
Chapter 5
Surface Phonons

Classical bulk solid-state physics can, broadly speaking, be divided into two cat-
egories, one that relates mainly to the electronic properties and another in which
the dynamics of the atoms as a whole or of the cores (nuclei and tightly bound
core electrons) is treated. This distinction between lattice dynamics and electronic
properties, which is followed by nearly every textbook on solid-state physics, is
based on the vastly different masses of electrons and atomic nuclei. Displacements
of atoms in a solid occur much more slowly than the movements of the electrons.
When atoms are displaced from their equilibrium position, a new electron distribu-
tion with higher total energy results; but the electron system remains in its ground
state, such that after the initial atomic geometry has been reestablished, the whole
energy amount is transferred back to the lattice of the nuclei or cores. The electron
system is not left in an excited state. The total electronic energy can therefore be
considered as a potential for the movement of the nuclei. On the other hand, since the
electronic movement is much faster than that of the nuclei, a first approximation for
the dynamics of the electrons is based on the assumption of a static lattice with fixed
nuclear positions determining the potential for the electrons. This approximation of
separate, non-interacting electron dynamics and lattice (nuclear/core) dynamics is
called the adiabatic approximation. It was introduced into solid-state and molecular
physics by Born and Oppenheimer [5.1]. It is clear, however, that certain phenom-
ena, such as the scattering of conduction electrons on lattice vibrations, are beyond
this approximation.

For surface, interface and thin film physics the same arguments are valid and
therefore, within the framework of the adiabatic approximation, the dynamics of
surface atoms (or cores) and of surface electrons can be treated independently.

The lattice vibrations of atoms near the surface are expected to have frequencies
different from those of bulk vibrations since, on the vacuum side of the surface, the
restoring forces are missing. The properties of surface lattice vibrations and the con-
ditions for their existence will be the subject of this chapter. Like the corresponding
bulk excitations, surface vibrations are in principle quantized, although a classical
treatment is sufficient in many cases because of the relatively high atomic masses
and the small energy of the resulting quanta. The quanta of surface vibrations are
called surface phonons.
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216 5 Surface Phonons

In contrast to bulk solid-state physics, for surfaces, the distinction between
surface lattice dynamics and surface electronic states is not a sufficient classi-
fication. Surface physics treats not only clean surfaces, but also surfaces with
well-defined adsorbates. Surface physics therefore includes, besides the electron
and lattice dynamics of the clean surface, a third important field, that of sur-
faces with adsorbed molecules or atoms (Chap. 10). For these systems one can
also apply the adiabatic approximation, i.e., the vibrations and electronic states
of an adsorbed atom or molecule can be considered separately. The same is true
for the interface layer between two solids, e.g., a semiconductor film epitaxially
grown on a different semiconductor substrate. At the interface itself the atoms
of the two “touching” materials display characteristic vibrational and electronic
properties.

5.1 The Existence of “Surface” Lattice Vibrations
on a Linear Chain

As in the bulk case, the essential characteristics of surface lattice dynamics can be
demonstrated using the simple model of a diatomic linear chain (Fig. 5.1). A model
for the surface of a 3D solid is then obtained by arranging an infinite number of
chains with their axes normal to the surface in a regular array, i.e. with 2D transla-
tional symmetry parallel to the surface (Fig. 5.2). In the present context the chains
are not extended over the whole infinite space – as in the bulk case, but they end at
the surface (semi-infinite case). Nevertheless, to a rough approximation, the dynam-
ical equations can be assumed to be unchanged with respect to those of an infinite
chain:

Ms̈(1)n = f (s(2)n − s(1)n )− f (s(1)n − s(2)n−1),

Fig. 5.1 The model of a
diatomic linear chain with
two different atomic masses
M(1) and m(2). A single
restoring force f is assumed
between the masses. The
position of the nth unit cell is
described by its geometrical
centre zn = na; the
displacements of the two
atoms in the nth unit cell from
equilibrium are s(1)n and s(2)n



5.1 The Existence of “Surface” Lattice Vibrations on a Linear Chain 217

Fig. 5.2 2D arrangement of
diatomic linear chains with
translational symmetry in the
surface. This model shows
some characteristics of
surface lattice dynamics

i.e.

Ms̈(1)n = − f (2s(1)n − s(2)n − s(2)n−1), (5.1a)

ms̈(2)n = − f (2s(2)n − s(1)n+1 − s(1)n ). (5.1b)

Changes of force constants and reconstructions at the surface are not considered in
this simple model.

The plane-wave ansatz

s(1)n = M−1/2c1 exp

{
i

[
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(
n − 1

4

)
− ωt

]}
, (5.2a)

s(2)n = m−1/2c2 exp

{
i

[
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(
n + 1

4

)
− ωt

]}
, (5.2b)

leads to the equations

− ω2 M1/2c1 = − f c1 M−1/2 + 2 f c2m−1/2 cos
ka

2
, (5.3a)

− ω2m1/2c2 = − f c2m−1/2 + 2 f c1 M−1/2 cos
ka

2
, (5.3b)

which, for an infinite chain, have the solutions:

ω2± =
f

Mm

[
(M + m)±

√
(M + m)2 − 2Mm(1− cos ka)

]
. (5.4)

The frequencies ω−(k) and ω+(k) correspond to the well-known acoustic and optic
dispersion branches of lattice waves for the infinite chain (Fig. 5.3).

For surfaces, one may modify the model in the following way. The chain is ter-
minated at one end, but extends to infinity in the other direction. Therefore, far away
from the free end, approximately the same solutions exist as for the infinite chain.
Furthermore, real lattice vibrations have, in any case, a finite correlation length
because of anharmonic interactions. We now seek new solutions to (5.1–5.3) which
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Fig. 5.3 Dispersion branches
for “bulk” (dash-dotted) and
“surface” (dashed) lattice
vibrations (phonons) of a
semi-infinite diatomic chain
(atomic masses M , m;
restoring force f ). k1 and k2
are the real and imaginary
parts of the complex
wavevector, i.e., k2 is the
exponential decay constant of
the “surface” phonons

are localized near the end of the chain, i.e., which have a negligible vibrational
amplitude far away from the end of the chain in the bulk. This can be achieved by
considering waves whose amplitude decays exponentially away from the end of the
chain. For this purpose we make an ansatz with a complex wave vector

k̃ = k1 + ik2, (5.5)

but we require the frequencies ω to be real. Is it possible to solve (5.4) with real ω±
but with complex k̃? The imaginary part k2 would lead to exponentially decaying
waves as required. Using the relations

cos(iz) = cosh(z), sin(iz) = i sinh(z), (5.6)

we can express cos(ka) in (5.4) as

cos(k̃a) = cos(k1a) cosh(k2a)− i sin(k1a) sinh(k2a). (5.7)

Because of the reality condition on ω±, Im{cos(k̃a)} in (5.7) must vanish, i.e.,

Im{cos(k̃a)} = sin(k1a) sinh(k2a) = 0. (5.8)

The solution with k2 = 0 yields the bulk dispersion branches (5.4). For the surface
solutions we require

k2 �= 0 and k1a = nπ with n = 0,±1,±2, . . . . (5.9)

We are interested in solutions for the first bulk Brillouin zone and therefore consider
the cases n = 0, 1, i.e.,

cos(k̃a) = cos(nπ) cosh(k2a) = (−1)n cosh(k2a); n = 0, 1. (5.10)
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The possible frequencies of surface solutions are therefore

ω2± =
f

Mm

{
(M + m)±

√
(M + m)2 − 2Mm[1− (−1)n cosh(k2a)]

}
, (5.11)

where the quantity under the square-root sign must be positive because we require
real ω2± values. The solution with n = 0, i.e., k1 = 0 at the Γ -point of the Brillouin
zone (in k1) is

ω2(k1 = 0, k2) = f

Mm

[
(M + m)+

√
(M + m)2 − 2Mm[1− cosh(k2a)]

]
.

(5.12)

Since [1 − cosh(k2a)] is negative for all k2a, there is no restriction on k2, but only
the positive square root in (5.12) is a solution. The curvature of (5.12) with respect
to k2 is always positive and the value of ω(k1 = 0, k2 = 0) equals that of the bulk
optical branch [2 f (1/M+1/m)]1/2 at Γ . Figure 5.3 shows that at Γ (k1 = 0) these
surface solutions are possible with frequencies above the maximum bulk phonon
frequency.

The solutions of (5.11) with n = 1, i.e., k1 = π/a, are located in k-space at the
Brillouin-zone boundary. The condition for a real square root now reads

|k2| < 1

a
arc cosh

M2 + m2

2Mm
≡ k2max. (5.13)

Thus there exist the solutions

ω2±(k1 = π/a, k2) = f

Mm

{
(M + m)±

√
(M + m)2 − 2Mm[1+ cosh(k2a)]

}
(5.14)

only for a limited range of k2 values (5.13). For k2 = 0 the solutions are

ω+(k2 = 0) = (2 f/m)1/2 and ω−(k2 = 0) = (2 f/M)1/2. (5.15a)

At the maximum value k2 max one obtains

ω±(k2 = k2max) =
√

f (1/M + 1/m). (5.15b)

Both branches ω± are continuous at k2max and have frequencies at k2 = 0 that
are identical to those of the bulk acoustic and optical lattice vibrations at the zone
boundary. The possible surface vibrational frequencies fill the range between the
acoustic and optical branches of the bulk excitations (Fig. 5.3). Boundary conditions
at the surface impose further restrictions (Sect. 5.2).
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The possible displacements of atom i in the “surface” modes follow according to
(5.2) as

s(i)n = Ci exp[i(k̃zi
n − ωt)], (5.16)

where

zi
n = a

(
n − 1

4

)
for atom (1) = (i), and a

(
n + 1

4

)
for atom (2) = (i)

are the corresponding atomic coordinates. From Fig. 5.3 one sees that k̃ can have
the values

k̃ = k1 + ik2 = ±π/a + ik2 (5.17)

at the Γ -point (k1 = 0) and at the boundaries of the Brillouin zone, respectively.
Apart from different, constant phase factors all these solutions are vibrations of the
form

s(i)n ∝ exp(−k2z(i)n )e
−iωt , k2 > 0, (5.18)

whose vibrational amplitude decays exponentially away from the end of the chain,
i.e. the surface at z = 0, into the interior of the chain.

5.2 Extension to a Three-Dimensional Solid with a Surface

Qualitatively, it is relatively easy to extend the above arguments to the case of a
3D solid with a surface. This is illustrated in Fig. 5.2 where the finite solid is
modelled by a regular array of parallel, semi-infinite chains. This model is only
realistic in cases where the chemical bonds in directions parallel to the surface
are weak, i.e., for strongly anisotropic solids. Nevertheless, we can use it to pro-
vide a qualitative idea for the features associated with general surface vibrational
modes.

For every chain we have the possible vibrational modes (5.18) discussed above.
However, different chains might vibrate with different phases. Due to the weak
interaction between the chains the phases are correlated with each other. The phase
difference can be described by a wave vector k‖ parallel to the surface. Since we are
interested in wave propagation parallel to the surface, the wave vector of a general
3D-lattice vibration

sk(r) = Aêkei(k·r−ωt) (5.19)
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can be split up into a part parallel to the surface k‖ describing the plane wave moving
parallel to the surface, and a part k⊥ normal to the surface. With k = k‖ + k⊥ and
r = r‖ + êz z, (5.19) yields

sk(r) = Aêk exp[i(k‖ · r‖ + k⊥z − ωt)]. (5.20a)

Parallel to the surface plane waves with real k‖ are possible, but normal to the sur-
face only solutions of the type (5.18) with imaginary k⊥ = ik2 need be considered.
The decay constant k2 is often designated by κ⊥. One obtains the following general
form for a surface lattice vibration:

sk‖,κ⊥ = Aêk‖,κ⊥e−κ⊥ z exp[i(k‖ · r‖ − ωt)]. (5.20b)

Equation (5.20b) is only valid for primitive unit cells; if there is more than one atom
per unit cell, an additional index (i) as in (5.18) describes the particular type of atom.

A surface vibrational mode is therefore characterized by its frequencyω (or quan-
tum energy h̄ω), its wave vector k‖ parallel to the surface, and the decay constant
κ⊥, which determines the decay length of the vibrational amplitude from the surface
into the interior of the crystal. These quantities are not independent of one another.
They are related via the dynamical equations (as in the 3D bulk case) and via the
boundary condition that no forces should act from the vacuum side on the topmost
layer of surface atoms. Thus from the “continuous” spectrum of possible surface-
mode frequencies between the acoustic and optical bulk modes and above (Fig. 5.3)
these restrictions select (for a primitive unit cell) one particular frequency ω for each
k‖ and κ⊥. For a crystal with two atoms per unit cell both an acoustic and an optical
surface phonon branch exist.

In analogy to the bulk case, surface phonons can therefore be described by a 2D
dispersion relation ω(k‖, κ⊥). The function ω(k‖, κ⊥) is periodic in 2D reciprocal
space. The usual way to display the dispersion relation ω(k‖, κ⊥) is by plotting the
function ω(k‖) along certain symmetry lines of the 2D Brillouin zone (Fig. 5.4). In

Fig. 5.4 Qualitative picture
of a 2D surface phonon
dispersion relation (a) along
the symmetry lines Γ M , M K
and KΓ of the 2D surface
Brillouin zone of a hexagonal
(111) surface of a fcc lattice
(b). The surface phonon
dispersion is given by the
dashed line in (a). The
shaded area indicates the
range of bulk phonon
frequencies at all possible k⊥
wave vectors for k‖ values on
the symmetry lines
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these plots it is usual to show the bulk phonons, too, since they also contribute to the
possible modes close to the surface. For a particular surface, all bulk modes with
a certain k‖ have to be taken into account. The projection of the bulk modes at a
fixed k‖ and for all k⊥ yields in the 2D plot (Fig. 5.4) a continuous area of possible
ω(k‖) values. In order to generate plots such as Fig. 5.4 one has to project the 3D
bulk dispersion branches onto the particular 2D surface Brillouin zone; i.e. certain
bulk directions and points of high symmetry in the 3D Brillouin zone are projected
onto the 2D surface zone. How this is done for some low-index faces of common
3D lattices is depicted in Figs. 5.5–5.7.

Fig. 5.5 Relation between the 2D surface Brillouin zones of the (100), (111) and (110) surfaces of
a fcc lattice and the bulk Brillouin zone
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Fig. 5.6 Relation between the 2D surface Brillouin zones of the (100), (111) and (110) surfaces of
a bcc lattice and the bulk Brillouin zone

It is worth mentioning that a more rigorous treatment of surface lattice dynam-
ics [5.2] leads to a simple scaling rule which connects the decay length κ⊥
of the vibrational amplitude of a surface phonon to its wave vector k‖: in
the non-dispersive regime where dω/dk‖ is constant, i.e., for small wave vec-
tors k‖, the decay constant κ⊥ is proportional to k‖; the longer the wavelength
of the surface vibration, the deeper its vibrational amplitude extends into the
solid.

Similar considerations as applied here to the solid–vacuum interface lead,
for the solid–solid interface, e.g. at an epitaxially grown semiconductor
overlayer (Chap. 8), to the existence of interface phonons. Their vibra-
tional amplitude decays exponentially into each solid on both sides of the
interface [5.3].
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Fig. 5.7 Relation between the (0001) surface Brillouin zone of a hcp lattice and the corresponding
bulk Brillouin zone

5.3 Rayleigh Waves

In the study of bulk solids the dispersionless part of the acoustic phonons was
well known as sound waves long before the development of lattice dynamics [5.4].
Debye used this well-known part of the phonon spectrum to evaluate his approxi-
mation for the lattice specific heat. A similar situation holds for the dispersionless
low-frequency part of the surface phonon dispersion branches. Part of these surface
phonon modes were already known in 1885 as Rayleigh surface waves of an elastic
continuum filling a semi-infinite halfspace [5.5, 5.6]. In classical continuum theory
one can only describe lattice vibrations whose wavelength is long compared to the
interatomic separation. A macroscopic deformation of a solid continuum can there-
fore be described in terms of displacements of volume elements dv whose dimen-
sions are large in relation to interatomic distances, but small in comparison with
the macroscopic body. The important variables in this sense are the displacements
u = r ′ − r of these volume elements dv and the strain tensor

εi j = 1

2

(
∂uj

∂xi
+ ∂ui

∂xj

)
. (5.21)

In the elastic regime εi j is related to the stress field σkl = ∂Fk/∂ fl (force in k
direction per area element in l direction) via the elastic compliances
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εi j =
∑

kl

Sijklσkl . (5.22)

In this continuum model the time variation and spatial structure of an elastic wave
can be given in terms of the displacement field u(r, t) which describes the micro-
scopic movement of little volume elements containing a considerable number of
elementary cells (Note that in the long-wavelength limit, neighboring elementary
cells behave identically). The Rayleigh waves that are solutions of the wave equation
for an elastic continuous half-space are obtained in the following way: every vector
field – including the displacement field u(r, t) – can be split up into a turbulence-
free and a source-free part u′ and u′′:

u = u′ + u′′ (5.23a)

with

curlu′ = 0 and divu′′ = 0. (5.23b)

In the bulk, differential wave equations can be solved for both contributions giving
longitudinal sound waves [u′(r, t)] and transverse (shear) sound waves [u′′(r, t)]
with the sound velocities c1 and c2, respectively. In the present situation of a semi-
infinite halfspace we assume a coordinate system as shown in Fig. 5.8, and try
solutions that are dependent only on x (‖ to the surface) and z (⊥ to the surface).
Because of (5.23b) we can introduce two new functions φ and ψ which have the
character of potentials

u′ = −gradφ, (5.24)

u′′x = −
∂ψ

∂z
, u′′z =

∂ψ

∂x
. (5.25)

The definition (5.25) is possible because

divu′′ = ∂u′′x
∂x
+ ∂u′′z

∂z
= 0. (5.26)

Fig. 5.8 Displacement field
u(r, t) (instantaneous
picture) of a Rayleigh surface
wave travelling in the
x-direction along the
boundary of a semi-infinite
continuous solid half space
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Instead of treating the displacement field u(r, t) directly, we can use the functions
φ(x, z) and ψ(x, z). The function φ describes longitudinal excitations, whereas ψ
is related to the transverse part of the displacement field. The general equations of
motion for an isotropic, 3D bulk, elastic solid can be reduced to wave equations for
the generalized potentials φ and ψ . In analogy to the bulk problem we therefore try
to solve the following wave equations for the semi-infinite halfspace:

c1/2
l
∂2φ

∂t2
−�φ = 0, c1/2

t
∂2ψ

∂t2
−�ψ = 0. (5.27)

In accordance with the character of φ and ψ (5.27) contains the longitudinal and the
transverse sound velocities cl and ct. For the solution of (5.27) we try the ansatz of
surface waves travelling parallel to the surface along x with an amplitude dependent
on z (u must vanish for z→∞):

φ(x, z) = ξ(z)ei(kx−ωt), ψ(x, z) = η(z)ei(kx−ωt). (5.28)

From (5.27) it then follows that

ξ ′′ − p2ξ = 0 with p2 = k2 − (ω/cl)
2, (5.29a)

η′′ − q2η = 0 with q2 = k2 − (ω/ct)
2. (5.29b)

For p2 > 0 and q2 > 0, the amplitudes ξ and η are clearly exponential functions
that decay into the bulk of the material as

ξ = Ae−pz, η = Be−qz . (5.30)

The final solutions have the character typical of surface excitations (5.20b):

φ = Ae−pzei(kx−ωt) with p =
√

k2 − (ω/cl)2, (5.31a)

ψ = Be−qzei(kx−ωt) with q =
√

k2 − (ω/ct)2. (5.31b)

The displacement field (ux , 0, uz) is then derived from (5.24 and 5.25) by differen-
tiation of (5.31):

ux = −∂φ
∂x
− ∂ψ
∂z
, uz = −∂φ

∂z
+ ∂ψ
∂x
. (5.32)

From (5.32) we see that the displacement field of the surface excitation contains
both a longitudinal and a transverse contribution; the wave is of mixed longitudinal-
transverse character and its velocity must thus depend on both cl and ct. For the
further evaluation of the Rayleigh wave phase velocity ω/k we use the boundary
condition that at the very surface (z = 0) there is no elastic stress, i.e.,
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σzz |z=0 = σyz |z=0 = σxz |z=0 = 0. (5.33)

In the subsequent somewhat tedious calculation [5.6], the elastic constants enter via
(5.21 and 5.22). But even with the assumption of incompressibility for the semi-
infinite continuum only an approximate solution is possible. One obtains the phase
velocity of the Rayleigh wave as

cRW � (1− 1/24)ct (5.34)

and the direct relations between its wave vector k and the parameters p and q

p � k, q � k(12)−1/2. (5.35)

From (5.34) we see that the phase velocity of Rayleigh surface waves is even lower
than the transverse sound velocity [5.5, 5.6]; this is also true for cubic crystals.
Figure 5.8 illustrates qualitatively the spatial structure of the displacement field of
a Rayleigh wave with wavelength λ = 2π/k. The mixed longitudinal-transverse
character is seen from the direction of the displacements which are partially parallel
and partially normal to the propagation direction x .

It should also be emphasized that the treatment in this section is based on the
continuum case in which the neglect of atomic structure leads to a Rayleigh wave
that shows no dispersion (like for bulk sound waves). Extending the analysis to an
atomically structured medium like a crystal, the surface phonon branches will show
dispersion, in particular near the Brillouin-zone boundary. In Fig. 5.4 the disper-
sion branch indicated by the dashed line qualitatively, reflects what one can expect
for Rayleigh surface phonons. Some results from experiments and more realistic
calculations are presented in Sect. 5.6.

5.4 The Use of Rayleigh Waves as High-Frequency Filters

Experimentally, Rayleigh waves can be excited by a variety of methods. In princi-
ple one has to induce an elastic surface strain of adequate frequency. Atomic and
molecular beam scattering (Panel X: Chap. 5) can be used, as can Raman scattering,
in particular at low frequencies with high resolution, i.e., Brillouin scattering. For
piezoelectric crystals and ceramics there is a particularly convenient way to excite
Rayleigh waves. These materials are characterized by an axial crystal symmetry.
Stress along such an axis produces an electric dipole moment in each unit cell of
the crystal due to an unequal displacement of the different atoms in the cell. Simple
examples are the wurtzite structure of ZnO which is built up along its hexagonal
c-axis by double layers of Zn and O ions. Stress along the c-axis displaces the Zn
and O lattice planes by different amounts and a dipole moment in the c-direction
results. Other examples are the wurtzitic group III-nitrides (GaN, AlN, InN) and
generally the III-V semiconductors that crystallize in the zinc-blende structure with
an axial symmetry along the four {111} cubic cell diagonals. For practical purposes
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quartz and specially designed titanate ceramics are important. A general description
of the piezoelectric effect may be given in terms of the third rank piezoelectric tensor
dijk which relates a polarization Pi to a general mechanical stress ε jk

Pi =
∑

jk

dijkε jk, εi j =
∑

k

d̄ijkEk . (5.36)

Equation (5.36b) with the so-called inverse piezoelectric tensor d̄ijk describes the
inverse phenomenon by which an electric field E applied in a certain direction pro-
duces a mechanical strain εi j in such crystals. On surfaces of piezoelectric crystals
the mechanical strain associated with Rayleigh waves can thus be induced by appro-
priately chosen electric fields; these are applied by evaporated metal grids (Fig. 5.9).
A high-frequency voltage Ui(ω) applied to the left-hand grids in Fig. 5.9a gives rise
via (5.36) to a surface strain field, which varies harmonically in time with frequency
ω and has a wavelength λ determined by the grid geometry. If ω and λ (i.e., ω
and k = 2π/λ) are values which fall on the dispersion curve for Rayleigh waves
of that material, such surface waves are excited. They travel along the surface and
excite a corresponding time-varying polarization which produces an electric signal
in the right-hand grid structure. The grid geometry determines a fixed wavelength
λ0. Because of the single-valued dispersion relation for surface Rayleigh waves this
λ0 allows only a particular frequency ω0 for the surface phonons. High-frequency
signals Ui(ω0) can pass the device and appear as an output signal Uf(ω0) only if
ω0(2π/λ0) is a particular point on the Rayleigh dispersion curve (Fig. 5.9b). This
dispersion curve and the geometry of the grids (equal for antenna and receiver)
therefore determine the pass frequency of the filter. To give a numerical example:
grids with rod distances in the 100 μm range can easily be evaported. For a Rayleigh

Fig. 5.9 (a) Schematic
drawing of a Rayleigh-wave
high-frequency filter. Two
sets of metallic grids are
evaporated onto a
piezoelectric plate. The rod
spacing λ0 determines the
wavevector k0 = 2π/λ0 of
the excited surface wave. (b)
Through the Rayleigh-wave
dispersion relation the
frequency ω0 is fixed by λ0.
(c) If a continuous spectrum
is fed in as input voltage
Ui(ω), only a sharp band
Uf(ω0) is transmitted through
the device
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wave velocity of 4000 m/s we obtain a frequency ofω � 24·107 s−1 or ν � 40 MHz.
Such surface-wave devices are used, e.g., in television equipment as band-pass fil-
ters for image frequencies.

5.5 Surface-Phonon (Plasmon) Polaritons

In Sect. 5.3. we considered one limiting case of the surface-phonon spectrum,
namely the nondispersive acoustic type of vibrations that are derived from the
bulk sound waves. A similar treatment is possible for the long-wavelength optical
phonons of an InfraRed (IR) active crystal. There is a certain type of optical surface
phonon that is derived from the corresponding bulk TO and LO modes near k = 0.
As in the bulk, these surface modes are connected with an oscillating polarization
field. Besides the dynamics of the crystal, the calculation must therefore also take
into account Maxwell’s equations which govern the electromagnetic field accompa-
nying the surface vibration.

We consider a planar interface located at z = 0 between two non-magnetic
(μ = 1) isotropic media. The two media, each filling a semi-infinite halfspace,
are characterized by their dielectric functions ε1(ω) for z > 0 and ε2(ω) for z < 0,
respectively. The dynamics of the two media is contained in their dielectric func-
tions; the IR activity, for example, can be expressed in terms of an oscillator type
ε(ω) with ωTO as resonance frequency (TO denotes the transverse optical phonon
at Γ ). The particular case of a clean surface in vacuum is contained in our analysis
for ε2 = 1 (or ε1 = 1). In general, electromagnetic waves propagating inside a
non-magnetic (μ = 1) medium with dielectric function ε(ω) obey the dispersion
law (derived from the differential wave equation):

k2c2 = ω2ε(ω). (5.37)

We look for modifications of (5.37) due to the presence of the interface. We start
from the “equation of motion” for the electric field E(r, t). From Maxwell’s equa-
tions we obtain for a nonmetal ( j = 0).

curlcurlE = −μ0curlḢ = −μ0ε0ε(ω)Ë, (5.38a)

i.e.,

− c2curlcurlE = ε(ω)Ë, (5.38b)

and from charge neutrality

div[ε(ω)E] = 0. (5.39)

Special solutions localized at the interface should be wave-like in two dimensions
(parallel to the interface) with an amplitude decaying into the two media for z ≷ 0:
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E1 = Ê1 exp[−κ1z + i(k‖ · r‖ + ωt)] for z > 0, (5.40a)

E2 = Ê2 exp[κ2z + i(k‖ · r‖ + ωt)] for z < 0, (5.40b)

with r‖ = (x, y), k‖ = (kx , ky) parallel to the interface and Re{κ1}, Re{κ2} > 0.
From (5.39) we obtain

iE · k‖ = Ezκ, z �= 0, (5.41)

with κ = κ1 and κ = κ2 for media (1) and (2), respectively. Equation (5.41) excludes
solutions with E normal to k‖ and Ez �= 0, which are localized at the interface;
localized waves must be sagittal with amplitudes

Ê1 = Ê1(k‖/k‖,−ik‖/κ1) (5.42a)

Ê2 = Ê2(k‖/k‖,−ik‖/κ2). (5.42b)

If we insert the ansatz (5.40) together with the amplitudes (5.42) into (5.38b), we
obtain dispersion laws similar to (5.37):

(k2‖ − κ2
1 )c

2 = ω2ε1(ω), (5.43a)

(k2‖ − κ2
2 )c

2 = ω2ε2(ω). (5.43b)

We now have to match the solutions E1 and E2 at the interface, i.e., we require

E‖1 = E‖2 and D⊥1 = D⊥2 . (5.44)

This yields

Ê1 = Ê2 and κ1/κ2 = −ε1(ω)/ε2(ω). (5.45)

Combining (5.45) with (5.43) we get the dispersion relation for surface polaritons

k2‖c2 = ω2 ε1(ω)ε2(ω)

ε1(ω)+ ε2(ω)
. (5.46)

Comparing this relation with the bulk polariton dispersion (5.37) one can formally
define an interface dielectric function εs(ω):

1

εs(ω)
= 1

ε1(ω)
+ 1

ε2(ω)
. (5.47)

From the bulk dispersion relation (5.37) we obtain the frequency of the TO bulk
phonon for k → ∞, i.e., for k values large in comparison with those on the light
curve ω = ck; ωTO results from the pole of ε(ω). Similarly we obtain the frequency
ωs of the interface waves (k‖ → ∞) from the pole of εs(ω) (5.46, 5.47), i.e.,
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0 = 1

εs(ωs)
= ε1(ωs)+ ε2(ωs)

ε1(ωs)ε2(ωs)
, (5.48a)

or

ε2(ωs) = −ε1(ωs). (5.48b)

If we consider the special case of a crystal in vacuum, i.e. a semi-infinite halfspace
with the dielectric function ε(ω) = ε1(ω) adjoining vacuum with ε2(ω) = 1, the
condition determining the frequency of the surface polariton is

ε(ωs) = −1. (5.49)

The simplest description of an IR-active material is in terms of an undamped
oscillator-type dielectric function

ε(ω) = 1+ χVE + χPh(ω) (5.50)

with

χVE = ε(∞)− 1

and

χPh = [ε(0)− ε(∞)] ω2
TO

ω2
TO − ω2

,

where χVE describes the valence-electron contribution in terms of the high-
frequency dielectric function ε(∞), ε(0) is the static dielectric function, and ωTO
the frequency of the TO bulk phonons (dispersion neglected). Inserting (5.50) into
(5.46) yields the dispersion relation for surface phonon polaritons:

ω2 = 1

2

[
ω2

LO +
(

1+ 1

ε(∞)
)

k2‖c2
]

×
⎛
⎝1−

√√√√1− 4
[ω2

LO + ε(∞)−1ω2
TO]k2‖c2

{ω2
LO + [1+ ε(∞)−1]k2‖c2}2

⎞
⎠ . (5.51)

This dispersion is plotted in Fig. 5.10 together with the dispersion branches of the
bulk IR-active TO/LO polariton branches. For large k‖ the surface-polariton branch
approaches the surface phonon frequency (ωs) which is determined by the condition
(5.49). It should be emphasized that the k‖ range shown in Fig. 5.10 covers essen-
tially the 10−3 part of the 2D Brillouin-zone diameter, i.e., for large k‖ values in the
remainder of the zone considerable dispersion might occur, but this is not contained
in our simple approximation for small k‖.
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Fig. 5.10 Dispersion curve of
surface phonon polaritons
(SPP) of an IR active crystal
together with the bulk phonon
polariton curves (TO, LO) for
small wave vectors parallel to
the surface

It should also be noted that the analysis presented here takes into account retar-
dation, i.e., the finite value of the light velocity c.

A much simpler derivation of the condition for the existence of optical surface
phonons (5.49) and their frequency ωs is obtained by neglecting retardation. For this
purpose we ask whether there exists a wave-like solution near the interface between
the IR-active crystal and the vacuum, for which both

divP = 0 for z �= 0, (5.52a)

curlP = 0 for z �= 0, (5.52b)

with P being the polarization accompanying the lattice distortion. One should
remember that for the corresponding long-wavelength bulk phonons the following
conditions are valid

TO-phonon: curlPTO �= 0, divPTO = 0, (5.53a)

LO-phonon: curlPLO = 0, divPLO �= 0. (5.53b)

For the surface solution we require (5.52) to hold, i.e., curlE = 0 and divE = 0 (for
z �= 0); the electric field should therefore be derived from a potential ϕ:

E = −gradϕ (5.54)

with

∇2ϕ = 0 for z �= 0. (5.55)

For the solution of (5.55) we can make the ansatz of a surface wave

ϕ = ϕ0e−kx |z|ei(kx x−ωt). (5.56)
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The coordinate system is that of Fig. 5.8. The wave (5.56) already fulfills (5.55) and
we simply have to demand continuity for the component D⊥ at the surface, z = 0,
i.e.,

Dz = −ε0ε(ω)
∂ϕ

∂z

∣∣∣∣
z=0−δ

= −ε0
∂ϕ

∂z

∣∣∣∣
z=0+δ

. (5.57)

This condition (5.57) is equivalent to the condition (5.49) determining the frequency
of the surface polariton. According to (5.54) the electric field E = (Ex , Ez) is derived
from (5.56) by differentiation:

Ex = Ê0 sin(kx x − ωt) exp(−kx |z|), (5.58a)

Ez = ±Ê0 cos(kx x − ωt) exp(−kx |z|). (5.58b)

This field is depicted in Fig. 5.11 with its surface polarization charges at the
crystal-vacuum interface. The type of phonon polariton shown is often called Fuchs-
Kliewer phonon.

Figure 5.12a exhibits the dielectric function ε(ω) of an oscillator; this is a good
approximation for long-wavelength optical phonons in an IR-active material. The
frequencies ωTO and ωLO of the transverse and longitudinal bulk optical phonons are
determined by the pole Re{ε(ω)} and the condition of Re{ε(ωLO)} � 0. According
to (5.49) the frequency of the corresponding optical surface phonon ωs is easily
found as the frequency at which Re{ε(ω)} crosses the value −1 on the ordinate. If
Im{ε(ω)} is not negligible in this frequency range, slight shifts in ωs must, of course,
be taken into account.

A comparison of Fig. 5.12a and b implies that for the free electron gas, similar
arguments apply as for phonons. Indeed bulk density waves of the electron gas, i.e.,
plasmon waves are irrotational (curlP = 0) and their frequency ωp follows from the
condition

ε(ωp) = 0, (5.59)

i.e., in the range of negligible Im{ε(ω)} for Re{ε(ωp)} = 0.

Fig. 5.11 Field distribution
of a (Fuchs-Kliewer) surface
polariton travelling along the
surface (parallel to the
x-axis) of an IR-active crystal
(semi-infinite half space
z < 0) described by the
dielectric function ε(ω)
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Fig. 5.12 Dielectric functions Re{ε(ω)} and Im{ε(ω)} for a harmonic oscillator (a) and a free
electron gas (b). (a) In the case of an IR-active crystal, the resonance frequency is the frequency
ωTO of the transverse optical (TO) bulk phonon; ωLO is the frequency of the longitudinal optical
(LO) bulk phonon, ωs that of the surface phonon polariton. (b) ωp is the frequency of the bulk
plasmon, case that of the surface plasmon

The same type of analysis as has been performed for phonons can thus be
applied to a free electron gas filling a semi-infinite half space bounded by a
vacuum interface. However, instead of the dielectric function of the oscillator
(eigenfrequency ωTO), one now has to use the dielectric function of a free elec-
tron gas (Fig. 5.12b). In the simplest approximation this is a Drude dielectric
function

ε(ω) = ε(∞)−
(ωp

ω

)2 1

1− 1/iωτ
, (5.60)

where

ωp =
√

ne2

m∗ε0
(5.61)

is the plasma frequency (with n the carrier concentration and m∗ the effective mass),
and τ the relaxation time. In a better approximation one might apply a Lindhard
dielectric function [5.7], or yet more sophisticated methods that take into account
the special boundary conditions at a surface [5.8]. The frequency of the surface
plasmon ωSP is given, as in (5.49), by the condition

ε(ωSP) = −1. (5.62)

For a Drude dielectric function, by inserting (5.60) into (5.46), one obtains the dis-
persion relation of surface plasmon polaritons
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ω2 = 1

2

[
ω2

p +
(

1+ 1

ε(∞)
)

k‖c2
]

×
⎡
⎢⎣1−

√√√√1− 4

(
ω2

pk‖c
ω2

p + [1+ ε(∞)−1]k2‖c2

)2
⎤
⎥⎦ . (5.63)

This dispersion relation is displayed in Fig. 5.13. In the case of surface plasmons one
has to distinguish between two different cases. In a metal the carrier concentration
is on the order of 1022 cm−3, and the corresponding plasmon energies ωp and ωSP
are on the order of 10 eV. In an n-type semiconductor the plasma frequencies of the
valence electrons are of the same order of magnitude (n ≈ 1022 cm−3), but now we
have to treat the free electrons in the conduction band separately. For a conduction
electron density of typically 1017 cm−3, the corresponding plasmon energies are in
the range 10–30 meV. This is exactly the range of typical phonon energies.

An experimental example, in which one can observe both types of surface polari-
tons, the phonon and the plasmon, is exhibited in Fig. 5.14. High-Resolution Elec-
tron Energy Loss Spectroscopy (HREELS) was used to study the clean cleaved
GaAs(110) surface. In part (a) of the figure, semi-insulating GaAs, compensated by
a high degree of Cr doping, was used. In this material the free-carrier concentration
is negligible. Only surface phonons can be expected to occur in the low-energy range
up to 200 meV loss energy. The series of energetically equidistant gain and loss
peaks indicates multiple scattering on one and the same excitation. The excitation
energy is derived from the spacing of the loss peaks as 36.2 ± 0.2 meV. Taking the
well-known dielectric function ε(ω) from IR data for GaAs [5.10] one can calculate
the frequency ωs of the surface phonon polariton by means of (5.49). This calcu-
lation yields a value of ωs = 36.6 meV in good agreement with the experimental
value. A thorough quantum-mechanical theory of the scattering process (Chap. 4)
[5.11] predicts that the intensity of the multiple scattering events should be dis-
tributed according to a Poisson distribution, i.e.,

P(m) = Im/
∑
ν

Iν = (m!)−1 Qme−Q, (5.64)

Fig. 5.13 Dispersion curve
ω(k‖) of surface plasmons on
a semi-infinite half space
containing a free electron
gas; k‖ is the wavevector
parallel to surface; ωp and
ωSP are the frequencies of
bulk and surface plasmons for
large k‖ (small wavelength)
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Fig. 5.14 (a) Loss spectrum
of a clean cleaved GaAs(110)
surface of semi-insulating
material (angle of incidence
80◦). (b) Loss spectra
measured on an n-type
sample after exposure to
atomic hydrogen (angle of
incidence 70◦; H coverage
unknown) Inset: Calculated
surface loss function
−Im{(1+ ε)−1} in arbitrary
units; ε(ω) contains
contributions from the TO
lattice oscillator and from the
free electron gas (density
n′ = 3 · 1017 cm−3 [5.9]

where Im is the intensity of the mth loss. Q is the one-phonon excitation probability,
i.e., the squared absolute magnitude of the Fourier transform of the time-dependent
perturbation due to the scattered electron. This distribution law is well verified as
can be seen from Fig. 5.15a.

The scattered electron can not only lose energy by excitation of a surface phonon,
but can also gain the same amount of energy by deexcitation of a phonon that is
already thermally excited. As in Raman spectroscopy, the gain (I−m) and loss (Im)
intensities (Stokes and anti-Stokes lines) are then expected to be related to each
other through a Boltzman factor

I−m/Im = exp(−mh̄ωs/kT ). (5.65)
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Fig. 5.15 (a) Poisson
distribution of the loss
intensities Im measured
on a clean semi-insulating
GaAs surface (Fig. 5.14).
(b) Intensity ratio of the
mth surface phonon gain and
the mth phonon loss vs. loss
number m. The straight line
is calculated with
h̄ω = 36.0 meV [5.9]

This is also found experimentally, as is seen from Fig. 5.15b. On n-doped GaAs with
free electron concentrations in the conduction band of 1017–1018 cm−3 loss spectra
like that of Fig. 5.14b are found. On clean cleaved surfaces and also after exposure
to small amounts of dissociated hydrogen (or to residual gas) a series of gain and
loss peaks is observed at energies h̄ω+ (and multiples thereof) resembling those of
the surface phonon (h̄ωs). Additional gains and losses (including multiples) are also
observed with a significantly smaller quantum energy h̄ω−. The spectral position
of these peaks is very sensitive to the free-carrier concentration in the bulk and to
the gas treatment of the surface. An interpretation in terms of surface plasmons is
therefore obvious. A quantitative description of the experimental spectra is possible
by assuming a dielectric function for GaAs of the form

ε(ω) = ε(∞)+ [ε(0)− ε(∞)] ω2
TO

ω2
TO − ω2 − iωγ

−
(ωp

ω

)2 1

1− 1/iωτ
, (5.66)

which contains an oscillator contribution due to the TO optical phonons (ωTO) and
a Drude term (5.60) which takes into account the free electrons in the conduction
band.

ω2
p = ne2/ε0m∗n (5.67)

is the bulk plasma frequency where n is the free carrier concentration and m∗n is their
effective mass.

τ = m∗nμ/e (5.68)
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is the Drude relaxation time with μ being the mobility. The dielectric function (5.66)
is a superposition of the real and imaginary parts depicted in Figs. 5.12a and b.

According to Sect. 4.6 the essential structure of an electron energy loss spec-
trum is given within the framework of dielectric theory by the surface loss func-
tion Im{−1/[ε(ω) + 1]}. For monotonic and relatively small Im{ε(ω)} the max-
ima are found at the frequencies determined by the condition (5.49). This is also
true if one inserts the more complex ε(ω) of (5.66) into the surface loss function.
Im{−1/[ε(ω) + 1]} then exhibits two maxima at frequencies or quantum energies
h̄ω− and h̄ω+ that correspond to solutions of (5.49). According to (5.66–5.68) these
two solutions h̄ω− and h̄ω+ depend on the concentration n of free electrons in the
conduction band. Figure 5.16 exhibits the calculated loss peak positions (full line),
i.e., the energies h̄ω− and h̄ω+ as functions of an effective carrier concentration n′.
The lower branch h̄ω− has surface-plasmon-like character for small n′ whereas h̄ω+
is surface-phonon-like. Near n′ = 1018 cm−3 the two branches interchange their
character thus indicating a coupling between the two modes via their long-range
electric fields. The two frequencies ω− and ω+ derive from the values ωSP and ωs
in Fig. 5.12 when the two dielectric functions in Figs. 5.12a and b are superim-
posed. The combined ε(ω) exhibits two solutions of ε(ω) = −1 in the regime of
negligible Im{ε}. In Fig. 5.16 some experimentally determined loss-peak positions
are plotted, too. The experimentally determined h̄ω−, h̄ω+ values after cleavage fit
the theoretical curves very well if the effective carrier concentration n′ is taken to

Fig. 5.16 Loss peak positions h̄ω+ and h̄ω− calculated from the maxima of the surface loss func-
tion with ε(ω) according to (5.50) (solid lines). Dashed line: plasmon frequency without coupling
to surface phonon. The experimental points are measured on samples with different n-type doping:
(1) Te-doped (bulk density: n = 9 · 1017 cm−3): (�) clean, (�) after exposure to 1 L residual gas.
(2) Te-doped (bulk density: n = 4.3 · 1017 cm−3): (◦) clean, (•) after exposure to 1 L dissociated
H2. (3) Si-doped (bulk density: n = 3 · 1017 cm−3): (�) clean [5.9]
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be that of the bulk (n), as determined by Hall-effect measurements. After hydrogen
treatment, however, the effective carrier concentration n′ is reduced as is seen from
the positions of the loss peaks (Fig. 5.16). This effect is due to the depletion of
carriers in a region of some hundreds of Ångstroms below the surface due to an
upwards band bending of the conduction band (space charge region; Chap. 7). This
so-called depletion layer is induced by hydrogen adsorption. It influences the loss
peak position since the positions h̄ω+ and h̄ω− are determined by carrier concen-
tration within the penetration depth 1/q‖ of the electric field of the surface phonon
and plasmon-like excitations. From the relation q‖ � h̄ω/2E0 (4.42) this pene-
tration depth is also estimated to be about a couple of hundred Ångstroms. The
measurement of surface phonon/plasmon excitations can therefore be used to inves-
tigate carrier concentrations in space charge layers at semiconductor interfaces and
surfaces [5.12] (Chap. 7).

5.6 Dispersion Curves from Experiment and from Realistic
Calculations

When the wavelength of surface waves is comparable to the interatomic separa-
tion of the discrete crystal lattice, the continuum-type approach of the preceding
sections is no longer valid. For frequencies on the order of 1011 s−1 or higher, the
description of surface modes demands a lattice dynamical approach. This requires,
as in bulk lattice dynamics, a detailed knowledge of the interatomic force constants.
For appropriate approximations the effects of electron-lattice interactions have to
be taken into account by means of shell models, in which the valence electrons are
represented by a solid shell bound to the core by a spring. In even more sophisticated
treatments, deformations of the electron shell itself can be taken into account by
so-called breathing shell models. Compared to bulk lattice dynamics a fundamental
new problem arises at the surface: due to reconstruction or relaxation of the topmost
atomic layers, both the atomic geometry and the restoring forces may deviate near
the surface from their bulk values. These changes are not generally known. They
give rise to additional parameters which must be fitted to experimental data.

A variety of lattice-dynamical techniques have been applied to calculate surface
phonon dispersion branches. An approach frequently used in the past is the anal-
ogy of the continuum approach (Sect. 5.3): a trial solution is constructed for the
semi-infinite lattice and, by means of the correct boundary conditions, dispersion
curves are obtained. It is not always clear whether all possible surface modes are
obtained by this calculation. Another method consists of the direct calculation of the
eigenvalues and polarization vectors of a slab formed by a sufficiently large number
of atomic layers. This method yields all the acoustic and optical surface modes over
the entire Brillouin zone, provided that their penetration depth is less than the slab
thickness. In many cases twenty layers are enough to give good results. A third
method is based on the application of Green’s function theory. In this approach the
surface is treated as a perturbation which modifies the spectrum of bulk vibrations.
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Fig. 5.17 Dispersion curves
of a 15 layer (001)-oriented
NaCl slab obtained from a
shell model calculation. The
finite number of slabs gives
rise to a discrete set of
dispersion curves. The
dispersion branches labeled
by S1, S2 . . . etc. belong to
vibrational eigenvectors
which decay into the bulk,
i.e., they describe surface
phonons. [5.13]

Figure 5.17 shows an example of results obtained from a slab calculation for
NaCl(001) [slab orientation (001)]. Corresponding to the finite number of slabs (15)
the bulk modes are obtained as a discrete set of dispersion curves. With increas-
ing number of the slabs these bulk modes thicken to form quasi-continuous areas,
i.e. bands. However, a finite number of modes labeled S1, S2, S3 etc., remain dis-
tinct from the bands. Their eigenvectors are found to be large near the surface and
rapidly decreasing, away from the surface. These modes can obviously be identified
as surface vibrations. The acoustic surface mode S1 is localized beneath the bulk
acoustic band, even in the long wavelength limit (k‖ → 0). This mode therefore
represents the Rayleigh surface waves discussed in Sect. 5.3. The modes S3, S4 and
S5 are examples of optical surface vibrations. S4 and S5 are the so-called Lucas
modes with polarization normal and parallel to the surface. These modes are related
to the altered force constants between the topmost atomic layers; their vibrational
amplitude is therefore strongly localized near the first layer.

As an example of a calculation using the Green’s function perturbation method,
Fig. 5.18 shows dispersion branches of surface phonons on LiF (001). The outer
atomic electrons are modelled by the so-called breathing shell model, in which
deformations of the shell are explicitly taken into account. Accordingly there is very
good agreement between the calculated bulk phonon dispersion branches (shaded
area) and some branches that have been determined experimentally by inelastic neu-
tron scattering (black dots). In the plot of Fig. 5.18 the bulk modes with polarization
normal (⊥) and parallel (‖) to the (001) surface are shown separately. Some surface
phonon bands are marked by S3, S4, etc. S4 and S5 are again the Lucas modes.
They are energetically degenerate with bulk modes polarized normal to the sur-
face and are thus called surface resonances. As is expected from continuum theory
(Sect. 5.3), the Rayleigh mode S1 has frequencies (energies) below those of the bulk
modes along the entire symmetry line Γ M . This S1 band has been calculated by
both the Green’s function method (full line) and by the slab method (dashed line).
There is a small discrepancy near the M point which could probably be eradicated if
the surface change in ionic polarizibility and/or the anharmonicity were taken into
account.
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Fig. 5.18 Phonon dispersion branches of LiF(001) along (100) calculated by the Green’s function
method [5.14]. The bulk modes (shaded area) with polarization normal (⊥) and parallel (‖) to the
(001) surface are shown separately. The surface phonon modes are labeled by Si. For comparison
some experimentally determined bulk modes (from neutron scattering) are given as black dots. The
open dots (near S1) are experimental results for the Rayleigh modes, as determined by inelastic
atom scattering [5.15]

The theoretical dispersion curve of the Rayleigh mode S1 calculated using the
Green’s functions method is in very good agreement with the experimental results
from inelastic atom scattering by Brusdeylins et al. [5.15] (Fig. 5.18, open cir-
cles). In these experiments a supersonic nozzle beam of He atoms is inelastically
scattered on the LiF(001) surface prepared in UHV, and the energy distribution of
the backscattered He atoms is measured by a time-of-flight spectrometer (Panel X:
Chap. 5). The energy loss at the surface and the scattering angle with respect to the
specular beam and the sample surface determine the phonon frequency ω and the
transfer, i.e. the dispersion relation ω(q‖) for the particular surface excitation mode.
Rayleigh waves usually produce the strongest peaks in the time of-flight spectra of
the scattered atoms due to their large amplitude in the topmost layer.

Surface phonon dispersion branches can also be measured by the inelastic scat-
tering of slow electrons (Panel IX: Chap. 4). In order to measure h̄ω(q‖) through-
out the whole 2D Brillouin zone, sizeable q‖ transfers have to be achieved and
the measurement must thus be performed with off-specular scattering geometry.
Unlike the case of optical surface phonon polaritons with q‖ � 0 studied in the
dielectric scattering regime (Sect. 5.5), the scattering is now predominantly due to
short-range atomic potentials. The inelastic scattering cross section for this kind of
scattering on phonons rises with increasing primary energy. The HREELS exper-
iments on Ni(100) (Fig. 5.19) were therefore performed with impact energies of
180 and 320 eV in preference to lower energies. The spectra shown in Fig. 5.19
were measured with a resolution of 7 meV in off-specular scattering geometry as
shown in the inset of Fig. 5.20. Electrons were collected at a fixed polar angle
of ≈ 72◦ along the [110] azimuth (Γ X direction) while the impinging beam was
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Fig. 5.19 a,b Electron energy
loss spectra measured by
HREELS with 7 meV energy
resolution in off-specular
geometry between the (00)
and (01) Bragg diffraction
beams on the clean Ni(100)
surface (geometry as in inset
of Fig. 5.20). (a) for a
wavevector transfer q‖ of
0.4 Å−1; (b) for a wave vector
transfer q‖ of 1.26 Å−1;
experimental data points
(open circles), calculated
spectra (solid lines) [5.16]

rotated between polar angles yielding the (01) and (00) Bragg-diffracted beams.
The momentum resolution was �q‖ ≈ 0.01 Å−1. Phonon losses were found over
the entire range between the (01) and (00) positions. The particular q‖ transfer of
1.26 Å−1 in Fig. 5.19b corresponds to the X point of the 2D Brillouin zone. The
experimental data (open circles) are compared with a calculation based on a nearest-
neighbour central-force model in which the force constant between first and second
layer is stiffened by 20%. The calculated curves show the frequency spectrum of
phonons with displacements normal to the surface for the corresponding q‖ wave
vectors, for atoms in the outermost substrate layer. The wings on the high-frequency
side of the surface phonon loss originate from the bulk phonon continuum.

The experimental peak positions as a function of q‖ [calculated according to
(4.41)] are plotted in Fig. 5.20. The measured dispersion coincides closely with that
calculated by Allen et al. [5.17] for a surface phonon on Ni(100) with an atomic
displacement at X that is normal to the surface in the outmost layer. According
to this calculation there exists a further shear-polarized surface phonon at X with
displacement parallel to the surface and normal to q‖. Since for this phonon the
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Fig. 5.20 Experimentally
determined (HREELS,
Fig. 5.19) dispersion of
surface phonons on a clean
Ni(100) surface (open
symbols for two different
primary energies E0). The
scattering geometry is shown
in the inset (off-specular
scattering). The full curve is
the calculated dispersion
according to Allen et al.
[5.17]. The dashed line takes
into account a stiffening of
the force constants between
the topmost and the second
atomic layers [5.16]

displacement direction is always normal to K ‖ = k′‖ − k‖ the selection rules (4.17))
forbid an excitation in the present scattering geometry (inset of Fig. 5.20). Indeed,
this phonon is not observed in the HREELS data.

The agreement between the calculated dispersion (Fig. 5.20, full line) and the
data points is poorer near the X point. The agreement is improved (dotted line) if
the force constant which couples atoms in the first and second layers is increased by
20%. This stiffening of the force constant mimics a modest inward relaxation of the
surface atomic layer, which is indeed confirmed by other experiments.

The examples of Li(001) and Ni(100) show that measurements of surface-phonon
dispersion curves and a comparison with lattice-dynamical calculations can provide
interesting information about changes in force constants and atomic locations near
the surface.
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Panel X
Atom and Molecular Beam Scattering

Atoms and molecules such as He, Ne, H2, D2, impinging on a solid surface as
neutral particles with a low energy (typically < 20 eV), cannot penetrate into the
solid. Scattering experiments with neutral particle beams therefore provide a probe
that yields information exclusively about the outermost atomic layer of a surface.
Such experiments have now become an important source of information in surface
physics. Both elastic and inelastic scattering can be studied. A schematic overview
of the various scattering phenomena is given in Fig. X.1. Since He atoms, for exam-
ple, with a kinetic energy of 20 meV have a de Broglie wavelength of 1 Å, scattering
phenomena must be described in the wave picture (Sect. 4.1). A particle approach-
ing the surface interacts with the surface atoms through a typical interatomic or
intermolecular potential V (r‖, z), r‖ being a vector parallel to the surface, and z
the coordinate normal to the surface. V (z) consists of an attractive and a repulsive
part (as in chemical bonding). The scattering from a two-dimensional periodic lat-
tice of atoms (surface) is dominated by the specular quasi-elastic peak (intensity
I00) and elastic Bragg diffraction (intensity Ihk) in well-defined directions (as in
LEED, Sect. 4.2). This elastic scattering is adequately described in the rigid-lattice

Fig. X.1 Schematic diagram showing the different collision processes that can occur in the
non-reactive scattering of a light atom with the de Broglie wavelength comparable to the lat-
tice dimensions. Since the lattice vibrational amplitudes are small, phonon inelastic scattering is
expected to be weak relative to elastic diffraction (specular beam I00 and Bragg diffraction beams
Ihk ). Additionally, high energy losses can lead to selective adsorption of impinging atoms in the
attractive part of the surface atom potential V (z) [X.1]
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approximation with only an intensity correction for inelastic effects, provided by
the temperature-dependent Debye-Waller factor. An incident atom or molecule can
lose so much energy that it is trapped at the surface or “selectively adsorbed”. This
trapping of atoms in bound states on the surface can strongly modify the scattered
intensities at specific angles and energies.

Inelastic scattering comes into play due to the fact that the crystal is in reality
not rigid: the atoms vibrate about their average positions. The incident particle can
therefore transfer part of its kinetic energy to the dynamic modes of the vibrating
surface, the surface phonons. Similarly, it can gain energy via the annihilation of a
surface phonon.

The mathematical description of the scattering is analogous to that of electron-
surface scattering (Sect. 4.1). The most general interaction potential V (r) between
the incident particle and the crystal surface (4.1) which enters the formula for the
scattering cross section (4.17) is conveniently written as a function of r‖, a coor-
dinate parallel to the surface, the coordinate z normal to the surface, and sn(t) the
vibrational coordinate of the nth surface atom:

V [r‖, z, sn(t)] = V (r‖, z)|sn=0 +
∑

n

(∇V ) · sn(t)+ . . . . (X.1)

The first term in the potential expansion is the corrugated elastic potential, which
can be determined by fitting the intensities of the elastic diffraction peaks using
model potentials. Elastic scattering thus yields information about the topology of the
surface and about details of the interatomic potentials. The second- and higher-order
terms, which couple to the vibrations sn(t) of the surface atoms, are responsible for
inelastic scattering. An understanding of these coupling terms is fundamental for
an interpretation of such phenomena as sticking coefficients (Sect. 9.5) and energy
transfer between surface atoms and incident particles.

Before presenting some detailed examples of the application of atom scattering,
the experimental set-up will be discussed briefly.

The experimental apparatus consists of a source of monoenergetic molecules or
atoms which are directed as a beam towards the surface under investigation; the
back-scattered distribution is recorded by a detector. Both sample and detector can
be rotated around a common axis in the surface plane to allow the detection of
higher diffraction orders under different angles. Since neutral particles are used,
neither electric nor magnetic fields can be used as focussing or dispersive elements.
A schematic diagram of a typical experimental set-up is shown in Fig. X.2. An
important feature is the nozzle beam source producing the monochromatic rare-gas
beam. The beam of Ne or He atoms is produced in a high-pressure expansion source.
In the expansion of the gas from a source pressure of about 2 atm through a thin-
walled orifice (diameter ≈ 5 · 10−2 mm) to a beam pressure of about 10−4 Torr,
the random translational energy is converted into a forward mean velocity of the
beam. Thus the magnitude of the random velocity component which determines
the velocity spread �v is reduced relative to the most probable velocity v. In the
apparatus shown in Fig. X.2 the resultant�v/v is about 10%. With improved nozzle
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Fig. X.2 Schematic diagram of a typical low-energy molecular beam scattering apparatus [X.2]

beam sources �v/v values on the order of 1% are achieved. Toennies [X.3] used a
He source cooled down to 80 K. The beam is expanded from a pressure of 200 atm
through a 5 μm hole into vacuum. To improve the forward velocity distribution fur-
ther, the beam passes a skimmer after expansion. This funnel-shaped tube skims off
atoms with insufficiently forward-directed velocity. During the expansion, chaotic
thermal motion is converted into a concerted forward motion of the atoms and as
a result of enthalpy conservation, the temperature in the moving gas is drastically
reduced; behind a distance of about 20 mm to ≈ 10−2 K. This corresponds to a
relative velocity spread of less than 1%. With modern nozzle-beam sources, pri-
mary energies from 6 meV up to 15 eV can be produced. He atoms with de Broglie
wavelengths of 1 Å have an energy of about 20 meV. In Fig. X.2 the primary beam is
modulated by a chopper and phase-sensitive detection is employed using a lock-in
amplifier. This technique allows detection of the modulated scattered beam against
a relatively high background pressure. Either standard ion gauges or more sophisti-
cated mass spectrometers are employed as detectors.

In the following, some examples are presented of the different applications of
atom and molecular scattering based on the processes of Fig. X.1. Since He atoms
are essentially scattered on the almost structureless “electron sea”, far from the
uppermost surface lattice plane, an ideal well-ordered, close-packed metal surface
gives rise to virtually no interesting scattering phenomena. But deviations from
ideality, such as steps, defects or adsorbates, can affect the elastically scattered
intensity in reflection direction, i.e. the specular beam intensity I00 quite dramat-
ically. Figure X.3 shows the intensity variation of the specular beam of He atoms
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Fig. X.3 Relative specular intensity I00 (referred to primary beam intensity) of a low-energy He
atom beam (energy E = 63 meV) versus angle of incidence θi (= θr reflection angle) for two
Pt(111) surfaces with differing average terrace widths [X.4]

reflected from Pt(111) surfaces with differing distributions of steps and terraces. For
the measurement the angle of incidence θi(= θr) is varied over a small range and the
backscattered intensity I00 is recorded. For this purpose, of course, an experimental
set-up with detection under variable observation direction is necessary. According
to the differing terrace width (average values around 300 Å and above 3000 Å)
an interference pattern or an essentially monotonic variation is observed in the
angular region considered. The oscillations are explained in terms of constructive
and destructive interferences of the He wave function reflected from (111) terraces
which are separated by monatomic steps. The average terrace width, i.e., the step
density, determines similarly as in an optical grid slit width and distance, the phase
differences of the evading He waves under certain observation directions. The oscil-
lation period of curve (b) allows an estimation of the step atom density of about 1%.
Better preparation techniques lead to step atom densities lower than 0.1% which
then give rise to a higher total reflection intensity, and the interference oscillations
are absent (curve a). The technique is thus useful for characterizing the degree of
ideality of a clean surface after preparation.

Elastic He atom scattering, i.e. diffraction, can provide information about the
structural properties of a surface. In contrast to electron scattering in LEED
(Panel VIII: Chap. 4), where the electrons penetrate several Ångstroms into the
solid, only the outermost envelope of the electron density about the surface is probed
by the He atoms. This makes the technique relatively insensitive to clean, well-
ordered, densely-packed metal surfaces; but ordered adsorbate atoms or molecules
whose electron density protrudes significantly from the surface, give rise to stronger
scattering intensities in certain Bragg spots. This is shown for the example of a
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Fig. X.4 He-beam polar
diffraction patterns in the
[112] direction from the clean
(bottom) and
p(2× 2)O/Pt(111) oxygen
covered surface (top). The
primary He energy EHe is
17.3 meV and the sample
temperature 300 K [X.5]

well-ordered oxygen layer with p(2× 2) superstructure on Pt(111) in Fig. X.4. For
the clean Pt surface the (1̄, 1̄) Bragg spot has ten times less intensity than on the
oxygen covered surface. The diffraction spots (1̄/2, 1̄/2) and (3̄/2, 3̄/2) due to the
oxygen superlattice occur with much higher intensity. Adsorbate effects are thus
clearly distinguished from substrate spots and the interpretation problems some-
times encountered for adsorbate LEED patterns (substrate vs. adsorbate superstruc-
ture) do not exist. The method of atom and molecule diffraction is therefore comple-
mentary to LEED because of its extreme sensitivity to the outermost atomic layer.
In the inelastic scattering regime, atom and molecule scattering from surfaces also
provides interesting advantages over other scattering techniques because of its high
energy resolution. Because the possible energy and wave vector transfer are well
matched throughout the whole Brillouin zone, surface-phonon dispersion branches
(Chap. 5) can be measured with extremely high accuracy. Figure X.5 shows inelastic
He beam spectra measured with different angles of incidence θi on Cu(110). The
detection direction is chosen for wave-vector transfers along Γ Y . The experimental
resolution readily allows the determination of peak half-widths below 1 meV. Thus
information about broadening due to phonon coupling etc. can also be derived from
the experimental data. This is by no means possible from electron scattering data
(HREELS, Panel IX: Chap. 4), where the best energy resolution is on the order
of 1 meV. Surface phonon dispersion curves derived from spectra such as those of
Fig. X.5 are given in Fig. X.6, but here along the Γ X direction of the Cu(110)
surface Brillouin zone. The data denoted by R correspond to the Rayleigh surface
waves (Chap. 4).
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Fig. X.5 Inelastic He
scattering spectra taken along
the Γ X direction of the
surface Brillouin zone on
Cu(110). The primary He
beam energy is 18.3 meV
[X.6]

Fig. X.6 Surface phonon
dispersion curves as obtained
by inelastic He scattering
(primary energy
EHe = 18.3 eV) along the
Γ Y direction of the surface
Brillouin zone on Cu(110).
The reduced wave vector ξ is
defined by ξ = k/kBZ(X)
with kBZ(X) = 1.23 Å−1 as
the Brillouin-zone dimension
in the X direction [X.6]
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Problems

Problem 5.1 Information can be transmitted through a solid by bulk sound waves
or by Rayleigh surface waves. What phonons provide a faster transmittance veloc-
ity? Discuss the problems which arise for the signal propagation by means of short
pulses when long wavelengths λ � a (lattice parameter) and short wavelengths
λ ≈ a are used.

Problem 5.2 The dielectric response of an infrared active, n-doped semiconductor
is described in the IR spectral region by a dielectric function ε (5.66) which contains
an oscillator contribution due to TO phonons (5.50) and a Drude-type contribution
(5.60) due to free electrons in the conduction band. Calculate the surface loss func-
tion Im{−1/[ε(ω) − 1]} and discuss the loss spectrum expected in an HREELS
experiment as a function of carrier concentration. Flat-band situation is assumed at
the surface.

Problem 5.3 Surface phonon polaritons (Fuchs-Kliewer phonons) are excited on
a clean GaAs(110) surface in an HREELS experiment with a primary energy of
5 eV. Calculate from the corresponding loss peak at 36.2 meV the exponential decay
length of the polarisation field of the surface phonons. Discuss the consequence for
an HREELS measurement which is performed on a GaAs film which is thinner than
the calculated decay length.

Problem 5.4 Calculate the frequency of a surface phonon on the (100) surface of an
fcc crystal at the Brillouin-zone boundary in the [110] direction. Only central forces
between next neighbour atoms are assumed. The surface phonon should have odd
symmetry with respect to the mirror plane defined by the phonon wave vector q and
the surface normal.
Why is the calculation so simple?
Does a second surface phonon exist on this surface which is localized on the first
atomic monolayer?
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