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Preface

The 2010 European Conference on Modelling Foundations and Applications
(ECMFA 2010) was dedicated to assessing the state of the art and the state
of the practice in model-based engineering. It was the sixth edition in the se-
ries of conferences previously known under the title “European Conference on
Model-Driven Architecture – Foundations and Applications (ECMDA-FA).” The
name change reflects the de facto broadening of the conference scope beyond the
MDAR© initiative of the Object Management GroupR©to cover all major advances
related to model-based engineering approaches.

These proceedings, like the ones from previous editions in the conference
series, will undoubtedly serve as a reference to all who follow model-based
engineering theory and practice. The included papers document the steady evo-
lution of model-based development methods into a mature discipline, with well-
established standards, industrial-strength tools, and emerging theoretical foun-
dations. They also serve to illustrate that model-based approaches are capable
of significant productivity and quality improvements relative to more traditional
development methods.

This year, the Programme Committee received 73 submissions of which 15
foundations papers and 9 applications papers were accepted. Despite the
“European” connotation in the title of the conference, the authors of the submit-
ted papers represent 28 different countries from four continents. The significant
number of applications papers was particularly encouraging, providing evidence
of the increasing rate of adoption on model-based approaches in industry. With
the latter comes an even greater need and responsibility to establish a sound the-
oretical underpinning, which is what the foundations papers in the proceedings
aim to provide. The progress in this direction is both tangible and significant,
each year bringing an expanded understanding of the key abstractions and ideas
behind core topics such as metamodelling, model transformations, code genera-
tion, and modelling language design.

We are most grateful to our 68 Programme Committee members for pro-
viding their expertise in the form of detailed reviews and dedicated discussions.
Their constructive feedback to the authors and indispensable contribution to the
selection of the papers is most appreciated. We also owe special gratitude to the
members of the ECMFA Conference Steering Committee, who supported us in
many ways. In particular, we are thankful for the tremendous help offered by the
previous year’s Programme Chair, Richard Paige. Finally, we would like to thank
all authors who submitted papers to ECMFA 2010, our keynote speakers—Colin
Atkinson and Diarmuid Corcoran—and the sponsors of ECMFA 2010.

June 2010 Thomas Kühne
Bran Selic
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Orthographic Software Modelling: A Novel Approach  
to View-Based Software Engineering 

Colin Atkinson 

Software Engineering Group,  
University of Mannheim,  

68161 Mannheim, Germany 
atkinson@informatik.uni-mannheim.de 

 
The need to support multiple views of complex software architectures, each capturing 
a different aspect of the system under development, has been recognized for a long 
time. Even the very first object-oriented analysis/design methods such as the Booch 
method and OMT supported a number of different diagram types (e.g. structural, 
behavioral, operational) and subsequent methods such as Fusion, Kruchten’s 4+1 
views and the Rational Unified Process (RUP) have added many more views over 
time. Today’s leading modeling languages such as the UML and SysML, are also 
oriented towards supporting different views (i.e. diagram types) each able to portray a 
different facets of a system’s architecture.  More recently, so called enterprise archi-
tecture frameworks such as the Zachman Framework, TOGAF and RM-ODP have 
become popular. These add a whole set of new non-functional views to the views 
typically emphasized in traditional software engineering environments. 

As the number and variety of views has grown, so has the problem of managing 
and working with them. Most view-based architecture visualization approaches today 
lack a coherent metaphor for organizing the different views and navigating around 
them. They usually organize the different diagrams or reports that collectively de-
scribe a system’s architecture in a simple tree structure and one “concern” invariably 
overwhelms the others. For example, in approaches focused on architecture descrip-
tion languages (ADL) the composition hierarchy dominates the way in which the 
architecture is conceptualized and visualized. On the other hand, in model-driven 
approaches, the different levels of abstraction (platform-dependence/independence) 
tend to dominate the way in which architectures are conceptualized.  

Most view-oriented architecture visualization environments also have a major 
problem keeping the different views synchronized and consistent with one another, 
and often require significant human effort to do so. This is often due to inadequacies 
in the underlying metamodel or method, which necessitate the use of additional syn-
chronization specifications and tools to keep views consistent.  

In this talk we introduce a new paradigm for view definition, organization and ac-
cess that transcends (i.e. is generic to) the specific views and concerns in specific 
methods. An environment that supports the paradigm can therefore be adapted to 
support most view-based architecture visualization methods, including those support-
ing non-functional as well as functional views. In this talk we introduce this  
paradigm, known as Orthographic Software Modeling (OSM), and describe its three 
key ingredients, (1) on demand view generation, (2) dimension-based navigation and 
(3) an inherently view-based method. 
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The Good, the Bad and the Ugly: Experiences with Model 
Driven Development in Large Scale Projects at Ericsson  

Diarmuid Corcoran 

This talk will deal with the practical experiences of large-scale deployment of Model 
Driven Engineering practises within parts of the Ericsson development organisation. 
We try to present a balanced argument in favour of why Model Driven Development 
is a powerful concept in large-scale engineering projects, but also cover many of its 
nasty aspects and attempt to reason upon the nature of these failings. We then finish 
up with a look at the future of Model Driven Development as we see it and present a 
taste of our vision of the future. 

First of all we need to set the context: Ericsson is the world’s largest supplier of 
telecom infrastructure with 40% of all GSM and 50% of all 3G call passing through 
Ericsson equipment. Underneath its telecom face Ericsson is very much a software 
company. In fact about 80% of our development costs are software related. The sys-
tems we develop, both HW and SW are complex in the extreme. In fact we would 
argue that the SW systems we develop are among the most complex interacting soft-
ware agents developed by humans. And this challenge continues as we approach LTE 
systems that promise up to 1G/s data rate to an end device.  To meet these challenges 
we need software techniques, tools and know how that are the cutting in their class. 
One software technique we have found extremely powerful in our quest to tackle 
complexity and succeed in delivering high systems within time and budget is Model 
Driven Development. 

The kind of complexity we need to tackle in a large-scale engineering project (in-
cluding both HW and SW) is two fold. The first is complexity relating to the number 
of people involved in the project, which in turn affects information flow and informa-
tion dependencies. Having very clear semantic definitions about what things mean and 
reducing information redundancy and in a perfect world having a single, repository 
based, source of information drastically simplifies this collaboration problem. Model 
Based Development helps here through its principles of abstraction, formalization of 
concepts and a single repository based information model. We have implemented a 
concept of Model Driven System Engineering (MBSE), which we feels helps to tackle 
both the people dependency and problem domain complexity issues. We will discuss 
this technique and balance its merits against its problems. 

We also use Model Driven techniques to specify parts of our system implementa-
tion. From these implementation or design models we generate compete code for 
substantial parts of our system. This technique has proven enormously powerful and 
beneficial but doesn’t come for free and has it own set of issues. We will look at this 
technique and discuss the pros and cons. 

From our experiences above we have a very clear view where we would like to 
take our concept of Model Driven Development. We talk about this vision and the 
issues along our journey, which have convinced us that this is the right approach. 



Comparing Approaches to
Implement Feature Model Composition

Mathieu Acher1, Philippe Collet1, Philippe Lahire1, and Robert France2

1 I3S Laboratory (CNRS UMR 6070)
University of Nice Sophia Antipolis, France
{acher,collet,lahire}@i3s.unice.fr

2 Computer Science Department,
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france@cs.colostate.edu

Abstract. The use of Feature Models (FMs) to define the valid combi-
nations of features in Software Product Lines (SPL) is becoming com-
monplace. To enhance the scalability of FMs, support for composing
FMs describing different SPL aspects is needed. Some composition op-
erators, with interesting property preservation capabilities, have already
been defined but a comprehensive and efficient implementation is still
to be proposed. In this paper, we systematically compare strengths and
weaknesses of different implementation approaches. The study provides
some evidence that using generic model composition frameworks are not
helping much in the realization, whereas a specific solution is finally nec-
essary and clearly stands out by its qualities.

1 Introduction

The concept of Software Product Line (SPL) [1] is based upon an appealing idea:
instead of considering applications individually, the co-development of a family
of related programs is planned from the beginning. The family’s common features
are collected in reusable assets that can be later adapted to derive and fit the
requirements of an individual product. In domain and application engineering,
feature models [2, 3, 4] are widely used to describe a family (e.g., an SPL) in
terms of common and variable features. A feature model represents a set of valid
combination of features, each one corresponding to an actual product of a family.

Current feature modeling techniques often do not scale up to SPLs with a large
number of features and a high degree of variability [5,6]. In these situations, the
techniques produce large feature models that are too complex to be easily un-
derstood by engineers or analyzed by reasoning tools. Applying separation of
concerns principles and providing support for modularising and composing fea-
ture models can improve scalability. Yet a study of the literature about SPL
engineering demonstrates that providing automated support for composing fea-
ture models still remains an open challenge [7,8,5,9,10]. In previous work [11], we
designed a set of composition operators for feature models and defined semantic
properties that must be preserved during composition.

T. Kühne et al. (Eds.): ECMFA 2010, LNCS 6138, pp. 3–19, 2010.
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There are several ways to implement the composition operators. On the one
hand, previous work in the feature modeling community can be revisited to im-
plement the composition operators. On the other hand, Model-Based Engineer-
ing (MBE) and Aspect-Oriented Modeling (AOM) communities have developed
a set of model composition techniques and tools. Therefore, there is an interest
in determining how these techniques perform with feature model composition
and which techniques are the most suitable. The intended audience of this paper
are i) SPL researchers working on feature modeling techniques or developers of
feature modeling tools ; ii) researchers involved in the AOM community or more
generally dealing with model transformation.

The remainder of this paper is organized as follows. In Section 2, we give an
overview of feature models, motivate the need to support a set of composition
operators and present their semantic properties. We then discuss the properties
we expect in a good implementation of the composition operators (Section 3)
so that we can set up an experimental comparison to systematically evaluate
and compare the considered implementation techniques (Section 4). Results are
reported and interpreted while most suitable approaches are determined and
discussed (Section 5).

2 Background and Motivation

2.1 Feature Models

A Feature Model (FM) is a representation of a family, e.g., a family of medical
images, in terms of features [4, 3]. Let us consider FMep3 depicted in the right
part of Figure 1: A medical image has two mandatory features, Modality and
Format, which implies that each valid configuration of a medical image should
include these two features. There are two alternatives for Modality acquisition:
SPEC and PET features form an Xor -group (i.e., at least and at most one feature
must be selected). An optional feature is Anonymized, which states whether all
patients metadata of the medical image are included or not. Finally, a medical
image Header supports either the format DICOM or Nifti or both of them:
DICOM and Nifti form an Or -group. A FM thus describes the set of valid feature
combinations. Every member of a family is represented by a unique combination
of features. In the remainder of the paper, a combination of selected features
is called a configuration of a FM and is represented as a set of features. In
Figure 1, a valid configuration of FMep3 is {MedicalImage, Modality, SPEC, Format,
Anonymized, Header, DICOM}.

2.2 Composition Operators

In realistic SPL development, large and monolithic FMs must be built, evolved
and analyzed. These tasks are cumbersome, error-prone and costly owing to
the large amount of features to be considered by (different) stakeholders [5]. To
manage complexity, FMs can be separated and composed, with then the crucial
need to ensure that relevant properties are preserved during composition. In
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Fig. 1. Chaining Merge of Feature Models

prior work [11], we promote the use of multiple FMs, each one focusing on a
well-identified concern and we define a set of composition operators for FMs.
Two main composition operators, insert and merge, were proposed. For each
operator, the semantics is given in terms of the expressed configurations and
implementation feasibility is demonstrated. Here, we focus on the merge operator
and detail the preserved properties when two FMs are merged.

Merge Operator Semantics. When two FMs share several features and are
different viewpoints of a concern, the goal of the merge operator is to merge the
overlapping parts of the two FMs to obtain an integrated model of the system.
Two modes are defined for the merge operator. The intersection mode is the
most restrictive option: the merged FM, FMep′2, expresses the common valid
configurations of FMep1 and FMep2. The union mode is the most conservative
option: the merged FM, can express either valid configuration of first input FM
or second input FM. The variability information associated to features in the
merged FM is different according to the merge mode and the properties that one
want to preserve. The properties of the merged FM is formalized with respect to
the sets of configurations of input FMs. Let f be a FM and �f� denotes its set
of configurations. The relationship between a merged FM Result in intersection
mode and two input FMs Base and Aspect can be expressed as follows:

�Base�
⋂

�Aspect� = �Result� (M1)

The merge operator in the intersection mode is noted: Base⊕∩Aspect = Result.
In the intersection mode, a valid configuration of the merged FM, Result, is
valid in Base and in Aspect at the same time. In Figure 1, the DICOM feature is
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always part of any valid configuration of FMep2 whereas the Nifti feature cannot
be part of any valid configuration of FMep2. As a result, DICOM feature is a
mandatory feature of the merged FM FMep′2 while the Nifti feature is not part
of the merged FM FMep′2. The reader can check that the following relations
hold: �FMep1�

⋂
�FMep2� = �FMep′2� and �FMep2�

⋂
�FMep3� = �FMep′3�.

In the union mode, we want to obtain a merged FM that represents the set
of configurations of Base and Aspect. The union of two FMs, Base and Aspect,
is a new FM where each configuration that is valid either in Base or Aspect, is
also valid:

�Base�
⋃

�Aspect� ⊆ �Result� (M2)

A more restrictive property in union mode, called strict union, is defined as
follows:

�Base�
⋃

�Aspect� = �Result� (M3)

2.3 Motivating Scenario

In the grid-based medical imaging community, scientists compose a wide vari-
ety of parameterized image services to create processing pipelines, and the lack
of variability management mechanisms causes major issues in provisioning and
composing such services [12, 13].

We illustrate here how the merge operator can be used. Figure 1 shows three
services FService1, FService2 and FService3 connected in sequence. The con-
nection between services implies that some of their entities are dependent in
some way. For instance, we consider that the functional interfaces of FServicei

which is connected to FServicei+1 has to be compatible for i ∈ 1...n. In particu-
lar, the medical image associated to FServicei must be compatible with the one
of FServicei+1. This implies to check that i) FMep1 and FMep2 are consistent
and also that ii) FMep2 and FMep3 are consistent. It is necessary to check if,
e.g., the set of configurations of FMep1 is equal or included in the set of config-
urations of FMep2 (and vice versa). In this case, the use of the merge operator
occurs: The technique is to compute the merge in intersection mode of two FMs.
If the merged FM should not represent an empty set of configurations, then there
should be at least one configuration that is valid in the former and latter FM.
The consistency checking can thus be achieved: In the example, such an FM
exists when merging FMep1 and FMep2 (see FMep′2) and also when merging
FMep2 and FMep3 (see FMep′3). Nevertheless, there is no solution when merg-
ing FMep′2 and FMep′3. It implies that FService1, FService2 and FService3

are not compatible.

2.4 Related Work

In the literature, several papers suggest the design and implementation of a merge
operator, as in [7], in which separate FMs are used to model decisions taken by dif-
ferent stakeholders and the need to compose and merge FMs is identified. In [8],
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Hartmann and Trew dealt with multiple product lines and identified several com-
positional issues, especially the significance of the merging activity. Recently, Hart-
mann et al. propose a Supplier Independent Feature Model (SIFM) which contains
the “super-set of the features from all the FMs of suppliers” [14], corresponding to
property (M2) in union mode. The creation of the SIFM relies on the work de-
scribed in [10] and further considered in Section 4.1. Reiser and Weber propose to
use multi-level feature trees consisting of a tree of FMs in which the parent model
serves as a reference FM for its children [5]. Their purpose is mostly to cope with
large diagrams and large-scale organizations, rather than different concerns. They
thus do not provide operators to merge FMs. A few approaches use multiple FMs
during the SPL development (e.g., see [15]). Such contributions do not consider
FMs that are sharing some features, whereas this can happen when FMs interact,
when multiple perspectives or views on a FM needs to be managed or when SPLs
are composed with SPLs.

In [16], an algorithm is designed to automatically determine the kind of re-
lations between two FMs in terms of sets of configuration. In [17], the case of
synchronizing existing configurations of a FM that have evolved over time (e.g.,
some features are added) is considered and can be seen as a merge. However the
properties preserved by the synchronization are not formalized and the authors
consider FMs with attributes and cardinality. The composition operators pre-
viously defined are restricted to basic [18] FMs and do not consider such FM
formalism.

Other relevant works [3, 19, 11, 9, 10, 18] are discussed and compared in the
rest of the paper.

3 Comparison Framework

In this section, we describe the properties we expect in a good implementation
(see Section 3.2) of the merge operators and outline how we evaluate different
implementation approaches.

3.1 An Illustrative Approach

We use the following implementation of the merge operator, inspired from [3]
and [19], to discuss the properties considered to evaluate approaches. The overall
idea is that intersection or (strict) union can be realized by maintaining separate
input FMs and inter-relating them with constraints. In intersection mode, the
merged FM consists of a root feature R which joins Base and Aspect FMs, the
roots of Base and Aspect being child mandatory features of R. Then, features
are renamed so that they are disjoint in Aspect and Base (e.g., priming them
in Aspect). Finally, constraints are added: P requires P’ and P’ requires P for
each feature P ( P’ is the renaming of P in Aspect).

The merge in intersection mode between Base FM of Figure 2a and Aspect
FM of Figure 2b computes the Separate FM shown in Figure 2d. The resulting
FM respects the property (M1) given in Section 2.2 assuming that the primed
features A’, B’, C’ and the root feature R are removed in each set of features
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Fig. 2. Merging FMs in intersection mode

belonging to �Separate�. Based on this assumption, Separate FM represents
exactly the set of configurations of Expected FM (see Figure 2c). It is straight-
forward to check the following equality:
{
u ∈ �Separate� | u \ {

A′, B′, C′, R
}}

={{A, B}} = �Base�
⋂

�Aspect� = �Expected�

3.2 Properties of a Good Implementation

Quality of the Result. A good implementation of the merge operators should
possess Semantics Properties defined in Section 2.2. This is truly the case in our
illustration, even if additional effort is required to remove primed features from
the set of configurations of the resulting FM. Although the semantics proper-
ties are correctly preserved in the resulting FM, the implementation is deficient
from several perspectives. In [3, 19], the authors precisely recognize that “the
resulting FM should probably be simplified for readability.” As this readability
criterion is too general, we define specific factors that affect success in reading
and understanding FMs: Hierarchy Respect, Number of Features and FM Errors.

Hierarchy Respect requires that the resulting FM preserves the hierarchy used
in the input models. The essence of FMs have often been defined as feature
hierarchy and variability [20]. The hierarchy indeed helps to organize features
with increasing detail [20] and loosing the initial hierarchy of input FMs affects
the understandability of the model and complicates selections and deselections
of features. In Figure 2d, the resulting FM clearly illustrates these issues, with a
root feature different from the root features of Base and Aspect, a new sub-tree
and some additional constraints making it confusing.

An interesting property of the merge operator is its ability to reduce the set of
features to be considered (i.e., merging two features with the same name into one
feature). For example, FMep′2 has only 8 features while input FMs FMep1 and
FMep2 have 9 features each in Figure 1. In the illustrative approach, there is no
such benefit: The entire set of features of input FMs is included in the resulting
FM (see Figure 2d). This becomes worse when merge calls are chained (e.g.,
when FMep1, FMep2 and FMep3 are merged, see Figure 1) since the number
of features increases and large FMs are produced. We draw the conclusion that
a good implementation of the merge operators should produce a composed FM
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that contains the minimum Number of Features needed to express the desired set
of configurations.

With some final observations on Figure 2d one can note that features C and C’
are not included in any configuration. Trinidad et al. identify dead features and
full-mandatory features as FM errors [21]. A dead feature is a non-instantiable
feature, i.e., a feature that despite being defined in a FM, it appears in no product
in the SPL. C and C’ are dead features. A child feature in a non-mandatory
relationship is a full-mandatory feature if it has to be instantiated whenever
its parent feature is, i.e., it is neither an optional nor an alternative feature.
C is a full-mandatory feature since it belongs to an Xor -group but appears in
every configuration. The presence of dead or full-mandatory features introduces
incorrect relationships between features and should be avoided [21].

Error Handling. In intersection mode, if the condition �Base�
⋂

�Aspect� = ∅
holds, the FM Result then defines no configuration at all and is considered as
an unsatisfiable or void FM [22, 21]. When two input FMs cannot be merged
(see FMep′2 and FMep′3, in Figure 1), we consider that there is an error to be
detected by the merge operator. Error Detection can be done during the merge
computation or a priori. In the illustrative approach, there is no a priori detec-
tion. The only way to detect an error is to determine whether the resulting FM
of Figure 2d is void or not.

If an error is detected, providing the causes why the two input FMs cannot
be merged can assist users to diagnose and repair variability contradictions.
The source of error can be a feature or a variability information associated
to a feature. For instance, the observation that the (mandatory) feature PET
of FMep′3 is not included in FMep′2 can be a conceivable Explanation. In our
example, locating the source of errors during the computation of the resulting
FM is not possible. Automated error-analysis techniques presented in [4, 21, 23]
can be applied once the FM of Figure 2d is computed but the primed features
may disturb the understandability of the diagnosis.

Assumption on Input FMs. The interest here is to determine the degrees of
difficulties arising from the handling of several kinds of input FMs (FMs with
Constraints, Different Sets of features or Hierarchy mismatch) by an implementa-
tion of the merge operator.

Basic FMs support Constraints between features such as implies or excludes.
Constraints crosscut the hierarchy of features (the feature tree) and can be ar-
bitrary propositional formulas [4]. In previous work [11], we intentionally do not
consider constraints. Nevertheless handling constraints in FMs can be useful.
The presence of constraints alters the set of valid combinations of features but
does not change the semantics of the merge operator that still remains to pre-
serve properties (see Section 2.2) in terms of sets of configurations represented
by input FMs.

Given the open nature of software architecture or domains, the assumption
that FMs to be merged have the same granularity may no longer be valid. The
merge operator should be able to deal with input FMs defined on Different Sets
of features. Input FMs can also have different hierarchies, e.g., the depth of a
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feature B in the Base FM can be equal to 2 whereas the depth of a feature
B in the Aspect FM can be equal to 4. Supporting Hierarchy mismatch between
input FMs is an interesting quality of a merge operator implementation. As
for our illustrative approach, it supports hierarchy mismatch, since there is no
assumption made about the hierarchy of input FMs, as well as different set of
features or constraints.

Aspects of the Implementation. Finally, additional properties are defined
to evaluate some qualities of the implementation. The Ease of Implementation
attempts to capture how much effort is required to implement the approach,
looking at how built-in mechanisms of considered tools help in the implementa-
tion. In the illustration, the implementation is trivial. The Testing Effort property
concerns evidences of the respect of the semantics properties, e.g., tests or proof
that the implementation is sound, or additional effort to get more confidence in
the implementation. Finally, there is need to evaluate the Computational Com-
plexity since the number of calls to the merge operator can be dramatically
important (e.g., when a large number n of services are connected in the moti-
vating scenario). In the illustrative approach, the computation of the result FM
is solved in linear time [3].

3.3 Comparison Set Up

In order to compare the other approaches according to the defined properties,
we set up a comparison protocol described in Figure 3.

The first step is to generate two FMs, aspect and base. Then merge operator
provided by a given approach (see ➀) is used to compute the merged FM (R1

corresponds to the merged FM computed by Approach1, R2 corresponds to the
merged FM computed by Approach2, etc.). The generation process of FMs is
manually or randomly performed ➁. The way FMs are generated depends on the
assumptions made on input FMs by an approach. For example, if an approach
is known to not support hierarchical mismatch of input FMs, then only input
FMs with the same hierarchy are generated. The generation process controls the

InputF Ms Generation

Approach1

Approach2

Approach3
implements computes

aspectbase

Merge
Operator assessment

Oracle

Approachn

...

1

2

3

R1

R2

R3

Rn

...

Sets of configurations
Hierarchy
Number of Features
FM errors

Constraints
HierarchyM ismatch
Number of Features
FMst hatc annotb e merged

Performance
Ease of Implementation
TestingE ffort
ErrorD etection
Explanation

Fig. 3. Comparison Protocol
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number of features of input FMs and may propose input FMs that cannot be
merged to evaluate the ability of the approach to detect errors. Pre-conditions of
the merge operator can be tuned to determine how approaches deal with several
kinds of input FMs. In addition, once the merge operator has computed a FM,
an oracle (see ➂) states whether the result is correct, i.e., in terms of sets of
configuration, hierarchy respect, FM errors, etc. For most of the properties, the
oracle can be automated and post-conditions of the merge operator be evaluated.
The algorithm presented in [16] allows us to reason on the relationship between
input FMs and the output FM in terms of sets of configurations. We make use
of the tree edit distance metric [24], a common similarity measure for rooted
ordered trees, to evaluate the hierarchy respect of the output FMs.

4 Systematic Comparison

Our selection of approaches for establishing the comparison covers a large spec-
trum of paradigm and technology. We do not claim to cover all possible solutions
but we choose, for each paradigm, at least one possible technique, i.e., AGG
and Kermeta for model transformation, Kompose for model composition and an
FM-specific solution. For each candidate approach, we report our experience and
experimental results considering the set of criteria and the comparison protocol
previously described.

4.1 Catalogue Rules

We first consider the work of Segura et al. [10] who propose a catalogue of visual
rules to merge FMs using AGG technology [25].

In AGG, a transformation rule is composed mainly of a source graph or Left-
Hand Side (LHS) and a target graph or Right-Hand Side (RHS). For each merge
rule of the catalogue, LHS consists of two input FM patterns (pre-conditions)
and an output FM pattern representing the merging result (post-conditions).
In Figure 4a, two rule samples are given. LHS patterns are searched iteratively
into the FMs to be merged. Let us show how the catalogue rules apply for the
merge in union mode with Base the FM of Figure 4b and Aspect the FM of
Figure 4c. The expected merged FM is Base FM. The reader can check that
the property (M2) defined in Section 2.2 holds. Rule 1 applies for Anonymized
features such that Anonymized is optional in the merged FM. Rule 2 applies for
Header features such that the Header feature is optional in the merged FM.

The implementation turned out to be time-consuming and error-prone. The
catalogue rules should be modified and maintained according to properties ex-
pected in union or intersection mode. The number of rules to specify in the
union mode is around 30. Validating the catalogue of rules such that the seman-
tics properties are preserved for any input FMs is still missing. A brute force
testing strategy, which consists in generating randomized input FMs and then
ensuring each output FM as correct, is not sufficient to cover all cases. Inter-
estingly, AGG implements the mechanism of critical pair analysis which can be
used to check consistency of catalogue rules. However, there is no proof about
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Fig. 4. Rules to merge in union mode

the completeness of the rules. Studying theorem provers and model checkers, as
done in [26] for refactoring rules (the starting point of [10]), is still to be done
and requires intensive research.

The semantics properties currently implemented are limited to the merge in
union mode (see property (M2) in Section 2.2). The intersection mode remains
particularly challenging to be implemented. Considering the merge in intersec-
tion mode of Base (see Figure 5a) and Aspect (see Figure 5b), it is hard to
specify, in the general case, a rule and an associated pattern that deduce the
removal of the feature B. Indeed, the expressiveness of AGG is limited to non
recursive-patterns (thus prohibiting traversal of multi-level parent-child relation-
ships) and does not support multi-objects. Handling constraints largely disturbs
the strategy based on graph patterns since the presence of constraints may lead
to the removal of a feature which may be located elsewhere in the FM.

The elements not mentioned in any of the patterns remain unchanged by
default [10]. Then, considering the number of features in the merged FM, there
is a risk to unnecessarily adding features and FM errors. Moreover, additional
rules are needed to deal with different sets of features of input FMs. As the
approach is based on graphs, the hierarchy of the resulting FM is well restored
assuming that “The parental relationship between features is equal in all the
FMs. That is, a feature must have the same parent feature in all the models
in which it appears.” [10]. It seems hardly conceivable to deal with hierarchy
mismatch. Finally, the approach can detect that two input FMs cannot be merged
in intersection mode during the iterative application of rules but not a priori.
Interestingly, negative application conditions (NAC) can provide explanations
and precisely locate the source of errors.

4.2 Compositional Approach

The second approach considers the use of Kompose [27, 28] which implements a
generic structural composition operator that can be specialized to a particular
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modeling language. We implement the merging rules and strategy proposed in [11]
using as much as possible the composition facilities of Kompose.

In Kompose, the composition mechanism is structured in two major phases:
(1) The Matching phase identifies model elements that describe the same con-
cepts in the input models to be composed; (2) The Merging phase where
matched elements are merged to create new elements in the resulting model.

Each element type has a signature that determines the uniqueness of elements,
i.e, two elements with equivalent signatures are merged. A signature is a set of
syntactic properties associated with an element type. To achieve our goal we first
define the signature of type Feature as the name of the feature. The hardest
issue is to specify the various types Operator (i.e., Xor-, Or-, And-) associated to
features. Such operators are likely to be in conflict : two features having the same
name may be associated to different operators. The decision to merge them or
not and the nature of the resulting operator depends on the intended semantics
properties (e.g., as defined in [11] the merging of an Or-group with an Or-Group
gives an Or-Group in union mode).

In Figure 5, the merge operator in intersection mode is applied on Base
(Figure 5a) and Aspect (Figure 5b). Result (Figure 5c) is the expected FM
according to the semantics of the merge operator defined in Section 2.2. The
merge operator provided by Kompose has a behaviour which interferes with
it. It is obvious that feature A of Base and A of Aspect must be merged and
produces feature A of Result (this is exactly what Kompose does automatically).
But Kompose applies recursively the same strategy to feature B and this is
not what is expected according to Result. This shows that a compositional
approach only structured in two-stages (matching and merging) is too restrictive
for implementing an FM-specific merge operator. In particular, the recursive
detection of matching elements is not sufficient since we need a more global
vision to decide whether elements should be merged or not. To address this issue
we could use the post-directives mechanism provided by Kompose. This would
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allow automatically removing feature B but this solution is practically hard to
implement since it is specific to each composition.

As Kompose implies local reasoning, handling constraints is not conceivable
as well (see the removal of feature F in Figure 5f). Moreover due to its re-
cursive merging strategy, Kompose does not handle hierarchy mismatch. Conse-
quently input FMs must be already aligned. Finally, the current approach cannot
determine a priori when two FMs cannot be merged. Thanks to the case-based
reasoning during the matching process, source of errors can be located and ac-
curate explanations can be provided.

4.3 Transformational Approach

Due to the limits previously observed with AGG or Kompose, we decide to
leverage the expressiveness of the model manipulation language used to imple-
ment the merge operator. We rely on Kermeta [29] an executable, imperative
and object-oriented (meta-)modeling language which is designed to define both
structures and behaviors of EMOF and Ecore (meta-)models.

We apply the same strategy as with Kompose but without strictly following
the compositional approach which consists in match and merging phases. We
gain some benefits, notably a better coverage of semantics properties. Now that
global and more complex reasoning is possible, some features are not necessary
added and less FM errors are generated.

Although the implementation is not obliged to apply a recursive reasoning and
to strictly follow the hierarchy during traversal of input FMs, there is still an issue
when dealing with different hierarchies. Finally, difficulties arise in constructing
a merged FM that preserves properties with the presence of constraints.

4.4 Boolean Logic Based Composition

Enumerating all valid configurations of an FM is usually infeasible. Fortunately,
the set of configurations represented by a FM can be compactly described by a
propositional formula defined over a set of Boolean variables, where each vari-
able corresponds to a feature. The intersection of two sets of configurations
represented by two FMs, Base, and Aspect, is computed as follows. First, Base
(resp. Aspect) FMs are encoded into a propositional formula φbase (resp. φaspect)
as defined in [4]. Then, the following formula is computed:

φResult = (φbase ∧ not(Faspect \ Fbase)) ∧ (φaspect ∧ not(Fbase \ Faspect))

with Fbase (resp. Faspect) the set of features of Base (resp. Aspect) FM. Faspect\
Fbase denotes the complement (or difference) of Faspect with respect to Fbase. If
we consider Base FM of Figure 5a and Aspect FM of Figure 5b, then Faspect \
Fbase = {G, H, I}

not is a function that, given a non-empty set of features, returns the Boolean
conjunction of all negated variables corresponding to features:
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not({f1, f2, ..., fn}) =
∧

i=1..n

¬fi

Computing the strict union of two sets of configurations represented by two FMs,
Base, and Aspect, follows the same principles and we obtain:

φResult = (φbase ∧ not(Faspect \ Fbase)) ∨ (φaspect ∧ not(Fbase \ Faspect))

Interestingly, φResult can be simplified. If φResult ∧ f is unsatisfiable, the fea-
ture F is dead and can be removed. Similarly, the feature F can be identified as
a full mandatory feature if φResult ∧ ¬f is unsatisfiable. Moreover, the current
approach can detect a priori that two FMs cannot be merged in intersection
mode: In this case, φResult is unsatisfiable. Such operations on φResult can be
realized using SAT solvers or BDD representation. The semantics properties are
by construction respected. The technique does not introduce FM errors or does
not increase unnecessarily the number of features. Constraints in FMs can be ex-
pressed using the full expressiveness of Boolean logic and different sets of features
can be manipulated. At the moment, φResult is solely a compact representation
of the sets of configurations of the expected FM. The hierarchy of the FM and the
structuring information (e.g., parent-child relations between features) are still to
be constructed. Czarnecki et al. propose an algorithm to construct a FM from
Boolean formula [18]. More precisely, the algorithm constructs a tree with addi-
tional nodes for feature groups that can be translated into a basic FM. We first
experiment their work on a set of input FMs sharing a same set of features and a
same hierarchy. The simplifications of the formula φResult described above have
been applied and then fed to the algorithm. Importantly, the algorithm indicates
all parent-child relationships (mandatory features) and all possible optional sub-
features such that the hierarchy of the merged FM corresponds to hierarchies of
input FMs. And-group, Or-group and Xor-group can be efficiently restored in
the resulting FM when it was necessary.

The limitations come when different hierarchies of input FMs or different sets
of features are proposed to the merge operator. Although the resulting FM is
correct in terms of sets of configuration, determining the most suitable hierarchy
for the resulting FM requires the intervention of the user since it can be the
hierarchy of the Base FM, the hierarchy of the Aspect FM, or a combination
of the two hierarchies. It comes even more challenging when several features are
to be removed in intersection mode. As a result, there is need to impose a given
FM hierarchy to the resulting FM and the current technique should be adapted.

5 Results and Concluding Remarks

5.1 Results

Figure 6 summarizes our results. ++ is the highest score (i.e., the criteria is fully
fulfilled by the approach) whereas −− is the lowest score (i.e., a non acceptable
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Hierarchy Respect −− ++ ++ ++ +
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FM errors −− − − = ++

Aspects of the Implementation
Ease of Implementation ++ −− − = +

Computational Complexity ++ − − = +

Testing Effort ++ − − − ++

Assumption on Input FMs
Different Sets ++ + + + ++

Hierarchy mismatch + −− −− − ++

Constraints ++ − − = ++

Error Handling
Error Detection + + + + ++

Explanation − + + + −

Fig. 6. Comparison of approaches

solution). We can observe that only FM-specific solutions fully implement se-
mantics properties. Current MBE or AOM solutions have issues related to the
intersection or the strict union modes, especially when constraints are present.
Strategies to avoid the adding of unnecessary features in the merged FM were
difficult to implement. The confidence in modeling solutions appears to be too
low (e.g., there is no proof that the set of rules in AGG is comprehensive such
that semantics properties are preserved in all cases) and intensive testing effort
is required. This is not the case with FM-specific solution which preserves, by
construction, the sets of configurations.

Open Issues. Scalability. The manageable size (i.e., number of features) of input
FMs is still to be determined. Using Boolean logic, preliminary experiments
indicate that on typical propositional formula the algorithm presented in [18]
scales up to 300 variables, e.g., the number of features commonly shared by
input FMs should not exceed 300 features. Other approaches have scalability
issues (100 features in each input FMs is the limit).

Explanation. When two inputs FMs cannot be merged, φResult is unsatisfiable
and no FM can be synthesized from φResult. It is only possible to reason at
the Boolean logic level (e.g., by computing a small unsatisfiable subset of the
formula’s clauses) and thus hard to provide the source of errors at the FM
level. Rule-based approaches (AGG, Kompose) have better results. They provide
precise explanations (e.g., NAC in AGG) when features’ relations lead to FMs
merging failure. Nevertheless, there is no evidence that the rules are sufficient
to cover all merging failures.
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Hierarchy mismatch. FM-specific solutions are more efficient to deal with dif-
ferent hierarchies of input FMs (no assumption is made about hierarchies) but
the current proposals are not fully satisfying (see Section 4.4).

Revisiting Model-based Solutions. The study provides some evidence that
MBE or AOM solutions considered in this paper are not suitable for implement-
ing the merge of FMs. Below we give some possible reasons.

In AOM, many existing approaches to match and merge focus on structural
similarities between models and on their syntactical properties. Most of these
approaches treat models as graphical artifacts while (largely) ignoring their se-
mantics. This treatment provides generalizable tools that can be applied to many
different modeling notations. Our first intuition was to resolve every syntactical
conflict and to reason recursively on the hierarchy of FMs – a classical approach
in model composition. However, complex reasoning that takes into account the
semantics of FMs is required to compute the combination of two or more FM el-
ements into new FM elements. The experimentation of MBE techniques gives an
insight to the characterization of FMs composition. A merging strategy mainly
based on syntactical properties (as applied with AGG, Kompose and Kermeta)
is likely to fail so that we can now consider that FMs composition is not purely
structural. On the contrary, semantical transformations or semantics preserving
model composition are needed to preserve the semantics properties of model. An
open question in this area is how to achieve semantics preservation, both for-
mally and practically. For instance, recent work on behavioural models has con-
centrated on establishing semantic relationships between models (e.g., see [30]).
Merging FMs can be seen as a non-trivial case of semantics preserving model
composition. Currently, model composition techniques are not necessary dedi-
cated to support semantics preserving model composition: This is another way
to interpret the difficulties of the modeling techniques considered in this paper.
Nevertheless, the selection of approaches in the present study does not pretend
to be comprehensive regarding MBE or AOM solutions. Other solutions based
on different paradigms or technologies (e.g., QVT) are still conceivable and may
successfully implement a merge operator. For instance, graph transformation
tools with advanced transformation language constructs or supporting many-to-
one transformations [31] may help to better cover semantics properties.

5.2 Future Work

The implementation of a merge operator for FMs is an interesting challenge for
MBE and AOM techniques. Other modeling approaches and technologies can
be considered and may emerge to outperform the solutions considered in this
paper. Nevertheless, the use of Boolean logic turns out to fulfill most of the
criteria expected from a merge operator. As future work, we plan to accurately
determine for which amount of features the logic-based approach scales and to
fully support different hierarchies of input FMs. The use of CSP solvers can also
be considered in addition to SAT and BDD techniques.
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A longer term perspective is to consider the implementation of diff and refac-
toring [9, 16] operations for FMs. These operators are commonly used in MBE
for various kinds of models, but the specificity and the semantics properties of
FMs should be taken into account. The efficiency of modeling techniques can
be evaluated for diff and refactoring of FMs as similarly done for the merge
operator. Another research direction is to consider other formalisms of FM in-
cluding cardinality-based FMs and feature attributes. In this case, the sole use
of Boolean logic is not sufficient to represent the semantics of FMs: MBE and
AOM techniques may provide interesting support and built-in mechanisms to
deal with such extended formalisms.
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Abstract. Current mobile digital communication systems must imple-

ment rigorous operations to guarantee high levels of confidentiality and

integrity during transmission of critical information. To achieve higher

performance, the security algorithms are usually implemented as dedi-

cated hardware functional units attached to the main processing units of

the embedded communication system. To save hardware resources, the

designer usually performs a number of manipulations in the cipher al-

gorithm lying at the core of the confidentiality and integrity operations

to implement a simplified version of it that is suitable to be efficiently

used in an embedded environment. This paper describes an extension

to UML 2.0 to model the structure of contemporary block cipher al-

gorithms, with the ultimate goal of synthesizing representations in a

hardware description language from these models according to a model-

driven development principle. This automated process should alleviate

design complexity and increase the productivity of the developer during

experimentation with different design alternatives.

Keywords: Block cipher algorithm, UML 2.0 profile.

1 Introduction

A computer-based system is a combination of hardware and software that im-
plements a set of algorithms to automate the solution to a number of problems.
Computer design technology transforms the designers ideas and objectives into
a number of representations describing software modules and hardware com-
ponents that can be tested and manufactured [11]. The design process is not
straightforward; the developers always deal with the problem of alleviating the
complexity of their designs to develop high-quality products within rigid time
constraints. This problem arose as a consequence of the steady evolution of tech-
nology and the constant demand for new functionality.

Computer-based systems are not becoming easier to design as time goes by; on
the contrary, the advancement of development and manufacturing technologies,
and the need to meet new usage demand encourage the development of devices
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incorporating more and more functionality. There are a number of function-
ality aspects that have demanded attention from hardware/software engineers
during the last years: communication, security, power management, multimedia
processing, and fault tolerance.

When designing the digital hardware of a computer-based system the devel-
opers must deal with the challenge of making a trade-off between a number of
design requirements, that can not be optimized all at the same time, while im-
plementing the desired functionality. The digital hardware system must usually
achieve a high level of performance, its operation should be efficient in terms
of power consumption, and, when a large number of hardware resources is not
available, its circuitry must be small and reutilize a component iteratively until
operation completion. It is not possible to stop the evolution of technology or to
prevent computer-based systems from implementing more and more functional-
ity over time and becoming more complex. Hardware and software engineers are
condemned to face the challenge of designing products that implement lots of
functionality, while meeting difficult constraints, in shorter periods of time. In
this document we focus our attention on the process of developing the digital
hardware sub-system of a whole computer-based system.

1.1 Productivity Gap

In spite of having more resources to design with, design complexity imposes se-
rious limits to the ability of hardware designers to develop high quality products
that fully meet their requirements in a short period of time; that is, to their
productivity. The productivity gap is the challenge that arises when the number
of available transistors grows faster than the ability to meaningfully design with
them [11]. Flynn, et al. [6] illustrates the considerable separation between the
exponential increase in the number of transistors per chip along the last 28 years
and the increase in design productivity along the same period of time.

1.2 Abstraction Levels

An effective way to alleviate design complexity and to reduce the productivity
gap during the design of digital hardware systems is to raise the level of abstrac-
tion at which developers carry out their activities. The goal is to design correct
systems faster by making it easier to check for, identify, and correct errors.

The raise in the level of abstraction has been done many times in the past
for both software and hardware development. The first solid-state computers
were built using discrete transistors and other electronic components, consumed
several kilowatts of power, and became more complex to design as advanced ar-
chitectural techniques to increase performance arose. Medium-Scale Integration
(MSI) and Large-Scale Integration (LSI) integrated circuits that encapsulated
whole computer modules within single dies allowed to design digital hardware
systems as a set of schematics specifying the interconnection of a number of in-
tegrated circuits. Later, the behavior of a circuit started to be defined in terms
of a flow of signals (data transference) between hardware registers and the logical
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operations performed on those signals using hardware description languages like
VHDL and Verilog. This representation was transformed into a description of
the electronic components that made up the system and the interconnections
between them (netlist), which could be implemented in a Very Large Scale In-
tegration (VLSI) silicon platform like an Application-Specific Integrated Circuit
(ASIC) or a Field Programmable Gate Array (FPGA). The current Electronic
System Level (ESL) design trend proposes the use of high level languages, de-
rived from languages like C and Java for instance, to describe the functionality
of a digital hardware system and tools to automate the implementation process
[2]; thus achieving a higher degree of comprehension and reutilization of the
functional descriptions.

1.3 ESL and UML

At the ESL there are lots of similarities between the process of describing the
functionality of digital hardware systems and the process of developing software.
A research effort is needed to determine if we can take advantage of the recent
advances in software engineering, like the Model-Driven Engineering (MDE)
paradigm [7], to raise the level of abstraction even further, increase productiv-
ity, alleviate design complexity, exploit reuse of existing designs, and automate
the production of representations of digital hardware systems at lower levels of
abstraction.

Riccobene, et al. [10] propose a UML 2.0 profile containing the constructs of
the SystemC language to allow the designer to build diagrams instead of writing
code. Björklund, et al. [3] describe the use of an intermediate representation
called SMDL to transform general-purpose state machine diagrams to VHDL.
While these two proposals synthesize hardware description language code from
UML, they do not customize UML to an application domain to allow the devel-
oper to describe a system in terms of the concepts he/she knows instead of the
concepts of the implementation language or hardware platform.

This paper describes an extension to UML 2.0 [8] that includes abstractions
to model the structure of block cipher algorithms with the purpose of them being
implemented in hardware. The profile should allow the designer to modify the
structure of the algorithm, without altering its operation, to design a hardware
implementation that meets the required trade-offs between performance and re-
source consumption. For instance, an area-efficient hardware implementation of
a block cipher algorithm for 3G cellular communications that reuses a basic func-
tion block iteratively until completion is able to encrypt information at a rate
of 164.45 Mbps. [4], whereas a high-performance implementation of the same
algorithm that requires 8.05 times more hardware resources (slices in a Virtex-E
FPGA) has a performance of 5.32 Gbps [5]. This profile will be a crucial compo-
nent of a model-based design flow that will transform a high level description in
UML to a lower level VHDL representation that could be implemented in either
an ASIC or a FPGA platform.
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This document is organized as follows: section 2 documents the proposed
profile to model block cipher algorithms, section 3 illustrates the application of
the profile in a practical case of study, and section 4 concludes.

2 The Block Cipher Profile

Current versions of UML include a formal definition of the language’s constructs
and abstract syntax that is called meta-model (a model of a model). The meta-
model contains a set of meta-classes that define the UML modeling elements, and
describes the relationships between meta-classes that indicate how the modeling
elements are assembled together by the user to build the UML models of a
system. A profile is an extension mechanism for UML, a kind of dialect that
customizes the language for particular platforms or application domains. Profiles
are made up of stereotypes that extend particular meta-classes; tagged values
that define additional attributes for the stereotype; and restrictions that specify
rules, pre- and post-conditions for the extended modeling elements.

2.1 Block Ciphers

A block cipher is an algorithm that unvaryingly transforms a fixed-length group
of bits, called plaintext block, into a different group of bits, called ciphertext
block, under the control of a symmetrical secret key. The algorithm carries out

(a) Main Feis-

tel network

(b) FO func-

tion

(c) FI function (d) FL function

Fig. 1. The components and full structure of the KASUMI block cipher (from [1])
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the inverse process when it receives both the ciphertext block and the secret key
as inputs.

Most block ciphers employ simple operations like bitwise logical operations
(and, or, xor), shifts and rotations, n-bit substitution functions (referred to as
S-Boxes), arithmetic operations, and permutations in an iterative manner until
completion. The structure of these algorithms is usually shown as an iterative
Feistel network, an structure whose iterations are called rounds and perform an
internal round function.

As an example consider the KASUMI block cipher, illustrated in the block
diagrams in Figure 1, used nowadays to implement security functions, like confi-
dentiality and integrity, in modern 3G cellular communication networks [1]. Each
of the eight rounds of KASUMI’s Feistel network carries out a pair of operations
called FL and FO, where FO is, in turn, a Feistel network with three rounds,
each performing a function called FI that is made up of two seven-bit input
S-Boxes (S7) and two nine-bit input S-Boxes (S9). The informal block diagram
notation frequently used to describe this kind of algorithms does not represent
either a digital circuit schematic or an UML diagram.

Fig. 2. Fragment of the UML 2.0 meta-model for Activity Diagrams extended with the

stereotypes that make up the Block Cipher Profile
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2.2 Defining the Block Cipher Profile

The UML Activity Diagram is used to describe procedural logic, business pro-
cesses, and work flows. This diagram is conceptually similar to a flowchart, but
differs from it in its ability to describe parallel behavior and model both con-
trol and data flows; these two distinctions make this kind of diagram the most
adequate one to model the data flows and the operations required to fulfill the
block cipher algorithms in a correct manner.

The Activity Diagram’s modeling elements include: actions representing be-
havior execution, input/output pins working as parameters for the actions, edges
indicating the flow of either data or control, decision elements to choose one
out of several paths, fork nodes to initiate parallel paths, asynchronous signal-
ing mechanisms, and constructions to elaborate a hierarchy of sub-activity dia-
grams. Our profile’s stereotypes extend the meta-classes of the existing modeling
elements to derive specialized modeling constructs representing the operations
required by block ciphers.

Figure 2 illustrates the hierarchy of meta-classes from which we derive our
profile’s stereotypes, which are indicated by the shaded class boxes. A stereotype
is a meta-class labeled with the keyword «stereotype»that is derived from an
existing meta-class with the intention of extending its behavior and defining a
new modeling element. The stereotype’s attributes shown in Figure 2 are called
tagged values and define properties for the new modeling construct that are
additional to the ones it inherits from its parent meta-class.

Our profile is encapsulated within a package that extends the package
UML::Activities::IntermediateActivities and uses the package UML::Actions::-

Table 1. Definition of the z ext stereotype in the Block Cipher Profile

Name: z ext.
Generalizations: Action.

Description: An action that zero-extends the incoming bit-block.
Attributes: n. An integer attribute indicating the length in bits of the incoming bit-block.

Its default value is 32.
m. An integer attribute indicating the length in bits of the outgoing bit-block.
Its default value is 64.

Associations: input: InputPin. A pin connected to the action that holds input bit-blocks
to be consumed by the action.
output: OutputPin. A pin connected to the action that holds output bit-
blocks produced by the action.

Constraints: n ≤ m.
There must be exactly two pins connected to this action; one of them must
be an instance of the InputPin meta-class, whereas the other must be an
instance of the OutputPin meta-class.
The input pin must be attached to an edge that is an instance of the dl meta-
class.
The output pin must be attached to an edge that is an instance of the dl
meta-class.
The length of the bit-block in the incoming edge attached to the input pin
must be equal to the n attribute.
The length of the bit-block in the outgoing edge attached to the output pin
must be equal to the m attribute.

Semantics: Instances of z ext are actions in a Block Cipher Diagram that receive an n-bit
block as input and produces a m-bit block as output, with n ≤ m. The output
block’s n least significant bits are set to the input block, and its (m−n) most
significant bits are all set to zero.
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Table 2. Definition of the dl stereotype in the Block Cipher Profile

Name: dl.
Generalization: ObjectFlow.

Description: An edge that models the flow of bit-blocks between nodes.
Attributes: length. An integer attribute indicating the length, in bits, of the block flowing

along the edge.
Associations: source: ActivityNode. The node the edge departs from.

target: ActivityNode. The node the edge arrives to.
Constraints: 1 ≤ length ≤ 128.

The edge must be attached to an instance of either the Pin meta-class or the
Action meta-class or the ForkNode meta-class. See Figure 2.
If the edge is attached to two pins then one of those pins must be an instance
of the InputPin meta-class, the other must be an instance of the OutputPin
meta-class.

Semantics: Instances of dl (data line) are special edges intended to model transferences
of bit-blocks between nodes in a Block Cipher Diagram. Data lines transfer
bit-blocks whose length is greater than zero but less than or equal to 128 bits.
When a dl instance’s length attribute is set to 1 then the edge transfers a
signal.

Table 3. Definition of the sf stereotype in the Block Cipher Profile

Name: sf.
Generalization: ForkNode.

Description: Splits an incoming bit-block into n bit-blocks of different lengths.
Attributes: n. An integer attribute indicating the number of bit blocks outgoing the fork

node.
Associations: incoming: ActivityEdge. Edge that has the fork node as target.

outgoing: ActivityEdge. Edges that have the fork node as source.
Constraints: There must be exactly n outgoing edges, where n is the fork node’s attribute.

The incoming edge and all of the outgoing edges must be instances of the dl
meta-class.
The sum of the length attributes of each of the outgoing edges must be equal
to the length attribute of the incoming edge.

Semantics: Instances of sf (split fork) are special fork nodes that partition the bit-block in
the incoming edge into n bit-blocks, and issue each of these bit-blocks through
an independent outgoing edge. All of the outgoing edges are concurrent. The
length of the incoming bit-block is indicated by the length attribute of the
incoming edge. Similarly, the length of each of the outgoing bit-blocks is in-
dicated by the length attribute of the corresponding outgoing edge. The sum
of the length attributes for the outgoing edges must be equal to the length of
the incoming edge.

BasicActions in the Superstructure of UML [8]. IntermediateActivities was cho-
sen because it defines all the necessary meta-classes to base the new modeling
elements on and is not polluted with other complex meta-classes. The profile
derives several stereotypes from the Action meta-class to model the bitwise
operations that are common to the block ciphers, as well as the S-Box compo-
nents; it also derives a stereotype from the meta-class ObjectFlow to model
edges transmitting bit-blocks; and it also derives a stereotype from the meta-class
ForkNode to either distribute a bit-block along two or more different paths, or
to partition a n-bit block into several bit-blocks of different lengths. An UML
Activity Diagram built using this profile is called a Block Cipher Diagram.

Tables 1, 2, and 3 describe three stereotypes included in the Block Cipher Pro-
file. Due to space limitations, it is not possible to describe all of the stereotypes
that make up the profile in this document.
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3 Applying the Block Cipher Profile

The hardware implementation of the KASUMI block cipher in its full structure is
prohibitive for some embedded applications because it requires lots of hardware
components. In cases like this the designers usually manipulate the structure of the
algorithm to obtain a representation that uses a minimal number of components.
After a fixed number of successive iterations over this small set of components,
by feeding back the result of the current iteration to the input of the design, the
algorithm completes its task. Figure 3 illustrates the final result of a simplification
process that is described in detail by Balderas, et al. in [4].

The simplified design combines two instances of the FI function into a single
module that accepts two 16-bit inputs; see Figure 3(a). The four S-boxes internal
to this dual-input FI function can be implemented either as combinational blocks
that perform boolean functions over their inputs to generate their outputs, or
as memories that store the correct value for each of the possible inputs. This
dual-input FI function block is used by the simplified version of the FO function
twice per round; see Figure 3(b). Therefore, the simplified KASUMI structure
in Figure 3(c) requires two times eight equals sixteen iterations, as well as 16
clock cycles, to cipher a 64-bit block and has a throughput of 164.45 Mbps in a
Virtex-E FPGA.

The profile is able to model the simplified structure of the KASUMI algorithm,
as shown in the diagrams in Figure 4. The diagrams’ modeling elements are la-
beled with a keyword containing the name of the stereotype they are instances of.

(a) Dual-input FI function (b) Simplified FO function (c) Simplified KASUMI

structure

Fig. 3. The simplified structure of the KASUMI block cipher (from [4])
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(b) Simplified FO function (c) Simplified KASUMI structure

Fig. 4. (continued)

For example, all of the edges in the diagrams are labeled with the keyword «dl»to
indicate that they are instances of the dl stereotype and, therefore, model the
flow of bit-blocks. The profile is suitable to allow the designer to explore mul-
tiple design alternatives in a shorter period of time. The main idea is that the
developer builds an initial model of the structure of the block cipher according
to his/her architectural strategies, automatically synthesizes VHDL code from
it, tests this code using a number of standard test benches, and computes the
parameters of interest (performance, power consumption or area) to validate the
design. If something goes wrong, or if the designer conceives a different architec-
ture for the block cipher, it is always possible to directly manipulate the UML
model to correct errors or to reorganize the architecture of the model, and then
perform the test cycle again. The expectation is that handling domain-specific
UML modeling elements and having a complete view of the design will be more
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productive than sketching the design and then writing the corresponding code
in an implementation language like VHDL [9].

The models for the simplified FI and FO components, and for the simplified
main Feistel structure, are self-contained and enclosed within an activity mod-
eling element so that each can be subsequently reused by another model. This
is the case of the activity containing the dual-input FI function, see Figure 4(a),
which is used by the activity modeling the simplified FO function, as shown in
Figure 4(b). The dual-input FI sub-activity within the simplified FO activity,
denoted by the rake symbol (�), receives parameters and returns values through
its input and output pins. The control signals expected by the activities in the
models can be generated by state machine modeling constructs in UML 2.0.

It is important that the designer assigns correct values to the attributes of
the modeling elements in the Block Cipher Diagrams. These attributes provide
important information about the configuration of the modeling elements to a
code synthesizer to produce correct VHDL code. Depending on the UML mod-
eling tool, the attributes and the values assigned to them might be shown next
to each modeling element, as tagged values, or not.

4 Conclusions

This paper has discussed the convenience of being able to describe the function-
ality of digital hardware systems at higher levels of abstraction and let a number
of transformation tools to synthesize an specific implementation from such de-
scriptions, according to the model-driven engineering principle. This paradigm
should have a positive impact on the alleviation of design complexity and the
increase of the productivity of the developer.

The Block Cipher Profile described in this document is the first step towards
the implementation of a design flow that will allow us to specify the structure
and behavior of a digital communications system by means of UML 2.0 models,
and derive a hardware implementation from the diagrams. One of the principles
behind this design flow is the definition of domain-specific modeling languages
that provide constructs and abstractions that are closer to the application do-
main than to the implementation technologies. Due to the extension capabilities
of UML 2.0, as well as its graphical nature, we chose this modeling language as
the base language for our domain-specific languages.
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Abstract. Successful application of model-driven engineering

approaches requires interchanging a lot of relevant data among the tool

ecosystem employed by an engineering team (e.g., requirements elicita-

tion tools, several kinds of modeling tools, reverse engineering tools, de-

velopment platforms and so on). Unfortunately, this is not a trivial task.

Poor tool interoperability makes data interchange a challenge even among

tools with a similar scope. This paper presents a model-based solution

to overcome such interoperability issues. With our approach, the internal

schema/s (i.e., metamodel/s) of each tool are explicited and used as ba-

sis for solving syntactic and semantic differences between the tools. Once

the corresponding metamodels are aligned, model-to-model transforma-

tions are (semi)automatically derived and executed to perform the actual

data interchange. We illustrate our approach by bridging the Eclipse and

Microsoft (DSL Tools and SQL Server Modeling) modeling tools.

1 Introduction

Development of a software system involves the collaboration of many developers
with different roles (managers, analysts, designers, programmers,...) employing
various tools (from project management tools, as Microsoft Project, to tools for
requirements elicitation, as DOORS or even Excel, modeling tools as EMF and
Microsoft DSL Tools, and development IDEs among many others).

Clearly, a key aspect for this collaboration is proper interoperability in the tool
ecosystem. Interoperability is the ability of two (or several) tools to exchange
information and thus to use the exchanged information [11][22]. Interoperability
is required in several scenarios: forward engineering, reverse and round-trip en-
gineering, tool and language evolution (to address backward compatibility with
previous versions) and, for instance, collaborative development, where several
subteams may work on separate views of the system using different tools (e.g.,
modeling tools) that must be later merged.

Unfortunately, interoperability is also a challenging problem that requires ad-
dressing both syntactic and semantic issues since each tool may use a different
syntactic format to store its information but, more importantly, use its own
internal schema to represent and manipulate such information, most likely dif-
ferent from the one expected by other tools. Therefore, trying a manual solution

T. Kühne et al. (Eds.): ECMFA 2010, LNCS 6138, pp. 32–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is error-prone and very time-consuming, and it is hardly reusable even when
using a similar set of tools. Instead of ad-hoc solutions, a generic set of bridges
between the tools should be provided. Each bridge should ensure data-level in-
teroperability (i.e., metadata/data interchange) and operational-level interoper-
ability (i.e., behavior interchange) for two or more tools, independently of the
specific project/context in which the tools are used.

In this sense, we propose a model-driven solution for tool interoperability. In
general, model-driven interoperability approaches work by first making explicit
the internal schema (i.e., metamodel) of each tool. Metamodels are then aligned
by matching the related concepts. Finally, model-to-model transformations ex-
ploit this matching information to export data (i.e., models from our point of
view) created with the first tool to data conforming to the second tool’s inter-
nal schema. In this paper, we focus on a more general scenario in which tools
that need to interoperate are able to manipulate data conforming to different
metadata specifications. In this situation, data interoperability needs to inter-
change not only the data but also the metadata between the tools so that the
target tool can correctly interpret the imported information. Therefore, in this
case, alignment is not done at the metamodel level but at the metametamodel
level. Note that tools that support arbitrary metadata specification necessarily
represent metadata using a specific format, or structure, and cannot have fully
hard-coded metadata. This format is what we refer to as the metametamodel of
the tool, whether it is called a metametamodel in the tool terminology or not,
and whether it is explicit in the tool or not. Also note that, in contrast to other
approaches, changes on the internal schema/s used by one of the tools do not
require updating the bridge.

We believe this more generic approach is required to deal with the complexity
of current model-driven engineering (MDE) approaches. As an example, con-
sider the Eclipse Modeling Framework (EMF [3]). When modeling a system
with EMF, designers can use several domain-specific languages, each one repre-
sented by its corresponding metamodel, to specify different views of the system.
When exporting this specification to another tool we need to export both the
models and the metamodels the designers have used. We will use this scenario
to illustrate our interoperability approach. In particular, we will provide a set of
bridges between the Eclipse (EMF) and Microsoft (SQL Server modeling [5] and
DSL Tools [4]) modeling technologies. The bridges will allow to automatically
open and manipulate in Microsoft tools any model and metamodel defined in
EMF and vice-versa.

As we will see, our model-based solution offers several advantages: it is generic
(it can be applied to any metamodel and model independent of the domain),
reusable (all tools using the same underlying framework/platform, e.g., all tools
based on EMF, can reuse the bridges) and extensible (it can be easily adapted to
cover new environments and formats since it addresses separately the syntactic
and semantic issues). Besides, our approach is easier to integrate with current
trends towards the use of modeling in many aspects of the development process.
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The rest of the paper is structured as follows. Next section characterizes the
problem context for our method and comments the current state of the art in
this field. Section 3 introduces the Eclipse-Modeling example. Then, Section 4
presents our approach for data-level interoperability and applies it to create the
Eclipse-DSL Tools bridge. Section 5 repeats the process for the Eclipse-SQL
Server Modeling bridge highlighting how both bridges are built following the
same generic architecture. Operational-level interoperability is commented in
Section 6. Finally, we explain the tool support in Section 7 and the conclusions
and further work in Section 8.

2 Problem Definition

The interoperability problem has been widely addressed in the literature (see
[23,19] for existing surveys) but it is still far from being solved. For instance, the
OMG has recently created the Architecture Ecosystem Special Interest Group to
discuss this same problem.

Previous approaches tried to handle this problem by connecting the tools’
APIs (e.g., [20]) or interfaces (e.g., [7]). Approaches of this kind, operating at
the API-level, may notably make use of the facade pattern. However, this low-
level view of tools was too limited to achieve real data interoperability. With
the advent of MDE, new proposals have realized about the benefits of looking at
the interoperability problem at a higher abstraction level [10] and now follow a
model-based approach in which interoperability is specified at the (meta)model
level: the internal metamodels of both tools are explicited and aligned and this
information is used to drive the interchange of information between them.

Nevertheless, most of these approaches (including our previous experiments in
this area) focus on an ad hoc solutions for two concrete tools [16,9,18,21,15,24].
The exceptions are [17] that proposes some generic patterns that facilitate a
(manual) metamodel alignment based on the use of ontologies (under the as-
sumption that integration of ontology-annotated metamodels is easier) and [8]
and [6] that focus on the interoperability of modeling tools through the use of a
bus that provides several predefined data interchange and conversion services.

Moreover, all these approaches assume that tools have a fixed metamodel
(e.g., UML modeling tools only accept models conforming to the UML meta-
model). This is not the case anymore. With the rise of MDE, more and more
development tasks involve manipulating models conforming to different meta-
models and created using generic tools able to handle several metamodels at the
same time. Typical examples are the Eclipse and Microsoft modeling tools. As
part of the definition of the working environment, the designer can define the
metamodel to work with and then create models conforming to that metamodel.
Therefore, data interchange for these tools involves bridging both the models
and the metamodels at the same time.

In this sense, our approach provides a more general solution to the tool in-
teroperability problem by allowing data interchange between tools with variable
metamodels. Once the bridge has been built, metamodels and models can be
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automatically interchanged between the tools. Adding new metamodels does
not require extending the bridge. Besides, as we will see our approch is fully
model-driven and separates in different steps the processing of the syntactic
and semantic aspects of the bridge. Instead many existing approaches mix both
transformations which impairs the reusability of the bridge. In addition to this,
many of the interoperability scenarios cited above could be expressed as a spe-
cific instance of our approach (where the variable metamodels would be just the
specific metamodel of the tool) and benefit from (parts of) it.

3 Motivating Example

As a concrete example of the problem previously detailed in Section 2, we con-
sider in this paper bridging the Eclipse Modeling Framework (EMF) [3] with
two different Microsoft modeling environments: Microsoft DSL Tools [4] and
Microsoft SQL Server Modeling [5]. This is actually a quite common interoper-
ability scenario: these three modeling environments overlap in many aspects, in
terms of both concepts and capabilities, and are becoming increasingly popular.
Therefore, it is likely that many projects need to import/export metamodels
(i.e., metadata) and corresponding models (i.e., raw data) from one environ-
ment to the other. This can occur for instance when the base platform has to be
changed and the related legacy (meta)models must be reused. A collaborative
work, in which both environments are being used at the same time and some
specified models need to be merged accordingly, is another potential situation
where such interoperability is required.

More pragmatically, the goal of our bridges is to allow metamodels and mod-
els built or generated in EMF to be manipulated in both Microsoft modeling
environments and vice-versa. We provide here short descriptions of these three
different environments.

The Eclipse Modeling Framework [3] is the well-known reference modeling
infrastructure when developing under and for the Eclipse platform. It provides
an explicit metametamodel, named Ecore, as well as the corresponding standard
runtime, serialization and code generation features for the designed metamodels
and models to be exploited. See, for instance, the PetriNet metamodel along with
a sample model conforming to that metamodel created using EMF (cf. Fig. 1).
All the Eclipse modeling tools are based on EMF such as model-to-model (M2M)
transformation tools (e.g., ATL [14] used to implement the bridges), model-to-
text (M2T) transformation tools, graphical or textual model editors, etc.

The Microsoft DSL Tools [4] are part of the Visual Studio SDK dedicated
to the customization of the Visual Studio platform (largely based on the .NET
framework) for specific needs or domains. DSL Tools aim more particularly at
providing facilities for building graphical Domain-Specific Languages (DSLs) and
corresponding editors, i.e., modeling tools. Contrary to EMF, this environment
is based on an implicit metametamodel which is somehow internally hard-coded
by APIs and corresponding serialization XML Schema. It also comes with code
generation capabilities from the designed models.
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Fig. 1. Simple PetriNet metamodel in Ecore and corresponding sample model (EMF)

Microsoft SQL Server Modeling (SSM) [5], formerly “Oslo”, is the latest mod-
eling environment developed by Microsoft and targets the building of data-driven
tools. This environment is based on the ‘M” modeling language whose MSchema
part is a declarative language to design domain models (or metamodels). The
other parts of this language allow defining corresponding textual concrete syn-
taxes for DSLs as well as concrete data models (models). SSM also features a
customizable tool, named “Quadrant”, allowing to interact between the available
models and the actual data (i.e., the databases).

In the remainder of this paper, we will focus on the possible bridges between
EMF and these two Microsoft environments. Bridging the Eclipse and Microsoft
worlds opens the door to import/export into/from Microsoft all (meta)models
specified with any modeling tool built on top of EMF: interoperability is thus
possible between many different tools at the same time. We will see the results
of porting our PetriNet metamodel and sample model as an example of the
application of our method.

4 Approach Presentation

This section introduces our model-driven approach for tool interoperability.
First, we present the high-level architecture of the method. Then, we clarify
and describe in detail each individual step, showing how to apply the method to
build the bridge between Eclipse Modeling Framework and Microsoft DSL Tools.

4.1 Overview

Fig. 2 depicts a bridge to manipulate within Tool B data (i.e., models) created with
Tool A, or vice-versa. Both considered tools are built upon variable metamodel
environments. Therefore, each of these environments defines a metametamodel:
metametamodel A used by Tool A, and metametamodel B used by Tool B.
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With each tool, a given metamodel (e.g., MMX on the figure) may be ex-
pressed in terms of the metametamodel of that particular environment. Then,
models (e.g., M1) may be expressed in terms of MMX . The objective of the
bridge is therefore twofold:

1. At metamodel-level, the bridge must enable the transformation of any meta-
model conforming to metametamodel A into an equivalent metamodel
conforming to metametamodel B, and vice versa. For instance, if MMX is
initially expressed in terms of metametamodel A, then the bridge must au-
tomatically create the version of MMX that conforms to metametamodel B.

2. At model-level, the bridge must enable the transformation of any model
defined with Tool A into an equivalent model defined with Tool B, and vice
versa. The metamodel of the original model and that of its derived equivalent
are themselves equivalent.

The bridge is bidirectional and allows the interchange of models and metamodels
in both directions. However, the implementation of the bridge itself must take
place inside one of the two environments (in Fig. 2, this bridge is implemented
using the environment A)1. The main selection criteria is that the selected en-
vironment must provide a transformation technology to perform the required
adaptations. However, the capabilities of the bridge are independent from the
chosen implementation environment.

conformsTo
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Fig. 2. General bridging approach (overview)

As seen in Fig. 2, there are four main steps (plus an optional one) involved
in the process of creating such a bridge. Each step is represented as a circled
number. These steps are:

1 We could also use a third environment as a pivot but presenting the approach in

that way adds unnecessary complexity.
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① (Optional) Metametamodel discovery. All variable-metamodel tools
necessarily have a metametamodel, in terms of which metamodels are de-
fined. However, this metametamodel may not be explicitly available. In such
a case, it is necessary to discover that metametamodel from the tool API,
its storage schema, etc. For instance, metamodels defined with the tool can
be analyzed in order to identify the set of concepts and relationships used to
express them. These constitute the metametamodel of the tool. When the
metametamodel is readily available (e.g., as is the case for EMF and SSM),
this step can be skipped.

② Transcription. This step consists in expressing metametamodel B in terms
of metametamodel A (in environment A). This has first to be done manually.
However, as a metametamodel conforms to itself, the approach may be boot-
strapped and this may be re-generated using the bridge once established.

③ Syntactic translation. At this step, the syntactic differences between Tool
A and Tool B are solved by transcribing the elements of B within the same
technical space of A, i.e., by switching from environment B to A in order
to use the same kind of concrete syntax. As seen in Fig. 2, the metamodel
in Tool B is re-expressed as an instance of the metametamodel B rewritten
within Tool A. Therefore, this is a purely syntactic re-expression we call
projection, since the structure of elements of B has not changed.

④ Semantic alignment. At this step, we cannot yet import models of Tool
B in Tool A (and vice-versa) since we cannot have more modeling levels in
A, according to the OMG metamodeling architecture. Therefore, we need
first to express the metamodel of Tool B as a native metamodel in environ-
ment A, which conforms to the corresponding metametamodel of A. This
implies a semantic adaptation between the metametamodels of A and B,
which is actually realized by transformations. These transformations allow
to import/export any metamodel between A and B. This step may be real-
ized with the assistance of matching tools or not.

⑤ Data interchange. Once this is done, the previous (semantic alignment)
information is used as well to generate the transformations that actually
imports models from B to A and vice-versa. Note that complementary pro-
jections similar to those of the Syntactic Translation step are also required
to allow exchanging models between A and B. This bridge is generic: even if
Tool B changes its metamodel, there is no need to modify the bridge since
the mappings will automatically support importing B models (with the new
metamodel) into Tool A.

The important characteristics behind the proposed approach are its genericity,
extensibility and reusability:

– Genericity because it can be applied on any metamodel and model, in-
dependently of the selected environment and considered domain or field of
application;

– Extensibility because the built transformations and projections can be di-
rectly extended in order to target other environments or any software in
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Fig. 3. EMF-DSL Tools conceptual bridge (overview)

general, specially given the separation of the syntactic and semantic align-
ment steps.

– Reusability because 1 - these transformations, projections (or at least parts
of them) and metamodels can be directly reused as they are for other pur-
poses and 2 - the bridge can be reused by all tools based on the same
metametamodel.

Fig. 3 shows the application of this method to our motivating EMF-DSL Tools
interoperability example. In this case, the environment A is EMF and the envi-
ronment B is DSL Tools. EMF has been chosen as the implementation environ-
ment because of the several evolved transformation technologies available, such
as ATL [14] for model-to-model transformation. Fig. 3 also shows that EMF has
an explicit metametamodel named Ecore while DSL Tools has an implicit one
we arbitrarly name DSLMeta. As an example, consider a PetriNet modeling tool
in EMF (Tool A) and its equivalent in DSL Tools (Tool B). Each of these two
tools is based on an explicit PetriNet metamodel, which conforms to its cor-
responding metametamodel. The goal is to be able to automatically exchange
PetriNet models between the PetriNet EMF modeling tool and the similar DSL
Tools one.

In the next subsections, we provide more details on the step-by-step applica-
tion of our MDE approach to this concrete example. As we will see, for some
steps, it is useful to split them into substeps that improve the modularity of our
approach and reduce the complexity of each single step. This depends on the
syntactic and semantic distance between the tools to be bridged and it is op-
tional since it is always possible to built the bridge in just the five steps described
above.

4.2 Metametamodel Discovery

In our scenario, this optional step is required as the metametamodel of DSL Tools
is not explicitly specified. There are currently no fully automated solutions for
discovering it. Thus, this has to be performed manually by using the metamodel
examples we can find, but also the available documentation and APIs.
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4.3 Transcription

In our case, this step requires defining metametamodel DSLMeta as a metamodel
which conforms to metametamodel Ecore in EMF, as shown on Fig. 3. This is
a manual step but usually a simple one since many metametamodels share the
same basic conceptual elements.

Ecore DSLMeta M3

MMX MMXDSLMeta M2KM3 XML

M1 M1

MMX

M1

MMX MMX

EMF DSL Tools

Fig. 4. EMF-DSL Tools metamodel-level bridge (overview)

4.4 Syntactic Translation

Then, we need to be able to express our PetriNet metamodel from DSL Tools
as a model conforming to this newly defined DSLMeta metamodel in EMF. As
shown in Fig. 4 (right), this has been implemented using an intermediate substep
to simplify the process. Because the serialization format used by the DSL Tools
is XML, we can first automatically inject the content of the XML document
storing the PetriNet metamodel (in DSL Tools) into a model which conforms
to a standard structural XML metamodel (note that the inverse operation is of
course also possible). At this point, our DSL metamodel is already expressed as a
EMF model but conforming to the XML metamodel. Therefore, the second step
is to define the model transformation that generates the corresponding version
of the model that conforms to the DSLMeta metametamodel in EMF created in
the previous step. Using XML as a pivot metamodel simplifies the projection of
the PetriNet metamodel in EMF.

4.5 Semantic Alignment

The previously projected PetriNet metamodel can be considered as the precise
representation of the initial PetriNet metamodel in DSL Tools. However, this
metamodel is not yet conforming to Ecore, i.e., it is not a real metamodel from
an EMF point of view (in fact, for EMF, this metamodel is regarded as a simple
terminal model, an instance of the DSL Tools EMF metamodel) and cannot be
used by metamodeling tools using EMF. The objective of this step is to be able
to get a native PetriNet metamodel in Ecore from this model and vice-versa, as
shown in Fig. 4 (left).
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Again, this step uses an intermediate representation to reduce the semantic
gap. First, this DSLMeta PetriNet metamodel is transformed into a model which
conforms to the KM3 metamodel. Aligning DSL Tools and KM3 is easier than
directly aligning DSL Tools and EMF. Furthermore, we already have existing
KM3-Ecore converters that take the KM3 model and re-expresses it as a native
Ecore metamodel, and vice versa.

At the end of this step, we have a metamodel-level bridge that may now be
automatically reused to any metamodel specified in DSL Tools in EMF and the
other way round.

4.6 Data Interchange

Now that we have our PetriNet metamodel available in both the EMF and DSL
Tools environments, we want the two associated PetriNet modeling tools to be
able to interoperate exchanging PetriNet models. Fig. 5 presents how this has
been concretely realized.

Ecore DSLMeta M3

MMX MMXDSL Model M2XML

M1 M1M1 M1M1

EMF DSL Tools

Fig. 5. EMF-DSL Tools model-level bridge (overview)

Similarily to the metamodel-level bridge (i.e., because the serialization format
used by the DSL Tools is XML at both levels), the PetriNet sample models in
DSL Tools are converted as first XML and then DSLModel models in EMF
and vice-versa. The DSLModel metamodel is introduced in order to decouple
concrete syntax (i.e., XML), and metamodel-independant abstract syntax. This
metamodel represents the graph structure used in DSL Tools independently
of any metamodel. This corresponds to the projection phase between the two
different environments.

The transformation phase itself is separated into two distinct parts, which
makes it fully generic (i.e., independent from the used metamodel). First, the
transformation itself is (semi)automatically generated from the alignment infor-
mation used in the previous step. Then, the transformation is added to the overall
transformation chain for effectively building the output terminal model from the
source one. Only parts of the transformation that are metamodel-dependant are
automatically generated. Metamodel-independant parts are written by a devel-
oper once for each bridge. They are then reused for every metamodel to which
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the bridge is applied. Generated and manually written transformation parts are
typically composed by chaining them.

This way, we can apply the generated PetriNet-DSLModel mapping transfor-
mations in order to finalize the bridge and interchange PetriNet models (coming
from either EMF or DSL Tools).

In this section, our generic MDE approach for tool interoperability has been
introduced and directly used on our first motivating example. The next section
demonstrates the genericity and applicability of our solution by considering a
second example: bridging EMF and SQL Server Modeling.

5 Bridging Eclipse and SQL Server Modeling

The generic interoperability method presented in the previous section (cf. Sec-
tion 4) can be applied to make interoperate many different platforms and their
corresponding tools. As a second example, we briefly describe in this section how
we can use our method to build an EMF-SQL Server Modeling bridge. To do so,
we follow again the same steps we considered for the creation of the EMF-DSL
Tools bridge.

Ecore MSchema M3

MMX MMXMSchema M2

M1 M1

MMX

M1

EMF SSM

Fig. 6. EMF-SSM theoretical bridge (overview)

Fig. 6 presents the abstract view of this bridge in this specific case. We consider
here MSchema, i.e., the part of the “M” language dedicated to metamodeling (cf.
Section 3), as the SSM metametamodel. As the situation is roughly equivalent
to the EMF-DSL Tools bridge one, as shown from Fig. 3, we do not provide
more insights on this overall view.

Fig. 7 gives more concrete details on the metamodel-level bridge. Again, the
architecture is roughly the same as in the EMF-DSL Tools bridge: KM3 is
used as a pivot metamodel which allows directly reusing the available Ecore-
KM3 converters, while the actual mapping between the two metametamodels is
realized by the KM3-to-MSchema transformation. The only difference is that,
for this bridge, we are not using XML for metamodel/model serialization since
the format used by SSM is not XML-based but text-based. The use of the XML
metamodel as an intermediate step is thus not required: a textual modeling tool
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Ecore MSchema M3
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Fig. 7. EMF-SSM metamodel-level bridge (overview)

can be directly applied to switch between a textual file and the corresponding
metamodel/model, and vice versa. For this purpose, we use the TCS [13] (Textual
Concrete Syntax) tool.

6 Operational-Level Interoperability

So far, we have focused on the data-interoperability problem. The bridges pre-
sented in the previous section enable sharing models among the tools, including
the interchange of transformation models, i.e., models that define model transfor-
mations between source and target (meta)models. However, the simple exchange
of a transformation model is a necessary but not sufficient condition to achieve
operational-level interoperability. The additional requirement is that the target
tool includes a transformation engine able to process the information contained
in the transformation model and execute the corresponding transformation.

In our scenario, operational-level interoperability between Eclipse and Mi-
crosoft modeling tools requires creating a new version of the ATL virtual machine
(component in charge of executing model-to-model transformations defined us-
ing the well-known ATL transformation language [14]) adapted to the Microsoft
modeling tools.

The ATL virtual machine is currently written in Java and only accepts (meta)
models defined using EMF, KMF [12] or MDR as modeling frameworks. There-
fore, porting the ATL virtual machine implies two different steps:

1. Migrating ATL VM to the .NET platform to facilitate its execution from
within the Microsoft tools. It would be possible to directly call the Java ATL
VM from .NET but this solution loses in efficiency and elegance, requiring
the use of both Java and .NET Framework virtual machines (and exchanging
data between them) at the same time.

2. Integrating support for the SSM and DSL Tools frameworks.

The first step has been already completed. Regarding the second step, the virtual
machine has been built from the beginning in a layered structure (see Fig. 8) to
facilitate its portability. The model adaptation layer decouples the virtual ma-
chine’s core from the modeling framework used to define the (meta)models. This
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Fig. 8. ATL VM structure (overview)

allows the virtual machine to run on top of new modeling frameworks providing
that an adapter for the framework is available. Therefore, adding support for
SSM and DSL Tools only requires to create the corresponding adaptors.

7 Tool Support

Several of the bridges described in the previous sections have been actually
implemented (see Fig. 9) and are available from [2]. As can be seen in the figure,
in some cases, bridges concern both the metamodel and model levels, or just one
of these two categories. We are working on completing the full set of bridges.

However, we would like to remark that, in fact, it is not necessary to implement
all bridges to achieve full interoperability between each pair of tools. Existing
bridges can be used, by transitivity, to connect two tools with no direct bridge
between them. For instance, even if the corresponding bridge is not implemented,
we can interchange metamodels and models between DSL Tools and SSM using
EMF as a pivot tool. This is similar to using a metamodel as a pivot between
two other metamodels. However, in this case, we use it for bridges, not single
transformations.

As an example of the use of the bridges, Fig. 10 shows the result of automat-
ically generating, for the DSL Tools, the metamodel and sample model from our
PetriNet EMF example (Fig. 1).

Existing
Legend:

EMF EMF

g

Ongoing work

DSL ToolsSSM DSL ToolsSSM

M2 level M1 level

Fig. 9. Existing bridges (overview)
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Fig. 10. PetriNet metamodel and sample model in DSL Tools format

Note that this same PetriNet metamodel is also available in SSM format.
However, the SSM equivalent sample model (in “M”) has not been produced
since the direct bridge has not been yet implemented at the model-level. But, as
commented before, it could be obtained by transtivity of the other bridges.

As part of our tool support, we have also released a first version of the ATL
Virtual Machine for .NET [1] that allows direct execution of model transforma-
tions within the .NET environment.

8 Conclusions and Future Work

We have presented our approach for tool interoperability, focusing on the most
general scenario: interoperability among tools able to handle data (i.e., mod-
els) conforming to different metadata (i.e., metamodels). Our method follows
a model-driven approach in which the (meta)metamodels of the tools are ex-
plicited, aligned and used to (semi)automatically generate the model-to-model
transformations that effectively bridge the tools.

Our model-driven view of the problem facilitates the reusability, genericity
and extensibility of the bridges in order to cope with the increasing complexity
of tool ecosystems. This model-driven view is also especially useful under the
current model-driven engineering paradigm where most of the tools already use
(meta)models as first-class entities.

There are several directions in which we plan to continue this work. First, we
plan to improve our proof of concept by completing the implementation of all
bridges between Eclipse and Microsoft modeling tools (including a bridge be-
tween the two Microsoft tools themselves) and extending them with full support
for operational-level interoperability as well. Second, we would like to improve
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the automation of the interoperability process by advancing, for instance, in
the automatic discovery of metamodels from tool APIs for those tools with no
explicit metamodel. Finally, we plan to study different “instantiations” of our
generic architecture to see how it can be optimized depending on the specific
pair of technical spaces (e.g., XML, grammar-based, modeling-based) of the two
tools to bridge.

Acknowledgments. The present work has been supported by the IST-FP6
MODELPLEX and the ITEA2 OPEES European projects.
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9. Didonet Del Fabro, M., Bézivin, J., Valduriez, P.: Model-driven tool interoperabil-

ity: An application in bug tracking. In: Meersman, R., Tari, Z. (eds.) OTM 2006.

LNCS, vol. 4275, pp. 863–881. Springer, Heidelberg (2006)

10. Elvester, B., Hahn, A., Berre, A.-J., Neple, T.: Towards an interoperability frame-

work for model-driven development of software systems. In: Proc. of the 1st Int.

Conf. on Interoperability of Enterprise Software and Applications, San Diego

United States, pp. 409–420. Springer, Heidelberg (2005)

11. Geraci, A.: IEEE Standard Computer Dictionary: Compilation of IEEE Standard

Computer Glossaries. The Institute of Electrical and Electronics Engineers Inc.

(1991)
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Abstract. Many crosscutting concerns in business processes need to be

addressed already at the business process modeling level such as com-

pliance, auditing, billing, and separation of duties. However, existing

business process modeling languages including OMG’s Business Process

Modeling Notation (BPMN) lack appropriate means for expressing such

concerns in a modular way. In this paper, we motivate the need for

aspect-oriented concepts in business process modeling languages and pro-

pose an aspect-oriented extension to BPMN called AO4BPMN. We also

present a graphical editor supporting that extension.
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1 Introduction

Several concerns in business process management are highly relevant from a busi-
ness perspective such as compliance, auditing, business monitoring, accounting,
billing, authorization, privacy, and separation of duties. These concerns need to
be addressed already at the business process modeling level and not only at the
process implementation and execution levels. However, existing modeling lan-
guages including the OMG’s Business Process Modeling Notation (BPMN) [15]
do not provide appropriate means for modeling such concerns in a modular way.
When modeling crosscutting concerns using state of the art languages such as
BPMN the following two problems are observed.

First, the model elements that address a certain crosscutting concern such as
compliance or billing are scattered across various process models, i.e., they are
not localized in a separate well-encapsulated model. This poses several problems
of understandability and maintainability as a compliance expert for instance
cannot easily see and understand how compliance - as an example - is being
addressed across the different business processes of a given organization. Instead
he has to understand the whole business process models and figure out which
modeling elements are related to compliance and which are not. The same applies
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when that expert wants to change something related to the crosscutting concern
as this requires fully understanding whole process models, finding the activities
addressing that concern, and changing them appropriately.

Second, the business process models get tangled as they contain modeling
constructs (e.g, activities and events) related to the core busines process and
also modeling constructs that address other concerns such as monitoring and
billing. These constructs are mixed so that there is no separation of concerns.
As a result the business process models become very complex and monolithic,
which hampers understandability, maintainability, and reuse.

To address the problems of crosscutting concern modularity in workflow
languages, we introduced in [5,3] aspect-oriented workflow languages. These lan-
guages provide concepts that are geared toward the modularization of cross-
cutting concerns such as aspect, pointcut, and advice. Although these concepts
have their origins in Aspect-Oriented Programming [11], their incarnation in the
context of workflow languages has important differences compared to their in-
carnation in programming languages as explained in [3]. In [4,6], we presented
the design and implementation of the AO4BPEL language, which is an aspect-
oriented extension to BPEL, as proof-of-concept for aspect-oriented workflow
languages. In that work, we focused on crosscutting concerns at the process ex-
ecution level. In the current paper, we shift our focus from executable process
languages to higher-level business process modeling languages and observe at
that level similiar modularity problems. To tackle these problems we propose
aspect-orineted business process modeling and present AO4BPMN, which is an
aspect-oriented extension to BPMN supporting the modularization of crosscut-
ting concerns. We also present a graphical editor for AO4BPMN.

The remainder of this paper is structured as follows. Section 2 gives some
background on BPMN, AOP, and aspect-oriented workflow languages. Section 3
motivates through examples the need for means to modularize crosscutting con-
cerns in business process models and BPMN in particular. Section 4 introduces
AO4BPMN, illustrates its use through examples, and shows the AO4BPMN
editor. Section 5 discusses related work and Section 6 concludes the paper.

2 Background

In this section we give some background knowledge on the Business Process
Modeling Notation, aspect-oriented programming, and aspect-oriented workflow
languages.

2.1 Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) [16] is the standard of the
Object Management Group (OMG) for the graphical representation of business
process models. It aims at providing a business process notation that is readily
understandable by business users. This work is based on the latest stable version
BPMN1.2.
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The graphical objects and relationships of BPMN are categorized in four
groups: flow objects, connecting objects, swimlanes, and artifacts. The flow ob-
jects (i.e., activities, events, and gateways) define the process behavior. With
the connecting objects (i.e., sequence flow, message flow, and association) the
modeler can specify the order of the tasks and the interactions between the
participants. The swimlanes (i.e., Pools and Lanes) represent participants in a
process. The artifacts (i.e., Data object, Group, and Annotation) are the graph-
ical elements for modeling process data and provide supplementary information.
Artifacts are the basis of BPMN extensibility as they allow to introduce new
language elements.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP)[11] is a programming paradigm, which
introduces a new unit of modularity called aspect for modularizing crosscutting
concerns. There are three key concepts in AOP: join points, pointcuts and advice.
Join points are well-defined points in the execution of a program (e.g., method
calls). Pointcuts are means to select a set of join points (e.g., select related
method execution points). An advice is a piece of crosscutting functionality,
which is associated with a pointcut. It can be executed before, after, or around
the join points selected by the respective pointcut. The around advice allow to
integrate the execution of the intercepted join point. Furthermore, the advice
can access the join point context. An aspect consists mainly of pointcuts and
advice but it may also define its own fields and methods.

2.3 Aspect-Oriented Workflow Languages

In [5,3], we introduced aspect-oriented concepts to workflow languages to address
the problems of crosscutting concern modularity in these languages and called
the resulting languages aspect-oriented workflow languages. These languages en-
able a concern-based decomposition of process specifications and process models.
Consequently, the process modeling constructs that belong to some concern are
specified in one module: The business process logic is encapsulated in a pro-
cess module whereas crosscutting concerns are encapsulated in aspect modules
[5] according to the principle of separation of concerns. In [5,3], we defined the
concepts of aspect-oriented workflow languages in a generic way independently
of any specific workflow language. In [4,6], we presented the design and imple-
mentation of AO4BPEL, which is an aspect-oriented workflow language for web
service composition.

3 Motivation

To illustrate the issues of crosscutting concerns modularity in business process
modeling, we consider in this section a simplified version of the business processes
of a tour operator, which sells flights and vacation packages. The tour operator
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works with specific airlines and hotel chains. It sells the flights offered by its
partner airlines but its main business consists in creating vacation packages
through the combination of the flight and accommodation offers of the partner
airlines and hotel chains.

Fig. 1 shows the flight search and vacation search business processes of the tour
operator. These processes start when a customer request message is received. For
simplification purposes, we assume that the flight search process interacts with
two airline partners (TA and BA) and flight offers are created via the sub-
process activity make flight offers, which also calculates the price. The vacation
search process interacts with a partner airline and a partner hotel chain to find
flights and hotels. The sub-process activity make package offers in that process
combines the results of the flight search and hotel search activities and calculates
the price. Both processes end by sending a message to the customer with data
about the available offers.

Fig. 1. Processes of a tour operator in BPMN

Next, we focus on two crosscutting concerns in the tour operator context:
compliance and monitoring (also called business activity monitoring). To ensure
that the customer requests and the creation of offers are compliant with the
internal regulations of the tour operator compliance check activities have to be
added to both processes. This happens respectively after receiving the customer
requests and after creating the offers as shown in Fig. 2. For monitoring the ex-
ecution time of certain process activities we extend the flight search process and
the package search process with activities for respectively starting and stoping
a timer before and after each monitored activity as shown in Fig. 3.

Both compliance and business activity monitoring are crosscutting concerns
and one sees already the problems of scattering and tangling discussed above. In
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Fig. 2. Compliance cheks in the search processes

Fig. 3. Monitoring activity execution time
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fact, modeling constructs related to compliance for instance are scattered over
the two business processes. There is no module that encapsulates all process
modeling elements related to this concern, which makes understanding how com-
pliance is been addressed at the tour operator and changing that when needed a
quite difficult task. One also observes the problem of tangling as both processes
address not only the core process logic but they contain modeling elements ad-
dressing other concerns such as compliance and monitoring. This increases the
complexity of the business process models and hampers understandability, main-
tainability, and reuse. These problems are due to the lack of appropriate concepts
in business process modeling languages - including BPMN- for modularizing
crosscutting concerns.

4 AO4BPMN

In this section we first give an overview of AO4BPMN and then discuss the
composition of aspect and proces models. After that we present some examples
for illustration and show a graphical editor for AO4BPMN.

4.1 Overview

AO4BPMN is an aspect-oriented extension to BPMN that allows the modular-
ization of crosscutting concerns in business process models such as compliance,
accounting, billing, monitoring, authorization, separation of duties, etc.

AO4BPMN was designed according to BPMN extensibility guidelines. BPMN
supports extension based on artifacts. These are modeling concepts that allow
modelers to add new langugage elements to satisfy a certain need such as the
requirements of some vertical domain. BPMN pre-defines three types of artifacts:
data objects, text annotations, and groups. These artifacts can be linked to
existing flow objects (i.e, activities, events, or gateways) through associations. In
our case, we use artifacts to define the aspect-oriented constructs of AO4BPMN.

Next, we introduce the AO4BPMN language concepts in a more detail starting
first at the meta-model level and then we present two concrete syntaxes: a) a
light-weight one, which uses existing artifacts and BPMN elements to represent
the aspect-oriented constructs and b) a heavy-weight one, which proposes new
graphical representations for the aspect-oriented constructs. The light-weight
syntax allows using AO4BPMN with standard BPMN editors. An editor for the
heavy-weight syntax will be presented at the end of this section.

Join Points and Pointcuts. Join points are points in the business process
model where modeling elements implementing a crosscutting concern can be
integrated. In AO4BPMN, flow objects are the supported join points, e.g., ac-
tivities and events. There is no special language construct in AO4BPMN to
model join points.

A pointcut is a construct that allows the selection of related join points.
According to the BPMN extensibility mechanism, we define pointcuts as a new
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artifact, which optionally has a query attribute. In the light-weight visual syntax
of AO4BPMN, pointcuts are represented as data objects that have an associated
annotation with the text Pointcut. The queries are stored in the document prop-
erty of the data object. In the heavy-weight syntax, a pointcut is represented by
an oval.

The pointcut language is the language used to define pointcuts. We considered
three alternative pointcut languages for AO4BPMN.

– Explicit Pointcut to Join Points Associations. The first alternative
consists in using a simple visual pointcut language by connecting the pointcut
to the join point activities via BPMN associations. The problem with this
approach is scalability and also the fact that the processes and aspects should
be displayed in the same view in order to connect them.

– A Query-based Pointcut Language. A quite powerful alternative con-
sists in using a textual query language as pointcut language. For that pur-
pose, one could use existing model query languages such as OCL [13] and
QVT [14], which allow to select model elements like activities or events based
on their types, their attributes, their associations to data objects, their con-
nections via sequence flow to other join points, etc. The problem with this
approach is that BPMN users generally do not have knowledge of model
query languages. To address that problem one may define a simple query
language where a) activities are selected by specifying their names in addi-
tion to the names of their lanes/pools and processes and b) pointcuts are
composed with the OR operator to build more complex pointcuts.

– Annotating the Join Points. The third alternative consists in adding
BPMN text annotations to the join points and defining the pointcut as a
simple annotation-based query. As an example, one could add an annotation
with the text monitoring to all activities for which the execution time should
be measured. Then, the pointcut will simply select all activities that have an
associated text annotation with the value monitoring. Although this alterna-
tive would relax the obliviousness property [9] of AOP it seems appropriate
for BPMN users.

Advice. An advice is a BPMN sub-process that implements some crosscutting
logic and may include the special activity proceed. In the light-weight syntax it
is represented like a standard subprocess but it has an attached text annotation
with the text Advice. A further optional annotation is used to indicate the advice
type. In the heavy-weight syntax it is represented as a rectangle with two parts.
The upper part contains the advice name and optionally the type whereas the
lower part contains the subprocess activities.

The semantics of the advice is to replace the join points selected by a sub-
process that contains the join point activity or event in addition to activities
implementing the crosscutting concern. If the join point activity is source or tar-
get of sequence or message flows, the sub-process activity becomes the source or
target of those flows. The advice is self-contained, which means that no sequence
or message flows are allowed between the advice and the other activities of the
business process except the join point.
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In the advice, a special activity named Proceed can be used to integrate the
join point in the middle of the advice and to indicate the order of the advice
activity with respect to join points. The use a proceed inside the advice avoids
the need for indicating the advice type (i.e., before, after, or around). It is even
possible to define other execution orders according to the different workflow
control patterns [21] supported by BPMN. In case the Proceed activity is not
used the advice type has to be specified.

Aspects. Aspects are elements that modularize the modeling of a certain cross-
cutting concern. They consist of one or more pointcuts and associated advices.
In addition, they may define their own state with data objects. In the light-
weight visual syntax aspects are represented by means of a BPMN pool that has
an associated text annotation with the text Aspect. In the heavy-weight visual
syntax aspects are represented as pools that have rounded corners.

4.2 Composition of Aspects and Processes

As the workflow aspect models are separated from the process models an appro-
priate composition mechanism is needed. In [3], two approaches were proposed
for the composition of aspects and workflow processes in aspect-oriented work-
flow languages: an aspect-aware engine as weaver and weaving through process
transformation. As BPMN is a modeling notation only (i.e., not directly exe-
cutable by an engine) the first composition approach is not applicable in this
context. Only the process transformation is feasible for weaving AO4BPMN as-
pects with BPMN process models.

In the process transformation approch approach a model weaver composes
the process and aspects models into new process models. Such as weaver can
be implemented using model-to-model transformation techniques. For instance,
one could realize such composition mechanism using a two-phase transformation:
in the first phase pointcut matching is performed, i.e., the selected join points
are discovered (by evaluating the query) and annotated; in the second phase
the advice activity is inserted in the processes at the selected join points and
according to the advice semantics. The process transformation has also to update
the sequence and message flow that starts from or targets the join points as
defined by the advice semantics, resolve the data collection constructs by adding
associations, and replace special constructs such as the proceed activity by the
join points.

This composition approach results in standard BPMN models that can be
viewed and manipulated by existing tools. Moreover, with this approach, one
may have various versions of the business process at different levels of abstrac-
tion (e.g., one would have the base process, which is appropriate for business
users, in addition to the base process plus auditing, which is appropriate for
auditing experts, base process plus compliance, which is appropriate for compli-
ance experts, etc.). This is quite helpful for understanding the processes and also
supports multiple-views with varying abstraction levels for different user groups
of BPMN processes.
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4.3 Examples

We show two examples illustrating the use of AO4BPMN to model the crosscut-
ting concerns discussed in Section 3. Fig. 4 shows the compliance and monitoring
aspects using the light-weight visual syntax of AO4BPMN. The advice of the
compliance aspects adds compliance checking activities to the flight search and
vacation search processes. The monitoring aspect integrates the monitored ac-
tivities in the middle of two activities respectively for starting and stopping
a timer.

Fig. 4. Aspects in light-weight AO4BPMN visual syntax

Fig. 5 shows the same aspects as the ones shown in Fig.4, but this time
using the heavy-weight visual syntax. For this syntax we have implemented an
AO4BPMN editor using Eclipse GMF [8].

One observes that when compliance and monitoring concerns are modularized
in aspect models the respective logic is no longer scattered across the two busi-
ness process models. One can easily understand these concerns and how they
are addressed in the different business processes of the tour operator through
looking only at the respective aspects. Further, the process models are no longer
tangled as they address only the core business logic of the process. As a result,
understanding and maintaining them becomes easier .

After modulazing the crosscutting concerns compliance and monitoring the
respective aspects have to be composed with the business process models. Fig. 6
shows the resulting processes after composing the aspects shown in Fig. 4 with
the processes shown in Fig 1.
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Fig. 5. Aspects in the heavy-weight AO4BPMN visual syntax

Fig. 6. The resulting processes after composition

5 Related Work

Several works intend to bridge the gap between business process models and
the IT level, following the MDA paradigm. E.g., the transformation framework
for IBM WebSphere Business Modeler outlined in [12] aims at rapid develop-
ment of model transformations in combination with quality assurance techniques
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that enable to refine and refactor business process models towards correct and
executable code. However, in most of these model-driven approaches, tackling
complexity by modularizing cross-cutting concerns via aspects is not addressed.

The related works presented in the following can be grouped in two major
clusters. The first cluster focuses on aspect-oriented modeling mostly in the
context of object-oriented design. The second cluster of works introduces aspect-
oriented concepts to business process management.

A survey on existing approaches in the field of Aspect-Oriented Modeling is
given in [7]. Related work [23,22] can be found regarding aspect-oriented states
machines, respectively UML state diagrams. In [17] the author introduces as-
pects for domain specific languages (DSLs), e.g. for finite state machines in the
business process management domain, and outlines how composition filters could
be integrated into the workflow engine architecture.

It is important to note however that most works on Aspect-Oriented Mod-
eling target object-oriented models and especially structural models. The most
related work to ours is that of [1], which proposes aspect-oriented extensions
to UML activity diagrams by introducing horizontal decomposition (as opposed
to the vertical decomposition i.e., the hierarchical decomposition). That work
defines a UML profile specifying three types of activity nodes where horizon-
tal decomposition can happen: interface nodes, activity nodes and subtraction
nodes. Addition nodes are activity nodes that are added to an activity diagram
during horizontal composition whereas subtraction nodes are deleted from an
activity diagram during that step. An interface node represents a join point
at which an advice (i.e., a horizontally decomposed activity diagram) can be
integrated into another activity diagram.

In [20], a proposal for combining business process management and Aspect-
Oriented Programming is presented. That work proposes weaving a generalized
process with participant process aspects. The latter are activities, which can be
included in a business process in order to customize it for execution by some
resource. That approach is based on the programming language Java and the
respective aspect-oriented extension AspectJ [10], i.e., that work does not in-
troduce any aspect-oriented concepts to the BPM or workflow level as aspects
are used only at the workflow implementation level, unlike our proposal, which
introduces aspect-oriented concepts to BPMN.

In [19], the authors discuss business protocol compliance issues and intro-
duce an aspect-oriented approach to ensure the correct course of collaborative
interaction by weaving in services that inserts an individual signature, adds a
timestamp, and verifies the order of previous evidences. The proposed interac-
tion enhancement solution however, apart from being bound to the compliance
topic, focuses on weaving aspects into BPEL and further deployment artifacts.

In contrast to this, business process modeling is in the focus of the work in [2].
The authors of that short paper propose an Aspect-Oriented Process Modeling
Language (AOPML), exemplarily instantiated using the BPMN notation. The
authors describe the meta-model of AOPML that is intended to be applicable in
combination with any language for modeling processes. With these concepts the



Aspect-Oriented Business Process Modeling with AO4BPMN 59

modeler can specify crosscutting relationships and joinpoints - however, com-
pared to AO4BPMN, with limited expressiveness; e.g. regarding the advice lan-
guage, as AOPML does not allow the definition of flexible execution orders (in
AO4BPMN enabled by the PROCEED concept), and, additionally, regarding
the support for modularization of the process logic that belongs to a certain
crosscutting concern and its state, as AOPML does not support the definition
of aspects. Furthermore, the authors do not address the topic of enabling the
execution of the resulting process models, nor do they provide tool support.

With regard to these issues [18] depicts a more complete solution of aspect-
oriented business process modeling in the context of service-oriented architectures
(SOAs), named AOBPMN. The author provides both a model transformation tar-
geting BPEL and an aspect-including BPEL engine, the latter being based on
AO4BPEL. On the business process modeling level, aspects are integrated by ex-
tending the BPMN meta-model with three new notations, called aspect dot, as-
pect flow, and aspect wrapper. Though the author’s AOBPMN is not based on the
more commonly used STP BPMN meta-model, these concepts partly correspond
to the BPMN extension proposed in this work; e.g. the aspect wrapper is similarly
represented as a specialization of a pool. Aspect flows, however, enabling explicit
pointcut to join point associations, are not used in AO4BPMN for the reasons
given in section 4.

Besides these, and our work on aspectual workflow graphs [3], we are not
aware of any other work on aspect-oriented modeling in the business process
management and workflow management context. Aspectual workflow graphs de-
fine the basic concepts of aspect-oriented workflow languages in a simple way
using workflow graphs. The AO4BPMN proposal can be considered as a second
step toward aspect-oriented business process modeling. This activity comes in
the context of our research on aspect-oriented workflow languages. In [5,3], we
defined in the basic concepts of this new class of workflow languages in a generic
way. In [4,6], we presented the design and implementation of a specific aspect-
oriented workflow language for Web Service composition and namely AO4BPEL,
which can be considered as a proof-of-concept.

6 Conclusion

In this paper, we motivated the need for appropriate support for crosscutting
concerns in business process modeling languages and introduced an aspect-
oriented extension to BPMN called AO4BPMN and which allows the modu-
larization of such concerns. We explained the language concepts and illustrated
the use of that extension through examples and presented two concrete syn-
taxes: a heavy-weight one supported by a special editor and a light-weight one
that works with standard BPMN editors. In our future work we will investigate
the composition of aspects and process and develop a model weaver for com-
posing AO4BPMN aspects with BPMN process models. Furthermore, we will
combine AO4BPMN and AO4BPEL into a wholistic approach to crosscutting
concerns in business process management, which spans process modeling and
process execution.
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Abstract. A reflective approach to model-driven web engineering is

presented, which aims to overcome several of the shortcomings of ex-

isting generative approaches. The approach uses the Epsilon platform

and Apache Tomcat to render dynamic HTML content using Epsilon

Generation Language templates. This enables EMF-based models to be

used as data sources without the need to pre-generate any HTML or

dynamic script, or duplicate the contents into a database. The paper re-

ports on our experimental results in using this approach for dynamically

querying and visualising a very large military standard.

1 Introduction

Increasingly, the design of complex engineered products and systems is becoming
more reliant on computer-supported models capturing structured information.
By contrast, most military standards in use are still disseminated as text-based
documents. In our experience, this is also the case in other domains requir-
ing complex detailed standards such as automotive and aeronautical industries.
These standards can be over thousands of pages in volume, which can make lo-
cating and composing information in them challenging and laborious. Within the
development of military hardware, engineers are typically required to produce
documents based on a subset of the standards implemented by their product.
Product testing will require the engineers to promptly locate information in
the standard and validate that their product conforms to it. Interoperability
is also crucial in military applications where engineers must validate that their
implementation does not impede or conflict with other products. To address
these issues, we have found it useful to extract semantic models represented in
a structured format which is then amenable to automated querying and pro-
cessing. In our experience this approach can greatly enhance both the accuracy
and speed of locating and composing information from different parts of a stan-
dard. We have also found that in order to make models useful for engineers, it
is essential to construct a suitable and familiar user interface for querying and
navigating them.
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In our previous work [2] we used text parsing to extract structured Eclipse
Modelling Framework(EMF) based models from text-based military standards.
This paper presents our work on using a combination of web and Model-Driven
Engineering (MDE) technologies (in particular the Epsilon Generation Language
(EGL) and Apache Tomcat) to enable dynamic querying and visualising of these
models over the web. The rest of the paper is organized as follows. In section 2
we provide an overview of the domain of military standards with an emphasis
on Tactical Data Links – which is the main focus of our work. Then, in section
3 we outline the motivation for querying and visualizing models over the web.
In section 4 we perform a review of existing generative MDE approaches for
implementing web-based applications and highlight their advantages and short-
comings. Driven by the findings of this review, in section 5 we propose a novel
reflective approach for building web-based applications directly atop EMF-based
models. Then, in section 6 we evaluate this approach both from a development
effort and a performance perspective and assess its suitability for building real-
world applications. In section 7 we conclude and provide directions for proposed
future work.

2 Background

In this section we provide an overview of the military standards on which our
work focuses (Tactical Data Links) and outline our previous work on extracting
EMF-based models from text-based standards documents.

2.1 An Introduction to Tactical Data Links (TDLs)

The TDL provides one of the backbone technologies underpinning the defence
communitys goal of network enabled capability by providing the information and
infrastructure to afford users with an integrated picture of the battlefield. It also
supports tasking orders and responses. A number of TDLs are in service with
coalition forces, and are implemented on a variety of assets, such as aircraft,
ships, land vehicles, and command stations.

The Link 16 TDL is described by the Military Standard MIL-STD-6016C [1]
in the form of narrative combined with many tables and relatively few figures.
At the lowest level of granularity there is a Data Dictionary identifying the set
of types defined for use on the link. These types are identified by a unique key
the Data Field Identifier (DFI) and Data Use Identifier (DUI) pair, referred to
as the DFI/DUI. The set of messages that may be transmitted over the link are
defined in the form of a Message Catalogue. Messages are functionally-orientated
and contain a number of words (J-Words), each of which contains a number of
fields, the type of which is defined by reference to the relevant item in the Data
Dictionary (the DFI/DUI). Hence, Link 16 messages are tree-structured and
must conform to certain well formed constraints, e.g. all bits in each J-Word
must be associated to a DFI/DUI (i.e. all fields must have a defined type); such
constraints have been captured in our models and are described elsewhere [2].
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There is a small number of different types of word, and certain elements of the
payload are mandated by the word type.

The description of Link 16 provided by MIL-STD-6016C [1] is known to fea-
ture a number of shortcomings affecting its usability [3]. The following are of
particular relevance to the research reported in this paper:

– Document-based, no apparent underpinning model
– Largely narrative
– Open to (mis)interpretation
– Not checkable by machine
– Duplication of material invites inconsistency
– Poor document navigation due to limited use of hyperlinking
– Comprises many interdependent sections and appendices
– Size, greater than 7300 pages

The description of the Data Dictionary and Message Catalogue components com-
prises approximately 4000 pages of structured text, the vast majority of which
does not feature hyperlinking; bookmarks are only provided in the PDF version
of the standard but at a relatively coarse level of granularity. As a result, locat-
ing information within this document is a particularly challenging and tedious
task for engineers.

2.2 Modelling TDLs

An analysis of the Link 16 TDL standard [1] led us to the conclusion that the
domain can be effectively captured by a hierarchically layered set of metamodels,
the lower two layers of which comprise the Data Dictionary and Message Cata-
logue; we refer to this hierarchy of models colloquially as the semantic models.
An excerpt of the Message Catalogue can be observed in Fig. 1. Modelling com-
menced in mid 2005 using Xactium’s XMF Mosaic tool. Full scale development
and support of the XMF tool ended in 2008. As such, in early 2009 we began
migrating some model components into EMF, and the Epsilon framework [4] as
part of a risk reduction exercise investigating candidate successor tools for XMF.
EMF provides automated metamodel generation from an XML schema, and, as

Fig. 1. Message Catalogue Excerpt
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much of our source data is available in XML, generated via bespoke parsers we
have written for the project, migration of the Data Dictionary and Message Cat-
alogue proved to be feasible. The Epsilon Transformation Language (ETL) was
used to transform the XML data, conforming to the automatically-generated
metamodels, to conform to our derived semantic models.

3 Motivation

Migrating the standard to a model-based form provides an opportunity to ad-
dress many of the shortcomings identified against the current document-based
view. However, for a model-based representation of the standard to be accepted
by TDL practitioners, we must be able to provide access to the data in these
models in a format similar to that of the original document, but based on a sound
foundation, validated against the relevant well formed constraints and with en-
hanced capabilities for document navigability. Analysis in 2007 investigated the
navigation methods available to engineers and the benefits that could be gained
from a model based approach [5].

Engineers use the standard in every stage of a product’s lifecycle. Some key
activities include using the standard to investigate and confirm message imple-
mentations, developing regulatory documents based on subsets of the standard,
and reviewing interpretations and interoperability with other products. There-
fore, the information in the standard needs to be visualised with usable and
familiar interfaces. The engineers are typically used to navigating the informa-
tion in the traditional document view of the PDF. The document also contains
much explanatory prose which cannot be modelled, but which nevertheless is
essential for the users’ understanding. Methods to quickly traverse the Message
Catalogue and Data Dictionary with the ability to move between cross-references
will also potentially improve an engineer’s efficiency in using the standard.

Hence, it is necessary for the underpinning semantic models to be rendered in
a text-based but cross-linked manner. Developing visualisations of the modelled
data in HTML has been deemed as a preferred solution given the current stage of
development of the TDL modelling research. Using HTML also means that de-
ployment to TDL engineers can be easily achieved through the current facilities
available to them, i.e. the web browser of their desktop machines. Developing
a desktop-based application has the disadvantages of requiring installation and
security validation for each project/engineer that wishes to use this functional-
ity. Also, as the models are still evolving, new development can simply extend
the web application rather than requiring newer versions of the desktop-based
application to be installed.

This motivation to render the model data and the desire to utilise HTML
as the deployment technology has led to the need to investigate the different
options for creating web applications based on our EMF models of the TDL
Link 16.



66 D. Clowes et al.

4 Related Work: Model-Driven Web Engineering

The last decade has seen a growth in the adoption of Model-Driven Web En-
gineering (MDWE). MDWE aims to apply MDE principles to web application
development. MDE advocates the use of models and model transformations as
first-class artefacts in all phases of software development, and promotes the
abstraction of models to be platform independent, with subsequent transforma-
tions to generate platform specific models for deployment. Many MDE methods
and tools also enable the automated generation of application code from these
models. MDE has the potential to greatly reduce development and maintenance
costs, while increasing the quality of the software produced. There are many
model driven web engineering methods, some prominent examples include, OO-
H [6], UML-based Web Engineering (UWE) [7], WebML [8], and WEI [9].

Nearly all methods can be considered to consist of three platform independent
models. These can be generalised to be a concept model, a navigation model and
a presentation model. Methods of transformations to platform-specific models
vary from the use of graph transformations like MIDAS [10] to template-based
like WebML [8]. Predominantly, QVT and ATL are used by these approaches for
the transformation between models. In addition, constraints are generally writ-
ten using OCL. Several solutions make use of their own languages or language
extensions. For example WebML utilises its own extensions of UML, OO-H uses
Navigation Access Diagrams, WEI defines a custom toolset (GlueWeb), which
is, an incomplete subset of OCL combined with QVT [9].

All model-driven web engineering approaches currently take a generative ap-
proach to producing the final web application by generating platform-specific code
from the respective platform-independent models. For dynamic application, this
includes the production of a data store either through generating a relational
database based on the models, or through transformations to the Ecore XMI and
utilising the data through XML. Some approaches do make use of the EMF mod-
els through generating the Java model code and model editor classes. The pre-
sentation coding is generated by all approaches whether the output is PHP, JSP
or static HTML. In our view, generative approaches demonstrate several disad-
vantages. Any change to the metamodels requires the regeneration and redeploy-
ment of the code. Also, data is duplicated and this leaves open the potential for
synchronisation issues. Moreover, as the amount of data in the models grows, re-
generating the entire contents of the database every time a model changes can be
particularly time-consuming. In addition, there can be an impedance mismatch
between the object-oriented metamodels and relational storage solutions. As our
semantic models are evolving, they are increasingly making use of more complex
object-oriented features, such as multiple inheritance, therefore the correspond-
ing changes in the relational view and the necessary mappings are becomming
more challenging. However, the level of abstraction used, means that transforma-
tions are still performed at the Ecore model level and knowledge of the relational
database structure is no longer a problem. There is still the execution overhead of
transformations as the data grows.
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5 A Reflective Approach to MDWE

To overcome the shortcomings of existing generative approaches to web devel-
opment, and particularly data duplication and re-generation, we decided to in-
vestigate the feasibility of an alternative, reflective approach in which we could
use the EMF-based models themselves – instead of duplicating their contents in
a database – as the data source from which we would build the web application.
Moreover, we decided to investigate the possibility of using the Epsilon Gener-
ation Language (EGL) to express the templates that would generate dynamic
HTML content from the underlying EMF model.

5.1 Technical Infrastructure

In this section we outline the technical details of our approach. We first introduce
EGL and its underpinning Epsilon platform and then discuss integrating EGL
with a Java-based Web Server (Apache Tomcat) that allows us to implement
reflective web-applications using EMF-based models as data sources, and EGL
templates for querying and producing dynamic HTML content from them.

Epsilon and EGL. Epsilon is a component of the Eclipse Modelling GMT
project that provides tools and domain-specific languages for Model-Driven En-
gineering. Epsilon comprises a number of integrated model management lan-
guages, based upon a common infrastructure, for performing tasks such as model
transformation, comparison, merging, in-place transformation, inter/intra-model
consistency checking, and model to text transformation. All languages in Epsilon
build on the Epsilon Object Language (EOL), an OCL-based imperative model
navigation and modification language, and can be used to manage models ex-
pressed in different technologies such as EMF, MDR and XML.

Epsilon Object Language (EOL). EOL – the core language of Epsilon – combines
the procedural style of scripting languages such as Javascript with the declara-
tive style of OCL for querying and filtering collections. EOL is a mature language
that boasts a wide range of features [11] such as support for managing multiple
models of arbitrary modelling technologies in the context of the same program,
tight integration with Java enabling developers to instantiate Java objects and
call their methods from EOL, support for defining operations in the context of
existing types, reuse facilities for defining and importing libraries of operations,
support for user-interactions and support for transactional management of mod-
els (where the underlying modelling technologies provides such capabilities).

Epsilon Generation Language (EGL). EGL is a template-based language that
targets model-to-text transformation [12]. EGL adopts a syntax that closely re-
sembles server-side scripting languages such as JSP and PHP. An EGL template
consists of two types of regions. Dynamic regions (enclosed within [% %]) con-
tain executable statements and expressions, while static regions contain plain
text that is output verbatim. For example, consider the simple EGL template
in Fig. 2.
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[%for (i : Integer in Sequence{1..3}){%]

Number [%=i%]

[%}%]

Fig. 2. Example EGL template

EGL is a preprocessed language; EGL templates are transformed to EOL
programs (in a similar manner to the way JSP pages are transformed to Java
servlets) which are then executed in order to produce the output. By building on
top of EOL, EGL inherits the rich set of features that EOL provides and which
were outlined above. In addition, EGL provides a range of task-specific features
such as support for dynamic template instantiation and invocation, and support
for mixing manually written code with generated code through a target-language
independent content preservation mechanism.

While EGL was originally developed to support code generation, its modular
design makes it possible to use it to produce text in non-file output streams
as well. In principle any model-to-text transformation language with similar
characteristics such as XPand, MOFScript or the OMG M2T could have been
used instead.

Tomcat. As discussed before, the aim of this work was to implement a solu-
tion that would allow engineers to explore EMF models through standard web
browsers. To achieve this, we have implemented an integration between Apache
Tomcat and EGL, which allows developers to use EGL templates as server-
side pages for rendering EMF models over HTML. This section discusses the
rationale and architecture of this approach as well as some of the interesting
implementation challenges encountered.

Rationale. Tomcat is an industrial strength, Java-based web server with built-
in support for the JSP server-side scripting language. Therefore, our first option
was to use JSP in order to produce dynamic HTML pages from our EMF models.
Since EMF is a Java-based library, this capability was available out-of-the-box.
However, there was a major disadvantage to this. If we were to use JSP for this
purpose, we would need to either generate Java code from our Ecore metamodel
or navigate our models using the cumbersome reflective syntax of EMF. By
contrast, integrating Tomcat with EGL would allow us to use the concise, closure-
based syntax provided by EGL[12] to query models, without needing to generate
and deploy code for the respective Ecore metamodels in Java.

Architecture. Although Tomcat comes with built-in support for JSP, like the
majority of web servers, it also provides a flexible model for integrating additional
server-side languages. This is achieved through the URL mapping mechanism
which allows developers to map request URLs to custom servlets. In the case of
EGL, we implemented an EGL servlet which is responsible for serving calls to
EGL pages and mapped it to requests which end with .egl as shown in Fig. 3.
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<servlet>

<servlet-name>egl</servlet-name>

<servlet-class>org.eclipse.epsilon.egl.servlet.EglServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>egl</servlet-name>

<url-pattern>*.egl</url-pattern>

</servlet-mapping>

Fig. 3. Tomcat EGL Servlet mapping

Once the EGL servlet is invoked as a result of a client (browser) request, it
is responsible for locating the respective EGL template for each request, exe-
cuting it and returning the produced text to the client. Similar to JSP pages,
EGL templates can access several built-in variables such as the request variable
which allows a template to retrieve information related to the particular request
(e.g. parameters), the session variable which allows templates to query and set
session-wide properties (e.g. for authentication), and the response, config and
application variables. These variables are inherited directly by the Java servlet
specification[13]. To interact with EMF models, each EGL template is provided
with a shared instance of the ModelManager class which provides operations for
loading, storing and disposing of EMF models [14].

5.2 Technical Solution

Using the Tomcat/EGL integration, three different templates were developed
in an alpha test application. These templates covered three distinct areas of
the Link 16 TDL modelling work. The areas covered were the Data Dictionary,
Message Catalogue and the prose document. The prose document template re-
generated a rendering of a subset of the standard in the same view style as the
PDF format. This template was designed to test scalability as it utilised over
900,000 instances of classes.

The Data Dictionary and Message Catalogue were intended to allow users
to traverse the hierarchical structures and follow any cross-references between
them. Navigation was provided by using hyperlinks and specifying new param-
eters using the HTML GET method. By providing parameters, this enables the
template to restrict the data and traverse the hierarchy. An example of this is
shown in Fig. 4. This example returns all child instances conforming to a spe-
cific type (InitialWord, ContinuationWord or ExtensionWord), as defined by the
passed parameter (wordType). The EOL select operation returns a set where all
instances conform to the type and the instances id matches the additional param-
eter (wordID) that is supplied. The excerpt also corresponds to the metamodel
excerpt seen in Fig. 1.
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var wordType := request.getParameter(’jword1’);

if(wordType = ’I’)

{x := y.contains.select(t|t.isTypeOf(InitialWord)).first();}

else if (wordType = ’C’)

{x := y.contains.select(t|t.isTypeOf(ContinuationWord) and

t.id = wordID.asInteger()).first();}

else if (wordType = ’E’)

{x := y.contains.select(t|t.isTypeOf(ExtensionWord) and

t.id = wordID.asInteger()).first();}

Fig. 4. Excerpt of selecting element defined by passed parameters

Having determined the set or instance to display, a custom print operation
is called to render the data. The custom print operations (e.g. x.print();),
produce the HTML code for displaying the instance attributes to the screen. In
Fig. 5, a short excerpt is given for rendering the top level class JMessage of the
Message Catalogue. This results in a HTML table displaying the data associated
to a JMessage.

operation JMessage print() {%]

<table>

<tr><td>Name:</td><td>[%=self.name%]</td></tr>

<tr><td>Family:</td><td>[%=self.family%]</td></tr>

<tr><td>ID:</td><td>[%=self.id%]</td></tr>

...

Fig. 5. Excerpt of a custom print operation

It is envisaged that engineers should be able to utilise the modelled data to
produce required regulatory material according to subsets of the standard. To
achieve this, the solution is required to be able to create and/or edit the data.
Fig. 6 demonstrates the ability to select and edit the data of a JMessage.

var editme := c.contains.select(x|x.id = msgID and x.family =

msgFamily).first();

if(editme.size() == 1){

editme.name = msgName;

editme.family = msgFamily;

editme.message = msgID;

myCatalogue.store();

}

Fig. 6. Example of editing a message
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6 Evaluation

The development process is evaluated with respect to its value to model-driven
web engineering, before considering in more detail the performance of our
approach.

6.1 Development Process

Our approach has demonstrated that reflective model-driven web engineering
is possible. It improves on generative approaches by reducing the amount of
duplicated data and therefore reducing the risks and problems associated with
synchronisation. By using the Epsilon platform, a range of model management
functions can be developed using the common syntax provided by EOL, which,
allows developers to reuse code across the different Epsilon languages. Reuse of
code is not possible in most generative approaches, as their model management
functions utilise differing languages with no common syntax. EOL is also benefi-
cial over OCL as it combines the procedural style of scripting languages such as
Javascript with the declarative style of OCL for querying and filtering collections.
Although EOL is a new language, the syntax is similar to Javascript. In addi-
tion, engineers with no modelling experience are not required to learn multiple
languages for model management functions such as, transformation languages
like QCT or ATL or constraint languages like OCL. For these reasons, the learn-
ing of EOL is not considered an issue, it could even be seen as a benefit. Also,
no technical knowledge of dynamic web scripts or languages is required, this
reduces the knowledge required by a modelling engineer to produce a dynamic
web-based application.

However, the approach does shift away from model-driven engineering princi-
ples slightly. Most generative approaches utilise a model and subsequent trans-
formations to generate the dynamic script. Our approach currently ignores this
model driven approach to the development of the interfaces in favour of a pro-
grammatic style that utilises the model driven functions available through the
Epsilon platform.

6.2 Performance

Stress and load testing of the alpha test application resulted in an acceptable
level of performance for the anticipated usage at BAE Systems. As TDL is
a specialised area, it is not envisaged that more than 10 users would use the
application concurrently. The stress test results shown in Table 1 show that this
application provides adequate performance for 50 users. Studies suggest a web
user is willing to accept an 8-10 second delay in loading a page [15,16]. However,
there is some supporting research that suggests that under some conditions 30
seconds is an upper limit [16,17]. Therefore, the standard deviation coupled with
the average load time for 100 users is likely to be unacceptable.

The results do demonstrate that the approach is not suitable for request
intensive applications, such as Google or Amazon, as the weight of requests would
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Table 1. Stress Test Results (Users per Minute)

Load Time (ms)

Users Requests Min Max Avg σ Avg File Size (B) Failure Rate

10 1565 45 13058 1110 2650.502 16362 0.3%

25 3711 55 30262 2649 6217.821 17489 0.3%

50 8057 52 69979 5041 13194.568 15922 0.5%

100 15426 77 130983 11184 27084.301 16715 0.8%

degrade performance significantly. Load testing also discovered a performance
bottleneck during the first query of a template. This overhead was observed as
the models were loaded in the java virtual machine memory. For large models like
the prose document, this can take in excess of five minutes. However, subsequent
calls to the templates do not suffer as the models are already in memory.

All the tests were performed using Tomcat and the Java Virtual Machine
in their default setting with the exception of increased heap size. Performance
enhancements to Tomcat [18] and the virtual machine, are expected to result in
only a slight improved performance.

7 Conclusions

The alpha test application discussed in Sec. 5.2 has demonstrated that the ap-
proach of using Epsilon Generation Language with Apache Tomcat is a plausible
solution. It provides a reflective template driven method to producing dynamic
web content from EMF models. By using the Epsilon framework, dynamic web
scripts can be produced which require no generation of supplementary code.
This reduces the amount of duplicated code. Whilst Epsilon is a new langugae
to learn, it provides a benfit in providing a range of model management functions
that utilise the same core EOL language.

The performance testing in Sec. 6.2 has shown the solution is suitable when
using small to medium models with a small number of concurrent users (<50),
such as the scenario discussed at BAE Systems. For large scale models and
high concurrent request applications, the performance degrades to unacceptable
levels. This performance degradation is an issue for ongoing further research.
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Abstract. Requirements analysis based on Problem Frames is getting an in-
creasing attention in the academic community and has the potential to become 
of relevant interest also for industry. However the approach lacks an adequate 
notational support and methodological guidelines, and case studies that demon-
strate its applicability to problems of realistic complexity are still rare. These 
weaknesses may hinder its adoption. This paper aims at contributing towards 
the elimination of these weaknesses. We report on an experience in analyzing 
and specifying the requirements of a controller for traffic lights of an intersec-
tion using Problem Frames in combination with SysML. The analysis was  
performed by decomposing the problem, addressing the identified sub-
problems, and recomposing them while solving the identified interferences. The 
experience allowed us to identify certain guidelines for decomposition and  
re-composition patterns. 

Keywords: Requirements analysis, Problem decomposition, Problem composi-
tion, Problem Frames, SysML. 

1   Introduction 

Problem Frames (PFs) [1] are a sound requirement analysis approach that aims at 
driving the analyst from the phase of problem description, where the characteristics of 
the problem and its requirements are defined, to the specification of a machine that 
satisfies the requirements. PFs support both context and structural analysis, i.e., they 
support both the definition of the characteristics of the problem to be solved, and the 
decomposition of the original problem into simpler sub-problems. 

An important weakness of PFs is the lack of an adequate linguistic support. In fact, 
PFs are not equipped with a unique and clear way for modeling requirements, the 
behavioral aspects of problem domains and the specification of the machine. There-
fore, analysts have to choose a suitable notation to model both the given domain  
behavior and the required behavior. In order to address this issue, the authors pro-
posed the integration of the PFs with UML [3, 15] and SysML [2]. The experience 
illustrated in [3] showed that UML does not support the modeling of requirements at 
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the correct level of abstraction, while SysML [2] addresses all the weakness of UML. 
In [2] we discuss the SysML support for the context analysis of basic problems, illus-
trating how SysML constructs can be used to represent PFs concepts.  

In this paper we tackle the structural analysis of a realistic problem, a controller for 
traffic lights of a four way road intersection, for an early evaluation of an extended 
approach combining PFs and SysML. Our extended approach is illustrated through a 
case study involving guidelines and criteria that drive the decomposition of a problem 
and the re-composition of the resulting sub-problems at requirements and machine 
specifications level.  

This work is a first step towards a systematic and a more formal approach to the 
decomposition and re-composition mechanisms for handling realistic size problems 
using PFs and SysML. 

The rest of the paper is organized into four sections. Section 2 describes briefly 
how the SysML notation can support the PFs methodology. Section 3 presents the 
extended approach through the case study and illustrates its analysis and specification 
by decomposing the problem into simpler sub-problems according to proposed crite-
ria, analyzing these individually and recomposing their descriptions. Section 4  
discusses related work. Section 5 discusses lessons learned, draws some conclusions 
and presents some ideas for future work. 

2   Supporting Problem Frames with SysML 

PFs can be effectively supported by an external notation like SysML. The complete 
set of guidelines and motivations that show how the requirements engineering ap-
proach could take advantage of the usage of SysML are discussed in [2]. In what 
follow we briefly summarize some activities of the PFs methodology showing how 
these can be supported by SysML.  

• Problem analysis: the problem context is decomposed into domains, and shared 
phenomena are identified. Domains and phenomena are represented by means of 
Blocks and defined using Block Definition Diagrams (bdd) showing the entities of 
the problem context. 

• Problem definition: the domain blocks are instantiated and interconnected using an 
Internal Block Diagram (ibd). 

• Requirements definition: user requirements and properties associated with domains 
are defined by means of Requirements diagrams (req) and refined by means of Pa-
rametric Diagrams (par), State Machine Diagrams (stm), Sequence Diagrams (seq) 
and Activity Diagrams (act). 

• Domain refinement: domain descriptions are refined using SysML diagrams like 
bdd and ibd to support domain decomposition into simpler structures, and stm, act, 
par and seq diagrams to define behaviors. 

SysML improves the specification part and the usability of the analysis approach, but 
does not help in scaling it up as it does not affect aspects such as the decomposition 
and re-composition of problems.  
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3   Extended Approach Combining Problem Frames and SysML 

In this section we introduce the case study and illustrate how its analysis can be effec-
tively supported by an extended approach combining PFs and SysML. Because of 
lack of space we present only some of the problem diagrams for the static aspects of 
the problems and some SysML diagrams for the requirements specification.  
 

a) b) 

Fig. 1. a) The intersection topography, b) The sequence of commands and phases 

3.1   The Case Study 

The intersection controller manages the traffic lights for cars and pedestrian traffic at 
a four way intersection. The controller reacts to events such as the pressing of a pres-
ence button at a crosswalk, vehicles transit, emergency vehicles approaching the  
intersection, commands issued by an operator via a console, and operates vehicle and 
pedestrian traffic lights that are positioned next to the intersection. 

The controller operates a system composed of two approaches partitioned into dis-
tinct semi-approaches: N, S, E, W, each of which is characterized by zebra crossing 
and is equipped with vehicle and pedestrian traffic lights, vehicle and pedestrian pres-
ence detectors, and also detectors that reveal emergency vehicles that are approaching 
or leaving the intersection (see Fig. 1a). The controller is also provided with a console 
that allows an operator to configure the operating mode of the controller and to set the 
states of the traffic lights. 

The intersection controller has to operate the states of the traffic lights according to 
the criteria introduced by the “Semi actuated”, “Manual” and “Preempted” operating 
mode (discussed later). In addition, the intersection controller has to verify that the 
current state of the traffic lights complies with the last command sent, reacting suita-
bly. The commands sent by the controller cause the change of state of the system. The 
admissible progress is described (in Fig. 1b) by means of a stm as a sequence of 
commands and “phases” (i.e., combinations of states of the traffic lights). For the sake 
of simplicity vehicles can only go straight: no lefthand or righthand turns are allowed. 

The problem diagram [1] shown in Fig. 2 describes the domain of the problem by 
presenting 1) the involved machine and problem domains, 2) the phenomena that are 
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shared by such domains, and 3) the requirements that predicate on the domains’ phe-
nomena. The system is composed of the following domains:  

• Pedestrian presence detector: A device that forwards to the controller the requests 
of a pedestrian (i.e., the pressure of the button) to cross a zebra crossing.  

• Vehicle presence detector: A device that monitors the presence and passage of 
vehicles. It generates events indicating that 1) no vehicle is passing for some 
time, 2) a vehicle is waiting in queue, 3) a vehicle has crossed the sensible area. 

• Emergency Vehicle Detector: a device that notifies the intersection controller 
whenever an emergency vehicle is approaching and when it has crossed the inter-
section and is moving away.  

• Pedestrian Traffic Standard and Vehicular Traffic Standard: a traffic light that 
receives the go, stop, wait and flash events from the controller and sets its lamps. 
It informs the controller of the current state (i.e., go, stop, wait, flashing), and of 
configuration errors through continuous flows of data and by means of error 
codes that specify for instance burn bulbs. 

• Manual Override: this device receives requests from an operator to set the phases 
of the system and to set the operating mode of the controller, and sends such  
requests to the intersection controller. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. The problem diagram describing the domain of the problem 

3.2   Decomposition of the Problem 

The problem is too complex to be analyzed and modeled as a basic frame. The key to 
mitigate this complexity is decomposition. 

Decomposition is not only an approach to the solution of a problem, but also a 
process that helps the analyst understanding and analyzing the problem itself [1]. 
Decomposition aims at projecting original large problem into simpler and smaller  
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sub-problems in a recursive manner, until sub-problems that fit basic problem frames 
are identified. The solution of each sub-problem will contribute to the solution of the 
whole problem.  

Given a certain problem, it may be decomposed in different ways. Decomposition 
criteria usually depend on the characteristics of the problem and on the knowledge 
and experience of the analyst. The aim is to generate sub-problems whose description 
and solution is as simple as possible, and that are also simple to re-compose.  

We propose to apply a general decomposition criterion based on the identification 
of the sequential and parallel activities executed in the context of the original prob-
lem. At any given time, the controller can operate a single operating mode. The  
controller operates the traffic lights alternating a sequence of different operating 
modes depending on specific conditions. Other activities –like monitoring the state of 
the traffic lights– are performed in parallel with the control. 

 
 
 

 

 

 

 

 

 
Fig. 3. Semi-actuated mode problem diagram 

3.2.1    Semi Actuated Mode 
In this operating mode the approaches at the intersection have different priorities. 
Vehicle detectors in the minor street (EW) notify the presence of vehicles to the con-
troller. The intersection controller must operate the traffic lights so that the minor 
approach can receive a green light only when traffic is present. When no traffic is on 
the minor street or a timeout expires, the green lights of the main road (NS) have to be 
switched on again. Requests of the pedestrians to anticipate the Walk signal may 
shorten the duration of the waiting phase.As described in Fig. 3, this sub-problem can 
be modeled as a Commanded Behavior frame [1] that contains a projection of the 
domains of the original problem. The requirements constrain the state of the traffic 
lights according to the requests issued by pedestrians and by the presence of vehicles. 
Transitions triggered by the operator when exiting (entering) the state Flashing spec-
ify when the traffic light are turned on (off). Transitions triggered by the “after” 
clause fire when a minimum timeout is expired. More specifically, WaitD and 
SafetyD timeouts are imposed for safety reasons, while GoD depends on the priority 
of the approach. 
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Fig. 4. The requirements of the Semi-actuated mode problem 

The duration in the states with the “Go” signal (composite states) can be less than 
GoD when a pedestrian with a “Do not walk” signal requests to cross the street, or 
there are vehicles that are waiting for the “Go” signal on the secondary approach, or 
no vehicle has passed on the secondary approach for a given time. 

The machine specification, i.e. the behavior of the intersection controller that satis-
fies the requirements of the sub-problem, is described by means of a stm diagram that 
features the same set of states and transitions as the one used to describe the require-
ments. Transitions have the same triggering conditions, but –unlike in Fig. 4– they 
generate “commands” to change the state of the traffic lights. The stm is not shown 
here due to lack of space.  

3.2.2   Manual Mode 
In this operating mode an operator controls the evolution of the phases. He/she inter-
acts with a dedicated console determining the length of the phases characterized by 
the “Go” signal, and establishing which will be the next phase. As in the previous 
operating mode, the transitions between some phases are constrained by safety time-
outs and cannot be shortened or overridden by the commands of the operator. 

Also this sub-problem is an instance of the Commanded Behavior Frame (Fig. 5). 
The requirements of the sub-problem are described by means of the stm diagram of 
Fig. 6. For instance, if the current phase is Stop-Wait Wait-DNWalk and an emergency 
vehicle is approaching on the street that has the “Wait” signal, the operator can im-
pose the “Go” signal setting the Stop-Go Walk-DNWalk phase. 

The specification of the machine could be provided by using a stm (not reported 
here for space reasons) similar to the one that presents the requirements. Like in the 
Semi-actuated mode, also in this case the only differences between the stms concern 
the signals that are generated at transition firing time. 

 

stm Vehicle-Semi-Actuated-Mode

Stop-Stop
DNWalk-DNWalk 2

Stop-Stop
DNWalk-DNWalk 1

Flashing

Stop-Wait
Wait-DNWalk

Wait-Stop
DNWalk-Wait

After(appNS.waitD)
After(appNS.safetyD)

After(appEW.waitD) After(appEW.safetyD)

When
(now=startWorkingT)

When(now=endWorkingT)
When

(now=endWorkingT)

When(now=endWorkingT)

When
(now=endWorkingT)

When
(now=endWorkingT)

When
(now=endWorkingT)

Stop-Go
Walk-DNWalk

entry/
reqT=now

PedReqNS
entry/ 
initT=now

NoPedReq

ppdN.pr

After((AppNS.goD-reqT+initT)k)

ppdS.pr

vpdW.vr [vpdW.vr.queue]

vpdE.vr [vpdE.vr.queue]

Go-Stop
DNWalk-Walk

Idle

NoVehicleE NoVehicleW

vpdW.vr
[vpdW.vr.noVehicle]

After(appEW.NoVWT)

After(appEW.NoVWT)

vpdE.vr
[vpdE.vr.noVehicle]

vpdE.vr
[vpdE.vr.passed]

vpdW.vr
[vpdW.vr.passed]

After((AppEW.goD-reqT+initT)k)

After(appNS.goD)

After(appNS.goD)

entry/
reqT=now

PedReqEW

entry/
initT=now

NoPedReq

ppdN.pr

ppdS.pr

After(appEW.ReqVWT)

VehReqEWNoVehReq
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Fig. 5. Manual mode problem diagram 

 

 

 

 

 

 

 

Fig. 6. Manual mode problem requirements 

3.2.3   Preempted Mode 
In this operating mode the traffic lights are operated in a way such that the roads where 
emergency vehicles are approaching get the “Go” signal as soon as possible. Emergency 
detectors determine the presence (and the direction) of emergency vehicles.  

The controller has to switch to “Stop” all the traffic lights with the exception of the 
ones of the approach where the vehicle that triggered the preemption sequence is 
arriving. 

The preempted sequence terminates when the detectors inform the controller that 
the emergency vehicle has crossed the intersection. Whenever the preempted se-
quence is enabled, all the requests from the pedestrians and the signals from the vehi-
cle detectors are ignored. The problem is characterized by a Commanded Behavior 
Frame (not shown for lack of space). The requirements of the problem, described 
using two parallel state machines, are shown in Fig. 7. The first machine keeps track 
of the presence of emergency vehicles, while the second one, depending on the  
current phase, establishes the preempted sequence. 

The evolution of the machines is synchronized by the shared variables EVNS and 
EVEW, which keep track of emergency vehicles on a given approach, and by events 
startEmergency and stopEmergency, which specify when the preempted sequence 
starts and stops, respectively. The first stm introduces four states that depict the  
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startEmergency
[EVNS=false 

and EVEW=true]

evd[EW].er 
[evd[EW].er.arriving]/

^startEmergency

After(appNS.safetyD)
[EVEW=true]

stm PreemptedMode

Stop-Stop
DNWalk-
DNWalk

Stop-Stop
DNWalk-
DNWalk

Go-Stop
DNWalk-

Walk

Stop-Go
Walk-

DNWalk

Stop-Wait
Wait-DNWalk

Wait-Stop
DNWalk-Wait

After(appEW.waitD)

After(appEW.safetyD)
[EVNS=true]

When(EVEW=false 
and EVNS=true)

When(EVEW=false and
EVNS=true)

When(EVNS=false and
EVEW=true)

When(EVNS=false and EVEW=true)

evd[NS].er 
[evd[NS].er.arriving]/

^startEmergency

evd[NS].er
[evd[NS].er.passed/
^stopEmergency

entry/ EVNS=false;
EVEW=false

No Emergency
entry/ 
EVNS=true
EVEW=false

Emergency
NS

entry/ EVNS=true
EVEW=true

Emergency
EW/NS

entry/ 
EVNS=false
EVEW=true

Emergency
EW

evd[EW].er
[evd[EW].er.passed]/

^stopEmergency

evd[NS].er [evd[NS].er.passed] evd[EW].er [evd[EW].er.passed]

evd[NS].er [evd[NS].er.arriving] evd[EW].er [evd[EW].er.arriving]

When(EVNS=false)

When(EVEW=false)

Flashing

stopEmergency stopEmergency
stopEmergency

stopEmergency

stopEmergency

stopEmergency

startEmergency
[EVEW=false and
EVNS=true]

After(appNS.waitD)

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Preempted mode requirements 

following situations: no emergency, emergency on the approach EW, on the NW one, 
or on both the approaches. The previously mentioned shared variables are updated 
depending on the current state, while the events are generated when the state NoE-
mergency is entered and exited. 

The second stm describes the preempted sequence. Whenever an emergency starts 
(notified by the corresponding event), a new phase that is determined according to the 
position of the emergency vehicle (shared variables EVEW and EVNS) is enabled. 

As soon as all the emergency vehicles have crossed the intersection the preempted 
sequence is terminated by returning to the initial state.  

The machine specification is not significantly different from the requirements and 
is not shown due to lack of space. 

3.2.4   Traffic Light State Check 
The intersection controller has to check whether the current state of the traffic lights is 
the one expected as a result of the received commands. The control is mediated by the 
local controllers of the traffic lights that in case of malfunction inform the intersection 
controller of the error type. When a malfunction that may compromise the safety of 
the system is reported, the controller has to impose the phase Flashing. When minor 
errors are detected, a description of the problem must be logged. 

The problem is characterized by two distinct requirements with respect to the 
monitoring of the traffic light conditions and the control of their state, respectively. 
Hence, the problem is decomposed into two distinct parallel sub-problems: an Infor-
mation display problem [1], which deals with monitoring the states of the traffic lights 
and a Controlled behavior problem, which defines the reaction of the controller. 
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The auditing sub-problem is illustrated in the Problem diagram of Fig. 8. 
The requirements are defined using the act diagram shown in Fig. 9. It defines an 

action named CheckTL that takes as input, as a continuous flow, the information on 
the traffic lights state and compares them with the last issued commands. Safety 
threatening misbehaviors cause Alarm events to be generated; minor problems are 
logged. The machine specification is given as an act diagram equivalent to the one 
used to define the requirements, but it is not shown here due to lack of space.  

The second sub-problem, described by means of the problem diagram shown in 
Fig. 10, defines the effects of the signal Alarm. The requirements for the problem are 
defined using a state machine diagram composed of states representing the phases of 
the system, and transitions, triggered by the event Alarm, allowing the passage from 
each phase to the Flashing one. The requirements stm is similar to the ones that illus-
trate the operating modes and is not reported for space reasons. Also the machine 
specification is not shown since substantially equivalent to the requirements. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Misbehaviors auditing sub-problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Monitoring the states 

3.3    Composition of Problems 

Once the sub-problems have been identified, analyzed and a machine specification 
has been provided for each of them, their descriptions have to be recomposed. The 
goal is to define a unique machine specification that, once connected to the involved 
problem domains, satisfies both the requirements of each sub-problem and additional 
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constraints that aim at addressing possible inconsistencies among the sub-problems. 
The analyst has to take into account the relationships between the sub-problems  
and how they overlap and interact. Such interactions occur whenever multiple sub-
problems share domains and phenomena. 

The correctness of the composition is the subject of composition concerns, which 
deal with conflicts and interferences that may affect both indicative and optative  
descriptions [1]. The concerns aim at addressing conflicts and interferences by intro-
ducing priority criteria, mutual exclusion and scheduling mechanisms. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Reacting to misbehaviors 

Composition strategies are subject to the choices operated at decomposition time, 
hence, in what follow we propose two patterns that guide the composition of sequen-
tial and parallel problems, respectively.  

3.3.1   Composition of Sequential Problems 
The intersection controller operates in a single operating mode at a time. In the previ-
ous sections we have identified and described the single sub-problems representing 
the operating modes of the controller. We have also provided a machine specification 
for each sub-problem. The composition of these sub-problems requires coordinating 
the transition between operating modes by synchronizing their machines.  

We propose to tackle the problem by means of a Composition Frame [4]. We  
define the composition by means of a new problem, named Operating Mode Coordi-
nator (OMC), illustrated in the Problem diagram of Fig. 11.  

The problem is characterized by the union of problem and machine domains of the 
sub-problems describing the operating modes. According to the Composition Frame, 
the machines of the sub-problems, labeled with the initial letter of the sub-problems’ 
name ([SA] for Semi Actuated Mode, [MM] for Manual Mode, [PM] for Preempted 
mode) are considered given domains [1]. No phenomenon is shared by the machines 
of the sub-problems and by any other problem domains. According to the Composi-
tion frame, we introduce also a new machine, labeled OMC, which filters the connec-
tions between the machines of the sub-problems and the problem domains, specifying 
an interface composed of the union of all the existing shared phenomena. The OMC 
machine has to behave in a way such that it satisfies the coordination requirements by 
interacting with the other domains and machines.  
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The application of the Composition frame suggests a way to organize the composi-
tion of the problem, but it does not drive the resolution of the interferences between 
sub-problems. Interferences depend on the characteristics of the specific sub-problems 
to be composed, and must be addressed according to priority, mutual exclusion and 
scheduling principles defined by new requirements. In our case, such requirements can 
be formulated by considering the pre-conditions that enable an operating mode. Both 
the requirements and machine specifications of the sub-problems describing the operat-
ing modes define Flashing as initial phase. 

However, the system can be in a different state when a mode change occurs, and 
we have to assure that the change of mode does not cause losing the current phase. In 
fact, the new mode has to start by resuming the current phase of the previous operat-
ing mode. This requirement is particularly relevant in case of emergency. Suppose 
that the emergency vehicle is arriving on an approach that has already the “Go” sig-
nal: the change of mode has to cause no change of the current phase. The new re-
quirements, reported in Fig. 12, also constrain how and when it is possible to change 
the operating mode: in case the system is operating in semi-actuated mode and an 
emergency vehicle is approaching the intersection, it is required to automatically 
enable the Preempted mode. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. OMC Problem diagram 

 
 
 
 
 
 
 
 
 

Fig. 12. Mode changes requirements 

The last phase before enabling the preempted mode becomes the first phase of the 
preempted sequence. When the emergency is over, the controller has to return to the 
previous operating mode. The evolution of the stm is determined by events controlled 
by domains and observed by the machine of the OMC problem. These events are 
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forwarded to the machines of the different sub-problems, which, in turn, generate 
commands that trigger the transitions between phases. Fig. 13 shows a small portion 
of the resulting stm, which considers the transition from the phase Stop-Go Walk-
DNWalk to Stop-Wait Wait-DNWalk. Notice that the events “NextPhase”, “Pr”, and 
“Vr” generated by the console, pedestrian or vehicle detectors are forwarded to the 
machines of the sub-problems, which react generating signals that may enable a new 
phase. The machine specification differs from the requirements only for the com-
mands to set the state of the traffic lights and it is not illustrated here because of lack 
of space.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 13. A view on the stm of the requirements 

 
 
 
 

Fig. 14. TSSC Problem diagram 

3.3.2   Composition of Parallel Problems 
Once the sequential sub-problems have been re-composed, we can consider the inter-
action with the parallel sub-problems. We need to define the nature of the interaction, 
establishing whether parallel sub-problems may trigger behaviors described in other 
sub-problems and addressing possible interferences and conflicts. The State check 
problem is active in every operating mode.  

A preliminary description of the problem –considered as “standalone”– has been 
given in Section 3.2.4. Now we have to consider its integration with the OMC one.  

Hence, we introduce a new problem (illustrated in Fig. 14) characterized by a new 
integration machine -named Intersection Controller [TSSC]- and a new domain -
named Operating Mode Coordinator- that contains the problem domains of the stand-
alone TSSC sub-problems, and all the domains of the OMC (i.e., those that appear in 
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Fig. 11). This new integrated problem is modeled as a Required Behavior Frame  
(Fig. 14). The machine of the new problem constrains the connections of the OMC 
sub-machine with the traffic lights domains, by setting the phase Flashing whenever 
an event Alarm is generated. The new machine is characterized by the same interface 
as the machines of the “standalone” sub-problems TSSC-Audit and TSSC-Control 
(see Fig. 8 and Fig. 10).  

The requirements of the composed problem specify the union of the required prop-
erties illustrated in the sub-problems OMC, TSSC audit and TSSC Control, and also 
additional constraints that address interferences among these sub-problems. Interfer-
ences may exist whenever different domains control the same phenomena, for  
instance, between the sub-problems TSSC Control, which describes the reaction of 
the controller in case of a malfunction, and OMC, which describes the coordination of 
the operating modes. For instance, an interference occurs when a serious error con-
cerning the current state of the traffic lights is detected by the controller, which would 
react by setting the phase Flashing, and at the same time an emergency vehicle ap-
proaches the intersection, thus causing the intersection controller to switch to the 
Preempted mode and to force the transition to the phase that favors the crossing of the 
emergency vehicle: the two target phases are different! 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. A view on the stm of the requirements 

Hence, whenever an event Alarm is generated, it is required to set the Manual  
operating mode, thus preventing the automatic change of mode and phase. 

The requirements of the problem are described by means of the act diagram that il-
lustrates the requirements of the TSSC Auditing problem (see Fig. 9), and a stm that 
extends the one used for describing the requirements of the OMC problem. Such a stm 
integrates the transitions of the stm of the TSSC Control problem, and also the man-
agement of the monitoring activity and the change of mode. Fig. 15 presents a portion 
of the resulting stm which shows that whenever a phase is enabled (and during the 
whole phase), the current state of the traffic lights is monitored by the action 
CheckTL. The phase Flashing can be reached from each phase through transitions that 
set the Manual mode once triggered by the event Alarm. Since the machine specifica-
tion is not substantially different from the requirements it is not shown here. 
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4   Related Work 

In the literature, requirements analysis and specification approaches based on PFs are 
usually applied to simple case studies. Only a few papers tackle their applicability to 
more or less realistic case studies. As a consequence, there is no evidence of the scal-
ability of the analysis approaches. Among these few works, [11] shows the application 
of PFs to the modeling of the requirements of an online financial system. The same 
case study has been revisited in [12], describing different decomposition criteria that 
brought to the identification of different sub-problems and to the proposal of new basic 
frames. In [10] PFs are used for the analysis of a geographic application. [6] describes 
the usage of PFs to model the requirements of a system monitoring the transportation 
of dangerous goods. All the aforementioned works propose decomposition criteria that 
depend on the characteristics of the analyzed problems, and that cannot be easily ab-
stracted to derive general criteria. On the contrary, the work reported in this paper 
introduces patterns that can be applied to different problems and domains. 

Only a few research works propose (de)composition techniques at problem level. 
KAOS [7] and the NFR framework [8], together with PFs, are the techniques focusing 
on problems instead of solutions. However, both KAOS and NFR are goal based 
approaches and do not explicitly focus on domain properties. 

Composition issues have been addressed by several aspect-based approaches [9], 
but they essentially focus on design and implementation issues. [13] is one among the 
few aspect oriented papers that address inconsistencies and conflicts among non func-
tional requirements, but it does not address the decomposition of requirements.  

Most of the research works found in the literature focus on formal techniques to 
merge behaviors or to deal with inconsistencies at model level [13]. Although these 
works focus on the solution space, some of the proposed techniques could be com-
bined with PFs by redefining their scope at problem level. For instance, in [5] a for-
mal approach for composing system behaviors defined as finite state automata is 
proposed. Such a technique could be adapted to support a (semi-) automatic composi-
tion of machine specifications defined using state machines. 

5    Discussion and Lessons Learned 

The work reported in this paper contributes to the evaluation of the applicability of 
PFs to case studies of realistic complexity. The experience has shown that PFs can 
help achieving a complete and clear comprehension of the requirements of the system. 
It has also confirmed that PFs can benefit from the modeling support of SysML.  
Although some of the benefits may not be evident from the few diagrams shown in 
the paper because of the lack of space, SysML modeled well both the structural and 
behavioral characteristics of the problem domains. It effectively supported the model-
ing of domains that represent non-pure SW components and the modeling of continu-
ous behaviors (e.g., the monitoring of Fig. 9). SysML is also very promising with 
respect to scalability. It provides a full support for the decomposition and the projec-
tion of domains and phenomena using bdd and ibd diagrams, views and allocation 
mechanisms. 
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The modeling effort would range reasonable to small: PFs mitigated the effort by 
favoring the application of an incremental process. For instance, the modeling of the 
recomposed problem machines reused several parts of the specifications of the starting 
sub-problems. In order to further ease the re-composition we are studying techniques 
that allow automating the composition of activities like the merging of behaviors de-
scribed with stm diagrams both at requirements and machine specification level. 

All the identified frames were easily modeled; diagrams that expressed require-
ments, specifications and problem domains characteristics at the right level of abstrac-
tion and with an intuitive and expressive notation were easily created. 

The case study also showed that the decomposition driven by the identification of 
parallel and sequential sub-problems mitigated the complexity of the original prob-
lem. However, such criteria do not help addressing a typical PFs based analysis: the 
same decomposition choices applied to the requested functionalities or to the machine 
responsibilities may results in different problems. The patterns facing the re-
composition helped in addressing inconsistencies between the sub-problems.  
However, they represent one possible solution to the (de)composition. We need to 
identify multiple guidelines to drive the analysis and to refine and generalize them 
through a thorough analysis of several case studies. 

We retain that both the analysis and the modeling could be further facilitated by 
general analysis guidelines to use PFs, and also by ready to use modeling elements 
representing frames and other basic concepts. Such elements are the base of a frame-
work for the analysis of complex problems. This experience helped us identifying 
research directions for the framework definition. In order to better support the model-
ing we are working towards the definition of a SysML profile for PFs. We have also 
defined a meta-model for PFs and a tool, built on such a meta-model. This tool sup-
ports the analysis of problems using PFs  [15]. We are planning to enrich this tool 
with a transformation engine capable of generating skeletons models of the SysML 
profile for PFs. The predefined guidelines will ease and speed up the learning of the 
approach by practioners in requirements analysis and UML modeling.  The proposed 
framework may ease and speed up the adoption of PFs by practioners. 
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Abstract. Domain Specific Modeling Languages (DSML) are more and
more used to handle high level concepts, and thus bring complex soft-
ware development under control. The increasingly recurring definition of
new languages raises the problem of the definition of support tools such
as editor, simulator, compiler, etc. In this paper we propose generative
technologies that have been designed to ease the development of model
animation tools inside the TopCased platform. These tools rely on the
automatically generated graphical editors of TopCased and provide ad-
ditional generators for building model animator graphical interface. We
also rely on an architecture for executable metamodel (i.e., the Top-
Cased model execution metamodeling pattern) to bind the behavioral
semantics of the modeling language. These tools were designed in a prag-
matic manner by abstracting the various model animators that had been
hand-coded in the TopCased project, and then validated by refactoring
these animators.

Keywords: Generative technologies, Model animation, Model execu-
tion, Metamodeling pattern.

1 Introduction

Model Driven Engineering plays a key role in the development of safety critical
systems by providing early Validation & Verification (V&V) activities for generic
and domain specific models. It is thus mandatory to be able to build easily V&V
tools dedicated to each Domain Specific Modeling Language (DSML). We will
present in this paper some experiments conducted in the TopCased project on
the use of generative technologies for graphical model animation tools. In order
to design these technologies, we first defined a generic framework for implement-
ing the model execution engines [1], this framework relies, on the one hand, on
a metamodeling pattern [2] that extends the classical language definition meta-
model with execution related metatypes and attributes; and on the other hand on
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a generic “discrete event” execution engine. The handling of each discrete event
is represented as an endogenous model transformation (i.e., with the same source
and target metamodel) that modifies only the attributes of the execution specific
metatypes. This framework has been used to implement several model animators
in TopCased using Java and SmartQVT as transformation languages. Then,
these animators were refactored in order to make commonalities explicit, and gen-
eration patterns were proposed in order to ease their development. In a last step,
the specific parts of the animators were extracted from the first versions and inte-
grated in the generated ones in order to validate our proposal.

Our presentation will rely on the SimplePDL DSML, a toy process descrip-
tion language derived from SPEM. SimplePDL has been designed in Top-

Cased as a simple yet representative use case for teaching and experimenting
MDE generative technologies for V&V [3,4]. These technologies have been val-
idated through complete use cases in TopCased such as SysML/UML state
machine and SAM

1 model animators.
We will first present the TopCased project, the SimplePDL use case and

the requirements expressed for model animators by industrial end users for the
design of safety critical systems. Then the contributions of this paper are the
key facts about the framework for model animation in TopCased that relies on:
a) a metamodeling pattern for expressing model execution related metatypes;
b) a discrete event system execution kernel and c) the use of endogenous model
transformation for defining the handling of a specific event in the execution of a
model. Then we show how generative technologies were introduced in order to
factor out the common parts of the various model animators that had been hand-
coded in the first versions of TopCased. Finally, we conclude on the current
state of our experiments, and we give insights on our future work.

2 The TopCased Toolkit

2.1 The TopCased Project

TopCased
2 (Toolkit In OPen source for Critical Applications & SystEms De-

velopment) [5] is a project started in 2005 from the French “Aerospace Valley”
cluster, dedicated to aeronautics, automotive and space embedded systems. Top-

Cased aims at defining and developing an open-source, Eclipse-based, modular
and generic CASE environment. It provides methods and tools for the develop-
ments of safety critical embedded systems. Such developments will range from
system and architecture specifications to software and hardware implementation
through equipment definition.

In this purpose, TopCased provides both domain specific (as SAM) and
general purpose modeling languages (such as SysML/UML, Aadl, East-Adl,

1 SAM is a DSML used at Airbus in the A350WB program for specifying inter-system
interfaces, mode automata and early design level protocols.

2 http://www.topcased.org

http://www.topcased.org
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Fig. 1. Domain Definition Metamodel (DDMM) of SimplePDL

SDL, etc.) and associated tools like graphical and text editors, documentation
and code generators, validation through model animation, verification through
model checking, version management, traceability, etc.

TopCased relies on Model Driven Engineering (MDE) generative technolo-
gies to build all these tools for all these languages. It is thus an MDE plat-
form both for building system models and for building the platform itself. MDE
technologies used in TopCased for defining and tooling languages are centered
around Ecore3 and configuration models taken as inputs by generative tools (e.g.
graphical editor generator).

2.2 Use Case

To illustrate the MDE approach used in TopCased, we rely on a simplified
process description language called SimplePDL. SimplePDL is deliberately sim-
plified to avoid overloading this presentation with useless details.

A metamodel is used to define the concepts (metaclasses) of the domain ad-
dressed by the DSML and the relationships between them (references). We call it
the Domain Definition MetaModel, DDMM. The DDMM of SimplePDL is shown
on figure 1. It defines the concepts of process (Process) composed of process ele-
ments (ProcessElement) that can be either a work definition (WorkDefinition) or
a work sequence (WorkSequence). Work definitions are the activities that must
be performed during the process. A work sequence defines a dependency rela-
tionship between two work definitions. The second work definition can be started
or finished only when the first one is already started or finished according to the
value of the attribute linkType.

A metamodel defines only an abstract syntax which is not adequate for human
beings. Graphical concrete syntaxes are often a better way to create and ma-
nipulate DSML models. TopCased provides a graphical editor generator based
on the description of the desired editor. Fig. 2 shows the generated SimplePDL
graphical editor. For SimplePDL, one has to define how the SimplePDL concepts
are graphically presented (as vertices or arcs) and to explain how to update the
SimplePDL model when the graphical elements are created or changed.

3 Ecore is the metalanguage of Eclipse Modeling Framework,
www.eclipse.org/modeling/emf

www.eclipse.org/modeling/emf
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Fig. 2. SimplePDL Graphical Editor Generated with TopCased

2.3 Motivations for Model Animators

The use of DSML allows to introduce early V&V activities at the modeling stage,
long before the end product is developped. Here are some key aspects extracted
from TopCased end users requirements for model animation :

– Modeling is an error prone activity. A model animator allows the designer to
check that the produced model really expresses the expected behavior. This
is a validation that the model is a correct rendering of what the designer had
in mind.

– The system design team needs to check that the proposed system fits the end
user needs. A model animator allows to organise demonstrations of the sys-
tem behavior connected to realistic system Human Machine Interface (HMI)
and thus add the user in the loop. This is a validation that the specification
is a correct rendering of the end user needs.

– Early models are usually an approximation of the final system that does not
fit all the requirements, it is thus difficult to use exhaustive model verification
tools that will detect a large number of errors that are due to the incomplete
nature of these early models. Model animation allows to design interactively
the verification scenario that fits the current state of the models. This is
a partial verification of the appropriate parts of the model with respect to
some specific requirements.

– Many behavioral verification tools rely on the semantics of the DSML. This
semantics is usually specified by the DSML designer based on informal end
users needs. A model animator allows the end user to play with this semantics
and check that it really fulfills its needs. It is thus a good tool to validate
the DSML definition.
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Fig. 3. One possible Event Definition MetaModel (EDMM) for SimplePDL

3 Model Execution in the TopCased Toolkit

The TopCased toolkit targets executable DSML. Thus, it must provide means
to define their executable semantics. A metamodeling pattern has been defined
to capture all the data required to execute a model and a framework is provided
based on this pattern. Model execution is then the core building block to add
animation facilities for a DSML.

3.1 A Metamodeling Pattern for Model Execution

When we want to simulate a process, that is to execute one of its models, we first
have to understand and define what are the interactions between the model and
its environment. For SimplePDL, it is possible to start or finish a work definition
or record the load already spent on a work definition. The user may also want
to specify the meaning of a precedence constraint and thus add a threshold on
a work sequence that could be changed during process enactment. All these
interactions are external events generated by the environment that will induce
changes on the model itself. These external events are captured in the Event
Definition MetaModel, EDMM (Fig. 3). An event has several attributes. For
example, the event “start a work definition” takes the targeted work definition
as attribute. The event “increase work load ” has two attributes, the targeted
work definition and the load increment.

The next step is to define scenarios as a set of ordered external events. They
may be defined interactively during the animation itself or before the execution
starts (batch simulation). A scenario is used to drive the execution. Starting
from a model and a scenario, the execution produces an output trace of all the
events that occurred during the execution (including external events and also
possible internal events triggered by the handling of the other events by the se-
mantics). Traces and scenarios are defined in the Trace Management MetaModel
(TM3, Fig. 4).

The concepts captured in the DDMM are not sufficient to animate a model.
For instance, some events may require additional informations. For example,
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Fig. 4. Trace Management MetaModel (TM3)
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Fig. 5. State Definition MetaModel (SDMM) merged with the DDMM of SimplePDL

the event “increase work load ” means that the load of a work definition has
to be recorded. We also have to be able to decide whether an activity can be
started or not. So we have to know the state of its preceding activities. Thus,
we propose to define a State Definition MetaModel SDMM that captures all
the data required during an execution. On Fig. 5, new data have been directly
added on the DDMM : loadConsumed and state on WorkDefinition, state on
Process and threshold on WorkSequence. In fact they are defined in the SDMM
that “completes” the DDMM. This may be achieved using the merge operator
defined in MOF specification [6]. So, several SDMM may be defined for the same
DDMM, each corresponding to a different execution semantics.

The four previous metamodels DDMM, SDMM, EDMM and TM3 constitute
the architectural part of the metamodelling pattern that we have implemented in
TopCased to support model execution. The execution semantics is still lacking.
Its purpose is to define how the SDMM model evolves when a concrete event
from the EDMM model occurs. Before describing that aspect, we present the
TopCased framework for model execution based on this pattern.

3.2 The TOPCASED Framework for Model Execution

TopCased provides a framework for model execution based on the previousmeta-
modelling pattern. It is composed of a generic core — independent of any DSML
— (top of Fig. 6) that has to be specialized for a given DSML (bottom of Fig. 6).

The framework only depends on the runtime events defined for the DSML in
the EDMM. The execution engine is built from three main components: Agenda,
Driver and Interpreter. The first two components implement a discrete event com-
putation model, based on the elements in the TM3 metamodel. They are thus
generic and independent of any particular executable modelling language. The



96 X. Crégut et al.

Trace
(from TM3)

Scenario
(from TM3)

* 1

RuntimeEvent
(from TM3)

date: Integer
kind: RuntimeEventKind

SimplePDL RuntimeEvent

event() : Event (from DDMM)

cause

0..1

context Scenario inv :
self.runtimeEvent->forAll(re | re.kind = #exogenous)

Driver

Agenda

1

1

*
{ordered}

* *{ordered} {ordered}

SimplePDL Interpreter

<<interface>>
Interpreter

<<enumeration>>
RuntimeEventKind

endogenous
exogenous

run(re : RuntimeEvent) : Event[*] 

1

*

SimplePDL-free
execution 
semantics

SimplePDL-specific
execution 
semantics

step()

add(e:Event)
currentEvent():Event

Fig. 6. Framework for Model Execution

Agenda stores the runtime events corresponding to one particular execution. Run-
time events are ordered according to their occurring date. At the beginning of the
execution, the Agenda instance is initialized with all the events contained in the
scenario to be run. The Agenda provides the API required by the Driver to handle
the events (e.g., to establish the next runtime event, to add a new runtime event).

The Driver controls the execution. It constitutes the interface with external
components (mainly the Control Panel) thanks to a dedicated API, which allows
both batch and interactive execution. Its step method consists in getting the
next runtime event from the agenda and asking the Interpreter to handle it. The
generated endogenous runtime events are then stored in the agenda.

Finally, the Interpreter abstracts the different possible semantics of the plug-
gable executable modelling language. Its run method interprets runtime events,
updates the dynamic information of the model, and returns the list of generated
endogenous runtime events. Obviously, the Interpreter is specific to the mod-
elling language and supports its own semantics. It thus has to be specialized for
the considered DSML.

The previous classes are the core of the framework. A generic user interface is
developed on top of it. It is composed of an interactive Control Panel that em-
ulates the environment and allows to add new runtime events into the Agenda.
The SDMM model is displayed on the graphical visualization developed for the
graphical editors. It is based on the notification facilities provided by the un-
derlying EMF framework and the Adapter pattern to change the color of the
graphical elements. These changes of graphical properties were sufficient to ani-
mate SysML/UML state machines or SAM models but had to be enhanced for
SimplePDL (see section 4).

3.3 Operational Semantics

The last part consists in implementing the Intepreter class to define the exe-
cution semantics. According to the concrete event received as parameter of the
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run method, one has to describe how the SDMM model evolves. In the first
version of the TopCased animators, the run method was hand-coded using
Java and the EMF API. Then, it has been written using SmartQVT, an open
source transformation language that implements the OMG QVT specification
and generates Java code that facilitates its integration in the TopCased frame-
work. The main benefit of using SmartQVT is to ease the navigation on model
elements as discussed in the next section.

Based on these technologies, model animators were implemented for SysML/
UML state machines and SAM models. The interactions with the end user and
the graphical editors were hand-coded in Java. As these languages were quite
similar one to the other, we developed a model animator for SimplePDL in
order to reveal additional requirements. These implementations were abstracted
in order to detect common patterns that could be generated thus leading to the
following proposals.

4 Generative Tools and Extensions to the Animator’s
Core

Model animators are composed of three main parts: semantics, controllers and
animator which have to be developed for each new DSML. Semantics implements
the execution semantics. Controllers allows the user to inject new runtime events.
Animator is responsible for allowing the user to inspect the execution. It relies
on visualisation tools to display dynamic information and a control panel to
drive the animation. In the first versions of TopCased model animators, these
components were hand-coded. Our purpose for this work was to develop gener-
ative tools that accelerate the development of new animators by generating as
much as possible parts of these tools. The first results of these experiments are
presented here after.

4.1 Multiple Semantics Definition

In the actual architecture, one has to implement the Interpreter interface and its
run method to define the DSML execution semantics. The code then generally
starts with a big switch that selects and executes the reaction corresponding to
the concrete event received as parameter of the run method. Furthermore, when
writing the code implementing the reaction, one has to access the model. It would
be helpful to add new helper methods on the model (EDMM and SDMM) to
facilitate this. As these methods are specific to the semantics being implemented
and because several semantics could be implemented for the same DSML, it is
not a good idea to pollute the DDMM or SDMM with all those helper methods.
A better solution is to implement the Visitor pattern.

We have defined a new plugin called org.topcased.semantics that provides
two interfaces (considered as Eclipse extension points). The first one is called
Semantics and uses overloading to specify one run method for each possible con-
crete event defined in the EDMM. The second interface is called Dispatcher and
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contains one single method dispatch(RuntimeEvent event, Semantics semantics).
These two interfaces correspond to the Visitor and Visitable elements of the Vis-
itor pattern. They are independent of any DSML.

The Dispatcher interface has only to be implemented once for each DSML.
In fact it is generated from the EDMM model using Acceleo4. It implements the
accept method that is normally present on the Visitable elements. In doing so, no
change is required on the EDMM. The implementation of Dispatcher’s dispatch
method is a big switch on the concrete type of the runtime event that selects
and executes the right run method of the semantics received as parameter. As
the class is generated (like the Semantics and Dispatcher interfaces), there is no
risk of missing some cases.

Then, defining a new execution semantics for a given DSML simply consists
in implementing the Semantics interface. It is then possible to register several
semantics for the same DSML. The user may then choose which one will be exe-
cuted. For example, it would be possible to define a semantics that only handles
start and finish events and a more precise one that also handles increments of
work loads and thresholds.

The Visitor pattern could also be generated for the DDMM (and SDMM)
models. The semantics defined on SimplePDL is rather easy to implement be-
cause most of the events only imply changes on the target element and do not
require heavy navigation on the model. Nevertheless, WorkDefinition’s start and
finish events require to check whether the states of the previous work definitions
are consistent with the constraints defined on the corresponding work sequences.
If the semantics had been implemented using Java/EMF, it would be useful to
write such helper methods as new instances of the Visitor interface. But, as we
rely on high level transformation languages such as SmartQVT or ATL, this pat-
tern is useless. Indeed, such languages already provide the possibility to define
new operations on the metaclasses of the models they manipulate.

4.2 Hierarchical Runtime Events

Using a model animator is useful to see the evolution of the model being executed.
Nevertheless, the presentation of all the states and events and the associated
navigation can be quite complex. It is thus mandatory to provide a functionality
close to the step into/step over behavior of program debuggers. When debugging
a program, step into shows the code of the called method and the execution of
each of its instructions, one at a time. On the contrary, step over executes the
method call in one step and only the final state is seen.

The same kind of mechanism is useful for model animation. For example, in
the case of UML state charts, one transition is triggered by an UML event. An
action may be associated to this transition. The action may even be a compound
action composed of several actions. It means that when the transition is fired,
it will generate a new internal runtime event to run the associated compound
action and then other internal events, one for each action of the compound action

4 http://www.obeo.fr/pages/acceleo

http://www.obeo.fr/pages/acceleo
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and so on. The user may want to see the effect for each individual action or only
the result of firing the transition.

The solution we provide is based on hierarchical events. When an internal
event is created it is considered as being generated by a parent event (either an
external event or an internal one). When executing an event, the user can then
decide to execute only that event (step into) or also its sub-events (step over).

This new functionality is not useful for the semantics implemented for Sim-
plePDL, but would be required if we had hierarchical work definitions. We could
also slightly change the semantics so that an activity whose load consumed is at
100% and all precedence constraints are fulfilled is automatically terminated. In
this case, “Change consumed load ”, “Start WorkDefinition” or “Finish WorkDef-
inition” events may trigger new “Terminate a WorkDefinition” on the current
activity or the activities depending on this one. Using step into and step over,
the user could see individual changes to the model or only the final state of each
work definition.

Hierarchical events are a more general solution than the previous one used for
SysML/UML and SAM based only two levels of events (steps and micro-steps).

4.3 Improvement of the Model Graphical Visualization

The previous model animators in the TopCased project only allowed to change
graphical properties (like color, font, etc.) of graphical elements representing
DDMM elements. For example, to animate UML state charts, current states
were shown in red and fireable transition were displayed in green. Unfortunately,
changing only graphical properties is not enough to display all the information
that is managed in the SDMM. We have thus enhanced the visualisation for the
model animator. The basic idea is to rely on the basic graphical editor and to
add decorations to represent information added in the EDMM. Fig. 7 shows the
new SimplePDL animator. The work load of a WorkDefinition is represented as
a progress bar. An icon in the upper right corner of a WorkDefinition shows its
state (not started, runing, finished or interrupted). The threshold of a WorkDef-
inition and the linkType are displayed on the arcs that link the WorkDefinition.

The decoration mechanism is already provided as an extension point by the
GMF5 library. The work has thus mainly consisted in adding decoration such as
progress bars, labels, figures, etc. on the elements of the graphical representation
and relying on EMF notifications to update the graphical representations on
changes on the SDMM model.

For the moment, this work is done manually. We are now working on a gen-
erator that would allow the end-user to define the decoration he/she wants to
have and then to produce the enhanced animator.

4.4 Controllers for Event Creation

The last enhancement described in this paper concerns the controllers that allow
the user to inject new runtime events in the simulation. For UML state machines
5 The Eclipse Graphical Modeling Framework,
http://www.eclipse.org/modeling/gmf

http://www.eclipse.org/modeling/gmf
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Fig. 7. Visualization of animated models by decorating the graphical editor

animators, a common controller had been defined. It mainly consists in collecting
all the UML events6 that could trigger transitions on the animated model. Those
UML events were displayed in a list from which the user chooses the UML event
to inject.

In the case of SimplePDL, runtime events have a target (a Process, a WorkDef-
inition or a WorkSequence) and may require parameters. For instance,
IncreaseWDLoad targets a WorkDefinition and has an additional attribute cor-
responding to the value of the increment. In the same way, the newThreshold
attribute of ChangeWSThreshold stores the new value of the threshold of a tar-
geted WorkSequence.

Using Acceleo to perform model to text transformations, we have generated
dialogs to display the possible runtime events and the associated parameters
that have to be typed in. It is generated from the EDMM model. This dialog
may be displayed from the contextual menu after having selected an element
on the graphical visualisation. Obviously, only the events that have this type of
element as target are selected.

4.5 Refactoring of Existing Animators

The above proposals have been applied to the existing model animators that had
been hand coded in TopCased. The generators were applied on the metamod-
els following the execution pattern without any changes. Then the elementary
semantics actions were cut and pasted from the previous implementation to the
6 UML events are different from runtime events from the EDMM. Indeed the UML

EDMM defines one runtime event called InjectUMLEvent which consists in inject-
ing a UML event that will then be used to evolve the UML state machine (firing
transitions).
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generated skeletons. This refactoring was done in less than one day for each
model animator and provided identical tools with better visualisation capabili-
ties thus validating our proposal.

5 Related Works

Several tools support editions and simulations of models, described for exam-
ple in an automata-like notation. Let us mention, among the more popular ones:
Sildex [7], StateMate [8], Uppaal [9], the Stateflow module [10] in
Matlab/Simulink, Scilab/Scicos [11], the Finite State Machine (FSM) model
of computation of Ptolemy II [12], and the UML State Machine [13]. These
tools provide graphical visualization of simulations highlighting active states
and fireable transitions, coupled with means to visualize and record execution
traces. Nevertheless, these tools embed their own hard-coded semantics for a
given DSML, and there are important development work without possible reuse.
In another way, we address in this paper a generative approach, specifying a
DSML based tool for model animator definition of any DSMLs.

Sadilek, Wachsmuth et al. have followed a similar purpose in the EProvide

project: bestow a DSML with execution power [14,15,16]. Their framework allows
to express the semantics of DSML using various technologies (including Java,
Prolog, ASM, QVT). They have experimented its use for PetriNet and SDL
DSMLs. The dynamic informations are added to the metamodels in an ad-hoc
manner depending on the use case, thus it does not allow to rely on generative
technologies. Developers of graphical model animators are required to explicitly
rely on APIs requiring a bit more work.

Soden, Eichler et al. have proposed the MXF (Model eXecution Framework)
eclipse project [17] in order to define the M3Action graphical semantics descrip-
tion language. The EProvide and TopCased projects are parts of the official
potential technology users in the project and we plan to commit our metamod-
eling pattern for executable DSML and the associated generative tools in this
context. We plan to provide implementation language specific adapter generators
linked to EProvide in that context.

6 Conclusion

The tools presented in this paper were the first results of the experiments in
TopCased on generative technologies for model animator. We are currently
extending that work in several directions:

– Common programming language debugger provides sophisticated conditional
breakpoints facilities, we propose to rely on OCL in order to define con-
ditional breakpoints that would stop the execution as soon as a property
becomes false.

– Behavioral models properties usually encompass both static properties that
must be satisfied at each step of the execution, and temporal properties that
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relates the various steps of an execution. The use of TOCL would allow to
define conditional breakpoints triggered by sequences of events and not only
state contents.

– The current semantics does not provide a step-back facility. The user must
start again from the begining if he wants to jump back in time. In order to
avoid to store all the intermediate states of the model, we propose to rely
on a bi-directional semantics implementation.

– graphical decorations for model animation are currently hand-coded. We
propose to define an animation configuration model derive from the graphical
editor configuration model to specify the decorators that must be added for
a given semantics.
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Abstract. Implementing static analyses of machine-level executable

code is labor intensive and complex. We show how to leverage model-

driven engineering to facilitate the design and implementation of pro-

grams doing static analyses. Further, we report on important lessons

learned on the benefits and drawbacks while using the following tech-

nologies: using the Scala programming language as target of code gener-

ation, using XML-Schema to express a metamodel, and using XSLT to

implement (a) transformations and (b) a lint like tool. Finally, we report

on the use of Prolog for writing model transformations.

1 Introduction

Programs implementing static analyses of machine-executable code are com-
plex [1,2]. In the terms of Brooks [3], they not only contain intrinsic complexity
but also significant accidental complexity. In such programs, several modules
are highly interdependent: reading machine-executable code at the byte level,
inferring higher-order representation such as control-flow or data-flow graphs,
and eventually checking this representation against a property to verify.

Even if these problems are more or less tractable, it is impossible to reuse
static analyses across different, yet comparable sets of machine level instructions
(e.g. between the Java and the Python sets of bytecodes). However, the ability
to write analyses that can be reused across projects is of primary importance
in commercial settings. Many industrial projects use multiple languages and
technologies and reimplementing basically the same analyses again and again
for different languages is not feasible. This state of facts motivated us to design
from scratch a static analyses tool in a model-driven manner to improve reuse
of analysis components.

So far, we have mentioned four main problems in implementations of static
analyses: 1) reading low level formats, 2) inferring higher-order representations,
3) writing the analyses and 4) handling different kinds of executable code. In this
paper, we present an architecture that separates all these concerns in different
and clearly separated blocks, such that all links from one block to another are
implemented using code generation or model transformation. Overall, our con-
tribution is twofold: first, we describe a model-driven architectural blueprint for

T. Kühne et al. (Eds.): ECMFA 2010, LNCS 6138, pp. 104–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the application domain of static analysis tools; second, we report on important
benefits and drawbacks of using different technologies for the implementation.

The main lessons we have learned from the design and implementation of our
model-driven static analysis toolkit are:

– One of the code generators generates Scala code. It seems that this powerful
target programming language has much facilitated the implementation of
the generator.

– We chose XML-Schema as the implementation technology of the metamodel
of executable code. Many, but not all domain-specific constraints could have
been implemented with XML-Schema. This confirms the results of [4,5] show-
ing that expressing the static semantics is never straightforward within only
a structured metamodel.

– Implementing model transformations in Prolog to express static analyses
allows us to write concise and declarative analyses.

The remainder of the paper is structured as follows: Section 2 gives the big pic-
ture of our approach. Sections 3 presents the metamodel for specifying bytecode
instructions. Section 4 discusses the implementation of analyses. Section 5 lists
the lessons we learned. Finally, Section 6 discusses related work and Section 7
concludes the paper.

2 Overview

This section presents the architecture of a new static analysis toolkit that we
have been implementing for one year. The architure is designed in a fully model-
driven way. First, it is based on three different levels of abstraction, layered in
an ontological way as defined by Kühne [6], where the main artifact of each layer
is an instance of the upper layer (a meta-layer w.r.t. the lower one.) Second, the
architecture uses several times both code generation and model transformation.

Fig. 1 depicts this architecture in terms of the main artifacts and dependencies
between them. Boxes represent data (in a larger sense: software to analyze, mod-
els, generated code, etc.), and arrows represent relationships between the data
(also in a larger sense: generation, transformation, etc.). The three ontological
layers are stacked, separated with lines and numbered (from “1” for the most
abstract to “3” for the most concrete). The boxes that have a gray background
are generated artifacts. We now describe each element at a conceptual level. The
details about the technology used and the size and complexity are described in
the following sections.

2.1 Meta Layers

Let us now describe the stacked layers of our architecture. We have defined a
metamodel for bytecode instructions of virtual machines, which lies in layer #1,
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Fig. 1. Overview of the Architecture

at the top of Fig. 1 (a). This metamodel expresses what a bytecode instruction
is: type of instruction (e.g. add or remove something to the stack), number of
arguments, number of bytes in the machine-level format. This metamodel is fur-
ther discussed in Section 3. An instance of this metamodel is a specification of
bytecodes of a particular virtual machine, for instance, the specification of the
Java bytecode instruction set [7] is an instance of the bytecode metamodel. In
Fig. 1, an instance is represented in layer #2 as a Bytecode Instructions Speci-
fication (c). Finally, the software that is analyzed is an instance of a particular
bytecode format, and is logically in the lowest layer, numbered #3 (i.e. (g)).
If one analyzes Java software, each class file is an instance of the Bytecode In-
structions Specification. Note that these three elements are shadowed and linked
with dashed arrows “instance of” to emphasize the different levels of abstrac-
tions. The other boxes are tools (code generators, model transformations) to
manipulate these elements.
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2.2 Specification of Bytecode Instructions

The central Bytecode Instructions Specification (c) is the input of one domain-
specific analysis and three code generators. The domain specific analysis (b) takes
the specification as input, and checks whether the specification fulfills certain
constraints. For instance, that each opcode only identifies one instruction and its
directly related variants. This domain specific analysis is necessary since not all
domain-specific constraints can be expressed within the uppermost metamodel.

Also, the Bytecode Instructions Specification is used to generate a human-
readable and structured documentation of the specification (d). It is also used
by two code generators: the first one generates object-oriented classes to read
machine-executable code (f) and to represent it in memory with domain classes.
This generated code cooperates with a manually written library for static anal-
ysis (e). However, note that this piece of code only addresses the concern of
reading class files. It is independent of the concern of specifying the analyses
themselves. The second code generator generates a library that supports the
writing of static analyses called Bytecode Instruction Meta Information, (h).

2.3 Specification of Static Analyses

So far, we are able to specify a family of bytecode formats and to generate the
tool to read and represent them in a domain-specific manner (i.e. no longer byte
arrays, but instance of first-class instructions). Let us now explain how to write
static analyses.

Basically, there are two ways to write static analyses, first one can write them
directly on top of domain classes using standard programming languages or – as
in case of our toolkit – as declarative static analyses. To enable writing declar-
ative analyses, the analyzed software is transformed into two different artifacts
that both represent the machine executable code at the same granularity. Class
files can be transformed either into XML files (k) to write static analyses in
an XML based language (e.g. XSLT or XQuery). Additionally, they can also be
transformed in a set of Prolog facts (Prolog Representation – (i) in Fig. 1).

This set of Prolog facts enables us to write static analyses as Prolog rules which
handle the basic facts. Further, these facts are given to a model transformation to
obtain a higher-order representation of bytecode, called 3-address Representation
(j). The model transformation is also written in Prolog, using the model of
analyzed software (as Prolog facts), and an additional source of information, the
Bytecode Instruction Meta Information that is obtained automatically from the
bytecode specification (and discussed above in Section 2.2). Section 4 provides
a more in depth view on the static analyses.

2.4 Recapitulation

The architecture of our static analysis toolkit uses three stacked abstraction lev-
els, one domain specific model validation, three code generators, and three model
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transformations. The following Sections (3 and 4) describe technical details.
Section 5 then exposes the lessons learned in the design and implementation of
this architecture.

3 A Meta-Model to Specify Bytecode Instructions

The meta-model for specifying bytecode instructions is called the OPAL Speci-
fication Language (OPAL SPL). It enables the encoding of instructions of stack-
based intermediate languages, such as, Java Bytecode [7] or CIL Bytecode [8].
OPAL SPL is rich enough to accommodate different bytecode formats and en-
ables the development of analyses and bytecode parsers that are independent of
the concrete instance of the specification [9]. To support this goal, the language
supports (i) the specification of the type system of the virtual machine which
executes the bytecode, (ii) the format of the bytecode instructions and (iii) the
specification of the effect on the stack and registers when the instruction is ex-
ecuted. OPAL SPL is focused on specifying the bytecode instruction set and
not the complete class file format since the instruction set’s structure is more
regular and sufficient for developing certain static analyses. The metamodel also
supports the declaration of functions (signatures only) to abstract over informa-
tion that is not directly specified along with an instruction. The functions are
implemented manually in a bytecode specific framework (“e” in Fig. 1).

Listing 1 shows the specification of the Java bytecode instruction getfield
as an instance of the OPAL SPL metamodel: the getfield field instruction is
an instance of the metaclass “Instruction”. Note that this specification uses the
functions decl class type (Line 4 in Listing 1) and field type (Line 5) which are
declared as part of the specification of the Java instruction set, these functions
return the type information related to an object’s field.

1 < instruction mnemonic=”getfield”>
2 The variable fieldRef is initialized by information in the class file.
3 <stack> <form>
4 <before><operand type=”decl class type(fieldRef)”/><rest/></before>
5 <after><operand type=”field type(fieldRef)”/><rest/></after>
6 </form> </stack>
7 </instruction>

Listing 1. Specification of the Java Bytecode instruction getfield as an instance of

the OPAL SPL metamodel

The specification of Java’s if icmpne instruction shown in Listing 2 demon-
strates some of the features of OPAL SPL. In Line 2-5 the format of the in-
struction is defined; i.e., how the instruction is stored in a class file. In this case
the instruction’s opcode (Line 3) is an unsigned byte with the value 161. The
opcode is followed by a signed short value representing a branch offset (Line 4).
When the instruction is executed it pops two int values and then conditionally
branches. The instruction does not push a value onto the stack (Line 10).
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1 < instruction mnemonic=”if icmpne” transfers control=”conditionally”>
2 <format> <sequence>
3 <u1 var=”opcode”>161</u1>
4 <i2 type=”branchoffset” var=”branchoffset”/> <!−− relative PC −−>
5 </sequence> </format>
6 <stack> <form>
7 <before> <operand type=”int like”/>
8 <operand type=”int like”/>
9 <rest/></before>

10 <after> <rest/></after>
11 </form> </stack>
12 </instruction>

Listing 2. Specification of the Java bytecode instruction if icmpne as an instance of

the OPAL SPL metamodel

4 Writing Static Analyses

Many static analyses can be expressed w.r.t. abstract representations of instruc-
tions, thus generalising the algorithm for a family of languages. This section
demonstrates, how to express an algorithm to construct a control-flow graph.
The model of a bytecode instruction set enables the generation of classes repre-
senting each instruction, as well as the reader of the binary format. This program
is then used to transform machine executable code to a model of the software. A
model transformation transforms it to a set of Prolog facts. For instance, List-
ing 4 shows the result of the transformation of a simple “Hello World” method
(Listing 3) to the corresponding Prolog facts.

1 public static void hello (String [] args) {
2 if (args . length == 1) print(”Hello ” + args [0]) else print (”Hello World”);
3 }

Listing 3. Hello World in Java

1 method(cf 1,m 3,’hello’,sig([array(class(’java/lang’,’String’))],void),
2 public,abstract(no),final(no),static(yes),...).
3 /∗Method Implementation: ∗/
4 /∗PC=1−3 ∗/ Put the value 1 and the length of the array on the stack.
5 /∗PC=3 ∗/ instr(m 3,3,if icmpne(13)). // conditionally jumps to PC=16
6 /∗PC=5−14 ∗/ print(“Hello ”+args[0]);
7 /∗PC=15 ∗/ instr(m 3,15,goto w(4)).
8 /∗PC=16−18∗/ print(“Hello World”);
9 /∗PC=19 ∗/ instr(m 3,19,return(void)).

Listing 4. Result of a Model Transformation from a Java Class File to a Prolog

Representation
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Let us now assume that we want to calculate the control-flow graph of a method.
In this case, it is necessary to identify all instructions that start with basic blocks
and to determine the order in which the basic blocks are executed. This requires
that all control transfer instructions can be identified and also all instructions that
– at runtime – are potentially directly executed after these instructions. As shown
in Listing 2, Line 1 the information that the if icmpne instruction is a control trans-
fer instruction is directly encoded in the bytecode model. Since the instruction is
a conditional control transfer instruction, the next instruction is a potential suc-
cessor instruction and also the instruction where the program counter (PC) is the
PC of the if instruction plus the branchoffset.

This meta-information is extracted from the Bytecode Instructions Specifica-
tion (c) and also transformed to Prolog facts (h), as shown in Listing 5. A generic
model transformation to identify a method’s basic blocks is shown in Listing 6.
The algorithm only assumes that instructions are encoded using a specific syn-
tax (instr(METHOD ID, PROGRAM COUNTER, INSTRUCTION)) and, if the instruc-
tion is a conditional transfer instruction, that the INSTRUCTION is encoded as
follows: MNEMONIC(BRANCHOFFSET, ...). Furthermore, the algorithm uses the
meta-information about instructions (Line 4) to identify all control transfer in-
structions and all potential successor instructions. Hence, the algorithm does not
make any assumptions about specific instructions and can provide a foundation
for a complete control-flow graph algorithm.

1 control transfer(if icmpne,conditionally). % ‘‘conditionally’’ is defined by OPAL SPL
2 control transfer(goto w,always). % ‘‘always’’ is defined by OPAL SPL
3 control transfer(return,caller). % ‘‘caller’’ is defined by OPAL SPL

Listing 5. Meta-information Related to Control Transfer (They are generated as Pro-

log facts from the Bytecode Instructions Specification)

1 bb start instr(MID,0) :− instr(MID,0, ). % the first instr. starts a basic block
2 bb start instr(MID,PC) :−
3 instr(MID,CurrentPC,Instr),
4 Instr =.. [Mnemonic| ],control transfer(Mnemonic,T), T \= ’no’,
5 ( ( PC is CurrentPC + 1, instr(MID,PC, )); % ... if ”PC” is valid
6 ( T = ’conditionally’,
7 Instr =.. [ ,Branchoffset| ], PC is CurrentPC + BranchOffset
8 ) )

Listing 6. Model transformation in Prolog to identify the method’s basic blocks

5 Lessons Learned

In this section, we report on important lessons that we have learned when real-
izing the discussed architecture.

Overall Approach: Having an explicit meta-model [9] for specifying bytecode in-
structions did prove useful. First, given the XML-Schema numerous tools were
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available that facilitate writing documents according to the XML-Schema. These
tools provide code completion and immediately report violations of the defined
structure. Additionally, having a schema helped us to get a consistent specifica-
tion of the Java Bytecode instructions. Several times during the development of
the framework we did have to extend and adapt the meta-model to accommodate
for the specifics of further instructions. Given the meta-model we were able to
rethink and adapt parts of it while being sure to understand the impact on the in-
structions that have been specified so far, i.e., having an explicit meta-model made
it easier to change and extend it since it is possible to assess the impact of changes.
Given the meta-model also facilitated the development of generic analyses since
it is well-defined which information is generally available. If the specification is
only implicitly available one is tempted to look at the concrete instance of it; e.g.,
the specification of Java bytecode instructions, and to make wrong assumptions
about the information that will be common to all instantiations.

Checking Specifications: XML-Schema enables us to express syntactic and, to
some extent, semantic constraints which are useful to validate concrete bytecode
specifications. However, using XML-schema it is not possible to prevent or detect
more complex errors. For example, to make sure that a sequence of instructions is
parseable, every instruction has to have a prefix path that uniquely identifies the
instruction.1 In case of the if instruction shown in Listing 2 the opcode uniquely
identifies the instruction. But, in case of some other instructions it is necessary
to read multiple values before it is possible to identify the (variant of) the in-
struction. Using XSLT we were able to efficiently implement an analysis (basically
using XPath expressions) that checks that every instruction has a unique prefix
path. But, implementing a type checker in XSLT worked out to be too trouble-
some due to XPATH / XSLT’s lack of support of other data structures than lists
of nodes. We decided to use Scala for this task. The combination of XML-Schema,
XSLT and Scala to fully express the static semantics of our bytecode metamodel
is heavyweight. However, to our knowledge and at the time of implementing our
architecture, there was no metamodeling paradigm that was powerful enough to
express all kinds of constraints in a concise and elegant manner.

Overall, writing a lint like tool for OPAL SPL provided two significant ben-
efits. First, we were able to find numerous errors early on. Second, it helped us
designing the language, because writing the analyses requires to take the per-
spective of the user of the language. This helps to identify issues that are relevant
when the specification language is used later on. The effect of writing analyses
on the design of the language seems to be roughly comparable to the effect of
writing test cases early on.

Scala as the Target Language for Code Generation: From our experience us-
ing Scala (compared to, e.g., Java) as the target language for code generation
is beneficial. Scala offers the following features that are of particular interest:

1 In Java Bytecode the instructions do not have the same length, further some instruc-

tions even have a flexible length.
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flexible syntax, case classes, type inference, implicit type conversions, semicolon
inference, an expressive type system, built-in support for XML and tuple types.
In the following, we discuss some of these features to highlight the effect on the
code generator.

The flexible and concise syntax of Scala is exemplified by class and constructor
definitions. Some code that defines a class that inherits from another class and
which defines a field that cannot be changed and is publicly available is shown
in Listing 7.

1 class ANEWARRAY ( val cmpType : ReferenceType ) extends Instruction {... }

Listing 7. Definition of the class ANEWARRAY in Scala

If we compare this class definition with a corresponding class definition in Java (cf.
Listing 8) the number of parts that are dynamically generated is much smaller. In
Scala, the name of the class (ANEWARRAY), the name of the variable (cmpType)
and the variable’s type (ReferenceType) occur exactly once. In case of Java, the
name of the generated class, and the type of the field both appear twice. The field’s
name even appears four times. Hence, in case of Scala three parts are generated
while in case of Java eight would need to be generated. This advantage of Scala is
directly reflected in the code generator, it is correspondingly less complex.

1 public class ANEWARRAY extends Instruction {
2 public final ReferenceType cmpType;
3 public ANEWARRAY(ReferenceType cmpType) { this.cmpType = cmpType; }
4 ...
5 }

Listing 8. Class definition in Scala

A similar advantage is offered by Scala’s case classes. Case classes are Scala’s
way to allow pattern matching on objects. Basically, for case classes the scala
compiler generates default implementations of the equals and hashCode methods
that operate on the object’s state and not on its reference. Furthermore, factory
methods are provided to create objects of the particular type and functionality
is provided to take the objects apart to enable pattern matching. To get this
functionality it is just required to add the keyword case in front of a class decla-
ration (cf. Listing 9). If we would need to generate the corresponding code, the
generator would be orders of magnitude more complex.

1 case class ANEWARRAY ...

Listing 9. Case Class

To sum up, from our experience a language, such as Scala, that provides ad-
vanced language features (e.g., higher-order functions, advanced type systems)
does make developing a generator easier. Writing the generator will require less
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code and more errors in the generated code will be detected early on. Overall, the
generator will be more comprehensible and maintainable. Many features of Scala
that sometimes are considered “syntactic sugar” were, however, at least as im-
portant when developing the generators. As outlined above, semicolon inference,
case classes, and implicits support also made the generators less verbose. We are
confident that the features proposed for the upcoming versions of Scala (e.g.,
named arguments and default arguments) will further strengthen the position
of Scala as a target language for code generation.

Handling XML-based code generators with Scala: In our architecture, Scala is
not only used as target language, but also as an implementation language of
certain generators. As shown in Fig. 1 (Artifact (k)), our framework supports an
XML representation of bytecode. The functionality to transform the bytecode
into XML is provided by Scala classes. Thanks to Scala’s built in support for
XML, writing a Scala program that generates XML is facilitated.

For instance, the Scala code that generates the XML representation of the
if icmpne instruction is shown in Listing 10. The method body toXML con-
tains an XML pattern which contains values to be replaced (e.g. pc.toString).
Thanks to Scala, there is no need to explicitly creates nodes of the generated
XML document or to enclose the generated text in print-like statements.

1 def toXML(pc : Int) =
2 <if icmpne pc={ pc.toString }>
3 <branchoffset value={ branchoffset . toString }/>
4 </if icmpne>

Listing 10. Excerpt of Scala Code that Transforms Java Bytecode into XML

To conclude this section, Table 1 sums up the lessons that we learned while
designing and implementing a model-driven static analysis toolkit. These find-
ings are rarely explicitly stated in the literature and supported by empirical facts.

Table 1. Main lessons learnt while implementing a model-driven static analysis toolkit

# Short description

1 Having explicit layers of abstraction helps to identify generic and specific parts.

2 The mature tool support for XML and XML-Schema is really useful for modeling and

metamodeling (e.g. code completion).

3 XML-Schema can only be used to only express a small part of the static semantics of

a real-world metamodel.

4 XSLT is a pragmatic and good choice to express most of the static semantics of a

metamodel implemented with XML-Schema.

5 The need for expliciting the static semantics has a positive impact on the metamodel

structure.

6 Using Scala as target language of a code generator ends up in a more readable,

maintainable and concise generator.

7 The syntactic support of Scala for writing/reading XML files simplifies the imple-

mentation of XML based code generators.
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Especially, to our knowledge, there is little work explaining the pros of using a
powerful and high level language (such as Scala) as a target language of a code
generator (see [10]).

6 Related Work

This paper presents a successful application of the model-driven principles to the
domain of static-analysis. Although model-driven architecture has been applied
to the development of a wide range of domains, e.g. simulation [11] or multi-agent
systems [12], we are theveryfirst to report on its use for static-analyses of programs.

However, both our motivations (extensibility and reuse) and the idea of using
modeling to facilitate the implementation of static analyses were alread raised
in survey papers. For instance, Jackson and Rinard [1] coined the term “model-
driven code analysis”. They emphasize on the need for explicit models in analysis.
We are going further: in our approach, we handle: (i) explicit models of types of
machine code (Section 3), (ii) explicit models of programs (Section 3) and (iii)
explicit models of analyses (written declaratively in Prolog, see Section 4). Also,
note that Binkley [2] also states that writing static analyses is difficult as well
as designing them as flexible.

Evans and Larochelle [13] presented a lightweight and extensible static anal-
ysis. The design of their tool anticipated the support for new checks and anno-
tations. On the contrary, in our approach, all new analyses are supported in a
standard way, with no special ad hoc tool. For instance, one can write a new
analysis for the bytecode specification (Section 3) as an XSLT program, or a
bytecode analysis using Prolog.

The research on reverse engineering has investigated for a long time the need
for parsing and understanding software. Rugaber proposes a generic solution
called “model-driven reverse engineering” [14]. While our main goal is not re-
verse engineering, we also manipulate program models. Hence, it seems to be
straightforward to use our toolchain for reverse-engineering which would be an-
other proof of the flexibility of the approach.

Finally, it is important to differentiate between metamodels of source code
and metamodels of machine executable code. They are not at the same level of
abstraction. For instance, Strein et al. [15] presented a metamodel for program
analysis. While we share similar motivations (extensibility and performance of
analyses), their metamodel is much closer to the program structure of the source
code with goals such as vizualisation. On the contrary, we reason at the level of
the execution machine, with other kinds of verification such as pointer analysis.
The same argument applies for [16] in which Störrle uses Prolog not to represent
machine code but high-level models.

7 Conclusion

Engineering machine-executable code to write static analyses is a complex task.
To tame this complexity, we experimented with the design and implementation of
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a new static analysis toolkit following a model-driven architecture. We are the first
to report on a concrete design and implementation of a model-driven tool chain for
implementing static analyses of machine executable code. We managed to obtain
a system that is loosely coupled and that allows us to reuse code and semantics
across different types of machine-level code (different bytecode instruction sets).

Furthermore, this experiment showed that XML based technologies (XML-
Schema, XSLT, XSLT, Scala support for XML) nicely fit together in a model-
driven architecture and that using an advanced, high-level language as target of
a code generator leads to a more clean and concise code generator.
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Abstract. OMG’s SPEM – by means of its (semi-)formal notation

– allows for a detailed description of development processes and method-

ologies, but can only be used for a rather coarse description of their

behavior. Concepts for a more fine-grained behavior model are consid-

ered out of scope of the SPEM standard and have to be provided by

other standards like BPDM/BPMN or UML. However, a coarse granu-

larity of the behavior model often impedes a computer-aided enactment

of a process model. Therefore, in this paper we present eSPEM, an ex-

tension of SPEM, that is based on the UML meta-model and focused

on fine-grained behavior and life-cycle modeling and thereby supports

automated enactment of development processes.

Conventions in This Paper

Names of meta-classes, packages, and properties are printed in italics, names of
model elements in monospaces, and names of a model element’s meta-class are
boldface. Whenever we refer to SPEM or UML without explicitly specifying a
version, we mean SPEM Version 2.0 [1] and UML Version 2.2 [2].

The figures in this paper show meta-elements (e.g., meta-classes, packages,
and associations) initially defined in SPEM or UML and their instances (model
elements) with a white background and thin lines. Meta-elements that are in-
troduced by eSPEM and their instances are shown with a light gray background
and thicker lines. Figures showing parts of the eSPEM refer to the merged, flat
meta-model and therefore do not show qualified names. For sake of readability,
attributes, operations, and constraints of meta-classes are omitted in the figures
unless we refer to them.

SPEM clearly distinguishes between processes and methods. This is reflected
in the meta-model with different meta-classes for identical or similar concepts
(e.g., TaskDefinition for a method and TaskUse for a process). Whenever we do
not specifically name a meta-class (e.g., Task instead of either TaskDefinition or
TaskUse), we are referring to both the method and the process meta-classes.
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1 Introduction

Developing software systems in international teams spanning several organiza-
tions requires well-defined software development processes (SDP) [3,4]. In order
to efficiently define and execute SDPs, one needs 1) a process modeling lan-
guage (PML) that is rich enough for automatic SDP enactment, 2) an easy-to-
use process modeling environment (PME) that is flexible enough for different
project categories, and 3) a process execution environment (PEX) that can be
adapted to be integrated into existing development tool chains. To be useful for
practitioners, there are some well-known requirements PMLs must fulfill [5,6,3].
Exploiting our numerous experience from real-life development projects, we en-
hance these PML requirements gaining the following list of requirements that a
well-integrated combination of PML, PME, and PEX has to fulfill:

– Scalability. The PML used to describe an SDP must work for large as well
as small processes.

– Decomposability. Subprocesses and their interfaces with compound processes
can be defined.

– Adaptability. Tailoring a given process description to the needs of a defined
project must be straightforward.

– Testability. Plausibility checks can be performed automatically on a process
description to help in designing SDP models, to supervise their enactment,
and to ease CMMI and SPICE auditing [7,8].

– Easy-to-digest formalism. An easy-to-digest formalism is needed because in
the past complex formalisms have prevented fine-grained development pro-
cess models from being adopted by practitioners (see for example [3]).

– Executability. The PML can be directly interpreted by a machine or other-
wise mapped to another executable language.

– Automatic process enactment. Using the SDP model formulated in a PML as
an input, the PEX supports and guides stakeholders in their work according
to the process. It triggers certain activities on time, e.g., it invokes the tools
the developers need to open artifacts, and controls the delivery of artifacts.

– Integration. Tools that are already used by developers must be integrated
into the PEX.

– Electronic process guide. The SDP documentation actively guides developers
by providing information that is sensitive to the task context at hand.

– Automatic audit trail. The PEX automatically keeps track of changes to
artifacts as well as progress and conformance of a project with respect to
the SDP.

Many of the PMLs known from literature can only partially fulfill the require-
ments listed above. SPEM (Software and Systems Process Engineering Meta-
model) defined by the OMG [1] constitutes a promising approach. As SPEM
is based on UML Infrastructure and defines a graphical notation, it is easy to
pick up by practitioners, and is considered an ideal basis for SDP modeling.
SPEM adequately fulfills the mentioned requirements for a PML except one:
executability [9].
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Fig. 1. A SPEM model for the WBS of Scrum

To understand what is required for executability, consider Fig. 1 that demon-
strates how SPEM can be used to describe the static structure of an SDP. It
shows – with some omissions due to readability – the work breakdown structure
(WBS) of the Scrum [10] SDP. However, the problems shown in this example
are not specific to Scrum but apply to SDP modeling with SPEM in general.

Many static SDP concepts can be easily expressed in SPEM: Roles like Team or
Scrum Master may perform work like the Activity Kickoff Meeting. Activities
may have WorkProducts as parameters, may be decomposed into sub-activities,
and contain further SDP elements. The basic execution order of Activities and
TaskUses is given by precedence edges (e.g., finish to start). Roles may also
be responsible for certain WorkProducts. When considering the requirements
listed above, there are at least three types of problems:

First, SPEM does not provide its own behavior modeling approach but leaves
the integration of behavior modeling languages up to implementers of the specifi-
cation [1, Sect. 10, p. 69]. However, without fine-grained behavior modeling con-
cepts for proactive and reactive control, no reasonable support can be provided
by a PEX that enacts the process. The SPEM standard suggests UML (Activi-
ties and StateMachines) [2] or BPDM/BPMN [11] as candidates. For interfacing
behavior modeling languages SPEM provides several generic meta-classes as de-
picted in Fig. 2.

In our approach we use the behavior modeling concepts from UML. Their
notation is common and therefore easy to pick up by practitioners. It includes
constructs that are necessary for a precise behavior modeling of SDPs (e.g., State-
Machines) but are not available in BPDM/BPMN. Although UML does provide
the constructs required for a fine-grained modeling of the behavior of SDPs
(e.g., asynchronous events and decisions), the SPEM concept for interfacing with
behavior modeling languages is cumbersome to use.

Considering Fig. 2, it is obvious that Roles may trigger Transitions but can-
not directly trigger Events or execute Actions. Consequently, when using this
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Fig. 2. Behavior model integration in SPEM package ProcessBehavior [1, Fig. 10.1]

behavior interfacing mechanism from SPEM, constructs for reactive control (e.g.,
events and decisions) cannot be sufficiently integrated into the SDP model.

SPEM uses a set of States to describe the life-cycle of a WorkProduct instead of
a StateMachine. This contradicts our requirement of an easy-to-digest formalism
because it complicates modeling and requires additional consistency rules. In
order to avoid these drawbacks of the proposed behavior integration concept
from SPEM, we will provide our own solution, combining the advantages of the
static process structure modeling features offered by SPEM with the convenient
behavior modeling concepts of UML.

Second, experience in industrial development projects shows that in most
cases the Tasks performed throughout a process are not completely known in
advance, but have to be determined and planned when the process is already
being executed (e.g., [10]). Another problem exists: Creating, planning, and ex-
ecuting Tasks often happens at different points during a process (e.g., in Scrum
tasks of a sprint are created and planned in the Sprint Planning Meeting and
executed during Development). In SPEM Tasks are always instantiated and ex-
ecuted right away. Thus, the stakeholders cannot be sufficiently supported when
planning or working with dynamically created Tasks.

Third, modern agile SDPs tend to be used with a wide variety of differ-
ent development methods without changing the process itself (e.g., the Sprint
Planning Meeting in Scrum can be used with many different estimation meth-
ods). SPEM supports a separation between process and methods using meta-
classes that act as proxies for meta-classes representing method elements (e.g.,
TaskUse is a proxy for a TaskDefinition). However, a proxy may reference at most
one method element. Consequently, changing the target of the proxy also requires
changing the process part of the model using SPEM’s tailoring concept and raises
the modeling effort to adapt a SPEM-based process to a project’s needs.

Due to these three issues (behavior modeling support, planning support,
and configuration support) many SDPs (e.g., Scrum, Open Unified Process
(OpenUP) [12], and V-Modell R©XT [13]) cannot be sufficiently modeled with
SPEM. Moreover, without such a fine-grained modeling of SDP concepts the
stakeholders cannot be sufficiently guided and supported by a PEX that uses
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the SDP model as its input. We address these shortcomings in this paper and
present eSPEM, a CMOF-based extension of SPEM and the UML Superstruc-
ture, that enables the mentioned automatic enactment of SDPs and adequately
fulfills all requirements listed above. Additionally, eSPEM also provides solu-
tions for other issues, e.g., instance feature support (Properties and Operations),
enhanced Kinds, and detailed WorkProduct structure modeling. However, we
cannot discuss these solutions in this paper due to space restrictions.

The subsequent paper is organized as follows: Section 2 addresses the three
main issues of SPEM and presents our solutions. In Sect. 3, we apply eSPEM
to SDPs used in industry, followed by a detailed comparison to other existing
approaches in Sect. 4. In Sect. 5, we conclude with a brief outlook at the next
steps of our project towards a fully automated enactment of SDP models.

2 Proposed Solution

First, we will show how we substitute behavior interfacing concepts of the origi-
nal SPEM with our more fine-grained approach. We will then present the addi-
tional extensions introduced to enhance SDP enactment support. For complexity
reasons, the figures presented in this section only reflect parts of eSPEM.

2.1 Detailed Behavior Description

eSPEM provides a drop-in replacement package ProcessBehavior, that contains
meta-classes and associations to reference Behaviors of the UML Superstructure
from WorkDefinitions in SPEM. Figure 3 shows how this is done for Activity1.
Other types of work in eSPEM (e.g., TaskDefinition) reference a Behavior in the
same way.

+/context 
{ readonly, subsets redefinitionContext, redefines context }

BehavioredClassifier Behavior

BehavioredWorkDefinition WorkDefinitionBehavior

Activity ActivityBehavior

ActivityBehaviorParameterWorkProductUse

+classifierBehavior { subsets ownedBehavior }

+/context { readonly, subsets redefinitionContext }

+ownedBehavior { subsets ownedMember, unique }

+classifierBehavior 
{ subsets ownedBehavior, redefines classifierBehavior }

+ownedParameter 
{ subsets ownedMember, redefines ownedParameter, ordered, unique }

+type { redefines type }

0..1 0..*

0..1

0..1

0..1

0..1 0..*

Fig. 3. Activity and associated Behavior in eSPEM

BehavioredWorkDefinition is the base class of all meta-classes that represent
work. It inherits from BehavioredClassifier and WorkDefinition (not shown).
1 A cross indicates a non-navigable association, and a dot indicates ownership of the

association end by the opposite meta-class (UML 2.2 notation).
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WorkDefinitionBehavior has the same structure and operational semantics as
an Activity in UML.

The constructs presented in this section allow for an integration of the basic
behavior modeling concepts from UML such as control and object flows, deci-
sions, loops, and events for the different types of work in SPEM. However, we
still need a way to express which Roles trigger events or make decisions.

2.2 Integration of Roles

Roles play an important part in SDP modeling. Figure 4 shows how eSPEM
integrates roles into the behavior modeling concept. Execution is a Relationship
that associates a Role for example with an ActivityNode (e.g., DecisionNode and
SendSignalAction) and expresses that this Node is executed by the Role. Thus,
it is now possible to specify that a decision is made or an asynchronous Event is
triggered by a particular Role.

BehavioredWorkDefinition DirectedRelationship

Execution

GroupExecutionNodeExecution

Activity

ProcessNodeExecution

ProcessGroupExecution

ActivityNode ActivityGroup

RoleUse

+/owningWorkDefinition { readonly, union, 
subsets owner } +/ownedExecution { readonly, 

union, subsets ownedElement, unique }

+groupExecution 
{ ordered, unique }

+executedGroup
{ subsets target }

+nodeExecution 
{ ordered, unique }

+executedNode 
{ subsets target }

+executingRoleUse 
{ subsets source }

+groupExecution 
{ ordered, unique }

+nodeExecution { ordered, unique }

+executingRoleUse 
{ subsets source }

+ownedGroupExecution 
{ subsets ownedExecution, 
unique }

+ownedNode-
Execution { subsets 
ownedExecution, unique }

+owningActivity
{ subsets owning-
WorkDefinition }

+owningActivity { subsets 
owningWorkDefinition }

1

0..*

0..*

11

0..*

11

0..*

0..*

0..*
1 1 0..*

Fig. 4. Roles added to behavior modeling concept

Roles may also execute entire ActivityGroups to express that a Role executes
all Nodes within that ActivityGroup. We added this concept because in UML an
ActivityPartition (swimlane), which is an instantiable sub-class of ActivityGroup,
provides no support for being executed by more than one Element. However, in
SDPs there are often several roles executing the same work unit. This concept
of eSPEM reduces the modeling effort and keeps the formalism easy-to-digest.

2.3 State Machines

We consider the use of StateMachines for WorkProduct life-cycle modeling to be
a generic, detailed, and perfectly enactable approach. It outperforms concepts for
WorkProduct life-cycle modeling found in other approaches (for example Work-
ProductStatus in SEMDM [14] that is a simple enumeration without formally
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Default_ResponsibilityAssignment

WorkDefinitionParameter

State

TaskDefinition

StateMachine

WorkProductStateMachine

WorkProductDefinition

Default_TaskDefinitionParameter

+linkedWork-
ProductDefiniton

+inState { unique }

+exitState 
{ ordered, unique } +entryState 

{ ordered, 
unique }

+taskDefinition 
{ subsets workDefinition }

+ownedTaskDefinitionParameter 
{ subsets ownedParameter, ordered, unique }

+parameterType

+stateMachine

0..1

1

0..*

1

0..*

0..*

0..*

0..1

RoleDefinition
+linkedRoleDefiniton

1..*

Fig. 5. StateMachines for WorkProducts in eSPEM

defined transitions). As mentioned above, interfacing StateMachines from SPEM
is cumbersome and contradicts an easy-to-digest formalism. We integrate State-
Machines for WorkProduct life-cycle modeling as shown in Fig. 5.

In eSPEM a WorkProduct may reference a specialized UML StateMachine
that already groups a consistent and well-defined set of States and Transitions.
With our concept for integrating Roles into the behavior model it is now also
possible to specify which Role may trigger a Transition in the life-cycle model
of a particular WorkProduct (e.g., who is allowed to approve a document). This
supports automatic audit trails, one of our key requirements.

From SPEM we adopted the two association properties entryState and ex-
itState of WorkDefinitionParameter that form the set of entry and exit states
that are allowed. These constraints can be checked by a PEX and so increase
the assessability of the enacted process.

Using the behavior model integration concept from eSPEM it is also possible
to specify a life-cycle for all types of work in eSPEM (e.g., TaskDefiniton) using
StateMachines. In practice, the life-cycle model is typically used for work that is
not further decomposed (TaskDefiniton), is usually rather simple (e.g., created,
running, or finished), and administered by a PEX or a dedicated bug tracking
tool when the SDP is enacted.

2.4 Scheduling of Dynamically Created Tasks

Software development is often a creative process in which not all details are
known a priori. This includes tasks that are usually created and planned while
the process is already enacted. Although it would be possible to remodel the
SDP whenever tasks are planned or new tasks are added, this approach suffers
from the fact that the process description is no longer reusable across projects.
We believe that an SDP model should reflect that tasks are dynamically created,
planned, and executed at some potentially different point during an SDP. Due
to its focus, SPEM neither provides support to define rules for planning tasks
nor does it distinguish between the point of creation and the point of execution
of tasks in a process.
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MethodContentUse

0..*

ExecuteWorkAction

ExecuteTaskDescriptorActionTaskSchedulerUse

TaskSchedulerDefinition
TaskDescriptorInputPin

TypedElement WorkProductDefinition
WorkProductUse

TaskDescriptorUse
TaskDescriptorDefinition

TaskDefinition
+type { redefines type }

+taskDescriptor
{ redefines workProduct }

+workProduct

+type 
{ redefines type }

+inputDescriptor
{ subsets input, ordered, unique }

+scheduledAction { ordered, unique }+scheduler

+taskScheduler

0..1

0..1
1..*

0..1

0..1

0..1

0..1

Activity

0..1 +taskScheduler

+scheduledActivity
{ ordered, unique }

0..*

Fig. 6. TaskScheduler and ExecuteTaskDescriptorAction in eSPEM

To support this, we added the meta-class TaskScheduler in eSPEM. A Task-
Scheduler is responsible for planning Tasks that may be dynamically created
during the process.

In eSPEM an Activity may have a TaskScheduler associated that is responsible
for scheduling the Activities and TaskUses within the WBS of the Activity, as
shown in Fig. 6. To be compatible with the process, the TaskScheduler of an
Activity must respect the precedence that is given by WorkSequence relationships
and the behavior model of the Activity.

TaskSchedulers can also be used in the behavior model. An ExecuteTaskDe-
scriptorAction takes the union of all sets of Tasks that arrive at its TaskDescrip-
torInputPins and delegates their scheduling to an associated TaskScheduler. The
control flow returns from the ExecuteTaskDescriptorAction either when all Tasks
are performed or when the TaskScheduler determines the end of the invocation.
This concept allows for a separation between the instantiation and execution of
Tasks using ObjectFlows to denote their “way” through the process.

With the concept presented in this section we added the ability of rule based
ordering of Tasks, and a separation between instantiation and execution of Tasks
in eSPEM.

2.5 Configuration of Processes

As outlined in Sect. 1, a significant effort has to be taken, when the target of a
proxy in a process shall be changed. This is a quite common use case, e.g., when
several suitable methods might be used for executing a task within a process.
Choosing from these methods should be possible during process execution without
enforcing any remodeling, tailoring or changing the underlying process model.

To reduce the modeling effort, we added the meta-class ProcessToMethodMap-
ping in eSPEM, as shown in Fig. 7. A ProcessToMethodMapping expresses a
possible mapping between a MethodContentUse and a corresponding MethodCon-
tentElement. Instantiable sub-classes of ProcessToMethodMapping exist for Tasks
(see Fig. 7), Roles, WorkProducts, and TaskSchedulers. ProcessToMethodMappings
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MethodConfiguration

1

Classifier

ProcessToMethodMapping

TaskMapping

RedefinableElement DirectedRelationship

MethodContentUse
MethodContentElement

+/processElement 
{ readonly, union, subsets source }

+/methodContentElement 
{ readonly, union, subsets target } 1

TaskUseTaskDefinition
+taskDefinition 
{ subsets methodContentElement }

1
+taskUse 
{ subsets processElement }

1

+ownedMapping 
{ subsets ownedElement, unique }

0..*
+owningConfiguration 
{ subsets owner, subsets 
redefinitionContext }

0..1

+/redefinitionContext 
{ readonly, union, unique }

0..*

+/redefinedElement 
{ readonly, union, unique }

0..*

+redefinedMapping 
{ subsets redefinedElement, 
unique }

0..*

Step Qualification+selectedStep
0..*

+usedQualification
0..*

+/step 0..*

+baseConfiguration0..*

Fig. 7. ProcessToMethodMapping and TaskMapping in eSPEM

are composed into a MethodConfiguration that reflects one valid set of mappings
between MethodContentUses and MethodContentElements. As a result only one
proxy with its relationships must be modeled within a process for every possi-
ble configuration. Furthermore, the proxy needs no knowledge about its actual
implementation because the mapping is separated from the proxy. This results in
another benefit of our solution: The integration of new methods with existing pro-
cesses is easier because the process does not need to be altered, which in turn eases
evolution of already executed processes. Compatibility between the proxy and its
implementation is ensured by additional OCL constraints we added in eSPEM.
However, these are not discussed in this paper due to space restrictions.

2.6 Tool Support

In addition to the extension of SPEM itself we also implemented eSPEMs ab-
stract syntax using the Eclipse Modeling Framework (EMF) [15]. This already
enables precise modeling of SDPs. Furthermore, we implemented eSPEMs con-
crete syntax for MethodContentElements, WorkDefinitionBehaviors and Actions,
and StateMachines using the Graphical Modeling Framework (GMF) [16] as di-
agram editors that work with our abstract syntax implementation of eSPEM.
Both implementations are integrated into a PME that is used to model eSPEM-
based SDPs [17]. Our PME also reuses parts of the Eclipse Process Framework
(EPF) [18], which aims to be a PME for SPEM 2.0. Using our PME, we mod-
eled two SDPs (Scrum and OpenUP) used in industry to test the usability of
the constructs we added to eSPEM.

3 eSPEM Applied to SDPs

This section provides examples of how to use eSPEM to model aspects of SDPs
that cannot be modeled with SPEM. In all these examples we use a mixture of
standard UML and eSPEM notation.
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3.1 Modeling the Behavior of SDPs

Figure 8 gives an overview of the Scrum behavior modeled with eSPEM (some
elements are omitted). The Product Owner decides at the beginning of each
Sprint whether to release the product or not. Depending on his decision either
a Development Sprint or Release Sprint has to be performed next. With
eSPEM we model this by means of a DecisionNode. A PEX that enacts this SDP
model is now able to ask a person playing the role of the Product Owner what
type of Sprint shall be performed and – depending on the answer – choose the
right sub-process to guide and support the Team. Other SDPs require decisions
as well, e.g., decisions that have to be taken when new risks are identified in the
OpenUP or the V-Modell.

Release 
Product?

ExecuteActivityAction
Release Sprint

[yes]

[no]

Sprint
Cancelation

RoleUse
Product Owner

RoleUse
Team

StructuredActivityNode
Development Sprint

ExecuteActivityAction
Sprint Review Meeting

ExecuteActivityAction
Sprint Retrospective Meeting

Sprint
Cancelation

triggers ►

◄
 tr

ig
ge

rs

executes ►

ex
ec

ut
es

 ►

de
ci

de
s 

►

...

ExecuteActivityAction
Estimation Meeting

ExecuteActivityAction
Development

Fig. 8. Scrum behavior model with different Executions

Asynchronous Events are required by many SDPs. Typical examples are: 1)
adding a new item to the Risk List (when using OpenUP or the V-Modell),
2) Changing System-Wide Requirements (when using the OpenUP), or 3) can-
cellation of a Sprint by the Product Owner or the Team (when using Scrum).
With eSPEM this can be modeled using a Send-/ReceiveSignalAction which the
corresponding RoleUse (e.g., Product Owner) triggers (see Fig. 8). A PEX can
use this information to provide for example a button in a GUI to trigger this
signal and execute the behavior to cancel the sprint.

3.2 Scheduler in SDP Behavior Models

Many SDPs require that Tasks are created and planned during enactment, e.g.,
Tasks on the Work Items List of the OpenUP and Tasks defined in a Work
Order of the V-Modell. Scrum also requires planning of Tasks, e.g., in the course
of the Sprint Planning Meeting Tasks are created, prioritized, and planned
using the Sprint Backlog. Figure 9 shows how we can model this example using
eSPEM. The Sprint Backlog is an output Parameter of the Sprint Planning
Meeting. The character C within the Pin indicates that it is created during
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ExecuteActivityAction
Sprint Planning Meeting

ExecuteActivityAction
Estimation Meeting

ExecuteTaskDescriptorAction
Development

ExecuteActivityAction
Sprint Review Meeting

productBacklog : 
Product Backlog Item [*]

[estimated]

sprintBacklog : 
Sprint Backlog [1]
[created]

R C

R

U

TaskSchedulerUse
Scrum Task Scheduler

TaskDescriptorUse
Sprint Backlog

used scheduler ►

...

...

Fig. 9. Scrum behavior model with Scheduler

that meeting (ParameterEffectKind::create). Tasks from the Sprint Backlog
are executed by the Team during the rest of the Sprint using their priority
for scheduling. In eSPEM we model this with the ExecuteTaskDescriptorAction
Development that takes the ObjectFlow containing the Sprint Backlog as an
input and uses a TaskScheduler Scrum Task Scheduler for scheduling.

With eSPEM it is possible to model rules for scheduling Tasks. We can also
distinguish between the point of instantiation and execution of Tasks during the
process, which is not possible in SPEM. Based on this SDP model, a PEX can
dynamically create tasks and provide suggestions, e.g., for the execution order
of Tasks and project workers who could perform these Tasks.

3.3 Configuring an SDP

SPEM distinguishes between process and methods. In order to get a complete
SDP, methods have to be integrated with the process using a configuration. Fig-
ure 10 shows parts of two possible configurations for the TaskUse Integrate
and Create Build from the OpenUP. The configuration Default OpenUP pro-
vides a basic build management setup (TaskDefinition Integrate and Create
Build) using the contained mapping. The configuration OpenUP with CI pro-
vides extra steps to setup an continuous integration (CI) build (TaskDefinition
Setup CI Build). Other SDPs require our enhanced configuration support as
well, e.g., to configure the Process Modules of the V-Modell R©XT for the differ-
ent project type variants (e.g., Project (Acquirer) with One Supplier and
Project (Acquirer) with Several Suppliers). eSPEM’s configuration sup-
port can also be used when modeling Scrum, e.g., to define different types of
scheduling strategies for Tasks executed during Development (e.g., based on the
priority of Tasks or to optimize workload of the project workers).

4 Related Work

Since Osterweil’s original approach of process programming [19], many PMLs
have been proposed. Acuña and Ferré [4] discuss several of these PMLs and
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MethodConfiguration
OpenUP with CI

TaskUse
Integrate and Create Build

mapping ►

MethodConfiguration
Default OpenUP

TaskDefinition
Setup CI Build

TaskDefinition
Integrate and Create Build

«extends»

mapping ►

Fig. 10. Different OpenUP configurations

corresponding tools. Gruhn [3] demonstrates why the approaches were not ac-
cepted in industry and derives requirements for successful SDP modeling and
execution environments. These requirements are addressed by our approach.

Standards like BPMN [11] or WS-BPEL [20] and its extension for People [21]
were created to model and enact business processes. Although these approaches
provide a reasonable behavior modeling and enactment concept, they do not
provide other constructs from SDPs, e.g., roles, guidelines, responsibility assign-
ments, and tools, that have to be modeled by means of BPEL variables or cannot
be modeled at all. However, without these constructs a PEX cannot fulfill our
requirements, i.e., a comprehensive EPG or integration of existing tools is hard
to realize. Additionally, these approaches do not support a formally defined,
fine-grained life-cycle modeling for artifacts or task scheduling. eSPEM provides
a tightly integrated, fine-grained behavior modeling approach that supports the
mentioned constructs from SDPs.

Bendraou et al. [22] present an extension of the SPEM standard called xSPEM
and focus on SDP validation using timed Petri nets. xSPEM also adds Events
for SPEM-Activities but lacks a fine-grained behavior modeling approach with
decisions, life-cycles as well as task scheduling.

Seidita et al. [23] extend SPEM to support the modeling of agent oriented
methodologies [24] but do not define a fine-grained behavior modeling concept.

Both extensions do not address the incomplete configuration support of SPEM,
as we do.

Another meta-model driven approach for describing development method-
ologies is the ISO/IEC standard SEMDM [14]. It does not use OMG’s strict
meta-modeling approach but uses the power type pattern [25]. This pattern was
adopted for meta-modeling in the domain of software development methodologies
by Henderson-Sellers and Gonzalez-Perez [26]. The rationale for using the power
type pattern is to be able to define instance features within the meta-model,
which is not supported when using strict meta-modeling. However, SEMDM
does not provide a standardized notation, which clearly contradicts an easy-to-
digest formalism. Additionally, SEMDM lacks a fine-grained behavior modeling
concept. Similar to [27,28], we use Kinds in a model library (not in the meta-
model) to specify common instance properties for a set of model elements.

The concept of rule-based task execution for SDPs has been studied before.
Heimann et al. [29] present DYNAMITE, which is based on instance level task
nets. DYNAMITE uses PROGRES [30] for rule-based transformations of whole
subgraphs within task nets. This already allows for a basic scheduling of tasks.
However, DYNAMITE does neither support modeling additional properties for
tasks nor does it support modeling roles. Thus, some scheduling strategies are
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hard to implement, e.g., a priority based scheduler that requires a property
priority for the tasks it schedules, or scheduling strategies that consider the
qualifications of roles that project workers play. eSPEM does support roles and
instance features and therefore TaskScheduler implementations are able to use
the additional information to get more accurate scheduling results.

Using UML for modeling SDPs is a common approach. Bendraou et al. [9]
compare six UML-based languages for modeling SDPs including SPEM 1.1,
SPEM 2.0 [1], UML4SPM [31], and other approaches [32,33,34]. We will give
a short comparison of these approaches with eSPEM in the following.

Closest to our work is UML4SPM [31]. UML4SPM is based on SPEM 1.1
and UML 2.0 behavior modeling concepts. In [35] UML4SPM is mapped to
WS-BPEL for enactment support. As mentioned, WS-BPEL cannot fulfill our
requirements. A more recent approach to gain enactment support for UML4SPM
is shown in [36]. In this paper the authors present an execution model based on
the OMG proposal for an executable UML subset [37], as well as an implemen-
tation of the execution model for UML Activity and Actions using Kermeta [38].
This enables an execution and simulation of UML4SPM-based models. How-
ever, UML4SPM is based on SPEM 1.1 and therefore does not provide sophis-
ticated tailoring and configuration support. Additionally, UML4SPM does not
use StateMachines for life-cycle modeling.

Chou [33] uses a subset of UML 1.4 activity and class diagrams in combination
with a proprietary object-oriented process programming language. The approach
suffers from the fact, that code in the low-level programming language is not
derived from the diagrams.

Di Nitto et al. [32] propose a UML 1.3-based framework to model SDPs. They
do not extend the UML meta-model or use stereotypes. The framework elements,
e.g., SoftwareActivity, are instances of the UML meta-class Class. However,
using plain Classes is a major drawback of this approach because all process
elements have the same notation and semantics.

Franch et al. [34] present PROMENADE, an extension of the UML 1.x meta-
model, and add essential concepts for SDP modeling, i.e., roles, tasks, and doc-
uments. However, they do not add dedicated relationships, e.g., responsibility
assignments that are available in eSPEM.

Engels et al. [39] show how the concepts in UML can be used for process
modeling. However, essential concepts of SDP modeling are missing in UML,
e.g., work products and responsibility assignments. This results in an incomplete
and imprecise SDP description.

Other approaches use UML and extensions through stereotypes for SDP mod-
eling [40] or SPEM itself [1]. This allows to use standard UML modeling tools
and the behavior modeling concepts from UML. However, several other prob-
lems arise. Stereotypes change the semantics of UML elements when being
applied to them but have no influence on the language structure as defined
by the UML meta-model. Consequently, “type-safety” and multiplicities of com-
mon relationships for SDP modeling (e.g., responsibility assignments and rela-
tionships between work products) must be re-implemented (e.g., as constraints
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for the stereotypes). This contradicts our requirement of an easy-to-digest for-
malism and limits the support that a general purpose UML modeling tool can
give when creating or editing model elements with stereotypes.

5 Conclusion and Future Work

Given our requirements, the current SPEM standard has a few issues that we
have identified by modeling exemplary SDPs. With eSPEM we have provided an
extension of SPEM that addresses the identified issues. eSPEM supports a fine-
grained behavior and life-cycle modeling, definition of task scheduling strategies,
and an enhanced configuration support. None of the approaches known from
literature does support all of the features in eSPEM that we consider to be
required for precise modeling and reasonable enactment support of SDPs.

Our future work will focus on an enhanced tool support for eSPEM. This
includes a full implementation of eSPEM’s concrete syntax and additional tool-
ing to improve usability of our PME. In addition to that, we will also work
on implementing a PEX for eSPEM-based SDP models. Research in this field
will include the formal definition and implementation of the operational seman-
tics of eSPEM’s behavior model, integration of existing tools and their data
formats, traceability support for artifacts, and process evolution. Providing the
combination of a PME and a PEX will also allow to empirically evaluate the
impact of computer-aided process enactment on real development projects, and
an adaption of eSPEM by practitioners.
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40. Jäger, D., Schleicher, A., Westfechtel, B.: Using UML for Software Process Model-

ing. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS,

vol. 1687, pp. 91–108. Springer, Heidelberg (1999)



Adding Abstraction and Reuse to a
Network Modelling Tool Using the
Reuseware Composition Framework

Jendrik Johannes1 and Miguel A. Fernández2
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Abstract. Domain-specific modelling (DSM) environments enable ex-

perts in a certain domain to actively participate in model-driven devel-

opment. Developing DSM environments need to be cost-efficient, since

they are only used by a limited group of domain experts. Different

model-driven technologies promise to allow this cost-efficient develop-

ment. [1] presented experiences in developing a DSM environment for

telecommunication network modelling. There, challenges were identified

that need to be addressed by other new modelling technologies. In this

paper, we now present the results of addressing one of theses challenges—

abstraction and reuse support—with the Reuseware Composition Frame-

work. We show how we identified the abstraction and reuse features

required in the telecommunication DSM environment in a case study

and extended the existing environment with these features using Reuse-

ware. We discuss the advantages of using this technology and propose

a process for further improving the abstraction and reuse capabilities of

the DSM environment in the future.

1 Introduction

Domain-specific modelling (DSM) environments enable experts in a certain do-
main to actively participate in model-driven software development (MDSD)—
even if they lack experience in software engineering or software modelling. Since
such environments are only used by a limited group of experts, the development
needs to be cost-efficient. This can be achieved by developing DSM environments
with model-driven technologies instead of implementing them by hand.

[1] presents experiences gained in developing such a DSM environment for
telecommunication experts at Telefónica. There, the Graphical Modeling Frame-
work (GMF) [2] was used to develop a graphical editor as core of the environ-
ment. [1] identified challenges for technologies that were not met by the tooling
used so far. One of the identified challenges is abstraction and reuse. That is,
supporting domain experts to create abstract views of complex models and to
develop reuseable model components.
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In this paper, we now report on the results in addressing the abstraction
and reuse issue with another modelling technology—the Reuseware Composition
Framework1. Reuseware is founded on Invasive Software Composition [3] and
extensions of it [4,5]. It is based on the Eclipse Modeling Framework (EMF) [6]
and integrates into the Eclipse platform. It also has a component for integrating
with GMF. Therefore, we used Reuseware to extend the existing domain-specific
network modelling environment [1] that is based on Eclipse, EMF and GMF.

The core of the network modelling DSM environment is a domain-specific
language (DSL) based on the Common Information Model (CIM) [7] that is a
Distributed Management Task Force (DMTF)2 standard for systems, networks,
applications and service definition. The graphical editor of the DSL, which was
the main part of the DSM environment as presented in [1], is directly based on
an Ecore3 metamodel that represents a large part of the CIM standard.

In the Modelplex project4, Telefónica defined a case study in which they
not only use the CIM-based DSL for telecommunication network modelling, but
also formulate abstraction and reuse concerns [9]. Driven by this case study, we
developed abstraction and reuse tooling for the DSM environment with Reuse-
ware. During the process, we realised that many design decisions require feedback
from the domain experts. Therefore, rapid prototyping and continuous updat-
ing of the DSM environment, based on that feedback, is needed. Consequently,
we propose a development process for abstraction and reuse features of a DSM
environment that is also applicable for other environments than the network
modelling tool. We discuss how this development process can be implemented
with the model-driven technologies we used.

This paper is structured as follows. Section 2 motivates the need for abstrac-
tion and reuse in DSM environments and introduces the network modelling case
study. It further shows the features we developed, driven by the case study, with
Reuseware. In Sect. 3 we present the development process for improving the
DSM environment and Sect. 4. presents conclusions from this work.

2 Abstraction and Reuse Support in the DSM
Environment for Network Modelling

In this section, we first motivate the need for reuse and abstraction mechanisms
in DSM environments for complex domains. We then show the setup of the case
study we conducted and explain the abstraction and reuse features we developed,
driven by the case study, for the network modelling tool with Reuseware.

2.1 Reuse and Abstraction in a DSM Environment

A DSM environment is the tooling for a domain-specific language (DSL). A
DSL is used to reduce the complexity arising when developing software systems
1 http://reuseware.org
2 http://www.dmtf.org
3 Metamodelling language of EMF; conforms to OMG’s EMOF [8] standard.
4 http://www.modelplex.org
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using a general-purpose language (GPL) such as UML or Java. Unlike a GPL,
a DSL focuses on a particular problem domain and contains a relatively small
number of constructs that are immediately identifiable to domain experts and
allows them to construct concise models capturing the design of the system at
an appropriate level of abstraction. While typical DSLs are small languages with
a manageable number of concepts, a DSL that embodies a standard vocabulary
of a larger domain is a complex language with a large number of concepts. This
complexity eventually compromises the very aims against which the DSL was
built in the first place: domain focus and conciseness.

The metamodel and the graphical editor [1] developed on the basis of the
Common Information Model (CIM) [7] represent such a complex DSL. While
this language is a DSL in the sense that it provides dedicated constructs for the
telecommunication domain, its size in terms of the number of constructs and
features is comparable to that of a GPL such as the UML—the CIM standard
defines more than 1500 concepts.

However, the domain for which CIM is designed can be split into more spe-
cialised domains where not all details of CIM are required in each of them. The
classical MDSD approach would be to construct new DSLs that provide abstrac-
tions over and above the constructs provided by CIM. This means that different
DSLs, all in the telecommunication domain, are created for different abstraction
levels and are combined in an MDSD process.

To employ this approach, one has to identify the abstraction levels and decide
which DSLs, and with which constructs, have to be created. This is an iterative
process, since a DSL has to be tested and used by the domain experts to evaluate
its usefulness and improve it. Updating one DSL alone can be costly when the
associated tooling needs to be adapted manually, which is often the case with
today’s DSL development technology as experienced in the development of tool-
ing for the original CIM-based DSL [1]. This cost would even increase if multiple
DSLs, which are connected in an MDSD process, are updated and co-evolved.

Instead of using a classical MDSD approach as described above, we develop
abstraction tooling for CIM using model composition. This is done by defining a
composition system with Reuseware. As we will discuss in Sect. 3, this solution
can be used as 1) an alternative for the classical MDSD approach, 2) prototyp-
ing for finding the DSLs in the classical approach (and thus avoiding costs of
evolution) and 3) basis for implementing the classical approach.

2.2 Case Study Setup

We extended the network modelling DSM environment with abstraction and
reuse support driven by a case study defined by Telefónica [9]. For the case
study, Telefónica defined a model of a typical ADSL service network configu-
ration for their customers consisting of 52 model elements. An excerpt of the
model, displayed in the graphical editor of the DSM environment, is shown in
Fig. 1. After the model was defined, the domain experts at Telefónica marked
and named parts of the model that can be abstracted into a single concept
on a higher abstraction level and reused at different places in the model. For
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Fig. 1. An excerpt from a CIM model of an ADSL service network topology (provided

by Telefónica R&D for the Modelplex project [9])
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Level 0 Complete CIM standard language (1500+ concepts)

Fig. 2. Abstraction levels and component types for network models

the marking they used notes with different colours. These are only parts of the
graphical syntax and do not change the meaning of the underlying model. In
addition, for each concept they marked, they provided a list of attributes that
need to be visible on a higher abstraction level.

The concepts were then grouped into seven specialised domains (Protocols,
Physical Interfaces, Logical Interfaces, Systems, Network Devices, Network Links,
Network Topologies) that reside on different abstraction levels (Levels 1–4) as
summarised in Fig. 2. For each specialised domain and/or each abstraction level,
a separate DSL could potentially be defined. Between the different specialised
domains, dependencies can be identified (arrows in Fig. 2). They express which
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domains from a lower abstraction level are used to express concepts of a higher
abstraction level. We note that in principle concepts of Level x can be repre-
sented by concepts of Level x−1. However, certain concepts of higher abstraction
levels (Level 2, 3 or 4) are also expressed directly with concepts of Level 0. This
is, because the CIM standard (Level 0) itself, offers constructs of low (e.g. Eth-
ernetPort) but also high (e.g. System) abstraction.

Note that the levels, domains and dependencies between them as shown in
Fig. 2 are the results of a first case study. Using DSM tools based on these results
and doing more case studies with more models, will most likely extend and alter
the results—which can lead to the mentioned evolution costs when the results
are directly manifested in DSLs. Therefore, we present a Reuseware composition
system that extends the network modelling DSM environment with abstraction
and reuse features as an alternative solution in the following.

2.3 Analysis and Decomposition of the Case Study Model

We used the Reuseware Composition Framework to define a composition system
and integrate it into the DSM environment for network modelling. A composition
system defines how users of the system—domain experts in our case—can define
and compose model components. In Reuseware, a composition system is defined
based on an existing DSL to extend it with abstraction and reuse features,
while preserving the existing tool support for the DSL. The user is then able to
define model fragments using the existing editor of the DSL. Such fragments can
then be composed graphically by defining composition programs in a graphical
editor provided by Reuseware with the possibility to reuse one fragment several
times in one or different composition programs. Reuseware then interprets the
composition programs to merge the fragments to complex models that can again
be inspected using the existing DSL editor.

In our case, we defined a composition system for the CIM-based DSL driven
by the requirements specified in the case study model (cf. Fig. 1). In the first
step, the model was decomposed into fragments following the decomposition
suggestions marked in the model. Second, initial composition programs were de-
fined using Reuseware’s graphical composition program editor. At this point, the
composition programs did not yet contain the composition definitions. Third, we
constructed a composition system that allows the composition of CIM fragments
in an easy and intuitive way such that domain experts can use it. Finally, we ad-
justed the fragments to the composition system and completed the composition
programs such that they recompose the original case study model.

Figure 4 shows the fragments and composition programs that are the de-
composed version of the part of the case study model that is shown in Fig. 1.
The three rows in the figure correspond to the abstraction Levels 1–3 (from
bottom to top). On Level 1, we have the BuiltInEthernetHub fragment, which
is a Physical Interface modelled in the CIM-based DSL, and the IP fragment,
which is a Protocol also modelled in the CIM-based DSL. On Level 2, three
CIM models are defined. Two Logical Interfaces and one System. The first Logi-
cal Interface—EthernetIPInterface—is a composition program that contains the
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fragments avg. no.

of model

elements

comp.

programs

avg. no. of

fragments in

comp. prgr.

reused

Level 4 NW Topologies 0 n.a. 1 8.00 0

Level 3 NW Devices 0 n.a. 4 3.25 4

Network Links 2 1.00 0 n.a. 4

Level 2 Logical Interfaces 1 3.00 3 2.67 6

Systems 1 1.00 0 n.a. 4

Level 1 Physical Interfaces 3 3.00 0 n.a. 4

Protocols 5 2.60 0 n.a. 7

Total 12 2.42 8 3.63 29

Fig. 3. Fragments of the case study

two Level 1 fragments. On the contrary, the second—ADSLStaticIPinterface—is
directly modelled in the CIM-based DSL. The System fragment is also modelled
in the CIM-based DSL. On Level 3, we then have one composition program—
ProviderRouter—that composes the three Level 2 fragments.

An overview of all fragments and composition programs we obtained by de-
composing the complete case study model that consists of 52 elements, is given
in Fig. 3. In total, 12 fragments and 8 composition programs were defined. In
average, each fragment contains 2.42 model elements which means that a total
of 29 model elements were created in the CIM-based DSL. In the original model,
52 elements were modelled, which means that 44% of the case study model can
be created by reusing fragments instead of modelling in the CIM-based DSL.
To enable domain experts to perform this composition and reuse of CIM model
fragments, we defined a composition system with Reuseware that is presented
in the following.

2.4 Re-composition of the Case Study Model Using the CIM
Composition System

Since the composition system for CIM models should extend the existing tooling
(the graphical editor of the CIM-based DSL and the Reuseware composition
program editor) we introduce five prefixes (+, %, ?, *, -) that can be prepended
to attribute values of model elements to define the composition interface of a
CIM model fragment. A composition interface points at the parts of a model
fragment that are exported to be connected with parts of other model fragments
in composition programs. The prefixes are explained in the following on the
example of Fig. 4.

Looking at the two Level 1 models (Fig. 4; bottom row), we can see that the
BuiltInHub element in the BuiltInEthernetHub fragment is prefixed with + and
named +BuiltInHub. + exports the element to the composition interface and lets
it appear with the name of the element (in this case BuiltInHub). This can be
seen in the EthernetIPInterface composition program on Level 2 (1st in middle
row). Similar is done with the IP element in the IP fragment. Furthermore, we
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Fig. 4. Fig. 1 decomposed into fragments and composition programs on Levels 1–3

add a new element (depicted in orange) to the BuiltInEthernetHub that we name
?PrototcolEndpoint and connect to other elements in the fragment. ? is used
to define a variation point. That is, this is not an element with meaning, but
only a placeholder. It will be replaced or removed during composition.

The composition program EthernetIPInterface (1st in middle row) on Level 2
can now make use of the composition interface. Concretely, the exported IP
element is linked to the ?PrototcolEndpoint variation point. Executing the
invasive composition yields an EthernetIPInterface fragment that is equal to
the corresponding part of the original use case model (cf. Fig. 1). In the AD-
SLStaticIPInterface fragment, we declare two elements to be exported using +
(WANIP and ADSLModem). In the System fragment, we also export the System
element, add three variation points (using ?) and add the extension point *Mod-
ules (using *). In contrast to a variation point, an extension point defined by *
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Fig. 5. Properties of the System model element (cf. Fig. 4 middle)

Fig. 6. Properties of the Level 2 fragment system.cim (cf. Fig. 4 top)

allows for multiple extensions and needs to be explicitly removed by using - in
a composition program.

Using the exports, variation points and extension points defined in the frag-
ments of Level 1 and 2, the ProviderRouter composition program on Level 3
can now be enriched with the composition links that are required to construct
a ProviderRouter CIM model that is equal to the corresponding part of the
original case study model (cf. Fig. 1 top).

Furthermore, the % prefix is used in all fragments to export attributes to the
composition interface. Figure 5 shows this exemplarily for the System element
in the System fragment (middle row on the right in Fig. 4). We can see that
there are many attributes, which is typical for all elements in a CIM model.
Therefore, as many attributes as possible should be set to default values if suf-
ficient and only a limited set should be exported to the next abstraction level.
Here, we export the Description attribute by setting it to %Description. The
value followed after % defines the name of the attribute on the next abstraction
level (here Description). The ElementName attribute is also exported to an
attribute System, because + is exported by default. Furthermore, the Name at-
tribute (not to confuse with ElementName) is exported to the attribute System
(by using %System). This means that settings to System on the next abstraction
level will set both attributes (Name and ElementName) to the same value.

The exported attributes can be modified in the properties of a corresponding
fragment instance in a composition program. Figure 6 shows these attributes for
the instance of the System fragment in the ProviderRouter composition program
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(top row in Fig. 4). We can see that both exported attributes—%Description
and %System—are set. The %System attribute (which maps to ElementName on
the lower abstraction level) is set to CiscoProviderRouter which means that
the +System element is not re-exported. For re-exporting it, we would need to set
the attribute to +CiscoProviderRouter. The properties also list all extension
points, which is only *Modules in this case. An extension point can be removed
if it should be no longer visible on the next abstraction level by setting it to -,
which we do in the case of *Modules here.

Another feature to improve the user experience is the specification of icons
that are then shown on fragments in composition programs. In the CIM com-
position system, domain experts can specify icons themselves by placing them
next to the fragments they develop.

Using the composition system, we were able to recompose the complete orig-
inal case study model from the fragments (cf. Fig. 3) that were created from
it based on the decomposition proposed by the domain experts (cf. Fig. 1). As
mentioned, 44% of the model consists of reused fragments compared to complete
manual modelling.

The features of this CIM composition system give the domain experts a lot of
freedom. They can introduce new fragments at will and design their composition
interface and their look in composition programs individually. They can also
introduce new abstraction levels without modifying any language, tooling or
composition systems, since all CIM models on abstraction levels higher than 0
are composition programs. Thus, the presented composition system is useful in
particular in the early stages of building a DSM environment to find appropriate
abstraction levels. Of course, the composition programs expose certain parts of
the generic Reuseware tooling. Thus, for certain abstractions it might become
desirable to hide more of the composition system and Reuseware to the domain
experts, which we will discuss in the following.

3 A Process for Introducing and Improving Reuse and
Abstraction in DSM Environments

This paper presented the extension of the DSM environment for network mod-
elling with abstraction and reuse support. For this, we have developed a compo-
sition system with Reuseware as a less cost-intensive alternative to developing
a set of DSLs for different abstraction levels and connect them via transforma-
tions, which would have been the classical MDSD approach. The composition
system was developed with relatively little effort—the complete system defi-
nition consists of only 103 lines of textual specification in Reuseware specific
languages for composition system definition.5 Nevertheless, the system, as de-
scribed in Sect. 2.4, was integrated into the DSM environment and directly used
by domain experts. They can now use the additions in the DSM environment to
introduce new abstraction levels as required.
5 Specifications, case study model, fragments and composition programs can be ob-

tained from http://reuseware.org/index.php/Reuseware Application CIM.
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Fig. 7. Process for obtaining a DSM environment for a complex DSL

Still, there are also (potential) drawbacks in using the developed composition
system over the classical MDSD approach. First, the flexibility we gave to the
composition system inherently comes with the danger that it again threatens
the simplicity and abstraction we wanted to introduce with the it in the first
place. Since the domain experts control the composition interfaces themselves to
a large degree, they might overload the interface of components or design them
too restrictive, which would make fragments hard or impossible to reuse. Second,
the tooling (in particular the user interface), which is only a thin layer on top
of Reuseware, can never be as highly customised or adjusted to other platforms
and technologies as individual DSLs can be.

These drawbacks, however, only apply in certain scenarios. For example, when
new users that only work on one particular abstraction level are introduced to
the DSM environment often, which justifies the costs of developing customised
tools for them; or when people have to work on specific platforms with resource
restrictions that can not be met by the Reuseware tooling. To answer such
questions for the CIM case, we need to perform more case studies and, most
importantly, get feedback from the domain experts on these questions.

Because this feedback from domain experts is of high importance for the whole
idea of DSL building, we claim that creating a flexible composition system for
an existing complex DSL, as the one shown in this paper for the CIM-based
DSL, is a good first step to build abstraction and reuse facilities on top of
the existing complex DSL. Even if we switch to a classical MDSD approach
later, the composition system is an inexpensive way to obtain a first prototype
that can then be used and tested by the domain experts to collect feedback on
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what the correct abstraction levels are. With this we can obtain the final DSM
environment which may consist of the composition system or a set of DSLs (on
the correct abstraction levels) or a combination of both.

To support this claim, we propose the following process to continue the devel-
opment of the DSM environment for network modelling with different abstraction
levels that can also be used for developing DSM environments for other domains.
The process, consisting of five phases, is visualised in Fig. 7:

1. In the first phase, the developer of the DSM environment collects initial
information about desired abstraction levels from the domain experts who
are already familiar with the complex existing DSL. In the Telefónica case
study this was done in form of markings in the case study model (cf. Fig. 1).

2. In the second phase, the developer designs the first composition system ver-
sion that is flexible enough to cover all abstraction and reuse requirements
identified in step one, but is customised enough such that it can be used by
domain experts. For the network modelling DSM environment, this compo-
sition system was shown in Sect. 2.4.

3. In the next phase, the domain expert uses the composition system, creates
fragments and gives feedback. The developer can give support in this phase.
We started this phase for the CIM-based DSL when we created the fragments
and composition programs in Sect. 2.3.

4. In phase four, the fragments and composition programs are analysed to find
common patterns and to group the fragments following these patterns. From
these patterns, the developer can derive restrictions and default behaviour for
the composition system or identify constructs for abstract DSLs and refine
the abstraction levels. In the CIM composition system for instance, it turned
out that EndPoint elements (used e.g. several times in Fig. 4) are nearly
always exported because they mark places where components are connected
in the physical world. Thus one useful refinement of the composition system
might be to export EndPoint elements by default.

5. In the last phase, the developer improves the composition system based on
the results from the previous phase or builds abstract DSLs that replace
(parts of) the composition system. The result is then given to the domain
experts. It is either the final DSM environment or a next prototype and
phase three to five are repeated.

If the abstraction levels are manifested and the customisation capabilities of the
composition system are not sufficient, the developer can decide to build abstract
DSLs with other technologies. One way he can go to keep the costs of this low
is to use generative technologies for the DSL tooling such as EMFText [10] or
EuGENia [11] that allow the generation of textual or graphical editors with
minimal effort. Transformations between the new DSLs can be realised using
a model transformation approach or reusing the already existing composition
system. We presented this idea in [12].
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4 Conclusion

In this paper, we used Reuseware to add abstraction and reuse support to a
domain-specific modelling environment for telecommunication networks. With
this, we addressed one of the missing features of the environment identified in
[1]. Judging by the case study we performed, Reuseware provides the necessary
means to extend the environment with the desired features with acceptable effort.

Performing the case study, we realised that several iterations for the DSM
environment are necessary to find which abstraction and reuse features make
the domain experts’ work most efficient. Therefore, we proposed an iterative
development process that focuses on collecting feedback from domain experts
and performing rapid prototyping with Reuseware. In the future, we need to
realise this process in larger case studies to improve the DSM environment.
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Abstract. With increasing complexity of software in today’s products, writing 
and maintaining thousands of lines of code is a tedious task. Instead, an alterna-
tive methodology must be employed. Model-based development is one candi-
date that offers several benefits and allows engineers to focus on the domain of 
their expertise than writing huge codes. In this paper, we discuss the application 
of model-based development to the electronic climate control software of vehi-
cles. The back-to-back testing approach is presented that ensures flawless and 
smooth transition from legacy designs to the model-based development. Simu-
link report generator to create design documents from the models is presented 
along with its usage to run the simulation model and capture the results into the 
test report. Test automation using model-based development tool that support 
the use of unique set of test cases for several testing levels and the test proce-
dure that is independent of software and hardware platform is also presented. 

Keywords: Control law, Framework model, Doc block, Legacy designs,  
S-function, Back-to-back testing, Test automation. 

1   Introduction 

With increasing market competition, reduced time-to-market for products and grow-
ing complexity of algorithms, mechanics and electronics, it has become necessary to 
explore new development methodologies. Model-based development is one method-
ology that offers several benefits which have made it favorite among the automotive 
and industries alike such as aerospace [1]. Majority of software in industries is no 
longer hand-written in C or assembly language, but developed in the form of graphi-
cal models using model-based development tools such as MATLABTM, Simulink®, 
Stateflow® or similar tools [1]. The production code is automatically generated and 
ported into the hardware – the Electronic Control Unit (ECU). 

In this paper, we have discussed several benefits of using model-based develop-
ment for the Electronic Climate Control (ECC) software of the vehicles. The approach 
using S-functions that facilitates back-to-back testing of the legacy designs in hand-
written C and the graphical models is described. Also discussed is the use of Simulink 
Report GeneratorTM to create a detailed design document and the simulation test  
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report with the user specified test inputs from the models. Furthermore, the test auto-
mation using model-based development tools is presented that allows a set of test 
cases with systematic selection to be used over different testing levels and for differ-
ent software architecture and hardware platform. 

The following section describes the model-based development of the ECC software 
using MATLAB, Simulink and Stateflow. It also details various challenges faced and 
benefits gained in the process. The section 3 describes the approach of back-to-back 
testing that ensures flawless and smooth transition from legacy designs to model-
based development. Also described is the test automation applied to several testing 
levels. Section 4 concludes the paper. 

2   Designs Using Model-Based Development Technique 

Model-based development begins with the development of graphical models by appli-
cation experts [2]. There are several tools such as MATLAB/Simulink/Stateflow/ 
Rhapsody which can be used for development of graphical models. The requirements 
can also be in the form of executable graphical model to aid better understanding of 
the application. The graphical models can be simulated to analyze the performances 
of software much earlier in the development cycle that is, before the hardware for 
example, the Electronic Control Unit (ECU) is available, which help to ensure thor-
ough quality assurance of software [3]. Furthermore, the closed-loop simulation of 
model gives the first best guess for design parameters such as calibration data, filter 
coefficients, etc. that can be fine tuned subsequently. For more complex application 
such as engine management system, model-based development tool allows engineers 
to build models for several functionalities independently and interlink them at the 
framework model using the referencing capability of the tool. When the design of  
the framework model is complete with all referenced models, the production code can 
be generated using the model-based development tool such as the Embedded Real-
Time (ERT) coder from MATLAB. Tools are available that help engineers customize 
the automatically generated production code to make it run on a particular hardware. 
For example, the ERT coder lets engineers to customize the automated code genera-
tion process via Target Link Compiler (TLC) file. It also allows automated code  
generation to be customized to support integration of generated code and the existing 
hand-written C code. This feature is particularly beneficial when migrating to model-
based development while maintaining the capability to deliver software on-time for 
the products nearing their production. 

Furthermore, with the use of Simulink report generator tool, a detailed design 
document from the models can be created along with snapshots of the model to aid 
better understanding of the implementation among the software developers. The  
report generator can also be used to run the graphical simulation model with the user 
given test cases and generate a document capturing the test results. 

In the following sections we have described the model-based development of the 
ECC software that used tools from The MathWorksTM - MATLAB®, Simulink®, 
Stateflow®, ERT, Legacy Code Tool (LCT) and Simulink Report GeneratorTM. 
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2.1   Electronic Climate Control Application  

The development of the ECC project began in 1996, when the model-based develop-
ment was not matured enough for industrial applications. The project began with 
design of the algorithms from scratch for the core control algorithms of vehicle’s 
Heating, Ventilation, and Air-Conditioning (HVAC) system such as compressor 
speed control, evaporator air temperature control, mixed-air temperature control, and 
cabin air temperature control, to name a few. The earlier designs by application  
experts were in hand-written C mainly from their field experience with minimal docu-
ments. The development methodology therefore, demanded not only the domain 
knowledge but also the software coding expertise which at best led to increased de-
velopment cost. Design documents were also hand-written as no automatic report 
generator is available to document the designs in C. This led to developers with ex-
pertise in their areas of work with minimal or no overlap, thereby reducing the quality 
of communication. Furthermore, the earlier development cycle didn’t allow testing of 
software before the hardware is available. This led to delay in the product’s time to 
market and less than thorough testing of the integrated software. Also, the testing of 
integrated software on the test bench, windows-based simulator and vehicle to find 
minute design flaws was at best expensive and likely not practical for more complex 
algorithms.  

Simultaneous to the development of the ECC software, due to its promising bene-
fits when compared to a physical sensor in the car, development was undertaken for a 
sophisticated algorithm that calculates, in real-time the air temperature throughout the 
vehicle interior by using the effects of ambient temperature, sun load, heat-transfer 
mechanisms – conduction, convection and radiation [4]. Performance evaluation of 
such a complex algorithm needed a platform earlier in the development cycle before 
the hardware is available. Also, the ECC software is needed to be deployed for all 
General Motors (GM) vehicles worldwide. Therefore the reusability of the production 
software with minimal changes specific to a vehicle program/project was desired. 
With the advent and promising benefits of model-based development tools such as 
MATLAB®, it was decided to migrate the earlier hand-written C designs to model-
based development while maintaining the capability to deliver the software for vehi-
cles nearing their production. 

Engineers used the model-based development tools- Simulink and Stateflow to de-
sign algorithms and test them under various failure conditions before hardware is 
available. Due to the referencing capability of the tool [3], it was possible to design 
models for the complex algorithms independently and interlink them at a common 
Simulink framework level. A Simulink framework model therefore consists of only 
references to the several models, connections between the referenced models the 
interface to the algorithms which are still in hand-written C and I/O interface. This is 
illustrated in Fig. 1 which shows a top most level of the model for control_airquality 
algorithm on the right and a Simulink framework model on the left with references to 
several models including control_airquality. Furthermore, the closed-loop simulation 
consisting of the model for control law and the plant gave a first best guess for the 
design parameters such as PID gains, filter coefficients, etc. which can be fine tuned 
subsequently. Such an approach allowed for smooth migration to the model-based  
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Fig. 1. Simulink framework model that consist of references to several models developed inde-
pendently. Also shown on the right is the top most level of the model for control_airquality 
algorithm. 

development with guarantee to ensure timely delivery of integrated software for vehi-
cles nearing their production. The integration of existing algorithms hand-written in C 
and model-based designs also included customizing the target link compiler (TLC) 
file used for production code generation by embedded real-time (ERT) coder. For 
example, inputs to the Simulink designs from hand-written C codes were automati-
cally resolved to the appropriate C function calls. Furthermore, these models are  
reused with relatively small amount of calibration changes across several vehicle 
programs worldwide. 

The graphical nature of the Simulink models and Stateflow charts aid to better un-
derstanding of the design than reading a thousands of lines of hand-written C code. 
The simulation capability of the graphical model helps identify the design flaws much 
earlier in the development cycle that is, before the hardware is available. Furthermore, 
the use of Simulink Report GeneratorTM to create a detailed design document helped 
to understand the designs developed by other software developers. This improved 
communication among the team members as the collaborative development of the 
ECC software involved members from India, North America and Europe. 

The correctness of conversion of hand-written C algorithms into the models was 
measured using exactitude of performances of C code and the model. With the use of 
model-based development, it was possible to perform such verification at the Simu-
link level that is, much before the system software is ported into the ECU. The simu-
lation model consisting of the model for control law and its environment is developed 
in the Simulink framework without any physical hardware components. The simula-
tion model is then modified to include hand-written C code in the form of S-function 
in the Simulink framework. The S-function and the model for control law are  
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therefore subjected to the same simulated environment and test inputs to aid easy 
comparison of performances. This resulted in engineers feel confidence on the model 
developed from the existing hand-written C code. 

2.2   Simulink Report Generator 

Simulink Report GeneratorTM is used to create design documents for Simulink® and 
Stateflow® models developed by engineers’ located in India, North America and 
Europe. The design documents are produced in a standard form (.doc, .pdf and .html) 
that can be distributed to the team members to understand designs created by others 
[5]. During the development phase of the model design information is included with 
the use of Doc Blocks (documentation blocks from the Simulink® library) at various 
subsystems of the model. A common framework of the Simulink report generator is 
used to generate a design document. Since the doc blocks are embedded into the 
model, any updates to the model could be easily reflected back to the corresponding 
doc blocks and a fresh design document for the model can be generated with just a 
click of the button. Furthermore, a design document for the Simulink® framework 
model consisting of multiple models with interlinks between them can be generated 
the same way it is generated for an individual model.  

 

 

Fig. 2. Simulink® report generator can be used to systematically select the doc blocks with 
appropriate contents to generate report for different users such as requirements owners’, engi-
neers’, and vendor, if Original Equipment Manufacturer (OEM) and vendor are working in 
collaboration 

 

Fig. 3. Simulink report generator tool can run the graphical simulation model with the user 
specified test inputs and document the results into the test report 

The report generator tool offers various features to generate document. The promi-
nent features used for the ECC software development cycle are mentioned below. 
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1. Snapshots of the implementation can be captured in a document which can 
highlight interlink between the implementation and the requirement 

2. A set of calibration for the model or system software can be published at the 
end of the document to aid calibrators. 

3. A list of model inputs and outputs can be published at the end of the document 
to aid simulation and test engineers. 

4. Documents for different set of people for example, design engineers, require-
ment owners, and engineers’ at vendor can be created from a single model. For 
example, a requirements document can be created by using doc blocks con-
taining requirements, a brief design document can be created by omitting doc 
blocks containing requirements and detailed design information. Similarly, the 
doc blocks with detailed design information are used when creating a design 
document required by the developers and the other team members. This is par-
ticularly an interesting feature when software is designed by the Original 
Equipment Manufacturer (OEM) in collaboration with supplier or vendor. This 
feature is depicted in Fig. 2. 

5. If table-data is used in implementing the design, graph of the table-data can be 
included in the design document. 

6. Finite State Machine (FSM)’s can be explained in the design document with 
their states and the transition conditions between the states. The report genera-
tor tool can also include description provided by the software developer for the 
states and the transition conditions between the states. 

7. The document in html form has traceability tags that can be used for easy 
navigation throughout the report. 

8. The Simulink report generator also creates Web views that are visual replicas 
of the models viewable in a Web browser. These Web views can be navigated 
the same way models are navigated and look exactly the same as the models 
viewed in Simulink and Stateflow editors. Apart from navigating to a specific 
subsystem, it is also possible to view properties of blocks, subsystems and sig-
nals. Furthermore, like design or requirements documents, Web views can be 
shared with users who do not have access to MATLAB [5]. 

9. The simulation model with the user specified test inputs can be run by the  
report generator tool and the test results at MiL and back-to-back levels of 
testing can be captured in the report [5]. This feature is illustrated in Fig. 3. 

3   Testing in Model-Based Developments 

About a decade ago, testing automotive designs comprised primarily of four well-
understood areas: (1) electromagnetic compatibility (EMC) tests, (2) electrical tests 
(short-circuits, voltage-current levels, loading effects), (3) environmental tests (testing 
under extreme conditions), and (4) field tests (on proving ground or test roads) [1]. 
The functional testing of the algorithms was not possible until the design was com-
plete and hardware (also referred to as Electronic Control Unit (ECU)) was available. 
By ‘design was complete’ we mean the object code was available and ready to flash 
into the ECU. Since automotive development is an interdisciplinary system that con-
sists of software, electrical, mechanical, and/or hydraulic components inextricably 
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entwined, such test methods as mentioned above are at best expensive and time con-
suming (often leading to delay in delivery of product to market). Furthermore, the 
functional complexity of the algorithms was comparatively low therefore functional 
testing was not mandatory [1]. However, with increasing complexity of designs to 
make the best products in the market with ever increasing competition, belief on the 
use of only such test methods is likely not practical and would lead to less than thor-
ough quality assurance standards. 

Model-based development tools such as MATLAB/Simulink/Stateflow® allow en-
gineers to develop graphical test models that are not only easy to understand but also 
powerful enough to express complex algorithms. Such an approach allows for valida-
tion of the designs under various failure conditions at an early stage of the develop-
ment that is before the hardware is available. Simulation of such models allow  
engineers to find a common functional understanding at an early stage of the develop-
ment. It also reduces product’s time to market by validating designs up front prior to 
implementation [1]. Due to its distinct advantages, there is a new trend in automotive 
industry and industries alike such as aerospace, towards model-based development. 
Majority of software components are no longer hand-written in C or assembly code but 
modeled with MATLAB/Simulink/Stateflow® or similar tools. Engineers are also 
working on conversion of algorithms from its legacy C form to Simulink/Stateflow 
models. This process marked the initial phase of transition to model-based develop-
ment. Engineers’ focus in this phase is to reproduce the functional performances of C 
code from the models while maintaining the capability to deliver the latest software to 
the products such as vehicles in automotive industry, which are nearing the production. 
The exactitude of software developed from models and that from hand-written C can 
be measured using model-based development tool such as MATLAB/Simulink®. Leg-
acy Code Tool (LCT) of MATLAB/Simulink® is used by engineers’ to create  
S-functions that allow including the hand-written C-code (associated source and header 
files) into the simulation model. The authors’ would like to refer this method of soft-
ware testing as back-to-back testing because it allows engineers’ to subject the original 
C code and the model to the same test inputs and the test environment, and measure the 
performances using a single simulation model. 

3.1   Back-to-Back Testing  

The correctness of initial stage of transition (conversion from the handwritten C) to 
mode-based development is measured using exactitude of performances of C code 
and the model. The performances are quantified as the steady-state response and the 
transient (or rate of) response of the algorithm when subjected to a specific set of test 
inputs. The beauty of model-based development is that, such testing is performed 
before the software is integrated and ported into the ECU. Simulation model is  
prepared that is, the model and its environment (interaction with other software algo-
rithms and hardware – sensors, actuators and plant) are simulated in the Simulink® 
framework without any physical hardware components. Such a simulation testing is 
commonly referred to as Model-in-the Loop (MiL) testing [1]. The MiL testing is 
extended to back-to-back testing by modifying the simulation model to include S-
function for the C code into the Simulink® framework. The S-function (in effect, the 
C code) and the simulation model are subjected to a common simulated environment 
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to allow engineers get confidence in the model developed from the hand-written C 
code. The example is illustrated in Fig. 4; the gray block on the top shows the S-
function block to include the existing C code for linear interpolation. The Simulink 
model and the S-function are subjected to the same test input and the results are 
shown in Fig. 5. Furthermore, the use of legacy code tool of MATLAB® can be  
extended to include the S-function for the auto-generated production code in the 
simulation model and perform back-to-back testing with respect to auto-generated 
code. Such a step of verification can be considered necessary if an unqualified model 
development tool is used for automated code generation or the qualified model devel-
opment tool is used but is customized to suit an individual application [1]. It is worth 
to note that, the production code is always generated for the software framework with 
all the algorithms implemented and integrated than for each algorithm design inde-
pendent from the others. 
 

 

Fig. 4. Simulation model for back-to-back testing of the Simulink design and the S-function 
used to include an existing C code for linear-interpolation 
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Fig. 5. Test results of back-to-back testing for linear-interpolation with sinusoidal input. The 
difference in the output from the model and S-function are clear seen. 

Between the initial stage of the model development (from the legacy C code, or 
textual or other form of requirements) and the integration followed by porting of 
software into the ECU there are several intermediate stages of both the integration and 

 

Simulink model 
for interpolation 
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testing.  These include Software-in-the-Loop (SiL) testing where the integrated or the 
system software and the simulated environment runs on the platform such as  
Windows- or Linux-based desktop machines, Hardware-in-the-Loop (HiL) testing 
where software runs on the ECU, however the environment around the ECU is still a 
simulated one, System bench or test rig where the environment consists of physical 
components, and In-car level of testing [1]. Since the functionality of the system 
should remain invariable and independent of the integration and testing, relevant test 
cases designed should also be invariable throughout the different levels of integration 
and testing. In order to maximize the reuse, test cases can also be designed to remain 
invariable for various platforms, for example, ECUs from various vendors with likely 
different micro-controller, compiler, hardware drivers, etc. On one hand this reduces 
the effort of test case design tremendously and, on the other hand, allows for easy 
comparison of test results between the different levels of integration and testing, and 
across different platforms. Comparison of test results between several levels of inte-
gration and testing for the same test inputs also aid to easy traceability of flaw.  
Although having a common set of test cases for several testing levels may sound 
trivial from a theoretical point of view, its feasibility is not certain because the test 
procedures and test languages are different for different levels of testing and for one 
particular platform from others [1]. Furthermore, with ever increasing competition in 
the market and its close interaction with customers, before final release of an automo-
tive product there are interim releases of the integrated software or the system. It 
means that the same tests have to be repeated over and over again over the develop-
ment cycle of the product. Test automation is therefore necessary as the manual test 
workload would be at best expensive and likely not practical. 

3.2   Test Automation  

Different levels of testing have different test procedures and test languages. HVAC 
engineers at GM India use MATLAB m-scripts for MiL level of testing, xml-data for 
SiL level of testing on Windows desktop machines and CAN Application Program-
ming Language (CAPL) scripts for HiL level of software testing. Furthermore, there 
can be a different platform for each vendor. At present, the ECC software has the 
support of three vendors with two different platforms. Repeating the same tests manu-
ally over different testing levels and for different platforms is time consuming and 
likely not practical, and may lead to less than thorough quality assurance standards. 

Software testing of automotive products often requires test cases with a precise se-
quence of time-related events, especially for power-train and chassis systems. For 
example, recirculation of air within the vehicle interior is allowed for a maximum 
duration from few minutes to half an hour. Vehicle interior then needs to be aired out 
by exchanging inside stale air with outside fresh air. This sequence is repeated until 
the persistent request for recirculation of cabin air exists. 

Furthermore, a couple of testing levels involve interaction of system software with 
physical components such as electrical, mechanical, and/or hydraulic. Physical com-
ponents can fail and the software has to detect such failures and compensate for them 
in a robust way. Detecting and reporting of failures is handled by diagnostic part of 
the system software. On the other hand, testing at MiL and SiL does not need design  
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Fig. 6. Test procedure illustrating a set of test cases used with systematic selection over the 
several testing levels 

of test cases for interaction between the model or system software and the physical 
components because the environment for model or system software is simulated, 
anyway with no physical components. A test procedure therefore must support  
systematic selection of test cases especially when there are hundreds or thousands of 
test cases. 

The only way to consider all such scenarios is automation. As a general principle, 
test cases shall be independent of the underlying software architecture and the test and 
software platform. Fig. 6 illustrates the test automation at GM India and is explained 
in the following. 

 
Design of Test Cases using Model-Based Development Tool. Test cases are de-
signed using MATLAB® m-scripts and/or Simulink®. The test cases are designed 
using the functional system requirements often available as a requirements document 
or model. Since the test cases are designed using a real-time tool, the Simulink, a 
sequence of the test data or events is obtained with the time information. Furthermore, 
it is possible to import measurement data obtained from in-car or field testing into the 
test cases. MATLAB scripts are designed to generate a graphical representation of the 
test inputs using the Simulink Signal Builder for ease of understanding the test inputs. 
Simulation model is then run using the report generator tool and results are captured 
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in the test report for further analysis. The test report also gives a summary of passed 
and failed test cases. With test automation, changes in the design are easily handled 
and can be tested in a short time thereby, reducing the time required by software de-
velopment cycle drastically. 
 
Compiling Test Cases into a Platform-Independent Form. Test cases are compiled 
using m-script into the Microsoft® Excel spreadsheet. Spreadsheets are independent of 
the software architecture and the test platform. 
 
Test Execution 

1. Model-in-the-Loop (MiL) and back-to-back testing. A set of test cases designed 
using m-scripts and Simulink® is used as the test input for the simulation 
model. Test inputs are exported to Excel spreadsheets so that they can be used 
over the several levels of testing and for hardware platform. 

2. Software-in-the-Loop (SiL) testing. System software and the simulated envi-
ronment with no connection to physical components runs on the Windows 
desktop machine. Selected test cases are exported from spreadsheet to xml-data 
which is used as the test input by the system software. 

3. Hardware-in-the-Loop (HiL) testing. Selected test cases are imported into the 
CAPL script so that they can be used as test inputs by the system software 
ported into the ECU with a simulated environment surrounding it. 

3.3   Impact of Change in Software Architecture on Testing 

With ever growing software technology, in future it may be required to use new soft-
ware architecture. If software design ignores such a consideration as change in  
software architecture, the whole design may need to be worked out again. With 
model-based development, it is possible to design core algorithms independent of the 
software architecture. However, software for interface to the physical components 
such as sensors and actuators needs to be designed by considering the software archi-
tecture. This is depicted in Fig. 7 which illustrates that the core algorithm is inde-
pendent of the software architecture and also shows that the interfaces to the physical 
components are automatically generated using the MATLAB m-script. 

 

 

Fig. 7. Core algorithm software designed independent of the software architecture 

4   Conclusion 

The graphical models are high level abstraction of the designs which allow engineers 
to focus on the domain of their expertise instead of writing thousands of lines of code. 
With its several benefits such as validation of software up front prior to the availability 
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of the hardware, reusability, improved communication among team members, etc 
model-based development promises its widespread use across industrial applications. 
The closed-loop simulation of models gives a first best guess of the design parameters 
such as filter coefficients, PID gains, calibration data, etc. Early simulation of the de-
signs improved the quality of final product. Migrating to the model-based development 
can be assured with the presented back-to-back testing method. Model-based develop-
ment allows possible automation at several stages of the development cycle which 
would reduce the product’s time to market drastically. 
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Abstract. Dynamic UML models like sequence diagrams (SD) lack sufficient 
formal semantics, making it difficult to build automated tools for their analysis, 
simulation and validation. A common approach to circumvent the problem is to 
map these models to more formal representations. In this context, many works 
propose a rule-based approach to automatically translate SD into colored Petri 
nets (CPN). However, finding the rules for such SD-to-CPN transformations 
may be difficult, as the transformation rules are sometimes difficult to define 
and the produced CPN may be subject to state explosion. We propose a solution 
that starts from the hypothesis that examples of good transformation traces of 
SD-to-CPN can be useful to generate the target model. To this end, we describe 
an automated SD-to-CPN transformation method which finds the combination 
of transformation fragments that best covers the SD model, using heuristic 
search in a base of examples. To achieve our goal, we combine two algorithms 
for global and local search, namely Particle Swarm Optimization (PSO) and 
Simulated Annealing (SA). Our empirical results show that the new approach 
allows deriving the sought CPNs with at least equal performance, in terms of 
size and correctness, to that obtained by a transformation rule-based tool. 

Keywords: Model transformation, Petri nets, Sequence diagrams, Search-based 
software engineering. 

1   Introduction 

Model Transformation plays an important role in Model Driven Engineering (MDE) 
[1]. The research efforts by the MDE community have produced various languages 
and tools, such as ATL [2], KERMETA [3] and VIATRA [4], for automating trans-
formations between different formalisms. One major challenge is to automate these 
transformations while preserving the quality of the produced models [1, 6]. 

Many transformation contributions target UML models [1, 6]. From a transforma-
tion perspective, UML models can be divided into two major categories: static  
models, such as class diagrams, and dynamic models, such as activity and state dia-
grams [7]. Models of the second category are generally transformed for validation and 
simulation purposes. This is because UML dynamic models, such as sequence  
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diagrams (SDs) [7], lack sufficient formal semantics [8]. This limitation makes it 
difficult to build automated tools for the analysis, simulation, and validation of those 
models [9]. A widely accepted approach to circumvent the problem uses concomitant 
formal representations to specify the relevant behavior [11]; Petri Nets (PNs) [10] are 
well suited for the task. PNs can model, among others, the behavior of discrete and 
concurrent systems. Unlike SDs, PNs can derive new information about the structure 
and behavior of a system via analysis. They can be validated, verified, and simulated 
[11]. Moreover, they are suitable for visualization (graphical formalism) [11]. These 
reasons motivate the work to transform UML SDs to PNs. 

SD-to-PN transformation may be not obvious to realize, due to two main reasons 
[29]. First, defining transformation rules can be difficult since the source and target 
languages have constructs with different semantics; therefore, 1-to-1 mappings are not 
sufficient to express the semantic equivalence between constructs. The second  
problem is the risk of a state explosion [11]. Indeed, when transformation rules are 
available for mapping dynamic UML models to PNs, systematically applying them 
generally results in large PNs [11]. This could compromise the subsequent analysis 
tasks, which are generally limited by the number of the PNs’ states. Obtaining large 
PNs is not usually related to the size of the source models [29]. In fact, small se-
quence diagrams containing complex structures like references, negative traces or 
critical regions can produce large PNs. To address this problem, some work has been 
done to produce reduction rules [35]. 

In this paper, we explore a solution based on the hypothesis that traces of valid 
transformations of SD-to-PN (performed manually for instance), called transforma-
tion examples, can be used by similarity to derive a PN from a particular SD. In this 
context, our approach, inspired by the Model-Transformation-by-Examples (MTBE) 
school [12, 13, 14], helps define transformations without applying rules. Because it 
reuses existing valid model transformation fragments, it also limits the size of the 
generated models. 

More concretely, to automate SD-to-PN transformations, we propose to adapt, the 
MOTOE approach [14, 15]. MOTOE views a model transformation as an optimiza-
tion problem where solutions are combinations of transformation fragments obtained 
from an example base. However, the application of MOTOE to the SD-to-PN trans-
formation problem is not straightforward. MOTOE was designed for and tested with 
static-diagram transformations such as class-diagrams-to-relational schemas [14, 15]. 
The transformation of a dynamic diagram is more difficult [8] because, in addition to 
ensuring structural (static) coherence, it should guarantee behavioral coherence in 
terms of time constraints and weak sequencing. For instance, the transformation of a 
SD message depends on the order (sequence) inside the diagram and the events within 
different operands (parallel merge between the behaviors of the operands, choice 
between possible behaviors, etc.).   

This paper adapts and extends MOTOE to supports SD-to-CPN transformation. The 
new version, dMOTOE, preserves behavioral coherence. We empirically show that the 
new approach derives the correct models, and that the obtained CPNs have a signifi-
cantly lower size than those obtained with a rule-based tool [16] taken for comparison.  

The remainder of this paper is structured as follows. In section 2, we provide an 
overview of the proposed approach for automating SD-to-CPN transformations  
and discuss its rationale in terms of problem complexity. Section 3 describes the 
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transformation algorithm based on the combined PSO and SA search heuristics. An 
evaluation of the algorithm is explained and its results are discussed in Section 4. 
Section 5 is dedicated to the related work. Finally, concluding remarks and future 
work are provided in section 6. 

2   SD-to-CPN Transformation Overview 

A model transformation takes a model to transform as input, the source model, and 
produces another model as output, the target model. In our case, the source model is a 
UML sequence diagram and the target model is a colored Petri net. First, we describe 
the principles of our approach and discuss the rationale behind given the complexity 
of the transformation problem.  

2.1   Overview 

dMOTOE takes a SD to transform and a set of transformation examples form an ex-
ample base as inputs, and generates an equivalent CPN as output. The generation proc-
ess can be viewed as selecting the subset of the transformation fragments (mapping 
traces) in the example base that best matches the constructs of the SD according to a 
similarity function. The outcome is a CPN consisting of an assembly of building 
blocks (formally defined below). The quality of the produced target model is measured 
by the level of conformance of the selected fragments to structural and temporal con-
straints, i.e., by answering the following three questions: 1) Did we choose the right 
blocks? 2) Did they fit together? 3) Did we perform the assembly in the right order? 

As many block assembly schemes are possible, the transformation process is a 
combinatorial optimization problem where the dimensions of the search space are the 
constructs of the SD to transform. A solution is determined by the assignment of a 
transformation fragment (block) to each SD construct. The search is guided by  
the quality of the solution in terms of its internal coherence (individual construct vs. 
associated blocks), external coherence (between blocks) and temporal coherence 
(message sequence).  

To explore the solution space, the search is performed in two steps. First, we use a 
global heuristic search by means of the PSO algorithm [18] to reduce the search space 
size and select a first transformation solution. Then, a local heuristic search is done 
using the SA algorithm [19] to refine this solution. In order to provide the details of 
our approach, we define some terms.  

A construct is a source or target model element; for example, messages or objects 
in a SD.  An element may contain properties that describe it such as its name. Com-
plex constructs may contain sub-constructs. For example, a message could have a 
guard that conditions its execution.  

A Transformation example (TE) is a mapping of constructs from a particular SD 
to a CPN. Formally, we view a TE as a triple <SMD, TMD, MB> where SMD de-
notes the source model (SD in our case), TMD denotes the target model (optimal CPN 
in our case), and MB is a set of mapping blocks that relate subsets of constructs in 
SMD to their equivalents in TMD. The Base of examples is a set of transformation 
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examples. The transformation examples can be collected from different experts or by 
automated approaches.  

Each TE is viewed as a set of blocks. A block defines a transformation trace be-
tween a subset of constructs in the source model and a subset of constructs in the 
target model. Constructs that should be transformed together are grouped into the 
same block. For example, a message m that is sent from an object A to an object B 
cannot be mapped independently from the mapping of A to B. In our examples, blocks 
correspond to concrete traces left by experts when transforming models. They are not 
general rules as they involve concept instances (e.g., a message m) instead of concepts 
(e.g., message concept). In other words, where transformation rules are expressed in 
terms of meta-models, blocks are expressed in terms of concrete models.   

 

 

Fig. 1. (a) Example of SD (source model) and (b) his equivalent CPN (target model) 

In a SD-to-CPN transformation, blocks correspond to transformation traces of 
loops (loop), alternatives (alt), concurrent interactions (par), activation boxes, and 
messages (see UML2.0 SD specification for more details about these constructs [7]). 
In the case where the constructs are imbedded, a single block is created for the higher-
level construct. Blocks can be derived automatically from the transformation trace of 
the whole model.  

An example of a SD-to-CPN transformation is presented in Figure 1. For legibility 
reasons, we present an example containing only one complex fragment loop. In the 
validation section, we will use more complex SDs that involve different CPN  
constructs. The SD in Figure 1.a contains 10 constructs that represent 3 objects, 3 



160 M. Kessentini et al. 

 

messages, 1 loop and 3 activation boxes. Three blocks are defined1: B51 for message 
Arrival of a new Order and activation box Wait, B52 for the loop with guard [Busy], 
message Start order treatment, and activation box Treatment in progress, and B53 for 
message Send and activation box Storage. Notice that only one block is defined in B52 
as the activation box is inside the loop.  

In block B51, for example, Arrival of a new Order was transformed by an expert 
into the transition New order and Wait into the place Wait() (Figure 1.b).   

To manipulate them more conveniently, the models (source or target) are described 
by sets of predicates, each corresponding to a construct (or a sub-construct) type. The 
order of writing predicates is important in the case of a dynamic model. The predicate 
types for SDs are: 

Object (ObjetName, ObjetType); 
Message (MessageType, Sender, Receiver, MessageName, ActivityName); 
Activity (ActivityName, ObjectName, Duration, MessageNumber); 
Loop (StartMessageName, EndMessageName, ConditionValue); 
Par (StartMessageName, EndMessageName, ConditionValue, ConditionType);   

Similarly, those of CPN are: 

Place (PlaceName); 
Transition (TransitionName); 
Input(TransitionName, PlaceSourceName) 
Output(TransitionName, PlaceDestinationName) 

For example, the message Arrival of a new Order in Figure 1.a can be described by 

Message (Synchronic,_, Order, ArrivalOfNewOrder, Wait); 

The predicate indicates that Arrival of a new Order is a synchronic message sent to 
Order (with “_” meaning no sender) and connected to activation box Wait. Mapping 
traces are also expressed using predicate correspondences with the symbol “:”.  In 
Figure 1.b, for instance, block B51 is defined as follows: 

Begin B51 
Message (Synchronic, _, Order, ArrivalOfNewOrder, Wait). : Transition 
(NewOrder, Coulor1), Input(NewOrder, _), Output(NewOrder, Wait). 

Activity (Wait, Order, 10, 2). :  Place (Wait). 
End B51 

 

 

Fig. 2. Transformation solution as blocks-to-constructs mapping 

                                                           
1 For traceability purpose, blocks are sequentially numbered. For instance, the 3 blocks of this 

example TEi are B51 to B53. Those of TEi+1 are B54 to Bxx, and so on and so forth. When a  
solution is produced, it is easy to determine which examples contributed to it. 
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In the absence of transformation rules, a construct can be transformed in many ways, 
each having a degree of relevance. A SD Mi to transform is characterized by its de-
scription SMDi, i.e., a set of predicates. Figure 2 shows a source model with 6  
constructs to transform represented by circles. A transformation solution consists of 
assigning to each construct a mapping block transformation possibility from the  
example base (blocks are represented by rectangles in Figure 2). A possibility is con-
sidered to be adequate if the block maps a similar construct.  

2.2   Transformation Complexity 

Our approach is similar to case-based reasoning [21] with the difference that we do not 
select and adapt the whole transformation of a similar SD. Instead, we combine and 
adapt fragments of transformations coming from the transformations of several SDs.  

The transformation of a SD Mi with n constructs, using a set of examples that  
globally define m possibilities (blocks), consists of finding the subset from the m 
possibilities that better transforms each of the n constructs of Mi. In this context, mn 
possible combinations have to be explored. This value can quickly become huge.  

If we limit the possibilities for each construct to only blocks that contain similar 
constructs, the number of possibilities becomes m1 × m2 × m3 ×…× mn where each 
mi ≤ m represents the number of blocks containing constructs similar to construct i. 
Although the number of possibilities is reduced, it could still be very large for big 
SDs. A sequence diagram with 50 constructs, each having 8 or more mapping  
possibilities, necessitates exploring at least 850 combinations. Considering these mag-
nitudes, an exhaustive search cannot be used within a reasonable time frame. This 
motivates the use of a heuristic search when a more formal approach is either not 
available or hard to deploy. 

3   Heuristic-Based Transformation 

We describe in this section the adaptation of two heuristics, PSO [18] and SA [19], to 
automate SD-to-CPN transformation. These methods each follow a generic strategy to 
explore the search space. When applied to a given problem, they must be specialized 
by defining: (1) the coding of solutions, (2) the operators that allow moving in the 
search space, and (3) the fitness function that measures the quality of a solution. In the 
remainder of this section we start by giving the principles of PSO and SA. Then, we 
describe the three above-mentioned heuristic components.  

3.1   Principle 

To obtain a more robust optimization technique, it is common to combine different 
search strategies in an attempt to compensate for deficiencies of the individual algo-
rithms [20]. In our context the search for a solution is done in two steps. First, a 
global search with PSO is quickly performed to locate the portion of the search space 
where good solutions are likely to be found. In the second step, the obtained solution 
is refined with a local search performed by SA. 

PSO, Particle Swarm Optimization, is a parallel population-based computation 
technique proposed by Kennedy and Eberhart [18]. The PSO swarm (population) is 
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represented by a set of K particles (possible solutions to the problem). A particle i is 
defined by a position coordinate vector Xi, in the solution space. Particles improve 
themselves by changing positions according to a velocity function that produces a 
translation vector. The improvement is assessed by a fitness function. 

The particle with the highest fitness is memorized as the global best solution 
(gbest) during the search process. Also, each particle stores its own best position 
(pbest) among all the positions reached during the search process. At each iteration, 
all particles are moved according to their velocities (Equation 1). The velocity Vi

’ of a 
particle i, depends on three factors: its inertia corresponding to the previous velocity, 
its pbest, and the gbest. Factors are weighted respectively by W, C1, and C2. The im-
portance of the local and global position factors varies and is set at each iteration by a 
random function. The weight of inertia decreases during the search process. The deri-
vation of Vi

’ is given by Equation 2. After each iteration, the individual pbests and the 
gbest are updated if the new positions bring higher qualities than the ones before.    

iii VXX ′+=′                                                           
(1) 

)(())(() 21 iiiii XgbestrandCXpbestrandCVWV −∗×+−××+×=′      
(2) 

The algorithm iterates until the particles converge towards a unique position that 
determines the solution to the problem. 

Simulated Annealing (SA) [19] is a local search algorithm that gradually trans-
forms a solution following the annealing principle used in metallurgy. Starting from 
an initial solution, SA uses a pseudo-cooling process where a pseudo temperature is 
gradually decreased. For each temperature, the following three steps are repeated for a 
fixed number of iterations: (1) determine a new neighboring solution; (2) evaluate the 
fitness of the new solution; (3) decide on whether to accept the new solution in place 
of the current one based on the fitness function and the temperature value. Solutions 
are accepted if they improve quality. When the quality is degraded, they can still be 
accepted, but with a certain probability. The probability is high when the temperature 
is high and the quality degradation is low. As a consequence, quality-degrading solu-
tions are easily accepted in the beginning of process when the temperatures are high, 
but with more difficulty as the temperature decreases. This mechanism prevents 
reaching a local optimum. 

3.2   Adaptation 

To adapt PSO and SA to the SD-to-CPN transformation problem, we must define the 
following: a solution coding suitable for the transformation problem, a neighborhood 
function to derive new solutions, and a fitness function to evaluate these solutions. 

As stated in Section 2, we model the search space as an n-dimensional space where 
each dimension corresponds to one of the n constructs of the SD to transform. A solu-
tion is then a point in that space, defined by a coordinate vector whose elements are 
blocks numbers from the example base assigned to the n constructs. For instance, the 
transformation of the SD model shown in Figure 3 will generate a 7-dimensional 
space that accounts for the two objects, three messages and two activities. One solu-
tion is this space, shown in Table 1, suggests that message CheckDriver should be 
transformed according to block B19, activity Positioning, according to block B7, etc. 
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Thus concretely, a solution is implemented as a vector where constructs are the  
dimensions (the elements) and block numbers are the element values.  

The association between a construct and a block does not necessarily mean that a 
transformation is possible, i.e., the block perfectly matches the contest of the  
construct. This is determined by the fitness function described in subsection 3.2.3. 

The proposed coding is valid for both heuristics. In the case of PSO, as an initial 
population, we create k solution vectors with a random assignment of blocks. Alterna-
tively, SA starts from the solution vector produced by PSO. 

 

 

Fig. 3. Example of source model 

Table 1. Solution representation 

Dimensions Constructs Block 
numbers 

1 Message(CheckDriver) B19 
2 Activity(Positioning) B7 

3 Message(GetStarted) B51 

4 Activity(Treatment) B105 

5 Message(Confirmation) B16 

6 Object(Driver) B83 
7 Object(Car) B33 

 
Change Operators. Modifying solutions to produce new ones is the second impor-
tant aspect of heuristic search. Unlike coding, change is implemented differently by 
the PSO and SA heuristics. While PSO sees change as movement in the search space 
driven by a velocity function, SA sees it as random coordinate modifications. 

In the case of PSO, a translation (velocity) vector is derived according to equation 
2 and added to the position vector.  For example, the solution of Table 1 may produce 
the new solution shown in Figure 4. The velocity vector V has a translation value for 
each element (real values). When summed with the block numbers, the results are 
rounded to integers. They are also bounded by 1 and the maximum number of avail-
able blocks. 
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19 7 51 105 16 83 33
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                         Fig. 4. Change Operator in PSO                    Fig. 5. Change Operator in SA 

For SA, the change operator randomly chooses l dimensions (l < n) and replaces 
their assigned blocks by randomly selected ones from the example base. For instance, 
Figure 5 shows a new solution derived from the one of Table 1. Constructs 1, 5 and 6 
are selected to be changed. They are assigned respectively blocks 52, 24, and 11 in-
stead of 19, 16, and 83. The other constructs remain unchanged. The number of 
blocks to change is a parameter of SA (three in this example). In our validation, we 
set it to 4 considering that the average number of constructs per SD is 36. 
 
Fitness Function. The fitness function allows quantifying the quality of a transforma-
tion solution. As explained in the previous paragraph, solutions are derived by ran-
dom assignment of new blocks to some constructs. The quality of a transformation 
solution is then the sum of the individual transformation qualities of the n constructs 
of the SD. To evaluate if assigned block Bi is a good transformation possibility for 
construct Cj, the fitness function first evaluates the adequacy, i.e., does Bi contains a 
construct Ck from the same type as Cj? if the answer is “no”, the assigned block is 
unsuitable. Otherwise, the fitness function checks the three following coherence as-
pects: (1) internal coherence (what is the degree of similarity between Cj and Ck in 
terms of properties?), (2) external coherence (to what extent the transformation  
proposed by Bi contradicts the transformations of constructs related to Cj?), and (3) 
temporal coherence (to what extent the transformation proposed by Bi preserves the 
temporal constraints of message sequences in SD?). The fitness function is formally 
defined as follows:  

∑
=

++×=
n

j
jjjj tcecicaf

1

)(                                 (3) 

where aj is the adequacy of assigning Bi to Cj (1 if Bi is adequate, 0 otherwise), and icj, 
ecj, and tcj are respectively the internal, external, and temporal coherences of the as-
signment. icj is defined as the ratio between the number of parameters of the predicate 
Pj representing Cj that match the parameters of the associated construct in block Bi 
and the total parameters of Pj.  

Consider the SD example shown in Figure 3. Message GetStarted is defined by 
predicate Message(Synchronic, Driver, Car, GetStrated, Positioning). This 
predicate indicates that the message GetStarted, which is synchronic, is sent by object 
Driver to Car from the activity Positioning. The solution in Table 1 assigns the block 
B51 to this message. Block B51 is described in section 2.1 as follows: 
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Begin B51 
Message (Synchronic, _, Order, ArrivalOfNewOrder, Wait). : Transition 
(NewOrder, Coulor1), Input(NewOrder, _), Output(NewOrder, Wait). 

Activity (Wait, Order, 10, 2). :  Place (Wait). 
End B51 

The adequacy a3 of the transformation of GetStarted (3rd construct) is equal to 1 be-
cause block B51 also contains predicate message (ArrivalOfNewOrder). The parame-
ters of the two messages are similar except for the sender which is not an object in the 
case of ArrivalOfNewOrder. As a result, internal coherence ic3=4/5=0.8 (four parame-
ters that match over 5).  

For external coherence ecj, let RConsj be the set of constructs related to Cj and 
RConsMij, the subset of constructs in RConsj whose transformations are consistent 
with the one of Cj, i.e.,  we compares the transformation proposed by the block as-
signed to Cj with the ones suggested by the blocks assigned to the related constructs. 
ecj is calculated as the ratio between RConsMij and RConsj. 

In our example, GetStarted involves three constructs (sender, receiver, and activ-
ity). According to B51, only Positioning activity is related (has a predicate) and should 
be transformed into a place similarly to Wait activity. In the solution of , the construct 
Positioning is assigned the block B7 (dimension 2 of the solution vector). This block 
is defined as follows:  

Begin B7 
Message (Asynchronic, User, Printer, NewPrint, Progress). : Transition 
(NewPrint, Coulor7), Input(NewPrint, _), Output(NewPrint, Progress). 

Activities (Progress, Printer, 8, 1). :  Place (Progress). 
End B7 

According to B7, Positioning should also be mapped to a place. Thus there is no con-
flict between B51 and B7, and ec3=1 (1/1).  

tcj represents the temporal coherence. It reflects the time constraint specific to dy-
namic models. To preserve the temporal coherence, we ensure that the transformation 
of elements that are contiguous to Cj preserve the temporal semantics. To this end, we 
first consider the block Binc that includes Cj and the blocks Bpre and Bfol that respec-
tively precedes and follows Binc. Although the model to transform is not in the exam-
ple base, we identify blocks with only the source part according to the rules given in 
Section 2.1. Then we consider the block Bi, assigned to Cj by the evaluated solution, 
and the two blocks Bpre_i and Bfol_i preceding and following Bi. tcj is obtained by  
comparing  Bpre to Bpre_i, Binc to Bi, and Bfol to Bfol_i. For example, let Ppre(k) be the 
predicate having the kth position in Bpre and  Ppre_i(k) be the predicate having the kth 
position in Bpre_i, the number of pairs of predicates PMatch(Bpre, Bpre_i) that match in 
the two blocks is defined as 

{ })()())(),(( __ kPkPkPkP iprepreiprepre =                              (4) 

tci is then defined as follows: 
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Figure 6 shows an example of the calculation of tcj. Going back to the example of 
message GetStarted, to derive the tc3, we identify in the SD to transform two blocks: 
Bs which contains GetStarted and Bs-1 which precedes Bs. Consequently, block B51 
will be compared to Bs. Bs contains a message followed by an activity and another 
message. B51 contains a message followed by an activity. Then, two pairs of predi-
cates match and the max size between the two blocks is 3. As B51 has no preceding 
block, we consider that no match exists with Bs-1, and the corresponding max size is 
that of Bs-1, i.e., 2 for the message and the activity. Finally, as Bs has no following 
block, no match exists with B52, which follows B51. We take then as max size, the size 
of B52 (3 corresponding to the loop, the message, and the activity). According to equa-
tion 5, tc3=(0+2+0)/(2+3+3)=0.25. This temporal coherence factor is standard and 
works with any combined fragments of SDs.  

 

 

Fig. 6. Temporal coherence  

The fitness function does not need a considerable effort to be adapted for other 
transformations (e.g. state machine to PNs). However, the block definition must be 
adapted to the semantics of the new transformation. 

4   Validation 

To evaluate the feasibility of our approach, we conducted an experiment on the trans-
formation of 10 UML sequence diagrams2. We collected the transformations of these 
10 sequence diagrams from the Internet and textbooks and used them to build an 
example base EB = {<SDi, CPNi> | i=1,2,...,10}. We ensured by manual inspection 
that all the transformations are valid. The size of the SDs varied from 16 to 57  

                                                           
2 The reader can find in this link www.marouane-kessentini.com/ecmfa2010 all the materials 

used in our experiments. 
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constructs, with an average of 36. Altogether, the 10 examples defined 224 mapping 
blocks. The 10 sequence diagrams contained many complex fragments: loop, alt, opt, 
par, region, neg and ref.   

To evaluate the correctness of our transformation method, we used a 10-fold cross 
validation procedure. For each fold, one sequence diagram SDj is transformed using 
the remaining 9 transformation examples. Then, the transformation result for each 
fold is checked for correctness using two methods: automatic correctness (AC) and 
manual correctness (MC). Automatic correctness consists of comparing the derived 
CPN to the known CPN, construct by construct. This measure has the advantage of 
being automatic and objective. However, since a given SDj may have different trans-
formation possibilities, AC could reject a valid construct transformation because it 
yields a different CPN from the one provided. To prevent this situation, we also per-
form manual evaluation of the obtained CPN. In both cases, the correctness is the 
proportion of constructs that are correctly transformed. 

In addition to correctness, we compare the size of the obtained CPNs with the ones 
obtained by using the rule-based tool WebSPN for mapping UML diagrams to CPN 
[16]. The size of a CPN is defined by the number of constructs.    

Figure 7 shows the correctness for the 10 folds. Both automatic and manual cor-
rectness had values greater than 90% in average (92.5% for AC and 95.8% for MC). 
Although few examples were used (9 for each transformation), all the SDs had a 
transformation correctness greater than 90%, with 3 of them perfectly transformed.  

Figure 7 also shows that, in general, the best transformations are obtained with 
smaller SDs. After 36 constructs, the quality degrades slightly but steadily. This may 
indicate that the transformation correctness of complex SDs necessitates more exam-
ples in general. However, the largest and most complex SD (57 constructs and 19 
complex fragments) has a MC value of 96%.  
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Fig. 7. Correctness of the transformations 

In addition, our results show that the correctness of our transformations is equiva-
lent that of WebSPN. Another interesting finding during the evaluation is that, in 
some cases, a higher fitness value does not necessarily imply higher transformation 
correctness. This was the case for the transformations of SD3 (fitness of 82% and MC 
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= 98%) and SD5 (fitness of 92% and MC = 93%).  This is probably due to the fact that 
we assign the same weight to simple constructs such as messages and complex  
constructs such as loops in the fitness function. Indeed, temporal coherence is more 
difficult to assess for complex constructs.  

Manual inspection of the generated CPNs showed that the different transformation 
errors are easy to fix. They do not require considerable effort and the majority of them 
is related to the composition of complex fragments. For example, as we did not have 
an example that mapped two alts situated in a loop, the optimization technique used 
one that contained only one alt in a loop. Almost the same errors were made by 
WebSPN, including the case of two alts in a loop. 

When developing our approach, we conjectured that the example-based transforma-
tion produce CPNs smaller than the one obtained by systematic rule application. Table 
2 compares the obtained CPN sizes by using dMOTOE and WebSPN for the 10  
transformations. In all cases, a reduction in size occurs when using dMOTOE, with an 
average reduction of 28.3% in comparison to WebSPN. Although the highest reduction 
corresponded to the smallest SD, the reductions for larger diagrams were important as 
well (e.g., 39% for 36 constructs, 38% for 39 constructs, and 29% for 76 constructs). 
These reductions should be viewed in the context of the correctness equivalence be-
tween our approach and WebSPN.  

Table 2. CPN size comparison 

Size(WebSPN) Size(dMOTOE) Variation 

22 13 41% 
36 22 39% 
39 24 38% 
43 31 28% 
51 36 30% 
50 39 22% 
56 39 30% 
53 44 16% 
58 52 10% 
76 54 29% 
Average Reduction : 28.3% 

 
The obtained results confirm our assumption that systematic application of rules 

results in CPNs larger than needed and that reusing valid transformed examples  
attenuates the state explosion problem.  

As for execution time, we ran our algorithm on a standard desktop computer (Pen-
tium CPU running at 2 GHz with 2 GB of RAM). The execution time was of the order 
of a few seconds and increased linearly with the number of constructs, indicating that 
our approach is scalable from the performance standpoint. 

5   Related Work 

The work proposed in this paper crosscuts two main research areas: model transfor-
mation and traceability in the context of MDD. 
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In [5], five categories of transformation approaches were identified: graph-based 
[22], relational [23], structure-driven [24], direct-manipulation, and hybrid. One con-
clusion to be drawn from studying the existing MT approaches is that they are often 
based on empirically obtained rules [25].  

Recently, traceability gained popularity in model transformation [26]. Usually, 
trace information are generated manually and stored as models [27]. For example, 
Marvie et al. [28] propose a transformation composition framework that allows the 
manual creation of linkings (traces). In the studied approaches and frameworks based 
on traceability, trace information is used in general for detecting model inconsistency 
and fault localization in transformations. On the other hand, dMOTO uses traces to 
automate the transformation process.  

More specifically, in the case of SD-to-PN, several approaches were proposed in 
addition to WebSPN. In [29], the authors describe a meta-model for the SD-to-PN 
mapping. It defines rules involving concepts of the meta-models representing respec-
tively sequence diagrams and Petri nets. One of the limitations of this approach is that 
temporal coherence is not addressed explicitly. Additionally, the meta-model repre-
senting the rules tends to generate large PNs, as noticed by the authors. In [11], a set 
of rules to transform UML 2.0 SDs into PNs is proposed. The goal is to animate SDs 
using the operational semantics of PNs. In our case, we can generate the structure of 
the targeted CPN in an XMI file that can be used as input for some simulation  
tools like CPN tools [38]. Other UML dynamic diagrams are also considered for the 
transformation to PNs. For example, use case constructs are mapped to PN using a 
multi-layer technique [8].   

There are other research contributions that concentrate on supporting validation and 
analysis of UML statecharts by mapping them to Petri nets of various types [36, 37]. 
Unlike our approach, this work uses information extracted from different UML  
diagrams to produce the Petri nets. A general conclusion on the transformation of dy-
namic models to PNs is that, in addition to the fact that no consensual transformation 
rules are used, a second step is usually required to reduce the size of the obtained PNs. 

dMOTOE uses the “by example” principle to transform models, but what we pro-
pose is completely different from other contributions to model transformation by 
example (MTBE). Varro and Balogh [12, 13] propose a semi-automated process for 
MTBE using Inductive Logic Programming (ILP). The principle of their approach is 
to derive transformation rules semi-automatically from an initial prototypical set of 
interrelated source and target models. Wimmer et al. [30] derive ATL transformation 
rules from examples of business process models. Both works use semantic correspon-
dences between models to derive rules, and only static models are considered. More-
over, in practice, a large number of transformation learning-examples may be required 
to ensure that the generated rules are complete and correct. Both approaches provide a 
semi-automatic generation of model transformation rules that needs further refine-
ment by the user. Also, since both approaches are based on semantic mappings, they 
are more appropriate in the context of exogenous model transformations between 
different metamodel. Unfortunately, the generation of rules to transform attributes is 
not well supported in most MTBE implementations. Our model is different from both 
previous approaches to MTBE. We do not create transformation rules to transform a 
source model, directly using examples instead. As a result, our approach is independ-
ent from any source or target metamodels.Recently, a similar approach to MTBE, 
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called Model Transformation By Demonstration (MTBD), is proposed [34]. Instead 
of the MTBE idea of inferring the rules from a prototypical set of mappings, users are 
asked to demonstrate how the model transformation should be done by directly edit-
ing (e.g., add, delete, connect, update) the model instance to simulate the model trans-
formation process step by step. This approach needs a large number of simulated 
patterns to give good results and, for instance, MTBD cannot be useful to transform 
an entire source model. 

6   Conclusion 

In this paper, we propose the approach dMOTOE, to automate SD-to-CPN transfor-
mation using heuristic search. dMOTOE uses a set of existing transformation exam-
ples to derive a colored Petri net from a sequence diagram. The transformation is seen 
as an optimization problem where different transformation possibilities are evaluated 
and, for each possibility, a quality is associated depending on its conformance with 
the examples at hand.  

The approach we propose has the advantage that, for any source model, it can be 
used when rules generation is difficult. Another interesting advantage is that our  
approach is independent from source and target formalisms; aside from the examples, 
no extra information is needed. Moreover, as we reuse existing transformations, the 
obtained CPN are smaller than those obtained by transformation rules.  

We have evaluated our approach on ten sequence diagrams. The experimental re-
sults indicate that the derived CPNs are comparable to those defined by experts in 
terms of correctness (average value of 96%). Our results also reveal that the generated 
CPNs are smaller than the ones generated by the tool WebSPN [16].  

Although, the obtained results are very encouraging, many aspects of our approach 
could be improved. Our approach currently suffers from the following limitations: 1) 
in the case of SD-to-PNs transformation, it provides less clean semantics than a rules-
based approach; 2) coverage of complex fragments examples is needed for complete-
ness and to ensure consistently good results; 3) the base of examples is difficult to 
collect especially for complex and not widely used formalisms; 4) the fitness function 
could weight complex constructs more heavily when evaluating a solution. In addi-
tion, a validation on a larger example base is in project to better assess the adaptation 
capability of the approach, and we can compare the sizes of the reachability graph of 
the produced CPNs by dMOTOE and WebSPN in order to treat the richer behaviors 
(in fact, a bigger net is not necessarily worse in some cases). In a broader perspective, 
we plan to experiment and extend dMOTOE to other transformations involving  
dynamic models: code generation (model-to-code), refactoring (code-to-code), or 
reverse-engineering (code-to-model).  
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Abstract. Model Driven Engineering (MDE) and constraint program-

ming (CP) have been widely used and combined in different applica-

tions. However, existing results are either ad-hoc, not fully integrated

or manually executed. In this article, we present a formalization and an

approach for automating constraint-based solving in a MDE platform.

Our approach generalizes existing work by combining known MDE con-

cepts with CP techniques into a single operation called model search. We

present the theoretical basis for model search, as well as an automated

process that details the involved operations. We validate our approach

by comparing two implemented solutions (one based on Alloy/SAT, the

other on OPL/CP), and by executing them over an academic use-case.

1 Introduction

The combination of models and constraints is well-known and widely used in
software engineering. On the one hand, the model-driven engineering (MDE) ap-
proaches have been using constraint languages (like OCL[21]) to further specify
metamodels. Many constraint-based tools such as [15,10] have been developed,
mainly for model checking and animation. However, in most of these approaches,
constraint-solving is an external operation that can hardly be automated (in
terms of input generation and output retrieval), and usually relies on solver-
dependent tasks. On the other hand, part of the constraint programming (CP)
approaches have aimed at extending the search engines with higher-level lan-
guage support, either to obtain solver-independent languages [19], or to solve
object-oriented/relational problem definitions[5,2,27].

Typical MDE solutions require chaining operations of different nature, such
as extractions, injections or transformations. However, the explicit scope of CP-
based operations remains vague. We believe they can be seen as model operations
with combinatorial properties (see [17] for an application scenario). The CP-
solving operation thus needs to be model-driven, fully automated and integrated
with existing MDE tools.

In this paper, we therefore present a formalization of CP-solving tasks within a
solver-independent MDE process chain. We define it as a first-class model-driven
operation called model search. Our solution generalizes existing approaches with
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an identified set of elementary operations and model-based inputs and outputs.
The operations cover the whole model search chain, from the data definition to
the solver execution and data re-injection.

We validate our approach by implementing it based on two well know solvers:
Alloy/SAT [5] and OPL/CP [8]. We also apply both chains on an academic
example of software product lines and discuss the results.

This paper is organized as follows. In section 2, we introduce model-driven
engineering and constraint programming. In Section 3, we describe the model
search approach and we present formal definitions for it. In Section 4, we present
a solver-independent MDE integration for model search. In Section 5, we present
two implementations of the presented chain using known solvers. Experiments
on an application use case are provided in Section 6, and Section 7 discusses
related and future work.

2 Context

2.1 Introduction to MDE and Model Transformation

Model Driven Engineering considers models, through multiple abstract repre-
sentation levels, as a unifying concept. The central concepts that have been
introduced are terminal model, metamodel, and metametamodel. A terminal
model is a representation of a system. It captures some characteristics of the
system and provides knowledge about it. MDE tools act on terminal models
expressed in precise modeling languages. The abstract syntax of a modeling lan-
guage, when expressed as a model, is called a metamodel. The relation between
a model and the metamodel of its language is called conformsTo. Metamodels
are in turn expressed in a modeling language for which conceptual foundations
are captured in an auto-descriptive model called metametamodel.

The main way to automate MDE is by executing operations on models. For
instance, the production of a model Mb from a model Ma by a transformation
Mt is called a model transformation. The OMG’s Query View Transform (QVT)
[20] defines a set of useful model operations and proposes clues on how they
should be implemented. As a mean to provide interoperability with tools from
non-MDE environments (often referred to as technological spaces), special model
operations (often called injection/extraction) allow for data exchange (usually
through serializing/parsing) [14].

We use in this article the model definitions introduced in [6]:

Definition 1 (model). A model M is a triple < G, ω, μ > where:

– G is a directed multigraph,
– ω is a model (called the reference model of M) associated to a graph Gω

– μ is a function associating nodes and edges of G to nodes of Gω

Definition 2 (conformsTo). The relation between a model and its reference
model is called conformance and noted conformsTo (or abbreviated C2).
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Definition 3 (metametamodel). A metametamodel is a model that is its own
reference model (i.e.it conforms to itself).

Definition 4 (metamodel). A metamodel is a model such that its reference
model is a metametamodel.

Definition 5 (terminal model). A terminal model is a model such that its
reference model is a metamodel.

As stated by the previous definitions, the notion of reference model is indepen-
dent from the absolute modeling levels. For instance, both the MOF metameta-
model and the UML metamodel are reference models (respectively of the UML
metamodel and of a UML (terminal) model). Therefore, the conformance rela-
tion is also level-independent and can simply be checked by the existence of a
function μ between the graphs of a model and its reference model.

2.2 Constrained Metamodels

The notion of constraints is closely tight to MDE. Engineers have been using
constraints to complete the definition of metamodels for a long time, as illus-
trated by the popular combination UML/OCL. Constraints can be, for instance,
checked against one given model in order to validate it. In our approach we will
always consider that the metamodels on which we wish to conduct CP solv-
ing potentially have constraints attached. We propose the following to formally
define such combination:

Definition 6. A constrained metamodel CMM is a pair < MM, C > where
MM is a metamodel and C is a set (a conjunction) of predicates over elements
of the graph associated to MM . C is an oracle that, given a model M =<
G, MM, μ >, returns true (noted C(M)) iff M satisfies all the predicates.

Definition 7. A model M conformsTo a constrained metamodel CMM if and
only if C(M).

Many languages can be used to define predicates (i.e. constraints), with different
levels of expressiveness. OCL supports operators on sets and relations as well
as quantifiers (universal and existential) and iterators. In this article, we will
be using an OCL-compatible extension (OCL+ [9]) that focuses on metamodel
static constraints. OCL+ is itself defined by a metamodel (available as KM3 [6])
and a parser (generated with TCS [7]).

2.3 Introduction to Constraint Programming

Constraint programming (CP) is a declarative programming technique to solve
combinatorial (usually NP-hard) problems. A constraint, in its wider sense, is a
predicate on elements (represented by variables). A CP problem is thus defined
by a set of elements and a set of constraints. The objective of a CP solver
is to find an assignment (i.e a set of values for the variables) that satisfy all
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the constraints. There are several CP formalisms and techniques which differ by
their expressiveness, the abstractness of the language and the solving algorithms.
In this article we will focus on the language part, i.e what kind of elements
and constraints can be represented and reasoned about. In order to narrow the
scope, we introduce two important CP formalisms: SAT (boolean SATisfiability
problem) and CSP (Constraint Satisfaction Problem). Associated solvers and
their (higher-level) language will be presented in Section 5.

The SAT formalism. SAT problem is to decide if, for a given boolean formula,
each boolean variable can be given an assignment such that the formula evaluates
to true. SAT is known as being a NP-complete problem[1].

Definition 8 (SAT instance). A SAT instance S is defined by S = (X , C)
where X is a set of boolean variables and C is a set of clauses. A clause is a
finite disjunction of literals and a literal is either a variable or its negation.

The CSP formalism. CSP extends SAT in that it does not restrict variable
domains to binary values.

Definition 9 (CSP instance). A CSP instance is well-defined by a triplet
< X, D, C > :

– X is a finite set of variables X1, ..., Xn

– D is a finite set of domains D1, ..., Dn where Di is a set of possible values
for Xi

– C is a finite set of constraints where each constraint is an assertion on a
subset of X = Xj, ...Xk defined by a subset of Dj , ..., Dk

Solving a CSP consists in assigning a value Vi of the domain Di to each variable
Xi such that it satisfies all the constraints in C.

3 Model Search

Deterministic rule-based model transformations are not sufficient for different
MDE scenarios, such as model animation or model automatic generation, be-
cause they cannot handle combinatorial parts of operations chain. For instance,
in [17], the MDE scenario uses a CP-based technique for a part of the process
in which the input model needs to be automatically completed. In this section,
we present model search as a first-class MDE operation for handling such com-
binatorial tasks.

3.1 Relaxed Metamodels and Partial Models

In order to formally define model search, we first define a set of notions that
relate to constrained metamodels.



Model Search: Formalizing and Automating Constraint Solving 177

Definition 10 (Relaxed metamodel). Let CMM =< MM, C > be a con-
strained metamodel. CMMr =< MMr, Cr > is a relaxed metamodel of CMM
(noted CMMr ∈ Rx(CMM)) if and only if GMMr ⊆ GMM and Cr ⊆ C.

In other words, a (minimal) relaxed metamodel can be obtained by the removal
of all constraints: minimum cardinalities are set to zero, attributes are optionals
and predicates are removed. Computing such a relaxed metamodel can obviously
be done easily with existing (meta)model transformation techniques. We call this
operation relaxation.

Definition 11 (Partial model, p-conformsTo). Let CMM =< MM, C >
be a constrained metamodel and M a model. Mr p-conformsTo CMM if and only
if it conforms to a metamodel CMMr such that CMMr is a relaxed metamodel
of CMM (CMMr ∈ Rx(CMM)). Mr is called a partial model of CMM.

3.2 Model Search

Definition 12 (Model search). Let CMM =< MM, C > be a constrained
metamodel, and Mr =< Gr, MMr, μr > a partial model of CMM . Model search
is the operation of finding a (finite) model M =< G, MM, μ > such that Gr ⊆ G,
μr ⊆ μ (embedding i.e ∀x ∈ Gr, μ(x) = μr(x)), and M conformsTo CMM .

ECore
C2

M3

Eclipse Modeling Framework (EMF)

CMM CMM

    M
(request)

M

C2C2

Model Search

M2
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Relaxation
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r

r

Fig. 1. Model search

This MDE operation is illustrated in Figure 1. We consider model search as a
model transformation where the source (metamodel and model) is an instance
of a non-deterministic (combinatorial) problem and the target model is a solu-
tion (if any exists). From the CP point of view, the target metamodel acts as
the constraint model whereas the source model (the request) is a given partial
assignment that needs to be extended.

4 A Solver-Independent MDE Integration

As introduced in the previous Section, the goal of model search is to generate
a complete and valid model M of a constrained metamodel CMM out of a
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Fig. 2. Model search integration

partial (possibly empty) model Mr (the request). Figure 2 illustrates the whole
process in a model-driven engineering framework. This process is composed of 5
main tasks.

1) Search problem generation: this task, illustrated by the CMM2SP trans-
formation, expresses the constrained metamodel as a model conforming to the
search engine metamodel. However, the CMM2SP arrow in Figure 2 is a simpli-
fied view of the process, since there are actually two source models (represented
by the doubled square) as input to the transformation. Figure 3 illustrates the
complete generation process. The metamodel MM contains the structural con-
straints, such as cardinality and lower bounds. However, typical model search ap-
plications require more complex domain constraints. These domain constraints,
which are not part of standard ECORE, are expressed in the constraint model
C, which conforms to the OCL metamodel.

The difficulty of expressing a constrained metamodel in the search engine
language is highly dependent on the abstraction level and the basic elements
offered by the language. Differences between search engines and implementation
issues will be thoroughly discussed in Section 5.

2) Search data generation: this task is illustrated by the M2SP transforma-
tion. It takes the request model Mr as input and generates the input data that
will be used by the search engine. However, this transformation is metamodel-
specific, i.e., there is one M2SP per input metamodel. To avoid writing one
transformation for every metamodel MM , a higher-order transformation (HOT)
is defined. The HOT takes MM as input and produces the transformation
M2SP , using the transformation language as target metamodel.

It is important to note that most of the search engines do not separate the
problem and the data definition: they are expressed all together using the same
language. For that reason, the input data and the problem definition are merged.
This is a straightforward task, since there are no overlapping elements.
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Fig. 3. Generation of the problem definition

3) Engine program extraction: this task extracts the search engine model
into its executable format.

4) CP search: the generated search program is executed in the search engine.
When the search succeeds (i.e there is at least one solution), we obtain a solution
model in the search engine output format. The most common formats are XML
or plain-text files.

5) Solution injection: this last task is to inject the resulting solution pro-
duced by the search engine as a model of the original metamodel MM . We have
illustrated this tasks by two transformations, XML2SS and SS2M . Although
those transformations could be merged, we have considered that the engine gen-
erates an XML file. As a result, it is natural to decompose the operation into
two tasks: expressing the XML model as a model of a metamodel of the search
engine solutions, then transform it to a model of MM . For the same reasons as
the M2SP transformation, SS2M is generated using a HOT, which takes MM
as source and generates a transformation from SS to MM .

ECORE vs KM3. The presented process assumes the use of EMF’s Ecore (from
the Eclipse modeling project) as the metametamodel. Effective implementations,
as the ones described later in this article, define the metamodels using the KM3
language[6]. Since KM3 offers automatic translation to Ecore, the conversion
from one framework to another does not introduce any difficulty.

5 Implementation Alternatives

The presented chain is solver-independent. We materialize such chain using two
technologies. However a number of difficulties arise with implementations, be-
cause of the solvers languages lack of expressiveness or the formalisms inherent
limitations. We discuss in this section the difficulties that we identified for each
of the two formalisms presented in Section 2.3 combined with state-of-the-art
solvers: OPL/CSP and Alloy/SAT.
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5.1 Implementation with Alloy/SAT Solver

The SAT paradigm has clear limitations: it requires a finite set of boolean vari-
ables and only offers a low-level predicate language (only negation, disjunction
and conjunction are supported). However, [5] introduced an expressive relational
language with a built-in compilation that allows the use of many recent SAT
solvers. We will thus use Alloy as our target search engine language in order to
ease the transformation definition.

Alloy, which can be seen as a subset of the Z language [13], allows for ex-
pressing complex predicates using atoms (indivisible elements), sets (of atoms),
relations, quantifiers (universal or existential), operators for relations traversal,
etc. However, due to the properties of SAT problems, Alloy cannot be considered
as a true first-order logic solver. Indeed, to be able to translate the problem into
SAT, a scope needs to be given to each set, that limits the number of atoms that
can be contained in the set.

In Alloy, every element is either an atom or a relation but the language is
exclusively based on relations. Indeed, a set is itself a relation from an atom to
the contents of that set (which in turn are also atoms). The main artifacts that
we will manipulate in the Alloy language are:

– Signatures, declarations of sets, for which the body may contain fields as
relations to other signatures. Attributes are treated the same as any rela-
tion. Scalars, as for signatures, are treated as sets of atoms. Signatures also
support a form of inheritance.

– Facts, declarations of predicates, with quantifiers and an important number
of logical, scalar and set operators available.

Generic expression of constrained KM3 metamodels. We developed a
metamodel of the Alloy language containing the necessary constructs to represent
KM3 metamodels and OCL+ constraints. Figure 4 shows an overview of the
metamodel. The complete metamodel is written in KM3. We also developed a
TCS parser generator allowing to inject/extract between the textual version of
the language and our metamodel. Both the metamodel and the TCS are freely
available, submitted as a TCS use case (under the form of an Eclipse project),
and can be downloaded from [4]. The OCL+ metamodel is also written in KM3,
its metamodel and TCS are freely available and can be downloaded from [9]. An
overview is presented in Figure 5.

On this basis, we defined a mapping from KM3 to Alloy and developed the cor-
responding transformation, using ATL (AtlanMod Transformation Language),
a QVT-like model transformation language and tool [11]. An excerpt of the
mapping is presented in Table 1. In short, KM3 classes are mapped to Alloy
signatures, KM3 attributes and references are mapped to Alloy fields, references
properties are turned into facts. We also developed an ATL transformation from
OCL+ to Alloy so as to express metamodel constraints. An informal excerpt of
these mappings are presented in Table 1. Both the transformations are merged
into a unique transformation using two source models and able to resolve the
links between the constraints and the metamodel elements on which they apply.
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Fig. 4. Overview of the Alloy metamodel

Fig. 5. Overview of the OCL+ metamodel

This combined transformation corresponds to the CMM2SP of Figure 2. It is
freely available, submitted as an ATL use case (under the form of an Eclipse
project), and can be downloaded from [18].

The whole project is a partial implementation (all but the two high-order
transformations) of the model search process presented in Section 4, using Alloy
as the search engine. Thanks to its language expressiveness, Alloy bridges the
gap between constrained metamodels and low-level languages. As an open-source
tool, it is a viable alternative with only few drawbacks.

5.2 Implementation with OPL/CP Solver

OPL (Optimization Programming Language) [28] is a language part of the IBM
ILOG TMOPL-CPLEXTMdevelopment bundle [8], which is an IDE for develop-
ing CP and optimization models. The OPL programs are executed by the IBM
ILOGTMCP Optimizer engine. The OPL language has a clear separation be-
tween the input data (booleans, integers, sets, strings, tuples, and others) and
the decision variables (integers and arrays of integers). It offers as well a set of
logical and arithmetic expressions on those elements. These features - together
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Table 1. Excerpt of the mapping from KM3 and OCL+ to Alloy concepts

KM3 concept Alloy concept

Metamodel Module

DataType ExternalType

Class Signature

Attribute Field

Reference Field

StructuralFeature multiplicity Quantifier or Fact

Reference containment Fact

Reference opposite Fact

OCL+ concept Alloy concept

Invariant Fact and QuantificationExpression

Invariant declarations QuantificationExpression variables

VariableDeclaration Variable

VariableExp VariableExpression

IfExp ImpliesExpression

NavigationOrAttributeCallExp NavigationExpression

OperatorCall BinaryExpression

OperationCall (size) SetCardinalityExpression

OperationCall (isIn) ComparisonExpression

OperationCall (others) ExternalFunction

Fig. 6. Extract of the OPL metamodel

with the possibility of defining universal quantifiers over variables - enables the
reutilization of the optimization models over different data.

We have developed an OPL metamodel based on the definition from [8] (see
an extract on Figure 6). The main structures used are the following:

– Expressions : combination of logical and arithmetical expressions, functions,
aggregates (sum, union, max and min) and (indexed) variables.

– Input parameters : the input (fixed) data. A parameter may be initialized
from a data set or it can be calculated using any kind of expression.

– Decision variables : the decision variables are scalars or arrays of integers
and doubles. The decision variables may considered the ”output data”, i.e.,
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Table 2. Excerpt of the mapping from KM3 and OCL+ to OPL

KM3 concept OPL concept

Metamodel Model

DataType Type

Class Integer set

Attribute PrimitiveType set and integer array

Reference Integer set and integer bi-dimensional array

StructuralFeature multiplicity Aggregate expression

Reference containment Global uniqueness constraint

Reference opposite Equality constraint

OCL+ concept OPL concept

Invariant ForAll constraint

Invariant declarations ForAll qualifiers

VariableDeclaration Qualifier expression

VariableExp VarExp

NavigationOrAttributeCallExp Indexed variable exp

OperatorCall (arithmetic and logical) BinaryOptExp + operator type

OperationCall (size) AggreateExp

OperationCall (isIn) AggregateExp and indexed variable

OperationCall (others) FunctionCall

CollectionExp Combination of aggregate expression

the values of the decision variables are assigned based on a set of constraints
and on the input data.

– Constraints : constraints are logical expressions that are written as an arbi-
trary composition of expressions, input parameters and decision variables.
These constraints must be respected during the solver execution.

Generic expression of constrained KM3 metamodels. We have applied
the same approach as for the Alloy/SAT tool: we have developed an OPL meta-
model in KM3 and a TCS parser generator for the injection/extraction between
the OPL textual version and the model1. The mapping from constrained KM3
into OPL has a higher conceptual mismatch (model-based vs integer-based) than
the one into Alloy. An excerpt of the mapping is presented in Table 2.

The transformation has three major set of rules. First, the KM3 model is trans-
formed into the input parameters. Second, the KM3 metamodel is transformed
into the output decision variables. The KM3 metamodel is transformed twice
because of the difference of expressiveness between the OPL input parameters
and the decision variables. The decision variables are restricted to integers and
array of integers. Finally, the constraints are transformed into OPL constraints
compatible with the input and output variables. The arithmetical, logical and
comparison expressions are translated into their equivalent counterparts in OPL.
The navigation expressions are translated into indexed decision variables, where
the index is the calling expression. Then, the collection expressions are trans-
formed into aggregates.

6 Application and Experiments

In this section, we describe an effective application of the approach on a Software
Product Lines (SPL) use case. First, we briefly present the context of SPL and
1 The complete OPL metamodel/TCS and the transformation from KM3/OCL+ are

not freely available.
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the considered problem. Then, we compare the results of the two implementation
alternatives presented in Section 5.

6.1 Search in Software Product Lines

The goal of SPL [22] is to create a shared model for a given application domain,
which acts as a basis to generate a set of derived products. The specificities of
each product are defined by features satisfying the needs of a particular applica-
tion. These features contain explicit variation points, which guide the generation
of the final products.

The first step in a SPL chain is to define a model of the shared domain. A
domain model contains a set of characteristics and components that are common
for a class of applications, plus a set of variation points. The variation points
may be expressed in terms of choices of possible values or in terms of user
constraints. Each combination of variation point may generate a distinct product
(a process called derivation). In other words, finding and generating all the
possible products satisfying a set of constraints in a SPL is a model search
problem. The domain model and the variation points are expressed in terms of
a constrained metamodel.

In our example we need to generate classes that handle the execution of
watches (this use case is an adaptation from [23]). We want to generate 5 differ-
ent kinds of watches: 1) one simple watch, 2) one with alarm, 3) one with sound
alarm, 4) one with sound and visual alarm and 5) one with visual alarm. We
provide below a simple KM3 metamodel for this SPL problem:

package watches {

class Root {

reference classifiers[1-10] container : Class;

}

abstract class Class {

reference methods[1-15] container : Method oppositeOf class;

}

class Watch extends Class {

reference class : Class oppositeOf methods;

}

abstract class Method { }

class DisplayTime, Start, StartAlarm, StartSoundAlarm,

StartVisualAlarm, Stop, StopAlarm extends Method {}

}

However, not all combinations of methods are allowed. The derived models
should respect the following constraints. 1) the DisplayT ime and Start methods
are mandatory; 2) if there is a Start, there is a Stop; 3) if there is a StartAlarm,
there is a StopAlarm; 4) if there is a StartSoundAlarm, there is a StartAlarm;
5) if there is a StartV isualAlarm, there is a StartAlarm. We show below one
constraint in OCL+, Alloy and OPL, respectively.

context Class inv : methods.exists ( m | m.oclIsTypeOf(Start) ) ;

fact { all c : Class | some m : c.methods | m in Start }

forall(c in classes)(sum(m in methods) (c_m[c][m] > 0 && m in start)) >=1;
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6.2 Results

We executed an Alloy/SAT and an OPL/CP chain in a Intel Core Duo, 2.53GHz,
3GB of RAM and 32 bit processor, with the same metamodel and the same set
of constraints. We used Alloy 4.1.10 with the default SAT4J [26] solver and
OPL 6.2 with the CP solver. The CMM2SP for Alloy transformation produced
an Alloy program with 107 lines and the CMM2SP for OPL produced an OPL
program with 131 lines.

The initial setting for executing the solvers is the standard setting of both
tools. However, in the Alloy case, the bit-width is increased to 6 (the default
is 4), to be able to represent the cardinalities of the references classifiers and
methods. OPL/CP has a largest integer default of 231 − 1. We used the same
input, i.e., one element per class, (1 Root, 1 Watch, 1 Start, 1 Stop, 1 StopAlarm,
1 StartAlarm, 1 DisplayTime, 1 StartVisualAlarm and 1 StartSoundAlarm).

Both engines produced the combination of methods shown in Figure 7. Despite
being simple, this example enables the visualization of all the solutions produced
and the implication of the input constraints in the output models.

Fig. 7. Produced watches

Both transformation chains produced equivalent solutions from the same spec-
ification. The operations are called automatically (sequentially) by an Apache-
Ant script. The Alloy program is then translated by the built-in compiler into
a SAT predicate (923 lines) with 753 vars, 79 primary vars and 1271 clauses.
The extraction plus the execution were executed in 0,19 seconds. The OPL pro-
gram is transformed and executed by the CP engine in-memory, so the number
of lines of the problem is not accessible. The problem definition has 8 variables
and 300 constraints. It was executed in 0,11 seconds. The high difference in the
number of variables is due to the expressiveness of the outputs: boolean-based
vs integer-based. The conceptual mismatch between OCL+ and OPL is higher
than from OCL+ and Alloy, which provides an expressive language based on
relations and logic.

The clear separation of the problem definition from the input data in OPL -
and the existence of universal quantifiers - enables defining a CMM2SP for OPL
transformation independent of the input data. In particular, it is not necessary
to unfold all the variables and loops.

The metamodels of both tools have been designed to work directly with the
TCS parser. Therefore, some syntactical constructs would deserve a semantical
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analysis to completely check the validity of a textual input during model injec-
tions. This 2-step parsing process is left for future work.

To summarize, we were able to execute model search on both tools by imple-
menting the modeling operations of the chain. Despite differences on the solver
capabilities, the tools produced the expected results, showing the applicability
of our approach. Automatic generation of the problem did not here generate
an extra performance overhead compared to a manual definition. Considering
the complexity of constrained search, this should however be validated on larger
problems.

7 Related and Future Work

To the best of our knowledge, this article presents a first formal definition of
model search as a deep integration of constraint programming in the MDE con-
ceptual framework. However, this work can be linked to other recent develop-
ments that apply optimization techniques to solve MDE problems. For example,
[16] describes transformation as an “Optimization Problem”, this is very close to
our approach, though in this case the optimization engine is not used during the
transformation. The goal is rather to find a good transformation starting from
a small set of available examples. A large share of the work of Jules White re-
lates to our approach. The CURE system - for Configuration Understanding and
REmedy [12] - for example, transforms a configuration into a set of constraints,
automating the diagnosis of invalid configurations or the adapting of existing
configurations to fulfill new requirements. Our approach also differs from SPL-
dedicated solutions, such as [24], because we do not target a specific application
domain. Based on some preliminary work, we believe that the SPL as a whole
will benefit from the model search approach.

More generally, the many bridges that have been built between CP and MDE
in the past years can be divided in two categories:

The CP community that works on modeling has started focusing on the
DSL (Domain Specific Languages) approach for providing specific modeling lan-
guages, see [19] or [25], while preserving the so-called “solver independence”, or
supporting object-oriented or relational problem definitions [5,2,27]. Although
they usually do not provide MDE integration, these languages have a higher
expressiveness and adapted engine support, therefore easing the transition from
metamodeling languages.

The MDE community has been using constraint languages to further specify
metamodels or transformation rules, while constraint-based tools such as [15,10]
were developed mainly for model checking and validation. More recently, con-
straints have been considered to specify transformations or extend their capabil-
ities [3]. Most of these tools depend on a specific solver/language. Moreover, the
MDE integration is incomplete either because the inputs/outputs for the engine
cannot be directly generated/retrieved or because they do not use model-driven
transformations. Finally, partial assignments (i.e non-empty input models) are
usually not taken into account.
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In this respect, this article presents both a formalization and generalization of
these approaches. Existing tools can be seen either as partial implementations,
components or goal-specific usage of model search. By formalizing model search
as a first-class model operation, we allow for comparison and integration into
MDE platforms.

As future work, we plan to release the higher-order model transformations
needed to complete the whole presented process. One of them allows to trans-
form models to partial instances of the considered problem, and the other to
transform the search results into a MDE format (M2SP and SS2M in Figure 2).
We also plan to further validate the two implementations on a set of industrial
and academic use cases2. At the theoretical level, our model search theory and
process can naturally be extended to a general model transformation scheme (i.e
with different source and target metamodels), which would expand the scope of
transformations through an implementation of Relational-QVT.

8 Conclusion

In this article, we presented and formalized the use of constraint-based search
engines in MDE platforms as a novel model operation called model search. Be-
sides the presented theoretical foundations, we also described a MDE solver-
independant process chain to realize model search, demonstrated its validity with
two implementations (resp. Alloy/SAT and OPL/CSP), and discussed the results
through experiments on an academic SPL use case. The presented approach gen-
eralizes existing work about constraints resolution in MDE, allows the complete
automation of the process and provides a basis to develop and compare different
alternatives. It simplifies the use of constraint solvers in model-based software
engineering at two levels: a shared knowledge representation (constrained graph-
based models), and a generic process in that one implemented chain is reusable
for any application scenario.
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Abstract. Today, developments of Real Time Embedded Systems have

to face new challenges. On the one hand, Time-To-Market constraints

require a reliable development process allowing quick design space ex-

ploration. On the other hand, rapidly developing technology, as stated

by Moore’s law, requires techniques to handle the resulting productivity

gap. In a previous paper, we have presented our Model Based Engineering

methodology addressing those issues. In this paper, we make a focus on

Models of Computation design and analysis. We illustrate our approach

on a Cognitive Radio System development implemented on an FPGA.
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1 Introduction

Recently the market of System-on-Chip (SoC) has grown rapidly. It is expected
to worth $56 billion in 2012, which represents almost 24% annual growth rate.
As the technology evolves rapidly, according to the Moore’s law, entire systems,
made of processors, memories or sensors, can now be integrated on SoC. Indeed,
only reliable methodologies, based on well-adapted formalisms and tools, can
handle the growing design complexity of such systems.

On the one hand, the challenges posed by design of SoC consist mainly in
reducing TTM (time-to-market), costs and productivity gap due to the rapid
evolution of technologies [1]. To achieve those goals, SoC design methodologies
have to tackle co-design issues such as Design Space Exploration, reuse of IPs
(Intellectual Property) or Platform Based Design (PBD). On the other hand,
Model Based Engineering (MBE) adds valuable contributions to SoC Design [2]:
analysis enhancement, communication and traceability improvement, technology
breakpoints reduction, platform independent approach, etc.

In this paper, after a quick presentation of the MoPCoM methodology, we
emphasize the use of a communication model between the platform elements to
clarify the execution model dedicated to receive the application. In this purpose,
we propose an extension of MARTE, called COMETA, that abstracts hardware
platforms to communication models, i.e. Models of Computation. We illustrate
the use of this extension on a industrial design of a Cognitive Radio System
implemented on a Xilinx ML-506 FPGA platform.
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The paper is organized as follow: the second section provides a general overview
of the MoPCoM methodology; the third section discusses the integration of mod-
els of computation to the system specification, the fourth section presents illus-
tration and tooling of our methodology, the fifth section places our work in the
context of related works, and the conclusion discusses the relevancy of our work.

2 Process and Application Overview

The MoPCoM methodology is a refinement of the MDA Ychart [3] dedicated
to Design Space Exploration, reuse of IPs and Platform Based Design [4]. This
methodology is based on the use of the UML for MARTE profile (Modeling and
Analysis of Real Time Embedded Systems [5]) and has been tooled in the Rhap-
sody modeling tool. It takes as input functional, non-functional and allocation
requirements expressed in SysML complemented by MARTE for non-functional
properties expression.

Figure 1 gives an overview of the process, highlighting 3 modeling levels which
are detailed in [6]:

– The Abstract Modeling Level (AML) is intended to provide the description
of the expected level of concurrency and pipeline through the mapping of
functional blocks onto an abstract platform,

– The Execution Modeling Level (EML) is intended to provide the topology
of the execution platform defined in terms of execution, communication or
storage nodes in order to proceed to coarse grain analysis,

– The Detailed Modeling Level (DML) is intended to provide a detailed de-
scription of the platform in order to proceed to fine grained analysis. It

Fig. 1. MoPCoM Process Overview
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allows Register Transfer Level (RTL) code generation for hardware (VHDL)
and software (C) parts including glue code (drivers).

We illustrate application of the methodology on a Cognitive Radio System. A
Cognitive Radio [7,8] is a system that adapts its behavior to enhance the use
of electromagnetic spectrum in order to provide a best quality of service for
communications handling. Actually, we have applied our methodology on a real
use case which consists in locating emitting RF sources in the electromagnetic
spectrum, from specification to implementation. This application is used as a
reference application in an industrial context. In the next section, we discuss
allocation of the functional design (PIM - Platform Independent Model) onto an
AML platform, capturing first implementation choices in terms of communica-
tion and concurrency.

3 Abstract Modeling Level

Modeling concurrency and communications can be achieved by several means.
For instance, concurrency in UML can be expressed at several levels. At the be-
havioral level, one can use for example AND states (state machines) or fork nodes
(activity). At the structural level, the meta-attribute“isActive”of the UML Class
bears the notion of concurrent entity. In the MARTE profile, concurrency can
be captured through the notion of “RTUnit” which adds real-time features to
the UML active class. Unfortunately, execution semantics and communication
are not well addressed either in UML or in the MARTE profile. For instance,
execution semantics in UML is described informally allowing tool providers the
responsibility to define the way models should be executed [9] as well as solving
semantic variation points of the UML specification [10]. In MARTE, communica-
tions are point-to-point and occur through “RTeConnectors”between “RTUnits”
instances in the context of their owning classifier. Even if the MARTE profile
allows a better modeling of communications, especially in real time features mod-
eling, we think work of designers could be facilitated if some of the well known
communication schemes could be reused and integrated more easily.

Then, more information is required in order to achieve more deterministic
execution enabling uniform simulations and analysis. Regarding the lack of UML
and MARTE to model MoC, we propose a metamodel called COMETA dedicated
to the capture and the analysis of high level MoCs. The goals of this metamodel
are: to provide a better separation between computation and communication, to
ease decisions related to allocation of the application onto the execution platform,
and to preserve the application behavior through allocations in order to ease
verification activities.

The aim of the abstract modeling level is to allocate business blocks onto
a virtual platform representing choices about concurrency and communication
(MoC - Model of Computation) and proceed to relevant analysis like deadlock
or starvation detection based on model simulations. Indeed, an AML platform
is made of interconnected units of concurrency communicating via specific con-
nectors providing data transport or synchronization services. At this level, the
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Fig. 2. Excerpt of Domain Definition

Fig. 3. MoC Component and Domains

platform is considered as an ideal point-to-point network since it does not make
any assumption about resource limitations.

MoCs provide different capabilities in terms of design and analysis, and one of
the goals of system designers is to select appropriate MoC and proceed to relevant
analysis, taking into account heterogeneity of modeled systems. In this context,
tools supporting execution of heterogeneous MoCs like Ptolemy [11] are useful to
analyze systems combining heterogeneous parts (analog, digital, GALS, etc).

The COMETA extension is dedicated to description and capitalization of MoC
domains. A MoC domain gathers the definition of a particular MoC regarding 4
orthogonal concerns (figure 2): the behavioral scheme defines kind of supported
behavior (state based, ODE, etc.), the temporal scheme defines the underlying
model of time (causal, discrete, continuous, etc.), the data scheme defines the kind
of data manipulated (abstract data types, bit vectors, etc.), and the communi-
cation scheme defines mechanisms supporting communications and synchroniza-
tions. Examples of MoC domains are numerous in the literature, and for the sake
of simplicity, we show in this paper how our extension handles the definition and
the reuse of the two MoCs that have been used in our experiments: the Concurrent
Sequential Process (CSP) and the Kahn Process Network (KPN).
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Briefly, in the CSP MoC, each time a producer emits a data, it locks until this
data has been consumed by the consumer. At the same time, when a consumer
requires a data, it locks until this data has been produced by the producer. In this
synchronous model, both read and write operations are blocking. In the KPN
MoC, a producer emits its data without worrying if it has been consumed or not.
At the same time, when a consumer requires a data, it locks until this data has
been produced. In this asynchronous model, the write operation is non-blocking
and occurs through infinite fifo while the read operation is blocking.

In ourmetamodel, thenotionof concurrency is reifiedunder the conceptof“MoC-
Component”. A MoC component has the responsibility to adapt parts allocated
from the applicationdesign with respect to the chosenmodel of computation. More
precisely, a MoC component is a unit of concurrency composed of heterogeneous
“MoCParts”interconnected by“MoCConnectors”through“MoCPorts”(figure 3).
All those elements define the structural aspect of a model of computation.

Domain applied to a MoC Component binds semantics for each of those struc-
tural features. For instance, communication schemes are defined in respect to
other orthogonal schemes of the domain, e.g. data, time and behavior and, can
be checked through OCL constraints. They define constraints related to com-
munication specification (interfaces and protocols) as well as detailed support
mechanisms (FIFO, shared memory, etc.). We show in the next section an ex-
ample of use of this feature to manage CSP and KPN communications. In this
approach, heterogeneity can be handled through the use of ports having different
nature on the same MoC component.

4 Experiments and Tooling

The COMETA metamodel has been tooled into the Eclipse environment and we
provide a set of transformation rules in order to reuse model execution capabili-
ties provided by the Rhapsody UML modeling tool and its execution framework

Fig. 4. Flow for Tooling a New MoC
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OXF (Object eXecution Framework). The OXF framework provides a discrete
event engine onto which several MoCs can be executed. The approach adopted
is quite similar to the approach presented in [12] in the context of the SystemC
framework. The flow associated to the utilization of the metamodel is summa-
rized in the figure 4.

Initially, a designer captures the properties of a model of computation using
the COMETA metamodel. Then, a model-to-model transformation takes as in-
put the captured model and generates a model library of usable and configurable
MoC components for the Rhapsody framework. Those components can be then
assembled to build an AML Platform which can be woven with the application
model to generate an executable model.

Fig. 5. MoC Library Generation

Fig. 6. Functional to AML Platform Allocation
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Fig. 7. AML Allocated Platform Excerpt

Fig. 8. KPN Simulation with Rhapsody
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The figure 5 shows a small excerpt of Rhapsody artifacts generation from a
COMETA model. All generated artifacts are directly usable for both design and
allocation captures.

The figure 6 shows an allocation of the business design 1© onto an AML
platform 2©, which mixes two models of computation: KPN (Kahn Process Net-
work) and CSP (Concurrent Sequential Process). The allocated platform 3© is
generated thanks to a model-to-model transformation and contains additional
artifacts (communication and synchronization resources) needed to achieve cor-
rect simulations.

Fig. 9. CSP Simulation with Rhapsody

The figure 7 focuses on the“Echo Removing”block and shows the adaptation of
the spectral analysis block to support KPN execution. This generated block acts
as a local scheduler and controls event sending and reception as well as execution
of allocated functional blocks. The KPN adapter adapts system interfaces to MoC
interfaces which exibits high level communication primitives (non-blocking write,
blocking read, etc.) and implements high level communication protocols.

For instance, the figures 8 and 9 show traces of 2 different mappings of the
same application. The first one targets a platform implementing KPN commu-
nications while the second one targets a platform implementing CSP commu-
nications. Briefly, in the first figure (KPN), Application 2 locks until data has
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been produced by Application 1 1©. When Application 1 produces a data 2©, it
sends it to the connector 3© and continues its job. Then, availability of a new
data unlocks Application 2 which consumes it 4©. In the second figure (CSP),
Application 2 locks until data has been produced by Application 1 1©. When
Application 1 produces a data 2©, it locks until the Application 2 has consumed
it 3©.

5 Related Works

Transforming customer requirements into implementations making good trade-
offs between performance and cost requires relevant analysis activities based
on appropriate languages and tools. System-on-Chip are heterogeneous as they
generally mix analog or digital sub-systems with different characteristics related
to specific domains (signal processing, image processing, etc.). Therefore, such
heterogeneity must be handled at design and analysis time using dedicated for-
malisms and tools through several abstraction levels and well defined processes.

Several approaches have been applied by ESL (Electronic System Level) in
order to tackle issues posed by economic laws and rapid evolution of technology.
Among them:

– High Level Synthesis [13] aims at transforming high level behavior specifica-
tion into optimized architecture,

– IP reuse aims at building systems assembling IPs which requires standard
interfaces or wrappers [14],

– Platform Based Design [15] consists in configuring a generic platform con-
taining configurable components like microprocessors or FPGA to suit a
specific kind of application.

MBE adds valuable contributions to SoC Design: analysis enhancement, commu-
nication and traceability improvement, technology breakpoints reduction, etc.
Related works on MBE based RTES methodologies and associated tools are
numerous. For instance, in [16], the authors present a methodology based on
the use of UML and Platform Based Design called Metropolis. They highlight
the necessary orthogonalization of several aspects: computation and communi-
cation, function and architecture, behavior and performance. They provide a
set of stereotypes and a dedicated framework supporting function / platform
mapping, refinements and code generation. In [17], the authors present an ob-
ject oriented methodology based on the use of UML: the HASoC methodol-
ogy (Hardware and Software Object on Chip). They first provide an abstract
model of the system that is executable (uncommitted model) and proceed to the
partition into hardware and software parts taking into account implementation
constraints (committed model). In [18], the authors combine the visual features
of UML with the simulation and debugging features of the SystemC language
in a methodology called UPES (Unified Process for Embedded Systems). This
“specify-simulate-debug-refine”methodology is based on the use of the UML for
SystemC profile and allows users to capture behavioral and structural aspects
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of the system at several levels of abstraction. The Gaspard methodology [19] is
dedicated to Multi-Processors Systems-on-Chip (MPSoC) design. It is based on
the use of a dedicated profile called “Gaspard Profile” allowing regular repetitive
structure platform modeling. The Gaspard environment provides TLM and RTL
code generation and bridges to several analysis tools. Finally, the Harmony/ESW
(Embedded System Workflow) [20] is a Rational Unified Process (RUP) based
methodology dedicated to RTES design. It describes the rationale that guide
RTES development from requirements capture to implementation using SysML
[21] and SPT [22] profiles.

According to the MDA specification [3], using models to represent business
domain (problem / specification), platform (support of the solution) and al-
locations (implementations choices) is really helpful because it makes explicit
what was previously made implicitly. But as we mentioned in [6], the current
MDA specification is mainly related to software development as it represents
only one level of abstraction of the platform; and according to the ESL com-
munity, there is a need to represent the platform at several levels of abstraction
in order to handle design space exploration [23]. Among main issues addressed
by the ESL community, choices related to concurrency and communication is-
sues should be explicitly captured by high level Models of Computation. Several
approaches have been proposed to handle MoC heterogeneity. For instance, the
authors in [16,24] highlight the necessary orthogonalization of several aspects
of MoCs: computation and communication, function and architecture, behavior
and performance. Additionally, in [2], the authors discuss MoCs and semantics
metamodel and show that MBE is a good candidate to address those issues.
Actually, Models of Computation are present at each level of abstraction, and
from the idea (specification) to the realization (implementation), they exhibit
different properties, related to the kind of analysis that has to be performed.

6 Conclusion

In this paper, we have presented our SoC Design Flow based on the use of UML
and dedicated profiles. Although some improvements can be done, particularly
in the MoCs support, we have shown that MBE techniques, based on the use
of UML for MARTE profile, can fit into Co-Design through an example of a
Cognitive Radio Application implemented on FPGA. This MBE approach refines
the MDA Y-Chart in order to tackle achievements of the ESL community. In
addition to the use of the UML for MARTE profile, we have implemented a
metamodel called COMETA to specify and tool models of computation.

The following table gives some model metrics for the processed use case (Lo-
cate RF Source).

Those metrics compare the number of generated artifacts after allocation to
the number of captured artifacts. Those generated artifacts, which handle con-
currency and communication schemes, should have been coded by hand, and
contribute thus to reduce efforts of engineers to manage MoC related aspects.
This work is part of the MoPCoM project (http://www.MoPCoM.fr), gathering
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Table 1. Design Metrics

System AML

Captured Generated

Blocks 7 7 10

Connectors 9 9 21

Behaviors 9 13 23

academic and industrial organizations and supported by the French Agence Na-
tionale de la Recherche (RNTL 2006 TLOG 022 01), the ”Media and Networks”
”cluster of clusters” and Brittany and Pays de la Loire regions.
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Abstract. Version management of business process models requires that
changes can be resolved by applying change operations. In order to give a
user maximal freedom concerning the application order of change operations,
position parameters of change operations must be computed dynamically during
change resolution. In such an approach, change operations with computed
position parameters must be applicable on the model and dependencies and
conflicts of change operations must be taken into account because otherwise
invalid models can be constructed. In this paper, we study the concept of partially
specified change operations where parameters are computed dynamically. We
provide a formalization for partially specified change operations using graph
transformation and provide a concept for their applicability. Based on this, we
study potential dependencies and conflicts of change operations and show how
these can be taken into account within change resolution. Using our approach, a
user can resolve changes of business process models without being unnecessarily
restricted to a certain order.

Keywords: Model Synchronization, Version Management, Model Trans-
formation.

1 Introduction

Version management of models typically comprises change detection as well as change
resolution. Change detection produces a list of change operations which can then be in-
spected by the user. Within change resolution, the user makes decisions which change
operations should be applied in order to produce a consolidated model. Existing ap-
proaches to version management of models allow the computation of change operations
(e.g. by using technology such as EMF Compare [7]) and provide a set of techniques
for model matching under different circumstances (see e.g. [1,11]).

Version management of process models poses specific requirements on change op-
erations: Compound change operations [16,25] are used which always produce a con-
nected process model and abstract from individual edge changes. Position parameters
of change operations specify the place where a change is applied, i.e. direct predecessor
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and successor of the element that is changed. Iterative application of change operations
requires a concept of change operations where position parameters are dynamically
computed [16] in order to give the user maximal flexibility in the selection of change
operations to apply.

If position parameters of change operations are dynamically computed, it has to be
ensured that the change operations obtained are applicable on the model and produce
again a connected process model. In addition, potential dependencies and conflicts of
change operations must be taken into account. Otherwise it can happen that a user
applies a change operation which cannot be properly applied, leading to a potentially
unconnected model and problems when applying following change operations.

Existing approaches to dependency and conflict computation of change operations
rely on the computation of a dependency and conflict matrix which allows to determine
whether two operations are dependent [18,14]. These approaches require that change
operations are fully specified (i.e. all position parameters are known) and cannot be
applied in the situation that parameters are dynamically computed.

In this paper, we distinguish between fully specified and partially specified change
operations (i.e. not all position parameters are known) and study the transition from
partially to fully specified operations. For this purpose, we formalize change operations
using graph transformation. We introduce the concept of an applicable change operation
which ensures that a change operation produces a connected model. We establish the
concept of an enabled operation which does not have any dependencies on another
operation. We show that an enabled operation is always applicable and use this result
to ensure that a connected process model is produced. We show how dependencies
can be efficiently computed even for partially specified change operations based on an
underlying decomposition of the process model into a process structure tree [24]. Using
this decomposition, also conflict detection between change operations in distributed
scenarios can be improved by reducing the number of required operation comparisons.

Throughout the paper, we present the theory for our approach along process models.
However, we believe that the fundamental techniques can also be applied for other
behavioral models where a tree-based representation of the model can be computed
(such as statecharts).

The paper is organized as follows: We first introduce an example scenario where
version management of business process models is demonstrated with a set of change
operations. We then provide a formal model for change operations in Section 3 and
explain our approach for computing position parameters of change operations. This
provides the basis for introducing dependencies in Section 4 and conflicts in Section 5.
We briefly report about tool support in Section 6 and conclude with related work and
conclusions.

2 Business Process Model Version Management

We use business process models as our domain for model version management. In the
following, we first introduce an example and then explain our approach which relies on
the process structure tree to compute changes.

Figure 1 shows an example business process model V from the insurance do-
main using Business Process Model Notation (BPMN) [20]: Nodes can be Activities,
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Fig. 1. An example scenario

Gateways, or Events such as Start and End. Gateways contain Exclusive/
Inclusive/Complex Decision and Merge, and Parallel Fork and Join. Nodes are con-
nected by control flow edges. In the example in Figure 1, an insurance claim is first
checked, then it is recorded and then a decision is made whether to settle or reject it.
Figure 1 also shows a decomposition of the models into fragments (e.g. fZ , fX ,..),
which are non-empty subgraphs in the process model with a single entry and a single
exit edge. A fragment can either be an alternative fragment consisting of an Exclusive
Decision and an Exclusive Merge node, a concurrent fragment consisting of a Paral-
lel Fork and a Parallel Join node or further types of fragments including unstructured
or complex fragments which allow to express all combinations of gateways. For more
details about fragment types the reader is referred to [24]. Fragments can be organized
into a Process Structure Tree (PST) of the process model [24].

In a distributed modeling scenario, the process model V (Figure 1) might have been
created by the process model representative in an enterprise and then stored in a reposi-
tory for further elaboration. During this elaboration period, two colleagues individually
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Effects on Process Model VChange Operation op

Deletion of fragment f1 between c and d from process model V and 
reconnection of control flow.

Insertion of a new fragment f1 between two succeeding elements a and b in 
process model V and reconnection of control flow.

Movement of activity x from its old position between element c and d into its 
new position between two succeeding elements a and b in process model V 
and reconnection of control flow.

Deletion of activity x between c and d and reconnection of control flow.

Insertion of a new activity x (by copying activity y) between two succeeding 
elements a and b in process model V and reconnection of control flow.

DELETEFRAG

INSERTFRAG

MOVEACT

DELETEACT

INSERTACT

MoveActivity(x, c, d, a, b)

DeleteFragment(f1, c, d)

InsertFragment(f1, a, b)

DeleteActivity(x, c, d)

InsertActivity(x, a, b)

type(op)

Fig. 2. Change operations for process models [16]

manipulate V to create new versions, e.g., V1 and V2. In our approach, changes per-
formed by the colleagues to obtain V1 and V2 will be detected and collected in terms of
change operations in a change log Δ(V, V1) and Δ(V, V2).

We have previously proposed change operations for process models [16] as follows:
InsertActivity, DeleteActivity or MoveActivity operations allow to insert, delete or modify
activities and always produce a connected process model as output. Similarly, Insert-
Fragment and DeleteFragment operations can be used for inserting or deleting a complete
fragment of the process model. Figure 2 shows an overview of the change operations
that are supported by our approach. Given an operation op we denote by type(op) the
type of the operation and assume the type as indicated in Figure 2. These change opera-
tions are computed by comparing the PSTs of two process models and identifying newly
inserted, deleted and moved nodes in the PSTs (see [16] for a detailed introduction).

Δ(V, V1):
a) MoveActivity(”Check Claim”, -, -, -, -)
b) InsertFragment(fE1, -, -)
c) InsertActivity(”Pay Out”, -, -)
d) InsertActivity(”Authorize Accounting Dept.”, -, -)
e) InsertFragment(fH1, -, -)
f) InsertActivity(”Calculate Loss Amount”, -, -)
g) InsertActivity(”Recalc. Cust. Contribution”, -, -)
h) InsertActivity(”Update Cust. Record”, -, -)
i) InsertActivity(”Send Rej. Letter”, -, -)

Fig. 3. Change log Δ(V, V 1)

In the case of the elaboration of V into
V1 in our example (Figure 1), we obtain the
change operations given in the change log
Δ(V, V 1) in Figure 3. These change oper-
ations are initially partially specified. For
example, for c) InsertActivity(”Pay Out”,-,-)
the last two parameters are not defined yet.
These parameters which we denote as posi-
tion parameters will be computed dynami-
cally during change resolution.

The operations in the change log can then be used to create a consolidated model V ′

out of V , V1 and V2. That means, the process model representative in the distributed
modeling scenario, will inspect each change and decide which change to apply in or-
der to construct a consolidated model V ′. Thereby, he applies the changes in an iterative
way and continues to do so until he is satisfied with the resulting model V ′. With regards
to Figure 1, the process model representative might first apply operation i) InsertActiv-
ity(”Send Rej. Letter”,-,-) and then operation h) InsertActivity(”Update Cust. Record”,-,-). In
this approach, the order of operation application leads to different position parameters
of the change operations requiring dynamic computation of position parameters.

In contrast to that, fixing the position parameters in advance in terms of fully spec-
ified change operations restricts the order of application to one particular order and
thereby restricts the user in creating a consolidated version. Figure 4 gives an example,
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h) InsertActivity(”Update Cust. Record”, 
“Reject Claim”, “Close Claim”)
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“Update Cust. Record”, “Close Claim”)

… …

… …
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Cust. Record

Send Rej.
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Fig. 4. Fully specified change operations restrict the execution order

assuming that operations h) and i) have not yet been applied. The fully specified oper-
ations h) InsertActivity(”Update Cust. Record”, ”Reject Claim”, ”Close Claim”) and i) Inser-
tActivity(”Send Rej. Letter”, ”Update Cust. Record”, ”Close Claim”) restrict the application
order to h), i). In addition, it is not possible to apply only the operation i) InsertActiv-
ity(”Send Rej. Letter”, ”Update Cust. Record”, ”Close Claim”).

One requirement for iterative change resolution is that when computing position pa-
rameters of change operations it must be ensured that they yield a change operation that
can be applied on the process model. Further, a dependency concept for change oper-
ations is needed to ensure that only operations that do not depend on other operations
can be applied. Otherwise it can happen that applying a change operation leads to a
potentially unconnected model and problems when applying following change opera-
tions. For example, inserting an activity into a fragment that does not exist yet leads
leads to an unconnected activity (and therefore unconnected model) and to problems
when later inserting the fragment. Furthermore, in a concurrent modeling scenario as
described above, an approach for computing conflicts is required as well. In the follow-
ing sections, we will present our approach for addressing these problems.

3 Partially and Fully Specified Change Operations

In this section, we formalize change operations using typed attributed graph transfor-
mation, distinguishing between fully specified and partially specified ones. Using this
formalization, we define whether a fully specified change operation obtained from a
partially specified one is applicable on the model.

3.1 Formalization of Change Operations

Each change operation op for a model V can be viewed as a model transformation rule
on the model V transforming it to a model V ′. A model transformation rule can be
formalized as a typed attributed graph transformation rule [13,6,19]. We distinguish be-
tween change operation type and a concrete change operation: A change operation type
(such as InsertActivity(x,a,b)) describes a set of concrete change operations. By replacing
the parameters of a change operation type with model elements of the model V and
V ′, a concrete change operation is obtained. Figure 5 b) shows a sequence of concrete
change operations.
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a:Node e1:Edge b:Node a:Node e1:Edge x:Activity e2:Edge b:Node

InsertActivity(x,a,b)

f:Fragment f:Fragment
a)

b)

Δ(V, V1):
1. MoveActivity(”Check Claim”, “Start”, “Record Claim”, “Record Claim”, “Exclusive Decision”)
2. InsertFragment(fE1, ”Settle Claim”, “Exclusive Merge”)
3. InsertActivity(”Pay Out”, “Parallel Fork”, “Parallel Join”)
4. InsertActivity(”Authorize Accounting Dept.”, “Parallel Fork”, “Parallel Join”)
5. InsertFragment(fH1, “Parallel Fork”, “Pay Out”)
6. InsertActivity(”Calculate Loss Amount”, “Parallel Fork:2”, “Parallel Join:2”)
7. InsertActivity(”Recalc. Cust. Contribution”, “Parallel Fork:2”, “Parallel Join:2”)
8. InsertActivity(”Update Cust. Record”, “Reject Claim”, “Close Claim”)
9. InsertActivity(”Send Rej. Letter”, “Update Cust. Record”, “Close Claim”)

Fig. 5. Change operation type and concrete change operations

The behavior (or semantics) of a change operation type op is specified using a typed
attributed graph transformation rule opr. A typed graph transformation rule opr : L →
R consists of a pair of typed instance graphs L, R such that the union is defined. A

graph transformation step from a graph G to a graph H , denoted by G
opr(o)
=⇒ H , is

given by a graph homomorphism o : L ∪ R → G ∪ H , called occurrence, such that the
left hand side L is embedded into G and the right hand side R is embedded into H and
precisely that part of G is deleted which is matched by elements of L not belonging to
R, and, that part of H is added which is matched by elements new in R. Figure 5 a)
shows the typed attributed graph transformation rule for InsertActivity(x,a,b).

The theory of graph transformation provides the basis for defining the semantics of
a change operation type as follows: Given a change operation type op together with its
rule opr, a concrete change operation on a model V leading to a model V ′ conforming
to the type op is modelled by a change operation application of the rule opr to V trans-

forming it to V ′. Formally, this is represented by a graph transformation GV
opr(o)
=⇒ HV ′

where opr is applied at an occurrence o to the graph GV leading to a new graph HV ′

(where GV and HV ′ are represented as typed graphs obtained from the models V and

V ′). We also write V
op

=⇒ V ′ or V
op(o)
=⇒ V ′. To represent a concrete change operation,

we write op(o).
Formally, the occurrence morphism o represents a binding between the change op-

eration type and the models V and V ′. It maps nodes and edges of L and R to G
and H . An occurrence morphism can be specified by a set of parameters x1, ..., xn in
the change operation type op and their instantiation in the change operation op(o). We
also write op(x1, .., xn) for a change operation type and op(X1, ..., Xn) for a concrete
change operation op(o). For each rule opr, we distinguish between parameters that are
preserved, deleted or newly created, so xi ∈ pres(opr) ∪ del(opr) ∪ new(opr).

As an example, consider the change operation type InsertActivity(x,a,b) and the change
operation InsertActivity(X,A,B). This implies an occurrence morphism mapping x to X ,
a to A and b to B where X, A, B are model elements in model V and/or V ′, and x
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is newly created whereas a and b are preserved elements. When designing a set of
change operation types, we use a shorthand which only includes those elements of the
occurrence morphism such that the morphism is uniquely determined. For example,
we write InsertActivity(x,a,b) instead of InsertActivity(f,a,e1,b,x,e2) where f, a, e1, b, x, e2
refers to the elements defined in the transformation rule (see Figure 5 a)).

In model version management, an important concept is change operation applicabil-
ity: Given a change operation op(X1, .., Xn), we want to reason whether this change
operation is applicable to a model V or not:

Definition 1 (Applicable Change Operations). Let a change operation
op(X1, .., Xn) of a change operation type op(x1, .., xn), its rule opr and a model V be
given, with Xi ∈ V if xi ∈ pres(opr) ∪ del(opr). Then we say that op(X1, .., Xn) is

applicable to V if there exists a model V ′ with V
opr(o)
=⇒ V ′ for an occurrence o such

that xi → Xi ∈ V if xi ∈ pres(opr) ∪ del(opr) and xi → Xi ∈ V ′ if xi ∈ new(opr).
Otherwise, we say that op(X1, .., Xn) is not applicable on V .

Figure 5 b) shows examples of applicable and non-applicable change operations. For
example, InsertActivity(”Pay Out”, ”Parallel Fork”, ”Parallel Join”) is not applicable if Par-
allel Fork and Parallel Join do not exist in the model or are not connected by an edge
as required by opr. In other words, the applicability of the change operation InsertActiv-
ity(”Pay Out”, ”Parallel Fork”, ”Parallel Join”) depends on the chosen position parameters
and might also be dependent on the application of another operation. Computing posi-
tion parameters of change operations is discussed in the following.

3.2 Correct Specification and Computation of Position Parameters

If all parameters of a concrete change operation are specified, we call the change
operation fully specified. Otherwise, it is called partially specified. For example,
InsertActivity(X,-,-) is a partially specified change operation because only x has been
specified and a, b are not specified yet.

Fully specified change operations are obtained from partially specified ones by com-
puting position parameters. In the following, we explain how the PSTs can be used for
computing position parameters of change operations. Given two process structure trees
PST (V ), PST (V1) and correspondences between their nodes, a joint PST, denoted as
J −PST (V, V1), can be constructed which contains both process structure trees where
corresponding nodes have been identified [16]. A J-PST can be annotated with change
operations where each change operation is associated to the fragment node in the J-PST
in which it occurs. In addition, for InsertFragment or DeleteFragment operations, we de-
note with fragment(op) the newly inserted or deleted fragment. Figure 6 shows the
annotated J-PST of the example.

When transitioning from a partially specified to a fully specified change operation,
we require that parameters are chosen inside the parent fragment of an operation as
follows:

Definition 2 (Correct Specification). Given a partially specified change operation op
in a J-PST, a full specification of op is said to be correct, if the position parameters are
chosen inside the parent fragment.



208 J.M. Küster, C. Gerth, and G. Engels

fA1

root 
fragment

fB1

alternative
fragment

fC1 fD1

fE1

alternative
fragment

fI1 fJ1
InsertActivity

(“Calculate Loss Amount“, -, -)

InsertActivity
(“Recalc. Customer Contribution“, -, -)

InsertFragment
(fE1, -, -)

InsertActivity
(“Send Rej. Letter“, -, -)

fF1 fG1

InsertActivity
(“Pay Out“, -, -)

InsertActivity
(“Authorize Account. Dept.“, -, -)

MoveActivity
(“Check Claim“, -, -, -, -)

fH1

concurrent
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Fig. 6. The J-PST of the example

With regards to Figure 6, a correct full specification of the partially specified opera-
tion InsertActivity(”Calc. Loss Amount”,-,-), e.g., InsertActivity(”Calc. Loss Amount”,”Parallel
ForkH1”,”Parallel JoinH1”) ensures that the position parameters are chosen inside frag-
ment fH1 and not outside.

For applying a partially specified change operation, Algorithm 1 shows how to com-
pute the position parameters. This algorithm starts at the element which is affected by
the change operation and then searches backward and forward until a node is reached
that exists in both process models.

Although Algorithm 1 always returns a fully specified change operation, this does
not ensure that the operation obtained is also correct according to Def. 2. For ensuring
their correctness, dependencies between change operations must be taken into account
which we will discuss in the next section.

4 Dependencies of Change Operations

In this section, we introduce concepts for dependencies of change operations. We first
review dependencies for fully specified change operations and then elaborate on par-
tially specified change operations.

As a fully specified change operation op is formally defined by a graph transforma-
tion rule opr, we can directly apply the dependency concept from graph transformation
(see e.g. [4,19,10,14]): Informally, if two changes are dependent, then the second one
requires the application of the first one. This is usually the case if the first change creates
model structures that are required by the second change. Formally, we define:

Definition 3 (TR-Dependent Change Operations). Let two fully specified change
operations op1 and op2 be given such that V

op1=⇒ V ′ and V ′ op2=⇒ V ′′. Then we call
op2 transformation rule dependent (TR-dependent) on op1 if op2 is not applicable on
V and op2 is applicable on V ′.
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Algorithm 1. Computation of position parameters of a change operation op in model
V and V1

Procedure computePositionParameter(op,V ,V1):
x = op.element;
{Old Position Parameters of x in Model V }
if op is DeleteActivity/Fragment or MoveActivity then

c = direct predecessor of x ∈ V ; d = direct successor of x ∈ V ;
{New Position Parameters of x in Model V }
if op is InsertActivity/Fragment or MoveActivity then

a = getPredecessor(x,V ,V1); b = getSuccessor(x,V ,V1);
if a, b �= null then

if a is not directly connected to b then
select an edge i between a and b; a = i.source; b = i.target;

else
select an edge i in V in the parent fragment of op; a = i.source; B = i.target;

return a, b, c, d;

{Computation of Predecessor}
Procedure getPredecessor(x,V ,V1):
determine predecessor p of x in V1

if p exists in V ∧ p is not affected by a Move operation then
return p;

else
return getPredecessor(p,V ,V1)

return null;

{Computation of Successor}
Procedure getSuccessor(x,V ,V1):
determine successor s of x in V1

if s exists in V ∧ s is not affected by a Move operation then
return s

else
return getSuccessor(s,V ,V1)

return null

Dependencies can be computed for change operations by applying existing theory for
establishing a so-called dependency matrix (see [14] for an overview). An entry in this
matrix then states the conditions under which two fully specified change operations are
dependent.

Dependencies of partially specified change operations cannot be computed using
the dependency matrix because parameters are missing. One possibility would be to
apply dependency computation only to fully specified change operations, leading to
the situation that dependencies are only detected late in the change resolution phase.
Another approach is to use the annotated J-PST (see Figure 6) for defining dependencies
of change operations as follows:

Definition 4 (J-PST Dependencies and Enabled Change Operations). Let a J-PST
annotated with change operations OPS be given. For each op ∈ OPS, we denote with
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Fig. 7. Dependencies in the J-PST

depops(op) all operations that are dependent on op. We define dependencies on the
change operations as follows:

– Let a change operation op be given with type(op) = INSERTFRAG and let OPC
be the set of all operations associated to a child of fragment(op). Then every
opi ∈ OPC is dependent on op and therefore depops(op) = {opi ∈ OPC}.

– Let a change operation op be given with type(op) = DELETEFRAG and let OPC
be the set of all operations associated to a child of fragment(op). Then every
opi ∈ OPC is a prerequisite of op and therefore op ∈ depops(opi).

We call a partially specified change operation op enabled if depops(op) = ∅.

The idea behind these dependencies is that a change operation that is dependent on an
InsertFragment operation can only be applied if the InsertFragment operation has previ-
ously been applied to create the fragment. Similarly, a DeleteFragment operation is de-
pendent on all other operations that affect the fragment deleted. This ensures that first
all operations within the deleted fragment are applied before the fragment is deleted.
Figure 7 a) shows an extract of the J-PST introduced earlier and the two InsertActivity
change operations which are both dependent on the InsertFragment change operation.
Figure 7 b) shows an example for DeleteFragment dependencies.

J-PST dependencies yield a dependency concept for change operations that are par-
tially (or fully) specified. J-PST dependencies can be easily computed by traversing
the J-PST and, for each fragment, computing dependencies between all operations as-
sociated to the fragment and operations associated to the grandfather fragment. J-PST
dependencies have the following important property1 by definition:

Lemma 1 (Acyclic J-PST Dependencies). Let a J-PST annotated with change opera-
tions be given. Then the J-PST dependencies are acyclic.

In our approach, J-PST dependencies together with the concept of a correct specifica-
tion can be used to show that an enabled operation is also applicable. The following
theorem1 shows this:

1 Proof sketches for Lemma 1, Theorem 1, and Theorem 2 can be found in [15].



Dynamic Computation of Change Operations in Version Management 211

Theorem 1 (Applicability of Enabled Operations). Let a fragment f in the J-PST
together with a change operation op be given. If op is enabled then it is also applicable
if its position parameters are computed by Algorithm 1.

For our application in model version management, it is important to know whether we
can run into a dependency when applying fully specified change operations. The fol-
lowing theorem1 shows that it is sufficient to compute J-PST dependencies if operations
are associated to different fragments in the J-PST:

Theorem 2 (TR-Independence). Let a J-PST annotated with change operations be
given and let opi and opj be two operations. Assume further that opi and opj are
attached to different fragments. If opi and opj are not J-PST dependent then opi and
opj are not TR-dependent on each other.

The previous theorems have the following consequences for iterative change resolu-
tion: All enabled operations are applicable which means that there exists a model V ′

obtained from V when applying an enabled change operation. As all transformation
rules of our change operations produce connected process models, V ′ is always con-
nected. Further, the order in which enabled operations are applied which are contained
in different fragments does not matter. Further, by Theorem 1, each enabled operation
is always applicable. This ensures that after applying an operation re-computation of
position parameters of other operations leads to applicable operations again.

In the next section, we will elaborate on conflicts that can arise when a process model
has been changed concurrently by two persons.

5 Conflicts of Change Operations

In this section, we consider conflicts between change operations. Similar to the previous
section about dependencies, we first introduce conflicts between fully specified change
operations and then show how the J-PST can be used to ease up conflict computation.

Conflicts between change operations arise in scenarios where changes are applied
independently on different versions of a process model. Our running example (see Fig-
ure 1) illustrates such a scenario where an original process model V is manipulated
independently to create two new versions V1 and V2.

In general, two changes are in conflict if only one of the two can be applied. This
is the case if the two changes involve the same model structure and manipulate it in a
different way. Typical conflicting pairs of change operations include the movement of
an element in one model (e.g., MoveActivity(”Check Claim”,-,-,-,-)) and its deletion (e.g.,
DeleteActivity(”Check Claim”,-,-)) in the other model. Formally, we define:

Definition 5 (TR-Conflicting Change Operations). Let two fully specified change op-
erations op1 and op2 be given such that V

op1=⇒ V ′ and V
op2=⇒ V ′′. Then we call op1

and op2 transformation rule conflicting (TR-conflicting) if op2 is not applicable on V ′

and op2 is applicable on V .

Conflicts between fully specified change operations can be computed by applying ex-
isting theory, e.g., by establishing a conflict matrix (see [18,14]) which specifies condi-
tions under which two fully specified change operations are conflicting.
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In contrast to dependencies, conflicts cannot be computed on partially specified
change operations. However, using the J-PST still simplifies the conflict detection by
decreasing the number of change operations, which need to be compared. Using the
J-PST, conflicts can be computed by inspecting the set of enabled change operations
between Δ(V, V1) and Δ(V, V2), instead of comparing all fully specified operations.

Given two joint process structure trees J − PST (V, V1), J − PST (V, V2), we first
compute position parameters for enabled operations in the J-PSTs and then use the
conflict matrix to identify conflicting operations. In the case that a conflicting operations
is assigned to a fragment, all children are also marked as conflicting. Formally, we
define conflicts of change operations in the J-PST:

Definition 6 (J-PST Conflicts). Let two joint process structure trees J − PST (V, V1)
and J−PST (V, V2), both annotated with operations, be given. Then we define conflicts
on the change operations as follows:

– Two enabled change operations opV 1 ∈ Δ(V, V1) and opV 2 ∈ Δ(V, V2) are con-
flicting if they are TR-conflicting according to Definition 5.

– For two enabled conflicting change operation opV 1 and opV 2 of the type(opV 1) =
INSERTFRAG, DELETEFRAG, let OPCV 1 be the set of all operations associated
to a child of fragment(opV 1). Then every opi ∈ OPCV 1 is dependent on opV 2.

– For two enabled conflicting change operation opV 1 and opV 2 of the type(opV 2) =
INSERTFRAG, DELETEFRAG, let OPCV 2 be the set of all operations associated
to a child of fragment(opV 2). Then every opi ∈ OPCV 2 is in conflict opV 1.

Using the J-PSTs for conflict detection reduces the number of required comparisons to
the set of enabled operations. There is no need to compare all operations with each other.
Figure 8 gives an example. The J − PST (V, V1) illustrates the alternative fragment
fE1 which was inserted into process model V1 (see our running example in Figure 1)
and J − PST (V, V2) depicts the inserted concurrent fragment fE2 in V2. The change
operations InsertFragment(fE1,-,-) and InsertFragment(fE2,-,-) that insert these fragments
into V1 and V2 are enabled and conflicting according to Definition 6, since only one
of the operations can be applied in the merged version. Depending on the resolution of
this conflict, the child operations contained in these fragments may also be conflicting.
Thus, they are marked preventively as conflicting, as required by Definition 6.

In the following theorem2 we show that the number of conflicts in the J-PST con-
stitute an upper bound for conflicting transformations, i.e. if two operations are not
conflicting in the J-PST then they cannot be transformation conflicting.

Theorem 3 (TR-Conflicts are limited by J-PST Conflicts). Let a J-PST annotated
with operations be given and let opi be an operation. Then no J-PST conflict between
opi and any other opj induces that opi is not transformation conflicting.

Other than for dependencies, conflicts in the J-PST are not an abstraction but only an
approximation of conflicts on the transformation rules and provide an upper bound of
the overall number of conflicting transformation rules. This means that if two operations
are conflicting in the J-PST then they may be giving rise to conflicting transformations

2 A proof sketch for Theorem 3 can be found in [15].
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Fig. 8. Conflicts between Change Operations in the J − PST (V, V1) and J − PST (V, V2)

but this is not always the case. For instance in Figure 8, the resolution of the conflict
between the two enabled InsertFragment(fE1,-,-) InsertFragment(fE2,-,-) operations, which
is not known prior to resolving the conflict (see [14] for several options of conflict
resolution), determines possible conflicts between child operations. To avoid problems,
we make all the child operations conflicting and recompute conflicts after resolving the
conflict between enabled operations.

6 Tool Support
Our approach has been implemented in a prototype for process model version manage-
ment in the IBM WebSphere Business Modeler and the IBM WebSphere Integration
Developer. For an architectural overview we refer to [9]. In Figure 9 iterative change
resolution in the IBM WebSphere Business Modeler is illustrated. In this view, only
enabled change operations can be selected and applied, whereas dependent operations
are grayed-out. After the application of an enabled operation, the set of enabled opera-
tions is recomputed. Conflicts are visualized to the user as soon as a conflicting opera-
tions is selected for application. Internally, the prototype uses the algorithms described
above for computing position parameters and dependencies of partially specified change
operations.

7 Related Work

One area of related work is concerned with model composition and model versioning.
Alanen and Porres [1] describe an algorithm how to compute elementary change oper-
ations. Kolovos et al. [12] describe the Epsilon merging language which can be used
to specify how models should be merged. Kelter et al. [11] present a generic model
differencing algorithm. Cicchetti et al. [3] propose a metamodel for the specification
and detection of syntactical and semantical conflicts. In the IBM Rational Software Ar-
chitect [17] or using the EMF Compare technology [7], dependencies and conflicts be-
tween versions are computed based on elementary changes. These approaches to model
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Fig. 9. Screenshot of our prototype in WebSphere Business Modeler

versioning deal with the problem of model merging but they do not make use of a model
structure tree (such as our process structure tree). This enables us to compute position
parameters for partially specified change operations and thereby realize iterative change
resolution.

In the area of software evolution, Fluri et al. [8] describe how to use abstract syn-
tax trees and tree differencing for extracting changes and better understanding change
types. Our work uses the process structure trees on the modeling level. One difference
can be seen in the way change resolution is performed because on the modeling level
more flexibility is needed which is incorporated by the concept of partially specified
change operations.

Dependencies of transformation rules have been studied in the literature: Mens et
al. [19] analyze refactorings for dependencies using critical pair analysis. They first
express refactorings as graph transformations and then detect dependencies using the
AGG tool [23]. Graph transformations have also been used extensively for defining
and parsing visual languages [21] where rules are used as parsing rules. Further, graph
transformation rules have been used in various model transformation approaches (see
e.g. [5,2]), as a formal foundation as well as in transformation engines executing a
model transformation. In these approaches, a transformation rule is matched and ap-
plied along existing theory of graph transformation [4]. In contrast to these approaches,
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we study dependencies of change operations that are partially specified using J-PST
dependencies and establish a relationship to TR-dependencies. In our earlier work [14],
we assumed that all change operations are fully specified and in [9] we describe our
general architecture.

Within the process modeling community, Rinderle et al. [22] have studied disjoint
and overlapping process model changes in the context of the problem of migrating
process instances but have not considered dependencies between changes and different
forms of change resolution.

8 Conclusion

Version management of process models poses specific requirements on change opera-
tions: Typically, a flexible change resolution needs to be supported that does not restrict
the user to follow a predefined resolution order of change operations. This requires
dynamic computation of position parameters of change operations.

In this paper, we have introduced the concept of a partially specified change operation
where position parameters are dynamically computed on demand. We have established
a formal model for change operations, based on the theory of graph transformation. We
have then introduced an approach for computing dependencies and conflicts of change
operations based on an underlying tree-based decomposition of the model. Using our
approach enables a user to follow an arbitrary order when resolving changes and reduces
the number of comparisons needed for computing dependencies and conflicts.

We intend to transfer the results to other types of models such as statecharts. Fur-
ther, as our change operations are essentially model transformations with changing pa-
rameters it arises the question whether dynamic computation of model transformation
parameters are also required in other application scenarios.
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mated Transformations for Formal Verification and Validation of UML Models. In: Proceed-
ings ASE 2002, September 2002, pp. 267–270 (2002)
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Abstract. Multi-View Modeling (MVM) is a common modeling practice that
advocates the use of multiple, different and yet related models to represent the
needs of diverse stakeholders. Of crucial importance in MVM is consistency
checking — the description and verification of semantic relationships amongst
the views. Variability is the capacity of software artifacts to vary, and its effec-
tive management is a core tenet of the research in Software Product Lines (SPL).
MVM has proven useful for developing one-of-a-kind systems; however, to reap
the potential benefits of MVM in SPL it is vital to provide consistency checking
mechanisms that cope with variability. In this paper we describe how to address
this need by applying Safe Composition — the guarantee that all programs of a
product line are type safe. We evaluate our approach with a case study.

1 Introduction

Extensive experience in software architecture and design has shown the importance and
necessity of using multiple, different, and yet related models to represent the perspec-
tives and information needs of diverse system stakeholders throughout the development
process. This practice is known as Multi-View Modeling (MVM)[1,2,3]. UML is an ex-
ample of MVM where the different types of diagrams can represent distinct views of
the same system.

MVM intrinsically requires consistency checking whereby all views must adhere
to consistency rules that describe the semantic relationships amongst their elements
[1,2,3]. A classical example of a consistency rule in UML is that if a sequence diagram
has a message m targeting an object of class C, then the class diagram of class C must
contain method m.

Variability is the capacity of software artifacts to vary [4], and its effective man-
agement is a core tenet of the research in Software Product Lines (SPL)[5,6,7]. On
one hand, the significant benefits of applying SPL practices have been extensively doc-
umented and corroborated both in academia and industry [6,8,7]. On the other, MVM
has proven useful for the development of one-of-a-kind systems. Several research works
have added variability into UML modeling because of its extensive use in industry and
academia [9,10,11]. However, the effective use of MVM in SPL demands mechanisms
for consistency checking that cope with variability. To the best of our knowledge, this
issue has not been extensively researched.
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In this paper we propose Safe composition [12], the guarantee that all programs that
can be composed according to the product line domain constraints are type safe (i.e.
they do not have undefined references to structural elements such as classes, methods
or fields), as a technique for consistency checking of MVM with variability. To achieve
the same guarantee, conventional consistency checking approaches without support for
variability would have to be applied to the models of each single member of a product
line which is unfeasible even in small SPL as the number of potential feature combina-
tions can grow exponentially.

We use a representative set of UML consistency rules and a feature composition tech-
nique to illustrate how safe composition can be used for consistency checking. However,
other modeling artifacts, consistency rules and composition techniques can be used.
Furthermore, we define a categorization scheme of consistency rules according to the
number of artifact types they use and their relation with the composition technique. This
categorization enables the identification of conditions where living with inconsistencies
is acceptable (and even expected) and others where inconsistencies are not tolerable. To
evaluate our approach, we developed a prototype tool and applied it to a case study.

2 Running Example

SPL approaches can be broadly categorized in two main groups depending on how
they express variability in software artifacts. In integrative approaches, artifacts con-
tain both the common and variable parts. Building a system means keeping the variable
parts of the desired features in the artifacts while removing those parts belonging to
unselected features [9,13,14]. In compositional approaches, variable parts are encap-
sulated in modular units which are put together according to the features selected for
building a system [15,16,17,18]1. There are several SPL methodologies that advocate a
compositional approach, some of them use multiple views [10,20,15]. To illustrate our
work, in this section we describe the core concepts of the compositional approach and
the example we use throughout the paper.

2.1 Feature Oriented Software Development

Feature Oriented Software Development (FOSD) provides formalisms, methods, lan-
guages and tools for building variable, customizable and extensible software [15]. FOSD
has been successfully used in several case studies [21,22]. FOSD advocates modulariz-
ing features, increments in program functionality [23], as the systems building blocks.
At the heart of FOSD is a feature algebra that drives the (de)composition of software
artifacts [24,16,25,26,27]. A feature module contains all the software artifacts, or parts
thereof, required for implementing the feature. In other words, feature modules capture
the multiple views of a feature.

In FOSD features are composed hierarchically starting from the root element of the
corresponding models. Elements that have the same name and type at the same hierar-
chical level are composed together, elements that do not have a corresponding matching

1 This classification appears with different names in the literature, for example negative or pos-
itive variability respectively[19].
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element are copied along hierarchically. We illustrate FOSD composition with our run-
ning example as we proceed with the explanation of safe composition in next section.
For further details please consult [16,28,29].

2.2 Video on Demand Example

The running example to illustrate our work is a hypothetical product line of video on
demand systems. In this systems family, a video on demand (VOD) system can record
and/or play videos and can be used with either TV sets or mobile phones. Thus our SPL
example contains five features: VOD, Play, Record, TV, and Mobile. In FOSD,
each feature is implemented in a feature module which contains all the required soft-
ware artifacts for its realization. In our example, we use UML class, sequence and state
diagrams2. Figure 1 shows the diagrams of the five features.

The diagrams of feature VOD are shown in Figure 1(a). The class diagram con-
sists of three classes: Service, Streamer, and Program. These classes have some
methods, a navigable association going from Service to Streamer, and one from
Streamer to Program. The sequence diagram illustrates a call of method select
in a Service object and a call of method stream from Service to Streamer.
Lastly, the state machine shows two states in which a Service object can be in. After
receiving a select method call a Service object initializes its information. Simi-
larly, after receiving a go method call it starts streaming the video, and finally when it
receives a stop it goes to a final state.

Figure 1(b) shows the diagrams of feature Play. This feature has a new class
Server, and an association manages with class Streamer whose association end
name is handler. The sequence diagram shows a message go from Streamer to
Service objects, and a message play from Service object to itself. Notice here
that message go is not defined in this feature but in feature VOD. The state machine di-
agram shows a new state Frozenwith new actions resume and pause, as defined in
the class diagram of this feature. Note again that action go is not defined in this feature
but in feature VOD.

Figures 1(c)-(e) show the diagrams of features Record, TV, and Mobile respec-
tively. Note for instance in feature Record depicted in 1(c) that messages wait is
not a method of class Streamer. A similar case occurs in feature TV whose message
caption is not a method of its class Program.

3 Detecting Inconsistencies with Safe Composition

Safe composition is the guarantee that programs composed from multi-view feature
modules according to the product line domain constraints are type safe, i.e. they do
not have undefined references to structural elements such as classes, methods or fields
[12]. Current research on this topic has mainly focused on source code artifacts, partic-
ularly in FOSD extensions to Java-like languages. As pointed out by Thaker et al., the
principles underlying safe composition can be also applied to other artifact types. Our

2 In practice, FOSD feature modules can contain any number of any artifact type (e.g. code,
script files, grammars, etc.), for further details consult [15].
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Fig. 1. Features in VOD SPL
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work shows how safe composition applies to model artifacts by considering consistency
rules that must be met by all composed program models. Safe composition can thus be
used to detect inconsistencies not only on a single view (artifact type) but also amongst
multiple views and most importantly within and across features.

3.1 Safe Composition Principles

Let us start by giving an example of an application of safe composition. Consider feature
Play in Figure 1(b). In this feature, the sequence diagram shows a call to method go
from Streamer to Service. Notice that this method is not defined in the class
diagram of that feature. Safe composition verifies that all valid (according to domain
constraints) combinations of features that include feature Play do also include another
feature where go is defined (implementation constraints).

Safe composition is based on Czarnecki’s et al. observation that implementation con-
straints should follow from domain constraints [30]. Let PLf denote the domain con-
straints and IMPf denote the implementation constraints of a consistency rule instance.
Safe composition uses propositional logic to express and relate these two terms. Be-
cause we are interested in verifying that all members of the product line satisfy a given
implementation constraint, the following formula should not be satisfiable:

¬(PLf ⇒ IMPf) (1)

In case it is satisfiable, it would mean that there is a member of the product line that does
not meet constraint IMPf . By using a satisfiability (SAT) solver, the violating feature
configuration(s) can be identified. This is done for each instance of each implementation
constraint we want to verify. We show next how the propositional formulas of PLf and
IMPf are obtained.

3.2 Obtaining Domain Constraints from Feature Models

Fig. 2. Example of Feature Model

Feature models are a standard way to model the
common and variable features of SPL and their re-
lationships [31,32]. In these models, features are
depicted as labeled boxes and are connected to
other features to form a tree. A feature can be
classified as: mandatory if it is part of a program
whenever its parent feature is also part, and op-
tional if it may or may not be part of a program
whenever its parent feature is part. Mandatory fea-
tures are denoted with filled circles while optional
features are denoted with empty circles both at the child end of the feature relations
denoted with lines. Features can be grouped into: inclusive-or relation whereby one
or more features of the group can be selected, and exclusive-or relation where exactly
one feature can be selected. These relations are depicted as filled arcs and empty arcs
respectively.

Figure 2 shows the feature model of our SPL of on-demand video recorders and
players. In this hypothetical product line, the root feature VOD provides the basic func-
tionality that the video systems offer. In FOSD, a feature in a feature model closely
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corresponds to a feature module. Recall that in our example SPL, a video on demand
(VOD) system have features Record and Play in an inclusive-or relation, meaning
that systems in this product line can: 1) record videos, 2) play videos, 3) record and
play videos. Additionally, in those systems with playing capability, the systems either
have television screens (TV) or screens of mobile devices (Mobile), corresponding to
an exclusive-or relation.

Mapping of Feature Models to Propositional Logic. There exist extensive research
on mapping feature models to propositional logic [33,34]. This mapping is summarized
in Figure 3. Consider now for example the propositional formula for our model in Fig-
ure 2 shown in Equation 2. The first proposition comes from the fact that the root feature
is always selected. The second proposition is the application of the inclusive-or rule for
features Record and Play, while the last two propositions are the application of the
exclusive-or for features TV and Mobile. Thus PLf for our example is:

(V OD ⇔ true )∧
(V OD ⇔ Record ∨ Play )∧
(TV ⇔ ¬Mobile ∧ Play )∧
(Mobile ⇔ ¬TV ∧ Play)

(2)

Fig. 3. Mapping a feature model to propositional logic

3.3 Using Consistency Rules as Implementation Constraints

Consistency rules describe the semantic relationships that must hold amongst the dif-
ferent elements of the views. Consistency rules can be categorized according to the
number of views they involve [35,36]:

– Intra-view: Exactly one view or artifact type is used by a rule.
– Inter-view: Multiple views or artifact types are used by a rule.
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Our extension of safe composition for MVM adds another classification dimension that
depends on the number of features involved:

– Intra-feature: Only one feature is needed to verify a constraint.
– Inter-feature: More than one feature are needed to verify a constraint.

It should be noted here that traditional consistency checking approaches fall into intra-
feature category because they do not address variability issues in their models. Safe
composition, on the other hand, allows us to extend the scope of current consistency
checking approaches to address variability.

Consistency rules are usually specified as well-formedness rules [37], or emerge as
standard best practices in certain domains [38,39]. In our previous work, we devel-
oped UML/Analyzer, a tool that incrementally checks consistency of UML class,
sequence, and state machine diagrams. This tool checks over 30 distinct rules. For our
work on safe composition, we selected seven representative structural rules from this
set. Next we describe in detail each of the selected rules, their categorization, and use
in safe composition with FOSD approach to model composition.

Rule 1. Method parameters should have different names. This rule specifies that in
class diagrams the parameter names of methods in classes or interfaces must be unique.
Clearly, this is an intra-view rule as it uses only class diagram views.

FOSD model composition. In FOSD, methods are matched based on their signature.
This means that if two matching classes with two methods of different signatures are
composed, then both methods are copied along to the result. In other words, FOSD does
not support the addition of new parameters to methods. Thus, rule 1 is also an intra-
feature rule because to validate this constraint it is only necessary to verify the feature
where the method is defined. Because it is an intra-feature rule, safe composition does
not apply as meeting this constraint is independent of how the feature being checked
is composed. Notice however, that if a different composition approach were used that
allows adding new parameters when methods are composed, then this rule would be
classified as inter-feature.

Rule 2. An interface can only contain public operations. This rule specifies that
the methods defined in an interface should have public visibility, i.e. accessible to any
code that references it. Rule 2 can also be categorized as intra-view as it only uses class
diagram views.

FOSD model composition. In FOSD, access modifiers are not composable. Thus,
this rule is also an example of intra-feature rules because it is only required to verify
the feature where the method is defined. Because it is an intra-feature rule, safe compo-
sition does not apply as meeting this constraint is independent of how the feature being
checked is composed. Again, if a different composition approach were used that allows
access modifiers to be composed, then this rule would be categorized as inter-feature.

Inter-feature Consistency Rules and Safe Composition. The properties denoted by
inter-feature consistency rules make use of safe composition for two distinct purposes:
1) to assert the presence of a structural element that a feature requires, or 2) to assert
the exclusion of a structural element that a feature conflicts with. We refer to these two
kinds of rules as requiring and conflicting respectively.
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Requiring rules. Let F be a feature that refers a model element e defined in another
feature. For a system program that includes feature F, it must therefore also include
at least one other feature Freqi where element e is defined. This is denoted in the
following expression3 :

IMPf ≡ F ⇒
∨

i=1..k

Freqi (3)

By substituting IMPf in Equation 1, we obtain the logical expression that is passed to
the SAT solver. In this case is the conjunction of all the terms of the features that define
an element that feature F requires.

¬(PLf ⇒ IMPf ) ≡ PLf ∧ F
∧

i=1..k

¬Freqi (4)

When feature F requires an element that is not defined in any other features, that is
expression

∨
Freqi evaluates to false, it means that such element is not defined in

the entire product line. This situation is clearly an error and renders unnecessary to
verify this constraint with the SAT solver.

Conflicting rules. Let F be a feature that defines a model element e. A feature
Fconfi conflicts with feature F if it has an element d which cannot be present in the
same program where element e is also present. Put in different words, because of the
conflict between elements e and d, if feature F is selected as part of a system program,
then feature Fconfi cannot be selected. The propositional logic expression is thus:

IMPf ≡ F ⇒ ¬(
∨

i=1..k

Fconfi) (5)

By substituting IMPf in Equation 1, we obtain the logical expression that needs to be
passed to the SAT solver. In this case, they are k disjunctions, one for each feature F
has conflicting elements with. Thus it requires k calls to the SAT solver.

¬(PLf ⇒ IMPf ) ≡
∨

i=1..k

(PLf ∧ F ∧ Fconfi) (6)

In the case where feature F has no conflicts with any other features, that is expression∨
Fconfi evaluates to false, it is thus unnecesary to evaluate this constraint for

element e.

Rule 3. Association ends must have a unique name within the association. This rule
specifies that for any given association the names of its ends must not be repeated.

FOSD model composition. To illustrate this rule please consider features Mobile
and TV in Figure 1(e) and Figure 1(d) respectively. FOSD composition of the corre-
sponding class diagrams dictates to compose association provides between classes

3 For notational simplicity in the rest of the paper, we overload feature terms such as F or Freqi

to mean propositional logic terms and the set of software artifacts. We make the distinctions
explicit when necessary.
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Service and Program because their names are the same and their types (association
between Service and Program) also match. Notice however that the association
end names of class Server are channel and protocol. This name mismatch vio-
lates this rule as the association end of Server has more than one name. This means
that if feature TV is selected then feature Mobile cannot be selected because of this
naming conflict. From this example, for FOSD composition technique, Rule 3 is then
an example of intra-view and inter-feature rule.

Consider now feature Mobile Figure 1(e) feature in Play in Figure 1(b). FOSD
dictates to compose association manages between Server and Streamer because
their matching names and types. The association end of class Streamer is named
handler on both features so no naming conflict arises on this class. The associa-
tion end of class Server is named controller in feature Mobile and it is unde-
fined in feature Play. In FOSD, the composed end name is controller. Therefore,
in the composition of this association there is no conflict between features Play and
Mobile.

Rule 3 is an example of a conflicting rule because of the naming conflicts in the end
names. More formally, and using Equation (5), let F be a feature of the SPL that contains
association assoc between classes A and B with respective association end names
assoc.Aname and assoc.Bname

4. A conflicting feature Fconfi is then defined as
follows:

Fconfi contains association assoc between classes A and B,
and [( F.assoc.Aname �=Fconfi.assoc.Aname ∧ F.assoc.Aname �=null ∧

Fconfi.assoc.Aname �=null ) ∨
( F.assoc.Bname �=Fconfi.assoc.Bname ∧ F.assoc.Bname �=null ∧
Fconfi.assoc.Bname �=null )]

(7)
In words, this condition establishes that two features conflict in an association if they
define non-null names that are different. Applying Equation (5) to the two examples just
illustrated, we have that feature Mobile conflicts with feature TV but does not conflict
with feature Play. Thus in this example IMPf ≡ Mobile⇒¬TV.

Rule 4. At most one association end may be an aggregation or composition. This
rule specifies that any given association can only have either an aggregation or a com-
position but not both.

FOSD model composition. As an example, consider features TV and Mobile in
Figure 1(d) and Figure 1(e) respectively. Both features have in their class diagrams an
association stores between Program and Server. Notice however that the com-
position lies at different sides of the association. Thus, selecting both features together
violates this rule. Clearly because this rule involves only class diagrams and two fea-
tures it is and example of intra-view and inter-feature rule. Furthermore, it is a conflict-
ing rule because the existence of an aggregation or composition in one feature excludes
the existence of another aggregation or composition at another feature.

4 As notational convention we use qualified names to denote containment of elements and sub-
scripts to refer to their values.



226 R.E. Lopez-Herrejon and A. Egyed

More formally, and using Equation (5), let F be a feature of the SPL that contains
association assoc between classes A and B. A conflicting feature Fconfi is then
defined as follows:

Fconfi contains association assoc between classes A and B,
and [(F.assoctype=aggregation ∨F.assoctype=composition )∧

(Fconfi.assoctype=aggregation ∨Fconfi.assoctype=composition )]
(8)

In words, this condition establishes that two features conflict if an association defines
either an aggregation or composition in feature F and on the same association but in
feature Fconfi there is either an aggregation or a composition. Applying Equation (5)
give us IMPf ≡ Mobile⇒¬TV.

Rule 5. Message action must be defined as an operation in receiver’s class. This
rule specifies that in a sequence diagram a message action should have a corresponding
operation defined in the class diagram of the message receiver’s class.

FOSD model composition. As an example for this rule, the sequence diagram of
feature Play in Figure 1(b) refers to method go but feature Play does not define it in
its class diagram. Thus, every time that feature Play is selected, another feature that
defines method go must also be selected. In this example, the class diagram of feature
VOD in Figure 1(a) provides such definition and can thus be selected when feature Play
is selected. This rule is then an inter-feature rule, and because it involves class diagrams
and sequence diagrams an inter-view rule. Furthermore, it is a requiring rule because
the existence of a message action demands the existence of a method that defines it in
the target class.

More formally, and using Equation (3), Let F be a feature of the SPL that contains
message action msg with receiver’s class Cls. A requiring feature Freqi is then de-
fined as follows:

Freqi contains method msg in class Cls in a class diagram (9)

In words, this condition establishes that a feature whose sequence diagram references
a method requires the definition of that method in the class diagram of another feature.
Applying Equation (3) thus give us IMPf ≡ Play⇒VOD.

Rule 6. State machine action must be defined as an operation in owner’s class
This rule specifies that in a state machine associated to a class the actions should be
operations defined in the class diagram of such class.

FOSD model composition. This rule is similar to Rule 5. Consider now the state
machine diagram of feature Play in Figure 1(b) that has transition method go, but
again it is not defined in the class diagram of this feature. Thus, whenever feature Play
is selected there must be another feature where method go is defined. As we have seen,
this method is defined in feature VOD in Figure 1(a). Because this rule involves class
and state machine diagrams in more that one feature, it is an example of inter-view and
inter-feature rule. Furthermore, it is a requiring rule because the existence of an action
in a state machine diagram requires its definition in another feature’s class diagram.

More formally, and using Equation (3), Let F be a feature of the SPL that contains
a state machine action msg. Let F be a feature module of the SPL that has transition
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method msg in state machine of class Cls. A requiring feature Freqi is then defined
as follows:

Freqi contains method msg defined in class Cls (10)

In words, this condition establishes that a feature that has a state machine diagram
that references a method requires the definition of that method in the class diagram of
another feature. Applying Equation (3) thus give us IMPf ≡ Play⇒VOD.

Rule 7. Calling direction of message must match calling direction of association
This rule specifies that if a sequence diagram has a message going from an object of
class A to an object of class B then in the class diagram the relationship between both
classes should be navigable in that direction.

FOSD model composition. As an example of this rule, consider feature Record in
Figure 1(c) that has message load fromStreamer to Program. Notice however that
in this feature the direction of the association between these two classes is the opposite.
Therefore, if feature Record is included there must be another feature that defines
a navigable association from Streamer to Program, in our case feature VOD in
Figure 1(a). Because this rule involves sequence and class diagrams on multiple feature
it is an example of inter-view and inter-feature rule. This rule is requiring because the
existence of a message in the sequence diagram demands the existence of an association
navigable in the direction of the message in a class diagram.

More formally, and using Equation (3), Let F be a feature of the SPL that contains
a message going from an object of class Src to an object of class Tgt. A requiring
feature Freqi is then defined as follows:

Freqi contains navigable association from class Src to class Tgt (11)

Applying Equation (3) thus give us IMPf ≡ Record⇒VOD.

3.4 Analysis

This section summarizes the main insights gained with our application of safe compo-
sition for MVM consistency checking.

Safe composition granularity. Table 1 shows the classification of our rules along
the two dimensions. Rule 1 and Rule 2 highlight the fact that not all consistency rules
are applicable to safe composition. The distinctive characteristic of both rules is that
their level of granularity, method parameter names for Rule 1 and access modifiers for
Rule 2, falls below the granularity level of FOSD composition. In other words, FOSD
composes elements such as methods or classes (coarser granularity) but not their nested
elements (finer granularity). This observation is summarized in the following principle:

Principle of Safe Composition Granularity: Safe composition is applicable to
consistency rules that operate at the granularity level supported by the model

composition mechanism.
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Table 1. Classification of consistency rules

Intra-view Inter-view

Intra-feature
Rule 1
Rule 2

Inter-feature
Rule 3 Rule 5
Rule 4 Rule 6

Rule 7

Tolerable and intolerable inconsistencies. Our categorization of consistency rules
along two dimensions allows us to further distinguish two types of inconsistencies from
a compositional perspective. We call intolerable inconsistencies those that arise from
violations to rules that are both intra-view and intra-feature because they render fea-
tures unfit for composition. On the other hand, we call tolerable those inconsistencies
arising from violations to inter-feature rules because it is expected that they be fixed by
composition with other features. Finally, it should be noted that in the sample of consis-
tency rules we analyzed there was no rule categorized as inter-view and intra-feature.
In the case of FOSD, this follows in part from the fact that feature composition can add
elements to any views.

Multi-feature consistency rules. The inter-feature rules we presented involved only
two features. Our consistency checking tool UML/Analyzer uses 34 consistency
rules, out of those there are only two rules that can involve more than two features.
One of such rules checks that circular inheritance does not occur. A solution would be
along the lines proposed by Thaker et al. that would collect the inheritance information
by succesively composing all features and relying on the monotonicity of the compo-
sition detect the circular references [12]. The implementation of this alternative and its
evaluation are part of our future work.

More expressive formal representation and automated rule generation. Currently,
our rules have been manually implemented following their OCL description in relation
to the FOSD approach for model composition. However, we believe that some (if not
all) the implementation could be generated directly from formal rule specifications and
the underlying semantics used for model composition. This is a topic of our future
research.

3.5 Evaluation

We used the Graph Product Line (GPL) [40] as case study for our approach. The fea-
tures of this product line are basic graph algorithms and data structures. A GPL program
is a combination of different algorithms implemented on different data structures. There
are implementations of GPL available in several programming languages. The models
used in our study were manually drawn in the Eclipse UML editor from a Java version
of GPL.

We implemented a prototype tool that uses EMF to parse and gather information
from the EMF models [41], and PicoSAT SAT solver to test for satisfiability [42].
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Despite of being a short example, we found a total of 298 distinct instances of consis-
tencies rules. When mapped to propositional logic, the FODA model of GPL consists
of 22 domain constraints: 5 mandatory, 2 optional, 2 exclusive-or, 1 inclusive-or, 1 ex-
cludes, and 11 requires. These domain constraints amounted to 39 propositional clauses
when normalized to CNF for use by PicoSAT.

Our experiments showed that the time taken to evaluate consistency rule instances
by the SAT solver was negligible (in the magnitud of nanoseconds when run on an Intel
Core-Duo at 2.8 GHz) as the number of clauses involved and the number of variables
(one for each of the nineteen features) are of relatively small size for what SAT solvers
such as PicoSAT can effectively handle. Though encouraging results, the scalability and
performance of our approach needs to be more extensively validated with more complex
examples of SPL that contain larger models on which to validate more consistency rules
instances. Doing that is part of our future work.

4 Related Work

There is a significant amount of related literature. We focus on the research that most
closely relates to our work and divide them in three categories.

FOSD Model Composition. Our previous work has shown the applicability of an
algebraic representation to describe model composition in use case slices, an Aspect-
Oriented modeling techniques based on UML diagrams [43], when used for SPL mod-
eling [44]. Work by Umapathy developed basic composition of UML diagrams using
XAK, a FOSD composer of XML-based artifacts [45]. Our recent work has shown the
applicability of rewriting technologies for composing UML class diagrams exploiting
the native support of algebraic properties of operators in Maude [28]. Work by Apel et
al. uses superimposition to compose simple UML diagrams that are treated as trees [29].
These technologies are different alternatives to support model composition for FOSD.

Models and Software Product Lines. Product Line UML-based Software engineering
(PLUS) [9] is a method that brings FODA ideas to UML. PLUS uses features through-
out the entire product line development process, however their boundaries are lost in the
model diagrams. In other words, most of the diagrams in this approach show elements
that either belong to all the product line or to those of a particular product configuration
(i.e. a selected set of features). This is an example of the integrative approach to vari-
ability management. Jayaraman and Whittle have developed a compositional approach
to PLUS whereby models are modularized in feature slices, collections of fragments of
UML diagrams, that are composed via graph transformations [10]. To the best of our
knowledge their work does not make any provisions for consistency checking of the
composed feature slices.

Safe Composition and Well-formedness. Work by Czarnecki et. al uses OCL con-
straints to specify and verify well-formedness in model templates. In contrast to our
work, this is an integrative approach for variability modeling [30]. Work by Kästner et
al. follows an integrative approach whereby program elements are annotated with dis-
tinct colors to visually indicate the features they belong to [46]. It enforces two simple
structural rules to guarantee syntactic correctness of the programs derived.



230 R.E. Lopez-Herrejon and A. Egyed

5 Conclusions and Future Work

In this paper we showed how safe composition principles can be applied for MVM
consistency checking in the context of SPL. We used a representative set of UML con-
sistency rules as illustration of our approach. These rules were categorized according to
the number of views and their relation to feature composition. Though our work is pre-
sented in the context of UML and FOSD, our results can be mapped to other modeling
artifacts, constraints, and composition approaches.

We implemented a prototype tool and used it in a case study to evaluate the feasibility
of our approach. Performance and scalability were not an issue for this case study. How-
ever, these aspects need further assessment with larger and more complex product lines
as well as considering more consistency rules. Such an assessment is part of our future
work. FOSD composition has been defined as a monotonic operation. Recent work by
Kuhlemann relaxes this requirement to consider non-monotonic composition [47]. We
plan to investigate alternatives for non-monotonic model composition along the lines of
this work. SAT solvers are just one technology used for consistency checking. Because
of the incremental nature of feature composition, we will explore the applicability of
incremental consistency approaches, like UMLAnalyzer[38,39], to safe composition.
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Abstract. This paper describes a model-based method to evaluate per-

formance of embedded systems. The core technology of this modeling

method is reverse modeling based on dynamic analysis of the existing

systems. A case study of real MFPs (multifunction peripherals/printers)

is presented in this paper to evaluate the modeling method.

1 Introduction

Multi-core architectures have become the focus of boosting our hardware ca-
pabilities. However, most of legacy embedded software works on a single-core
processor. This makes product development for multi-core architectures using
legacy software difficult. In general, it is necessary to decide the system ar-
chitecture in the early stages of product development to achieve the required
performance.

System-level simulations based on models are good solutions for performance
estimation in the early stage of product development. UML is widely applied to
model a large variety of application software. Nowadays, it is generally recognized
that embedded and real-time systems are good target for UML 2.0 and later
version (UML 2.x) [1] [2].

This paper proposes an UML 2.x modeling method for performance evalu-
ation of system-level design by reverse modeling of legacy embedded systems.
The reverse modeling method in this paper is a reverse engineering for creating
abstract behavioral features of models using dynamic analysis of the existing
systems. This paper focuses on the architectural design of system components,
and the performance optimization of component design is not the scope. Related
work is mentioned in Section 2. An overview of our work appears in Section 3.
The reverse modeling method is described in Section 4. Section 5 presents a case
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study applying this method to a real MFP (multifunction peripheral/printer).
Section 6 presents an evaluation of this method by comparing the performance
estimation results of models with the performance of a real MFP prototype.
Finally, Section 7 concludes this paper.

2 Related Work

Reverse engineering is important because most of modeling opportunities target
the legacy embedded systems. In general, reverse modeling is a sort of reverse
engineering for creating models of the legacy systems. Our method assumes that
system development starts from analysis of legacy systems. And, the objective
of our method is to decide the system architecture by considering the system
performance. Therefore, our method needs to create an abstract model that
represents the system architecture.

Riva and Rodriguez proposed a reverse engineering technique for architecture
reconstruction by combining static and dynamic information views [3]. They
developed a MSC (Message Sequence Charts) visualization tool for the dynamic
information view, and two types of abstractions was supported on the tool.
Horizontal abstraction lumps instance A and B in a MSC (lifelines in a sequence
diagram of UML 2.x) as an instance AB and messages between A and B are
suppressed from the view. Vertical abstraction packs a number of messages into
a message where those messages are consecutive in chronological order. Our
method integrates a number of messages (interactions in a sequence diagram
of UML 2.x), however our method differs from the vertical abstraction since
our method does not require that the messages are consecutive in chronological
order. Our method merges messages with low weights into a message with a
high weight, and it is not needed that the merged messages with low weights are
consecutive.

3 Modeling Method and Simulation

An overview of our model-based performance evaluation method is shown in
Fig. 1. The method starts by capturing the execution traces of the target em-
bedded system’s behaviors with a system observation technology [4]. This tech-
nology injects small code fragments into the source code which output function
IDs and optional data to the system interface. The functions to be injected are
specified in a pre-defined list before the target system build. The invocation in-
formation of the specified functions will be captured by a dedicated probe, and
be recorded with their timestamps and the values of specified parameters. Those
code fragments for system observation are low-intrusive since they output small
size of data for function IDs basically. It was 0.23% of the total system perfor-
mance at the case study reported in this paper. Note that the reverse modeling
method does not depend on the system observation technology.

The target execution traces are eliminated by the method proposed in this pa-
per. And, sequence diagrams in UML are created by combining dynamic analysis
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Fig. 1. Overview of Model-based Performance Evaluation

of the eliminated execution traces and static analysis of documents and code.
And then state machine diagrams are created from the sequence diagrams. After
that, the model is modified to represent the architectural changes that denotes
parallelization to improve the system performance for the next-generation prod-
ucts. At the same time, performance information is extracted by analyzing the
execution traces to be externalized as files, and used when the model is executed
to simulate the system performance. This means that the model simulation is a
sort of trace-driven simulation [5].

This paper is focusing on the reverse modeling method, which is the key tech-
nology of our work. The reverse modeling method involves the modeling using
dynamic analysis, which creates a model from the execution traces captured
while observing the behaviors of the legacy embedded system. There are two
reasons why the reverse modeling method is defined as a method using dynamic
analysis. The first reason is the accuracy of the system behaviors. Static analysis
can extract precise information from the source code. However, several aspects of
dynamic characteristics make accurate analysis difficult. These include data de-
pendencies, pointers to functions, and others. Dynamic analysis using execution
traces can elucidate the performance of software components.

The second reason is abstraction. The complexity of model must be reduced
by abstraction of behaviors. To abstract the behaviors, it is crucial to analyze
the execution traces from an appropriate viewpoint. Unimportant information
for the behaviors as seen from the selected viewpoint should be eliminated in the
generated model. Since our method assumes the model is used for the perfor-
mance estimation by its simulation, our concern is performance. For the dynamic
analysis, execution traces can be abstracted when the execution traces include
performance information, such as execution times, resource utilization, and so
on. However, in the static analysis, source code cannot be abstracted to reveal
the performance because performance information is not included in the source
code and the performance cannot be predicted without execution.
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4 Reverse Modeling of Behavior

The reverse modeling creates behavioral features of a model from execution
traces. The execution traces are abstracted based on the performance, so that
unimportant invocations are merged to important invocations. The importance
of each function invocations is calculated as a weight from the performance
information in the execution traces, such as execution time of each function
invocation. The selection based on the importance of the function invocations is
called abstraction of execution traces. The selected invocations are regarded as
representatives of the system behavior, which are dominant about the system
performance on the behavior. For example, the execution time of each invocation
can be used as the weight. And the total execution time of selected invocations
is a large portion of the entire execution time of system behavior.

The outlook of abstraction of execution traces is shown in Fig. 2. An execution
trace includes entries and exits for function invocations, timestamps, and other
performance information (such as memory utilization). The performance infor-
mation is used as weights for the abstraction. The abstraction is based on the
premise that objects are identified prior to the abstraction and every function
belongs to either one of the identified objects respectively. In Fig. 2, objects V,
W, X, Y, and Z have been identified, and functions A and B belong to the object
V, functions D and F belong to the object W, functions E, G, L, and M belong
to the object X, functions H, N, and O belong to the object Y, and functions I,
J, K, and P belong to the object Z. When the execution trace is transformed into
a sequence diagram without abstraction, it produces the complicated sequence
diagram on the left side of Fig. 2. In the reverse modeling, the execution trace is
transformed into an object call tree. Every node denotes a function invocation.
With the object call tree, every function invocation is distinguished as an inter-
nal interaction within an object or as an interaction between objects. Note that
the same function name will appear more than once in the object call tree.

An object call tree T is defined as

T = (N, s), (1)

where N is a set of nodes that denote function invocations, and s is a mapping
from the node to a sequence of nodes that denotes a list of function invocations
called from inside the invocation. The mapping s is defined as a partial function:

s : N −→ seq N, (2)

where seq N is a set of sequences of zero of more elements in the set N . The
sequence s(n) is a list of sub-nodes of a node n in the object call tree.

Also, a mapping from the function invocation to object o is defined as a total
function:

o : N −→ O, (3)

where O is a set of identified objects. The object o(n) is an object where the
function invocation n belongs.
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Fig. 2. Abstraction of Execution Traces

Suppose that the weight of the function invocations w is given, which is a
mapping from function invocations N to the weight W . The mapping w is defined
as a total function as follows.

w : N −→ W (4)

The mapping w must satisfy an invariant such that

∀n ∈ N

⎡
⎣w(n) ≥

#s(n)∑
i=1

w(s(n)[i])

⎤
⎦ , (5)

where #s(n) is the length of sequence s(n) and s(n)[i] is an element as position
i in the sequence s(n).

The execution time of function invocation satisfies the invariant because the
execution time of every function invocation equals the total amount of execution
time of the sub-function invocations. Therefore, the execution time can be used
as the weight mapping w. Alternatively, the amount of the datagram received
from or sent to the network or bus during the function invocation, and the
amount of memory allocated during the function invocation can be used as w.
The weight mapping w is defined based on performance information considered
in the system analysis stage.

An abstract object call tree TA is defined as

TA = (NA, sA), NA ⊆ N, sA : NA −→ seq NA, (6)

where the node sequence sA(n) denotes a sequence of node children as function
invocations within the function of node n in TA. In additions, NA and sA must
satisfy the relationship:

∀n ∈ NA, ∀i ∈ N

[ 1 ≤ i ≤ #sA(n) → r(n, sA(n)[i], s, o(n), o(sA(n)[i])) ], (7)
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where N is the set of natural numbers. And the reachability predicate r(m, n, s,
om, on) means that it is reachable from the node m to n through the intermediate
nodes which belong to om or on and are calculated by s. The definition of r
follows.

r(m, n, s, om, on) ≡
o(m) = om ∧ [ m = n ∧ o(n) = on ∨ m �= n ∧ rs(m, n, s, om, on) ] (8)

rs(m, n, s, om, on) ≡
∃i ∈ N, k ∈ N [ 1 ≤ i ≤ #s(m) ∧ k = s(m)[i]

∧ (o(k) = om ∨ o(k) = on) ∧ r(k, n, s, o(k), on) ] (9)

Suppose that the threshold t is given as a real number in the closed interval
[0, 1]. And NA and sA must satisfy the following relationship to t:

∀n ∈ NA

⎡
⎣

#sA(n)∑
i=1

w(sA(n)[i]) ≥ t ∗ w(n)

⎤
⎦ (10)

The object call tree T and the abstract object call tree TA is shown at the
middle in Fig. 2. The difference between T and TA is the elimination of some
nodes whose weights are not dominant to the total amount. The node which
is not dominant on performance is eliminated in two ways. The first one is
simplification of nodes in an object, which is related to Equation 7. In Fig. 2,
the root node invokes the node A and A invokes the node D. Both the root node
and A belong to the same object V, and the node D belongs to the object W. In
short, the node A is an intermediate node on the interaction between the object
V and W, i.e. V interacts with W via the invocation of A. The reverse modeling
method suppresses the intermediate nodes by merging them into the ancestor
node which is the representative node of the object interactions.

The second one is condensation of leaf nodes, which is related to Equation 10.
In Fig. 2, the node E invokes the node J, K and L. The node E and L belong
to the same object X, and the node L is simplified and merged to E by the first
elimination way described above. The remaining node J and K are leaf nodes
and they belong to the object Z which differs from X. It represents that there
are object interaction between X and Z. It is supposed that the weight of K
invoked from E is high but the weight of J invoked from E is low. The method
condenses the leaf nodes with low weights where nodes with high weight exist
in the same object of the leaf nodes, by merging them into the ancestor node
which is the representative node of the object interactions. Threshold is used for
deciding whether the leaf node with low weight to be condensed.

In both node elimination ways, the ancestor node acts over the eliminated
nodes. It means that the abstraction substitutes the ancestor nodes for the elim-
inated nodes as the representatives in the system behavior. Note that the node
elimination does not remove the eliminated nodes, but merges them to the an-
cestor nodes for simplifying the behavioral representation.

After the abstract object call tree is created, the execution trace is extracted
by filtering with the nodes NA, then the extracted execution trace is transformed
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into the abstract sequence diagram shown at the right hand side in Fig. 2. State
machine diagrams of the identified objects can be created from the abstract
sequence diagram by existing model transformation technologies [6].

5 Case Study - MFP Print Job Processing

A case study about applying this method to a real MFP is presented in this
section. And the results of model simulation about performance improvement
by parallel processing is also presented. The print job processing component is
significant one of MFP components. Fig. 3 is overview of MFP print job process-
ing. A print job is processed with two steps, the former one is the translation
of the print job in a PDL (Printer Description Language) into the intermedi-
ate primitive commands, the latter one is the rasterization of the intermediate
primitive commands to create a logical print page. The intermediate primitive
command mechanism is broadly used by the most of printers and MFPs. We
have named the intermediate primitive commands as “Image List (IL)”, so the
former step is IL generation step and the latter step is IL processing step.

Fig. 3. Overview of MFP Print Job Processing

At first, the behavior of existing product is captured as an execution trace by
the observation technology. An execution trace sample is shown at the left side
in Fig. 4, which is mainly of IL processing step. The execution trace is converted
to the function call tree Tf , and the performance parameters are extracted from
the trace shown at the right side in Fig. 4. The nodes in Tf with digits (“14”,
“15” and “31”) and the mark “*” denotes iterative invocations, the digits are
the numbers of iterations, and the mark “*” means lots of iterations.

An object call tree T is created from the function call tree Tf by object identi-
fication. For the reverse modeling, it is necessary to identify objects by grouping
functions or classes of the source code. Since the system-level behavior should
be considered as interactions of coarse-grained objects, “modules” specified in
the design documents are suitable as the objects at this case.

The object call tree T created from the function call tree Tf is shown at
the left side in Fig. 5. The tree T has 15,340 nodes. Since the tree T is large,
its sequence diagram must be complicated. Fig. 5 shows the elimination of the
tree T by abstraction argued in Section 4, in order to create an abstract object
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Fig. 4. An Execution Trace of Print Job Processing (as Function Call Tree and Ex-

tracted Performance Parameters)

call tree TA. At the abstraction of this case, the execution time of function
invocation is used as the weight, and the threshold t given as 0.95 (95%). The
nodes with the mark “*” have very short execution times, therefore, the nodes are
eliminated although they are numerous. And, the intermediate nodes are merged
to the ancestor nodes because they are in the same object of their ancestor. The
tree TA created by the abstraction has 155 nodes. The number of nodes will
be reduced considerably by the abstraction method. And the behavioral model
created with the abstract tree is appropriately exact because the created abstract
tree TA satisfies that the amount of execution times in TA must be over 95%
(the threshold t) of the total amount of the execution traces.

The threshold t is decided by analyzing the abstraction results of execution
traces at all test cases. Fig. 6 shows the rate of execution times at 20 test cases
defined as JEITA Printer Benchmark Test Patterns J12 set [7]. It represents
that the amount of the selected five functions’ execution times (comp, decomp,
buf, ucr, rip) is over 95% of the execution times of function “band” at all
20 test cases in J12 set. In P11 case, for example, the summation of execution
times about “comp”, “buf” and “rip” is over t (=95%) of the execution times of
function “band” even if “decomp” and “ucr” are not selected. However, in other
cases, it is under t when “decomp” and “ucr” are not selected. Therefore, the five
functions are needed to be selected in consideration of all 20 test cases. Besides, if
t is raised over 95%, additional functions must be selected because it gets low on
the execution time at several test cases (P4, P5 and P8). Since those execution
times are relatively short, the number of selected function will increase sharply.
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Fig. 5. Abstract Object Call Tree of Print Job Processing

Fig. 6. Rate of Execution Times at JEITA Test Cases

On the other hand, if t is decreased too much, some of those five functions will
not be selected. For example, if t is set to 85%, the function “decomp” will not
be selected. In this way, it is needed to find an appropriate threshold t in a try-
and-select process. The tree TA shown in Fig. 5 is transformed into the sequence
diagram shown in Fig. 7. And the state machine diagram is created from the
sequence diagram by existing model transformation technologies [6].

For parallelization of the model, we assumed an AMP (asymmetric multi-
processing) architecture, which was the architecture of special-purpose process-
ing units (GEU, RPU, etc.) and a number of general purpose MPUs. Software
components are allocated to MPUs. As shown in Fig. 3, major components are
IL Generation and IL Processing. And so, we made a decision that IL Processing
was allocated to one MPU and IL Generation was allocated to multiple MPUs.

At the same time of the reverse modeling, performance parameters are ex-
tracted from the execution traces. The extraction of execution time as perfor-
mance parameters is shown in Fig. 4. These performance parameters are stored
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Fig. 7. Abstract Sequence Diagram of Print Job Processing

as external files, and they will be loaded at the model simulation time in order
to calculate the performance result. The parallelized model is executed on the
timed simulation environment. The model simulation with the performance pa-
rameters extracted from execution traces is a sort of trace-driven simulation [5].
Since the system performance of print job processing depends on the print job
data, the trace-driven simulation is suitable for performance evaluation of MFP
and similar electrical products.

6 Evaluation

As an evaluation of the reverse modeling method, a comparison of system per-
formance data between model simulation and real system is discussed here. As
the target real system, we made a MFP product prototype. The MFP prototype
was developed on a FPGA board with dual-core PowerPC processors. The source
code of existing MFP product was ported to the platform, which was designed
for a single processor system. After porting, we re-designed the MFP software
for an AMP architecture. The IL Generation component was allocated to one
PowerPC processor core, and the IL Processing component was allocated to an-
other PowerPC processor core, and they are working in parallel. As the results
of MFP prototype development, we made the prototype for a single processing
system and the prototype for an AMP architecture.

The reverse modeling and simulation for performance evaluation were done
according to the following procedure. At first, execution traces were captured
by observation of the prototype for single processing system. JEITA Printer
Benchmark Test Patterns were used for the system observation. And, the model
of single processing system was created by the reverse modeling method from
these execution traces. At the same time, the performance parameters were ex-
tracted from the execution traces. After that, the model of AMP architecture was
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Fig. 8. Evaluation with JEITA Printer Benchmark Test Patterns

created by parallelizing the model of single processing system. And then, perfor-
mance results were evaluated by simulating the model of AMP architecture with
the performance parameters. Finally, the performance evaluation results were
compared with the performance data by the system observation of the MFP
prototype of AMP architecture.

Fig. 8 shows the comparison of the model simulation results and the MFP pro-
totypes. There are the model of single processing system (“Single Proc. (simula-
tion)”), the prototype for single processing system (“Single Proc. (observed)”),
the model of dual-core AMP architecture (“Asym. Multi. Proc. (simulation)”),
and the prototype for dual-core AMP architecture (“Asym. Multi. Proc. (ob-
served)”). Six test patterns in J12 set of JEITA Printer Benchmark Test Pat-
terns were used for the comparison. For example, “J12p07” means that the test
case uses the page 07 test pattern in J12 set. Each test case consists of the four
same pages, and the test case “J12p07” is composed of the four same pages as
the page 07 in J12 set. For most print test patterns, the performance evaluation
results of the model of dual-core AMP architecture are nearly equal to the re-
sults of MFP prototype for dual-core AMP architecture. Note that, for the AMP
architecture cases, there are performance overhead about data transfer between
processors via the internal bus and memory access. The performance overhead
is relatively bigger at the cases of small print test patterns (J12p13 and J12p15)
than the cases of large print test patterns (J12p02, J12p03, J12p07 and J12p11).

7 Conclusions

This paper presents a reverse modeling method for performance evaluation us-
ing dynamic analysis of legacy embedded systems. The method creates abstract
behavioral feature of models by eliminating execution traces of existing prod-
ucts. Abstraction of behavioral feature by eliminating execution traces is the
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key technology, which is done by considering every function invocation’s weight
dominant to the total amount how much the function will effect the entire system
performance. A case study about applying this method to real MFP is presented
in this paper as an evaluation of the method.
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Abstract. A change to a software development artefact, such as source

code or documentation, can affect the integrity of others. Many con-

temporary software development environments provide tools that auto-

matically manage (detect, report and reconcile) integrity. For instance,

incremental background compilation can reconcile object code with chang-

ing source code and report calls to a method that are inconsistent with

its definition. Although models are increasingly first-class citizens in soft-

ware development, contemporary development environments are less able

to automatically detect, manage and reconcile the integrity of models

than the integrity of other types of artefact. In this paper, we discuss the

scalability and efficiency problems faced when managing model integrity

for two categories of change that occur in MDE. We present a framework

to support the incremental management of model integrity, evaluating

the efficiency of the proposed approach atop Eclipse and EMF.

1 Introduction

Software development often involves constructing a system by combining numer-
ous types of interdependent artefacts (such as models, source and object code,
build scripts and documentation). Some examples of these dependencies include:
generating source code and documentation from models, compiling object code
from source code, and deploying object code using a build script. When a devel-
opment artefact is changed, it may affect the integrity of dependent artefacts.

The definition of integrity varies depending on the artefacts being considered.
For example, Java object and source code might be considered consistent when
the object code contains a .class file for each .java file in the source code.
Without automation, detecting, reporting and reconciling integrity problems can
arguably become tedious and error-prone. For automatic integrity management,
impact analysis is key to efficiency. Incremental compilation, for example, re-
quires impact analysis for identifying the object code artefacts affected by a
source code change.
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Although models are increasingly first-class citizens in software development,
contemporary development environments are less able to automatically manage
the integrity of models than the integrity of other types of artefact. In this
paper, we propose an efficient framework for managing two categories of model
integrity, inter-model and model-metamodel. To demonstrate the soundness of
our proposal we have implemented a prototype, named Concordance, on top of
the widely used Eclipse Modeling Framework (EMF) [1] in the context of the
Epsilon GMT component [2].

The rest of the paper is organised as follows. Section 2 discusses inter-model
and model-metamodel integrity, highlighting challenges to their automation. Sec-
tion 3 proposes an integrity management framework that drastically reduces the
cost of performing impact analysis for inter-model and model-metamodel in-
tegrity checking. Two example uses of the framework are presented in Section 4,
while Section 5 evaluates the performance gains delivered through the prototype.
Related work and our conclusions are presented in Sections 6 and 7, respectively.

2 Background

Given the overloaded use of the terms model and model element, we clarify
context and relevant abstractions before outlining our proposed approach. Our
aim here is not to redefine these terms globally but instead to define a coherent
set of abstractions that are both useful for the problem at hand and generic
enough so that they can be implemented in a wide range of modelling platforms.
Previous work, such as [3], defines similar - but not identical - abstractions which
are equally valid and useful for the problems it addresses.

Here, we assume that a model is a collection of model elements, stored in a
single file. Each element has a non-volatile identifier that is unique in the con-
text of its containing model. Models are contained in a bounded workspace and
identified with a unique workspace path (e.g. models/a.model). An intra-model
reference is captured using only the identity of the target element. As model
element identities may not be unique across different models, a cross-model ref-
erence captures both the identify of the target element and the workspace path
of the target model.

2.1 Cross-Model References

In a non-Model Driven Engineering (MDE) software development process, a
model is considered of comparable value to any other documentation artefact,
such as a word processor document or a spreadsheet. As a result, the convenience
of maintaining self-contained model files which can be easily shared outweighs
other desirable attributes, such as modularity. This perception has led to the
current situation where single-file models of the order of tens (if not hundreds)
of megabytes, containing hundreds of thousands of model elements, are the norm
for real-world software projects [4].

In an MDE process, models have a first-class role. Apart from acting as doc-
umentation, they are also validated, compared, used to generate other software
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artefacts, and transformed into models conforming to different modelling lan-
guages or representing different levels of abstraction. All of these tasks are per-
formed in automated ways, and often with high frequency. In this setting, as
discussed in [4], very large monolithic models are not desirable, because they are
generally slow to load and store, and are costly to maintain in memory.

An obvious solution for addressing the problem of large monolithic mod-
els is to decompose them into smaller, cross-referencing models. Schematically,
model A in Figure 1(a) can be decomposed into models B and C of Figure 1(b),
where C contains a cross-reference to B. Contemporary modelling frameworks,
such as EMF, natively support cross-model references and lazy loading of cross-
referenced models [1, pg408].

(a) Original model A. (b) Decomposition into models B and C.

Fig. 1. Model decomposition using cross-references

While decomposing models is technically feasible and beneficial in terms of
loading, persistence and memory costs, it also poses a range of new challenges.
Since cross-references are uni-directional, identifying all of the incoming cross-
references for a particular model without processing all models in the workspace
is a challenge. Furthermore, as references are typically stored in the form of
relative paths, if a model is renamed, moved or deleted from the workspace, in-
coming cross-model references are invalidated. Operations that do not affect the
path of a model can also affect the integrity of incoming cross-model references:
model update operations, for example, (either manual or in the form of an in-
place model transformation) can result in the deletion of some model elements.
Without an automatic cross-reference maintenance mechanism, problems with
the integrity of a model’s cross-references will only be identified when a model
is loaded by a user or program.

2.2 Model-Metamodel Conformance

A model conforms to a metamodel when the metamodel specifies every concept
used in the model definition, and the model uses the metamodel concepts ac-
cording to the rules specified by the metamodel. Metamodel evolution can affect
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conformance. For example, when a metamodel concept is removed, any models
that use the removed concept no longer conform to the metamodel. Model migra-
tion is a development activity in which instance models are updated in response
to metamodel evolution to re-establish conformance.

MDE modelling frameworks implicitly enforce conformance. A model is bound
to its metamodel, typically by constructing a representation in the underlying
programming language (e.g. Java) for each model element and data value. Fre-
quently, binding is strongly-typed: each metamodel type is mapped to a corre-
sponding type in the underlying programming language using mappings defined
by the metamodel. Loading a model that does not conform to its metamodel
causes an error [5]. In short, MDE modelling frameworks cannot be used to
manage any model that does not conform to its metamodel.

In modern MDE development environments, models and metamodels are kept
separate. Metamodels are developed and distributed to users. Metamodels are
installed, configured and combined to form a customised MDE development en-
vironment. Consequently, the instance models of a metamodel can be determined
only with an exhaustive search of the metamodel user’s development workspace.

2.3 Managing Model Integrity

In an MDE process, models are changed, potentially with high frequency [6]. As
discussed above, model changes can originate from diverse sources, such as from
a model editor, as the result of a transformation or other model management
operation, from other users via a source code management system, and from the
configuration of the development environment (e.g. metamodel installation).

Detecting and reacting to model changes is key to managing the integrity of
the workspace and its models. Without mechanisms for analysing the impact
of model changes, integrity problems are reported only when a model is next
loaded. Due to the high frequency of model changes, the brute-force approach
of re-examining all models in the workspace whenever one of them changes does
not scale (as we demonstrate in Section 5). Without an automated mechanism
for managing model integrity, developers must manually maintain and verify the
integrity of their workspace, which is arguably a tedious and error-prone task.

3 Proposed Framework

To avoid exhaustively searching the workspace when a model is updated, deleted
or moved or when a metamodel is changed, we propose a framework that indexes
cross-reference and metamodel usage data. By reacting to create, update, move
and delete model events, the data in the index will accurately reflect the current
workspace state. The indexed data is exposed to model integrity management
clients via methods for visiting models whose inter-model or model-metamodel
integrity may have been affected by workspace events.

In this section, we outline the design of our proposed solution in a rigor-
ous manner using UML to capture the structural part and OCL to specify the
associated invariants and behavioural semantics of the different components.



Concordance: A Framework for Managing Model Integrity 249

Fig. 2. Persisted data model

3.1 Design

Figure 2 presents an overview of the domain model of the proposed framework.
A model element comprises an identifier unique in the context of its containing
model, (id), a reference to the containing model (model) and a short human
usable description (label) that can prove useful if the actual model element is
deleted. Each model is identified by its path in the workspace. Cross-references
are represented as a link between two model elements, along with a label.

The cross-model nature of cross-references is rigorously specified in the Inter-
Model OCL invariant of Listing 1. Each Model can extract a collection of all of
its outgoing references through its getOutgoingReferences() method.

1 context CrossReference
2 inv InterModel: self.source.model.path <> self.target.model.path

Listing 1. Invariants for the Reference class

1 context Model::getOutgoingReferences(): Set{CrossReference}
2 post: result->forAll(r:CrossReference|
3 r.source.model.path = self.path
4 and r.target.model.path <> self.path)

Listing 2. Post-conditions for the operations of the Model class

Figure 3 presents an overview of the interfaces provided by the proposed
framework. Clients implement the ModelChangeListener (MetamodelChangeLis-
tener) interface to receive notification of model (metamodel) workspace events.
As discussed in Section 2, some of the references in the domain model are uni-
directional. The ConcordanceIndex interface exposes methods for navigating
those references in the opposite direction. Rather than return a collection of
models or cross-references, the methods on ConcordanceIndex use the visitor
pattern, which decouples clients from the domain model.

Implementations of the PersistentConcordanceIndex interface respond to mo-
del change events, persisting a data model (Figure 2). The visitor methods are
implemented by querying the persisted data model. In the following paragraphs,
we discuss in detail the way in which each model change operation should be
implemented for PersistentConcordanceIndex, presenting semantics in a rigor-
ous manner with OCL post-conditions. For simplicity, we treat the persisted
data model as a property of PersistentConcordanceIndex that comprises a set of
models and a set of cross-references.

Model Added. The modelAdded(m:Model) operation is invoked when a new
model (m) has been created. The model may or may not be empty upon creation
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Fig. 3. Interfaces of the proposed framework (shading is irrelevant)

(for example a non-empty model may have been imported to the workspace from
an external location). To maintain the index in a consistent state, the operation
adds m and all of its outgoing references to the database:

context PersistentConcordanceIndex::modelAdded(m : Model)
post AddsModel: self.db.models =
self.db.models@pre->including(m)

post AddsNewReferences: self.db.references =
self.db.references@pre->including(m.getOutgoingReferences())

Listing 3. Post conditions for the createModel(m:Model) operation

Model Removed. The modelRemoved(m:Model) operation is invoked when a
model (m) has been deleted. The operation deletes m and all of its outgoing
references from the database:

1 context PersistentConcordanceIndex::modelRemoved(m : Model)
2 post DeletesModel: self.db.models =
3 self.db.models@pre->excluding(m)
4
5 post DeletesOutgoingReferences: self.db.references =
6 self.db.references@pre->reject(r|r.source.model.path = m.path)

Listing 4. Post-conditions of the deleteModel() operation

Model Updated. The modelUpdated(m:Model) operation is invoked when the
workspace notifies the index manager that an existing model (m) has been up-
dated. The operation updates the database by removing the deleted outgoing
references of m and adding the new outgoing references of m.

1 context PersistentConcordanceIndex::modelUpdated(m : Model)
2 post UpdatesOutgoingReferences:
3 self.db.references = self.db.references->
4 reject(r|r@pre.source.model.path = m.path)->
5 including(m.getOutgoingReferences())

Listing 5. Post-conditions of the updateModel(m:Model) operation
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Model Moved. The modelMoved(old:Model, new:Model) operation is invoked
when a model (m) has been moved within the workbench. The operation changes
the model in the database with path old to have path new.

1 context PersistentConcordanceIndex::moveModel(old:Model, new:Model)
2 post ChangesModelPath:
3 self.db.models->select(m|m.path=old.path)->
4 first.path = new.path

Listing 6. Post-conditions of the moveModel(m:Model) operation

3.2 Implementation

We have implemented the proposed approach in a prototype (named Concor-
dance) on top of Eclipse and EMF, in the context of the Epsilon [2] component
of the Eclipse GMT research incubator project. In the prototype, a ModelChang-
eReporter reports model change events to registered ModelChangeListeners and
is implemented in the form of an Eclipse builder that users can enable for se-
lected projects in the Eclipse workspace. Similarly, a MetamodelChangeReporter
reports metamodel change events to registered MetamodelChangeListeners. Un-
fortunately, the current implementation of EMF does not provide services for re-
ceiving notifications of metamodel change events. Instead, we have implemented
MetamodelChangeReporter as a background task that efficiently polls the EMF
metamodel registry, detects changes and reports them as notifications.

Concordance provides an implementation of PersistentConcordanceIndex,
H2ConcordanceIndex, that uses a relational database to store and query the
workspace state. Alternatively, EMF itself - backed by a relational database
using CDO or Teneo [7] for performance reasons - could have been used for
this purpose. The visit methods are implemented by querying the database and
reconstituting domain model objects.

4 Clients

Using the framework discussed in Section 3, we have implemented two clients
for automating the management of model integrity. In this section, we discuss
each of these clients in turn.

4.1 Cross-Model Reference Reconciliation

In Section 2, model decomposition using cross-model references was identified
as a solution for breaking down large monolithic models. We now recap the key
challenges faced when models are decomposed using cross-model references.

Dangling cross-model references can arise when a model is deleted, updated
or moved. Manually maintaining and verifying the integrity of cross-model refer-
ences is arguably a tedious and error-prone task. However, automated reporting
and reconciliation of dangling references requires a means for identifying all of
the incoming cross-model references for a model and cross-model references can
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be traversed only from the source model to the target model and are typically
stored using relative paths.

The ConcordanceIndex interface, introduced in Section 3, provides methods
for identifying incoming cross-model references for a model. The cross-model
reference reconciliation client is a ModelChangeListener that uses these methods
to identify and report dangling references and to reconcile references when a
model is moved.

The cross-model reference reconciliation client detects dangling cross-model
references as they occur, rather than when the source model is loaded. When
a dangling reference is detected, it is reported using a problem marker on the
source model. If the aforementioned reference is reconciled (e.g. a deleted model
is restored), then the client identifies that this reference is no longer dangling
and removes the corresponding problem marker. Since a model update may add
or remove model elements, the cross-model reference reconciliation client treats
updates as a model deletion followed by a model addition. Finally, when a model
is moved to a different folder, incoming cross-model references to the moved
model and outgoing cross-model references from the moved model are reconciled
by the client, to use new relative paths. The mechanisms for adding, removing
and finding problem markers are specific to the development environment.

Example. Using this prototype, users can now freely move models between dif-
ferent directories/projects of the Eclipse workspace without invalidating cross-
model references. Figure 4 presents two simple models b.model and c.model
where an element of b.model references an element of c.model in line 5 (<target
href=“c.model\# id1”/>). When c.model is moved into folder d in Figure 5,
the reference - which would otherwise be invalidated - is now updated (<target
href=“d\c.model\# id1”/>). Also, dangling references produced as a result of
deleting or updating models are visualized as errors in the respective workspace
files. For example, when c.model is deleted from the workspace, an error
marker is added to b.model and a corresponding message appears in the
Problems view.

4.2 Conformance Checking and Model Migration

In Section 2, the way in which metamodel evolution affects instance models was
discussed. While manually maintaining and verifying conformance can be tedious
and error-prone, automated conformance checking and model migration requires
a means for identifying all of the instances of a metamodel; a challenging task
as metamodels and models are normally kept separate.

The ConcordanceIndex interface, introduced in Section 3, provides a method
for identifying all of the instance models of a metamodel. The conformance
managing client is a MetamodelChangeListener that uses this method to re-
port conformance problems and to automatically perform model migration when
possible.
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Fig. 4. Contents of models b.model and c.model

Fig. 5. Modified contents of b.model after moving c.model to directory d

The conformance managing client detects and reports conformance problems
when they first occur, rather than when the source model is loaded. When a
metamodel changes, the conformance managing client reports conformance prob-
lems (like dangling cross-references, conformance problems are marked on the
containing model). We have described the conformance checking algorithm pre-
viously in [5].

In EMF, metamodels are identified by their namespace URI. Convention
dictates that every version of the same metamodel has a different namespace
URI. Consequently, when a new version of a metamodel is installed, a meta-
model added event is triggered by the framework described in Section 3. The
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Fig. 6. Visual error markers after a metamodel update

conformance managing client provides an Eclipse extension point that allows
metamodel developers to specify a migration strategy which can be used to mi-
grate models to conform with the latest version of their metamodel.

Example. Using this prototype, a metamodel update triggers conformance
checking on all instance models. In Figure 6, error markers have been added to
a.model because its metamodel has been changed such that Employee is now an
abstract class. By releasing the updated metamodel as a newer version and speci-
fying a migration strategy, the metamodel developer can trigger automatic model
migration during metamodel installation in the metamodel user’s workspace. For
the example shown in Figure 6, the Employees of a.model would be migrated to
instances of appropriate subclasses as part of the installation of the new version
of the metamodel. Consequently, the Problems view at the bottom of Figure 6
would report no conformance errors, and instead display a message stating that
a.model conforms to its metamodel.

Implementation. The Java implementation of the conformance managing client
is shown in Listing 7. It uses three elements of the infrastructure defined in Fig-
ure 3, MetamodelChangeListener, ConcordanceIndex and ModelVi-
sistor. The implementation of ePackageChanged (lines 12-14) uses the
visitAllInstancesOf method on ConcordanceIndex from Figure 3 with
ConformanceCheckingVisitor, an implementation of ModelVisitor from
Figure 3. ConformanceCheckingVisitor (lines 19-24) implements Mod-
elVisitor#visit (lines 21-23) by delegating to a service that knows how
to check conformance, XmiConformanceChecker.
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1 public class ConformanceChecker implements MetamodelChangeListener {
2
3 private final ConformanceCheckingVisitor visitor =
4 new ConformanceCheckingVisitor();
5
6 private final ConcordanceIndex index;
7
8 public ConformanceChecker(ConcordanceIndex index) {
9 this.index = index;

10 }
11
12 public void ePackageChanged(EPackage oldEPackage, EPackage newEPackage) {
13 index.visitAllInstancesOf(newEPackage.getNsURI(), visitor);
14 }
15
16 public void ePackageAdded(EPackage ePackage) {}
17 public void ePackageRemoved(EPackage ePackage) {}
18
19 private static class ConformanceCheckingVisitor extends ModelVisitor {
20
21 public void visit(Model model) {
22 new XmiConformanceChecker(model).reportConformance();
23 }
24 }
25 }

Listing 7. Java implementation of conformance checking client

5 Evaluation

In this section we use the Concordance prototype presented in Section 3 to com-
pare the performance of the proposed approach with the brute-force approach
of examining all models in the workspace to manage integrity.

First, we examined the performance of the proposed framework when used
to manage cross-model references. To this end, we set up an experiment where
we automatically created 100 different EMF models that conform to the simple
graph metamodel of Figure 7. Each model contained 100 nodes and 100 edges.
To mimic realistic situations, 20% of the edges were cross-model references (i.e.
referenced a target node stored in another model).

Fig. 7. The Graph Metamodel

Then we indexed all 100 models using Concordance in a one-off step, and sub-
sequently performed 5, 10 and 15 model operations of each kind (move, update,
delete) and measured the time needed for each operation to complete. The mean
time needed for the one-off indexing was 13.366 sec. After the one-off indexing,
the mean times for each operation were 2.484 seconds (Move), 0.056 seconds (Up-
date), 0.008 seconds (Delete). This benchmarking was carried out on a standard
departmental machine with two 3GHz cores and 4GB of main memory.
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To demonstrate the significant performance gains compared to the brute-force
approach, it was not even necessary to implement the brute-force operations in
full detail; we only needed to measure the time necessary to load all the models
and resolve their external references, since any of the above operations would
at least require this. The average result we obtained for this was 8.887 sec per
operation.

Brute force operations in our experiment were measured to be - unsurprisingly
- significantly slower than incremental operations but did not require the one-off
cost of constructing the initial index that incremental operations did. In the next
step we aggregated the results to demonstrate that this one-off cost quickly pays
off. The total time needed to perform 0, 5, 10, and 15 operations of each type
using the brute-force approach1 and using Concordance appear in Table 1 and
graphically in Figure 8.

Table 1. Aggregate time (sec) over different numbers of operations

# of operations 0 5 10 15

Brute force minimum 0 37.395 69.36 120.525

Concordance move 13.366 26.069 40.629 51.576

Concordance update 13.366 13.641 13.815 14.409

Concordance delete 13.366 13.404 13.434 13.52

We devised a similar experiment to evaluate the performance of the proposed
approach when used to manage model-metamodel conformance. The graph meta-
model shown in Figure 7 was evolved such that Edge was removed, and Node
referenced itself directly. We generated a workspace containing 100 different
models, 20% graph models conforming to the old metamodel and 80% models
conforming to another metamodel. The mean time taken for a brute-force ap-
proach – visiting every model in the workspace and determining its metamodel
usage data – was 57ms. When Concordance was used, the mean time taken to
store the metamodel usage data was 80ms, and 11ms to retrieve the metamodel
usage data. Again, by aggregating this data the results demonstrate that using
an index quickly pays off. However, because EMF is able to determine meta-
model usage data more quickly than it is able to resolve cross-model references,
the difference in performance between a brute-force and indexed approach is
smaller.

EMF provides mechanisms for tuning the performance of model loading. For
example, the DEFER IDREF RESOLUTION option forces EMF XMI parser
to resolve intra-model references only once the whole model has been parsed,
rather than each time an intra-model reference is encountered. Depending on
the metamodel, this, and other, EMF options may reduce the time taken to
load a model, determine its metamodel usage data and resolve its cross-model

1 For brute-force operations only the loading time has been measured as explained

above.
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Fig. 8. Plot of the results of Table 1

references. Clearly, reducing the time taken to process a model benefits a
brute-force approach for managing integrity. However, the one-off cost of con-
structing a model index is also reduced when models are processed more quickly.

6 Related Work

When a model evolves, further changes may need to be made to related models
to maintain their integrity. This activity is termed model synchronisation. In
this paper, we focus on two categories of model synchronisation, inter-model
and model-metamodel integrity. We now discuss the relationship of our work
with other model synchronisation research, and with existing work that makes
use of model indexing.

Much of the existing model synchronisation literature focuses on developing
a style of model-to-model transformation that can be used to incrementally up-
date models (for example [8,9]). For large monolithic models, transformation
execution time has been shown to be significantly reduced by using incremental
transformation [8]. Consequently, improving scalability is seen as a primary focus
for model synchronisation research. However, we believe that this focus is mis-
placed, and that enabling the decomposition of large monolithic models provides
an alternative means for improving scalability in Model-Driven Engineering.
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In [10], we compare and contrast existing approaches for managing model-
metamodel consistency. Most such approaches require the user to check con-
formance and schedule model migration manually. The work presented in this
paper provides a framework for automatically detecting, reporting and recon-
ciling model integrity problems, and could theoretically be integrated with all
existing model-metamodel consistency management approaches.

CrossX [11] is a component in the Mod4j (Modelling for Java) project, and
mediates references between models. The approach used in CrossX is to generate
a symbol table model for each model in the workspace. Model cross-references
are made via the target’s symbol table model, providing a layer of indirection.
EMF Index [12] is a proposed project under the Eclipse Modelling Framework
Technology Project (EMFT). EMF Index will use the same approach as CrossX,
but focuses on model queries and interchangeable persistence mechanisms. As
well as reconciling cross-references, CrossX and EMF Index seek to provide sup-
port for code completion.

We have focused on providing a framework for detecting model changes that
cause a model index (such as CrossX) to become invalid, and reconciling the
model index. The EMF Index project proposal recognises the need for such
detection and reconciliation: “Whenever it is possible, detect model changes and
update the model index automatically.”

Research on model synchronisation and cross-references is related to work on
model search and model consistency management. Moogle [13] is a model search
engine that allows search terms to be entered and checked against a model
repository. The search terms encode metamodel information (e.g., metamodel
concepts) but do not currently encode richer patterns, such as model subgraphs.
Moogle is based on indexes, unlike the EMF Search project2, which provides an
approach for querying EMF models. The EMF Search engine also considers meta-
model concepts. Since it is not based on indexes, it is less efficient than Moogle
or our approach, as it performs a complete introspection of the EMF model each
time a search is carried out. Similar, but not equivalent, functionality is avail-
able in IBM’s Rational Software Architect (RSA), through its integration with
Rational’s Asset Manager3. The asset manager is a general-purpose application
for cataloguing, finding and organising business assets; as such, it is not tailored
for models, but can be used to manage entire models, or fragments thereof. The
fine-grained indexing and search (e.g., by metamodel concept) that is available
with Moogle and EMF Search is not easily accomplished with RSA.

With respect to model consistency management, there is a wealth of research,
e.g., on the use of OCL or various logics for specifying consistency rules and
establishing or checking that models are consistent; see, for example, [5,14,15],
and IBM RSA’s consistency analysis support via patterns. Perhaps most relevant
to the approach taken in this paper is the xlinkit toolset proposed by Nentwich
et al. [16] for consistency of distributed XML documents. xlinkit can be used as
a consistency checker (in similar ways to OCL) and to generate links between

2 http://www.eclipse.org/modeling/emft/?project=search#search
3 http://www-01.ibm.com/software/awdtools/ram/
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XML documents. These links can then be stored in a (web-enabled) database
that provides indexing and querying facilities. The approach is scalable and has
been applied to large XML documents, but is not optimised for models and
metamodels.

7 Conclusions and Further Work

We have motivated our work by arguing for the need for MDE environments
that automatically detect, manage and reconcile model integrity problems. We
have discussed the benefits of model decomposition and automatic model migra-
tion, and presented a key challenge for their adoption; detecting, reporting and,
where possible, reconciling integrity problems. Feedback is particularly impor-
tant if integrity is compromised as a result of a user’s actions, or as an effect of
automated model management operations. We have presented an abstract, but
rigorously specified, solution that uses an index to store and manage cross-model
references and metamodel usage data. We have demonstrated and evaluated an
implementation of our solution on top of the Eclipse Modeling Framework.

Having established this essential infrastructure, we will now implement fur-
ther clients and refine the framework presented in Section 3. We envisage a
client for discovering and visualising end-to-end traceability relationships in the
workspace, all the way from requirements models up to detailed design mod-
els. Another application is to use the framework to enable incremental model
validation and transformation. For example, when a model is modified - and
thus needs to be revalidated - the validation engine can easily infer which other
models could have been affected by this modification and only validate them -
instead of all the models in the workspace.

As further clients are implemented, we expect the framework to become more
abstract. In particular, we envisage that the visitor methods and the persisted
data model will become more generic. The framework will likely become more
flexible, with more of the impact analysis semantics being specified in individual
clients. Further extensions to the framework may be required for reacting to
coarser- and finer-grained workspace events (for example, changes affecting many
models or affecting model elements).

In future iterations of this work we plan to investigate support for non-model
artefacts (e.g. plain text, code, documentation), which account for the majority
of artefacts managed in the context of a software development process. Our
plan is to start with a naive offset/length-based solution and elaborate it using
statistical techniques to facilitate references that are more resilient to subsequent
text editing actions.
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Abstract. Reuse is an important means of reducing costs and effort

during the development of complex software systems. A major chal-

lenge is to find suitable components in a large library with reasonable

effort. This becomes even harder in today’s development practice where a

variety of artefacts such as models and documents play an equally impor-

tant role as source code. Thus, different types of heterogeneous compo-

nents exist and require consideration in a component search process. One

flexible approach to structure (software component) libraries is faceted
classification. Faceted classifications and in particular faceted browsing
are nowadays widely used in online systems. This paper takes a fresh

approach towards using faceted classification in heterogeneous software

component libraries by transferring faceted browsing concepts from the

web to software component libraries. It presents an architecture and im-

plementation of such a library. This implementation is used to evaluate

the applicability of facets in the context of an industry-driven case study.

1 Introduction

Reusing software components has always been central to software engineering.
However, in practice, component reuse is still seldom implemented on a large
scale. A reason for this is the lack of generic solutions that fulfill the needs
of modern software development, where complex systems are not implemented
code-centric and do not only rely on the reuse of source code and binary com-
ponents. Instead, such systems are realised model-driven and models become
equally important reusable components.

In the Reuseware1 [1] project, we developed a generic solution to implement
composition systems for model components defined in arbitrary modelling lan-
guages. Thus, we provided a technical solution that allows developers to treat
all models2 created during a development process of a complex system as com-
ponents and store them in a library for reuse.
1 http://reuseware.org
2 In this paper we refer to all artefacts created in a model-driven process as models.

This includes documents and source code.

T. Kühne et al. (Eds.): ECMFA 2010, LNCS 6138, pp. 261–276, 2010.
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However, a major problem in reuse in general, is locating a desired component
in a huge component library. About two decades ago, Pŕıeto-Diaz proposed [2,3]
the use of faceted classification, a concept from book libraries which was in-
troduced by Ranganathan in the 1930s, for software component libraries. In a
faceted classification, not an object as a whole, but different aspects (i.e. facets)
of an object are described. For example, well-known facets used in book libraries
are author, topic and publisher. Since Ranganathan, attempts were made to re-
alise such classifications for specific component libraries (e.g. [4]), but there has
been little interest in this area in the last decade.

Interestingly, concepts of faceted classification can be found today in many
online systems, such as e-commerce systems like Ebay or Amazon. These systems
make use of a faceted classification to enable faceted browsing that, in contrast
to traditional web-search, allows for explorative browsing.

The data queried on the web is not very different from the models that make
up complex modern software systems. In both cases, different languages and
methods are used in combination to specify and compose data. Also, to inte-
grate such heterogeneous data, standards (e.g., issued by the W3C or the OMG)
support the creation of common base technologies and tools.

In this paper, we recapitulate Prieto-Dı́az’s idea of using faceted classification
in software reuse by transferring faceted browsing concepts of today’s web to
software component libraries that meet the demands of model-driven develop-
ment. For that we take a closer look at component and model libraries as well
as facet technologies that are used today in Section 2. We present an architec-
ture and implementation of a facet-based software component library that can
handle heterogeneous models defined in arbitrary modelling languages in Sec-
tion 3. The implementation is based on widely used technologies and standards:
The Eclipse Platform [5], the Eclipse Modeling Framework (EMF) [6] and the
OMG’s MOF standard [7]. We also explore how the greater amount of structure
in software components—compared to web data—can reduce the classification
effort. To show that the facet-based library can be used to browse and search
for different kinds of models, we evaluate it in the context of a case study from
the telecommunications domain defined by Telefónica R&D in the European re-
search project Modelplex3 and discuss other applications of it in Section 4.
Finally, we conclude in Section 5.

2 Foundations and Related Work

The idea of using a library to maintain a set of components is well known and
popular in software engineering. However, component libraries for reuse (called
reuse libraries in [8]) need to provide additional metadata about their content
in order to help users in deciding which component or service does fulfil their
needs the best.

As stated by Mili et. al. in their survey of reuse libraries [8], a good reuse so-
lution requires to be efficient, accurate, user-friendly and general. Furthermore,
3 http://www.modelplex.org

http://www.modelplex.org
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the survey classifies the use of facets as a descriptive method and characterises
it using a number of criteria. In that way, it identifies the approach as a method
of high precision, recall and flexibility and rates the difficulty of use as very low
and the method’s transparency to the user as very high. As we see these charac-
teristics as crucial for a component library we argue to use faceted component
libraries for reuse.

To emphasise that other implementation methods for reuse libraries have
drawbacks we visit classic component libraries in Section 2.1, followed by a
discussion of libraries for models in Section 2.2. Oriented at the mentioned re-
quirements by Mili et. al., we aim to provide a facet-based library for model
components. For that, we transfer well established faceted browsing techniques
from online systems and present an implementation based on modelling stan-
dards and technologies. The library integrates seamlessly into the widely used
software development and modelling environment Eclipse. Nevertheless, the so-
lution is general by being independent of the language a model component is
defined in. As a foundation of this solution, we introduce the main ideas of
faceted classification in Section 2.3 and analyse early approaches as well as re-
cent applications in Section 2.4.

2.1 Classic Component Libraries

As the main representatives of classic component libraries, we take a closer
look at CORBA4 and UDDI5. In principle, they implement different library
approaches but have main features in common. They manage a database of
components or services while users are able to register new components and
search for existing ones. In order to search the database, these systems often
implement a naming and/or directory service that give users the possibility to
search by name (keyword) or id. As this requires detailed knowledge about the
desired component or service there is a need for additional features to support
users that do not have this information available. These users would not search
by one concrete query but instead browse to get something adequate.

The CORBA middleware manages components as so called objects and offers
a naming service to find them. Besides that, trading and property services allow
a search based on component attributes [4]. Furthermore, a query service allows
reading and manipulating queries on a set of objects using languages such as
SQL or OQL. Although a search on the basis of attribute values is possible,
CORBA does not provide a method to search on structured metadata due to
a missing vocabulary of values. This does not allow for an efficient retrieval of
components [9]. As a result, users require detailed knowledge about what they
are searching for and might face a situation where effects such as synonyms,
antonyms or plural forms complicate the search process.

The directory service UDDI acts as a library for web services in the domain
of service oriented architectures (SOA). We see web services as a special case of
software components as they provide specific functionality over a well defined
4 http://www.corba.org
5 http://uddi.xml.org

http://www.corba.org
http://uddi.xml.org
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interface. To describe services, UDDI offers attribute values and enumerated clas-
sification [4]. This is implemented by so called White, Yellow and Green Pages
which each focus on a specific service aspect. White Pages name attributes of the
business that offers the service, Yellow Pages use standard taxonomies such as
the North American Industry Classification System (NAICS) to classify business
and service while Green Pages include technical details. Hence, to search a web
service one can draw upon keywords, attribute values and enumerated classifi-
cations. As argued before, we do not see classifications by keywords or attribute
values as methods of efficient component retrieval. However, with Yellow Pages
UDDI also offers enumerated classification which provides a controlled vocabu-
lary and eliminates effects such as antonyms or plural forms. Nevertheless, we
do not think the taxonomies of the Yellow Pages to be adequate for classifying
software components, since taxonomies are too large, inflexible and difficult to
extend [9]. Although multiple taxonomies are allowed, the user is still required to
classify his artefacts in an existing complex schema that might not be designed
for his special purposes. Besides, UDDI itself does not support browsing a library
and therefore it does not seem appropriate for an exploration by users who do
not know in advance what is inside the library. The website seekda!6 adds con-
cepts such as tagging and community evaluation to the UDDI’s search engine.
That also supports our claim that the UDDI’s principles are not sufficient. Note
that our work does not aim at providing automatic component selection and
binding as UDDI provides for web services. For our work we are interested in
the capabilities for manual searching performed by users.

2.2 Component Libraries for Models

In addition to classic component libraries, we shortly analyse the field of compo-
nent libraries for models. In their research roadmap for model-driven development
of complex systems [10], France and Rumpe mention the need for reuse of experi-
ence, libraries of model operations and full-featured model repositories. However,
they do not explicitly request a method for intuitive browsing of model reposito-
ries (or libraries). To the best of our knowledge, there is no work aiming at building
a reuse library (in the sense of Mili et. al.) for models in model-driven develop-
ment. Surely, libraries specific to modelling languages and models (e.g., model li-
braries in SysML [11]) or specific to model operations (e.g., libraries of operation
in Epsilon [12]) exist. But they are specific to a modelling language and do not
integrate concepts for browsing and finding models. Since in model-driven devel-
opment everything can be treated as a model (e.g., documents, model transforma-
tions, model management operations or metamodels) all reuse concerns identified
in the mentioned research roadmap can profit from a reuse library for models that
is independent of the language a model is defined in.

2.3 Faceted Classification and Faceted Browsing

Faceted classification [13] combines principles from keyword classification and
enumerated classification. Keywords (facet values) describing an entity are
6 http://seekda.com

http://seekda.com
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bundled into facets and each of these facets concerns only one single aspect
to characterise the entity. Examples are shown in Figure 1 as well as Table 1
and 2. Some facets may be structured and form trees, each representing a single
taxonomy, others may be flat [14,15]. All facets as one create a multi-dimensional
classification.

Faceted Browsing is a user interface paradigm based on flexible classification
and has the following principles [16,17]: The process of faceted browsing inter-
actively constructs a query on the data while the user performs multiple simple
refinement steps. At the beginning a complete set of items is presented, which is
then reduced to a subset by making restrictions to the values of one or multiple
facets (zoom-in navigation step). The subset can again be extended by taking
back restrictions (zoom-out navigation step). Zoom-in and zoom-out navigation
steps may be performed for all facets in any order. Note that this enables the user
to choose his own navigation path—this is a main difference to fixed taxonomies
which imply that the user follows the way the taxonomy was once constructed
by its author. Another important feature of a faceted browser is the exclusion
of empty result sets by construction. For this purpose only facet values that are
available in the current result set are suggested as filtering options to the user.

As the system presents facets and facet values in the user interface, the user
gets an impression of which options are on-hand. This way he learns about
options he could not have named correctly in a textual query either because
he has only partial knowledge of the domain or simply because the options did
not come to his mind. Especially in this context, offering a description of the
meaning of facets and facet values can further add to the guidance of the user.

2.4 Facets in Use

Many application examples show that facets define an intuitive classification
schema. It is not only used in classic media libraries but was applied to soft-
ware component libraries two decades ago. [2,4] describe experiences made with
component libraries that make use of faceted classifications. Although these ex-
amples characterise faceted classification as a promising approach, they can not
directly be applied to todays’ model-driven software development. At that time,
software components were defined as programmatic functionality for reuse. To-
day, heterogeneous artefacts such as models, documents or binary components
implemented in various languages need to be taken into account to support the
whole model-driven development process. Furthermore, the Internet has changed
the way components are delivered and today work is more and more shifted to a
community rather than to single persons. These new aspects of component reuse
require a new evaluation of faceted classification.

Since the first approaches for facet-based software component libraries were
introduced, other fields of application made use of faceted classifications. Hence,
today there are many websites and desktop applications using this approach to
browse huge amounts of data. Here, it is not always obvious that facets are used
because the terms category and filter are often used as synonyms. This seems to
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Fig. 1. Ebay uses facets to browse auctions

be appropriate as they emphasise the structuring character and explain the way
faceted browsing is performed.

[16] analyses a number of websites, web technologies and desktop programs
that use faceted browsing. Applications such as iTunes7 and foobar20008 or
generic browsers such as Flamenco9, Exhibit10 and Longwell11 show that the
faceted browsing paradigm can be used in various fields of applications. In addi-
tion, websites such as Amazon12, Google Base13 or Ebay14 use faceted browsing
to give the user access to their dataset. Figure 1 shows Ebay as an example. Here
auctions of flash memory drives are presented which can be browsed using facets
such as Brand, Price, Interface or Condition. Depending on the auction’s type
other facets are shown which makes facets such as Megapixel or Optical Zoom
available for Digital Cameras. To sum up, all these examples show that faceted
browsing offers a flexible method of exploring arbitrary data.

3 A Facet-Based Component Library

We see faceted classifications and faceted browsing, which has shown its applica-
bility in various online systems, as efficient and user-friendly methods to search
libraries of model components. To apply this in practice, a facet-based library
system is needed that is integrated into the user’s software development and
modelling environment.

This section introduces an architecture for such a system and a concrete im-
plementation that is based on the Eclipse Modeling Framework (EMF) [6] and
7 http://www.apple.com/itunes
8 http://foobar2000.audiohq.de/foo_facets
9 http://flamenco.berkeley.edu/

10 http://simile.mit.edu/wiki/Exhibit
11 http://simile.mit.edu/wiki/Longwell
12 http://www.amazon.com
13 http://base.google.com/
14 http://www.ebay.com

http://www.apple.com/itunes
http://foobar2000.audiohq.de/foo_facets
http://flamenco.berkeley.edu/
http://simile.mit.edu/wiki/Exhibit
http://simile.mit.edu/wiki/Longwell
http://www.amazon.com
http://base.google.com/
http://www.ebay.com
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Fig. 2. Metamodel for faceted classification

integrated into the Eclipse Platform. We chose these technologies over generic
browsers mentioned in Section 2.4, because Eclipse provides a popular platform
for software development and modelling. Thus, the library integrates seamlessly
into the development and modelling environment, which turned out to be an
important usability factor (cf. Section 4.1).

The architecture is oriented towards the principle of faceted classification
and the user interface paradigm of faceted browsing discussed in Section 2.3.
First, a domain expert—the facet developer—defines facets (Section 3.1) that
can be used by component developers to classify components in a second step
(Section 3.2). Third, component users browse the component repository by spec-
ifying faceted queries via zoom-in and zoom-out (Section 3.3). We captured the
concepts of faceted definition, component classification and component browsing
in a metamodel shown in Figure 2.

3.1 Facet Definition

We first discuss the concepts for facet definition that are shown in Figure 2 (b).
The facet developer has to perform a domain analysis in order to specify terms
and concepts of the domain in focus [18]. This leads to a number of Facets
which are grouped in a FacetDefinition. A Facet consists of a name and
a description that gives component developers an idea of the facet’s semantics.
Besides that, Facets own a set of FacetValues that have a name and description
as well. These three concepts allow the facet developer to define and maintain
facets and their vocabulary. FacetDefinitions are later available to component
developers to create ComponentClassifications (cf. Section 3.2).

Based on the metamodel we defined graphical user interface tooling that can
be used by the facet developer. The tooling is integrated into Eclipse and parts
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Table 1. General facets to classify components

Facet Description Examples

Composition Role The role the components

plays when composed with

other components

Port, Sender, Client

Information Hiding The degree of encapsulation

provided by a component

Whitebox, Greybox,

Blackbox

Language The language the component

is modelled in

UML, SysML, AADL

Java

License The legal agreement the com-

ponent is published under

GNU GPL, Mozilla

Eclipse Public License

Maturity The status of development or

usability the component is in

Alpha, Beta,

Released

System Layer The system architecture’s

level where the component is

to be used

GUI, Persistence,

Core, Transport

of it are directly generated from the metamodel using EMF. The tooling includes
an editor that allows for creation of new facet definitions by instantiating the
metamodel. It furthermore supports the facet developer in deleting specifica-
tions, removing, adding or editing facets as well as deploying specifications to
component developers. Usually, facets have to be defined once for a specific com-
ponent type (e.g., for one modelling language) to capture domain concepts of
that component type. However, to capture the right domain concepts in Facets
and FacetValues, experimenting with classifying concrete components is often
required. Thus, having the facet definition tooling integrated in the same tool
that is used for component development (which is Eclipse in our case) is helpful.

Standard Facet Catalog. In contrast to domain-specific facets, there are
facets to describe model components independently of their application domain.
They are inspired by facet sets mentioned in [3,4] and target syntax, semantics,
composition interfaces and other implementation aspects of components. Table 1
shows an excerpt of these facets, which we provide as a standard catalog. They
can be used by component developers directly for general faceted classification
of software components. This standard catalog of facets is not closed or com-
plete. It is rather expected that there are additional facets sufficiently adequate
to classify model components independent of language and application domain.

3.2 Component Classification

Once facets are defined and deployed, components can be classified by component
developers. A ComponentClassification (Figure 2 (c)) classifies one component
and consists of a list of FacetInstances. A FacetInstance represents the usage
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Fig. 3. The library’s component classification

of one facet to classify a component and encapsulates the Facet itself and one
FacetValue that describes the component best. Note that only facet values that
were assigned to the facet by the facet developer can be selected, thus ensuring
that the vocabulary is controlled. This is inline with the definition of faceted
classification in [4] which is not enforced by all faceted browsers.

For component developers, Eclipse-integrated graphical tooling is provided for
component classification. Eclipse, which provides a wide range of editors to create
and modify all kinds of models, acts as component development environment.
Thus, a component developer can develop and classify model components in the
same integrated environment. Figure 3 shows a typical component classification
example. Here, a CIM model component (CIM is a domain-specific modelling
language that we will introduce in Section 4.1) is created in the CIM editor
integrated in Eclipse (a). Our tooling provides a special view (b) that is used
to classify the component in the currently active editor. This view offers the
opportunity to select available facets and choose one given value for each (c)
to create a ComponentClassification. The available facets were specified in
a facet definition and loaded into the library beforehand. (In this example we
use domain-specific facets that are described in Section 4.1.) Additionally, some
attributes can be defined to add more information about the component (d).
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Automated Classification. The manual classification process in a facet-based
library can be costly and error-prone. This is because component developers
need to classify a potentially high number of components with facets defined by
facet developers (which are potentially different persons). Errors in the usage
of facets might occur if the semantics of a facet were not sufficiently defined.
Besides that, manually created component classifications might become invalid
when the component evolves.

These issues can be addressed by a rule-based automation of the classification
process. This approach uses information retrieval to generate a faceted classi-
fication from the component itself. Software components qualify for this tech-
nique because they are very low on free text [2] and have an inner structure—in
particular models that conform to a metamodel. This approach can relieve a
component developer from classifying components. Furthermore, the facet de-
veloper that creates the facet, gains control over how it is used. That means
no deep knowledge of the facet is needed by the component developer since the
facet developer makes sure that the facet is used in the intended way. In the end,
this approach allows to generate the classification at the latest point in time to
ensure that it reflects the current state of the software component.

In our implementation, all components are represented as EMF models within
Eclipse. The metamodels—that is, the languages in which the components are
written—are all defined in Ecore (an implementation of the OMG’s MOF stan-
dard). Thus, all components can be inspected using the OMG’s OCL [19] (which
is aligned with MOF) as a query language. We allow facet developers to define
automated classification rules in the form of OCL queries for arbitrary compo-
nent types. Consequently, this approach is directly usable by facet developers
who are familiar with the MOF and the OCL standards.

3.3 Component Browsing

After a faceted classification has been done and the components have been regis-
tered in the library, the component user can perform faceted browsing. The state
of the browsing is captured in a BrowserState (Figure 2 (a)). A BrowserState
holds a set of FacetDecorators where each refers to one of the facets that
is currently explored by the component user. ValueDecorators represent the
FacetValues the component user specifies to narrow down his search. Further-
more, ValueDecorator consists of a counter that indicates how many compo-
nents will remain in the result if the user selects the FacetValue and a flag to
represent the selection.

Following Figure 2 (a), we implemented a faceted browser that provides dif-
ferent facilities for the zoom-based exploration process (cf. Section 2.3) and sup-
ports different ways to present browsing results, following the works [16,17]. The
features range from special widgets to present facets, over a free-text search to
features such as grouping and sorting. Figure 4 shows our faceted component
browser with important parts marked. These parts include the main functional-
ity of a faceted browser, which are the result view (A), a grouping and sorting
facility for the result view’s entries (B) as well as six widgets to present available
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Fig. 4. The library’s faceted component browser

facets and their values (C). As there might be more than six facets available, a
separate view lists the others not presented (D). While the user selects facets
and values to perform zoom-in and zoom-out steps with (C) and (D), the current
search query is shown in another view (E). Finally, a search view gives the oppor-
tunity to perform a free-text search over available facets and classifications (F)
[15]. These features define a faceted browser that can be used to search arbitrary
model components classified in the way shown in Section 3.2.

After the component user has found a suitable component, he can directly
open other views or editors to inspect or to reuse the component. In our evalu-
ation, we used the browser together with Reuseware, which is also integrated
into Eclipse and provides a graphical composition editor. The component user
can directly drag&drop components from the result view (A) into Reuseware’s
composition editor. Thus, the browser integrates tightly with the component
users development environment.

4 Evaluation

To show the applicability of our facet-based library, we tested it with different
models defined in different modelling languages. In Section 4.1, we describe an
evaluation we performed with a domain-specific modelling language, where we
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collected feedback from the domain experts on the usability of our approach
and our implementation. Furthermore, in Section 4.2, we discuss other types of
models and artefacts that can be browsed with our approach.

4.1 Evaluation with Telecommunication Domain Experts

We performed an evaluation of our facet-based library in the context of a case
study defined by Telefónica R&D in the European project Modelplex [20]. In
the case study, Telefónica uses an EMF implementation of the Common Infor-
mation Model (CIM) [21] and an Eclipse-integrated graphical editor to define
graphical models of telecommunication networks [22]. In earlier work [23], we cre-
ated a composition environment with Reuseware that is also integrated into
Eclipse. This environment can be used to define reusable CIM model components
and compose them to larger network models. In this evaluation, we provided the
domain experts at Telefónica with the library tooling presented in this paper.
To gain a first feedback, their task was to classify 20 CIM model components
and then browse for components using the faceted browser.

In preparation for the evaluation, we created a set of domain-specific facets
for the CIM language. For that we performed, in collaboration with the domain
experts, a domain analysis and found a set of six facets (cf. Table 2). In addi-
tion to the general facets (cf. Table 1), they allow a classification specific for the
telecommunication domain. A telecommunication expert can now use our inte-
grated tooling to classify CIM models using the domain facets. Thus, he works
in the terminology of his domain and does not need any knowledge about, for
example, source code components or their classification. Other telecommunica-
tion experts can then use these domain-specific facets with our faceted browser
to browse a library of CIM model components.

The remainder of this section consists of three parts, where we summarise the
feedback we got from interviewing the domain experts concerning domain facet
definition, component classification and component browsing respectively.

Domain Facet Definition. The experts recognised facets as a useful approach
for classifying CIM components in general. However, they see a potential weak-
ness of the approach in the fact that facet developers bear a huge responsibility.
First, these developers restrict facets and facet values that are the base for all
later classifications and browsings. Second, they need to clarify the meaning of
facets and values and should take the component developers’ perspective into
account. These aspects indicate that it is crucial for both, classification and
browsing to have well defined facets available.

Component Classification. Faceted classification with its restrictive charac-
ter15 appears to be an adequate method for structuring a component library
for the domain experts. If the facets are well defined they can support even a
large number of component developers to classify their work without creating
anomalies such as synonyms, antonyms or plural-forms. In addition to that, the
15 Restrictive with respect to the controlled vocabulary.
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Table 2. Telecommunication specific facets

Facet Description Examples

CIM-Schema Uses CIM specific terms to

classify the component

CIM-Core, CIM-User

CIM-Interop

Connection Names the main connection

used by the component

Ethernet, Wifi,

Bluetooth

Device Describes which sort of device

is used by the component

Hub, Router, Modem

Element Type Distinguishes between con-

ceptual and real life compo-

nents

Logical, Physical

Protocol Names the main protocol used

by the component

IP, DHCP, IPX, SSH

Telnet

Structure Gives a hint about the com-

ponent’s inner structure

SingleConcept,

MultiConcept

experts pointed out, that providing domain knowledge as facets and facet values
can simplify work especially in a huge domain such as telecommunication. This
is because component developers and users do not have to remember all domain
concepts on their own.

The automated classification appears to be a very useful approach for prac-
tical use. Rather than classifying huge sets of components by hand, the domain
experts, in the roles of component developers, want to use as much automa-
tion as possible. Therefore, rules must be specified that cover important aspects
of the domain. We identified many opportunities for CIM model components to
specify such rules for automation (e.g., for the facets CIM-Schema or Structure).

Together with the domain experts, we identified one particular application of
automation rules as an interesting alternative to using the specific classification
tool. In the case of CIM components, adding notes to a graphical component dia-
gram was a common method used by the domain experts. These notes contained
information that could be extracted and translated into facet values. This was
seen as a useful feature by the domain experts since it gives them the opportu-
nity to define facet values directly in their models. This supports our argument
that a tight integration of development environment and library system is cru-
cial. All in all, the automated classification support was seen as a critical feature
for broad industrial acceptance of faceted classification by the domain experts.

Component Browsing. Faceted browsing was received by the domain ex-
perts as an intuitive and user-friendly method to search in a huge repository of
components. They acknowledged that step-wise searching in a faceted browser
supports component users that think in the problem space rather than in the
solution space. As transferring ideas between both worlds is a major challenge
in finding the right component for reuse, presenting facets and values can help.
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The domain experts, who used the composition environment for CIM without
the facet-based library beforehand, stressed the importance of integrating the li-
brary system into the composition environment. For them it was very important
that a discovered component was directly reusable from the search result view
of the component browser.

Nevertheless, the experts missed some features while testing the browser. The
browser always constructs a query using logical and concatenation of all selected
facet values. The domain experts encountered cases, where there was a need to
express that a facet value should not be set or where or concatenations would
be desirable. They suggested that the browser could be improved in the way
that the component user selects a facet value that should not be met by the
desired components or other configuration facilities, in order to influence the
construction of the actual queries based on the selected facet values. Ultimately,
the domain experts also suggested that for complex searches a SQL-like query
language over the facet data would be helpful for experienced users. Nevertheless,
the faceted browsing process has shown to be intuitive as it supports the user in
various ways.

The overall results of the evaluation are positive. In particular, the following
points were stressed:

– Faceted classification and browsing are promising methods to structure and
explore libraries of domain-specific model components.

– Automatic rule-based classification appears to be important for usability and
acceptance of the library system.

– The integration of the library system with component development and com-
position environment is important to support the reuse process.

4.2 Evaluation Using Other Model Component Types

The previous section showed the applicability of our approach to one kind of
domain-specific model components. To support our claim that faceted classifica-
tion and browsing can be used for arbitrary types of model components and that
this is supported by our implementation, we tested our approach and implemen-
tation with different models, documents and code defined in different languages.

We experimented with languages and components used in the demonstrator
system we realised in [24]. There, we performed a component-based and model-
driven development of a system using different kind of components including
OpenOffice documents, UML models, models defined in graphical and textual
domain-specific languages and Java source code.

For all these component types, EMF metamodels and Eclipse-integrated tool-
ing exists. As our implementation was created on the same platform we were able
to classify components in their development environment. One interesting point
to mention is, that we were able to define facets that were specific to the devel-
opment process but not to a specific modelling or implementation language. For
instance, it was possible to relate each component to one use case in the system.
Thus, we defined a facet UseCase and classification rules that identified which
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component was related to which use case. We were then able to use the browser
to identify all components related to a specific use case.

5 Conclusion

This paper presented a new approach to facet-based software reuse libraries
that takes the requirements of model-driven software development practice into
account. The novelties of our approach, compared to earlier facet-based library
approaches, are the integration of modern faceted browsing concepts from online
systems and the support for software components of arbitrary languages, which
is in particular important for model-driven development where models defined
in different languages are the components.

We presented an implementation that is integrated into the widely used
Eclipse development and modelling environment. Since a variety of languages
and tooling for Eclipse and the EMF does already exist, many developers can
directly use our implementation in an integrated manner without adaptation
effort. This was also vital to transfer our research results into practice.

Our evaluation with the Telefónica domain experts showed that the approach
is applicable in practice to browse libraries of domain-specific model components.
The results stress the importance of having the library system tightly integrated
into the development and composition environment. This improves the usability,
since the users have all tools needed available in a single environment. In our
case, these tools are Eclipse editors and the Reuseware composition tooling.

The first evaluation and experiments we performed can only indicate the po-
tential of an integrated, generic facet-based software component library system.
Thus, in the future, we plan to optimize our implementation with regards to per-
formance and to conduct further evaluations on larger component collections.
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Abstract. Applying design patterns while developing a software system

can improve its non-functional properties, such as extensibility and loose

coupling. Precise specification of structure and behaviour communicates

the invariants imposed by a pattern on a conforming implementation and

enables formal software verification. Many existing design-pattern spec-

ification languages (DPSLs) focus on class structure alone, while those

that do address behaviour suffer from a lack of expressiveness and/or

imprecise semantics. In particular, in a review of existing work, three in-

variant categories were found to be inexpressible in state-of-the-art DP-

SLs: dependency, object state and data-structure. This paper presents

Alas: a precise specification language that supports design-pattern de-

scriptions including these invariant categories. The language is based on

UML Class and Sequence diagrams with modified syntax and semantics.

In this paper, the meaning of the presented invariants is formalized and

relevant ambiguities in the UML Standard are clarified. We have eval-

uated Alas by specifying the widely-used Gang of Four pattern catalog

and identified patterns that benefitted from the added expressiveness

and semantics of Alas.

1 Introduction

Object-oriented design patterns ‘capture design experience in a form that people
can use effectively’ [1] to develop software with improved non-functional proper-
ties such as re-usability, extensibility and loose coupling. Design patterns (later
referred to as patterns) dictate certain relationships between classes and objects
such as inheritance, object composition, delegation and information hiding. In a
pattern implementation, the actor that performs an action is important, in con-
trast to an algorithm, which may be implemented by any combination of actors.
Thus, patterns define object-oriented protocols that must be followed in an im-
plementation. Pattern specifications define a number of roles, most of which are
mutually exclusive, to be filled by actors (classes, objects or methods) in the imple-
mentation. Precise specification of pattern structure and behaviour communicates
the invariants imposed by a pattern on a conforming implementation and enables
accurate formal software verification, by, for example, avoiding false positives due
to specifications that are too generic.
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We performed an analysis of the widely-used Gang of Four (GoF)[1] pat-
tern catalog from which we identified five invariant categories that were used to
classify existing work in the area. These categories are cardinality, dependency,
control flow, object state and data structure.

Design patterns place constraints on multiple entities (objects, classes and
inheritance hierarchies) and are also more generic than concrete software archi-
tectures as they describe interactions between entities, whose number and type
are unknown. Patterns thus present a subtly different specification challenge.
Patterns such as the Abstract Factory and Visitor patterns place constraints
on the relation between the number of entities (classes and methods) occuring
in separate inheritance hierarchies. For example, in the Visitor pattern, each
ConcreteVisitor should have a visit method for each ConcreteElement in the
Element hierarchy. We refer such invariants as cardinality invariants.

The key invariant of numerous GoF patterns, for example the Façade and
Abstract Factory patterns, can be expressed informally as “Class A should not
be directly associated with Class B” or “Class A shouldn’t be hard-coded to use
a particular subclass of Class B”. The first of these informal statements refer to
the static type of variables and has been termed interface dependency, while the
second refers to the creation of instances of one class by another and is termed
implementation dependency.

Object state invariants concern the runtime values of objects and their at-
tributes such as whether they have been initialized or not, the equality of at-
tributes and object identity. The Memento pattern’s intent is ‘to capture and
externalize an object’s state so that the object can be restored to this state later.
[1]’ Thus, an invariant on a Memento implementation is that a subset of the state
of the Memento is in some relation (e.g., equality) to the state of another ob-
ject (the Originator), at a particular point in the execution (Memento creation).
Also, the state of the objects should remain in this relation until some other
execution point (some undo operation). This particular invariant sub-category
is called inter-object state dependency. Control flow invariants are defined as in-
variants that place constraints on the control-flow in a pattern. Relevant control
flows are sequencing, method calls, conditionals and loops.

A number of GoF design patterns describe the use of or are often applied to
user-defined recursive data structures that are required to demonstrate properties
such as being cycle free or not containing elements that are shared (i.e., have two
distinct objects that hold references to it). The Composite pattern, for example,
“composes objects into tree structures to represent part-whole hierarchies”[1].
In most realizations of the Composite pattern, sharing of sub-trees or leaves is
prohibited as this complicates traversal or violates the tree’s semantics. In the
Decorator pattern, adding a new Decorator to the Decorator chain should not
make the Decoratee object unreachable.

Three of these five categories were found to be insufficiently addressed (i.e.,
inexpressible or ambiguously defined) by the state-of-the-art DPSLs. The three
insufficiently addressed categories are (implementation) dependency, object state
and data structure. This paper presents Alas (Another Language for pAttern
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Specification): a precise specification language that supports design-pattern de-
scriptions including the three invariant categories discussed above. The language
is based on UML Class and Sequence diagrams with modified and extended syn-
tax and semantics. UML is the de facto standard for object-oriented software
modelling, and UML Sequence diagrams provide a suitable level of granularity
at which to describe the inter-object protocols imposed by design patterns. Nev-
ertheless, a number of syntax extensions and clarifications of existing concepts
are required for UML to be suitable for precise specification of design patterns
enabling formal software verification. In the current version of Alas, there is no
concurrency: it can describe only sequential programs. This choice was made to
simplify the initial design and the planned supporting verification tool. We plan
to add support for concurrency in a future version.

While we chose UML as a basis for Alas, UML in its current form was consid-
ered unsuitable for precise design-pattern specification for a number of reasons.
Le Guennec et al. [2] notes that UML, despite its templates and parameterized
binding, is not suited to expressing cardinality invariants. This is due to a lack
of control over the number of bindings that can be made between classes and
roles. In addition, patterns require logical statements to be made about software
structure, making it necessary to use the Object Constraint Language (OCL) [3]
at the meta-model level to define non-standard, pattern-specific entities. Many
constructs (such as the CombinedFragments newly introduced in UML 2.0) are
described too informally to be the basis for software verification, where precise
semantics are required. Also, as design patterns are generic solutions that can be
applied in many different contexts, their specifications need to mirror this gener-
icity in some ways that are not supported in UML. One example occurs when
one object’s value should be some function of another objects, but this func-
tion is not common to all pattern variants. The ‘reflects’ keyword, introduced in
Contracts [4] can be used to express this abstract state dependency.

When placing invariants on the state of interacting objects, it is necessary to
distinguish between aliases (two names that refer to the same object) and copies
(two objects with identical values). As discussed in Section 3, UML and OCL
are vague with regard to this distinction. Alas defines binary object predicates
isAlias and isCopy to resolve this ambiguity. As OCL lacks an operation to
express transitive closure, expressing these data-structure ‘shape’ invariants in
OCL would be verbose and error-prone. For example, the user must be careful
to write constraints that do not go into infinite cycles and are undefined. Alas
contains basic transitive operations on recursive data structures and uses these
to define shape properties such as heap-sharing (two distinct objects holding
references pointing to the same object), the existence of cycles and reachability.

In UML Sequence diagrams, a Lifeline represents one and only one object:
“While Parts and StructuralFeatures may have multiplicity greater than 1, Life-
lines represent only one interacting entity... If the referenced ConnectableEle-
ment is multivalued... then the Lifeline may have an expression (the selector’)
that specifies which particular part is represented by this Lifeline. [5]” This
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prevents the user from specifying the common case of a method being invoked
on each element of an unbound collection in turn. We formalize an existing
idiom for expressing this case, by relaxing the binding semantics under particular
conditions, allowing them to represent different objects at different times.

The structure of the remainder of this paper is as follows: Section 2 discusses
related work. Section 3 introduces Alas through examples relating to the invari-
ant categories described in this paper. Section 4 defines a precise meaning for
each of the non-standard extensions and clarifications provided in Alas. Section
5 evaluates the expressiveness of Alas compared to the state-of-the-art DPSLs
with respect to the GoF catalog. Finally, Section 6 concludes and considers some
directions for future work.

2 Related Work

Numerous DPSLs choose to focus on a pattern’s ‘essence’ or ‘leitmotif’, specify-
ing design pattern structure that is thought to be common to all pattern variants.
These approaches are typically also capable of expressing cardinality invariants.
LePUS [6] defines a graphical notation for expressing sets of classes in an inheri-
tance hierarchy and sets of associated methods, along with relationships between
them such as invocation and creation. This allows cardinality constraints to be
specified simply, graphically and precisely, as it is based on higher-order logic. Le
Guennec et al. [2] and Mak et al. [7] handle cardinality invariants using a UML
Profile that introduces multiplicities in UML Collaborations at the meta-model
level. Lauder and Kent [8] introduce a fourth compartment into the UML Class
syntax that utilizes their constraint diagrams, which are also based on set seman-
tics. However, each of these DPSLs, by focusing on structure only, completely
ignore the behaviour required to satisfy a pattern’s intent.

In RSL [9], a renaming map is used to associate entities in patterns to their
corresponding implementation entities, supporting cardinality as well as imple-
mentation dependency invariants. The specifications in RSL, however, are ver-
bose and implementation-oriented, making the intent of the pattern hard to
understand without significant effort. Lano et al. [10] formally specify patterns
in detail, including behaviour such as method calls and object creation, and
define a refinement relationship between a software program before and after
applying a pattern. The refinement proof must be performed manually though,
and this is challenging, given the mathematical basis of the language. BPSL
[11] supports the specification of the structure and behaviour of patterns, using
first-order logic and the Temporal Logic of Actions (TLA), respectively. The
structural part has a similar expressiveness to UML Class diagrams while the
behavioural part describes some object state properties such as value equality
of variables at a particular execution state. As only one pattern specification is
presented, it is difficult to assess the applicability of the language to patterns
in general. Dong et al. [12] also utilize TLA for pattern behaviour specification
with some precise implementation conformance rules, but with less expressive-
ness overall.
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RBML [13] and FUJABA [14] use UML 2.0 Class and Sequence diagrams to
specify pattern structure and behaviour, such as method calls, conditionals and
loops. RBML also provides role realization multiplicities to describe cardinality
invariants, and is thus one of the most expressive DPSLs overall. It does not
address object state or data structure invariants, however, and makes no effort
to define a precise semantics for the language. In summary, of the five invariant
categories we identified, cardinality and control-flow are well supported in the
literature, dependency has had some attention while there are significant gaps
in the support for object-state and data-structure invariants.

3 Pattern Specification in Alas

In Alas, pattern specifications are made up of structural diagrams and behavioural
diagrams.Alas structuraldiagramsareUML Class diagramsaugmented with first-
order logic, ranging over structural entities (classes and methods), to support the
specification of cardinality invariants. Interface dependency invariants are sup-
ported using binary class operators such as hasRef and calls, along with logical
conjunction, disjunction and negation. Implementation dependency invariants are
discussed in the following section.

Behavioural diagrams in Alas are based on UML 2.0 Sequence diagrams, cur-
rently making use of only the alt, opt and loop CombinedFragments to express
control-flow invariants. Object-state invariants are placed in constraint boxes
that are connected to particular points in the control flow. These boxes can
contain standard OCL collection operators such as set intersection and union.
Non-standard extensions allow the expression of, for example, inter-object state
dependency and data structure invariants.

3.1 Implementation Dependency Invariants

The dependency invariants in some patterns, including AbstractFactory, Proto-
type, Bridge and State, are more subtle than simply forbidding variables of a
particular type in class definitions. A summary of their common intent might
be that “a client holds a reference to an object, but is not hard-coded to a par-
ticular implementation (subclass).” The Abstract Factory pattern “provide[s]
an interface for creating families of... objects without specifying their concrete
class.” Thus, a client should never contain the code: Maze aMaze = new Maze()
or BombedMaze bMaze = ... as the first performs the initialization itself, and
the second commits to a particular subclass. Instead, creation of the object is
delegated to a factory object. This is described in the Alas invariant below:

Client hasRef Product AND NOT (Client hasRef ConcreteProduct) AND
NOT (Client isInitializer ConcreteProduct) .

where ConcreteProduct inherits from Product. isInitializer is a binary op-
erator that states that the subject (first) operand, which may be a class or
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method, calls the second operand’s constructor directly. The first two clauses
state that the Client has a reference to the superclass (Product), but not to a par-
ticular set of subclasses of Product: those that inherit from ConcreteProduct.
The third predicate states that the Client does not initialize any object that is
a subclass of Product. Note that dependency predicates apply to a class and all
its subclasses, unless over-ridden by other predicates, as shown above.

3.2 Object-State Invariants

The role of a Factory Method is to return a newly created instance of a Product
class. Thus, a key invariant of the Factory Method pattern is that a new object is
returned, i.e., the object created by the Product constructor is the same object
that is returned by the Factory Method. A related creational pattern is the Pro-
totype pattern, which avoids creating a new instance by copying a prototypical
one. One invariant of the Prototype pattern is that the object returned by the
Prototype’s clone() method is not the same object as the prototype, but should
have identical values for some subset of its state. Thus, to specify the Factory
Method and Prototype patterns precisely, it is necessary to be able to express
the concepts of object identity and value equality.

The OCL Standard ([3] Appendix A: Semantics, Section 2.2) suggests that
the meaning of the equality operator, when applied to two object operands, is
defined as value equality: “The equality of values of the same type can be checked
with the operation =t” (defined for all types) and indeed the implementation of
Dresden-OCL’s [15] equality operator calls the Java equals() method. Collec-
tion operators, which one might expect to be defined in terms of object identity,
also seem to be value-based. Set subtraction, for example, is defined as “S -
<v>: produces a Sequence equal to S, but with all elements equal to v removed.”
This potentially removes many objects with equal values, rather than a single
object uniquely identified by v.

Object identity is discussed briefly in Appendix A, Section 1.2.1: “Objects are
referred to by unique object identifiers” [3]. The set oid(c) is also defined as the
set of object identifiers for a class. This set is not used in the definition of any of
the relevant OCL operators, adding to the evidence that objects are compared
by value. The UML Standard also makes little reference to object identity. A
DataType is described as being “similar to a Class. It differs from a Class in
that instances of DataType are identified only by their value.” However, the
meta-class Class has no attributes or associations that could be used to store
identity and both Class and DataType occur at the same level of the UML
meta-inheritance hierarchy, inheriting directly from Classifier, and nothing else.

Object identity and value equality are distinguished explicitly in Alas using
the isAlias and isCopy binary operators respectively. These are defined pre-
cisely in terms of object identifiers and values in Section 4. The key invariant of
the Factory Method pattern uses isAlias, and is shown in Figure 1. Note that
in Alas conditions are connected at any branching or joining of control-flow.
The connection position of the invariant in Figure 1 is equivalent to a post-
condition in OCL. Conditions do not need to span multiple lifelines as there
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Fig. 1. Use of the isAlias predicate to specify object identity in the Factory Method

specification

is no concurrency. The clone() method of the Prototype pattern also has an
attached postcondition, specified as: returnval isCopy prototype.this. This
condition identifies the prototype object and the newly-created and returned
object as copies.

It is possible that two lifelines in the same diagram become bound to the same
object in the implementation. If a lifeline is intended to identify one unique
interacting entity, as suggested by the UML standard, then this binding is a
violation of the pattern specification. Roles in the specification are thus always
mutually exclusive. We have found that this creates a difficulty in specifying
the Chain of Responsibility (CoR) pattern in the case that there is no default
Handler for requests. The role of the object that creates the request and the
object that handles the request could be the same object, though it is necessary
to represent the two roles in two separate lifelines. For this reason, we have
defined a n-ary operator notMutEx that specifies that two lifelines in a sequence
diagram (or two classes in a structural diagram) are not required to be bound
to different entities.

3.3 Control-Flow Invariants

In the Observer pattern, when an update occurs to the Subject’s state, it calls
its notify method. Notify iterates over the Subject’s list of Observers, calling
Update on each of them in turn. The specification of this behaviour is given in
Figure 2, where the names of the loop variable and lifeline selector match. While
this is an existing idiom used for describing interactions with entities that have
an unbounded number of elements, it is non-standard for two reasons: it requires
a redefinition of the immutable lifeline/object binding and the only valid loop
operands defined in the standard are maxint and minint or a boolean expression.
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Fig. 2. Specification of the Subject’s Notify method that involves iteratively calling

each object in an unbounded structure

3.4 Data-Structure Invariants

To specify data-structure shape invariants, the specification language must be
capable of expressing relations between the position of objects in a recursive
structure. There is no primitive operator in OCL for expressing transitive clo-
sure directly and it is not discussed in the latest OCL Standard [3]. To obtain the
transitive closure of a relation, the user may write a recursive function similar to:

allPredecessors = self.predecessor
→ union (self.predecessor.allPredecessors) .

This statement, however, may not have the desired effect, as it may go into
an infinite loop if the data structure has cycles and would then evaluate to an
undefined value. Some tools supporting OCL, such as Eclipse, provide a safe
closure operation, by building a collection using an iterative fixpoint algorithm
[16]. Also, in OCL queries and constraints, it is possible only to refer to objects
that are navigable from the contextual object via associations. In a singly-linked
list, for example, this corresponds to all the objects occuring later in the list
than the contextual object. When defining data-structure properties, however,
it is often more convenient to refer to an object’s predecessors: whether heap-
sharing occurs can be expressed succinctly by evaluating if the object has two
or more immediate predecessors (see section 4). In OCL, it would be necessary
to begin from the root of the structure and attempt to identify two (potentially
very long) paths to the object.



Precise Specification of Design Pattern Structure and Behaviour 285

Fig. 3. Specification of a Composite’s Add method where sharing of nodes is forbidden

Alas data-structure predicates are defined in terms of transitive and non-
transitive (one step) versions of the primitives isPredecessor and isSuccessor.
This simplifies the definition of transitive closure relations when compared to
OCL and allows for safer and more concise specification. The invariant of the
Composite pattern is specified in Figure 3. Note that this invariant is sufficient
to ensure the Composite tree is cycle-free, as long as c is the only Component
added to the tree in the add() method and the add() method is the only method
that adds to the tree. The first node in a cycle must have two predecessors, i.e.
applying the isShared predicate to it would evaluate to true.

The CoR pattern decouples the sender and receiver of a request by creating
a chain of objects, each of which has the option to handle the request or pass it
on. A desirable property of the CoR pattern is that every request eventually gets
handled by some Handler. This is often ensured by providing a root Handler that
is the end of every chain of Handlers, which can provide some default response.
This is specified in Alas using predicates as ‘There exists a handler that is capable
of providing a response to this request type and this handler is reachable from
every other handler” (see Figure 4). The constraint box contains a first-order
logic statement quantifying over each object in the Handler chain. The @ sign
is an ASCII substitute for the first-order logic ‘it holds that’ from Z notation.
The specification states that the role default’s HandleRequest method will
always call its ServeRequest method, i.e., it will never forward the message
without handling it. Note that Alas’s default semantics is that a diagram specifies
required and not optional behaviour (i.e., universally quantified paths). In this
way, it is equivalent to a Sequence diagram placed entirely within an assert
fragment. Diagrams with existential path quantifiers are outside the scope of
this paper. Note, the definition of the chain data structure is omitted here, but
currently data-structure definitions are done textually. These examples show
that Alas data structure predicates allow sophisticated statements to be made
about the recursive data structures in programs concisely that were previously
inexpressible in the context of DPSLs.
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Fig. 4. Specification of the CoR pattern, where a default handler is the final node in a

chain

4 Semantics

With limited space, this section provides definitions of only some of the more
important syntactic elements introduced in the previous section. The mean-
ing of dependency syntax elements is straight-forward and has been sufficiently
described in the previous section for an intuitive understanding. Control-flow
invariants make use of the alt and opt CombinedFragments. These are only
informally described in the UML Standard and could be interpreted as either
mandatory or potential choice. In Alas they are interpreted as mandatory choice,
following Lund and Stølen [17]. This means that an opt CombinedFragment, for
example, in an Alas behavioural diagram indicates that a conditional statement
should occur in the implementation. Potential choice (where a conditional in
the specification indicates that the implementor can choose whether or not to
implement the behaviour) is useful in pattern variant specification. A variant
CombinedFragment, which has one or many compartments, each indicating an
implementation option, is also being defined.

4.1 Object State

To define object state invariant syntax, the state of a program is represented
as a transition system. In each state (s ∈ S), there is a set of objects (O) that
can grow and shrink between states as objects are created and destroyed, but
represent a fixed set in any one state. Each object has a unique identity, which
can be accessed using the function id(o). Each object has a set of attributes (A),
each element of which is accessed using the notation obj.a, and also a subset of
attributes CA (i.e., CA ⊂ A) that is considered when deciding if an object is a
copy of another. CA is problem-specific and is defined by the user. The value of
attributes in each state can be obtained using the function V al(a). Each object
is bound to a set of role names (N), and the function obj(n) maps a role name
to its object.
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We can now define the Alas operators isAlias and isCopy:

name isAlias otherName →def obj(name) = obj(otherName).
name isCopy otherName

→def ∀ca : CA • V al(obj(name).ca) = V al(obj(otherName).ca).

For two objects to be copies of one another, they must be the same kind, but
not the same type. Both operators are commutative and transitive. Each role
in Alas behavioural diagrams is by default mutually exclusive, so given two role
names name and otherName of the same kind, it holds that:

¬∃name, otherName • obj(name) = obj(otherName).

This can be over-ridden in Alas using isAlias, or the notMutEx n-ary operator,
which has been used in the specification of the CoR pattern variant where there
is no default handler.

4.2 Control Flow

The UML Standard implies that there is an immutable binding between a lifeline
name in a specification and an object in a candidate implementation. A selector
may identify an object in a fixed position in a structure and the absence of a
selector leads to an arbitrary object being bound, but these bindings are still to
single objects and immutable. It also limits the valid operands that may be used
in loop fragments to maxint and minint or a boolean expression. This prevents
the user from specifying interactions with structures of an a priori unknown (or
mutable) size. More formally, for a transition system covering the part of the
program referred to by the specification with initial state is and final accepting
state fs and ordering relation ≥ (‘happens before or simultaneous’), the stan-
dard interpretation is defined as:

∀s1, s2 : S|(is ≥ s1 ≥ fs) ∧ (is ≥ s2 ≥ fs) • obj(n, s1) = obj(n, s2).

where obj(name, state) is an extended version of the function defined in the pre-
vious section that maps a name in a particular state to an object. In Alas, when
a selector is specified that is identical to the loop variable, this requirement is
relaxed to allow rebindings to occur each time the object’s lifeline returns the
flow of control. For a specified call event transition ctA and its accompanying
return event transition rtA, ctA and rtA can replace is and fs in the above
constraint. After the object returns the flow of control, it releases its binding.
After the loop variable is incremented, the lifeline is then free to be rebound to
the new value of the variable (one greater than the previous value). The formal-
ization of this idiom, and the corresponding extension of the allowed operands
of the loop CombinedFragment enables the precise specification of interactions
with unbounded data structures.
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4.3 Data Structure

A recursive data structure is defined as a directed graph, where the nodes are
objects (with unique identities) that may occur more than once in the structure
and the edges are references labelled by their variable name. Null is a valid value
for a node. The extent of the data structure stretches from some root node until
all paths from the root encounter a null node. We define hasSuccessor* as a
transitive binary operator taking two object operands that evaluates to true if it
is possible to navigate along the direction of the references from the first operand
to the second operand. hasPredecessor* is a similar operator, though it navi-
gates in the opposite direction to the references (this operator distinguishes Alas
from OCL in this context). Both operators have a non-starred counterpart, that
indicates navigation is only performed for one step. Thus, o hasSuccessor p
is true iff one of o’s immediate successors is p. Data-structure properties can
be defined using these operators and first-order logic. Here, the definition of
isCycleFree, isReachableFrom and isShared is shown:

ds isCycleFree ⇔
∀x, y : ds | x hasSuccessor∗ y • ¬x hasPredecessor∗ y.

x isReachableFrom y ⇔ x isSuccessor∗ y.
x isShared ⇔

∃y, z : ds • x hasPredecessor y ∧ x hasPredecessor z.

where ds represents some data structure, and x and y are two objects. These
invariants are challenging to verify, and are the focus of an active area of research
in software verification [18][19].

5 GoF Evaluation

We used Alas to specify the GoF pattern catalog (omitting the Interpreter pat-
tern as a domain-specific special case of the Composite pattern). Table 1 shows
the invariant categories common to Alas and other DPSLs. Class diagrams with
directed and aggregation associations and generalizations are ubiquitous, and
are omitted for the sake of brevity. Over-riding is required in numerous GoF
patterns and can be specified in the usual way in UML: by including the method
or attribute in the over-riding subclass definition. Class identity involves com-
paring two class names for equality (names are unique) and is done using the
notation objectRole.class, similarly to the OCL objectRole.oclIsTypeOf(
class ). In both tables (Table 1 and 2), patterns with no relevant invariant
categories are omitted, though they have been specified.

Table 2 outlines pattern invariants belonging to novel invariant categories
in Alas, as well as the non-standard and clarified UML elements required for
each pattern specification. It can be seen that 11 patterns can be described in
more detail using the novel invariant categories, with seven benefitting from ei-
ther flexible role-actor binding, inter-object state dependency or data structure.
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Table 1. Pattern invariants common to Alas and state-of-the-art DPSLs in GoF design

pattern catalog specifications

Design pattern Invariant type

Abstract Factory Cardinality

Factory Method Control-flow

Singleton Control-flow (conditional), object state (null)

Adapter Control-flow

Bridge Control-flow

Composite Object-state (Set operations)

Decorator Interface dependency, control-flow

Façade Interface dependency, control-flow

Flyweight Control-flow (conditional), object state (null)

Proxy Interface dependency, control-flow (conditional)

CoR Control-flow (conditional)

Command Control-flow

Iterator Object state (Sequence operations)

Mediator Class identity, interface dependency, control-flow

State Class identity, control-flow

Strategy Interface dependency, control-flow

Visitor Cardinality, control-flow

Table 2. Novel invariant categories in Alas and non-standard UML syntax and seman-

tics in GoF design pattern catalog specifications

Design pattern Invariant type Non-standard UML

Abstract Factory Implementation dependency Object identity

Builder Implementation dependency Method set

Factory Method - Object identity

Prototype - Value equality

Singleton - Control-flow (conditional)

Composite Data-structure Flexible role-actor binding

Decorator Data-structure -

Flyweight - Control-flow (cond.), object identity

Proxy - Control-flow (conditional)

CoR Data-structure Control-flow (cond.), object identity

Command Implementation dependency -

Iterator Implementation dependency Object identity

Memento Inter-object state dependency -

Observer Inter-object state dependency Flexible role-actor binding

Strategy Implementation dependency

Template Method - (Ordered) method set
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Eleven GoF pattern specifications make use of non-standard UML syntax and
semantics, with object identity or value equality concepts being used in six pat-
terns, some of which were creational, structural or behavioural. Four patterns
have conditional control-flow, method sets are used to specify two patterns while
flexible object role-actor bindings are used in two patterns: Observer and Com-
posite. (Ordered) method sets are beyond the scope of this paper.

The distinction between interface and implementation dependency and data-
structure invariants occur in five and three patterns respectively. Inter-object
state dependency invariants occur in only two GoF patterns, but this is also an
ongoing software verification challenge, with implications for modular reasoning
and non-functional properties such as extensibility and maintainability [20], so
they have already been shown to have widespread application outside the GoF
pattern catalog. While the flexible object role-actor binding occurs only in the
specification of the Observer pattern, it is useful wherever an operation is applied
to every element in an unbounded (growable) collection. Finally, method sets
occur in only two patterns, and ordered methods only in relation to the Template
Method pattern. It is conceivable that ordered sets of methods occur frequently
in software frameworks, but future work will include searching for more situations
where this concept is applicable.

6 Summary, Conclusions and Future Work

In this paper, we present Alas, a design pattern specification language capable
of expressing a number of invariant categories not addressed by state-of-the-
art DPSLs. Each of these categories is motivated by examples from the GoF
design pattern catalog and an example of an Alas specification of each category
is presented. While UML is the de facto standard in object-oriented software
modelling, patterns provide a different modelling challenge, as illustrated by the
large body of literature on DPSLs. Also, formal software verification requires
specifications with precise semantics. For this reason, non-standard UML syntax
and semantics is introduced and defined. The specifications of all but one of the
GoF patterns using Alas are classified according to the invariant categories they
require, and the increased expressiveness of Alas with respect to the state-of-
the-art is found to provide a benefit for just under half of the catalog.

In a short paper, it has not been possible to describe all the features of the
language and their precise meaning. Some of the features omitted or only men-
tioned in this paper are Alas structural diagrams (UML Class diagrams with
some modifications), cardinality invariants, pattern variant specfication, legal
interleavings of pattern and non-pattern behaviour and temporal operators, in-
cluding path operators (similar to LSC [21] hot and cold charts).

Planned future work includes specifying patterns outside the GoF catalog to
evaluate the general applicability of Alas. Currently, the semantic definition of
Alas is also incomplete. A verification tool capable of demonstrating a refine-
ment relation between a pattern specification and a design is currently under
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development. Finally, as patterns impose invariants on all the members of an
inheritance hierarchy, the concept of behavioural subtyping is relevant. More
work is required to understand the obligations of Alas behavioural invariants on
all subclasses of a specified class role.
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Abstract. Model-Based Systems Engineering (MBSE) is an emerging
engineering discipline whose driving motivation is to provide support
throughout the entire system life cycle. MBSE not only addresses the
engineering of software systems but also their interplay with physical
systems. Quite frequently, successful systems need to be customized to
cater for the concrete and specific needs of customers, end-users, and
other stakeholders. To effectively meet this demand, it is vital to have in
place mechanisms to cope with the variability, the capacity to change,
that such customization requires. In this paper we describe our experi-
ence in modeling variability using SysML, a leading MBSE language, for
developing a product line of wind turbine systems used for the generation
of electricity.

1 Introduction

In many domains, software engineering is but one discipline that contributes
to the success of software systems. Indeed, software systems rarely stand alone
but must be integrated into larger systems comprising specialized hardware and
merging the expertise of a wide range of technologies – mechatronics, electrical
engineering, aeronautics, etc. Software-intensive systems characterize such sys-
tems where software interacts with other software, systems, devices, sensors, and
with people [1].

For software engineering, the development of software-intensive systems poses
new challenges – from people who do not have the same technological background
(which hampers their communication), to historical boundaries (development
roles and responsibilities that have existed for a long time). In particular, in
those domains where software has not been a vital part of a system but is
increasingly becoming one, the introduction of software engineering has become
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a source of confusion – as roles and responsibilities must shift but the various
disciplines are not able to individually decide how to best do that. The role of
software engineering is then often one of a “back-end” engineering discipline that
is no longer able to make or affect important design decisions.

Model-Based Systems Engineering (MBSE) recognizes the new unifying role
that modeling ought to take for the engineering of software-intensive systems,
namely, providing a “common language” for communication among the multiple
disciplines involved in the development of this type of systems. It should be
noted though that this effort is by no means an attempt to replace the rich and
expressive modeling concepts that exist and have proven invaluable in each of
the distinct disciplines. On the contrary, the aim is to foster the understanding
and exchange of information among all stakeholders. SysML is an example of a
modeling language conceived to play that unifying role [2].

There is however one crucial need that has not been addressed in modeling
languages such as SysML. Quite often, software-intensive systems need to be
customized to fit the concrete and particular needs of different clients, users,
developers, etc. The capacity of change that software artifacts must have to
meet all the customization needs is collectively referred to as variability [3], and
thus it must be readily expressed in modeling languages that aim to capture
system customization demands.

In this paper, we present an approach to support variability in SysML and
how it has been applied to an ongoing project on wind turbine systems for the
generation of electricity. We summarize the lessons learned during the modeling
and development of a family of wind turbine systems and what we believe are
new venues of experimentation and research.

2 Systems Engineering

Systems Engineering has as its function to guide the engineering of complex
systems [4]. It differs from traditional engineering in that it focuses on a sys-
tem as a whole, that is, as a set of diverse and interrelated components that
have complex relations amongst them. Next we provide the basic background on
MBSE followed by a short description of the key characteristics of SysML used
in our work.

2.1 Model-Based Systems Engineering

Model-Based Systems Engineering (MBSE) is defined by the International Coun-
cil on Systems Engineering (INCOSE), as the formalized application of modeling
to support system requirements, design, analysis, verification and validation ac-
tivities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases [5]. This emerging discipline has evolved
as a result of the increasing reliance on Model-Driven Engineering (MDE) tech-
nologies over the last decade [6]. Following the MDE philosophy, MBSE models
not only serve as documentation but can also be executed for simulations to
further assist with the verification and validation of design decisions.
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There has been an extensive research effort and applications of MBSE lead by
INCOSE, OMG, and several other organizations. Many different methodologies
have been proposed. A survey by Estefan describes the salient characteristics
of some of them [7]. This survey highlights the importance that using systems
engineering modeling standards brings for tool vendors and users.

Similarly, there are several modeling languages and environments that have
been developed and adopted for different types of application domains and user
communities. An example of a proprietary environment for Model-Based design
for dynamic and embedded systems is Simulink [8]. Another example is Dymola,
used primarily in the automotive, aerospace, and robotics industries [9].

2.2 Systems Modeling Language Overview

The System Modeling Language (SysML) is a general-purpose modeling language
for systems engineering applications [2]. SysML is an extension of a subset of the
Unified Modeling Language (UML) [10]. SysML shares with standard UML the
following behavior diagrams: sequence, state machines, and use case. In struc-
ture diagrams, SysML shares package diagrams and extends UML’s activity,
block definition, and internal block diagrams. SysML also adds two new types
of diagrams: requirement, and parametric (an extension to internal blocks).

The basic structural units in SysML are blocks. They can represent hard-
ware, software, mechanical parts, or other sorts of element that can constitute
a system. There are two types of blocks: block definition diagrams describe the
system hierarchy and system/component classifications, and internal block dia-
grams model the internal structure of a system in terms of its parts, ports, and
connectors.

The requirements diagram describes the requirements hierarchies and their
derivation. This diagram provides the means to relate a requirement to its cor-
responding model element(s). The parametric diagram captures constraints on
system property values (e.g. physical constraints like weight) to help the inte-
gration of design models with engineering models.

Multi-View Modeling (MVM) is a common modeling practice that advocates
that multiple, different and yet related models are required to represent the per-
spectives and information needs of diverse system stakeholders throughout the
development process [11,12]. SysML is an example of MVM because of its dis-
tinct diagram types. A crucial issue in MVM is the expression and maintenance
of the semantic relationships that exist amongst the elements in the distinct
views.

3 Wind Turbine Systems and MBSE

The consumption of energy has dramatically increased in the last century, with
the negative effect of incrementing pollution and CO2 emissions. Nowadays,
there is evidence that this prolonged consumption has caused significant impact
on the environment. Most notably, the planet is facing a steadily complex prob-
lem derived from the global climate change known as Global Warning [13]. There
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are currently worldwide efforts to produce renewable energy with reduced impact
on the environment. Wind energy is a major player in this market accounting
for a significant rate of the renewable production. In some western European
countries it has reached 20% market penetration with the aid of government
subsidies [14].

The production of wind power is typically achieved by an array of wind tur-
bines put together in a location called wind farm. The locations where wind
farms are installed can vary significantly, for example in the sea, deserts, moun-
tains, etc. Wind turbines are complex engineering systems that are composed of
several mechanical elements and subsystems such as blades, pitch, rotor, genera-
tor, and current inverter. In charge of the turbines there is a control system that
actually manages the entire power production process of a wind turbine system.
The economical and ecological importance of wind power combined with the
technological and engineering challenges of the wind turbine systems presents
an ideal opportunity to exploit the substantial benefits of employing MBSE.

3.1 Why Use SysML?

Wind turbine systems, as any complex system, have a large number of func-
tional, performance, physical and interface requirements which have to be satis-
fied during the development process. This implies the need for a comprehensive
requirements engineering and management during the project. The number of
requirements in our systems are counted by the hundreds. The capacity of SysML
to deal with large systems and the mature tool support available were deciding
factors in our selection.

Structurally, wind turbine systems consist of various elements, such as tower,
nacelle, rotor, blades, blade pitches, sensors, actuators, generator, inverter, re-
frigeration subsystems, and so on. The control system alone consists of several
main subsystems. These subsystems offer all kinds of information and interfaces.
Their management alone is challenging because it typically involves teams from
multidisciplinary backgrounds such as aeronautical (wind) engineers, electrical
engineers, and software engineers. Additionally, our project involved geographi-
cally distributed project teams which demanded a common modeling represen-
tation and understanding. In this working environment, the ability to represent
the system structurally, the modeling language expressiveness for all the partic-
ipating engineering disciplines, availability of extensive documentation, and an
increasing community of users were all crucial factors in favor of SysML.

Wind turbine systems, like many complex systems, must promptly adapt to
changing environment conditions; in our case, conditions such as wind speed,
direction, or temperature. This rapid adaption makes behavioral expressiveness
a stringent requirement of a modeling language for this domain. The most re-
markable challenge is the real-time demands imposed to effectively control the
conversion of wind energy into AC electricity and its transfer to the electric grid.
SysML can meet these domain needs.

The ability to adapt the system design to respond to the needs of a customer
with a reduced time-to-market is especially challenging in this sector due to the



Coping with Variability in MBSE: An Experience in Green Energy 297

rapid pace of change in the wind power industry. Next we present the sources that
originate the variability in our wind turbine systems to subsequently describe
how they are addressed.

3.2 Sources of Variability

Wind turbine systems often need to be customized to meet the needs of differ-
ent clients and locations worldwide. A one-size-fits-all system is inappropriate
because of the large variability involved. In general, the sources of the variability
in this domain can be categorized as follows:

– Different power generation requirements. For instance, typical requirements
range from 850 KW to 3 MW. As expected, to meet the demands on such
a wide range, different topologies, technologies and consequently different
system elements are needed.

– Different controlled elements. As an example, consider the alternatives for
cooling parts of a system: refrigerated air, refrigerated water, or a combina-
tion of both. The existence of alternatives like these implies that the elements
involved most likely differ.

– Different controlling strategies. For example, a system could be deployed in
geographical locations with extreme weather conditions of cool, heat, hu-
midity, etc. Consequently, the control behavior of the system elements may
vary according to the deployment site.

– Different locations. In this case, countries or regions may have specific legal
or environmental regulations that must be fulfilled.

All these sources of variabilities can describe the whole range of wind turbine
systems available in the market. Nonetheless, like most product line systems, it
is unfeasible to attempt at tackling all of them in a single product line. Thus

Fig. 1. Feature model - Partial subsystem
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a careful scoping (selection of which features to include in a product line) is
required.

Figure 1 shows a feature model, rendered as a mind map for simplicity, of
our scoped product line. The focus in this paper is on the generator subsystem
of the wind turbine. For example, in this figure, Cooling denotes a manda-
tory feature as all generators do require a refrigeration system. The generators
we considered can have three cooling alternatives denoted with the features:
Air_passive-Air_forced, Air_forced-Air_Forced, and Water-Air_forced.
A generator has only one of these alternatives installed, denoted with cardi-
nality 1:1 in the figure. Next we present how these sources of variability were
handled using variability management for our wind turbine systems.

4 Variability Management with SysML

A Software Product Line (SPL) is a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way [15]. The significant benefits of applying SPL practices
have been extensively documented and corroborated both in academia and in-
dustry [15,16,17]. Amongst them, the reduced time-to-market and the increased
reuse of assets throughout the entire development cycle.

SPL approaches can be broadly categorized in two main groups depending on
how they express variability in software artifacts. In compositional approaches,
also known as with positive variability [18], the variable parts are encapsulated
in modular units which are put together according to the features selected for
building a system [19,20]. In integrative approaches, also known as with negative
variability, the artifacts contain both the common and variable parts. Building
a system means keeping the variable parts of the desired features in the artifacts
while removing those parts belonging to unselected features [21,22].

Generally speaking, variation points are the places in the artifacts where vari-
ation can occur [23]. More concisely, a variation point is the representation of a
variability subject within domain artifacts enriched by contextual information
[17]. The context mentioned in this definition refers to the instantiation logic
or mechanism to realize an actual artifact variant. In the case of integrative
variability, the variation points and their instantiation logic are commonly de-
noted explicitly in the artifacts. An example of this are the #ifdefs macros of
preprocessors.

4.1 Variation Points in SysML Diagrams

Variability is handled by using the notion of variation point of the BigLever
Gears tool. System modeling is done by using IBM Rational Rhapsody. We
handle variability in the diagrams by using the IBM Rational Rhapsody/Gears
Bridge [24,25]. In short, these bridge tool provides support in three forms:
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– Representation of variation points into model elements.
– Mappings among those variation-point-elements and features. These map-

pings are referred to as feature logic, and express the impact of features in
model elements.

– Derivation of specific models according to feature selections, a process called
actuation.

Engineering a system using SysML involves representing different diagrams, each
providing a different perspective on the model such as structure or behavior. For
example, Figure 2 shows a simplified block definition diagram for the generator
subsystem of the wind turbine system. The upper side of this figure depicts
the blocks Generator, Bearings, Refrigeration, and Electrical subsystem.
These blocks corresponds to the major constituent elements of the generator
subsystem. Some of these blocks are as well subdivided into further elements.

As highlighted before, our wind turbine systems form a family of products
and as such they ought to be modeled. Consequently, variability must be re-
flected in the modeling diagrams. An example of this variability is the different
refrigerating strategies; in our case, a system may be cooled using air or water.

Variability is expressed in SysML using stereotypes that represent the vari-
ation points of the different elements in the diagram. Figure 2 shows in block
Refrigeration an «AttributeVariationPoint» to capture the variability of
refrigeration strategies.

Fig. 2. Block Definition Diagram with variation points
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The WaterPump block models the water refrigeration strategy (in Figure 1 is
feature Water-Air_forced), and the block Fan models the air strategy (feature
Air_forced-Air_forced in Figure 1). In both cases, the entire block element is
variable which is denoted with «BlockVariationPoint».

Next we describe how actuation works. As a first step, the features desired
for a particular member of the product line are selected. All common model
elements, those without variation point stereotypes, will be part of the resulting
diagram. The conditions associated to each element with a variation point (fea-
ture logic) are evaluated, if the conditions hold the respective element will be
part of the resulting diagram. For instance, consider a wind turbine system that
is refrigerated with water. For this option, feature Water-Air_forced is selected.
The feature logic of the variation point of attribute type in Refrigeration block
sets the initial value according to the selection. The feature logic of WaterPump,
Sensor, Inlet, and Outlet causes these blocks to be included. In contrast, the
logic of Fan will exclude this block when selecting Water-Air_forced.

Modeling variability at the family level, as opposed to each single system,
fosters the reuse of system diagrams. But most importantly, it empowers the
system designer with an enriched and new global perspective of all the design
decisions and trade-offs involved. This perspective should not only address the
needs of software engineers, but also those from the multiple disciplines usually
involved in the conception and design of complex systems.

4.2 Variation Points in Multiple Views

Since SysML has different views, variation points are also available for their
elements. For example, Figure 3 shows a simplified statechart for the refrigeration
subsystem of the wind turbine system. The variation point mechanisms are the

Fig. 3. Statechart diagram with variation points
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Table 1. Elements supported in SysML

Diagram Element Stereotype
Block Definition Block BlockVariationPoint
Internal Block Part ObjectVariationPoint

Attribute AttributeVariationPoint
Operation PrimitiveOperationVariationPoint

Port PortVariationPoint
Statechart State StateVariationPoint
Activity Transition TransitionVariationPoint

Action ActionVariationPoint

same as to those described for block diagrams. Besides statecharts and block
definition diagrams, variability support is also available for internal block and
activity diagrams. Table 1 summarizes the diagrams, their elements and the
stereotypes to represent a variation point.

Note that Figure 3 specifies the behavior of the Refrigeration block in
Figure 2. Notice here that the operations used within actions or transitions
of a statechart should be defined in a block model. Such kind of dependencies
among different views are common and make possible the communication among
the distinct engineering disciplines. Hence the need of checking consistency of
the different diagrams.

4.3 Perspective and Lessons Learned

The development of systems involve the combination of skills from different dis-
ciplines. Wind turbine systems are not an exception. Our team involves over two
dozen engineers from software, embedded systems, mechanical and aeronautical
backgrounds. This is an ongoing project that started two years ago. At present
our focus is code generation from some models targeted to parts of the software
architecture. Our preliminary results indicate an encouraging improvement in
coping with the inherent system complexity. One of the reasons is that systems
are now specified in terms closer to the problem domain, which gives engineers
the ability to detect and resolve problems at that level while separating them
from the software implementation details.

We summarize the lessons learned as follows:

– Design as a continuum. System design is a continuous process where each
discipline focuses on certain design parts most frequently develop in parallel
disciplinary teams. Introducing variability further accelerates this continu-
ous process because changes may have a broader impact on the entire de-
velopment process. Having a common approach to handle variability across
engineering disciplines plays thus a pivotal role.

– Living with inconsistencies. In this paper we assumed that the different sys-
tem views should at anytime be consistent. However, there may be interme-
diate stages during the development in which certain inconsistencies may be
allowed temporarily until some parts are completed by different teams.
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– Clearly defined system-software boundaries. Recognizing the significance of
separating systems from software engineering seems trivial. However, when
considering the close relationships among different elements, it is far from
obvious. This realization was a turning point in our project, and marked a
first-step towards engineering our family of wind turbine systems. Our initial
conception of variability shifted from a software-centric to a broader system
perspective.

– Software design driven by system design. The ability to delay or lately mod-
ify design decisions is relevant in our case since the software have to fit the
system elements it is controlling. Frequent situations of last-minute modifi-
cations in the system are now mitigated by the variability handling.

5 Related Work

There exist an increasing body of literature at the intersection of product lines
and MBSE. In this section we present those pieces of work that most closely
related to our approach and research experience.

Dauenhauer et al. describe an approach to model variability for testbed au-
tomation systems [26]. Contrary to our work, they use a positive variability
approach whereby a models is constructed from a set of models through model
transformations. Additionally, they define their own metamodel to represent and
implement variability.

Beuche et al. present an approach for modeling binding-times using Simulink
[27]. They define a metamodel for representing variation points in models of this
language. In that sense, it follows a similar approach to ours because they also rep-
resent variability in terms of variation points that are made explicit in the models.

Favaro and Mazzini extend FeatuRSEB, a method for domain modeling, with
SysML constructs [28]. This approach leverages SysML specific diagrams as
follows: block diagrams to represent its so called context models and higher
level architecture, requirements diagrams for its domain requirement models,
and parametric diagrams to document its business decisions. One of the key
differences with our work is that this extension to FeatureRSEB does make vari-
ation points explicit in SysML diagram elements.

6 Conclusions and Future Work

This paper described an approach to cope with variability in SysML modeling.
We reported our experience in applying this approach as part of an ongoing
project on wind turbine systems for electricity generation. This application has
proven successful because it treats system variability in an uniform way; in our
case, this uniform treatment has improved of the overall development process.

Our work has also highlighted the need of mechanisms to ensure the consis-
tency among the different SysML diagrams. We plan to leverage our experience
and tool support in incremental consistency of UML models to address this
pressing need [29,30].
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Abstract. Domain Specific Modeling Languages (DSMLs) are essential ele-
ments in Model-based Engineering. Each DSML allows capturing certain prop-
erties of the system, while abstracting other properties away. Nowadays DSMLs
are mostly used in silos to solve specific problems. However, there are many
occasions when multiple DSMLs need to be combined to design systems in a
modular way. In this paper we discuss some scenarios of use and several mech-
anisms for DSML combination. We propose a general framework for combining
DSMLs that subsumes them, based on the concept of viewpoint unification, and
its realization using model-driven techniques.

1 Introduction

Complexity is one of the major drawbacks that UML [1] currently faces. Its metamodel
of hundreds of classes and relationships between them represents a challenge for all its
stakeholders. Users have serious problems for understanding its intricate structure and
tend to use just the bit they know and feel comfortable with (around 20% according to
the latest surveys). Formalists have problems for specifying its formal semantics and
continually uncover subtle problems and ambiguities. Tool vendors find it very difficult
to implement all its features (e.g., how many tools you know that can draw multiple
clients or suppliers in a UML dependency?).

And even if UML provides a large number of concepts, they are still insufficient to
capture some of the specific aspects required for modeling particular kinds of systems.
To address this issue, UML counts on extension mechanisms for defining new modeling
languages. For example, SysML [2] extends UML to define a general-purpose modeling
language for systems engineering applications. The UML Profile for MARTE [3] pro-
vides another extension of UML for modeling real-time and embedded systems. The
problem, again, is the size and complexity of these extensions, which does not help
making them more understandable, manageable, usable or analyzable—specially when
their accidental complexity is added to the intrinsic complexity of the systems being
modeled. And then we may need to combine several of these extensions, something
whose results are neither clearly defined nor predictable...

The problem, as we see it, is not so much with UML itself (although it still has some
issues that can be resolved, UML is a very powerful and widely used modeling notation
with many supporting tools), but with its complexity—which hinders its full usability
by average system modelers.
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When looking for solutions, many people are starting to use Domain Specific Mod-
eling Languages (DSMLs). These small and focused languages are becoming common-
place for specifying systems at a high-level of abstraction, using a notation very close
to the problem domain and quite intuitive for the domain expert. A DSML provides
a language to describe a view of the system, concentrating on the elements which are
relevant to that particular view. However, the use of small DSMLs becomes a real prob-
lem when we need to compose them to specify a complete system. How to combine
DSMLs? Which mechanisms are available for composing them? How to prove the cor-
rectness and consistency of the composition?

There is a growing number of works on DSML composition, which address the
problem from different perspectives and using different combination operations: meta-
model merging [1,4,5], metamodel extension [6], template instantiation [7], language
embedding [8,9], different flavors of model inheritance [10], model and metamodel
weaving [11,12,13] (also referred to as metamodel interfacing [7]), even product-line
configuration techniques [14]. However, not all of them provide solutions to all cases,
and most of them are quite limited.

In this paper we discuss different scenarios of use, and different mechanisms for
DSML combination; the advantages they introduce, as well as their limitations. We
propose a general framework for combining DSMLs that subsumes them, based on the
concept of viewpoint unification [15] and its realization using model-driven techniques.

2 A Brief Introduction to DSMLs

When working on a large system it is unrealistic to capture all the necessary informa-
tion, constraints and decisions in a single flat specification, or even in a straightforward
hierarchical specification based on successive refinements [16]. Structuring the speci-
fication into viewpoints gives much more flexibility. A view is a representation of the
whole system from the perspective of a viewpoint. Each view focuses on the elements
relevant to that particular viewpoint, abstracting away all irrelevant details. The view
elements represent the system elements, as seen from the corresponding viewpoint.

Each viewpoint has a viewpoint language (i.e., a DSML) for describing the corre-
sponding views. Each view then is a model that conforms to the corresponding DSML
metamodel. Because the different viewpoints stress different aspects of the design, and
use different techniques for doing so, each designer (or stakeholder) will be most com-
fortable with their own style of language and notation. For example, people writing pro-
cesses and algorithms will probably think better in imperative terms (and use xUML,
BPMN or Java), while business rule experts will find more suitable a declarative lan-
guage (such as SVBR or OCL). Moreover, the models describing the separate views are
independently expressed: they are each formed from a separate set of interrelated con-
cepts, but no model element makes direct reference to terms in any other view model.

The goal of DSMLs is to allow domain experts to specify and reason about their
systems using intuitive notations, closer to the language of the problem domain, and at
the right level of abstraction. These are specific because they restrict themselves to one
particular problem domain, supporting higher-level abstractions than general-purpose
modeling languages and sacrificing generality to gain in specificity and concreteness.
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This makes them easy to learn and to use (by the domain experts), manageable, usable
and analyzable. Furthermore, the rules of the domain are included into the language as
constraints, disallowing the specification of illegal or incorrect models of the views.

Finally, we should recall that defining a DSML involves at least three aspects: the do-
main concepts and rules (abstract syntax); the notation used to represent these
concepts—let it be textual or graphical (concrete syntax); and the semantics of the lan-
guage. The abstract syntax of a DSML is normally defined by a metamodel, which
describes the concepts of the language, the relationships between them, and the struc-
turing rules that constrain the model elements and their combinations in order to respect
the domain rules. The concrete syntax of a DSML provides a realization of the abstract
syntax of a metamodel as a mapping between the metamodel concepts and their textual
or graphical representation. A language can have several concrete syntaxes. Finally,
a DSML may have different kinds of semantics, depending on the aspects we want
to emphasize. Thus, we can have structural semantics (describing what correct mod-
els produced with this DSML actually mean), behavioral semantics (how they behave
along some time model), etc. [17]

3 Mechanisms for Combining DSMLs

The fact that each view provides only a partial specification for the system, requires
mechanisms for combining DSMLs (and also their corresponding models) to be put in
place. It is essential to observe that the combination of DSMLs should yield another
Modeling Language (although not “Domain Specific” any more!), able to represent a
metamodel for the “unified” models that provide a reconciled, integrated and virtual
representations of the separate views of a system specification.

The following questions need to be answered: How can such a combined Modeling
Language be built? How does it relate back to the individual DSMLs (and associated
tools)? How to construct its metamodel? And its concrete syntax? How to define its
semantics? These are the questions that we will try to answer here.

Note that such a combined Modeling Language (and its associated metamodel) can
become too complex to be usable by modelers, and will not normally be presented to
any user. Same as it happens with the output of a program compiler, which produces
an executable model by combining information about the program itself, the execution
platform, the hardware architecture, etc. The resulting model, which is in binary form, is
not for human consumption; users only deal with specific views of it: the functionality,
the configuration files, the information about the dynamic libraries, the deployment in-
formation, etc. Compiler and associated tools make the appropriate connections. Other
tools, such as symbolic debuggers, can use parts of these models to provide the user
with new views of the system at a high level, for instance during program execution.

The final goal is that tools can construct part or all of such a unified model where they
need to manipulate information from more than one viewpoint, or to extract information
from it. In this way, the user will normally work with the individual DSMLs, and leave
the combining tools to build the unified models as needed.

For the combination of two or more DSMLs (and their associated metamodels and
models) we need to address three main issues: (1) how to describe the correspondences
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between the concepts of the languages (i.e., at the metamodel level) and between the
elements in each view (i.e., at model level); (2) how to “integrate” the models that
represent the views into a global workable model (using the views and their correspon-
dences); and (3) how to relate the unified model with the original views, so that the
original views can be extracted from the unified model. The first problem deals with
Relating the individual views; the second one with their Synthesis; and the last one
with the Analysis of the unified model.

3.1 Relating Models: Correspondences

Dividing a system specification into a set of views provides a powerful mechanism
for achieving the required level of abstraction, simplicity and modularity. However, the
specifications must be a coherent description of a single target system. It is therefore
essential that the views be linked, and this is done by establishing a set of correspon-
dences between them. Correspondences do not form part of any one of the DSMLs, but
provide statements that relate the various different views—expressing their semantic
relationships [16]. Hence, a proper system specification consists of a set of viewpoint
specifications, each one expressed in a viewpoint DSML, together with a set of corre-
spondences between them.

The majority of the existing proposals for viewpoint modeling do not consider cor-
respondences between viewpoints, or assume they are trivially based on name equality
between correspondent elements, and implicitly defined. In fact, most proposals and
tools for merging models (including UML 2) take a simplistic approach to matching
based on names: if the same name appears in two views, they are assumed to represent
two aspects of the same object. However, if the models are to be developed by separate
teams, it is not safe to assume they share a single namespace, or that name assignments
are unique. It is also often the case that the correspondences are not simply one-to-one;
the relationships between elements will generally be more complex.

Several authors have proposed different approaches to express correspondences, spe-
cially when views are expressed as UML models, using different alternatives: from OCL
constraints to UML abstraction dependencies (see [18] for a discussion about some of
these approaches). Other proposals use model weaving techniques for relating the el-
ements of different views, defining ad-hoc correspondence metamodels [19], general-
purpose model weaving notations and tools [12,13] or even bi-directional model trans-
formation languages such as QVT.

Correspondences need normally be specified at two levels, depending on whether
they relate metamodel or model elements. In the first case, correspondences determine
the relationships that should exist between concepts of the two DSMLs to be combined.
For example, if we are combining class diagrams with statecharts, a correspondence
between the two language metamodels can specify that every UML class should be re-
lated to one or more statecharts (the ones that define the behavior of the instances of
that class). But then, instances of such correspondences (called correspondence links)
should be specified at the model level, identifying which are the individual statecharts
that should be related to a particular class. Making an analogy with programming lan-
guages, you need to define first how the grammars of the two languages can be related,
and then how two individual programs are related using such relations.
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There are also situations where establishing correspondences becomes a difficult
task, and cannot be automated. For example, a complex structure in one model can
express a concept that is expressed by another complex structure in another model, but
there is no obvious mapping for the individual elements even though the structures as a
whole are similar. Correspondences between non-structural elements (e.g., constraints
or pieces of behavior) are not trivial, either. A very illustrative introduction to the nature
of correspondences and their associated problems and limitations can be found in [16].

It is also worth noting that, given two
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Fig. 1. Correspondences between two models

models, there are many different ways of
relating their elements. An example of
the correspondence between two mod-
els (that may represent different view-
points, or different views) is depicted in
Fig. 1. Depending on the constraints de-
fined by the individual correspondences,
the specifications can be “consistent” or
not. The key question here is the mean-

ing of consistency. We will come back to this later in Sect. 4. So far we would only like
the reader to consider if the system specification shown in Fig. 1 is consistent w.r.t. the
two defined correspondences (c1 and c2) or not.

3.2 Viewpoint Synthesis

Some authors have proposed a number of techniques for combining (meta)models. They
can be basically grouped in three categories, which are discussed in this section.
Metamodel Extension. One possible approach to DSML combination consists of ex-
tending one language (the pivot) with the concepts of the other (the extension). These
new elements were not originally present, but some of them may make references to ex-
isting ones. There are several situations where such an extensibility mechanism is useful
and essential, e.g., in the case of hierarchies of metamodels or to modularly endow a
language with features not originally present.

An extensionOf relation between the two language metamodels was formally in-
troduced in [6]. It subsumes previous proposals for implementing different flavors of
model inheritance [10] or template instantiation [7].

Given two metamodels1 Mi andMe that conform to thesamereferencemodel (ormeta-
metamodel)M and that represent the initial metamodel and the extension (Me), and given
a correspondence mapping ε : Mi → Mi ∪ Me that defines how elements in the initial
metamodel are mapped to elements in the union model (the one that contains all elements
of both metamodels), the authors in [6] show how to compute the synthesized metamodel
Mi ⊕ε Me with the “duplicate-free union” of the two metamodels being combined.

Here, the relationship between the metamodels is accomplished by a user-defined
specification ε of the correspondences between the elements that should be “unified”.

This approach to DSML composition is effective when we want to re-use an exist-
ing DSML and complement it with another (that can be reused, too), and the relation

1 Metamodels are models too, so most of the definitions of this paper apply equally to models.
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between the two is complementary (the extending language complements the other) and
conservative (the extensions are compatible with the pivot language’s concepts and do
not break its semantics). Aspect-oriented modeling approaches could fit into this cate-
gory, since they allow extending models with new properties. Other languages provide
extension mechanisms for facilitating this task (e.g., UML Profiles allow extending the
UML metamodel to incorporate new features).

Another benefit of this approach is that the concrete syntax of the resulting DSML
can be easily defined (see, e.g., [20]), and the combined semantics can be defined as
well (at least in theory), because the extensions have to be conservative [4].

One disadvantage of this approach is its limited use, only for conservative extensions
of a language and not for combining DSMLs in general. In addition, combining sep-
arate extensions is not a trivial task: although each one can be conservative w.r.t. the
pivot language, the consistency of the extensions compositions is not guaranteed (two
extensions may impose contradictory conditions on the global combined model).
Metamodel Merge. Model merge is a more powerful composition operation that does
not assume an unbalanced combination, but tries to combine peer languages. For ex-
ample, UML 2 defines an operation, package merge, that takes the contents of two
packages (models or metamodels) and produces a new package that combines their
contents [1]. Package merge was partially inspired by two specification combination
mechanisms offered in Catalysis: “and” and “join” [4]. However, both differ substan-
tially from package merge: The “and” operation is for use with subtyping, while the
“join” operation allows a specification to impose additional preconditions to those de-
fined in another view [21]. The problem, as it stands today, is that the current definition
of this UML operation is neither precise nor sound, and it does not consider possi-
ble conflicts between the structural constraints of the metamodels that are merged. As
a result, it may break the well-formed rules of any of the languages it combines [4].
Besides, the solution adopted in UML 2 is too simplistic: elements are merged based
on name matching and the resulting extended elements have all the properties of the
elements they merge (we shall see that this becomes a problem, too).

MetaGME [7] enables Metamodel Merge through the use of three types of class
inheritance and a special Class Equivalence operator, used to show a full union between
two classes. The unioned classes cease to exist as distinct metamodel elements, instead
fusing into a single class. The union process is very similar to merging classes through
Package Merge, except that the operation takes place at the class level instead of the
package (or metamodel) level, and the two merged classes do not need to have the same
name because of the use of the Class Equivalence operator.

Pottinger and Bernstein proposed in [5] a more general approach to model merging,
using user-defined correspondences between the views. They presented an algorithm
that, given the two models and a set of user-defined correspondences between them,
provides a merged model which is the duplicate-free union of the two models with
respect to the set of correspondences. The authors identify different kinds of possible
conflicts, some of which may be resolvable, others are not in general. Their approach
subsumes previous works from the database and semantic web communities on generic
model merging, database view integration and ontology merging, by generalizing these
approaches and providing a unified algorithm.
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Although trying to compute the duplicate-free union of two metamodels by merging
them could a priori be an excellent solution for DSML combination, it does not work
in all cases. Merges have to be meaningful from an architectural (and methodological)
point of view: not always the metamodels of two languages are amenable to merging
because their underlying semantics are different and incompatible. Think for instance of
two languages for describing behavior, one based on synchronous interactions and the
other on asynchronous interactions. You can relatively easily relate their metamodels
using correspondences, but you cannot easily merge them into a single unified meta-
model. A similar situation happens if you try to merge a Class and E/R notations into
one single unified language. Or think of combining Java and COBOL programs into the
same language. Or programs written in my two favorite DSLs: LATEX and Excel...

Furthermore, merging models usually implies carrying forward all the properties of
all merged model elements. In other words, model merge only allows injection relation-
ships between the models being merged and the resulting model. For example, in UML
an element resulting from the merge must not be any less capable than it was prior to
the merge. This means, among other things, that the resulting navigability, multiplicity,
visibility, etc. of a receiving model element will not be reduced as a result of a package
merge [1]. Then, if you consider again the models in Fig. 1, merging the classes accord-
ing to the correspondences leads to inconsistent cardinality constraints. Does this mean
that these two models cannot represent views of the same system? Probably they can
(see, e.g., Fig. 3, whose orthographic views M1 and M2 have the same constraints), but
the problem is that package (or model) merge is not the right combination operator for
integrating them.
Language Embedding. An alternative approach to building a DSML from scratch is
to inherit the infrastructure of some other language, tailoring it in special ways to the
domain of interest. This is called language embedding [8,9]. In this way, the embed-
ded language can reuse the syntax of the host language, its module system, existing
libraries, associated tools, etc. The embedding is normally defined in terms of a map-
ping function that describes how the guest language concepts are encoded in terms of
the host language concepts. Furthermore, in case of host languages with precise seman-
tics, the embedding mapping can serve to provide translational semantics to the guest
language (i.e., the semantics of the guest language concepts is defined in terms of the
interpretation of the translated concepts in the host language).

In other words, if MMg and MMh are the language metamodels of the guest and
host languages, the embedding is a mapping ε : MMg → MMh . Normally, such a map-
ping is not explicitly defined anywhere, and there is no explicit trace between the two
languages—losing therefore the connection with the concrete syntax and tools associ-
ated to the original DSML.

Of course, the host language should be expressive (and malleable) enough to repre-
sent the concepts of the guest. Usually, functional languages such as Haskell or Scala,
or formal-based languages such as Maude have proved to be good hosts.

UML has been used as the host language for a wide range of DSMLs. UML is
very expressive, well-know and it counts on tool support—well, mainly model edi-
tors. In fact, UML was originally created to combine (by hosting) the original Booch,
OMT and OOSE methods and notations, incorporating slightly modified versions of
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languages such as Harel’s Statechart notation [22], or ITU-T’s Message Sequence Charts
(MSC) [23]. Thus, UML defines a global metamodel with all the original notations it
combines (for use cases, class diagrams, state charts, sequence charts, etc.).

From a theoretical perspective, the use of the host language metamodel can help
maintaining the coherence and conceptual integration among the viewpoints elements.
However, this approach presents some problems from a practical point of view. Firstly,
in many occasions it means re-defining the original languages to integrate them into
the host language metamodel, something which normally hampers the use of existing
editors and analysis tools for the original languages (e.g., the tools available for Harel’s
Statecharts or for ITU-T’s Message Sequence Charts are not easily accessible from
UML). Secondly, some of the adaptations have respected the original semantics of the
languages, but others had to suffer some modifications or severe cuts (e.g., Statecharts
in UML 1). Thirdly, the relationship between the elements of the different languages is
not obvious in general, and gets usually blurred—mainly because of the intricate nature
of the global metamodel, and because in many cases it is built without mechanisms for
expressing the correspondences between the viewpoints. Finally, language embedding
may force to ask users to stop using their domain specific notations, small and concise
languages and specific tools, and to start using a (probably more) complex language (at
least, far more expressive).

In general, a common Modeling Language that accommodates all DSMLs is feasible
if the number of viewpoints is small and semantically consistent, and if as user you are
happy to forget about the individual DSMLs and their associated tools. But it is rather
artificial if the DSMLs are loosely coupled or describe the system at very different levels
of abstraction/granularity.

Embedding and extensions. In many occasions, host languages also count on exten-
sion mechanisms for facilitating the embeddings2. For example, UML counts on Pro-
files to help defining/hosting new languages. UML Profiles also allow users to define
the embedding function explicitly, indicating which UML metaclasses are extended.

Another example is WebDSL [24], a textual DSML for developing dynamic Web
Applications that incorporates different languages for expressing the concerns involved
in any Web system. WebDSL is is extensible, so new languages can be added as plugins
to cope with new concerns. No explicit embedding mappings ε between the guests and
host language are defined, though.

Embedding languages in this way is not free from problems, either. Let us mention
the most significant issues that we have found when working with UML profiles, al-
though they are generic to this kind of approaches. First, well-defined UML profiles can-
not break the semantics of UML (at least, in theory); however, they can
easily introduce semantic inconsistencies between each other when two or more, inde-
pendently defined, are applied together (e.g., see the problems of combining SysML and
MARTE profiles in [25]). Second, the use of UML as a modeling notation introduces
some restrictions and limitations, which may force design choices sometimes unnatural
when modeling certain domain concepts; for example, SysML models Requirements by

2 In these cases, extending a language can also be seen as a form of embedding. The difference is
usually a matter of degree, and from where we look at it: from the host side (that gets extended)
or from the guest side (that gets embedded).
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extending UML classifiers, a decision which can be considered (at least) arguable. Fi-
nally, the complexity of the UML metamodel does not help when looking for elements
that can represent the domain concepts. In our previous experience with UML profiles
to model languages such as WebML [26] or the RM-ODP viewpoint languages [19], we
found that some times we had too many choices (e.g., it was difficult to decide whether
some concepts had to be represented by UML classes or by UML components, because
their differences are quite subtle), while in other occasions we could not find any UML
element to represent what we wanted (e.g., expressing ODP policies was not a trivial
task). There is also the issue of the concrete syntax: adopting UML graphical notation
is a suitable choice when the embedded language does not have its own concrete syntax
(such as UML4ODP or SysML) because many people are familiarized with UML boxes
and lines, and the learning curve is small; but the results obtained when trying to mimic
other concrete syntaxes are not good, basically due to the reduced facilities of UML Pro-
files for adopting new graphical notations [26]. Worse than that, what we have found is
a recurrent undesirable situation when modelers embed DSMLs into UML. Since the
frontier between the embedded and the host language disappears, users start making use
of many UML concepts that were not part of their original DSMLs, producing models
that are correct w.r.t. the UML metamodel, but incorrect w.r.t. their original languages.

The key question, as we mentioned at the beginning, is whether users should know
about this combined Modeling Language at all, or should the tools be responsible for
converting the models written in the original DSMLs, back and forth to the integrated
model written in the global language. In this way, the user will normally work with the
individual DSMLs, and leave the combining tools to build the unified models as needed.
Probably in this scenario is where the full potential of UML could be better exploited.

3.3 Analysis of the Integrated Models

Independently from how the synthesized model has been built, there should be a way
to extract the views from the integrated model. Although not so much discussed in
the MDE community, this is a well known problem in databases, a part of the data
integration problem [27]. This is the problem of combining data residing at different
sources, and providing the user with a unified view of the data. In this approach, the
user queries over the global schema have to be reformulated in terms of a set of queries
over the sources.

One of the current limitations of language embedding is that there is no trace back
to the original language that has been embedded. Basically, more than “combining” the
languages, they are re-defined from scratch using the metamodel of the host language,
and with no explicit backward connections to the original DSMLs. This is for instance
the case of UML with statecharts or MSCs. The situation is not better with languages
defined using UML Profiles: although the embedding mapping ε is explicitly defined,
the reverse projection is not.

Furthermore, what happens with the tools (editors, analyzers, etc.) of the individual
views? It is important to have access to the tools available for individual DSMLs from
the combined DSML environment. It is not clear how this can be achieved using lan-
guage embedding mechanisms. This is another reason for being the tools, and not the
users, the ones that should combine their models into an integrated Modeling Language.
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4 Viewpoint Unification

Our proposal for DSML combination builds on the idea of viewpoint unification, orig-
inally proposed by Boiten, Derrick, Bowman and Steen for studying the consistency
between viewpoint-based specifications [15]. In that work, a set of viewpoints is con-
sidered to be consistent if there exists at least one “implementation” that satisfies all the
views. This is equivalent to check that the views do not impose contradictory require-
ments on the system. A detailed study of the formal basis for viewpoint unification
mechanisms can be found in [15]. Here we extend that notion in order to deal as well
with the correspondences between the viewpoints, and with the explicit representation
of the relations between the unified model and the views.

Fig. 2. A unified model

The idea consists in considering that the DSMLs to combine provide a set of view-
point languages to describe one system, and hence the models written according to
these DSMLs represent the system views (as proposed in RM-ODP [28] or in [29]).
Because all viewpoints correspond to the same system, and will eventually be realized
by one implementation, there must be a way to combine them. Intuitively, the way to
combine the languages is by providing a new language and a set of mappings between
the new language and the viewpoint languages (Fig. 2), with the additional property
that the mappings respect the constraints imposed by the correspondences.

The more general process to create the metamodel of the new language MG and
the mappings t1, . . . , tn is based on the unification of the viewpoint languages meta-
models. The mappings capture the relations between the unified metamodel and the
individual viewpoints metamodels, acting as projections of MG [29]. The consistency
of the specification is guaranteed by the fact that the mappings should respect the cor-
respondences between the viewpoints: two projections of the same system over two
different viewpoints must be related by the correspondences in a consistent way.

Definition 1 (Model Unification). Given a set of models M1,M2, . . . ,Mn , and a set
of correspondences between them cij = C (Mi ,Mj ) ⊆ P(Mi) × P(Mj ), a unification
is a new model MG and a set of functions ti : MG → Mi (projections) that respect the
set correspondences, i.e., C (ti(MG), tj (MG))) ⊆ C (Mi ,Mj ).

In case of combining DSMLs by unification, models M1,M2, . . . ,Mn are the meta-
models of the languages to combine, and MG is the metamodel of the unified language.
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The form of unification depends on the DSMLs to be combined, the correspondences
defined between them, and the different relations that can be defined between the uni-
fication and the views. For example, the metamodel MG of the unified language could
be defined by applying model extension or model merge operations on the metamod-
els of the viewpoint languages (in those cases where this makes sense). Or we could
use the metamodel of an existing language as global metamodel MG (this is language
embedding). Alternatively, unification offers further options such as defining an ad-hoc
metamodel (neither the duplicate-free union nor an existing language metamodel) for
combining particular DSMLs, as we shall see below.

We can also identify different kinds of mappings, depending on the sort of rela-
tionship between the unified metamodel and each viewpoint metamodel—we should
allow to relate them in different ways. In some proposals, the mappings are defined be-
tween the viewpoint languages and the unified model, and they are called development
relations [15]. They represent the inverse mappings of our projections. For instance
we can have refinement relations, abstractions, equivalences and relations which can
broadly be classified as implementations. These different kinds of relations are best dis-
tinguished by their basic properties. Refinements are reflexive and transitive (i.e., a pre-
order); abstractions are the dual of refinements; equivalences are reflexive, symmetric
and transitive; and implementation relations only need to be reflexive [15]. Transitivity
is a very expensive property, but crucial for enabling incremental development of speci-
fications towards realizations. Implementation relations are the most common relations,
they just establish correspondences between the unified metamodel and the viewpoint
metamodels. For example, consider a requirements specification of the system written
using OMG’s Business Motivation Model (BMM) notation and a functional specifica-
tion using LOTOS (ISO/IEC 880). A unified model may be expressed in a completely
different notation, and related to the former by a logical satisfaction relation, and to the
latter by a behavioral conformance relation.

Our approach to DSML combination

Fig. 3. Orthographic views of a 3D object

subsumes previous approaches (see Sect.
5), and allows a wider range of possi-
ble combinations. For example, consider
again the models in Fig. 1. Merging them
was not possible because the merge op-
erator finds inconsistencies between the
cardinality constraints of the classes to
merge. However, consider the orthogra-
phic representation of a 3D object shown
in Fig. 3, whose views M1 and M2
present similar correspondences to the
classes in Fig. 1, but for which a com-
bined model is possible (shown as the
Implementation).

In fact, the two models shown in Fig. 1 admit one unification, given by a model MG
with two classes A and B related by an association whose cardinality is 2 in both ends,
plus two projections T1 and T2—see Fig. 4.
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The first projection T1 transforms each pair of A instances of MG related to a pair
of B instances into one single A’ instance, and transforms B instances into B’ without
modifying them. The second projection T2 does the analogous transformation with B”
and A” instances, respectively. This represents, for instance, a system in which both A
and B elements are replicated. View M1 abstracts away the replication of A elements,
while View M2 does the same for B elements.

Of course, the unification is only

MG

A B

M1

A'

B'

M2

A''

B''

22

«correspondence»
c2

«correspondence»
c1

2

1

1

2

T2T1

Fig. 4. The Unified Model for Fig. 1

possible if correspondences c1 and c2
are one-to-many and many-to-one, re-
spectively. Otherwise the unification is
not possible: suppose that correspon-
dence c1 was one-to-one, i.e., it im-
posed that every A’ instance should be
related to exactly one A” instance. In
this case, there is no implementation
possible for the system and therefore
the multi-viewpoint specification
becomes inconsistent.

5 Discussion

Relationship with previous approaches. Our proposed unification can be seen as a
generalization of previous approaches to DSML combination, discussed in Sect. 3.
In model extension and model merge, the unified metamodel MG is nothing but the
duplicate-free union of the viewpoint metamodels. The development relations in these
cases coincide with injection mappings defined by these two approaches (e.g., ε in case
of model extension), and the projections ti are just the inverse of these injections. One
of the benefits of our approach is that we request that the projection mappings are ex-
plicitly defined. One of the benefits of the model extension and model merge approaches
is that they provide mechanisms and algorithms for building the unified model (in those
situations in which they can be applied), because the unified model coincides with the
combined model they construct—sometimes called the least developed unification [15].

Language embedding is also a particular case of our approach, in which the meta-
model MG is an existing one. Users normally define the development mappings that
describe how the DSMLs concepts are encoded as MG elements. In our case, we ex-
plicitly ask to specify the inverse projections ti too, to be able to trace back to the
original languages and to automatically obtain the views from the unified model.

We are of course conscious that the synthesis process cannot always be fully auto-
mated, as we have tried to illustrate with the simplistic example shown in 4. There are,
however, other occasions in which such a combined model can be synthesized from the
views, as it happens when model extension or model merge approaches are possible.
But in these cases the projections are easy to define, because they are nothing but the
inverse of the development mappings.

Realizing the Mappings. The advent of MDE has provided a set of appropriate mech-
anisms and tools for specifying and implementing both the viewpoint correspondences
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and the ti projections. For instance, model weaving [12] is a technology that can be
very useful to implement model extension and model merging, as described in [11,13].
More importantly, model transformations can play a key role for realizing the mappings
so that they can be automated. In the best case we will be able to define bidirectional
model transformations that allow the mappings to work in both directions.

In a typical application scenario, a user will be confronted with two DSMLs that have
to be combined. The first step is to define the correspondences between their metamod-
els using model weaving techniques. Then the user should investigate whether model
extension or model merge can produce a satisfactory and consistent unified metamodel
(in case the projections of the duplicated-free union of the two languages metamodels
respect the correspondences constraints). If so, implementing the algorithms described
in [6] or in [5] using model transformations is the solution. Once defined, the projections
from the unified metamodel to the views should be defined in terms of model transfor-
mations, to be able to perform automatic analysis (these projections are basically the
inverse of the development mappings defined by the algorithms).

Alternatively, the user may consider embedding the languages into an existing lan-
guage, if none of the issues we have identified in Sect. 3.2 represent a serious problem
for her. In this case the development relations are just the embedding mappings, which
can be implemented in terms of model transformations, too (see, e.g., [30,31,32,33]).
Apart from the intrinsic problems of defining the mappings and the projections (which
are not normally difficult from a conceptual point of view but rather cumbersome from
a technical perspective), special care should be taken for making sure that the corre-
spondences constraints are respected by the projections.

Finally, in case none of the previous approaches offers a neat solution, the user might
consider specifying an ad-hoc language for hosting the combination. As major benefits,
the relationships between the combined DSMLs and the unified language can be of
different types, and implemented as model transformations (in both directions: devel-
opment and projections) that will fit the particular requirements of the individual lan-
guages. The main problem is the complexity involved in defining the unified language
so that it represents the consistent “least development unification” of the DSMLs to
combine. The good news is that this new language has to be defined only once for every
combination of languages.

What happens with the concrete syntax? In our proposal, users do not need to use the
combined language and thus there is no need to provide a concrete syntax for it. In case
of model extension, some authors have proposed a way to combine the concrete syntax
as well [20]. But in general this is a difficult issue because of the semantic implications
of symbols: usually every symbol conveys an associated meaning. For instance, a box is
associated to a classifier in UML; a stick figure is an actor, etc. There is no major problem
when the concepts of the combined languages are kept separated, or just extended, but
not mixed. But when the concepts are mingled in the combined language the situation
becomes more complex, and trying to use the icons of one or the other language may
introduce semantic problems to the reader of the combined diagrams. And if we try to
choose a different notation for the combined language, the users might get completely
confused with the new notation.
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In language embedding we get the opposite problem because users tend to focus
more on the host language notation—the embedded language symbols usually become
(inconized) annotations to the host language symbols. But the look-and-feel of the re-
sulting diagrams resembles too much the host language notation, and thus the benefits
of working with domain specific languages melt away. However, this might not be a
problem but an advantage when the embedded language does not have any associated
concrete syntax, as we explained before.
What happens with the semantics? There have been different proposals for the com-
positional definition of the semantics of DSMLs using diverse formalisms, see, e.g.,
Refs. [34,35,36,37]. These works are usually valid when the relation between the view-
points and the unified metamodel are basically injections. But in general combining the
semantics of the languages is not a trivial task and deserves its own line of research—
specially when we allow different kinds of relations between the unified metamodel
and each viewpoint metamodel. In an unification context, the semantics of the indi-
vidual DSMLs and the unified language are preserved. Model transformations provide
here the semantic brigdes that allow mapping ones into the others. Furthermore, model
transformations can serve to define the (translational) semantics of those languages that
do not count on an explicit definition of their semantics, as mentioned in Sect. 3.2.

6 Conclusions and Future Work

In this paper we have discussed and analyzed the most common techniques for DSML
combination, and classified them in three main categories according to the operations
they use: model extension, model merge and language embedding. These techniques
are useful in some circumstances, but rather limited in others. Then we have proposed a
more general framework for combining DSMLs that subsumes them, based on the con-
cept of viewpoint unification, and its realization using model-driven techniques. The
framework has allowed us to put these combination techniques in context, and formu-
late them in similar terms. In fact, they all represent different ways to find a global
metamodel that can host the languages to combine. But these approaches have similar
problems, too. Firstly, none of them specifies in an explicit way the traces back to the
original notations that permit making use of the tools available for these languages. Sec-
ondly, they allow only one kind of relationship between the languages to combine and
the global metamodel (basically, injection). The first problem is solved in our proposal
by requesting the explicit specification of the mappings from the global metamodel
to the languages metamodels. The second problem is the one that imposes stronger
limitations on existing approaches for combining DSMLs because it forces the global
metamodel elements to incorporate all the capabilities of the individual views, and to re-
spect the constraints defined by both the viewpoints and the correspondences. We have
introduced a simple example that shows that such limitation is too restrictive, and nor-
mally unrealistic for composing rich DSMLs. Our approach overcomes this limitation
by allowing different kinds of relations between the viewpoint languages and the global
metamodel (abstractions, refinements, implementations, etc.) and also by checking the
consistency of the specifications using the projections of the global metamodel.
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We are currently working on the unification of the viewpoint languages defined by
some multi-view proposals, such as UWE [38] and the RM-ODP [28]. This is the con-
text in which the work presented here has been developed, based on our experiences
and findings when combining these languages. Although there are still many issues to
resolve, we have tried to show how the MDE technologies can significantly help in
combining DSMLs by formulating the problem in terms models and relations (transfor-
mations) between them.
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Cabot for their comments on a previous version of this paper, and to the anonymous
referees for their insightful comments and suggestions. This work has been partially
supported by Spanish Research Projects TIN2008-03107 and P07-TIC-03184.

References

1. OMG: Unified Modeling Language 2.1.1 Superstructure Specification. OMG, Needham
(MA), USA, OMG doc. formal/07-02-05 (2007)

2. OMG: Systems Modeling Language. OMG, Needham (MA), USA (2008)
3. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded sys-

tems. OMG, Needham (MA), USA (2009)
4. Zito, A., Diskin, Z., Dingel, J.: Package merge in UML 2: Practice vs. theory? In: Nierstrasz,

O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 185–199.
Springer, Heidelberg (2006)

5. Bernstein, P.A., Pottinger, R.A.: Merging models based on given correspondences. In: VLDB
2003, Berlin, Germany pp. 862–873 (2003)
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Abstract. In domain-specific development model-driven development environ-
ments play an important role. Most of these environments only provide support
for language engineering, but do not consider the second dimension which is con-
cerned with domain engineering. In this paper, we join the concerns of language
engineering and domain engineering towards a new comprehensive approach of
domain-specific development. It allows domain designers to build domain mod-
els containing both, types and instances, and it allows language designers for
defining language metamodels. Furthermore, based on the integrated description
logics the environment provides services for productive modeling in domain and
language engineering.

1 Introduction

Today, domain-specific development is based on model-driven development (MDD)
[1]. In [2] we have presented an environment called OntoDSL which allows for devel-
oping and using description logic-based domain-specific languages. The environment
supports both language designers and language users. A language designer provides
domain-specific languages (DSL) to language users by defining an abstract syntax in
the form of a metamodel, a concrete syntax (e.g. of a textual or visual kind) and seman-
tics. All three steps are related to language engineering. The language user makes use
of the DSL and builds domain models by creating instances of elements like classes and
associations of the metamodel.

In OntoDSL, we consider metamodel hierarchies to describe the specification and
the use of DSLs. At the M3 layer, a metametamodel is defined. At the M2 layer, the
language is specified by defining a metamodel. Its elements are instances of elements
in the metametamodel. At the M1 layer, the specified language can be used by creating
a domain model, which is a linguistic instance of the DSL metamodel. For example, a
class Device at the M2 layer allows for creating linguistic instances like cisco at the
M1 layer.

In contrast to language engineering, which is based on hierarchies related by lin-
guistic instantiation, another important dimension of model-driven development is
the engineering of the domain, where hierarchical layers are related by ontological
instantiation. [3].
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In domain engineering the role of a domain designer is involved. A domain designer
has the task to formally describe an existing or new domain. The result of domain engi-
neering is a domain model which consists of both domain instances and domain types
which classify the instances. Since a domain designer can create both instances and
types in one domain model and can assign types to instances by a hasType-relationship,
domain engineering requires ontological instantiation. For example, the domain de-
signer wants to explicitly define that the domain instance cisco7603 has the domain
type Cisco.

Our work is based on the work of Atkinson and Kühne [3,4]. They claim, that meta-
modeling is an essential foundation for model-driven development but does not meet all
the technical requirements for MDD environments. However, it can be extended to pro-
vide the full support for language engineering with an instanceOf -relation and domain
engineering with a hasType-relation.

The MOF (Meta Object Facility) language [5] and its derivatives mainly provides
linguistic instantiation where some parts of language engineering are supported. The
ontological hasType-relation may be defined, but it would be just a simple UML asso-
ciation. Its meaning would remain implicit and would not be recognized and supported
by the tools. Furthermore, the use of DSLs, where a language user builds domain mod-
els containing linguistic instances of concepts in the DSL metamodel, is separated from
domain engineering, where a domain designer creates domain models, which consist of
domain type and instance definitions.

1.1 Challenges

To accomplish the definition of a hasType-relation with explicit semantics and a joint
design of domain models, using a DSL together with the facilities of domain engineer-
ing, we have to deal with the following challenges:

1. Explicit modeling ontological and linguistic instantiation relationship: One
challenge in today’s model-driven development environments is that they should
allow for explicitly modeling both, ontological and linguistic, instantiation relation-
ship to support both, domain and language engineering [3]. To create elements in
a domain model domain designers and language users require a (domain-specific)
language represented by a metamodel. This language should prescribe the design
of domain models and provide a linguistic instantiation mechanism for designing
types and instances in domain models. In addition domain designers require ex-
plicit modeling of an ontological instantiation relationship. It allows for assigning
a domain type to domain instances in the domain model.

2. Combination of Language Engineering and Domain Engineering: A second
challenge is related to the joint use of linguistic and ontological instantiation. The
problem in using pure DSLs which only allow for creating linguistic instances of
elements in the metamodel is a lack of flexibility in dynamically extending the
set of domain types in domain models [3]. Domain designers might identify do-
main types and instances, where language designers formalize them by creating a
DSL for language users to create models describing e.g. products or components for
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software systems [6]. Domain designers call for the capability iteratively to define
or extend the set of domain types for modeling domain instances. This requires
the simultaneous definition of types and instances in one domain model. Here the
need of an appropriate language metamodel is needed which provides concepts to
allow for defining both, types and instances. On the other side, since pure domain
engineering allows to create arbitrary domain types, different domain models of the
same domain could have different types which do not fit together. Here some pre-
scribing language for domain models can be necessary to make them comparable
and capable of being integrated.

3. Services and Constraints: The validity of domain models is an important chal-
lenge. If models are invalid, domain designers and language users want to debug
their domain models to find errors inside them and to get an explanation how to
correct the model. They want to have information about consequences of applying
given domain constructs. The MDD environment should be able to provide sug-
gestions to language users and domain designers. In the case of building domain
models, language users normally start the modeling with general and abstract con-
cepts, since they have not the complete knowledge of all constructs provided by
the DSL or they want to keep variability in extending the model [7]. Hence they
want to classify conforming model elements according to concept descriptions in
the language metamodel. In the case of domain engineering, domain designers want
to classify existing domain instances. Since often domain instances exist without
any domain type, domain designers want to get suggestions of possible types au-
tomatically. To define the validity an appropriate constraint language is needed.
Language designers have to define constraints to restrict the use of concepts in the
metamodel. Domain designers have to define constraints to refine the domain de-
scription. Furthermore, constraints for domain designers must cover both, instance
and type layer.

This paper is structured as follows: In section 2, we sketch the application context
and show the differences between linguistic and ontological instantiation. We present a
running example for joint language and domain engineering illustrating the three chal-
lenges. After some foundations of description logics and its need in software engineer-
ing in section 3, we present the architecture of an environment which provides both,
language engineering with linguistic instantiation and domain engineering with onto-
logical instantiation in section 4. At the end of this paper, we compare our approach
with the challenges (section 5) and with related work (section 6).

2 Running Example

In this section, we first start with an introduction of the application context which gives
an idea of the different dimensions of metamodeling. Afterwards we present a simple
running example where we show a domain-specific language and its domain model
which allows for defining an ontological instantiation relation.
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2.1 Application Context

Generally, language designers using MDD environments require the facility to define
the abstract syntax, at least one concrete syntax and the semantics of the language to
be designed [3]. The abstract syntax can be defined by a metamodel. The concrete
syntax can be specified by textual or visual notations. Semantics may be defined by a
natural language specification or may be captured (partially) by logics (e.g. description
logics [8,9]).

From the language engineering perspective and with regard to figure 1(a) linguistic
instantiation supplies a linear metamodeling hierarchy [4]. The metametamodel is in-
stantiated by the language designer to define the metamodel. The metamodel itself is
instantiated by a language user to build domain models. For example, the metatype
elements and the metainstance elements in the metamodel are linguistic instances of
the metametamodel element class. type elements and instance elements in the domain
model are linguistic instances of the metatype element and metainstance element at
the M2 layer. In figure 1(b) the elements in figure 1(a) are exemplified by concrete
model elements from the domain of network devices (cf. section 2.2). Here, Device
is a metatype and a possible linguistic instance of Device is Cisco. On the right side
of figure 1(b), we have DeviceInstance as a metainstance. A linguistic instance of
DeviceInstance is cisco7603 at the M1 layer.

At the M1 layer, a domain designer is able to define at least two ontological layers
(O2 and O1) within his domain model. He is able to define type elements (at O2), cor-
responding instance elements (at O1) and connecting them by an ontological hasType-
relation. The relation itself is defined in the metamodel which strongly prescribes the
design of domain models (e.g. types cannot be connected to other types via hasType).
The M0 layer represents the real world objects, e.g. concrete devices and its categories.
With regard to figure 1(b) Cisco is a domain type which has a domain instance called
Cisco7603 via an ontological hasType relation. The hasType relation between a De-
vice and a DeviceInstance is defined at the M2 layer. Furthermore, a domain designer
can specialize domain types by creating subclass-relationships, or vice versa subsume
given domain types by one super type. For example, domain type Cisco in figure 1(b)
could have the specialization CiscoWAN or CiscoLAN.
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Fig. 1. Linguistic and ontological metamodeling
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While metamodels of DSLs on the one side are used to prescribe the design of do-
main models, on the other side, initial domain models are used to extract the meta-
model of a language. At first, a domain designer would create types and instances in his
domain model. A language designer considers the domain model and extracts relevant
concepts for the metamodel [10].

In the following, we are going to present an example which is provided by one of
the industrial partners of the MOST project1. This example exemplifies all challenges
(1) to (3) introduced in section 1. With regard to figure 1 the following example depicts
how the elements metatype, metainstance, type and instance are concretely defined
in a metamodel and a domain model and how the instantiation relations are modeled.

2.2 Example

Comarch2, a polish IT company specialized in software for telecommunication
providers, uses different model-driven methods for software development where dif-
ferent kinds of domain-specific languages (DSLs) are deployed during the modeling
process. Some of the tools that Comarch develops for telecommunication providers are
dealing with modeling physical network devices. This is a domain-specific task, since
different configurations of network devices have to be modeled. The following language
metamodel (figure 2) and domain model (figure 3) are designed by using a textual con-
crete syntax which is based on an extended KM3-syntax [11].
1. Explicit modeling ontological and linguistic instantiation relationship: The do-
main of physical network devices can be described by a simple DSL, which provides
the core metatypes like Device, Slot and Card. Comarch language designers want to
provide the facilities of domain engineering to language users and domain designers to
create domain models at the M1 layer. Thus, they have to provide a language which
allows for creating domain types and instances in domain models. Furthermore, the on-
tological instantiation relation must be explicitly defined. Metatypes together with the
connecting metareferences describe the general structure of a network device and are
defined in an M2 metamodel which is depicted in figure 2. In the same metamodel the
Comarch language designer defines metainstances using the metainstance-keyword.
Here the ontological instantiation relation is defined by the hasMetatype-keyword.

A domain model is depicted in figure 3 and consists of linguistic instances of model
elements in the metamodel. Here both domain types and instances are defined using the
type- and instance-keyword. Using the instanceOf-keyword each domain type and
domain instance can be defined as a linguistic instance of a corresponding metatype
and metainstance. For example, domain type Cisco is a linguistic instance of Device,
while supervisor720 is a linguistic instance of CardInstance.

A mandatory task in creating domain models is the definition of an explicit hasType-
relation between instances and domain types. In the example in figure 3, a domain
designer wants to use the hasType-keyword to define that the ontological instance
supervisor720 has the named type CiscoCard. References like hasSlot in the type

1 http://www.most-project.eu
2 http://www.comarch.com

http://www.most-project.eu
http://www.comarch.com
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1 metatype Device {
2 metare ference h a s S l o t [1−∗]: S l o t ;
3 }
4 metatype S l o t {
5 metare ference hasCard [0−∗]: Card ;
6 }
7 metatype Card { }
8

9 meta ins tance D e v i c e I n s t a n c e hasMetatype Device , equiva lentWith r e s t r i c t i o n O n
h a s S l o t with some r e s t r i c t i o n O n hasCard with some Card {

10 metal ink h a s S l o t [1−∗]: S l o t I n s t a n c e ;
11 }
12 meta ins tance S l o t I n s t a n c e hasMetatype S l o t {
13 metal ink hasCard [0−∗]: C a r d I n s t a n c e ;
14 }
15 meta ins tance C a r d I n s t a n c e hasMetatype Card { }

Fig. 2. M2 metamodel of the core DSL

definitions on the one side represent links which are linguistic instances of correspond-
ing references in the metamodel, on the other side, they define new references for links
between ontological instances.

Furthermore, constraints based on description logics [9] should be defined in the
metamodel. For example, in figure 2 an equivalentWith-axiom is used to define that
each device instance must be linked with at least some card via some slot, which cannot
be defined by cardinalities, because slots optionally could be empty.
2. Combination of Language Engineering and Domain Engineering: To ensure the
correctness of domain models Comarch wants to prescribe the design of each domain
model. The core domain should be described by a DSL which is used by domain design-
ers und language users to build domain models. So far, the DSLs designed by Comarch
do not allow for creating both types and instances in the domain model. To accomplish
the prescription of the design of domain models, a Comarch language designer wants
to describe DSLs in a way like it is done in figure 2. Here the metamodel of a DSL is
depicted which allows for describing the core domain of physical network devices, but
as well distinguishes between domain types and instances.

Language users and domain designers get this metamodel and can create linguistic
instances, which build the domain model depicted in figure 3. Thus every domain model
can consist of domain types (using the type-keyword) and corresponding instances (us-
ing the instance-keyword). Furthermore, each complete device has to follow the given
structure of the order device-slot-card, and has to contain at least one card, which is
prescribed by the DSL. Without a DSL that prescribes the design of domain models a
second domain designer would be able to create domain models which describe devices
containing elements in the order device-card. Such models of the same domain would
not be comparable with other domain models and capable of being integrated.
3. Services and Constraints: Language designer and domain designer at Comarch
want to define constraints in their language metamodels and domain models. Using
a metamodeling language (like KM3 [11]) and in addition some constraint language
(like OCL) as yet, maybe would not help Comarch, since the designers want to define
constraints that cover at least two layers - one type layer and one instance layer.
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1 type Cisco i n s t a n c e O f Device equiva lentWith r e s t r i c t i o n O n h a s S l o t with some
r e s t r i c t i o n O n hasCard with some S u p e r v i s o r {

2 r e f e r e n c e h a s S l o t [1−∗]: C i s c o S l o t ;
3 }
4 type C i s c o S l o t i n s t a n c e O f S l o t {
5 r e f e r e n c e hasCard [0−∗]: C i scoCard ;
6 }
7 type CiscoCard i n s t a n c e O f Card { }
8 type HotSwappableOSM i n s t a n c e O f Card , ex tends CiscoCard { }
9 type S u p e r v i s o r i n s t a n c e O f Card , equiva lentWith oneOf ( s u p e r v i s o r 7 2 0 , s u p e r v i s o r 3 6 0

) { }
10

11 i n s t a n c e c i c s o 7 6 0 3 i n s t a n c e O f D e v i c e I n s t a n c e{
12 h a s S l o t s l o t 1 ;
13 }
14 i n s t a n c e c i s c o 7 6 0 4 i n s t a n c e O f D e v i c e I n s t a n c e , hasType r e s t r i c t i o n O n h a s S l o t with

some r e s t r i c t i o n O n hasCard with some S u p e r v i s o r {
15 }
16 i n s t a n c e s l o t 1 i n s t a n c e O f S l o t I n s t a n c e , hasType C i s c o S l o t {
17 hasCard s u p e r v i s o r 3 6 0 ;
18 }
19 i n s t a n c e s u p e r v i s o r 7 2 0 i n s t a n c e O f C a r d I n s t a n c e , hasType CiscoCard { }
20 i n s t a n c e s u p e r v i s o r 3 6 0 i n s t a n c e O f C a r d I n s t a n c e , hasType CiscoCard { }

Fig. 3. M1 domain model containing types and instances

For example, a domain designer restricts the domain type Cisco by defining that it
must be connected within the domain model in figure 3 with at least one Supervisor-
card via a slot. The type Supervisor is equivalent to a set of two domain instances,
namely supervisor360 and supervisor720. Here a constraint is used, which covers
both layers for types and instances. In figure 3, below the definition of domain types, the
definition of domain instances occurs. Here the instance cicso7604 has an anonymous
type which restricts that it must be connected with some instance of Supervisor.

Language users want to have services for validating domain models with regard to
the metamodel. Domain designers also want to validate their domain models and check
the consistency of domain instances with regard to the domain types. Furthermore, they
require classification of domain instances with suggestions of suitable types to be as-
signed to instances in the domain model. So far, Comarchs MDD environments do not
support validation and classification services cannot be realized based on the current
domain models.

The domain instance cisco7604 leads to an inconsistency. As an explanation, an
MDD environment should return a debugging relevant fact which gives the information
that a link to a supervisor card is missing. Since not every instance in the domain model
is assigned to a domain type, domain designers require suggestions of suitable types.
For example, they want to have Cisco as possible domain type of cisco7603 (because
it is connected via a slot with some supervisor card).

3 Description Logics-Based Metamodeling

Description logics[9] are a family of logics for concept definitions that allows for sepa-
rate as well as for joint sound and complete reasoning at the model and at the instance
level given the definition of domain concepts.
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OWL2, the web ontology language, is a W3C recommendation with a very compre-
hensive set of constructs for concept definitions [12] and represents a concrete imple-
mentation of a description logic.

In this paper, we use OWL for specifying classes, properties and individuals of a
domain, instead of OCL, the Object Constraint Languages [13], which is an expression
language to specify constraints for UML diagrams.

3.1 Description Logics for Language and Domain Engineering

The domain-specific language engineering process can be divided into different
phases [14]: analysis, design and implementation. In this paper, we mainly concentrate
on the design phase of DSLs. Here a metamodel of the language is specified, together
with concrete syntax and semantics. MOF-like metametamodels usually describe the
metamodels. The semantics of MOF-based metamodels is limited in comparison to the
ones of description logics, and the latter one provides a better support for reasoning
than MOF-based languages [15]. Description logics-based approaches lead to formal
domain-specific metamodels that may be exploited for a variety of services, from con-
sistency checking to semi-automatic engineering and to explanations [2].

As described in [16] the process of domain engineering can be divided into three
main parts: domain analysis, infrastructure specification and infrastructure implemen-
tation. The domain analysis phase considers the identification and analysis of domain
knowledge to be reused in software engineering. The result of domain analysis is a for-
mal domain model of the problem domain. In this paper, we consider the task of creating
domain models. As described in [16], ontologies can help in the language specification
by capturing the problem domain, conceptualizing it, and later constraining the inter-
pretation by further formal axioms.

3.2 Example

In the following, we consider the running example again and define the domain model
presented in figure 3 as a knowledge base using description logics in figure 4.

The axioms (1) to (4) define the description logics TBox. The TBox is used to spec-
ify concepts (corresponding to classes in UML) which denote sets of individuals and
roles (corresponding to associations in UML) which define binary relations between in-
dividuals. At first the concept Cisco is defined as an anonymous class which demands
that each individual of Cisco is connected with some individual of type Supervisor
via the hasSlot- and hasCard-role (1). In (2) the concepts CiscoSlot and CiscoCard
are defined as a subclass of top (�). The top-concept is the common super type of all
defined concepts in the knowledge base and captures all individuals in the domain. In
(3) the HotSwappableCard is defined as a subclass of CiscoCard. In (4) the Su-
pervisor concept is defined as an enumeration of the individuals supervisor720 and
supervisor360.

The axioms (5) to (10) define the description logics ABox. Here the concrete knowl-
edge is asserted defining individuals of concepts and linking them using the roles de-
fined in the TBox. In (5) the individual cisco7603 is defined but has no direct type.
In (6) the individual cisco7604 is defined, which has an anonymous type. It defines,
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that the individual must be connected by the hasSlot and hasCard-role with some in-
dividual of type Supervisor. Furthermore, all necessary individuals for slots and cards
are defined (7, 8). Using role assertions all the individuals are linked and represent a
concrete configuration of a Cisco7603 device (9, 10).

Cisco ≡ ∃hasSlot.(∃hasCard.Supervisor) (1)

CiscoSlot, CiscoCard 	 
 (2)

HotSwappaleOSM 	 CiscoCard (3)

Supervisor ≡ {supervisor720, supervisor360} (4)

cisco7603 ∈ 
 (5)

cisco7604 ∈ ∃hasSlot.(∃hasCard.Supervisor) (6)

slot1 ∈ Slot (7)

supervisor720, supervisor360 ∈ Card (8)

(cisco7603, slot1) ∈ hasSlot (9)

(slot1, supervisor360) ∈ hasCard (10)

Fig. 4. Description logics knowledge base representing the domain model from figure 3

3.3 Open and Closed World Assumption

While the underlying semantics of MOF-based class modeling adopts the closed world
assumption (CWA), description logics adopt the open world assumption (OWA) by de-
fault. Traditional design of domain models is based on the closed-world assumption
where the elements in the model are known and unchanging. The open world assump-
tion assumes incomplete information as default and allows for validating incomplete
domain models which are still in the design phase. However, research in the field of
combining description logics and logic programming [17] provides solutions to support
description logics-based reasoning with the closed world assumption as well [18]. Thus
we are able to switch between reasoning with OWA and CWA.

Since description logics are useful in domain engineering for joint reasoning at the
type layer and instance layer, for handling incomplete domain models and in language
engineering for validating domain models with regard to its metamodel, we propose
to develop language metamodels (cf. figure 2) and domain models (cf. figure 3) with
embedded description logics-based constraints in an integrated manner. Our intention
is to allow domain and language designers to create domain models and metamodels
with the language they are familiar with as much as they can and selectively annotate
elements with simple description logics-based constraints.

4 Metamodeling with Linguistic and Ontological Instantiation

In this section, we will present the approach and architecture which provide linguis-
tic and ontological metamodeling. In section 4.1, first we present the overall approach
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and the architecture. In section 4.2 we present an excerpt of the integrated metameta-
model, and give an idea how it relates to a concrete syntax. In section 4.3 we present
the different kinds of services which are provided by the environment.

4.1 Overall Approach

Figure 5 presents a multi-layered architecture depicting the OntoDSL-environment
usable for language engineering and extended with new functionalities for domain
engineering.

Core of the environment is the Ontology-based MetaModeling Language (OntoM2L)
at the M3 layer, whose abstract syntax is described by an integrated metametamodel.
It consists of an (extended) KM3 metametamodel [11] integrated with an OWL2 meta-
model [12], which implements a description logic. An excerpt of the metametamodel
is depicted in figure 6. Linguistic instances of the integrated metametamodel lie at the
M2 layer. Here the environment provides the facility for language engineering and al-
lows for building DSL metamodels. These metamodels can contain the definition of
domain metatypes and metainstances. The DSL defined at the M2 layer is used to de-
scribe the core of a domain and can be used by a domain designer and language user
to built domain models at the M1 layer. Because the metamodel allows for creating
domain types (using the M2 concept metatype) and domain instances (using the M2
concept metainstance), domain designers and language users are able to model two
ontological layers O2 and O1. Layer O2 consists of domain types and layer O1 consists
of domain instances. Both ontological layers are connected by the explicit ontological
hasType-relation between domain types and instances.

The OWL2 part of OntoM2L can be used to define axioms and restrictions in the
metamodel and domain model. To reason on the additional semantics, especially the
one of the explicit hasType- and instanceOf-relations, the domain model at the M1 layer
with its types and instances is transformed to a description logics TBox and ABox,
represented by the DE Ontology. Its TBox describes the terminology of the domain
and represents the domain types together with its constraints, while the ABox contains
concrete assertions about domain instances. In the case of language engineering the
metamodel together with its metatypes and metainstances is transformed into the TBox
contained by the LE Ontology. Each linguistic instances of the metamodel are trans-
formed into the ABox. The two knowledge bases, which are implemented by an OWL2
ontology, are used by an inference engine, which provides additional services. These
services for validating and explaining the metamodel can be used by the different users
of the environment.

4.2 Implementation

In the following, we present some technical details of the environment and give an idea,
how it is implemented.

Abstract syntax. Figure 6 depicts an excerpt of the integrated metametamodel, which
is part of OntoM2L and consists of two main parts: the KM3+instance metametamodel
and the OWL2 metamodel.
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Fig. 5. Architectural overview of the environment

The KM3+instance metametamodel provides all the concepts for modeling (meta-)
types and (meta-)instances and adopts the OWL2 metamodel. For example, the class
KM3Class is a specialization of OWLClass, thus it is possible to restrict classes by
several class axioms provided by the OWL2 metamodel. KM3Instance is a special-
ization of OWLIndividual and Instantiation is a specialization of ClassAssertion. In
OWL class assertions are used to define the class expressions as type of an individ-
ual. The KM3+instance metametamodel differentiates between elements of M2 layer
and M1 layer. M2 elements, for example, are Metatype and Metainstance. Both can
be connected by a MetaHasType relation. M1 elements, for example, are Type and
Instance which optionally can be connected by a HasType relation.

The metametamodel allows for defining the linguistic instanceOf-relationship be-
tween M2 and M1 elements using the InstanceOf-class. Each linguistic instance must
have exactly one metatype or metainstance. We must mention that several constraints
for a restricted use of the metametamodel are not depicted in figure 6. They allow for
defining, that Type only can be linguistic instance of Metatype, Instance only can be
linguistic instance of Metainstance and HasType only can be linguistic instance of
MetaHasType.

All classes in the M3 metametamodel which are specialization of M2Element are
also specialization of KM3Class which is specialization of OWLClass. Hence their in-
stances, which are represented at the M2 layer, are transformed to a TBox in the descrip-
tion logics knowledgebase (cf. figure 5). In the case of reasoning services for language
engineering all instances of M1Element, which lie at the M1 layer, are transformed
into a description logics ABox. Hence M1Element is specialization of KM3Instance
in the metametamodel, because the ABox consists of instance definitions.

In the case of services for domain engineering we differ between elements for types
and instances at the M1 layer. All instances of Type are transformed into a description
logics TBox, hence Type is a specialization of KM3Class in the metametamodel. All
instances of Instance are transformed into a description logics ABox. Hence Instance
is a specialization of KM3Instance in the metametamodel.
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Fig. 6. M3 metametamodel providing modeling of ontological- and linguistic instantiation

Concrete syntax. In figure 2 an example of a DSL metamodel is depicted, in figure 3
we see a conforming domain model. In both figures, a textual concrete syntax was used
by the designer to implement the models.

The syntax in the examples was built by combining different existing concrete syn-
taxes. We took the KM3 syntax[11] and extended it to allow designers to model in-
stances. The motivation is that designers should use the extended Java-like KM3 syntax
as much as they can. To take benefit from OWL as an implementation of a description
logic, they should be able to annotate elements of their models in a textual and inte-
grated manner. Hence, we extended the grammar of the KM3 concrete syntax by new
non-terminals which are defined in grammars of a textual OWL2 concrete syntax.

For each model element residing in an M2 metamodel or M1 domain model the con-
crete syntax provides specific keywords. The metatype- and metainstance-keywords
allow for creating new linguistic instances of class Metatype- and Metainstance of the
integrated metametamodel in an M2 metamodel. The type- and instance-keywords al-
low for creating new linguistic instances of class Type- and Instance of the integrated
metametamodel in an M1 domain model.

The instanceOf-keyword is used to set up the linguistic instanceOf-relation between
M1 and M2 layer which is represented in the metametamodel by the InstanceOf-class.
The hasType-keyword is used to assign a domain type to a domain instance, which is
in the metametamodel defined by using the HasType-class.

4.3 Services

In this section, we want to expose the services of the MDD environment for domain and
language engineering. All services base on standard reasoning services and are provided
to designers and users without any effort. This means that users and designers do not
have to be familiar with using and reasoning of description logics knowledge bases.
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Services for language engineering. Based on the knowledge base LE Ontology rep-
resenting the language metamodel and the domain model, the environment provides
several services to both language user and language designer. Language users mainly
rely on services for validating their domain models and suggesting model elements to
be used. Suggestion services can be realized by dynamic classification. It allows for
determining the classes which one instance belongs to, based on all descriptions in the
domain model and metamodel. The correctness of the domain-specific language under
development is important for languages designers. Thus, they want to check the con-
sistency of the developed language, or they might exploit information about concept
satisfiability, checking if it is possible for a concept in the metamodel to have any in-
stances. If language users want to verify whether all restrictions and constraints imposed
by the metamodel hold, they can use a reasoning service to check the consistency of the
domain model. An important feature of the environment is, if the model or metamodel
are inconsistent or contain unsatisfiable concepts, the users and designers get additional
explanations which lead to debug relevant facts and help in correcting the models [19].

Services for domain engineering. The services for domain designers rely on the ex-
tracted description logics knowledge base DE Ontology. With regard to the example
in figure 3 they want to check, if all instances are consistent with regard to the domain
types. Furthermore, they want to check if it is possible to create instances of a given
type, in other words if types are satisfiable. Since at the beginning of describing the
domain often instances exist in the model without any domain type, domain designers
automatically want to classify them to get its possible types.

5 Discussion of the Approach

In this section, we establish the viability of our approach by a proof of concept discus-
sion. We analyze the approach with respect to the challenges of section 1.1.

To address the modeling of ontological and linguistic instantiation relationship (chal-
lenge 1) we built a metametamodel, which allows for defining metatypes and metain-
stances within a language metamodel at the M2 layer. This metamodel allows for creat-
ing types and instances in one domain model. Furthermore, the metametamodel allows
for explicitly designing a linguistic-instanceOf relationship, which relates elements of
two different modeling layers, and an ontological hasType-relationship which allows
for relating domain types with corresponding domain instances at the M1 layer.

To consider the combination of language engineering and domain engineering, we
created a metametamodel that joins both concerns (challenge 2). Language designers
using the metametamodel can design DSL metamodels at the M2 layer which is related
to language engineering. Domain designers and language users are able to create do-
main models containing both, domain types and instances. Domain models lie at the M1
layer and must conform to DSL metamodels via the linguistic instanceOf-relationship.

To have a language that allows for defining constraints (challenge 3) we considered
the extended KM3 metametamodel and integrated it with the existing OWL2 meta-
model at the M3 layer. Designers are able to define several constraints for types and
instances and in addition constraints and axiom that cross type and instance level.
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The defined metamodels are transformed into a pure description logics knowledge
base. Thus we use model-theoretic semantics, which is taken into account by the en-
vironment for providing different services. These services are used by designers and
users to validate models. If the model is not valid, they get several explanations and
debugging relevant facts (challenge 3).

6 Related Work

In the following, we want to compare our approach with related work. In the first part of
this section, we will depict related work on foundations of model-driven development
environments. In the second part, we give some related work which is dealing with
ontological metamodeling. The third part of this section discusses related approaches
enriching the expressiveness of modeling languages.

Already in 2003, Atkinson et. al defined requirements of model-driven development
infrastructures. Besides requirements for defining abstract syntax, concrete syntax and
semantics within the infrastructure, they suggest to consider the dimensions of language
engineering and domain engineering [3]. As proposed in [3] we provide the facility
to built types and instances at the same model layer and thus allow for dynamically
extending the set of domain types available for modeling.

In [20] a metamodeling language is presented which allows for building ontological
theories as a base for modeling languages from the philosophical point of view. The
M3 metamodel consists of elements for individuals and universals (types) and in addi-
tion provides a textual concrete syntax. In addition to this approach, we already provide
formal semantics in particular for the hasType-relation, at least if the developed models
are transformed into a description logics TBox and ABox. In [21] an ontological meta-
model extension for generative architectures (OMEGA) is described as an extension to
the MOF 1.4 metamodel that allows for ontological metamodeling. The core addition
to the original MOF model is the introduction of concepts for MetaElement and In-
stance, which form the basis for all instantiations. In fact, the hasType-relation between
Instance and MetaElement is implemented by a simple UML association which does
not provide any semantics to further tools.

There are many model-based development environments for DSLs available in the
market like, for example, MetaEdit+ [22] or ATLAS Model Management Architecture
(AMMA) [23]. These environments are aligned with the OMG four-layer metamodel
architecture. Some of them provide support for specifying queries and constraints, e.g.
with OCL-like languages. Here checking constraints and executing queries takes place
on one single layer. Instead, our description logics-based approach allows for defining
constraints that cover model and instance layer and provides querying and reasoning
simultaneously on both of them. Several approaches describe transformations of MOF-
based models to knowledge representation languages where reasoning and querying are
adopted. For example, [24] presents transformations from MOF-based models to Alloy,
[25] presents an approach to describe the semantics of MOF-based models with F-
Logic. Instead of these approaches, where the expressiveness available for designers is
limited to MOF (plus OCL), we provide integrated modeling. Thus the designer benefits
from the expressiveness of OWL additionally to the one of MOF.
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7 Conclusion

We have shown how a combination of an extended KM3 metametamodel and the OWL2
metamodel supports language and domain engineering. Description logics can support
modeling and give constraints and semantics covering both, the instances and types de-
fined in a model. We have presented an integrated approach where the modelers are
able to use a simple, Java-like syntax but in addition can benefit from a language which
provides much expressiveness and services for productive modeling. Furthermore, we
presented an approach of joint domain- and language engineering. The result of lan-
guage engineering is a new DSL, which defines the core of a domain and prescribes
the design of domain models. Domain engineering, which results in a domain model,
provides the facility to define new domain types during modeling, which is in general
not possible using pure language engineering approaches. Currently rely on two onto-
logical layers, since they can be covered by one OWL ontology, the work in the future
may consist of generalizing the approach to allow modeling an arbitrary number of
ontological layers.
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Abstract. Use cases are commonly used to structure and document requirements 
while UML activity diagrams are often used to visualize and formalize use  
cases, for example to support automated test case generation. Therefore the 
automated support for the transition from use cases to activity diagrams would 
provide significant, practical help. Additionally, traceability could be estab-
lished through automated transformation, which could then be used for instance 
to relate requirements to design decisions and test cases. In this paper, we pro-
pose an approach to automatically generate activity diagrams from use cases 
while establishing traceability links. Data flow information can also be gener-
ated and added to these activity diagrams. Our approach is implemented in a 
tool, which we used to perform five case studies. The results show that high 
quality activity diagrams can be generated. Our analysis also shows that our ap-
proach outperforms existing academic approaches and commercial tools. 

Keywords: Use Case; Use Case Modeling; UML; Activity Diagram; Transfor-
mation; Traceability; Automation; Natural Language Processing. 

1   Introduction 

Use case modeling, through use case diagrams and use case textual specifications, is 
commonly applied to structure and document requirements (e.g., [15]). In this con-
text, UML Activity diagrams are often used to: 1) Visualize use case scenarios in a 
graphical form to better understand and analyze them (e.g., [20]), which becomes 
paramount when use cases are large and complex; 2) Model work flows and data 
flows, which information is embedded in use case descriptions (e.g., [5]); 3) Com-
plement analysis models by providing an additional, complementary view to class and 
interaction diagrams (e.g., [9]), and 4) Generate test cases complying with use cases 
(e.g., [17]). Automated support to transform a use case description into an (initial) 
activity diagram is therefore important. Though activity diagrams do not add informa-
tion to a use case model, they are more amenable to supporting various analyses and 
can be a starting point for developing more detailed behavioral models. In other 
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words, a use case model is used to document requirements to facilitate communica-
tion among stakeholders whereas activity diagrams provide a more detailed, interpret-
able representation used to facilitate automated analysis, for example for the purpose 
of test case generation.  

Additionally, automated transformation would enable automated traceability from 
requirements to activity diagrams. Traceability is important during software develop-
ment since it allows engineers to understand the connections between various artifacts 
of a software system. Traceability is also mandated by numerous standards (e.g., 
IEEE Std. 830-1998 [1]) to support, for example, safety verification [18]. 

We conducted a systematic literature review [26] on transformations of textual re-
quirements into analysis models, including class, sequence and activity diagrams. We 
also reviewed more recent publications that were not included in our initial systematic 
review, as well as existing commercial tools. Existing approaches were compared 
with our tool according to a set of criteria (Section 6). Results show that some ap-
proaches are not fully automated, that the automated ones are not necessarily practical 
and complete, and that most of them do not provide support for traceability.  

The basis of our approach is a use case modeling approach RUCM [24], which re-
lies on a use case template and a set of restriction rules for textual Use Case Specifi-
cations (UCSs) to reduce the imprecision and incompleteness inherent to UCSs. We 
have conducted a controlled experiment to evaluate RUCM and results indicate that 
RUCM, though it enforces a template and restriction rules, has enough expressive 
power, is easy to use, and helps improve the understandability of use cases and the 
quality of derived analysis models [24]. 

The current work is part of the aToucan approach and tool [25], which aims to 
transform a Use Case Model (UCMod) produced with RUCM into a UML analysis 
model that includes class, sequence and activity diagrams. aToucan involves three 
steps. First, requirements engineers manually define use cases by following RUCM 
[24]. Second, aToucan reads these textual UCSs to identify Part-Of-Speech (POS) and 
grammatical relation dependencies of sentences, and then records that information 
into an instance of the metamodel UCMeta (our intermediate model) (Section 2.2). 
The third step is to transform the instance of UCMeta into an analysis model as an 
instance of the UML 2.0 metamodel. During these transformations, aToucan estab-
lishes traceability links between the UCMod and the generated UML diagrams. 

In this paper, we focus on the RUCM to activity diagrams transformation of aTou-
can. Specifically, aToucan can automatically generate two types of activity diagrams 
for each use case: A detailed activity diagram shows the main use case flow as well 
as all alternative flows in one activity diagram; An overview activity diagram, on the 
other hand, only details the main use case flow while the alternative flows are detailed 
in parts of the sequence diagram aToucan generates for the use case. The activity 
diagram of the main flow refers to parts of the sequence diagram thanks to the UML 
2.0 notions of CallBehaviorAction and Interaction. Overview activity diagrams 
therefore help to handle complexity in use case descriptions (complex flows, numer-
ous flows). Our approach can also automatically attach data flow information to gen-
erated (overview or detailed) activity diagrams. This is useful to measure complexity 
or facilitate data flow-based testing for instance [23]; however these topics are out of 
the scope here and will be investigated in the future. 
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Five case studies have been performed to evaluate activity diagrams generated by 
aToucan. Results show that complete and correct (against UCSs) activity diagrams 
can be generated and traceability links can also be correctly established. Our study 
also indicates that aToucan outperforms three commercial tools.  

The rest of the paper is organized as follows. Section 2 discusses RUCM and 
UCMeta. Section 3 discusses our transformation approach. Tool support is briefly 
discussed in Section 4. Case studies are discussed in Section 5. Section 6 discusses  
related work. Section 6 concludes the paper. 

2   Background 

We briefly review the use case modeling approach RUCM (Section 2.1) and the in-
termediate model (UCMeta) of our transformations (Section 2.2) [24]. 

2.1   RUCM 

RUCM encompasses a use case template and 26 well-defined restriction rules [24]. 
Rules are classified into two groups: restrictions on the use of Natural Language 
(NL), and rules enforcing the use of specific keywords for specifying control struc-
tures. The goal of RUCM is to reduce ambiguity and facilitate automated analysis. A 
controlled experiment evaluated RUCM in terms of its ease of application and the 
quality of the analysis models derived by trained individuals [24]. Results showed that 
RUCM is overall easy to apply and that it results in significant improvements over the 
use of a standard use case template (without restrictions to the use of NL), in terms of 
the correctness of derived class diagrams and the understandability of UCSs. Below 
we discuss the features of RUCM that are particularly helpful to generate activity 
diagrams. An example of UCS documented with RUCM is presented in Table 1. 

A use case description has one basic flow and can have one or more alternative 
flows (first column in Table 1). An alternative flow always depends on a condition 
occurring in a specific step in a flow of reference, referred to as reference flow, which 
is either the basic flow or an alternative flow itself. We classify alternative flows into 
three types: A specific alternative flow refers to a specific step in the reference flow; 
A bounded alternative flow refers to more than one step in the reference flow–
consecutive steps or not; A global alternative flow (called general alternative flow in 
[3]) refers to any step in the reference flow.  

Distinguishing different types of alternative flows makes interactions between the 
reference flow and its alternative flows much clearer. For specific and bounded alterna-
tive flows, a RFS (Reference Flow Step) section specifies one or more (reference flow) 
step numbers. Whether and where the flow merges back to the reference flow or termi-
nates the use case must be specified as the last step of the alternative flow. Branching 
condition, merging and termination are specified by following restriction rules that 
impose the use of specific keywords (see below). By doing so, we can avoid potential 
ambiguity in UCSs caused by unclear specification of interactions between the basic 
flow and its alternative flows, and facilitate automated generation of activity diagrams. 

RUCM defines a set of keywords to specify conditional logic sentences (IF-THEN-
ELSE-ELSEIF-ENDIF), concurrency sentences (MEANWHILE), condition checking 
sentences (VALIDATES THAT), and iteration sentences (DO-UNTIL). These  
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Table 1. Use case Withdraw Fund (originally from [11], and written here by applying RUCM) 

Use Case Name Withdraw Fund 
Brief Description ATM customer withdraws a specific amount of funds from a valid bank ac-

count. 
Precondition The system is idle. The system is displaying a Welcome message. 
Primary Actor ATM customer Secondary Actors None 
Dependency INCLUDE USE CASE Validate PIN. Generalization None 
Basic flow steps 1) INCLUDE USE CASE Validate PIN. 2) ATM customer selects Withdrawal. 3) 

ATM customer enters the withdrawal amount. 4) ATM customer selects the 
account number. 5) The system VALIDATES THAT the account number is valid. 
6) The system VALIDATES THAT ATM customer has enough funds in the 
account. 7) The system VALIDATES THAT the withdrawal amount does not 
exceed the daily limit of the account. 8) The system VALIDATES THAT the ATM 
has enough funds. 9) The system dispenses the cash amount. 10) The system prints 
a receipt showing transaction number, transaction type, amount withdrawn, and 
account balance. 11) The system ejects the ATM card. 12) The system displays 
Welcome message. Postcondition: ATM customer funds have been withdrawn. 

Specific Alt. Flow 
(RFS Basic flow 8) 

1) The system displays an apology message MEANWHILE the system ejects the 
ATM card. 2) The system shuts down. 3) ABORT. Postcondition: ATM customer 
funds have not been withdrawn. The system is shut down. 

Bounded Alt. Flow 
(RFS Basic flow 5-7)

1) The system displays an apology message MEANWHILE the system ejects the 
ATM card. 2) ABORT. Postcondition: ATM customer funds have not been with-
drawn. The system is idle. The system is displaying a Welcome message. 

Global Alt. Flow IF ATM customer enters Cancel THEN  
1) The system cancels the transaction MEANWHILE the system ejects the ATM 
card. 2) ABORT. ENDIF Postcondition: ATM customer funds have not been 
withdrawn. The system is idle. The system is displaying a Welcome message. 

 
keywords greatly facilitate the automated generation of activity diagrams as they 
clearly indicate when alternative flows start and which kind of alternative flow starts, 
for which there exist a direct mapping to some UML activity diagram notation. For 
example, concurrency sentences with keyword MEANWHILE can be accurately 
transformed into a fork node, a join node, and a number of actions between the fork 
and join nodes corresponding to the parallel sentences connected by keyword 
MEANWHILE. Keywords ABORT and RESUME STEP are used to describe an 
exceptional exit action and where an alternative flow merges back in its reference 
flow, respectively. An alternative flow ends either with ABORT or RESUME STEP, 
which means that the last step of the alternative flow should clearly specify whether 
the flow returns back to the reference flow and where (using keywords RESUME 
STEP followed by a returning step number) or terminates (using keyword ABORT).  

2.2   UCMeta 

UCMeta is the intermediate model in aToucan [25], used to bridge the gap between a 
textual UCMod and a UML analysis model (class, sequence and activity diagrams). 
As a result, we have two transformations: from the textual UCMod to the intermediate 
model, and from the intermediate model to the analysis model. Metamodel UCMeta 
also complies with the restrictions and use case template of RUCM. The current  
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version of UCMeta is composed of 108 metaclasses and is expected to evolve over 
time. The detailed description of UCMeta is given in [25].  

UCMeta is hierarchical and contains five packages: UML::UseCases, UCSTemplate, 
SentencePatterns, SentenceSemantics, and SentenceStructure. UML::UseCases is 
a package of UML 2 superstructure [19], which defines the key concepts used for 
modeling use cases such as actors and use cases. Package UCSTemplate models the 
concepts of the use case template of RUCM: those concepts model the structure that 
one can observe in Table 1. SentencePatterns is a package describing different types 
of sentence patterns, which uniquely specify the grammatical structure of simple 
sentences, e.g., SVDO (subject-verb-direct object) (Table 1, Basic flow, step 2). Sen-
tenceSemantics is a package modeling the classification of sentences from the aspect 
of their semantic functions in a UCMod. Each sentence in a UCS can either be a Con-
ditionSentence or an ActionSentence. Package SentenceStructure takes care of 
NL concepts in sentences such as subject or Noun Phrase (NP). Package UCSTemplate 
is mostly related to the activity diagram generation and therefore it is the only pack-
age discussed below due to space limitation. 

Package UCSTemplate not only models the concepts of the use case template but 
also specifies three kinds of sentences: SimpleSentences, ComplexSentences, and 
SpecialSentences. In linguistics, a SimpleSentence has one independent clause and 
no dependent clauses [4]: one Subject and one Predicate. UCMeta has four types of 
ComplexSentences: ConditionCheckSentence, ConditionalSentence, Itera-

tiveSentence, and ParallelSentence, which correspond to four keywords that are 
specified in RUCM (Section 2.1) to model validations (VALIDATES THAT), condi-
tions (IF-THEN-ELSE-ELSEIF-THEN-ENDIF), iterations (DO-UNTIL), and concur-
rency (MEANWHILE) in UCS sentences. UCMeta also has four types of special 
sentences to specify how flows in a use case or between use cases relate to one an-
other. They correspond to the keywords RESUME STEP, ABORT, INCLUDE USE 
CASE, EXTENDED BY USE CASE, and RFS (Reference Flow Step). 

3   Approach 

Recall that our objective is to automatically transform a textual UCMod expressed 
using RUCM into UML activity diagrams while establishing traceability links. We 
present an overview of our approach in Section 3.1 and then detail transformation 
rules (Section 3.2) and traceability (Section 3.3). More details are available in [27]. 

3.1   Overview 

In this section, we use Fig. 1 as a running example. It shows a piece of the use case 
description of Table 1: Fig. 1 (a). First, a textual UCMod (Fig. 1 (a)) is automatically 
transformed into an instance of UCMeta (Fig. 1 (b)) through a set of transformation 
rules. For example, basic flow step 8 of Fig. 1 (a) is transformed into an instance of 
ConditioncheckSentence (Fig. 1 (b)). Notice in Fig. 1 (b) that this Conditioncheck-
Sentence instance is linked to a BasicFlow instance (step 8 is part of the basic flow in 
Table 1) of the UseCaseSpecification of UseCase Withdraw Fund. Fig. 1 (b) does 
not show how the sentence of step 8 is further transformed into instances of UCMeta 
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(e.g., verb, subject). Second, the UCMeta instance is automatically transformed into a 
UML analysis model through another set of transformation rules. The (UML 2.0) 
analysis model contains a class diagram, and a sequence and an activity diagram for 
each use case. Generating class and sequence diagrams is discussed in [25]. In this 
paper, we particularly focus on the transformation to activity diagrams.  

As mentioned earlier, two types of activity diagrams can be generated for a use 
case, i.e., from an instance of UCMeta. A detailed activity diagram shows the main 
use case flow as well as all alternative flows in one activity diagram: Fig. 1 (d); 
whereas an overview activity diagram only details the main use case flow while the 
alternative flows are detailed in parts of the sequence diagram generated for the use 
case (instances of Interaction): Fig. 1 (c). To illustrate the difference, first note that 
the parts of Fig. 1 (c) and (d) highlighted with rectangles detail the main flow of the 
use case in the same way: one can recognize step 8 (“The system VALIDATES THAT 
…”) followed by a decision node (the validation may be successful or not). In the 
detailed activity diagram (Fig. 1 (d)) the alternative flow (i.e., when the validation 
fails) is specified in its entirety (circled set of nodes). Instead, in the overview activity 
diagram (Fig. 1 (c)), the alternative flow leads to a node labeled ref INTERACTION …, 
specifying that the alternative flow can be obtained from an interaction, specifically 
from a part of the sequence diagram aToucan generated for the use case. The com-
plete activity diagrams generated for use case Withdraw Fund is provided in [27]. 

 

Fig. 1. Running example 
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Overview activity diagrams are similar to UML Interaction Overview Diagrams 
[19] in the sense that both use CallBehaviorAction referring to instances of Inter-
actions of sequence diagrams. However, UML Interaction Overview Diagrams only 
“focus on the overview of the flow of control where the nodes are Interactions or 
InteractionUses” [19] while our Overview Activity Diagram can contain other ac-
tivity nodes such as instances of CallOperationAction.  

During the transformations, two sets of traceability links are established: between 
the elements in the textual UCMod and the elements of the instance of UCMeta, and 
between these instances and the model elements of the UML analysis model. For 
instance, step 8 of the use case specification of Table 1 is linked to the Condi-
tionCheckSentence instance highlighted in Fig. 1 (b), which is itself linked to the 
activity nodes labeled 8 (The System …) in Fig. 1 (c) and (d). Notice that when nec-
essary, direct traceability links between the textual UCMod and the analysis model 
can be easily derived from the transitive closure of these two sets of traceability links.  

3.2   Transformation Rules 

The transformation from an instance of UCMeta to activity diagrams involves 19 
rules, summarized in Table 2. Subscripts on rule numbers (Column 1, Table 2) indi-
cate the type of the rule: "c" and "a" denote composite and atomic rules, respectively; 
a composite rule is decomposed into other composite or atomic rules whereas an 
atomic rule is not. 

Rule 1 invokes rules 1.1-1.4 to generate an activity diagram for each use case. 
Rules 1.1-1.3 process three types of sentences: SimpleSentence, ComplexSentence, 
and SpecialSentence. Rule 1.4 processes the GlobalAlternativeFlows of a use 
case. Rules 1.5 and 1.6 transform the precondition and the postcondition of a use case 
into instances of Constraint (a metaclass of the UML 2.0 metamodel) attached to the 
generated activity (precondition) and corresponding FlowFinalNode (postcondition). 
Atomic rules 1.2.1-1.2.4 are invoked by composite rule 1.2 to process four different 
types of complex sentences that lead to different control flows in the activity diagram 
(e.g., decision node in rule 1.2.1). Atomic rules 1.3.1-1.3.4 are invoked by rule 1.3 to 
process four different types of special sentences: to specify include and extend rela-
tions between use cases, to specify abort and resume. Rule 1.4 transforms a global 
alternative flow. Recall that a global alternative flow refers to any step in the refer-
ence flow (Section 2.1). For example, the global alternative flow of use case With-
draw Fund (Table 1) refers to every step of the basic flow; the ATM customer can 
cancel the transaction at any time of the execution of the use case. To model this in an 
activity diagram, we transform the flow into an instance of AcceptEventAction, In-
terruptibleActivityRegion and a set of actions corresponding to the steps of that 
flow. AcceptEventAction "is an action that waits for the occurrence of an event 
meeting a specified condition" [19] and InterruptibleActivityRegion (e.g., the 
basic flow of use case Withdraw Fund) is used to abort all flows in the region when 
an AcceptEventAction (e.g., ATM customer enters Cancel—the condition of the 
global alternative flow) occurs. Thanks to this modeling feature of UML 2.0, we can 
easily model global alternative flows. Swimlanes are automatically determined for a 
sentence according to subject types: either “the system” or an actor. 
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Note that rules 1.2.1, 1.2.2, and 1.4 generate different sets of model elements for 
detailed and overview activity diagrams. For example, if an overview activity diagram 
is generated, composite rule 1.2.1 generates an instance of CallBehaviorAction to 
refer to the Interaction corresponding to the alternative flow of a condition check 
sentence; otherwise rule 1.2.1 invokes rules 1.1-1.3 to process the sentences of  
the alternative flow to generated actions, edges, etc, and create a detailed activity  
diagram. 

Table 2. Summary of transformation rules 

Rule # Description 
1c Generate an activity diagram for a use case. 

1.1a Generate an instance of CallOperationAction for each simple sentence. 
1.2c Invoke rules 1.2.1-1.2.4 to process each complex sentence. 
1.2.1c ConditionCheckSentence: Generate a CallOperationAction and a DecisionNode. Invoke rules 

1.1-1.3 to handle the sentences contained in the alternative flow corresponding to the sentence 
(detailed activity diagram) or refer to the Interaction corresponding to the alternative flow 
(overview activity diagram). 

1.2.2c ConditionalSentence: Generate a DecisionNode. Invoke rules 1.1-1.3 to process sentences 
contained in the sentence and its alternative flow (detailed activity diagram) or refer to the 
Interaction corresponding to the alternative flow (overview activity diagram) if such an 
alternative flow exists. 

1.2.3c ParallelSentence: Generate a ForkNode and a JoinNode. Invoke rules 1.1-1.3 to process the 
concurrent sentences contained the parallel sentence. 

1.2.4c IterativeSentence: Generate a DecisionNode. Invoke rules 1.1-1.3 to process sentences 
contained in the iterative sentence. 

1.3c Invoke rules 1.3.1-1.3.4 to process each special sentence. 
1.3.1a IncludeSentence: Generate a CallBehaviorAction that refers to the Interaction corresponding 

to the included use case. 
1.3.2a ExcludeSentence: Generate a CallBehaviorAction that refers to the Interaction corresponding 

to the extending use case. 
1.3.3a AbortSentence: Generate a FlowFinalNode. 
1.3.4a ResumeStepSentence: Generate a ControlFlow edge back to the node corresponding to the step 

specified in the ResumeStepSentence. 
1.4c GlobalAlernativeFlow: Generate an AcceptEventAction and InterruptibleActivityRegion. 

Invoke rules 1.1-1.3 to process the sentences of the alternative flow (detailed activity diagram) 
or refer to the Interaction corresponding to the alternative flow (overview activity diagram). 

1.5a Precondition: Generate a Constraint as the precondition of the activity. The content of the 
constraint is the precondition of the use case. 

1.6a PostCondition: Generate a Constraint for each flow final node as its postcondition. The 
content of each constraint corresponds to the postcondition of each flow of events of the 
UCMod. 

2c Attach data flow information to an activity diagram. 
2.1a SimpleSentence with transaction type Initiation, ResponseToPrimaryActor or  

ResponseToSecondaryActor: Generate an OutputPin for the CallOperationAction generated 
for the NPs of the sentence. 

2.2a SimpleSentence with transaction type InternalTransaction: Generate an InputPin and an 
OutputPin for the CallOperationAction generated for the sentence (excluding "the system" and 
actors). 

2.3a ConditionCheckSentence: Generate an InputPin for the CallOperationAction generated for the 
NPs of the sentence (excluding "the system" and actors). 

 
Rule 2 invokes rules 2.1-2.3 to attach data flow information to an already gener-

ated activity diagram. These rules generate instances of either InputPin or OutputPin 
for each call operation action. These input and output pins correspond to entity classes 
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that have been generated from the NPs contained in use case sentences when the class 
diagram of the system was generated [25]. For example, the basic flow step 8 of use 
case Withdraw Fund (Table 1) is a condition check sentence (Fig. 1 (a)). It is trans-
formed into an action and a decision node by rule 1.2.1: (Fig. 1 (c) and (d)). Because 
the NP "enough funds"—i.e., the object of the condition (simple sentence) of the 
condition check sentence at step 8—has been transformed into class Fund when the 
class diagram was generated, we attach an instance of InputPin (pin) to the action 
corresponding to step 8 and type the pin with class Fund: pin.type = Fund, as show 
in Fig. 1 (c) and (d). 

The rationale for adding data flow to an activity diagram is the following. Steps of 
a UCS can be one of the following five types: 1) Initiation: the primary actor sends 
a request and data to the system; 2) Validation: the system validates a request and 
data; 3) InternalTransaction: the system alters its internal state (e.g., recording or 
modifying something); 4) ResponseToPrimaryActor: the system replies to the pri-
mary actor with a result; 5) ResponseToSecondaryActor: the system sends requests to 
a secondary actor. We generate data flow through input and output pins according to 
these definitions as follows: We generate output pins for actions in the activity  
diagram that correspond to use case steps of type Initiation, ResponseToPri-
maryActor, and ResponseToSecondaryActor since these sentences either output data 
(Initiation) or send a result to actors (ResponseToPrimaryActor or ResponseTo-
SecondaryActor); Since use case steps of type InternalTransaction specify that the 
system records or modifies data, we generate input and output pins for the actions 
corresponding to these sentences; Since condition check sentences are all of type 
Validation and they validate a request and data, input pins should be generated for 
the corresponding actions in the activity diagram. As suggested earlier, the pins are 
typed by the entity classes that compose the domain model (class diagram) automati-
cally created from use case descriptions by aToucan [25], which are identified by 
analyzing sentences (e.g., subjects). 

Notice that each rule is further specified by a precondition, although these precon-
ditions are not shown in Table 2. As a simple example, the precondition of rule 1.2.3 
specifies that the sentence being transformed into model elements is a parallel sen-
tence (Section 2.1) and that an activity has been generated for the use case and is 
available to contain the elements being generated by the rule. 

3.3   Traceability 

We establish two sets of traceability links during the transformation from a textual 
UCMod to activity diagrams: from the UCMod to the instance of UCMeta and from 
the UCMeta instance to the automatically generated activity diagrams. If necessary, 
direct traceability links from the textual UCMod to the activity diagrams can be de-
rived from these two sets.  

Traceability links from UCMod to UCMeta link the fields of the use case template 
used to document textual UCSs to instances of the corresponding metaclasses in 
UCMeta. For example, field Brief Description of the use case template is linked to an 
instance of metaclass BriefDescription of UCMeta. A sentence in the brief descrip-
tion is then linked to an instance of metaclass Sentence of UCMeta. For example, as  
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shown in Fig. 1 (a) and (b), the basic flow step 8 of use case Withdraw Fund is trans-
formed into Basic flow step 8 : ConditionCheckSentence of the intermediate 
model while a traceability link is established between these two elements. We believe 
that it is not cost effective to establish links at a finer granularity (e.g., between ele-
ments of sentences and UCMeta metaclass instances). 

Regarding the second set of traceability links, UCMeta metaclass instances are 
linked to corresponding model elements in the UML activity metamodel based on our 
transformation rules. For example, we establish two traceability links between a con-
dition check sentence (e.g., Basic flow step 8 : ConditionCheckSentence of the 
UCMeta instance as shown in Fig. 1 (b)) and its corresponding action (an instance of 
CallOperationAction, e.g., action 8. The system VALIDATES THAT the ATM has 
enough fund as shown in Fig. 1 (c)) and decision node (e.g., The ATM has enough 
fund as shown in Fig. 1 (c)) generated during the transformation when rule 1.2.1 is 
invoked, respectively.  

4   Automation 

Our approach has been implemented as part of aToucan [25]. aToucan aims to auto-
matically transform requirements given as a UCMod in RUCM into a UML analysis 
model including a class diagram, and a set of sequence and activity diagrams. It relies 
on a number of existing technologies. aToucan is built as an Eclipse plug-in, using the 
Eclipse development platform. UCMeta is implemented as an Ecore model, using 
Eclipse EMF [8], which generates code as Eclipse plug-ins. The Stanford Parser [21] 
is used as a NL parser in aToucan. It is written in Java and generates a syntactic parse 
tree for a sentence and the sentence’s grammatical dependencies (e.g., subject, direct 
object). The generation of the UML analysis model relies on Kermeta [14]. It is a 
metamodeling language, also built on top of the Eclipse platform and EMF. The target 
UML analysis model is instantiated using the Eclipse UML2 project, which is an 
EMF-Based implementation of the UML 2 standard. 

The architecture of aToucan is easy to extend and can accommodate certain types 
of changes. Transformation rules for generating different types of diagrams are struc-
tured into different packages to facilitate their modifications and extensions. Thanks 
to the generation of an Eclipse UML2 analysis model, generated UML models can be 
imported and visualized by many open source and commercial tools. Similarly, 
though UCSs are currently provided as text files, a specific package to import UCSs 
will allow integration with open source and commercial requirement management 
tools. More details on the design of aToucan can be found in [25]. 

We adapted the traceability model proposed in the traceability component 
(fr.irisa.triskell.traceability.model) of Kermeta [14] to establish traceability links. 
Details of the traceability model is discussed in [25]. 

5   Case Studies 

In this section, we discuss how we validated our approach (Section 5.1) and also 
compare our approach with three commercial tools (Section 5.2). 
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5.1   Validation Procedure and Summary of Results 

We used five different software system descriptions (18 use cases altogether) to as-
sess our approach. They are from different sources: three are from textbooks and two 
were created by Masters students. Since the UCSs of these systems come from differ-
ent sources, they were re-written by applying RUCM. 

The goal of our validation was two-fold: (1) To assess whether our transformation 
rules are complete: does it accommodate all UCSs in our case studies? (2) To deter-
mine whether our transformation rules lead to activity diagrams that are syntactically 
and semantically correct. Syntactic correctness means that a generated activity dia-
gram conforms to the UML 2.0 activity diagram notation. Semantic correctness 
means that a generated activity diagram correctly represents its UCS; all the steps 
described in the flows of events of the UCS are correctly transformed by following 
the transformation rules and no redundant model elements are generated. In order to 
check correctness and completeness, the validation procedure is as follows. 1) Given 
a UCMod in RUMC as input, aToucan automatically generates an activity diagram 
for each UCS of the UCMod. 2) For each UCS, we check whether each step of the 
flows of events and the precondition and postconditions have been properly trans-
formed. 3) We check whether each generated activity diagram is syntactically and 
semantically correct. 4) We check whether the data flow information (input and out-
put pins) attached to each activity diagram is properly generated. 

Following the above procedure, for all 18 use cases, we achieved 100% complete-
ness and correctness with aToucan, and 100% of the traceability links were also  
correctly established. Regarding the completeness and correctness of data flow infor-
mation attached to each activity diagram, aToucan was not able to generate input and 
output pins for some actions. First, transformation rules 2.1-2.3 (used to generate data 
flow information) rely on package SentenceStructure of UCMeta. Recall that a NL 
parser is used in our approach to parse each textual sentence and the parsing result is 
transformed into instances of model elements (e.g., Object) of package SentenceS-
tructure (Section 2.2). The NL parser has limitations and cannot always produce a 
correct result. Therefore the instances of the model elements of package SentenceS-
tructure do not always correctly correspond to their textual sentences. Second, each 
generated pin is typed to a class of the class diagram; however the automatically gen-
erated class diagram is not 100% correct and complete (see [25] for details), again 
partly because of limitations of the NL parser. As a result, it is possible that there is 
no matching class found for an element of a sentence (such as an object—recall rule 2 
in Section 3.2) and therefore no pin is generated. Besides, whether data flow informa-
tion can be deemed correct also depends on what it is used for. For example, if it is 
used to automatically generate test cases, manual refinement of the automatically 
generated data flow information is absolutely required. Therefore, here, we don't 
evaluate the correctness of generated data flow information but its completeness, 
measured by the ratio of occurrences of missing pins over the total number of in-
stances of CallOperationAction in an activity diagram. Results show that the aver-
age completeness of data flow information across all the five case study systems is 
85%. Due to space constraints, detailed data is provided in [27].  
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5.2   Comparison with Three Commercial Tools 

Visual Paradigm [22], Ravenflow [20], and CaseComplete [6] are commercial tools 
that can automatically transform requirements into UML activity diagrams. We tested 
them by using the use case of Table 1 since it contains three different types of alterna-
tive flows, concurrency sentences, and validation sentences. Various features of UCSs 
are therefore considered and this use case can be considered complete in terms of 
UCS and generated activity diagram features. The UCS was rewritten according to the 
format requirements of each tool. The details of the re-written UCSs and automati-
cally generated activity diagrams are presented in [27]. In the rest of the section, we 
summarize their main differences. 

1. Visual Paradigm and CaseComplete can transform the flows of events of a use 
case into an activity diagram. Each flow of events needs to be structured using a 
simple use case template (basic flow and its extensions). Ravenflow does not re-
quire a use case template, but a set of writing guidelines are proposed (not en-
forced by the tool though) to guide users to write sentences that can be correctly 
parsed by the tool. For example, "if...then.... Otherwise,..." is suggested to write a 
conditional sentence. A "!' at the end of a sentence indicates the termination of a 
flow. Since Ravenflow does not require UCSs be structured, alternative flows may 
be very hard to describe in unstructured sentences. aToucan is based on RUCM (a 
use case template and a set of restriction rules), which have been experimentally 
evaluated to be easy to apply [24]. The benefits of using RUCM to facilitate the 
automated generation of activity diagrams was discussed in Section 2.1. 

2. None of the three commercial tools can generate forks and joins because concur-
rency sentences are not recognized. Our approach is based on RUCM, which 
specifies the keyword MEANWHILE (Section 2.1) to help users specify concur-
rency sentences. Therefore, aToucan can generate a fork, a join, and a set of par-
allel sentences between the fork and the join (Section 3.2) for each concurrency 
sentence. Visual Paradigm and CaseComplete do not support swimlanes. Both 
our approach and Ravenflow support swimlanes—one swimlane per actor and 
one swimlane for the system—but have different mechanisms to identify actors. 
Ravenflow relies on Natural Language Processing (NLP) techniques to identify 
possible actors to generate corresponding swimlanes, which means that the tool 
might falsely identify actors. Recall that Ravenflow does not have a use case 
template to structure use case steps. However, our tool is based on RUCM, and 
primary and secondary actors of each use case are clearly specified in each UCS. 
Also thanks to RUCM, aToucan can also automatically transform global alterna-
tive flows (Section 3.2). It is very hard to find an alternative way to specify 
global alternative flows in the requirements format required/enforced by the 
three commercial tools.  

3. None of the three commercial tools can support include and extend use case rela-
tionships because they can only transform a single use case instead of a use case 
model (UCMod). aToucan takes a UCMod as input and use case relationships 
are naturally supported. 

4. Visual Paradigm and CaseComplete cannot generate any data flow information 
since they do not use any NLP technique. Ravenflow can generate data flow in-
formation but to a quite limited extent: it generates data flow only when the data 
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is manipulated by two swimlanes, as indicated in the writing guidelines provided 
along with the tool. This means that Ravenflow cannot derive data flow informa-
tion from sentences with transaction types InternalTransaction and Valida-
tion. aToucan does not have such a limitation. 

6   Related Work and Comparison 

We conducted a systematic literature review [26] on transformations of textual re-
quirements into analysis models, including class, sequence, and activity diagrams. 
The review identified 20 primary studies (16 approaches) based on a carefully de-
signed paper selection procedure in scientific journals and conferences from 1996 to 
2008 and Software Engineering textbooks. The method proposed here is based on the 
results of this review, with a particular focus on automatically deriving activity dia-
grams from UCMods. There also exists several literature works recently published 
that were therefore not included in our systematic literature review. In this section, we 
evaluate our approach by comparing it with these existing literature works and also 
three existing commercial tools: Visual Paradigm for UML [22], Ravenflow [20], and 
CaseComplete [6]. We define a set of evaluation criteria for comparison, which are in 
part from the system review we conducted [26]: 
1) Requirements: We need to know the requirements format (e.g., formalized use 

cases) required by a specific approach so that we can assess how difficult it is to 
document requirements. 

2) NLP: We need to be aware of whether or not any NLP techniques are applied. 
We can then assess whether or not certain features (e.g., automatically derive 
swimlanes) can be supported by the approach. 

3) Automation: This criterion evaluates whether a transformation is automated, 
automatable, semi-automated, or manual. An approach is automated if it has 
been fully implemented. If a transformation algorithm is proposed in a paper, 
then we assess whether we deem the description to be sufficient to implement it, 
and if this is the case, the transformation approach is deemed automatable. In 
some cases, a transformation is semi-automated because user interventions are 
required. Last, some approaches are entirely manual. 

4) Traceability: We check whether traceability links between requirements and 
analysis model elements are established when a transformation is performed.  

5) Objective: The original objective of each approach can help us understand their 
limitations and motivate our work. 

6) Activity diagram: We evaluate the activity diagrams that each approach is able 
to derive from requirements with respect to the following four aspects: 1) their 
types (standard, extended, or non-standard notation), 2) important model ele-
ments that are expected to be generated (e.g., swimlanes), 3) whether include 
and extend relationships of use cases are supported, and 4) whether data flow in-
formation can be generated. Activity diagrams conforming to the UML specifi-
cation [19] are standard activity diagrams; extended activity diagrams are those 
based on a profile of the UML specification; non-standard activity diagrams do 
not conform to the UML specification. 
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The evaluation results are summarized in Table 3 and Table 4. The first columns of 
these two tables show the approaches we evaluated. The first four rows are the ap-
proaches proposed in existing research works; the following three rows are the  
selected commercial tools; the last row is our approach: aToucan. The rest of the 
columns are arranged according to the evaluation criteria. 

As shown in Column 2, Table 3, one approach [12] formalizes use cases as in-
stances of a metamodel, similarly to aToucan. However, the metamodel instance has 
to be manually provided by the user directly, instead of being transformed automati-
cally from another (more simple) representation (RUCM), thereby leading to substan-
tial user effort. Two approaches ([13] and [9]) take unstructured requirements (plain 
text) as inputs to derive activity diagrams. Both are not fully automated. An approach 
is proposed in [16] to manually transform exceptional use cases into extended activity 
diagrams. Special stereotypes (e.g., <<failure>> and <<handler>>) are introduced to 
specify exceptional handling concepts. Visual Paradigm [22] and CaseComplete [6] 
can automatically transform flows of events of a use case into an activity diagram. 
Both tools require a similar and simple use case template to structure flows of events. 
Ravenflow [20] can automatically visualize a set of sequential and textual steps into 
an activity diagram and no structured format (e.g., template) is needed to document 
these steps. Ravenflow however suggests users follow a set of writing principles, 
some of which are very similar to the restriction rules of RUCM used in aToucan. 
Because Ravenflow does not rely on a use case template, it becomes very difficult to 
specify alternative flows in a use case and their interactions with the basic flow.  

Table 3. Evaluation summary (part I) 

Approach Requirements NLP Automation Trace
ability

Objective 

[12] Formalized UCs No Automated No Visualize use cases and facilitate 
test generation 

[13] Unstructured requirements Yes Automatable No Complement analysis models 
[9] Unstructured requirements Yes Semi-automated No Complement analysis models 
[16] Exceptional UCs -- Manually No Formalize UCs to reduce  

ambiguities  
[22] Flows of events of UCs No Automated Yes Visualize flows of events of UCs 
[20] Restricted sequential steps Yes Automated Yes Visualize textual sequential steps 
[6] Flows of events of UCs No Automated No Visualize flows of events of UCs 

aToucan RUCM models Yes Automated Yes All of the above 

Table 4. Evaluation summary (part II) 

Activity Diagram Approach 
Type Swimlane Fork and 

join 
Decision 

node 
Global alternative flows Include or 

extend 
Data 
flow 

[12] Standard Yes No Yes No No No 
[13] Extended No No Yes No -- No 
[9] Standard No Yes No No -- No 

[16] Extended -- -- -- -- -- -- 
[22] Standard No No Yes No No No 
[20] Standard Yes No Yes No -- Yes 
[6] Non-

standard 
No No No No No No 

aToucan Standard Yes Yes Yes Yes Yes Yes 
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As shown in Column 3, Table 3, except for one manual approach, three existing 
approaches rely on NLP techniques. The approach proposed in [12] does not apply 
any NLP techniques because it requires formalized use cases as its inputs. Visual 
Paradigm [22] does not rely on any NLP technique; therefore it cannot automatically 
generate swimlanes, forks and joins. Four existing approaches are automated (Column 
4) and only two commercial tools have traceability capability (Column 5).  

The objectives of the existing approaches are different, as shown in Column 6, Ta-
ble 3. The approach proposed in [12] aims to visualize use cases and therefore auto-
mated test generation can be facilitated. Visualizing use cases or their scenarios for 
the purpose of better understanding and analyzing them is a common practice [2, 10] 
and the idea of activity diagram-based test generation is also promoted in [7, 17]. 
Both the approaches proposed in [13] and [9] can generate analysis models including 
class and activity diagrams. Generated activity diagrams, as part of the generated 
analysis models, model dynamic behavior of a system. The approach proposed in [16] 
however simply uses activity diagrams as a means to formalize textual use cases. All 
three commercial tools visualize either flows of events of use cases (i.e., [6, 22]) or 
sequential textual steps (i.e., [20]) in activity diagrams for the purpose of helping 
users to construct and understand requirements. Our approach however applies to any 
of these objectives. 

The approaches proposed in [13, 16] cannot generate standard UML activity dia-
grams (Column 2, Table 4). Mustafiz et al. [16] propose an approach to manually 
transform exceptional use cases (with elements that allow the modeling of system 
behavior in exceptional situations) into activity diagrams extended by specific stereo-
types. Ilieva and Ormandjieva [13] propose an automatable approach to transform 
requirements into extended activity diagrams—activity diagrams integrated with the 
concepts of actors, business rules, and messages. As shown in Columns 3-6, except 
for the manual approach, swimlanes are only supported by two approaches: one of 
them [12] requires formalized use cases as input and the other [20] relies on NLP 
techniques to automatically identify swimlanes (similarly to aToucan); only one  
approach [9] supports forks and joins but it is semi-automated; decision nodes are 
supported by most of the non-manual approaches; Global alternative flows are not 
supported by any of the existing approaches. The approaches that are not manual and 
take use cases as inputs, do not support include and extend relationships of use cases. 
Ravenflow is the only existing approach that can generate data flow information 
(similarly to aToucan), and we have discussed differences in Section 5.2.  

To compare with these existing approaches, our approach can automatically trans-
form each use case of a UCMod into two types of standard UML 2.0 activity dia-
grams while fully supporting traceability. Additionally, as part of the functionality of 
aToucan, automatically generated activity diagrams are naturally consistent with other 
UML analysis model diagrams such as sequence diagrams and horizontal traceability 
(across different diagrams) can then be supported. Swimlanes, decision nodes, forks 
and joins, include and extend relationships, and data flow information are all sup-
ported by our approach. Besides, thanks to RUCM, our approach can also transform 
global alternative flows.  
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7   Conclusion 

Providing automated support to derive UML analysis models, including class, se-
quence and activity diagrams from use case requirements is an important step of 
model-driven development. Even if such models end up being incomplete and an 
initial step towards analyzable models, the potential benefits are substantial. However 
this step has not received enough attention in large part because requirements (e.g., 
Use Case Specifications—UCSs) are essentially textual documents and tend to be 
unstructured. Therefore their automated analysis is difficult to achieve.  

In this paper, we propose an approach, supported by the aToucan tool [25], to 
automatically generate activity diagrams from a Use Case Model (UCM) documented 
using a novel approach (Restricted UCM or RUCM) and specifically designed to 
facilitate this automated transition. In our previous work, RUCM has also been shown 
to facilitate the understanding of system requirements and therefore its advantages do 
not come at the expense of system comprehension. Additionally, traceability links can 
be generated between requirements and activity diagrams while transformations are 
performed. This is important since traceability links allow engineers to understand the 
connections between artifacts and is also mandated by numerous standards (e.g., 
IEEE Std. 830-1998 [1]) to support, for example, safety verification [18].  

Automatically generated activity diagrams could be used, for example, to visualize 
use cases in a graphical form, to analyze them to support the behavioral modeling of 
the system, or to facilitate test case generation based on techniques using activity 
diagrams in input. Though such activity diagrams do not add information to the use 
case models, they are more amenable to various forms of analysis and can be seen as 
a starting point for developing more complete, detailed activity diagrams. In other 
words, RUCM is used to document system requirements whereas activity diagrams 
are developed to facilitate various types of automated analyses.  

Five case studies have been performed using the aToucan tool. As expected, results 
show that our approach can generate higher quality activity diagrams than alternative 
approaches (including three commercial tools) based on a number of evaluation crite-
ria. These criteria relate to automation, traceability, the completeness of activity  
diagrams, and the ease of writing requirements.  
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Charfi, Anis 48

Clarke, Siobhán 277

Clasen, Cauê 32
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Dawson, Ray 62

de Sosa, Josune 293

Didonet Del Fabro, Marcos 173

Drexler, Johannes 116

Drivalos, Nicholas 245

Ebert, Jürgen 321

Egyed, Alexander 217, 293

Eichberg, Michael 104

Ellner, Ralf 116

Engels, Gregor 201

Faudoux, Raphaël 90
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