, then the sensor
initiates the recovery process by broadcasting a recovery message.

The recovery process is based on the estimation of the location of the lost
target and the error margin associated to the prediction. The recovery message
contains the information about the lost target. MetroTrack adopts a geocast
scheme similar to the algorithms in [12,8] to forward the recovery message to the
sensors in the projected area in which the target will likely move. The sensors
that receive the recovery message attempt to detect the target. If one of the
sensors receiving the recovery message detects the target, then the recovery
process is complete. The sensor that recovered the target broadcasts a task
message, which resumes the information-driven tasking part of the protocol. All
the hosts in the recovery area are in the recovery state. We considered a projected
circular area. The center of the projected area is the predicted target location
and the radius is the error margin of the prediction. The calculation of this area
is based on the Kalman filter forecasting techniques, as described in Section 3.
MetroTrack calculates the radius R of the recovery area as:

R = Rp + Rs + Rc (1)

where Rp corresponds to the error margin associated to the prediction (see Equa-
tion 8 in Section 3). Our goal is to task all the sensors that are likely to be in
contact with the target inside the projected region so we add the sensing range
(Rs) to this radius. Finally, we also add the communication range of the devices
(Rc) in order to be able to have the nodes that are at a one-hop distance from
those at the border of the area with radius Rp+Rs in recovery state. These
nodes are likely to enter the area and are particularly useful in spreading the
recovery messages in the case of sparse network topologies. We note that the
disk-shaped model is an approximated conceptual model that, in a real deploy-
ment, is influenced by the GPS errors for localization and by non uniform radio
propagation and interferences. A node that has received the recovery message
stays in recovery state until the node moves outside the recovery area or the re-
covery process timer expires. A timeout is specified to limit the duration of the
recovery process. If the target is not recovered after the expiration of the timer,
MetroTrack stops tracking the target. The nodes in recovery state periodically
broadcast the recovery message to their instant (one-hop) neighbors so that new
nodes that move into the recovery area can receive the recovery message.

It may happen that some sensors can be still in the recovery state while other
sensors have already recovered the target and started to track it. It may also
happen that the target event disappears (e.g., a sound source that is suddenly
silent). MetroTrack addresses this problem using two mechanisms. First, it lim-
its the duration of the recovery process and the spatial dissemination of the

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 235

recovery messages. Second, MetroTrack performs a suppression process to re-
duce unnecessary overhead. Every node that recovers the target or receives a
task message broadcasts a suppression message that is disseminated among the
devices in the recovery area. Every node that receives the suppression message
inside the recovery area re-broadcasts the message, or, if the node is in recovery
state, it stops the recovery process and stops broadcasting the recovery message.

3 Prediction Algorithm

3.1 Prediction Model

In this section, we provide an overview of the prediction model in order to fully
understand the collaborative prediction protocol used for the recovery process.
We define a generic model for predicting the movement of a target in geograph-
ical space based on the Constant Velocity model [3], which is widely used in
mobile tracking. Despite of the term ‘constant velocity’, the Constant Velocity
model represents a moving target with dynamically changing velocity with cer-
tain variance. We consider a moving target with position q ∈ �2 and a velocity
p ∈ �2. The one-step predictor is defined as follows:

x̂(k + 1) = Ax̄(k) + Bw(k) (2)

where x(k) = [q1(k), p1(k), q2(k), p2(k)] denotes the state of the target at time
k. x̄(k) indicates the prior state estimate at step k given the knowledge of the
movement under observation, whereas x̂ indicates the state estimate of the same
process at time k+1. q1 and p1 are the position and the speed on the x-axis and
q2 and p2 are the position and speed on the y-axis, respectively. w(k) is a zero-
mean Gaussian noise denoted by N(0, 1). The prior estimate is the information
stored in the phones and periodically exchanged among the phones that are in
reach. The matrix A and B are defined as follows:

A =

⎛
⎜⎜⎝

1 ε 0 0
0 1 0 0
0 0 1 ε
0 0 0 1

⎞
⎟⎟⎠ , B = I2 ⊗ G, with G =

(
ε2σ0/2

εσ0

)

where ε is the interval of steps and ⊗ denotes the Kronecker product of matrices.
The prediction for the instant k + 2 is defined as follows:

x̂(k + 2) = A2x̄(k) + ABw(k) + Bw(k + 1) (3)

The generic prediction for the instant k + m is defined as:

x̂(k + m) = Amx̄(k) +
m−1∑
j=0

AjBw(k + m − 1 − j) (4)

The meaning of the symbols x̂ and x̄ is the same of the k+1 case. This equation
can be rewritten as:

x̂(k + m) = Amx̄(k) + v(k) (5)

236 G.-S. Ahn et al.

where v(k) is the noise associated to the k + m prediction defined as:

v(k) =
m−1∑
j=0

AjBw(k + m − 1 − j) (6)

The variance of v(k) is

Rv =

⎛
⎜⎜⎜⎝

σ2
vq1

0 0 0
0 σ2

vp1
0 0

0 0 σ2
vq2

0
0 0 0 σ2

vp2

⎞
⎟⎟⎟⎠ = [

m−1∑
j=0

AjBBT (Aj)T]Rw (7)

where Rw = I4. Therefore, the center of the recovery region is (q̂(k+m)1 , q̂(k+m)2).
We consider a radius for the recovery area equal to:

r = max[2σvq1
, 2σvq2

] (8)

The value of r is chosen in order to obtain a 95% confidence interval for the
projected recovery area. In other words, we can assume that the target will be
located in the recovery area with approximately 95% probability.

3.2 Distributed Kalman-Consensus Filter

In our prior work, Olfati-Saber [15] presented the Distributed Kalman Consensus
Filter that defined the theoretical foundation of distributed tracking of mobile
events. Algorithm 1 is the outcome of [15]. We feed our prediction model pre-
sented in the previous section to Algorithm 1 to predict the location of the target
after it is lost and to calculate the projected area for the recovery process.

Each node i runs the distributed estimation algorithm shown in Algorithm
1. We indicate with zi the observation performed by each node. Ni indicates
the neighbors of node i. The message that is periodically broadcasted contains
the following tuple: msgi =[ui, Ui, x̂i]. The local aggregation and calculation is
described in step 3, whereas the estimation of the consensus among the neighbors
is performed in step 4. The equations of the update of the filter are presented in
step 5.

The sensing model that we use is the following:

zi(k) = Hi(k)x(k) + vi(k) (9)

where Hi(k) is the observation matrix and vi(k) is the zero-mean Gaussian noise
of the measurements of the ith node with covariance Ri. In our implementation,
we assume that the value of the observation matrices Hi(k) is the same for the
all nodes over time and it is equal to:

H =
(

1 0 0 0
0 0 1 0

)

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 237

Algorithm 1. Distributed Kalman Consensus Filter
1. Initialization: Pi = P0, x̄i = x(0)
2. while new data exists do
3. Locally aggregate data and covariance matrices:

Ji = Ni ∪ {i}
uj = HT

j R−1
j zj , ∀j ∈ Ji, yi =

∑
j∈Ji

uj

Uj = HT
j R−1

j Hj , ∀j ∈ Ji, Si =
∑
j∈Ji

Uj

4. Compute the Kalman-Consensus estimate:

Mi = (P−1
i + Si)−1

x̂i = x̄i + Mi(yi − Six̄i) + εMi

∑
j∈Ni

(x̄j − x̄i)

5. Update the state of the Kalman-Consensus filter:

Pi ← AMiA
T + BQBT

x̄i ← Ax̂i

6. end while

We also assume that the value of Ri is equal to a constant for all the matrices:

Ri = σ2
RI2 (10)

The value of Q is the same for all the devices since it is only dependent on the
value of the process under observation that is the same for all the devices (i.e.,
the position of the moving target):

Q = σ2
0I4 (11)

Finally, P0 is defined as
P0 = σ2

RI4 (12)

4 Implementation and Experiment

4.1 Implementation

We built a proof-of-concept, mobile phone-based testbed to evaluate the Metro-
Track system. The testbed consists of Nokia N80 and N95 smart phones (shown
in Figure 1(a)) running Symbian OS S60. Both of them are equipped with a
microphone and a camera that are accessible via software. With respect to net-
work connectivity, they are both equipped with Bluetooth and WiFi interfaces.

238 G.-S. Ahn et al.

(a) (b)

Fig. 1. (a)From left to right: N95, GPS dongle, N80. (b)The boombox bike.

The N95 phones also feature an integrated GPS and an accelerometer. Since the
N80 phones are not equipped with a GPS, we used an external dongle (shown
in Figure 1(a)) based on the SiRFstar III chipset connected to the phone via
Bluetooth. The devices use GPS information for sound source localization and
the recovery process. In our testbed, we used WiFi for local ad hoc communi-
cations between mobile phones and used UDP broadcasting. The MetroTrack
system is written in PyS60 [14], Nokia’s porting of Python 2.2 for Symbian OS
S60. Currently, PyS60 is more flexible than the Nokia implementation of J2ME
for the N80 and N95 phones with respect to the programming interface for ac-
cessing the sensors embedded on the phones. With respect to the Symbian C++
development environment, it provides high-level abstractions that are extremely
useful and convenient for the rapid prototyping of applications.

We implement an experimental sound source tracking application interfaced
with MetroTrack. The system architecture is illustrated in Figure 2. We record
sound samples using the microphone every 2 s. To estimate the distance from the
target, we compute the Root Mean Square (RMS) of the average sound signal
amplitude. If the calculated RMS value is distinctively greater than the ambient
noise level, the sensor determines that the target event is detected and feeds
the RMS value to the distance estimation component. An alternative method
is bearing estimation [6], but it is not applicable to mobile phones due to the
requirement of two microphones on one device with known orientation.

We implement two prediction mechanisms, a local Kalman filter (LKF) [10]
and a consensus-based distributed Kalman filter (DKF) [15] in order to eval-
uate the trade-offs between the two. The LKF is simply a special case of the
DKF without sharing information among neighboring devices. We implement
the DKF, as described in Section 3. With respect to the mathematical model
presented in Section 3, for the LKF, we assume that Ji = ∅ ∪ {i}.

The distance between the sensor and the sound source can be estimated from
the RMS value assuming that we know the original volume of the target sound
and the pattern of the sound attenuation over distance. The prototype is based
on a trilateration, which is a widely used localization scheme in GPS. After
estimating its location and distance from the target, each sensor shares this
information with its one-hop neighbors for trilateration, which require distances
from two reference points for 2-D localization. The target location estimated by

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 239

Fig. 2. System Architecture

the sound source localization is fed into the Distributed Kalman filter component
as the observation of the node.

4.2 Experiment

We mount a boombox, which plays constant pink noise (i.e., a signal with a
frequency spectrum such that the power spectral density is proportional to the
reciprocal of the frequency), on the back of a bike (aka boombox bike). We move
it at a slow pace along paths around a university campus at approximately
walking speed. We set the speaker of the boombox to face down toward the
ground (as shown in Figure 1(b)) so that the sound would be reflected and
spread omni-directionally in 2-D dimensions.

We set up a tracking testbed composed of two N95 phones and nine N80
phones connected to nine Bluetooth GPS dongles. The sound is sampled by the
microphone on each phone for 0.5 s. The sampling is performed every 2 s. The
time interval between each sampling is 1.5 s. Because the mobile phones are
not always performing the tracking process (i.e., it can be defined as oppor-
tunistic), we argue that the maximum achievable sampling rate and minimum
transmission interval of the messages should be used. Energy cost is not an is-
sue if the device is not frequently involved in the tracking process. The values
of the intervals are those sufficient for both the N80 and N95 phones for the
RMS calculation, the distance estimation, the sound source localization, and the
Distributed Kalman filter update calculation. We note that in existing tracking
systems, the time intervals are much smaller than those used in MetroTrack (i.e.,
approximately 0.1-0.2 s) [7]. We set the WiFi transmission power to 100 mW .
The communication range is between 25 and 30 m.

We perform the sound source tracking experiment evaluating the accuracy
of the sound source localization as well as the effectiveness of the MetroTrack
tasking and recovery. The GPS trace of the target is shown in Figure 3(a).
Each person carries a phone and a Bluetooth dongle. Given the limitation of the
number of phones and people, we emulate the density of an urban setting by
allowing people to move around within 40 m from the target (i.e., the boombox
bike). Given the restriction of being within 40 m from the target, each person
was allowed to move randomly in and out of the sensing range (approximately
20 m). This mobility setup is sufficient for testing the effectiveness of the tasking
process. We emulate the case of losing the target by turning the sound off for 16

240 G.-S. Ahn et al.

 42.39

 42.395

 17.28 17.285 17.29 17.295

 42.34

 42.35

 42.36

 42.37

 42.38

 42.39

 42.4

 17.25 17.26 17.27 17.28 17.29 17.3

La
tit

ud
e

(d
ec

im
al

 m
in

ut
es

)

Longitude (decimal minutes)

Loc trace
DKF trace
LKF trace

GPS trace

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

E
rr

or
 (

m
et

er
s)

Time (seconds)

Loc trace
DKF trace
LKF trace

(b)

Fig. 3. (a) Trace of target’s location. (b) Time trace of the localization error.

s and then turning the sound on again to observe whether the recovery process
is working effectively.

The trace of the target measured using the sound source localization scheme
is shown in Figure 3(a). (See the curve Loc trace in the plot.) As observed in
Figure 3(a), the measured location is noisy. The sound source localization error
is not only caused by the error of the RMS measurement but also by the error of
the GPS positioning estimation of the mobile sensors. Each mobile sensor uses
its own GPS receiver, and the accuracy of these receivers varies, even if they are
of the same model. Also, some mobile sensors do not have valid GPS readings
at all on a cloudy day. We have learned that calibrating the GPS reading among
different sensors and checking the integrity of the GPS position of the mobile
sensors is a real challenge that needs to be addressed in the future. The inset
in Figure 3(a) shows a zoomed section of the gap in the traces related to the
recovery phase. For clarity, the localization traces are not shown in the inset.

We also test the LKF and DKF estimations by setting σR to 7 m because
we learned by trying the experiment several times that the standard deviation
of the sound source localization error (σR) is approximately 7 m. The trace of
the LKF and DKF estimations of the target location is also shown in Figure
3(a). In order to show the correctness of the prediction mechanism, we plot the
time trace of the error of the location estimation in Figure 3(b). The target in
this figure starts at instant t = 0 from the top of the area to the bottom. In
Figure 3(b) we show the time interval of the first 100 seconds, including the
interval during which the target was lost (i.e., between time t = 37 s and t =
54 s). We observe that the estimation error of DKF is smaller than the error of
the LKF.

5 Simulation Study

We evaluate the performance of MetroTrack for a number of different deployment
scenarios using a time-driven simulator based on MATLAB. The simulation
results complement the experimental evaluation by studying issues not easily
evaluated in a small-scale testbed, such as scaling and a sensitivity analysis

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 241

of the system. In this section, we show the tracking duration performance for
various sensor densities and sensing ranges.

We run each simulation scenario 20 times with each simulation duration of
300s. The target event is active from the beginning to the end of every sim-
ulation run. The simulation area is a 1000m×1000m square. We assume an
omni-directional radio model with a transmission range of 100m. The sensing
ranges of 100m and 50m are tested. If the target is within the sensing range of
a tasked sensor, the sensor is able to estimate the location of the target. The
distribution of the localization error is modeled using a zero-mean Gaussian dis-
tribution with standard deviation σR = 20m. Targets characterized by mobility
patterns with larger standard deviations are more difficult to track. Every tasked
sensor estimates the location of the target once in every sampling interval of 1s.
The timeout value for the recovery process is 20s.

For the mobility of mobile sensors and the target, we consider the Constant
Velocity model [3], which is the underlying model that MetroTrack uses for the
Kalman filters, as discussed in Section 3. Initially, mobile sensors are randomly
placed according to a uniform distribution on the plane. The standard deviation
of the movement dynamics of the target and sensor nodes σ0 is 0.2m/s. When a
target or sensor node reaches the boundary of the simulation area, it changes its
direction toward one of the other sides of the simulation area. We have also sim-
ulated two other widely used mobility models, the Random Way-point model [9]
and the Manhattan model [2]. The results are basically similar to the simulation
study using the Constant Velocity model.

One of the main objectives of MetroTrack is to track the target for as long as
possible without losing it. Therefore, the duration of tracking is one of the main
performance metrics. Figure 4 shows the tracking duration with varying densities
and sensing ranges of mobile sensors. We measure the duration of tracking when
MetroTrack performs the information-driven tasking but it does not perform
the prediction-based recovery (no recovery). We then measure the duration of
tracking when MetroTrack performs the prediction-based recovery as well. We
compare the tracking duration when MetroTrack uses the Distributed Kalman
filter (Recovery with DKF) and when it uses the Local Kalman filter (Recovery
with LKF). The x-axis is the density of sensors, and the y-axis is the duration of
tracking. We run the simulation for 300 s. The tracking starts from the beginning
of the simulation. The target is lost before the simulation ends. As observed in
Figure 4, the prediction-based recovery prolongs the duration of the tracking.
Moreover, the recovery enables the tracking to last until the end of simulation
with the densities of greater than 200 sensors or more per km2 if the sensing
range is 100m. If the sensing range is 50 m as in Figure 4(b), the recovery
enables the tracking to last until the end with a density of 400 sensors. The
extended duration by the recovery process is longer for the 50m sensing range
than for the 100m sensing range. It is interesting that the recovery processes
using both filters do not show much difference in tracking duration, whereas
the DKF showed better accuracy in prediction. The forwarding zone is the sum
of the radius of the recovery region, the sensing range, and the communication

242 G.-S. Ahn et al.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Density (number of sensors / km2)

T
ra

ck
in

g
D

ur
at

io
n

(s
ec

on
ds

)

No recovery

Recovery with LKF

Recovery with DKF

(a) Sensing range of 100 m.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Density (number of sensors / km2)

T
ra

ck
in

g
D

ur
at

io
n

(s
ec

on
ds

)

No recovery

Recovery with LKF

Recovery with DKF

(b) Sensing range of 50 m.

Fig. 4. Tracking duration vs. density of mobile sensors

range, as we explained earlier. The size of the forwarding zone is big enough to
absorb the impact of the inaccuracy of the prediction of the LKF.

6 Summary

In this paper, we proposed MetroTrack, the first distributed tracking system
that tracks mobile events using off-the-shelf mobile phones. We presented the
design and implementation of the system and discussed the mathematical foun-
dations upon which our distributed prediction models are based. We evaluated
the system through the deployment of a prototype implementation of the sys-
tem using Nokia N80 and N95 mobile phones and analyzed the performance of
the system for a number of different scenarios through simulation. While the
proof-of-concept prototype implementation of MetroTrack focused on tracking a
mobile audio source, we believe that the algorithms and techniques discussed in
this paper are more broadly applicable to an emerging class of problems related
to the efficient tracking of mobile events using off-the-shelf mobile devices such
as mobile phones, PDAs, and mobile embedded sensors.

Acknowledgement

This work is supported in part by Intel Corp., Nokia, NSF NCS-0631289, and the
Institute for Security Technology Studies (ISTS) at Dartmouth College. ISTS
support is provided by the U.S. Department of Homeland Security under award
2006-CS-001-000001, and by award 60NANB6D6130 from the U.S. Department
of Commerce. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of any funding body.

References

1. Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., Kansal,
A., Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Pervasive Comput-
ing 6(2), 20–29 (2007)

MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones 243

2. Bai, F., Sadagopan, N., Helmy, A.: IMPORTANT: A framework to systematically
analyze the Impact of Mobility on Performance of RouTing protocols for Adhoc
NeTworks. In: INFOCOM 2003, San Francisco, CA, USA (April 2003)

3. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing. Special issue on Mobile
Ad Hoc Networking 2(5), 483–502 (2002)

4. Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., Zhao, J.: Habitat Moni-
toring: Application Driver for Wireless Communications Technology. In: Workshop
on Data Communications in Latin America and the Caribbean (April 2001)

5. Cuff, D., Hansen, M., Kang, J.: Urban sensing: Out of the woods. Communications
of the ACM 51(3), 24–33 (2008)

6. Girod, L., Lukac, M., Trifa, V., Estrin, D.: The design and implementation of a self-
calibrating distributed acoustic sensing platform. In: 4th International Conference
on Embedded Networked Sensor Systems (SenSys 2006), pp. 71–84 (2006)

7. He, T., Krishnamurthy, S., Stankovic, J.A., Abdelzaher, T., Luo, L., Stoleru, R.,
Yan, T., Gu, L., Zhou, G., Hui, J., Krogh, B.: VigilNet: An Integrated Sensor
Network System for Energy-Efficent Surveillance. ACM Transactions on Sensor
Networks (2004)

8. Huang, Q., Lu, C., Roman, G.-C.: Spatiotemporal Multicast in Sensor Network.
In: First ACM Conference on Embedded Networked Sensor Systems, SenSys 2003
(2003)

9. Johnson, D., Maltz, D.: Dynamic Source Routing in Ad Hoc Wireless Networks.
In: Mobile Computing, pp. 153–181 (1996)

10. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME Journal of Basic Engineering (March 1960)

11. Kansal, A., Somasundara, A.A., Jea, D.D., Srivastava, M.B., Estrin, D.: Intelligent
fluid infrastructure for embedded networks. In: MobiSys 2004, pp. 111–124. ACM,
New York (2004)

12. Ko, Y.-B., Vaidya, N.: Geocasting in Mobile Ad Hoc Networks: Location-based
Multicast Algorithms. In: Workshop on Mobile Computer Systems and Applica-
tions (WMCSA 1999) (February 1999)

13. Lai, K., Feldman, M., Stoica, Chuang, J.: Incentives for cooperation in peer-to-peer
networks. In: Workshop on Economics of Peer-to-Peer Systems (2003)

14. Nokia. Python for s60, http://wiki.opensource.nokia.com/projects/PyS60
15. Olfati-Saber, R.: Distributed Kalman Filtering for Sensor Networks. In: 46th IEEE

Conference on Decision and Control (December 2007)
16. Purdue University. Cell phone sensors detect radiation to thwart nuclear terrorism,

http://news.uns.purdue.edu/x/2008a/080122FischbachNuclear.html

17. Shneidman, J., Parkes, D.C.: Rationality and self-interest in peer to peer networks.
In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148.
Springer, Heidelberg (2003)

http://wiki.opensource.nokia.com/projects/PyS60
http://news.uns.purdue.edu/x/2008a/080122FischbachNuclear.html

Mobile Sensor Network Localization in Harsh
Environments

Harsha Chenji and Radu Stoleru

Texas A&M University, College Station TX, USA
{cjh,stoleru}@cse.tamu.edu

Abstract. The node localization problem in mobile sensor networks
has recently received significant attention. Particle filters, adapted from
robotics, have produced good localization accuracies in conventional set-
tings, but suffer significantly when used in challenging indoor and mobile
environments characterized by a high degree of radio irregularity. We
propose FuzLoc, a fuzzy logic-based approach for mobile node localiza-
tion in challenging environments and formulate the localization problem
as a fuzzy multilateration problem, with a fuzzy grid-prediction scheme
for sparse networks. We demonstrate the performance and feasibility
of our localization scheme through extensive simulations and a proof-
of-concept implementation on hardware, respectively. Simulation results
augmented by data gathered from our 42 node indoor testbed demon-
strate improvements in the localization accuracy from 20%-40% when
the radio irregularity is high.

1 Introduction

Wireless sensor networks are increasingly a part of the modern landscape. Dis-
ciplines as diverse as volcanic eruption prediction [1] and disaster response [2]
benefit from the addition of sensing and networking. One common requirement
of many wireless sensor network (WSN) systems is localization, where deployed
nodes in a network endeavor to discover their positions. The precise location of
a pre-eruption tremor or of a patient in distress are two compelling examples of
the need for accurate localization.

In some cases, localization is simple. For smaller networks covering small areas,
fixed gateway devices and one-hop communications provide enough resolution.
Larger networks may be provisioned with location information at the time of
deployment [3]. GPS is a viable option for small outdoor deployments where
cost and the power budget permit. However, in many common environments,
localization is very difficult. GPS-based localization is not viable when the GPS
receiver can’t see the satellites. Signal strength-based solutions fail when there is
a high degree of RF multi-path or interference, like most indoor and urban envi-
ronments. Mobility in these harsh environments further complicates the problem.

Some solutions for localization in harsh, mobile environments assume avail-
ability of high-precision clocks and specialized hardware. [4] and [5] rely on accu-
rate measurement of TDOA and distance traveled. Radio interferometry localizes

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 244–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mobile Sensor Network Localization in Harsh Environments 245

nodes to within centimeters in [6] in non-multipath environments. All of these
solutions rely on stable environments with low multi-path where a measured or
sensed range reliably predicts the actual distance between two nodes.

Harsh, mobile environments, however, fail to meet these assumptions. The
RSS-distance relationship [7] is inconstant and connectivity may vary dramati-
cally. Assuming a predictable relationship between distance and RSS is
problematic due to errors induced by multi-path and fading. Connectivity infor-
mation gathered by the nodes could actually be misinformation. In many cases,
compounding of errors may occur if the localization method relies on previous
location estimations.

Fuzzy logic offers an inexpensive and robust way to deal with highly variable
RSS measurements made in noisy, uncertain environments. Empirical measure-
ments are used to produce rules that the fuzzy inference system uses to inter-
pret input. The output of this process recovers the actual value compensated
for variability in the local environment. We employ this basic technique in two
constituent subsystems of FuzLoc - the Fuzzy Non Linear System (FNLS) and
the Fuzzy Grid Prediction System (FGPS).

Our contributions include: i) a fuzzy logic-based method of building rule sets
that characterizes the local signal environment, ii) a fuzzy non-linear system
construct that uses these rules to convert extremely noisy RSS measurements
to locations using a mechanism that compensates for inherent error, iii) a fuzzy
grid prediction system that optimizes localization under conditions of low con-
nectivity and low anchor density, iv) extensive simulations and comparisons to
state of the art algorithms and v) a proof-of-concept implementation on motes.

The paper is organized as follows. Section 2 motivates our work and Section 3
introduces the fuzzy logic-based framework. Section 4 evaluates the proposed
localization technique, followed by Conclusions in Section 5.

2 Motivation and Background

Several authors [8,9,10,11] have proposed Monte Carlo-based techniques, fre-
quently used in robotics, for localization in mobile sensor networks. These lo-
calization techniques assume that a subset of nodes, called anchors, know their
location. Nodes and anchors move randomly in the deployment area. Maximum
velocity of a node is bounded but the actual velocity is unknown to nodes or
anchors. Anchors periodically broadcast their locations.

This paper is motivated by our interest in a localization technique for a mo-
bile sensor network, deployed in a harsh environment and the set of interesting/
surprising results obtained from simulations of three state of the art localization
techniques for mobile sensor networks, namely MCL [8], MSL [9] and OTMCL [11].
Using the simulators developed by the authors of [8,9,11], a scenario assuming
highly irregular radio ranges was developed, typical of harsh indoor or extremely
obstructed outdoor environments. The irregularity in the radio range is modeled
in these simulators as a degree of irregularity (DoI) parameter [8]. The DoI rep-
resents the maximum radio range variation per unit degree change in direction.

246 H. Chenji and R. Stoleru

 15

 10

 5

 0

 5

 10

 15

 15 10 5 0 5 10 15

Y

X

DoI=0.0
DoI=0.4

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
E

rr
o
r

(r
)

DoI

MCL
MSL

Centroid

(b)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 40 60 80 100 120 140 160

E
rr

o
r

(r
)

Total Anchors

MCL
MSL

Centroid

(c)

Fig. 1. (a) Radio patterns for two different degrees of radio irregularity (DoI); (b) the
effect of DoI on localization error in MSL, MCL and Centroid; and (c) the effect of
anchor density on localization error, at DoI=0.4, for MSL, MCL and Centroid

An example is depicted in Figure 1(a). When DoI=0.4 the actual communication
range is randomly chosen from [0.6r, 1.4r].

Simulation results, for a network of 320 nodes, 32 anchors deployed in a 500×
500 moving at 0.2r (r, the radio range) are shown in Figures 1(b) and 1(c). Figure
1(b) demonstrates that the DoI parameter has a significant negative effect on
the localization accuracy. At DoI=0, both MCL, MSL and OTMCL achieve
localization errors of 0.2r and 0.5r. With an increase in the DoI to 0.4, their
localization error increases 400%. More surprisingly, as depicted in Figure 1(c),
at a high DoI value, an increase in the number of anchors has a detrimental
effect on localization accuracy. This result is counter-intuitive since access to
more anchors implies that nodes have more opportunities to receive accurate
location information, as exemplified by the performance of Centroid [12], in the
same figure. A similar observation is made in [10] although no further study was
performed. Our results suggest that samples get successively polluted with time,
since the nodes used for filtering the samples may not be actual neighbors. The
number of polluted samples increases with increasing anchor density.

The challenges identified above were partially addressed in recent work in
sensor network node localization [13] that makes use of variables typical of range-
based localization techniques (e.g., RSSI) to improve the accuracy of range-free
techniques. In a similar vein, we propose to formulate the localization problem as
a fuzzy inference problem using RSSI in a fuzzy logic-based localization system
where the concept of distances used are very loose, such as “High”, “Medium”
or “Low”.

2.1 Related Work

Existing work can be classified as range-based or range-free although a few tech-
niques do not fall cleanly into these categories.
Range-based Localization Methods: These methods require an estimate of
the distance or angle between two nodes to localize and may operative with both
absolute and relative coordinate systems. A frequent requirement is the presence
of at least three anchors so that necessary uniqueness and geometric constraints

Mobile Sensor Network Localization in Harsh Environments 247

are satisfied. GPS is a familiar range-based method that uses the time of arrival
of signals from satellites to obtain a precise location in latitude-longitude format.
Some methods use surveying to predetermine RSSI values at any point in the
area of deployment. Many solutions use time difference of arrival (TDoA) [4]
[5]. For all of these methods, typical drawbacks include additional hardware,
higher computational loads, increased node size, higher energy consumption and
increased cost. A lighter weight solution leverages existing cellular telephony
networks. Fuzzy logic is used to locate cellular phones in a hexagonal grid in a
cellular network [14]. It assumes a fixed number of anchors but handles mobility
very well. The computation and refining are not suitable for resource-constrained
embedded sensors.
Range-free Localization Methods: Hop counting is a technique frequently
used in these scenarios. A major drawback for hop-counting is that it fails in
networks with irregular topologies such as those with a concave shape. Mobility
incurs large overhead since all the hop counts will have to be refreshed frequently.
APIT is a similar method which divides the area of deployment into triangles
formed by anchors and then estimates the location. It assumes a large anchor
density and higher radio ranges for the anchor nodes. An advantage is, however,
that extremely low computational resources are needed. Both methods intro-
duce large errors for ad-hoc networks. A hybrid method [13] that uses RSS and
connectivity is worthy of note.

2.2 Background

Fuzzy logic has been applied in robot localization [15,16], because it reworks
classical set theory and enables it to have non-rigid, or fuzzy, set boundaries.
A fuzzy set, sometimes called fuzzy bin, is defined by an associated function
μ(x), which describes the degree of membership of a crisp number in the set.
A crisp number can belong to more than one fuzzy set at a given time, with
varying degrees of membership. A fuzzy number is a special fuzzy bin where
the membership is 1 at one and only one point. A fuzzy number represents a
multi-valued, imprecise quantity unlike a single valued traditional number. One
popular μ(x) function, depicted in Figure 2(a), is the triangular membership
function:

μ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < a
(x − a)/(b − a) if a ≤ x ≤ b
(c − x)/(c − b) if b ≤ x ≤ c
0 if x > c

(1)

where (a, b, c) defines a triangular bin. As shown, the WEAK fuzzy set can be
represented as (-90,-70,-50) and MEDIUM as (-70,-50,-30). A crisp number,
RSSI = -55dBm has a membership of 0.25 in WEAK and 0.75 in MEDIUM .

A fuzzy system is defined by a set of fuzzy rules which relate linguistic vari-
ables in the form of an IF-THEN clause. Typically the IF clause contains the
input linguistic variable (e.g., RSSI) and the THEN clause contains the output
linguistic variable (e.g., DISTANCE).

248 H. Chenji and R. Stoleru

WEAK MEDIUM STRONG

1

0.75

0.25

µ
(
R
S
S
I
)

RSSI

[dbm]

-90 -70 -50 -30 -10

0

(a)

X

µ
(
X
)

Y

µ(Y)

1

1

0

0

4 5 6

8

9

10

(b)

A
1

(x1, y1)

A
3

(x3, y3)

A
2

(x2, y2)

S (X, Y)

D
2

D
1

D
3

(c)

Fig. 2. (a) A triangular membership function μ(RSSI) consisting of three bins. A fuzzi-
fied RSSI value of -55 pertains to two bins, WEAK and MEDIUM , with degrees of
membership of 0.25 and 0.75, respectively; (b) Representation of a fuzzy location, using
two triangular membership functions; and (c) a sensor node S with fuzzy coordinates
X and Y , to be located using three anchors positioned at (x1, y1), (x2, y2) and (x3, y3).

3 A Fuzzy Logic-Based Node Localization Framework

The two dimensional location of a node can be represented as a pair (X, Y),
where both X and Y are fuzzy numbers, as depicted in Figure 2(b). This sec-
tion develops the theoretical foundation behind the computation of this fuzzy
location, using imprecise and noisy RSSI measurements labeled as “HIGH”,
“MEDIUM” or “LOW”.

3.1 Fuzzy Non Linear System (FNLS)

As depicted in Figure 2(c), consider a node s about to be localized, in the vicinity
of three anchor nodes Aj (j = 1, 3). Each anchor node is equipped with a set of
fuzzy rules that map fuzzy RSSI values to fuzzy distance values:

Rule i: IF RSSI is RSSIi THEN DIST is Disti

where RSSIi and Disti are fuzzy linguistic variables (e.g. LOW , MEDIUM ,
HIGH) and “is” means “is a member of”.

For a more general case, when the node S is within radio range of n anchors,
the node localization problem can be formulated as a fuzzy multilateration prob-
lem. The following:

F1 = (X − x1)2 + (Y − y1)2 − D2
1 = 0

F2 = (X − x2)2 + (Y − y2)2 − D2
2 = 0

...

Fn = (X − xn)2 + (Y − yn)2 − D2
n = 0

(2)

defines a non-linear system of equations describing the relation between the
locations of the nodes and anchors and the distances among them. The variables

Mobile Sensor Network Localization in Harsh Environments 249

WEAK MEDIUM

1

µ
(
R
S
S
I
)

-90 -70 -50 -30

0

LARGEMEDIUM

1

µ(DIST)

10 30 50

0

DIST [m]RSSI [dBm]

14

Rule i

Rule j

P

P

Fig. 3. The fuzzification process for an input RSSI value of -62dB. In this example, the
fuzzy rule base maps this value through two rules: “Rule i: IF RSS is WEAK, THEN
distance is LARGE” and “Rule j: IF RSS is MEDIUM, THEN distance is MEDIUM”.

X , Y and Dk (k = 1, n) are fuzzy numbers, while (xk, yk) (k = 1, n) are crisp
numbers. The objective is to minimize the mean square error over all equations.
FIS Subsystem. A definition of the process of obtaining the fuzzy distances
Dk is needed before solving the system of equations. This process, called fuzzy
inference, transforms a crisp RSSI value obtained from a packet sent by a node
and received by an anchor into a fuzzy number, i.e., distance Dk between node
and anchor. Figure 3 depicts an example for the fuzzifying process. As shown, an
RSSI value of -62dBm has different membership values μ(RSSI) for the fuzzy
bins WEAK and MEDIUM . The two fuzzy bins, in this example, are mapped
by a fuzzy rule base formed by two fuzzy rules: “Rule i” and “Rule j”. These two
fuzzy rules define the mapping from the RSSI fuzzy sets to the DIST fuzzy sets.
As shown in Figure 3, the two fuzzy rules indicate the membership μ(DIST) in
the distance domain. Pi and Pj indicate the center of gravity of the trapezoid
formed by the mapping of the RSSI into fuzzy bins MEDIUM and LARGE,
respectively.

Typically, a single RSSI value matches multiple fuzzy rules. Let’s assume that
the fuzzy rule base maps an RSSI value to a set of m fuzzy DIST bins. The set
of centers of gravity Pl (l = 1, m) is denoted by P = {P1, P2 . . . Pm} in Figure 3.
The intuition for computing the output as a fuzzy number Dk derives from the
center-average defuzzification method as follows: First, calculate the centroid of
all points in P - call it Pc. Next, take the centroid of all the points in P whose
abscissa is less than that of Pc i.e., L = {Pn|x(Pn) ≤ x(Pc)}. Similarly, G =
{Pn|x(Pn) ≥ x(Pc)} is the set of points whose abscissa is greater than that of P .
The abscissae of three points P , L and G represent the resulting fuzzy distance
Dk, formally described as:

Dk = (a, b, c) =
((∑

Ln

|L|

)
x

, (Pc)x,

(∑
Gn

|G|

)
x

)
(3)

In order to solve the non-linear system of Equations 2, in two fuzzy variables,
the fuzzy variant of the iterative classical Newton method based on the Jacobian
matrix [17,18] is used. To accomplish this, the fuzzy numbers are expressed in
their parametric form X = (X, X) where X and X are continuous bounded

250 H. Chenji and R. Stoleru

non-decreasing and non-increasing, respectively, functions. These functions ef-
fectively represent the “left half” and “right half” of the membership function.

For a triangular membership function, such as defined in Equation 1 and
depicted in Figure 2(a), a parametric representation in r ∈ [0, 1] is X = (a +
(b − a)r, c − (c − b)r). The system of Equations 2 are, therefore, represented in
the parametric form. Without any loss of generality, assume that X and Y are
positive. Then, each Fn in Equation 2 can be split into:

Fn = (X − xn)2 + (Y − yn)2 − Dn
2 = 0

Fn = (X − xn)2 + (Y − yn)2 − Dn
2

= 0
(4)

The Jacobian J is constructed as:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1X
F1X

F1Y
F1Y

F1X F1X F1Y F1Y

F2X
F2X

F2Y
F2Y

F2X F2X F2Y F2Y

...
FnX

FnX
FnY

FnY

FnX FnX FnY FnY

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(X − x1) 0 2(Y − y1) 0
0 2(X − x1) 0 2(Y − y1)

2(X − x2) 0 2(Y − y2) 0
0 2(X − x2) 0 2(Y − y2)
...

2(X − xn) 0 2(Y − yn) 0
0 2(X − xn) 0 2(Y − yn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The initial guess (X0, Y0) is computed from the average of the coordinates of the
anchors. Define a matrix F = [F1 F1 F2 F2 . . . Fn Fn]T . (X0, Y0) is updated
in increments at every iteration by calculating an update matrix Δ using the
matrices J and F evaluated at the current values of X and Y :

Δ =

⎡
⎢⎢⎣

h(r)
h(r)
k(r)
k(r)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X(r)t −X(r)t−1

X(r)t −X(r)t−1

Y (r)t −Y (r)t−1

Y (r)t −Y (r)t−1

⎤
⎥⎥⎦ = −J−1F (6)

The process is repeated until Δ converges to 0 within ε.

3.2 Fuzzy Grid Prediction System (FGPS)

In mobile sensor networks with low anchor densities, it might frequently be the
case that a node does not have enough anchors for multilateration. To address
this problem we extend our fuzzy logic-based localization framework to predict
an area, e.g., a cell in a grid, where the node might be. The idea is inspired from
cellular systems [19]. We propose to virtualize the anchors, so that a node is
within a set of Virtual Anchors at any point in time.

Consider the area in which the network is deployed to be subdivided into a
grid of G cells, as depicted in Figure 3.2. We denote the probability that a node
S is in a cell j (j = 1 . . .G) by pj . To infer these probabilities, we construct a
fuzzy system, whose input is the distance dj between S and the center of cell
j, and the output is a scalar 0 < pj < 1 for each j. The key idea is that the
nearer a node is to the center of the cell, the more likely it is that the node can
be found in that cell. A rule in our fuzzy system is as follows:

Mobile Sensor Network Localization in Harsh Environments 251

S (X, Y)

VAi VAj

VAk VAl

A3 (x3, y3)

Fig. 4. A sensor S and the grid cells in its vicinity, is within radio range of anchor A3

Rule i: IF (DISTgrd1 is Di1) and . . . and (DISTgrdG is DiG) THEN
(PROBgrd1 is Pi1) and . . . and (PROBgrdG is PiG)

where Dij is the fuzzy bin representing the distance between the node and the
center of cell j, and Pij is the fuzzy bin representing the probability that node
S is in cell j.

For each rule i, we calculate pj by first fuzzifying dj , applying it to the rule,
and then defuzzifying the aggregate, as we described in Section 3.1. Once the
most probable cell is found, the location of the node can be computed as the the
intersection between this cell and the circle defined by the anchor.

It is paramount to remark that we can obtain pj only if the node S has at least
one anchor in its vicinity, i.e., we can estimate Dij . The technique we propose
for estimating Dij is described in the Virtual Anchors section below. Before
proceeding, we describe how to update pj when no anchor is in the vicinity of
node S. Since there is a high correlation between the current and previous cell a
node is in, we construct a Recursive Least Squares [20] filter which predicts the
cell in which the node S might be. For each cell j, we store m previous samples
of pj which serves as input to the filter.
Virtual Anchors. The fuzzy system requires that we calculate the distance
from the node to the virtual anchor. We have to find the average distance instead,
because we do not know the node’s location. These average distances can be
calculated only when at least one anchor is in the node’s vicinity. The locus of
the node around the anchor is a circle with radius as the radio range and center
as the location of the anchor; the average distance to a virtual anchor can be
easily calculated as the average of the distances between the virtual anchor and
each point on this circle.

4 Performance Evaluation

Implementation. We implemented the FIS subsystem on EPIC motes running
TinyOS 2.1 with an onboard CC2420 radio. The localization system was config-
ured with 8 bins each for the distance and the RSSI, with ten preset rules. Upon
receiving a message, the motes would read the RSSI from the radio and proceed
to defuzzify it into a distance. This basic functionality was accomplished with

252 H. Chenji and R. Stoleru

 15

 10

 5

 0

 5

 10

 15

 15 10 5 0 5 10 15

Y

X

A
B

C

DoI=0.0
DoI=0.4

(a)

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

 0 20 40 60 80 100 120

R
S

S
I
(d

B
m

)

Distance

DoI=0.4
DoI=0

(b)

Fig. 5. (a) The DoI model with three points of interest: although A and B are equally
distant, their RSS values differ significantly in our EDoI model; and (b) RSSI vs.
distance for the radio model used in the simulator, at DoI=0.4 and 0

285 lines of code, occupying 19,932B in ROM and 1,859B in RAM (including the
code required to send and receive messages over the radio). The FIS subsystem
results were similar within rounding errors to those of the simulator’s, with iden-
tical rules and binning. To the best of our knowledge, no mobile wireless sensor
testbeds are available for public use. For the sake of repeatability of results and
because of lack of mobile testbed infrastructure, we evaluate the performance of
our localization scheme through extensive simulations. We use the data gathered
from our static 42 node indoor testbed, as shown in Figure 8(b), for validating
the FIS subsystem performance.
Simulation. Our proposed fuzzy logic-based localization system was imple-
mented as an extension of the simulator provided by the authors of [8]. For
performance evaluation, we compare FuzLoc, our solution, with MCL, MSL,
Centroid and a “Perfect FuzLoc” algorithm, which is fuzzy multilateration with
a theoretical ∼0% uncertainty in the ranges. These choices are justified by the
fact that the we wanted to evaluate our solution against state of art Monte
Carlo based solutions, as well as simpler techniques (e.g., Centroid), and demon-
strate the advantages of our solution. We chose not to compare our solution
against solutions that use additional hardware, such as OTMCL [11] which uses a
compass.

Since our fuzzy logic-based localization technique makes use of the RSSI, we
extended the DoI model [21]. In our EDoI model, the RSSI at the connectivity
range predicted by the DoI model is associated with the minimum achievable
received power at a receiver, i.e., receiver sensitivity. As shown in Figure 5(a),
for points A and C (evaluated by the DoI model at the maximum radio ranges
in two different directions), in our DoI model the RSSI is equal to the receiver
sensitivity, -94dBm. For point B, we apply a log-normal fading model, such
that the RSSI at point C (in the same direction as point B) is equal to receive
sensitivity -94dBm. The predicted RSSI at point B is thus -60dBm. Formally,
our EDoI model computes the RSSI, as follows:

Mobile Sensor Network Localization in Harsh Environments 253

RSSI(d) = Si
log10 d

log10[r(1 + DoI × rand())]
(7)

where Si is the receiver sensitivity, r is the ideal radio range, DoI is the radio
degree of irregularity and rand is a random number U [0, 1].

We simulate a set (N) of 320 sensor nodes deployed in a 500 × 500 area.
Of the 320 nodes deployed, 32 nodes are designated anchors (set S). The radio
range (r) of a node is 50 and the default DoI is 0.4. We chose these simulation
parameters for consistency with results reported in [8], [9]. The default receiver
sensitivity (Si) is -94dBm, and a plot depicting the predicted RSSI by our EDoI
model, is shown in Figure 5(b). The default maximum node velocity is to 0.2r.
This velocity has been reported in [8] and confirmed in [11], to be optimal. We
investigate the performance of all solutions for node velocities up to 0.5r. The
results are averaged over all nodes over 10 runs, with each node taking 50 steps
per run for a total of atleast 16000 trials per data point. The default setup uses
10 fuzzy triangular bins and the defuzzification method is center-average. The
fuzzy location is defuzzified into a crisp location by considering only the center
values of the abscissa and the ordinate.

Radio Irregularity. We performed simulations for different DoI values with
all other parameters kept constant. Figure 6(a) depicts our results, indicating
the deterioration in localization accuracy of MCL and MSL. The effect of com-
pounded errors due to polluted samples (incorrectly computed locations which
are used to compute the location in future iterations) has been investigated as
the “kidnapped robot problem” [22] in robot localization. The kidnapped robot
test verifies whether the localization algorithm is able to recover from localiza-
tion failures, as signified by the sudden change in location due to “kidnapping”.
It has been shown that such uncorrected algorithms collapse when the observed
sample is far from the estimated sample. MSL demonstrates an even more pro-
nounced effect, since it also uses non-anchor neighbors for filtering, thus leading
to even more pollution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

E
rr

o
r

(r
)

DoI

MCL
MSL

Centroid
FuzLoc

Perfect FuzLoc

(a)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
rr

o
r

(r
)

Max. Velocity (r)

MCL
Centroid

MSL
FuzLoc

Perfect FuzLoc

(b)

Fig. 6. Localization accuracy as affected by (a) DoI (N=320, S=32, v=0.2r); and (b)
maximum node velocity (N=320, S=32, DoI=0.4)

254 H. Chenji and R. Stoleru

Maximum Node Velocity. We investigate the effect of maximum node velocity
on localization accuracy, for velocities up to 0.5r, a reasonably fast moving speed.
The performance results are depicted in Figure 6(b). MCL and MSL assume that
nodes know their maximum velocity. Hence, they use the velocity as a filtering
condition, which improves their performance. Moreover, high velocity means
having more anchors to filter against, leading to the freshening of samples at
every instance. Figure 6(b) shows that MCL and MSL decrease their localization
error from 1.4r to 0.9r, and 1.9r to 1.4r, respectively. Since Centroid and FuzLoc

do not use the velocity, their performance is not expected to improve. Figure 6(b)
indicates that their performance is not deteriorating.

 0

 0.5

 1

 1.5

 2

 2.5

 40 60 80 100 120 140 160

E
rr

o
r

(r
)

Total Anchors

MCL
MSL

Centroid
FuzLoc

Perfect FuzLoc

(a)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500 600

E
rr

o
r

(r
)

Total Nodes

MCL
MSL

Centroid
FuzLoc

Perfect FuzLoc

(b)

Fig. 7. Localization accuracy as affected by (a) anchor density at DoI=0.4 (N=320,
v=0.2r); and (b) node density (S=32, v=0.2r, DoI=0.4)

Anchor Density. Anchor density is a critical parameter for anchor-based local-
ization schemes. Figure 7(a) displays the impact of anchor density on the localiza-
tion schemes where the number of anchors varies from 10% (32 anchors) to 50%
(160 anchors), and the DoI is constant at 0.4. The accuracy of MCL and MSL
deteriorates because an increase in anchor density is associated with an increase
in the number of polluting sources. The mismatch of observed and actual radio
ranges causes spurious anchors to appear as node’s direct and indirect seeds. MSL
considers non-anchor neighbors, hence it experiences higher pollution. Centroid
performs better with increasing anchor density, as expected. FuzLoc also has a
decrease in localization error, with a larger number of anchors. We observe that
FuzLoc is not greatly affected by DoI and ranging errors.
Node Density. For this performance evaluation scenario we maintained the
percentage of anchors fixed at 10%. As shown in Figure 7(b), the evaluated algo-
rithms either suffer or are unaffected. None of the localization algorithms benefits
from an increase in the node density. As shown, Centroid and FuzLoc are not
substantially affected, except by the inherent randomness in simulation. MCL
considers indirect seeds for sampling, hence a high node density means more
anchors are misreported as indirect seeds. MSL considers non-anchor neighbors,
hence at high node densities, it experiences a huge amount of sample pollution.
While non-anchor neighbors help MSL to improve accuracy at low DoI, they
become harmful at higher DoI values.

Mobile Sensor Network Localization in Harsh Environments 255

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 3 4 5 6 7 8 9 10

E
rr

o
r

(r
)

Fuzzy Bins

MCL
Centroid

MSL
FuzLoc

Perfect FuzLoc

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

O
u

tp
u

t

Input

Actual
Ideal

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

O
u
tp

u
t

Input

Actual
Ideal

(c)

Fig. 8. (a) Localization accuracy as affected by the number of fuzzy bins (N=320,
S=32, v=0.2r, DoI=0.4); (b) Performance of the FNLS FIS subsystem based on the
simulated EDoI radio model; and (c) Performance based on real data gathered from
our indoor testbed

Number of Bins. The number of bins in the fuzzy system is a design parameter
- the greater the number of bins, the higher the accuracy of the system. Our
evaluation of the influence of the number of bins is depicted in Figure 8(a).
As shown, as the number of bins increases, the localization error of FuzLoc

decreases. This is because more and more RSSs find a bin with high membership.
The change in the number of bins, is expected to not affect MCL, MSL, Centroid,
or even Perfect FuzLoc. Figure 8(a) shows that the aforementioned schemes
remain invariant whereas FuzLoc experiences decreasing error with an increase
in the number of bins.
FIS Performance. Real data gathered from our testbed (42 nodes deployed
over a 600 sq.ft. indoor multipath environment) was used to evaluate the radio
model and the FIS used in the simulator, by comparing the accuracy of the FIS
subsystem as shown in Fig. 8(b) and Fig. 8(c). Figure 8(b) shows the performance
of the FNLS FIS engine. Input distance on the X axis is translated into an RSS
which is then defuzzified into a distance on the Y axis. Figure 8(c) is similar
except that the RSS is extracted from the real dataset. After training the system
with 30 random RSS-Distance pairs, RSS values deduced from distances were fed
into the system so that a distance should be inferred. The straight line shows the
ideal case. The FIS is somewhat efficient, except at the fringes, where the fuzzy
system was not found to be trained due to the limited number of rules. With

256 H. Chenji and R. Stoleru

more rules, the system becomes more and more efficient. This result indicates
the resiliency of FuzLoc to ranging errors.
Overhead. A typical FIS does not require significant storage capacity. If there
were 8 bins, for example, a single byte could represent a bin. Hence, each FNLS
rule requires just 2 bytes of storage. Typically, an anchor creates approximately
30 rules during the period of deployment which translates to 60 bytes of stor-
age. The FGPS FIS however, requires 50 bytes for each rule (25 bins in the
input, 25 in the output). Note that regular nodes do not store rules, only the
anchors store rules. Moreover, due to the nature of the triangular bin shapes,
simple calculations are required in order to (de)fuzzify. MCL requires at least 50
weighted samples for low localization error. Centroid does not store any history
and thus has the smallest storage requirement. Amorphous stores announce-
ments made by the anchors which are flooded throughout the network. If there
are 320 nodes, 32 of which are anchors, MCL requires each node to store 50 sam-
ples - (50 × 4 × 2 × 320) = 128, 000B. Fuzzy on the other hand requires around
1,500 bytes for FGPS and around 60 for FNLS, which sums up to roughly 50%
of the storage MCL requires. We note here that communication overhead is very
similar among all evaluated localization techniques.

5 Conclusions

We have proposed FuzLoc, a fuzzy logic based localization method for harsh
environments. The constituent systems use fuzzy multilateration and a grid pre-
dictor to compute the location as an area. Our method has been evaluated based
on a variety of metrics. They prove that it is resistant to high DoI environments
while providing a low localization error without any extra hardware. Only an-
chors need to have a slightly higher storage requirement. A deployment with
more anchors at high DoI decreases the error. FuzLoc’s principle limitation
is that it does not work very well in static networks unless the anchors have
pre-loaded fuzzy rules or the anchors have a large radio range. The distributed
protocol requires some amount of data to be transmitted. This could be problem-
atic in networks populated by resource-constrained nodes. Future work includes
a module for iteratively redesigning the fuzzy bins to optimize based on network
characteristics.

Acknowledgement. This work was funded in part by NSF grant CNS 0923203.
The authors also wish to thank Mike George for his help.

References

1. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh,
M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Com-
puting 10(2) (March-April 2006)

2. George, S., Zhou, W., Chenji, H., Won, M., Lee, Y., Pazarloglou, A., Stoleru,
R., Barooah, P.: A wireless ad hoc and sensor network architecture for situation
management in disaster response. IEEE Communications Magazine (March 2010)

Mobile Sensor Network Localization in Harsh Environments 257

3. He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., Zhou, G., Cao,
Q., Vicaire, P., Stankovic, J., Abdelzaher, T., Hui, J., Krogh, B.: VigilNet: an
integrated sensor network system for energy-efficient surveillance. ACM Trans.
Sens. Netw. 2(1) (2006)

4. Girod, L., Lukac, M., Trifa, V., Estrin, D.: A self-calibrating distributed acoustic
sensing platform. In: SenSys (2006)

5. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: MobiCom (2000)

6. Kusy, B., Sallai, J., Balogh, G., Ledeczi, A., Protopopescu, V., Tolliver, J., De-
Nap, F., Parang, M.: Radio interferometric tracking of mobile wireless nodes. In:
MobiSys (2007)

7. Whitehouse, K., Karlof, C., Culler, D.E.: A practical evaluation of radio signal
strength for ranging-based localization. Mobile Computing and Communications
Review 11(1) (2007)

8. Hu, L., Evans, D.: Localization for mobile sensor networks. In: MobiCom (2004)
9. Rudafshani, M., Datta, S.: Localization in wireless sensor networks. In: IPSN (2007)

10. Baggio, A., Langendoen, K.: Monte carlo localization for mobile wireless sensor
networks. Ad Hoc Netw. 6(5) (2008)

11. Martins, M., Chen, H., Sezaki, K.: OTMCL: Orientation tracking-based monte
carlo localization for mobile sensor networks. In: INSS (June 2009)

12. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for
very small devices. IEEE Personal Communications Magazine (2000)

13. Zhong, Z., He, T.: Achieving range-free localization beyond connectivity. In: SenSys
(2009)

14. Shen, X., Mark, J.W., Ye, J.: Mobile location estimation in CDMA cellular net-
works by using fuzzy logic. Wirel. Pers. Commun. 22(1) (2002)

15. LeBlanc, K., Saffiotti, A.: Multirobot object localization: A fuzzy fusion approach.
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 39(5),
1259–1276 (2009)

16. Saffiotti, A.: The uses of fuzzy logic in autonomous robot navigation. Soft
Computing-A Fusion of Foundations, Methodologies and Applications 1(4), 180–
197 (1997)

17. Kelley, C.T.: Fundamentals of Algorithms - Solving Nonlinear Equations with New-
ton’s Method. SIAM, Philadelphia (2003)

18. Shokri, J.: On systems of fuzzy nonlinear equations. Appl. Math. Sci, Ruse (2008)
19. Shen, X., Mark, J.W., Ye, J.: User mobility profile prediction: an adaptive fuzzy

inference approach. Wirel. Netw. 6(5) (2000)
20. Hayes, M.: Statistical digital signal processing and modeling. Wiley India Pvt. Ltd,

Chichester (2008)
21. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free local-

ization schemes for large scale sensor networks. In: MobiCom (2003)
22. Engelson, S., McDermott, D.: Error correction in mobile robotmap learning. In:

ICRA (1992)

AEGIS: A Lightweight Firewall for Wireless
Sensor Networks

Mohammad Sajjad Hossain and Vijay Raghunathan

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47906

{sajjad,vr}@purdue.edu

Abstract. Firewalls are an essential component in today’s networked
computing systems (desktops, laptops, and servers) and provide effective
protection against a variety of over-the-network security attacks. With
the development of technologies such as IPv6 and 6LoWPAN that pave
the way for Internet-connected embedded systems and sensor networks,
these devices will soon be subject to (and need to be defended against)
similar security threats. As a first step, this paper presents Aegis, a
lightweight, rule-based firewall for networked embedded systems such as
wireless sensor networks. Aegis is based on a semantically rich, yet sim-
ple, rule definition language. In addition, Aegis is highly efficient during
operation, runs in a transparent manner from running applications, and
is easy to maintain. Experimental results obtained using real sensor nodes
and cycle-accurate simulations demonstrate that Aegis successfully per-
forms gatekeeping of a sensor node’s communication traffic in a flexible
manner with minimal overheads.

Keywords: Wireless Sensor Networks, Firewall, Network Overlay.

1 Introduction

The rapid proliferation of networked embedded systems such as wireless sensor
networks (WSNs) is expected to further accelerate in the near future due to the
development of enabling technologies such as 6LoWPAN [11,12] and lightweight
TCP/IP stacks for embedded microcontrollers [5], which aid in realizing the
vision of an Internet-of-Things [8]. However, this widespread adoption will bring
with it additional challenges. As we learnt (and continue to learn) in the case of
personal computers (PCs), a networked computing system can be a nightmare
to secure because it is exposed to a wide variety of over-the-network security
attacks. It is only natural that, going forward, networked embedded systems
and WSNs (especially if connected to the Internet) will inherit the same security
problems that plague their networked counterparts in the PC world.

Firewalls [4] form an integral component of the security architecture of today’s
networked PC systems. They provide an effective defense mechanism against
many over-the-network attacks by performing careful gatekeeping over the com-
munication traffic entering and exiting a system. A firewall provides a clean

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 258–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

AEGIS: A Lightweight Firewall for WSNs 259

interface to restrict and control bidirectional access to/from an individual appli-
cation, an entire device, or even a portion of a network. In addition, a firewall can
also be judiciously used to enforce various communication resource management
policies, as we will demonstrate.

Even though firewalls have been a must-have feature of networked PCs for a
long time and have been extensively explored in that context, WSN systems still
lack even the most basic form of a firewall. Although the resource constrained
nature of these systems imposes limiations on what security mechanisms can be
deployed, we believe that, going forward, traffic gatekeeping will be an absolute
necessity for WSNs. To address this need, this paper presents Aegis

1, a software
firewall architecture for networked embedded systems such as WSNs. Aegis

provides stateless, rule-based gatekeeping over the network interface of a sensor
node, akin to a typical packet-filtering firewall in conventional PC systems. The
following are the key novel attributes of Aegis:
• Aegis features a semantically rich, yet easy to use, rule definition language

that allows users to easily construct complex firewall policies using a sequence
of simple packet filtering rules.

• Typically, packet-filtering firewalls operate on a given rule file as input. How-
ever, such an architecture is inefficient, and often even infeasible, for sensor
nodes because the rule file has to be stored either in RAM, which is a scarce
resource in WSNs, or in external data flash, which has a high energy cost
of read/write. Aegis addresses this issue by transforming the rule file into
executable binary code. The binary code is stored and executed from the mi-
crocontroller’s on-chip program flash, which is typically more abundant than
RAM and lower in terms of energy per access than external data flash. In
addition, such a transformation improves computational efficiency by making
it easy to identify which rules are relevant to a data packet being filtered and
ensuring that irrelevant rules are not even looked at. Finally, various opti-
mizations are applied during the transformation and code generation process,
which eliminate the need for firewall rule-set optimizations used otherwise
(e.g., eliminating/resolving rule redundancies and conflicts) [18,9].

• Aegis is completely transparent to other software modules2 whose communi-
cation is being firewalled, and requires no access to the source code or binary
of those modules. Further, when used in a modular operating system (in our
prototype implementation, SOS [10]), updating firewall policies in Aegis be-
comes similar to updating any other binary module, making firewall mainte-
nance much simpler.

• In addition to providing basic security functionality, Aegis also enables a va-
riety of other interesting applications (e.g., creating logical overlay networks),
as shown in Section 4.3.

1 In Greek mythology, Aegis is a protective shield worn by the god Zeus and the
goddess Athena.

2 In a modular operating system (e.g., SOS [10]), software modules can be thought of
as individual applications running on top of the operating system.

260 M.S. Hossain and V. Raghunathan

We have designed and implemented a fully functional prototype of Aegis using
the SOS operating system and evaluated it using experiments conducted on real
wireless sensor nodes as well as through cycle-accurate simulations.

2 Firewall Design Principles - From a WSN Perspective

One of the main tenets of network security is security in-depth or multi-layered
security. As an embodiment of this principle, in a network of PCs, running a
gateway-level firewall (e.g., on a home router or wireless access point) does not
eliminate the need for a software firewall on the PCs connected to the gateway.
Similarly, while firewalls running on the gateways to sensor networks will serve
as a first line of defense, they will not be sufficient by themselves. For example,
an adversary who is within radio range of a sensor node can directly send packets
to it without having to go through the gateway, thus bypassing the gateway-level
firewall altogether. Aegis enables us to apply this principle in WSNs by enabling
careful traffic gatekeeping on individual sensor nodes.

Existing design principles for firewalls in traditional networks are not appli-
cable to wireless sensor nodes due to their resource limited nature. Hence, any
firewall design targeting wireless sensor nodes should take into account these
limitations while at the same time providing a true firewall experience. It has
to be semantically rich in order to provide the same level of flexibility as desk-
top PC firewalls. Such flexibility can be achieved using context free languages
to specify firewall policies. To be a viable option, a firewall for WSNs must be
lightweight and efficient in terms of RAM and ROM usage as well as compu-
tational demand. Transparency is another objective that needs to be met by a
good firewall design. It is important that the binary or source code of a module
or application stay unmodified due to the presence or absence of a firewall. Fi-
nally, the firewall should be easy to maintain. For example, if the firewall rules
or policies change, the operation of a node or part of the network should not
be interrupted to accommodate the changes. Also, since sensor nodes are often
deployed in remote locations, applying such updates should ideally not require
physical access to the devices.

Apart from these, the requirements of the specific application domain may
pose several other challenging design goals. Examples include secure dissemina-
tion of the firewall itself, tamper resistance of the firewall, etc.

3 The Aegis Architecture and Implementation

The detailed description of the architecture and implementation of Aegis is
presented in this section.

3.1 Overview

Aegis offers stateless, application layer firewall-like protection for sensor net-
works and embedded systems in general. It was designed mostly for operating

AEGIS: A Lightweight Firewall for WSNs 261

Rules

Firewall

Generator

Code
Compiler Tool Suite

FModule
Source

Modified
Rules

FModule
Binary

LibrariesOS CodeAppsCompiler Tool Suite

Static Kernel Image

Modules
Binary

Binary
FModule

Binary
Modules

Static Kernel Image

Dynamic Linking
And Loading

Initial
Deployment

FModule Removed

P
os

t
D

ep
lo

ym
en

t
D

ur
in

g
C

om
pi

la
ti

on

Validator

Rule set

Fig. 1. Overview of the Aegis architecture

systems that provide module-level granularity in their run time execution sys-
tems. In such OSs, each component can be thought of as a separate module in
the operating environment. Operating systems such as SOS [10], Contiki [6] and
MANTIS [2] provide such an architecture. For a firewall to function properly,
it has to have access to all incoming and outgoing packets and messages. One
way of achieving this would be to run each module within a separate sandbox.
In our previous work, we developed an architecture, called Hermes [14], which
provides a flexible environment for such sandboxing techniques. Hermes pro-
vides fine grained control over a module’s behavior by intercepting all system
calls made by it. This flexibility can be exploited to secure a module by control-
ling its incoming and outgoing packets and messages. Unlike Hermes, Aegis is
also targeted to provide node level (i.e., interaction between two nodes) secu-
rity rather than module level (i.e., interaction of a module with another module
within the same node or another node in the network) security only. It is true
that by controlling all the existing modules in the system, we can achieve a node
level control mechanism. But such a solution will incur unnecessary overhead
since sandboxing a module requires memory and CPU cycles.

Instead, we take another approach in Aegis. Here, we intercept all incoming
and outgoing packets and messages in the kernel and forward the meta-data
(e.g., source, destination, etc.) to another module (we refer to it as FModule),
which analyzes the meta-data. Based on the result of the analysis by FMod-
ule, the kernel either allows or denies the communication in question. Such an
approach meets the objective of achieving typical firewall functionality. In ad-
dition, Aegis also provides control over module-module communication. This
allows us to apply various resource management policies for individual modules,
as we demonstrate later.

In the following subsections, we describe the key components and implemen-
tation details of Aegis. Figure 1 shows the interaction among the key Aegis

components.

262 M.S. Hossain and V. Raghunathan

3.2 SOS Operating System

SOS [10] is a modular operating system for sensor nodes that consists of a set of
dynamically loadable modules on top of a common kernel. SOS provides dynamic
memory handling, module loading and unloading during run time, garbage col-
lection and a cleaner interface for asynchronous module communication through
message passing. Figure 2 shows how SOS modules communicate with other
modules in the same node or another node in the network through message
passing. We use the terms “message” and “packet” interchangeably from now
on. SOS also provides mechanisms for synchronous communication among mod-
ules through function subscription [10]. Like most other operating systems being
used in sensor networks, SOS, in its original form, does not provide memory pro-
tection. Even though we implemented Aegis in SOS, it should be noted that it
is still portable to other sensor network operating systems (Section 3.8).

3.3 Intercepting Communication

FModule, an SOS module stitched from the input rule set, provides two meth-
ods: is outgoing allowed and is incoming allowed which take communica-
tion meta-data as input for outgoing and incoming messages respectively. They
return true if it is to be allowed and false otherwise. The communication
meta-data contains source and destination module identifiers as well as source
and destination node addresses.

In SOS, network communication is performed using one of the post * kernel
API calls. Aegis uses a modified SOS kernel, where, at the beginning of these
function calls, is outgoing allowed provided by FModule is invoked. It should
be noted that in SOS, the kernel is not a module and hence can not subscribe
to functions provided by FModule or any other module. So, the modified kernel
accesses the appropriate function pointer from a system jump table [10] in order
to invoke the method is outgoing allowed.

Similarly, incoming messages are inspected by calling is incoming allowed
from the appropriate place in the network stack (we intercepted
handle incoming msg()).

To/From Radio

Module A

Module B

Module C

Kernel Space

Message Queue

To Modules

post_short()

post_net()

post_long()

handle_incoming_msg()

Module SpaceNetwork Stack

Fig. 2. Communication in SOS using message passing

AEGIS: A Lightweight Firewall for WSNs 263

3.4 Rule Specification

Like firewalls used in traditional networking environments, we take a declara-
tive approach in Aegis for defining firewall rules. These rules are defined by
the grammar, G (Figure 3). FModule is automatically generated from the rule
specification (Section 3.6). Note that the default behavior in Aegis is to allow
all communication.

<rules> ::= "BEGIN" <rule-list> "END”
<rule-list>::= <rule> | <rule> < rule-list>
<rule> ::= <address> <comm-dir> <address> <access>
<address> ::= <id-list> | "*" | ".”
<comm-dir> ::= "IN" | "OUT”
<access> ::= "ALLOW" | "DENY”
<id-list> ::= <id> | <id> <id-list>
<id> ::= "N" <int-lit> | "M" "(" <m-args> ")" <int-lit>
<m-args> ::= <int-list> | "*" | ".”
<int-list> ::= <int-lit> | <int-lit> "," <int-list>
<int-lit> ::= <digit>+
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Fig. 3. Grammar used to define Aegis rules. Here, . (dot) means the current node
and * (asterisk) is used to refer to all the nodes in the network

3.5 Rule Set Validation

A firewall policy may often contain conflicting or prohibited rules due to human
errors. Since Aegis incorporates rules into a binary, it is difficult to update that
binary in the event of an error as it requires an expensive code update procedure.
Thus, it is important that the rule set used to generate FModule is free from
any conflicting or prohibited rules. For example, consider these two rules: * OUT
N 6 ALLOW and * OUT N 6 DENY. Here, N refers to the nodes and M refers to the
modules in a node. Other details about the syntax can be found in Figure 3. The
first rule allows all traffic towards node 6 while the latter does not. To avoid this
conflict, at least one of them needs to be eliminated. Examples of prohibited rules
can be those which may disrupt communication to or from modules (referred as
prohibited modules) or nodes that are an integral part of the operation of the
network (e.g., the SOS module that is responsible for dynamic loading).

An atomic rule is a rule which addresses packets from and to a particular mod-
ule in a particular node, e.g., M(2) 3 OUT M(3) 2 ALLOW. On the other hand,
M(2, 3) 3 OUT N 2 ALLOW is not an atomic rule. Each non-atomic rule can be
broken into two or more atomic rules. We refer to this as rule decomposition. Ta-
ble 1 shows a few examples of rule decomposition including the aforementioned
non-atomic rule. The decomposition process allows us to resolve conflicts at such
a granularity that we do not need to discard a rule in its entirety unless needed.
The decomposed rule set can be much bigger than the original rule set. We
can keep the cardinality of this set small by carefully assigning IDs to modules
and nodes so that the values of MAX MODULE ID and MAX NODE ID (Table 1) remain

264 M.S. Hossain and V. Raghunathan

Table 1. Decomposing firewall rules into atomic rules in Aegis

Original Rule Decomposition
N 3 OUT M(6) 1 ALLOW M(3) 1 OUT M(6) 1 ALLOW, M(3) 2 OUT M(6) 1 ALLOW,..., M(3) MAX MODULE ID OUT M(6) 1 ALLOW

M(2, 3) 3 OUT N 2 ALLOW
M(2) 3 OUT M(2) 1 ALLOW, M(2) 3 OUT M(2) 2 ALLOW,..., M(2) 3 OUT M(2) MAX MODULE ID ALLOW,

M(3) 3 OUT M(2) 1 ALLOW, M(3) 3 OUT M(2) 2 ALLOW,..., M(3) 3 OUT M(2) MAX MODULE ID ALLOW

* OUT N 4 DENY
N 1 OUT N 4 DENY, N 2 OUT N 4 DENY,..., N MAX NODE ID OUT N 4 DENY

These rules are further decomposed like the previous examples.

as small as possible. Moreover, since we perform this validation process in a
desktop environment, we have access to enough resources to handle this.

In order to define the rule validation process more formally, we use the fol-
lowing notation:
P : The initial rule set X : Set of the prohibited modules

Ri : The ith rule in P ri
j : The jth atomic rule after decomposing Ri

si
j : Source module in ri

j tij : Destination module in ri
j

di : Direction in Ri (IN/OUT) ai : Access specification in Ri (ALLOW/DENY)
The following cases are considered while validating P :

1. If ∃i, j (si
j ∈ X ∨ tij ∈ X) then discard ri

j .
2. ∃i, j, ki, kj (i < j ∧si

ki = sj
kj ∧ tiki = tjkj ∧di = dj ∧ai �= aj) and both ri

ki and
rj
kj are still not discarded, discard rj

kj . It should be noted that there can not
be any conflicting atomic rules within a single rule (since ai �= ai is always
false), hence the case where i = j is not required.

Note that these cases do not handle redundant rules but only conflicting and
prohibited rules. This omission is deliberate because we show in the next section
that the code generation mechanism in Aegis is immune to possible redundan-
cies in P . There is a caveat with this validation process: it can only detect and
resolve static conflicts among the rules. However, there can be conflicts arising
during the run-time as well. Rules that address the current node (using . (dot)
as the source/destination) can create such conflicts since the node ID is not
available during the compile time. We generate FModule code in such a way
that the rule that is defined earlier in the input file stays effective in such cases.

3.6 Code Generation and Optimization

A straightforward approach in designing a firewall will be to use a rule file as
the input to FModule. Under this model, whenever a transmission gets directed
towards FModule, it reads the rule file to check whether the transmission should
be allowed or denied. Besides simplicity, it has other benefits. For example,
policy update (e.g., adding a new rule) can be done in an incremental fashion
resulting in smaller data transfer across the network. However, there are a few
serious drawbacks as well. Most of the operating systems for sensor nodes do not

AEGIS: A Lightweight Firewall for WSNs 265

provide any easy mechanism for securing a file or memory protection [15]. So,
malicious modules may get access to the rule file and manipulate it according
to their needs. Optimizing the rule set will be almost impossible in such an
approach as it would be computationally very expensive for sensor nodes. Also,
each time FModule receives the meta-data of a packet or message, it has to read
the input file resulting in a large number of read operations in its life time. Such
operations are prohibitively expensive for an environment where resources are
extremely limited.

In contrast, Aegis addresses these drawbacks by generating a binary, called
FModule, from the input rule file and uploading the binary to the nodes. Dis-
seminating this binary is likely to be more expensive than doing an incremental
update of the rule set used in the previous approach. Since such policy changes
are infrequent, this does not become a big issue. However, this allows us to
perform complex code analysis and optimizations in powerful computing envi-
ronments. It also eliminates the need for expensive read operations from the
flash memory during run-time. Our code generation technique avoids the need
for complex rule optimization techniques [18,9] otherwise found in traditional
firewalls.

After removing the static conflicts and prohibited rules from the rule specifi-
cation (Section 3.5), we generate C-code which will be compiled into FModule.
A naive code generation technique can produce an inefficient executable. Hence,
we apply simple optimizations as shown in Figure 4. Here, the most straight-
forward conversion of the rules results in multiple if-then-else code blocks.
Sometimes it may be possible to fuse some of them into a fewer number of blocks,
as shown for is outgoing allowed in Figure 4. It is also useful to guard against
redundant and duplicate rules since it would void the effect of such redundancies.
Another optimization applied is the use of switch-case statements. Since nodes
in a sensor network typically run only a small number of modules, sometimes
the use of switch-case based on module id can lead to efficient binaries. For
small networks, use of switch-case based on node id can also be beneficial.

We claimed earlier that unlike traditional firewalls, we do not perform any
optimization on the input rule set. This is because we generate FModule source
in such a way that it eliminates the necessity of such optimizations any more.
Figure 4 shows an example of this inside the method is incoming allowed. The
generated code there removes the redundancy introduced by the fourth rule in
the actual input rule set.

As a proof of concept, we apply the above optimizations to our generated
code. However, in principle, other complex optimization techniques can be part
of Aegis. Both rule set validation and code generation and optimization are
automated and implemented using standard Unix utilities lex and yacc.

3.7 Meeting the Design Principles

In Section 2, we outlined a few firewall design principles aimed at resource scarce
embedded systems such as WSNs. We designed Aegis to align with those prin-
ciples as closely as possible. With the use of a semantically rich rule specification

266 M.S. Hossain and V. Raghunathan

...
 M(.) 5 OUT N 5 N 6 DENY M(.) 5 OUT N 4 N 7 DENY
 M(*) 6 IN . ALLOW M(3) 6 IN . ALLOW

(a) Firewall rules
...
int8_t is_outgoing_allowed(sos_pid_t did,

sos_pid_t sid,
 uint16_t daddr,
 uint16_t saddr) {
 /* Rule #1 */
 if (sid == 5 && saddr == ker_id()) {
 if (daddr == 5 || daddr == 6) {
 return DENY;
 }
 }
 /* Rule #2 */
 if (sid == 5 && saddr == ker_id()) {
 if (daddr == 4 || daddr == 7) {
 return DENY;
 }
 return ALLOW;
}

int8_t is_incoming_allowed(...) {
 /* Rule #3 */
 if (sid == 6) {
 if (daddr == ker_id()) {
 return ALLOW;
 }
 /* Rule #4 */
 if (sid == 6 && saddr == 3) {
 if (daddr == ker_id()) {
 return ALLOW;
 }
 }
 ...
 return ALLOW;
}

(b) Code generated without optimization

...
int8_t is_outgoing_allowed(sos_pid_t did,

sos_pid_t sid,
 uint16_t daddr,
 uint16_t saddr) {
 ...
 switch (sid) {
 case 5:
 if (saddr == ker_id() && daddr >= 4
 && daddr <= 7) {
 return DENY;
 }
 break;
 ...
 }
 return ALLOW;

}

int8_t is_incoming_allowed(...) {
 ...
 switch (sid) {
 case 6:
 if (daddr == ker_id()) {
 return ALLOW;
 }
 break;
 ...
 }
 ...
 return ALLOW;

}

(c) Code generated with optimization

Fig. 4. Code optimization in Aegis

language (Section 3.4), Aegis allows users to define a diverse set of policies. The
code generation technique in Aegis makes sure that redundant rules in the input
rule set do not increase the code size. The memory overhead incurred by Aegis

is independent of the number of modules present in the system. For example, we
micro-benchmark Aegis (Table 2) in Section 4 and find it to increase the ROM
usage of SOS only by 2.7 KB. By incorporating rules into a binary (FModule),
Aegis eliminates huge amount of expensive read operations otherwise needed in
the case where rules are read from an input file each time a check is performed.
Aegis provides transparency from user modules by not requiring any modifica-
tion of them and by intercepting communication in the kernel. Maintenance of
Aegis is easy when it is used in an operating system with support for dynamic
loading and linking (e.g., SOS [10]).

3.8 AEGIS for Other Operating Systems

Even though SOS was chosen as Aegis’ development platform, other modu-
lar operating systems like Contiki [6] and MANTIS [2] can also be used to run
Aegis effectively. Operating systems like TinyOS [1] that do not have a modular
structure can still benefit from Aegis. Even though control over module level
communication is no longer possible, Aegis can still provide necessary firewall

AEGIS: A Lightweight Firewall for WSNs 267

functionality to control node level communication. For example, active messages
(AM) [3] for MicaZ motes running TinyOS can be controlled from the AM im-
plementation for the CC2420 radio (component CC2420ActiveMessageP). This
way, user applications need not be modified to enforce firewall policies. Updating
the firewall can be done in the form of standard code dissemination [17].

4 Experimental Results

To evaluate our prototype implementation of Aegis, we conducted a series of
experiments using a cycle-accurate simulator [22] as well as a small testbed of
MicaZ motes. Our first experiment evaluated the overheads of Aegis while the
second and third experiments evaluated Aegis’ ability to perform gatekeeping
at the node-level and module-level, respectively.

4.1 Overhead Analysis

Our first experiment was a micro-benchmark evaluation of our Aegis implemen-
tation using the Avrora cycle-accurate simulator to measure its overheads. In
all the runs of this experiment, there were three modules pre-installed in SOS,
namely Surge, TreeRouting and PhotoTempSensor, all available with the stan-
dard SOS installation. We generated an FModule for this experiment from these
two rules: N 2 N 3 IN * DENY and * OUT N 2 N 3 DENY.

Table 2 shows the increase in total RAM (Data + BSS + Heap + Stack) and
ROM usage due to Aegis. As shown in the table, the ROM usage increased
by 6.5% and the RAM usage increased by 7.6%. As described earlier, FModule
provides two methods: is outgoing allowed and is incoming allowed to filter
all outgoing and incoming communications respectively. We found the overhead
of calling these two functions to be 15 and 24 clock cycles, respectively, for the
rule set listed above. Note that this overhead will vary based on the complexity
of the rule set used (e.g., an empty is outgoing allowed method with only a
return statement takes 9 cycles). Table 2 also lists the overhead of invoking SOS’
messages sending functions. The overhead was more than that of just invoking
the two FModule methods mentioned above. This is due to the look up time for
FModule and the appropriate function pointer from the SOS system jump table
inside the kernel. The overhead of having Aegis but no FModule was between

Table 2. Memory footprint of various combinations of SOS and Aegis along with
overhead of calling message sending functions

OS Configuration
Memory (bytes) SOS Function Call (# of cycles)
RAM ROM post short post long post link

Plain SOS 3,604 45,114 262 392 585
SOS + Aegis + no FModule 3,755 47,856 425 571 742
SOS + Aegis + FModule 3,881 48,048 585 790 967

268 M.S. Hossain and V. Raghunathan

163 and 185 clock cycles. The addition of an FModule further increased the
execution time by approximately the same amount.

4.2 Controlling Tree Routing

In our second experiment, also conducted using Avrora, we used Aegis with
SOS running Surge [24], a sensor data collection application. Surge uses a dis-
tributed tree routing protocol that builds a tree rooted at the base station and
every Surge node forwards their collected data towards that base station. TreeR-
outing is an SOS module that implements this routing protocol. This experiment
demonstrates a scenario where selected nodes have to be cut off from the net-
work for some reason (e.g., the nodes display suspicious behavior or are known
to have a hardware or software bug). Figure 5 shows the experimental topology
used. All nodes were forwarding their data to node 1, which was the base station
of this topology. The Surge module on each node was generating a data packet in
every 8 seconds. After TreeRouting stabilized (after approximately 100 seconds)
and had a route established for each node towards the base station, we updated
the firewall in all the nodes with the rules: N 2 N 3 IN * DENY and * OUT N 2
N 3 DENY. This blocked all nodes from sending/receiving packets to/from nodes
2 and 3. As a result, TreeRouting re-adjusted and some nodes started sending
data following different routes (Figure 5). Later on, we lifted the restriction on
node 2 by replacing the rules with these: N 3 IN * DENY and * OUT N 3 DENY.
Since SOS does not provide the ability to install or update binaries on a selected
node only, all nodes received the updated firewall rules. Soon after this, node 2
became part of the routing tree again while node 3 still remained isolated. This
simulation was run for 45 minutes in Avrora. To show how the packet delivery
latency at the base station was affected, we consider packets that originated
from node 5. Latency was calculated as the time a packet took to traverse from
the physical layer of the source to that of the base station. Without any firewall
active, the average delivery latency was calculated to be 39.3 ms. When both
node 2 and node 3 were blocked using the firewall, the average latency changed
to 142.9 ms, due to the longer route that packets had to travel. Once we lifted
the restriction on node 2, this average latency dropped back to 38.2 ms. Figure
6 shows that the cumulative number of packets received at the base station from
node 2 remained unchanged during the period when the firewall was blocking
all communications to and from node 2.

SOS does not permit two modules with the same module ID to exist in the
system. As a result, to update a module, one has to remove it first and then

isolated

2

4

1 5

7

33

2

1 5

64 7 7

3

1

64

2

5

6

isolated
2 and 3 are Only 3 is

Fig. 5. Controlling Tree Routing in SOS using Aegis. Communication from/to the
circled nodes were blocked using firewall rules. Node 1 is the base station.

AEGIS: A Lightweight Firewall for WSNs 269

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

 No Firewall
 Firewall blocking
 node 2 and 3

 Firewall blocking
 only node 3

C
u

m
u

la
ti

ve
 #

 o
f

p
ac

ke
ts

 r
ec

ei
ve

d

at
 b

as
e

st
at

io
n

Time (sec)

Fig. 6. Cumulative no. of packets received at the base station from node 2 in the
topology shown in Figure 5

install the new version. If FModule itself is updated using this procedure, then
there will be no firewall available during the update process, which is undesirable.
To address this, we used two copies of FModule with different module IDs. While
intercepting any communication, the kernel checked whether any one of them
was available. The first available FModule was used to perform packet filtering.
This way, we made sure that at least one FModule was always available. While
updating FModule, we maintained the old copy until the the new version was
installed. Once installed, we removed the old FModule. Thus, a firewall was
always present in the system.

4.3 Creating Network Overlays

Aegis also allows packet filtering based on module IDs as opposed to node IDs.
This capability enables Aegis to be used in a variety of interesting applica-
tions. Our final experiment, conducted using a small testbed of MicaZ nodes,
demonstrates this. In this experiment, using simple firewall rules, we created two
network overlays within the physical topology shown in Figure 7. Such overlays
provide a way to create abstract topologies on top of a physical one. These ab-
stractions can be used to reduce network traffic, run different applications on
different subsets of nodes, etc., all without altering the physical topology of the
network .

In this experiment, we used two different versions of Surge, namely SurgeS-
low (module ID 142) and SurgeFast (module ID 168). They collected data at

1

Station

FModule
loaded

6

4

5

2

3

(a) (b)

6

4

5

2

3

1

Base

Fig. 7. Creating two network overlays using Aegis. Overlay 1 (nodes 2 and 4) was
forwarding Surge data at a slower rate while overlay 2 (nodes 3, 5 and 6) was forwarding
Surge data with a faster rate.

270 M.S. Hossain and V. Raghunathan

No firewall present Firewall present

 60

 0

 40

 20

at
 b

as
e

st
at

io
n

Sender node ID

N
um

be
r

of
 p

ac
ke

ts
 r

ec
ei

ve
d

 80

65432

 120

 100

Fig. 8. Packet delivery statistics of the nodes from the two overlays in Figure 7

a rate of one sample per 8 seconds and one sample per 4 seconds respectively.
Our goal was to run SurgeSlow on nodes 2 and 4 and SurgeFast on nodes 3, 5
and 6 (Figure 7). The ideal way to do this would be to install SurgeSlow and
SurgeFast to the corresponding nodes only. But, as mentioned earlier, the mod-
ule distribution mechanism in SOS does not provide the ability to dynamically
dispatch a module to a specific node or set of nodes. Therefore, in our MicaZ
testbed, all 6 motes were running both versions of Surge as shown in Figure 7(a).
We loaded FModule to the network which was generated from these four rules:
M(2, 4) 168 OUT * DENY, * OUT M(2, 4) 168 DENY, M(3, 5, 6) 142 OUT *
DENY and * OUT M(3, 5, 6) 142 DENY. These rules allowed SurgeSlow data
from only nodes 2 and 4 (Overlay 1) to flow towards the base station. Similarly,
SurgeFast data from only nodes 3, 5 and 6 (Overlay 2) were permitted to flow
towards the base station. Note that no incoming packets were blocked by the
firewall. The reason was that Surge packets were wrapped inside TreeRouting
(module ID 141) packets while traversing from one node to another node. As can
be seen in Figure 8, nodes from overlay 2 were generating data at a rate about
twice as fast as nodes from overlay 1. The data was collected for 300 seconds
once TreeRouting stabilized. The results shown are averages over three runs.

This concept of creating network overlays can potentially be used in shared
sensor network testbeds such as MoteLab [23], where our solution will provide
the ability for multiple users to use the testbed simultaneously, providing a better
utilization of shared resources.

5 Related Work

S Firewall [19] provides defense against intrusion detection through the use of
mobile monitor agents. These agents reside in a node to monitor the behavior
of its neighbors. S Firewall is not a rule based firewall like Aegis and hence
does not provide a true firewall experience. It is only focused on the intrusion
detection and response problem. Murthy et al. [20] proposed a firewall solution
where the firewall protects a fixed wired network that allows wireless users to
connect to it. Their solution is designed for general wireless networks and did
not consider the resource limitations of sensor networks. Moreover, individual
wireless devices do not have a firewall running and hence they can not exploit the

AEGIS: A Lightweight Firewall for WSNs 271

true benefits of a firewall. Hermes [14] is a software architecture that achieves
visibility and control in WSN by interposing individual modules. In Section 3.1,
we described why Hermes can not provide an effective firewall solution for
WSNs. Use of virtual machines [16] to build a firewall is also not feasible due to
its extra overheads.

Despite the lack of a firewall solution, security in WSN has been studied
extensively [21]. Solutions for secure reprogramming [7], secure broadcasting [13],
DoS attacks [25] and various other types of attacks were proposed. A firewall,
like Aegis, can complement many of these solutions and thus eliminate some
of the overheads associated with them, if not their necessity. In short, a well
designed firewall can provide security against a number of attacks, access control
mechanism and an effective intrusion prevention system (IPS) to low powered
sensor networks, all under the same umbrella.

6 Conclusion and Future Directions

Prior experience has taught us that firewalls play a crucial role in safeguarding
networked PC systems against remotely-launched security attacks. As WSNs
evolve towards being connected to the Internet with the development of tech-
nologies such as 6LoWPAN, it becomes crucial to extend the protection offered
by a firewall to this class of systems. As a first step, this paper presented Aegis,
a lightweight, rule-based firewall for WSNs. Aegis has been designed to be
resource-efficient, flexible, and easy to use. We have implemented Aegis using
the SOS operating system and evaluated it through experiments conducted on
real sensor nodes. Our results demonstrate that Aegis successfully performs
gatekeeping of a sensor node’s communication traffic in a flexible manner with
minimal overheads. However, scope for future enhancements is still wide open.
First, similar to all packet-filtering firewalls that filter packets based on node
identifiers (e.g., node ID, IP address), Aegis is vulnerable to attacks where the
node identifier is faked (e.g., IP spoofing attack). Node authentication schemes
can be used to defend against such spoofing attacks. Second, despite the resource
limitations that exist in WSNs, a stateful packet filtering firewall will provide
more security and control. Introducing stateful behavior in Aegis will be one
of our future goals. Third, extending Aegis to control not just whether packets
are permitted to pass through, but also the amount of incoming/outgoing traffic
per unit time will allow it to be used as a network resource manager. Fourth, in
the current implementation of Aegis, synchronous communication [10] between
modules on the same node can still bypass Aegis. This can be addressed by
using Aegis in conjuction with a system such as Hermes [14].

References

1. TinyOS, http://www.tinyos.net
2. Bhatti, S., et al.: MANTIS OS: An embedded multithreaded operating system for

wireless micro sensor platforms. Mobile Networks and Applications 10(4), 563–579
(2005)

http://www.tinyos.net

272 M.S. Hossain and V. Raghunathan

3. Buonadonna, P., Hill, J., Culler, D.: Active message communication for tiny net-
worked sensors. In: Proc. of INFOCOM (2001)

4. Chapman, D.B., Zwicky, E.D., Russell, D.: Building internet firewalls. O’Reilly &
Associates, Inc., Sebastopol (1995)

5. Dunkels, A.: Full TCP/IP for 8 Bit Architectures. Proc. of MobiSys (May 2003)
6. Dunkels, A., Gronvall, B., Voigt, T.: Contiki-a lightweight and flexible operating

system for tiny networked sensors. In: Proc. of the First IEEE Workshop on Em-
bedded Networked Sensors, pp. 455–462 (2004)

7. Dutta, P., Hui, J., Chu, D., Culler, D.: Securing the deluge Network programming
system. In: Proc. of IPSN, pp. 326–333 (2006)

8. Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific Amer-
ican 291(4), 76–81 (2004)

9. Gouda, M.G., Liu, X.-Y.A.: Firewall design: consistency, completeness, and com-
pactness. In: Proc. of 24th International Conference on Distributed Computing
Systems, pp. 320–327 (2004)

10. Han, C.C., Rengaswamy, R.K., Shea, R., Kohler, E., Srivastava, M.: SOS: A dy-
namic operating system for sensor networks. In: MobiSys, pp. 163–176 (2005)

11. Hui, J.W., Culler, D.E.: IP is dead, long live IP for wireless sensor networks. In:
Proc. of SenSys, pp. 15–28 (2008)

12. Hui, J.W., Culler, D.E.: Extending IP to low-power, wireless personal area net-
works. IEEE Internet Computing, 37–45 (2008)

13. Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for
wireless sensor networks. In: Proc. of SenSys, pp. 162–175 (2004)

14. Kothari, N., Nagaraja, K., Raghunathan, V., Sultan, F., Chakradhar, S.: HER-
MES: A Software Architecture for Visibility and Control in Wireless Sensor Net-
work Deployments. In: IPSN, pp. 395–406 (2008)

15. Kumar, R., Kohler, E., Srivastava, M.: Harbor: software-based memory protection
for sensor nodes. In: Proc. of IPSN, pp. 340–349 (2007)

16. Levis, P., Culler, D.: Mate: A Tiny Virtual Machine for Sensor Networks. In: Proc.
of ASPLOS (2002)

17. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: Proc. of NSDI,
vol. 246 (2004)

18. Liu, A.X., Torng, E., Meiners, C.R.: Firewall compressor: An algorithm for mini-
mizing firewall policies. In: INFOCOM, April 2008, pp. 176–180 (2008)

19. Ma, J., et al.: S Firewall: A Firewall in Wireless Sensor Networks. In: WiCOM,
September 2006, pp. 1–4 (2006)

20. Murthy, U., Bukhres, O., Winn, W., Vanderdez, E.: Firewalls for security in wireless
networks. In: Proc. of HICSS, vol. 7, p. 672 (1998)

21. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Com-
mun. ACM 47(6), 53–57 (2004)

22. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: IPSN, pp. 477–482 (April 2005)

23. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network
testbed. In: Proc. of IPSN, pp. 483–488 (2005)

24. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: Proc. of SenSys, pp. 14–27 (2003)

25. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. Computer, 54–62
(2002)

Halo: Managing Node Rendezvous in
Opportunistic Sensor Networks

Shane B. Eisenman1, Hong Lu2, and Andrew T. Campbell2

1 Columbia University, New York NY 10027, USA
shane@ee.columbia.edu

2 Dartmouth College, Hanover NH 03755, USA
campbell@cs.dartmouth.edu

Abstract. One vision of an opportunistic sensor network (OSN) uses
sensor access points (SAPs) to assign mobile sensors with sensing tasks
submitted by applications that could be running anywhere. Tasked mo-
bile sensors might upload sensed data back to these applications via
subsequent encounters with this SAP tier. In a people-centric OSN,
node mobility is uncontrolled and the architecture relies on opportunistic
rendezvous between human-carried sensors and SAPs to provide task-
ing/uploading opportunities. However, in many reasonable scenarios ap-
plication queries have a degree of time sensitivity such that the sensing
target must be sampled and/or the resulting sensed data must be up-
loaded within a certain time window to be of greatest value. Halo effi-
ciently, in terms of packet overhead and mobile sensor energy, provides
improved delay performance in OSNs by: (i) managing tasking/uploading
opportunity, and (ii) using mobility-informed scheduling at the SAP.

1 Introduction

The initial application focus of wireless sensor networking has been on in situ
monitoring of ecological processes, or on industrial processes and equipment.
Recently we and other researchers in the field have begun to consider the urban
domain with a focus on people-centric [14] [16] [4] [22] sensing and application
development. Architectures in this new domain assume mobile smart phones
and embedded sensing devices equipped with a short-range radio (e.g., ZigBee,
Bluetooth, WiFi) are carried by humans or mounted on vehicles, leading to a
network of sensors with mobility uncontrolled by the sensing architecture [11]
[5]. Such architectures often employ a multi-tiered hierarchical structure where
sensor tasking (i.e., application query assignment) and data collection occur
via mobility-enabled interactions between people-centric mobile sensors (MSs),
and edge wireless access nodes [10] we call sensor access points (SAPs). In this
context, we treat the question of how we may best task MSs and collect data
from MSs in support of delay-aware applications.

Tasking and collection operations can occur when MSs enter the “spheres of
interaction” of the SAPs. Generally, by sphere of interaction we mean the region
(i.e., the physical volume) within which services offered by a node are available

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 273–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 S.B. Eisenman, H. Lu, and A.T. Campbell

to its neighbors. For the SAP case, to which we limit our discussion in this
paper, these services include tasking and uploading. In practice, the adaptation
of the sphere of interaction is implemented by both transmit power control, and
multihop signaling between a SAP and MSs that happen to dwell for a time
near a SAP. During their stay these may be used to funnel packets from data
collecting MSs to the SAP, and to relay tasking messages from the SAP to MSs.

While applications that use opportunistic sensor networks should be delay
tolerant, we draw a distinction between those that are delay-aware and those
that are not. Delay-aware applications do not warrant real-time treatment, but
may issue queries that have a degree of time sensitivity such that the sensing
target must be sampled, and/or the resulting data must be uploaded, within a
specified time window to be of greatest value. Examples are myriad, and include
personal applications that seek to answer questions like, “Where can I find a quiet
place to study for the next hour”, and public utility applications that say, “Give
me my local weather spotter data in time for the next newscast”. In support of
delay-aware applications, we investigate a number of fundamental performance
issues in OSNs, including the interplay between resource consumption and the
timeliness of tasking and data collection.

To increase the frequency and duration of the sensors’ travel through the
sphere of interaction of a given SAP, the SAP might enlarge its sphere of interac-
tion by increasing its transmission power and/or by building a multi-hop sphere
of interaction. However, a multi-hop sphere of interaction requires increased sig-
naling (e.g., to set up and maintain routes), requiring more energy expenditure.
In a setting with uniform per-link loss probabilities and fixed-power transceivers,
multi-hop communication also implies a higher end-to-end loss probability com-
pared to that possible; in a wireless environment with a link packet loss rate
p the probability of success across n hops is (1 − p)n. Further, increasing the
transmission power of the SAP implies an increased energy drain on the energy-
limited MSs since these must match the higher transmission power of the SAP
for bidirectional communications. Finally, a larger SAP sphere of interaction
disrupts local peer-to-peer sensor communication in a larger part of the field, a
problem of increasing relevance given the recent interest in mobile peer-to-peer
services using localized communication [12] [20] [15].

We design, implement and evaluate Halo, a framework providing algorithmic
and protocol support for managing rendezvous between SAPs and human-carried
and vehicle-mounted mobile sensors in the urban domain. Halo manages oppor-
tunities for tasking and uploading operations via deadline-driven adaptation of
SAP sphere of interaction. When multiple simultaneous operations are possi-
ble, Halo takes a snapshot of the system (i.e., the sensors available for tasking
and uploading in its sphere of interaction, the pending tasking operations, and
the applications waiting for data upload), and incorporates sensor-driven mo-
bility prediction of the available MSs to generate a schedule of the tasking and
uploading operations. This novel scheduling approach integrates a traditional
shortest-job-first approach, and a mobility-based approach tailored for OSNs.

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 275

2 Managing Rendezvous Opportunity

There are competing pressures in managing tasking and collection opportuni-
ties. We wish to expand the SAP sphere of interaction to increase the number
of MSs available to task, reduce tasking delay, increase the amount and utility
of sensed data to delay-aware applications, reduce collection delay, and reduce
the likelihood of mobile sensor storage overflow. On the other hand, we wish to
contract sphere of interaction to reduce required energy expenditure of mobile
sensors when transmitting to a SAP, reduce disruption to communications ongo-
ing between MSs in the vicinity of a SAP, and increase the security of the system
by probabilistically reducing overhearing, and explicitly limiting the number of
nodes offering (authenticated) proxy service on behalf of the SAP.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10

Sphere of interaction radius (R)

Energy Cost (energy units)
Disrupted Area (dist. units2)
Data Xfer Opp. (time units)

Fig. 1. Impact of SAP sphere of in-
teraction radius

We use a simple model of a single SAP
to illustrate the impact of sphere of inter-
action radius on data transfer opportunity
between MS and SAP, required MS transmit
energy, and the SAP interference area. Here,
the radius of the “sphere” (our 2D analysis
can directly be extended to 3D) is a real val-
ued abstraction of the range extension due
to power control only. The trigonometry is
straightforward and is omitted due to space
constraints, but details are available in the
technical report [8, Appx I]. Figure 1 shows:
(i) the data transfer opportunity (in abstract time units) of a single MS by
plotting the average straight line trajectory length through the SAP sphere of
interaction, assuming the MS maintains a constant unit velocity along the tra-
jectory; (ii) the average transmit energy a MS must use to communicate with the
SAP, assuming a symmetric link and a simplified Friis model with a loss expo-
nent of 4, as it traverses the sphere of interaction along the average length chord;
and (iii) the lower bound on the area disrupted by SAP-MS communications as
the MS travels along the average length chord. Data transfer opportunity grows
linearly with the sphere of interaction radius, while energy cost and SAP inter-
ference experience super-quadratic growth. The tradeoff between data transfer
opportunity, and MS energy and SAP interference impact, motivates a managed
SAP sphere of interaction radius. This illustrative analysis necessarily ignores
important realities of wireless networks: the relationship between transmission
power and physical distance between the SAP and MS is complex due to an-
tenna characteristics, the attenuation by the body [13] and other environmental
factors, and humans typically do not walk along chords. However, we reason-
ably assume that increasing SAP transmission power increases the probability
of interaction between SAPs and MSs, and insofar as this happens the disrupted
area and energy costs to the network also increase. Section 4 provides simulation
results bolstering these numeric arguments.

While there are a number of possible triggers for increasing or decreasing
the SAP sphere of interaction, we believe the fundamental driver for sphere of

276 S.B. Eisenman, H. Lu, and A.T. Campbell

interaction adaptation should be fulfilling application requests (i.e., tasking and
collection operations) since this is the metric that mostly closely reflects the
user experience. Generally, we wish to expand the sphere of interaction when
application demands require it, and contract the sphere of interaction at all other
times to reduce energy consumption and channel access contention in the vicinity
of the SAP. In an OSN architecture, the baseline is the lazy approach where we
passively wait on mobility to bring suitable sensors to task, or previously tasked
sensors carrying back sensed data within the radio range of the SAP when the
transmit power is fixed. However, if some sensed data are most valuable if sensed
and/or delivered within a particular time window, an improvement over the
performance of this lazy approach is required.

Assume we have an application query i with which to task the sensor network
that requires data from a particular sensor type (e.g., CO2 sensor). Suppose that
the data must be sensed at time tsi(min) ≤ t ≤ tsi(max) to capture the event
of interest (e.g., rush hour pollution), and that a constant Ti exists that reflects
the time it takes to travel from the tasking SAP (which is assumed to know its
location) and the sensing target location defined in the query, using average case
human speed. When an application query is inserted into the SAP task queue
at time t0i , we calculate the time until sphere expansion δ0

si
= (ts(max)i

− t0i) −
Ti. If a MS matching the task requirements is available for tasking within the
current SAP sphere of interaction, then no sphere adjustment is necessary and
the tasking operation can proceed. Otherwise, at any time tj a SAP calculates its
sensing-driven sphere adjustment multiplier ξs for query i as ξsi = (1 − δj

si
/δ0

si
).

Similarly, assume for an application query i, an MS was previously tasked and
was able to sample the requested target. Suppose the data must be delivered back
to a SAP by time t ≤ tu in order for the data to have the greatest utility, and
Ti is defined as before. Then at any time tj a SAP calculates its upload-driven
sphere adjustment multiplier ξu for query i as ξui = (1 − δj

ui
/δ

s(max)
ui), where

δ
s(max)
ui = (tui − t

s(max)
i)−Ti. Queries not specifying sensing target locations set

Ti=0. Queries not having sensing or uploading deadlines, set ts(max) = ∞ and
tu = ∞, respectively.

We use a small set of power settings at both the MSs and SAPs, and limit the
maximum number of hops of sphere expansion to keep the cost and complexity
of interactions low. The choice of the supported power levels can be arbitrary or
based on historical information kept at the SAP about the number of MSs found
at a given sphere radius. Let P = {p1, ..., pK} be the supported power levels at
each node and let M be the maximum allowed number of hops. Then there are
M · K possible sphere extension settings, and we write the set of settings as
S = {s1, ..., sM·K}, where for sj , the number of hops m = 1 + � j−1

K � and the
power setting of the last hop k = j mod(K + 1) (hops prior to the last hop are
at power setting pK).

For a set of tasks Q at a particular SAP, the sphere of interaction is set
according to

s = max

(⌈
max

Q
(ξsi) · M · K

⌉
,

⌈
max

Q
(ξui) · M · K

⌉)
(1)

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 277

Following this rule, the sphere of interaction setting adapts to the current set
of pending deadlines. Taking tasking as an example, as the time tj gets closer
to ts(max)i

− Ti, then δj
si

goes to 0 and the sphere setting grows to M · K. On
the other hand, if all pending deadlines are far enough in the future, then δj

si
is

still close to δ0
si

and the sphere setting shrinks close to the minimum. While a
number of variations on this scheme are possible, the rule in Equation 1 has the
advantage of encouraging early submission of application queries to the system.
Though outside the scope of our current work, early submission might allow for
query load balancing among SAPs, and smart assignment to particular SAPs.

3 Scheduling Operations

We focus on two scheduling design choices that impact both the efficiency of
communications between the SAPs and MSs, the average operation turnaround
time and the average operation throughput. First, we discuss reasons for serving
a single MS until its operation is completed (or it leaves the SAP range) rather
than switching between multiple MS sessions. Second we discuss how the SAP
determines the order in which it will serve the MSs in its current sphere of
interaction. To support scheduling, the SAP takes a snapshot of the system at
particular points in time. Within this freeze frame, the SAP knows: the set of
application tasks to complete, the set of MSs in the sphere of interaction of a
SAP available for tasking, the set of MSs in the sphere of interaction of a SAP
offering data to upload, the set of applications waiting for particular data, and
an estimation of each node’s proximity and mobility.

Atomic vs. Interleaved. Prior experimentation [4] with a testbed of Moteiv
Tmote Invent motes (which use IEEE 802.15.4 radios) shows that at typical
walking speeds and relatively low density of MSs, simultaneous uploading and
tasking results in none of the operations being fully completed using state of
the art sensor network transports. More recently, Miluzzo, et al. have character-
ized [13] the severe radio attenuation caused by the body that will be prevalent
in human-centric networks, that will tend to limit the average contact time be-
tween SAP and MS even if higher data rate radios are used. Because of this
limited contact time, an interleaved approach to operation scheduling (i.e., ei-
ther preemptive or simultaneous uploads and downloads) may not be appropri-
ate. Firstly, a preemptive approach leads to a longer average turnaround time
than non-preemptive scheduling [18] for all operations. Also, with single channel
radios, simultaneous operations implies more MAC layer overhead in terms of
either backoffs or collisions in the case of contention-based MACs, or schedule
maintenance and dissemination in the case of non-contention-based MACs. In-
stead, we take a non-interleaved or atomic approach with at most one active
uploading or tasking session ongoing at each SAP.

278 S.B. Eisenman, H. Lu, and A.T. Campbell

Scheduling Discipline. To determine the order in-sphere MSs will be served,
a simple approach is to not actively manage the order of operations at all and
just serve MSs in the order they arrive at the SAP until they move out of range.
However, service disciplines like FIFO or even random selection ignore impor-
tant features such as the size (i.e., number of bytes) of tasking and uploading
operations, and the MS dwell time in the SAP sphere of interaction. Thus, these
naive approaches can lead to a lower operation throughput due to non-uniform
MS inter-SAP-visitation times, hereafter orbits.

We propose a hybrid mobility-based/shortest-job-first (MB-SJF) scheduling
algorithm to decide the order in which MSs are atomically served. Let A denote
the event that a tasking or uploading operation supported by the current set of
MSs can be completed before the chosen MS exits the maximum SAP sphere
of interaction obtainable without multi-hop, since multi-hop extension is not
always possible. Uploading and tasking operations are ordered by Prob(A). This
probability reflects the size of the operation to be completed (i.e., number of
bytes b) and the estimated dwell time, tSAP , of the associated MS in the sphere
of interaction. We have

Prob(A) = Prob(tSAP ≥ b

C
+ β), (2)

where C is the wireless channel rate in bytes per second, and β = BO · b
frame size ,

for a CSMA channel. Here, BO is the average MAC backoff interval across the
packets needed to complete the operation, and frame size is the maximum
MAC frame size in bytes. It is worth nothing that with our atomic scheduling
approach, the second term on the right side of the inequality can be driven to
zero if the MAC parameters are tweaked such that a backoff window of zero
is used during an upload/download session between a MS and the SAP (the
standard backoff window would still be used for communication between MSs
and for the MS↔SAP session setup [8, Appx II]).

In practice an empirically-derived mean value estimate of an MS’s SAP dwell
time tSAP is easily tracked by the MS and shared with the SAP each rendezvous.
Cold start effects on tSAP are mitigated by seeding with values averaged across
the MS population. Since we are considering the people-centric sensing domain,
human activity inferred from on-board sensors can aid the MS in further refining
its tSAP estimate. In particular, samples from an accelerometer (embedded in
many new mobile phone devices) can be processed to determine if a person is
standing, walking, or running. In [12], the authors classify between these three
states with an average accuracy of about 90%. Since average dwell times are likely
to be highly correlated with human activity, we propose to keep a separate tSAP

for each classified activity and use this value in calculating Equation 2.
Once Prob(A)i is calculated for each {operation, MS} pair i in the sphere

of interaction, the operation schedule is set in descending order of the value
Prob(A)i ∗ νi. The optional priority factor νi can be used to prioritize certain
event types (e.g., toxic spill) or users (e.g., those with long average orbits), but
the exact meaning is left up to the system administrator and it may be dropped
altogether if user/operation priority need not be supported.

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 279

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 10 100 1000C
om

pl
et

io
n

R
at

e
Im

pr
ov

em
en

t (
%

)

Number of Nodes

vs. FIFO
vs. Random

vs. SJF

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 10 100 1000C
om

pl
et

io
n

R
at

e
Im

pr
ov

em
en

t (
%

)

Normalized Mean Upload File Size

vs. FIFO
vs. Random

vs. SJF

(b)

Fig. 2. Advantage of MB-SJF versus other common scheduling disciplines in simula-
tion. MB-SJF consistently completes the upload tasks faster than FIFO, RAND and
SJF, across all tested parameter values for node population and mean file size.

To evaluate the performance of MB-SJF, we simulate a one-SAP/multi-MS
scenario where all MSs are assumed to have data to upload. We compare MB-
SJF with common scheduling disciplines such as first-in-first-out (FIFO), random
selection (RAND), and shortest-remaining-job-first (SJF) in terms of the time
it takes to upload the data from all of the MSs. Each of the MSs is assigned a
file to upload whose size is randomly chosen from an exponential distribution.
MSs move between two states, at-SAP and not-at-SAP, where the dwell times
(tSAP) in each state are randomly drawn from different exponential distributions
with means λSAP and λSAP , respectively. To simulate a population of MSs with
different mobility characteristics, each node is assigned a unique {λSAP , λSAP }
pair, whose values are uniformly spread between 0 and Nγ, where N is the
number of MSs and γ is the spreading factor. The simulator updates MS states
synchronously and both the file sizes and the location dwell times are normalized
to its update period. For MB-SJF, it is assumed the MSs report their λSAP and
λSAP values and remaining file size to upload (b) to the SAP upon entering
the SAP’s sphere of interaction (c.f., the beacon reply message in [8, Appx II].
Neglecting MAC effects, from Equation 2 the SAP computes Prob(A) = e−λSAP b

for each node in its sphere. ν = e−λSAP prioritizes nodes with long orbits.
In Figures 2(a) and 2(b), we plot the completion rate improvement MB-SJF

gives versus FIFO, RAND, and SJF. Each point represents the average of 1000
trials, each with a different seed for the pseudo-random number generator driving
upload file sizes and location dwell times.

Figure 2(a) shows the completion rate improvement versus the number of MSs
in the simulation, with a fixed mean upload file size of 100. As the MS population
grows, the advantage of MB-SJF steadily increases until settling around a 6-
10% improvement after 60 nodes. MB-SJF, like plain SJF, is able to finish off
small upload tasks quickly, but also takes advantage of mobility information
to opportunely upload from nodes that visit the SAP relatively rarely. Figure
2(b) shows the completion rate improvement versus the mean upload file size
when there are 20 MSs. As expected, for medium size files (implying medium

280 S.B. Eisenman, H. Lu, and A.T. Campbell

aggregate upload times), MB-SFJ provides for a relatively constant improvement
in completion rate. As file sizes get larger, the improvement begins to diminish.
As file sizes tend to infinity, so does the completion time regardless of scheduling
discipline, and therefore the possible improvement goes to 0. However, we believe
the typical case for opportunistic wireless uploads from mobile consumer devices
will be small to medium size files (e.g., a 1kB text file, a 1MB image file, a 10MB
audio file). Based on these simulations, MB-SJF seems to be a good candidate
for MS scheduling in the SAP sphere of interaction and we use MB-SJF for
further evaluation in Section 4.

Scheduling Epoch. MSs may enter a SAP’s sphere of interaction during an
ongoing schedule. In this case, the SAP could ignore all newcomers until its
current schedule is complete and then come up with a new schedule that incor-
porates the newcomers, or it might create a new schedule upon the completion
of every operation. In the former case, starvation is prevented, but new sensors
that may rank higher are ignored. In the latter case, more energy is spent and
time wasted by re-running the neighbor discovery after every operation. In Halo,
we define a scheduling epoch of time length E to strike a middle ground. E is
adaptive to the estimated mobility of the MSs involved in the current schedule.
Let Ki represent this set of MSs for a given schedule; then E = max

Ki

(tSAP). The

next scheduling time is then defined as

tschedi+1 = tschedi + min

(n−1∑
j=1

�schedi

j ,

|K|∑
j=1

�schedi

j

)
, (3)

where �schedi

j is the length of the jth operation in schedule i, and n is the ordinal
of the first operation that makes the sum greater than E. MSs that depart the
SAP’s sphere of interaction before their schedule slot are skipped. This method
of addressing starvation is more appropriate than standard aging techniques
since MSs with a lower P (A) (later in the schedule) are not likely to be around
very long and would not be able to take advantage of the aging. Thus, with
the schedule epoch, we focus on getting the higher P (A) operations done rather
than on fairness with respect to starvation.

4 Halo Evaluation

We base our evaluation of deadline-driven sphere of interaction management on
the comparison of three schemes: MIN, ADAPT, and MAX. We use ten SAP
sphere of interaction settings S = {s1, ...s10}, with M = 1 and K = 10, where
setting sj corresponds to a sphere radius of j ∗3 distance units. This relationship
implies a field without radio obstructions, which is unlikely in a people-centric
network. We make this simplifying assumption to avoid making arbitrary as-
sumptions about the deployment environment. Note, however, that transmis-
sion distance will always increase monotonically with transmission power. In the
MIN scheme SAPs always use s1; in the MAX scheme SAPs always use s10; in
the ADAPT scheme each SAP independently varies its radius according to the
sensing deadlines of tasks it is managing. All schemes use MB-SJF scheduling.

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 281

Simulation Environment. We implement Halo algorithms and the tasking
and uploading communications protocols (see [8, Appx II] for details) in nesC,
and simulate several multi-SAP multi-MS scenarios using TOSSIM/Tython.
TOSSIM simulates Halo on the TinyOS platform, including packet exchange,
timer events, etc. Tython is a Python/Java front end used to manage node mo-
bility and connectivity.

Each simulation trial is conducted on a 500×500 field. MSs are initially placed
uniformly at random across the field and move according to a modified random
walk. MSs choose an activity uniformly at random from {standing, walking,
running} and continue with that activity for a period of time chosen uniformly at
random between 1 and 1200 seconds. According to the chosen activity MSs move
at a rate of, respectively, {0, 3, 15} distance units per second in a direction chosen
uniformly at random, between 1 and 360 degrees inclusive, at the same time the
activity is chosen. MSs bounce off the field boundaries. 50 SAPs are placed
uniformly across the field and remain stationary throughout the simulation.

MSs estimate their tSAP and communicate this estimate to the SAP during
the tasking exchange [8, Appx II] to facilitate the MB-SJF schedule calculation
(see Equation 2). We assume all MSs have an accelerometer that can be used for
activity classification, and use the activity classifier confusion matrix published in
CenceMe [12, Fig 6(a)] to drive the actual and reported mobility characteristics
in the simulation. For example, a MS may be “running” as dictated by the
mobility model, but the MS believes it is running with only 90.9% probability.
With 8.37% probability it thinks it is walking and tells the SAP the wrong
information. Real world effects such as classification inaccuracy (or GPS error if a
GPS system is used as a basis for a dwell time estimate) degrade the performance
of the MB-SJF scheduler. Yet, even under worst case classification accuracy, the
scheduler just behaves as a random scheduler that does not consider mobility.

As no large-scale mobile sensor networks allowing external queries have yet
been built, we make some best guesses at parameters characterizing the task ar-
rival process. Emulating application requests from thousands of backend system
users, tasks arrive independently at each SAP with inter-arrival times drawn
randomly from an exponential distribution with a mean of 10s. Task sizes are
drawn randomly from an exponential distribution with a mean of 10 packets
(packets are 128 bytes long). The sensing deadline (ts(max)) is randomly chosen
for each task from an exponential distribution with a mean of 1000s. The dead-
line threshold T should reflect the time it takes on average to travel the distance
from the tasking SAP to the sensing target (see Section 2). In our simulation,
the T value for a given task is chosen uniformly at random in the interval from 1
to ts(max). This is equivalent to choosing a sensing target uniformly at random
in the field and pre-filtering those tasks whose sensing deadlines do not allow
enough travel time from SAP to target. A task whose sensing deadline passes
before it is assigned to a MS is dropped from the SAP’s task queue. The SAP’s
beacon interval [8, Appx II] is set to 5s.

Each MS has a task queue of size 1, meaning it can only serve one application
query at a time. If a task is partially transferred to a MS before a particular

282 S.B. Eisenman, H. Lu, and A.T. Campbell

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

A
ve

ra
ge

 M
S

 R
en

de
zv

ou
s

pe
r

S
A

P

Num. of Mobile Sensors

MIN
ADAPT

MAX

(a) Impact of MS density on the number of
MS/SAP rendezvous.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30C
D

F
 o

f A
vg

. M
S

 R
en

de
zv

ou
s

pe
r

S
A

P

SAP Sphere of Interaction Radius

500MS-ADAPT
50MS-ADAPT

(b) Cumulative distribution of rendezvous vs.
sphere radius for diffent MS densities (with
ADAPT scheme).

Fig. 3.

tasking session completes, the MS caches the state of the suspended session and
resumes the session at the next met SAP. If the sensing deadline of a task that
is partially transferred to a MS expires, the partial state is expunged from the
MS. MSs that are fully tasked and then successfully sense the target generate a
number of data packets to upload chosen randomly from an exponential distri-
bution with a mean of 100 packets. About 20% of the fully tasked MSs end up
reaching their respective target sensing regions prior to their sensing deadlines.
We use an uploading deadline of infinity for all tasks; a MS with data to upload
maintains the state of its upload session across how ever many SAP rendezvous
it takes to complete the upload.

In the following graphs, each data point represents the average of five one-hour
trials, and error bars indicate the 95% confidence interval.

Impact on Tasking/Uploading Opportunity. To characterize the impact of
sphere of interaction radius on the opportunity for MS/SAP rendezvous, we run
simulations across a range of MS densities. Results are summarized in Figure 3.
In Figure 3(a), we quantify the impact of MS density on the number of MS/SAP
rendezvous, plotting the average number of MS/SAP rendezvous per SAP versus
the number of MSs. The y-axis is in log scale to better show the detail despite the
wide spread between MIN and MAX. Unsurprisingly, the number of rendezvous
generally increases with increasing MS density for MIN, ADAPT and MAX.
Of interest, the ADAPT scheme actually results in more rendezvous for the
intermediate MS densities tested. This is likely due to the dynamism of the
sphere of interaction, resulting in “re-rendezvousing” for MSs that have moved
little (e.g., standing) during the sphere adaptation time scale. The effect becomes
negligible at the lowest densities (10 mobile sensors) since the overall probability
of rendezvous shrinks dramatically. At high densities (i.e., above 400 MSs), this
effect is overwhelmed by the sheer number of mobility-based rendezvous, and at
the highest density (500 MSs) MAX yields more rendezvous than ADAPT since
it always uses the largest sphere radius. Another way to see the effect of MSs
density is to consider the sphere of interaction radius at which most rendezvous

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 283

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500

T
as

ki
ng

 O
ps

 C
om

pl
et

ed
 p

er
 S

A
P

Num of Mobile Sensors

MAX
ADAPT

MIN

(a) MIN completes an order of magnitude fewer
tasking ops than ADAPT or MAX, giving poor
service to apps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 0

 50

 100

 150

 200

 250

C
D

F
 o

f A
vg

 P
kt

s
X

fe
rr

ed
 p

er
 S

A
P

A
vg

 P
kt

s
X

fe
rr

ed
 p

er
 S

A
P

SAP Sphere of Interaction Radius

200MS-ADAPT
200MS-ADAPT CDF

(b) Packets xferred generally increases with ra-
dius, but the largest radius shows a diminishing
return.

Fig. 4.

occur. In Figure 3(b), we show the cumulative distribution function (CDF) of
the average number of MS rendezvous per SAP versus SAP sphere of interaction
radius. Curves for 500 MSs and 50 MSs show how at lower densities the majority
of rendezvous occur at higher values of sphere radius. For example, at a sphere
radius of 27 (second largest), in the 50 MS scenario only 40% of the rendezvous
have occurred, while in the 500 MS scenario already 60% have occurred.

Impact on Bytes Transferred and Operations Completed. Figure 4 sum-
marizes the performance of the ADAPT scheme in terms of number of task and
upload packets transferred between MSs and SAPs, and the number of tasking
operations completed. Simulations are run across a range of MS densities.

Figure 4(a) shows the average number of tasking operations completed per
SAP plotted in log scale across a range of MS densities. We see that the behavior
of adapting the sphere of interaction radius based on proximity to the sensing-
deadline for a particular task leads to excellent comparative performance for
ADAPT. On average ADAPT completes 85.5% of the tasks MAX does and
nearly 10 times as many as MIN does.

In Figure 4(b), we provide insight into why the operation completion perfor-
mance of ADAPT is able to remain close to that of MAX. Figure 4(b) shows the
distribution (on the right axis) and cumulative distribution function (on the left
axis) of packets transferred across sphere of interaction radius for the median
density scenario (200 MSs). We see that, in contrast to the rendezvous distribu-
tion shown in Figure 3(b), the packet transfer distribution does not monoton-
ically increase with increasing sphere radius. Rather, the amount of additional
packets transferred at the maximum sphere radius is less than the penultimate
radius, indicating a diminishing return for increasing the sphere radius.

Impact on Disrupted Area. Figure 5 summarizes the extent to which an
increased sphere radius impacts the disrupted area. Since MS energy depletion
is proportional to the sphere of interaction radius, we omit explicit energy-related
results here. Figure 5(a) shows the distribution (and CDF) of the time that SAPs

284 S.B. Eisenman, H. Lu, and A.T. Campbell

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 0

 500

 1000

 1500

 2000
C

D
F

 o
f S

A
P

 T
im

e
S

pe
nt

 a
t R

ad
iu

s

A
vg

 S
A

P
 T

im
e

S
pe

nt
 a

t R
ad

iu
s

(s
)

SAP Sphere of Interaction Radius

200MS-ADAPT
200MS-ADAPT CDF

(a) For ADAPT, SAPs spend a plurality of their
time at the lowest setting, but the majority at
the highest settings.

 100

 1000

 10000

 100000

 1e+06

 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
is

ru
pt

ed
 A

re
a

(u
ni

t2)

Number of SAPs

MAX
ADAPT

MIN

(b) Impact of SAP density on disrupted area.
On avg., ADAPT disrupts ≈ 2

3 the area that
MAX does.

Fig. 5.

on average spend at each of the 10 sphere of interaction settings when using the
ADAPT scheme. The data are from the median density 200 MS scenario, but
are similar for the other tested MS densities. SAPs spend a plurality of their
time (about 25%) at the lowest sphere setting, implying the minimum possible
disruption. Yet, in aggregate most of the time is spent at or above the eighth
setting. In fact, the average sphere radius is about two thirds of that used by
the MAX scheme. Figure 5(b) reflects this relationship and also indicates that
the disturbed area in the field can quickly get very large as the SAP density
increases (number of MSs is fixed at 200). The MIN scheme disrupts a much
smaller area, but as we see in Figure 4 MIN also transfers and completes tasking
operations at a rate an order of magnitude lower rate than ADAPT.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
D

F
 o

f S
A

P
 T

im
e

S
pe

nt
 a

t R
ad

iu
s

SAP Sphere of Interaction Radius

T(4)

T(3)

T(2)

T(1)

Fig. 6. As the deadline threshold T increases,
the SAPs spend proportionally more time at
higher sphere of interaction settings

We define a unified efficiency met-
ric as the average number of op-
erations completed per unit area
disrupted η = Ops/Area. On
average across our tested desi-
ties ηADAPT/ηMIN = 0.27 and
ηADAPT/ηMAX = 2.18; ADAPT
gives a 200% improvement over
MAX., while facilitating a nearly
10× improvement over MIN in
terms of completed operations.
While η provides a notion of effi-
ciency, it also reflects the tradeoff
between resource conservation, i.e.,
disrupted area and MS energy, and a
coarse-grained quality of service in terms of system responsiveness to application
queries.

In Figure 6, we illustrate how adjusting the deadline threshold T can be
used to move the operating point of the ADAPT scheme from more resource
conserving to offering a lower average completion delay to application queries.

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 285

For the 200-MS scenario, Figure 6 shows the CDF of the time that SAPs on
average spend at each of the 10 sphere of interaction settings when using the
ADAPT scheme for different values of the average deadline threshold, T . In
the previous simulations, T is chosen uniformly between 1 and ts(max), so T =
ts(max)/2. In Figure 6, we adopt the following shorthand: T (i) = ts(max)/2 · i.
As T increases, SAPs spend proportionally more time at higher sphere settings,
resulting in more packets transferred and better delay service to the applications
but consuming more resources of the MS cloud (i.e., energy and peer-to-peer
communications opportunities).

Discussion. The MIN scheme provides the lowest energy consumption and
disrupted area; the MAX scheme provides the greatest opportunity for packet
transfer between MSs and SAPs, and thus the highest operation completion
rate. In the previous sections we show that by dynamically adjusting the sphere
of interaction, i.e., transmit power and hop extension, according to the sens-
ing deadlines of submitted application tasks ADAPT hits the sweet spot and
provides increased opportunities for packet transfer and operation completion
compared with MIN, and at a lower cost in terms of disruption to MS P2P
communication compared to MAX. While we do not present explicit MS energy
results, the packet reception energy is directly related to the disrupted area (see
Figure 5(b)) and the packet transmission energy is directly related to the SAPs’
transmit power setting (see Figure 5(a)). MS energy consumption and disrupted
area can be considered as system design parameters based, for example, on MS
battery characteristics and expected P2P application traffic in the mobile cloud,
to drive the selection of the deadline threshold T .

5 Related Work

Managing the SAP sphere of interaction is related to adaptive clustering. Work
from the MANET community proposes various clustering techniques, but in-
variably to increase routing efficiency and/or reduce routing protocol overhead
(e.g., [9] [7] [6] [17]). Zone Routing Protocol [9] sets a zone boundary between
proactive and reactive routing to reduce the number of route request packets
while providing good route acquisition delay. However, a method of determining
an appropriate zone radius is not specified.

A study of adaptive clustering with the end of maximizing operation com-
pletion rate does not exist. The relationship between node density, transmission
power, and neighbor set cardinality has been studied in the context of wireless
graph connectivity [1] [23]. The effects of the relationships between transmission
power, node density, and node mobility patterns on the operation completion
rate have not been reported. A number of existing scheduling policies may be ap-
propriate for SAP operation scheduling, but none have been evaluated with the
unique combination of constraints present in a large scale mobile sensor network,
to the best of our knowledge.

Halo’s adaptation of a SAP’s sphere of interaction is analogous to the “cell
breathing” approach used in cellular telephony and proposed [3] for 802.11

286 S.B. Eisenman, H. Lu, and A.T. Campbell

access nodes for system load balancing. With a similar aim, the authors of the
SoftRepeater [2] system use a combination of network coding and channel uti-
lization to decide when 802.11 AP clients should become repeaters for others’
traffic in order to address the “rate anomaly problem”. Rather than dealing
with SAP overloading, we address what is in some ways the opposite problem
of application starvation due to under-utilization of the SAP tier.

Power control in cellular systems aims to save handset energy and secondarily
to reduce adjacent cell interference. While we share the first concern, cellular
mechanisms are too complex, and use a separate control channel which is not
generally available on embedded sensing platforms.

6 Conclusion

We have shown how by adapting SAPs’ spheres of interaction Halo can man-
age the opportunity for interaction between mobile sensors and sensor access
points, while striking a balance between resource consumption and operation
completion. Halo uses a new scheduling discipline (MB-SJF), based on mobility
statistics and sensor-based inputs, that is tailored for the typical characteris-
tics of the people-centric sensing domain. MB-SJF is shown to provide up to a
10% increase in operation completion rate compared to FIFO, random selection,
and shortest-job-first scheduling, independent of the gains achievable from SAP
sphere of interaction management. Halo provides improved support for delay-
aware applications in the people-centric sensing context.

Acknowledgment

This work is supported in part by Intel Corp., Nokia, NSF NCS-0631289, and the
Institute for Security Technology Studies (ISTS) at Dartmouth College. ISTS
support is provided by the U.S. Dept. of Homeland Security under Grant Award
Number 2006-CS-001-000001 and by award 60NANB6D6130 from the U.S. Dept.
of Commerce. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Dept. of Homeland Security.

References

1. Agarwal, A., Kumar, P.R.: Capacity bounds for ad-hoc and hybrid wireless
networks. ACM SIGCOMM CCR, Special Issue on Science of Networking De-
sign 34(3), 71–81 (2004)

2. Bahl, P., Chandra, R., Lee, P.-C., Misra, V., Padhye, J., Rubenstein, D., Yu, Y.:
Opportunistic Use of Client Repeaters to Improve Performance of WLANs. In:
Proc. of ACM CoNEXT 2008, Madrid (December 2008)

3. Bahl, P., Hajiaghayi, M., Jain, K., Mirrokni, V., Qiu, L., Saberi, A.: Cell Breathing
in Wireless LANs: Algorithms and Evaluation. IEEE Trans. on Mobile Comput-
ing 6(2) (February 2007)

Halo: Managing Node Rendezvous in Opportunistic Sensor Networks 287

4. Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R.: People-Centric
Urban Sensing. In: Proc. WICON 2006, Boston (August 2006)

5. Chaintreau, A., Mtibaa, A., Massoulie, L., Diot, C.: The Diameter of Opportunistic
Mobile Networks. In: Proc. of ACM CoNEXT 2007, New York (December 2007)

6. Chatterjee, M., Das, S.K., Targut, D.: WCA: A Weighted Clustering Algorithm for
Mobile Ad hoc Networks. Journal of Cluster Computing (Special Issue on Mobile
Ad hoc Networks) 5 (April 2002)

7. Du, S., et al.: Self-Organizing Hierarchical Routing for Scalable Ad Hoc Network-
ing. ACM Ad Hoc Networks 6(4) (June 2008)

8. Eisenman, S.B., Campbell, A.T.: Managing Node Rendezvous is Opportunistic
Sensor Networks. Tech. Report, http://www.ee.columbia.edu/~shane/halo.pdf

9. Haas, Z.J.: A New Routing Protocol for the Reconfigurable Wireless Networks. In:
Proc. ICUPC 1997 (October 1997)

10. Hull, B., et al.: CarTel: A Distributed Mobile Sensor Computing System. In: Proc.
of 4th ACM Int’l Conf. on Embedded Networked Sensor Systems, Boulder, pp.
125–138 (November 2006)

11. Laibowitz, M., Paradiso, J.A.: Parasitic Mobility for Pervasive Sensor Networks. In:
Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468,
pp. 255–278. Springer, Heidelberg (2005)

12. Miluzzo, E., Lane, N.D., Eisenman, S.B., Campbell, A.T.: CenceMe - Injecting
Sensing Presence into Social Networking Applications. In: Kortuem, G., Finney,
J., Lea, R., Sundramoorthy, V. (eds.) EuroSSC 2007. LNCS, vol. 4793, pp. 1–28.
Springer, Heidelberg (2007)

13. Miluzzo, E., Zheng, X., Fodor, K., Campbell, A.T.: Radio Characterization of
802.15.4 and its Impact on the Design of Mobile Sensor Networks. In: Verdone, R.
(ed.) EWSN 2008. LNCS, vol. 4913, pp. 171–188. Springer, Heidelberg (2008)

14. Parker, A., Reddy, S., Schmid, T., Chang, K., Saurabh, G., Srivastava, M., Hansen,
M., Burke, J., Estrin, D., Allman, M., Paxson, V.: Network System Challenges in
Selective Sharing and Verification for Personal, Social and Urban-scale Sensing
Applications. In: Proc. of HotNets-V, Irvine (November 2006)

15. Ravi, N., Stern, P., Desai, N., Iftode, L.: Accessing ubiquitous services using smart
phones. In: Proc. PERVASIVE 2005, March 8-12 (2005)

16. Sensorplanet, http://www.sensorplanet.org/
17. Sharony, J.: A Mobile Radio Network Architecture with Dynamically Changing

Topology Using Virtual Subnets. In: Proc. ICC 1996, vol. 2, pp. 807–812 (June 1996)
18. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating Systems Concepts, 7th edn.

John Wiley & Sons, Inc., Chichester (2004)
19. Srinivasan, K., Levis, P.: RSSI is Under Appreciated. In: Proc. EMNETS 2006,

Cambridge, MA (2006)
20. Srinivasan, S., Moghadam, A., Hong, S.G., Schulzrinne, H.G.: 7DS - Node Cooper-

ation and Information Exchange in Mostly Disconnected Networks. In: Proc. ICC
2007, June 1 (2007)

21. Srivastava, M., et al.: Wireless Urban Sensing. In: CENS Tech. Report #65 (April
2006)

22. Tuulos, V., Scheible, J., Nyholm, H.: Combining Web, Mobile Phones and Public
Displays in Large-Scale: Manhattan Story Mashup. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 37–54. Springer,
Heidelberg (2007)

23. Zhang, X., Maxemchuk, N.F.: The Effects of the Number of Neighbors in Multihop
Wireless Networks. Int’l Journal of Wireless and Mobile Computing, Special Issue
on Group Communications in Ad hoc Networks (to appear)

http://www.ee.columbia.edu/~shane/halo.pdf
http://www.sensorplanet.org/

Optimal Data Gathering Paths and Energy
Balance Mechanisms in Wireless Networks

Aubin Jarry1, Pierre Leone1,�, Sotiris Nikoletseas2, and Jose Rolim1

1 Computer Science Department, University of Geneva, Battelle Batiment A,
route de Drize 7, 1227 Geneva , Switzerland

2 University of Patras and Computer Technology Institute N. Kazantzaki Str 1,
Patras University Campus, 26504 Rion, Patras Greece

Abstract. This paper studies the data gathering problem in wireless
networks, where data generated at the nodes has to be collected at a
single sink. We investigate the relationship between routing optimality
and fair resource management. In particular, we prove that for energy
balanced data propagation, Pareto optimal routing and flow maximiza-
tion are equivalent, and also prove that flow maximization is equivalent
to maximizing the network lifetime. We algebraically characterize the
network structures in which energy balanced data flows are maximal.
Moreover, we algebraically characterize communication links which are
not used by an optimal flow. This leads to the characterization of mini-
mal network structures supporting the maximal flows.

We note that energy balance, although implying global optimality, is
a local property that can be computed efficiently and in a distributed
manner. We suggest online distributed algorithms for energy balance in
different optimal network structures and numerically show their stability
in particular setting. We remark that although the results obtained in
this paper have a direct consequence in energy saving for wireless net-
works they do not limit themselves to this type of networks neither to
energy as a resource. As a matter of fact, the results are much more
general and can be used for any type of network and different type of
resources.

1 Introduction, Our Contribution and Related Work

In full generality, this paper addresses the question and impact of fairly allocat-
ing resources while routing messages in networks. Resources belong to the nodes
composing the network and the constraints emerging from resource limitation con-
cern the traffic handled by nodes. By fairly allocating the resources we mean that
their use must be proportionally distributed among the nodes in accordance to
the node’s available resources. To exemplify, we consider the particular, important
case where the resource is the total energy available at the nodes for transmitting
� Contact author: Pierre Leone, E-mail: pierre.leone@unige.ch. Partially supported by

the ICT Programme of the European Union under contract number ICT-2008-215270
(FRONTS).

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 288–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimal Data Gathering Paths and Energy Balance Mechanisms 289

data. We consider the data gathering problem, where the nodes generate data that
has to be collected by a unique sink. In this setting, nodes have generally many
choices for routing the data to the sink following a multiple-hop pattern. The en-
ergy consumption of a node depends on the particular costs of the links chosen
for transmitting the data. Classically, we are interested in Pareto optimal routing
schemes which are such that no node can decrease its energy consumption with-
out increasing the energy consumption of others. Although Pareto optimality is
classically used to solve multiobjective optimization problems, this criterion usu-
ally does not define a routing scheme uniquely. However, we show that if we con-
sider energy-balanced routing schemes then Pareto optimal and maximal flows are
equivalent. This result is relevant because energy-balance is a local characteristic
of flows and is suitable to be efficiently and distributively computed. Moreover,
we show that maximizing the flow of data is equivalent to maximizing the lifetime
of the network.

Another novelty of the paper is to algebraically characterize network’s struc-
ture such that energy-balanced flows of data are maximal. We call such networks
energy-balance optimal. This result is based on the equivalence between maxi-
mal flow and Pareto optimal solution provided that the flow is energy-balanced.
Moreover, we also consider communication graphs Γ which contain an energy-
balance optimal subgraph Λ and which are such that the maximal energy-balance
flow in Λ cannot be increased by adding edges in Γ to the communication graph.
In this case, we define that Λ is energy-balance optimal in Γ . As an application
we investigate a particular simple topology which is energy-balance optimal in
the complete graph and two realistic energy-balance optimal network structures.

To conclude the paper, we suggest an algorithm to online and distributively
balance the energy-consumption of the nodes on the top of energy-balance opti-
mal network structures. Numerical validations show that the algorithm is stable
in the sense that the difference between the maximal and minimal energy con-
sumption is bounded. Although theoretical works have still to be conducted to
theoretically understand the conditions ensuring the existence of energy-balance
flows, this (partly) validates our assertion that the local character of energy-
balance flows is sutiable for distributed online algorithms.

An important application of our work is the ability to maximize the flow (and
also the network lifetime) in any particular communication graph by generating
an energy balanced flow. This is an important generalization over previous work
([7,8,11,15,5]). Interestingly, our results here imply (a) energy balanced data
propagation using only two transmission levels (i.e. either to one hop neighbors
or to the sink directly) is optimal, since they maximize the flow (b) and, we
show the conditions under which we can compute such an energy balanced data
propagation pattern.

The energy balance problem is particularly relevant in smart building sce-
naria and applications, in order to maximize the lifetime of the already deployed
sensor network and also (via the flow maximization) to accelerate the collection
of sensory readings. Furthermore, balancing the energy dissipation among the
nodes of the network also contributes to keeping the electromagnetic radiation

290 A. Jarry et al.

levels low, since this way the network operates efficiently and excess wireless
transmission ranges may not be neeeded”.

Reviewing the complete litterature on energy-balance mechanism is not pos-
sible here. In the following we review important contributions and we refer to
the references therein. We point out that to the knowledge of the authors the
approach developped in this paper is original.

An important relevant work is that of [17] where the authors define the en-
ergy balance property and propose, analyze and evaluate an energy-optimal and
energy balanced algorithm for sorting in wireless sensor networks. In particular,
they consider a single- hop sensor network. A similar approach is used in [16]
for the important problem of selection. Also, [19] proposes an energy-balanced
allocation of a real-time application onto a single-hop cluster of homogeneous
sensor nodes connected with multiple wireless channels. An epoch-based appli-
cation consisting of a set of communicating tasks is considered. Each sensor node
is equipped with discrete dynamic voltage scaling (DVS). The time and energy
costs of both computation and communication activities are considered. Both an
Integer Linear Programming (ILP) formulation and a polynomial time 3-phase
heuristic are proposed. Our work extends the approaches above to the general
case of a multi-hop network and for the (quite general) problem of propagating
data to the sink.

In [14] a new metric, “energy-welfare”, is proposed that captures both the
average and balance of sensor’s remaining energy, and a Maximum Energy Wel-
fare Routing protocol is provided, which achieves energy efficiency and energy
balance of sensor networks; the treatment is by simulations and, although good
performance gains are achieved, no fundamental relations between balance and
efficiency are provided. In [4] the authors propose a distributed energy balance
clustering protocol, in which cluster heads are selected by a probability depend-
ing on the ratio between remaining energy of node and the average energy of
network. The high initial and remaining energy nodes have more chances to be
the cluster heads than the low energy nodes. [12] proposes unequal clustaring
towards balance the energy dissipation in each cluster; an earlier paper on un-
equal clustering is [18]. Compared to these approaches, our work is more general
(not related to clustering only).

2 Balancing the Flow and Maximizing the Lifetime of a
Network

In this section, we first prove that maximizing the lifetime of a sensor network
is equivalent to solving a max-flow problem (Proposition 1). We then define
energy-balanced flows (Definition 1) and give sufficient conditions under which
energy-balanced flows are optimal (Proposition 2).

We consider a finite set of nodes and label them i = 1, . . . , N . Nodes are able
to communicate between each other only if they share a communication link.
The set of nodes and communication links has the structure of a graph, called
the communication graph, and they compose the network under study. In order

Optimal Data Gathering Paths and Energy Balance Mechanisms 291

to communicate, the nodes need to spend resources and the total amount of
available resources is a local property of the nodes. Specifically, a node i may
have to spend cij units of energy in order to transmit a message to node j. In this
instance, assuming that the total energy available per node is limited, the nodes
have to wisely use the available communications links in order to maximize the
functional lifetime of the network. When a wireless sensor network monitors an
area, the events that are detected near a sensor i must continuously be reported
to the base station or sink, and this generates a fraction gi of the total flow of
information f . In other words, gi ·f messages per second are generated by sensor
i and

∑N
i=1 gi = 1. We denote fij the flow of messages from node i to node j

with the convention that the sink is numbered 0, i.e. fi0 is the flow from node
i to the sink. Finding the flow {fij} which maximizes the lifetime of the sensor
network amounts to solving the following problem:

Problem 1. Maximize the duration T such that ∀i = 1, . . . , N

gi · f +
N∑

j=1

fji =
N∑

j=0

fij and (1)

T

N∑
j=0

fijcij ≤bi (2)

Equation (1) represents the constraints ensuring that {fij} is a flow and Equa-
tion (2) ensures that in the duration T no sensor consumes more than its available
energy bi. If we proceed to the change of variables f̃ij = Tfij (f̃ij is the total
amount of messages sent from i to j in the duration T), and f̃ = Tf , we get the
following linear program:

Problem 2. Maximize the amount of reported events f̃ such that ∀i = 1, . . . , N

gi · f̃ +
N∑

j=1

f̃ji =
N∑

j=0

f̃ij and (3)

N∑
j=0

f̃ijcij ≤bi (4)

We emphasize the fact that Problem 1 considers the rate of data while Problem 2
considers the total amount of data collected by the sink. Another difference is
that in 1 the total flow f is fixed while f̃ is a free variable. This distinction
appears again when we discuss a weak optimal Pareto approach to the problem.
We will now formally prove that maximizing T amounts to maximizing f̃ .

Proposition 1. Problem 1 is equivalent to Problem 2, which means that {fij}, T

is an optimal solution to the first if and only if {f̃ij = Tfij}, f̃ = Tf is an optimal
solution to the second.

Proof. We proceed by contradiction. Let us assume that {fij}, T is an optimal
solution to Problem 1 and that {f̃ij = Tfij}, f̃ = Tf is not an optimal solution

292 A. Jarry et al.

to Problem 2. Then, there is solution {g̃ij}, g̃ to Problem 2 such that g̃ > f̃ . We
consider T ′ > T such that g̃ = T ′f > f̃ and define {gij} = { 1

T ′ g̃ij}. We check
directly that {gij}, T ′ is a feasible solution to Problem 1 with T ′ > T which
contradicts the optimality of T . We proceed similarly to show the other direction
of the equivalence.

This proposition shows that maximizing the lifetime of the network is equivalent
to maximizing the total number of messages gathered by the sink. Problem 2
corresponds to a max-flow problem where constraints are placed on the nodes.
We now define what is an energy-balanced flow and propose a sufficient set of
conditions ensuring that an energy-balanced flow maximizes the lifetime of the
network.

Definition 1. A flow {fij} is called energy-balanced if there is a constant k

such that for all i = 1, . . . , N we have
∑N

j=0 fijcij = kbi.

Proposition 2. If for all i = 1, . . . , N there is λi such that

λi ≥ 0 and

−λici0 + λicij + λjcj0 ≥ 0,

and if there is an energy-balanced flow {fij} such that

fij ·
(
−λici0 + λicij + λjcj0

)
= 0 (5)

then there is a duration T such that {fij}, T is a solution to Problem 1.

Proof. We consider a path decomposition P of the flow {fij}, and a path i1, i2,
. . . , ik of this decomposition from a sensor i = i1 towards the sink ik = 0, we
can see from Equation (5) that

λi1ci10 = λi1ci1i2 + λi2ci2i3 + . . . + λik−1cik−1ik
(6)

We want to compute the sum
∑

i λi

∑
j fijcij by decomposing the flow into the

paths followed by messages to the sink. For each such path p from i to the sink,
Equation (6) shows that the contribution to the sum is λifpci0 where fp is the
number of messages per second flowing through the path p in the decomposition
P . Since gi · f is equal to the sum

∑
p from i to 0 fp, we get∑

i

λi

∑
j

fijcij =
∑

i

λigifci0.

On the other hand, any other solution {f ′
ij}, T ′ to Equations (1) and (2) uses

paths satisfying the equation

λi1ci10 ≤ λi1ci1i2 + λi2i3ci2i3 + . . . + λik−1cik−1ik

which leads to ∑
i

λi

∑
j

f ′
ijcij ≥

∑
i

λigifci0

Optimal Data Gathering Paths and Energy Balance Mechanisms 293

We conclude by using the assumption that the flow {fij} is energy-balanced and
by calling T = 1

bi

∑N
j=0 fijcij . Indeed,

f ·T
∑

i

λigici0 = T
∑

i

λi

∑
j

fijcij =
∑

i

λibi ≥ T ′ ∑
i

λi

∑
j

f ′
ijcij ≥ f ′ ·T ′ ∑

i

λigici0

which shows that T ≥ T ′.

Actually, what we have shown is that if a communication graph contains only
edges (i, j) such that −λici0 + λicij + λjcj0 = 0, then any energy-balanced flow
will maximize its lifetime. In other words, our result shows that edges (i, j)
such that −λici0 + λicij + λjcj0 > 0 are useless to increase the efficiency of
the network. In a former work [8], appropriate λi values were computed in an
ad-hoc way under the specific condition that the energy consumption grows
quadratically with the range of emission.

3 Weak Pareto Optimality and Energy-Balanced Flows

In this section, we introduce weak Pareto optimality (Definition 2) and prove
that for energy-balanced flows in sensor networks, weak Pareto optimality is
equivalent to maximizing the lifetime of the network (Proposition 3).

Assuming a flow {fij} of information towards the sink of a sensor network, the
rate of energy consumption of a sensor i is given by

∑
j fijcij and the lifetime

of this sensor is inversely proportional to this rate, i.e. given by bi/
∑

j fijcij .
To maximize the lifetime of the sensors we have to solve the multiobjective
optimization problem:

Problem 3. Minimize {i :
∑

j fijcij} such that ∀i = 1, . . . , N

f · gi +
N∑

j=1

fji =
N∑

j=0

fij

The weak Pareto approach, proposed in [3], is particularly well suited to study
such multiobjective optimization problems.

Definition 2 (weak Pareto optimal flow). A flow {fij} is weak Pareto op-
timal if and only if there does not exist any flow {f ′

ij} such that
∑

i f ′
i0 =

∑
i fi0

and
N∑

j=0

f ′
ijcij <

N∑
j=0

fijcij , ∀i = 1, . . . , N (7)

Intuitively this means that given a weak Pareto optimal solution it is not possible
to increase the lifetime of the network since this would need to reduce the energy
consumption of all sensors simultaneously. In [3], an algorithm is suggested to
compute a flow such that the lifetime of all the sensors is the same and which
produces a best approximation if no solution exists.

294 A. Jarry et al.

In the following, we prove that by looking only at energy-balanced flows,
maximizing the lifetime of the network (Problem 1) is equivalent to finding a
weak Pareto optimal solution to Problem 2. We emphasize that the equivalence
is proved for energy-balanced propagation scheme.

Proposition 3. An energy balanced flow (Definition 1) maximizes the lifetime
of the network (Problem 1) if and only if it is a weak Pareto optimal solution
(Definition 2) to the multiobjective optimization problem (Problem 3).

Proof. We first prove that an energy balanced flow {fij} that maximizes the
lifetime T of the network is a weak Pareto optimal solution to (3). Assume
that {fij} is not weak Pareto optimal: then there is a flow {f ′

ij}, such that∑
i f ′

i0 =
∑

i fi0 and

N∑
j=0

f ′
ijcij <

N∑
j=0

fijcij , ∀i = 1, . . . , N (8)

The flow {fij} satisfies the energy constraints (2), hence using (8) we have

T
∑

j

f ′
ijcij < bi, i = 1, . . . , N.

Therefore there is T ′ > T such that {f ′
ij}, T ′ is a solution to Problem 1. This

contradicts the optimality of the flow {fij}.
We next show that an energy-balanced flow which is a weak Pareto optimal

solution solves Problem 1. We proceed by contradiction and assume that the
flow {fij} is energy-balanced and weak Pareto optimal but does not maximize
the lifetime of the network. Then, there is a solution {f ′

ij}, T ′ to Problem 1 such
that T ′ > T . The energy constraints satisfied are

T

N∑
j=0

fijcij = bi, and T ′
N∑

j=0

f ′
ijcij ≤ bi, ∀i = 1, . . . , N.

Therefore, we have
N∑

j=0

f ′
ijcij ≤ T

T ′

N∑
j=0

fijcij

which shows that the flow {fij} is not weak Pareto optimal.

4 Optimal Communication Graphs

We have seen that the good structures of the communication graphs on which
optimal energy-balanced flows exist can be characterized (Proposition 2). In this
section, we broaden this characterization by using the fact that optimal energy-
balanced flows are also weak Pareto solutions to the multiobjective optimization
problem (Problem 3).

Optimal Data Gathering Paths and Energy Balance Mechanisms 295

Given a weak Pareto optimal solution of a multiobjective optimization prob-
lem, there is a way to formulate the problem as a classical linear program such
that the optimal solution is the weak Pareto optimal solution [6,1]. Precisely,
given a weak Pareto optimal solution to Problem 3 there is {λi}, such that∑N

i=1 λi = 1, such that ∀i = 1, . . . , N , λi ≥ 0, and such that the weak Pareto
solution coincides with the optimal solution of the following linear problem:

Problem 4. Minimize
∑N

i=1 λi

∑N
j=0 fijcij such that ∀i = 1, . . . , N

f · gi +
N∑

j=1

fji =
N∑

j=0

fij (9)

fij ≥ 0 ∀j (10)

We can readily prove that any solution to Problem 4 is a weak optimal solution
to Problem 3 for any λi ≥ 0. This linear problem is easier to study by making
the {fij} independent. We remove their dependency by replacing fi0 with f ·
gi +

∑
j fji −

∑
j fij ≥ 0. We can then consider the following linear program:

Problem 5. Minimize
∑N

i=1 λi

[(
f · gi +

∑N
j=1 fji −

∑N
j=1 fij

)
ci0 +

∑N
j=1 fijcij

]
such that

f · gi +
N∑

j=1

fji −
N∑

j=1

fij ≥ 0, ∀i = 1, . . . , N.

The dual of Problem 5 is

Problem 6. Maximize
∑N

i=1

(
λigici0 − βigi

)
such that

−λici0 + λicij + λjcj0 − βj + βi ≥ 0, i, j = 1, . . . , N.

By classical duality theory [9], we have the following equation:∑
i

λi

[(
f · gi +

∑
j

fji −
∑

j

fij

)
ci0 +

∑
j

fijcij

]
≥ f

∑
i

(λigici0 − βigi) (11)

and the complementary slackness conditions are given by

fij

(
−λici0 + λicij + λjcj0 − βj + βi

)
= 0, i = 1, . . . , N. (12)

βi

(
f · gi +

∑
j

fji −
∑

j

fij

)
= 0, i = 1, . . . , N (13)

Definition 3. A communication graph Λ is energy-optimal if there exists con-
stants λi ≥ 0, i = 1, . . . , N and βi ≥ 0, i = 1, . . . , N such that −λici0 + λicij +
λjcj0 − βj + βi = 0.

A subgraph Λ of Γ is energy-optimal in Γ if Λ is an energy-optimal path and
−λici0 + λicij + λjcj0 − βj + βi > 0 for all edges (i, j) ∈ Γ \ Λ.

Precisely, the complementary slackness conditions (12) and (13) say that

296 A. Jarry et al.

– An energy-balance flow on the top of an energy-optimal communication
graph Λ is maximal.

– If Λ is energy-balance optimal in Γ then using edges in Γ \Λ cannot improve
the flow of data (optimal subgraph property).

– In any case, direct transmissions to the sink are possible and optimal only if
βi = 0.

Proposition 4. The set of conditions defining an energy-balanced optimal com-
munication graph is a convex set.

Proof. Given {λi}, {βi} and {λ′
i}, {β′

i} satisfying the equations

−λici0 + λicij + λjcj0 − βj + βi = 0

and
−λ′

ici0 + λ′
icij + λ′

jcj0 − β′
j + β′

i = 0

it is readily checked that {λ̄i = pλi + (1 − p)λ′
i}, {β̄i = pβi + (1 − p)β′

i} with
0 < p < 1 satisfies the equation

−λ̄ici0 + λ̄icij + λ̄jcj0 − β̄j + β̄i = 0.

Energy-balance optimal communication graphs are algebraically characterized
and have the important property that energy-balance flows are also maximal.
This property is necessary and sufficient, as stated in the following proposition.

Proposition 5. An energy-balanced optimal flow determines an energy-balanced
optimal communication graph.

Proof. An energy-balanced optimal flow is equivalent to a Pareto optimal solu-
tion to Problem 3 or Problem 4 by Proposition 3. The complementary slackness
conditions (12) and (13) are then satisfied (for suitable λi, βi) and characterize
an energy-balance optimal communication graph.

Proposition 6. If the optimal flow satisfies fi0 = f · gi +
∑

j fji −
∑

j fij > 0,
then βi = 0, i = 1, . . . , N .

Proof. This is due to the slackness condition expressed in Equation (13).

Two remarks can be made to conclude this section. First, the conditions stated
in Equation (12) restrict the set of non-vanishing fij in the optimal solutions.
Then, the λi values depend on the particular Pareto optimal solution we search
for.

5 Examples of Energy-Balance Optimal Communication
Graphs

In this section, we present two examples of structures that allow for the existence
of energy-balance optimal flows.

Optimal Data Gathering Paths and Energy Balance Mechanisms 297

We first expose simple sufficient conditions ensuring the optimality of energy-
balance flows. If we set βi = 0 in Equations (12) and (13), the optimal solution
to both Problems 4 and 6 is equal to f ·

∑
i λigici0 (found by replacing fij with

0 in Problem 5) and the constraints set in Problem 6 read

−λici0 + λicij + λjcj0 ≥ 0, i = 1, . . . , N. (14)

The complementary slackness conditions set in Equation (12) now read

fij

(
−λici0 + λicij + λjcj0

)
= 0, (15)

Thus, fij can be non-vanishing only if −λici0 +λicij +λjcij = 0. We summarize
this in the following proposition.

Proposition 7. Let us assume that there exist constants λi with
∑

i λi = 1 sat-
isfying Equation (14) and a flow {fij}, f satisfying the complementary slackness
conditions (15). Then, the flow is a weak Pareto optimal solution to Problem 3.

Proof. Conditions set in Equation (15) imply that the value function of Prob-
lems 5 and 6 is equal. Given any set of λi values, the solution to Problem 5 is
always a weak Pareto optimal solution to Problem 3.

5.1 A First Energy-Balance Optimal Topology

We now turn to the application of Proposition 7. We consider the complete graph
on the set of vertices. Each edge is assigned a weight cij which corresponds to
the energy cost of transmitting through that edge. We assume that we are able
to compute λi constants such that Equation (14) is satisfied. If we can generate
an energy-balanced flow {fij} such that the conditions (15) are satisfied then by
Proposition 3 this flow is maximal. Moreover, by the discussion of Section 2 this
flow also maximizes the lifetime of the network.

This is used in an ad-hoc way in the papers [7,8] where it is assumed that
sensors can transmit data to their nearest neighbour or directly to the sink. In
these papers, the energy required to send data to neighbours at distance ≤ 1 is
constant and the same for all the sensors. Moreover, it is assumed that the energy
needed for transmissions otherwise grows like the square of the transmission
distance. A directed acyclic graph is built to transmit data from any sensor
to a unique sink by decomposing the network in slices corresponding to nodes
distance from the sink to an equal number of hops, as shown in the left of
Figure 1. The nodes belonging all to any particular slice are identified as a super
node. This leads to the topology shown in the right of Figure 1. Normalizing
the distances such that the transmission power to the nearest neighbours is one,
explicit values for the λi constants are provided, i.e. λi = 1

i(i+1) . Proposition 7
(and the results contained in the cited papers) shows that an energy-balanced
flow using only one hop communications or direct transmissions to the sink
maximizes the flow of data.

In fact, assuming that sensors use only two levels of energy in their trans-
missions, corresponding to short range transmissions to close neighbours and to

298 A. Jarry et al.

5S
4S

3S
2S

1S

Sink

Fig. 1. An energy-balance optimal topology on the left, sensors transmit data to the
next slice or directly to the sink (not represented). A simple model of it on the right.

long range transmissions to the sink, we prove that we can always compute λi

satisfying the hypothesis on proposition 7.

Proposition 8. We assume that the sensors composing the network transmit
with two levels of energy, i.e. sensor i transmits with energy level ci to a close
neighbour or with ci0 to the sink with ci = cj and ci0 > ci, for all i = 2, . . . , N
and j = 1, . . . , N (for sensors belonging to the first slice ci = ci0). Then, there
exists λi satisfying the hypothesis of proposition 7. The transmission graph is
directed to the sink and any sensors transmit either to the sink or to sensors
belonging to the next slice (see the left side of Figure 1). The λi’s values are
equal for sensors belonging to the same slice.

Proof. We first set arbitrarily λi = 1 for sensors belonging to the first slice.
Using Equation (14) we recursively compute the values λj for sensors that are
one more hop away from the sink. Because ci0 > ci, we have λi > 0. At the end,
we normalize to

∑N
i=1 λi = 1.

5.2 A Second Energy-Balance Optimal Topology

We now present another energy-balance optimal topology. The network is again
divided into slices of width r. Sensors can transmit either to sensors belonging
to the next slice or to sensors belonging to the next slice following the next slice
(two slices away towards the sink). The energy costs are respectively c1 and
c2, c2 > c1, independently of the slice the sensor belongs to. Sensor belonging
to the second slice away from the sink transmit to the first slice with energy
consumption c1 or directly to the sink with energy c2. Sensors belonging to
the first slice have no other choice than to transmit to the sink with energy
consumption c1. Figure 2 illustrates this energy-balance optimal topology.

Proposition 9. The topology described above and depicted on Figure 2 is
energy-balance optimal if ci0 ≥ c1 + ci−1,0(c2 − c1)/c1

Proof. The coefficients λ and β depend only on the slice number Si; we use λi

and βi to denote the coefficients of sensors belonging to the i−th slice. We have

Optimal Data Gathering Paths and Energy Balance Mechanisms 299

Fig. 2. An energy-balance optimal topology on the left, sensors transmit data to the
next slice with energy consumption c1 or two slices away with energy consumption c2

to prove that there exist coefficients λi and βi such that the conditions stated
in Definition 3 are satisfied. To each sensor belonging to the first slice we assign
a value λ1 �= 0 and β1 = 0. The value λ1 will be defined by normalizing the λi

such that
∑

λ1 = 1. The value β1 = 0 is necessary since sensors transmit data
to the sink as stated by Proposition 6.

For sensors belonging to the second slice, we assign a value λ2 solution to the
equation −λ2c2 + λ2c1 + λ1c1 = 0 and β2 = 0. We have λ2 ≥ 0 since c2 > c1.

For sensors belonging to another slice we compute the parameters λi and
βi recursively. Let us assume that the coefficients are computed for all slices
1, 2, . . . , i − 1. We determine λi and βi as solution to the system of equations

− λici0 + λic1 + λi−1c(i−1)0 − βi−1 + βi = 0 (16)
− λici0 + λic2 + λi−2c(i−2)0 − βi−2 + βi = 0 (17)

By subtracting equation (16) to (17) we get

λi (c2 − c1)︸ ︷︷ ︸
>0

+ λi−2ci−2,0 − λi−1ci−1,0 + βi−1 − βi−2 = 0︸ ︷︷ ︸
=−λi−1c1<0

,

where the second underbraced term is −λi−1c1 by recurrence hypothesis (see
Equation (16) where i − 1 is substituted by i − 2 and i by i − 1) and leads to
λi > 0. We then have λi = c1/(c2 − c1)λi−1.

To see that βi ≥ 0 we use Equation (16) recursively. We know that β1 = 0 for
sensors in the first slice. We assume that βj ≥ 0 for j = 1, . . . , i−1. Equation (16)
states that βi ≥ λici0 −λic1 −λi−1ci−1,0 which is positive by the assumption on
ci0.

6 On the Existence of Energy-Balanced Probabilistic
Mechanisms

We proposed in the previous section reasonable network structures which are
energy-balance optimal (Propositions 8 and 9). In this section, we discuss the

300 A. Jarry et al.

existence of distributed energy-balance routing schemes on these topologies. We
take advantage of the fact that energy-balance is a local property. Indeed, any
node composing the network can check the balance of energy by comparing
its energy consumption to that of its neighbouring nodes. We exploit this local
property to construct an energy-balanced flow while routing data in a distributed
manner.

6.1 A First Online Distributed Algorithm

We first consider the energy-balance optimal network structure defined in Propo-
sition 8 with the additional constraint that the energy to transmit to the next
slice is the same for any slice, i.e. in terms of Proposition 8 we have ci = c, ∀i. We
also assume that the communication channels are bidirectional and that while
transmitting a message the nodes add information about their current level of
energy consumption to it. This mechanism ensures that any node is aware of
the level of energy consumption of its neighbouring nodes. Moreover, we assume
that the initial level of available energy is the same for all the nodes.

Upon reception of a message, node i forwards the message to the neighbouring
node j (i → j) with probability pij or directly to the sink with probability pii.
The probabilities are computed online by using the following rule: If the energy
consumption of node j is larger than the average energy consumption of the
neighbouring nodes then node i decreases pij, else pij is increased1, see Figure 3.

This algorithm is an application of stochastic approximation where we com-
pute online the probability that the energy consumption of the neighbouring

variables:
i: the identifier of the current node
pij : the probability of transmitting to node j, pii the probability of transmitting to
the sink.
xi: the level of energy consumption of the current node.
xj : the level of energy consumption of a neighbouring node j.
ti: counts the number of messages sent by the current node
Initialise pij = 1/degi, where degi is the degree of the current node and includes the
node i itself.
upon reception of a message

pij ← pij + 1
ti

(1
degi

∑
i→k xk − xj)

Normalize the pij so that 0 ≤ pij ≤ 1 and
∑

j pij = 1
ti ← ti + 1
select a node j such that i → j with probability pij

forward the message to the selected node or transmit directly to the sink if the
selected node is i
end upon

Fig. 3. Pseudo-code of the program executed by the nodes with the topology define
by Proposition 8

1 This is implemented by computing pij ← pij + 1
ti

(1
degi

∑
i→k xk − xj).

Optimal Data Gathering Paths and Energy Balance Mechanisms 301

Fig. 4. Min-max energy consumption plots. From the left to the right the number of
nodes is 30, 80, 130 (the maximal distance from a node to the sink is 1), the communi-
cation slice size are 0.3, 0.2, 0.1 and the nodes are scattered randomly.

Fig. 5. The communication graphs of the two networks on the top of which were
conducted the experiments. Only edges conveying more than 5% of the total traffic
going out from a node are represented. On the left there are 80 nodes with size slice of
0.3 and on the left 130 nodes with size slice 0.1 (the maximal distance from the sink
to a node is 1).

nodes is higher than the average. As such, it can be straightforwardly adapted
to more general situations. A formal analysis of the properties of the algorithm
might be done in this framework and is left for further work. Background material
can be found in [2,13,10].

The numerical validation of the algorithm is presented on Figure 4. Messages
are generated successively and once routed to the sink we record the maximal
and the minimal levels of energy consumption among all the nodes. The plots
show clearly that the energy growth is linear and that the difference between
the maximal and the minimal energy consumption is bounded. The difference is
also plotted. The plots represent the routing of 50′000 messages.

The particular communication graphs on the top of which the protocol was ap-
plied and produce the numerical results discussed above are plotted on Figure 5.

302 A. Jarry et al.

Fig. 6. Min-max energy consumption plots. From the left to the right the number of
nodes is 30, 80, 130 (the maximal distance from a node to the sink is 1), the communi-
cation slice size are 0.3, 0.2, 0.1 and the nodes are scattered randomly.

6.2 A Second Online Distributed Algorithm

The second energy-balance optimal topology that we consider is the one defined
by Proposition 9. The strategy to balance the energy consumption is the fol-
lowing: If the current level of energy consumption of a node is larger than the
average energy of its neighbours then it decreases its energy consumption by in-
creasing the number of messages sent to the next slice (cost c1) and decreasing
the number of messages sent two slices away (cost c2 > c1). In the other case
it proceeds by increasing the two slice away transmission (cost c2) and decrease
the transmission to the next slice (cost c1).

This mechanism is similar to the mechanism applied in the first proposed
algorithm. However, nodes now have to balance the energy among nodes belong-
ing to a same slice. For this purpose, each node computes the average energy
consumption of the neighbouring nodes belonging to the next slice, mean1, and
two slices away mean2. The inter-slice energy consumption is balanced with a
similar strategy, i.e. each node transmits more messages to nodes whose energy
consumption is smaller than the slice average (mean1 or mean2 depending on
the position of the receiving node). More precisely, the probability that node i
forward a message to node j is updated in the following way if we assume that
node j belongs to the first slice

pij ← pij +
1
ti

(
(mean1 − xj)︸ ︷︷ ︸

inter-slice

+ (xi − 1
degi

∑
i→k

xk)

︸ ︷︷ ︸
neighbour−balance

)
.

The first underbraced term balances the energy consumption of node j with
respect to the others nodes belonging to the same slice. This is done by increas-
ing/decreasing the probability of transmission to j if its energy consumption is

Optimal Data Gathering Paths and Energy Balance Mechanisms 303

variables:
i: the identifier of the current node
pij : the probability of transmitting to node j.
xi: the level of energy consumption of the current node.
xj : the level of energy consumption of a neighbouring node j.
ti: the number of message sent by the current node
Initialise pij = 1/degi, degi is the degree of the current node and includes the node i itself.
upon reception of a message

compute mean1 = 1
N1

i

∑
i→1j xj , mean2 = 1

N2
i

∑
i→2j xj

if j belongs to the next slice (i →1 j)
pij ← pij + 1

ti
((mean1 − xj) + (xi − 1

degi

∑
i→k xk))

else
pij ← pij + 1

ti
((mean2 − xj) − (xi − 1

degi

∑
i→k xk))

Normalize the pij so that 0 ≤ pij ≤ 1
ti ← ti + 1
select a node j such that i → j with probability pij and forward the message

end upon

Fig. 7. Pseudo-code of the program executed by the nodes with the topology defined
by Proposition 9

below/above the mean (mean1). The second underbraced term balances the en-
ergy consumption of node i with its neighbouring nodes by increasing/decreasing
the transmission to nodes belonging to the first slice (like j) if the energy con-
sumption of i is above/below the neighbour’s average energy consumption. It
is straighforward that increasing/decreasing the probability of transmission to
nodes belonging to the first slice implies that we decrease/increase the probabil-
ity of transmission to nodes belonging two slices away.

We point out that in this case it is no longer evident that a node can know
at each time the current energy consumption of nodes which are two slices away
without requiring extra transmissions. Indeed, in our scenario, the current level
of energy consumption is attached to messages sent by adding an extra field.
Thus, a node can update the current level of energy consumption of a two-
slices away neighbouring node only when it transmits with maximal power. This
corresponds to the case where the scheme is an asynchronous scheme as discussed
in [2].

The second set of numerical validation considers a network composed of 100
nodes and sliced with slice size 0.22.Nodes transmit with two levels of energy
consumption. Transmission to nodes belonging to the next slice costs c1 = 10
and to two slices away costs c2 = 40. Only nodes belonging to the last three
slices (number 6, 5, 4) generate messages, whereas the others nodes only act as
relays. The quantity of generated messages is uniform among nodes of the last
three slices.

The pseudo-code of the program executed by the nodes is represented on Fig-
ure 7. We denote i →1 j and i →2 k the transmissions such that node j belongs
to the next slice from i and k two slices away. N1

i =
∑

i→1j 1, N2
i =

∑
i→2

1

2 The maximal distance between two nodes is 1.

304 A. Jarry et al.

are the corresponding total number of nodes. Notice that nodes belonging to the
first slice have no choice and transmit directly to the sink with energy cost c1
while the nodes belonging to the second slice use the program on Figure 3 since
they can transmit to the sink directly.

The results of the numerical validation are plotted on Figure 6. On the left
side, the communication graph is plotted and communications links which are
not effectively used are not displayed. We observe that nodes belonging to the
last slices favor long range transmission while nodes closer to the sink favor small
range transmission. This is due to the fact that the nodes closer to the sink have a
larger number of messages to handle than the nodes belonging to the last slices.
In the right side of Figure 6 we observe that the energy consumption grows
linearly with time and that at any time the difference between the maximal and
minimal levels of energy consumed remains bounded. This numerically validates
the stability of the algorithm under the given conditions.

References

1. Aubin, J.-P.: Applied Functional Analysis. Wiley, IEEE (2000)
2. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems ViewPoint. Cam-

bridge University Press, Cambridge (2008)
3. Dagher, J.C., Marcellin, M.W., Neifeld, M.A.: A theory for maximizing the lifetime

of sensor networks. IEEE Transactions on Communications 55(2), 323–332 (2007)
4. Duan, C., Fan, H.: A distributed energy balance clustering protocol for heteroge-

neous wireless sensor networks (2007)
5. Efthymiou, C., Nikoletseas, S.E., Rolim, J.D.P.: Energy balanced data propagation

in wireless sensor networks. In: IPDPS (2004)
6. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. Journal

of Mathematical Analysis and Applications 22(3), 618–630 (1968)
7. Giridhar, A., Kumar, P.R.: Maximizing the functional lifetime of sensor networks.

In: Proceedings of the 4th International Symposium on Information Processing in
Sensor Networks, Los Angeles, California (2005)

8. Jarry, A., Leone, P., Powell, O., Rolim, J.: An optimal data propagation algorithm
for maximizing the lifespan of sensor networks. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 405–421. Springer,
Heidelberg (2006)

9. Karlin, S.: Mathematical methods and theory in games, programming and eco-
nomics. Dover Publications, Mineola (2003)

10. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms
and Applications. Springer, Heidelberg (2003)

11. Leone, P., Nikoletseas, S.E., Rolim, J.D.P.: An adaptive blind algorithm for en-
ergy balanced data propagation in wireless sensors networks. In: Prasanna, V.K.,
Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp.
35–48. Springer, Heidelberg (2005)

12. Li, C., Ye, M., Chen, G., Wu, J.: An energy-efficient unequal clustering mechanism
for wireless sensor networks. In: Proceedings of the IEEE International Conference
on Mobile Adhoc and Sensor Systems Conference, November 2005, p. 8 (2005)

13. Meyn, S.: Control Techniques for Complex Networks. Cambridge University Press,
Cambridge (2008)

Optimal Data Gathering Paths and Energy Balance Mechanisms 305

14. Ok, C., Mitra, P., Lee, S., Kumara, S.: Maximum energy welfare routing in wire-
less sensor networks. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C.d.,
McNair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 203–214. Springer,
Heidelberg (2007)

15. Powell, O., Leone, P., Rolim, J.: Energy optimal data propagation in sensor net-
works. Journal on Parallel and Distributed Computing 67(3), 302–317 (2007)

16. Singh, M., Prasanna, V.: Optimal energy-balanced algorithm for selection in a
single hop sensor network (2003)

17. Singh, M., Prasanna, V.K.: Energy-optimal and energy-balanced sorting in a single-
hop wireless sensor network. In: Proceedings of the PerCom 2003, pp. 50–59 (2003)

18. Soro, S., Heinzelman, W.: Prolonging the lifetime of wireless sensor networks via
unequal clustering. In: Proceedings of the 5th International Workshop on Algo-
rithms for Wireless, Mobile, Ad Hoc and Sensor Networks (IEEE WMAN 2005)
(April 2005)

19. Yu, Y., Prasanna, V.K.: Energy-balanced task allocation for collaborative process-
ing in wireless sensor networks 10(1-2), 115–131 (2005)

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 306–319, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Programming Sensor Networks
with State-Centric Services

Andreas Lachenmann, Ulrich Müller, Robert Sugar,
Louis Latour, Matthias Neugebauer, and Alain Gefflaut

European Microsoft Innovation Center GmbH, Aachen, Germany
{andreasl,ulrichm,rsugar,llatour,
mattneug,alaingef}@microsoft.com

Abstract. This paper presents the uDSSP (“micro DSSP”) programming model
which simplifies the development of distributed sensor network applications
that make use of complex in-network processing. Using uDSSP, an application
is composed of state-centric services. These services interact by accessing the
state of other services or by subscribing to changes of that state. uDSSP sup-
ports heterogeneous networks that consist of PCs, resource-rich sensor nodes,
and resource-limited nodes with just a few kilobytes of RAM. The evaluation
uses a non-trivial application to compare it to Abstract Regions and Tenet.

1 Introduction

In the future, sensor network applications will emerge that do more complex in-
network processing than the simple aggregation (min, max, average, etc.) of most
applications today. For example, in an elderly care application a body-worn sensor
node determines the patient’s activity level whereas nodes in the kitchen and in the
dining room cooperate to infer the activities of daily living such as cooking and eat-
ing. Together with other nodes throughout the home they form the application that
keeps track of the patient’s activities. This information is useful to detect changes in
the patient’s behavior, which could be an indication of health problems.

Creating such distributed applications with complex in-network processing is still a
difficult task. If such an application is – like most real-world applications today –
directly developed on top of a sensor network operating system, the developer be-
comes easily distracted by low-level details such as sending packets and message
formats. Furthermore, since application components are often tightly coupled with
static references to specific nodes, the reusability of individual parts of the application
is very limited. Therefore, in this paper, we present the uDSSP (“micro DSSP”) pro-
gramming model and middleware that addresses these problems. With its runtime
system and a set of standard services, it relieves the developer of many recurring tasks
such as dealing with communication or discovering nodes.

In our terminology, an application spans the whole network and provides the de-
sired functionality to the user. It can include different classes of devices such as
TelosB and Imote2 nodes as well as PCs. Such an application consists of services that
are distributed over different nodes. The application is formed by combining services
and letting them interact. A uDSSP service, which is of similar granularity as a web

 Programming Sensor Networks with State-Centric Services 307

service, provides a part of the application’s functionality like sampling data or infer-
ring the activities of an elderly person. Such a service is state-centric, i.e., it is built
around its state and exposes this state to other services. An example for the state of a
service is the data sampled and the result of the computation on that data (e.g., the
activity of an elderly person). A service communicates with other services by invok-
ing operations such as subscribing to state changes or retrieving the state.

By storing the results of their computation in their state and by exposing this state,
the services facilitate a loosely coupled, subscription-based form of interaction. Thus,
a service does not have to broadcast its results to all nodes or include static references
in the code where to send them. This subscription-based interaction reduces coupling
between nodes and fosters software reuse. It fits many sensor network applications
that are event-based and transmit data only when it changes.

This model has been inspired by the ideas of the Decentralized Software Services
Protocol (DSSP) [1] but has been tailored to the special characteristics of sensor net-
works. DSSP is a SOAP-based protocol with some pre-defined operations for state-
centric services. uDSSP implements a subset of the DSSP operations. Instead of using
SOAP, however, it encodes its messages in a small, binary representation.

We have implemented uDSSP for several platforms, including the .NET Frame-
work on PCs, the .NET Micro Framework (e.g., for Imote2 nodes), as well as Contiki
[2] and Mantis [3] (e.g., for TelosB nodes). In both .NET implementations and in
Contiki, uDSSP uses 6LoWPAN for a seamless integration in existing IPv6 networks.
Since no implementation of 6LoWPAN is available for Mantis yet, these nodes are
limited to a custom mesh protocol. This protocol is also supported by our uDSSP
implementations for .NET. All platforms share the same concepts and a common
(application-level) network format. Therefore, it is possible to create distributed ap-
plications that incorporate different classes of devices.

The contribution of this paper is a novel, state-centric programming model to cre-
ate sensor network applications with complex in-network processing. This model
simplifies the development of such applications by fostering the reuse of parts of the
application, by providing easy-to-use mechanisms for communication between ser-
vices, and by including common functionality (e.g., to discover services). As shown
in the evaluation, efficient real-world applications can be implemented with uDSSP.

The rest of this paper is structured as follows. Section 2 presents related work. In
Section 3 we give an overview of our overall system. Section 4 details the use of the
programming model. In Section 5, we then present evaluation results, including case
studies of two non-trivial applications. Section 6 concludes this paper.

2 Related Work

With its network data types, nesC [4], the programming language used for TinyOS,
supports the developer in creating distributed applications that incorporate different
types of devices. However, the interaction is not handled by the runtime system but
requires a custom implementation by the application developer – often with static
references to the data’s destination. A more high-level, network-wide programming
abstraction is offered by database approaches such as TinyDB [5]. However, such an
approach is limited to simple queries. Li et al. [6] added support for events to

308 A. Lachenmann et al.

Fig. 1. Architecture of the elderly care application

DSware, another database-like middleware. However, they are limited to simple
events that can be expressed in an SQL-like syntax. Macroprogramming languages
such as Kairos [7] provide a way to create a network-wide program that is then exe-
cuted in a distributed way in the sensor network. Unlike our approach, Kairos splits
up a central program into individual threads and distributes them.

With its mechanism to register for certain data, TeenyLime [8] is similar to our
subscription-based approach. Instead of exposing services as a structuring element, it
shares data via a flat tuple space. Abstract Regions [9] uses a similar abstraction to
exchange data. It forms groups of nodes based on properties such as hop distance or
location. However, its data exchange mechanism is pull-based, i.e., nodes have to
query the data of other nodes instead of being notified when it changes.

In Tenet [10], the sensor network consists of resource-limited motes and less con-
strained master nodes. This is similar to the network architecture of uDSSP. Unlike
uDSSP, with Tenet, the application on the motes is written in a simple tasking lan-
guage that is interpreted by the runtime system.

A design alternative for uDSSP would have been to use web services or Devices
Profile for Web Services (DPWS) [11]. With its standard services, DPWS is similar to
uDSSP but has not been designed for as resource-constrained devices as uDSSP: It
requires the use of verbose XML messages. Tiny Web Services [12] have shown that
web services can be implemented on resource-limited sensor nodes, though at the cost
of some overhead. Instead of composing an application of services as with uDSSP,
the architecture of Tiny Web Services seems to be targeted towards interaction with
clients external to the sensor network.

3 System Overview

3.1 Architecture

Our network model is different from the early ideas of sensor network research with a
flat, large-scale network of resource-limited nodes. Like most deployments today, the
networks we target do not consist of thousands of nodes but rather of tens or hun-
dreds. Furthermore, they can be heterogeneous and consist of different classes of
devices. They include resource-constrained sensor nodes such as TelosB nodes, more

 Programming Sensor Networks with State-Centric Services 309

Table 1. Operations supported by uDSSP Table 2. Example service definition

Operation Description
CREATE Creates a new service instance
DROP Removes the service instance
LOOKUP Retrieves the partner services
GET Retrieves the complete state
QUERY Retrieves parts of the state
REPLACE Replaces the complete state
UPDATE Replaces parts of the state
SUBSCRIBE Subscribes to state changes
SUBMIT Calls an exposed function

Item Values
Service name ShowerDetectionService
Service ID 0x45218A74
State Bool Showering

UInt16 HumidityLevel
Functions -
Partner services -

powerful nodes such as Imote2 nodes as well as PCs or servers. In this model, PCs are
not just data sinks but fully participate in the network.

In our architecture, an application is composed of instances of services that com-
municate with each other. Each service instance has its state, a set of partner services,
and functions that can be called by other services.

The overall application can be viewed as a graph of service instances, as shown in
Fig. 1 for the elderly care application that will be used in Section 5.3.1. The arrows in
the figure show the relationship to partner services, which tell a service which ser-
vices it should, for example, subscribe to. The partners can be located on the same
node or remotely in the network. In such an application, there is not necessarily a
need for a single node to keep track of all service instances. Therefore, each service
only has to have local knowledge about the services it interacts with.

The explicit definition of the service state distinguishes uDSSP services from web
services. We think that exposing state fits well with the typical services we expect to
find in a sensor network. For example, such services can make available their latest
computation results on sensor data. Especially with our subscription mechanism, this
model helps to compose the application from individual, loosely coupled services.

3.2 Runtime System

The main tasks of the runtime system are to handle requests, manage subscriptions,
and deal with communication between services. There are two layers of the runtime
system. The first one is service-specific and generated from the service definition. To
access other services, this layer also includes generated proxies. We tried to keep this
layer minimal to avoid duplicate functionality. The second layer is independent of the
service. It dispatches messages to services and manages subscriptions.

In uDSSP, services invoke operations on other services. These operations are a
subset of the operations specified by DSSP. Table 1 gives an overview of them. As
described in Section 4, almost all operations are handled by the runtime system; the
developer does not have to implement these standard tasks.

The CREATE and DROP operations are used to create a new instance of a service
and to remove an existing one, respectively. The LOOKUP operation retrieves the set
of partners of the service instance. GET, QUERY, REPLACE, UPDATE, and SUB-
SCRIBE all deal with the state of the service. These operations can be used to retrieve
or modify either the complete state or parts of it. Furthermore, the SUBSCRIBE

310 A. Lachenmann et al.

operation is used to subscribe for a notification when the state changes. This operation
has a bitmask parameter, where each bit corresponds to a state variable. A bit set in
the mask indicates that the client wants to be notified upon any modification of the
corresponding subset of the state. Such a bitmask is also used to select variables with
QUERY and UPDATE. Because of the limited capabilities of sensor nodes, we se-
lected this simple but efficient model. The last operation is the SUBMIT operation. It
is used to call a function that has been exposed by the service which is not directly
related to the service’s state. This mechanism is similar to remote procedure calls and
web services.

3.3 Message Encoding

uDSSP messages are encoded in a binary format that is based on the service defini-
tion. Since we assume that two communicating services share knowledge about the
service definition, the messages do not include any metadata but are just the concate-
nation of the data fields. In fact, the payload of some responses can only be decoded if
the service specification and the original request are known. Compared to binary
encodings of XML such as CBXML [13] this scheme reduces data size even more.

For instance, the size of an example QUERY message (excluding the headers of
layers below) is just 14 bytes. In contrast, a SOAP-based DSSP message with similar
functionality has more than 900 bytes even if each identifier consists just of a single
byte (as suggested to reduce the size of web service requests [12]).

4 Using the Programming Model

In this section, we describe our programming model in more detail. First, we explain
how a service is defined, what the compile-time tools generate from that definition,
and how the service is implemented. Then we describe uDSSP’s standard service and
how an application is composed.

4.1 Defining Services

For our programming model, it is important to explicitly specify the state and inter-
face of a service. The format of this description, however, is not a key component of
our approach. In our implementation, a service is defined in a custom XML format.

Table 2 shows an example for the information contained in such a service defini-
tion. The name of the service (“ShowerDetectionService”) is used to refer to the ser-
vice in the source code. The ID, in contrast, is a (random) 32-bit value that is used to
identify the service type in network messages. Both the name and the ID have to be
unique in an application. While the ID identifies the service type and the correspond-
ing message format (i.e., its interface), the service name is used to identify the imple-
mentation in the source code. At runtime, there can be several instances of a service
running on a single node. Each instance is identified by the combination of the node’s
address, the service ID, and an automatically assigned instance number.

Besides simple data types such as integers of various lengths, uDSSP currently
supports structs, arrays, and strings. In the example, the state consists of the “Shower-
ing” and “HumidityLevel” variables. No functions are exposed by this service.

 Programming Sensor Networks with State-Centric Services 311

Fig. 2. Sample of a .NET service implementation

4.2 Code Generation

A compile-time tool generates source code (C or C#) from the service definition.
First, it generates the service-specific part of the runtime system. This code is respon-
sible for message encoding and decoding as well as for handling all requests. If possi-
ble, it replies to the request without requiring interaction of user-created code.

Second, the code generator creates a client proxy for the service. Another service
can bind this proxy to a specific instance and invoke operations on it. As the counter-
part of the service-specific part of the runtime system, the proxy deals with communi-
cation. The user of the service only has to call a simple function of the proxy.

Finally, the code generator creates a template of the service implementation. The
developer just has to fill the function prototypes given there. Those include the func-
tions exposed in the service definition as well as callbacks that are invoked by the
runtime system when some operations are performed. For example, the service can
react to the case when no subscriber is present any longer and stop sampling data. If
these callbacks are not needed, they can be left empty.

4.3 Implementing a Service

Reacting to events from the runtime system, adding the functionality of the service,
and updating the state are the only parts the developer has to write. Common tasks,
such as communicating with other services are handled by the runtime system.

Fig. 2 shows parts of a service implementation for the .NET Micro Framework.
The implementations for Mantis and Contiki vary slightly because they are not object-
oriented. The service is the ActivityLevelService, which determines the activity of an
elderly person based on accelerometer data. The “OnCreate” function is called when

312 A. Lachenmann et al.

instantiating the service. As specified with the “mask” variable, it subscribes to the
three axes of acceleration data of the SensorReaderService on the same host.

“SensorData” is the function registered for receiving the notifications of the Sen-
sorReaderService. Here the service computes the activity level and notifies its sub-
scribers of the state change. The “mask” parameter tells the subscribers which part of
the state has been modified. Rather than sending automatic notifications after each
change, the developer has to call the “NotifyUpdate” function in order to make sure
that subscribers are only notified when the data is in a consistent state. The user code
just modifies local variables and calls functions of the runtime system and proxies.

To simplify application development, all calls to other services are blocking.
Therefore, the developer does not have to deal with replies that arrive asynchro-
nously. The matching to the request is done by the runtime system. If no reply arrives,
the blocking functions return with an error after a timeout. Since .NET and Mantis
support multithreading, the implementation of synchronous communication is
straightforward there. For Contiki, each such call is a so-called protothread [14].

4.4 Composing an Application

An application is composed by combining instances of services running throughout
the network. As shown in Fig. 2, a connection between two services is created by
instantiating a proxy and binding it to a service instance. The example refers to a
static node address (in this case the local node). However, using the Discovery and
Metadata Services (see Section 4.5), it is also possibly to find such partner services at
runtime. Then it can, e.g., subscribe to all temperature services in the living room.

Other than binding to an existing instance, a service can use the proxy to create a
new service instance – if the code for executing it is installed. In that case, it can pass
references to other services as parameters. This way a generic service can be reused
unmodified without the need for adding references to specific nodes in the code.

4.5 Standard Services

A key component of uDSSP is that it includes a set of standard services that we ex-
pect to be useful for many applications. We identified the following services by build-
ing several non-trivial applications:

Discovery Service: The Discovery Service detects nodes that have joined or left the
network. Subscribers of this service can react to changes in the network and query
more information from new nodes using the Directory Service and the Metadata Ser-
vice. The Discovery Service is fully implemented on nodes with sufficient resources.
On resource-constrained Mantis and Contiki nodes, it refers to another node.

Directory Service: The Directory Service keeps track of all service instances running
on the local node. It returns their service IDs and instance numbers. More information
can be retrieved by sending a LOOKUP request to the service instance.

Metadata Service: The Metadata Service links a node to the physical environment it
is deployed in. It provides information about the sensor node’s identity, capabilities
and location. The user can set the metadata upon deployment.

 Programming Sensor Networks with State-Centric Services 313

Table 3. Memory size of the runtime (in bytes)

 Program memory RAM
Mantis 10,180 2,188
Contiki 13,055 1,108
.NET MF 44,808 5,346

Deployment Service: The Deployment Service is used for installing new services on
a node at runtime (assemblies for .NET or dynamically linked ELF files for Contiki
and Mantis). Since each node potentially executes different services, uDSSP cannot
leverage existing code distribution mechanisms.

5 Evaluation

In this section, we present evaluation results from experiments with real sensor nodes.
We present results about the memory footprint of uDSSP and its performance. Fur-
thermore, we describe how uDSSP can be used in real-world applications and how it
compares to other approaches.

5.1 Memory Footprint

Table 3 shows an overview of the memory consumption of uDSSP. These numbers
are just the size of the runtime itself; they exclude the operating system, the network
stack, and services. The Mantis and Contiki implementations consume just 10-13 KB
of program memory and 1.1-2.2 KB of RAM. The Mantis implementation consumes
more RAM since this number already includes the reserved stack space for the uDSSP
threads. In Contiki, our implementation is based on stack-less protothreads [14]. In-
stead, since protothreads cannot use local variables, some (reentrant) functions use
pointers to store their state in variables passed as parameters. This and the use of IPv6
with its longer addresses increase the code size of the Contiki implementation. For the
.NET Micro Framework implementation size limitations are less stringent because it
is executed on less constrained devices. Even there, uDSSP also needs just a few KB.

If services are added, the service-specific part of the runtime system consumes at
least 2-3 KB of program memory. However, the actual size and also the size in RAM
largely depend on the service itself. For example, the CabinetOpenedService, which
will be described in Section 5.3.1, needs 2.6 KB of program memory on Mantis. If not
the full functionality of uDSSP is needed, both the size of the runtime system and the
size of the generated code can be reduced further by deactivating optional functional-
ity with ifdefs.

5.2 Performance of the Runtime System

Although we expect that services typically do not send requests at a high rate, the
time for processing requests gives a good indication about the performance of
uDSSP’s runtime system. To get these numbers, we repeatedly executed a GET re-
quest for arrays of different sizes. Although the results shown here are limited to

314 A. Lachenmann et al.

GET requests, the performance of the other request types supported by uDSSP are
similar. For example, a local QUERY request takes about 1% longer than the GET
request since the bitmask has to be included in the request and evaluated by the re-
ceiver.

Fig. 3 shows the results for requests within a single node. The Mantis and Contiki
services were run on a TelosB node whereas the .NET Micro Framework implementa-
tion was executed on an Imote2. With increasing sizes of the state, the delay grows
slightly by approximately two milliseconds. We attribute the difference between Man-
tis and Contiki to the use of IPv6 addresses in the Contiki implementation. In a real
application that includes some other functionality, the difference would be smaller.

For remote requests, the processing time largely depends on the bandwidth of the
radio channel and the MAC layer protocol. Since uDSSP is independent of those low-
level communication mechanisms, these results are not meaningful to evaluate the
performance of our runtime system. To give a general idea of the performance, de-
pending on the platform and the size of the request, the processing time for a request
to a node in the local neighborhood was measured between 29 and 43 ms.

Using Contiki’s online energy estimation mechanism [15], we measured the energy
overhead of an application on TelosB that sends a notification to a neighboring node
every minute. Compared to a highly optimized, non-uDSSP application that imple-
ments the same functionality with a simple best-effort network protocol, the overhead
of uDSSP is less than 0.07 mW, which should be negligible for most applications.

5.3 Case Studies

In this section we present two applications we have implemented with uDSSP. We
use the first one to compare uDSSP with other programming models and the second
application to show that it can be used to implement a wide variety of real-world
applications. Both scenarios have been taken from the WASP project [16].

5.3.1 Elderly Care
With an aging population, improving care in the home of elderly people – instead
of having them move to a nursing home – becomes more and more important. By

Fig. 3. Time in milliseconds for processing
a local GET request, including (almost invisi-
bly small) 95% confidence intervals

Fig. 4. Activities detected by the elderly care
application

 Programming Sensor Networks with State-Centric Services 315

monitoring their activities of daily living, sensor networks can help elderly people
living alone and give their relatives the comforting information that they are doing
well.

Fig. 1 in Section 3.1 shows the general architecture of the corresponding uDSSP
application. The patient has a body-worn sensor node with an accelerometer to moni-
tor the overall activity (e.g., attached to a wireless emergency button around the
neck). We have selected an Imote2 for this part because it has more processing re-
sources. Besides the body-worn node, the application consists of additional sensors
nodes that are deployed throughout the home (e.g., TelosB nodes). We assume sensor
nodes to be deployed in the kitchen, the dining room, and the bathroom. Using the
input from these sensors, our application can detect if the patient is preparing a meal,
eating, or showering. With the modular approach of uDSSP, this application could be
easily extended with additional services.

The CabinetOpenedService sends a notification when the fridge or a cabinet in the
kitchen has been opened. Our implementation of this service simply uses the light
sensor which is available on most sensor nodes today. The PresenceService uses a
pressure-sensitive foil on a chair to detect if somebody is sitting there. The Shower-
DetectionService is deployed on nodes in the bathroom. If the humidity level is above
a threshold, it assumes that somebody is having a shower. All of these services just
notify their subscribers of state changes and do not send their raw data. Unlike scien-
tific monitoring applications such as habitat monitoring, the users of this application
are not interested in the raw sensor data. Therefore, it is sufficient if the services send
messages when they detect an event and can truly benefit from in-network processing.

The application makes use of uDSSP’s discovery functionality to incorporate sev-
eral instances of each of these services. Using the standard services such as the Direc-
tory Service and the Metadata Service (see Section 4.5), it discovers services (e.g., the
CabinetOpenedService) on all nodes and determines in which room the nodes have
been deployed. Only if the location fits the expected room (i.e., in this case the kitch-
en), it subscribe to this service.

On the body-worn node, the SensorReaderService provides the data from the sen-
sor board – in our case the acceleration values only – to the subscribers. The Activ-
ityLevelService samples data at a frequency of 10 Hz, adds the values for the three
axes of each sample together, and periodically computes the variance of the values.
The results give a good indication of the patient’s level of activity [17]. Finally, the
ADLDetectionService uses the activity values and information from sensor nodes in
the apartment to determine the patient’s activities of daily living. For this purpose, it
implements some simple rules such as if the fridge and the cabinets in the kitchen
have been opened, the patient probably prepares a meal. The GUI subscribes to ser-
vices running on the sensor node worn by the patient and displays its results.

We deployed this application in an apartment and monitored the activities of the
person living there. Fig. 4 shows an example of the morning activities detected by
the application in this deployment. Using the sensor nodes deployed throughout the
house, the application detects the activities of showering, preparing a meal, and eat-
ing. Furthermore, it shows the activity level of the person with the body-worn sensor
node. For example, the activity level also shows the reduced movements when the
person sits at the table to eat breakfast. Even with the simple sensors we use, the ap-
plication can give useful hints about the patient’s status and activities.

316 A. Lachenmann et al.

Fig. 5. Lines of code for the elderly care
application

Fig. 6. Bytes transmitted in the elderly care
scenario

To compare uDSSP with other approaches, we have implemented (almost) equiva-

lent applications in other programming models: Abstract Regions [9] and Tenet 2.0
[10]. We tried to optimize all versions as much as possible regarding lines of code and
bytes transmitted. The Abstract Regions version does not include support for multi-
hop routing and discovery of other services; each node announces itself only in its
radio range. In the Tenet implementation, cabinet and shower monitoring, which just
check the threshold of a periodic sensor reading, can be easily implemented in Tenet’s
tasking language. However, these small programs are already very close to the maxi-
mum program size supported by Tenet. The complexity of presence detection, which
requires some processing of the sensor signal, was too high to implement in this lan-
guage. Therefore, the raw data has to be transmitted to the less constrained master
node for processing in a C application. Finally, since the activity detection requires
input from other nodes, this functionality is also not supported by Tenet’s tasking
language and has to be implemented on the master node in C. Unlike the size limita-
tions, which could probably be modified, it is a fundamental principle of Tenet that
only the less-constrained master nodes can process input from other nodes.

In Fig. 5 we compare the lines of user-written code to implement the application.
For Abstract Region, these numbers do not include changes that were necessary to its
runtime components in order to support nodes that are part of several regions. For
Tenet, the numbers are quite low on the sensor nodes because the pure functionality
of some nodes is readily available in its tasking language. However, as described
above, some functions cannot be implemented in this language and have to be run on
the master node. Furthermore, since Tenet’s language requires the use of numbered
attributes instead of meaningful variables, writing applications is more error-prone
than the lines of code suggest. uDSSP is somewhere between Abstract Regions and
Tenet. However, compared to Tenet, it provides access to the full functionality of a
node and includes additional support for discovering new nodes. This discovery me-
chanism is mostly responsible for uDSSP’s higher numbers for activity detection.

Fig. 6 compares the number of bytes sent in the first 40 minutes in an exemplary run
of the sequence shown in Fig. 4. These numbers only include the bytes sent on the
application layer because the underlying protocols are not important for this compari-
son. For Abstract Regions and uDSSP, the activity node transmits many bytes since the
activity level is sent frequently to the GUI. These numbers are comparatively

 Programming Sensor Networks with State-Centric Services 317

Fig. 7. Architecture of the livestock
application

Fig. 8. Acceleration readings and steps
detected

small for Tenet because they include only the pure application data in the messages
sent by the C application. Unlike with uDSSP, the GUI application cannot benefit
from the programming model and has to parse the messages manually. On the pres-
ence detection node, the numbers are significantly bigger for Tenet because the node
has to transmit its raw data for processing to a master node.

Abstract Regions has significant overhead for two reasons. First, although we in-
creased the interval from 1 s to 30 s, it still sends periodic beacons to announce itself
to the other nodes in the neighborhood. Second, due to its pull-based data sharing
approach, a node interested in data has to periodically query the data sources. In an
application where data like the result of the shower detection changes very infre-
quently, the subscription-based model of uDSSP is preferable.

For uDSSP, these numbers include the overhead for discovering services and for
subscribing to them (about 150 bytes for the cabinet node). In a static network, this is
a one-time overhead. Without that, the shower detection node, for example, just sends
34 bytes. This number is comparable to an optimized manual implementation.

We are convinced that these results can be transferred to other applications. Tenet
is suited well if the resource-limited nodes do only very simple processing and if the
developer switches to its new, unfamiliar programming language. The pull-based
model of Abstract Regions is of advantage if the observed data changes faster than
updates are needed by the nodes interested in this data. uDSSP supports this use case
also well by setting a minimum interval between notifications. Furthermore, it offers a
good compromise between expressiveness of the programming language, complexity
of the source code, and high efficiency for infrequent events.

5.3.2 Livestock Monitoring
Dairy farmers have to deal with claw health problems of their cows. If these problems
are detected early, they can be treated before the cow is seriously impaired. However,
to reduce costs, many farmers have to increase the size of their herds. Therefore, they
have less time to spend with each cow. By continuously monitoring the activities of
the cows with a wireless sensor network, less monitoring by the farmers is needed.

In this application, we focus on two aspects: the proportion of the time the cows
are standing or lying and the number of steps they take. For this purpose, we attach a
sensor node with an accelerometer to a leg of each cow. Using the accelerometer as a

318 A. Lachenmann et al.

tilt sensor, we distinguish between cows that are standing and lying. Furthermore, by
computing the variance of acceleration readings, we detect the steps of a cow.

Fig. 7 shows an overview of the services running in this application. There can be
many sensor nodes present that run such services for one cow. The SensorReaderSer-
vice interfaces with the node’s sensor board. Two services subscribe to the accelera-
tion data provided by this service: the CowBehaviorService, which monitors if the
cow stands or lies, and the StepDetectionService, which determines the number of
steps of the cow. These two services subscribe to the SensorReaderService at different
notification rates (1 Hz and 50 Hz, respectively). When the cow is not standing, no
steps have to be detected and the subscription of the StepDetectionService can be
temporarily released. The SensorReaderService is notified of the currently needed
maximum rate and can adjust its sampling rate accordingly. Both processing services
deliver their results to a generic StorageService outside the sensor network. A GUI
application retrieves the data from the storage service and subscribes to it in order to
be notified when new data from a cow arrives. Alternatively, the GUI or an applica-
tion-specific storage service could directly subscribe to the cow services.

To show the practicality of this application, we performed some experiments on a
farm. Since there is always the risk of injuring the animal when attaching or removing
the sensor node, in this application it is important that software updates can be in-
stalled wirelessly. With uDSSP, this is the task of the Deployment Service (see Sec-
tion 4.5). Fig. 8 presents some results of the StepDetectionService and the
corresponding raw acceleration data. In this example, there were three steps detected
during one minute. It should be noted that the raw data shown here has been made
available for testing. To reduce network traffic and energy consumption, the applica-
tion only provides access to the behavior and number of steps detected.

6 Conclusions and Future Work

As we have described in this paper, uDSSP provides a programming model and the
corresponding middleware to create applications that do complex in-network process-
ing like the applications in Section 5.3. We are convinced that such applications will
be among the first sensor network applications to be widely used. Using the abstrac-
tion of state-centric services, parts of the application can be developed independently
and later be combined. Services do not have to deal with the users of their data. Other
services that are interested in the data will be notified automatically or can retrieve it
when needed. With its higher level of abstraction, uDSSP helps the programmer to
focus on the actual functionality of the application.

The runtime system of uDSSP is small and efficient. Furthermore, the evaluation
shows that it is possible to develop a wide range of applications with uDSSP. Compared
to other approaches, uDSSP offers a good compromise of flexibility and efficiency.

With the same programming interface and communication protocols available on
PCs, sensor nodes are no longer simple data suppliers attached to a serial port: They
can invoke services outside the sensor network and fully participate in a network
consisting of sensor nodes and IPv6-capable computers. Therefore, uDSSP will en-
able exciting new sensor network applications that integrate with other networks.

 Programming Sensor Networks with State-Centric Services 319

Regarding future work, we are planning to add security mechanisms that restrict the
access to nodes and services. Especially if sensitive data like in the elderly care applica-
tion is transmitted, this is necessary for the system to be accepted by the users.

Acknowledgments. This work is partially financed by the European Commission
under the Framework 6 IST Project “Wirelessly Accessible Sensor Populations
(WASP)”.

References

1. Nielsen, H.F., Chrysanthakopoulos, G.: Decentralized Software Services Protocol –
DSSP/1.0., http://purl.org/msrs/dssp.pdf

2. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operating Sys-
tem for Tiny Networked Sensors. In: Proc. of the Worksh. on Embedded Netw. Sensors
(2004)

3. Bhatti, S., et al.: MANTIS OS: An Embedded Multithreaded Operating System for Wire-
less Micro Sensor Platforms. Mobile Networks and Applications 10, 563–579 (2005)

4. Gay, D., et al.: The nesC language: A holistic approach to networked embedded systems.
In: Proc. of the Conf. on Programming Lang. Design and Impl., pp. 1–11 (2003)

5. Madden, S.R., et al.: TinyDB: An acquisitional query processing system for sensor net-
works. ACM Trans. Database Syst. 30 (2005)

6. Li, S., et al.: Event Detection Services Using Data Service Middleware in Distributed Sen-
sor Networks. Telecommunication Systems 26(2-4), 351–368 (2004)

7. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming Wireless Sensor Net-
works using Kairos. In: Proc. of the Conf. on Distrib. Comp. in Sensor Syst. (2005)

8. Costa, P., et al.: Programming Wireless Sensor Networks with the TeenyLime Middle-
ware. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp.
429–449. Springer, Heidelberg (2007)

9. Welsh, M., Mainland, G.: Programming Sensor Networks Using Abstract Regions. In:
Proc. of the 1st Symp. on Networked Systems Design and Implementation, pp. 29–42
(2004)

10. Gnawali, O., et al.: The Tenet Architecture for Tiered Sensor Networks. In: Proc. of the
Conf. on Emb. Netw. Sensor Syst., pp. 153–166 (2006)

11. Chan, S., et al.: Devices Profile for Web Services (2006)
12. Priyantha, N.B., et al.: Tiny Web Services: Design and Implementation of Interoperable

and Evolvable Sensor Networks. In: Proc. of the Conf. on Emb. Netw. Sensor Syst.,
pp. 253–266 (2008)

13. Conner, M.: CBXML: Experience with Binary XML. In: W3C Workshop on Binary Inter-
change of XML Information Item Sets (2003)

14. Dunkels, A., et al.: Protothreads: Simplifying Event-Driven Programming of Memory-
Constrained Embedded Systems. Proc. of the Int’l Conf. on Emb. Netw. Sensor Syst.,
29–42 (2006)

15. Dunkels, A., et al.: Software-based On-line Energy Estimation for Sensor Nodes. In: Proc.
of the Worksh. on Embedded Networked Sensors (2007)

16. WASP consortium: WASP project web site, http://www.wasp-project.org/
17. Lo, B., et al.: Real-Time Pervasive Monitoring for Postoperative Care. In: Proc. of the

Worksh. on Wearable and Implantable Body Sensor Networks, pp. 122–127 (2007)

Fast Decentralized Averaging via
Multi-scale Gossip

Konstantinos I. Tsianos and Michael G. Rabbat

McGill University, Department of Electrical and Computer Engineering
Montreal, QC, Canada

konstantinos.tsianos@gmail.com,
michael.rabbat@mcgill.ca

Abstract. We are interested in the problem of computing the aver-
age consensus in a distributed fashion on random geometric graphs. We
describe a new algorithm called Multi-scale Gossip which employs a hi-
erarchical decomposition of the graph to partition the computation into
tractable sub-problems. Using only pairwise messages of fixed size that
travel at most O(n

1
3) hops, our algorithm is robust and has communica-

tion cost of O(n log log n log ε−1) transmissions, which is order-optimal
up to the logarithmic factor in n. Simulated experiments verify the good
expected performance on graphs of many thousands of nodes.

1 Introduction

Applications in sensor networks often demand that nodes cooperatively accom-
plish a task without centralized coordination. Autonomy is often equated with
robustness and scalability in large-scale networked systems. This is especially
true in wireless networks, where fundamental limits on spatial and temporal
channel reuse limit the amount of communication possible at any instant in
time. Moreover, when nodes are battery-powered—a typical design element of
wireless sensor networks—each transmission consumes valuable energy resources.
This has stimulated research into resource-efficient algorithms for distributed
computing and coordination. Gossip algorithms are an attractive paradigm for
decentralized, autonomous computation. A classic and well-studied example is
gossiping to compute the average consensus: in a graph G = (V, E) with |V | = n
nodes, where each node initially has a value xi(0), the goal is to compute an es-
timate of the average xave = 1

n

∑n
i=1 xi(0) at all nodes. At each gossip iteration,

a random connected subset S(t) ⊂ V of nodes exchange their current estimates,
xi(t), and locally compute the update xi(t + 1) = 1

|S(t)|
∑

j∈S(t) xj(t). In the
original algorithm, described in [1] and revisited in [2] and [3], |S(t)| = 2 at
every iteration, and the pair of nodes that update are neighbors in G.

Gossip algorithms have the attractive properties that they run asynchronously,
do not require any specialized routing protocols, and therefore do not create bot-
tlenecks or single points of failure. In the original gossip algorithm, pairs of nodes
that communicate directly exchange information at each iteration. Consequently,

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 320–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Decentralized Averaging via Multi-scale Gossip 321

no special routing is needed, and the algorithm has been shown to be robust to
fluctuating availability of links, as well as other changes in topology.

Of course, robustness and autonomy come at a price. Standard pair-wise ran-
domized gossip is inefficient on topologies commonly used to model connectivity
in wireless networks, such as grids and random geometric graphs; the number of
messages per node scales linearly with the size of the network. In contrast, one
can imagine numerous other approaches to computing a linear combination of
the values at each node, assuming the existence of some specialized routing such
as a Hamilton cycle or spanning tree, in which the number of messages per node
remains constant as the network size tends to infinity. Although the overhead
involved in finding and maintaining these routes may be prohibitive, requiring
more centralized control and creating bottlenecks and single points of failure,
these observations have motivated substantial research to close the gap between
the two scaling regimes.

Motivated by the robust scaling properties exhibited by other hierarchical
systems, this paper describes a gossip algorithm that achieves nearly-optimal
performance in wireless networks. We partition the network computation hier-
archically in k different scales. At each scale, nodes gossip within their partition
until convergence; then one representative is elected within each partition, and
the representatives gossip. This is repeated, with representatives gossiping at
each higher scale, until the representatives at the coarsest scale have computed
xave. At that point the average is disseminated throughout the network.

The main contribution of this work is a new multi-scale gossip algorithm for
which we prove that the average number of messages per node needed to reach
average consensus in a grid or random geometric graph on n nodes, scales as
(k + 1)nδ(k), where δ(k) → 0 as k → ∞. Since larger graphs facilitate deeper
hierarchies, we show that we can take k = O(log log n) to obtain a scheme that
asymptotically requires a number of messages per node proportional to log log n.
In simulations of networks with thousands of nodes, two or three levels of hier-
archy suffice to achieve state-of-the-art performance. This is comparable to ex-
isting state-of-the-art gossip algorithms. Similar to the existing state-of-the-art,
we assume the network implements geographic routing. This facilitates gossip
iterations between pairs of representatives that may not communicate directly
at higher levels of the hierarchy. However, unlike other fast gossip algorithms, we
do not require many gossip exchanges among nodes. For example, the path av-
eraging algorithm described in [4] gossips on average among |S(t)| ∝ √

n nodes
along a path at each iteration. In contrast, all gossip iterations in multi-scale
gossip are between pairs of nodes, so if a message is lost in transit through
the network, the amount of information lost is minimal. Moreover, the longest
distance individual messages must travel is on the order of n1/3 hops.

2 Previous Work and Known Results

Our primary measure of performance is communication cost—the number of
messages (transmissions over a single hop) required to compute an estimate to

322 K.I. Tsianos and M.G. Rabbat

ε accuracy—which is also considered in [4,5]. In the analysis of scaling laws
for gossip algorithms, a commonly studied measure of convergence rate is the
ε averaging time, denoted Tε(n), which is the number of iterations required to
reach an estimate with ε accuracy with high probability1. Tε(n) reflects the
idea that the complexity of gossiping on a particular class of network topologies
should depend both on the final accuracy and the network size. When only
neighbouring nodes communicate at each iteration, Tε(n) and communication
cost are identical up to a constant factor. Otherwise, communication cost can
generally be bounded by the product of Tε(n) and a bound on the number of
messages required per iteration.

Kempe, Dobra, and Gehrke [2] initiated the study of scaling laws for gossip
algorithms and showed that gossip requires Θ(n log ε−1) total messages to con-
verge on complete graphs. Note that at least n messages are required to compute
a function of n distributed data values in any network topology.

In wireless sensor network applications, random geometric graphs are a typical
model for connectivity since communication is restricted to nearby nodes. In a 2-
dimensional random geometric graph, n nodes are randomly assigned coordinates
uniformly in unit square, and two nodes are connected with an edge when their
Euclidean distance is less than or equal to a connectivity radius, r [6,7]. In [6] it

is shown that if the connectivity radius scales as rcon(n) = Θ(
√

log n
n) then the

network is connected with high probability. Throughout this paper when we refer
to a random geometric graph, we mean one with the connectivity rcon(n). Boyd,
Ghosh, Prabhakar, and Shah [3] studied scaling laws for pairwise randomized
gossip on random geometric graphs and found that communication cost scales
as Θ(n2

log n log ε−1) messages even if the algorithm is optimized with respect to
the topology.

One approach for improving convergence rates is to introduce memory at each
node, creating higher-order updates [8,9]. However, the only known scaling laws
for this approach are for a deterministic, synchronous variant of gossip [10],
leading to Θ(n1.5√

log n
log ε−1) communication cost. Gossip algorithms based on

lifted Markov chains have been proposed that achieve similar scaling laws [11,12].
A variant called geographic gossip, proposed by Dimakis, Sarwate, and Wain-

wright [5], achieves a similar communication cost of Θ(n1.5√
log n

log ε−1) by allowing
distant (non-neighbouring) pairs of nodes to gossip at each iteration. Assuming
that each node knows its own coordinates and the coordinates of its neighbours
in the unit square, communication between arbitrary pairs of nodes is made pos-
sible using greedy geographic routing. Rather than addressing nodes directly, a
message is sent to a randomly chosen target (x, y)-location, and the recipient of
the message is the node closest to that target. To reach the target, a message is
forwarded from a node to its neighbour who is closest to the target. If a node
is closer to the target than all of its neighbours, this is the final message recipi-
ent. It is shown in [5] that for random geometric graphs with connectivity radius
r(n) = rcon(n), greedy geographic routing succeeds with high probability. For an

1 A more rigorous definition is provided in the next section.

Fast Decentralized Averaging via Multi-scale Gossip 323

alternative form of greedy geographic routing, which may be useful in implemen-
tations, see [13]. The main contribution of [5] is to illustrate that allowing nodes
to gossip over multiple hops can lead to significant improvements in communica-
tion cost. In follow-up work, Benezit, Dimakis, Thiran, and Vetterli [4] showed
that a modified version of geographic gossip, called path averaging, can achieve
Θ(n log ε−1) communication cost on random geometric graphs. To do this, all
nodes along the path from the source to the target participate in a gossip iter-
ation. If geographic routing finds a path of nodes S = {xi, . . . , xj} to deliver a
message from xi to xj , on the way to xj values of nodes in S are accumulated.
Then xj computes the average of all S values and sends the average back down
the same path towards xi. All nodes along the way update their values.

The multi-scale approach considered in this paper also assumes that the net-
work is capable of geographic routing in order to gossip among representative
nodes at each scale. Below, we show that asymptotically, the communication
complexity of multi-scale gossip is O(n log log n log ε−1) messages, which is equiv-
alent to that of path averaging up to a logarithmic factor. However, in multi-scale
gossip, information is only exchanged between pairs of nodes, and there is no
averaging along paths. We believe that this makes our algorithm more fault tol-
erant, since each message only carries the information for a pair of nodes. If an
adversary wishes to disrupt gossip computation by forcing the network to drop
a particular message or by deactivating a node in the middle of an iteration,
a substantial amount of information can be lost in path averaging since each
iteration involves O(

√
n

log n) nodes on average. In addition, the longest distance

a message travels in our multi-scale approach is O(n1/3) hops in comparison to
O(n1/2) hops for geographic gossip or path averaging.

Finally, we note that we are not the first to propose gossiping in a multi-scale
or hierarchical manner. Sarkar et al. [14] describe a hierarchical approach for
computing aggregates, including the average. However, because their algorithm
uses order and duplicate insensitive synopses to estimate the desired aggregate,
the size of each message exchanged between a pair of nodes must scale with the
size of the network. Other hierarchical distributed averaging schemes that have
been proposed in the literature focus on the synchronous form of gossip, and
they do not prove scaling laws for communication cost neither do they provide
rules for forming the hierarchy (i.e. assume the hierarchical decomposition is
given) [15,16,17].

3 Network Model and Problem Definition

Let G = (V, E) be a random geometric graph [7] of n nodes with connectivity
radius rcon(n). Each node in G holds an initial real value xi(0). Vector x(t) =
[x1(t), x2(t), . . . , xn(t)]T describes the values on the network at time t. Our goal
is for nodes to communicate over graph edges to compute the average xave =
1
n

∑n
i=1 xi(0). In the end, all nodes should have knowledge of xave. To measure

performance of an averaging algorithm we use the following definition.

324 K.I. Tsianos and M.G. Rabbat

Definition 1. ε averaging time Tε(n). Given any desired accuracy ε > 0, the ε
averaging time is the earliest time at which vector x(t) is ε close to the normalized
true average with probability greater than 1 − ε:

Tε(n) = supx(0)inft=0,1,2,...

{
P

(
‖x(t) − xave‖2

‖x(0)‖2
≥ ε

)
≤ ε

}
(1)

Convergence rate generally depends on the initial values x(0) and the definition
assumes the worst possible starting point. In practice, to eliminate the possi-
bility of favourable initial conditions when evaluating our algorithm, as initial
condition we assign to each node the sum of its geographic coordinates.

Notice that time is measured in discrete time moments until convergence.
As explained in [3] this facilitates the analysis of gossip algorithms but does
not force the actual implementation to be sequential. Multiple communication
events happen in parallel. Finally, for multi-scale gossip we use Tε(n) since the
consensus time characterization of convergence rate defined in [18] is not appli-
cable. Specifically, our averaging scheme proceeds in phases and changes over
time in a non-ergodic manner. Moreover, by definition our scheme stops after a
finite number of iterations. The approach in [18] is only defined asymptotically
as t → ∞ and for averaging schemes that are ergodic.

4 Multi-scale Gossip

Multi-scale gossip performs averaging in a hierarchical manner. At each moment
only nodes in the same level of hierarchy are doing computations at a local scale
and computation at one level begins after the previous level has finished. By
hierarchically decomposing the initial graph into subgraphs, we impose an order
in the computation. As shown in the next section, for a specific decomposition it
is possible to divide the overall work into a small number of linear sub-problems
and thus obtain very close to linear complexity in the size of the network overall.

Assume a random geometric graph G = (V, E) where each node knows its own
coordinates in the unit square and the locations of its immediate neighbours.
Each node also knows the total number of nodes in the network n, and k, the
desired number of hierarchy levels2. Figure 1 illustrates an example with k = 3.
At level 1 the unit square is split into m1 small cells – denote them C1 cells.
The subgraphs G1 of G involving nodes inside a single C1 cell run standard
randomized gossip until convergence. Then, each C1 cell elects a representative
node3 L1. The representative selection can be randomized or deterministic as
explained in Section 7. Generally, not all G1 graphs have the same number of
nodes. For this reason, the value of each representative has to be reweighed
proportionally to its graph size. At level 2, the unit square is split into C2 cells.
Each C2 contains the same number of C1 cells. The representatives of the C1 cells
2 As explained in Section 6, given n, k can be computed automatically.
3 Note that in level 1 as well as any other level d there are many Cd cells but for

simplicity we avoid denoting them Cd,i with i running from 1 to maximum number
of cells. Similarly for representatives Ld.

Fast Decentralized Averaging via Multi-scale Gossip 325

Fig. 1. Hierarchical multiscale subdivision of the unit square. At each level, each cell
is split into equal numbers of smaller cells. Before the representatives of the cells can
gossip on a grid graph, we run gossip on each cell.

form grid graphs G2 with two representatives L1,i and L1,j sharing an edge in
a G2 if cells C1,i and C1,j are adjacent and contained in the same C2 cell. Note
that representatives can determine which cells they are adjacent to given the
current level of hierarchy and n. Next, we run randomized gossip simultaneously
on all G2 grid graphs. Finally, we select a representative node L2 out of each
G2 and continue the next hierarchy level. The process repeats until we reach
level k at which point we have only one grid graph Gk contained in the single
cell Ck which coincides with the unit square. Once gossip on Gk is over, each
representative Lk−1 disseminates his final value to all the nodes in its cell.

Algorithm 1 describes multi-scale gossip in a recursive manner. The initial
call to the algorithm has as arguments, the vector of initial node values (xinit),
the unit square (C = [0, 1] × [0, 1]), the network size n, the desired number of
hierarchy levels k and the desired error tolerance tol. In a down-pass the unit
square is split into smaller and smaller cells all the way to the C1 cells. After
gossiping in the G1 graphs in Line 15, the representatives adjust their values
(Line 16). As explained in the next section, if k is large enough, the G1 are
complete graphs. Since each node knows the locations of its immediate neigh-
bours (needed for geographic routing), at level 1 it is easy to also compute the
size of each G1 which is needed for the reweighting. The up-pass begins with
the L1 representatives forming the G2 grid graphs (Line 8) and then running
gossip in all of them in parallel.. We use a parameter a = 2

3 to decide how many
Cd−1 cells fit in each Cd cell. The motivation for this parameter and its specific
value are explained in the following section. Notice the pseudocode mimics a se-
quential single processor execution which is in line with the analysis that follows
in Section 6. However, it should be emphasized that the algorithm is intended
for and can be implemented in a distributed fashion. The notation xinit(C) or
xinit(L) indicates that we only select the entries of xinit corresponding to nodes
in cell C or representatives L.

The ideal scenario for multi-scale gossip is if computation inside each cell
stops automatically when the desired accuracy is reached. This way no messages
are wasted. However in practice cells at the same level we may need to gossip

326 K.I. Tsianos and M.G. Rabbat

Algorithm 1. MultiscaleGossip(xinit, C, n, k, tol)
1: a = 2

3

2: if k > 1 then
3: Split C into mk−1 = n1−a cells: Ck−1,1, . . . , Ck−1,mk−1

4: Select a representative node Lk−1,i for each cell Ck−1,i, i ∈ {1, . . . , mk−1}
5: for all cells Ck−1,i do
6: call HierarchicalGossip(xinit(Ck−1,i), Ck−1,i, n

a, k − 1, tol)
7: end for
8: Form grid graph Gk−1 of representatives Lk−1,i

9: call RandomizedGossip(xinit(Lk−1,1:mk−1), Gk−1, tol)
10: if at top level then
11: Spread value of Lk,i to all nodes in Ck,i

12: end if
13: else
14: Form graph G1 only of nodes in V (G) contained in C
15: call RandomizedGossip(xinit , G1, tol)

16: Reweight representative values as : x(L1,i) = x(L1,i) |V (G1)|·m2
|V (G)|

17: end if

on graphs of different sizes that take different numbers of messages to converge.
This creates a need for node synchronization so that all computation in one level
is finished before the next level can begin. To overcome the need for synchro-
nization, we can fix the number of randomized gossip iterations per level. Given
that nodes are deployed uniformly at random in the unit square, we can make a
worst case estimate of how many nodes are expected to be in a cell of a certain
area. Since by construction all cells at the same level have equal area, we gossip
on all graphs at that level for a fixed number of iterations. Usually, at level 1,
we have less nodes than expected so we end up wasting messages running gossip
for longer than necessary.

5 Evaluation of Multi-scale Gossip

Before proceeding with the formal analysis of the algorithm complexity, we show
in this section that Multi-scale Gossip performs very well against Path Averaging
[4], a recent state-of-the-art gossip algorithm that requires linear number mes-
sages in the size of the network to converge to the average with ε accuracy. Figure
2 (left) shows the number of messages needed to converge within ε = 0.0001 error
for graphs of sizes 500 to 8000. The bottom curve tagged MultiscaleGossip shows
the ideal case where computation inside each cell stops automatically when the
desired accuracy is reached. The curve tagged MultiscaleGossipFI was gener-
ated using fixed number of iterations per level based on worst case graph sizes
as explained in Section 4. One reason why path averaging seems to be slower is

because we use a smaller connectivity radius for our graphs (r =
√

3 log n
n instead

of r =
√

10 log n
n which is described in [4]).

Fast Decentralized Averaging via Multi-scale Gossip 327

0 2000 4000 6000 8000
0

5

10

15x 10
5

Network Size

N
u

m
b

er
 o

f
M

es
sa

g
es MultiscaleGossip

PathAveraging
MultiscaleGossipFI
MultiscaleGossip2level

2 3 4 5 6 7 8
0

1

2

3

4

5

6x 10
5

Levels of Hierarchy

N
u

m
b

er
 o

f
M

es
sa

g
es

Fig. 2. (left) Comparison of MultiscaleGossip to PathAveraging. Total number of mes-
sages to converge with ε = 0.0001 accuracy on random geometric graphs of increasing
sizes. Results are averages over 20 runs. MultiscaleGossip used with 5 levels of hierar-
chy. MultiscaleGossipFI is the version using a fixed number of iterations for gossiping
at a specific level. MultiscaleGossip2level is a version using only two levels of Hierarchy
and is explained in Section 7. (right) Increasing the levels of Hierarchy yields a dimin-
ishing reward. Results are averages over 10 random geometric graphs with 5000 nodes

and final desired accuracy ε = 0.0001. All graphs are created with radius r =
√

3 log n
n

.

Multi-scale Gossip has several advantages over Path Averaging. All the infor-
mation relies on pairwise messages. In contrast, averaging over paths of length
more than two has two main disadvantages. First, if a message is lost, a large
number of nodes (potentially O(

√
n

log n)) are affected by the information loss.

Second, when messages are sent to a remote location over many hops, they
increase in size as the message body accumulates the information of all the in-
termediate nodes. Besides being variable, the message size now depends on the
length of the path and ultimately on the network size. Our messages are always
of constant size and independent of the hop distance or network size. More-
over, as will be shown in the next section, the maximum number of hops any
message has to travel is O(n

1
3) at worst. This should be compared to distance

O(
√

n) which is necessary for Path Averaging to achieve linear scaling. Finally,
Multi-scale Gossip is relatively easy to analyze and implement using standard
randomized gossip as a building block for the averaging computations.

6 Analysis of Multi-scale Gossip

The motivation behind multi-scale gossip is to divide the computation into stages
each of which takes no more than linear number of messages in the size of
the network. This allows the overall algorithm to scale very close to linear as
established by the following theorem:

Theorem 1. Let a random geometric graph G of size n and an ε > 0 be given.
As the graph size n → ∞, the communication cost of the multi-scale gossip
scheme described above with scaling constant α = 2

3 behaves as follows:

328 K.I. Tsianos and M.G. Rabbat

1. If the number of hierarchy levels k remains fixed as n → ∞, then the com-
munication cost of multi-scale gossip is O

(
(kn+n1+(2

3)k

) log ε−1
)

messages.
2. If k = Θ(log log n), then the communication cost of multi-scale gossip is

O(n log log m log ε−1) messages.

Proof. Suppose we run Multi-scale Gossip (Algorithm 1) on a random geometric

graph G = (V, E) with |V | = n and connecting radius is r(n) =
√

c log n
n . Call the

unit square cell Ck for a total of k hierarchy levels. At the highest level, we split
the unit square into mk−1 = n1−a cells Ck−1,i each of dimensions n

a−1
2 × n

a−1
2

where a = 2
3 as explained below. On a grid of p nodes, randomized gossip re-

quires O(p2) or by including the dependence on final accuracy, O(p2 log ε−1)
messages to converge (e.g. see [3]). The grid graph Gk−1 formed by the repre-
sentatives of the Ck−1,i cells has n1−a nodes. Moreover, for appropriately large
c (e.g. c = 3), graph G is geo-dense [19] and a patch of area na−1 is expected to
have Θ(na−1n) = Θ(na) nodes in it. The maximum distance between two rep-
resentatives in Gk−1 will be

√
5n

a−1
2 = O(n

a−1
2). If we divide by r(n), we get a

worst case estimate of the cost for multi-hop messages between representatives:
MsgCostk−1 = O(n

a
2). Now the total number of pairwise messages on Gk−1 will

be O((n1−a)2 log ε−1) · O(n
a
2). This number is O(n) if a = 2

3 .
At the next level of hierarchy, we subdivide each Ck−1,i cell of q = Θ(na)

nodes into q1−a′
cells in a recursive manner. Each Ck−2,i cell will have dimen-

sions q
a′−1

2 × q
a′−1

2 . Using the exact same analysis as above, we will have n1−a

grid graphs GGk−2 and each has q1−a′
(representative) nodes. The communica-

tion cost between Lk−2,i representatives is MsgCostk−2 = O(q
a′
2). To make the

total number of messages at level k − 2 linear, we get n1−a · O((q1−a′
)2 log ε−1) ·

O(q
a′
2) = n ⇒ a′ = 2

3 as well. A simple induction proves that in general a
subdivision of each cell of size q into q1−a subcells yields linear performance
for that level if a = 2

3 . Finally, after k levels, the algorithm runs gossip on
each subgraph of G with nodes contained inside each of the C1 cells. We have
O(n1−(2

3)k

) C1 cells, each containing n(2
3)k

nodes. Since we run randomized
gossip on each subgraph, the total number of messages at the last level is
O(n1+(2

3)k). Summing up all levels, plus n messages to spread the final re-
sult back to all nodes,the total number of messages for Multi-scale Gossip is
O
(
(kn + n1+(2

3)k

) log ε−1) + n
)

= O
(
(kn + n1+(2

3)k

) log ε−1)
)
.

For the second part of the theorem, observe that at level 1 each cell contains
a subgraph of n(2

3)k

nodes in expectation. We can choose k so that each cell
contains at least m ≥ 2 nodes for randomized gossip to be non-trivial and no
more than M ≥ m nodes so that the cost per cell is bounded by M2 log ε−1. In
other words, choose k such that:

m ≤ n(2
3)k

≤ M ⇒ log log M − log log n

log 2
3

≤ k ≤ log log m − log log n

log 2
3

Fast Decentralized Averaging via Multi-scale Gossip 329

Since the cost per level 1 cell is now bounded by a constant for k = Θ(log log n),
the total level 1 cost is O(n1−(2

3)k

log ε−1) and the overall cost is O
(
(kn+n1−(2

3)k

)
log ε−1) + n

)
= O(n log log nε−1) ��

In practice we only need a few levels of hierarchy. Figure 2 (right) investigates
the effect of increasing the levels of hierarchy. The figure shows the number of
messages until convergence within 0.0001 error, averaged over ten graphs of 5000
nodes. More levels yield a diminishing reward and we don’t need more than 4
or 5 levels. As discussed in Section 7 these observation lead us to try a scheme
with only two levels of hierarchy which still produces an efficient algorithm.

7 Practical Considerations

There is a number of practical considerations that we would like to bring to the
reader’s attention. We list them in the form of questions below:

Does Multi-scale gossip computation scheme affect the final error?
This is a valid concern since our algorithm essentially uses randomized gossip
as a lossy averaging operator over subsets of the network nodes. At each level
the representatives trust the ε approximate values of the previous level. Fortu-
nately the error deteriorates only linearly with the number of levels. If ave(·)
is an ε accuracy averaging operator, ave(a1,am) = a ± ε. At the next level,
ave(a1±ε, . . . , am±ε) = a±ε±ε. After k levels the final error will be at worst ±kε.

How can we detect convergence in a subgraph or cluster? Do the nodes
need to be synchronized? At each hierarchy level, representatives know how
big the grid that they are gossiping over is (function of n and k only). Moreover,
all grids at the same level are of the same size and we have tight bounds on the
number of messages needed to obtain ε accuracy on grids w.h.p. We can thus
gossip on all grids for a fixed number or rounds and synchronization is implicit.
At level 1 however, in general we need to gossip on random geometric subgraphs
which are not of exactly the same size. As n gets large though, random geo-
metric graphs tend to become regular and uniformly spaced on the unit square.
Therefore, the subgraphs contained in cells at level 1 all have sizes very close to
the expected value of n(2

3)k

. Thus, we run gossip for a fixed number of rounds
using the theoretical bound for graphs of the size n(2

3)k

. As discussed in Section
4, fixing the number of iterations leads to redundant transmissions, however the
algorithm is still very efficient.

What happens with disconnected subgraphs or grids due to empty
grid cells? Technically this is possible since the division of the unit square into
grid cells does not mean that each cell is guaranteed to contain any nodes of the
initial graph. Representatives use multi-hop communication and connected grids
can always be constructed as long as the initial random geometric graph is con-
nected. At level 1 the subgraphs of the initial graph contained in each cell could

330 K.I. Tsianos and M.G. Rabbat

still be disconnected if edges that go outside the cell are not allowed. However, as
explained in Section 6 we can use enough hierarchy levels so that each C1 cell is a
complete graph and the probability of getting disconnected C1 cells tends to zero.

How can we select representatives in a natural way? The easiest solution
is to pick the point pc that is geographically at the centre of each cell. Again,
knowledge of n, k uniquely identifies the position of each cell and also pc. By
sending all messages to pc, geographic routing will deliver them to the unique
node that is closest to that location w.h.p. To change representatives, we can
deterministically pick a location pc + u which will cause a new node to be the
closest to that location. A more sophisticated solution would be to employ a
randomized auction mechanism. Each node in a cell generates a random number
and the largest number is the representative. Once a new message enters a cell,
the nodes knowing their neighbours values, route the message to the cell rep-
resentative. Notice that determining cell leaders this way does not incur more
than linear cost.

Are representatives bottlenecks and single points of failure? This is
not an issue. There might be a small imbalance in the amount of work done
by each node, but it can be alleviated by selecting different representatives at
each hierarchy level. Moreover, for increased robustness, at a linear cost we can
disseminate the representative’s values to all the nodes in its cell. This way if a
representative dies, another node in the cell can take its place. The new represen-
tative will have a value very similar (within ε) to that of the initial representative
at the beginning of the computation at the current level. Thus node failure is
expected to only cause small delay in convergence at that level. We should em-
phasize however that the effect of node failures has received little attention so
far and still asks for a more systematic investigation.

How much extra energy do the representatives need to spend? This
question is hard to answer analytically. We use simulation to get a feel for it.
Figure 3 shows the number of messages sent by each of the 5000 nodes in a
random geometric graph. For this case we used five levels of hierarchy. The first
3200 nodes were representatives at some point in the computation and the rest
only participated in gossiping at level 1. As we go down the hierarchy the cells
get smaller and the options for representatives are less so it is expected that
some nodes will be doing more computation. Here the average number of mes-
sages per representative is about 16 with a standard deviation of 14. However,
only less than 10% of the representative nodes send more than 30 messages. For
the level 1, nodes have an average of 5 messages with standard deviation of 3.

Don’t many levels of hierarchy make it harder to implement and keep
the nodes synchronized? This is a valid concern. Given our observations in
Section 6 we tried an algorithm with just 2 levels of hierarchy. In this case, for
graphs of size a few thousand nodes, splitting the unit square into n1−a cells with

Fast Decentralized Averaging via Multi-scale Gossip 331

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

Node ID

N
u

m
b

er
 o

f
S

en
t

M
es

sa
g

es Representatives

Level 1 nodes

Fig. 3. Node utilization on a random geometric graph with 5000 nodes and final desired
accuracy ε = 0.0001. For each node we plot the total number of sent messages. Nodes
0 to 3200 have had at least one representative node role and the rest only participated
at level 1. Both types of nodes may have participated as indermediates in multi-hop
communication as well.

a = 2
3 is not a good choice as it produces a very small grid of representatives

and quite large level 1 cells. To achieve better load balancing between the two
levels, we use a = 1

2 . This choice has the advantage that the maximum number
of hops any message has to travel is O(n

1
4). To see this, observe that each cell

C1 has area 1
na = n− 1

2 = n− 1
4 × n− 1

4 . Thus the maximum distance between

representatves is O(n− 1
4). If we divide by the connecting radius r(n) =

√
c log n

n

we get the result. Another interesting finding is that for moderate sized graphs,
using cells of area n− 1

2 produces subgraphs which are very well connected. Since
nodes are deployed uniformly at random, an area n− 1

2 is expected to contain
n

1
2 nodes. A subgraph inside a C1 cell is still a random geometric graph with

t = n
1
2 nodes, but for which the radius used to connect nodes is not

√
c log t

t . It

is
√

c log n
n . This is equivalent to creating a random geometric graph of t nodes in

the unit square but with a scaled up radius of rt =
√

c log n
t . From [19] we know

that a random geometric graph of t nodes is rapidly mixing (i.e. linear number
of messages for convergence) if the connecting radius is rrapid = 1

poly(log t) . Now,
e.g. for c = 3 and n ≤ 9 ∗ 106, we get rt ≥ 1

log t ≥ rrapid for t =
√

n ≤ 3000.
Consequently, the C1 cells are rapidly mixing for networks of less than a few
millions of sensors. In Figure 2 verifies this analysis. For graphs from 500 to
8000 nodes and final error 0.0001, we see that MultiscaleGossip2level performs
very close to Multi-scale Gossip with more levels of hierarchy and better than
path averaging.

8 Discussion and Future Work

We have presented a new algorithm for distributed averaging exploiting hier-
archical computation. Multi-scale gossip separates the computation in linear

332 K.I. Tsianos and M.G. Rabbat

phases and achieves very close to linear complexity overall (O((k + 1)n1+δ(k))).
Moreover, the maximum distance any message has to travel is O(n

1
3) as opposed

to O(
√

n) needed by path averaging which is the other existing gossip algorithm
with linear complexity. Finally, multi-scale gossip uses fixed size messages inde-
pendent of the graph size and does not rely on longer that pairwise averaging
operations. There is a number of interesting future directions that we see. In our
present description, computation happens on grids which are known to require
quadratic number of messages. Since these grids use multi-hop communication
anyway, it might be possible to further increase performance by devising other
overlay graphs between representatives with better convergence properties, i.e.
expander graphs [20]. Moreover, the subdivision of the unit square into grid
cells is not necessarily natural with respect to the topology of the graph. One
could use other methods for clustering. So far, we have some preliminary results
with spectral clustering which seem promising in simulation. It is however not
clear how to do spectral clustering in a distributed way and in linear number
of messages. Another idea is to combine the multi-scale approach with the use
of more memory at each node to get faster mixing rates. Notice however that
how to use memory to provably accelerate asynchronous gossip is still an open
question. Current results only look at synchronous algorithms [10]. Finally, an
important advantage of gossip algorithms in general is their robustness. Intu-
itively this is expected. However the question of modelling and reacting to node
failures has not been formally investigated in the literature. It would be very
interesting to introduce failures and see the effect on performance for different
gossip algorithms.

Acknoledgements

We would like to thank Marius Şucan for providing the multiscale grid figure in
Section 4.

References

1. Tsitsiklis, J.: Problems in Decentralized Decision Making and Computation. PhD
thesis, Massachusetts Institute of Tech. (November 1984)

2. Kempe, D., Dobra, A., Gehrke, J.: Computing aggregate information using gossip.
In: Proc. Foundations of Computer Science, Cambridge, MA (October 2003)

3. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE
Trans. Inf. Theory 52(6), 2508–2530 (2006)

4. Benezit, F., Dimakis, A., Thiran, P., Vetterli, M.: Gossip along the way: Order-
optimal consensus through randomized path averaging. In: Proc. Allerton Conf.
on Comm., Control and Comp., Urbana-Champaign, IL (September 2007)

5. Dimakis, A., Sarwate, A., Wainwright, M.: Geographic gossip: Efficient averaging
for sensor networks. IEEE Trans. Signal Processing 56(3), 1205–1216 (2008)

6. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless
networks. In: Stochastic Analysis, Control, Optimization and Applications, Boston,
pp. 1106–1110 (1998)

Fast Decentralized Averaging via Multi-scale Gossip 333

7. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
8. Cao, M., Spielman, D.A., Yeh, E.M.: Accelerated gossip algorithms for distributed

computation. In: Proc. 44th Annual Allerton Conf. Comm., Control and Comp.,
Monticello, IL (September 2006)

9. Kokiopoulou, E., Frossard, P.: Polynomial filtering for fast convergence in dis-
tributed consensus. IEEE Trans. Signal Processing 57(1), 342–354 (2009)

10. Oreshkin, B., Coates, M., Rabbat, M.: Optimization and analysis of distributed av-
eraging with short node memory. To appear IEEE Trans. Signal Processing (2010)

11. Li, W., Dai, H.: Location-aided fast distributed consensus. IEEE Transactions on
Information Theory (2008) (submitted)

12. Jung, K., Shah, D., Shin, J.: Fast gossip through lifted Markov chains. In: Proc.
Allerton Conf. on Comm., Control and Comp., Urbana-Champaign, IL (September
2007)

13. Sarkar, R., Yin, X., Gao, J., Luo, F., Gu, X.D.: Greedy routing with guaranteed
delivery using ricci flows. In: Proc. Information Processing in Sensor Networks, San
Francisco (April 2009)

14. Sarkar, R., Zhu, X., Gao, J.: Hierarchical spatial gossip for multi-resolution rep-
resentations in sensor networks. In: Proc. of the International Conference on In-
formation Processing in Sensor Networks (IPSN 2007), April 2007, pp. 420–429
(2007)

15. Kim, J.H., West, M., Lall, S., Scholte, E., Banaszuk, A.: Stochastic multiscale
approaches to consensus problems. In: Proc. IEEE Conf. on Decision and Control,
Cancun (December 2008)

16. Epstein, M., Lynch, K., Johansson, K., Murray, R.: Using hierarchical decomposi-
tion to speed up average consensus. In: Proc. IFAC World Congress, Seoul (July
2008)

17. Cattivelli, F., Sayed, A.: Hierarchical diffusion algorithms for distributed estima-
tion. In: Proc. IEEE Workshop on Statistical Signal Processing, Wales (August
2009)

18. Denantes, P., Benezit, F., Thiran, P., Vetterli, M.: Which distributed averaging
algorithm should i choose for my sensor network? In: Proc. IEEE Infocom, Phoenix
(April 2008)

19. Avin, C., Ercal, G.: On the cover time and mixing time of random geometric
graphs. Theoretical Computer Science 380, 2–22 (2007)

20. Margulis, G.: Explicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and concentrators. J. Probl. Inf.
Transm. 24(1), 39–46 (1988)

Wormholes No More?
Localized Wormhole Detection and Prevention

in Wireless Networks

Tassos Dimitriou and Athanassios Giannetsos

Athens Information Technology,
19002, Athens, Greece

{tdim,agia}@ait.edu.gr

Abstract. A number of protocols have been proposed to date to defend
against wormhole attacks in wireless networks by adopting synchronized
clocks, positioning devices, or directional antennas. In this work, we in-
troduce a novel approach for detecting wormhole attacks. The proposed
algorithm is completely localized and works by looking for simple evi-
dence that no attack is taking place, using only connectivity information
as implied by the underlying communication graph, and total absence of
coordination. Unlike many existing techniques, it does not use any spe-
cialized hardware, making it extremely useful for real-world scenarios.
Most importantly, however, the algorithm can always prevent worm-
holes, irrespective of the density of the network, while its efficiency is
not affected even by frequent connectivity changes. We also provide an
analytical evaluation of the algorithm’s correctness along with an imple-
mentation on real sensor devices that demonstrates its efficiency in terms
of memory requirements and processing overhead.

Keywords: Wormhole attack, Sensor Networks, Ad hoc networks,
Computer network security, Tunnelling, Connectivity Information, Path
Existence.

1 Introduction

The use of wireless ad hoc and sensor networks has given birth to a broad class of
exciting new applications in several areas of our lives. However, these networks
are exposed to security threats which, if not properly addressed, can exclude
them from being deployed in the envisaged scenarios.

The wormhole attack [7] is a severe threat against wireless networks in which
an adversary tunnels messages received in one part of the network and replays
them in a different part, as shown in Figure 1(a). Once the wormhole link is
operational, the adversary eavesdrops messages at one end and forwards them
(possibly selectively) to the other end, where the packets are retransmitted. Thus
nodes who would normally be multiple hops away from a sink are convinced that
they are only one or two hops away via the wormhole.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 334–347, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Localized Wormhole Detection and Prevention in Wireless Networks 335

(a) (b)

Fig. 1. (a) Demonstration of a wormhole attack. Nodes in area A consider nodes in
area B their neighbors and vice versa. (b) Projection of the two ends of the wormhole.

The net effect of the wormhole attack is that nodes within region A think they
are neighbors with nodes within region B and vice versa. This is equivalent with
taking all nodes in one area and place them at just one point within another
area, as shown in Figure 1(b). Thus an attacker can use it to completely disrupt
routing and attract a significant amount of traffic enabling other kind of attacks
such as the Sinkhole attack [7,10].

Our contribution: In this paper, we explore the development of a localized algo-
rithm that can detect wormhole attacks on wireless networks directly based on
connectivity information implied by the underlying communication graph. Our
work deviates from the customary strategies of using specialized hardware in
sensors, directional antennas, tight clock synchronization, or distance measure-
ments between the nodes, thus making this approach universally applicable.

The detection algorithm searches for simple structures that indicate that no
attack is taking place and its efficiency is not affected even by frequent con-
nectivity changes, another deviation from past works that assume static topolo-
gies. We provide an analytical evaluation of the algorithm’s performance and
correctness showing that attack prevention is 100% (even for low density net-
works) while keeping the running time and the percentage of false positives very
small. Finally, we present an implementation of the algorithm on real sensor
devices, justifying its efficiency in terms of memory requirements and process-
ing overhead. In general, we expect that our approach will have a practical use
in sensor network deployments overcoming some of the limitations of existing
techniques.

Paper Organization: The remainder of this paper is organized as follows. First,
we discuss related work in Section 2 and state our assumptions in Section 3. Sec-
tion 4 is the heart of this work; it gives insight on the algorithm, a mathematical
proof about its correctness in preventing wormhole attacks and a probabilistic
analysis on its behavior on legitimate node addition. Performance evaluation,
in terms of simulations and experiments on real sensor devices, is presented in
Section 5. Section 6 sets forth some attributes of our algorithm for discussion,
while Section 7 concludes the paper.

336 T. Dimitriou and A. Giannetsos

2 Related Work

In this section we briefly describe the most widely known proposed measures
for mitigating the effects of a wormhole attack in wireless networks. Enhancing
routing with strong node authentication and lightweight cryptography [7] was
proposed as a countermeasure, however, the wormhole attack still cannot be
defeated that easily as an attacker can simply forward existing packets.

An alternative set of mechanisms that operate independently from the under-
lying routing protocol is based on distance/time bounding techniques. In [5], the
authors add a secure constraint (leash) to each packet such as timing or location
information that used to tell whether a packet has traveled a distance larger
than physically possible. This technique works fine in the presence of specialized
hardware for localization and synchronization, however this assumption raises
questions about its applicability to ordinary sensor networks.

Another set of solutions use authenticated distance bounding of the round trip
time (RTT) of a message [3,8,15], received signal strength, or time difference of
arrival [16] in order to ensure that nodes are close to each other. The effectiveness
of such schemes relies on the immediate reception of responses to challenges sent,
however, this may not be possible as MAC protocols introduce random delays
between the time a packet is sent and the actual time it is transmitted via
the radio interface. In [14] the authors proposed a solution that assumes the
existence of a small fraction of nodes that are aware of their own location. This
approach is showed to successfully detect a wormhole with probability close to
one. However, its functionality relies on the correct operation of distinguished
guard nodes that can become single points of failure.

Another line of defense is the use of graph theoretic and visualization ap-
proaches. In [17], a centralized detection technique is proposed which uses dis-
tance estimations between neighboring nodes in order to determine a “network
layout” and identify inconsistencies in it, using multi-dimensional scaling (MDS)
techniques. However, its centralized nature limits its applicability in sensor net-
works. Similarly the works in [14,6] make use of guard nodes that attest the
source of each transmission. However, these techniques either make location
claims or use special purpose hardware making these approaches impractical.

Finally, another interesting approach to date is the work in [13] which looks
for topological violations in the underlying connectivity graph in order to detect
a wormhole attack. For example, in Figure 1(b), nodes 1, 3 and 5 cannot possibly
be neighbors of (say) 20 and 23 since it can be shown that three 2-hop neighbors
cannot be the common neighbors of two other nodes u and v. This is an instance
of forbidden substructure and this is exactly the approach followed in [13] for
detecting a wormhole.

While this is a nice, localized approach that uses connectivity information
to detect a wormhole attack it suffers from a number of shortcomings. First,
it does not always guarantee detection since existence of three 2-hop neighbors
lying in the common intersection area of two others depends on the density of the
network. The technique will probably fail when the average neighborhood size is
low. To alleviate this problem one may look for similar forbidden substructures

Localized Wormhole Detection and Prevention in Wireless Networks 337

of size fk among k-hop neighbors of u and v. Unfortunately, there are two issues
with this approach. The first one is that the forbidden substructure is really
an independent set of the set of common 2k-hop neighbors C2k(u, v), a known
NP-complete problem. Of course one may try to find a maximal independent set
in C2k(u, v) and try to compare it with fk. If the size of the independent set is
equal or greater than fk then an alarm can be raised. However, the value of fk

for k > 1 cannot be estimated that easily. For example, for k = 2 (2-hop case)
this number is as big as 19 [13]. Unless the node density is extremely high, it
is unlikely that one will be able to find that many common independent 2-hop
neighbors in order to detect the attack.

3 System Model and Assumptions

3.1 Sensor Nodes and Communication

In our model, a wireless sensor network consists of a set S = {s1, s2, ..., sn} of n
sensor nodes. Sensor nodes are considered neighbors when the distance between
them is shorter than some range r. For any sensor node s, the set of neigh-
boring nodes is denoted by N(s). Our first assumption concerns neighborhood
information and is denoted by SMA-1 (for System Model Assumption):

SMA-1. All sensors run some neighbor discovery routine, as part of their rout-
ing protocol (e.g. using regular route updates), and they can record their
neighbor IDs. Thus every node knows its k-hop neighborhood, where k is a
small number, typically 1 or 2.

The above assumption is light and realistic, considering the case of sensor net-
works with frequent neighborhood changes1. Furthermore, a lot of research in
such networks has been conducted based on the 2-hop neighborhood knowledge,
covering areas from energy consumption efficiency [11,12] to intrusion detec-
tion [4,9]. In any case, as we will see shortly and discuss further in Section 6,
even if SMA-1 does not hold, no wormholes can be allowed in the network.

3.2 Attacker Model

Consider an adversary that tries to mound a wormhole attack. The wormhole is a
dedicated connection between two physical locations, called wormhole endpoints.
By re-transmitting packets, an adversary can have nodes hear each other and
establish a neighbor relationship, even if they do not reside in each other’s radio
range. Below is what we have assumed to better model the wormhole attack:

AMA-1. In this work, we will consider attacks in which the wormhole link is long
enough so that regions A and B are well separated from each other [2,19].

1 Notice that this assumption does not say anything about the validity of these neigh-
bor IDs. Only that these IDs are forwarded properly by the routing protocol.

338 T. Dimitriou and A. Giannetsos

Thus it makes no sense to have overlapping endpoints or endpoints close to
each other. In particular, we will assume that the real shortest path distance
between the two wormhole regions is bigger than 2k hops, where k (usually 1
or 2) denotes the k-hop neighborhood structure known to nodes.

We place no restrictions on what an adversary can do with packets that carry
neighborhood information. The adversary can drop these packets, however, even
in this case, no wormholes can be allowed in the network. In the sections that
follow we will see that both assumptions SMA-1 and AMA-1 are not necessary
to the correctness of this work. However, the following assumption is:

AMA-2. There is some initial interval tΔ where no attack has taken place and
nodes have safely established their neighborhood information.

This assumption simply says that there must be some initial interval where the
network is safe in order for the algorithm to guarantee prevention of wormhole
attacks from that time on. This is a standard assumption made in many of the
works in this area [2,13,14,17,18,19] and more general in works where some sort
of security infrastructure has to be bootstrapped.

4 Localized Wormhole Detection and Prevention

Our approach is strictly localized and looks only at connectivity information as
implied by the underlying communication graph. However, instead of looking for
forbidden substructures as in [13], we look for evidence that no attack is taking
place. This has some interesting consequences.

– Our approach is applicable even when the communication model is unknown
or the network is deployed in an ad-hoc manner.

– Second, in the case of an attack, the algorithm always prevents the attack.
– Third, our algorithm “fails safe”; in the unlikely case where this desired

property is not met, the algorithm treats suspicious nodes as participating
in an attack. Thus, no wormhole can ever be established. This is in contrast
with [13] where wormhole detection cannot be guaranteed in all cases.

– Finally, as we will see in Section 5, the algorithm is very easy to be imple-
mented, even in resource constrained devices such as sensor nodes.

To understand the workings of the algorithm, let’s assume that up to time t ≥ tΔ
the network is “safe” (i.e. no wormholes have occurred – Assumption AMA-2)
and nodes know each other’s k-neighborhoods (Assumption SMA-1).

At some time t′ > t a number of neighboring nodes in a set U = {u1, u2, . . .}
overhear some packets transmitted that include the IDs of new nodes in a set V =
{v1, uv, . . .}. These packets may or may not be the result of a wormhole attack.
For example, they may be newly added nodes or simply nodes that awoke from a
sleeping phase and participate in the workings of the underlying routing protocol.
Or in the case of wormhole attack (Figure 1), they may be retransmissions of
packets from one area to another. We call the nodes in V suspected nodes.

Each node u ∈ U must determine for each node v ∈ V whether it should
include v in its neighborhood structure. This is done using the following test.

Localized Wormhole Detection and Prevention in Wireless Networks 339

Fig. 2. Contradiction argument

4.1 Local Path Existence Test for Wormhole Prevention

The localized test run by each node u ∈ U for each node v ∈ V is to determine
whether a small path (of length no more than 2k) exists that connects u to
v but in a way that excludes all suspect nodes. This is possible since u also
knows the k-hop neighbors of v. This is done by considering whether u and v
have a common neighbor lying in their intersection or two neighbors x and y,
respectively, that are either directly connected to each other or have a common 1-
hop neighbor z. In the more general case, x and y can either be directly connected
or have a common (k − 1)-hop neighbor. This alternative path, if it exists, will
be an attestation that no wormhole link exists and u can safely add v in its
neighborhood list. Otherwise v is deleted from the neighborhood of u. This is
captured by the following theorem:

Theorem 1. In case of a wormhole attack, the previous test prevents a worm-
hole link from being established. If no attack is taking place, the algorithm allows
new nodes to be part of the network with high probability.

Proof. For a formal proof we will consider two cases: i) the case of an actual
wormhole attack, and ii) the case of legitimate addition of new nodes.

Case 1 : Let u ∈ U be a node wishing to test whether some suspect node v ∈ V
should be included in its neighborhood list. Let D > 2k be the real shortest path
distance between u and v in the network (assumption AMA-1 on separation of
wormhole endpoints). Let also Nk(v) denote the set of valid k-hop neighbors
of v also known to u (Assumption AMA-2), and let Su(V) denote the nodes
suspected by u from the set V . We place no restriction on the suspect set, so
neither all nodes in U may suspect the same set of nodes, nor they have to agree
on a common suspect list which would raise synchronization issues.

Consider Figure 2 showing the set of k-hop neighbors of u on the right and
the suspect node v on the left. Since u itself will check for the existence of a
path between u and v of length no more than 2k, the only way such a path can
exist is if the path at some point utilizes the wormhole link and two nodes u′

and v′ that are at most k hops away from u and v, respectively. If the path from
v uses only nodes in Su(V), u will easily reject such a path. The problem arises
when the path uses nodes not in Su(V). There are two cases here to consider.

340 T. Dimitriou and A. Giannetsos

The first case is when the path consists of nodes outside V . But in this case
u will reject all these paths since their length is at least D and they can never
reach u in at most 2k hops. The second case is when the path uses a mix of
nodes that either belong to V or not. In such a case all these paths must end
with some node v′ ∈ V −Su(V). The path from v′ will utilize the wormhole link
and will try to close the loop using some k-hop neighbor u′ of u. There are two
cases again to consider. Either v′ ∈ Su′(V) or not.

In the first case, u′ overheard a packet containing the ID of v′ and placed v′ in
a quarantine (suspect list). But then it cannot have moved v′ in its neighborhood
list unless it had performed a “small path” test with v′. Thus u will never be
fooled in accepting v′ as a legitimate neighbor of u′ since it always has up-
to-date information regarding the neighborhood structure of u′. In the second
case, u′ never heard anything about v′ so it definitely does not have v′ in its
neighbors list. Thus again u will reject the path. In summary, no wormhole can
be established between the sets U and V .
Case 2 : Consider now the benign case where no attack takes place (V may be a
set of newly added nodes). Node u will attempt to establish a small path with
v, excluding the suspect nodes. This can happen in a straightforward way and
we leave the detailed description for Section 4.3.

We need to point out, however, that the algorithm may fail to find short
paths2 and as a result treat these nodes as part of a wormhole attack. This is
an instance of the “safe failure” principle we highlighted in the beginning of this
section. We opted for preventing a wormhole link from being established when
an attack is taking place at the expense of not allowing some legitimate nodes to
be part of the network when no attack occurs. However, as we will demonstrate
probabilistically in the next section and verify experimentally in Section 5, the
probability of this happening is very small even for low density networks.

4.2 Existence of Short Paths - Probabilistic Analysis

We will now argue about the existence of small paths between two nodes u and
v. We model the topology of the wireless sensor network by a random geomet-
ric graph which can be constructed as follows: we throw n nodes uniformly at
random onto the surface of a unit square and we connect all nodes within dis-
tance r of each other. An edge (ui, uj) in the geometric graph corresponds to a
communication link between sensors i and j. The analysis will be performed in
terms of the following quantities (that are either given or easily derived):

– the number of sensors in the field, n;
– the communication range, r;
– the probability p that two random nodes u and v are neighbors;
– the average density d of the graph, i.e. the expected number of neighbors of

a given node.

2 Either because of lack of common neighbors with v or because some neighborhood
updates were lost.

Localized Wormhole Detection and Prevention in Wireless Networks 341

In what follows, we will express all results in terms of d. If u is a node with range
r in the unit square, the probability p that another node v is a neighbor of u is
given by the quantity p = πr2. Thus the expected number of neighbors d of u is
equal to d = (n − 1)p ≈ np = nπr2, for large enough n.

Our goal is to upper bound the probability that no path exists between u and
v when 2-hop neighborhoods are known. It can be shown (the proof is omitted
due to space restrictions) that

Pr[No small path between u and v] < e−0.58d,

where d is the average network density. Thus the probability that u and v will
be connected is lower bounded by 1− e−0.58d. This probability is very high even
for low density networks (more than 94% when d = 5 and more than 99% when
d = 10). And as we will see in Section 5, this probability increases even further
when we consider paths between 1-hop neighbors of u and 1-hop neighbors of v.

4.3 Algorithm Description

We will now present in more details the Wormhole Detection Algorithm (WDA)
described in the previous sections. Recall that WDA is to look for a simple path
between two nodes u and v that indicates absence of a wormhole link between
them. The algorithm is strictly localized and therefore only nodes affected by
a change in the neighborhood topology (i.e., “hearing” of a new node) need to
run it. Each node u, upon discovery of a new suspect node v, searches for such
paths using its k-hop neighborhood knowledge. While the algorithm may run for
general k-hop detection, our simulation studies (presented in Section 5) showed
that k ≤ 2 is sufficient for various densities of a network.

Algorithm 1. The Wormhole Detection Algorithm
Data: SuspectList(u) and k -hop Neighborhood Information of u where k = 1, 2.
Result: For each node vi in SuspectList(u), compute whether vi is legitimate

or not.
begin

for every vi in SuspectList(u) do
vi � NOT legitimate;
/** Look for small path between [u, vi] */
if [ImmediatePath(u, vi)] ∨ [1-HopPath(u, vi)] ∨ [2-HopPath(u, vi)]
then

/** A path has been found */
vi � legitimate;

end
continue with next node vi in SuspectList(u);

end
end

The code of WDA is given in Algorithm 1. We will refer to the set of suspected
nodes of each node u, as SuspectList(u). A node v is labeled as suspect when it

342 T. Dimitriou and A. Giannetsos

is the first time we hear from it and we want to perform the local path existence
test described in Section 4.1. As we mentioned above, the output of this test
indicates whether this suspect node is legitimate (and can be safely added to the
neighborhood list of u) or might be the result of a wormhole in progress.

Each node u maintains the list of 2-hop neighbors N2(u). WDA performs the
path existence test for all nodes v ∈ SuspectList(u). The test consists of three
steps, each of which is activated upon failure of the previous one.

ImmediatePath(u, v): This step tries to identify a direct path between the test-
ing pair [u, v]. It works by having the active node u check if at least one of v’s
neighbors is included in its neighborhood list. This is possible since u knows
the 1-hop neighbors of v. In order to perform this check, u traverses both it’s
own and v’s neighborhood lists. Thus, the time needed is O(d2), where d is the
average density of the network.

1-HopPath(u, v): Active node u checks whether one of its 1-hop neighbors is
directly connected to one of the 1-hop neighbors of v. This requires node u to
traverse the neighborhood lists of all its 1-hop neighbors and check if at least
one of v’s neighbors is included. This takes time O(d3), where d is the average
density of the network. Intuitively, this is done by considering whether u and v
have two neighbors x and y, respectively, that are directly connected.

2-HopPath(u, v): In this last step node u checks whether one of its 1-hop neigh-
bors shares a common neighbor with one of the 1-hop neighbors of v. Thus, the
time needed is of order O(d4). This is done by considering whether u and v have
two neighbors x and y, respectively, that have a common 1-hop neighbor z. This
alternative path, if it exists, will be an attestation that v is a legitimate node.
Otherwise, node u can conclude with very high probability that “hearing” v is
the result of a wormhole, without the need of checking the existence of k-hop
paths for k > 2.

5 Simulation Results

In this section, we present the practical impacts of the proposed wormhole de-
tection algorithm. The experiments were deployed both in a simulator and a
real sensor environment. Two properties were of special interest: i) Path Exis-
tence Percentage, and ii) Detection Time. Since the algorithm always prevents
a wormhole attack, our focus is mostly on legitimate node addition.

5.1 Performance Evaluation

In order to evaluate our wormhole detection algorithm, we tested its success
in finding small paths between a pair of nodes [u, v]. We generated random
network topologies by placing 500 nodes uniformly at random with an average
density d varying between 4 and 15. To ensure statistical validity, we repeated
each experiment 1000 times and averaged the results. Once a topology was cre-
ated, we started randomly adding new nodes in the network. This triggered the

Localized Wormhole Detection and Prevention in Wireless Networks 343

4 6 8 10 12 14
0

20

40

60

80

100

beta=0%

Average Density d

P
a
th

 E
x
is

te
n
c
e
 (

%
)

Immediate Path

1-hop Path

2-hop Path

4 6 8 10 12 14
0

20

40

60

80

100

beta=40%

Average Density d

P
a
th

 E
x
is

te
n
c
e
 (

%
)

Immediate Path

1-hop Path

2-hop Path

4 6 8 10 12 14
0

20

40

60

80

100

beta=80%

Average Density d

P
a
th

 E
x
is

te
n
c
e
 (

%
)

Immediate Path

1-hop Path

2-hop Path

Fig. 3. Path Existence percentage between a pair of nodes [u, v] when a fraction, beta,
of u’s neighbors are excluded from the WD algorithm. (a) beta = 0% (b) beta = 40%
((c) beta = 80%.

surrounding nodes to run WDA. In order to achieve real scenario simulations,
we had to take into consideration possible missed route updates or incomplete
neighborhood information. Thus, we used a variable -beta- which indicated the
percentage of a node’s neighbors that were excluded during the path existence
test. In other words, beta is a fraction of u’s neighbors that are not taken into
account when u is trying to find a small path with v. These “excluded nodes”
were selected at random from u’s neighborhood, for increasing values of beta.

Figure 3 depicts the path existence percentage between a pair of nodes [u, v].
This was broken down to the existence of an immediate path (1st step of WDA),
1-hop path (2nd step), and 2-hop path (3rd step). As we can see, our algorithm
provides very good results even for low densities and when a large number of u’s
neighbors is excluded. In general, the following observations can be made by the
simulation results:

– WDA provides very good results (almost 100% success in finding a small
path) despite the network density (Figure 3(a)).

– The more expensive 1-hop and 2-hop path tests are rarely need to be exe-
cuted since in most of the cases the immediate path test is sufficient. This
results in faster detection. Also, it loosens the need of the 2-hop neighbor-
hood maintenance by a node (Assumption SMA-1).

– Existence probability does drop for large beta, but only for low density cases.
However, in such cases, the usefulness of the network also drops. Even when
beta = 80% (Figure 3(c)) the existence percentage is almost 100% for densi-
ties d ≥ 7. Thus, one may reside only in the 1-hop test to increase the success
probability. The usefulness of the 2-hop test seems to be questionable since
even for large beta (80%) its contribution remains small. This suggests that
the 2-hop test can be dropped entirely.

In summary, our algorithm allows legitimate nodes to be added with high prob-
ability even for low density networks. In such networks, one can adjust WDA to
just consider 1-hop neighborhoods and perform only the first check (for more,
see also Section 6). Furthermore, since the algorithm does not progress to the

344 T. Dimitriou and A. Giannetsos

next test unless the previous one has failed, in more than 95% of the cases WDA
will conclude after the first check, keeping the overall test time relatively small.

5.2 Implementation and Experiments on Real Sensor Devices

In this section, we present some results on the detection time of the algorithm.
These are collected through experiments from our implementation of WDA on
real sensor devices3. The goal is to justify the practicality of our approach from
an implementation and real deployment point of view.

Table 1. Size of the compiled code, in bytes

Module RAM usage Code Size

Neighborhood Discovery 136 968
WDA 104 766

Total 240 1734

We start with the memory footprint, an important measure of WDA’s feasibil-
ity and usefulness on memory constrained sensor nodes. Table 1 lists the memory
requirements of the necessary modules. The Neighborhood Discovery module is
the one responsible for creating a node’s k-hop neighborhood (k = 1, 2). The
WDA module contains all the necessary methods described in Section 4.3. As
we can see, in total, the algorithm consumes 240 bytes of RAM and 1734 bytes
of code memory. This leaves enough space in the mote’s memory for user ap-
plications and other protocols. For example, the total RAM available in Telos
motes is 10 KB.

Next we measured the time each test of WDA required. Figure 4(a) shows the
measured mean times for each of the three tests, for different network densities.
The immediate and 1-hop path tests, which cover more than 95% of the cases,
conclude in much less than 1 second (around 100ms and 550ms, respectively).
The most time consuming step is the 2-hop test. However, as we mentioned
before, it will rarely need to be executed and it can even be dropped entirely.

We have to note that this experiment was conducted with nodes maintaining
their neighbors in a typical list that is not sorted or pre-processed in any way.
However, as Figure 4(b) shows, having neighbor lists sorted by node IDs signif-
icantly decreases the detection time of WDA’s steps, and in particular that of
the 2-hop test. In any case, the time of WDA is very small fulfilling the need of
immediate response in case of a wormhole in progress. Dropping the 2-hop test
entirely does not significantly affect the success probability while at the same
time it decreases the running time considerably. In such case there is no need to
resort in sorted neighborhoods or other data structures to speedup computation,
however, we leave this decision open to the particular implementation.
3 The current development of WDA builds on Moteiv Telos motes - a popular archi-

tecture in the sensor network research community.

Localized Wormhole Detection and Prevention in Wireless Networks 345

4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

Average Density d

A
ve

ra
ge

 T
im

e
el

ap
se

d
(m

s)

Immediate Path Check
1−hop Path Check
2−hop Path Check

(a)

4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

Average Density d

T
im

e
el

ap
se

d
(m

s)

Immediate Path Check
1−hop Path Check
2−hop Path Check

(b)

Fig. 4. Running time of WDA for different network densities. (a) Node IDs are ran-
domly placed in a neighborhood list (b) Neighborhood list is kept sorted.

6 Discussion and Critique

In this work we proposed a method that identifies and prevents wormhole at-
tacks. Key to the method is the observation that in the case of an attack, no real
path of just a few hops will ever exist between the wormhole endpoints (Section
3.2, Assumption AMA-1) since otherwise it would not be possible to distinguish
between real and fake short paths. It is, however, a very realistic assumption
since the point of the attack is to make a distant node appear closer to a point
of interest (say the base station) and attract as much traffic as possible [1,13].
Decreasing the radius of the wormhole, will also decrease the effect of the attack
on the network in terms of the numbers of sensors that use the wormhole link [2].

Of course an attacker can still try to fool the algorithm by establishing many
smaller wormholes that are connected in a series but this has two shortcomings.
First, it takes a lot of time, effort and hardware which will increase the risks of
detection. Second, it can be defeated easily by our method if we just consider
1-hop neighborhoods (k = 1). In this case no wormhole link of length bigger
than 2 can ever be established while, as demonstrated in Figure 3, addition of
legitimate nodes can occur with high probability even for small density networks.

For the same reason, assumption SMA-1 may also be weakened by maintaining
only 1-hop neighborhoods among nodes, a typical procedure for any routing
protocol. In practice well connected networks have node densities bigger than
7 or 8 in which case the overhead of maintaining 2-hop neighborhoods does
not offer any significant advantage over the 1-hop case (Figure 3). Our only
important assumption is that there is some initial interval where the nodes have
safely established their neighborhood information (Assumption AMA-2). This is
a standard assumption made in many of the works in this area [2,13,14,17,18,19]
but also in works where a security infrastructure has to be established.

We should mention that one way our method could be defeated is if the
attacker has compromised a few nodes in the neighborhood of the wormhole
endpoints in which case the compromised nodes may “lie” about their true
neighbors. This combined attack, however, is not a wormhole attack anymore.

346 T. Dimitriou and A. Giannetsos

All cited results consider the attack in which an adversary simply forwards mes-
sages from one part of the network to another. This combined attack, however,
is an interesting future direction that we are planning to pursue further.

Finally, we should emphasize that contrary to prior work [2,14], we don’t
assume that the network is static. In fact a large portion of this work considers
dynamic changes in the neighborhood structure of nodes.

7 Conclusions

A wormhole attack is considered to be a prominent attack that is carried out
in order to alter the correct functioning of a wireless network. The detection
of such an attack is still a significantly challenging task. In this paper, we have
studied the problem of wormhole detection in sensor networks. We have provided
a snapshot of the current state of the art, discussed existing solutions and listed
their behavior and limitations. More importantly, however, we have proposed a
practical detection algorithm based on the observation that no real path of just
a few hops will ever exist between the wormhole endpoints.

We investigated the effectiveness of our proposed algorithm both analytically
and experimentally. Our results have confirmed that it can always prevent a
wormhole attack, while at the same time it allows legitimate node addition with
high probability, even for low density networks. Furthermore, the implementa-
tion details show that it is lightweight enough to run on sensor nodes in terms of
both memory requirements and processing overhead. In general, we believe that
this algorithm will have a practical use in real-world deployments and can be con-
sidered as a reference point for further investigation of more attractive solutions
against wormhole attacks since it does not require any specialized hardware,
tight clock synchronization, or distance measurements between the nodes.

Acknowledgments. This work has been funded by the European Community’s
FP7 program, Call ref. SEC-2007-1, under Grant Agreement no: 217925.

References

1. Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wireless sensor networks:
a survey. Mobile Computing and Communications Review 9(2), 4–18 (2005)

2. Buttyán, L., Dóra, L., Vajda, I.: Statistical wormhole detection in sensor networks,
pp. 128–141 (2005)

3. Eriksson, J., Krishnamurthy, S.V., Faloutsos, M.: Truelink: A practical counter-
measure to the wormhole attack in wireless networks, pp. 75–84 (2006)

4. Hai, T.H., Huh, E.-N.: Detecting selective forwarding attacks in wireless sensor
networks using two-hops neighbor knowledge. In: NCA 2008: Proceedings of the
2008 Seventh IEEE International Symposium on Network Computing and Applica-
tions, Washington, DC, USA, pp. 325–331. IEEE Computer Society, Los Alamitos
(2008)

5. Hu, Y.-C., Perrig, A., Johnson, D.B.: Wormhole attacks in wireless networks. IEEE
Journal on Selected Areas in Communications 24(2), 370–380 (2006)

Localized Wormhole Detection and Prevention in Wireless Networks 347

6. Issa Khalil, N.B.S., Bagchi, S.: Liteworp: A lightweight countermeasure for the
wormhole attack in multihop wireless networks, p. 22 (June 2005)

7. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and
countermeasures. AdHoc Networks Journal 1(2-3), 293–315 (2003)

8. Korkmaz, T.: Verifying physical presence of neighbors against replay-based attacks
in wireless ad hoc networks. In: ITCC 2005: Proceedings of the International Con-
ference on Information Technology: Coding and Computing (ITCC 2005), Wash-
ington, DC, USA, vol. II, pp. 704–709. IEEE Computer Society, Los Alamitos
(2005)

9. Krontiris, I., Benenson, Z., Giannetsos, T., Freiling, F., Dimitriou, T.: Cooperative
intrusion detection in wsn. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS,
vol. 5432, pp. 263–278. Springer, Heidelberg (2009)

10. Krontiris, I., Giannetsos, T., Dimitriou, T.: Launching a sinkhole attack in wire-
less sensor networks; the intruder side. In: SecPriWiMob 2008: First International
Workshop on Security and Privacy in Wireless and Mobile Computing, Networking
and Communications, Avignon, France, October 12-14 (2008)

11. Lehsaini, M., Guyennet, H., Feham, M.: A-coverage scheme for wireless sensor
networks. In: ICWMC 2008: Proceedings of the 2008 The Fourth International
Conference on Wireless and Mobile Communications, Washington, DC, USA, pp.
91–96. IEEE Computer Society, Los Alamitos (2008)

12. Lehsaini, M., Guyennet, H., Feham, M.: CES: Cluster-based energy-efficient scheme
for mobile wireless sensor networks. In: IFIP Conference on Wireless Sensor and
Actor Networks, Ontario, Canada (July 2008)

13. Maheshwari, R., Gao, J., Das, S.R.: Detecting wormhole attacks in wireless net-
works using connectivity information. In: 26th IEEE International Conference on
Computer Communications, INFOCOM 2007, pp. 107–115. IEEE, Los Alamitos
(2007)

14. Poovendran, R., Lazos, L.: A graph theoretic framework for preventing the worm-
hole attack in wireless ad hoc networks. Wireless Networks 13(1), 27–59 (2007)

15. Capkun, S.S., Buttyan, L., Hubaux, J.-P.: Sector: secure tracking of node encoun-
ters in multi-hop wireless networks. In: SASN 2003: Proceedings of the 1st ACM
workshop on Security of ad hoc and sensor networks, pp. 21–32. ACM Press, New
York (2003)

16. Savvides, A., Han, C.-C., Strivastava, M.B.: Dynamic fine-grained localization in
ad-hoc networks of sensors. In: MobiCom 2001: Proceedings of the 7th annual
international conference on Mobile computing and networking, pp. 166–179. ACM
Press, New York (2001)

17. Bhargava, B., Wang, W.: Visualization of wormholes in sensor networks. In: Pro-
ceedings of ACM Workshop on Wireless Security (WiSe), in conjunction with Mo-
biCom (October 2004)

18. Wang, W., Bhargava, B., Lu, Y., Wu, X.: Defending against wormhole attacks in
mobile ad hoc networks: Research articles. Wirel. Commun. Mob. Comput. 6(4),
483–503 (2006)

19. Wang, W., Lu, A.: Interactive wormhole detection and evaluation. Information
Visualization 6(1), 3–17 (2007)

Wireless Jamming Localization by Exploiting
Nodes’ Hearing Ranges

Zhenhua Liu1, Hongbo Liu2, Wenyuan Xu1, and Yingying Chen2,�

1 Dept. of CSE, University of South Carolina
{liuz,wyxu}@cse.sc.edu

2 Dept. of ECE, Stevens Institute of Technology
{hliu3,yingying.chen}@stevens.edu

Abstract. Jamming attacks are especially harmful when ensuring the
dependability of wireless communication. Finding the position of a jam-
mer will enable the network to actively exploit a wide range of defense
strategies. Thus, in this paper, we focus on developing mechanisms to
localize a jammer. We first conduct jamming effect analysis to exam-
ine how a hearing range, e.g., the area from which a node can success-
fully receive and decode the packet, alters with the jammer’s location
and transmission power. Then, we show that the affected hearing range
can be estimated purely by examining the network topology changes
caused by jamming attacks. As such, we solve the jammer location es-
timation by constructing a least-squares problem, which exploits the
changes of the hearing ranges. Compared with our previous iterative-
search-based virtual force algorithm, our proposed hearing-range-based
algorithm exhibits lower computational cost (i.e., one-step instead of it-
erative searches) and higher localization accuracy.

1 Introduction

The rapid advancement of wireless technologies has enabled a broad class of new
applications utilizing wireless networks, such as patient tracking and monitoring
via sensors, traffic monitoring through vehicular ad hoc networks, and emergency
rescue and recovery based on the availability of wireless signals. To ensure the
successful deployment of these pervasive applications, the dependability of the
underneath wireless communication becomes utmost important. One threat that
is especially harmful is jamming attacks. The broadcast-based communication
combined with the increasingly flexible programming interference of commodity
devices makes launching jamming attacks with little effort. For instance, an
adversary can easily purchase a commodity device and reprogram it to introduce
packet collisions that force repeated backoff of other legitimate users and thus,
disrupt network communications.

� The work was supported by National Science Foundation Grants CNS-0845671 and
CNS-0954020.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 348–361, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 349

To ensure the dependability of wireless communication, much work has been
done to detect and defend against jamming attacks. In terms of detection, single-
statistics-based [13] and consistent-check-based algorithms [15] have been pro-
posed. The existing countermeasures for coping with jamming include two types:
the proactive conventional physical-layer techniques that provide resilience to in-
terference by employing advanced transceivers [10], e.g., frequency hopping, and
the reactive non-physical-layer strategies that defend against jamming leverag-
ing MAC or network layer mechanisms, e.g., adaptive error correcting codes [6],
channel adaption [14], spatial relocation [5], or constructing wormholes [2].

Few studies have been done in identifying the physical location of a jammer.
However, localizing a jammer is an important task, which not only allows the
network to actively exploit a wide range of defense strategies but also provides
important information for network operations in various layers. For instance, a
routing protocol can choose a route that does not traverse the jammed region to
avoid wasting resources caused by failed packet deliveries. Alternatively, once a
jammer’s location is identified, one can eliminate the jammer from the network
by neutralizing it. In light of the benefits, in this paper, we address the problem
of localizing a jammer.

Although there have been active research in the area of localizing a wireless
device [12, 1, 3], most of those localization schemes are inapplicable to jamming
scenarios. For instance, many localization schemes require the wireless device
to be equipped with specialized hardware [9, 12], e.g., ultrasound or infrared,
or utilize signals transmitted from wireless devices to perform localization. Un-
fortunately, the jammer will not cooperate and the jamming signal is usually
embedded in the legal signal and thus, is hard to extract, making the signal-
based and special-hardware-based approaches inapplicable.

Recent work [4,7] on jamming localization algorithms is iterative-search-based.
Without presenting performance evaluation, Pelechrinis et al. [7] proposed to lo-
calize the jamming by measuring packet delivery rate (PDR) and performing gra-
dient descent search. Liu et al. [4] utilized the network topology changes caused by
jamming attacks and estimated the jammer’s position by introducing the concept
of virtual forces. The virtual forces are derived from the node states and can guide
the estimated location of the jammer towards its true position iteratively.

In this paper, we proposed a hearing-range-based localization scheme that also
exploits the network topology changes caused by jamming attacks. In particular,
to quantify the network topology changes, we introduced the concept of a node’s
hearing range, an area from which a node can successfully receive and decode
the packet. We have discovered that a jammer may reduce the size of a node’s
hearing range, and the level of changes is determined by the relative location of
the jammer and its jamming intensity. Therefore, instead of searching for the
jammer’s position iteratively, we can utilize the hearing range to localize the
jammer in one round, which significantly reduces the computational cost yet
achieves better localization performance than prior work [4].

We organize the remainder of the paper as follows: we specify our jamming
attack model and provide an analysis on jamming effects by introducing the

350 Z. Liu et al.

concept of the hearing range in Section 2. Then, we present our hearing-range-
based algorithm in Section 3. In Section 4, we conduct simulation evaluation and
present the performance results. Finally, we conclude in Section 5.

2 Analysis of Jamming Effects

In this section, we start by outlining the basic wireless network that we use
throughout this paper and briefly reviewing the theoretical underpinning for
analyzing the jamming effects. Then, we study the impact of a jammer on the
wireless communication at two levels: the individual communication range level
and the network topology level.

2.1 Network Model and Assumptions

We target to design our solutions for a category of wireless networks with the
following characteristics.
Neighbor-Aware and Location-Aware. Each node in the network main-
tains a table that stores its neighbor information. Each node is aware of its
own location and its neighbors’ locations. This is a reasonable assumption as
many applications require localization services [1]. Each node is able to sense
the changes on its neighbor table by comparing the current neighbor table with
the previous one. Further, we assume that the node is stationary and transmits
the signal at the same transmission power level by using an omnidirectional
antenna. Mobility will be considered in our future work.
Adaptive-CCA. Clear channel assessment (CCA) is an essential component
of Carrier Sense Multiple Access (CSMA), the de-facto medium access control
(MAC) protocols in many wireless networks. In particular, each network node
is only allowed to transmit packets when the channel is idle by using CCA as
channel detection. Typically, CCA involves having wireless devices monitoring
the received signal and comparing the average received signal strength with
a threshold Υ . Studies [8] have shown that adaptive-CCA, which adjusts the
threshold Υ based on the ambient noise floor, can achieve better throughput
and latency than using a pre-determined threshold Υ . Therefore, we assume
that each node employs an adaptive-CCA mechanism in our study.

In this work, we focus on locating a jammer after it is detected. Thus, we
assume the network is able to identify a jamming attack, leveraging the existing
jamming detection approaches [13, 15].

2.2 Communication in Non-jamming Scenarios

Before analyzing the impact of jamming on the communication range, we briefly
review the key factors that affect packet deliveries. Essentially, the MAC layer
concept, packet delivery ratio (PDR), is determined by the physical metric,
signal-to-noise ratio (SNR). At the bit level, the bit error rate (BER) depends
on the probability that a receiver can detect and process the signal correctly.

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 351

To process a signal and derive the associated bit information with high prob-
ability, the signal has to exceed the noise by certain amount. Given the same
hardware design of wireless devices, the minimum required surplus of signals
over ambient noise is roughly the same. We use γo to denote the minimum SNR,
the threshold value required to decode a signal successfully. We consider that
a node A is unable to receive messages from node B when (SNR)B→A < γo,
where (SNR)B→A denotes the SNR of messages sent by B measured at A.

The communication range defines a node’s ability to communicate with others,
and it can be divided into two components: the hearing range and the sending
range. Consider node A as a receiver, the hearing range of A specifies the area
within which the potential transmitters can deliver their messages to A, e.g. for
any transmitter S in A’s hearing range, we have (SNR)S→A > γo. Similarly,
consider A as a transmitter, the sending range of A defines the region within
which the potential receivers have to be located to receive messages sent by A,
e.g., for any receiver R in A’s sending range, we have (SNR)A→R > γo.

Consider the standard free-space propagation model, the received power is

PR =
PT G

4πd2 , (1)

where PT is the transmission power, G is the product of the sending and receiving
antenna gain in the LOS (line-of-sight) between the receiver and the transmitter,
and d is the distance between them.

In a non-jamming scenario, the average ambient noise floor, PN , across the
entire space will be the same. Since the received signal power is a function of d2,
both the hearing range and the sending range of node A will be the same, a circle
centered at A with a radius of rc =

√
PT G

4πγoPN
. This observation coincides with

the common knowledge, that is, the communication between a pair of nodes is
bidirectional when there are no interference sources.

2.3 The Effect of Jamming on the Communication Range

Applying the free-space model to a jammer, the jamming signals also attenuate
with distance, and they reduce to the normal ambient noise level at a circle
centered at the jammer. We call this circle the Noise Level Boundary (NLB)
of the jammer. Since jamming signals are nothing but interference signals that
contribute to the noise, a node located within the NLB circle will have bigger
ambient noise floor than the one prior to jamming.

For simplicity, much work assumes that when a node is located inside the
jammer’s NLB circle it loses its communication ability completely, e.g., both
its sending range and hearing range become zero. Such assumptions may be
valid for nodes that perform CCA by comparing the channel energy with a fixed
threshold, as all nodes within the NLB will consider the channel busy throughout
the duration that the jammer is active. However, in a network where adaptive-
CCA is used, the nodes inside the jamming’s NLB circle will still maintain partial
communication ability yet weaker than the nodes outside the NLB circle.

352 Z. Liu et al.

A

B

J

X

Y

(x ,)J 0

(,)x y

dAB

dJB

(,)0 0 dJA

Fig. 1. The coordinate system for the hearing range and the sending range of node A,
wherein A and B are legitimate nodes, and J is the jammer

In this paper, we will focus on examining the hearing range changes caused by
jamming, and we refer readers to our prior work on the analysis of the sending
range [16]. In particular, we consider a simple network consisting of three players:
a jammer J interferes with the legitimate communications from the transmitter
B to the receiver A, as depicted in Figure 1. The legitimate node transmits at
the power level of PT , and the jammer interferes at the power level of at PJ .

The signal-to-noise ratio at A when the jammer J is active is (SNR)B→A =
PBA/(PN + PJA), where PBA and PJA are the received power of B’s signal
and the jamming signal at node A, respectively. Assume that the jammer uses
the same type of devices as the network nodes, e.g., both use omnidirectional
antennas, then the antenna gain product between J and A, and the one between
B and A are the same.

Let’s first examine the cases when node A observes a jamming signal much
larger than the normal ambient noise PN , then

(SNR)B→A ≈ PT d2
JA

PJd2
AB

. (2)

To find the new hearing range under jamming attacks, we search for locations
B = (x, y) that satisfy the equations: (SNR)B→A = γo. Substituting d2

AB =
x2 + y2 and d2

JA = x2
j to Equation 2, node A’s hearing range when the jamming

signal is dominant can be expressed as

x2 + y2 =
x2

j

β
, (3)

where β = γo

PT /PJ
. Thus, the hearing range of node A is a circle centered at itself

with a radius of rh = |xj|√
β

. This formula coincides with the intuition: for the
same xj , a louder jamming signal affects legitimate nodes more; given PT and
PJ , the closer a legitimate node is located to the jammer, the smaller its hearing
range becomes, as illustrated in Figure 2.

Now let’s turn to the cases where the jamming signal no longer dominates the
ambient noise, e.g., when nodes are located close to the edge of jammer’s NLB,
as illustrated in Figure 2 (b). The hearing range becomes:

x2 + y2 =
x2

jPT

γo(x2
jη + PJ)

, (4)

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 353

(a) (b) (c)

Fig. 2. The hearing range and non-jammed communication range when the location
of a jammer is fixed and a node is placed at different spots: (a) inside the jammer’s
NLB; (b) at the edge of the jammer’s NLB; (c) outside the jammer’s NLB

where η = 4πPN/G. To avoid the complexities of deriving the antenna gain G,
we approximate the node’s hearing range with its normal hearing range, e.g.,
the hearing range without jammers. In summary, the hearing range of a node A

is a circle centered at A with a radius of rh = min (|xj |√
β

,
√

PT G
4πγoPN

), as illustrated
in Figure 2.

2.4 The Effect of Jamming on Network Topology

In this section, we extend our analysis of jamming impact from the individual
node level to the network level, and classify the network nodes based on the level
of disturbance caused by the jammer.

Essentially, the communication range changes caused by jamming are reflected
by the changes of neighbors at the network topology level. We note that both the
hearing range and the sending range shrink due to jamming. We choose to utilize
the change of the hearing range, since it is easier to estimate, e.g., estimation
only involves receiving at each node. We define that node B is a neighbor of node
A if A can receive messages from B. Based on the degree of neighbor changes,
we divide the network nodes under jamming attacks into the following three
categories:

– Unaffected Node. The unaffected node may have a slightly changed hear-
ing range, but its neighbor list remains unchanged, e.g., it can still hear from
all its original neighbors. We note that the unaffected node does not have to
be outside the jammer’s NLB.

– Boundary Node. The hearing range of a boundary node is reduced, and
the number of nodes in its neighbor list is also decreased. More importantly,
it can still receive information from all unaffected nodes within finite steps.

– Jammed Node. The hearing range of a jammed node has been severely
disturbed. We define a jammed node as the one that does not have any
unaffected nodes or boundary nodes in its neighbor list, i.e., no unaffected
nodes or boundary nodes within its hearing range. We note that it is possible
that a few jammed nodes can hear each other and form a “Jammed Cluster”.

354 Z. Liu et al.

Jammer Unaffected Boundary Jammed

(a) Jammer is off (b) Jammer is on

Fig. 3. An example of the topology change of a wireless network due to jamming,
where the black solid circle represents the jammer’s NLB

However, they are isolated and cannot receive information from the majority
of the networks.

Figure 3 illustrates an example of network topology changes caused by a jam-
mer. Prior to jamming, neighboring nodes were connected through bidirectional
links. Once the jammer became active, nodes lost their bidirectional links either
partially or completely. In particular, the nodes marked as triangles lost all their
inbound links (receiving links) from their neighbors and became jammed nodes.
Interestingly, some jammed nodes can still send messages to their neighbors,
and they may participate in the jamming localization by delivering information
to unaffected nodes as described in Section 3. The nodes depicted in rectangles
are boundary nodes. They lost part of its neighbors but still maintained partial
receiving links, e.g., at least connected to one unaffected nodes either directly
or indirectly. Finally, the rest of nodes are unaffected nodes and they can still
receive from all their neighbors.

3 Jammer Localization Algorithm

3.1 Algorithm Description

In the previous sections, we have shown that the hearing range of a node may
shrink when a jammer becomes active, and the level of change is determined
by the distance to the jammer and the strength of the jamming signals. As the
example illustrated in Figure 1, if B happens to be located at the edge of A’s
hearing range, then we have (SNR)B→A ≈ γo and dAB = rhA . Therefore, we
can convert Equation 2 into a general form,

(xA − xJ)2 + (yA − yJ)2 = βr2
hA

, (5)

where rhA is the new hearing range of node A, β = γo

PT /PJ
, and (xA,yA) and

(xJ ,yJ) are the coordinates of node A and the jammer J , respectively.

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 355

Suppose that due to jamming the hearing ranges of m nodes have shrunk to
rhi , i = {1, . . . , m}. Then, we have m equations:

(x1 − xJ)2 + (y1 − yJ)2 = βr2
h1

(x2 − xJ)2 + (y2 − yJ)2 = βr2
h2

...

(xm − xJ)2 + (ym − yJ)2 = βr2
hm

(6)

Assume that we can obtain rhi for each of m nodes, then we can localize the
jammer by solving the above equations. To avoid solving a complicated nonlinear
equations, we first linearize the problem by subtracting the mth equation from
both sides of the first m − 1 equations and obtain linear equations in the form
of Az = b with

A =

⎛
⎝ x1 − xm y1 − ym

1
2 (r2

h1
− r2

hm
)

...
...

...
xm−1 − xm ym−1 − ym

1
2 (r

h2
m−1

− r2
hm

)

⎞
⎠

and

b =

⎛
⎝ (x2

1 − x2
m) + (y2

1 − y2
m)

...
(x2

m−1 − x2
m) + (y2

m−1 − y2
m)

⎞
⎠ .

The least squares solution can be calculated by

z = [xJ , yJ , β]T = (ATA)−1ATb. (7)

3.2 Algorithm Challenges

To localize a jammer using the aforementioned solution, two questions have to
be answered: (1) how to estimate the radius of a node’s hearing range (aka. the
hearing radius), and (2) what is the criteria of selecting nodes as candidates to
form the equation group?

Estimating the Hearing Radius. The basic idea of estimating the hearing
radius of node A is to identify the furthest neighbor that A can hear from and
the closest node that A cannot hear. Since the distances to those two special
nodes provide the lower bound and the upper bound of A’s hearing radius, we
can estimate A’s hearing radius as the mean value of those bounds. Applying
this observation to a jamming scenario, a node can leverage the change of its
neighbor list to identify those two specially-located nodes. Figure 4 illustrates
such an example.

Before the jammer started to disturb the network communication, node A
had a neighbor list of {n1, n2, n3, n4, n5}. Once the jammer became active, A’s
neighbors reduced to {n2, n4} and we call this set the Remaining Neighbor Set.

356 Z. Liu et al.

A Jammer

n4

n2

n3

n1

n5

Original Range

Current Range

Remaining Neighbor

Lost Neighbor

Lower Bound

Upper Bound

Fig. 4. An illustration of estimating the hearing range of node A leveraging the change
of its neighbor list

At the same time, A can no longer hear from {n1, n3, n5}, the Lost Neighbor Set.
The estimated upper bound of A’s hearing radius, ru, equals the distance to n5,
the nearest node in the lost neighbor set; the estimated lower bound, rl, equals
the distance to n4, the furthest node in the remaining neighbor set. As a result,
the true hearing radius rhA is sandwiched between [rl, ru] and can be estimated
as r̂hA = (ru + rl)/2.

The estimation error of the hearing radius, eh, depends on (ru − rl) and can
be any value in [0, (ru − rl)/2]. When the distances between any two nodes are
uniformly distributed, the estimation error eh follows uniform distribution with
the expected value as ru−rl

4 .

Selecting m Nodes. The nodes that can contribute to the jamming localiza-
tion have to satisfy the following requirements: (1) they have a reduced hearing
range; (2) the new hearing range under jamming attacks can be estimated; and
(3) they are able to transmit their new hearing radius out of the jammed area.

Although an unaffected node may have a slightly reduced hearing range, its
neighbor list remains unchanged. Therefore, its hearing radius cannot be esti-
mated and neither can it contribute an equation to localize the jammer. Like-
wise, although a jammed node’s hearing range is decreased severely, its remaining
neighbor set may be empty, preventing it from estimating the up-to-date hearing
radius accurately. Even in cases when they may estimate their hearing ranges
with the help of “Jammed Cluster”, they may not be able to transmit their esti-
mations out of the jammed area due to communication isolation. In short, most
of the jammed nodes are not suitable for jamming localization. Only those that
have more than one neighbor and are able to send out messages to unaffected
nodes can be used.

Finally, with regard to boundary nodes, the hearing range of a boundary node
is reduced. Leveraging their reduced neighbor lists, their hearing radii can be
estimated. More importantly, they can still communicate with unaffected nodes
within finite steps. Therefore, all boundary nodes shall be used to participate
the jamming localization.

In summary, we use all the boundary nodes and some jammed nodes to form
the equation group for jamming localization.

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 357

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

(a) Simple Deployment (b) Smart Deployment

Fig. 5. Two deployments on a network with 200 nodes

4 Experiment Validation

4.1 Experiment Setup and Performance Metrics

We now evaluate the performance of our hearing-range-based algorithm that
localizes the jammer using the least-squares approach (LSQ), and we compare
it with the virtual force iterative localization algorithm (VFIL) from our prior
work [4] under various network conditions, including different network node den-
sities, jammer’s NLB radii, and the locations of the jammer in the network. To
make a fair comparison, we adopted a version of the VFIL algorithm that also
does not rely on the information of the jammer’s NLB just as LSQ. Further-
more, we tested both LSQ and VFIL algorithms on the same set of network
topologies.

To study the impact of the node distribution on both algorithms, we choose
two representative network deployments: simple deployment and smart deploy-
ment. The nodes in the simple deployment follow a uniform distribution, corre-
sponding to a random deployment, e.g., sensors are randomly disseminated to
the battlefield or the volcano vent. Nodes may cluster together at some spots
while may not cover other areas, as shown in Figure 5(a). The smart deploy-
ment involves carefully placing nodes so that they cover the entire deployment
region well and the minimum distance between any pair of nodes is bounded by
a threshold, as shown in Figure 5(b). This type of deployment can be achieved
using location adjustment strategies [11] after deployment.

In total, we generated 1000 network topologies in a 300-by-300 meter region
for each deployment. The normal communication range of each node was set to
30 meters. Unless specified, we placed the jammer at the center of the network,
(0, 0), and set the jammer’s NLB to 60 meters.

To evaluate the accuracy of localizing the jammer, we define the localization
error as the Euclidean distance between the estimated jammer’s location and the
true location. To capture the statistical characteristics, we studied the average
errors under multiple experimental rounds and we presented both the means and
the Cumulative Distribution Functions(CDF) of the localization error.

358 Z. Liu et al.

200 300 400
0

10

20

30

40

50

60

Node Density

M
ea

n
E

rr
or

(m
et

er
)

LSQ−Smart
LSQ−Simple
VFIL−Smart
VFIL−Simple

40 60 80 100
0

10

20

30

40

50

60

NLB Range(meter)

M
ea

n
E

rr
or

(m
et

er
)

LSQ−Smart
LSQ−Simple
VFIL−Smart
VFIL−Simple

(a) (b)

Center Corner
0

10

20

30

40

50

60

Jammer Position

M
ea

n
E

rr
or

(m
et

er
)

LSQ−Smart
LSQ−Simple
VFIL−Smart
VFIL−Simple

(c)

Fig. 6. The impact of various factors on the performance of LSQ and VFIL algorithms:
(a) node density; (b)jammer’s NLB range; (c) jammer’s position in the network

4.2 Performance Evaluation

Impact of the Node Density. We first investigated the impact of the node
density on the performance of both the LSQ and VFIL methods. To adjust
the network node density, we varied the total number of nodes deployed in the
300-by-300 meter region in the simulation. In particular, we chose to run the
experiments on the networks of 200, 300 and 400 nodes, respectively.

We depicted the mean errors for both LSQ and VFIL in Figure 6 (a). Firstly,
we observed that LSQ outperformed VFIL consistently in all node densities and
node deployment setups. The LSQ’s mean errors fall between 1 meter and 3 me-
ters, much smaller than the errors of VFIL, which ranges from 9 to 25 meters.
The performance difference can be explained as the following: The VFIL algo-
rithm iteratively searches for the estimated jammer’s location until it finds one
such that under the assumption of a jammer resided there the derived nodes’ cat-
egories match with their true categories, e.g., unaffected, jammed, or boundary.
Thus, such an estimation is only good-enough but not optimal. In comparison,
the LSQ algorithm calculates the location that minimizes all hearing range esti-
mation errors at one step.

Secondly, with the increasing network node densities, the performance of both
algorithms improves. Since both algorithms rely on the number of affected nodes
to improve the estimation accuracy, the higher the densities, the smaller the
mean estimation errors.

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 359

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Error(meter)

C
D

F

LSQ−200 nodes
LSQ−400 nodes
VFIL−200 nodes
VFIL−400 nodes

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Error(meter)

C
D

F

LSQ−200 nodes
LSQ−400 nodes
VFIL−200 nodes
VFIL−400 nodes

(a) Smart (b) Simple

Fig. 7. Cumulative Distribution Function (CDF) of the localization errors under dif-
ferent node densities

Finally, both algorithms performed better in a smart deployment than a sim-
ple deployment. In a simple deployment, nodes were not evenly distributed.
Thus, when a jammer was placed within an area sparsely covered, without
enough affected nodes to provide constraints, the accuracy of the jammer’s loca-
tion estimation suffered. In contrast, the nodes in a smart deployment covered
the entire network region evenly, and they supplied reasonable amount of infor-
mation for the algorithms to localize the jammer. Therefore, both algorithms
achieved better localization accuracy in a smart deployment.

We also provided a view of Cumulative Distribution Function (CDF) curves for
both algorithms in Figure 7. To make the plot readable, we showed the results of
200 and 400 node cases, omitting the almost overlapped 300-node result. Again,
we observed that the LSQ outperformed VFIL constantly. Particularly, under the
smart deployment, 90% of the time LSQ can estimate the jammer’s location with
an error less than 4.2 meters, while VFIL can only achieve 18.8 meters 90% of the
time, resulting in an improvement of 80%. While under a simple deployment, LSQ
improved the localization accuracy by 95%, as its estimation errors were less than
5.9 meters 90% of the time versus 47.5 meters for VFIL.
Impact of the Jammer’s NLB Range. To study the effects of various jam-
mer’s NLB ranges to the localization performance, we examined networks with
200 nodes and set the jammer’s NLB radius to 40m, 60m, 80m and 100m, respec-
tively. The results were plotted in Figure 6(b) showing that the LSQ method still
largely outperformed the VFIL method by over 60%. Additionally, we noticed
that the localization errors of VFIL decreased linearly when the jammer’s NLB
range increased. However, the errors of LSQ only lessened when the NLB range
increased from 40m to 60m and became steady afterwards. This is because the
number of affected nodes in the 40m NLB range scenario was not enough for
LSQ to localize the jammer accurately, i.e., the number of equations that can be
created for the LSQ algorithm was not enough. When the NLB range became
large enough (e.g., larger than 60m), the LSQ algorithm had enough equations
to produce estimation with similar average errors.
Impact of the Jammer’s Position. We investigated the impact of the jam-
mer’s position by placing it at the center (0, 0) and at the corner (130, −130),

360 Z. Liu et al.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Error(meter)

C
D

F

LSQ−Center
LSQ−Corner
VFIL−Center
VFIL−Corner

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Error(meter)

C
D

F

LSQ−Center
LSQ−Corner
VFIL−Center
VFIL−Corner

(a) Smart (b) Simple

Fig. 8. Comparison of Cumulative Distribution Function (CDF) of the localization
errors when the jammer is placed in the center or at the corner

respectively. In both cases, we set the jammer’ NLB range to 60m and used
300-node networks.

Figure 6(c) shows that the performance of both LSQ and VFIL degraded
when the jammer is at the corner of the network. Because the affected nodes were
located on one side of the jammer, causing the estimated location biased towards
one side. However, in both simple and smart deployments, LSQ still maintained
a localization error less than 10m, which is 1/3 of a node’s transmission range.
VFIL produced errors of more than 40m when the jammer was at the corner,
making the results of jammer localization unreliable. Thus, LSQ is less sensitive
to the location of the jammer. The observations of the CDF results in Figure 8
provide a consistent view with the mean errors.

5 Conclusion

We focused this work on addressing the problem of localizing a jammer in wire-
less networks. We proposed a hearing-range-based localization algorithm that
utilizes the changes of network topology caused by jamming to estimate the
jammer’s location. We have analyzed the impact of a jammer and have shown
that the levels of the nodes’ hearing range changes are determined quantita-
tively by the distance between a node to the jammer. Therefore, we can localize
the jammer by estimating the new hearing ranges and solving a least-squares
problem. Our approach does not depend on measuring signal strength inside the
jammed area, nor does it require to deliver information out of the jammed area.
Thus, it works well in the jamming scenarios where network communication is
disturbed. Additionally, compared with prior work which involves searching for
the location of the jammer iteratively, our hearing-range-based algorithm finishes
the location estimation in one step, significantly reducing the computation cost
while achieving better performance. We compared our approach with the vir-
tual force iterative localization algorithm (VFIL) in simulation. In particular, we
studied the impact of node distributions, network node densities, jammer’s trans-
mission ranges, and jammer’s positions on the performance of both algorithms.
Our extensive simulation results have confirmed that the hearing-range-based

Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges 361

algorithm is effective in localizing jammers with high accuracy and outperforms
VFIL algorithm in all experiment configurations.

References

1. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location
and tracking system. In: Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), pp. 775–784 (March 2000)

2. Cagalj, M., Capkun, S., Hubaux, J.: Wormhole-Based Anti-Jamming Techniques
in Sensor Networks. IEEE Transactions on Mobile Computing, 100–114 (January
2007)

3. Chen, Y., Francisco, J., Trappe, W., Martin, R.P.: A practical approach to land-
mark deployment for indoor localization. In: Proceedings of the Third Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, SECON (2006)

4. Liu, H., Xu, W., Chen, Y., Liu, Z.: Localizing jammers in wireless networks. In:
Proceedings of IEEE PerCom International Workshop on Pervasive Wireless Net-
working, IEEE PWN (2009)

5. Ma, K., Zhang, Y., Trappe, W.: Mobile network management and robust spatial
retreats via network dynamics. In: Proceedings of the The 1st International Work-
shop on Resource Provisioning and Management in Sensor Networks, RPMSN 2005
(2005)

6. Noubir, G., Lin, G.: Low-power DoS attacks in data wireless lans and countermea-
sures. SIGMOBILE Mob. Comput. Commun. Rev. 7(3), 29–30 (2003)

7. Pelechrinis, K., Koutsopoulos, I., Broustis, I., Krishnamurthy, S.V.: Lightweight
jammer localization in wireless networks: System design and implementation. In:
Proceedings of the IEEE GLOBECOM (December 2009)

8. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys 2004: Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, pp. 95–107 (2004)

9. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: Proceedings of the ACM International Conference on Mobile Comput-
ing and Networking (MobiCom), pp. 32–43 (August 2000)

10. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2000)
11. Wang, G., Cao, G., Porta, T.L.: Movement-assisted sensor deployment. IEEE

Transactions on Mobile Computing 5(6), 640–652 (2006)
12. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.

ACM Transactions on Information Systems 10(1), 91–102 (1992)
13. Wood, A., Stankovic, J., Son, S.: JAM: A jammed-area mapping service for sensor

networks. In: 24th IEEE Real-Time Systems Symposium, pp. 286–297 (2003)
14. Xu, W., Trappe, W., Zhang, Y.: Channel surfing: defending wireless sensor net-

works from interference. In: IPSN 2007: Proceedings of the 6th International Con-
ference on Information Processing in Sensor Networks, pp. 499–508 (2007)

15. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and detect-
ing jamming attacks in wireless networks. In: MobiHoc 2005: Proceedings of the
6th ACM International Symposium on Mobile Ad Noc Networking and Computing,
pp. 46–57 (2005)

16. Xu, W.: On adjusting power to defend wireless networks from jamming. In: Pro-
ceedings of the Fourth Annual International Conference on Mobile and Ubiquitous
Systems, MobiQuitous (2007)

Self-stabilizing Synchronization in Mobile Sensor
Networks with Covering

Joffroy Beauquier1,� and Janna Burman2,��

1 University Paris Sud, LRI, UMR 8623, Orsay, F-91405
jb@lri.fr

2 Dept. of Industrial Engineering & Management, Technion, Haifa 32000, Israel
bjanna@technion.ac.il

Abstract. Synchronization is widely considered as an important ser-
vice in distributed systems which may simplify protocol design. Phase
clock is a general synchronization tool that provides a form of a logical
time. This paper presents a self-stabilizing (a tolerating state-corrupting
transient faults) phase clock algorithm suited to the model of population
protocols with covering. This model has been proposed recently for sen-
sor networks with a very large, possibly unknown number of anonymous
mobile agents having small memory. Agents interact in pairs in an asyn-
chronous way subject to the constraints expressed in terms of the cover
times of agents. The cover time expresses the “frequency” of an agent
to communicate with all the others and abstracts agent’s communica-
tion characteristics (e.g. moving speed/patterns, transmitting/receiving
capabilities). We show that a phase clock is impossible in the model with
only constant-state agents. Hence, we assume an existence of resource-
unlimited agent - the base station.

The clock size and duration of each phase of the proposed phase clock
tool are adjustable by the user. We provide application examples of this
tool and demonstrate how it can simplify the design of protocols. In par-
ticular, it yields a solution to Group Mutual Exclusion problem.

Keywords: population protocols, self-stabilization, cover time, synchro-
nization, phase clock.

1 Introduction

Recently, attempts have been made for developing a model for mobile sensor
networks. In 2004, Angluin et al. [1] proposed the model of population proto-
cols (PP) of very limited mobile agents. In this model, anonymous finite-state
agents move in an asynchronous way and can communicate and exchange infor-
mation in pairs when they come into range of each other. One of the goals of

� The work of this author was partially supported by grants from Grand Large project,
INRIA Saclay.

�� The work of this author was partially supported by grants from the Israel Council
for Higher Education and from the Israel Science Foundation.

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 362–378, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Synchronization in Mobile Sensor Networks 363

studying the population protocol model was to determine what is computable
with minimal assumptions about a mobile ad-hoc network. For that reason, the
agents are asynchronous, anonymous, have a small memory and no assumptions
are made on the size of the population or on the way they move, except for a
fairness assumption ensuring that any continuously reachable global configura-
tion is eventually reached. It was shown in [3] that the set of applications that
can be solved in the original population protocol model of [1] is rather limited.
Hence, various extensions were suggested. Some of them are: assumption of a
distinguishable resource-unlimited agent - the base station [10], unique identi-
fiers [18], probabilistic scheduler and unique leader agent [2]. In [17], an oracle
for eventual leader detection is assumed, and even with the help of the oracle, it
is shown that constructing uniform self-stabilizing leader election in (communi-
cation) rings is impossible when local fairness is used (somewhat weaker fairness
than in [1]). In [6], Beauquier et al. propose to add to the population protocol
model a notion of “speed” which provides a stronger fairness. With this notion,
each agent meets the other agents with a quantitative constraint expressed in
terms of its cover time (hence, the term covering). The cover time of an agent
is the minimum number of events in the whole system for an agent to have met
with each other agent with certainty. The “faster” an agent is, the lesser is its
cover time. Cover times make it possible to construct fast converging determin-
istic protocols and evaluate their complexities (it is impossible with a simple
fairness assumption as in [1]).

The model of population protocols with covering suits well sensor networks
with agents that move in a more predictable manner (so that they are likely to
imply deterministic cover times). E.g., sensor networks in a production line; me-
teorological sensor networks of intercommunicating agents hosted by radioson-
des / balloons / satellites cruising at different altitudes or kinds of an orbit
(see, e.g, [25,26]); EMMA project [24]- a pollution monitoring network of sen-
sors attached to different kinds of public transport vehicles (moving according
to different itineraries).

The population protocol model with covering has been studied in [8]. It presents
an automatic transformer that converts an algorithm (requiring an initialization)
into its self-stabilizing version (that operates correctly from any initial state). We
take a step further and consider the problem of phase synchronization in systems
of mobile agents. We propose (see Sec. 3) a phase clock algorithm (see, e.g., [20,14])
that provides an infinite repetition of phases, 0, 1, . . . ,K−1, where each phase may
be associated with some number of steps of the distributed agents. A phase clock
in an asynchronous model requires that any agent x does not execute phase i + 1
before all the agents that can directly communicate with x have executed phase i
(mod K). To implement the phase clock, each agent is allocated with a constant
size (K > 2) counter, the clock, that represents the current phase number at the
agent. Refer to Sec. 3 for the specification of the phase clock.

In Sec. 4, we give several examples to demonstrate how a phase clock can be
used to solve synchronization problems, in the population protocol model. First,
we present a simple multi-phase design of a Majority Consensus problem. Then,

364 J. Beauquier and J. Burman

we easily solve a version of the Group Mutual Exclusion problem. Finally, we
propose a synchronous model framework to design specific protocols. According
to this framework, a protocol is designed in a simplified synchronous version of
the PP model with covering. When designed, the protocol can be executed in
the original asynchronous model in combination with a synchronizer algorithm
[4] (that we construct and) that provides an appropriate synchronization. We
show that this framework is useful in designing resource consuming tasks.

The algorithms presented in this paper are self-stabilizing. Such algorithms
have the important property of operating correctly regardless of their initial state
(except for some bounded period). In practice, self-stabilizing algorithms adjust
themselves automatically to any changes or corruptions of the network compo-
nents (excluding the algorithm’s code). These changes are assumed to cease for
some sufficiently long period. Self-stabilization is considered here for two reasons.
First, mobile agents are generally fragile, subject to failures and hard to initial-
ize. Second, systems of mobile agents are by essence dynamic, some agents leave
the system while new ones are introduced. Self-stabilization is a well adapted
framework for dealing with such situations. For instance, when two groups of
agents merge, the clock values in one group can be very different from the values
in the other group. A self-stabilizing solution will bring them to a correct global
configuration, in which there may be only a “small” acceptable gap between the
clocks. Self-stabilizing phase clocks for conventional asynchronous communica-
tion models are given, e.g., in [14,5,19,11]. To the best of our knowledge, this is
the first time a phase clock is presented in the population protocol model.

We show (Theorem 1, Sec. 3) that it is impossible to implement a phase clock
in the PP model with covering when every agent has only a constant number
of states (independent of the population size). In particular, it implies the same
impossibility result in the original PP model. Thus, to be able to design a phase
clock, we assume (as in [10,6,8]) a resource-unlimited agent, the base station
(BS). Note that this is a rather natural assumption, because an agent such as
BS is present in many sensor network applications.

Note also that constructing a phase clock, in which the agents synchronize
their clocks only when they meet BS, is relatively easy. However, it is not efficient,
because the synchronization of one phase takes Ω(cvmax) meetings (events),
where cvmax is the maximum cover time. The solution we propose is more
efficient, because it uses the fastest agents to propagate the clock values. In this
solution, the synchronization of a phase takes Ω(cvmin) meetings, where cvmin

is the minimum cover time, which can be considerably smaller than cvmax.

2 The Model
Transition System
Let A be the set of all the agents in system S, where |A| = n is unknown
to agents. The base station (BS) is a distinguishable, resource-unlimited and
(usually) non-mobile1 agent. All the other agents are finite-state, anonymous
(no identifiers and uniform codes) and are referred in the paper as mobile.
1 If BS is mobile, it does not change the analysis in this paper.

Synchronization in Mobile Sensor Networks 365

Population protocols can be modeled as transition systems. We adopt the
common definitions of the following: state of an agent (a vector of the values
of its variables), configuration (a vector of states of all the agents), transition
(atomic step of two communicating agents and their associated state changes),
execution (a possibly infinite sequence of configurations related by transitions),
terminal configuration (in which no applicable transition can change the config-
uration), infinite / finite execution (that does not contain / contains a terminal
configuration). When a terminal configuration is reached, we say that termina-
tion has occurred. For formal definitions, refer, e.g., to [27].

An event (x, y) is a pairwise communication (meeting) of two agents x and y.
Without loss of generality, we assume that no two events happen simultaneously.
Each execution corresponds to a unique sequence of events. The length of a (finite)
execution is the minimum number of events until the termination. The event com-
plexity of an algorithm is the maximum length of an execution until termination.
For some l (∈ N0) and agent x, let [l]x, l local events at x, be l consecutive (from
x’s point of view) events in which agent x participates. This stands in contrast to l
global events (or just events) which are l consecutive events in an execution. Note
that if [l]x events occurred, then at least l global events occurred.

Intuitively, it is convenient to view executions as if a scheduler (an adversary)
”chooses” which two agents participate in the next event. Formally, a scheduler
D is a predicate on the sequences of events. A schedule of D is a sequence of
events that satisfies predicate D.

A protocol is called self-stabilizing if starting from an arbitrary configuration,
it reaches a legal configuration (defined by the problem specification) eventually
and remains in legal configurations thereafter. When this happens, we say that
stabilization has occurred. The maximum number of events until stabilization is
called the stabilization time or stabilization event complexity of the protocol.

Cover Time Property (Covering)
Given n agents, a vector cv = (cv1, cv2, . . . , cvn) of positive integers (the cover
times) and a scheduler D, we say that D (as well as each of its schedules) satisfies
the cover time property, if in any cvi (i ∈ {1 . . .n}) consecutive events of each
schedule of D, agent i meets every other agent at least once.2 Any execution of
a system under such a scheduler is one that satisfies the cover time property.
For two agents x and y, if cvx < cvy, then x is said to be faster than y, and y
slower than x. The minimum cover time value is denoted by cvmin and the max-
imum one by cvmax. A fastest/slowest agent z has cvz = cvmin/cvz = cvmax.
Remark 1. Note that there are vectors of integers such that there is no pos-
sible schedule satisfying the cover time property implied by the vector (e.g,
cv = (4, 6, 10, 15)). From now on, we assume cvs implying at least one possible
schedule.
Agents are Not Assumed to Know Cover Times. Instead, we do assume
that when two agents meet, they are able to detect which of them is faster
(unless none of them is).3 One way to quantify that, is to assume that each agent
2 We emphasize that this definition does not imply that an agent knows its cover time.
3 Even, a weaker assumption is possible. See Remark 2, Sec. 3.

366 J. Beauquier and J. Burman

x is given with a category number catx (a positive integer). For instance, differ-
ent kinds of public transport vehicles (moving according to different itineraries)
in the EMMA project [24] can correspond to different categories. In ZebraNet
[23] (a habitat monitoring application where sensors are attached to zebras), a
measured temperature (or pulse) far from the normal can imply an ill animal,
that is slower. Hence, this animal is assigned a category number that is bigger
than the one of healthy animals. The number of different categories, m, is gen-
erally much smaller than the size of the population n (m � n) and agents do
not know the value of m. Note that categories are not identifiers, because there
can be an arbitrary number of agents in the same category and because agents
in the same category are indistinguishable.

For BS, we need the following stronger assumption to be able to use the
algorithms of [8]. We assume that BS, but not a mobile agent, is able to estimate
an upper bound of cv of an agent it meets. Recall that BS is resource-unlimited,
what may help it in this task. E.g., BS may maintain a table providing an upper
bound on the cover time of each category.

3 Self-stabilizing Phase Clock

Our objective is to design a self-stabilizing bounded (using a constant amount of
memory at every mobile agent) phase clock in the model of population protocols
with covering. To state the problem, we use a conventional definition of a phase
clock (see, e.g., [14,5]) that we adapt and somewhat generalize (see the Frequency
of progress condition below) to suit better the model we use. In Fig. 1, we
present a self-stabilizing phase clock algorithm which is later proven to satisfy
the following specification, after a certain stabilization time has elapsed.

Definition 1. [Bounded Phase Clock Problem Specification]
A phase clock provides each agent with a clock/phase number subject to the fol-
lowing conditions. Let the clock number of an agent x be stored in a variable
clockx.
Progress: In any execution, every variable clock is updated infinitely often and
each time, according to the assignment statement clock := (clock + 1) mod K
only.
Frequency of progress: In any execution, after every update of clockx, the
next update cannot happen before β(clockx) global events, where β is a function
that maps each phase number to a lower bound on the duration of the phase,
which is counted by the number of global events. It is the responsibility of the
designer, who uses the phase clock, to define the required number K of phases
and the value of β for every phase.
Asynchronous unison: In any configuration reached by an execution, the clock
numbers of any two agents that can meet differ by no more than 1 (mod K).
That is, for any two agents x and y that can meet, the following predicate
in phase(x, y) is true.

Synchronization in Mobile Sensor Networks 367

in phase(x, y) ≡ clockx = clocky

∨
clockx = (clocky + 1) mod K

∨
clocky = (clockx + 1) mod K

Note that since in our model every pair of agents can meet sometime, if the
Asynchronous unison condition holds, the clock numbers of any two agents
differ by no more than 1 (mod K).

We start by proving that if every agent has only a constant number of states,
independent of n (there is no resource-unlimited BS), the conditions of the spec-
ification of a phase clock cannot be realized by any system in the PP model with
covering. Hence, the usage of BS.

To prove the following Theorem 1, we adopt the method which is used in [9]
(the complete version of [8]) to prove a similar impossibility result (see Theorem
4.1, in [9]). We adjust the proof in [9] to suit the case of a phase clock. For
completeness, the adjusted and complete proof is provided in the appendix.

Definition 2. Assume the model of population protocols with covering.

– Let a generic solution be an algorithm that outputs a transition system for
every possible population of (every) size n and for (every) vector of cover
times cv.4

– Let a generic solution for a phase clock be a generic solution providing only
transition systems, whose executions satisfy the conditions of the phase clock
specification in Def. 1.

– A local transition system of an agent x is a projection of the (global) tran-
sition system (defined in Sec. 2) on x. That is, it is the set of all the states
and the transitions of x. Since the codes of the mobile agents are uniform,
their local transition systems are identical. A (global) transition system is
bounded, if and only if the two local transition systems of a mobile agent
and of BS are bounded in size, independently of n.

– A generic solution is bounded, if and only if every (global) transition system
provided by this solution is bounded.

Theorem 1. Assume the model of population protocols with covering. Consider
Def. 1 and let K ≥ 6. Then, even if there is no fault of any kind and even if the
clocks of all the agents (in Def. 1) are initialized to the same value at once, no
bounded generic solution for a phase clock exists.

Self-Stabilizing Bounded Phase Clock - Fig. 1
Every agent x has a clock variable clockx that indicates the ongoing phase
number. Agents synchronize their clocks with BS with the help of the fastest
agents (whenever it is efficient), and not in a trivial way - only on the meetings
with BS. This improves the event complexity of clock synchronization at each
phase (as explained in Sec. 1). As a result, it also improves the stabilization time
of the phase clock.

4 Recall that we assume only cvs implying at least one possible schedule (Remark 1).

368 J. Beauquier and J. Burman

BS locally counts the required number of events for each phase p (a function
of [β(p)]BS) and then, increases the clock by one (mod K). The fastest agents
are responsible to propagate the clock value from BS to other agents. At most
2 · cvmin events are required for this propagation - cvmin events for the prop-
agation from BS to the fastest agents and then, another cvmin events for the
propagation from the fastest agents to others.5 To implement this propagation,
the phase clock has to determine the fastest agents in a self-stabilizing way.
Thus, there is a fastestx bit, for every agent x.

For the purpose of event counting (and in particular, to evaluate the β val-
ues), BS should be able to estimate the upper bounds on the values of cvmin

and cvmax. The self-stabilizing algorithms that estimate cvmin and cvmax are
presented in [8]. They are executed at BS and stabilize in O([cvmin]BS) events.
We assume that those algorithms provide the upper bounds of cvmin and cvmax

in variables cv∗
min and cv∗

max respectively.
In addition, note that, if K > 2, our phase clock satisfies the Frequency of

progress condition with an upper bound of [β(clockx)+2·min(2·cv∗
min, cv

∗
max)]BS

events, for any agent x. That is, the next update of clockx (that cannot happen
before β(clockx) global events, according to Frequency of progress condition) is
done after at most [β(clockx) + 2 · min(2 · cv∗

min, cv
∗
max)]BS events. It is proven

in Lem. 6, below.
The analysis below (Theorem 2) shows that the stabilization time of the pre-

sented phase clock is O([maxp(β(p))+min(2 · cv∗
min, cv

∗
max)]BS) local events (at

BS), where p ∈ {0, . . .K − 1}.
Let us express this complexity in terms of the global events. By the cover time
property (see Sec. 2), in any cvBS global events, BS participates in at least one
event with every other agent out of n − 1. Hence, in any cvBS global events,
BS counts locally at least n − 1 events. Thus and since cvBS ≤ cvmax, the
stabilization time of the phase clock is equivalent to O(cvmax

n−1 · (maxp(β(p)) +
min(2 · cv∗

min, cv
∗
max))) global events.

Note that in the following analysis, we assume that the system is started
in an arbitrary configuration, but then, no faults or population changes occur
until stabilization. This is a common assumption done during analysis of self-
stabilizing algorithms.

Definition 3 (Complete and Incomplete phase).
A phase p (∈ {0, . . .K−1}) is a segment of an execution of the phase clock (Fig.
1) during which clockBS = p. A complete phase p is a phase p that starts after
an event where line 3 is executed and ends during an upcoming later event where
line 3 is executed. An incomplete phase p is a phase p which is not complete
(incomplete phases arise from a bad (faulty) initialization).

Lemma 1. Every complete phase p lasts [β(p)+min(2 ·cv∗
min, cv

∗
max)]BS events,

which correspond to at least β(p) + min(2 · cv∗
min, cv

∗
max) global events (which are

5 By the code of the phase clock, if 2 ·cvmin > cvmax, agents synchronize their clocks
faster (in at most cvmax events), on the meetings with BS. Thus, clock synchroniza-
tion at each phase takes min(2 · cvmin, cvmax) events.

Synchronization in Mobile Sensor Networks 369

Memory in a mobile agent x �= BS:
clockx ∈ {0, . . . ,K− 1} /* the clock indicator of x */
fastestx ∈ {0, 1} /* indicates if x is a fastest agent */
catx : positive integer /* category number of x */

Memory in BS:
event ctr : non-negative integer /* counter of the local events at BS */
clockBS ∈ {0, . . . ,K − 1}
cat∗min : positive integer /* minimum category estimated by BS */
t cat∗min : positive integer /* temporal minimum category estimated by BS */
cv∗

min, cv∗
max : positive integer /* estimated cvmin and cvmax provided externally */

/* phase - duration mapping β */
β : {0, . . . ,K − 1} → PD,

where PD is the set of non-negative functions of cv∗
min and cv∗

max

legal(clkf , clks) ≡ (clkf = clks clockf = (clocks + 1) mod K)

Whenever agent x communicates with BS:
1 event ctr := min(event ctr, β(clockBS) + min(2 · cv∗

min, cv
∗
max)) − 1

2 if event ctr = 0 then /* switch to the next phase */
3 clockBS := (clockBS+1) mod K; event ctr := β(clockBS)+min(2 ·cv∗

min, cv
∗
max)

4 cat∗min := t cat∗min; t cat∗min := catx

5 if (catx = cat∗min) then fastestx := 1 /* x is one of the fastest agents */
6 else fastestx := 0
7 t cat∗min := min(catx, t cat∗min)
8 clockx := clockBS

Whenever agent x communicates with an agent y �= BS:
9 if caty > catx then fastesty := 0 /* y is a non-fastest agent */
10 if (fastestx ∧ ¬fastesty) then
11 if (legal(clockx, clocky) ∨ ¬legal(clocky, clockx)) then
12 clocky := clockx

Fig. 1. Self-stabilizing Bounded Phase Clock

at least min(2 · cvmin, cvmax) events). Every incomplete phase lasts less than
[maxi{β(i)} + min(2 · cv∗

min, cv
∗
max)]

BS events.

Proof: The lemma follows from lines 1-3 and the definition of β (Fig. 1).

Lemma 2. After at most [2 · (maxp(β(p)) + min(2 · cv∗
min, cv

∗
max))]BS + cvmin

events, all fastest bits are correct. That is, for every fastest mobile agent f ,
fastestf = 1 and for every non-fastest mobile agent s, fastests = 0.

Proof: By line 1, in at most [maxp(β(p)) + min(2 · cv∗
min, cv

∗
max)]

BS events, the
condition at line 2 is true and lines 3, 4 are executed. After an execution of line
4, t cat∗min is greater than or equal to the minimum category value (the category

370 J. Beauquier and J. Burman

value of a fastest agent). Then, during the next [cv∗
min]

BS events, due to the cover
time property, a fastest agent meets BS and t cat∗min is assigned the minimum
category value, at line 7. Then, later, the condition at line 2 becomes true again
and cat∗min is assigned a correct minimum category too. Thus, cat∗min is correct
in no more than [2 · (maxp(β(p)) + min(2 · cv∗

min, cv
∗
max))]BS events. Then, the

same process is repeated in each phase and cat∗min is assigned the same correct
value each time line 4 is executed. From the moment when cat∗min is correct, in at
most additional cvmin events, every fastest agent f meets BS and its fastestf

bit is set correctly to 1, at line 5. Since cat∗min value stays unchanged, fastestf

stays unchanged too. In addition, from the moment when cat∗min is correct, in
at most cvmin events, a fastest agent f meets every non-fastest mobile agent
s and its fastests bit is set correctly to 0, at line 9. Since cat∗min value stays
unchanged, fastests stays unchanged too (line 5 is not executed for s).

Remark 2. Correctness of Lem. 2 relays on the assumption that when two agents
meet, they correctly detect which of them is faster (using the categories; see Sec.
2). In [7], we address the case where there could be mistakes in these detections.
But, as long as the fastest bits still stabilize, the phase clock stabilizes too.
This fact, allows to use the phase clock even with weaker assumptions than those
stated in Sec. 2. Though, in case of such mistakes, the phase clock may stabilize
after a larger number of events.

Lemma 3 (Asynchronous unison). After at most
[2 · (maxp(β(p))+min(2 · cv∗

min, cv
∗
max))]BS + cvmin +2 ·min(2 · cvmin, cvmax)

events, for any two agents x and y, in phase(x, y) is true.

Proof: First, note that clockBS can be updated only at line 3. If clockBS changes
in less than min(2·cvmin, cvmax) global events, then by Lem. 1, clockBS stays un-
changed during at least the next min(2 · cvmin, cvmax) events. Now, assume that
clockBS and the fastest bits stay unchanged during at least the next min(2 ·
cvmin, cvmax) events in a phase p and that the fastest bits are correct (as in
Lem. 2). We now show that in additional min(2 ·cvmin, cvmax) events, the lemma
holds. Whenever an agent x meets BS, it assigns clockx := clockBS. By the con-
dition at line 10, a fastest agent cannot execute line 12. Thus, in at most cvmin

events, for every fastest agent f , clockf = clockBS. Whenever a fastest mo-
bile agent f meets a non-fastest mobile agent s, by the condition at line 11, if
either clocks = clockf − 1 mod K, or clocks and clockf values differ by
more than 1, then line 12 is executed and the predicate clocks = clockf be-
comes true. Thus, if 2 · cvmin > cvmax, in at most cvmax events, for every agent
x, clockx = clockBS. Otherwise (if 2 · cvmin < cvmax), in at most additional
cvmin events (after clockf = clockBS, for every fastest agent f), a fastest agent
f meets every non-fastest mobile agent s. After such meetings occur, for every s,
clocks = clockf ∨ clocks = clockf + 1 mod K holds. Thus, after at most
min(2 · cvmin, cvmax) events (and since clockBS stays unchanged during these
events), for any two agents x and y, in phase(x, y) is true. Until the next com-
plete phase (p+1) mod K starts, clockBS value stays unchanged and hence, every
clockf stays unchanged too (by lines 10-12 and 8, at this time, the clock number

Synchronization in Mobile Sensor Networks 371

of a fastest agent can be changed only by BS). This and the code lines 10-12 imply
that every clocks stays unchanged too. By a simple induction, after phase (p+1)
mod K starts, during this phase and any following phase, for any two agents x
and y, in phase(x, y) is true. Thus and by Lem. 2, the lemma follows.

Lemma 4 (Liveness). Every variable clock is updated infinitely often.
Proof: Assume that the fastest bits are correct (as in Lem. 2). Assume by
contradiction that for some agent x, clockx is not updated starting from some
configuration C. Then, by Lem. 1, in at most [maxp{β(p)} + 2 · cv∗

min]
BS events,

clockBS is updated to value j. Thus, x cannot be BS. Consider some fastest
agent f with clockf = i. Note that by the condition at line 10, clockf can
be updated only by BS, at line 8. After the update of clockBS and if i �= j, in
at most cvmin events, every fastest agent f meets BS and updates its clockf .
Otherwise (i = j), clockf is updated during the next phase j + 1. Thus, x
cannot be f . After clockf is updated, in at most cvmin events, f meets any
(non-fastest mobile) agent s. By condition at line 11, if clocks is either smaller
than or differs from clockf by more than 1 (mod K), then clocks is updated.
Otherwise (clocks = clockf ∨ clocks = clockf + 1 mod K), clocks will be
updated in the meeting with some fastest agent or BS during the next phase
or during the phase that comes after the next one. Thus, x cannot be s either.
Hence, a contradiction.

Lemma 5 (Progress). After at most
X = [2·(maxp(β(p))+min(2·cv∗

min, cv
∗
max))]BS+cvmin+2·min(2·cvmin, cvmax)

events, for every agent x, clockx is updated according to the assignment state-
ment clockx := (clockx + 1) mod K only. After any update of clockx, the
next update cannot happen before β(clockx) global events.

Proof: Assume that X events occurred. Then, by Lem. 2, all fastest bits are
correct. By Lem. 3, in phase(x, y) is true, for any two agents x and y. First,
consider clockBS. By Lem. 1 and the only line of the code where clockBS is
updated, the lemma holds for clockBS. For any fastest agent f , clockf can
be updated at line 8 only, and only to the value of clockBS. Thus, the lemma
holds for clockf as for clockBS. For any non-fastest mobile agent s, clocks

can be updated either at line 8, or at line 12. At line 8, it is updated to the
value of clockBS and thus, for this update of clocks, the lemma holds. By the
condition at line 11, clocks is updated to clockf (and in fact, to clockBS), only
if clockf = clocks + 1 mod K and thus (by line 12) it is updated according
to clocks := (clocks + 1) mod K. In both cases (line 8 or 12), clocks can
be actually updated only to the value of clockBS (recall that K > 2) and in at
most min(2 · cvmin, cvmax) events since the last update of clockBS. By Lem. 1,
clockBS is updated again after at least β(clockBS) + min(2 · cv∗

min, cv
∗
max) global

events. Hence the next update of clocks cannot happen before β(clockBS) events
that is equal to β(clocks) events.

Theorem 2. The phase clock in Fig. 1 stabilizes in [2 · (maxp(β(p)) + min(2 ·
cv∗

min, cv
∗
max))]BS + cvmin + 2 · min(2 · cvmin, cvmax) events.

372 J. Beauquier and J. Burman

Proof: The theorem directly follows from Def. 1 and lemmas 1-5.

Lemma 6 (Frequency of progress - upper bound). After stabilization, for
every agent x, clockx is updated again after no more than [β(clock)+2 ·min(2 ·
cv∗

min, cv
∗
max)]

BS events.

Proof: The lemma comes from the fact that only if x is BS, it can execute the
assignment clockx := (clockx + 1) mod K (line 3). All the other agents can
only adopt the propagated value of clockBS. In addition, the maximum number of
events until the next increase of clockBS is [β(clockBS)+min(2 ·cv∗

min, cv
∗
max)]BS

(lines 1-3). Then, after this increase, any x increases its clockx value (by the
adoption of the propagated value of clockBS, at lines 8, 12) in no more than
min(2·cv∗

min, cv
∗
max) events.

The following lemma states an important property that is useful when designing
and proving protocols that utilize the phase clock (see Sec.4). First, we define
that an event e is the first event in a phase p, if and only if in the resulting
configuration after e, at least one agent x that has participated in e, is in phase
p (that is, clockx = p) and all the other agents are in phase p − 1 mod K.
By the Asynchronous unison condition, a first event occurs at each phase, after
stabilization of the phase clock.

Lemma 7. Consider the first event e in some phase p, after stabilization of the
phase clock. During at least β(p) previous events to e, all the agents are in phase
p − 1 mod K.

Proof: Let e′ be the first event in phase p − 1 (mod K), then during e′, there
is an agent x participating in e′ whose clockx is incremented and just before e′,
the clocks of all the other agents equal to p − 2 mod K. Hence and by lines 3, 8
and 12, x has to be BS. BS increments its clock to p − 1 at line 3. Then, by the
cover time property and by lines 8 and 12, in min(2 · cvmin, cvmax) events, the
value p−1 of clockBS is propagated from BS to all the other agents. Then, all the
agents are in phase p−1 and BS stays in this phase for at least additional β(p−1)
events (by lines 1-4). Thus, all the other agents cannot change their clocks for at
least the same β(p − 1) events (lines 8, 12). Hence, the lemma holds for e.

4 Examples of Application

Methods of protocol design in the model of population protocols with covering
differ from the methods used in other models. Hence, in this section, we provide
several examples of how and when the presented phase clock may be useful when
designing population protocols.

Designing multi-phase systems
Similarly to [14], the phase clock in this paper may be used to design a multi-
phase protocol. An important property that our phase clock provides (see Fre-
quency of progress condition) is the ability of an agent to detect when a specific

Synchronization in Mobile Sensor Networks 373

number of global events has occurred. This may be used to detect the termina-
tion/stabilization of distributed tasks performed by the agents. Then, a new task
(in a new phase)may be started and executed during the required number of events
until the task’s termination (and until the next phase starts). To do that, the up-
per bound on the worst case event complexity W of the task should be known and
expressed in terms of cvmin and cvmax (as a non-decreasing function).

For example, we present a simple multi-phase protocol to solve a version of
a Majority Consensus problem (MCP) in a self-stabilizing way. In MCP, every
agent has an input and output variable. After stabilization, the output variables
should contain the majority of all the inputs.6 The parameters of the phase clock
(that we choose for the solution) are as follows: K := 3 and (β(0), β(1), β(2)) =
(cvmax, cvmin, 2 · cvmin). Hence, the solution alternates 3 phases. The task in
phase 0 is to deliver the input values to BS. An agent with clock = 0 delivers its
input value to BS, only once during the phase. To do that, every mobile agent
maintains a done bit to indicate if the input value has been already delivered
during the current phase. At the end of phase 0, BS calculates the majority of
the inputs it has gathered and saves it in its output bit (then, BS erases the
inputs to re-initialize for the next phase 0). In phase 1, the done bits of the
agents are reset, to re-initialize for the next phase 0. Whenever two agents with
clock = 1 meet, both reset their done bits. In phase 2, the majority value is
broadcasted from BS to all the other agents by the help of the fastest agents in
the following way. Whenever an agent x meets a fastest agent (the fastest agents
are determined in the same way as in Fig.1) or BS, and both have clock = 2, x
copies the output value of the other agent into its own output variable.

By Lem. 7, it is easy to see that there are enough events according to β to
complete the required task in every phase. By this and by the fact that there
is no writing into the input variables, the correctness of the algorithm is easily
deduced. We defer a detailed proof to the full paper.

For simplicity of demonstration, we have chosen a very simple algorithm to
compute the majority of the inputs (in phase 0) and it may be improved. For ex-
ample, according to [1], the majority can be computed without BS. Alternatively,
an efficient algorithm TTFM [6], for gathering the inputs at BS, can be used.
In both alternatives, the algorithms can be transformed to their self-stabilizing
versions by the transformer in [8] and then, used here in phase 0.

The multi-phase design using a phase clock may be useful in many other ap-
plications of mobile sensor networks. For instance, consider a habitat monitoring
application such as ZebraNet [23] where sensors are attached to zebras. In this
network, one may want to compute the highest temperature measured at a zebra
(task T1). Then, once this temperature t is computed, one may want to com-
pute the percentage of females in the subset of zebras with a temperature near
enough to t (task T2). In a similar way, some additional sequential tasks could
be programmed. The phase clock may be useful in detecting the termination of
each task and then, in starting the execution of the next task in the sequence.

6 Let us ignore the exact types of the input/output variables and the exact rules of
the majority calculation, in this demonstration.

374 J. Beauquier and J. Burman

Group Mutual Exclusion (GME)
This problem has been introduced by Joung [22]. The problem deals with sharing
μ mutually exclusive resources between n processors (agents, in our case). At any
time, some agents share one particular resource. But, if some agent x requests
to access a resource different from the currently used one, then x cannot access
the requested resource at that time. However, if x requests the currently used
resource, it is allowed to share the resource. There is no limit on the number of
agents that can share the same resource. In addition, a fairness is required for
accessing some resource and the waiting time (number of events, in our case) for
a given resource is bounded. GME generalizes several synchronization problems
such as mutual exclusion [15], dining philosophers [16], drinking philosophers
[13], and more. The problem has been broadly studied in classical shared-memory
and message-passing networks (see, e.g., [12], for a detailed survey) and also in
ad hoc mobile networks (see, e.g., [21]). A self-stabilizing version of GME for
asynchronous message-passing rings has been studied in [12]. In [12], the solution
is token based and requires one distinguishable processor.

In the population protocols model we consider, designing a self-stabilizing
solution for GME wouldn’t be so easy. However, if we use the phase clock al-
gorithm in Fig. 1, we almost automatically get a solution using a simple round
robin strategy. Let K = 2μ be the bound for the clock. The solution is the fol-
lowing: an agent x asking to access a resource r, waits for its clock to be equal
to 2r and only then, accesses the resource, but releases it when its clock is equal
to 2r + 1. The correctness of the solution is implied by the correctness of the
phase clock algorithm. When stabilized, the clocks of agents can differ by no
more than 1. Thus, in such a state, at any moment, if an agent uses resource r,
its clock value has to be 2r and at the same moment, no agent can have a clock
value other than 2r, 2r+1 or 2r−1. Hence, if at some moment, some agent uses
resource r, no agent is allowed to use a resource other than r. In this solution,
the response time, which is the maximum number of events since an agent asks
for some resource and till it accesses the resource, is O(

∑K−1
r=0 β(r)).

Note that in the proposed solution, the maximum ensured “time” that an
agent may spend using resource r is [β(2r)]BS events (defined by the designer
a priori), when in the original GME this time is assumed to be finite but un-
bounded. However, for some applications it may be enough for any agent pre-
empted from the usage of a resource r to resume the usage at the next phase 2r.
An algorithm that solves GME with the original assumption (and still uses the
presented phase clock) should be somewhat intricate.

Several applications of GME concerning the classical communication models
can be found in [22]. An example is a CD jukebox (documentation, movies, etc.)
on Internet: several users wishing to reach some CD will be able to do it at the
same time instead of awaiting the end of the services of the other users.

In the model of population protocols, one could imagine still other applica-
tions. For instance, assume that each category of agents has its own frequency
for emitting and each agent has to tune the frequency for receiving. Then, the
clock would indicate what is the current frequency to receive or when agents

Synchronization in Mobile Sensor Networks 375

donex ∈ {0, 1} /* indicates if a transition of task A has been executed by agent x */

1 if (clockx = clocky ∧ (clockx mod 2 = 1)) then donex = doney = 0
2 if (clockx = clocky ∧ (clockx mod 2 = 0) ∧ donex = doney = 0) then
3 〈execute transition (x, y) in A〉
4 donex := doney := 1

Fig. 2. Synchronizer algorithm for any agent x in an event (x, y) with agent y

of the same category can communicate without interference (using predefined
transmission/receiving frequencies).
Synchronizer
Many tasks in the model of mobile agents would be made easier if the agents
could use perfect local clocks which could deliver fully synchronized successive
ticks. At each tick all the agents would perform meetings, simultaneously and
pairwise7, and change their states accordingly to the transition function. These
pairwise transitions are completed by the next tick. Unfortunately, such clocks
are unrealistic, especially in a model where agents have very few resources. For-
tunately, the ticks of such clocks can be simulated, by a so called synchronizer
[4]. A synchronizer is a software, similar to a compiler, that takes as an input a
protocol valid in the synchronous tick model and that outputs an asynchronous
protocol for the same specification. In Fig. 2, we propose such a synchronizer
that uses the phase clock. The synchronizer only reads the clock values pro-
vided by the phase clock. We assume that K > 2 and is even. For every even
p, β(p) = cvmax. Otherwise, β(p) = cvmin. The input protocol is denoted by
A and its transitions are executed at line 3. Each agent x has a bit donex that
indicates if a transition of A has been executed already by x during the current
simulated tick. During every odd phase, done bits are reset and during every
even phase, the synchronous tick with the transitions of A are simulated.

For the sake of place, the proof of correctness of the synchronizer is deferred
to the complete paper. Below, we only show some main points of this proof.

After stabilization of the phase clock, by the Frequency of progress condition,
every agent stays in an odd (even) phase (with the same odd (even) clock value)
during at least cvmin (cvmax) events.

By Lem. 7, after stabilization of the phase clock, whenever the first event of
a new even (odd) phase occurs, it is ensured that during the previous cvmin
(cvmax) events, all the agents had odd (even) clock value. Whenever all the
agents are in an odd phase during cvmin events, a fastest agent meets every
other agent and they set their done bits to 0 (line 1). Thus, before the first event
of a new even phase occurs, all the done bits are 0. Also, no agent that is in an
even phase can reset its done bit to 0 (lines 1-4). Whenever all the agents are in
7 We assume populations of even size. Recall that we deal with networks of large

population of limited and weak sensors. Generally, applications in such networks
would not relay on the correct operation of one or several agents from the population.
Thus, even if n is odd, most of the applications would not be harmed if one agent
did not perform a transition during a tick.

376 J. Beauquier and J. Burman

an even phase during cvmax events, every agent that has not yet executed line
3 (a transition of A) during this phase, has exactly one opportunity (recall that
we assume that n is even) to meet with another agent that has not yet executed
line 3 either, during the current phase. When they meet, they both execute the
required transition. Then, this scenario is repeated. During an odd phase, the
agents reset their done bits. During an even phase, each agent executes exactly
one transition of A (with an agent that did not execute yet any transition of A,
during the phase). Thus, after the stabilization of the phase clock, every couple
of odd and then even phases, exactly simulates the execution of A during one
tick in the synchronous model. In addition, all the events simulating tick t + 1
happen after all the events simulating tick t.

We conclude by giving an example of the usage of the presented synchronizer.
Assume a mobile sensor application where agents have to perform some task
A repeatedly. It may be the case that the operations related to this task are
expensive in terms of, e.g., power consumption. In addition, the operations of A
are to be executed only during a pairwise event (meeting) and using resources of
both agents in the event. The condition on each repetition of A is that every agent
performs the operation at least once. However, as the system is asynchronous,
if not taking care, some fast agents may execute the expensive operations a
larger than necessary number of times. The problem is to minimize the number
of such operations. This problem is easily solved in the synchronous tick model
presented above. Then, the synchronous solution should be given as an input to
the synchronizer to obtain the asynchronous solution.
Remark 3. Note that in some cases, it may be useful to use the synchronizer
in combination with the transformer of [8] to get a self-stabilizing protocol au-
tomatically. In such cases, a developer is proposed to design a protocol with
initialization, in the synchronous tick model as above. Then, as the transformer
is correct (in particular) in the synchronous model, it is applied to this protocol.
Finally, the resulting self-stabilizing synchronous protocol is combined with the
synchronizer to get a self-stabilizing asynchronous version of the protocol.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

2. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. DC 21(3), 183–199 (2008)

3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. DC 20(4), 279–304 (2007)

4. Awerbuch, B.: Complexity of network synchronization. Journal of the Association
of the Computing Machinery 32(4), 804–823 (1985)

5. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-
optimal self-stabilizing synchronizer using a phase clock. IEEE TDSC 4(3), 180–190
(2007)

6. Beauquier, J., Burman, J., Clement, J., Kutten, S.: Brief announcement: Non-self-
stabilizing and self-stabilizing gathering in networks of mobile agents - the notion
of speed. In: PODC, pp. 286–287 (2009)

Synchronization in Mobile Sensor Networks 377

7. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks
of mobile agents. To appear in PODC 2010 (2010)

8. Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing.
In: SSS, pp. 90–104 (2009)

9. Beauquier, J., Burman, J., Kutten, S.: A self-stabilizing transformer for population
protocols with covering. Technical report, Technion (2010),
http://tx.technion.ac.il/~bjanna/main_ss-transformer_els.pdf

10. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing count-
ing in mobile sensor networks with a base station. In: Pelc, A. (ed.) DISC 2007.
LNCS, vol. 4731, pp. 63–76. Springer, Heidelberg (2007)

11. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159 (2004)

12. Cantarell, S., Petit, F.: Self-stabilizing group mutual exclusion for asynchronous
rings. In: OPODIS, pp. 71–90 (2000)

13. Chandy, K.M., Misra, J.: The drinking philosopher’s problem. ACM Trans. Pro-
gram. Lang. Syst. 6(4), 632–646 (1984)

14. Couvreur, J.-M., Francez, N., Gouda, M.G.: Asynchronous unison (extended ab-
stract). In: ICDCS, pp. 486–493 (1992)

15. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

16. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta. Inf. 1, 115–138
(1971)

17. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-
state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

18. Guerraoui, R., Ruppert, E.: Even small birds are unique: Population protocols with
identifiers. Technical Report CSE-2007-04. York University (2007)

19. Herman, T.: Phase clocks for transient fault repair. IEEE Trans. Parallel Distrib.
Syst. 11(10), 1048–1057 (2000)

20. Herman, T., Ghosh, S.: Stabilizing phase-clocks. Inf. Process. Lett. 54(5), 259–265
(1995)

21. Jiang, J.-R.: A group mutual exclusion algorithm for ad hoc mobile networks. In:
JCIS, pp. 266–270 (2002)

22. Joung, Y.-J.: Asynchronous group mutual exclusion. Distributed Computing 13(4),
189–206 (2000)

23. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences
with zebranet. In: ASPLOS, pp. 96–107 (2002)

24. Lahde, S., Doering, M., Pöttner, W., Lammert, G., Wolf, L.C.: A practical analy-
sis of communication characteristics for mobile and distributed pollution measure-
ments on the road. Wirel. Comm. and Mob. Comput. 7(10), 1209–1218 (2007)

25. Lundquist, J.D., Cayan, D.R., Dettinger, M.D.: Meteorology and hydrology in
Yosemite National Park: A sensor network application. In: Zhao, F., Guibas, L.J.
(eds.) IPSN 2003. LNCS, vol. 2634, pp. 518–528. Springer, Heidelberg (2003)

26. Massey, H., Bedford, L.H.: The role of satellites in observing and forecasting the
global behaviour of the atmosphere: Discussion. Royal Society of London Proceed-
ings Series A 308, 172 (1969)

27. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, Cambridge (2000)

http://tx.technion.ac.il/~bjanna/main_ss-transformer_els.pdf

378 J. Beauquier and J. Burman

Appendix

Proof of Theorem 1
Assume by contradiction that there exists a bounded generic solution G for a
phase clock. By Def. 2, for an infinite set of populations of agents (for every
n and for every vector of cover times) G provides an infinite set of bounded
transition systems. From this set of systems, we extract an infinite sequence
S̄ ≡ S1, S2, . . . with the following properties: (1) for any system Si from S̄,
cvmin(Si) ≥ nSi

·(nSi
−1)

2 + nSi , where nSi is the number of agents in Si and
cvmin(Si) is the minimum cover time in system Si; (2) for any two systems Si

and Sj (from S̄), such that i < j, cvmin in Sj is greater than cvmax in Si.
By the pigeonhole principle and because the systems in S̄ are bounded, we

can extract from S̄ an infinite sub-sequence S̄∗ ≡ S∗
1 , S∗

2 , . . . such that for any
two systems S∗

i and S∗
j , if i < j, the transitions of the agents in S∗

i and S∗
j are

the same. Note that since every system in S̄∗ is bounded, it can neither use n,
nor the values of the cover times.

Let us consider an execution e in a system S∗
i from S̄∗. By the Progress con-

dition of a phase clock (Def. 1), there is an agent x whose clock is incremented
infinitely often in e. Then, assume e = e0t0e1t1e2t2e

′, where the transitions
t0, t1, t2 cause consecutive increments of the clock of x. Then, by the Asyn-
chronous unison condition of a phase clock and since K ≥ 6, in t0e1t1e2t2, the
clocks of all the other agents (of S∗

i) are incremented at least once (since the
clock of x has been incremented three times).

Let epref = e0t0e1t1e2t2. Let us choose from S̄∗ a system S∗
j , such that i < j,

nS∗
j

≥ |epref | and nS∗
j

> nS∗
i
. First, note that, because S∗

j is also in S̄, epref

satisfies the cover time property of S∗
j (since cvmin in S∗

j is greater than cvmax

in S∗
i , implying that all the cover times in S∗

j are greater than the cover times in

S∗
i). Second, recall that cvmin(S∗

j) ≥
nS∗

j
·(nS∗

j
−1)

2 +nS∗
j

(because S∗
j is also in S̄).

Hence, cvmin(S∗
j)− |epref | ≥

nS∗
j
·(nS∗

j
−1)

2 . Because during
nS∗

j
·(nS∗

j
−1)

2 events ev-
ery agent can meet every other agent, there is enough events (“time”) after epref

(in S∗
j) to satisfy cvmin(S∗

j) and every other cv of S∗
j . Thus, there exists an in-

finite schedule in S∗
j where epref is a prefix and the cover time property of S∗

j is
satisfied in this schedule. E.g., one can get such a schedule by completing epref to
get a prefix p of length cvmin(S∗

j) such that in p, every agent meets every other
agent at least once. Then, repeat p indefinitely. Hence and because the transitions
of agents in S∗

i and S∗
j are the same, epref is a possible prefix of an execution in

S∗
j . However, because the population size in S∗

j is strictly greater than in S∗
i , there

exists an agent y of S∗
j that does not participate in any event in epref and, in par-

ticular, in t0e1t1e2t2. Thus, the clock of y has not been incremented there. Hence,
the Asynchronous unison condition of a phase clock is not satisfied in the config-
uration at the end of epref , in S∗

j . This is a contradiction to the assumption that
S∗

j is provided by a bounded generic solution for a phase clock.

Sensor Allocation in Diverse Environments

Amotz Bar-Noy, Theodore Brown, and Simon Shamoun

Department of Computer Science, CUNY Graduate Center
amotz@sci.brooklyn.cuny.edu, tbrown@gc.cuny.edu, srshamoun@yahoo.com

Abstract. Sensor coverage varies with location due to factors such as
weather, terrain, and obstacles. If a field can be partitioned into zones of
homogeneous sensing areas, then coverage by a random deployment of
sensors can be optimized by controlling the number of sensors deployed in
each zone. We derive expressions to directly calculate the optimal sensor
partition in runtime asymptotically equal to the number of zones. We
further derive expressions to determine the minimum sensor count re-
quired to achieve a specific coverage threshold. We bound the maximum
increase in coverage over a strategy oblivious to differences in sensing
areas, which our results show is no greater than 13% for a field with two
zones. While the analytical solutions assume that each zone is covered in-
dependently, we allow sensors to affect neighboring zones in simulations.
Nevertheless, the simulations support the optimality of our solution.

Keywords: Sensor networks, coverage, deployment, optimization.

1 Introduction

A variety of environmental conditions may affect sensor coverage, such as ter-
rain, weather, and vegetation. In many applications of sensor networks, these
conditions vary throughout the field of deployment. For example, a sensor net-
work for habitat monitoring in Southern California covers forests, brush, and
meadows [12]. In a proposal to monitor amphibian populations in northern Aus-
tralian with acoustic sensors, the region was divided into 2000 zones categorized
by their levels vegetation and water resources [11]. As these conditions vary, so
do the sensing areas of sensors. For example, an initial deployment of sensors to
detect chemical plumes revealed irregularities in sensing ranges due to variations
in terrain and meteorological conditions [16]. In order to maximize the coverage
of a diverse environment, sensors must be distributed according to the coverage
they provide at each location.

Several works propose deterministic deployment strategies for sensor networks
in diverse environments [3,17,16,13,14]. They make few or no assumptions about
how sensor coverage varies throughout the field of deployment, such that there
may be no continuity in the change in sensing areas between neighboring points.
The resulting algorithms are computationally complex and little or no analysis of
quality of coverage is provided. These techniques can be simplified by realistically
assuming that the field can be divided into zones of similar conditions, like in

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 379–392, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

380 A. Bar-Noy, T. Brown, and S. Shamoun

the Australian case, such that sensing area of a sensor is fairly uniform within
each zone. This way, the sensors can first be allocated to each zone and then
deployed within each zone according to well studied strategies for homogeneous
fields.

This paper analyzes the problem of allocating sensors to uniform zones in a
diverse field to maximize area coverage. The analysis relies on several broad as-
sumptions: 1) The field can be divided into large enough zones such that common
deployment strategies can be applied in each zone. For example, a grid layout is
only applicable in a tall and wide region. 2) The deployment in each zone does
not affect the deployment in any other zone. 3) The coverage of each zone can be
calculated independently of all others. Although sensors affect coverage in bor-
dering zones, simulations show that this is a reasonable assumption when zones
are relatively large. Because of this assumption, the results are also applicable
when zones do not border each other. The analysis is specifically for random
deployment in each zone under further assumptions about the node distribu-
tion and models of coverage. While better coverage is possible by deterministic
deployment, random deployment by methods such as airdropping is sometimes
preferable and even necessary. Remote deployment causes fewer disturbances to
natural habitats than direct placement. It is more expedient in urgent situations
such as rescue operations. Direct placement is infeasible for large scale networks
like the one considered for northern Australia, and is nearly impossible in hostile
situations, such as battlefield operations. Nevertheless, the results of this paper
can be extended to deterministic deployment strategies.

The paper begins with a review in Sect. 2 of three issues relevant to the anal-
ysis and simulation design: sensing models, models of environmental effects on
coverage, and deployment strategies for diverse environments. The assumptions,
notation, and formulas used in the analysis are defined in Sect. 3. Section 4 ana-
lyzes the problem for a field with two zones, presenting formulas for the optimal
allocation, the minimum sensor count required for any expected level of coverage,
and an upper bound on the maximum improvement in coverage over a baseline
strategy that is oblivious to the difference in coverage between zones. These last
two formulas are important in evaluating the expected costs and benefits of im-
plementing such a strategy in place of the baseline strategy. It is shown that no
more than 13% additional area is covered using the optimal strategy. Section 5
lists algorithms to derive the optimal allocation in fields with multiple zones in
decreasing order of computational complexity, beginning with brute force and
ending with direct computation. Although decreased complexity is preferable,
the robustness of these algorithms decreases with complexity, as illustrated in
Sect. 6. This section shows how to extend these algorithms to other coverage
models and deployment strategies. Section 7 presents the results of simulations
designed to test the assumptions upon which the analysis is constructed. While
simulated coverage differs slightly from expected coverage, borders have mini-
mal effect on the optimal partition. Finally, further problems for analysis are
discussed in Sect. 8.

Sensor Allocation in Diverse Environments 381

2 Related Research

The binary sensing model is the simplest and most widely analyzed model of
coverage provided by a sensor. In this model, a sensor detects all events in its
sensing area. Brass [1] gives upper bounds on the capabilities of random and
deterministic strategies in bounded and unbounded regions. Liu and Towsley [8]
analyze different measures of coverage provided by random deployment in large
unbounded regions. These two works assume uniformly sized disk shaped sens-
ing areas for all sensors and location assignment according to a Poisson point
distribution in random deployments. Lazos and Poovendran [7] provide a more
robust analysis of coverage by random deployment. Their analysis accounts for
border effects in bounded regions and the size and shape of each sensor. They
provide a limited analysis of coverage by non-uniform distributions. Lan, et al.
[6] investigate the minimum sensing radius required to asymptotically achieve
full coverage of the unit square by uniform and non-uniform random distribu-
tions. This is the inverse of the problem analyzed here, in that the distribution
determines the sensor radius. For non-uniform distributions, they propose par-
titioning the square such that the distribution is uniform in each partition and
setting the radii in each partition accordingly.

The probabilistic sensing model [3,17] models detection failure by assigning a
detection probability to each point in a sensor’s sensing area. Unlike in the binary
model, increasing the number of sensors covering a point and their proximity to
it increases detection probability. There are few analytical results for this model,
such as optimal arrangements and expected coverage by random distributions.
The general sensing model [8,15] is better studied. This model considers the
aggregation of signals, subject to attenuation and noise, received by sensors.
This model is only applicable, however, to network architectures and protocols
that support this type of data aggregation.

Several papers [3,17] model environmental effects on coverage by representing
the sensing area at each potential sensor location with a grid. Yang, et al. [16],
correlate models of gas dispersion to actual terrain and weather data to derive
the sensing areas of chemical sensors, resulting in ellipses of varying size. Fan-
imokun and Frolik [4] use experimental data to model the effects of three natural
environments on the propagation of wireless transmissions. While these results
are not for the propagation of sensing signals received by sensors, the same
principles apply [8]. In this case, sensing ranges can be modeled with weighted
distance functions [2].

Several works employ greedy algorithms to determine optimal sensor loca-
tions, modeling the sensing areas and deployment field with grids [3,17,16]. The
complexity of these algorithms is O(N2m), in which N is the number of grid
points in the field and m is the number of sensors deployed, which is very costly
for fine grids. Yang, et al. [16] give an approximation factor of log C for this
type of algorithm, in which C is the coverage requirement. Another approach
[13] is to place sensors along a standard grid and adjust to the distances between
grid points to improve coverage. This works well for uniformly shaped sensors,
but is not very effective for highly diverse environments. A novel approach to

382 A. Bar-Noy, T. Brown, and S. Shamoun

distributing sensors [14] represents the field using a gray-scale image, in which the
intensity varies with the sensing range, and then employs dithering algorithms
to determine sensor locations in the field. No analysis is provided, though, of the
resulting quality of coverage.

3 Preliminaries

The analysis here is for area coverage under the binary sensing model by the
random uniform distribution of sensors in each zone. No assumptions are made
about the shapes of sensing areas. The only assumption is that the sensing areas
have the same area within each zone. Since the actual assignment of sensor loca-
tions is random, only expected coverage can be measured. Expected coverage is
simply referred to as coverage, and the complement of coverage is referred to as
exposure. Coverage and exposure are defined as the fraction of the area covered
and not covered, respectively, by a sensor network. An allocation is the partition
of sensors to be distributed in the different zones. In the oblivious allocation, the
fraction of sensors allocated to a zone equals the fraction of the field the zone
covers. Since this is the most reasonable strategy if no information about sensing
areas is available, it is used as a base for comparing other strategies. Absolute
improvement is the difference in coverage between two allocations. Relative im-
provement is the ratio of coverage by two different allocations. This paper strictly
addresses absolute improvement from the oblivious allocation, which seems to be
a more effective measure to discuss optimal random allocation while comparing
it with other allocation solutions.

All measurements are made in arbitrary units. The total area of the sensor
field is A, the maximum sensing area of any sensor is S, and the total number
of sensors deployed is n. λ = n/A is the sensor density, the average number
of sensors per unit area. V refers to the fractional area coverage. The field is
partitioned into m zones (Z1, Z2, . . . , Zm). In general, for some portion of the
field, whether a zone or a combination of zones, γA, 0 < γ < 1, is its area, αS,
0 < α < 1, is the sensing area within it, and βn, 0 ≤ β ≤ 1, is the number of
sensors allocated to it. β can be a constant or a function of the other parameters.
If βin sensors are allocated to a zone with area γiA, then βi = γi is the oblivious
allocation.

Liu and Towsley [8] cite a result in stochastic geometry [5] that the expected
coverage of the infinite plane is 1 − e−Sλ, where S is the expected sensing area.
This formula can be modified to calculate the coverage of a bounded region with
area A by n sensors located within the field [7]:

1 − e−
Sn
A (1)

Lazos and Poovendran [7] derive a formula for coverage by n heterogeneous sen-
sors that intersect a field, in which F0 is the field area, L0 is the field perimeter,
and Fi and Li are the area and perimeter, respectively, of each sensor i:

1 −
n∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
(2)

Sensor Allocation in Diverse Environments 383

While (2) accounts for border effects and sensing area shapes more accurately
than (1), equation (1) is still a fair estimate of coverage by homogeneous sensors
[7], regardless of their size and shape. Additionally, independent tests conducted
for this paper, the details of which are omitted, show that (1) is within 2% of the
average coverage. Therefore, (1) is the foundation for all solutions in this paper.
Based on (1), (3) can be used to determine the number of sensors required for
expected coverage V .

n = − ln(1 − V)
A

S
(3)

In the complexity analysis below, it is assumed that each arithmetic operation
can be performed in constant time.

4 Two Zones

This section addresses sensor allocation in a field with only two zones, Z1 and
Z2. The size of zones Z1 and Z2 are (1 − γ)A and γA, the sensing areas in each
zone are S and αS, and number of sensors per zone are n1 = (1 − β)n and
n2 = βn, respectively. See Table 1 for a summary.

Table 1. Parameters for two zones

Zone Zone area Sensing area Sensor count
Z1 (1 − γ)A S n1 = (1 − β)n
Z2 γA αS n2 = βn

Based on (1), coverage can be calculated in O(1) operations with the following
formula:

(1 − γ)(1 − e−
S

(1−γ)A (1−β)n) + γ(1 − e−
αS
γA βn)

= 1 − (1 − γ)e−
S

(1−γ)A (1−β)n − γe−
αS
γA βn (4)

This reduces to (1) when β = γ and α = 1. Two ways to derive the optimal
allocation follow.

Solution 1 (Brute force, O(n)). Select the best of all n + 1 possible partitions.

Solution 2 (Direct calculation, O(1)). Calculate n2 by first calculating βopt with
(5) and then rounding βoptn to the integer for which coverage is maximum.

βopt =

{
0 if n < −A(1−γ) ln α

S
1

(1−γ)α+γ (Aγ(1−γ) ln α
Sn + γ) otherwise

(5)

Proof. Taking the second derivative of (4) shows that it is concave in the interval
[0, 1]. To find the value of β that maximizes (4), set the first derivative of (4)
equal to 0 and solve for β. For values of n for which the resulting formula is less
than 0, set βopt equal to 0. ��

384 A. Bar-Noy, T. Brown, and S. Shamoun

The next solution is used in estimating costs.

Solution 3. The number of sensors n required to achieve coverage V under the
optimal partition can be calculated as follows:

n =

{
− (1−γ)A

S ln 1−γ−V
1−γ if V < (1 − γ)(1 − α)

− ((1−γ)α+γ)A
αS

(
α(1−γ)

(1−γ)α+γ ln α + ln 1−V
(1−γ)α+γ

)
otherwise

(6)

Proof. First derive the following formula for V by substituting (5) for β in (4)
and then solve for n.

V =

⎧⎨
⎩1 −

(
(1 − γ)e−

S
(1−γ)A n + γ

)
if n < −A(1−γ) ln α

S

1 − ((1 − γ)α + γ)e−
α(1−γ) ln α
(1−γ)α+γ e−

α
(1−γ)α+γ

S
A n otherwise

(7)

��

The last solution is for bounding improvement over the oblivious allocation,
which is to set β = γ. The upper bound depends on the value of βopt. When
βopt < γ, the maximum improvement is trivially .5 when S → A, γ → 0 and
α → 0 and only one sensor is deployed. In less extreme cases, significant coverage
is only achieved when the sensor count is large enough such that βopt > γ.
Therefore, the focus here is on the case when βopt > γ.

Solution 4. The upper bound in improvement when βopt > γ, for any set of
values of α, γ, n, A, and S, can be calculated with the following formula.

γ((1 − γ)α + γ)
(1−γ)α+γ

(1−γ)(1−α) α
α

1−α (1 − α)(1 − γ) (8)

Proof. First, observe that β increases with n, since lnα is negative for α < 1 and
limn→∞

Aγ(1−γ) lnα
Sn = 0. Therefore, the improvement in Z2 is an upper bound

on the total improvement. Begin with the difference in coverage of Z2 between
using β = βopt and β = γ.

γ(e−
αS
γA γn − e−

αS
γA

1
(1−γ)α+γ

(Aγ(1−γ) ln α
Sn +γ)n) (9)

Find the value of n at which this is maximum by setting the derivative with
respect to n equal to 0 and solving for n.

n = − A

αS

(
(1 − γ)α + γ

(1 − γ)(1 − α)
ln((1 − γ)α + γ) +

α

1 − α
ln α

)
(10)

Substitute this value of n back into (9) and reduce to find the upper bound. ��

Remark 1. When βopt > γ, absolute improvement never exceeds .13. The max-
imum value of (8) occurs when α → 0 and γ ≈ .394, as found by numerical
approximation.

Sensor Allocation in Diverse Environments 385

5 Multiple Zones

Solutions for a field with m zones are discussed in this section. The area of each
zone Zi is γiA such that

∑m
i=1 γi = 1. The sensing area in each Zi is αiS, such

that 1 = α1 > α2 > . . . > αm > 0. The number of sensors assigned to each Zi is
βin, such that

∑m
i=1 βi = 1. The expected coverage is

m∑
i=1

γi

(
1 − e

−αiS

γiA βin
)

= 1 −
m∑

i=1

γie
−αiS

γiA βin (11)

This is a generalization of (4), in which β1 = 1 − β2 and γ1 = 1 − γ2. The
coverage of each zone can be calculated in O(1) time and of the whole field in
O(m) time. Four ways to derive the optimal partition follow.

Solution 1 (Brute force, O(nm−1m)). Select the best of all
(
n+m−1

m−1

)
possible

partitions.

Note 1. This is not considered polynomial in n, since, for n = m,
(2n−1

n−1

)
≥ 22n−1√

n
.

Solution 2 (Dynamic programming, O(n2m)). Derive the optimal partition with
the following dynamic programming formulation, in which H(i, j) is the max-
imum achievable coverage of zones Zi to Zm with j sensors, and Gi(j) is the
coverage of Zi by j sensors.

H(i, j) = max
0≤k≤j

{γiGi(k) + H(i + 1, j − k)}

H(m, j) = γmGm(j)

Gi(j) = 1 − e
−αiS

γiA j (12)

Solution 3 (Greedy algorithm, O(n log m)). Store the zones in a heap, in which
priority is given to zones with the maximum increase in coverage when adding
a sensor. Allocate sensors one by one by the following steps: Remove the top
zone from the heap, add a sensor to it, calculate the coverage increase by adding
another sensor to that zone, return the zone to the heap, and repeat.

Proof. A proof by contradiction shows that the greedy algorithm obtains the
optimal partition. If the final partition is not optimal, then coverage can be
improved by moving at least one sensor from Zi to Zj , for some i and j. Let this
be the last sensor allocated to Zi in the one-by-one allocation. The increase in
coverage was greater by assigning it to Zi rather than Zj in the round that it was
allocated to Zi. The increase in coverage by any sensor added to Zj afterwards
must have been less than the increase by adding this sensor to Zi. Otherwise,
it would have been assigned to Zj before them. Therefore, coverage cannot be
improved by moving a sensor between zones. This is even true for moving several
sensors, since the coverage increase declines with each sensor added to Zj , while
the coverage decrease grows as those same sensors are removed from Zi.

The complexity is derived as follows. There are O(n) rounds, one for each
sensor. Each round requires O(log m) steps to reorder the heap. The coverage
increase can be calculated in O(1) time by applying (1). ��

386 A. Bar-Noy, T. Brown, and S. Shamoun

Just as in the case of two zones, the runtime can be improved by calculating
the optimal partition directly. The optimal βi can be derived in O(m2) time with
Lagrange multipliers, the details of which are excluded. An alternative solution
is based on the following property of the coverage of two zones.

Proposition 1. The optimal coverage of a two-zone field is equal to the expres-
sion 1 − Ce−

α′S
A n for some values of C and α′.

Proof. This is evident from (7). ��
The direct calculation solution is for the following characterization of the field:
Let Z ′

i be the combination of zones (Z1, . . . , Zi). The area of Z ′
i is A′

i =
∑i

j=1 γjA.
Each zone Z ′

i, for i > 1, can be considered a field of two zones Z ′
i−1 and Zi. The

fraction of Z ′
i covered by Zi is γ′

i = γi/
∑i

j=1 γj . Let β′
i be a partition of sensors

between Z ′
i−1 and Zi. See Table 2 for a summary of the parameters. The expected

coverage is

1 −
m∑

i=1

γie
−αiS

γiA β′
i

∏m
j=i+1(1−β′

j)n (13)

Table 2. Parameters for m zones

Zone Zone area sensing area Sensor count
Z1 γ1A S (1 − β′

2) · . . . · (1 − β′
m)n

. . .

Zm−1 γm−1A αm−1S β′
m−1(1 − β′

m)n
Zm γmA αmS β′

mn

Solution 4 (Direct calculation, O(m)). Begin by calculating β′
optm

with (14) be-
low, rounding β′

optm
n to the integer for which coverage is largest. Allocate these

sensors to Zm, and then recursively partition the remaining sensors in Z ′
m−1 us-

ing the same method, calculating β′
optm−1

for the remaining number of sensors.

β′
opti

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n < −

(1−γ′

i)A
′

i ln
αi

α′

i−1Ci−1

α′

i−1S

1
(1−γ′

i
)αi+γ′

i
α′

i−1

(
Aγi(1−γ′

i) ln
αi

α′

i−1Ci−1

Sn
+ γ′

iα
′
i−1

)
otherwise

(14)
in which A′

i =
∑i

j=1 γjA, γ′
i = γi/

∑i
j=1 γj , and

C1 = 1 Ci≥2 =
(1 − γ′

i)αi + γ′
iα

′
i−1

α′
i−1

(
α′

i−1Ci−1

αi

) (1−γ′
i)αi

(1−γ′
i
)αi+γ′

i
α′

i−1
(15)

α′
1 = 1 α′

i≥2 =
αiα

′
i−1

(1 − γ′
i)αi + γ′

iα
′
i−1

(16)

Sensor Allocation in Diverse Environments 387

Proof. According to Proposition 1, the optimal coverage of any zone Z ′
i by n

sensors is 1 − Cie
−α′

iS

A′
i

n
, such that the expected coverage under a partition β′

i is
formulated as

1 − (1 − γ′
i)Ci−1e

− α′
i−1S

(1−γ′
i
)A′

i
(1−β′

i)n − γ′
ie

− αiS

γ′
i
A′

i
β′

in (17)

Taking the second derivative of (17) shows that it is concave. Therefore, there
is one maximum for any value of β′

i. A sketch of the derivation of β′
opti

is as
follows. Set the first derivative of (17) with respect to β′

i equal to 0 and solve
for β′

i.

β′
i = 1

(1−γ′
i)αi+γ′

iα
′
i−1

(
Aγi(1−γ′

i) ln αi
α′

i−1Ci−1

Sn + γ′
iα

′
i−1

)
Substitute this expression into (17) and reduce to find the expression for cover-
age. This is used to define Ci and α′

i.

1 −
(1 − γ′

i)αi + γ′
iα

′
i−1

α′
i−1

(
α′

i−1Ci−1

αi

) (1−γ′
i)αi

γ′
i
α′

i−1+(1−γ′
i
)αi

e
− αiα′

i−1
γ′

i
α′

i−1+(1−γ′
i
)αi

S
A′

i
n

(18)

��
Note 2. When m = 2, this equation equals (5).

With (14), it is possible to determine the minimum sensor count required to
achieve an expected level of coverage.

Solution 5. The number of sensors n required to achieve coverage V under the
optimal partition can be calculated as follows:

n = − A′
i

α′
iS

ln

∑i
j=1 γj − V

Ci

∑i
j=1 γj

, i = max
i≥1

⎛
⎝V ≥

i−1∑
j=1

γj

α′
i−1 − αi

α′
i−1

⎞
⎠ (19)

Proof. In the optimal sensor partition, some zone Z ′
i is the combination of all

zones to which sensors are allocated. The coverage of the entire field is the
coverage of Z ′

i times the fraction of the field covered by Z ′
i. Sensors are first

allocated to Zi when n = −
(1−γ′

i)A
′
i ln αi

α′
i−1Ci−1

α′
i−1S . The optimal coverage of the

entire field is therefore

V =
i∑

j=1

γj

(
1 − Cie

−α′
i

S
A′

i
n
)

, i = max
i≥1

(
n ≥ −

(1 − γ′
i)A

′
i ln αi

α′
i−1Ci−1

α′
i−1S

)
(20)

Here, α′
0 = C0 = 1. It can be shown that coverage of the entire field when

n = −
(1−γ′

i)A
′
i ln αi

α′
i−1Ci−1

α′
i−1S is

i∑
j=1

γj

⎛
⎝1 − Cie

α′
i(1−γ′

i) ln
αi

α′
i−1Ci−1

α′
i−1

⎞
⎠ =

i−1∑
j=1

γj

α′
i−1 − αi

α′
i−1

(21)

��

388 A. Bar-Noy, T. Brown, and S. Shamoun

The oblivious allocation is to set βi = γi in (11) or to set β′
i = γ′

i in (13). The
upper bound on improvement is no greater than the upper bound for a two zone
field with α = αm.

6 Extensions

The solutions above can be modified to address many variations of the problem.
For example, the greedy algorithm can be used if disk-shaped sensors are to
be deployed deterministically. By making a loose assumption that sensors will
be arranged along the grid points of a triangle lattice (which is the optimal
arrangement of disks in an unbounded region [1]) in each zone, then a suitable
equation for the coverage by such an arrangement of sensors (see [9] for an
example) can be used to calculate the coverage increase by adding a sensor to
each zone. Deployment should account for probable sensor failure [10]. If all
sensors in Zone Zi are associated with a probability of failure pi, then Solution 4
can still be applied by replacing αi with piαi and ordering the zones accordingly.
Many works consider regions of preferential coverage within the deployment field
[3,17], such as densely populated areas [16] and amphibian hot-spots [11]. One
way to address this is by weighting the coverage of each zone according to its
priority, with the objective of maximizing weighted coverage [16]. In this case,
(11) can be modified by multiplying the coverage of each zone by weight wi.

In general, the allocation problem can be defined as follows: Given m func-
tions fi(ni) that characterize the quality of coverage of Zi by ni sensors, for
all 1 ≤ i ≤ m, and g(f1(n1), . . . , fm(nm)) that characterizes the coverage of
the an m-zone field by a partition (n1, n2, . . . , nm) of n sensors, find a sensor
partition that maximizes g. The scope of problems the solutions cover increases
with their complexity. Direct calculation is only applicable for certain types of
functions. The greedy algorithm applies when each fi is strictly increasing, while
dynamic programming is suitable for all types of functions f . The complexity of
both these methods must be multiplied by the time to calculate fi. Also, they
are only suitable when g is linear. Brute force clearly covers all problems, but
the complexity depends on the complexity of calculating coverage under each
partition.

7 Simulation Results

In this section, simulation results are compared to expected values of (a) the
coverage by the optimal and oblivious partition and the optimal deterministic
deployment, (b) the maximum increase in coverage, and (c) the optimal beta for
two zones. Coverage is approximated by superimposing a grid over the sensor
field and counting the number of grid points that are covered by at least one
sensor. All simulation results are averages of fifty or more repetitions.

The first set of results are for square fields with two zones, in which all sensing
areas are disks, S = π202, and A = 4002. Figure 1(a) compares the expected

Sensor Allocation in Diverse Environments 389

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 718 1436 2154 2872 3590

C
ov

er
ag

e

Sensors

oblivious
beta-opt

(a) coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 718 1436 2154 2872 3590

B
et

a-
op

t

Sensors

analytic
optimal

(b) partition

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 718 1436 2154 2872 3590

A
bs

ol
ut

e
im

pr
ov

em
en

t

Sensors

expected
simulated

optimal

(c) improvement

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0 718 1436 2154 2872 3590

D
iff

er
en

ce

Sensors

oblivious
beta-opt

(d) difference

0.1 0.3 0.5 0.7 0.90.1
0.3

0.5
0.7

0.9
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12

Alpha
Gamma

(e) Upper bounds in improvement

0.1 0.3 0.5 0.7 0.90.1
0.3

0.5
0.7

0.9
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

Alpha
Gamma

(f) Maximum improvement

Fig. 1. Coverage of two zones

coverage by the optimal partition to the expected coverage by the oblivious par-
tition when α = .05 and γ = .4. To evaluate the quality of Solution 2, βopt

is compared to the optimal partition found empirically using binary search in
Fig.1(b). The average improvement in coverage when using either partition is
compared to the expected improvement when using βopt in Fig.1(c). It is clear
from these figures that βopt is indeed optimal. However, the average improve-
ment is less than expected. Sensors in zone Z1 significantly increase coverage in
Z2 when placed along the border between the two zones because of the large
difference in sensing areas. This effect is not as great when using the optimal
partition since the increase in coverage by adding sensors to either zone is the
same. This effect is highlighted in Fig.1(d), which shows the difference between
the expected and average coverage by the oblivious and optimal partitions. The
results are similar for other values of α and γ. Figure 1(e) shows the upper
bounds in improvement according to (8) for α ∈ [.05, .90] and γ ∈ [.1, .9], while
Fig.1(f) shows the maximum improvement found in simulations. The average
improvement is smaller for the same considerations above.

The next set of results are for a square field with nine equal sized zones,
in which A = 9002 and Si ∈ {π82, π122, . . . , π402}. Three sets of simulations
were conducted, in which sensing areas in all zones were either disk shaped or
ellipse-shaped with either a 2:1 or 3:1 major to minor axis ratio, denoted in
the figures as “disk”, “ellipse2”, and “ellipse3”, respectively. Additionally, these
simulations were conducted for different arrangements of the zones in the field.
Figure 2(a) compares an upper bound on the maximum achievable coverage
by a deterministic partition, the expected coverage by the optimal partition,

390 A. Bar-Noy, T. Brown, and S. Shamoun

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100

0 875 1750 2625 3500

C
ov

er
ag

e

Sensors

maximum
optimal

oblivious

(a) expected

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0 875 1750 2625 3500

C
ov

er
ag

e

Sensors

expected
disk

ellipse2
ellipse3

(b) optimal

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0 875 1750 2625 3500

Im
pr

ov
em

en
t

Sensors

expected
disk

ellipse2
ellipse3

(c) improvement

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0 875 1750 2625 3500

D
iff

er
en

ce

Sensors

oblivious
optimal

(d) difference

Fig. 2. Coverage of a multi zone field

and the expected coverage by the oblivious partition. Figure 2(b) compares the
expected coverage and average coverage by disk and ellipse shaped sensors under
the optimal partition. In this instance, the difference between the expected and
average coverage was less than 1% for all three shapes, providing some support
to the no border effects assumption. In some other instances, the difference was
close to 2%. However, coverage by disk and ellipse shaped sensors still differed
by less than 1%, supporting the assumption the sensing shape has little effect
on expected coverage. For the same consideration as in the two zone case, the
average improvement is less than expected, as highlighted in Figures Fig.2(c) and
Fig.2(d). The results were similar for fields with larger zones. However, when the
sensing areas were increased, the differences in coverage between disk and ellipse
shaped sensors became larger.

The following figures illustrate certain properties of the optimal partition in
multi zone fields. In these figures, A = 6002, S = π202, γi = 1/m for all i, αm =
.1, and αi+1 − αi is the same for all i. Figure 3(a) shows the required number
of sensors for an expected coverage of .98 by the optimal random allocation.
Figure 3(b) shows the maximum improvement in coverage when all zones contain
at least one sensor. Figure 3(c) shows the fraction of sensors allocated to the
last n/2 zones when the expected optimal coverage is .98. These values quickly
converge at about the same rate to specific values.

Because of the type and number of floating point operations required by the
different solutions, the execution of the different algorithms was timed to verify
the asymptotic runtime. Figure 4 shows the time required to calculate the opti-
mal partition using the different algorithms. The values plotted are the medians

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

0 20 40 60 80 100

S
en

so
rs

Zones

(a) sensor count

0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075

0 20 40 60 80 100

A
bs

ol
ut

e
im

pr
ov

em
en

t

Zones

(b) improvement

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0 20 40 60 80 100

B
et

a

Zones

(c) partition

Fig. 3. Statistics for multiple zone coverage

Sensor Allocation in Diverse Environments 391

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

m
ic

ro
se

cs

Sensors (thousands)

5 zones
10 zones
15 zones
20 zones

(a) direct

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2 4 6 8 10 12 14 16 18 20

m
ic

ro
se

cs

Sensors (thousands)

5 zones
10 zones
15 zones
20 zones

(b) greedy

Fig. 4. Time to calculate optimal partition

of fifty simulations for each sensor count. The actual runtimes conform to the
asymptotic runtimes, although the time for analytic solution slightly increases
with the number of sensors.

8 Conclusion

This paper presents several solutions to the zone allocation problem for random
deployment and shows how to extend these solutions to other problem models.
Simulations supported the use of (1) in characterizing coverage and the assump-
tions that borders and shapes of sensing areas have little effect on the optimal
partition. These assumptions are valid when the size of the sensing areas are
not too large with respect to the size of the zones in which they are placed.
Understanding the limitations of these assumptions requires further analysis,
as well as a better understanding of the effects of borders and sensing shapes
when these assumptions are no longer valid. Further analysis is required when
the other assumptions upon which the analysis rests are loosened. For example,
in reality, sensing areas are most likely somewhat diverse within each zone. Ex-
pected coverage under random deployments and optimal placement in “mildly”
diverse zones must be addressed differently. The effects of inexact sensor deploy-
ment must be considered, both for deterministic [17] and random deployments
(when sensors cannot be confined to the bounds of each zone). Finally, various
other models can be considered, such as the general sensing model, non-uniform
distributions, and weighted distance functions to represent environment effects.

Acknowledgments

This research was sponsored by US Army Research laboratory and the UK Min-
istry of Defence and was accomplished under Agreement Number W911NF-06-
3-0001. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Govern-
ment, the UK Ministry of Defence, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation hereon.

392 A. Bar-Noy, T. Brown, and S. Shamoun

References

1. Brass, P.: Bounds on coverage and target detection capabilities for models of net-
works of mobile sensors. TOSN 3(2) (2007)

2. Cheung, Y.K., Daescu, O., Kurdia, A.: A new modeling for finding optimal
weighted distances. In: Casadio, R., Daescu, O., Dini, C., Raicu, D.S. (eds.)
BIOTECHNO, pp. 41–46. IEEE Computer Society, Los Alamitos (2008)

3. Dhillon, S.S., Chakrabarty, K.: Sensor placement for effective coverage and surveil-
lance in distributed sensor networks. WCNC 3, 1609–1614 (2003)

4. Fanimokun, A., Frolik, J.: Effects of natural propagation environments on wireless
sensor network coverage area. In: Proceedings of the 35th Southeastern Symposium
on System Theory, pp. 16–20 (March 2003)

5. Hall, P.: Introduction to the Theory of Coverage Processes. John Wiley and Sons,
Chichester (1988)

6. Lan, G.L., Ma, Z.M., Sun, S.S.: Coverage problem of wireless sensor networks. In:
Akiyama, J., Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005.
LNCS, vol. 4381, pp. 88–100. Springer, Heidelberg (2007)

7. Lazos, L., Poovendran, R.: Stochastic coverage in heterogeneous sensor networks.
TOSN 2(3), 325–358 (2006)

8. Liu, B., Towsley, D.: A study of the coverage of large-scale sensor networks. In:
MASS, pp. 475–483 (October 2004)

9. Pompili, D., Melodia, T., Akyildiz, I.F.: Three-dimensional and two-dimensional
deployment analysis for underwater acoustic sensor networks. Ad Hoc Net-
works 7(4), 778–790 (2009)

10. Shakkottai, S., Srikant, R., Shroff, N.B.: Unreliable sensor grids: coverage, connec-
tivity and diameter. Ad Hoc Networks 3(6), 702–716 (2005)

11. Shukla, S., Bulusu, N., Jha, S.: Cane-toad monitoring in kakadu national park
using wireless sensor networks. In: Proceedings of APAN (2004)

12. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A.M., Estrin,
D.: Habitat monitoring with sensor networks. Commun. ACM 47(6), 34–40 (2004)

13. Verma, D.C., Wu, C.W., Brown, T., Bar-Noy, A., Shamoun, S., Nixon, M.: Location
dependent heuristics for sensor coverage planning, vol. 6981, p. 69810. SPIE, San
Jose (2008), http://link.aip.org/link/?PSI/6981/69810B/1

14. Verma, D.C., Wu, C.W., Brown, T., Bar-Noy, A., Shamoun, S., Nixon, M.: Appli-
cation of halftoning algorithms to location dependent sensor placement. In: ISCAS,
pp. 161–164 (2009)

15. Xing, G., Tan, R., Liu, B., Wang, J., Jia, X., Yi, C.W.: Data fusion improves
the coverage of wireless sensor networks. In: Shin, K.G., Zhang, Y., Bagrodia, R.,
Govindan, R. (eds.) MOBICOM, pp. 157–168. ACM Press, New York (2009)

16. Yang, Y., Hou, I.H., Hou, J.C., Shankar, M., Rao, N.S.: Sensor placement revisited
in a realistic environment. Tech. Rep. UIUCDCS-R-2007-2840, University of Illinois
at Urbana-Champaign (2007)

17. Zou, Y., Chakrabarty, K.: Uncertainty-aware and coverage-oriented deployment
for sensor networks. Journal of Parallel and Distributed Computing 64(7),
788–798 (2004)

http://link.aip.org/link/?PSI/6981/69810B/1

Data Spider: A Resilient Mobile Basestation
Protocol for Efficient Data Collection in

Wireless Sensor Networks

Onur Soysal and Murat Demirbas

Computer Science & Engineering Dept.,
University at Buffalo, SUNY

{osoysal,demirbas}@cse.buffalo.edu

Abstract. Traditional deployments of wireless sensor networks (WSNs)
rely on static basestations to collect data. For applications with highly
spatio-temporal and dynamic data generation, such as tracking and de-
tection applications, static basestations suffer from communication bot-
tlenecks and long routes, which cause reliability and lifetime to plummet.
To address this problem, we propose a holistic solution where the syn-
ergy of the WSN and the mobile basestation improves the reliability
and lifetime of data collection. The WSN component of our solution is a
lightweight dynamic routing tree maintenance protocol which tracks the
location of the basestation to provide an always connected network. The
mobile basestation component of our solution complements the dynamic
tree reconfiguration protocol by trailing towards the data generation, and
hence, reducing the number of hops the data needs to travel to the bases-
tation. While both protocols are simple and lightweight, combined they
lead to significant improvements in the reliability and lifetime of data col-
lection. We provide an analytical discussion of our solution along with
extensive simulations.

1 Introduction

The objective for deploying a wireless sensor network (WSN) is to collect data
from an area for some time interval. Traditionally, a static basestation (SB) is
deployed with the WSN, and the WSN nodes relay data over multihops towards
the SB, which stores/uploads the data for processing. In order to improve the
efficiency (which determines the lifetime) and reliability (which determines the
quality) of data collection, most of the research in the literature focus on the
relay nodes. Several schemes have been proposed for establishing coordinated
sleep-wake-up, aggregation, and routing over relay nodes. On the other hand,
relatively little attention is paid to changing the SB model, and investigating
holistic solutions to the data collection problem.

The traditional SB model has several handicaps. A primary problem is that
the SB constitutes a hotspot for the system. Since the nodes closer to SB are
always employed in relaying the entire traffic, those nodes deplete their batteries
quickly, putting a cap on the lifetime of the deployment. Another major problem

R. Rajaraman et al. (Eds.): DCOSS 2010, LNCS 6131, pp. 393–408, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

394 O. Soysal and M. Demirbas

is due to the spatio-temporal nature of the data generation. In several WSN de-
ployments, including environmental monitoring [5], habitat monitoring [16], and
especially surveillance systems [7,1], it has been observed that the phenomena of
interest are local both in time and space. Fixing the location of the basestation
ignores the nature of the data generation and results in long multihop paths for
relaying, which leads to a lot of collisions and data losses.

In order to address the drawbacks of the SB model, several work proposed
to deploy a mobile basestation (MB) for data collection [11, 8, 2]. The classical
“data mule” work [13] proposed to exploit random movement of MBs to op-
portunistically collect data from a WSN. Here, the nodes buffer their data and
upload only when the MB arrives within direct communication. Although this
approach eliminates multihop data relaying, the tradeoff is the very high latency,
which makes the approach unsuitable for real-time monitoring applications. To
fix the latency problem, the mobile element scheduling (MES) work [15] consid-
ered the controlled mobility of the MB and studied the problem of planning a
path for the MB to visit the nodes before their buffers overflow (which turned
out to be an NP-complete problem [15, 9]). MES work assumes that the data-
rates in the WSN are known and fixed (constant after initialization), and this
is limiting for monitoring applications. Controlled sink mobility in [3] reduces
latencies significantly through maintenance of routes to sink location from all
nodes. Optimal solution for this model requires preprocessing similar to MES,
so the authors in [3] propose a greedy alternative. However, since reactive sink
mobility requires flooding of the entire network, the controlled sink mobility
work [3] assumes that the sink stays for relatively long durations on small num-
ber of predefined sink locations, which limits its ability to address dynamic data
generation in an agile manner.

In our previous work, we presented a holistic, network controlled MB algo-
rithm, “data salmon” [6]. Data salmon constructs a backbone spanning tree over
the WSN, and constrains both the data relaying and the MB movements to oc-
cur on this tree. Data salmon moves the MB greedily to the subtree where most
of the traffic originates.1 In return when the MB moves along one edge of the
tree, it inverts the direction of the edge to point to its new location to ensure
that the root of the backbone tree is switched to be at the new location of MB.
Hence tracking of the MB is achieved with minimum cost. Although it achieves
low cost tracking and reduces the average weighted relay distance of data, the
data salmon has some shortcomings. The hotspot problem is not addressed: since
data salmon uses a static backbone tree, the center of the static backbone tree
still relays a significant amount of traffic and is a potential hotspot. Moreover, a
static backbone tree implies that a message-loss during the handoff of MB from
one node on the tree to the next leads to a permanent partitioning.2

1 We showed that this greedy strategy is optimal, under the constraints of limiting all
the data relaying to occur on the static backbone tree.

2 Requiring acknowledgment messages alleviates the problem, but also increases the
overhead of the protocol significantly.

Data Spider: A Resilient Mobile Basestation Protocol 395

Our contributions. We present data spider a holistic solution where the
synergy of the WSN and the MB improves both the reliability and lifetime
of data collection. The WSN component of our solution is a very lightweight
dynamic routing tree maintenance protocol which tracks the MB to provide an
always connected network. This tree is updated locally and efficiently by the
movements of the MB. The visual imagery is that of a spider (corresponding to
the MB) re-weaving/repairing its web (corresponding to the tree) as it moves.
To complete the feedback loop, the spider relies on its web to detect interesting
phenomena (data generation) to follow. By trailing towards the data generation,
the MB component of our solution reduces the number of hops the data needs to
travel to the basestation. Since the data spider uses a dynamically reconfigured
tree to route traffic, it avoids the hotspot problem of data salmon, which used
a static backbone tree for routing. As a result, data spider extends the lifetime
of the deployment by several folds over the data salmon. Due to its dynamically
reconfigured tree, data spider is also resilient against message-losses.

We present our dynamic tree reconfiguration protocol, DTR (read detour), in
Section 3. The DTR philosophy is to update the tree at where it counts, that
is, where the most recent action is. Therefore, instead of trying to maintain a
distance-sensitive tree for the entire network (which is clearly a non-local task),
we maintain a temporally-sensitive tree by reconfiguring the tree only at the
immediate locality of the MB. Since we restrict the tree reconfiguration only to
the singlehop of the MB, the maintenance cost of the tree is very low. Yet this
does not lead to long and inefficient paths for data relaying to MB: since the
MB follows the data generation closely, the effective length of data-forwarding
paths is only a couple of hops. (The lenghts of non-data-forwarding paths are
irrelevant for the data collection problem.) We give the correctness proof of tree
reconfiguraton at DTR in Section 3.2.

To investigate the requirements for proper handoffs by the MB, we formulate
the handoff connectivity property in Section 3.3. Handoff connectivity, intuitively,
captures the notion of having no holes in the network. We note that our data
spider waives the handoff connectivity requirement in practice. In Section 4 we
present a simple yet very effective algorithm—trail-flow algorithm—for the MB,
that avoids bad handoffs. In the trail-flow algorithm, the MB follows the edges
where most data is flowing to itself, instead of going directly to the source of
the data (which we dub as the follow-source approach). Our simulation results
show that follow-source leads to several incorrect handoffs whereas trail-flow still
functions correctly in the same density/network.

We give simulation results to investigate the scalability and efficiency of data
spider, and compare it with data salmon and the SB approach in Section 5. Our
simulator uses realistic lossy channel models and provides a high-fidelity energy
calculation by using BMAC [12] as the model for the MAC layer communica-
tions.3 Our simulation results show that data spider outperforms data salmon

3 Since our simulator is parametrized extensively it is suitable for modeling and in-
vestigating other MB algorithms easily. Our simulator is available at http://www.

cse.buffalo.edu/ubicomp/dataSpider/

http://www.cse.buffalo.edu/ubicomp/dataSpider/
http://www.cse.buffalo.edu/ubicomp/dataSpider/

396 O. Soysal and M. Demirbas

and the SB approaches consistently, and leads to significant improvements in
the reliability and lifetime of data collection. Although we focus on one mobile
region of interest (ROI) and on one MB for most of the paper, we note that
data spider extends readily to allow several MBs to share the same network to
track multiple ROIs. Our simulation results with multiple MBs collecting data
from multiple ROIs are very promising; despite the lack of explicit coordination
between the MBs, these simulations show an emergent cooperation and division
of labor among the MBs leading to improved performance.

2 Model

We consider a dense, connected, multihop WSN. The sensor nodes are static after
the initial deployment. We assume that the data generation has spatio-temporal
correlation but is otherwise dynamic/unpredictable. This model captures the
data generation in event detection, tracking, and surveillance applications. Our
implementation of the data generation uses a circular region of interest (ROI).
We allow only the sensors in this ROI to generate data. The ROI moves around
in the network nondeterministically to simulate the behavior of mobile events.
This ROI scheme generates dynamic data that is challenging for precomputed
basestation mobility as in [3, 9].

We account for the message transmission costs of the sensor nodes as well
as the reception costs and idle listening costs at the nodes. We assume CSMA
with BMAC low-power-listening [12] for the MAC layer and use the associated
energy model in [12] to calculate the energy usage at each node. Since our DTR
and MB protocols are simple, we ignore the energy cost of the computation. We
assume the MB is capable of locating itself and traveling to target locations. In
our model, we have not included the energy required for moving the MB.4

3 Dynamic Tree Reconfiguration

Here, we first present the DTR algorithm. We give the correctness proof of DTR
in Section 3.2 and present the handoff connectivity requirements for DTR in
Section 3.3. Finally, we present extensions to the basic DTR in Section 3.4.

3.1 DTR Algorithm

To maintain always-on connectivity to the MB, the network should continuously
track it and update the existing routing paths to point to its new location. Trying
to maintain a distance-sensitive tracking structure (e.g., maintaining a shortest

4 The reason behind our willingness to generously tradeoff the energy required for
relocating the MB with the energy gain in data collection is that it is much easier
to replenish and maintain the batteries of one MB than those of the sensor nodes in
the entire network. We assume that the MB is recharged periodically or is equipped
with energy harvesting capabilities such as solar panels.

Data Spider: A Resilient Mobile Basestation Protocol 397

b a

MB

b a

MB

b a

MB

(b)Broadcast (c)After Broadcast(a)Before Broadcast

Fig. 1. Demonstration of DTR as MB moves from one anchor to another. The touched
edges are gray edges in (b) and actual changes are bold edges in (c).

path tree rooted at the MB) would be beneficial since it would reduce the number
of hops data need to be relayed towards the MB. However, this is inherently a
non-local and costly task as it requires frequent multihop broadcasts.

Since energy-efficiency is of utmost importance for elongating the lifetime, in
our dynamic tree configuration protocol, DTR, we take an alternative approach.
To keep the maintenance cost of the tree very low, we confine DTR to reconfigure
the tree only at the immediate locality (singlehop) of the MB. To ensure that
DTR does not beget long and inefficient paths for data relaying to MB, we rely
on the MB algorithm. In our simulation results in Section 5.2, we show that since
the MB’s trail-flow algorithm follows the data generation closely, the effective
length of data relaying paths is only a couple of hops.

DTR starts with a spanning tree rooted at the MB. This could be established
by constructing an initial tree using flooding and keeping the MB static. The
root node of this initial tree is called the anchor node, which is also the closest
node to the MB. As it relocates in the network, MB chooses the anchor node to
be the closest node to itself and makes periodic broadcasts to declare the anchor
node to all nodes in its singlehop range. Nodes that receive the anchor broadcast
update their parents (next pointers) to point to the new anchor node. At any
time there is a unique anchor node in the network, which is maintained to be
the closest node to the MB.

We present DTR in Algorithm 1. Only the nodes that receive the anchor
broadcast execute an action and update their next pointers. The anchor broad-
casts are local to the singlehop of the MB and they are not relayed to multiple
hops. Figure 1 depicts an example of DTR execution.

Algorithm 1. DTR Algorithm
1. Wait for the anchor message
2. if anchor == self then
3. next ← MB
4. else if anchor ∈ Neighbors then
5. next ← anchor
6. end if

398 O. Soysal and M. Demirbas

Dynamic convoy tree work [17] adresses a relevant dynamic tree reconfigura-
tion problem in the context of target tracking. Dynamic convoy tree maintains a
monitoring tree to cover a mobile ROI. The root of this monitoring tree controls
expansion and contraction of the tree and when needed decides on the relocation
of the root to another node based on the information it collects from the entire
tree. Our advantage in DTR is the cooperation of the MB for relocating the
root of the tree to an optimal location using local singlehop updates, whereas
the convoy tree needs to deal with the tree reconfiguration problem by using
multihop update messages.

3.2 Correctness

We call the operation with which the MB changes the anchor node from one
node to another as handoff. We call a handoff a proper handoff iff (1) both the
old and new anchor nodes receive the MB’s anchor broadcast, and (2) both the
old and new anchor nodes can reliably communicate with each other. Finally,
we call a network routing connected iff the next links of nodes form a spanning
routing tree rooted at MB.

Theorem 1. If all handoffs are proper, an iteration of Algorithm 1 starting
from a routing connected network results in another routing connected network.

Proof. Consider tree reconfiguration on a graph G = (V, E) where u, v ∈ V
correspond to the nodes and e = (u, v) ∈ E correspond to the reliable commu-
nication links between the nodes. We use r to denote the old anchor and r′ to
denote the new anchor. In the base case, when there is no handoff, r′ = r, and
the theorem holds vacuously. We next consider the case where r′ �= r.

The iteration of Algorithm 1 entails an anchor broadcast received by a set of
nodes R ⊂ V . Let S ⊆ R be the set of nodes that actually change their next
links as a result of executing Algorithm 1. Since proper handoffs are assumed,
{r, r′} ⊆ S. Algorithm 1 dictates that all nodes in S points to r′ (with the
exception of r′ which points to the MB) after the update. That is, the next links
of nodes in S form a routing tree rooted at r′.

Let T (r) be a spanning routing tree of G rooted at node r, and FS be the
forest obtained by removing the next links of nodes in S from T (r). Since r ∈ S,
each tree in FS is rooted at a node in s ∈ S. By definition, none of the edges in
any tree Ts ∈ FS is changed. Since next links in S forms a routing tree rooted
at r′, next links in FS and S form a spanning routing tree rooted at r′.

While message losses are common in WSN environments, most message losses
do not affect the correctness of DTR (Theorem 1), as the definition of proper
handoffs only require reliable message delivery between the MB and the old and
new anchors. For the remaining nodes, message loss is only a nuisance, rather
than constituting a correctness problem. Message losses at these nodes may result
only in degraded performance, since their path is not updated to point to the
new anchor in the most direct/shortest manner. But, since the previous routes

Data Spider: A Resilient Mobile Basestation Protocol 399

point to the old anchor, which points to the new anchor, due to Theorem 1 the
network is still routing-connected.

The routing-connected network property is violated only when the old or new
anchor miss an anchor broadcast. DTR deals with this problem in two timescales:
short and long terms. In the short term the impact of message losses are reduced
through message redundancy. Increasing the anchor broadcast frequency at the
MB improves the chances that all neighbors receive the information about the
new anchor node. When this scheme is insufficient, there may be partitions in
the network due to improper handoffs. In the long term, since the MB is mobile,
MB is very likely to move over the partitioned regions eventually. This will, in
turn, fix the problem and enable the buffered packets to be relayed to the MB.

3.3 Handoff Connectivity

The correctness of DTR depends on the success of handoffs, which is in turn
imposed by the geometry and topology of the network. Here, we focus on planar
deployments and capture these required geometric and topological properties.

In data spider, MB invariantly maintains its closest node as the anchor node.
A useful abstraction for capturing this property is the Voronoi diagram of WSN
nodes. When the MB is in one of the Voronoi cells, its closest node, by definition,
is the WSN node corresponding to that Voronoi cell. Thus, as long as MB stays
in that Voronoi cell, the anchor node is unchanged.

With this anchor node definition, we identify the requirements for having
proper handoffs as follows. Let P denote a point in the deployment area and VP

be the set of nodes which are closest to P . So, if P falls inside a Voronoi cell,
then VP consists of a single node, the WSN node corresponding to that Voronoi
cell. If P falls on a Voronoi cell boundary, then VP consists of the neighboring
(i.e., adjacent) nodes for this Voronoi cell boundary.

We call a WSN deployment handoff connected when all points P in de-
ployment region satisfy:
1. For all nodes n ∈ VP , n can reliably communicate with a node placed at P .
2. For all nodes n, m ∈ VP , n and m can reliably communicate with each other.

In other words, in a handoff connected network (1) the MB sitting on a Voronoi
cell boundary can communicate with the nodes in the adjacent Voronoi cells,
and (2) any pair of Voronoi neighbors can communicate with each other.

The above handoff connectivity definition is valid when the updates of the MB
are continuous. Since we use discrete/periodic anchor broadcasts, we extend this
definition for our model. Let λ = vBS ∗ Tupdate be the maximum distance the
MB can travel between two location updates. We now require the anchor node
to be able to receive messages from the MB when it is at most λ away from
the Voronoi cell. Moreover, for proper handoff, any cell that falls to this region
should be in communication range. Figure 2 demonstrates this requirement.

To generalize the handoff region we extend the set of nearest nodes VP . V λ
P

to be the set of nodes which are at most λ + dmin away from point P where
dmin is the minimum distance to any node in network from P . Thus, using V λ

P

we generalize handoff connectivity as follows:

400 O. Soysal and M. Demirbas

A WSN deployment is said to be λ-general handoff connected when all
points P satisfy:
1. For all nodes n ∈ V λ

P , n can reliably communicate with a node place at P .
2. For all nodes n, m ∈ V λ

P , n and m can reliably communicate with each other.

3.4 Extensions to DTR

Handoff connectivity addresses only the immediate neighborhood of the anchor
node. Broadcasts on the other hand can be made stronger with better trans-
mitters on the MB so WSN nodes can receive broadcasts from non-neighboring
Voronoi cells. These receptions can be utilized to improve the performance of
DTR as follows. For this operation, nodes depend on neighborhood information
about their neighbors. That is, nodes share neighborhood information with their
neighbors, so that they can create two-hop routes to the anchor node when sin-
glehop routes are not possible. If the anchor is not an immediate neighbor of
the node, the node chooses its neighbor which is an immediate neighbor of the
anchor. In case there are multiple neighbors satisfying this condition, the closest
one to the anchor is chosen as the next node. As long as the chosen intermediate
nodes also received the anchor broadcast this operation extends the handoff con-
nectivity. We call this operation indirect handoff. We show neighbor nodes where
only indirect handoff is possible with green(light) edges in Figure 2. Non-anchor
nodes also benefit from our indirect handoff extension, as is the case for nodes
a and b in Figure 1.

Fig. 2. Shaded region shows possible locations of MB at the next update, starting
from center. Circle denotes the reliable communication range. Green(light) dashed
lines correspond to neighbors where direct handoff is not possible. Red(dark) dashed
lines correspond to neighbors where no handoff is possible.

4 MB Algorithm

The MB algorithm (given in Algorithm 2) synergizes with the DTR algorithm
to achieve efficient data collection. MB ensures two things:

Data Spider: A Resilient Mobile Basestation Protocol 401

Algorithm 2. MB Algorithm
1. loop
2. listen and update RecentPackets
3. if count(RecentPackets) > 0 then
4. target ← getTarget()
5. else
6. target ← getRandomTarget()
7. end if
8. navigate to target
9. anchor ← closestNodeTo(position)

10. broadcast anchor message
11. end loop

(1) The MB broadcasts an anchor message announcing the closest
node to itself periodically. This enables DTR to track MB correctly and
update the tree to be rooted at the MB. In order to detect and announce the
closest node to itself, MB should know its location as well as the locations of
nodes in the network. This is achievable by equipping the MB with a GPS
and the coordinates of the WSN nodes. Having a GPS on the MB is relatively
cheap, and the MB can also utilize its GPS to locate and collect the nodes after
deployment.
(2) The MB relocates to follow data generation in a best-effort man-
ner. This relocation reduces the length of data relaying paths in DTR to be
a couple of hops, improving both the reliability and the lifetime. To track the
data generation, MB utilizes the recent data packets that DTR routes to itself to
decide where to move to next. MB defaults to a random walk when there are no
packets, since this might indicate a disconnection of the network. Random walk
may help the MB to repair the partitioning and re-establish a connected network
where DTR can start delivering the data generated to the MB. Otherwise, MB
uses the getTarget() function to decide how to relocate based on the recently
received packets. We propose two heuristics for this function:

trailSource. Here, the MB inspects the source field of the data packets and
sets the relocation target to be the source of the packet generation (median of
the source locations). Although it seems like a reasonable approach, we show in
Section 5 that when the network is not regular (has holes in it) trailSource leads
to many improper handoffs and suffers severe performance penalties.

trailFlow. Here, the MB tries to go to the center of packet flow. In contrast
to trailSource that calculates the center of data generation, trailFlow calculates
the center of data forwarding from the singlehop neighbors of the MB. Since
packet forwarding is done over reliable edges, trailFlow directs the MB to avoid
the holes in the network implicitly (as a side benefit), so even in irregular and
sparse networks trailFlow ensures successful handoffs. Our simulation results in
Section 5 show that trailFlow consistently performs the best compared to the
other heuristics.

402 O. Soysal and M. Demirbas

5 Simulation

5.1 Setup

Simulator. We built our simulator on top of the JProwler simulator [14] and
implemented support for mobility for JProwler. Our simulator is parametrized
extensively, so it is suitable for modeling and investigating other MB algorithms
quickly. Figure 3 shows a screenshot of our simulator. Our simulator and details
about our simulator implementation are available at http://www.cse.buffalo.
edu/ubicomp/dataSpider/.

Simulation setup. We set the simulation area as a 160m by 120m rectangular
region with 300 mica2 nodes. We constrain the MB to this region and assume
that there are no significant obstacles to obstruct mobility within the region.
We model the data generation activity in the environment with a moving disc
to denote the ROI. The region of interest is a circle with 20m radius. All WSN
nodes covered by this disc generate data with a predetermined rate. The nodes
then try to forward this data to the MB if they have a valid next link. A node
buffers data if the channel is busy, or if it does not have a valid next link—which
may happen after an improper handoff. We leverage on work in [10] to generate
realistic human/animal like mobility patterns for the ROI.

In order to address energy efficiency questions we keep track of energy use in
our simulation. Our simulator uses CSMA with BMAC low-power-listening [12]
for the MAC layer and the associated energy model to calculate the energy used
in each node. In our simulation we obtain fine grain information about packet
arrivals and noise and replace the approximate values used in [12] with these
values to better capture the energy use in each sensor node. Table 1 summarizes
the parameters used for the energy efficiency calculations.

We ran each set of simulations for 72 simulation hours. Each simulation in-
cludes an initial neighborhood discovery and initial flooding phase.

info displaystats

Metric Value

time 16305.0

conScore(T) 0.971947338...

conScore(I,T) 0.992007047...

conScore(S) NaN

disconnects 0

handoffs 0

handoff mse NaN

useIndirect true

seed 20

range 90.0

badEdge 0.947431302...

packetsGener... 18450

packetsDropp... 0

packetsDelive... 9689

messagesSent 105803

maxEnergyUse 50.78025562...

lifetime(days) 100.3342723...

averageDelay 3.431903540...

Delivery ratio 0.525149051...

Throughput 0.594271344...

Print

Fast Forward 10...RunStep

Basestation

ROI

Packet Routes

Fig. 3. A screenshot of the simulator. Dark circles are the data generating nodes, and
shaded (pink) circle is the ROI. MB is indicated by the tiny roomba picture and arrows
show the packet routes.

http://www.cse.buffalo.edu/ubicomp/dataSpider/
http://www.cse.buffalo.edu/ubicomp/dataSpider/

Data Spider: A Resilient Mobile Basestation Protocol 403

Table 1. Parameters used for energy efficiency calculations

Parameter Value

Radio sampling interval 0.1s
Energy cost of a packet transmission 7.62mJ
Energy cost of a packet reception 3.18mJ
Energy cost of LPL for one second 0.263mJ
Battery Capacity 27000J

Neighborhood discovery phase reduces the disconnections and message losses
as reliable links are identified and each node discovers its neighbors. This neigh-
borhood information is later utilized in performing indirect handoffs. We do
include the communication in this phase in our energy cost figures as well.
Protocols we compare with. We are primarily interested in evaluating the
data spider system which consists of DTR and the MB algorithms, trailSource
and trailFlow, described in Sections 3 and 4. For comparison, we also consider
three other protocols, namely, static, random, and salmon.

In the static protocol, the basestation is static and is located in the center of
the network. The data is routed to the based using a convergecast tree rooted
at the SB. As we discussed in the Introduction this scheme is prone to hotspots
around the SB, and also results in long multihop paths for data relaying.

The random protocol is similar to trailSource and trailFlow in that it also
uses the DTR protocol to reconfigure the data collection tree as the MB relo-
cates. However, as for the relocation algorithm, instead of trying to follow the
data generation, the random protocol prescribes relocating the MB to a random
location all the time. While this protocol avoids the hotspot issue (since it uses
an MB and DTR), it is prone to long multihop paths for data relaying as it does
not follow the data generation.

Salmon protocol uses the same MB algorithm we used in our previous work,
data salmon [6]. Salmon does not use DTR and constrains the relocation of
the MB to occur only along the edges of the existing tree. In other words, the
existing tree is not modified, except for the relocation of the root of the tree
from one node to one of the neighboring nodes (which is achieved by flipping the
direction of the edge between these two nodes). In this scheme, the MB chooses
the neighbor that forwards the majority of the traffic to relocate to. As our
simulation results exhibit, this scheme has problems with reliability (since only
one edge is modified, this constitutes a risk of single point of failure) and cannot
follow the data generation successfully (since the MB relocation is restricted to
the existing tree structure, MB needs take long detours when the ROI leaves the
current subtree for another subtree).
Metrics. We concentrate on three metrics to measure performance of the sys-
tem. The latency metric measures the average delay in packet deliveries, from
their generation time to their arrival to MB. The second metric, packet delivery
rate, is the ratio of the delivered packets to MB versus the number of packets
generated. The final metric is the estimated lifetime of the network. We define

404 O. Soysal and M. Demirbas

the lifetime to be the time passed until the first node failure due to battery
depletion in the network. By utilizing the fine-grained energy-use information
from our simulation and the total energy stored in standard AA batteries, we
arrive to our estimated lifetime figures.

5.2 Results

We present our simulation results under the following categories.

Node density. We first investigate the effect of node density on the perfor-
mance. As the number of nodes increase, since the distance between anchor
nodes would be decreasing, we expect better connectivity of the network and
reduced number of improper handoffs. Increased density also corresponds to in-
creased data rates and more contention reducing the lifetime of the network.
Figure 4 presents this axis of the investigation. We observe very high latencies
when node density is low. This is due to frequent disconnections. Packets are
buffered when handoffs can not be completed successfully and they are later re-
trieved on an opportunistic basis, but this results in high average latencies. Data
spider heuristics trailFlow and trailSource consistently outperform other proto-
cols with respect to packet deliveries and network lifetime. An interesting result
of this experiment is to show that even random mobility leads to better delivery
ratios than the static when the density is critically low. Random mobility leads
to worse delivery ratios when the density increases, yet it still leads to longer
lifetimes than static (recall that random still uses DTR for data collection).
Indirect handoff. Here we quantify the performance improvement due the in-
direct handoff extension. Our experiments in Figure 5 show that indirect handoff
provides better average latencies, and up-to 5% improvement in packet delivery
rates. The increased number of packet deliveries impact the lifetime as more
packets are successfully routed all the way to the sink.
Speed of region of interest (ROI). The ability to track ROI is a significant
advantage for data spider, but the performance of tracking is affected by the
speed of ROI. In our experiments depicted in Figure 6 we investigate the effect
of speed of ROI to the performance. Since we use a fixed speed for MB, increasing

 0

 500

 1000

 1500

 2000

 2500

 100 150 200 250 300 350 400

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
on

ds
)

Node Count

trailFlow
trailSource

salmon
random

static

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

P
ac

ke
t D

el
iv

er
y

R
at

io

Node Count

trailFlow
trailSource

salmon
random

static
 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300 350 400

E
xp

ec
te

d
Li

fe
tim

e
(D

ay
s)

Node Count

Fig. 4. Effect of number of nodes on performance

Data Spider: A Resilient Mobile Basestation Protocol 405

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 150 200 250 300 350 400

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
on

ds
)

Node Count

trailFlow-direct
trailFlow-indirect

static

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

P
ac

ke
t D

el
iv

er
y

R
at

io

Node Count

trailFlow-direct
trailFlow-indirect

static
 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 150 200 250 300 350 400

E
xp

ec
te

d
Li

fe
tim

e
(D

ay
s)

Node Count

trailFlow-direct
trailFlow-indirect

static

Fig. 5. Effect of indirect handoff on performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
on

ds
)

ROI Speed

trailFlow
trailSource

salmon
random

static
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ac

ke
t D

el
iv

er
y

R
at

io

ROI Speed

trailFlow
trailSource

salmon
random

static
 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1
E

xp
ec

te
d

Li
fe

tim
e

(D
ay

s)
ROI Speed

Fig. 6. Effect of speed of region of interest on performance

the speed of ROI makes tracking the data more difficult. As expected static and
random heuristics are not effected by the ROI speed. We observe significant
increase in average delay in trailSource heuristic. This increase is related to
increased number of bad handoffs, which leads to partitions of network. trailFlow
avoids this problem as packets follow the network topology and the MB follows
the packets. Even with increased ROI speed, data spider algorithm improves the
lifetime of network up to 3 times over SB.

Number of ROI. We next consider the effects of increasing number of ROIs
on the performance. As these ROIs move independently from each other, the
optimal location of MB would vary significantly and the static MB starts to
become a better alternative. Our simulation results are shown in Figure 7. We
observe the effect of disconnections in trailSource heuristic in this experiment as
well. The difference between data delivery rates decrease as data spider heuristics
can not follow all the ROIs at the same time. Lifetime of the network is also
inversely affected as the MB is constrained to a smaller region trying to follow
all ROIs simultaneously. With 4 ROIs, the performance of data spider is similar
to random MB in terms of network lifetime, which is still more than 100%
improvement over the SB.

406 O. Soysal and M. Demirbas

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
on

ds
)

ROI Count

trailFlow
trailSource

salmon
random

static

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P
ac

ke
t D

el
iv

er
y

R
at

io

ROI Count

trailFlow
trailSource

salmon
random

static
 0

 100

 200

 300

 400

 500

 600

 1 1.5 2 2.5 3 3.5 4

E
xp

ec
te

d
Li

fe
tim

e
(D

ay
s)

ROI Count

trailFlow
trailSource

salmon
random

static

Fig. 7. Effect of number of region of interests on performance

 0

 50

 100

 150

 200

 250

 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
on

ds
)

Number of Basestations

trailFlow
trailSource

salmon
random

static

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P
ac

ke
t D

el
iv

er
y

R
at

io

Number of Basestations

trailFlow
trailSource

salmon
random

static
 0

 100

 200

 300

 400

 500

 600

 1 1.5 2 2.5 3 3.5 4
E

xp
ec

te
d

Li
fe

tim
e

(D
ay

s)
Number of Basestations

trailFlow
trailSource

salmon
random

static

Fig. 8. Effect of number of MBs on performance with 4 independent ROIs

Multiple MBs. Figure 7 showed that increasing the number of ROIs reduced
the ability of data spider to track them. Here we show how the increased number
of ROIs are better handled with multiple MBs. We test the performance of data
spider with multiple MBs in Figure 8. As we mentioned in the Introduction, data
spider extends readily to allow multiple MBs to share the same network without
any need to change the DTR or MB algorithms. In this experiment neither the
network nor the MBs are aware of the multiple MBs. However, we still observe
an emergent cooperation and division of labor leading to improved performance.
MBs partition the network since each node only has one next node, moreover
these partitions dynamically change over time due to MB broadcasts. Even if all
MBs converge to same anchor, the competition for data allows MBs to diverge
and cover different ROIs. We obtained these very promising results with data
spider despite lack of explicit coordination. An interesting research question is
how to coordinate MBs in a cooperative manner to improve performance even
further. Recent studies focus on this direction [4].

6 Concluding Remarks

We presented an efficient holistic MB-based data collection system, data spider,
which consists of a dynamic tree reconfiguration protocol and an MB protocol.
While both protocols are simple and lightweight, combined they lead to signif-
icant improvements in the reliability and lifetime of data collection, especially

Data Spider: A Resilient Mobile Basestation Protocol 407

for monitoring applications with highly spatiotemporal data generation. We pro-
vided extensive simulation results evaluating the latency, cost, and network life-
time metrics of the data spider under a wide number of varying parameters.
We also analyzed the handoff connectivity requirements needed for performing
a proper handoff of the MB.

Although we focused on the data collection problem, our data spider frame-
work readily applies also to the pursuer-evader tracking problem by treating the
ROI as the evader and the MB as the pursuer. Our experiments showed that
the trail-flow algorithm for the MB manages to implicitly route the MB around
the holes, a desirable property for pursuer-evader tracking. Our experiments also
showed that, in the data spider system, multiple MBs coexist nicely on the same
network to trail multiple ROIs without any explicit coordination or cooperation.
In future work we will investigate coordination and cooperation mechanisms of
multiple MBs for more efficient pursuer-evader tracking.

References

1. Arora, A., et al.: Exscal: Elements of an extreme scale wireless sensor network. In:
RTCSA (2005)

2. Azad, A., Chockalingam, A.: Mobile base stations placement and energy aware
routing in wireless sensor networks. In: WCNC, vol. 1, pp. 264–269 (April 2006)

3. Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., Wang, Z.M.: Controlled
sink mobility for prolonging wireless sensor networks lifetime. Wirel. Netw. 14(6),
831–858 (2008)

4. Basagni, S., Carosi, A., Petrioli, C.: Heuristics for lifetime maximization in wireless
sensor networks with multiple mobile sinks. In: IEEE International Conference on
Communications, ICC 2009, June 2009, pp. 1–6 (2009)

5. Batalin, M., et al.: Call and response: experiments in sampling the environment.
In: SenSys 2004, pp. 25–38 (2004)

6. Demirbas, M., Soysal, O., Tosun, A.S.: Data salmon: A greedy mobile basesta-
tion protocol for efficient data collection in wireless sensor networks. In: Aspnes,
J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549,
pp. 267–280. Springer, Heidelberg (2007)

7. Arora, A., et al.: A line in the sand: A wireless sensor network for target detection,
classification and tracking. Computer Networks 46(5), 605–634 (2004)

8. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy efficient schemes
for wireless sensor networks with multiple mobile base stations. In: GLOBECOM,
vol. 1, pp. 377–381 (December 2003)

9. Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., Lee, C.: Partitioning based mobile
element scheduling in wireless sensor networks. In: SECON, pp. 386–395 (2005)

10. jen Hsu, W., Spyropoulos, T., Psounis, K., Helmy, A.: Modeling time-variant user
mobility in wireless mobile networks. In: INFOCOM, pp. 758–766 (2007)

11. Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless
sensor networks. In: INFOCOM, vol. 3, pp. 1735–1746 (2005)

408 O. Soysal and M. Demirbas

12. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys, pp. 95–107 (2004)

13. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier
architecture for sparse sensor networks. In: WSNPA, pp. 30–41 (2003)

14. Simon, G., Volgyesi, P., Maroti, M., Ledeczi, A.: Simulation-based optimization
of communication protocols for large-scale wireless sensor networks. In: IEEE
Aerospace Conference, pp. 255–267 (March 2003)

15. Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile element scheduling
for efficient data collection in wireless sensor networks with dynamic deadlines. In:
RTSS, pp. 296–305 (2004)

16. Szewczyk, R., Mainwaring, A., Polastre, J., Culler, D.: An analysis of a large scale
habitat monitoring application. In: SenSys (2004)

17. Zhang, W., Cao, G.: Dctc: Dynamic convoy tree-based collaboration for target
tracking in sensor networks. IEEE Transactions on Wireless Communication 3(5),
1689–1701 (2004)

Author Index

Ababnah, Ahmad 92
Abdolrazaghi, Azadeh 45
Abe, Rey 187
Ahn, Gahng-Seop 230
Aslam, Faisal 15

Bar-Noy, Amotz 379
Barooah, Prabir 102
Beauquier, Joffroy 362
Brown, James 216
Brown, Theodore 379
Burman, Janna 362

Campbell, Andrew T. 230, 273
Chen, Honglong 172
Chen, Yingying 201, 348
Chenji, Harsha 244

Daum, Michael 63
Demirbas, Murat 393
Dimitriou, Tassos 334
Dressler, Falko 63

Eisenman, Shane B. 273
Eliassen, Frank 45
Ernst, Gidon 15

Fennell, Luminous 15
Forte, Domenic 116

Gefflaut, Alain 306
Giannetsos, Athanassios 334

Haussmann, Elmar 15
Hespanha, João P. 102
Honiden, Shinichi 187
Horey, James 1
Hossain, Mohammad Sajjad 258

Jarry, Aubin 288

Kapitza, Rüdiger 63
Kim, Younghun 77

Lachenmann, Andreas 306
Lai, Shouwen 158
Latour, Louis 306
Leone, Pierre 288
Le-Trung, Quan 45
Li, Lin 130
Li, Xiao 130
Liu, Hongbo 201, 348
Liu, Zhenhua 348
Loiret, Frédéric 45
Lou, Wei 172
Lu, Hong 230, 273

Ma, Junchao 172
Maccabe, Arthur B. 1
Mahjoub, Dhia 144
Manton, Jonathan H. 130
Matula, David W. 144
Meier, Andreas 31
Müller, Ulrich 306
Musolesi, Mirco 230

Natarajan, Balasubramaniam 92
Nelson, Eric 1
Neugebauer, Matthias 306
Nikoletseas, Sotiris 288

Olfati-Saber, Reza 230

Rabbat, Michael G. 320
Raghunathan, Vijay 258
Ravindran, Binoy 158
Roedig, Utz 216
Rolim, Jose 288
Rouvoy, Romain 45
Rührup, Stefan 15
Russell, Wm. Joshua 102

Scaglione, Anna 130
Schindelhauer, Christian 15
Schmid, Thomas 77
Shamoun, Simon 379
Soysal, Onur 393
Srivastava, Ankur 116

410 Author Index

Srivastava, Mani B. 77
Stengel, Klaus 63
Stoleru, Radu 244
Strübe, Moritz 63
Sugar, Robert 306
Suriyachai, Petcharat 216

Taherkordi, Amirhosein 45
Thiele, Lothar 31
Thiemann, Peter 15
Tsianos, Konstantinos I. 320

Uzmi, Zastash Afzal 15

Wang, Hui 201
Wang, Zhi 172
Wang, Zhibo 172
Woehrle, Matthias 31

Xu, Wenyuan 348

Zimmerling, Marco 31

	Title Page
	Preface
	Organization
	Table of Contents
	Tables: A Spreadsheet-Inspired Programming Model for Sensor Networks
	Introduction
	Programming Model
	Data-Driven Functions
	Event-Based Groups
	Convenience Functions
	Applications:Weather Classification and Object Tracking

	Implementation and Evaluation
	CPU
	Memory
	Network

	Related Works
	Conclusion
	References

	Optimized Java Binary and Virtual Machine for Tiny Motes
	Introduction
	Related Work and Background
	TakaTuka Bytecode Compaction
	Available Opcodes
	Single Instruction Compaction
	Multiple Instruction Compaction (MIC)

	TakaTuka Constant Pool Optimization
	Tuk File Format
	TakaTuka JVM Design
	TakaTuka Linkage with TinyOS
	Discussion and Results
	Execution Speed and RAM
	Storage

	Conclusion
	References

	ZeroCal: Automatic MAC Protocol Calibration
	Introduction
	Background and Related Work
	ZeroCal
	Parameter Optimization
	Collecting MAC Statistics
	Energy Model
	System Integration

	Simulation
	Adaptive Behavior
	Static versus Adaptive Configuration
	Large and Irregular Topologies

	Testbed Experiments
	Static versus Adaptive Configuration
	Adaptation to Network Dynamics

	Conclusions
	References

	Programming Sensor Networks Using REMORA Component Model
	Introduction
	REMORA Component Model
	Component Specification
	Component Instantiation
	Event Management
	Components Assembly and Deployment

	Implementation
	REMORA Engine
	REMORA Framework
	REMORA Runtime

	Evaluation
	A Real REMORA-Based Deployment
	Memory Footprint
	CPU Usage

	Existing Approaches
	Discussion, Conclusion and Future Direction
	References

	Stateful Mobile Modules for Sensor Networks
	Introduction
	Overview
	Environmental Monitoring Stream Processing Example
	Goals

	System Support for Mobile Modules
	Background: Linking and Loading in WSNs
	Resource-Efficient Linking Using Minilink

	Stateful Migration
	General Process and Programming Model
	Application Example

	Evaluation
	Support for Linking and Loading
	StatefulMigration

	Related Work
	Conclusion
	References

	Design and Implementation of a Robust Sensor Data Fusion System for Unknown Signals
	Introduction
	Exploratory Sensing System Design
	Fusion Mechanism Design

	Evaluation
	Synthetic Signal Evaluation
	Field Experiment
	Empirical Study on a Redundancy and Performance Trade-Off

	Related Work
	Conclusion
	References

	Control Theoretic Sensor Deployment Approach for Data Fusion Based Detection
	Introduction
	System Model
	Optimal Control Formulation
	System Linearization
	Dynamic Optimization

	Suboptimal Deployment Algorithm
	Simulation Results
	Conclusion
	References

	Approximate Distributed Kalman Filtering for Cooperative Multi-agent Localization
	Introduction
	Problem Description
	Kalman Filtering vs. BLU Estimation from Relative Measurements
	BLUE Estimation

	A Distributed Algorithm for Dynamic Localization
	Infinite Memory and Bandwidth

	Simulations
	Conclusion
	References

	Thermal-Aware Sensor Scheduling for Distributed Estimation
	Introduction
	Motivation
	Contributions and Assumptions

	PRELIMINARIES
	The Kalman Filter (KF)
	Sensor Thermal Behavior

	Single Node Case
	Thermal Analysis
	Sub-sampled KF

	Multiple Sensor Case
	Thermal Analysis
	Multi-sensor Covariance
	Policy Synthesis

	Design Methodology
	Single Sensor Algorithm
	Multiple Sensor Algorithm

	Simulation Results
	Conclusion
	References
	Appendix

	Decentralized Subspace Tracking via Gossiping
	Introduction
	Problem Setup
	Average Consensus Protocol

	Decentralized Subspace Tracking Algorithms
	Decentralized 1-Dimensional Subspace Tracking
	Decentralized p-Dimensional Subspace Tracking

	Case Study : Decentralized Narrowband Signal Detection in a Sensor Field
	Signal Model and Signal Subspace
	Signal Detection

	Conclusion
	References
	Appendix

	Building (1 − ϵ) Dominating Sets Partition as Backbones in Wireless Sensor Networks Using Distributed Graph Coloring
	Introduction
	Preliminaries
	Related Work
	Our Contributions and Outline

	Our Backbone Selection Algorithm
	First Phase: Graph Coloring
	Second Phase: Preparing the Backbone
	Rotating the Backbones

	Complexity Analysis
	Conjecture on the Approximation of the Domatic Partition
	Time and Message Complexities

	Experimental Results
	Performance of the Coloring Algorithms
	Quality Evaluation of a Single Dominating Backbone
	Quality Evaluation of δ + 1 Backbones

	Conclusions and Future Work
	References

	On Multihop Broadcast over Adaptively Duty-Cycled Wireless Sensor Networks
	Introduction
	Past and Related Works
	Models and Preliminaries
	Network Model and Assumptions
	Heterogenous Wakeup Scheduling
	Problem Statement

	The Hybrid-Cast Protocol
	Overview
	Wakeup Schedule Switching
	Opportunistic Forwarding with Deferring
	Online Forwarder Selection

	Performance Analysis
	Upper-Bound on One-Hop Broadcast Count
	Delivery Latency

	Discussion
	Simulation Results
	Broadcast Count
	Broadcast Latency
	Impact of Network Size

	Conclusions
	References

	A Novel Mobility Management Scheme for Target Tracking in Cluster-Based Sensor Networks
	Introduction
	Related Work
	System Model and Problem Description
	System Model
	Boundary Problem

	Hybrid Cluster-Based Target Tracking Protocol (HCTT)
	Boundary Node Formation
	Dynamic Clustering
	Inter-cluster Handoff

	Performance Evaluation
	Missing Ratio
	Sensing Coverage
	Energy Consumption

	Conclusions
	References

	Suppressing Redundancy in Wireless Sensor Network Traffic
	Introduction
	Problem Motivation
	Existing Techniques and Their Inadequacy

	Proposed Solution
	Redundancy Analysis
	Memory-Efficient Maintenance of Traffic History
	Protocol Structure and Workflow

	Related Work
	Traffic Reduction in Sensor Networks
	Fingerprinting for Duplicate Detection
	Redundancy Suppression Protocols
	Frequent Item Counting

	Evaluation
	Computational Overhead
	Empirical Evaluation

	Summary
	References

	Ensuring Data Storage Security against Frequency-Based Attacks in Wireless Networks
	Introduction
	System Overview
	Network Model
	Attack Model
	Approach Overview

	Dividing and Emulating: 1-to-n Substitution Encryption
	Dividing
	Emulating
	Efficient Query Processing over Encrypted Data

	Simulation Evaluation
	Metrics
	Methodology
	Coping with Global Frequency-Based Attacks
	Coping with Local Frequency-Based Attacks

	Conclusion
	References

	Time-Critical Data Delivery in Wireless Sensor Networks
	Introduction
	Assumptions, Requirements and Problem Definition
	The GALP Refinery Application Scenario
	Assumptions and Requirements

	Time-Critical Data Delivery with GinMAC
	Off-Line Dimensioning
	TDMA Schedule and Reliability Control
	Topology Control

	GinMAC Evaluation
	Setup
	Results
	Findings

	Related Work
	Conclusion
	References

	MetroTrack: Predictive Tracking of Mobile Events Using Mobile Phones
	Introduction
	MetroTrack Design
	Information-Driven Tasking
	Prediction-Based Recovery

	Prediction Algorithm
	Prediction Model
	Distributed Kalman-Consensus Filter

	Implementation and Experiment
	Implementation
	Experiment

	Simulation Study
	Summary
	References

	Mobile Sensor Network Localization in Harsh Environments
	Introduction
	Motivation and Background
	Related Work
	Background

	A Fuzzy Logic-Based Node Localization Framework
	Fuzzy Non Linear System (FNLS)
	Fuzzy Grid Prediction System (FGPS)

	Performance Evaluation
	Conclusions
	References

	AEGIS: A Lightweight Firewall for Wireless Sensor Networks
	Introduction
	Firewall Design Principles - From a WSN Perspective
	The {\sc Aegis} Architecture and Implementation
	Overview
	SOS Operating System
	Intercepting Communication
	Rule Specification
	Rule Set Validation
	Code Generation and Optimization
	Meeting the Design Principles
	AEGIS for Other Operating Systems

	Experimental Results
	Overhead Analysis
	Controlling Tree Routing
	Creating Network Overlays

	Related Work
	Conclusion and Future Directions
	References

	Halo: Managing Node Rendezvous in Opportunistic Sensor Networks
	Introduction
	Managing Rendezvous Opportunity
	Scheduling Operations
	Halo Evaluation
	Related Work
	Conclusion
	References

	Optimal Data Gathering Paths and Energy Balance Mechanisms in Wireless Networks
	Introduction, Our Contribution and Related Work
	Balancing the Flow and Maximizing the Lifetime of a Network
	Weak Pareto Optimality and Energy-Balanced Flows
	Optimal Communication Graphs
	Examples of Energy-Balance Optimal Communication Graphs
	A First Energy-Balance Optimal Topology
	A Second Energy-Balance Optimal Topology

	On the Existence of Energy-Balanced Probabilistic Mechanisms
	A First Online Distributed Algorithm
	A Second Online Distributed Algorithm

	References

	Programming Sensor Networks with State-Centric Services
	Introduction
	Related Work
	System Overview
	Architecture
	Runtime System
	Message Encoding

	Using the Programming Model
	Defining Services
	Code Generation
	Implementing a Service
	Composing an Application
	Standard Services

	Evaluation
	Memory Footprint
	Performance of the Runtime System
	Case Studies

	Conclusions and Future Work
	References

	Fast Decentralized Averaging via Multi-scale Gossip
	Introduction
	Previous Work and Known Results
	Network Model and Problem Definition
	Multi-scale Gossip
	Evaluation of Multi-scale Gossip
	Analysis of Multi-scale Gossip
	Practical Considerations
	Discussion and Future Work
	References

	Wormholes No More? Localized Wormhole Detection and Prevention in Wireless Networks
	Introduction
	Related Work
	System Model and Assumptions
	Sensor Nodes and Communication
	Attacker Model

	Localized Wormhole Detection and Prevention
	Local Path Existence Test for Wormhole Prevention
	Existence of Short Paths - Probabilistic Analysis
	Algorithm Description

	Simulation Results
	Performance Evaluation
	Implementation and Experiments on Real Sensor Devices

	Discussion and Critique
	Conclusions
	References

	Wireless Jamming Localization by Exploiting Nodes’ Hearing Ranges
	Introduction
	Analysis of Jamming Effects
	Network Model and Assumptions
	Communication in Non-jamming Scenarios
	The Effect of Jamming on the Communication Range
	The Effect of Jamming on Network Topology

	Jammer Localization Algorithm
	Algorithm Description
	Algorithm Challenges

	Experiment Validation
	Experiment Setup and Performance Metrics
	Performance Evaluation

	Conclusion
	References

	Self-stabilizing Synchronization in Mobile Sensor Networks with Covering
	Introduction
	The Model
	Self-stabilizing Phase Clock
	Examples of Application
	References
	Appendix

	Sensor Allocation in Diverse Environments
	Introduction
	Related Research
	Preliminaries
	TwoZones
	Multiple Zones
	Extensions
	Simulation Results
	Conclusion
	References

	Data Spider: A Resilient Mobile Basestation Protocol for Efficient Data Collection in Wireless Sensor Networks
	Introduction
	Model
	Dynamic Tree Reconfiguration
	DTR Algorithm
	Correctness
	Handoff Connectivity
	Extensions to DTR

	MB Algorithm
	Simulation
	Setup
	Results

	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

