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We examine the relationship between PageRank and several invariants occurring
in the study of random walks and electrical networks . We consider a general­
ized version of hitting tim e and effective resistance with an additional parameter
which controls the 'speed' of diffusion. We will establish their connection with
PageRank. Through these connections, a combinatorial interpretation of Page­
Rank is given in terms of rooted spanning forests by using a generalized version of
the matrix-tree theorem. Using PageRank, we will illustrate that the generalized
hitting time leads to finding sparse cuts and efficient approximation algorithms
for PageRank can be used for approximating hitting time and effective resistance.

1. INTRODUCTION

The notion of PageRank, first introduced by Brin and Page [2] , forms the
basis for their Web search algorithms. Although the original version of
PageRank was used for the Webgraph (with all the webpages as vertices
and hyperlinks as edges), PageRank is well defined for any given graph and
is quite effective for capturing various relations among vertices of graphs . In
this paper, we will investigate several implications of PageRank for a given
graph.

To start with, we give the graph-theoretical definition of PageRank.
Roughly speaking , PageRank is a way to organize random walk of various
lengths. Instead of having to determine the number of steps a random walks
is taking, PageRank uses a positive real value a , where a E [0,1) to control
the "diffusion" of a combination of random walks.
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The original definition for PageRank was to assign a value to each vertex
(Webpage), denoting the "importance" of a vertex under two assumptions:
For some fixed probability a, a surfer at a Webpage jumps to a random
Webpage with probability a and goes to a linked Webpage with probability
I-a. The importance of a Webpage v is the expected sum of the importance
of all the Webpages u that preceed v.

In this paper, we will use a more general version of PageRank, called
personalized PageRank, introduced by Jeh and Widom [7] (also see Haveli­
wala [6]). The personalized PageRank pra(s) depends on two parameters,
the jumping constant a and a seed s. A seed can be viewed as a vertex or
a probability distribution on vertices. The original definition of PageRank
is the special case where the seed is the uniform distribution.

To define the PageRank for a connected graph G, we consider random
walks on G with transition probability matrix P and the lazy random walk
on G, denoted by Z = (I + P)/2. In this paper, all vectors are regarded as
row vectors unless stated otherwise.

The personalized PageRank vector pra(s) with a jumping constant a
and a seed vector s is defined to be the unique solution of the linear system

(1)

An alternate but equivalent definition for pra is an expression of a
geometric sum of random walks:

00

pra(s) = as L (1- alZk
.

k=O

In addition to the practical applications of Websearch algorithms, Page­
Rank has numerous connections to various graph invariants. For example,
PageRank can be used to find cuts with a certain isoperimetric guarantee,
similar to the Cheeger inequalities. It was shown in [1] that for an arbitrar­
ily chosen vertex u, if we arrange vertices in a row using PageRank pra(u),
one of the cuts which consists of vertices in initial segments has Cheeger
ratio optimal up to a quadratic factor with high probability. The perfor­
mance guarantee is quite similar to that given by the spectral partitioning
algorithm using eigenvectors. However, the advantages of using PageRank
are multifold. We can choose an appropriate a to specify the approximate
size of the part that we wish to cut and thus PageRank leads to so-called
local algorithms. Furthermore, there are effective algorithms for computing
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approximate PageRank with finite support with size depending only on the
error bound and the desired size of the smaller separated part [1] .

In this paper, we explore the relationship of PageRank and various graph
invariants occuring in random walks and electrical networks. In the spirit of
PageRank, we consider a generalized version of the hitting time and effective
resistance with an additional parameter Q . In a way, these generalized
invariants provide a quantative ranking of edges, indicating how important
an edge is while allowing the choice of Q . In Section 2, we will define the
Laplacian and the discrete Green's function as well as their connection to
PageRank. In Section 3, we consider electrical networks and the generalized
versions of hitting time and the effective resistance. In Section 4, we will give
several matrix-forest theorems, which generalize the classical Matrix-Tree
Theorem [11]. In Section 5, we will derive a combinatorial interpretation
of PageRank in terms of spanning forests in the graph. In Section 6, we
consider some useful properties of the generalized hitting time in connection
of identifying sparse cuts. In Section 7, we use PageRank to estimate the
effective resistance .

2. LAPLACIAN, THE GREEN'S FUNCTION AND PAGERANK

We consider a connected weighted undirected graph G = (V,E ,w). Sup­
pose G has vertex set V, edge set E, edge weight wu,v 2': 0 and IVI = n,
lEI = m. A typical random walk is determined by the transition probabili­
ties P(u,v) = wuv/du where the degree du ofu is the sum L:v :{u,V}EE wu,v '

The volume of a subset 8 ~ V, denoted by vol (8), is the sum of degrees of
vertices in 8. In particular, the volume of G, denoted by vol (G), is equal
to vol (V) . For the special case of wu,v = 1 for all {u, v} E E , we have
vol (G) = 2m.

Let A denote the weighted adjacency matrix with entries A(u, v) = wu,v

and D denote the diagonal degree matrix. Then the transition probability
matrix P is equal to D-1A and for any initial distribution l, the distribution
of the random walk after k steps is f pk . For undefined terminology, the
reader is referred to the excellent survey of Lovasz [13]

The combinatorial Laplacian of G is defined by L = D - A. If we orient
the edges of G in an arbitrary but fixed way, we can write its Laplacian as

(2)
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where B is the signed edge-vertex incidence matrix, given by

{

1 if v is e's head

B(e, v) = -1 if v is e's tail

a otherwise

and W is the digonal matrix with W(e, e) = We ' The normalized Laplacian
of G is defined to be £ = D-1/ 2LD- 1/ 2 and we can write

where S = BD-1/ 2 .

Since E is symmetric and we can express E by

n-l n-l

c = 2: )..i<Pf<Pi = 2: )..i<Pf<Pi,

i= O i=1

where An = aand 0< )..1 ~ )..2 ~ ... ~ )..n-l ~ 2 are the nonzero eigenvalues
of £ and <Po, . .. ,<Pn-l form a corresponding orthonormal basis of eigenvec­
tors . The fact of )..1 > a follows from the connectivity of G. The eigenvalue
)..1 is intimately related to the rate of convergence of random walks. The
reader is referred to [4] for numerous properties concerning eigenvalues of
the normalized Laplacian. Although the combinatorial Laplacian is useful
for various flow problems in the study of electrical networks, the spectrum of
combinatorial Laplacian is not effective (except for almost regular graphs)
for applications requiring isoperimetric properties.

Denote the ,8-normalized Laplacian £f3 by ,81+ £, . Then we may write
Lf3 = SfTWf3S' where we define S' and Wf3 as follows:

S' = [I] B' = [D
1
/
2

] and Wf3 = [,81 ~] .
S (n+m)xn B (n+m)xn a (n+m) x (n+m)

For simplicity, we index the columns of S' and the columns of Wf3 by VUE
where the first n columns are indexed by V and the last m columns are
indexed by E. The rows of Wf3 are indexed in the same way. It is easy to
verify that

Green's functions were first introduced in a celebrated essay by George
Green [8] in 1828. Since then, the concept of Green's functions has been
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used in a wide range of areas, especially in the study of partial differential
equations and quantum field theory. The discrete analog of Green's func­
tions, which are associated with the normalized Laplacian of graphs , were
first introduced in a 2002 paper [5] in connection with the study of Dirichlet
eigenvalues with boundary conditions. The Green's function 9 denotes the
symmetric matrix satisfying

1£9 = 19£ = f.

for all vectors 1 which are orthogonal to the eigenvector

where 1 denotes the all l 's vector. The Green's function 9 has the following
form:

(3)

The following modified Green's function 9(3 was also used in [5] . For f3 E jR+ ,
let Green's function 9(3 denote the symmetric matrix satisfying

(4)

Clearly, we have

(5)

By comparing with the recurrence of the PageRank in (1), we remark
that the discrete Green's function is basically a symmetric form of the
PageRank. Namely, we can write

(6)

where

(7) f3=~ .
I-a
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3. PAGERANK, THE HITTING TIME AND THE EFFECTIVE

RESISTANCE IN ELECTRICAL NETWORKS

A connected weighted undirected graph G = (V,E, w) can be viewed as an
electrical network, where the edge weight We represents the conductance
of e. The effective resistance R(u,v) between two vertices u and v is
defined as the voltage potential difference induced between them when a
unit current is injected at u and extracted at v. The effective resistance
can be characterized by the combinatorial Laplacian of the graph (see [11]).
Since we wish to establish the connection of the effective resistance with
PageRank, we will consider the normalized Laplacian instead.

Suppose we are given the injected current function iv : V --7 JR. The
induced current ie on the edges satisfies the property that the sum of
all induced current on edges entering v is equal to iv(v) , as asserted by
Kirchoff's current law:

iv = iEB.

For any function f : V --7 JR, we can regard f as a voltage potential function
in the following sense: The induced flow for the edge from u to v is the
product of f(u) - f(v) and the conductance ofthe edge, according to Ohm's
law, and can be expressed by

We can write

Suppose we only consider the voltage potential function f satisfying
Lv f(v) = O. By using the definition of Green's function , we have

Suppose we inject a unit current to vertex u and extract a unit current from
v, i.e., iv = Xv - Xu where Xu is the characteristic function with Xu(x) = 1
if x = u and 0 otherwise. Thus, the effective resistance between vertices u
and v can be written as

(8) R(u, v) = Ivix» - Xu?

= ivD- 1/ 2gD-1/ 2 (Xv - Xu)T
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The effective resistance is closely associated with the hitting time and
commute time for a random walk on G. The hitting time H(u, v) is the
expected number of steps of a random walk starting from u until it first
visit v. The commute time C(u, v) of u and v is the expected number of
steps in a random walk starting at u, before vertex v is visited, and the
vertex u is reached again. The commute time can be expressed as the sum

C(u, v) = H(u, v) + H(v, u).

It has been shown [12] (also see [3]) that the commute time C(u, v) satisfies

R(u,v)
C(u, v) = vol (G)"

For two distinct vertices u and v, the hitting time H(u, v) satisfies the
following equation:

(9)
1

H(u,v) = 1+ d
u

L H(w,v)
w :{w,u}EE

and H(u, u) = O. Here we will express the hitting time in terms of the
Green's function .

Lemma 1. For all u, v E V,

H(u, v) _ ( _ )D-1/2gD-1/2 T
vol (G) - Xv Xu Xv·

Proof. Clearly, H(v, v) = 0 for all v E V. We use the equation in (9).
Consider

1 1" -1/2 -1/2 T
vol (G) + du L..t (Xv - Xu)D gD Xv

w: (w,u)EE

1 + X D-1/2gD-1/2XT - X D-1AD-1/2gD-1/2XT
vol (G) v v u v

= VOI~G) + XvD-1/2gD-1/2Xr - Xu D-1/2(I - £)gD-1/2Xr
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= (Xv - Xu)D- 1/2gD-1/2Xr

+ XuD-1/2 ( 1 D1/2J D1/2+ £,g) D-1/2XT
wl(~ v

= (Xv - Xu)D- 1/2gD-1/2Xr

+ X D-1/2 ( 1 D1/2JD1/2+ I - uTu ) D-1/2XT
u vol (G) 0 0 v

= (Xv - Xu)D- 1/2gD-1/2Xr + XuD-1Xr

= (Xv - Xu)D- 1/2gD-1/2Xr •

We define
H(u ,v)

h(u,v) = vol (G) .

Now, we define a generalized hitting time with an additional parameter
Q' > o.

(10)

We define the generalized effective resistance Ra(u,v) as follows:

It is easy to check that Ra (u, v) satisfies

where f3 satisfies (7). By using the connection with PageRank in (6), we
can write

(11) R ( )
_ [pra(xu)] (u) _ [pra(xu)] (v)

a U ,V - d
u

d;

+ [pra(xv)] (v) _ [pra(xv)] (u) .
dv du
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4. SEVERAL MATRIX-FoREST THEOREMS

51

It is well-known that in a simple graph G for an edge joining u and v, the
effective resistance R(u, v) is proportional to the number of spanning trees
containing the edge {u,v}. Later on we will show that the generalized effec­
tive resistance Rex. (u, v) is proportional to a combination of spanning forests
of certain types . A forest is a graph containing no cycle. A k-rooted forest
is a forest with k connected components where each of the connected com­
ponents contains a special vertex that we call a root . A k-rooted spanning
forest is a k-rooted forest containing all vertices as vertices. It has exactly
n - k edges. The special case for k = 1 is a rooted spanning tree.

The weight of a forest F is defined to be the product of all weights of
edges in F. We define the weight w(F) of an unrooted forest as follows:

w(F) = II w(e).
eEF

For example, if F is a rooted tree in a simple graph, then w(F) = 1. For
a rooted tree F, we denote by F* the set of all vertices in F which are not
roots . The weight w*(F) of a rooted forest is defined by

w*(F) = ITeEF w(e).
ITvEF. dv

First, we prove several useful facts along the same lines as the Matrix­
Tree Theorem [11]

Theorem 1. In a graph G = (V, E, w), for 13 > 0, the determinant of £(3
is related to rooted spanning forests as follows:

n

det £(3 = L 13k L w*(F)
k=l FEFk

where Fk denotes the family of all k-rooted spanning forests in G.

Proof. For a matrix M and subsets X, Y of indices of rows and columns,
we denote a submatrix Mx,Y of M by restricting rows and columns of M
to X and Y. We consider the determinant of £(3 as follows:

det £fj = det SfTWfjS'

= L (det Sp,v)(det WF,F)(det Sp,v)
FCVUE
IFI=n
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by the Cauchy-Binet Theorem. We note that det S~ v = 0 if F contains a,
cycle. In the other direction, if F does not contain a cycle, F is a spanning
forest and the vertices in F n V are the k roots of the spanning forest.
Therefore, we have

n

det£/3 = L
k=l

L (detS~,v)2det (W/3)F,F'
F

k-rooted spanning forest
with roots in FnV

Note that for a k-rooted spanning forest F, we have

I 13k

detSF V = ±~ II .a;
, 11v d; uEFnv

Thus we have

1 n

det Z, = 11 d Lf3k L II du II We
v v k=l F uEFnv eEF

k-rooted spanning forests

n

= Lf3k L w*(F)
k=l FEFk

as claimed. _

Theorem 2. In a graph G = (V, E, w), for 13 > 0 and a vertex v in G, the

determinant of the principle minor £~v), obtained by excluding the row and
column associated with v satisfies:

n

det£~v) = Lf3k
-

1 L w*(F)
k=l FEFk ,v

where Fk,v denotes the family of k-rooted trees having v as one of the roots.

Proof. Let V' denote V \ {v} . We can write the determinant of £~v) as
follows:

=
FCV'UE

IFnv'l=k-l
IFI=n-l
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n

=L
k=1

L (det S~,v,) 2 det (WI')F,F
F

k-rooted spanning forest
with roots in FnV' and v

since if the forest F satisfies det S~ v #- 0, then F ~ V' U E and F forms a
k-rooted spanning forest with v as ~ root . Thus,

and we have

n

det.C~) = 1 d L /3k-1 L II du II We

ITu#v u k=1 F uEFnv eEF
k-rooted spanning forests

v is a root

n

= L/3k-1 L w*(F)
k=1 FEFk,v

as desired. _

Theorem 3. In a graph G = (V,E ,w), for /3 > 0 and two distinct vertices

u, v in G, the determinant of the minor .c~u,v), obtained by excluding the
row associated with u and column associated with v satisfies:

where Fk ,u,v denotes the family of k-rooted spanning forests in which u and
v are in the same connected component and u is a root.

Proof. We denote VI = V \ {u} and V2 = V \ {v} . We consider the

determinant of .c~u,v) as follows:

det .c~u,v) = cr(u,v) det ( (S~lUE,V) T WfJS~2UE,v )

n

= cr(u,v) L
k=1

L (detS~,vJ (detS~,V2) det (WfJ)F,F
FCVUE

IFnvl!=k-1
IFI=n-1
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n

= u(u,v) L
k=l
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L (detS~,vJ (detS~,v2) det (Wf3)F,F
FCVUE

IFnV"I=k-l
IFI=n-l

since if u or v is in F, one of the determinants in the product of the preceding
equality becomes zero. Here u(u, v) denotes (-1)i+j if u is the index of the
ith row and v is the index of the jth column of Lf3 . If det S~v is non-

, 1

zero, the edges in F form a spanning tree with roots {u} U (F n V") where
V" = V\ {u, v}. If det S~ v is non-zero, then the edges in F form a spanning

, 2

tree with roots {v} U(F nV") . Therefore if the product is nonzero, vertices
u and v are in the same connected component in the spanning forest formed
by the edges in F. Suppose F ~ V" U E forms a rooted spanning forest
with k connected components, one of which contains both u and v. Thus
we have

det L~u,v) = u(u, v) t
Jdudv Il#u,v dx k=l

L
FCV"UE

IFnv"l=k-l
IFI=n-l

We will prove the following Claim later.

Claim.
det B~,V2 = u(u, v) det B~,Vl'

From the Claim, we have

1 n
det L~u,v) = L

Jdudv Il#u,v dx k=l
L

F
k-rooted spanning forest

u is a root
u,v are in the same c.c.

1 n

= LJdudv Il#u,v dx k=l
L (det B~,vJ 2 det (Wf3)F,F

FEFk ,u,v

n

ITT 1 L L {3k-l II We II dx

V dudv Ilx#u,v dx k=l FEFk,u ,v eEFnE xEFnv
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= 1 tj3k-1 L IleEFwe

.Jdudv k=1 FEFk ,u,v IlxEF.\{v} dx

=~ t j3k-1 L w*(F).
k=1 FEFk ,u,v

It remains to prove the Claim.

55

Proof of the Claim. We prove the claim in three steps:

Case 1: First we see that the Claim holds if F forms a path with vertices
U= UI, U2, . . . ,Uk+! = v and edges ei = {Ui, Ui+I} in F where Ui is the index
for the ith row of L, and ej is the index of the jth column in B .

Case 2: Since U and v are in the same connected component of F, let
U = VI,V2, . . . ,Vt = V denote the path joining U and V in F. If Ui is the
index for the ith row of L, and ej is the index of the jth column in B for
1 ::; i ::; t + 1 and 1 ::; j ::; t, then the claim holds in the same way as in
Casel.

Case 3: Now we consider the general case. We follow the notation in
Case 2 concerning the paths joining U and V in F. We denote by U the
permutation on V that moves Vi to the ith place for i = 1, . .. , k + 1 and
denote by U' the permutation on E that moves ej = {Vj, vj+d to the jth
place for j = 1, ... ,k. We consider

O"(U, v) det (( B~,vJTB~,V2)

= O"(U(u), U(v)) det (UB~,VlTUfl'U'B'p,V2V)

We have reduced Case 3 to Case 2. Thus the above expression is equal to 1
and the Claim is proved.

The proof of Theorem 3 is completed. _



56 F. Chung and W. Zhao

5. PAGERANK AND OTHER INVARIANTS IN TERMS OF ROOTED

SPANNING FORESTS

Using the matrix-forest theorems in the preceding section, we can establish
the connection between the discrete Green's function and rooted spanning
forests. We consider the discrete Green's function Q/3 for (3 > O. For a fixed
vertex v, we consider

(12)

Clearly, f = Q/3Xv is a solution to the above equation. We can view (12) as
a linear system with variables f(u) for u in V. By Cramer's rule, we have

(13)

(14)

det £(v)

f(v) = Q/3(v ,v) = d I
et /3

det £~u,v)

f(u) = Q/3(U,v) = d £ .
et /3

From equation (6) and Theorems 1, 2 and 3, we can express PageRank
in terms of the combinatorial sums involving rooted spanning forests as
follows:

Theorem 4. For a vertex v in G, the PageRank pra satisfies

where (3 = 2aj (1-a), Fk denotes the family ofall k-rooted spanning forests
in G and Fk,v denotes the family of k-rooted trees having v as one of the
roots.

Theorem 5. For two distinct vertices u and v in G, the PageRank pra
satisfies

where (3 = 2aj(1 - a) and Fk,u,v denotes the family of k-rooted spanning
forests in which u and v are in the same connected component and u is a
root.
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As it turns out, the generalized hitting time can also be expressed in a
similar form:

Theorem 6. For an edge e = {u, v} in G, the hitting time heAu, v) satisfies

where f3 = 2aj(1 - a) and Fk,e,v denotes the family of k-rooted spanning
forests containing e as an edge which is in the path from v to its root.

Proof. From (10), we have

Note that the set of Fk,v \ Fk,v,u consists of k-rooted trees in which u and
v are in different connected components and v is a root. For every rooted
forest F in Fk,v \ Fk,v,u we consider the rooted tree F' formed by adding the
edge e = {u, v} where v is no longer a root . The path from v to its root in
F' contains e. Clearly, F' has k - 1 connected components and k - 1 roots.
Let Fk-l,e,v denote the family of k - 1 forests with the additional property
that the path from v to its root contains e. Thus F' is in Fk-l,e,v' We note

w*(F') = wew*(F)
dv

since v is no longer a root. This is a bijection from Fk v \ Fk v u to Fk-l e u-, , , , ,
We can then write

The proof is complete. _
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By using the above theorems, we can then derive a relatively clean
formulation for the generalized effective resistance .

Theorem 7. For an edge e = {u, v} in G and a E [0, 1), the effective
resistance Rex (U, v) satisfies

R ",n-l Rk '" w* (F)
R ( ) _ fJ L..,k=l fJ L..,FEFk,e

ex U, V - We L:~=l 13k L:FEFk w*(F)

where 13 = 2aj(1 - a) and Fk,e denotes the family of k-rooted forests
containing e as an edge with k roots.

Proof. The proof follows from the fact that Fk,e,u and Fk,e,v are disjoint
and

Therefore we have

Rex(u, v) = hex(u, v) + hex (v, u)

13 L:~:~ 13k
L:FEFk,e w*(F)

= •
We L:~=l 13k L:FEFk w*(F) .

6. USING THE GENERALIZED HITTING TIME TO FIND SPARSE

CUTS

There are several useful properties of the hitting time hex which we will
describe.

Lemma 2. For a subset S c V with S =1= 0, we have

L
2a

hex(u,v) ~ --.
l-a

{u,v}EE
UES,vf!.S

Proof. Since we can view prex(xv) as a probability distribution, we have

L hex(u,v) = L ([prex ( : : ) ] (v) _ [prex ( : : )] (U))
{u,v}EE {u,v}EE
uES,vf!.S UES,vf!.S
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Since the PageRank vector pra(xv) is the unique solution of the following
equation,

I+P
pra(xv) = axv + (1 - a) pra(Xv)-2-'

by rearranging the terms above, we have

Thus,

For two distinct vertices, we consider a partition of V into two parts,
one of which contains u and the other contains v. In particular, we are
interested in the Cheeger ratio of such partitions defined as follows:

</>uv = min e(8, S) .
scv _min { vol (8), vol (8)}

uES,vES

Theorem 8. For two distinct vertices u and v and a constant </> E (0,1),
suppose two sets X = {w : ha(w,v) ~ o} and Y = {w : ha(w,v) <
ha (u ,v)} satisfy the following conditions:

. 4a
(1) ha(u,v) > (1- a)</> vol (X);

(ii) vol (X) ~ vol (G)/2 ;

(iii) vol (Y)/ vol (X) ~ (1 + </>/2).

Then </>uv ~ </> .

Proof. The proof is by contradiction. We first observe that X c Y.
Suppose </>uv > </>. Then we have

(15) e(X, Y) ~ e(X, X) - vol (Y\X)
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~ ¢>vol (X) - (¢>/2) vol (X)

~ (¢>/2) vol (X) .

By (i) and Lemma 2, we have

F. Chung and W . Zhao

by hypothesis and (iii)

I: ha(x,y) ~
{x ,Y}EE

XEX,YEX

I: ha(x,y)
{x,Y}EE

XEX,yEY

since ha(u,v) is the smallest value among all edges (x,y) such that x E X
and y E Y. By inequality (15) and (i), the above inequality implies that

~ 2a
L.J ha (x , y) > 1 _ a .

{x,Y}EE
xEX,yEX

This contradicts Lemma 2 and the proof is complete. _

7. USING PAGERANK TO ESTIMATE THE EFFECTIVE RESISTANCE

The effective resistance R(u, v) is a very useful graph invariant. For exam­
ple, the recent work by Spielman and Srivastava [14] on graph sparsification
relies on the effective resistance . Here we wish to illustrate that we can
use the generalized effective resistance to approximate the effective resis­
tance. Then by using the effective approximation algorithm for computing
PageRank [1] and the PageRank representation in (11) for the generalized
effective resistance, we can approximate the effective resistance as a result.

Recall that for a = f3/(2 + (3) , we have

Ra(u, v) = f3(Xu - Xv)D- I
/
2Y/3D-1

/
2(Xu - Xvf ·

Theorem 9. For two distinct vertices u and v in G, we have

f32 ( 1 1 )If3R(u, v) - Ra(u, v)1 ::; Ai d
u

+ d
v

where Al is the smallest nontrivial eigenvalue of L of G and a = f3 / (2+(3) .
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Proof. From (3) and (8), we have

R(u, v) = (Xv - Xu)D-1/2gD-1/2(Xv - Xu)T

= ~~ (<Pi(U) _ <Pi(V))2 .
i=l Ai ~ .a;

From equation (5), we have

Ra(u,v) =~ _f3_ (<Pi(U) _ <Pi(V))2.
i= O Ai+f3 ~ ~

Combining the above two expressions, we have, for all f3 > 0,
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If3R(U,v) - Ra(u,v)1

:::; (<PO(u) _ <P0(v))2 +~ (t __f3 ) (<Pi(U) _ <Pi(V))2
~ ~ i=l Ai Ai + f3 ~ ~

= ~ f32 (<Pi (u) _ <Pi (V)) 2

i=l Ai(Ai + (3) ~ ~

since <Po = ID 1
/
2/Jvol(G) .

For two fixed vertices U and v, the vector fu, defined by fu(i) = <Pi(U) ,
for i = 0, ... ,n - 1, is orthogonal to fv. This implies

Thus we have

If3R(u,v) - Ra(u,v)\

< f32 (2 n-1 ((<Pi(U))2 (<Pi(V))2))
- A1(A1 + (3) vol (G) +tt ~ + ~

f32 (2 1 1 1 1)
:::; Ai vol (G) + du - J du vol (G) + dv - J d; vol (G)

< f32 (~+~)
- Ai du d;

since I« and fv are orthonormal vectors. -
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