


Lecture Notes in Computer Science 6108
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Jan Kratochvíl Angsheng Li
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Preface

The 7th Annual Conference on Theory and Applications of Models of Computa-
tion was held during June 7–11, 2010 in Prague. After six successful conferences
held in 2004–2009 in China (Beijing, Kunming, Beijing, Shanghai, Xi’an, and
ChangSha) TAMC left Asia for the first time, aiming at the “heart of Europe.”
Changing the geographical location did not bring any changes to the scope of the
conference. Its three main themes continued to be Computability, Complexity,
and Algorithms. The conference aims to bring together researchers from all over
the world with interests in theoretical computer science, algorithmic mathemat-
ics, and applications to the physical sciences. This year we saw more participants
from Europe and the Americas, but we were very happy that we could also wel-
come to Prague traditional participants from Asia (China, Japan, and India)
to continue enhancing the collaboration among the theoretical computer science
communities of these continents.

After hard work the Program Committee decided to accept 35 papers out of
76 submitted to TAMC 2010. Each submission was reviewed by at least three,
Program Committee members. All actions of the Program Committee were co-
ordinated via flawlessly and efficiently running EasyChair. We congratulate the
authors of accepted contributions and thank all authors who submitted their
papers. They all contributed to a successful event.

We extend our thanks to the distinguished plenary speakers who accepted
our invitation to deliver plenary talks – John Hopcroft from Cornell University
and Shang-Hua Teng from University of Southern California. Their talks “New
Research Directions in the Information Age” and “The Laplacian Paradigm:
Emerging Algorithms for Massive Graph” were highlights of the conference. We
surely do not host and listen to Turing and Harry H. Goode Memorial Awards
or Fulkerson and Gödel Prize recipients every day.

It has become a tradition of TAMC conferences to organize special sessions.
We would like to thank two prominent Czech mathematicians, Jan Kraj́ıček and
Jǐŕı Matoušek, for organizing special sessions on Proof Complexity and Computa-
tional Geometry and thus bringing to Prague well-known experts in these areas.
And we thank the invited speakers – Olaf Beyersdorff, Stefan Dantchev, Edward
A. Hirsch, Sebastian Muller, and Iddo Tzameret (Proof Complexity), and Xavier
Goaoc, Christian Knauer, Anastasios Sidiropoulos, and Takeshi Tokuyama (Com-
putational Geometry)—for accepting the invitation to come to TAMC 2010 and
share their expertise with the participants of the conference.

We are very grateful to the members of the Program Committee, the external
referees, and the members of the Organizing Committee for all the work they
did. While all committee members worked well as a team, some names must
be singled out: Special thanks go to Ondřej Pangrác for designing the logo of
TAMC 2010 and for taking care of the website of the conference, to Tomáš
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Dvořák, Petr Gregor, and Martin Mareš for logistic help, and to Jan Kratochv́ıl
Jr. for designing the TAMC 2010 poster. Most of all, we thank Anna Kotěšovcová
for running the conference so smoothly.

Finally, we thank the editors at Springer for the cooperation throughout the
preparation of this volume. And last but not least we gratefully acknowledge
the sponsorship of DIMATIA Charles University and of Czech research grants
ITI-1M0545 and MSM0021620838.

June 2010 Jan Kratochv́ıl
Angsheng Li

Jǐŕı Fiala
Petr Kolman
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Prudence W.H. Wong
Guoping Wang
Yajun Wang
Mathias Weller
Alexander Wilkie
Philipp Woelfel
Jie Wu
Ge Xia
Mingji Xia
Hao Yin
Wei Yu
Janez Žerovnik
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Kernel and Fast Algorithm for Dense Triplet Inconsistency . . . . . . . . . . . . 247
Sylvain Guillemot and Matthias Mnich

Incremental List Coloring of Graphs, Parameterized by Conservation . . . 258
Sepp Hartung and Rolf Niedermeier

Schnyder Greedy Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Xin He and Huaming Zhang

Exploiting Restricted Linear Structure to Cope with the Hardness of
Clique-Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Pinar Heggernes, Daniel Meister, and Udi Rotics



Table of Contents XIII

A Note on the Testability of Ramsey’s Class . . . . . . . . . . . . . . . . . . . . . . . . . 296
Charles Jordan and Thomas Zeugmann

Deterministic Polynomial-Time Algorithms for Designing Short DNA
Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Ming-Yang Kao, Henry C.M. Leung, He Sun, and Yong Zhang

Hamiltonian Cycles in Subcubic Graphs: What Makes the Problem
Difficult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Nicholas Korpelainen, Vadim V. Lozin, and Alexander Tiskin

A Dichotomy for k-Regular Graphs with {0, 1}-Vertex Assignments
and Real Edge Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Jin-Yi Cai and Michael Kowalczyk

Graph Sharing Games: Complexity and Connectivity . . . . . . . . . . . . . . . . . 340
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New Research Directions in the Information Age

John E. Hopcroft

Cornell University, Ithaca
jeh@cs.cornell.edu

Abstract. Computer Science has expanded in may new directions giv-
ing rise to a large number of interesting and important research problems.
This talk will explore a number of new areas and open problems in these
areas that need attention. Areas include tracking the flow of ideas in
scientific literature, identifying key papers and how a discipline evolved,
extracting information from unstructured data sources, the definition of
communities in different types of graphs and the structure and evolution
of social networks.

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, p. 1, 2010.
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The Laplacian Paradigm: Emerging Algorithms

for Massive Graphs�

Shang-Hua Teng

Computer Science Department, University of Southern California
shanghua@usc.edu

Abstract. This presentation describes an emerging paradigm for the
design of efficient algorithms for massive graphs. This paradigm, which
we will refer to as the Laplacian Paradigm, is built on a recent suite
of nearly-linear time primitives in spectral graph theory developed by
Spielman and Teng, especially their solver for linear systems Ax = b,
where A is the Laplacian matrix of a weighted, undirected n-vertex graph
and b is an n-place vector.

In the Laplacian Paradigm for solving a problem (on a massive graph),
we reduce the optimization or computational problem to one or multi-
ple linear algebraic problems that can be solved efficiently by applying
the nearly-linear time Laplacian solver. So far, the Laplacian paradigm
already has some successes. It has been applied to obtain nearly-linear-
time algorithms for applications in semi-supervised learning, image pro-
cess, web-spam detection, eigenvalue approximation, and for solving
elliptic finite element systems. It has also been used to design faster al-
gorithms for generalized lossy flow computation and for random sampling
of spanning trees.

The goal of this presentation is to encourage more researchers to con-
sider the use of the Laplacian Paradigm to develop faster algorithms for
solving fundamental problems in combinatorial optimization (e.g., the
computation of matchings, flows and cuts), in scientific computing (e.g.,
spectral approximation), in machine learning and data analysis (such
as for web-spam detection and social network analysis), and in other
applications that involve massive graphs.

1 Nearly-Linear Time Laplacian Primitive

A matrix L = (li,j) is a Laplacian matrix if (1) it is symmetric, i.e., li,j = lj,i for
all i, j, (2) li,j < 0 for all i �= j, and (3) li,i = −

∑
j �=i li,j for all i. We can view

an n× n Laplacian matrix as a weighted undirected graph over n vertices.
Let G = (V, E) be a graph with n vertices V = {1, ..., n}. The adjacency

matrix, A(G), of a graph G = (V, E) is the n× n matrix whose (i, j)-th entry is
� Most materials in this presentation are joint work with Dan Spielman. This presenta-

tion also summarizes a recent NSF proposal of the author titled “Nearly-Linear-Time
Algorithms for Massive Graphs: Spectral Graph Theory Approach.” Therefore, some
discussions of this presentation are about proposed work rather than completed work.
This research is supported by an NSF grant.

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 2–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Laplacian Paradigm: Emerging Algorithms for Massive Graphs 3

1 if (i, j) ∈ E and 0 otherwise, and the diagonal entries are defined to be 0. Let
D be the n × n diagonal matrix with entries Di,i = di, where di is the degree
of the ith vertex of G. The Laplacian, L(G), of the graph G is defined to be
L(G) = D −A.

In general, suppose G = (V, E, w) is a weighted undirected n-vertex graph
where each edge in e ∈ E has a weight w(e) > 0 and for each e �∈ E, w(e) =
0. Sometime we say w defines the affinity between each pair of vertices. We
can extend the notion of adjacency matrix A(G), diagonal matrix D(G) and
Laplacian matrix L(G) to weighted graphs as following: Ai,j(G) = w(i, j) and
Di,i(G) =

∑
j �=i w(i, j) and L(G) = D(G)−A(G).

1.1 The Laplacian Primitive and Its Solver

A fundamental problem in numerical analysis and scientific computing is to find
a solution to a linear system. Mathematically, we are given an n × n matrix A
and an n-place vector b (in the span of A), and are asked to find a vector x
such that Ax = b. In practice, we are often allowed to have a small degree of
imprecision. For example, given a precision parameter ε, we are asked to produce
an x̃ such that

∥∥x̃−A†b
∥∥

2
≤ ε

∥∥A†b
∥∥

2
, where A† denotes the Moore-Penrose

pseudo-inverse of A—that is the matrix with the same nullspace as A that acts
as the inverse of A on its image.

We will call the computational problem of solving a linear system defined by
a Laplacian matrix the Laplacian Primitive.

Definition 1 (Laplacian Primitive). This primitive concerns linear systems
defined by Laplacian matrices.

Input: a Laplacian matrix L of dimension n, an n-place vector b =
(b1, ..., bn)T such that

∑
i bi = 0, and a precision parameter ε > 0.

Output: an n-place vector x̃ such that
∥∥x̃− L†b

∥∥
L
≤ ε

∥∥L†b
∥∥
L

, where
for an n-place vector z, its L norm is defined as

∥∥zTLz
∥∥

L
.

The starting point of the Laplacian Paradigm to be discussed in the next section
is the following algorithmic result of Spielman and Teng [50] for solving Laplacian
linear systems. In particular, they prove that:

Theorem 1 (Spielman-Teng). There is a randomized algorithm for the Lapla-
cian primitive that runs in expected time m logO(1) n log(1/ε), where n is the
dimension of the Laplacian matrix, m is the number of non-zero entries in the
Laplacian matrix, and ε is the precision parameter.

Note that this result makes no assumption on the structure of the non-zero
entries. In fact, the solver of Spielman and Teng applies to every linear system
Ax = b where A is a symmetric, weakly diagonally dominant matrix. A matrix
is weakly diagonally dominant if the diagonal entry of each row is at least the
1-norm of the off-diagonal entries of that row.
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The Laplacian solver applies the combinatorial preconditioning technique in-
troduced in the pioneering work of Vaidya [55]. It also uses insights and results in
the work of Joshi, Reif, Gremban, Miller, Boman, Hendrickson, Maggs, Parekh,
Ravi, Woo, Bern, Gilbert, Chen, Nguyen, Toledo [15,14,30,42,28,38].

1.2 A Suite of Nearly-Linear-Time Spectral Algorithms

In the process of developing the nearly linear-time algorithm for the Laplacian
primitive, Spielman and Teng and their collaborators designed a suite of nearly
linear-time graph algorithms. Most of these algorithms concern the spectral prop-
erty of graphs. We include these nearly linear-time spectral algorithms as part
of the algorithmic primitives in the Laplacian Paradigm.

Clustering and Partitioning: The first family of their spectral algorithms is
for clustering and partitioning. A cluster of G = (V, E, w) is a subset of V that
is richly intra-connected but sparsely connected with the rest of the graph. The
quality of a cluster can be measured by its conductance, the ratio of the number
of its external connections to the number of its total connections.

We let d(i) = Di,i(G), the weighted degree of vertex i. For S ⊆ V , we define
μ (S) =

∑
i∈S d(i). So, μ (V ) = 2|E| if the weights of all edges are equal to 1.

Let E(S, V − S) be the set of edges connecting a vertex in S with a vertex in
V − S. We define the conductance of a set of vertices S, written Φ (S), and the
conductance of G, respectively by

Φ (S) def=
|E(S, V − S)|

min (μ (S) , μ (V − S))
, and ΦG

def= min
S⊂V

Φ (S) .

We also refer to a subset S of V as a cut of G and refer to (S, V − S) as a
partition of G. The balance of a cut S or a partition (S, V − S) is then equal
to bal (S) = min(μ (S) , μ (V − S))/μ (V ) . We call S a sparsest cut of G if
Φ (S) = ΦG and μ (S) /μ (V ) ≤ 1/2.

The clustering problem has centered around the following combinatorial op-
timization problem: Given an undirected graph G and a conductance parame-
ter, find a cluster C such that Φ (C) ≤ φ, or determine no such cluster exists.
The problem is NP-complete (see, for example [36]). But, approximation algo-
rithms exist. Leighton and Rao [36] used linear programming to obtain O(log n)-
approximations of the sparsest cut. Arora, Rao and Vazirani [10] improved this to
O(
√

log n ) through semi-definite programming. Faster algorithms obtaining sim-
ilar guarantees have been constructed by Arora, Hazan and Kale [8], Khandekar,
Rao and Vazirani [31], Arora and Kale [9], and Orecchia, Schulman, Vazirani,
and Vishnoi [41].

The algorithmic kernel of the Laplacian solver of Spielman and Teng is a local-
clustering algorithm, called Nibble, for weighted graphs, based on the random
walk distributions [49]. The running time of this algorithm is almost linear in
the size of the cluster it produces, and is almost independent of the size of the
original graph. Although the algorithm may not find a local cluster for some
input vertices, it is usually successful:
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Theorem 2 (Local Clustering). There exists a constant α > 0 such that for
any target conductance φ and any cluster C0 of conductance at most α·φ2/ log3 n,
when given a random vertex v sampled according to degree inside C0, Nibble
will return a cluster C mostly inside C0 and with conductance at most φ, with
probability at least 1/2.

Using Nibble as a subroutine, Spielman and Teng [49] developed an algorithm
called Partition and prove the following statement.

Theorem 3 (Nearly Linear-Time Partitioning). There exists a constant
α > 0 such that for any graph G = (V, E) that has a cut S of sparsity α ·
θ2/ log3 n and balance b ≤ 1/2, with high probability, Partition finds a cut
D with ΦV (D) ≤ θ and bal (D) ≥ b/2. Actually, Partition satisfies an even
stronger guarantee: with high probability either the cut it outputs is well balanced,

1
4
μ (V ) ≤ μ (D) ≤ 3

4
μ (V ) ,

or touches most of the edges touching S,

μ (D ∩ S) ≥ 1
2
μ (S) .

The expected running time of Partition is O(m log7 n/φ4). Thus, it can be used
to quickly find crude cuts.

Spectral Graph Sparsification: One of the major conceptual developments
in the work of [48,51] is a new notion of graph sparsification based on the spec-
tral similarity of graph Laplacians. Let L be an n × n a Laplacian matrix. An n-
dimensional vectorx = (x1, ..., xn)T is an eigenvector of L if there is a scalarλ such
that Lx = λx. λ is the eigenvalue of L corresponding to the eigenvectorx. Because
L is a symmetric matrix, all of its n eigenvalues are real. Notice that the all-1’s vec-
tor is an eigenvector of any Laplacian matrix and that its associated eigenvalue is
0. Because Laplacian matrices are positive semidefinite, all the other eigenvalues
must be non-negative. An important property of weighted Laplacian is:

xT Lx =
∑
i,j

li,j(xi − xj)2.

Graph sparsification is the task of approximating a graph by a sparse graph,
and is often useful in the design of efficient approximation algorithms. Several
notions of graph sparsification have been proposed. For example, Chew [19] was
motivated by proximity problems in computational geometry to introduce graph
spanners. Spanners are defined in terms of the distance similarity of two graphs:
A spanner is a sparse graph where the shortest-path distance between between
every pair of vertices is approximately the same in the original graph as in the
sparsifier. Motivated by cut problems, Benczur and Karger [13], introduced a
notion of sparsification that requires that for every set of vertices, the weight
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of the edges leaving that set should be approximately the same in the original
graph as in the sparsifier.

Motivated by constructing preconditioners, Spielman and Teng introduce a
new notion of sparsification called spectral sparsification [51]. A spectral sparsifier
is a subgraph of the original whose Laplacian quadratic form is approximately
the same as that of the original graph on all real vector inputs. We say that G̃
is a σ-spectral approximation of G if for all x ∈ IRV

1
σ
xT L(G̃)x ≤ xT L(G)x ≤ σxT L(G̃)x. (1)

This notion of sparsification captures the spectral similarity between a graph
and its sparsifiers. It is a stronger notion than the cut sparsification of Benczur
and Karger: the cut-sparsifiers constructed by Benczur and Karger [13] are only
required to satisfy these inequalities for all x ∈ {0, 1}V .

In [51], Spielman and Teng prove the following theorem about spectral spar-
sification with a nearly-linear-time algorithm.

Theorem 4 (Spectral Sparsification). Given ε ∈ (1/n, 1/3), p ∈ (0, 1/2)
and a weighted graph G and with n vertices, in expected time m log(1/p) logO(1) n,
one can produce a weighted graph G̃ that satisfies the following properties:

a. The edges of G̃ are a subset of the edges of G; and
b. with probability at least 1− p, (b.1) G̃ is a (1 + ε)-approximation of G, and

(b.2) G̃ has at most ε−2n logO(1)(n/p) edges.

Low Stretch Spanning Trees: An important discrete mathematical concept
in building preconditioners is the low-stretch spanning tree introduced by Alon,
Karp, Peleg, and West [2]: Suppose T is spanning tree of G = (V, E, w). For
any edge e ∈ E, let e1, · · · , ek ∈ F be the edges on the unique path in T
connecting the endpoints of e. The stretch of e w.r.t T is given by stT (e) =
w(e)(

∑k
i=1

1
w(ei)

). The average stretch of the graph G with respect to T is defined
by stT (G) =

∑
e∈E stT (e)/|E|. Alon et al proved that every weighted graph has

a spanning tree with average stretch O(no(1)). Elkin, Emek, Spielman, and Teng
[23], improved the average stretch to O(log2 n log log n) with a nearly linear-time
construction.

2 The Laplacian Paradigm for Massive Graphs

2.1 Massive Data and Efficient Algorithm Design

In light of the explosive growth in the amount of data and the diversity of
computing applications, efficient algorithms are needed now more than ever. We
may need to deal with equations and mathematical programming that involve
hundreds of millions of variables [43]. We may need to analyze data and graphs
such as web logs, social networks, and web graphs that are massive (e.g., of
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hundreds billions of nodes [29]), complex, and dynamic. As a result of this rapid
growth in problem size, what used to be considered an efficient algorithm, such
as a O(n1.5)-time algorithm, may no longer be adequate for solving problems of
these scales. Space complexity poses an even greater problem. Thus, the need to
design algorithms whose running time is linear or nearly linear in the input size
has become increasingly critical.

Linear and Nearly Linear-Time Graph Primitives: Many basic graph-
theoretic problems such as connectivity and topological sorting can be solved
in linear or nearly-linear time. The efficient algorithms for these problems are
built on linear-time frameworks such as Breadth-First-Search (BFS) and Depth-
First-Search (DFS). Minimum Spanning Trees (MST), Shortest-Path Trees, and
sorting are examples of other commonly used nearly linear-time primitives. How-
ever, not every graph problem can be reduced to these primitives in linear or
nearly linear time.

Efficient Algorithmic Paradigms: Over the last half century, several al-
gorithmic paradigms have been developed and applied to various problems and
applications. Some of these paradigms such as divide-and-conquer, dynamic pro-
gramming, greedy and local search, linear and convex programming, randomiza-
tion, and branch-and-bound are commonly covered by textbooks on algorithm
design and analysis [20], while some less theoretically-covered paradigms such as
the multilevel method, simulated annealing, and the genetic algorithm, are also
widely used in practice.

The paradigms such as dynamic programming, linear/convex programming,
and branch-and-bound yield polynomial-time algorithms whose complexity is
normally not linear or nearly linear — their running time is typically quadratic or
cubic or of even higher order — in the input size. But the algorithmic paradigms
such as greedy and divide-and-conquer, when they can be successfully applied,
usually leads linear- or nearly-linear-time algorithms. In graph theory, several
previously-known divide-and-conquer algorithms, run in nearly linear time or use
only linear space [24,35]. Their success critically uses the fact that the underlying
graphs have a balanced separator that can be found in linear time. Thus, these
algorithms can only be applied to special families of graphs, for example planar
graphs [35] and nearest neighborhood graphs [40]. However, most graphs such as
web graphs and social network graphs simply do not have a balanced separator
with the desired quality.

While paradigms such as the multilevel method usually lead to nearly linear-
time algorithms in practice, their theoretical behaviors remain widely open and
are subjects for excellent research projects.

2.2 The Laplacian Paradigm

The thesis behind the Laplacian Paradigm is that the Laplacian primitive,
which was not available for previous algorithmic paradigms for graphs, could be
a very powerful primitive for combinatorial optimization and numerical analysis.
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Unlike the separator-based divide-and-conquer paradigm, this primitive makes
no assumption on the structure of the graph. Its complexity depends only on the
number of vertices and edges in the underlying graph and the desired precision
of the solution. Moreover, its complexity is logarithmic in the reciprocal of the
precision.

We conjecture that more graph-theoretical problems can be solved in nearly-
linear time using this primitive.

Schematically, to apply the Laplacian Paradigm to solve a problem defined
on a graph G = (V, E, w) or a matrix A, we reduce the computational and
optimization problem to one or more linear algebraic or spectral graph-theoretic
problems whose matrices are Laplacian or Laplacian-like. The nearly-linear-time
Laplacian primitive or the primitives from the suite of the spectral algorithms
of Section 1.2 is then used to solve these algebraic and spectral problems.

Similar to other algorithmic paradigms, the details of the reduction and re-
sulting algorithm depend on the structure of the application/problem that we
need to solve. We now give a two examples of the use of the Laplacian Paradigm.

Example I (Spectral Approximation): Our first example is to approximate
the Fiedler value of a weighted graph. Recall that the Fielder value of a weighted
graph G = (V, E, w) is the second smallest eigenvalue of L(G).

Definition 2 (Approximate Fiedler Vector and Fiedler Value). For a
Laplacian matrix L, v is an ε-approximate Fiedler vector if v is orthogonal to
the all-1’s vector and

λ2(L) ≤ λ(v) =
vT Lv
vT v

≤ (1 + ε)λ2(L),

where λ2(L) is the Fiedler value of the graph of L.

To apply the Laplacian Paradigm for computing an approximate Fiedler vector,
we use the classic inverse power method. Assume the eigenvalues of L, from the
smallest to the largest, are λ1 = 0, λ2, ...,λn. Let vi be the eigenvector of λi.
Note v1 is the all-1’s vector.

We choose a unit random vector r such that vT
1 r = 0. We can write r as

r =
∑n

i=2 civi. Note that L†r =
∑n

i=1 ciλ
−1
i vi. In general, for positive integer

t ≥ 1, (L†)tr =
∑n

i=2 ciλ
−t
i vi. Therefore, if c2 is not too small, by choosing

t = Θ(log(n/ε)/ε, assuming we can compute L†r efficiently, we can compute an
ε-approximate Fiedler vector using the inverse power method.

We can use the nearly-linear-time Laplacian primitive to approximate L†r to
a desired precision. With some standard techniques from numerical analysis, one
can bound the approximation factor of (L†)tr.

Theorem 5 (Spielman-Teng). For any ε > 0 and Laplacian matrix L, an
ε-approximate Fiedler vector of L can be computed by a randomized algorithm
in time m logO(1) n log(1/ε)/ε.

It follows from Mihail [47] that if a graph G(V, E) has a constant maximum de-
gree, then one can obtain a cut of conductance O(

√
λ2(G)) from any approximate

Fiedler vector, as guaranteed to exist by Cheeger isoperimetric inequality [18].
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Corollary 1 (Cheeger Cut). If G is a constant-degree graph of n vertices with
Fiedler value λ2, then in nearly linear-time, we can compute a cut of conductance
O(
√

λ2).

Example II (Learning from Labeled Data on a Directed Graph): Our
next example is due to Zoom, Huang, and Schölkopf [56]. The problem is to
learn from labeled and unlabeled data on a graph: The input of the problem
is a strongly connected (aperiodic) directed graph G = (V, E) and a labeling
function y that assigns a label from a label set Y = {1,−1} to each vertex of a
subset S ⊂ V and 0 to vertices in V − S. Let H(V) be the set of functions of
form V → IR for labeling vertices in the graph. The mathematical goal of this
learning problem is to find a function f ∈ H(V) that optimizes the following
objective function

minimize
(
Ω(f) + μ||f − y||2

)
, (2)

where μ is a constant parameter, and

Ω(f) =
1
2

∑
(u,v)∈E

π(u)p(u, v)

(
f(u)√
π(u)

− f(v)√
π(v)

)
, (3)

and π() is the stationary distribution of the random walk on the graph with the
transition probability function p : V ×V → IR+ defined by the following formula:
for each pair u, v ∈ V , if (u, v) �∈ E, then p(u, v) = 0; otherwise p(u, v) = 1/d+(u)
where d+(u) is the out-degree of u.

Zhou, Huang, and Schölkopf proved that the optimal solution f∗ to the mathe-
matical programming defined by (2) is the solution to the following linear system.(

Π − 1
1 + μ

ΠP + PT Π

2

)(
Π−1/2f∗

)
=
(

1− 1
1 + μ

)
Π1/2y, (4)

where Π the diagonal matrix with Π(v, v) = π(v) and P is the transition prob-
ability matrix defined by p(). Using the property that the matrix

A =
(

Π − 1
1 + μ

ΠP + PT Π

2

)
is symmetric and diagonally dominant, Zhou, Huang, and Schölkopf applied the
nearly-linear-time Laplacian primitive to obtain the following result.

Theorem 6 (Zhou, Huang, and Schölkopf). There exists a randomized al-
gorithm that can solve the graph learning problem given by the mathematical
programming defined by (2) in nearly linear time.

Other Applications of the Laplacian Paradigm: In addition to the two
examples given above, the Laplacian paradigm has already been used in several
problems in combinatorial optimization and scientific computing.
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Boman, Hendrickson, and Vavasis [16] showed that the Laplacian primitive
can be used to solve elliptic finite-element systems in nearly linear time.
Shklarski-Toledo [44] and Daitch-Spielman [21] extended the solver to systems
involving rigidity. Koutis, Miller, and Tolliver [34] presented several applications
of the Laplacian Paradigm in vision and image processing. Using the Laplacian
primitive. Spielman and Srivastava [46] developed a beautiful nearly linear time
algorithm that uses the Laplacian Paradigm to compute the effective resistances
in a weighted graph. Using the nearly linear-time Laplacian primitive, Madry
and Kelner [39] greatly improved the algorithm for the generation of random
spanning trees; Daitch and Spielman [22] gave the fastest known algorithm for
computing generalized lossy flows.

2.3 Next Generation Algorithms for Massive Graphs

To support our thesis and excitement that the Laplacian Paradigm may lead
to significant advance in graph algorithms, we would like to review the previ-
ous linear solvers and their complexity. The straightforward implementation of
Gaussian elimination takes O(n3) time. When m is large relative to n and the
matrix is arbitrary, the fastest algorithms for solving linear equations are those
based on fast matrix multiplication, which take time approximately O(n2.376).
The fastest algorithm for solving general sparse positive semi-definite linear sys-
tems is the Conjugate Gradient. Used as a direct solver, it runs in time O(mn)
(see [54, Theorem 28.3]).

When the linear system is symmetric and sparse, it is standard to represent
the non-zero structure of a matrix A by an unweighted graph GA that has an
edge between vertices i �= j if and only if Ai,j is non-zero. If this graph has special
structure, there may be elimination orderings that accelerate direct solvers. If
A is tri-diagonal, in which case GA is a path, then a linear system in A can be
solved in time O(n). Similarly, when GA is a tree a linear system in A by be
solved in time O(n) If the graph of non-zero entries GA is planar, one can use
Generalized Nested Dissection [25,35,26] to find an elimination ordering under
which Cholesky factorization can be performed in time O(n1.5) and produces
factors with at most O(n log n) non-zero entries.

For linear equations that arise when solving elliptic partial differential equa-
tions, other techniques supply fast algorithms. For example, Multigrid methods
may be proved correct when applied to the solution of some of these linear
systems [17], and Hierarchical Matrices run in nearly-linear time when the dis-
cretization is well-shaped [12].

Before the work of the nearly-linear-time Laplacian primitive, however, no lin-
ear solver with complexity better than O(m1.5) is known for arbitrary sparse linear
systems. So the Laplacian primitive could open a new page for algorithm design.

Then, which fundamental problems are good candidates for the Laplacian
Paradigm? The family of problems that are closest to the clustering and
partitioning problems which are central to the Laplacian primitve and spec-
tral graph sparsification includes matching, s-t flows, and multcommodity flows.
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The key step in our attempt to improve the algorithms for these problems is to
encode them cleverly by the Laplacian primitive.

3 Final Remarks and Open Questions

Algorithm design is like building a software library. Once we can solve a new
problem in linear or nearly linear time, we can add them to our library of ef-
ficient algorithms and use them as a subroutine in designing the next wave of
algorithms. Because of the several appealing properties of the Laplacian primi-
tive, and our new algorithms for clustering, partitioning, and sparsification, we
feel very excited about the new possibilities in the advance of graph algorithms.
In fact, each of our algorithms in the suite of the Laplacian Paradigm has been
improved since we developed them.

– Using the star-decomposition developed in [23], Abraham, Bartal, and
Neiman [1] further improved the average stretch to a quantity smaller than

O(log nO(log log n(log log log n)3)).

– The parameters of local clustering algorithm have subsequently been im-
proved by Andersen-Chung-Lang [6] and Andersen and Peres [7]. The former
uses personalized Rage-Rank and the latter uses evolving sets to guide the
local clustering processing.

– In the original construction, the O(1) in the exponent of logO(1)(n/p) is quite
large (13 for the running time and 29 for the number of edges). Spielman and
Srivastava [46] reduced the 29 in the exponent of the number of edges in the
spectral sparsifier to 1. The running time of their algorithm, using the Lapla-
cian primitive for computing effective resistances, is nearly linear. Recently,
Batson, Spielman, and Srivastava [11] gave a beautiful construction to pro-
duce a linearly-sized spectral sparsifier. However, even with polynomial-time
complexity, the running time of their algorithm is still far away from being
linear.

– Koutis, Miller, and Peng [33] recently improved the running time of the
Laplacian solver to Õ

(
m log2 n log(1/ε)

)
.

We would like to conclude this presentation with an exciting algorithmic conjec-
ture and goal that have been driven our research during the last few years.

Conjecture 7 (Laplacian Conjecture: Spielman-Teng). There exists a
(randomized) solver for the Laplacian primitive whose (expected) running time
is O(m log n log(1/ε)).

The result of Koutis-Miller-Peng is only one log n factor away from solving this
conjecture. In fact, the combination of two recently results, one by Spielman
and Woo on preconditioning with low stretch spanning tree, and one by Kolla,
Makarychev, Saberi, and Teng [32] implies that after a polynomial-time process-
ing, one can obtain a preconditioner that can solve the Laplacian primitive in
time Õ(m log n log(1/ε), where Õ only hides the ratio of the average stretch of
the Abraham-Bartal-Neiman spanning tree to O(log n), which is O((log log n)2).
We are indeed very close to resolve Conjecture 7.
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õ(n2) time. In: FOCS: IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 238–247 (2004)

9. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite pro-
grams. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pp. 227–236. ACM, New York (2007)

10. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: STOC 2004: Proceedings of the thirty-sixth annual ACM sympo-
sium on Theory of computing, pp. 222–231. ACM, New York (2004)

11. Batson, J., Spielman, D.A., Srivastava, N.: Twice-Ramanujan sparsifiers (2008),
http://arxiv.org/abs/0808.0163

12. Bebendorf, M., Hackbusch, W.: Existence of H-matrix approximants to the in-
verse FE-matrix of elliptic operators with L∞-coefficients. Numerische Mathe-
matik 95(1), 1–28 (2003)
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Abstract. Proof complexity is an interdisciplinary area of research uti-
lizing techniques from logic, complexity, and combinatorics towards the
main aim of understanding the complexity of theorem proving proce-
dures. Traditionally, propositional proofs have been the main object of
investigation in proof complexity. Due their richer expressivity and nu-
merous applications within computer science, also non-classical logics
have been intensively studied from a proof complexity perspective in the
last decade, and a number of impressive results have been obtained. In
this paper we give the first survey of this field concentrating on recent
developments in proof complexity of non-classical logics.

1 Propositional Proof Complexity

One of the starting points of propositional proof complexity is the seminal paper
of Cook and Reckhow [CR79] where they formalized propositional proof systems
as polynomial-time computable functions which have as their range the set of all
propositional tautologies. In that paper, Cook and Reckhow also observed a fun-
damental connection between lengths of proofs and the separation of complexity
classes: they showed that there exists a propositional proof system which has
polynomial-size proofs for all tautologies (a polynomially bounded proof system)
if and only if the class NP is closed under complementation. From this observa-
tion the so called Cook-Reckhow programme was derived which serves as one of
the major motivations for propositional proof complexity: to separate NP from
coNP (and hence P from NP) it suffices to show super-polynomial lower bounds
to the size of proofs in all propositional proof systems.

Although the first super-polynomial lower bound to the lengths of proofs
had already been shown by Tseitin in the late 60’s for a sub-system of res-
olution [Tse68], the first major achievement in this programme was made by
Haken in 1985 when he showed an exponential lower bound to the proof size
in Resolution for a sequence of propositional formulas describing the pigeonhole
principle [Hak85]. In the last two decades these lower bounds were extended to
a number of further propositional systems such as the Nullstellensatz system
[BIK+96], Cutting Planes [BPR97,Pud97], Polynomial Calculus [CEI96,Raz98],
or bounded-depth Frege systems [Ajt94,BIK+92,BPI93,KPW95]. For all these
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proof systems we know exponential lower bounds to the lengths of proofs for
concrete sequences of tautologies arising mostly from natural propositional en-
codings of combinatorial statements.

For proving these lower bounds, a number of generic approaches and general
techniques have been developed. Most notably, there is the method of feasible
interpolation developed by Kraj́ıček [Kra97], the size-width trade-off introduced
by Ben-Sasson and Wigderson [BSW01], and the use of pseudorandom generators
in proof complexity [ABSRW04,Kra01,Kra04].

Despite this enormous success many questions still remain open. In particular
Frege systems currently form a strong barrier [BBP95], and all current lower
bound methods seem to be insufficient for these strong systems. A detailed survey
of recent advances in propositional proof complexity is contained in [Seg07].

Let us mention that the separation of complexity classes is not the only moti-
vation for studying lengths of proofs. In particular for strong systems like Frege
and its extensions there is a fruitful connection to bounded arithmetic which
adds insight to both subjects (cf. [Kra95]). Further, understanding weak systems
as Resolution is vital to applications as the design of efficient SAT solvers (see
e. g. [PS10] for a more elaborate argument). Last not least, propositional proof
complexity has over the years grown into a mature field and many researchers
believe that understanding propositional proofs and proving lower bounds—
arguably the hardest task in complexity—is a very important and beautiful field
of logic which is justified in its own right.

2 Why Non-classical Logics?

Besides the vivid research on propositional proof complexity briefly mentioned
in the previous section, the last decade has witnessed intense investigation into
the complexity of proofs in non-classical logics. Before describing some of the
results, let us comment a bit on the motivation for this research. Arguably, for
computer science non-classical logics are even more important than classical logic
as they are more expressive and often more suitable for concrete applications. It
is therefore quite important to enhance our understanding of theorem proving
procedures in these logics, in particular, given the impact that lower bounds to
the lengths of proofs have on the performance of proof search algorithms.

Another motivation comes from complexity theory. As non-classical logics are
often more expressive than propositional logic, they are usually associated with
large complexity classes like PSPACE. The satisfiability problem in the modal
logic K was shown to be PSPACE-complete by Ladner [Lad77], and this was
subsequently also established for many other modal and intuitionistic logics.1

Thus, similarly as in the Cook-Reckhow programme mentioned above, proving
lower bounds to the lengths of proofs in non-classical logics can be understood
1 In fact, PSPACE seems to be the “typical” complexity of monomodal logics and

similar systems which we will consider here. The complexity often gets higher for
logics in richer languages, e. g., PDL or the modal μ-calculus, but I am not aware of
any proof complexity research on these, though.
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as an attempt to separate complexity classes, but this time we are approaching
the NP vs. PSPACE question. Intuitively therefore, lower bounds to the lengths
of proofs in non-classical logic should be easier to obtain, as they “only” target
at separating NP and PSPACE. In some sense the results of Hrubeš [Hru09] and
Jeřábek [Jeř09] on non-classical Frege systems (see Sect. 4) confirm this intuition:
they obtain exponential lower bounds for modal and intuitionistic Frege systems
(in fact, even extended Frege) whereas to reach such results in propositional
proof complexity we have to overcome a strong current barrier [BBP95].

Last not least, research in non-classical proof complexity will also advance our
understanding of propositional proofs as we see a number of phenomena which
do not appear in classical logic (as e. g. with respect to the question of Frege vs.
EF and SF, see Sect. 5). These results are very interesting to contrast with our
knowledge on classical Frege as they shed new light on this topic from a different
perspective.

3 Proof Systems for Modal and Intuitionistic Logics

We start by introducing some of the relevant proof systems for non-classical logic.
While most lower bounds for classical propositional proofs are shown for weak
systems like Resolution, Cutting Planes, or Polynomial Calculus, researchers in
non-classical logics have mostly investigated Frege style systems. This is quite
natural as many modal logics are even defined via derivability in these systems.

Frege systems derive formulas using axioms and rules. In texts on classical
logic these systems are usually referred to as Hilbert-style systems, but in proof
complexity it has become customary to call them Frege systems [CR79]. A Frege
rule is a (k + 1)-tuple (ϕ0, ϕ1, . . . , ϕk) of formulas such that {ϕ1, ϕ2, . . . , ϕk} |=
ϕ0. The standard notation for rules is

ϕ1 ϕ2 . . . ϕk

ϕ0
.

A Frege rule with k = 0 is called a Frege axiom. A formula ψ0 can be derived from
formulas ψ1, . . . , ψk by a Frege rule (ϕ0, ϕ1 . . . , ϕk) if there exists a substitution
σ such that σ(ϕi) = ψi for i = 0, . . . , k.

Let F be a finite set of Frege rules. An F-proof of a formula ϕ from a set of
formulas Φ is a sequence ϕ1, . . . , ϕl = ϕ of propositional formulas such that for
all i = 1, . . . , l one of the following holds:

1. ϕi ∈ Φ or
2. there exist numbers 1 ≤ i1 ≤ · · · ≤ ik < i such that ϕi can be derived from

ϕi1 , . . . , ϕik
by a Frege rule from F .

A Frege system is a set F of Frege rules which is implicationally complete,
meaning that for all formulas ϕ and sets of formulas Φ we have Φ |= ϕ if and
only if there exists an F -proof of ϕ from Φ.

Every text on classical logic uses its own favourite Frege system, but the
actual choice of the rules for the system does not matter (see Sect. 5). Typically,



18 O. Beyersdorff

these Frege systems use a number of simple axioms like p → (q → p) and
(p → q)→ (p → (q → r)) → (p → r) together with modus ponens

p p → q

q

as its only proper rule.
In addition to the propositional connectives (chosen such that they form a

basis for the set of all boolean functions), the modal language contains the unary
connective �. As mentioned, non-classical logics are very often defined via an
associated Frege system. As an example, a Frege system for the modal logic K
is obtained by augmenting a propositional Frege system by the modal axiom of
distributivity

�(p → q)→ (�p → �q)

and the rule of necessitation
p

�p
.

The modal logic K can then simply be defined as the set of all modal formulas
derivable in this Frege system. Other modal logics can be obtained by adding
further axioms, e. g., K4 is obtained by adding the axiom �p → ��p, KB
by adding p → �¬�¬p, and GL by adding �(�p → p) → �p. As two last
examples, S4 is obtained by extending K4 by �p→ p and S4Grz by extending
S4 by �(�(p→ �p)→ p)→ �p. For more information on modal logics we refer
to [BdRV01] or the thorough introduction in [Jeř09].

While modal logics extend the classical propositional calculus, intuitionistic
logics are restrictions thereof. We will not define them precisely, but just mention
that intuitionistic logic and its superintuitionistic extensions are again defined
via Frege systems with a suitable choice of axioms and modus ponens as their
only rule (cf. e. g. [Jeř09] for details).

4 Lower Bounds for Modal and Intuitionistic Logics

One of the first topics in proof complexity of non-classical logics was the inves-
tigation of the disjunction property in intuitionistic logic, stating that if ϕ ∨ ψ
is an intuitionistic tautology, then either ϕ or ψ already is. Buss, Mints, and
Pudlák [BM99, BP01] showed that this disjunction property even holds in the
following feasible form:

Theorem 1 (Buss, Mints, Pudlák [BM99,BP01]). Intuitionistic logic has
the feasible disjunction property, i. e., for the standard natural deduction calculus
for intuitionistic logic (which is polynomially equivalent to the usual intuitionistic
Frege system) there is an algorithm A such that for each proof π of a disjunction
ϕ ∨ ψ, the algorithm A outputs a proof of either ϕ or ψ in polynomial time in
the size of π.
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Subsequently, Ferrari, Fiorentini, and Fiorino [FFF05] extended this result to
Frege systems and to further logics such as the modal logic S4.

A related property to feasible disjunction is the feasible interpolation property.
As mentioned in Sect. 1, feasible interpolation is one of the general approaches
to lower bounds in proof complexity. This technique was developed by Kraj́ıček
[Kra97] and has been successfully applied to show lower bounds for a number of
weak systems as Resolution or Cutting Planes (but unfortunately fails for strong
systems as Frege systems and their extensions [KP98,BPR00]). For intuitionistic
logic, feasible interpolation holds in the following form:

Theorem 2 (Buss, Pudlák [BP01]). Intuitionistic logic has the feasible in-
terpolation property, i. e., from a proof π of an intuitionistic tautology

(p1 ∨ ¬p1) ∧ · · · ∧ (pn ∨ ¬pn)→ ϕ0(p̄, q̄) ∨ ϕ1(p̄, r̄)

using distinct sequences of variables p̄, q̄, r̄ (such that p̄ = p1, . . . , pn are the
common variables of ϕ0 and ϕ1) we can construct a Boolean circuit C of size
|π|O(1) such that for each input ā ∈ {0, 1}n, if C(ā) = i, then ϕi(p̄/ā) is an
intuitionistic tautology (where variables p̄ are substituted by ā, and q̄ or r̄ are
still free).

A version of feasible interpolation for some special class of modal formulas was
also shown for the modal logic S4 by Ferrari, Fiorentini, and Fiorino [FFF05].
Once we have feasible interpolation2 for a proof system, this immediately implies
conditional super-polynomial lower bounds to the proof size in the proof system
as in the following theorem:

Theorem 3 (Buss,Pudlák [BP01], Ferrari, Fiorentini,Fiorino [FFF05]).
If NP∩coNP �⊆ P/poly, then neither intuitionistic Frege systems nor Frege systems
for S4 are polynomially bounded.

This method uses the following idea: suppose we know that a sequence of for-
mulas ϕn

0 ∨ ϕn
1 cannot be interpolated by a family of polynomial-size circuits as

in Theorem 2. Then the formulas ϕn
0 ∨ ϕn

1 do not have polynomial-size proofs
in any proof system which has feasible interpolation. Such formulas ϕn

0 ∨ϕn
1 are

easy to construct under suitable assumptions. For instance, the formulas could
express that factoring integers is not possible in polynomial time (which implies
NP ∩ coNP �⊆ P/poly).
2 A terminological note (which I owe to Emil Jeřábek): while it became customary to

refer to “feasible interpolation” in the context of intuitionistic proof systems, it may
be worth a clarification that this is actually a misnomer. Interpolation means that
if ϕ(p̄, q̄) → ψ(p̄, r̄) is provable, where p̄, q̄, r̄ are disjoint sequences of variables, then
there is a formula θ(p̄) such that ϕ(p̄, q̄) → θ(p̄) and θ(p̄) → ψ(p̄, r̄) are also provable.
In intuitionistic logic, this is a quite different property from the reformulations using
disjunction which come from classical logic. What is called “feasible interpolation”
for intuitionistic logic (such as in Theorem 2) has nothing to do with interpolation, it
is essentially a feasible version of Haldén completeness. Similarly, the modal “feasible
interpolation” from [FFF05] is a restricted version of the feasible modal disjunction
property.
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To improve Theorem 3 to an unconditional lower bound, we need super-
polynomial circuit lower bounds for suitable functions, and such lower bounds
are only known for restricted classes of Boolean circuits (cf. [Vol99]). One such
restricted class consists of all monotone Boolean circuits. Razborov [Raz85] and
Alon and Boppana [AB87] were able to show exponential lower bounds to the
size of monotone circuits which separate the Clique-Colouring pair. The compo-
nents of this pair contain graphs which are k-colourable or have a clique of size
k +1, respectively. Clearly, this yields a disjoint NP-pair. The disjointness of the
Clique-Colouring pair can be expressed by a sequence of propositional formulas

¬Colourk
n(p̄, s̄) ∨ ¬Cliquek+1

n (p̄, r̄) (1)

where Colourk
n(p̄, s̄) expresses that the graph encoded in the variables p̄ is k-

colourable. Similarly, Cliquek+1
n (p̄, r̄) expresses that the graph specified by p̄

contains a clique of size k + 1.
In order to prove lower bounds for the formulas (1) we need a monotone

feasible interpolation theorem, i. e., a version of Theorem 2 where the circuits C
are monotone. Such a result is known for a number of classical proof systems
including Resolution and Cutting Planes, but does not hold for Frege systems
under reasonable assumptions (factoring integers is not possible in polynomial
time [KP98,BPR00]). Therefore, under the same assumptions we cannot expect
a full version of monotone feasible interpolation for modal extensions of the
classical Frege system. Note that the above mentioned feasible interpolation
theorem of Ferrari et al. [FFF05] also only holds for a restricted class of modal
formulas.

Hrubeš [Hru07b,Hru09] had the idea to modify the Clique-Colouring formu-
las (1) in a clever way by introducing the modal operator � in appropriate places
to obtain

�(¬Colourk
n(p̄, s̄)) ∨ ¬Cliquek+1

n (�p̄, r̄) (2)

with k =
√

n. For these formulas he was able to show in [Hru09] that

1. the formulas (2) are modal tautologies;
2. if the formulas (2) are provable in K with m(n) distributivity axioms, then

the original formulas (1) can be interpolated by monotone circuits of size
O(m(n)2).

Together these steps yield unconditional lower bounds for modal Frege systems:

Theorem 4 (Hrubeš [Hru07b,Hru09]). The formulas (2) are K-tautologies.
If L is a sublogic of GL or S4, then every Frege proof of the formulas (2) in the
logic L uses 2nΩ(1)

steps.

The first proof of Theorem 4 in [Hru07b] was obtained by a rather involved
model-theoretic argument, but his later paper [Hru09] contains the simplified
approach sketched above.

Along the same lines, Hrubeš proved lower bounds for intuitionistic Frege
systems. For this he modified the Clique-Colouring formulas to the intuitionistic
version
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n∧
i=1

(pi ∨ qi)→ (¬Colour k
n(p̄, s̄) ∨ ¬Cliquek+1

n (¬q̄, r̄) (3)

where again k =
√

n.

Theorem 5 (Hrubeš [Hru07a,Hru09]). The formulas (3) are intuitionistic
tautologies and require intuitionistic Frege proofs with 2nΩ(1)

steps.

The first proof of Theorem 5 in [Hru07a] was given via a translation of intu-
itionistic logic into modal logic, but again [Hru09] reproves the result via the
simplified approach. Theorem 5 also implies an exponential speed-up of classi-
cal logic over intuitionistic logic, because the formulas (3) have polynomial-size
classical Frege proofs [Hru07a]. The lower bounds of Theorems 4 and 5 were
extended by Jeřábek [Jeř09] to further logics, namely all modal and superintu-
itionistic logics with infinite branching.

5 Simulations between Non-classical Proof Systems

Besides proving lower bounds a second important topic in proof complexity is the
comparison of proof systems via simulations introduced in [CR79] and [KP89]
(but see also [PS10] for a new notion). Frege systems and its extensions are one of
the most interesting cases in this respect. We recall the definition of polynomial
simulations from [CR79]: two proof systems P and Q are polynomially equivalent
if every P -proof can be transformed in polynomial time into a Q-proof of the
same formula, and vice versa. Frege systems also depend on the choice of the
language, i. e., the choice of the propositional connectives. When speaking of the
polynomial equivalence of two systems over different propositional languages, it
is implicitly understood that the formulas are suitably translated into formulas
over the new basis (see [PS10] for a discussion). In the classical setting, Cook and
Reckhow were able to show the equivalence of all Frege systems using different
axioms, rules, and propositional connectives [CR79,Rec76]. For this equivalence
to hold, two things have to be verified:

– First, let F1 and F2 be two Frege systems using the same propositional
language. Then the equivalence of F1 and F2 can be shown by deriving
every F1-rule in F2 and vice versa.

– Second, if F1 and F2 are Frege systems over distinct propositional languages
L1 and L2, respectively, then we have to translate L1-formulas into L2-
formulas before we can apply the method from the previous item. To still
obtain polynomial size formulas after the translation, Reckhow [Rec76] first
rebalances the formulas to logarithmic logical depth. In classical proposi-
tional logic this is possible by Spira’s theorem.

For non-classical logics the situation is more complicated. Rebalancing the for-
mulas to logarithmic depth is not possible because in modal and intuitionistic
logic there are examples of formulas which indeed require linear depth. For this
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reason, the equivalence of modal or intuitionistic Frege systems using different
connectives is still open (cf. [Jeř06]).

But even for Frege systems in a fixed language the question is quite intricate
because of the presence of admissible rules. In general, inference rules

R =
ϕ1 . . . ϕk

ψ

can be classified according to whether they are valid or admissible. The rule R
is valid in a logic L if ϕ1, . . . , ϕk |=L ψ where |=L is the consequence relation
of the logic L. The rule R is admissible in L if for every substitution σ the
following holds: if σ(ϕ1), . . . , σ(ϕk) are theorems of L, i. e., |=L σ(ϕi) holds for
i = 1, . . . , k, then also σ(ψ) is a theorem of L, i. e., |=L σ(ψ). In classical logic,
every admissible rule is also valid. But this is not the case in non-classical logic.
For instance, in the modal modal logic K4 the rule

�ϕ

ϕ

is admissible, but not valid. Admissibility has been thoroughly studied for many
non-classical logics. In particular, starting with a question of Friedman [Fri75] it
was investigated whether admissibility of a given rule is a decidable property, and
this was answered affirmatively for many modal and intuitionistic logics [Ryb97].
In fact, for intuitionistic logic and many important modal logics such as K4, GL,
S4, and S4Grz, deciding the admissibility of a given rule is coNEXP-complete
as shown by Jeřábek [Jeř07]. Thus this task is presumably even harder than
deciding derivability in these logics which is complete for PSPACE.

Let us come back to the above question of the equivalence of all Frege systems
for a non-classical logic. If a Frege system uses non-valid admissible rules, then
we might not be able to re-derive the rules in another Frege system. Hence, again
Reckhow’s proof method from the first item above fails. But of course, admissible
rules may help to shorten proofs. Luckily, there is a way out. Building on a
characterization of admissible rules for intuitionistic logic by Ghilardi [Ghi99],
Iemhoff [Iem01] constructed an explicit set of rules which forms a basis for all
admissible intuitionistic rules. Using this basis, Mints and Kojevnikov [MK06]
were able to prove the equivalence of all intuitionistic Frege systems:

Theorem 6 (Mints, Kojevnikov [MK06]). All intuitionistic Frege systems
in the language →,∧,∨,⊥ are polynomially equivalent.

Subsequently, Jeřábek [Jeř06] generalized these results to an infinite class of
modal logics (so-called extensible logics [Jeř05]). We single out some of the most
important instances in the next theorem:

Theorem 7 (Jeřábek [Jeř06]). Let L be one of the modal logics K4, GL, S4,
or S4Grz and let B be a complete Boolean basis. Then any two Frege systems
for L in the language B ∪ {�} are polynomially equivalent.

We also mention that admissible rules have very recently been studied for many-
valued logics by Jeřábek [Jeř10a,Jeř10b].
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Another interesting topic is the comparison of Frege systems and their exten-
sions such as extended and substitution Frege systems. Extended Frege allows
the abbreviation of possibly complex formulas by propositional atoms. Substi-
tution Frege systems allow to infer arbitrary substitution instances of a proven
formula in one step by the so-called substitution rule. Both these mechanisms
might decrease the size of proofs in comparison with Frege, but a separation
between these systems is not known for classical propositional logic.

Already in the first paper [CR79] which introduces these systems, Cook and
Reckhow observe that substitution Frege polynomially simulates extended Frege,
but conjecture that the former might be strictly stronger than the latter. How-
ever, in classical propositional logic both systems are indeed polynomially equiv-
alent as was shown independently by Dowd [Dow85] and Kraj́ıček and Pudlák
[KP89]. While this proof of equivalence fails in non-classical logics, it is still
possible to extract some general information from it as in the next result:

Theorem 8 (Jeřábek [Jeř09]). For any modal or superintuitionistic logic,
extended Frege and tree-like substitution Frege are polynomially equivalent.

This shows that Cook and Reckhow’s intuition on extended vs. substitution
Frege was indeed correct and is further confirmed by results of Jeřábek [Jeř09]
who shows that going from extended to substitution Frege corresponds to a
conservative strengthening of the underlying logic by a new modal operator.
Building on these characterizations, Jeřábek exhibits examples for logics where
the EF vs. SF question receives different answers:

Theorem 9 (Jeřábek [Jeř09])

1. Extended Frege and substitution Frege are polynomially equivalent for all
extensions of the modal logic KB.

2. Substitution Frege is exponentially better than extended Frege for the modal
logic K and for intuitionistic logic.

The precise meaning of the phrase “exponentially better” is that there are se-
quences of tautologies which have polynomial-size substitution Frege proofs, but
require exponential-size proofs in extended Frege. These sequences are again
the Clique-Colour tautologies used by Hrubeš [Hru09]. However, Hrubeš’ lower
bounds were extended by Jeřábek [Jeř09] to a large class of logics with infinite
branching in the underlying Kripke frames, and item 2 of Theorem 9 also holds
for these logics.

6 Further Logics and Open Problems

Besides modal and intuitionistic logics there are many other non-classical logics
which are interesting to analyse from a proof complexity perspective. One exam-
ple of such logics are non-monotonic logics of which Reiter’s default logic [Rei80]
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is one of the most popular. The semantics and the complexity of default logic
have been intensively studied during the last decades (cf. [CS93] for a survey).
In particular, Gottlob [Got92] has identified and studied two reasoning tasks
for propositional default logic: the credulous and the skeptical reasoning prob-
lem which can be understood as analogues of the classical problems SAT and
TAUT. Due to the stronger expressibility of default logic, however, credulous
and skeptical reasoning become harder than their classical counterparts—they
are complete for the second level Σp

2 and Πp
2 of the polynomial hierarchy [Got92].

Elegant sequent calculi were designed for the credulous and skeptical reasoning
problems by Bonatti and Olivetti [BO02]. When analysing the proof complexity
of these systems it turns out that lower and upper bounds to the proof size in
credulous default reasoning and in classical Frege systems are the same up to a
polynomial.

Theorem 10 ( [BMM+10]). The lengths of proofs in the credulous default
calculus and in classical Frege systems are polynomially related. The same holds
for the number of steps.

This means that while the decision complexity of the logic increases, this increase
does not manifest in the lengths of proofs. In contrast, for the skeptical default
calculus of Bonatti and Olivetti an exponential lower bound to the number of
steps applies [BMM+10].

A similar result as Theorem 10 was observed by Jeřábek [Jeř09] for tabu-
lar modal and superintuitionistic logics which are in coNP. Jeřábek constructs
translations of extended Frege proofs in these logics to propositional proofs,
thereby obtaining analogous versions of Theorem 10 for extended Frege in these
modal and superintuitionistic logics. Thus, the current barrier in classical proof
complexity admits natural restatements in terms of non-classical logics.

Let us conclude with some open problems. Besides extending research on proof
lengths to further logics, we find the following questions interesting:

Problem 1. So far, research on proof complexity of non-classical logics has con-
centrated on Frege type systems or their equivalent sequent style formulations.
Quite in contrast, many results in classical proof complexity concern systems
which are motivated by algebra, geometry, or combinatorics. Can we construct
algebraic or geometric proof systems for non-classical logics?

Problem 2. One important tool in the analysis of classically strong systems as
Frege systems is their correspondence to weak arithmetic theories, known as
bounded arithmetic (cf. [Kra95]). Is there a similar connection between non-
classical logics, particularly modal logic, to first-order theories yielding further
insight into lengths of proofs questions?
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[Kra04] Kraj́ıček, J.: Dual weak pigeonhole principle, pseudo-surjective func-
tions, and provability of circuit lower bounds. The Journal of Symbolic
Logic 69(1), 265–286 (2004)

[Lad77] Ladner, R.E.: The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing 6(3), 467–480
(1977)

[MK06] Mints, G., Kojevnikov, A.: Intuitionistic Frege systems are polynomially
equivlalent. Journal of Mathematical Sciences 134(5), 2392–2402 (2006)

[PS10] Pitassi, T., Santhanam, R.: Effectively polynomial simulations. In: Proc.
1st Innovations in Computer Science (2010)

[Pud97] Pudlák, P.: Lower bounds for resolution and cutting planes proofs and
monotone computations. The Journal of Symbolic Logic 62(3), 981–998
(1997)

[Raz85] Razborov, A.A.: Lower bounds on the monotone complexity of boolean
functions. Doklady Akademii Nauk SSSR 282, 1033–1037 (1985); English
translation in: Soviet Math. Doklady 31, 354–357

[Raz98] Razborov, A.A.: Lower bounds for the polynomial calculus. Computa-
tional Complexity 7(4), 291–324 (1998)

[Rec76] Reckhow, R.A.: On the lengths of proofs in the propositional calculus.
PhD thesis, University of Toronto (1976)

[Rei80] Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132
(1980)

[Ryb97] Rybakov, V.V.: Admissibility of logical inference rules. Studies in Logic
and the Foundations of Mathematics, vol. 136. Elsevier, Amsterdam
(1997)

[Seg07] Segerlind, N.: The complexity of propositional proofs. Bulletin of Sym-
bolic Logic 13(4), 417–481 (2007)

[Tse68] Tseitin, G.C.: On the complexity of derivations in propositional calculus.
In: Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic,
Part II, pp. 115–125 (1968)

[Vol99] Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach.
Texts in Theoretical Computer Science. Springer, Heidelberg (1999)



Optimal Acceptors and Optimal Proof Systems

Edward A. Hirsch�

Steklov Institute of Mathematics at St. Petersburg,
27 Fontanka, St. Petersburg 191023, Russia

http://logic.pdmi.ras.ru/~hirsch/

Abstract. Unless we resolve the P vs NP question, we are unable to say
whether there is an algorithm (acceptor) that accepts Boolean tautologies
in polynomial time and does not accept non-tautologies (with no time
restriction). Unless we resolve the co -NP vs NP question, we are unable
to say whether there is a proof system that has a polynomial-size proof
for every tautology.

In such a situation, it is typical for complexity theorists to search for
“universal” objects; here, it could be the “fastest” acceptor (called opti-
mal acceptor) and a proof system that has the “shortest” proof (called
optimal proof system) for every tautology. Neither of these objects is
known to the date.

In this survey we review the connections between these questions and
generalizations of acceptors and proof systems that lead or may lead to
universal objects.

1 Introduction and Basic Definitions

Given a specific problem, does there exist the “fastest” algorithm for it? Does
there exist a proof system possessing the “shortest” proofs of the positive in-
stances of the problem? Although the first result in this direction was obtained
by Levin [Lev73] in 1970s, these important questions are still open for most
interesting languages, for example, the language of propositional tautologies.

Classical version of the problem. According to Cook and Reckhow [CR79], a
proof system is a polynomial-time mapping of all strings (“proofs”) onto “the-
orems” (elements of a certain language L; if L = TAUT is the language of all
propositional tautologies, the system is called a propositional proof system).
The existence of a polynomially bounded propositional proof system (that is,
a system that has a polynomial-size proof for every tautology) is equivalent
to NP = co -NP. In the context of polynomial boundedness, a proof system
can be equivalently viewed as a function that, given a formula and a “proof”,
verifies in polynomial time that the formula is a tautology: it must accept at
least one “proof” for each tautology (completeness) and reject all proofs for
non-tautologies (soundness).
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One proof system Πw is simulated by another one Πs if the shortest proof for
every tautology in Πs is at most polynomially longer than its shortest proof in
Πw. The notion of p-simulation is similar, but requires also a polynomial-time
computable function for translating the proofs from Πw to Πs. A (p-)optimal
propositional proof system is one that (p-)simulates all other propositional proof
systems.

The existence of an optimal (or p-optimal) proof system is a major open ques-
tion for many languages including TAUT. Optimality would imply p-optimality
for any system and any language if and only if the natural proof system for
SAT (satisfying assignments) is p-optimal; the existence of optimal system would
imply the existence of p-optimal system if there is some p-optimal system for
SAT [BKM09a]. If an optimal system for TAUT existed, it would allow one to
reduce the NP vs co -NP question to proving proof size bounds for just one
proof system. It would also imply the existence of a complete disjoint NP pair
[Raz94, Pud03]. The existence of a p-optimal system for quantified Boolean for-
mulas would imply a complete language in NP ∩ co -NP [Sad97]. (See [BS09]
regarding the situation for other languages and complexity classes.) Unfortu-
nately, no concise widely believed structural assumptions (like NP �= co -NP)
are known to imply the (non-)existence of (p-)optimal proof systems. Kraj́ıček
and Pudlák [KP89] showed that the existence is implied by NE = co -NE (resp.,
E = NE) for optimal (resp., p-optimal) propositional proof systems, and Köbler,
Messner, and Torán [KMT03] weakened these conjectures to doubly exponential
time, but these conjectures are not widely believed.

An acceptor for a language L is a semidecision procedure, i.e., an algorithm
that answers 1 for x ∈ L and does not stop for x /∈ L. An acceptor O is optimal
if for any other (correct) acceptor A, for every x ∈ L, the acceptor O stops on x
in time bounded by a polynomial in |x| and the time taken by A(x). (In [KP89]
optimal acceptors are called p-optimal algorithms; the term “acceptor” was later
introduced by Messner in his PhD thesis). Kraj́ıček and Pudlák [KP89] showed
that for TAUT the existence of a p-optimal system is equivalent to the existence
of an optimal acceptor. Then Sadowski [Sad99] proved a similar equivalence for
SAT. Finally, Messner [Mes99] gave a different proof of these equivalences ex-
tending them to many other languages. We review these results in Section 3.
Monroe [Mon09] recently formulated a conjecture implying that such an algo-
rithm does not exist1. Note that Levin [Lev73] showed that an optimal algorithm
does exist for finding witnesses for SAT (equivalently, for non-tautologies): just
run all algorithms in parallel and stop as soon as one of them returns a sat-
isfying assignment. However, this procedure gives an optimal acceptor neither
for TAUT nor for SAT, because (1) on tautologies, it simply does not stop; (2)
Levin’s algorithm enumerates search algorithms, and for an acceptor we need
decision algorithms, which may be faster for some inputs; the search-to-decision

1 More precisely, if an optimal acceptor for TAUT exists, then there is an acceptor for BH
(where BH = {(M, x, 1t) | nondeterministic Turing machine M accepts x in t steps})
that works in time polynomial in t for every particular (M, x) such that M does not
stop on x.
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reduction adds a lot to the running time by running the decision algorithm for
shorter formulas as well, which may be surprisingly much larger than for the
original input.

A proof system Π is automatizable if it has an automatization procedure that
works in time bounded by a polynomial in the output length. This procedure
A, given a “theorem”, outputs its (correct) proof for Π of length polynomially
bounded by the length of the shortest proof for Π . It is easy to see that such a
proof system can be easily turned into an acceptor with running time polyno-
mially related to the proof size and the input size. Vice versa, an acceptor can
be converted into an automatizable proof system, where the proof is just the
number of steps (written in unary) that the acceptor makes before accepting its
input. Thus, in the classical case there is no difference between acceptors and
automatizable proof systems.

Extensions that give optimality. An obvious obstacle to constructing an optimal
proof system or an optimal acceptor by enumeration is that no efficient proce-
dure is known for enumerating the set of all complete and sound proof systems
(resp., acceptors). Recently, similar obstacles were overcome in other settings
by considering either computations with non-uniform advice (see [FS06] for a
survey) or heuristic algorithms [FS04, Per07, Its09]. In particular, (p-)optimal
proof systems (and acceptors) with advice do exist [CK07], and we review this
fact in Section 4.

As to heuristic computations, the situation is more complex. Recently, it was
proved [HI10] that an optimal randomized heuristic acceptor does exist. However,
in the heuristic case we lack the equivalence between optimal proof systems and
optimal acceptors, and even the equivalence between acceptors and automatiz-
able proof systems is not straightforward. We review the heuristic case (including
more recent directions) in Section 5.

Another possibility to obtain optimal proof systems is to generalize the notion
of simulation. Recently, Pitassi and Santhanam [PS10] suggested a notion of
“effective simulation” and constructed a proof system for quantified Boolean
formulas that effectively simulates all other proof systems for QBF. We do not
review this result here.

We conclude the paper by listing open questions in Section 6.
We now continue to Section 2 listing trivial facts that we will use in what

follows.

2 Trivia

Enumeration. Almost all constructions used in this survey employ the enumera-
tion of all Turing machines of certain kind. Some remarks regarding this follow.

First of all, recall that deterministic Turing machines (either decision ma-
chines that say yes/no, or transducers that compute arbitrary functions) can
be efficiently enumerated by their Gödel numbers and simulated with only a
polynomial overhead in time.
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For a recursively enumerable language, one can enumerate acceptors only by
running the semidecision procedure in parallel.

Also one can require, if necessary, that the construction of each machine (we
will need it for proof systems) includes an “alarm clock” that interrupts the
machine after a certain number of steps.

Each proof system Π is p-simulated by another proof system Π ′ where
Π ′(x, w) runs in time, say, 100(|x| + |w|)2: just pad the proofs appropriately;
the simulation omits the padding.

These facts allow us to limit ourselves to enumerating proof systems with
quadratic alarm clock.

Frequently, we write that we execute “in parallel” a large (sometimes infinite)
number of computations. In reality this is achieved, of course, sequentially by
alternating consecutive steps of these computations (for example, simulating the
step k of the i-th machine at step (1 + 2k) · 2i, as in Levin’s optimal algorithm).

Acceptors and proof systems for subsets. For recursively enumerable L, for every
acceptor A′ for L′ ⊆ L there is an acceptor A for L that is almost as efficient on
L′ as A′. Similarly, for every proof system Π ′ for L′ ⊆ L there is a proof system
Π for L that has the same proofs on L′ as Π ′.

Proofs vs candidate proofs. In what follows we call w a Π-proof of x if Π(x, w) =
1. Sometimes we write “u is a candidate Π-proof of x” to emphasize that u is
intended for checking with Π (while it is not yet known whether Π(x, u) = 1).

3 Optimal Acceptors Exist iff p-Optimal Proof Systems
Exist

3.1 Kraj́ıček-Pudlák’s Proof

In this section we give the proof by Kraj́ıček and Pudlák [KP89]. The original
exposition demonstrates the equivalence of many statements, while we need only
two and show only the required implications.

Theorem 1 ([KP89]). Optimal acceptors for TAUT exist iff p-optimal proof
systems for TAUT exist. Moreover, the sufficiency (⇐) holds for any language,
not just TAUT.

Proof. ⇒ . A candidate proof of x for our p-optimal proof system Π∗ contains
a description of a proof system Π (i.e., a deterministic Turing machine given by
its Gödel number and equipped with a quadratic alarm clock) and a candidate
Π-proof π. To verify the proof, Π∗(x, (Π, π)) simply simulates Π(x, π) ensuring
that Π accepts π and then verifies the correctness of Π by querying the optimal
acceptor A∗ for the statement

∀y ∈ {0, 1}|x| ∀ψ ∈ {0, 1}|π| ∀z ∈ {0, 1}|x| (Π(y, ψ) = 0 ∨ y[z] = 0)

written as a Boolean formula (here y[z] denotes the result of substituting the
consecutive bits of z for the consecutive variables of the Boolean formula y).
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Since for every Π there is an algorithm that, given |x| and |π|, writes such
statement in time polynomial in |x|+ |π|, A∗ must stop in (specific) polynomial
time for specific (correct) Π , which proves that Π∗ p-simulates Π .
⇐ . The optimal acceptor A∗ just applies in parallel all deterministic trans-

ducers hoping one of them outputs a Π∗-proof and lets Π∗ verify the result.
Once Π∗ returns 1, the acceptor A∗ stops.

Since every acceptor A is a particular case of a proof system, there is a
polynomial-time algorithm that, given tautology x, outputs Π∗-proofs in time
polynomial in |x| and time spent by A on x. ��

Remark 1. Sadowski [Sad07] explains that there exist an optimal automatizable
proof system for TAUT iff there is a (deterministic) acceptor that is optimal for
non-deterministic acceptors as well.

3.2 Messner’s Proof

Messner [Mes99] generalized the result of Kraj́ıček and Pudlák to a wider class of
languages. His proof is also interesting even in the TAUT case, because it replaces
the statement about the correctness of a proof system on all inputs of certain
size by the statement about the correctness of a single proof of a single input.

Definition 1 ([BH77]). A language L is paddable if there is an injective non-
length-decreasing polynomial-time padding function padL : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ that is polynomial-time invertible on its image and such that for every x
and w,

x ∈ L ⇐⇒ padL(x, w) ∈ L.

Theorem 2 ([Mes99]). For every paddable r.e. language L, optimal acceptors
for L exist iff p-optimal proof systems for L exist.

Proof. ⇒ . Similarly to Kraj́ıček-Pudlák’s proof, a candidate proof for our p-
optimal proof system Π∗ contains a description of a proof system Π (with a
quadratic alarm clock) and a candidate Π-proof π, and Π∗(x, (Π, π)) starts the
verification by simulating Π(x, π). What makes a difference is how Π∗ verifies
the correctness of Π .

One could simulate the optimal acceptor A∗ on x restricting its running time
to a certain polynomial of |x| + |π|. However, there is no warranty that this
amount of time is enough for A∗. Therefore, we run it on a different input where
A∗ is guaranteed to run in polynomial time and certifies the correctness of the
proof π. Namely, we run it on padL(x, π). By the definition of padL, the result
is 1 iff x ∈ L. For a correct proof π, this result is output in a polynomial time
because for a correct system Π , the set {padL(x, π) | x ∈ L, Π(x, π) = 1} ⊆ L
can be accepted in a polynomial time (the polynomial is the sum of the time
spent by pad−1

L and by Π), and A∗ is an optimal acceptor.
⇐ . See Theorem 1. ��
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4 Non-uniform Advice Gives Optimal Proof Systems

Cook and Kraj́ıček [CK07] show that allowing one bit of non-uniform advice
yields a p-optimal proof system (against simulations with advice). A similar
result for acceptors is not known.

Definition 2. A proof system with t(n) bits of advice is a polynomial-time al-
gorithm Π(x, w, α) and a sequence (αn)n∈N, where αn ∈ {0, 1}t(n), such that for
all x,

x ∈ L ⇐⇒ ∃w Π(x, w, α|x|+|w|) = 1.

Theorem 3 ([CK07], see also [BKM09b]). For every language L, there is
a proof system with 1 bit of advice that simulates every proof system with k(n) =
O(log n) bits of advice. Moreover, the simulation can be computed in polynomial
time with k(n) bits of advice.

Proof. A candidate proof for the constructed proof system Π∗ contains a de-
scription of a proof system Π (a deterministic Turing machine given by its
Gödel number and equipped with a quadratic alarm clock) written in unary as
1Π , a candidate Π-proof π, and an advice string α ∈ {0, 1}k(n) written in unary
as a string 1α of length ≤ 2k(n). Then Π∗(x, (1Π , π, 1α)) starts the verification
by simulating Π(x, π, α). To verify the correctness of Π , the system Π∗ simply
queries its advice bit, which is supposed to say whether Π with advice string
α is correct on all candidate theorems of size |x| and proofs of size |π|. To en-
sure that this is the same bit for all couples (x, (1Π , π, 1α)) of the same size, we
must choose pairing function such that for all strings a1, a2, a3, a4, b1, b2, b3, b4,
for each i, |ai| �= |bi| ⇒ |(a1, (a2, a3, a4))| �= |(b1, (b2, b3, b4))|.

The simulation can be computed trivially. ��

Remark 2. One may suppose that, similarly to the classical case, the existence
of optimal proof systems with advice implies the existence of disjoint NP pairs
with advice. This is indeed the case; however, in order to keep the closedness
under reductions (with advice) the advice given must have length O(1) and not
a specific constant number of bits. For exactly one bit of advice one gets only an
NP pair that is hard for disjoint NP without advice under many-one reductions
without advice [BS09].

5 Heuristic Case: Optimal Acceptors Exist, Hope for
Proof Systems

Hirsch and Itsykson [HI10] introduced heuristic2 acceptors (called heuristic au-
tomatizers in [HI10]) and heuristic proof systems. Heuristic algorithms (see, e.g.,

2 All heuristic computations that we consider are randomized. Therefore, we omit the
word “randomized” from the terms that we introduce and mention it explicitly only
in the definitions. However, it is possible to consider deterministic heuristic acceptors
and proof systems as well.
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[BT06]) are algorithms that make errors for a small amount of inputs. Similarly,
heuristic proof systems claim a small amount of wrong “theorems”.

Since we are interested in the behaviour only on the positive instances (“the-
orems”), our definition of a distributional problem is different from the usual
definition used for heuristic algorithms. Formally, we have a probability distribu-
tion concentrated on non-theorems and require that the probability of sampling
a non-theorem accepted by an algorithm or validated by a proof system is small.

Definition 3. We call a pair (D, L) a distributional proving problem if D is a
collection of probability distributions Dn concentrated on L ∩ {0, 1}n.

In what follows we write Prx←Dn to denote the probability taken over x from
such distribution, while PrA denotes the probability taken over internal random
coins used by algorithm A.

5.1 Heuristic Acceptors

Definition 4. A heuristic acceptor for distributional proving problem (D, L) is
a randomized algorithm A with two inputs x ∈ {0, 1}∗ and d ∈ N that satisfies
the following conditions:

1. A either outputs 1 (denoted A(. . .) = 1) or does not halt at all;
2. For every x ∈ L and d ∈ N, A(x, d) = 1.
3. For every n, d ∈ N,

Pr
r←Dn

{
Pr
A
{A(r, d) = 1} >

1
8

}
<

1
d
.

(In fact, the specific constant is not important.)

Remark 3. Similarly to the classical case, for recursively enumerable L, condi-
tions 1 and 2 can be easily enforced at the cost of a slight overhead in time by
running L’s semidecision procedure in parallel.

Given the definition of heuristic acceptor, we now adapt the classical notions of
simulation and optimality to the heuristic case and give related basic facts. In
what follows, all acceptors are for the same problem (D, L).

Definition 5. The time spent by heuristic acceptor A on input (x, d) is defined
as the median time

tA(x, d) = min
{

t ∈ N

∣∣∣∣ Pr
A
{A(x, d) stops in time at most t} ≥ 1

2

}
.

Definition 6. Heuristic acceptor S simulates heuristic acceptor W if there are
polynomials p and q such that for every x ∈ L and d ∈ N,

tS(x, d) ≤ max
d′≤q(d·|x|)

p(tW (x, d′) · |x| · d).

An optimal heuristic acceptor is one that simulates every heuristic acceptor.



Optimal Acceptors and Optimal Proof Systems 35

Definition 7. Heuristic acceptor A is polynomially bounded if there is a poly-
nomial p such that for every x ∈ L and every d ∈ N,

tA(x, d) ≤ p(d · |x|).

The following proposition follows directly from the definitions.

Proposition 1

1. If W is polynomially bounded and is simulated by S, then S is polynomially
bounded too.

2. An optimal heuristic acceptor is not polynomially bounded if and only if no
heuristic acceptor is polynomially bounded.

Remark 4 (I.Monakhov). If one-way functions exist, then there is a polynomial-
time samplable distribution D such that (D, TAUT) has no polynomially bounded
heuristic acceptor.

Theorem 4 ([HI10]). Let (D, L) be a distributional proving problem, where
L is recursively enumerable and D is polynomial-time samplable, i.e., there is
a polynomial-time randomized Turing machine that given 1n on input outputs
x with probability Dn(x) for every x ∈ {0, 1}n. Then there exists an optimal
heuristic acceptor for (D, L).

Proof (sketch). The construction consists of three procedures.
The first one, Test, estimates the probability of error of a candidate acceptor

A on a given input by repeating A and counting its errors, it accepts if the number
of errors is above certain threshold.

The second one, Certify, makes sure that the outermost probability in the
correctness condition of a candidate acceptor A is small enough by repeating A
at randomly sampled inputs of prescribed size, and counting errors reported by
Test.

Finally, the optimal acceptor U , given x and d, runs the following processes
for i ∈ {1, . . . , l(n)}, where l(n) is any slowly growing function, in parallel:

1. For certain d′, run Ai(x, d′), the algorithm with Gödel number i satisfying
conditions 1 and 2 of Def. 4, and compute the number of steps Ti made by
it before it stops.

2. If Certify accepts Ai executed on inputs of size |x| for at most Ti steps,
then output 1 and stop U (all processes).

If none of the processes has stopped, U goes into an infinite loop. ��

5.2 Heuristic Proof Systems

Definition 8. Randomized Turing machine Π is a heuristic proof system for
distributional proving problem (D, L) if it satisfies the following conditions.

1. The running time of Π(x, w, d) is bounded by a polynomial in d, |x|, and
|w|.
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2. (Completeness) For every x ∈ L and every d ∈ N, there exists a string w
such that Pr{Π(x, w, d) = 1} ≥ 1

2 . Every such string w is called a correct
Π(d)-proof of x.

3. (Soundness) Prx←Dn{∃w : Pr{Π(x, w, d) = 1} > 1
8} < 1

d .

Unfortunately, we cannot prove the equivalence between acceptors and proof
systems in the heuristic case. Therefore, we focus our attention on automatizable
heuristic proof systems. Surprisingly, even the equivalence between acceptors and
automatizable proof systems is not straightforward in this case.

In [HI10], a heuristic automatizable proof system is defined straightforwardly,
and it is shown that it necessarily defines an acceptor taking time at most poly-
nomially larger than the length of the shortest proof in the initial system. This
shows that heuristic acceptors form a more general notion than automatizable
heuristic proof systems. Neither the converse nor the existence of an optimal
automatizable heuristic proof system is shown in [HI10].

However, for a relaxed definition presented below, the equivalence does take
place. (The proof of this statement is not published yet [HIS10], so you should
take it with a bunch of salt for now.) In particular, there exists a p-optimal
system in the class of heuristic automatizable proof systems.

Definition 9. Heuristic proof system is automatizable if there is a randomized
Turing machine A satisfying the following conditions.

1. For every x ∈ L and every d ∈ N, there is a polynomial p such that

Pr
w←A(x,d)

{
|w| ≤ p(d · |x| · |w∗|) ∧ Pr{Π(x, w, d) = 1} ≥ 1

4

}
≥ 1

4 , (1)

where w∗ is the shortest correct Π(d)-proof of x.
2. The running time of A(x, d) is bounded by a polynomial in |x|, d, and the

size of its own output.

Remark 5. 1. This definition is different from one in [HI10].
2. We do not require the algorithm A to generate correct proofs. It suffices to

generate “quasi-correct” (such that Pr{Π(x, w, d) = 1} ≥ 1
4 ) with probability

1
4 . At present, we are unable to construct an optimal system or to show the
equivalence to heuristic acceptors if 1

4 is strengthened to 1
2 as in [HI10].

Definition 10. We say that heuristic proof system Π1 simulates heuristic proof
system Π2 if there exist polynomials p and q such that for every x ∈ L, the
shortest correct Π

(d)
1 -proof of x has size at most

p(d · |x| · max
d′≤q(d·|x|)

{the size of the shortest correct Π
(d′)
2 -proof of x}). (2)

We say that heuristic proof system Π1 p-simulates3 heuristic proof system Π2 if
Π1 simulates Π2 and there is a polynomial-time (deterministic) algorithm that
3 The definition we give here may be too restrictive: it requires a deterministic algo-

rithm that is given a proof for specific d′ = q(d · |x|). It works for our purposes, but
can be relaxed.
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converts a Π
q(d·|x|)
2 -proof into a Π

(d)
1 -proof of size at most (2) such that the

probability to accept a new proof is no smaller than the probability to accept the
original one.

Definition 11. Heuristic proof system Π is polynomially bounded if there ex-
ists a polynomial p such that for every x ∈ L and every d ∈ N, the size of the
shortest correct Π(d)-proof of x is bounded by p(d · |x|).

Proposition 2. If heuristic proof system Π1 simulates system Π2 and Π2 is
polynomially bounded, then Π1 is also polynomially bounded.

We now show how heuristic acceptors and automatizable heuristic proof systems
are related.

Consider automatizable proof system (Π, A) for distributional proving prob-
lem (D, L) with recursively enumerable language L. Let us consider the following
algorithm AΠ(x, d):

1. Execute 1000 copies of A(x, d) in parallel.
For each copy,
(a) if it stops with result w, then

– execute Π(x, w, d) 60000 times;
– if there were at least 10000 accepts of Π (out of 60000), stop all

parallel processes and output 1.
2. Execute the enumeration algorithm for L; output 1 if this algorithm says

that x ∈ L; go into an infinite loop otherwise.

Proposition 3. If (Π, A) is a (correct) heuristic automatizable proof system for
recursively enumerable language L, then AΠ is a (correct) heuristic acceptor for
x ∈ L and tAΠ (x, d) is bounded by polynomial in the size of the shortest correct
Π(d)-proof of x.

The proof is a routine application of Chernoff bounds, and we skip it. The
converse statement is also true. The construction of automatizable heuristic proof
system (Π, A) made from heuristic acceptor B is as follows.
A(x, d):

1. Run B(x, d).
2. If B(x, d) = 1, output 1T , where T is the total number of steps made by B.

Π(x, w, d):

1. Run B(x, d).
2. If B makes less than |w| steps and outputs a 1, accept. Otherwise, reject.

Theorem 5. (Π, A) is an automatizable heuristic proof system. For every x ∈
L, the length of the shortest Π-proof is upper bounded by the (median) running
time of B.

Corollary 1 (optimal automatizable heuristic proof system). There is
an automatizable heuristic proof system that p-simulates every automatizable
heuristic proof system.
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6 Open Questions

Classical systems. It is still unknown whether (p-)optimal propositional proof
systems exist. No concise widely believed structural assumption (such as NP �=
co -NP) is known to imply their nonexistence.

Acceptors with advice. Construct an optimal acceptor with short non-uniform
advice either by extending the equivalence between optimal acceptors and p-
optimal proof systems or directly. The main obstacle here is the difference be-
tween proof systems with “input advice” (as defined above) and proof systems
with “output advice” (where an advice string corresponds to the length of input
x, not proof w). However, [BKM09b] shows that for propositional proof sys-
tems with logarithmic advice, these cases are equivalent w.r.t. the polynomial
boundedness.

Heuristic systems. It is challenging to extend the equivalence between optimal
acceptors and p-optimal proof systems to the heuristic case, as it would give an
optimal heuristic system.

It would be interesting to strengthen the automatizability condition for heuris-
tic systems by requiring to output real proofs (i.e., replace the innermost prob-
ability 1

4 by 1
2 ) without losing the equivalence to heuristic acceptors.

It would also be interesting to suggest a notion of a heuristic disjoint NP pair
and show the existence of a complete pair.
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The Complexity of Geometric Problems

in High Dimension�
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Abstract. Many important NP-hard geometric problems in Rd are triv-
ially solvable in time nO(d) (where n is the size of the input), but such
a time dependency quickly becomes intractable for higher-dimensional
data, and thus it is interesting to ask whether the dependency on d can
be mildened. We try to adress this question by applying techniques from
parameterized complexity theory.

More precisely, we describe two different approaches to show parame-
terized intractability of such problems: An “established” framework that
gives fpt-reductions from the k-clique problem to a large class of geomet-
ric problems in Rd, and a different new approach that gives fpt-reductions
from the k-Sum problem.

While the second approach seems conceptually simpler, the first
approach often yields stronger results, in that it further implies that
the d-dimensional problems reduced to cannot be solved in time no(d),
unless the Exponential-Time Hypothesis (ETH) is false.

Keywords: parameterized complexity, geometric dimension, lower
bounds, exponential-time hypothesis.

1 Introduction

The algorithm of Megiddo [27] for linear programming in Rd with n constraints
runs in TLP (n, d) = O(22d

n) time. When d is bounded, linear programming
can be solved in strongly polynomial time, i.e., time that depends only on n
and not on the binary representation of the input; when d is unbounded, only
weakly polynomial time algorithms are known. What about geometric problems
in Rd that are NP-hard when the dimension d is unbounded? For many such
problems like, e.g., the problem of computing the minimum enclosing cylinder
of a set of n points in Rd [29], the problem of separating two n point sets in Rd

by two hyperplanes [28], or the problem of deciding whether the convex hull of
n points in Rd is simplicial [17], all known algorithms run in nΘ(d) time. It is
widely conjectured that the linear dependence on d cannot be removed from the
exponent of n. However little evidence of this has been given so far.
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Parameterized complexity theory provides a framework for the study of algo-
rithmic problems by measuring their complexity in terms of one or more param-
eters, explicitly or implicitly given by their underlying structure, in addition to
the problem input size. The main idea is to devise exponential-time algorithms
for NP-hard problems, confining exponentiality to the parameters (or to show
that such algorithms do not exist). For an introduction to the field of parame-
terized complexity theory, we refer to the recent textbooks by [19] and [30], in
addition to the first, classic work of [14]. For completeness we review some basic
definitions: A problem with input instance of size n and with a non-negative
integer parameter k is fixed-parameter tractable (fpt) if it can be solved by an
algorithm that runs in O(f(k) · nc) time, where f is a computable function de-
pending only on k and c is a constant independent of k; such an algorithm is
called an fpt-algorithm and it is (informally) said to run in fpt-time. The class
of all fixed-parameter tractable problems, denoted by FPT, is the parameter-
ized complexity analog of P. Megiddo’s algorithm for linear programming in Rd

mentioned above is an example of an fpt-algorithm (with the dimension d be-
ing the parameter)1. Parameterized complexity theory provides a set of general
algorithmic techniques for proving fixed-parameter tractability that have been
successfuly used for a variety of parameterized algorithmic problems in graph
theory, logic, and computational biology. More importantly for our purposes, the
theory also provides a framework for establishing fixed-parameter intractability.
To this end, an (infinite) hierarchy of complexity classes has been introduced, the
W-hierarchy, with FPT being its lowest class. Its first level, W[1], can be thought
of as the parameterized analog of NP. Hardness is sought via fpt-reductions, i.e.,
a fpt-time many-one mapping from a problem Π , parameterized with k, to a
problem Π ′, parameterized with k′, such that k′ ≤ g(k) for some computable
function g. These reductions preserve fixed-parameter tractability between pa-
rameterized problems. Hardness for some level of the hierarchy can be thought
as the parameterized complexity analog of NP-hardness, and, as in classical com-
plexity theory, intractability results are conditional and, thus, serve as relative
lower bounds. The working assumption for parameterized complexity is that all
levels of the W-hierarchy are pairwise distinct. For example, a problem that is
W[1]-hard for some parameterization is not fixed-parameter tractable for this
parameterization unless FPT=W[1] (which is considered highly unlikely under
current standard complexity theoretic assumptions).

The dimension of geometric problems in Rd is a natural parameter for studying
their parameterized complexity. In terms of parameterized complexity theory the
question alluded to above is whether any of these problems is fixed-parameter
tractable with respect to d; note that NP-hardness for a problem does not exclude
such a possibility. Proving any of these problems to be W[1]-hard with respect to
d, gives a strong evidence that an fpt-algorithm does not exist, under standard
complexity theoretic assumptions.

1 This is of course not surprising, since the linear programming problem is in fact in
P. The fact that the NP-hard integer linear programming problem is FPT when
parameterized by the dimension may be somewhat more interesting [19,30].
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W[1]-hardness is often established by fpt-reductions from the k-clique prob-
lem in general graphs (where the parameter k measures the size of the clique),
which is known to be W[1]-complete [14]. In section 2 we describe a framework
that gives such fpt-reductions for a surprisingly large class of geometric problems
in Rd (parameterized by the dimension d). These reductions often have an ad-
ditional property which implies that the problems considered cannot be solved
in time no(d), unless the Exponential-Time Hypothesis (ETH) [24] is false2: As
was show in [13,12], the k-clique problem takes time nΩ(k) unless ETH fails to
hold. These papers also establish that, if the k-clique problem is reducible to
a problem Q by an fpt-reduction in which the parameter d is linearly bounded
by k (a feature that many reductions that follow the framework have), then the
problem Q takes time nΩ(d) unless ETH fails.

In section 3 we describe a different approach to obtain W[1]-hardness results
for geometric problems parameterized by the dimension by giving fpt-reductions
from the k-Sum problem [20,17] (a variant of the subset-sum problem) which
was shown to be W[1]-hard by Downey and Koblitz [18]. These reductions are
conceptually much simpler but “weaker” in the sense that the reduction of [18]
transforms an instance of the k-clique problem into a O(k2)-Sum instance. This
only implies that geometric problems in Rd that are reduced from k-Sum such
that d = O(k) cannot be solved in time no(

√
d) (assuming the ETH).

At this point the reader should be cautious : many algorithmic results in com-
putational geometry assume the real RAM, a much stronger model of compu-
tation than the standard Turing machine adopted in parameterized complexity
theory. Extending the theory to accomodate other models of computation is a
current research issue and one has to be careful before claiming (in)tractability
of geometric problems. To make geometric reductions suitable for the Turing
machine model, the data must often be perturbed using fixed-precision round-
ings (using only polynomially many bits, of course). We will ingore this issue
in the following and refer to [8,7] where such a rounding procedure is described
and analyzed in detail.

Related independent work. The dimension of geometric problems is a natural
parameter for studying their parameterized complexity. However, apart from
the classic results on linear (integer) programming mentioned above and the
body of our own work [6,8,7,21,22] which is described later in some more de-
tail, there are only few other results of this type: Langerman and Morin [25]
gave fixed-parameter tractability results for the problem of covering points with
hyperplanes, while the problems of computing the volume of the union of axis
parallel boxes has been shown to be W[1]-hard by Chan [9]. The problem of
linear programming with violations (given a system of n linear inequalities with
d variables, decide whether l inequalities can be removed so that the system be-
comes feasible) was shown to be fixed-parameter tractable when parameterized
with both d and l. In fact it can be solved in O(ldTLP (n, d)) time [26], and in
O(dlTLP (n, d)) time [5].
2 The Exponential Time Hypothesis conjectures that n-variable 3-CNFSAT cannot be

solved in 2o(n)-time.
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2 The Scaffold-Constraint Technique

W[1]-hardness is often established by fpt-reductions from the k-clique problem
in general graphs (where the parameter k measures the size of the clique), which
is known to be W[1]-complete [14]. In this section we describe a framework
pioneered in Cabello et al. [8,7] that gives such fpt-reductions for a surprisingly
large class of geometric problems in Rd when they are parameterized by the
dimension d.

2.1 Methodology

In order to show W[1]-hardness of a geometric decision problem Π in Rd (param-
eterized with d), we will use a reduction from the W[1]-hard k-clique problem:
Given a graph G, decide if it has a clique of size k. We first construct a scaf-
folding structure that restricts the solutions of Π to nk combinatorially different
solutions, which can be interpreted as potential k-cliques in a graph with n
vertices. Additional constraint objects will then encode the edges of the input
graph G and “cancel out” some of the potential k-cliques. Of course we have to
be careful to construct geometric instances which lie in Euclidean space whose
dimension depends only on k, i.e., we have to make sure that d = f(k) for some
arbitrary (but computable) function f . The “milder” the dependence of d on k,
the better the lower bound we get from the hardness result. In many cases the
dependence is linear. The scaffolding structure is usually highly symmetric. It is
composed of k symmetric subsets of a polynomial (in n) number of constraint
objects that lie in orthogonal subspaces. Orthogonality together with the specific
geometric properties of the problem Π then often allows us to restrict the num-
ber of potential solutions of Π to nk combinatorially different solutions; these
in turn correspond to k-subsets of the vertex set of G, i.e., potential k-cliques of
G. The way of placing the constraint objects is crucial: each such object lies in
a 4-dimensional (or 2-dimensional) subspace and “cancels out” an exponential
number of potential solutions; these correspond to k-subsets of the vertex set of
G that do not form a k-clique in G.

2.2 An Example: Maximum-Size Feasible Subsystem

We illustrate the technique with the problem of computing the maximum-size
feasible subsystem of a system of linear inequalities with d variables (this reduc-
tion has been described in [21]):

– Given a system of n linear inequalities with d variables and an integer l,
decide whether there is a solution satisfying l of the inequalities.

This problem is the same as the problem of computing the depth of an
arrangement of a set H of n halfspaces in Rd (which is the maximum number
of halfspaces in H a point of Rd can be contained in). It also equivalent (in terms
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of standard complexity theory) to the problem of linear programming with vio-
latons [26]:

– Given a system of n linear inequalities with d variables and an integer l,
decide whether l inequalities can be removed so that the remaining system
becomes feasible.

The classical complexity of the maximum-size feasible subsystem problem was
studied in Amaldi and Kann [1]. Several results on the hardness of approxima-
bility (it is basically as hard to approximate as the clique problem) can also be
found in this paper, as well as in Arora et al. [3]. Both papers reduce from k-
vertex cover (which is fpt wrt. k) and create instances in O(n)-dimensional space.
For exact and approximation algorithms for this and several related problems
see Aronov and Har-Peled [2]. The paper of Arora et al. [3] also establishes the
hardness of approximability for the problem of linear programming with viola-
tions. As mentioned above, from a parameterized complexity point of view, the
problem was shown to be fixed-parameter tractable when parameterized with
both d and l.

We first consider the following problem: Given a system of linear equations find
a solution that satisfies as many equations as possible. The decision version of this
problem is as follows: Given a set of n hyperplanes in Rd and an integer l, decide
whether there exists a point in Rd that is covered by at least l of the hyperplanes.
For l = d+1 this problem is the dual of the affine degeneracy-detection problem
we will consider in section 3; there we will give a conceptually much simpler
W[1]-hardness proof (which unfortunately gives a somewhat “weaker” result
when assuming the ETH).

In the following, x = (x1, . . . , xk) ∈ Rk denotes a k-dimensional vector. Let
[n] = {1, . . . , n}. We identify the grid [n]k with the set of vectors in Rk with
integer coordinates in [n]. For a set H of hyperplanes in Rk and a point x ∈ Rk

we define
depth(x,H) = |{h ∈ H | x ∈ h}|.

Given an undirected graph G([n], E) and k ∈ N, we will now construct a set
HG,k of nk + 2|E|

(
k
2

)
hyperplanes in Rk such that G has a clique of size k if and

only if there is a point x ∈ Rk with depth(x,HG,k) = k +
(
k
2

)
.

For 1 ≤ i ≤ k and 1 ≤ v ≤ n we define the hyperplane hv
i = {x | xi = v}. The

scaffolding set H0 = { hv
i | 1 ≤ i ≤ k, 1 ≤ v ≤ n } consists of nk hyperplanes.

Any point x is contained in at most k hyperplanes in H0; equality is realized for
the points in [n]k:

Lemma 1. depth(x,H0) ≤ k for any x ∈ Rk, and depth(x,H0) = k if and
only if x ∈ [n]k.

For 1 ≤ i < j ≤ k and 1 ≤ u, v ≤ n we define the hyperplane huv
ij = {x |

(xi − u) + n(xj − v) = 0 }. This hyperplane contains only those points x of the
grid for which xi = u and xj = v (see Figure 1):
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xi

xj

1 u n

v huv
ij

Fig. 1. The hyperplane huv
ij contains only points x ∈ [n]k for which xi = u and xj = v

Lemma 2. x ∈ huv
ij ∩ [n]k if and only if xi = u and xj = v.

Proof. Assume x ∈ huv
ij ∩ [n]k, i. e., (xi − u) + n(xj − v) = 0 and xi, xj ∈ [n]. If

xi �= u, the left-hand side of the equation is not divisible by n and thus cannot
be 0. Therefore, xi = u and thus, xj = v. The other direction is obvious.

For 1 ≤ i < j ≤ k we define the set HE
ij = { huv

ij | uv ∈ E or vu ∈ E } of 2|E|
hyperplanes. All these hyperplanes are parallel; thus a point is contained in at
most one hyperplane of HE

ij . By Lemma 2, a point x ∈ [n]k is contained in a
hyperplane of HE

ij if and only if xixj is an edge of E.
We define the constraint set HE =

⋃
1≤i<j≤kHE

ij consisting of 2|E|
(
k
2

)
hyper-

planes. From the above, we have the following facts:

Lemma 3. (a) depth(x,HE) ≤
(
k
2

)
for any x ∈ Rk.

(b) Let x ∈ [n]k. Then depth(x,HE) = |{ (i, j) | 1 ≤ i < j ≤ k, xixj ∈ E }|
(c) Let x ∈ [n]k. Then depth(x,HE) =

(
k
2

)
iff {x1, . . . , xk} is a k-clique in G.

For the set HG,k = H0 ∪HE , Lemmas 1 and 3 immediately imply:

Lemma 4. depth(x,HG,k) = k +
(
k
2

)
if and only if x ∈ [n]k and {x1, . . . , xk}

is a k-clique in G.

The above construction of the set HG,k is an fpt-reduction with respect to both
the depth of the set of hyperplanes, i. e., the maximum number of hyperplanes
covering any point, and the dimension. Hence, we have the following.

Theorem 1. Given a set of n of linear equations on d variables and an integer
l, deciding whether there exists a solution that satisfies l of the equations is
W[1]-hard with respect to both l and d.

Replacing each equation by 2 inequalities, an instance of the above problem is
transformed into an instance with linear inequalities such that there exists a
solution satisfying l out of the n equations of the original instance if and only
if there exists a solution satisfying n + l out of the 2n inequalities of the final
instance; the number of variables stays the same. Hence, we have the following:

Theorem 2. Given a set of n linear inequalities on d variables and an integer
l, deciding whether there exists a solution that satisfies l of the inequalities is
W[1]-hard with respect to d.
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In this reduction the dimension is linear in the size of the clique, hence an no(d)-
time algorithm for any of these problems implies an no(k)-time algorithm for
the k-clique problem, which in turn implies that n-variable 3-CNFSAT can be
solved in 2o(n)-time. The Exponential Time Hypothesis conjectures that no such
algorithm exists.

2.3 Further Applications

The scaffold-constraint technique has been applied succesfully to a number of
geometric problems in Rd from various application areas. Most of them were
known to be NP-hard and all of them are trivially solvable in time nO(d), see for
example [28,29,23,16,4]:

– Shape matching problems [6]:
• Given two point sets A, B ∈ Rd, decide whether A is congruent to a

subset of B. This result generalizes to any point-set distance D for which
D(A, B) = 0 ⇔ A ⊂ B; this is a desired property for any distance that
is used to find small patterns in larger ones, e.g., the directed Hausdorff
distance or the Earth Mover’s distance.

– Clustering and related problems [7,21]:
• Given points in Rd, decide whether they can be covered by the union of

2 unit balls/4 unit cubes.
• Given points in Rd, compute their minimum enclosing cylinder.
• Given two point sets in Rd, decide whether they can be separated by

two hyperplanes.
– Discrepancy-computation and related problems [22]:

• Given two point sets R, B in Rd, compute an axis-aligned box that does
not contain any point of R and that contains as many points of B as
possible.

• Given a point set P in [0, 1]d, compute
∗ the largest empty axis-aligned box inside [0, 1]d that contains the

origin.
∗ the largest empty axis-aligned box inside [0, 1]d.
∗ the star/box discrepancy of P .

Using reductions from k-clique following the framework described above we can
show that (the decision versions of) all these problems are W[1]-hard when pa-
rameterized by the dimension d.

3 The k-Sum Technique

In this section we describe a different approach to obtain W[1]-hardness results
for geometric problems parameterized by the dimension by giving fpt-reductions
from the k-Sum problem [17]:

– Given n pairwise distinct integers, decide whether k of them sum to zero.
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This problem is NP-hard [17] and can be solved in (roughly) O(nk/2) time.
It can be shown to be W[1]-hard with respect to k from a simple reduction
from the subset-sum problem which was shown to be W[1]-hard by Downey
and Koblitz [18]. The reduction of [18] transforms an instance of the k-clique
problem on a graph with n vertices into a O(k2)-Sum instance on integers with
O(n) many bits.

Reductions from k-Sum seem somewhat more “natural” for computational
geometers: Gajentaan and Overmars [20] introduced the 3-Sum problem for the
purpose of arguing that certain problems in planar geometry “should” take Ω(n2)
time; showing 3-Sum-hardness for such problems is considered a routine task
today. Surprisingly, to the best of our knowledge, this approach has not been
used to show W[1]-hardness of geometric problems in Rd.

Based on the work of Erickson [17] it is rather straightforward to show W[1]-
hardness for two problems by a reduction from k-Sum. We first describe a re-
duction for the affine degeneracy-detection problem:

– Given an n-point set P in Rd, decide it is affinely degenerate, i.e., if any d+1
points of P lie on a single hyperplane.

As mentioned above, this problem is the dual of the maximum-size feasible sub-
system problem for linear equations (for l = d+1), so we already know that it is
W[1]-hard. The following argument seems conceptually much simpler than the
one from the previous section: The weird moment curve in Rd, denoted ωd(t),
is the set of points ωd(t) = (t, t2, . . . , td−1, td+1), where the parameter t ranges
over the reals. Erickson [17] has shown that for real numbers x0 < x1 < · · · < xd

the orientation of the simplex (ωd(x0), ωd(x1), . . . , ωd(xd)) is given by the sign
of

∑d
i=0 xi; in particular the simplex is affinely degenerate iff

∑d
i=0 xi = 0. So

by lifting a k-Sum instance to the weird moment curve in Rk we immediately
get an fpt-reduction and thus the following:

Theorem 3. Given an n-point set P in Rd, deciding if it is affinely degenerate
is W[1]-hard with respect to d.

As was already noted this approach has a drawback: The reduction of [18] trans-
forms an instance of the k-clique problem into a O(k2)-Sum instance. If we “ap-
pend” the lifting reduction just described we can merely conclude that the affine
degeneracy-detection problem in Rd cannot be solved in time no(

√
d) (assuming

the ETH).
A very similar reduction works for the convex hull simlicity-detection problem:

– Given an n-point set in Rd, decide whether its convex hull is simplicial, i.e.,
if all its facets (and thus all its faces) are simplices.

In unbouded dimension this problem is known to be coNP-complete [10,15]
and counting the number of convex hull facets is #P-hard [15]. An n-vertex
polytope in Rd can have Ω(n�d/2�) facets and the complete hull can be com-
puted in O(n�d/2�) time [11]; output sensitive algorithm are known that run
in time O(n1−1/(�d/2�+1) polylog n + f log n) (where f denotes the size of the
output), c.f. [17] and the references therein.
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Using the weird moment curve, Erickson [17] describes a reduction from the
k-Sum problem to the problem of detecting simplicial convex hulls in R2k−1:
A set X of n integers is transformed into a set X ′ of 2n points in R2k−1 such
that k elements of X sum to zero iff the convex hull of X ′ is simplicial. In the
reduction the coordinates of X ′ increase by a multiplicative factor of 2dn (so
their bit-length increases only polynomially). This gives the following:

Theorem 4. Given an n-point set P in Rd, deciding if its convex hull is sim-
plicial is W[1]-hard with respect to d.

Of course this approach has the same drawback as the reduction for the affine
degeneracy-detection problem.
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Abstract. The classical approach to proof complexity perceives proof
systems as deterministic, uniform, surjective, polynomial-time com-
putable functions that map strings to (propositional) tautologies. This
approach has been intensively studied since the late 70’s and a lot of
progress has been made. During the last years research was started in-
vestigating alternative notions of proof systems. There are interesting
results stemming from dropping the uniformity requirement, allowing
oracle access, using quantum computations, or employing probabilism.
These lead to different notions of proof systems for which we survey
recent results in this paper.

1 Introduction

In their seminal paper [CR79], Cook and Reckhow defined the notion of a proof
system for an arbitrary language L as a polynomial-time computable function
f with range L. A string w with f(w) = x is called an f -proof for x ∈ L.
All classical proof systems like Resolution, Cutting Planes, or Frege systems fall
under this general concept, and in the last thirty years there has been great
progress in understanding the complexity of proofs in this model (cf. [Seg07] for
a recent survey).

While the Cook-Reckhow approach is certainly the most useful setting for
practical applications, it is nevertheless interesting to ask what happens if we
allow alternative computational resources for the verification of proofs. This
approach is very common in complexity theory where besides (non-)deterministic
polynomial time a number of other models like randomisation, non-uniformity,
oracle access, or new paradigms as quantum computing are studied.

In proof complexity these considerations were started recently by several re-
searchers. In this paper we mainly survey results on proof systems with advice
which were introduced by Cook and Kraj́ıček [CK07], but also mention ran-
domised systems investigated by Hirsch and Itsykson [HI10,Hir10] and quantum
proof systems introduced by Pudlák [Pud09]. The common idea in these ap-
proaches is that verification of proofs can be performed with additional resources,
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not just polynomial time. The results show a number of new phenomena such as
the existence of optimal proof systems with advice or under weak oracles. Such
results are not known in the classical setting. We also address other interesting
questions such as the existence of polynomially bounded proof systems—which
receives a different characterization in the advice model—and whether proofs
can be shortened by using quantum rules.

2 Proof Systems Using Advice

Our first non-classical model will be proof systems that use advice. Like in the
classical setting of Karp and Lipton [KL80] this will allow the proof systems to
use a specified amount of non-uniform information. Proof systems with advice
were recently introduced by Cook and Kraj́ıček [CK07] and further developed
by Beyersdorff, Köbler, and Müller [BKM09,BM,BM09].

2.1 Setting the Stage

Our general model of computation for proof systems f with advice is a poly-
nomial-time Turing transducer with several tapes: an input tape containing the
proof π, possibly several work tapes for the computation of the machine, an
output tape where we output the proven element f(π), and an advice tape
containing the advice. We start with a quite flexible definition of proof systems
with advice for arbitrary languages, generalizing the notion of propositional proof
systems with advice from [CK07].

Definition 1 ( [BKM09]). For a function k : N → N, a proof system f for L
is a proof system with k bits of advice, if there exist a polynomial-time Turing
transducer M , an advice function h : N → Σ∗, and an advice selector function
� : Σ∗ → 1∗ such that

1. � is computable in polynomial time,
2. M computes the proof system f with the help of the advice h, i.e., for all

π ∈ Σ∗, f(π) = M(π, h(|�(π)|)), and
3. for all n ∈ N, the length of the advice h(n) is bounded by k(n).

For a class F of functions, we denote by ps/F the class of all ps/k with k ∈ F .

We say that f uses k bits of input advice if � has the special form �(π) = 1|π|.
On the other hand, in case �(π) = 1|f(π)| for all π in the domain of f , then f is
said to use k bits of output advice. By this definition, proof systems with input
advice use non-uniform information depending on the length of the proof, while
proof systems with output advice use non-uniform information depending on the
length of the proven formula.

We note that proof systems with advice are a quite powerful concept, as for
every language L ⊆ Σ∗ there exists a proof system for L with only one bit of
advice. In contrast, the class of all languages for which proof systems without
advice exist coincides with the class of all recursively enumerable languages.
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2.2 Polynomially Bounded Proof Systems with Advice

The classical Cook-Reckhow Theorem states that NP = coNP if and only if the
set of all tautologies TAUT has a polynomially bounded proof system, i.e., there
exists a polynomial p such that every tautology ϕ has a proof of size ≤ p(|ϕ|)
in the system. Consequently, showing super-polynomial lower bounds to the
proof size in propositional proof systems of increasing strength provides one way
to attack the P/NP problem. This approach, also known as the Cook-Reckhow
program, has lead to a very fruitful research on the length of propositional proofs.

What happens if the proof systems may use advice? Which languages admit
polynomially bounded proof systems in this new model? In [BKM09] a complete
characterization of this question was given. In particular, there is a tight con-
nection of this problem to the notion of nondeterministic instance complexity.
Similarly as Kolmogorov complexity, instance complexity measures the complex-
ity of individual instances of a language [OKSW94]. We now give the definition
of nondeterministic instance complexity from [AKMT00].

Definition 2 (Arvind et al. [AKMT00]). For a set L and a time bound t,
the t-time-bounded nondeterministic instance complexity of x with respect to L
is defined as nict(x : L) = min{ |M | : M is a t-time-bounded nondeterministic
machine, L(M) ⊆ L, and M decides correctly on x }.

We collect all languages with prescribed upper bounds on the running time and
nondeterministic instance complexity in a complexity class.

Definition 3 ( [BKM09]). The complexity class NIC[log, poly] contains all lan-
guages L for which there exists a polynomial p such that nicp(x : L) ≤ O(log |x|)
holds for all x ∈ Σ∗.

This class can be strictly placed between familiar non-uniform complexity classes:

Theorem 4 ( [BKM09]). NP � NP/1 � NP/log � NIC[log, poly] � NP/poly.

The classes in Theorem 4 are exactly the classes which in appear in the char-
acterization of polynomially bounded proof systems with advice, as given in
Table 1. Quite unusually in complexity theory, all complexity classes appearing
in this table are distinct by Theorem 4.

Table 1. Languages with polynomially bounded proof systems

input advice output advice reference

ps/poly NP/poly NP/poly [BKM09]

ps/log NIC[log, poly] NP/log [BKM09]

ps/1 NIC[log, poly] NP/1 [BKM09]

ps/0 NP [CR79]
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Concentrating on propositional proof systems (or more generally, on languages
from coNP), the picture simplifies a bit because it was shown in [BKM09] that
for a language L ∈ coNP, L ∈ NP/log if and only if L ∈ NIC[log, poly].

It is also natural to ask, how likely these assumptions actually are, i.e.,
what consequences follow from the assumption that such proof systems exist.
For TAUT we obtain a series of collapse consequences of presumably different
strength as shown in Table 2.

Table 2. Consequences of the existence of polynomially bounded proof systems (results
are from [BKM09])

Assumption Consequence
if TAUT has a polynomially bounded . . . then PH collapses to . . .

ps/poly (input or output advice) SNP
2 ⊆ Σp

3

ps/log (input or output advice) PNP[log]

ps/O(1) (input advice) PNP[log]

ps/O(1) (output advice) PNP[O(1)] = BH

ps/0 (no advice) NP

2.3 Optimal Proof Systems with Advice

Proof systems are compared according to their strength by simulations as intro-
duced in [CR79] and [KP89]. If f and g are proof systems for L, we say that g
simulates f if there exists a polynomial p such that for all x ∈ L and f -proofs
w of x there is a g-proof w′ of x with |w′| ≤ p (|w|). If such a proof w′ can even
be computed from w in polynomial time, we say that g p-simulates f . Proof
systems f , g which mutually (p-)simulate each other are called (p-)equivalent.

A prominent open question posed in [KP89] is whether there exists a strongest
proof system, called a (p-)optimal proof system, which (p-)simulates all proof
systems for L. This question has interesting consequences such as existence of
complete languages for promise classes [KMT03,BS09]. Despite a considerable
research effort the existence of optimal proof systems is still open (cf. [Hir10] in
this volume). Surprisingly, Cook and Kraj́ıček [CK07] have shown that there ex-
ists a propositional proof system with one bit of input advice which simulates all
classical Cook-Reckhow proof systems. The proof of this result easily generalizes
to arbitrary languages L, thus yielding:

Theorem 5 (Cook, Kraj́ıček [CK07], [BKM09]). For every language L
there exists a proof system P with one bit of input advice such that P simulates
all ps/log for L. Moreover, P p-simulates all advice-free proof systems for L.

In contrast, it seems unlikely that we can obtain a similar result for output
advice by current techniques (cf. [BM08] were we investigated this problem
for propositional proof systems). The question whether this optimality result
can be strengthened to p-optimality (where the simulations are replaced by p-
simulations) was also studied in detail in [BM08], with both negative and positive
results providing partial answers to the question.
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We remark that optimal proof systems are known to imply complete sets for
various promise classes [KMT03], and this relation also holds in the presence
of advice [BS09]. A related line of research has shown strong time and space
hierarchy theorems for randomised and other semantic classes which use advice
[FS04, FST05, vMP07, KvM08]. All these results are not known to hold in the
classical advice-free setting.

2.4 Proof Systems with Advice and Bounded Arithmetic

Propositional proof systems enjoy a very close relationship to weak arithmetic
theories, so-called bounded arithmetic, which in particular yields insight into
strong proof systems as Frege systems and their extensions [Kra95]. This connec-
tion also holds in the presence of advice, and this, in fact, was the motivation for
their introduction in [CK07]. There, Cook and Kraj́ıček investigate Karp-Lipton
collapse consequences of the assumption NP ⊆ P/poly. The classical Karp-Lipton
Theorem states that NP ⊆ P/poly implies a collapse of the polynomial hierarchy
PH to its second level [KL80]. Subsequently, these collapse consequences have
been improved by Köbler and Watanabe [KW98] to ZPPNP and by Sengupta
and Cai to Sp

2 (cf. [Cai07]). Making the stronger assumption that NP ⊆ P/poly
is provable in some weak arithmetic theory, Cook and Kraj́ıček obtained stronger
collapse consequences, namely to the Boolean hierarchy if the theory is PV (cf.
also [BM,Jeř09]).

One important intermediate step towards this result is a surprising trade-off
between advice and nondeterminism (which is unlikely to hold without reference
to bounded arithmetic):

Theorem 6 (Cook, Kraj́ıček [CK07]). PV proves NP ⊆ P/poly if and only
if PV proves coNP ⊆ NP/O(1).

The latter condition can be interpreted as saying that there exists a polynomially
bounded proof system using constant advice (and, moreover, the polynomial
boundedness in provable in PV ). In fact, Cook and Kraj́ıček even exhibit a
natural proof system P with advice that is polynomially bounded if PV proves
NP ⊆ P/poly: the system P is an extended Frege system with constant advice.

2.5 Simplifying the Advice

From a practical point of view, proof systems with advice are susceptive to crit-
icism: advice can be arbitrarily complex (even non-recursive) and thus verifying
proofs with the help of advice does not form a feasible model to use in practice.
The next result shows that for propositional proof systems, logarithmic advice
can be replaced by a sparse NP-oracle without increasing the proof length.

Theorem 7 ( [BM09])

1. Every propositional proof system with logarithmic advice is simulated by a
propositional proof system computable in polynomial time with access to a
sparse NP-oracle.



Different Approaches to Proof Systems 55

2. Conversely, every propositional proof system computable in polynomial time
with access to a sparse NP-oracle is simulated by a propositional proof system
with logarithmic advice.

We remark that sparse NP-sets indeed seem to be very weak if used as oracles.
For instance, TAUT �∈ NPS with a sparse NP-oracle S, unless the polynomial
hierarchy collapses to its second level [Kad89].

Another simplification of advice was investigated in [BM09]. As we have seen,
there are two natural ways to enhance proof systems with advice by either sup-
plying non-uniform information to the proof (input advice) or to the proven
formula (output advice). Intuitively, input advice is the stronger model: proofs
can be quite long and formulas of the same size typically require proofs of differ-
ent size. Hence, supplying advice depending on the proof size is not only more
flexible, but also results in more advice per formula.

Therefore, shifting the advice from the proof to the formula will result in a
simplification of advice. In this direction in was shown in [BM09] that if there
exists a proof system with advice with nontrivial upper bounds on the proof
lengths, then there is such a proof system with output advice.

3 Probabilistic Proof Systems

We will now turn to the use of probabilism to compute proof systems. Usually,
the term “probabilistic proofs” is associated with interactive proof systems like
IP or Babai’s Arthur-Merlin classes MA and AM. Besides from randomisation,
the power of these proof systems stems from using interaction between a powerful
prover and a polynomial-time verifier.

A non-interactive model of randomized proofs was very recently introduced
by Hirsch and Itsykson [HI10]. They define two concepts: heuristic acceptors and
heuristic proof systems. Acceptors are not really proof systems, but algorithms
which accept all elements from the language and do not stop on other inputs.
There is, however, a close relationship between acceptors and proof systems
(cf. [KP89]). As there is a nice survey on optimal acceptors and optimal proof
systems in this volume [Hir10], we will be very brief on this randomized model.

For the randomized approach, we have to consider a probability distribution.
A distribution D is concentrated on some set A, if μD(A) = 1.

Definition 8 (Hirsch, Itsykson [HI10]). A pair (D, L) is a distributional
proving problem if D is a family of probability distributions Dn concentrated on
L ∩ {0, 1}n.

Hirsch and Itsykson define a heuristic acceptor for a distributional proving prob-
lem (D, L) as a randomized algorithm which always accepts inputs from L and
accepts inputs from L̄ only with small probability (see [Hir10] for the exact
definition). For this model they show an optimality result:

Theorem 9 (Hirsch, Itsykson [HI10]). Let L be recursively enumerable and
D be a polynomial-time samplable distribution. Then there is an optimal autom-
atizer for (D, L).
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The authors also consider heuristic proof systems and show interesting results
on these systems with respect to automatizability, i. e., the problem to construct
proofs for given formulas (see [Hir10]).

4 Quantum Proof Systems

As our last model we briefly mention quantum proof systems as introduced by
Pudlák [Pud09]. Since Shor’s polynomial-time quantum algorithm for factoring
[Sho97], quantum computations are a computational model which has attracted
an enormous amount of research. Recently, Pudlák investigated the usage of
quantum rules in propositional proof systems [Pud09].

Pudlák first introduces a general model of quantum proof systems and then
focuses on quantum Frege systems. Let us start with the general concept.

Definition 10 (Pudlák [Pud09]). A quantum proof system consists of a set
A ⊆ Σ∗ (the set of valid proofs) and a family of circuits Cn (the proof system)
such that

1. A is decidable in polynomial time and Cn is P-uniform (Efficiency);
2. for any proof π ∈ A, C|π|(π) produces a superposition of strings of tautologies

(Correctness);
3. for every tautology ϕ there exists π ∈ A such that ϕ occurs in the superposi-

tion of C|π|(π) (Completeness).

Regarding the completeness condition, it is also important that by measuring
C|π|(π) we can obtain ϕ with a probability which is not too small. Hence quantum
proof systems also have probabilistic aspects.

The next concept which Pudlák introduces are quantum rules which are based
on unitary transformations. Using a finite set of quantum rules, Pudlák arrives at
the notion of quantum Frege systems. Comparing quantum Frege with classical
Frege systems, Pudlák obtains the surprising result that quantum Frege systems
do not have shorter proofs, i. e., every quantum Frege system is simulated by a
classical Frege system. On the other hand, it does not seem possible to extract
classical proofs from quantum Frege proofs, i. e., under cryptographic assump-
tions quantum Frege systems are not p-simulated by classical Frege systems.

5 Conclusion

We conclude by mentioning that there are more interesting approaches which we
did not cover in this survey. For instance, space complexity for proof systems was
intensively investigated in the context of Resolution [ET01,ABSRW02,BSN08].
Here the minimal space to refute a set of clauses is of particular interest as it
corresponds to the memory consumption of modern SAT solvers which often
combine DPLL algorithms with clause learning. Therefore, both lower bounds
for Resolution space [ABSRW02,BSG03,EGM04,ET03] as well as optimal trade-
offs between space and length, i. e., between memory and run-time consumption,
have been intensively studied [Nor06,NH08,BSN08,BSN09].
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Another approach is to provide a finer analysis of proof lengths in the model
of parameterized proof complexity. Parameterized resolution and, moreover, a
general framework for parameterized proof complexity was recently introduced
by Dantchev, Martin, and Szeider [DMS07]. In that paper, Dantchev et al. show
a complexity gap in parameterized tree-like resolution for propositional formu-
las arising from translations of first-order principles. A purely combinatorial
approach to obtain lower bounds to the proof size in parameterized tree-like
resolution was developed in [BGL10].

Of course, non-classical proof complexity is still a relatively young area of
research and many problems are still open. In particular, it is interesting to
determine the relationship between the different approaches (e. g. with respect to
simulations as in Theorem 7). We believe that further research into non-classical
measures of proofs will both strengthen the connections between computational
and proof complexity and lead to new insights for classical proof systems.
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Abstract. We study possible formulations of algebraic propositional
proofs operating with noncommutative polynomials written as algebraic
noncommutative formulas. First, we observe that a simple formulation
of such proof systems gives rise to systems at least as strong as Frege—
yielding also a semantic way to define a Cook-Reckhow (i.e., polyno-
mially verifiable) algebraic variant of Frege proofs, different from that
given before in [8,11]. We then turn to an apparently weaker system,
namely, Polynomial Calculus (PC) where polynomials are written as
ordered formulas (PC over ordered formulas, for short). This is an al-
gebraic propositional proof system that operates with noncommutative
polynomials in which the order of products in all monomials respects
a fixed linear ordering on the variables, and where proof-lines are writ-
ten as noncommutative formulas. We show that the latter proof system
is strictly stronger than resolution, polynomial calculus and polynomial
calculus with resolution (PCR) and admits polynomial-size refutations
for the pigeonhole principle and the Tseitin’s formulas. We conclude by
proposing an approach for establishing lower bounds on PC over ordered
formulas proofs, and related systems, based on properties of lower bounds
on noncommutative formulas.

The motivation behind this work is developing techniques incorporat-
ing rank arguments (similar to those used in algebraic circuit complexity)
for establishing lower bounds on propositional proofs.

1 Introduction

This work attempts to gather certain facts about algebraic proof systems estab-
lishing propositional tautologies, in which proof lines are written as algebraic
noncommutative formulas (noncommutative formulas, for short). Our main mo-
tivation is to develop a method to lower bound the size of certain propositional
proofs via a rank argument, similar to that used in algebraic circuit complexity.
For this purpose, the choice of noncommutative formulas is natural, since such
formulas constitute a rather weak circuit class, and moreover, the proof, given
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by Nisan [14], of exponential-size lower bounds on noncommutative formulas is
an especially transparent rank argument.

Research into the complexity of algebraic propositional proofs is a central
line in proof complexity (cf. [15,24] for general expositions). Another promi-
nent line of research is that dedicated to connections between circuit classes and
the propositional proofs based on these classes. In particular, considerable ef-
forts were made to borrow techniques for lower bounding certain circuit classes,
and utilize them to show lower bounds on proofs operating with circuits from
the given classes. For example, bounded depth Frege proofs can be viewed as
propositional logic operating with AC0 circuits, and lower bounds on bounded
depth Frege proofs use techniques borrowed from AC0 circuits lower bounds
(cf. [1,13,16]). Pudlák et al. [17,4] studied proofs based on monotone circuits—
motivated by exponential lower bounds on monotone circuits. Raz and the au-
thor [22,21,24] investigated algebraic proof systems operating with multilinear
formulas—motivated by lower bounds on multilinear formulas for the deter-
minant, permanent and other explicit polynomials [19,18]. Atserias et al. [5],
Kraj́ıček [12] and Segerlind [23] have considered proofs operating with ordered
binary decision diagrams (OBDDs). The current work is a contribution to this
line of research, where the circuit class is noncommutative formulas.
Note: This is an extended abstract. More details, full proofs and full definitions
appear in the full version of this paper, available at: http://www.math.cas.cz/
~tzameret/nonComm.pdf .

1.1 Results and Related Works

We concentrate on algebraic proofs establishing propositional contradictions
where polynomials are written as noncommutative formulas. We deal with two
kinds of proof systems—both are variants (and extensions) of the polynomial
calculus (PC) introduced in [9]. In PC we start from a set of initial polyno-
mials from F[x1, . . . , xn], the ring of polynomials with coefficients from F (the
intended semantics of a proof-line p is the equation p = 0 over F). We derive new
proof-lines by using two basic algebraic inference rules: from two polynomials p
and q, we can deduce α · p + β · q, where α, β are elements of F; and from p we
can deduce xi · p, for a variable xi (i = 1, . . . , n). We also have Boolean axioms
x2

i − xi = 0, for all i = 1, . . . , n, expressing that the variables get the values 0
or 1. A PC refutation of Q is a proof of 1 (which is interpreted as 1 = 0, that
is the unsatisfiable equation standing for false) from Q. Our two proof systems
extend PC as follows:

1. PC over noncommutative formulas: NFPC. This proof system operates
with noncommutative polynomials over a field, written as (arbitrarily cho-
sen)1 noncommutative formulas. The rules of addition and multiplication are

1 This means that if a proof-line consists of the polynomial p, then one can choose to
write any formula that computes p in the proof. In other words, this is a “semantic”
proof system.

http://www.math.cas.cz/~tzameret/nonComm.pdf
http://www.math.cas.cz/~tzameret/nonComm.pdf
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similar to PC, except that multiplication is done either from left or right.
We also add a a Boolean axiom xixj − xjxi that expresses the fact that for
0, 1 values to the variables, multiplication is in fact commutative.

2. PC over ordered formulas: OFPC. This proof system is PC operating with
noncommutative polynomials in which the order of products in all monomials
respects a fixed linear ordering on the variables, and where proof-lines are
written as (arbitrarily chosen) noncommutative formulas.

Both proof systems are shown to be Cook-Reckhow systems (that is, polyno-
mial verifiable, sound and complete proof systems for propositional tautologies).

(1) The first proof system NFPC is shown to polynomially simulate Frege
(this is partly because of the choice of Boolean axioms). This gives a semantic
definition of a Cook-Reckhow proof system operating with algebraic formulas,
simpler in some way from that proposed by Grigoriev and Hirsch [11]: the paper
[11] aims at formulating a formal propositional proof system for establishing
propositional tautologies (that is, a Cook-Reckhow proof system), which is an
algebraic counterpart of the Frege proof system. In order to make their system
polynomially-verifiable, the authors augment it with a set of auxiliary rewriting
rules, intended to derive algebraic formulas from previous algebraic formulas via
the polynomial-ring axioms (that is, associativity, commutativity, distributivity
and the zero and unit elements rules). In this framework algebraic formulas
are treated as syntactic terms, and one must explicitly apply the polynomial-
ring rewrite rules to derive one formula from another. Our proof system NFPC
is simpler in the sense that we achieve (apparently) the same strength as the
system in [11], while adding no rewriting rules. The idea is that the only “hard
to verify” rewrite rule is the commutativity axiom; and since we show how to
efficiently simulate this rule we do not need the other polynomial-ring rewrite
rules (like distributivity, associativity, etc.) to make the proof system polynomial
verifiable: we can just use the deterministic polynomial identity testing algorithm
for noncommutative formulas devised by Raz and Shpilka [20].

(2) For the second system, OFPC, we show that, despite its apparent weak-
ness, it polynomially simulates PCR (and hence PC and resolution), as well as a
proof system operating with restricted forms of disjunctions of linear equalities
called R0(lin) (introduced in [21]). The latter implies polynomial-size refutations
for the pigeonhole principle and the Tseitin graph formulas, due to corresponding
upper bounds demonstrated in [21].

We then propose a simple lower bound approach for OFPC, based on prop-
erties of products of ordered formulas (these properties are proved in a similar
manner to Nisan’s lower bound on noncommutative formulas, by lower bound-
ing the rank of certain matrices associated with noncommutative polynomials).
We show certain sufficient conditions yielding super-polynomial lower bounds
on OFPC proofs. We also demonstrate certain obstacles to this approach in the
form of a general upper-bound criterion.
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2 Preliminaries

2.1 Noncommutative Polynomials and Formulas

Let F be a field and let F〈x1, . . . , xn〉 denote the noncommutative ring of
polynomials with coefficients from F and variables x1, . . . , xn. In other words,
F〈x1, . . . , xn〉 is the ring of polynomials (where a polynomial is a formal sum of
products of variables and field elements) conforming to all the polynomial-ring
axioms excluding the commutativity of multiplication axiom. For instance, if
xi, xj are two different variables, then xi · xj and xj · xi are two different poly-
nomials in F〈x1, . . . , xn〉 (note that variables do commute with field elements).
We say that A is an algebra over F, or an F-algebra, if A is a vector space over F

together with a distributive multiplication operation; where multiplication in A
is associative (but it need not be commutative) and there exists a multiplicative
unity in A.

Definition 1 (Noncommutative formula). Let F be a field and x1, x2, . . . be
variables. A noncommutative algebraic formula is an ordered2 labeled tree, with
edges directed from the leaves to the root, and with fan-in at most two. Every
leaf of the tree (namely, a node of fan-in zero) is labeled either with an input
variable xi or a field F element. Every other node of the tree is labeled either
with + or × (in the first case the node is a plus gate and in the second case a
product gate). We assume that there is only one node of out-degree zero, called
the root. An algebraic formula computes a noncommutative polynomial in the
ring of noncommutative polynomials F〈x1, . . . , xn〉 in the following way. A leaf
computes the input variable or field element that labels it. A plus gate computes
the sum of polynomials computed by its incoming nodes. A product gate computes
the noncommutative product of the polynomials computed by its incoming nodes
according to the order of the edges. The output of the formula is the polynomial
computed by the root.

The size of an algebraic formula (and noncommutative formula) f is the total
number of nodes in its underlying tree, and is denoted |f |. Raz and Shpilka
[20] showed that there is a deterministic polynomial identity testing (PIT) al-
gorithm that decides whether two noncommutative formulas compute the same
noncommutative polynomial:

Theorem 1 (PIT for noncommutative formulas [20]). There is a deter-
ministic polynomial-time algorithm that decides whether a given noncommutative
formula over a field F computes the zero polynomial 0.3

Recall the definition of PC in Section 1.1. The degree of a PC-proof is the
maximal degree of a polynomial in the proof. The size of a PC proof is the total
number of monomials (with nonzero coefficients) in all the proof-lines.
2 This means that there is an order on the edges coming into a node.
3 We assume here that the field F can be efficiently represented (e.g., the field of

rationals).
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Important note: The size of PC proofs can be defined as the total formula sizes
of all proof-lines, where polynomials are written as sums of monomials, or more
formally, as (unbounded fan-in depth-2) ΣΠ circuits.4 This complexity measure
is equivalent—up to a factor of n—to the usual complexity measure counting
the total number of monomials appearing in the proofs.

The proof system PCR is an extension of PC, where we add new variables x̄i

for every original variable xi and also the axiom xix̄i − 1. Thus, x̄i stands for
the negation of xi (see [2] for the definition of PCR).

2.2 Proof Systems and Simulations

Let L ⊆ Σ∗ be a language over some alphabet Σ. A proof system for a language
L is a polynomial-time algorithm A that receives x ∈ Σ∗ and a string π over
some finite alphabet (“the (proposed) proof” of x), such that there exists a π
with A(x, π) = true if and only if x ∈ L. Following [10], a Cook-Reckhow proof
system is a proof system for the language of propositional tautologies in the De
Morgan basis {true, false,∨,∧,¬}.

Assume that P is a proof system for the language L, where L is not the
set of propositional tautologies in De Morgan’s basis. In this case we can still
consider P as a proof system for propositional tautologies by fixing a translation
between L and the set of propositional tautologies in De Morgan basis (such that,
x ∈ L iff the translation of x is a propositional tautology). If two proof systems
P1 and P2 establish two different languages L1, L2, respectively, then for the
task of comparing their relative strength we fix a translation from one language
to the other. In most cases, we shall confine ourselves to proofs establishing
propositional tautologies or unsatisfiable CNF formulas.

We can speak of a propositional proof system as a refutation system (that
is, a system for establishing contradictions and not tautologies), by translating
every unsatisfiable propositional formula into its negation (since the latter is a
tautology).

Definition 2. Let P1,P2 be two proof systems for the same language L (in
case the proof systems are for two different languages we fix a translation from
one language to the other, as described above). We say that P2 polynomially
simulates P1 if given a P1 proof (or refutation) π of a F , then there exists a
proof (respectively, refutation) of F in P2 of size polynomial in the size of π. In
case P2 polynomially simulates P1 while P1 does not polynomially simulates P2

we say that P2 is strictly stronger than P1.

3 Polynomial Calculus over Noncommutative Formulas

3.1 Discussion

In this section we propose a possible formulation of algebraic propositional
proof systems that operate with noncommutative polynomials. We observe that
4 That is, circuits whose roots are plus gates having product gates as children (and a

bottom level containing only variables).
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dealing with propositional proofs—that is, proofs whose variables range over
0, 1 values—makes the variables “semantically” commutative. Therefore, for the
proof systems to be complete (for unsatisfiable collections of noncommutative
polynomials over 0, 1 values), one may need to introduce rules or axioms express-
ing commutativity. We show that such a natural formulation of proofs operating
with noncommutative formulas polynomially simulate the entire Frege system.

This justifies—if one is interested in concentrating on propositional proof
systems weaker than Frege (and especially on concrete lower bounds questions)—
our formulation in Section 4 of algebraic proofs operating with noncommutative
algebraic formulas with a fixed product order (called ordered formulas). The
latter system can be viewed as operating with commutative polynomials over
a field precisely like PC, while the complexity of proofs is measured by the
total sizes of ordered formulas needed to write the polynomials in the proof. In
other words, the role played by the noncommutativity is only in measuring the
sizes of proofs: while in PC-proofs the size measure is defined as the number of
monomials appearing in the proofs—or equivalently, the total size of formulas in
proofs in which formulas are written as depth-2 ΣΠ formulas—the proof system
developed in Section 4 is measured by the total ordered formula size.

3.2 The Proof System NFPC

We now define a proof system operating with noncommutative polynomials writ-
ten as noncommutative algebraic formulas.

In algebraic proof systems like the polynomial calculus we transform unsatisfi-
able propositional formulas into a collection Q of polynomials having no solution
over a field F. Accordingly, in the noncommutative setting we translate unsatis-
fiable propositional formulas into a collection Q of noncommutative polynomials
from F〈x1, . . . , xn〉 that have no solution over any noncommutative F-algebra
(e.g., the matrix algebra with entries from F). Although our “Boolean” axioms
will not force only 0, 1 solutions over noncommutative F-algebras, they will be
sufficient for our purpose: every unsatisfiable propositional formula translates
(via a standard polynomial translation) into a collection Q of noncommutative
polynomials from F〈x1, . . . , xn〉, for which Q and the Boolean axioms have no
(common) solution in any noncommutative F-algebra. Furthermore, the Boolean
axioms will in fact force commutativity of variables product—as required for vari-
ables that range over 0, 1 values (although, again, the Boolean axioms do not
force only 0, 1 values when variables range over noncommutative F-algebras).

Definition 3 (Polynomial calculus over noncommutative formulas:
NFPC). Fix a field F and let Q := {q1, . . . , qm} be a collection of noncommuta-
tive polynomials from F〈x1, . . . , xn〉. Let the set of axiom polynomials, called the
Boolean axioms, be:

xi · (1− xi) for all i ∈ [n], xi · xj − xj · xi for all i �= j ∈ [n] .

Let π = (p1, . . . , p�) be a sequence of noncommutative polynomials from
F〈x1, . . . , xn〉, such that for each i ∈ [�], either pi = qj for some j ∈ [m],
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or pi is a Boolean axiom, or pi was deduced by one of the following inference
rules using pj , pk , for j, k < i:

Left/right product:
p

xr · p
,

p

p · xr
for r ∈ [n] .

Addition:
p q

a · p + b · q for a, b ∈ F

We say that π is an NFPC proof of p� from Q if all proof-lines in π are written
as noncommutative formulas. (The semantics of an NFPC proof-line pi = 0 is
the polynomial equation pi = 0.) An NFPC refutation of Q is a proof of the
polynomial 1 from Q. The size of an NFPC proof π is defined as the total sizes
of all noncommutative formulas in π and is denoted by |π|.

Remark 1. (i) The Boolean axioms might have roots different from 0, 1 over non-
commutative F-algebras. (ii) The Boolean axioms are true for 0, 1 assignments:
xi · xj − xi · xj = 0, for all xi, xj ∈ {0, 1}.

We now show that NFPC is a sound and complete Cook-Reckhow proof system.
First note that we have defined NFPC with no rules expressing the polynomial-
ring axioms. Nevertheless, due to the deterministic polynomial-time PIT proce-
dure for noncommutative formulas (Theorem 1) the proof system defined will
be a Cook-Reckhow system (that is, verifiable in polynomial-time [whenever the
base field and its operations can be efficiently represented]).

Proposition 1. There is a deterministic polynomial-time algorithm that decides
whether a given string is an NFPC-proof (over efficiently represented fields).

For the next statements we use the algebraic propositional proof system F -PC
introduced by Grigoriev and Hirsch [11] as an algebraic counterpart of the Frege
system. We refer the reader to [11] for definitions.

Proposition 2. The systems NFPC is sound and complete. Specifically, let Q
be a collection of noncommutative polynomials from F〈x1, . . . , xn〉. Assume that
for every F-algebra, there is no 0, 1 solution for Q (that is, an 0, 1 assignment
to variables that gives all polynomials in Q the value 0), then the contradiction
1 = 0 can be derived in NFPC from Q.

Theorem 2. NFPC (over any field) polynomially-simulates Frege. Specifically,
NFPC polynomially-simulates F -PC.

4 Polynomial Calculus over Ordered Formulas

In this section we formulate an algebraic proof system OFPC that operates with
noncommutative polynomials from F〈x1, . . . , xn〉, in which every monomial is a
product of variables in nondecreasing order (from left to right; and according
to some fixed linear ordering on the variables), and where polynomials in proofs
are written as noncommutative formulas.
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Let X = {x1, . . . , xn} be a set of variables and let F be a field. Let ≺ be a
linear order on the variables X . Let f =

∑
j∈J bjMj be a commutative polyno-

mial from F[x1, . . . , xn], where the bj ’s are coefficient from F and the Mj ’s are
monomials in the X variables. We define �f� ∈ F〈x1, . . . , xn〉 to be the (unique)
noncommutative polynomial

∑
j∈J bj · �Mj�, where �Mj� is the (noncommuta-

tive) product of all the variables in Mj such that the order of multiplications
respects ≺. We denote the image of the map �·� : F[x1, . . . , xn] → F〈x1, . . . , xn〉
by G.

Definition 4 (Ordered formula). The class of noncommutative formulas
computing polynomials from G is called the class of ordered formulas (under
the given fixed linear order ≺). We say that an ordered formula F computes the
commutative polynomial f ∈ F[x1, . . . , xn] whenever F computes �f�.
Definition 4 enables us to define OFPC in a convenient way, that is, without
referring to noncommutative polynomials: the system OFPC is defined similarly
to PC, except that the proof-lines are written as ordered formulas:

Definition 5 (PC over ordered formulas (OFPC)). Let π = (p1, . . . , pm)
be a PC proof of pm from some set of initial polynomials Q (that is, pi are
commutative polynomials from the ring of polynomials F[x1, . . . , xn]), and let ≺
be some linear order on the variables. The sequence (p1, . . . , pm) in which each
pi is written as an ordered formula (according to the ordering ≺), is called an
OFPC proof of pm from Q. The size of an OFPC proof is the total size of all
the ordered formulas appearing in it.

Similar to the proof system NFPC we define OFPC with no rules expressing
the polynomial-ring axioms. The system OFPC will constitute a Cook-Reckhow
proof system (that is, verifiable in polynomial-time [whenever the base field and
its operations can be efficiently represented]):
Proposition 3. For any linear order on the variables, OFPC is a sound, com-
plete and polynomially-verifiable refutation system for establishing that a collec-
tion of polynomial equations over a field does not have 0, 1 solutions. In other
words (considering only refutations of polynomial translations of Boolean con-
tradictions) OFPC is a Cook-Reckhow proof system.

5 Simulations, Short Proofs and Separations for OFPC

In this section we are concerned with the relative strength of OFPC. Specif-
ically, we show that OFPC is strictly stronger than the polynomial calculus,
polynomial calculus with resolution (PCR) and resolution. For this purpose, we
show first that, for any linear order on the variables, OFPC polynomially simu-
lates PCR. Since PCR polynomially simulates both PC and resolution, we get
that OFPC also polynomially simulates PC and resolution. Second, we show
that OFPC admits polynomial-size refutations of tautologies (formally, families
of unsatisfiable collections of polynomial equations) that are hard for PCR.
Proposition 4. For any linear order on the variables, OFPC polynomially sim-
ulates PCR (and PC and resolution).
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OFPC polynomially simulates R0(lin). We now state that OFPC can simu-
late the proof system R0(lin) introduced in [21]. This will be used below to estab-
lish the OFPC upper bounds. In [21] a refutation system R(lin) was introduced.
R(lin) is a refutation system extending resolution to work with disjunctions of
linear equations instead of disjunction of literals. R0(lin) is defined to be a sub-
system of R(lin) in which certain restrictions are put on the possible disjunctions
of linear equations allowed in a proof. For the precise definition of R(lin) and
R0(lin) we refer the reader to [21]. The main simulation of this subsection is:

Theorem 3. For any linear order on the variables, OFPC polynomially simu-
lates R0(lin) (over large enough fields). Moreover, we can assume that all for-
mulas appearing in the OFPC proofs simulating R0(lin) are depth-3 ordered for-
mulas.

Corollaries: short proofs and separations. For natural numbers m >
n, denote by ¬FPHPm

n the following unsatisfiable collection of polynomials:
Pigeons :∀i ∈ [m], (1 − xi,1) · · · (1 − xi,n); Functional :∀i ∈ [m] ∀k < � ∈
[n], xi,k · xi,�; Holes :∀i < j ∈ [m] ∀k ∈ [n], xi,k · xj,k.

As a corollary of the polynomial simulation of R0(lin) by OFPC, and the upper
bounds on R0(lin) proofs demonstrated in [21], we get the following results:

Corollary 1. For any linear order on the variables, and for any m > n there
are polynomial-size (in n) OFPC refutations of the m to n pigeonhole principle
FPHPm

n (over large enough fields).

By known lower bounds, we get that OFPC is strictly stronger than resolution.
(It can be shown that Corollary 1 implies also a separation of OFPC from PC.)
The Tseitin graph tautologies were proved to be hard tautologies for several
propositional proof system. We refer the reader to Definition 6.5 in [21] for the
precise definition of the Tseitin formulas. We have the following:

Corollary 2. Let G be an r-regular graph with n vertices, where r is a constant,
and fix some modulus p. Then there are polynomial-size (in n) OFPC refutations
of the corresponding Tseitin mod p formulas (over large enough fields).

This stems from the R0(lin) polynomial-size refutations of the Tseitin mod p
formulas demonstrated in [21]. From the known exponential lower bounds on
PCR (and PC and resolution) refutation size of Tseitin mod p tautologies (when
the underlying graphs are appropriately expanding; cf. [7,6,3]), we conclude that
OFPC is strictly stronger than PCR.

6 Towards Lower Bounds on OFPC Proofs and Related
Systems

6.1 Lower Bounds on Product Formulas

We show that the ordered formula size of certain polynomials can increase ex-
ponentially when multiplying the polynomials together. In the next section, we
use this to suggest an approach for lower bounding the size of OFPC proofs.
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Proposition 5. Let F be a field, X := {x1, . . . , xn} be a set of variables and
≺⊆ (X × X) be any linear order. Then, for any natural numbers m ≤ n and
d ≤ �n/m�, there exist polynomials f1, . . . , fd from F[x1, . . . , xn], such that every
fi can be computed by an ordered formula of size O(m) and every ordered formula
computing

∏d
i=1 fi has size 2Ω(d).

6.2 A Lower Bound Approach

Here we discuss a simple approach intended to establish lower bounds on
OFPC proofs, roughly, by reducing the lower bounds to PC degree lower bounds
and using the bound in Section 6.1.

Let Q1(x̄), . . . , Qm(x̄) be a collection of constant degree (independent of n)
polynomials from F[x1, . . . , xn] with no common solutions in F, such that m is
polynomial in n. Let f1(ȳ), . . . , fn(ȳ) be m homogenous polynomials of the same
degree from F[y1, . . . , y�], such that the ordered formula size of each fi(ȳ) (for
some linear order on the variables) is polynomial in n and such that the fi(ȳ)’s
do not have common variables (that is, each fi(ȳ) is over disjoint set of variables
from ȳ). Assume that for any distinct i1, . . . , id ∈ [n] the ordered formula size of∏d

j fij (ȳ) is 2Ω(d).

Note 1. By the proof of Proposition 5, the conditions above are easy to achieve.
See the full version for details.

Consider the polynomials Q1(x̄), . . . , Qm(x̄) after applying the substitution:

xi �→ fi(ȳ) . (1)

In other words, consider

Q1(f1(ȳ), . . . , fn(ȳ)), . . . , Qm(f1(ȳ), . . . , fn(ȳ)) . (2)

Note that (2) is also unsatisfiable over F. We suggest to lower bound the
OFPC refutations size of (2), based on the following simple idea: it is known
that some families of unsatisfiable collections of polynomials require linear Ω(n)
degree PC refutations. In other words, every refutation of these polynomials must
contain some polynomial of linear degree. By definition, also every OFPC refu-
tation of these polynomials must contain some polynomial of linear degree.

Thus, assume that the initial polynomials Q = {Q1(x̄), . . . , Qm(x̄)} in the
x1, . . . , xn variables, require linear degree refutations—in fact, an ω(log n) de-
gree lower bound would suffice. Thus, every PC refutation contains some poly-
nomial h of degree ω(log n). Then, we might expect that every PC refutation of
(2) contains a polynomial g ∈ F[ȳ] which is a substitution instance (under the
substitution (1)) of an ω(log n)-degree polynomial in the x̄ variables. This, in
turn, leads (under some conditions; see below for an example of such conditions)
to a lower bound on OFPC refutations. Specifically, an example of sufficient
conditions for super-polynomial OFPC lower bounds, is as follows: every PC
refutation of (2) contains a polynomial g so that one of g’s homogenous compo-
nents is a substitution instance (under the substitution (1)) of a degree ω(log n)
multilinear polynomial from F[x1, . . . , xn]. We formalize this argument:
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Proposition 6 (Example: conditional OFPC size lower bounds). (As-
sume the above notations and conditions.)

IF: every PC refutation of (2) contains a polynomial g ∈ F[y1, . . . , y�] such that
for some t ≤ deg(g), the t-th homogenous component g(t) of g (that is, the sum
of all monomials of total degree t in g) is a substitution instance (under the
substitution (1)) of a degree ω(log n) multilinear polynomial from F[x1, . . . , xn];
THEN: every OFPC refutation of (2) is of super-polynomial size (in n).

Note 2. Proposition 6 should serve only as an example of the reduction. It is
possible that the condition itself, as stated, never holds.

6.3 Obstacles

We can show that the lower bound approach illustrated in the previous sub-
section does not work for certain substitutions xi �→ fi(ȳ). In fact, we can give
a general upper bound criterion for OFPC refutations. This criterion is based
on the polynomial simulation of R0(lin) by OFPC (Theorem 3). We refer the
reader to the full paper for the details.
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Abstract. Nonlocal games are used to display differences between clas-
sical and quantum world. In this paper, we study nonlocal games with
a large number of players. We give simple methods for calculating the
classical and the quantum values for symmetric XOR games with one-
bit input per player, a subclass of nonlocal games. We illustrate those
methods on the example of the N-player game (due to Ardehali [Ard92])
that provides the maximum quantum-over-classical advantage.

1 Introduction

Nonlocal games provide a simple framework for studying the differences between
quantum mechanics and classical theory. A nonlocal game is a cooperative game
of two or more players. Given some information, the players must find a solution,
but with no direct communication between any of them.

We can view nonlocal games as games between a referee and some number
of players, where all communication is between the referee and players. Referee
chooses settings of the game by telling some information (or input) xi to each
of the player. After that each player independently must give back some answer
(or output) yi. The rules of the game define a function f(x1, x2, . . . , y1, y2, . . .)
which determines whether the players have won or lost.

The most famous example is so called CHSH game [CHSH69]. This is a game
between referee from one side and players (Alice and Bob) from the other side.
Referee gives one bit to each player. Then he expects equal answers if at least
one input bit was 0. If both input bits were 1, he expects different answers.
Formally, the rules of this game could be expressed by the table:

INPUT Right answer
0, 0 0, 0 or 1, 1
0, 1 0, 0 or 1, 1
1, 0 0, 0 or 1, 1
1, 1 0, 1 or 1, 0

or by the formula:

XOR (OUTPUT ) = AND (INPUT )

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 72–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Nonlocal Quantum XOR Games for Large Number of Players 73

Assume that the referee gives to players randomized (uniformly distributed)
inputs from {(0, 0), (0, 1), (1, 0), (1, 1)}. For any pair of fixed (deterministic) play-
ers’ strategies

(A : {0, 1} → {0, 1}, B : {0, 1} → {0, 1})

sum of their answers for all 4 different inputs(
A (0) + B (0)

)
+
(
A (0) + B (1)

)
+
(
A (1) + B (0)

)
+
(
A (1) + B (1)

)
is evidently even. But, since sum of Right answers must be odd, any strategy pair
will lead to at least one error in these 4 cases. (One may think that some kind
of randomized strategies could give better results; the answer is no: an average
result of a randomized strategy is calculated as an average result of some set of
fixed strategies.) So, provably best average result is 3

4 = 0.75. It can be achieved
by answering 0 and ignoring input.

Surprisingly, there is the way to improve this result by permitting players to
use an entangled quantum system before start of the game. In this case, correla-
tions between measurement outcomes of different parts of quantum system (in
physics, nonlocality) can help players to achieve result 1

2 + 1
2
√

2
= 0.853553 . . .

[Cir80]. Such games are called nonlocal or entangled.
In general, the maximum winning probability in a nonlocal game is hard to

compute. It is NP-hard to compute it for 2-player games with quantum inputs
and outputs or 3-player games classically [Kem08].

XOR games are the most widely studied class of nonlocal games. In a XOR
game, players’ outputs y1, y2, . . . , yN are 0-1 valued. The condition describing
whether the players have won can depend only on x1, x2, . . . , xN and y1 ⊕ y2 ⊕
. . .⊕ yN . XOR games include the CHSH game described above.

For two player XOR games (with inputs x1, x2, . . . , xN being from an arbitrary
set), we know that the maximum success probability of players can be described
by a semidefinite program [Cir80] and, hence, can be calculated in polynomial
time [CHTW04]. In contrast, computing the classical success probability is NP-
hard.

For XOR games with more than two players, examples of specific games pro-
viding a quantum advantage are known [Mer90, Ard92, PW+08] and there is
some theory in the framework of Bell inequalities [WW01, WW01a, ZB02]. This
theory, however, often focuses on questions other than computing classical and
quantum winning probabilities — which is our main interest.

In this paper, we consider a restricted case of symmetric multi-player XOR
games. For this restricted case, we show that both classical and quantum winning
probabilities can be easily calculated. We then apply our methods to the par-
ticular case of Ardehali’s inequality [Ard92]. The results coincide with [Ard92]
but are obtained using different methods (which are more combinatorial in their
nature). The advantage of our methods is that they can be easily applied to any
symmetric XOR game while those of [Ard92] are tailored to the particular XOR
game.
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In this paper we will consider only those games, where each player should
receive exactly one bit of input and answer exactly one bit of output, and is
allowed to operate with one qubit of N -qubit quantum system.

2 Nonlocal XOR Games

A nonlocal N -player game is defined by a sequence of 2N elements

(I00...0, I00...1, . . . , I11...1),

where each element corresponds to some of 2N inputs and describes all right an-
swers for this input: Ix1...xN ⊆ {0, 1}N . Players receive a uniformly random input
x1, . . . , xN ∈ {0, 1} with the ith player receiving xi. The ith player then produces
an output yi ∈ {0, 1}. No communication is allowed between the players but they
can use shared randomness (in the classical case) or quantum entanglement (in
the quantum case). Players win if y1 . . . yN ∈ Ix1...xN and lose otherwise.

For each Ix1...xN , there are 22N

possible values. Therefore, there are(
22N

)(2N)
= 222N

different games. This means 65536 games for N = 2,

≈ 1.8 · 1019 games for N = 3 and practically not enumerable for N > 3.
We will concentrate on those of them, which are symmetrical with respect to

permuting the players and whose outcome depends only on parity of the sum
of the output (or Hamming weight of the output), i.e. on XOR (|OUTPUT |).
(Actually, this decision was based not on strict analytics, but rather on the
results of numerical experiments: XOR games seem to be the most interesting
in their quantum versions.)

Each such XOR game can be described as a string of N +1 bits: P0P1 . . . PN ,
where each bit Pi represents the correct right parity of the output sum in the case
when the sum of input is i. Typical and important XOR game is the CHSH game:
in our terms it can be defined as “+ + −” (even answer if |INPUT | = 0 or 1
and odd answer if |INPUT | = 2).

3 Methods for Analyzing Nonlocal Games

3.1 Classical XOR Games

In their classical versions XOR games are a good object for analysis and in most
cases turn out to have a little outcome for players.

Imagine a classical version of XOR game, for which we want to find optimal
classical strategies for players. Each player has 4 different choices — (00), (01),
(10), (11). (1st bit here represents the answer on input 0, and 2nd bit represents
the answer on input 1. Thus, (ab) denotes a choice to answer a on input 0 and
answer b on input 1).
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Definition 1 (Classical normalized strategy). Classical normalized strategy
for N-player XOR game is one of the following 2N + 2 choice sequences:

(00)N−k (01)k

(00)N−1 (11)
(00)N−k (01)k−1 (10)

Theorem 1. For any classical strategy for N-player XOR game there exists a
normalized strategy, such that these strategies on equal input answer equal parity.

Proof. First of all, remember, that we consider only symmetrical games with
respect to players permutation. Therefore, we always will order players by their
choices.

The second step is choice inversion for a pair of players. If we take any pair of
choices and invert both of them, the parity of the output will not change. Thus,
we can find the following pairs of choices and make corresponding inversions:

(11) (11)→ (00) (00)
(11) (10)→ (00) (01)
(11) (01)→ (00) (10)
(10) (10)→ (01) (01)

If it is impossible to find such pair, there is clearly no more than one choice
from the set {(10) , (11)}, and presence of choice (11) follows that all other
choices are (00). In other words, this strategy is normalized.

This trick allows very efficient search for an optimal strategy for classical version
of a XOR game. Strategy of form

(00)N−k (01)k

has outcome probability

O
(
(00)N−k (01)k

)
=

∑
0≤i≤N
0≤j≤i

(j≡0(mod 2))�(Ii=+)

(
N − k

i− j

)(
k

j

)

2N
.

All other normal strategies has outcomes computable as

O
(
(00)N−1 (11)

)
= 1−O

(
(00)N

)
O
(
(00)N−k (01)k−1 (10)

)
= 1−O

(
(00)k (01)N−k

)
(These formulae are for illustration purposes only and won’t be refered in this

paper.)
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3.2 Quantum XOR Games

Consider a possibly non-symmetric XOR game. Let x1, . . . , xN be the inputs
to the players. Define cx1,...,xN = 1 if, to win for these inputs, players must
output y1, . . . , yN with XOR being 1 and cx1,...,xN = −1 if players must output
y1, . . . , yN with XOR being 0.

Werner and Wolf [WW01, WW01a] have shown that, for any strategy in
quantum version of an XOR game, its bias (the difference between the winning
probability pwin and the losing probability plos) is equal to

f (λ1, λ2, . . . , λN ) =

∣∣∣∣∣∣ 1
2N

∑
x1,...,xN∈{0,1}

cx1,...,xN λx1
1 λx2

2 . . . λxN

N

∣∣∣∣∣∣ (1)

for some λ1, . . . , λN satisfying |λ1| = |λ2| = . . . = |λN | = 1. Conversely, for any
such λ1, . . . , λN , there is a winning strategy with the bias being f(λ1, . . . , λN ).

Lemma 1. For symmetric XOR games, the maximum of f(λ1, . . . , λN ) is
achieved when λ1 = . . . = λN .

Proof. We fix all but two of λi. To simplify the notation, we assume that
λ3, . . . , λN are the variables that have been fixed. Then, (1) becomes

a + bλ1 + cλ2 + dλ1λ2

for some a, b, c, d. Because of symmetry, we have b = c. Thus, we have to maxi-
mize

a + b(λ1 + λ2) + dλ1λ2. (2)

Let λ1 = eiθ1 and λ2 = eiθ2 . Let θ+ = θ1+θ2
2 and θ− = θ1−θ2

2 . Then, (2) becomes

a + beiθ+(eiθ− + e−iθ−) + de2iθ+ = A + B cos θ−

where A = a + de2iθ+ and B = 2beiθ+ . If we fix θ+, we have to maximize the
expression A+Bx, x ∈ [−1, 1]. For any complex A, B, A+Bx is either maximized
by x = 1 (if the angle between A and B as vectors in the complex plane is at
most π

2 ) or by x = −1 (if the angle between A and B is more than π
2 ). If x = 1,

we have λ1 = λ2 = θ+. If x = −1, we have λ1 = λ2 = −θ+.
Thus, if λ1 �= λ2, then the value of (1) can be increased by keeping the

same θ+ = θ1+θ2
2 but changing λ1 and λ2 so that they become equal. The same

argument applies if λi �= λj . ��
Thus, we can find the value of a symmetric XOR game by maximizing

f (λ) =

∣∣∣∣∣ 1
2N

N∑
k=0

(
N

k

)
ckλk

∣∣∣∣∣ (3)

where ck = 1 if Pk = 1 and ck = −1 if Pk = 0. The maximal f(λ) is the
maximum possible gap pwin−plos between the winning probability pwin and the
losing probability plos. We have pwin = 1+f(λ)

2 and plos = 1−f(λ)
2 .
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4 Ardehali Game

There are 4 games (equivalent to each other up to the input and/or output inver-
sion), which give the biggest gap between “classical” and “quantum” outcomes.
Those games were discovered in the context of Bell inequalities (physics notion
closely related to nonlocal games) by Ardehali [Ard92], building on an earlier
work by Mermin [Mer90].

They can be described as follows:

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) + + − − · · ·
{

+ if N mod 4 ∈ {0, 1}
− otherwise

(4)

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) + − − + · · ·
{

+ if N mod 4 ∈ {0, 3}
− otherwise

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) − − + + · · ·
{

+ if N mod 4 ∈ {2, 3}
− otherwise

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) − + + − · · ·
{

+ if N mod 4 ∈ {1, 2}
− otherwise

For each of those games, the maximum winning probability is pq = 1
2 + 1

2
√

2
for

a quantum strategy and pc = 1
2 + 1

2N/2 for a classical strategy [Ard92]. Thus, if
we take the ratio pq−1/2

pc−1/2 as the measure of the quantum advantage, these games
achieve the ratio of 2N/2. Similar ratio was earlier achieved by Mermin [Mer90]
for a partial XOR game:

|INPUT | 0 1 2 3 · · · N

XOR (|OUTPUT |) + any − any · · ·
{

+ if N mod 4 ∈ {0}
− if N mod 4 ∈ {2}

In this game, the input of the players is chosen uniformly at random among
all inputs with an even number of 1s. Werner and Wolf [WW01] have shown that
this ratio is the best possible.

We now derive the winning probabilities for Ardehali’s game using our
methods.

4.1 Classical Case

As all of them are symmetrical to each other, we will consider the 1st game only
(4). Any normalized strategy for a classical version of such game can be further
simplified. Once there exists two players with choices (01) and (01), they can be
conversed into (00) and (11) with average outcome remaining the same.
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Proof. Let us compare a strategy outcome before and after simplification of
type (01) (01)→ (00) (11). Imagine the situation, where the referee has already
produced inputs for all except two players, whose choices are being changed.
And he is ready to toss up his coin twice in order to decide, what input to give
to remaining players.

If the coin will produce different inputs for these players, their answers will be
the same: one will answer 0 and other will answer 1, so the outcome will remain
unchanged.

If the coin will produce equal inputs for players — 00 or 11 — it is more tricky
case. Let us notice first that the rules of the game require different answers for
00 and for 11. This can be seen from the Table 4: changing |INPUT | by 2,
Right answer changes to opposite value. The second fact to notice is that the
strategy before the simplification resulted in equal answers on input 00 and on
input 11, that is in one correct and one incorrect answer. The third fact is that
the strategy after the simplificaion will do the same (but in opposite sequence):
one answer will be incorrect and other will be correct.

So, the total average is equal for both strategies.

When none of the simplifications can be applied to the strategy, then this strat-
egy is one from the following set:

(00)N

(00)N−1 (01)
(00)N−1 (10)
(00)N−1 (11)

For N = 8n an optimal strategy is always (00)N . To show this fact, one can
check outcome for all 4 simplified normal strategies. But here we will calculate
only the first of them.

Imagine the players are gambling with the referee: they receive 1 in case of
win and pay 1 in case of loss. Expected value of their gains after 2N rounds of
the game can be calculated by formula:

Outcome
(
(00)8n

)
× 28n =

=
2n−1∑
k=0

((
8n

4k

)
+
(

8n

4k + 1

)
−
(

8n

4k + 2

)
−
(

8n

4k + 3

))
+
(

8n

8n

)

As one could notice, these four summands inside Σ are approximately equal
to each other (and to ± 2N

4 ), so the total value of the sum is not far from 0. But
let us be completely consequent and find precise results.

First, each summand on the odd position has its negation on the same position
starting from the end of the sum:

+
(

8n

1

)
−
(

8n

3

)
+
(

8n

5

)
− . . .−

(
8n

8n− 5

)
+
(

8n

8n− 3

)
−
(

8n

8n− 1

)
= 0
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So, remaining expression (with fake summand −
(

8n
8n+2

)
= 0 appended for the

reason of simplicity) is the following:

Outcome
(
(00)8n

)
× 28n =

2n∑
k=0

((
8n

4k

)
−
(

8n

4k + 2

))
(5)

Further precise calculations consist mainly of
(

N
K

)
replacements with

(
N−2
K−2

)
+

2
(
N−2
K−1

)
+
(
N−2

K

)
(this equality is not quite evident, but can be proved trivially

by induction).

2n∑
k=0

((
8n

4k

)
−
(

8n

4k + 2

))
=

2n∑
k=0

((
8n− 2
4k − 2

)
+ 2

(
8n− 2
4k − 1

)
+
(

8n− 2
4k

)
−

−
(

8n− 2
4k

)
− 2

(
8n− 2
4k + 1

)
−
(

8n− 2
4k + 2

))
= 2

2n∑
k=0

((
8n− 2
4k − 1

)
−
(

8n− 2
4k + 1

))

On the last step we again removed antipode summands
(
8n−2
4k−2

)
and −

(
8n−2
4k+2

)
.

Remaining expression can be further transformed to

2
2n∑

k=0

((
8n− 2
4k − 1

)
−
(

8n− 2
4k + 1

))
=

= 2
2n∑

k=0

((
8n− 4
4k − 3

)
+ 2

(
8n− 4
4k − 2

)
+
(

8n− 4
4k − 1

)
−

−
(

8n− 4
4k − 1

)
− 2

(
8n− 4

4k

)
−
(

8n− 4
4k + 1

))
=

= 4
2n∑

k=0

((
8n− 4
4k − 2

)
−
(

8n− 4
4k

))

On the last step we again removed antipode summands
(
8n−4
4k−3

)
and −

(
8n−4
4k+1

)
.

The resulting sum after removing some zero summands becomes

4
2(n− 1

2 )∑
k=0

((
8(n− 1

2 )
4k + 2

)
−
(

8(n− 1
2 )

4k

))
It turns out to be equal to (5) (for n decreased by 1

2 ) multiplied by −4. Exactly
the same technique shows that

Outcome
(
(00)8n

)
× 28n = (−4)2Outcome

(
(00)8(n−1)

)
× 28(n−1)
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and thus immediately provides an induction step for proving the claim:

Outcome
(
(00)8n

)
× 28n = 16n

Replacing n with N
8 and dividing all expression by the number of rounds 2N ,

the best expected outcome in classical version of Ardehali game is

Outcome
(
(00)N

)
=
(

1√
2

)N

While the particular manipulations above are specific to Ardehali’s game,
the overall method of evaluating a sum of binomial coefficients applies to any
symmetric XOR game.

4.2 Quantum Case

The value of the Ardehali’s game can be obtained by maximizing the one-variable
expression in equation (3). In the case of Ardehali’s game, the maximum of this
expression is 1√

2
and it is achieved by λ = eiθ where θ = (2N+1) mod 8

N π + k 2π
N .

The result f(λ) = 1√
2

corresponds to the winning probability of pwin = 1
2 +

1
2
√

2
. The winning strategy can be obtained by reversing the argument of [WW01]

and going from λ to transformations for the N players. There are infinitely
many possible sets of strategies for each of the given θ. One of these strategies is
described in [Ard92]. We include example of another strategy in the appendix.

The optimality of pwin = 1
2 + 1

2
√

2
can be shown by a very simple argument,

which does not involve any of the machinery above.

Theorem 2.
1
2

+
1

2
√

2
is the best possible probability for quantum strategy.

Proof. We modify the game by providing the inputs and the outputs of the first
N − 2 players to the (N − 1)st and N th players. Clearly, this makes the game
easier: the last two players can still use the previous strategy, even if they have
the extra knowledge.

Let k be the number of 1s among the first N − 2 inputs. Then, we have the
following dependence of the result on the actions of the last two players.

x1 + x2 + . . . + xN−2 xN−1 + xN

0 1 2
k + + − if k mod 4 = 0
k + − − if k mod 4 = 1
k − − + if k mod 4 = 2
k − + + if k mod 4 = 3

In either of the 4 cases, we get a game (for the last two players) which is
equivalent to the CHSH game and, therefore, cannot be won with probability
more than 1

2 + 1
2
√

2
.
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The fact that 1
2 + 1

2
√

2
is the best winning probability has been known before

[Ard92]. But it appears that we are the first to observe that this follows by a
simple reduction to the CHSH game.
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A Appendix

A common behavior for a player in quantum nonlocal game is to perform some
local operation on his qubit, perform a measurement in the standard basis and
answer the result of the measurement. In other words, a choice for a player can be
expressed with two matrices: one for input 0 and other for input 1. In fact, players
may use equal strategies to achieve the best outcome. So optimal strategy for
any quantum XOR game can be found and proved with numerical optimization
quite simply. For quantum version of Ardehali game, the two matrices for all
players look like the following:

For input 0 For input 1

1√
2

(
ei(π

2 +γ) 1
−1 e−i(π

2 +γ)

)
1√
2

(
eiγ 1
−1 e−iγ

)
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with angle γ depending on the number of players: in fact, it is (2N+1) mod 8
4N π.

Assuming x as input bit, these two matrices can be described as one:

1√
2

(
ei(π

2 ·(1−x)+γ) e0

eiπ ei(−π
2 ·(1−x)−γ)

)
(6)

Consider a quantum system in starting state ΨGHZ . Lets express all local op-
erations, that players apply to their qubits during the game, as a tensor product
of N matrices M = C1 ⊗ . . .⊗CN . Each cell of M can be calculated as follows:

M[j1...jN , i1...iN ] =
∏N

k=1 Ck [jk, ik]

where i1, . . . , iN , j1, . . . , jN ∈ {0, 1}.
After all local operations are complete, lets express the final state directly as

sum of its amplitudes∑
y1,...,yN∈{0,1} αy1...yN |y1 . . . yN 〉 = M

(
1√
2
|00 . . . 0〉+ 1√

2
|11 . . .1〉

)
Consider a value of arbitrary amplitude αy1...yN . As there are only two nonzero
amplitudes in the starting state, any αy1...yN will consist of two summands:

αy1...yN = 1√
2

∏N
k=1 Ck [0, yk] + 1√

2

∏N
k=1 Ck [1, yk]

Assuming players got N -bit input x1 . . . xN , lets substitute values from (6)
for each Ck:

αy1...yN = 1√
2

∏N
k=1

1√
2
ei((γ+π

2 (1−xk))·(1−yk)) +

+ 1√
2

∏N
k=1

1√
2
ei(π+(π

2 −γ+π
2 ·xk)·yk) =

=
(

1√
2

)N+1

ei
∑N

k=1(γ+ π
2 (1−xk))·(1−yk)

+
(

1√
2

)N+1

ei
∑N

k=1(π+(π
2 −γ+π

2 ·xk)·yk)

Now we are interested mainly in difference between rotation angles on the
complex plane for these two summands. That is, in∑N

k=1

[(
γ + π

2 (1− xk)
)
(1− yk)−

(
π +

(
π
2 − γ + π

2 xk

)
yk

)]
=

∑N
k=1

[(
γ + π

2 −
π
2 xk − γyk − π

2 yk + π
2 xkyk

)
−
(
π + π

2 yk − γyk + π
2 xkyk

)]
=

∑N
k=1

(
γ + π

2 −
π
2 xk − π

2 yk − π − π
2 yk

)
=

∑N
k=1

(
γ − π

2 −
π
2 xk − πyk

)
Let us concentrate now on the case N = 4n and γ = 1

4N π (but similar
reasoning stays for any N). In this case the difference is expressed by (throwing
out π

2 ×N ≡ 0 (mod 2π), which is now redundant)

1
4π − 1

2π
∑N

k=1 (xk + 2yk)

By modulus 2π it is equal to value from Table 1.
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Table 1. Amplitude angle values for different inputs

|INPUT | |OUTPUT | = y1 + y2 + . . . + yN

= x1 + . . . + xN 0 1 2 3 . . .

0 1
4
π − 3

4
π 1

4
π − 3

4
π · · ·

1 − 1
4
π 3

4
π − 1

4
π 3

4
π · · ·

2 − 3
4
π 1

4
π − 3

4
π 1

4
π · · ·

3 3
4
π − 1

4
π 3

4
π − 1

4
π · · ·

4 1
4
π − 3

4
π 1

4
π − 3

4
π · · ·

...
...

...
...

...
. . .

If angle between two summands (both of the same length
(

1√
2

)N+1

) is ± 1
4π ,

then their sum is (
1√
2

)N−1

cos π
8 =

(
1√
2

)N−1
√

2+
√

2
2 (7)

If angle between two summands (both of the same length
(

1√
2

)N+1

) is ± 3
4π,

then their sum is
(

1√
2

)N−1

cos 3π
8 =

(
1√
2

)N−1
√

2−√
2

2 .
As one can see from the Table 1, bigger amplitudes always correspond to

correct answers (and smaller amplitudes correspond to incorrect answers). Sum
of the squares of formula (7), i.e. the measurement result for any fixed input,
will give the probability of right answer:

∑
Angle= ± 1

4π

((
1√
2

)N−1
√

2+
√

2
2

)2

= 1
2 + 1

2
√

2

Note that this probability is stable: it remains the same for all possible inputs
from the referee.
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Abstract. A set A is nontrivial for the linear exponential time class
E = DTIME(2lin) if A ∈ E and the sets from E which can be reduced
to A are not from a single level DTIME(2kn) of the linear exponential
hierarchy. Similarly, a set A is nontrivial for the polynomial exponential
time class EXP = DTIME(2poly) if A ∈ EXP and the sets from EXP

which can be reduced to A are not from a single level DTIME(2nk

) of the
polynomial exponential hierarchy (see [1]). Here we compare the strength
of the nontriviality notions with respect to the underlying reducibilities
where we consider the polynomial-time variants of many-one, bounded
truth-table, truth-table, and Turing reducibilities. Surprisingly, the re-
sults obtained for E and EXP differ. While the above reducibilities yield
a proper hierarchy of nontriviality notions for E, nontriviality for EXP
under many-one reducibility and truth-tab! le reducibility coincides.

1 Introduction

A set A is nontrivial for E = DTIME(2lin) (or E-nontrivial for short) if there are
arbitrarily complex sets from E which can be reduced to A, i.e., if for any k ≥ 1
there is a set B ∈ E reducible to A which is 2kn-complex (i.e., B �∈ DTIME(2kn)).
Similarly, a set A is nontrivial for EXP = DTIME(2poly) if for any k ≥ 1 there
is a set B ∈ EXP \ DTIME(2nk

) which can be reduced to A. Nontriviality
which was introduced by the authors in [1] was inspired by Lutz’s concept of
weak completeness. While a set A ∈ C is complete for a complexity class C in
the classical sense if all problems in C can be reduced to A, Lutz [9] proposed
to call a set A ∈ C weakly complete for C if a nonnegligible part of problems
in C can be reduced to A. Lutz formalized the idea of weak completeness for
the exponential time classes E and EXP by introducing some resource bounded
(pseudo) measures on these classes and by calling a subclass of E and EXP
negligible if it has measure 0 in E and EXP, respectively. As one can easily show,
weakly complete sets for E and EXP in the sense of Lutz [9] are E-nontrivial
and EXP-nontrivial, respectively, and in [1] it is argued that E-nontriviality and
EXP-nontriviality are the weakest meaningful weak completeness notions for the
corresponding exponential time classes.

The classical approach for generalizing completeness is to generalize (i.e., to
weaken) the underlying reducibility. So one might replace the polynomial time

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 84–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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bounded many-one reducibility (p-m-reducibility for short) on which complete-
ness is usually based by more general polynomial-time reducibilities like the poly-
nomial time variants of bounded truth-table reducibility (p-btt) or truth-table
reducibility (p-tt) or Turing reducibility (p-T ). As Watanabe [10] has shown,
these more general reducibilities also yield more general completeness notions
for the exponential time classes. For Lutz’s weak completeness notions for E
and EXP the corresponding separations have been obtained by Ambos-Spies,
Mayordomo and Zheng [3].

Here we address the corresponding questions for nontriviality where we also
consider the question of possible trade-offs: If arbitrarily complex sets from E
- or even all sets from E - can be reduced to a set A ∈ E by some weaker
reducibility, can we also reduce arbitrarily complex sets from E to A by some
stronger reducibility (and, similarly, for EXP)?

For the investigation of these questions, the following phenomenon has to
be taken into account. While, by a simple padding argument, hardness for E
and EXP coincide (whence a set A ∈ E is E-complete if and only if it is EXP-
complete), surprisingly, for Lutz’s weak completeness only one direction holds.
Namely any weakly E-complete set is weakly EXP-complete but there are sets in
E which are weakly EXP-complete but not weakly E-complete (see Juedes and
Lutz [8]). For the still weaker nontriviality notions, E-nontriviality and EXP-
nontriviality are in fact independent (see Ambos-Spies and Bakibayev [2]), i.e.,
there are sets in E which are E-nontrivial but not EXP-nontrivial and vice versa.

This difference in the nontriviality notions for E and EXP is also manifested
in a quite surprising way in our results here. While for E the hierarchy of the
nontriviality notions under the weak polynomial time reducibilities completely
mirrors Watanabe’s separation results for the corresponding completeness no-
tions, for EXP, nontriviality under truth-table reducibility and nontriviality un-
der many-one reducibility coincide.

The outline of the paper is as follows. In Section 2 we show that, for E and
EXP, nontriviality under truth-table reducibility is stronger than nontriviality
under Turing reducibility. In fact we show that there is a T -complete set A for E
which is neither tt-nontrivial for E nor tt-nontrivial for EXP. So the fact that all
sets in E can be recovered from a set A by a Turing reduction does not imply that
there are arbitrarily complex sets in E which can be recovered from A by some
truth-table reductions. In Section 4 we give corresponding separations of many-
one, bounded truth-table and truth-table reducibility for E whereas in Section 3
we prove the coincidence of EXP-nontriviality under many-one reducibility with
EXP-nontriviality under truth-table reducibility. Due to lack of space, some of
the proofs are only sketched or omitted.

We assume familiarity with the basic notions of structural complexity theory
(see e.g. Balcázar et al. [4] and [5] for unexplained notation). In the following
we let Ek = DTIME(2kn) and EXPk = DTIME(2kn

). Then a set A ∈ E is
r-E-nontrivial if, for any k ≥ 1, there is a set Bk ∈ E \ Ek such that Bk ≤p

r A;
and A is r-E-trivial otherwise. Similarly, A ∈ EXP is r-EXP-nontrivial if, for
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any k ≥ 1, there is a set Bk ∈ EXP \ EXPk such that Bk ≤p
r A; and A is

r-EXP-trivial otherwise.

2 Turing Completeness vs. Truth-Table Nontriviality

We start with separating nontriviality (for E and EXP) under Turing and truth-
table reducibility.

Theorem 1. There is a T -E-complete set A such that A is tt-trivial for E and
EXP.

Proof. Fix an m-complete set C for E such that C ∈ E1. It suffices to define a
set A such that

C ≤p
T A (1)

A ∈ E1, and (2)

∀ B (B ≤p
tt A⇒ B ∈ E6) (3)

hold. Namely, (1) and (2) guarantee that A is T -complete for E while, by (3), A
is tt-trivial for E and EXP.

We first describe a framework for constructing sets which will guarantee (1)
and (2), and then we define a set A within this framework which will satisfy
condition (3) too.

In order to guarantee (1) we define a p-Turing reduction of C to A as follows.
For any string z �= λ, let

CODE(z) = {〈z, y〉 : |y| ≤ 3|z|2 + 1}

be the set of z-codes where the pairing function 〈, 〉 is defined by 〈z, y〉 = 04|z|1zy.
Then, in the course of the construction of A, we define a string code(z) of length
3|z|2 + 1 such that the last bit of code(z) is the value of C(z), i.e.,

C(z) = code(z)(3|z|2), (4)

and we put a z-code 〈z, y〉 into A if and only if y is an initial segment of code(z)
thereby guaranteeing

A ∩CODE(z) = {〈z, y〉 : y ! code(z)}. (5)

Obviously, this ensures that C ≤p
T A since, by (5), A can compute code(z) by a

standard prefix search, and, by (4), code(z) gives the value of C(z).

Strings will be put into A only by the above coding procedure. So

A =
⋃

z∈{0,1}+

{04|z|1zy : y ! code(z)} =
⋃

z∈{0,1}+

{〈z, y〉 : y ! code(z)}. (6)
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Now, for a string z of length n ≥ 1, code(z) will consist of n segments of
length 3n and the final coding bit, i.e.,

code(z) = vz
1 . . . vz

n C(z) where n = |z| and |vz
1 | = · · · = |vz

n| = 3n. (7)

Moreover, these segments will be chosen so that

vz
1 . . . vz

m (1 ≤ m ≤ |z|) can be computed in O(poly(|z|) · 24m) steps. (8)

Note that, by C ∈ E1, (7) and (8) guarantee that

code(z) can be computed in O(poly(|z|) · 24|z|) ≤ O(25|z|) steps. (9)

This allows us to argue that (2) holds, i.e., that A ∈ E1, as follows. Given a
string x, it follows from (6) that x is in A if and only if there is a string z
such that x = 04|z|1zy for some initial segment y of code(z). But, by the above
observation on the complexity of code(z) and by |x| ≥ 5|z|, this can be decided
in O(poly(|x|) + 25|z|) ≤ O(2|x|)) steps.

Having described the frame for the construction, we now show how, for given
z of length n ≥ 1, the segments vz

m (1 ≤ m ≤ n) of code(z) can be chosen so
that (8) is satisfied and such that, for the corresponding set A defined according
to (6) and (7), A satisfies condition (3). Since, by the preceding discussion, A
will satisfy (1) and (2) too, this will complete the proof.

We start with some notation. Fix a standard enumeration {Me : e ≥ 0} of the
polynomial-time bounded oracle Turing machines such that, for any oracle X ,
the run time of MX

e on inputs of length n is bounded by pe(n) (uniformly in e
and n) where the polynomials pe are chosen such that n ≤ pe(n) ≤ pe+1(n) and
pe(n)2 < 2n for all e and n with e ≤ n. Let Qe(x) be the set of oracle queries
made by M∅

e on input x. Note that, for e and x such that e ≤ |x|, Qe(x) consists
of less than pe(|x|) < 2|x| strings, each having length less than pe(|x|) < 2|x|, and
Qe(x) can be computed in time pe(|x|) < 2|x|. Finally, note that if Me describes
a p-tt-reduction then Me is nonadaptive, i.e., the query set of Me on input x
does not depend on the oracle set whence Qe(x) is the query set of MA

e (x).
Now, given a string z of length n ≥ 1, the segments vz

1 , . . . , vz
n of code(z)

are inductively defined as follows. Given m with 1 ≤ m ≤ n and the strings
vz
1 , . . . vz

m−1, let vz
m be the least string v of length 3n such that

∀ e < m ∀ x ∈ {0, 1}m ∀ y ∈ Qe(x) (04|z|1zvz
1 . . . vz

m−1v �! y). (10)

In order to show that vz
m is well defined (i.e., that there is a string v satisfying

(10)) and that the segments vz
m of code(z) satisfy (8), we first observe that the

set Q =
⋃

e<m,|x|=m Qe(x) of the strings y which are not allowed to extend
04|z|1zvz

1 . . . vz
m−1v

z
m has cardinality less than 22m and can be listed in time

O(22m). Note that there are m numbers e < m and 2m strings x of length m.
Moreover, as observed above, for each such e and x, |Qe(x)| < pe(m). So, by
choice of the polynomials pe (and by e < m),

|Q| < m · 2m · pe(m) ≤ pm(m)2 · 2m ≤ 22m.
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The existence of a listing of Q in time O(22m) follows by a similar argument
from the observation that each of the sets Qe(x) can be listed in time ≤ pe(m).

Now the existence of a string v of length 3n as in (10) is immediate since
there are 23n strings v of length 3n but there are are only less than 22n strings
y which have to be avoided as extensions of 04|z|1zvz

1 . . . vz
m−1v.

Condition (8) is established by induction on m. Given m and vz
1 , . . . , vz

m−1 it
suffices to show that vz

m can be computed in O(poly(n) ·24m) steps. Since Q can
be listed in time O(22m) and since z, vz

1 , . . . , v
z
m−1 are given, in poly(n)·22m steps

we can list the set Q′ of all strings w of length 3n such that 04|z|1zvz
1 . . . vz

m−1w
is an initial segment of a string y in Q. So, by sorting Q′, in O(poly(n) · 24m)
steps we can find the least string v of length 3n such that v �∈ Q′ and, obviously,
vz

m is the least such string.
It remains to show that (3) is satisfied. So fix a set B such that B ≤p

tt A. We
have to show that B ∈ E6.

Fix e such that Me is nonadaptive and B = MA
e . Then, given a string x where

w.l.o.g. e < |x|, B(x) can be computed in O(26|x|) steps by simulating MA
e (x)

as follows. Since Me is nonadaptive, Qe(x) is the query set of this computation.
So knowing A(y) for all strings y ∈ Qe(x) allows us to compute MA

e (x) in
polynomial time. Hence, by |Qe(x)| ≤ 2|x|, it suffices to compute A(y) for a
given y ∈ Qe(x) in O(25|x|) steps.

In order to compute A(y), first decide whether y is an element of a code
set CODE(z) and if so compute the unique z such that y ∈ CODE(z) and the
unique w such that y = 04|z|1zw. Since |y| < pe(|x|), this can be done in poly(|x|)
steps. Now if y is not in any code set then, by (6), y �∈ A. If y = 04|z|1zw is a z-
code then, by (6), y ∈ A iff y ! 04|z|1zcode(z). For deciding the latter, distinguish
the following two cases. If |z| ≤ |x| then, by (9), code(z) can be computed in
O(25|z|) ≤ O(25|x|) steps. Finally, if |x| < |z| then, by e < |x| < |z| and by
choice of vz

|x| (see (10)), y ! 04|z|1zcode(z) if and only if y ! 04|z|1zvz
1 . . . vz

|x|.
Moreover, by (8), vz

1 . . . vz
|x| can be computed in O(poly(|z|) · 24|x|) steps, and,

by |z| < |x|, O(poly(|z|) · 24|x|) ≤ O(25|x|).
This completes the proof.

3 Collapse of Truth-Table Nontriviality for EXP

In contrast to the hierarchy theorems for EXP-completeness by Watanabe [10]
and for weak EXP-completeness by Ambos-Spies, Mayordomo and Zheng [3],
here we show that tt-nontriviality for EXP and m-nontriviality for EXP coincide.

Theorem 2. For any set A ∈ EXP the following are equivalent.

(i) A is m-nontrivial for EXP.
(ii) A is tt-nontrivial for EXP.

Proof. For a proof of the nontrivial direction assume that A is tt-nontrivial for
EXP and fix k ≥ 1. It suffices to show that there is a set B such that B ≤p

m A
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and B �∈ EXPk. (Note that, by A ∈ EXP and by downward closure of EXP
under ≤p

m, B ≤p
m A will imply that B ∈ EXP.)

By tt-nontriviality of A, fix a set C such that C ∈ EXP\EXPk+1 and C ≤p
tt A.

Moreover, fix a nonadaptive oracle Turing machine M such that C ≤p
tt A via

M and let p be a polynomial time-bound for M . For any input string x let
q(x, 1), . . . , q(x, nx) be the list of oracle queries of M on input x (with empty
oracle) in order of appearance. Finally, define the set B by

B = {〈x, zn〉 : n ≤ nx & q(x, n) ∈ A}

where zn is the nth string with respect to the length-lexicographical ordering
and the coded pair 〈x, y〉 is defined by 〈x, y〉 = 1|x|0xy.

We claim that B has the required properties.
Obviously, B ≤p

m A via f where f is defined by

f(y) =

{
q(x, n) if y = 1|x|0xzn & n ≤ nx

0 otherwise.

It remains to show that B �∈ EXPk. For a contradiction assume B ∈ EXPk.
Then, for given x, C(x) can be computed by the following procedure.

– Compute the queries q(x, 0), . . . , q(x, nx) by running M∅ on input x.
(This can be done in p(|x|) steps.)

– For n ≤ nx compute A(q(x, n)) by using the identity

A(q(x, n)) = B(〈x, zn〉) = B(1|x|0xzn).

(Note that n ≤ nx < p(|x|) and that the length of zn is logarithmic in n
whence |1|x|0xzn| ≤ 3|x| + O(1). So, by assumption on B, this part of the
procedure can be completed in O(p(|x|) · 2(3|x|)k

) steps.)

– Finally, using the values A(q(x, n)) (n ≤ nx), simulate the computation of
M with oracle A on input x in order to get C(x) = MA(x).
(This can be done in p(|x|) steps.)

So C(x) can be computed in

O(p(|x|) · 2(3|x|)k

) ≤ O(2|x|
k+1

)

steps. It follows that C ∈ EXPk+1 contrary to assumption.
This completes the proof.

For a tt-E-nontrivial set A ∈ E we can modify the above argument as follows.
Given k ≥ 1, take a set C such that C ∈ E \ E4k and C ≤p

tt A, and let B be
the set obtained from C as above. Then one can show as above that B ≤p

m A
and B �∈ Ek. We cannot argue, however, that B is in E. So the above proof of
Theorem 2 cannot be converted into a proof of the corresponding claim for E in
place of EXP. In fact, as we will show next, Theorem 2 fails for E.
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4 Separating Nontriviality for E under Truth-Table Type
Reducibilities

We now separate the nontriviality notions for E under the different truth-table
type reducibilities. In order to separate E-nontriviality under bounded truth-
table reducibility from E-nontriviality under many-one reducibility, we give some
stronger separation results by showing that E-nontriviality (or even E-comple-
teness) under bounded truth-table reductions of norm k + 1 does not imply
E-nontriviality under bounded truth-table reductions of norm k.

Theorem 3. (a) Let k ≥ 1. There is a (k + 1)-tt-complete set in E which is
k-tt-E-trivial.

(b) There is a tt-complete set in E which is btt-E-trivial.

Proof (Idea). In order to explain the basic ideas underlying the proof we consider
only a special case of part (a), namely the case k = 1, for which the proof is
typical for the general argument but less technical.

By a slow diagonalization argument, we construct a set A ∈ O(2n2
) such that

A is 2-tt-hard for E (11)

and
∀B ∈ E (B ≤p

1−tt A ⇒ B ∈ DTIME(2n)). (12)

Then any set Â ∈ E with Â =p
m A will be 2-tt-complete for E but 1-tt-E-trivial.

(Note that, by padding, for any set A ∈ EXP there is a set Â ∈ E1 such that
Â =p

m A.)
Condition (11) is satisfied as follows. Given an E-complete set C ∈ E1, it

suffices to ensure that C ≤p
2−tt A. This is achieved by guaranteeing

x ∈ C ⇔ |A ∩ {x0, x1}| = 1. (13)

Our strategy for satisfying (12) is much less straightforward, and, for imple-
menting it, we will need a speed-up argument. We start with some notation.
Let {Ee : e ≥ 0} be an enumeration of E such that, for x with |x| > e, Ee(x)
can be (uniformly) computed in time 2e|x|, and let {(ge, he) : e ≥ 0} be an
enumeration of the p-1-tt-reductions - where ge : {0, 1}∗ → {0, 1}∗ is a selector
function and he : {0, 1}∗ × {0, 1} → {0, 1} is the corresponding evaluator func-
tion - such that, for a common (uniform) polynomial time bound pe of ge and
he, pe((|x| + 1)2) ≤ 2|x| for all x with |x| > e. Finally, call a string x e-critical,
if he(x, 0) �= he(x, 1).

Now, in order to satisfy (12), we will ensure

∀ α > 0 (A ∈ DTIME(2α·n2
)) (14)

(where α is a real number), and, for e ≥ 0 where e = 〈e0, e1〉, we will meet the
requirements

"e : Ee0 ≤
p
1−tt A via (ge1 , he1)⇒ ∀∞x (x is e1-critical ⇒ |x| > 2−e · |ge1(x)|2).
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(Intuitively, if, for the p-1-tt-reduction (ge1 , he1), there are infinitely many x such
that the query ge1(x) is “long” and relevant then "e requires that (ge1 , he1) is
not a reduction from Ee0 to A.)

In order to show that this will guarantee (12), let B ∈ E be given such that
B ≤p

1−tt A. Fix e = 〈e0, e1〉 such that B = Ee0 and B ≤p
1−tt A via (ge1 , he1).

Then, by requirement "e, we may fix n0 such that, for all e1-critical x with
|x| ≥ n0, |x| > 2−e|ge1(x)|2 holds. So, for x with |x| ≥ n0,

B(x) = Ee0 (x) = he1(x, A(ge1 (x))) = he1(x, y)

where

y =

{
A(ge1(x)) if |x| > 2−e|ge1(x)|2

0 otherwise.

Moreover, by (14) (for α = 2−e), the string y can be computed in O(2|x|) steps.
Obviously this implies B ∈ E1.

We now turn to the construction of A.
At stage s of the construction, we define A(zs0) and A(zs1) for the sth string

zs w.r.t. to the length-lexicographical ordering. We say that requirement "e

requires attention at stage s if e < |zs|, "e is not satisfied at any stage t < s,
and

∃x (|x| ≤ 2−e(|zs|+ 1)2 & ge1(x) ∈ {zs0, zs1} & x is e1-critical). (15)

Now, if no requirement requires attention then let A∩{zs0, zs1} = ∅ if C(zs) = 0
and A ∩ {zs0, zs1} = {zs0} if C(zs) = 1. Otherwise, fix e minimal such that "e

requires attention. Call "e active and satisfied at stage s and proceed as follows.
Fix x minimal as in (15), fix the unique i, j ≤ 1 such that ge1(x) = zsi and
Ee0(x) �= he1(x, j) (note that such a j exists since x is e1-critical) and define A
on {zs0, zs1} by

A ∩ {zs0, zs1} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if C(zs) = 0 and j = 0
{zs0, zs1} if C(zs) = 0 and j = 1
{zs(1− i)} if C(zs) = 1 and j = 0
{zsi} if C(zs) = 1 and j = 1.

This completes the construction.
Obviously, the construction ensures (13). Moreover, all requirements "e are

met. In order to show this, first observe that any requirement requires attention
at most finitely often. So if there are infinitely many e1-critical strings x such
that |x| ≤ 2−e · |ge1(x)|2 then "e will eventually become active and satisfied.
But if "e becomes satisfied then "e is met since, at the stage at which "e is
satisfied, it is ensured that Ee0 is not p-1-tt-reducible to A via (ge1 , he1).

It remains to show that (14) holds. Given e ≥ 1, it suffices to show that
A ∈ DTIME(22−e·n2

).
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Fix a stage s and let n = |zs0| = |zs1|. Note that the complexity of computing
A(zs0) and A(zs1) according to the above construction is essentially determined
by the complexity of the procedure which tells us which requirements "e require
attention (and if some "e requires attention, how "e wants A(zs0) and A(zs1) to
be defined in case that it becomes active). Now, as one can easily show, the latter
can be done in O(22−(e−1)·n2

) steps. (Note that the crucial part of the procedure
of checking whether "e requires attention at stage s is to check whether there is
a string x of length ≤ 2−en2 as in (15).)

So the complexity of checking whether "e requires attention is decreasing in
e. Since each requirement requires attention only finitely often, this observation
helps us to speed up the construction of A in order to get the required time
bound for A. Namely, by using a finite table containing the information on the
effect of the requirements "e′ , e′ ≤ e + 1, on the construction of A, it suffices
to check which of the requirements "e′′ with e′′ > e + 1 require attention. It
easily follows from the above observation on the complexity of checking whether
a requirement requires attention, that the thus modified construction witnesses
that A ∈ DTIME(22−e·n2

).
This completes the proof.

We conclude our analysis of E-nontriviality under the weak reducibilities with
the observation that 1-tt-nontriviality for E coincides with m-nontriviality for
E. The corresponding observations for E-completeness and weak E-completeness
have been made by Homer et al. [7] and Ambos-Spies et al. [3], respectively. We
omit the easy proof.

Lemma 1. Let A ∈ E be 1-tt-nontrivial for E. Then A is m-nontrivial for E.

5 Summary of Results

Our results on the relations among completeness and nontriviality under the
common polynomial-time reducibilities can be summarized as follows.

Theorem 4. For A ∈ E the following and (up to transitive closure) only the
following implications hold in general:

A m-E-complete
$

A 1-tt-E-complete
⇒

A m-E-nontrivial
$

A 1-tt-E-nontrivial
⇓ ⇓

A btt-E-complete ⇒ A btt-E-nontrivial
⇓ ⇓

A tt-E-complete ⇒ A tt-E-nontrivial
⇓ ⇓

A T -E-complete ⇒ A T -E-nontrivial
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Theorem 5. For A ∈ EXP the following and (up to transitive closure) only the
following implications hold in general:

A m-EXP-complete
$

A 1-tt-EXP-complete
⇓

A btt-EXP-complete
⇓

A tt-EXP-complete
⇓

A T -EXP-complete

⇒

⇒

A m-EXP-nontrivial
$

A 1-tt-EXP-nontrivial
$

A btt-EXP-nontrivial
$

A tt-EXP-nontrivial
⇓

T -EXP-nontrivial

Here we have not looked at E- or EXP-nontriviality under the strong reducibili-
ties. Berman [6] has shown that E-completeness under many-one reducibility co-
incides with E-completeness under length-increasing one-one reducibility and the
corresponding fact for weak E- (and EXP-) completeness has been shown in [3]. It
can be easily shown that E- (and EXP-) nontrivality under many-one reducibil-
ity coincides with E- (and EXP-) nontrivality under length-increasing many-one
reducibility. The question whether nontriviality under many-one reducibility and
nontriviality under one-one reducibility coincide, however, is open. We have ob-
tained such a collapse only under the strong hypothesis that P = PSPACE.
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Abstract. In this paper, we give streaming algorithms for some prob-
lems which are known to be in deterministic log-space, when the number
of passes made on the input is unbounded. If the input data is mas-
sive, the conventional deterministic log-space algorithms may not run
efficiently. We study the complexity of the problems when the number
of passes is bounded.

The first problem we consider is the membership testing problem for
deterministic linear languages, DLIN. Extending the recent work of Mag-
niez et al.[11](to appear in STOC 2010), we study the use of finger-
printing technique for this problem. We give the following streaming
algorithms for the membership testing of DLINs: a randomized one pass
algorithm that uses O(log n) space (one-sided error, inverse polynomial
error probability), and also a p-pass O(n/p)-space deterministic algo-
rithm. We also prove that there exists a language in DLIN, for which any
p-pass deterministic algorithm for membership testing, requires Ω(n/p)
space. We also study the application of fingerprinting technique to visibly
pushdown languages, VPLs.

The other problem we consider is, given a degree sequence and a graph,
checking whether the graph has the given degree sequence, Deg-Seq. We
prove that, any p-pass deterministic algorithm that takes as its input
a degree sequence, followed by an adjacency list of a graph, requires
Ω(n/p) space to decide Deg-Seq. However, using randomness, for a more
general input format: degree sequence, followed by a list of edges in any
arbitrary order, Deg-Seq can be decided in O(log n) space. We also give
a p-pass, O(n/p)-space deterministic algorithm for Deg-Seq.

1 Introduction

Conventional computational models such as Turing machines do not restrict
the number of passes on the input. We wish to understand the conventional
space bounded models of computation when the number of passes made on the
input is restricted. The model of computation where the number of passes is
bounded has been studied extensively [1,14]. In this paper we study problems
that are already known to be in deterministic log-space with no restrictions on
the number of passes and re-analyze their complexity for a bounded number of
passes.

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 94–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The paper is divided into two parts. In the first part, we consider the mem-
bership problem for subclasses of context-free languages, CFLs. The membership
problem, for a fixed language L is: given a string w checking whether w belongs
to L. We consider some subclasses of CFLs for which log-space algorithms are
already known. We study the number of passes versus space and randomness
trade-offs for these problems.

Recently, Magniez et al. [11] studied the membership problem for Dyck2 (the
set of balanced strings over two types of parentheses). They proved that there
is a O(

√
n log n) space, one pass randomized algorithm for Dyck2. They also

proved that any randomized algorithm that makes one pass on the input must
use Ω(

√
n log n) space.

Using their ideas of finger-printing the stack, we study the problem of mem-
bership testing of deterministic linear languages, DLIN, the class of languages
generated by deterministic linear grammars for which the right hand side of
every rule has at most one non-terminal. The language Dyck2 does not belong
to DLIN. The membership testing for languages in DLIN is in deterministic log-
space when there is no restriction on the number of passes [8]. The most obvious
log-space algorithm makes multiple passes on the input. We ask whether adding
randomness leads to an algorithm with fewer passes. We prove the following
theorem:

Theorem 1. For any L ∈ DLIN there exists a constant c and a randomized
one pass algorithm AL that uses O(log n) space such that ∀w ∈ Σ∗ if w ∈ L,
Pr[AL(w) = 1] = 1 and if w /∈ L Pr[AL(w) = 1] ≤ 1

nc .

We also analyze the deterministic streaming complexity of the membership prob-
lem of DLIN. We prove the following two theorems:

Theorem 2. There is a deterministic p-passes, O(n/p)-space algorithm for
membership testing for languages in DLIN.

Theorem 3. Any deterministic algorithm that makes p-passes over the input,
will require Ω(n/p) space for membership testing for languages in DLIN.

We analyze the algorithm used to prove Theorem 1, and apply it to a subclass of
visibly pushdown languages, VPLs. VPLs were defined by Mehlhorn [12] and Alur
et al. [2]. Their membership testing was studied in [12,5,6]. Brahnmuhl et al. gave
the first log-space algorithm for membership testing of VPLs and later Dymond
settled its complexity to NC1. VPLs are defined over tri-partitioned alphabet
Σ = Σc ∪ Σr ∪ Σl. A grammar form for VPLs was given in [3]. A sub-class
of VPLs, well-matched VPLs was defined in [2]. It is believed that an efficient
algorithm for membership testing of wVPLs can help in XML type checking.
For large XML documents, it may be inefficient to store the whole document
to perform the type checking. It is therefore interesting to consider the model
where the membership testing for languages in wVPL can be done using fewer
passes on the input.

We answer the question in a more restricted setting. We consider a class of
languages generated by grammars more restrictive than the grammar form for
wVPLs. We denote such grammars by rest-VPG.
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Let w be an input string over the input alphabet of L. And let n = |w|. An
index i ∈ [n] is said to be a reversal if w[i− 1] ∈ Σr and w[i] ∈ Σc ∪Σl.

Let rev(L, n) be defined as maximum value of rev(w) over all strings w ∈ Σn

such that w ∈ L. We denote this by rev(n) if L is clear from the context.

Theorem 4. For any L generated by rest-VPG, there exists a constant c and a
randomized one pass algorithm AL that uses O(rev(L, n) log n) space such that
∀w ∈ Σ∗ if w ∈ L, Pr[AL(w) = 1] = 1 and if w /∈ L Pr[AL(w) = 1] ≤ 1

nc .

In the second part of the paper we consider the following graph problem:

Degree-Sequence, Deg-Seq:
Given a degree sequence and a directed graph; check if vertices v1, v2, . . . , vn

have out-degrees d1, d2, . . . , dn, respectively.
This problem is known to be in log-space (in fact in TC0(see for example

[15])). The obvious log-space algorithm for this problem makes multiple passes
on the input, as for the membership testing of DLIN.

It has been observed [4,7] that the complexity of graph problems changes dras-
tically depending on the order in which the input is presented to the streaming
algorithm. If the input to Deg-Seq is such that the degree of a vertex along with
all the edges out of that vertex are listed one after the other, then checking
whether the graph has the given degree sequence is trivial. If the degrees se-
quence is listed first, followed by the adjacency list of the graph then we observe
that a one pass deterministic algorithm needs Ω(n) space to compute Deg-Seq.
For a more general ordering of the input where the degree sequence is followed
by a list of edges in an arbitrary order, we prove the following theorem:

Theorem 5. If the input is a degree sequence followed by a list of edges in
an arbitrary order, then Deg-Seq can be solved: (1) by a one pass, O(log n)
space randomized streaming algorithm such that if vertices v1, v2, . . . , vn have
out-degrees d1, d2, . . . , dn, respectively, then the algorithm accepts with probability
1 and rejects with probability 1−n−c, otherwise. (2) by a p-passes, O((n log n)/p)-
space deterministic streaming algorithm.

The rest of the paper is organized as follows: In Section 2 we prove Theorem 1
and Theorem 2 . Here we also give a randomness efficient version of the algorithm
used to prove Theorem 1. In Section 3 we use the algorithm from Section 2.1
and prove Theorem 4. In Section 4, we analyze the complexity of Deg-Seq. and
prove Theorem 5.

2 Streaming Algorithms for Membership Testing of DLINs

In this section we give streaming algorithms for the membership testing of lan-
guages in DLIN (Theorem 1). (See [9], for the basic definitions regarding context-
free grammars, sentential forms and derivations.) We start with some definitions.

Definition 1 ([10,8]). A deterministic linear CFG, DL-CFG, is a CFG
(Σ, N, P, S) for which, every production is of the form A −→ aω, where a ∈ Σ
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and ω ∈ (N ∪ ε)Σ∗ and for any two productions, A −→ aω and B −→ bω′, if
A = B then a �= b, where a, b ∈ Σ and ω, ω′ ∈ (N ∪ ε)Σ∗.

Definition 2. Deterministic linear CFLs, DLIN, is the class of languages
for which there exists a DL-CFG generating it.

The algorithm for membership testing of DLINs is a modification of the algorithm
of [11].

2.1 A Randomized Streaming Algorithm

We observe a property of 1-turn-Dyck2, a language accepted by the following
grammar: S −→ (S1 | [S2, S1 −→ (S1) | [S1] | ), S2 −→ (S2) | [S2] | ], which
can be generalized for DLIN to obtain an efficient algorithm.

Observation 6. For any string w in 1-turn-Dyck2 and i ∈ [n
2 ], the letter at

location w[i] completely determines the letter at location w[n − i + 1], where
n = |w|.

For a language in DLIN the observation is not immediately applicable. For ex-
ample, S → aBc; B → aSb is a valid DL-CFG but on letter a at location i < n

2 ,
we do not know whether to expect b or c at w[n − i + 1]. However, something
similar to Observation 6 applies to DL-CFG.

In this section, for the sake of simplicity, we restrict ourselves to DL-CFG
grammars that have rules of the form A → uBv, where |u| = |v| = 1. It is easy
to see that this can be generalized to all of DL-CFG. Let L be a DLIN. Any string
in L is produced by repeated application of rules corresponding to the DL-CFG
of L, say GL. The sentential forms arising in the derivation of any w ∈ L have at
most one non-terminal in them. Let the current sentential form be uAu′, where
u, u′ ∈ Σ∗, u and u′ are prefix and suffix of w respectively, and A ∈ N . Let
the next terminal symbol after u in w be a. Suppose there is a rule A → aBc
then determinism forces that there is no other rule A→ a′B′c′ such that a′ = a.
Therefore, if the rule for A is to be applied and the letter to be generated is a,
then the next sentential form is uaBcu′, i.e. A and a uniquely determine c.

Observation 7. Let w be a string generated by a DL-CFG G that have rules only
of the form A → uBv, where |u| = |v| = 1. Let i ∈ [n

2 ]. The letter at location
w[i] and the rule that needs to be applied to produce it, completely determine the
letter at location w[n− i + 1], where n = |w|.

While processing w[i], we add a monomial, a power of a variable, to the sum
which is expected to be subtracted on reading w[n− i + 1].

In the case of 1-turn-Dyck2 we could write down an explicit polynomial to be
computed for a given input string. Here, the polynomial computation is more
involved.

Let L be a DLIN, generated by a DL-CFG, GL = (N, Σ, P, S). We describe the
multi-variate polynomial that we come up with for the given input string such
that this polynomial is the zero polynomial if and only if the given string is in L.
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Let Σ = {a1, a2, . . . , ak}. Let {x1, x2, . . . , xk} be formal variables. Let type
and next be two functions such that type : Σ × N → {x1, . . . , xk} and next :
Σ × N → N . If A → aiBaj is a rule in the grammar GL, then type(ai, A)
and next(ai, A) are defined to be xj and B respectively. They are undefined
otherwise. The determinism of the grammar ensures that for given A and ai, xj

and B are unique.
We define the polynomial inductively using an extra variable var also main-

tained inductively.
Let q0(x1, . . . , xk) = 0 and var0 = S. For i ≤ n

2 , we define:

qi(x1, . . . , xk) = qi−1(x1, . . . , xk) + (type(w[i], vari−1))i

vari = next(w[i], vari−1).

For i > n
2 , define qi(x1, . . . , xk) as qi−1(x1, . . . , xk)− (map(w[i]))n−i+1, where

map(ai) = xi.
It is easy to see that qn(x1, . . . , xk) is the zero polynomial if and only if the

given string is in L.
As in the case of 1-turn-Dyck2, we will implicitly compute this polynomial.

The idea is to maintain an evaluation of this polynomial at randomly points
α1 · · ·αk chosen from a enough field, Fp. We are now ready to describe our
algorithm for membership test of DLIN.

Algorithm 1. Randomized one pass algorithm
Pick α1, α2, . . . , αk uniformly at random from Fp, where k = |Σ|.
Sum ← 0
var ← S
for i = 1 to n/2 do

Let index be j if type(w[i], var) = xj

Sum ← (Sum + (αindex)i)(mod p)
var ← next(w[i], var)

end for
for i = n/2 + 1 to n do

Let index be j if map(w[i]) = xj

Sum ← (Sum − (αindex)n−i+1)(mod p)
end for
Output ’yes’ if Sum is zero and ’no’ otherwise.

It is easy to see that the above algorithm can be generalized when the DL-CFG
grammar has rules of the form A → aBv, where |v| = 0 or |v| > 1. We need to
maintain an extra variable to keep track of the power to which αjs will be raised.
We denote this variable by h. Suppose the rule A → aBv such that |v| > 1 is
being applied at step i ≤ n/2, then obtain the type of each letter inside v. Say
the types are xt1 , xt2 , . . . xtl

where l = |v|. Now add
∑l

j=1 α
h+(l−j)
tj

to the sum
and set h to h + l. For |v| = 0, h and Sum remain unchanged.

The algorithm makes one pass on the input. Also, qn(x1, . . . , xk) is non-zero
when the given string is not in L. However, the evaluation may still be zero.
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Note that degree of qn(x1, x2, . . . , xk) is less than or equal to n. If the field size
is chosen to be n1+c ≤ p ≤ n2+c, then due to Schwartz-Zippel lemma [13] the
probability that Sum is zero but qn(x1, x2, . . . , xk) is non-zero is at most n/p
which is at most n−c. The amount of randomness used will be (c|Σ| logn). The
algorithm keeps track of α1, . . . , αk and the value of Sum. Therefore, the space
used is (c|Σ| log n).

2.2 Randomness Efficient Version

In [11], it was observed that the membership testing of Dyckk O(log k)-streaming
reduces to membership testing of Dyck2. We show that the membership testing
for any language in DLIN O(1)-streaming reduces to membership testing in 1-
turn-Dyckk, where k is the alphabet size of the language.

As the membership testing for Dyck2 requires only (c log n) random bits as
opposed to (ck log n)-bits used in Algorithm 1, this gives a randomness efficient
algorithm. The main result in this section is stated below:

Theorem 8. The membership testing for any language in DLIN O(log |Σ|)-
streaming reduces to membership testing in 1-turn-Dyck2, where Σ is the alphabet
of the language.

2.3 A Deterministic Multi-pass Algorithm

In this section we give a deterministic multi-pass algorithm for the membership
testing of any language in DLIN (Theorem 2).

As any language in DLIN O(log |Σ|)-streaming reduces to 1-turn-
Dyck2(Theorem 8), it suffices to give a p-passes, O(n/p)-space deterministic
algorithm for membership testing of 1-turn-Dyck2.

The algorithm divides the string into blocks of length n/2p. Let the blocks be
called B0, B1, . . . , B2p−1 from left to right. (i.e. Bi = w[i(n/2p)+1] w[i(n/2p)+
2] . . . w[(i + 1)n/2p].) The algorithm considers a pair of blocks (Bj ,B2p−(j+1))
during the jth pass. Using the stack explicitly, the algorithm checks whether
the string formed by the concatenation of Bj and B2p−(j+1) is balanced. If it is
balanced, it proceeds to the next pair of blocks. The number of passes required
is p. Each pass uses O(n/p) space and the algorithm is deterministic. The above
algorithm is optimal.

3 Streaming Algorithm for a Subclass of VPLs

In this section we prove Theorem 4. Visibly pushdown languages, VPLs, were
defined by [12] and [2]. They are known to be a subclass of DCFLs. In [3], a
grammar form for VPLs was defined. We denote the grammars generating VPLs
by VPG. Here, we consider a restriction of VPG.

Consider a context-free grammar G = (N, Σ, S, P ) over a tri-partitioned al-
phabet Σ = (Σc, Σr, Σl) having rules of the form A −→ ε, A −→ cB, A −→ aBb
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or A −→ aBbD, where a ∈ Σc (called the call alphabet), b ∈ Σr (called the re-
turn alphabet), c ∈ Σl (called the local alphabet), and D −→ ε /∈ P (i.e. if
A → ε, then there is no rule in P that has A as its second non-terminal.) If
A −→ aω and A −→ a′ω′ are two rules such that ω, ω′ ∈ (N ∪Σ)∗, then a �= a′.
We denote such grammars by rest-VPG and the languages generated by it as
rest-VPLs.

The example language generated by the rest-VPG, G: S −→ aAbB, A −→
aAb | ε, B −→ aAb, is {anbnambm|n ≥ 1, m ≥ 1}.

We coin a notation to address these rules of rest-VPG. Let a rule be called
linear if it has one non-terminal on the right hand side. Let a rule be called
quadratic if there are two non-terminals on the right hand side.

We first make one crucial observation about the derivation of a string in a
language generated by rest-VPG.

Observation 9. Let L be generated by a rest-VPG, say GL. Let w ∈ Σn. If
w ∈ L, then for any derivation d of w in GL, the number of times a quadratic
rule is applied is at most rev(L, n).

Proof. Recall that an index i ∈ [n] is called a reversal if w[i − 1] ∈ Σr and
w[i] ∈ Σc ∪ Σl. As w ∈ L, and L is generated by GL. Therefore, there is a
derivation for w in GL. Suppose there exists a derivation for w in GL that needs
more than rev(L, n) applications of quadratic rules. Every time a quadratic rule
is applied, it gives rise to one reversal. Therefore, the string w must have more
than rev(L, n) reversals, which is a contradiction.

Let L be a fixed rest-VPL and let L be generated by a rest-VPG GL. Let w be
the input string. For every application of a quadratic rule in the derivation of w,
we perform a book keeping operation storing O(log n) bits in the memory. As
the maximum number of times a quadratic rule is applied in the derivation of w
is bounded by rev(w) (due to Observation 9), we get the desired bound. (If the
storage grows beyond O(rev(n) log n) the algorithm rejects and halts.)

We now describe the book keeping. Initially the expected sum is zero. As long
as linear rules are applied, expected sums can be computed as in Algorithm 1.
Consider the first time a quadratic rule is applied. The string w can be split into
four parts at this stage. The first part consists of the string of length l that has
been read so far, and the fourth part consists of the suffix of w of length l. The
second (third) part consists of the substring of w generated by the first (second,
respectively) non-terminal.

The expected sum accumulated during the first part needs to be used when
the fourth part is being processed. The second non-terminal is needed when the
third part is being processed. Thus, while starting to check the second part,
the sum as well as the second non-terminal are stacked. Once, the second part
is recursively checked, the stacked non-terminal is popped and it is recursively
processed. After this, the algorithm needs to check the fourth part. During this
stage, the sum that was stacked is popped and used as in Algorithm 1.

We start with some notation. Let type and next1, next2 be functions such
that type : Σ×N → {x1, . . . , xk} next1 : Σ×N → N and next2 : Σ×N → N .
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If A→ aiBajD is a rule in GL, then the values of type(ai, A), next1(ai, A), and
next2(ai, A) are xj , B and D, respectively. (Here ai ∈ Σc and aj ∈ Σr. Also, if
D = ε then next2(ai, A) is ε).

If A → aiB is a rule in the grammar GL, then the values of next1(ai, A),
next2(ai, A), are B and ε, respectively. (Note that in this case, ai ∈ Σl.) They
are undefined otherwise. The algorithm is given below.

4 Streaming Algorithms for Checking Degree Sequence
of Graphs

The input to a graph streaming algorithm may be in the form of a sequence
of edges. These may be provided in a specific order (eg: adjacency list), or in
any arbitrary fashion. It has been observed [4,7] that the complexity of graph
problems changes drastically depending on the order in which the edges are
presented to the streaming algorithm. The usual setting is: the edges are assumed
to be presented in any arbitrary order. If one is able to provide an efficient
algorithm in such a setting, then of course this gives the most general algorithm.
However, more recently Das Sarma et al. [4] observed that it is also useful to
consider other orderings of the edges. They observed that, the algorithm can be
considered as a resource bounded verifier and that the input is presented to the
verifier by a prover. In this setting, two models can be considered: the adversarial
model and the best order model [4]. In the former the prover may provide the
edges in the worst possible order. In contrast to this, in the latter model, the
prover orders the edges in such a manner that the verifier can easily check the
property.

We consider the problem Deg-Seq which we defined in Section 1. Under various
assumptions on its input, we analyze its complexity. If the input to Deg-Seq is
such that the degree of a vertex along with all the edges out of that vertex
are listed one after the other, then checking whether the graph has the given
degree sequence is trivial. If the degrees sequence is listed first, followed by the
adjacency list of the graph then we observe the following:

Lemma 1. A one pass deterministic algorithm for Deg-Seq needs Ω(n) space
when the input is: a degrees sequence, followed by the adjacency list.

Here we present the proof of the first part of Theorem 5.

Proof (of part 1 of Theorem 5). We come up with a uni-variate polynomial
from the given degree sequence and the set of edges such that the polynomial is
identically zero if and only if the graph has the given degree sequence (assuming
some predecided order on the vertices).

We do not store the polynomial explicitly. Instead, we evaluate this polyno-
mial at a random point chosen from a large enough field and only maintain the
evaluation of the polynomial. The Schwartz-Zippel lemma [13] gives us that with
high probability the evaluation will be non-zero if the polynomial is non-zero.
(If the polynomial is identically zero, its evaluation will also be zero.)
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Algorithm 2. Streaming algorithm for membership testing of rest-VPLs
Pick α1, α2, . . . , αk uniformly at random from Fp, where k = |Σ|.
Sum ← 0, var ← S, h ← 0, Rev ← rev(n) (encoded along with the input)
for i = 1 to n do

if w[i] ∈ (Σc ∪ Σl) and next1(w[i], var) is undefined then
reject and halt

end if
if w[i] ∈ Σc then

v2 ← next2(w[i], var)
if v2 �= ε then

if Rev = 0 then
’reject’ and halt

else
Stack.Push(v2, Sum, h) (*Addressed as: StackTop.V ar, StackTop.Sum,
StackTop.Height*)
Sum = 0
Rev ← Rev − 1

end if
end if
h ← h + 1
Let index be j if type(w[i], var) = xj

Sum ← Sum + αh
index(mod p) , var ← next1(w[i], var),

else if w[i] ∈ Σr then
if w[i − 1] ∈ Σc then

var ← ε (*This handles rules of the form A −→ ε*)
end if
Let index be j if w[i] = aj

Sum ← Sum − αh
index(mod p)

h ← h − 1
if h = StackTop.Height then

if Sum �= 0 then
reject and halt

else if StackTop.V ar = ε then
Sum ← StackTop.Sum
Stack.Pop()

else
var ← StackTop.V ar
StackTop.V ar ← ε

end if
end if

else
var ← next1(w[i], var) (*i.e. w[i] ∈ Σl*)

end if
end for
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The uni-variate polynomial can be constructed as follows: Let the vertices be
labelled from 1 to n (in the order in which the degrees appear in the degree
sequence). Let l : V (G) → [n] be a function such that l(v) gives the label for
v ∈ V (G).

The uni variate polynomial we construct is:

q(x) =
∑

i

dix
i −

∑
∃v:(u,v)∈input

xl(u)

The algorithm can be now described as:

Algorithm 3. Randomized streaming algorithm for Deg-Seq

Pick α ∈R Fp. (p will be fixed later)
Sum ← 0.
for i = 1 to n do

Sum ← Sum + diα
i

end for
for i = 1 to m (where m number of edges) do

Sum ← Sum − αl(u), where ei = (u, v)
end for
if Sum = 0 then

output ”yes”
else

output ”no”
end if

It is easy to note that the algorithm requires only log-space as long as p
is O(poly(n)). The input is being read only once from left to right. For the
correctness, note that if the given degree sequence corresponds to that of the
given graph, then q(x) is identically zero and the value of Sum is also zero for
any randomly picked α. We know that q(x) is non-zero when the given degree
sequence does not correspond to that of the given graph. However, the evaluation
may still be zero. Note that degree of q(x) is n. If the field size is chosen to be
n1+c ≤ p ≤ n2+c then due to Schwartz-Zippel lemma [13] the probability that
Sum is zero given that q(x) is non-zero is at most n/p which is at most n−c.
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Abstract. We consider the problem of scheduling jobs in a processor
with temperature constraints. In our model, unit jobs arrive over time,
each with a deadline and a heat contribution. The objective is to maxi-
mize the total number of completed jobs while keeping the system within
a given temperature threshold. Our main result is the analysis of a large
class of ‘reasonable’ algorithms. We analyse the competitive ratio of these
algorithms as a function of the cooling factor of the system, and show
that they are optimal by giving a matching lower bound. We also give
some results concerning the multiple machines case.

1 Introduction

Background. Advances in microprocessor technology have given a huge increase
in processing power in computing devices. Moreover, the need for mobile and
embedded devices mean that these computing units are packed inside an even
smaller space. These together give significant problems to thermal management
in microprocessors. High temperatures are a problem for many reasons such as
affecting reliability and incurring higher cooling costs; see e.g. [3]. Many devices
have a temperature threshold that cannot be exceeded without causing problems
or even permanent failure. A lot of research work has been done to address
these issues. While the problem can be tackled on a micro-architecture level, it
has also become apparent that algorithmic techniques can be used to manage
temperature and energy; see e.g. the survey in [6].

The temperature created by a processor is related to its power use as well as
its cooling mechanism. Power usage is a convex function of processor speed (see
e.g. [6]), so one way of controlling the temperature is to slow down the processor
when the temperature gets too high; this is known as dynamic voltage scaling
(DVS). Algorithms using DVS have been designed and analysed in [1]. Where
these algorithms are competitive in minimising the maximum temperature, it
is more useful in some cases to give a fixed temperature threshold that cannot
be exceeded, and then maximise throughput subject to this threshold. This is
the model we consider in this paper. As for cooling, we follow the model in [1]
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and Fourier’s Law, which states that the rate of cooling is proportional to the
difference between the temperature of the processor and its environment, and
that the environment’s temperature is assumed to be constant.

Our model. We consider a simplified model with unit-length jobs, where each
job j has a release time rj , a deadline dj and a heat contribution hj . The jobs
arrive online which means that the algorithm will not know anything about the
job until it is released and so cannot use information regarding future jobs to
make any scheduling decisions. Time is divided into unit-length time steps, with
an algorithm choosing to schedule at most one job at each time step. If the
temperature of the system at a time t is τt, then the temperature at time t+1 is
given by τt+1 = (τt + hj)/R, where j is the job scheduled at time t and R is the
cooling factor, which is the factor that the temperature of a system reduces by
at the end of each time step. The temperature τt at any time t must not exceed
the thermal threshold T . Without loss of generality we can assume that the
initial temperature is 0 and that T is 1. The objective is to compute a schedule
that maximises the total number of completed jobs, while staying under the
thermal threshold. Using standard notations this can be described as 1|online-
ri, hi, pi = 1|

∑
Ui (where Ui = 1 if job i is completed on time and 0 otherwise).

We measure the performance of online algorithms using competitive analysis.
An algorithm is c-competitive if the value obtained by the online algorithm is at
least 1/c of that obtained by an offline optimal algorithm, for any input instance.

Previous results. Although there is an abundance of literature at the more practi-
cal or hardware level (see e.g. [3,8] and the references therein), there are compara-
tively few results of analysing the problem in the framework of online competitive
algorithms. Bansal et al. [1] considered the problem of minimizing the maximum
temperature and gave online competitive algorithms. For the unit-length through-
put model that we consider in this paper, the main previous result was from [2],
where it was shown that a large class of algorithms called reasonable algorithms
(to be defined precisely in the next section) are 2-competitive. A matching lower
bound on the competitive ratio was also given, showing that this class of algo-
rithms are optimal. They also showed that the offline case is NP-hard. In the paper
they only considered the case where R = 2.

Motivation of this paper. The primary motivation of modelling the problem
using unit-length jobs is to represent the job slices given to the processor by the
operating system [2]. As such the actual cooling factor R relates to the length
of this time quantum and the ‘RC constant’ of the processing unit (a thermal
property related to how quickly the unit cools). Different systems appear to
have very different values for these parameters (see e.g. [7]) and it is therefore
important that we can design and analyse algorithms for different values of R.

Our results. For the case where R > 2, the results in [2] can be extended (giving
the same competitive ratio) in a straightforward manner, which we omit in this
conference version. Here we focus on the case 1 < R < 2. We first show an upper
bound for reasonable algorithms, for any 1 < R < 2. We then give a matching
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lower bound, therefore showing that reasonable algorithms are in fact optimal
for all values of R. The result also shows how the competitiveness depends on
R: specifically, it increases as R gets smaller, and tends to infinity when R tends
to 1. We also give some additional results on the multiple machines case and the
weighted throughput case.

Because of space constraints, some proofs are omitted in this conference ver-
sion and will appear in the full version of the paper.

2 The Algorithm and Its Analysis

2.1 The Algorithm

The algorithms take a decision at each time step deciding whether to schedule a
job, and if it is decided to schedule a job, which job will be scheduled. A job j is
pending at time u if j is released but not expired, rj ≤ u < dj , and has not been
scheduled before u. Job j is admissible at time u if it is pending and not too hot
to be executed, i.e., τu + hj ≤ R. Note that hj ≤ R for all j since any hotter
jobs can never be executed. As described in [2], a job j dominates another job
k if dj ≤ dk and hj ≤ hk. If at least one of the inequalities is strict then we say
that j strictly dominates k.

An online algorithm is called reasonable if at each time step the algorithm
schedules a job whenever there is one admissible, and if there are several admis-
sible jobs, then any of these jobs that is not strictly dominated. If no jobs are
admissible then the machine is left idle for a time step.

2.2 Competitive Analysis

Let OPT denote the offline optimal algorithm (the adversary) and A denote a
reasonable algorithm. We use the same symbols to denote the schedules produced
by the algorithms. The temperatures of OPT and A at a time t are denoted by
τ ′
t and τt, respectively.

Whenever, at some time u, A schedules a job j that is strictly hotter than
a job k scheduled by OPT (with an idle time step in OPT being treated as
though a job k with hk = 0 is being executed) we call this a relative-heating
step. Whenever τu > τ ′

u for some time u a relative-heating step must have
occured before time u.

The general strategy to the competitive analysis is to map, or charge, the
completed jobs in OPT to those in A, such that (1) all jobs in OPT are charged
to some jobs in A, and (2) each job in A is being charged to by a bounded
number of jobs in OPT . We use a charging scheme that is based on the one used
in [2]. For a job j that has been scheduled by OPT at time u the charge of j is
as follows:

Type-1 Charge: If A has also scheduled a job k at time u then charge j to k.
Type-2 Charge: If A is idle and hotter than OPT at time u but not at time

u + 1, that is τu > τ ′
u and τu+1 ≤ τ ′

u+1, then there must have been a relative-
heating step before time u. j is charged to the job k executed by A at the last
relative heating step before u.
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Type-3 Charges These charges are for the case when A is idle at time u and
either A is cooler or the same as OPT at u, or A is hotter than OPT at time
u +1 (and so must also have been hotter at time u), more formally τu+1 > τ ′

u+1

or τu ≤ τ ′
u. We divide Type-3 charges into two sub-types.

Type-3a: Type-3a charges are used when j has already been scheduled by A
at some time t < u. In the case that τu ≤ τ ′

u it must be that j has already been
scheduled by A before u, because otherwise the fact that OPT has scheduled
j means it cannot have expired, and as A is cooler than OPT if j had not
been scheduled already it would have been admissible at u and so A would have
chosen to schedule it.

To find a job to charge j to we construct a chain of jobs j, j′, . . . , j∗ like that
constructed in [2]. The chain will be uniquely defined by j. If OPT is idle or
schedules a job at time t that has a heat contribution equal to or greater than
that of j then j∗ = j, that is the last job in the chain is the copy of the job
j in A’s schedule. Otherwise OPT schedules some job j′ at t that has a heat
contribution that is strictly less than that of j. If j′ is not scheduled by A at
some time t′ < u then we also end the chain and have that j∗ = j. Otherwise
j′ is added to the chain. If OPT is idle, schedules a hotter or equal job at t′, or
schedules a job j′′ that is not scheduled by A at some time t′′ < u then we end
the chain and have that j∗ = j′. Otherwise we add j′′ and the process continues.
This process must end at some point as it deals with strictly cooler and cooler
jobs and there are only a finite number of jobs.

Job j is then charged to j∗ unless at the time t∗ that j∗ is scheduled in A,
OPT schedules a cooler job than j∗ (that cannot be scheduled by A at any
time s < u by definition of the chain). In this case j is charged to the latest job
already scheduled by A, i.e., the job scheduled by A at the largest time s such
that s < u. Such a time s must exist because at least the original job j must have
already been scheduled by A by definition of a Type-3a charge. For simplicity
we will refer to a Type-3a charge made through the chain as a Type-3a charge,
and a Type-3a charge not made through the chain as a Type-3a∗ charge.

Type-3b: Type-3b charges are used when the job has not already been sched-
uled by A. It must be the case that τu+1 > τ ′

u+1 because (as already argued)
with the other Type-3 case of τu < τ ′

u, j must have already been scheduled so a
Type-3a charge must apply. With a Type-3b charge job j is charged to the latest
job already scheduled by A before time u. Such a job must exist because there
must have been at least one relative heating step in order for A to be hotter
than OPT .

Although much of the charging scheme is the same as the one in [2], there are
important differences that arise from the fact that R < 2, and new techniques are
needed to handle them. In particular, the following lemma shows some properties
of Type-3a∗ charges that are required in the analysis.

Lemma 1. When there is a job j scheduled by OPT at time t that generates a
Type-3a∗ charge the following are true:



Temperature Aware Online Scheduling with a Low Cooling Factor 109

(1) da > dj, where a is the job scheduled by OPT at the end of the Type-3a
chain when A schedules j∗.

(2) τ ′
t < τt and τ ′

t+1 < τt+1.
(3) j would have been too hot to be scheduled by A at t if it were still pending.

Proof. (1) Let j0(= j), j1, . . . , jn−1(= j∗), jn(= a) be the chain. For simplicity we
denote dji by di and hji by hi. We claim that dn > di for all 0 ≤ i < n; when i = 0
this gives da > dj . The claim is proven by induction along the chain. By definition
of the chain and the Type-3a∗ charge we have that hn < hn−1 < . . . < h1 < h0,
and that a is not scheduled before t by A. These two facts will be used repeatedly
below.

First we show that dn > dn−1. We have that ha < hj∗ and that a is not
scheduled before t by A. This means that if dn ≤ dn−1 then A would have
chosen to schedule a instead of j∗ as j∗ would be strictly dominated by a.

Now assume dn > di′ for all i ≤ i′ ≤ n − 1. We show dn > di−1. For each
step in the chain we have a job ji+1 that is scheduled by OPT and a job ji that
is scheduled by A at the same time u, such that hi+1 < hi. This leads to three
cases that need to be covered in order to complete this proof.

In the first case job ji is scheduled by OPT at some time v < u, as in Figure 1.
A schedules some job ji−1 at time v as the next link in the chain. ji was pending
at v because it must have been released, as it was scheduled by OPT at this
time, but A only schedules it at a later time u. Since hi < hi−1, it must be that
di > di−1, otherwise ji strictly dominates ji−1 and so would have been scheduled
by A instead of ji−1 if this were the case. As we already know dn > di this gives
dn > di−1.

OPT

A

...

...

ji

ji−1

...

...
�������
ji+1

ji

...

...

v u

Fig. 1. v < u
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...

u v

Fig. 2. v > u and v ≥ ra

The second case is when ji has been scheduled by OPT for the next link in
the chain at some time v such that v > u and v ≥ ra, as in Figure 2. This means
that a must be pending in A at v. We also know that ha < hi−1. This means
that dn > di−1 otherwise job ji−1 would be strictly dominated by a and so A
would have scheduled a instead.

The third case is when ji has been scheduled by OPT for the next link in the
chain at some time v such that v > u and v < ra, as in Figure 3. For this case
to occur there must exist a job jk such that k > i, that is jk appears later in the
chain than ji, and jk is scheduled by A at some time w ≥ ra but is scheduled
by OPT at some time w′ < v. If this is not the case it would be impossible for
the chain to have continued and ended at time t∗ ≥ ra.
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Fig. 3. v > u and v < ra

As k > i this means hi−1 > hi > hk. jk must be pending at A at time v,
as it has already been scheduled by OPT but not yet by A, so it must be that
dk > di−1 otherwise jk would have strictly dominated ji−1 and so been scheduled
by A at v instead. By induction we can assume that dn > dk so we can also
conclude that dn > di−1.

(2) This can be proven by contradiction. If τ ′
t ≥ τt, then as we know that a

was pending at t and ha < hj , job a would have been admissible by A so would
have been scheduled at t, contradicting that j generated a Type-3a∗ charge.
Therefore τ ′

t < τt. Now suppose τ ′
t+1 ≥ τt+1 but τ ′

t < τt. Then a Type-2 charge
would have been generated at t contradicting the assumption that j generates a
Type-3a∗ charge.

(3) At time t, since job a was pending, it must be too hot to be scheduled by
A, and as we know that hj > ha it follows that even if j had not already been
completed by A it would be too hot for A to schedule at t. ��

Lemma 2. If A remains idle at time t then τt − τ ′
t > τt+1 − τ ′

t+1.

Proof. Let α = τt − τ ′
t . Suppose OPT schedules a job j at time t (if OPT

remains idle then treat it as executing a job with hj = 0). Then τt+1 − τ ′
t+1 =

τt

R −
τ ′

t+hj

R = α−hj

R < α, since R > 1 and hj ≥ 0. ��

Lemma 3. Let N be the largest integer n ≥ 1 such that Rn+1 < (n+2)R−(n+1)
holds, for any fixed 1 < R < 2. Consider any time interval when A is idle and
the temperature of OPT is lower than that of A throughout this interval. Then
during this time interval, OPT can schedule at most N jobs that are too hot to
be scheduled by A in the same time step that they are scheduled in OPT .

Proof. Suppose there are n jobs j1, j2, . . . , jn in OPT that are scheduled consec-
utively by OPT but are too hot to be scheduled by A, that A remains idle until
all n jobs have been scheduled, and that after each job has been completed by
OPT , the temperature of OPT is greater than that of A. Suppose j1 is scheduled
at time u. See Figure 4. We will assume that between any of the jobs j1, . . . , jn

in OPT ’s schedule, there are no idle time or jobs that do not satisfy the heat
condition in the lemma statement. It will be shown that the inclusion of these
will not make OPT able to schedule more ‘hot’ jobs (i.e. jobs that satisfy the
heat condition of the lemma).
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Fig. 4. The scenario with A remaining idle and OPT scheduling n jobs. The vertical
inequality signs between the schedules show the relation between the temperatures.

Initially it must be that τu ≤ 1. As A stays idle for all n time steps we also
have τu+i ≤ 1/Ri for i = 1, . . . , n. All of the jobs j1, . . . , jn are too hot to be
scheduled by A. Therefore, each job ji, for every 1 ≤ i ≤ n, has heat contribution

hji > R− τu+i−1 ≥ R− 1
Ri−1

(1)

We now consider the temperature of OPT after executing these jobs. Initially
τ ′
u ≥ 0. After executing i jobs, 1 ≤ i ≤ n, the temperature is given by the

recursive formula τ ′
u+i = τ ′

u+i−1+hji

R , which can be solved to give:

τ ′
u+n ≥

R(1−R−n)
R− 1

− n

Rn
(2)

By the definition of the lemma we must have that after the n jobs have been
completed, τ ′

u+n < τu+n. Together with (1) and (2), this gives

R(1−R−n)
R− 1

− n

Rn
<

1
Rn

This is equivalent to:
Rn+1 < (n + 2)R− (n + 1) (3)

We now return to the assumption of OPT scheduling all of the n jobs con-
secutively. Our aim is to upper-bound the number of jobs that can be scheduled
by OPT but are too hot to be scheduled A in a time period when A remains
idle but is still hotter than OPT . If j1, . . . , jn are not consecutive then there are
time steps in-between where OPT is idle or schedules a job that is not too hot
to be scheduled by A. By Lemma 2, such time steps will reduce the difference in
temperature between OPT and A, thus will not help OPT schedule more hot
jobs. ��

Theorem 1. Any job scheduled by A can receive at most N + 2 charges, where
N is the largest integer n ≥ 1 such that inequality (3) holds, therefore any
reasonable algorithm A is N + 2 competitive for any fixed 1 < R < 2.

Proof. Each job in A can receive at most one Type-1 charge. In addition to this
each job in A receives at most one Type-2 charge. This is because in between any
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two time steps that satisfy Type-2 conditions there must be a relative-heating
step, so Type-2 charges will be assigned to distinct relative-heating steps. A job
can also receive at most one Type-3a charge through a chain because the chains
formed are disjoint and uniquely defined by the original job that generated the
Type-3a charge. If a job j receives a Type-1 charge it cannot receive both a
Type-2 charge and a Type-3a charge through a chain. This is because a Type-3a
charge through the chain cannot be made to a job at a relative heating step,
otherwise the chain would either continue further, or a Type-3a∗ charge would
be generated instead. This means that any job can receive at most 2 charges
from the set {Type-1, Type-2, Type-3a (chain)}.

Lemma 3 can be used to show that a job can receive at most N Type-3b and
Type-3a∗ charges, where N is the largest integer n ≥ 1 such that inequality (3)
holds. Both these charges are made to the job that was most recently scheduled
by A. To prove this we must now show that jobs that generate Type-3b and
Type-3a∗ charges are both covered by Lemma 3, in that they are too hot to be
scheduled by A at that time, and they also ensure that the temperature of A
is greater than that of OPT after they have completed. Lemma 1 shows that
jobs that generate Type-3a∗ charges meet these requirements, leaving us to show
only that Type-3b charges also meet these conditions. By definition of a Type-3b
charge it is already established that the temperature of A is greater than that
of OPT after the job has completed. Also by definition of a Type-3b charge the
job that generates it cannot have already been completed by A and A remains
idle while OPT schedules the job. This means that the job must have been too
hot to be scheduled by A at that time otherwise it would have been admissible
to A so A would have had to schedule it, contradicting that A remains idle.

It has been shown that any job can receive at most N Type-3a∗ and Type-3b
charges, and 2 charges from the set {Type-1, Type-2, Type-3a (chain)}. This
means that each job can receive at most N + 2 charges. ��

The table in Figure 5 shows the competitive ratio of any reasonable algorithm
for different values of R. It can be seen that the competitive ratio increases as
R decreases. The competitive ratio is still fairly reasonable for moderate values
of R, but goes to infinity as R gets very close to 1.

3 Lower Bound Construction

In this section we show a lower bound for all deterministic algorithms showing
that all reasonable algorithms are in fact optimal for all 1 < R < 2.

Theorem 2. Any deterministic algorithm has a competitive ratio of at least
N + 1 for any fixed 1 < R < 2 where N is the largest integer n ≥ 1 such that
Rn < (n + 1)R− n holds.

Proof. Fix some deterministic algorithm A. At t = 0 release a job j that has
a very large deadline and a heat contribution of just below R, that is dj =
2D + N + 1 for a large D and hj = R− ε for a sufficiently small ε > 0. D must



Temperature Aware Online Scheduling with a Low Cooling Factor 113

R Upper Bound

2 > R > −1+
√

13
2

≈ 1.30278 3

1.30278 ≥ R � 1.15091 4

1.15091 � R � 1.09128 5

1.09128 � R � 1.0614 6

1.0614 � R � 1.04421 7

1.04421 � R � 1.03339 8

1.03339 � R � 1.02612 9

1.02612 � R � 1.02100 10

1.01 15

1.001 45

1.0001 142

Fig. 5. Table of upper bounds

be large enough so that OPT ’s temperature will have cooled down from 1 to ε
after D steps, i.e. RD ≥ 1/ε. If A never schedules j then OPT does and A has
an unbounded competitive ratio. Otherwise A schedules j at some time u. We
consider two cases.

If u < D, then OPT chooses not to start j yet. At t = u + i for i = 1, 2, . . .
the temperature of A is given by τu+i = 1/Ri−1. At each such t, as long as
τu+i > τ ′

u+i, the adversary releases a tight job ji with dji = u + i + 1 and the
smallest possible heat contribution such that hji > R− 1/Ri−1. A will be (just)
too hot to schedule the job due to scheduling job j while OPT can and will
schedule each of them. We will prove that this stops after N steps. OPT will
then remain idle for D time steps until it is cool enough to schedule j. Since
u + 1 + N + D < 2D + N + 1, OPT can still finish j before its deadline.

If u ≥ D, then OPT can schedule j to start at t = 0. Since u ≥ D, at time
u+1 OPT ’s temperature will be less than ε, which can be made arbitrarily close
to 0. Similar to the previous case, at each t = u + i where i = 1, 2, . . . we release
a tight job where dji = u + i + 1 and hji > R − 1/Ri−1. A will be just too hot
to run any of these jobs, and this continues as long as τu+i > τ ′

u+i, so OPT can
finish all these jobs.

In both cases OPT will schedule N + 1 jobs (the N tight jobs that are gener-
ated in successive time steps plus j) whereas A will only ever be able to schedule
j. Thus the competitive ratio is N + 1.

The temperature of OPT at time u + i is given by:

τ ′
u+1 ≈ 0, τ ′

u+i ≈
τu+i−1 + R− 1

Ri−2

R
for i > 1

This can be solved so we have:

τ ′
u+i ≈

R

R − 1

(
1− 1

Ri−1

)
− i− 1

Ri−1
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The sequence of jobs continues as long as τ ′
u+i < τu+i. Hence N is the largest

value of n such that τ ′
u+n < τu+n. This gives

R

R− 1

(
1− 1

Rn−1

)
− n− 1

Rn−1
<

1
Rn−1

which is equivalent to
Rn < (n + 1)R− n (4)

Thus the sequence indeed stops after N steps with N given by the formula
above. ��

By comparing the formulas in Theorems 1 and 2, it can be seen easily that
the lower bound matches the upper bound, and thus reasonable algorithms are
optimal for all ranges of values of R.

4 Extensions

4.1 Multiple Machines

All the above results consider the single processor case. New machines come
with multicore processors where each core can process jobs independently. In the
multicore or multiple machine setting, we assume jobs can be executed in any one
of the m > 1 identical machines. Each machine has a separate temperature, each
of which cannot be above the (same) threshold. For simplicity, we assume there
is no heat transfer between different processors. It has been suggested that such
lateral heat transfer is small (see e.g. [8] and the discussion therein), and such
consideration would require information of the physical layout of the processing
units. Thus the temperature of each machine is determined independently, in
the same way as the single machine case.

It is straightforward to generalise the definition of reasonable algorithms to the
multiple machine case: an algorithm is reasonable if it does not leave a machine
idle if there are jobs admissible on that machine, and any job allocated to a
machine is not dominated by some other pending jobs. An example reasonable
algorithm would be to arrange the pending jobs in coolest first order, and allocate
them one by one to any machine on which it is admissible.

The upper bound proof of Theorem 1 can be adapted to show that any reason-
able algorithm also has the same competitive ratio, for any number of machines
m. We omit the proof as it is very similar to Theorem 1.

Theorem 3. All reasonable algorithms are (N +2)-competitive for any number
of machines m, where N is the largest integer n such that inequality (3) holds.

Next we show a lower bound for any deterministic algorithms in the multiple
machine case.

Theorem 4. Any deterministic algorithm has a competitive ratio of at least
2 − 1

N for any fixed 1 < R < 2 where N is the largest integer n ≥ 2 such that
Rn < (n + 1)R− n holds, for any number of machines m.
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Proof. Fix any deterministic algorithm A. At time 0 release m tight jobs J that
has the maximum heat, that is for every j ∈ J , dj = 1 and hj = R. We set a
threshold of λm for some 1 ≥ λ ≥ 0 to be fixed later. This gives the following
two possibilities.

If A schedules less than λm of the J jobs then OPT can schedule all m of the
jobs and no further jobs are released. This gives a competitive ratio of at least
m

λm which is equal to 1
λ .

If A schedules at least λm of the J jobs then starting at time 1 we release m
copies of the N tight jobs that are released in the single machine lower bound
in Theorem 2. The value for N can be worked out for a fixed R as before, using
inequality (4). These N jobs will then be scheduled by A on each of the (1−λ)m
machines that have not scheduled a J job, as any machine that schedules a J job
will remain too hot to schedule any of the N jobs. OPT will remain idle for the
first time step and be able to schedule N jobs on each of its m machines. This
gives a competitive ratio of at least Nm

λm+(1−λ)mN which is equal to N
λ+(1−λ)N .

We must now find the best value for λ. As the ratio 1
λ decreases with an

increase in λ, while N
λ+(1−λ)N increases with λ, to find the optimal λ value we

need to find the value for λ where these two ratios are equal for a given N . This
gives λ = N

2N−1 , and using this λ gives a lower bound of 1
λ = 2− 1

N . ��

This bound is far lower than the (optimal) single machine lower bound and
the multiple machine upper bound, thus it is entirely possible to give better
algorithms in the multiple machine case. However we observe that in order to
do this, some machines must stay idle even when there are admissible jobs:

Theorem 5. For 1 < R < 2, for any algorithm that always schedules all ma-
chines with jobs as long as an admissible one is available, the competitive ratio
is at least the same as that given in Theorem 2, for any number of machines m.

Proof. We simply consider a job instance which consists of m identical copies of
jobs used in the lower bound construction of Theorem 2. All machines will then
run the jobs at time 0 and thus miss all later jobs, while OPT remains idle at
the first time step and schedule all N + 1 jobs on each of its machines. ��

4.2 Weighted Throughput

A weighted version of this problem can be considered, where each job has a
weight and the objective is to maximize the total weight of completed jobs. Note
that without heat contributions, this weighted version of the problem is known
as unit job scheduling which is by itself a very challenging problem (see e.g. [4]).
If W is the ratio of maximum to minimum job weights, then any deterministic
algorithm is Ω(W )-competitive, and any randomized algorithm is Ω(log W )-
competitive, for any value of R [5]. Matching upper bounds were obtained in [5],
but only for R ≥ 2, by combining the constant upper bound in the unweighted
case [2] with the standard ‘classify and randomly select’ technique. Theorem 1
gives constant upper bounds for any fixed R < 2; hence, we have that the
upper bounds for the weighted case are indeed O(W ) and O(log W ) for the
deterministic and randomized cases, respectively, for any constant value of R.
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5 Final Comments

There are still many open problems for this area. Not much is known about
randomized algorithms for this and similar problems. It is possible to prove a
lower bound of 1.5 for the case where R ≥ 2 [2] but so far no improvement on a
2-competitive algorithm has been shown.

Instead of idling when the threshold is reached, one could consider reducing
the frequency of the processor. There could be discrete multiple frequencies, or
it could be a continuous range of frequencies.

Another realistic scenario would be to study longer (non unit length) jobs,
either with equal or with varying lengths. This leads to scheduling problems with
preemption.

The multiple machines scenario would also be of interest. This could also be
combined with preemption (for longer than unit jobs) to give migration of jobs
to different machines to control temperature. Although Section 4.1 gave some
preliminary results for the multiple machines case, the bounds are not tight, in
particular it seems likely that the competitive ratio should be lower than the
single machine case.
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2. Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for temperature-aware
task scheduling in microprocessor systems. In: Fleischer, R., Xu, J. (eds.) AAIM
2008. LNCS, vol. 5034, pp. 120–130. Springer, Heidelberg (2008)

3. Coskun, A.K., Rosing, T.S., Whisnant, K.: Temperature aware task scheduling in
MPSoCs. In: Proceedings of 2007 Design, Automation and Test in Europe Confer-
ence, pp. 1659–1664 (2007)

4. Englert, M., Westermann, M.: Considering suppressed packets improves buffer man-
agement in QoS switches. In: SODA 2007: Proceedings of 18th ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 209–218 (2007)

5. Fung, S.P.Y.: Online algorithms for maximizing weighted throughput of unit jobs
with temperature constraints. In: MAPSP 2009: 9th Workshop on Models and Al-
gorithms for Planning and Scheduling Problems (2009)

6. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT
News 36(2), 63–76 (2005)

7. Kursen, E., Cher, C.-Y., Buyuktosunoglu, A., Bose, P.: Investigating the effects
of task scheduling on thermal behavior. In: 3rd Workshop on Temperature-Aware
Computer Systems (2006)

8. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic thermal management
through task scheduling. In: Proceedings of IEEE Int. Symposium on Performance
Analysis of Systems and Software, pp. 191–201 (2008)



On Solution Concepts for Matching Games
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Abstract. A matching game is a cooperative game (N, v) defined on
a graph G = (N, E) with an edge weighting w : E → R+. The player
set is N and the value of a coalition S ⊆ N is defined as the maximum
weight of a matching in the subgraph induced by S. First we present an
O(nm + n2 log n) algorithm that tests if the core of a matching game
defined on a weighted graph with n vertices and m edges is nonempty
and that computes a core allocation if the core is nonempty. This im-
proves previous work based on the ellipsoid method. Second we show that
the nucleolus of an n-player matching game with nonempty core can be
computed in O(n4) time. This generalizes the corresponding result of
Solymosi and Raghavan for assignment games. Third we show that de-
termining an imputation with minimum number of blocking pairs is an
NP-hard problem, even for matching games with unit edge weights.

1 Introduction

Consider a group N of tennis players that will participate in a doubles tennis
tournament. Suppose that each pair of players can estimate the expected prize
money they could win together if they form a pair in the tournament. Also sup-
pose that each player is able to negotiate his share of the prize money with his
chosen partner, and that each player wants to maximize his own prize money.
Can the players be matched together such that no two players have an incen-
tive to leave the matching in order to form a pair together? This is the example
Eriksson and Karlander [7] used to illustrate the stable roommates problem with
payments. In this paper we consider the situation in which groups of possibly
more than two players in a doubles tennis tournament can distribute their total
prize money among each other. For instance, suppose that three players always
form pairs among themselves. Then they may decide that only two of them will
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form a pair in this tournament, but that the third player will be compensated
for his loss of income. Now the question is whether the players can be matched
together such that no group of players will be better off when leaving the match-
ing. This scenario is an example of a matching game. Matching games are well
studied within the area of Cooperative Game Theory. In order to explain these
games and how they are related to the first problem setting, we first state the
necessary terminology and formal definitions.

A cooperative game (N, v) is given by a set N of n players and a value function
v : 2N → R with v(∅) = 0. A coalition is any subset S ⊆ N . We refer to v(S) as
the value of coalition S, i.e., the maximal profit or the minimal costs that the
players in S achieve by cooperating with each other. In the first case we also
speak of (N, v) as a profit game and in the second case we also say that (N, v) is
a cost game. The v-values of many cooperative games are derived from solving
an underlying discrete optimization problem (cf. Bilbao [3]). It is often assumed
that the grand coalition N is formed, because in many games the total profit or
costs are optimized if all players work together. The central problem is then how
to allocate the total value v(N) to the individual players in N . An allocation
is a vector x ∈ RN with x(N) = v(N), where we adopt the standard notation
x(S) =

∑
i∈S xi for S ⊆ N . A solution concept S for a class of cooperative games

Γ is a function that maps each game (N, v) ∈ Γ to a set S(N, v) of allocations
for (N, v). These allocations are called S-allocations.

The choice for a specific solution concept S not only depends on the notion
of “fairness” specified within the decision model but also on certain computa-
tional aspects, such as the computational complexity of testing nonemptiness
of S(N, v), or computing an allocation in S(N, v). Here we take the size of the
underlying discrete structure as the natural input size, instead of the 2n v-values
themselves.

We will now define some well-known solution concepts in terms of profit games;
see Owen [18] for a survey. First, the core of a game (N, v) consists of all al-
locations x with x(S) ≥ v(S) for all S ∈ 2N\{∅, N}. Core allocations are fair
in the sense that every nonempty coalition S receives at least its value v(S).
Therefore, players in a coalition S do not have any incentive to leave the grand
coalition (recall the doubles tennis tournament). However, for many games, the
core might be empty. Therefore, other solution concepts have been designed,
such as the nucleolus and the nucleon, both defined below.

Let (N, v) be a cooperative game. The excess of a nonempty coalition S � N
regarding an allocation x ∈ RN expresses the satisfaction of S with x and is
defined as e(S, x) := x(S) − v(S). We order all excesses e(S, x) into a non-
decreasing sequence to obtain the excess vector θ(x) ∈ R2n−2. The nucleolus of
(N, v) is then defined as the set of allocations that lexicographically maximize
θ(x) over all imputations, i.e., over all allocations x ∈ RN with xi ≥ v({i})
for all i ∈ N . The nucleolus is not defined if the set of imputations is empty.
Otherwise, Schmeidler [20] showed it consists of exactly one allocation. Note
that, by definition, the nucleolus lies in the core if the core is nonempty. The
standard procedure for computing the nucleolus proceeds by solving up to n
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linear programs, which have exponential size in general. We refer to Maschler,
Peleg and Shapley [14] for more details. Taking multiplicative excesses e′(S, x) =
x(S)/v(S) in the definition of the nucleolus leads to the nucleon of a game.

Matching games. In a matching game (N, v), the underlying discrete structure
is a finite undirected graph G = (N, E) that has no loops and no multiple edges
and that is weighted, i.e., on which an edge weighting w : E → R+ has been
defined. The players are represented by the vertices of G, and for each coalition S
we define v(S) = w(M) =

∑
e∈M w(e), where M is a maximum weight matching

in the subgraph of G induced by S. If w ≡ 1, then v(S) is equal to the size of a
maximum matching and we call (N, E) a simple matching game. If there exists
a weighting w∗ : N → R+ such that w(uv) = w∗(u) + w∗(v) for all uv ∈ E,
then we obtain a node matching game. Note that every simple matching game
is a node matching game by choosing w∗ ≡ 1

2 . Matching games defined on a
bipartite graph are called assignment games.

The core of a matching game can be empty. In order to see this, consider a
simple matching game (N, v) on a triangle with players a, b, c. An allocation x in
the core must satisfy xa +xb ≥ 1, xa +xc ≥ 1, and xb +xc ≥ 1, and consequently,
x(N) = xa +xb +xc ≥ 3

2 . However, this is not possible due to x(N) = v(N) = 1.
Shapley and Shubik [21] show that the core of an assignment game is always
nonempty.

We will now discuss complexity aspects of solution concepts for matching
games. First let us recall the following result of Gabow [9].

Theorem 1 ([9]). A maximum weight matching of a weighted graph on n ver-
tices and m edges can be computed in O(nm + n2 log n) time.

The following observation can be found in several papers, see e.g. [5,7,19]. Here,
a cover of a graph G = (N, E) with edge weighting w is a vertex mapping
c : N → R+ such that c(u) + c(v) ≥ w(uv) for each edge uv ∈ E. The weight of
c is defined as c(N) =

∑
u∈N c(u).

Observation 1. Let (N, v) be a matching game on a weighted graph G=(N, E).
Then x ∈ RN is in the core of (N, v) if and only if x is a cover of G with weight
v(N).

Observation 1 and Theorem 1 imply that testing core nonemptiness can be done
in polynomial time for matching games by using the ellipsoid method for solving
linear programs [12]. Deng, Ibaraki and Nagamochi [5] characterize when the
core of a simple matching game is nonempty. In this way they can compute a
core allocation of a simple matching game in polynomial time, without having to
rely on the ellipsoid method. Eriksson and Karlander [7] characterize the extreme
points of the core of a matching game. Observation 1 implies that the size of the
linear programs involved in the procedure of Maschler, Peleg and Shapley [14] is
polynomial in the case that the matching game has a nonempty core [19]. Hence
the nucleolus of such matching games can be computed in polynomial time by
using the ellipsoid method at most n times. Solymosi and Raghavan [23] compute
the nucleolus of an assignment game without making use of the ellipsoid method.
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Matsui [15] present a faster algorithm for computing the nucleolus of assignment
games defined on bipartite graphs that are unbalanced.

Theorem 2 ([23]). The nucleolus of an n-player assignment game can be com-
puted in O(n4) time.

It is known [11] that the nucleolus of a simple matching game can be computed in
polynomial time by using the standard procedure of Maschler, Peleg and Shap-
ley [14], after reducing the size of the involved linear programs to be polynomial.
This result is extended to node matching games [19]. For matching games, Faigle
et al. [8] show how to compute an allocation in the nucleon in polynomial time.
Determining the computational complexity of finding the nucleolus for general
matching games is still open.

Connection to the stable roommates problem. We refer to a survey [4]
for more on this problem. Here, we only define the variant with payments. Let
G = (N, E) be a graph with edge weighting w. Let B(x) = {(u, v) | xu + xv <
w(uv)} denote the set of blocking pairs of a vector x ∈ RN . A vector p ∈ RN

with pu ≥ 0 for all u ∈ N is said to be a payoff with respect to a matching M in
G if pu + pv = w(uv) for all uv ∈ M , and pu = 0 for each u that is not incident
to an edge in M . The problem Stable Roommates with Payments tests if
a weighted graph allows a stable solution, i.e., a pair (M, p), where p is a payoff
with respect to matching M such that B(p) = ∅. We also call such a pair stable.
This problem is polynomially solvable due to following well-known observation
(cf. Eriksson and Karlander [7]).

Observation 2. An allocation x of the matching game defined on a weighted
graph G is a core allocation if and only if there exists a matching M in G such
that (M, x) is stable.

Any core allocation of a matching game is an imputation with an empty set of
blocking pairs. If the core is empty, then we can try to minimize the number of
blocking pairs. This leads to the following decision problem, which is trivially
solvable for assignment games, because these games have a nonempty core [21].

Blocking Pairs

Instance: a matching game (N, v) and an integer k ≥ 0.
Question: does (N, v) allow an imputation x with |B(x)| ≤ k?

Our results and paper organization. In Section 2 we present an O(nm +
n2 log n) time algorithm that tests if the core of a matching game on a weighted
n-vertex graph with m edges is nonempty and that computes a core allocation
if it exists. Like the algorithm of Deng, Ibaraki and Nagamochi [5] for simple
matching games, our algorithm does not rely on the ellipsoid method. By Ob-
servation 2 we can use this algorithm to find stable solutions for instances of
Stable Roommates with Payments. In Section 3 we generalize Theorem 2
by showing that the nucleolus of an n-player matching game with nonempty core
can be computed in O(n4) time. Klaus and Nichifor [13] investigate the relation
of the core with other solution concepts for matching games and express the need



On Solution Concepts for Matching Games 121

of a comparison of matching games with nonempty core to assignment games.
As the results in Sections 2 and 3 are based on a duplication technique yielding
bipartite graphs, our paper gives such a comparison. In Section 4 we show that
the Blocking Pairs problem is NP-complete, even for simple matching games.
We note that, in the context of stable matchings without payments, minimizing
the number of blocking pairs is NP-hard as well [1]. This problem setting is quite
different from ours, and we cannot use the proof of this result for our means.

2 The Core of a Matching Game

As mentioned in the previous section, Shapley and Shubik [21] showed that
every assignment game has a nonempty core. However, they did not analyze the
computational complexity of finding a core allocation. In this section we consider
this question for matching games. First we introduce some terminology.

Let G = (N, E) be a graph with edge weighting w : E → R+. We write
v ∈ e if v is an end vertex of edge e. A fractional matching is an edge mapping
f : E → R+ such that

∑
e:v∈e f(e) ≤ 1 for each v ∈ N . The weight of a

fractional matching f is defined as w(f) =
∑

e∈E w(e)f(e). We call f a matching
if f(e) ∈ {0, 1} for all e ∈ E, and we call f a half-matching if f(e) ∈ {0, 1

2 , 1} for
all e ∈ E.

We state two useful lemmas. The first lemma is a direct application of the
Duality Theorem (cf. Schrijver [22]). The second lemma is a special case of
Theorem 1 from Deng, Ibaraki and Nagamochi [5].

Lemma 3. Let G = (N, E) be a graph with edge weighting w. Let f be a frac-
tional matching of G and let c be a cover of G. Then w(f) ≤ c(N), with equality
if and only if f has maximum weight and c has minimum weight.

Lemma 4 ([5]). Let (N, v) be a matching game on a weighted graph G =
(N, E). Then the core of (N, v) is nonempty if and only if the maximum weight
of a matching in G equals the maximum weight of a fractional matching in G.

We also need the following theorem, which is a straightforward consequence of
a result by Balinski [2].

Theorem 3 ([2]). Let G be a weighted graph. Then the maximum weight of a
half-matching of G is equal to the minimum weight of a cover of G.

Lemma 3 and 4 together with Theorem 3 characterize the core of a matching
game.

Proposition 1. Let (N, v) be a matching game on a weighted graph G = (N, E).
The core of (N, v) is nonempty if and only if the maximum weight of a matching
in G is equal to the maximum weight of a half-matching in G.

Eriksson and Karlander [7] consider the problem Stable Roommates with

Payments and characterize stable solutions in terms of forbidden minors. We
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can translate their characterization as follows. A weighted G allows a stable pair
(M, x) if and only if the weight of M cannot be improved via any half-integer
alternating path. Such an improvement is possible if and only if the maximum
weight of a half-matching in G is greater than the maximum weight of a matching
in G. Hence their result [7] follows directly from Observation 2 and Proposition 1.

We will use Proposition 1 in the proof of Theorem 5, in which we present
a polynomial-time algorithm for finding a core allocation of a matching game,
if such an allocation exists. We also need the following result by Egerváry [6],
which holds for bipartite graphs.

Theorem 4 ([6]). Let G be a weighted bipartite graph. Then the maximum
weight of a matching in G is equal to the minimum weight of a cover of G.

Theorem 4 can also be used in an alternative proof of Theorem 3 based on a
duplication technique, as described by Nemhauser and Trotter [17]. Since we
need this technique in our proof of Theorem 5, we discuss it below.

Let (N, v) be a matching game defined on graph G = (N, E) with edge weight-
ing w. We replace each vertex u by two copies u′, u′′ and each edge e = uv by two
edges e′ = u′v′′ and e′′ = u′′v′. We define edge weights wd(e′) = wd(e′′) = 1

2w(e)
for each e ∈ E. This yields a weighted bipartite graph Gd = (Nd, Ed) in O(n2)
time. We call Gd the duplicate of G. We compute a maximum weight matching
fd of Gd in O(nm + n2 log n) time due to Theorem 1. Given fd, we compute a
minimum weight cover cd of Gd in the same time (cf. Theorem 17.6 from Schri-
jver [22]). We compute the half-matching f in G defined by f(e) := fd(e′)+fd(e′′)

2
for each e ∈ E in O(n2) time and note that

w(f) =
∑
e∈E

w(e)f(e) =
∑
e∈E

(
wd(e′)fd(e′) + wd(e′′)fd(e′′)

)
= wd(fd).

We define c : N → R+ in O(n) time by c(u) := cd(u′)+ cd(u′′) for all u ∈ N and
deduce that c(u)+c(v) = cd(u′)+cd(u′′)+cd(v′)+cd(v′′) ≥ wd(u′v′′)+wd(u′′v′) =
1
2w(uv)+ 1

2w(uv) = w(uv). This means that c is a cover of G with c(N) = cd(Nd),
and by Theorem 4, we deduce that

w(f) = wd(fd) = cd(Nd) = c(N). (1)

We observe that f is a maximum weight half-matching due to Lemma 3. Hence
equation (1) implies Theorem 3. We compute a maximum weight matching f∗ of
G in O(nm + n2 log n) time due to Theorem 1. Then, by Proposition 1, we just
need to check whether w(f∗) = w(f) in order to find out if the core of (N, v)
is nonempty. Suppose the core of (N, v) is nonempty. Since w(f) = c(N) and
w(f∗) = v(N), we obtain

c(N) = v(N). (2)

Hence, c is a core member due to Observation 1, and we get the following result.

Theorem 5. There exists an O(nm + n2 log n) time algorithm that tests if the
core of a matching game on a graph with n vertices and m edges is nonempty
and that computes a core allocation in the case that the core is nonempty.
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For simple matching games, we improve the running time of the algorithm in
Theorem 5 to O(

√
nm) by using the O(

√
nm) time algorithm of Micali and

Vazirani [16] for computing a maximum matching in a graph with n vertices
and m edges.

3 The Nucleolus of a Matching Game with Nonempty
Core

We start with some extra terminology. For a matching game (N, v) defined on
a weighted graph G = (N, E) we define its duplicate as the assignment game
(Nd, vd) defined on Gd with edge weights wd. The duplicate of a vector x ∈ RN

is the symmetric vector xd given by xd
u′ = xd

u′′ = 1
2xu for all u ∈ N .

Lemma 5. Let (N, v) be a matching game with nonempty core. Then the nu-
cleolus of (Nd, vd) is the duplicate of the nucleolus of (N, v).

Proof. Let η∗ be the nucleolus of (Nd, vd). Define η by ηu′ = η∗
u′′ and ηu′′ = η∗

u′

for all u ∈ N . Then θ(η∗) = θ(η). Because η∗ is unique as shown by Schmei-
dler [20], we find that η∗ must be symmetric. Let η be such that ηd = η∗. We
observe that θ(x) & θ(y) if and only if θ(xd) & θ(yd) for two imputations x and
y of (N, v). Hence, we are left to prove that η is an imputation.

Note that ηu ≥ 0 for all u ∈ N . We now show η(N) = v(N). By definition,
ηd is in the core of (Nd, vd). Observation 1 implies that ηd is a cover of Gd with
weight ηd(Nd) = vd(Nd) = wd(fd), where fd is a maximum weight matching of
Gd. By Lemma 3, ηd is a minimum weight cover of (Nd, vd). Then, by equation
(2), we derive η(N) = v(N). Hence, η is indeed an imputation of (N, v). ��

Theorem 6. The nucleolus of an n-player matching game with nonempty core
can be computed in O(n4) time.

Proof. Let (N, v) be an n-player matching game with nonempty core that is
defined on a graph G with edge weighting w. We create Gd and wd in O(n2)
time. Note that |Nd| = 2n. By Theorem 2 we compute the nucleolus ηd of
(Nd, vd) in O(n4) time. From ηd we construct η in O(n2) time. By Lemma 5 we
find that η is the nucleolus of (N, v). This finishes the proof of Theorem 6. ��

4 Blocking Pairs in a Matching Game

Fixing parameter k makes the Blocking Pairs problem polynomially solvable.
This can be seen as follows. We choose a set B of k blocking pairs. Then we use
the ellipsoid method to check in polynomial time if there exists an imputation x
with xu + xv ≥ w(uv) for all pairs uv /∈ B. Because k is fixed, the total number
of choices is bounded by a polynomial in n. What happens when k is part of the
input? Before we present our main result, we start with a useful lemma.

Lemma 6. Let K be a complete graph with vertex set {1, . . . , �} for some odd
integer �, and let x ∈ RK

+ . If x(K) < �
2 then |B(x)| ≥ �−1

2 holds.
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Proof. Write � = 2q + 1 and use induction on q. If q = 1 the statement holds.
Suppose q ≥ 2. We assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ x2q+1

holds. Since x(K) < �
2 , we have x1 < 1

2 . If x1 + x2q+1 < 1 then x1 + xi < 1 for
2 ≤ i ≤ 2q+1. Hence, we have at least 2q blocking pairs. Suppose x1+x2q+1 ≥ 1.
Then x2 + · · ·+ x2q < 2q−1

2 . By induction this yields q − 1 blocking pairs. Note
that x2 < 1

2 holds. Hence x1 +x2 < 1, and we have at least q blocking pairs. ��

Theorem 7. Blocking Pairs is NP-complete, even for simple matching games.

Proof. Clearly, this problem is in NP. To prove NP-completeness, we reduce
from Independent Set, which tests if a graph G contains an independent set
of size at least k, i.e., a set U (with |U | ≥ k) such that there is no edge in G
between any two vertices of U . Garey, Johnson and Stockmeyer [10] show that
the Independent Set problem is already NP-complete for the class of 3-regular
connected graphs, i.e., graphs, in which all vertices are of degree three. So, we
may assume that G is 3-regular and connected. Let n = |V |. We may without
loss of generality assume that k ≤ 1

2n; otherwise G does not have an independent
set of size at least k.

From G we construct the following graph. First, we introduce a set Y of np new
vertices for some integer p, the value of which we will determine later. We denote
the vertices in Y by yu

1 , . . . , yu
p for each u ∈ V . We connect each yu

i (only) to its
associated vertex u. This yields a graph G∗, in which all vertices of G now have
degree 3 + p, and all vertices of Y have degree one. Second, let K be a complete
graph on � vertices, where � is some odd integer larger than np, the value of
which will be made clear later on. We add 2(n − k) copies K1, . . . , K2(n−k) of
K to G∗ without introducing any further edges. The resulting graph consists of
2(n− k) + 1 components and is denoted by G′ = (N, E′). We denote the simple
matching game on G′ by (N, v). We observe that {uyu

1 | u ∈ V } is a maximum
matching in G∗ of size n. Because of this and because � is odd, we obtain that
v(N) = 1

2 (�−1)2(n−k)+n = �(n−k)+k. We show that the following statements
are equivalent for suitable choices of � and p, hereby proving Theorem 7.

(i) G has an independent set U of size |U | ≥ k.
(ii) |B(x)| ≤ (n− k)p + 3

2n− 3k for some imputation x of (N, v).

“(i) ⇒ (ii)” Suppose G has an independent set U of size |U | ≥ k. We define an
imputation x as follows, x ≡ 1

2 on each Kh, x ≡ 1 on U ′ for some subset U ′ ⊆ U
of size |U ′| = k and x ≡ 0 otherwise. Then the set of blocking pairs is

{(u, yu
i ) | u ∈ V \U ′, 1 ≤ i ≤ p} ∪ {(u, v) | u, v ∈ V \U ′ and uv ∈ E}.

We observe that |{(u, yu
i ) | u ∈ V \U ′, 1 ≤ i ≤ p}| = (n − k)p. Furthermore,

because G is 3-regular, U ′ ⊆ U is an independent set and k ≤ 1
2n, we find

that |{(u, v) | u, v ∈ V \U ′}| = |E| − 3k = 3
2n − 3k ≥ 0. Hence, |B(x)| =

(n− k)p + 3
2n− 3k.

“(ii) ⇒ (i)” Suppose |B(x)| ≤ (n − k)p + 3
2n − 3k for some imputation x of

(N, v). We may without loss of generality assume that x has minimum number
of blocking pairs. We first prove a number of claims.



On Solution Concepts for Matching Games 125

Claim 1. We may without loss of generality assume that xi ≤ 1 for all i ∈ N .

We prove Claim 1 as follows. Suppose xi = 1+α for some α > 0 for some i ∈ N .
We set xi := 1 and redistribute α over all vertices j ∈ N\Y with xj < 1. When
doing this we ensure that we do not increase the value of some xj with more than
1−xj. This is possible, since x(N) = v(N) = �(n−k)+k < 2�(n−k)+np+n =
|N |. The resulting allocation would be an imputation with a smaller or equal
number of blocking pairs. This proves Claim 1.

Claim 2. We may without loss of generality assume that xy = 0 for each y ∈ Y .

We prove Claim 2 as follows. Suppose xy > 0 for some y ∈ Y . Let u be the
(unique) neighbor of y. We set xy := 0 and xu := min{xu + xy, 1}. If necessary,
we redistribute the remainder over V ∪

⋃
j Kj without violating Claim 1. This

is possible, since x(N) = �(n − k) + k < 2�(n − k) + n = |
⋃

j Kj| + |V |. The
resulting imputation would have a smaller or equal number of blocking pairs.
This proves Claim 2.

Claim 3. x(
⋃

j Kj) = �(n− k).

We prove Claim 3 as follows. First suppose x(
⋃

j Kj) > �(n − k). Then we
set xi := 1

2 for each i ∈
⋃

j Kj and redistribute the remainder over V without
violating Claim 1. This is possible, since after setting xi := 1

2 for each i ∈
⋃

j Kj ,
we have x(N)−x(

⋃
j Kj) = �(n−k)+k− �(n−k) = k ≤ n = |V |. The resulting

imputation would have a smaller or equal number of blocking pairs. Hence, we
may assume that x(

⋃
j Kj) ≤ �(n− k) holds.

Suppose x(
⋃

j Kj) < �(n − k). Then there is some Kj with x(Kj) < �
2 . By

Lemma 6, there are at least �−1
2 blocking pairs in Kj. We choose � = 2np+2|E|+2

and obtain |B(x)| ≥ �−1
2 > (n−k)p+ |E|. However, let x∗ be given by x∗ ≡ 1

2 on⋃
j Kj, x∗ ≡ 0 on Y , x∗ ≡ 1 on some U ⊆ V of size |U | = k and x∗ ≡ 0 on V \U .

Then x∗ is an imputation as x∗
i ≥ 0 for all i ∈ N and x∗(N) = �(n− k) + k =

v(N). We observe that |B(x∗)| < (n− k)p + |E|. Hence x is not an imputation
with minimum number of blocking pairs. This proves Claim 3.

We now continue with the proof. Combining Claims 2 and 3 leads to

x(V )=x(N)−x

( 2(n−k)⋃
j=1

Kj

)
−x(Y )=v(N)−�(n−k)=�(n−k)+k−�(n−k)=k.

Let R be the set of vertices v in G with xv < 1. We first show that |R| ≤
n − k. Suppose |R| ≥ n − k + 1. Since x(Y ) = 0 due to Claim 2, we find that
(n − k)p + 3

2n − 3k ≥ |B(x)| ≥ |R|p ≥ (n − k)p + p. This is not possible if we
choose p = 2n. Hence, indeed |R| ≤ n− k holds.

Let U consist of all vertices u ∈ V with xu = 1. Note that U = V \R due to
Claim 1. Since x(V ) = k as we deduced above, we find that |U | ≤ k, and thus
|R| ≥ n− k. As we already deduced that |R| ≤ n− k, we find that |R| = n− k,
and consequently, |U | = k. The latter equality implies that xv = 0 for all v ∈ R.
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Because G is 3-regular, G has 3n
2 edges. Then B(x) ≥ (n−k)p+ 3n

2 −3|U |, with
equality only if U is an independent set. Equality must hold since we assume
that B(x) ≤ (n− k)p + 3n

2 − 3k and |U | = k. Hence, indeed U is an independent
set of size k. This completes the proof of Theorem 7. ��

5 Future Research

Beside the notorious problem of determining the complexity of computing the
nucleolus of matching games with empty core, we would like to mention one
other open problem. Let x be an imputation of a matching game (N, v) defined
on a graph G = (N, E) with edge weighting w. We say that a pair of adjacent
vertices u, v has blocking value ex(i, j)+ = max{0, wi,j − (xi + xj)}. We let
b(x) =

∑
ij∈E ex(i, j)+ be the total blocking value of x. The complexity status of

the problem that asks if a matching game (N, v) has an imputation with total
blocking value at most k, where k is a positive integer part of the input, is open.
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Abstract. In this paper, we investigate partial words, or finite sequences
that may have some undefined positions called holes, of maximum sub-
word complexity. The subword complexity function of a partial word w
over a given alphabet of size k assigns to each positive integer n, the
number pw(n) of distinct full words over the alphabet that are com-
patible with factors of length n of w. For positive integers n, h and k,
we introduce the concept of a de Bruijn partial word of order n with
h holes over an alphabet A of size k, as being a partial word w with h
holes over A of minimal length with the property that pw(n) = kn. We
are concerned with the following three questions: (1) What is the length
of k-ary de Bruijn partial words of order n with h holes? (2) What is
an efficient method for generating such partial words? (3) How many
such partial words are there? Keywords: Combinatorics on words; Par-
tial words; Subword complexity; De Bruijn sequences; De Bruijn graphs;
Eulerian paths; combinatorial problems.

1 Introduction

Let A be a k-letter alphabet and w be a finite or right infinite word over A.
A subword or factor of w is a block of consecutive letters of w. The subword
complexity of w is the function that assigns to each positive integer, n, the num-
ber, pw(n), of distinct subwords of length n of w. The subword complexity, also
called symbolic complexity, of finite and infinite words has become an important
subject in combinatorics on words. Application areas include dynamical systems,
ergodic theory, and theoretical computer science. We refer the reader to Chapter
10 of [1] which surveys and discusses subword complexity of finite and infinite
words. References [2] and [3] provide other surveys, [4] shows how the so-called
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special and bispecial factors can be used to compute the subword complexity,
and [5] gives another interesting approach based on the gap function.

When we restrict our attention to finite words of maximum subword complex-
ity, de Bruijn sequences play an important role. A k-ary de Bruijn sequence of
order n is a word over an alphabet of size k where each of the kn words of length
n over the alphabet appears as a factor exactly once. It is well known that such
sequences have length kn + n − 1. There are k!k

n−1
of them, and they can be

efficiently generated by constructing Eulerian cycles in corresponding de Bruijn
directed graphs. The technical report of de Bruijn provides an history on the ex-
istence of these sequences [6]. De Bruijn graphs find applications, in particular,
in genome rearrangements [7], in the complexity of deciding avoidability of sets
of partial words [8], etc.

In this paper, we investigate partial words of maximum subword complexity.
Partial words are finite sequences that may have some undefined positions called
holes (a (full) word is just a partial word without holes). Partial words can be
viewed as sequences over an extended alphabet A� = A ∪ {'}, where ' �∈ A
stands for a hole. Here ' matches every letter in the alphabet, or is compatible
with every letter in the alphabet. For example, 10'01 is a partial word with one
hole over the alphabet {0, 1}. In this context, pw(n) is the number of distinct
full words over the alphabet that are compatible with factors of length n of
the partial word w (in our example with w = 10'01, we have pw(3) = 5 since
000, 001, 010, 100 and 101 match factors of length 3 of w). For positive integers
n, h and k, we introduce the concept of a de Bruijn partial word of order n with
h holes over an alphabet A of size k, as being a partial word w with h holes over
A of minimal length with the property that pw(n) = kn.

The contents of our paper is as follows: In Section 2, we review some concepts
on partial words. In Section 3, we give lower and upper bounds on the length of
k-ary de Bruijn partial words with h holes of order n, and show that our bounds
are tight when h = 1. In Section 4, we provide an algorithm to construct de
Bruijn binary partial words with one hole. Finally in Section 5, we show how to
count such partial words by adapting the so-called BEST theorem that counts
the number of Eulerian cycles in directed graphs.

2 Preliminaries

For more background on partial words, we refer the reader to [9].
Let A be a fixed non-empty finite set called an alphabet whose elements we

call letters. A word over A is a finite sequence of elements from A. We let A∗

denote the set of words over A which, under the concatenation operation of
words, forms a free monoid whose identity is the empty word, which we denote
by ε. Unless otherwise stated, we assume that A contains at least two letters.

A partial word w of length n over A can be defined as a function w : [0..n−1]→
A�, where A� = A ∪ {'} with ' �∈ A. The length of w is denoted by |w|, and
w(i), the symbol at position i, is denoted by wi (here [0..n− 1] denotes the set
of positions {0, 1, . . . , n− 1}). For 0 ≤ i < n, if w(i) ∈ A, then i belongs to the
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domain of w, denoted D(w), and if w(i) = ', then i belongs to the set of holes
of w, denoted H(w). Whenever H(w) is empty, w is a full word. We refer to
an occurrence of the symbol ' as a hole. We let A∗� denote the set of all partial
words over A.

A partial word u is a factor of the partial word v if there exist x, y such that
v = xuy. The factor u is called proper if u �= ε and u �= v. The partial word u is
a prefix (respectively, suffix) of v if x = ε (respectively, y = ε).

The partial word u is contained in the partial word v, denoted u ⊂ v, if
|u| = |v| and u(i) = v(i) for all i ∈ D(u). Two partial words u and v of equal
length are compatible, denoted u ↑ v, if u(i) = v(i) whenever i ∈ D(u)∩D(v). In
other words, u and v are compatible if there exists a partial word w such that
u ⊂ w and v ⊂ w, in which case we let u ∨ v denote the least upper bound of u
and v (u ⊂ (u ∨ v) and v ⊂ (u ∨ v) and D(u ∨ v) = D(u) ∪D(v)). For example,
u = aba'' and v = a''b' are compatible, and (u ∨ v) = abab'.

A full word u is a subword of w if there exists some 0 ≤ i < |w| − |u| such
that u ↑ w(i) · · ·w(i+ |u|− 1). Informally, under some “filling in” of the holes in
w with letters from A to form the full word w′, there is some consecutive block
of letters in w′, w′(i) · · ·w′(i + |u| − 1), such that w′(i) = u(0), w′(i + 1) = u(1),
and so on. Note that in this paper, subwords are always full.

A completion ŵ of a partial word w over A is a function ŵ : [0..|w| − 1]→ A
such that ŵ(i) = w(i) if w(i) �= '. A completion ŵ is usually thought of as a
“filling in” of the holes of w with letters from A. Note that two partial words
u and v are compatible if there exist completions û and v̂ such that û = v̂.
The subword complexity of w is the function that assigns to each integer, 0 ≤
n ≤ |w|, the number, pw(n), of distinct full words over A that are compatible
with factors of length n of w (or the number of distinct subwords of w of length
n). We let Subw(n) denote the set of all subwords of w of length n, and we let
Sub(w) =

⋃
0≤n≤|w| Subw(n) the set of all subwords of w. Note that if ŵ is a

completion of w, then pŵ(n) ≤ pw(n), since Subŵ(n) ⊂ Subw(n).

3 Bounds on the Length of de Bruijn Partial Words

What is the length of a shortest word w over an alphabet of size k for which
pw(n) = kn, where n is a positive integer?

Theorem 1 ([1]). For all k, n ≥ 1 there exists a word w over an alphabet of
size k, of length kn + n− 1, such that pw(n) = kn.

Such a word is often called a k-ary de Bruijn full word of order n, that is, a full
word over a given alphabet A with size k for which every possible word of length
n over A appears as a subword exactly once. De Bruijn words are often “cyclic”
in the literature, meaning that subwords can wrap around from the end to the
beginning of the word, but to better fit our notion of the complexity function,
we unwrap them and use a non-cyclic version.

In order to prove the theorem, set A = {0, 1, . . . , k−1}. If k = 1, then take 0n,
while if n = 1, take 01 · · · (k − 1). If k, n ≥ 2, a family of directed graphs Gk(n)
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is defined as follows: the vertices of Gk(n) are the words of length n− 1 over A,
and the edges of Gk(n) are the pairs (az, zb), labelled by azb, where a, b ∈ A and
z is a word of length n− 2 over A. It then suffices to show that Gk(n) possesses
an Eulerian cycle, that is, a path that traverses every edge exactly once and
begins and ends at the same vertex. Indeed, Gk(n) is strongly connected, that
is, there is a directed path connecting any two vertices, and the indegree of each
vertex equals its outdegree. A directed graph that possesses an Eulerian cycle is
called an Eulerian digraph. Note that there are several linear-time algorithms,
including Fleury’s algorithm, for computing Eulerian cycles in digraphs [10].

We define a k-ary de Bruijn partial word with h holes of order n, to be a
partial word of minimal length with h holes over an alphabet A of size k with all
kn words of length n over A being compatible with factors of it. A main question
is to determine the length of k-ary de Bruijn partial words with h holes of order
n. For example, 00110 is a 2-ary de Bruijn full word of order 2, which has length
5, while a 2-ary de Bruijn partial word of order 2 with one hole is 001', which
has length 4. We let Lk(n, h) denote the length of a k-ary de Bruijn partial word
of order n with h holes.

Definition 1. – Let Mz(n) denote the number of distinct completions of fac-
tors of length n with at least one hole of a partial word z.

– Let Mk(n, h) = maxz Mz(n) where the maximum is taken over all partial
words z with h holes over an alphabet of size k.

It is clear that for n ≤ h, if z is a word with h holes, n of them being consecutive,
over an alphabet of size k, then Mz(n) = kn and since kn is the total number
of words of length n over a k-letter alphabet, we have Mk(n, h) = kn. We can
significantly refine the upper bound of kn on Mk(n, h), when n > h, as stated
in the next theorem.

Theorem 2. For k ≥ 2 and n > h > 0, Mk(n, h) ≤ (n− h + 1)kh + 2kh−k
k−1 .

Proof. Let z be a word with h holes over a k-letter alphabet. First, note that if
the h holes of z are consecutive, or 'h is a factor of z, then there may be factors
of length n of z that contain only the first hole (respectively, the last hole), the
first two holes (respectively, the last two holes), and so on, until may be factors
that contain only the first h − 1 holes (respectively, the last h − 1 holes), and
then factors that contain all of the h holes. Note that i consecutive holes can
contribute a maximum of ki distinct completions. So, in total, z can have up
to (n − h + 1)kh + 2

∑h−1
i=1 ki = (n − h + 1)kh + 2kh−k

k−1 distinct completions of
factors of length n containing at least one hole. Now, assume that 'h−r and 'r

are two disjoint factors of z, where 0 < r < h. In this case, Mz(n) cannot be
bigger than the bound above. So if we keep splitting up the holes, we do not
change our bound. ��

Corollary 1. For k ≥ 2, n ≥ 2h + 2 and h > 0, we have

Mk(n, h) = (n− h + 1)kh + 2
kh − k

k − 1
.
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Proof. By Theorem 2, Mk(n, h) ≤ (n−h+1)kh+2kh−k
k−1 . To show that Mk(n, h) ≥

(n− h + 1)kh + 2kh−k
k−1 , we only need find a partial word zn,h with h holes over

a k-letter alphabet such that Mzn,h
(n) = (n − h + 1)kh + 2kh−k

k−1 . Consider
zn,h = bna'habn where a, b are distinct letters of the alphabet. The factors of
length n of zn,h with at least one hole are

– bn−2a', . . . , bn−ha'h−1, as well as their reversals: the number of distinct com-
pletions of these factors is 2 kh−k

k−1 .
– bn−h−1a'h, . . . , ba'habn−h−3, a'habn−h−2, 'habn−h−1: the number of distinct

completions of these factors is (n− h− 1 + 1 + 1)kh = (n− h + 1)kh.

Note that the words of length n compatible with these factors are distinct, since
the factors starting at the first n − 1 positions are distinct from each other,
because they start with a different number of b’s, and distinct from the rest,
because they have an a at most h positions from the beginning. The factors
ending at the last n−1 positions are also distinct because they end with different
numbers of b’s. ��

Remark 1. Corollary 1 fails for n < 2h + 2. In the contruction of the proof of
Corollary 1, z5,2 = b5a'2ab5, and so Mz(5) = 19 �= 20 = (n− h + 1)kh + 2kh−k

k−1 .
Here, the factor b2a'2 is compatible with the factor '2ab2, and so the completion
b2ab2 gets counted twice.

Theorem 3. For h > 0, Lk(n, h) ≥ Lk(n, 0)−Mk(n, h) + (n + h− 1).

Proof. A k-ary de Bruijn full word of order n contains each subword of length n
exactly once. When considering partial words with h holes over an alphabet of
size k, we are still limited to at most one distinct factor of length n per starting
symbol, except we can get more than one distinct completion for factors with
at least one hole. The number of such completions is at most Mk(n, h), but this
includes (n+h−1) starting positions that lead to distinct subwords in a de Bruijn
full word. So, in total we have Lk(n, h) ≥ Lk(n, 0)−Mk(n, h) + (n + h− 1). ��

Corollary 2. For n ≥ 2h+2 and h > 0, L2(n, h) ≥ 2n+2n+h+2−(n−h+3)2h.

Proof. We know that 2-ary de Bruijn full words of order n have length 2n+n−1.
Furthermore, from Theorem 2, Corollary 1 and Theorem 3, we get

L2(n, h) ≥ 2n + n− 1− (2h(n− h + 3)− 4) + (n + h− 1)
= 2n + 2n + h + 2− (n− h + 3)2h ��

In Section 4, we show that the bound of Corollary 2 is tight for h = 1, that is,
L2(n, 1) = 2n + 2n + h + 2− (n− h + 3)2h = 2n − 1 for n ≥ 4.

4 Constructing de Bruijn Partial Words

We can construct k-ary de Bruijn full words of order n by finding Eulerian cycles
in Gk(n). In this section, we describe an algorithm to construct 2-ary de Bruijn
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partial words of order n with one hole by finding Eulerian paths in a trimmed
version of G2(n). We also discuss the k = 3 case.

We first recall the conditions for a directed graph G = (V, E) to have an
(x, y)-Eulerian path, that is, an Eulerian path from vertex x to vertex y. Let
ideg(v) (respectively, odeg(v)) denote the indegree (respectively, outdegree) of
vertex v ∈ V .

Lemma 1. Let G = (V, E) be a digraph, and let x, y ∈ V be such that odeg(x) =
1 + ideg(x) and ideg(y) = 1 + odeg(y). Then G has an (x, y)-Eulerian path if
and only if G has at most one non-trivial connected component containing x, y
and for every vertex v ∈ V \ {x, y}, ideg(v) = odeg(v).

We now modify the Eulerian cycle approach to prove that our bounds are tight
in the binary one hole case.

Theorem 4. For n ≥ 4, we have L2(n, 1) = 2n − 1.

Proof. Start with the digraph G = G2(n). Let z = x'y = 1n−20'0n−21. It can
be checked that Mz(n) = 2n = M2(n, 1), that is, z has 2n distinct subwords
of length n. Trim G2(n) by deleting all edges that are in Subz(n). Then, add
a new edge from vertex x to vertex y labelled by z. Call the resulting graph,
G′ = (V, E). First, consider any factor of length n − 1 with a hole in z. Then,
choose a completion, v, of that factor. Thus, v is a prefix of some v1 ∈ Subz(n)
and a suffix of some v2 ∈ Subz(n). So, both ideg(v) and odeg(v) get decreased
by one, but v remains balanced. The only vertices that become isolated are 0n−1

and 10n−2. Now, consider the factors x = 1n−20 and y = 0n−21. Here, x is
a prefix of two subwords of length n, namely the two completions 1n−200 and
1n−201. So, two edges starting at x are deleted from G, while the edge starting
at x, labelled by z, is added to G. Similarly, y is a suffix of two subwords of
length n, the two completions 00n−21 and 10n−21. So, two edges ending at y are
deleted from G, while the edge ending at y, labelled by z, is added to G.

So the graph G′ satisfies the following conditions: (1) G′ has a single non-
trivial connected component; (2) odeg(y) = 1 + ideg(y) and ideg(x) = 1 +
odeg(x); and (3) for every vertex v ∈ V \ {x, y}, ideg(v) = odeg(v). By
Lemma 1, G′ has an Eulerian path from vertex y to vertex x. Since z has the
maximum number, M2(n, 1), of distinct subwords of length n, we get L2(n, 0) =
2n +n− 1 implies L2(n, 1) = 2n−M2(n, 1)+n− 1+ (|y|+1), and so L2(n, 1) =
2n − 2n + n− 1 + n = 2n − 1 as desired. ��

Example 1. Computer experiments show that there are seven z’s (up to a renam-
ing of letters) with one hole over the binary alphabet {0, 1} such that Mz(4) =
M2(4, 1) = 8. They are 110'110, 110'011, 110'001, 101'001, 100'101, 100'100
and 100'011. From the proof of Theorem 4, if we choose z1 = 110'001, then
there is an Eulerian path in the resulting graph from vertex 001 to vertex 110.
But, if we consider z2 = 110'110 instead, we note that 1110, 0111 ∈ Sub(z2)
but 1111 �∈ Sub(z2). So the vertex 111 becomes isolated with the loop labelled
by 1111 (see the graph on the right in Figure 1). Therefore, the resulting graph
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does not have an Eulerian path. There are fourteen z’s that satisfy Mz(4) = 8,
but only four of them generate graphs that have an Eulerian path (110'001, its
reversal, and their renamings).

What we need is to start with a word z that is good in the sense that if
{10n−1, 0n−11} ⊂ Subz(n) then 0n ∈ Subz(n), and if {01n−1, 1n−10} ⊂ Subz(n)
then 1n ∈ Subz(n), otherwise 0n−1 or 1n−1 would become isolated with loop 0n

or 1n, respectively. Table 1 gives data on the number of z’s over the alphabet
{0, 1} such that Mz(n) = 2n versus the number of such z’s that are good.

Table 1. Number of good z’s over {0, 1} for 4 ≤ n ≤ 8

n Number of z’s such that Mz(n) = 2n Number of good z’s

4 14 4
5 98 10
6 546 40
7 2768 96
8 12832 272

After applying the algorithm described in the proof of Theorem 4 (see Algo-
rithm 1), we get a 2-ary de Bruijn partial word of order n of length 2n − 1 with
one hole. We let G2(n, z) denote the graph built by Algorithm 1.

Algorithm 1. Constructing a 2-ary de Bruijn word of order n with one hole,
where n ≥ 4
1: Build G = G2(n)
2: Select a good word z = x�y with |x| = |y| = n − 1 and Mz(n) = 2n
3: Compute S = Subz(n)
4: Create graph G′ from G by deleting the edges in the set S along with any resulting

isolated vertices, and add an edge from vertex x to vertex y labelled by z
5: Find an Eulerian path p in G′ from y to x
6: return p

Example 2. For k = 2 and n = 4, if we select z1 = 110'001 then Algorithm 1
produces the graph on the left in Figure 1. The 2-ary word w = 0010110'0011110
of length 24 − 1 = 15 is such that pw(4) = 24 = 16. It can be checked that

001 0010−→ 010 0101−→ 101 1011−→ 011 0110−→ 110 110�001−→ 001
0011−→ 011 0111−→ 111 1111−→ 111 1110−→ 110

is an Eulerian path from y = 001 to x = 110 in the trimmed graph G2(4, z1).

The difficulty in building a de Bruijn partial word for k = 3, n = 4, and h = 1
for instance, is that we have to compensate for the indegree and outdegree of the
nodes connected by the edge labelled by a word with one hole. When working
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Fig. 1. Left: Non-trivial connected component of G2(4, 110�001); Right: Non-trivial
connected components of G2(4, 110�110)

with a good word z = x'y, thus having the maximum number kn = 3n of
subwords of length n, a “schism” is created in which ideg(x) = 3 and odeg(x) =
1, while ideg(y) = 1 and odeg(y) = 3. For example, if we take z = 110'001,
the node 110 will now have oudegree 1 because of the edge labelled by z, and
indegree 3, while 001 only has indegree 1 but will have outdegree 3. With k = 2,
we compensate for this schism by starting the de Bruijn partial word from y
(that has outdegree 2 and indegree 1), and by ending with x (that has indegree
2 and outdegree 1). Since each vertex, other than x and y are balanced, this
effectively “skips” the problem entirely. When we try to compensate in a similar
fashion for a 3-letter alphabet, we end up having to add an extra edge.

To produce a de Bruijn partial word in which a single subword occurs twice,
use a good word of the form x'x. For example, using 102'102 eliminates all
edges to and away from the node 102. This removes the issue of compensating
for an unbalanced vertex: each vertex has equal indegree and outdegree (note
that ideg(102) = odeg(102) = 1 due to the edge 102'102 from 102 to 102).
However, the vertex 102 becomes isolated. Since all edges from 102 have been
deleted, an additional edge is required to connect 102 to the rest of the graph.
Here, use the edge (102, 022) labelled by 1022 for instance. This process can be
generalized to arbitrary n, and so we get the following result.

Theorem 5. For n ≥ 2, we have L3(n, 1) = 3n − n.

Proof. The equality L3(n, 0) = 3n + n − 1 implies L3(n, 1) = (3n −M3(n, 1) +
|z|)+ 1 (for an extra edge), and so L3(n, 1) = 3n− 3n + 2n− 1 + 1 = 3n−n. ��
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Example 3. The partial word u = 10'100222122020121112000 is a 3-ary de
Bruijn partial word of length 24 with one hole of order n = 3, while

v = 102'10222212220220122112200212120210121
11121002020012011200001110110010100022

of length 77 is one of order n = 4. Note that u has the subword 100 occurring
twice, while v has the subword 1022 occurring twice as explained above.

5 Counting De Bruijn Partial Words

Another main question is to compute the number of k-ary de Bruijn partial
words with h holes of order n, which we denote by Nk(n, h). It is well known
that Nk(n, 0) = k!k

n−1
, which can be calculated by counting the number of

Eulerian cycles in Gk(n). This can be done by using the so-called BEST theorem,
named after de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, that counts
the number of Eulerian cycles in directed graphs.

Theorem 6 ([11]). Let G = (V, E) be an Eulerian digraph, and let LG denote
the Laplacian matrix of G defined as follows: for i = j, LG(i, j) = odeg(vi)− e,
and for i �= j, LG(i, j) = −e, where e is the number of edges from vi to vj. Then
the number of non-equivalent Eulerian cycles in G is

C
∏
v∈V

(odeg(v) − 1)! = C
∏
v∈V

(ideg(v) − 1)! (1)

with C any cofactor of LG.

To compute N2(n, 1), we need to modify Theorem 6, since we want to count the
number of Eulerian paths.

Theorem 7. Let G = (V, E) be a digraph, and let x, y ∈ V be such that
odeg(x) = 1 + ideg(x) and ideg(y) = 1 + odeg(y). Suppose that G satisfies
the conditions of Lemma 1 to have an (x, y)-Eulerian path. Let LG denote the
Laplacian matrix of G defined as above. Then the number of (x, y)-Eulerian
paths in G is given by (1) with C the cofactor of LG with the row and column
corresponding to vertex y removed.

With 2-ary de Bruijn partial words of order n with one hole, as mentioned in
Section 4, we need to apply Theorem 6 to more than one graph since every
word z of length 2n − 1, with a hole in the middle and such that Mz(n) =
M2(n, 1) = 2n, can potentially serve as the new edge added to the graph G2(n).
But after deleting the edges corresponding to subwords of length n of z, we do
not necessarily have an Eulerian path, so we must only count those paths in the
G2(n, z)’s, where z is good. This suggests an algorithm, Algorithm 2, to count
the number of 2-ary de Bruijn partial words of order n with one hole.
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Algorithm 2. Computing the number N2(n, 1), where n ≥ 4
1: Find the set Z of all good z’s of the form x�y such that |x| = |y| = n − 1 and

Mz(n) = M2(n, 1) = 2n
2: for all z ∈ Z do
3: Construct the Laplacian matrix Lz = LG2(n,z)

4: Eliminate all rows and columns of Lz that have all zero entries
5: Calculate the determinant of the matrix Lz after removing the row and column

that correspond to x
6: return The sum of the determinants

Remark 2. Step 4 is necessary since some vertices may have become isolated.
This still would allow for Eulerian paths, but would make the determinant zero
if those rows and columns were left in the Laplacian matrix. We also eliminate the
row and column corresponding to x to form the cofactor, since by Theorem 4, x
must be the last vertex of the path because ideg(x) = odeg(x)+1. In step 5, the
(ideg(x)−1)! multiplicative factor is always 1 since ideg(x) = 2. Unfortunately,
unlike the full case where the sum falls out easily since all cofactors of the single
matrix have the same value, the cofactors of the Lz’s may be different.

Example 4. Returning to Example 1 with k = 2 and n = 4, up to reversal and
renaming of letters, we only need to consider z1 = 110'001 to compute N2(n, 1).
Referring to the graph on the left in Figure 1, LG2(4,z1) is as follows:

001 010 011 101 110 111
001 2 −1 −1 0 0 0
010 0 1 0 −1 0 0
011 0 0 2 0 −1 −1
101 0 0 −1 1 0 0
110 −1 0 0 0 1 0
111 0 0 0 0 −1 1

Note that the rows and columns corresponding to the vertices 000 and 100 have
been removed since all their entries are zeros. If we remove the row and column
of vertex 110, we get a determinant of 4. So there are 4 Eulerian paths from 001
to 110 in G2(4, z1): 00110'001011110, 0011110'0010110, 0010110'0011110 and
001011110'00110. Since the only z’s that are good are 110'001, its reversal, and
their renamings, we get N2(4, 1) = 4× 4 = 16.
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Abstract. In the field of implicit computational complexity, we are con-
sidering in this paper the fruitful branch of interpretation methods. In
this area, the synthesis problem is solved by Tarski’s decision procedure,
and consequently interpretations are usually chosen over the reals rather
than over the integers. Doing so, one cannot use anymore the (good)
properties of the natural (well-) ordering of N employed to bound the
complexity of programs. We show that, actually, polynomials over the
reals benefit from some properties that allow their safe use for complex-
ity. We illustrate this by two characterizations, one of PTIME and one
of PSPACE.

To prove the termination of a rewrite system, it is natural to interpret terms
into a well-founded ordering. For instance, Lankford describes interpretations as
monotone Σ-algebras with domain of interpretation being the natural numbers
with their usual ordering (c.f. [16,15]).

However, in the late seventies, Dershowitz showed in a seminal paper [8] that
the well-foundedness of the domain of interpretation is not necessary whenever
the interpretations are chosen to be monotonic and to have the sub-term property.
Thus, the domain of the Σ-algebramentioned above can be the set of real numbers.

One of the main interesting points about choosing of real numbers rather
than natural numbers is that we get (at least from a theoretical point of view)
a procedure to verify the validity of an interpretation of a program by Tarski’s
decomposition procedure [25] and an algorithm to compute interpretations up
to some fixed degree. Following Roy et al. [3], the complexity of these algorithms
is exponential with respect to the size of the program.

A second good point is that the use of reals (as opposed to integers) enlarges
the set of rewriting systems that are compatible with an interpretation, as shown
recently by Lucas [17].

In the last years, the study of termination methods has been one of the major
tools in implicit computational complexity. For instance, Moser et al. have char-
acterized Ptime by means of pop

∗ in [2], and context dependent interpretations
in [22] after their introduction by Hofbauer [12]. One of our two characteriza-
tions, Theorem 8, use dependency pairs (c.f. [1]). In this vein, we mention here
the work of Hirokawa and Moser [10], and, in the same spirit, Lucas and Peña
in [19] made some investigation on the tools of rewriting to tackle the complexity
of a first order functional programs.
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But, the main concern of the present paper is to show that the structure
of polynomials over the reals has an important role from the point of view of
complexity. Our thesis is that, in the field of complexity, due to Stengle’s Posi-
tivstellensatz [24], polynomials over the reals can safely replace polynomials over
the integers. It is illustrated by two theorems, Theorem 6 and Theorem 8. We
show that one may recover both derivational complexity (up to a polynomial)
and size bounds (also, up to a polynomial) on terms as applications of Posi-
tivstellensatz. Moreover, this can be done in a constructive way. Our thesis But,
let us draw briefly the roadmap of the key technical features of this work.

Given a strict interpretation for a term rewriting system, it follows immedi-
ately that for all rewriting steps s → t, we have �s � > �t �. If one takes the
interpretation on natural numbers (as they were introduced by Lankford [16]),
this can be used to give a bound on the derivation height. Thus, Hofbauer and
Lautemann have shown in [11] that the derivation height is bounded by a double
exponential. However, their argument uses deeply the fact that the interpretation
of a term is itself a bound on the derivation height:

dh(t) ≤ �t �. (1)

Suppose t0 → t1 → · · · → tn, since �t0 � > �t1 � > · · · > �tn �, on natural numbers,
this means that n ≤ �t0 �. Such a proof does not hold with real numbers. The
inequalities �ti � > �ti+1 � are due to a) for all rewrite rule � → r, the inequality
�� � > �r � implies that

�� � ≥ �r � + 1 (2)

and b) that for all xi > yi:

�f �(x1, . . . , xi, . . . , xn)− �f �(x1, . . . , yi, . . . , xn) ≥ xi − yi. (3)

The two inequalities 2, 3 do not hold in general for real interpretations. To
recover the good properties holding with natural numbers, people have enforced
the inequalities on terms. For instance [17,21] suppose the existence of some real
δ > 0 such that for any rule � → r : �� � ≥ �r � + δ. We prove that even without
the existence of such a δ, the derivation height of a term t is bounded by �t� up
to a polynomial.

To save some space, we have omitted some proofs. The reader will find them
in the extended version of the paper, see [5].

1 Preliminaries

We suppose that the reader has familiarity with first order rewriting. We briefly
recall some of the main notions of the theory, essentially to fix the notations.
Dershowitz and Jouannaud’s survey [9] is a good entry point.

Let X denote a (countable) set of variables. Given a signature Σ, the set of
terms over Σ and X id denoted by T (Σ,X ) and the set of ground terms as
T (Σ). The size |t| of a term t is defined as the number of symbols in t.
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Given a signature Σ, a rule is an oriented equation � → r with �, r ∈ T (Σ,X )
such that variables occurring in r also occur in �. A Term Rewrite System (TRS)
is a finite set of such rules. A TRS induces a rewriting relation denoted by →.
The relation +→ is the transitive closure of→ and ∗→ is the reflexive and transitive
closure of →. Finally, we say that a term t is a normal form if there is no term
u such that t → u. Given two terms t and u, t

!→ u denotes the fact that t
∗→ u

and u is a normal form. We write t0 →n tn the fact that t0 → t1 · · · → tn. One
defines the derivation height for a term t as the maximal length of a derivation:
dh(t) = max{n ∈ N | ∃v : t→n v}.

A context is a term C with a particular variable ♦. If t is a term, C[t] denotes
the term C where the variable ♦ has been replaced by t. A substitution is a
mapping from variables to terms. A substitution σ can be extended canonically
to terms and we note tσ the application of the substitution σ to the term t.

1.1 Syntax of Programs

Definition 1. A program is a 5-tuple f = 〈X , C,F , main, E〉 with:

– C is a (finite) signature of constructor symbols and F a (finite) signature of
function symbols. main ∈ F is the ”main” function symbol

– E is a finite set of rules of the shape f(p1, · · · , pn) → r where f ∈ F and
pi ∈ T (C,X ).

Moreover, we suppose programs to be confluent. This is achieved by the following
syntactic restriction due to Huet [14] (see also [23]): (i) Each rule f(p1, . . . , pn) →
t is left-linear, that is a variable appears only once in f(p1, · · · , pn), and (ii) there
are no two left hand-sides which are overlapping.

The program 〈X , C,F , f, E〉 computes the partial function �f� : T (C)n →
T (C) defined as follows. For every u1, · · · , un ∈ T (C), �f�(u1, · · · , un) = v iff
f(u1, · · · , un) ∗→ v and v ∈ T (C). Otherwise, it is undefined.

Example 1. The following program computes the membership in a list. The con-
structors of lists are cons,nil. Elements in the list are the tally natural numbers
build from 0 and s.

not(tt) → ff or(tt, y)→ tt 0 = 0 → tt
not(ff) → tt or(x, tt)→ tt 0 = s(y) → ff

or(ff ,ff)→ ff s(x) = 0 → ff
s(x) = s(y) → x = y

in(x,nil)→ ff
in(x, cons(a, l))→ or(x = a, in(x, l))

Definition 2 (Call-tree). Suppose we are given a program 〈X , C,F , E〉. Let �
be the relation

(f, t1, . . . , tn) � (g, u1, . . . , um)⇔f(t1, . . . , tn) → C[g(v1, . . . , vm)]
∗→ C[g(u1, . . . , um)]
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where f and g are defined symbols, t1, . . . , tn, u1, . . . , um are ground constructor
terms and v1, . . . , vm are arbitrary (ground) terms. Given a term f(t1, . . . , tn),
the relation � defines a tree whose root is (f, t1, . . . , tn) and η′ is a daughter of
η iff η � η′.

1.2 Interpretations of Programs

Given a signature Σ, a Σ-algebra on the domain R+ is a mapping �− � which
associates to every n-ary symbol f ∈ Σ an n-ary function �f � : R+n → R+.
Such a Σ-algebra can be extended to terms by:

– �x � = 1R+ , that is the identity on R+, for x ∈ X ,
– �f(t1, . . . , tm) � = comp(�f �, �t1 �, . . . , �tm �) where comp is the composition

of functions.

Given a term t with n variables, �t � is a function R+n → R+.

Definition 3. Given a program 〈X , C,F , f, E〉, let us consider a (C ∪F)-algebra
�− � on R+. It is said to:

1. be strictly monotonic if for any symbol f , the function �f � is a strictly mono-
tonic function, that is if xi > x′

i, then
�f �(x1, . . . , xn) > �f �(x1, . . . , x

′
i, . . . , xn),

2. be weakly monotonic if for any symbol f , the function �f � is a weakly mono-
tonic function, that is if xi ≥ x′

i, then
�f �(x1, . . . , xn) ≥ �f �(x1, . . . , x

′
i, . . . , xn),

3. have the strict sub-term property if for any symbol f , the function �f � verifies
�f �(x1, . . . , xn) > xi with i ∈ {1, . . . , n},

4. to be strictly compatible (with the rewriting relation) if for all rules � → r,
�� � > �r �,

5. to be a sup-approximation if for all constructor terms t1, . . . , tn, we have the
inequality �f(t1, . . . , tn) � ≥ ��f�(t1, . . . , tn) �.

Definition 4. Given a program 〈X , C,F , f, E〉, a (C ∪ F)-algebra on R+ is
said to be a strict interpretation whenever it verifies (1), (3), (4). It is a sup-
interpretation whenever it verifies (2) and (5).

Sup-interpretation have been introduced by Marion and Pechoux in [20]. We
gave here a slight variant of their definition. In [20], the last inequality refers
to the size of normal forms. We preferred to have a more uniform definition.
Clearly, a strict interpretation is a sup-interpretation.When we want to speak
arbitrarily of one of those concepts, we use the generic word ”interpretation”.
We also use this terminology to speak about the function �f � given a symbol f .

Finally, by default, we restrict the interpretations of symbols to be Max-
Poly functions, that is functions obtained by finite compositions of the constant
functions, maximum, addition and multiplication.
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Definition 5. The interpretation of a symbol f is said to be additive if it has
the shape

∑
i xi + c with c > 0. A program with an interpretation is said to be

additive when its constructors are additive.

Example 2. The program given in Example 1 has both an additive strict inter-
pretation (left side, black) and an additive sup-interpretation (right side, blue):

�tt � = �ff � = �0 � = �nil � = 1 �tt � = �ff � = �0 � = �nil � = 1
�s �(x) = x + 1 �s �(x) = x + 1

�cons �(x, y) = x + y + 3 �cons �(x, y) = x + y + 1
�not �(x) = x + 1 �not �(x) = 1

�or �(x, y) = �= �(x, y) = x + y + 1 �or �(x, y) = � = �(x, y) = 1
�in �(x, y) = (x + 1)(y + 1) �in �(x, y) = 1

Example 3. The Quantified Boolean Formula (QBF) problem is well known to
be Pspace complete. It consists in determining the validity of a boolean formula
with quantifiers over propositional variables. Without loss of generality, we re-
strict formulae to ¬,∨, ∃. Variables are represented by tally numbers. The QBF
problem is solved extending the preceding program with:

verify(Var(x), t) → in(x, t)
verify(Not(ϕ), t) → not(verify(ϕ, t))

verify(Or(ϕ1, ϕ2), t) → or(verify(ϕ1, t), verify(ϕ2, t))
verify(Exists(n, ϕ), t) → or(verify(ϕ, cons(n, t)), verify(ϕ, t))

qbf(ϕ) → verify(ϕ, ε)

It has a sup-interpretation but not a strict interpretation:

�Not �(x) = �Var �(x) = x + 1
�Or �(x, y) = �Exists �(x, y) = x + y + 1
�verify �(x, y) = �qbf �(x) = 1

Actually, as Theorem 6 will prove it, unless Ptime = Pspace, there is no
program computing QBF with an additive strict interpretation.

2 Positivstellensatz and Applications

In this section, we introduce a deep mathematical result, the Positivstellen-
satz. Then we give some applications to polynomial interpretations. They will
be key points of the Theorems 6 and 8 in our analysis of the role of reals in
complexity (§3).

Let n > 0. Denote by R[x1, . . . , xn] the R-algebra of polynomials with real
coefficients. Denote by (R+)n = {x = (x1, . . . , xn) ∈ Rn | x1, . . . , xn > 0} the
first quadrant. Since we need to consider only the R-algebra of polynomial func-
tions (R+)n → R, it will be convenient to identify the two spaces. In particular
throughout this section, all polynomial functions are defined on (R+)n.
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Theorem 3 (Positivstellensatz, Stengle [24]). Suppose that we are given
polynomials P1, . . . , Pm ∈ R[x1, . . . , xk], the following two assertions are
equivalent:

1. {x1, . . . , xk : P1(x1, . . . , xk) ≥ 0 ∧ · · · ∧ Pm(x1, . . . , xk) ≥ 0} = ∅
2. ∃Q1, . . . , Qm : −1 =

∑
i≤m QiPi where each Qi is a sum of squares of poly-

nomials (and so is positive and monotonic).

Moreover, these polynomials Q1, . . . , Qm can effectively computed. We refer the
reader to the work of Lombardi, Coste and Roy [6]. As a consequence, all the
constructions given below can be actually (at least theoretically) computed.

It will be convenient to derive from the Positivstellensatz some propositions
useful for our applications.

Proposition 2. Suppose that a TRS (Σ, R) admits an interpretation �− � over
Max-Poly such that for all rules � → r, we have �� � > �r �. There is a positive,
monotonic polynomial P such that for any rule �→ r, we have �� �(x1, . . . , xk)−

�r �(x1, . . . , xk) ≥
1

P (x1, . . . , xk)
.

The proof is direct consequence of Theorem 3 when � and r are polynomials.
By a finite case analysis, one may cope with the max function. One may notice
that one cannot a priori find some constant δ > 0 such that: �� �(x1, . . . , xk) ≥
�r �(x1, . . . , xk) + δ. Indeed, suppose that �� �(x1, . . . , xk)− �r �(x1, . . . , xk) > 0.
Observe that limx→0 P (x, 1/x) = limx→0 x2 = 0. However, taking Q(x, y) =
(1 + x + y)2, one has P (x, y)Q(x, y) ≥ 1 for all x, y ≥ 0.

Proposition 2 has an important consequence. Since, in a derivation all terms
have an interpretation bounded by the interpretation of the first term, there is
a minimal decay for each rule of the derivation. Then, due to the next Theorem,
the result can be extended to contexts.

Theorem 4. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1 ≥ 0, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),

(ii) ∀x1 ≥ 0, . . . , xn ≥ 0 :
∂P

∂xi
(x1, . . . , xn) > 0 for all i ≤ n,

then, there exist A > 0 such that for any Δ > 0, we have P (x1, . . . , xi +
Δ, . . . , xn) > P (x1, . . . , xn) + Δ whenever ||x|| > A.

In other words, we recovered some equivalent Equations to the Equations 2, 3
for sufficiently large terms.

Proposition 3. Suppose that a TRS (Σ, R) admits a strict interpretation �− �
over Max-Poly. For all A > 0, the set of terms {t ∈ T (Σ) | �t � < A} is finite.

Proposition 4. Suppose that a TRS (Σ, R) admits a strict interpretation �− �
over Poly. There are a real A > 0 and a positive, monotonic polynomial P such
that for all x1, . . . , xn ≥ 0, if xi1 , . . . , xik

> A, then for all symbols f , we have
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�f �(x1, . . . , xn) ≥ xi1 + · · ·+ xik
+

1
P (�f �(x1, . . . , xn))

.

This latter result gives (more or less) directly a bound on the size of terms. It is
a consequence of Theorem 3 and the following Theorem.

Theorem 5. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),
(ii) ∀x′

i > xi, x1, . . . , xn ≥ 0 : P (x1, . . . , x
′
i, xi+1, . . . , xn) > P (x1, . . . , xn),

then, there exist A ≥ 0 such that P (x1, . . . , xn) > x1+· · ·+xn whenever ||x|| > A.

All the hypotheses are necessary. If P (x, y) is not supposed to be greater than
max(x, y), you can simply take P (x, y) = (x+ y)/2. It is strictly monotonic, but
clearly, P (x, y) < x + y for all x, y > 0.

The second hypothesis is also necessary. A counter example is given by P (x, y)
= 16(x− y)2 + (3/2)x + 1.

3 The Role of Reals in Complexity

We have now all the tools to prove that reals can safely replace integers from a
complexity point of view. This is illustrated by Theorem 6 and Theorem 8.

Theorem 6. Functions computed by programs with an additive strict interpre-
tation (over the reals) are exactly Ptime functions.

The rest of the section is devoted to the proof of the Theorem. The main difficulty
of the proof is that inequalities as given by the preceding section only hold for
sufficiently large values. So, the main issue is to split ”small” terms (and ”small
rewriting steps”) from ”large” ones. Positivstellensatz gives us the arguments
for the large terms (Lemma 7), Lemmas 8,9 show that there are not too many
small steps between two large steps. Lemma 11 describe how small steps and big
steps alternate.

From now on, we suppose we are given a program with an additive strict
interpretation over polynomials. The following Lemmas are direct applications of
Proposition 2,4, they are the main steps to prove both Theorem 6 and Theorem 8.
A full proof of the lemmas can be found in the technical report.

Lemma 7. There is a polynomial P and a real A > 0 such that for all steps
�σ → rσ with �rσ � > A, then, for all contexts C, we have �C[�σ] � ≥ �C[rσ] � +

1
P (��σ �).

Proof. This is a consequence of Proposition 2.

Definition 7. Given a real A > 0, we say that the A-size of a closed term t is
the number of subterms u of t (including itself) such that �u � > A. We note |t|A
the A-size of t.
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Lemma 8. There is a constant A such that for all C > A, there is a polynomial
Q for which |t|C ≤ Q(�t �) for all closed terms t.

Proof. This is consequence of Proposition 4.

For A > 0, we say that t = C[�σ]→ C[rσ] = u is an A-step whenever �rσ � > A.
We note such a rewriting step t →>A u. Otherwise, it is an ≤ A-step, and we
note it t →≤A u. We use the usual ∗ notation for transitive closure. In case we
restrict the relation to the call by value strategy1, we add “cbv” as a subscript.
Take care that an →≤A-normal form is not necessarily a normal form for →.

Lemma 9. There is a constant A such that for all C > A there is a (monotonic)
polynomial P such that for all terms t, any call by value derivation t →∗

≤C,cbv u
has length less than P (�t �).
Proof. This is a consequence of Proposition 2.

Lemma 10. For constructor terms, we have �t � ≤ Γ ×|t| for some constant Γ .

Proof. Take Γ = max{
1
γc
| �c �(x1, . . . , xn) =

∑n
i=1 xi + γc}. By induction on

terms.

Lemma 11. Let us suppose we are given a program with an additive strict inter-
pretation. There is a strategy such that for all function symbol f , for all constructor
terms t1, . . . , tn, any derivation following the strategy starting from f(t1, . . . , tn)
has length bounded by Q(max(|t1|, . . . , |tn|)) where Q is a polynomial.

Proof. Let us consider A as defined in Lemma 9, B and P1 as defined in Lemma 7.
We define C = max(A, B). Let P0 be the polynomial thus induced from Lemma 9.
Finally, let us consider the strategy as introduced above: rewrite as long as pos-
sible the according to →≤C,cbv , and then, apply an C-step. That is, we have
t1 →∗

≤C,cbv t′1→>C,cbv t2 →∗
≤C,cbv t′2 →∗. In Lemma 9, we have seen that there

are at most P0(�ti �) steps in the derivation ti →∗
≤C,cbv t′i. From Lemma 7, we can

state that there are at most �t1 �×P1(�t1 �) such C-steps. Consequently, the deriva-
tion length is bounded by �t1 �×P1(�t1 �)×P0(�t1 �) since for all i ≥ 1, �ti � ≤ �t1 �.

Consider now a function symbol f ∈ F , from Lemma 10, �f(t1, . . . , tn) � =
�f �(�t1 �, . . . , �tn �) ≤ �f �(Γ max(|t1|, . . . , |tn|), . . . , Γ max(|t1|, . . . , |tn|)). Then,
the conclusion is immediate.

Proof. Of Theorem 6 With the strategy defined above, we have seen that the
derivation length of a term f(t1, . . . , tn) is polynomial wrt to max(|t1|, . . . , |tn|).
The computation can be done in polynomial time due to dal Lago and Mar-
tini, see [7], together with the fact that the normal form has polynomial size
(Lemma 10). For the converse part, we refer the reader to [4] where a proof that
Ptime programs can be computed by functional programs with strict interpre-
tations over the integers. This proof can be safely used in the present context.

1 Innermost in the present context.
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3.1 Dependency Pairs with Polynomial Interpretation over the
Reals

Termination by Dependency Pairs is a general method introduced by Arts and
Giesl [1]. It puts into light recursive calls. Suppose f(t1, . . . , tn)→C[g(u1, . . . , um)]
is a rule of the program. Then, (F (t1, . . . , tn), G(u1, . . . , um)) is a dependency pair
where F and G are new symbols associated to f and g respectively. S(C,F , R)
denotes the program thus obtained by adding these rules. The dependency graph
links dependencypairs (u, v) → (u′, v′) if there is a substitutionσ such thatσ(v) ∗→
σ(u) and termination is obtained when there is no cycles in the graph. Since the
definition of the graph involves the rewriting relation, its computation is undecid-
able. In practice, one gives an approximation of the graph which is bigger. Since
this is not the issue here, we suppose that we have a procedure to compute this
supergraph which we call the dependency graph.

Theorem 7. [Arts,Giesl [1]] A TRS (C,F , R) is terminating iff there exists a
well-founded weakly monotonic quasi-ordering ≥, where both ≥ and > are closed
under substitution, such that

– � ≥ r for all rules �→ r,
– s ≥ t for all dependency pairs (s, t) on a cycle of the dependency graph and
– s > t for at least one dependency pair on each cycle of the graph.

It is natural to use sup interpretations for the quasi-ordering and the ordering
of terms. However, the ordering > is not well-founded on R, so that system may
not terminate. Here is such an example.

Example 4. Consider the non terminating system:(
f(0)→ 0
f(x) → f(s(x))

)
Take �0 � = 1, �s �(x) = x/2. There is a unique dependency pair F (x) → F (s(x)).
We define �F �(x) = �f �(x) = x + 1.

One way to avoid these infinite descent is to force the inequalities over reals to be
of the form P (x1, . . . , xn) ≥ Q(x1, . . . , xn) + δ for some δ > 0 (see for instance
Lucas’s work [18]). Doing so, one gets a well-founded ordering on reals. We propose
an alternative approach to that problem, keeping the original ordering of R.

Definition 8. A R-DP-interpretation for a program associates to each symbol
f a monotonic function �f �such that

1. constructors have additive interpretations,
2. �� � ≥ �r � for � → r ∈ R,
3. �s � ≥ �r � for (s, r) ∈ DP (R),
4. for each dependency pair (s, t) in a cycle, �s � > �r � holds.
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Example 5. Let us come back to Example 3. The QBF problem can be given a
R-DP interpretation. Let us add the interpretations:

�NOT �(x) = x
�OR �(x, y) = �EQ �(x, y) = max(x, y)

�IN �(x, y) = x + y
�VERIFY �(x, y) = 2x + y + 1

�QBF �(x) = 2x + 1

Theorem 8. Functions computed by programs

– with additive R-DP-interpretations
– the interpretation of any capital symbol F has the sub-term property

are exactly Pspace computable functions.

Proof. The completeness comes from the example of the QBF, plus the compo-
sitionality of such interpretation.

In the other direction, the key argument is to prove that the call tree has a
polynomial depth w.r.t. the size of arguments. The proof relies again on Lemmas 7,
8, 9, 11 adapted to dependency pairs (in cycles). Indeed, since capital symbol have
the sub-term property, the lemmas are actually valid in the present context.2 The
rewriting steps of dependency pairs can be reinterpreted as depth-first traversal
in the call-tree. Thus, we can state that the depth of the call tree is polynomial,
as we stated in an analogous way that the derivation length was polynomial.

4 Conclusion

If one goes back to the two characterization of complexity classes presented in
this paper, one sees that we essentially use two arguments: a) interpretations
with the subset properties provide a polynomial bound wrt the interpretation
of the initial interpretation, and b) the size of terms is polynomial w.r.t. their
interpretations.

As a consequence, our result can be used in other context such as proofs
of termination by matrix interpretations [13] or context dependent interpreta-
tions [12]. Potentially, any system dealing with decreasing chain of (interpreted)
terms could be treated.

Acknowledgement. Antoine Henrot for his helpful comments on an earlier version
of the contribution.
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Abstract. We study the interplay between principal pivot transform
(pivot) and loop complementation for graphs. This is done by general-
izing loop complementation (in addition to pivot) to set systems. We
show that the operations together, when restricted to single vertices,
form the permutation group S3. This leads, e.g., to a normal form for se-
quences of pivots and loop complementation on graphs. The results have
consequences for the operations of local complementation and edge com-
plementation on simple graphs: an alternative proof of a classic result
involving local and edge complementation is obtained, and the effect of
sequences of local complementations on simple graphs is characterized.

1 Introduction

Local complementation has originally been considered in [10] as a transformation
on circle graphs (or overlap graphs), modelling a natural transformation on its
underlying interval segments. Subsequently, the graph transformation edge com-
plementation has been defined in terms of local complementation in [5]. Many com-
putational application areas have since appeared for both graph transformations.
For example, local complementation on simple graphs retains the entanglement of
the corresponding graph states in quantum computing [11]. Local complementa-
tion is also of main interest in relation to rank-width in the vertex-minor project
initiated by Oum [15]. Moreover, edge complementation is fundamentally related
to the interlace polynomial [2,3,1], the definition of which is motivated by the com-
putation of the number of k-component circuit partitions in a graph.

Local and edge complementation as mentioned above are concerned with sim-
ple graphs, where loops are not allowed. It turns out that edge complementation
on simple graphs is a special case of a general matrix operation called principal
pivot transform (PPT, or simply pivot), due to Tucker [17], capable of partially
(component-wise) inverting a given matrix. By [4], edge complementation can
then be described in terms of set systems (more specifically, in terms of delta-
matroids due to a specific exchange axiom that they fulfill).

As observed in [13], local and edge complementation can be naturally modified
for graphs where loops are allowed, in such a way that they are both a special
� Corresponding author. Supported by the Netherlands Organization for Scientific

Research (NWO), project “Annotated graph mining”.

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 151–162, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



152 R. Brijder and H.J. Hoogeboom

case of PPT. From now on we refer to graphs where loops are allowed as graphs
for short. On graphs, local and edge complementation have natural applications
as well, e.g., the formal study of gene assembly in ciliates [12,8], a research area
within computational biology. Surprisingly, the similarity between local and edge
complementation for simple graphs on the one hand and pivots on matrices (or
graphs) on the other hand has been largely unnoticed, and as a result they have
been studied almost independently.

The aim of this paper is to bridge this gap between graphs and simple graphs
by considering the interplay of pivot and loop complementation (flipping the
existence of loops for a given set of vertices) on graphs. By generalizing loop
complementation to set systems, we obtain a common viewpoint for the two
operations: pivots and loop complementations are elements of order 2 (i.e., in-
volutions) in the permutation group S3 (by restricting to single vertices). We
obtain a normal form for sequences of pivots and loop complementations on
graphs. As a consequence a number of results for local and edge complementa-
tions on simple graphs are obtained including an alternative proof of a classic
result [5] relating local and edge complementation (∗{u, v} = ∗{u} ∗ {v} ∗ {u},
see Proposition 13). Finally we characterize the effect of sequences of local com-
plementations on simple graphs.

Due to space constraints, the proofs of the results (except for Proposition 13)
and some remarks and examples are omitted. Also a section on maximal pivots
is omitted. We refer to [7] for a full version of this paper.

2 Notation and Terminology

In this paper matrix computations will be over F2, the field consisting of two
elements. We will often consider this field as the Booleans, and its operations
addition and multiplication are as such equal to the logical exclusive-or and
logical conjunction, which are denoted by ⊕ and ∧ respectively. These operations
carry over to sets, e.g., for sets A, B ⊆ V and x ∈ V , x ∈ A ⊕ B iff (x ∈
A)⊕ (x ∈ B).

A set system (over V ) is a tuple M = (V, D) with V a finite set and D ⊆ P(V )
a family of subsets of V .

For a V × V -matrix A (the columns and rows of A are indexed by finite set
V ) and X ⊆ V , A[X ] denotes the principal submatrix of A w.r.t. X , i.e., the
X ×X-matrix obtained from A by restricting to rows and columns in X .

We consider undirected graphs without parallel edges, however we do allow
loops. For graph G = (V, E) we use V (G) and E(G) to denote its set of vertices
V and set of edges E, respectively, where for x ∈ V , {x} ∈ E iff x has a loop.
For X ⊆ V , we denote the subgraph of G induced by X as G[X ].

With a graph G one associates its adjacency matrix A(G), which is a V × V -
matrix (au,v) over F2 with au,v = 1 iff {u, v} ∈ E (we have au,u = 1 iff {u} ∈ E).
In this way, the family of graphs with vertex set V corresponds precisely to the
family of symmetrical V × V -matrices over F2. Therefore we often make no
distinction between a graph and its matrix, so, e.g., by the determinant of graph
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G, denoted detG, we will mean the determinant detA(G) of its adjacency matrix
(computed over F2). By convention, det(G[∅]) = 1.

3 Pivots

In general the pivot operation is defined for matrices over arbitrary fields, e.g.,
as done in [16]. In this paper we restrict to symmetrical matrices over F2, which
leads to a number of additional (equivalent) viewpoints to the same operation.

Matrices. Let A be a V × V -matrix (over an arbitrary field), and let X ⊆ V
be such that the corresponding principal submatrix A[X ] is nonsingular, i.e.,
detA[X ] �= 0. The pivot of A on X , denoted by A ∗X , is defined as follows. If

P = A[X ] and A =
(

P Q
R S

)
, then

A ∗X =
(

P−1 −P−1Q
RP−1 S −RP−1Q

)
.

The pivot can be considered a partial inverse, as A and A∗X satisfy the following
characteristic relation, where the vectors x1 and y1 correspond to the elements
of X .

A

(
x1

x2

)
=

(
y1

y2

)
iff A ∗X

(
y1

x2

)
=
(

x1

y2

)
(1)

Equality (1)) can be used to define A∗X given A and X : any matrix B satisfying
this equality is of the form B = A ∗X , see [16, Theorem 3.1], and therefore such
B exists precisely when det A[X ] �= 0. Note that if detA �= 0, then A∗V = A−1.

From now on we restrict to graphs, i.e., symmetric matrices A over F2. Hence,
detA �= 0 is equivalent to det A = 1 and moreover A = AT (the transpose of A).
It is easy to verify that (over F2) A ∗X is symmetric whenever A is, i.e., if A
represents a graph, then A ∗X represents a graph.

The following fundamental result on pivots, stated here for the case F2, is due
to [17] (see also [9, Theorem 4.1.1] for an elegant proof using Equality (1)).

Proposition 1 ([17]). Let A be a (not necessary symmetric) V ×V -matrix over
F2, and let X ⊆ V be such that detA[X ] = 1. Then, for Y ⊆ V , det(A∗X)[Y ] =
detA[X ⊕ Y ].

Set Systems. Let M be a set system over V . We define, for X ⊆ V , the pivot
(often called twist in the literature, see, e.g., [13]) M ∗X = (V, D ∗X), where
D ∗X = {Y ⊕X | Y ∈ D}.

For graph G, let MG = (V (G), DG) be the set system with DG = {X ⊆
V (G) | detG[X ] = 1}. Graph G can be (re)constructed given MG: {u} is a
loop in G iff {u} ∈ DG, and {u, v} is an edge in G iff ({u, v} ∈ DG) ⊕ (({u} ∈
DG)∧({v} ∈ DG)), see [6, Property 3.1]. Hence the mappingM(·) which assigns
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to each graph G its set system MG is injective. In this way, the family of graphs
(with set V of vertices) can be considered as a subset of the family of set systems
(over set V ).

We now recall (from, e.g., [13]) that the pivot operation for graphs coincides
with the pivot operation for set systems.

We let G ∗X denote the graph with adjacency matrix A(G) ∗X . By Proposi-
tion 1, forMG∗X we have Z ∈ DG∗X iff det((G∗X)[Z]) = 1 iff det(G[X⊕Z]) = 1
iff X ⊕ Z ∈ DG iff Z ∈ DG ∗ X . Hence MG∗X = MG ∗ X , which shows that
pivot on set systems form an alternative definition of pivot on graphs. Note that
while for set system M over V , M ∗X is defined for all X ⊆ V , G ∗X is defined
precisely when det G[X ] = 1, or equivalently, when X ∈ DG, which in turn is
equivalent to ∅ ∈ DG ∗ X . Since DG∗X = DG ∗ X , it is easy to see that if
(G ∗X) ∗ Y is defined, then G ∗ (X ⊕ Y ) is defined and they are equal.

It turns out that MG has a special structure, that of a delta-matroid [4]. A
delta-matroid is a set system that satisfies the symmetric exchange axiom: For
all X, Y ∈ DG and all x ∈ X ⊕ Y , either X ⊕ {x} ∈ D or there is a y ∈ X ⊕ Y
with y �= x such that X⊕{x, y} ∈ D1. In this paper we will not use this property.
In fact, we will consider an operation on set systems that does not retain this
property of delta-matroids, cf. Example 8.

Graphs. The pivots G ∗ X where X is a minimal element of MG\{∅} w.r.t.
inclusion are called elementary. It is noted in [13] that an elementary pivot X
corresponds to either a loop, X = {u} ∈ E(G), or to an edge, X = {u, v} ∈
E(G), where (distinct) vertices u and v are both non-loops. Thus for Y ∈ MG,
if G[Y ] has elementary pivot X1, then Y \X1 = Y ⊕X1 ∈MG∗X1 . By iterating
this argument, each Y ∈ MG can be partitioned Y = X1 ∪ · · · ∪Xn such that
G∗Y = G∗(X1⊕· · ·⊕Xn) = (· · · (G∗X1) · · ·∗Xn) is a composition of elementary
pivots. Consequently, a direct definition of the elementary pivots on graphs G is
sufficient to define the (general) pivot operation.

The elementary pivot G∗{u} on a loop {u} is called local complementation. It
is the graph obtained from G by complementing the edges in the neighbourhood
NG(u) = {v ∈ V | {u, v} ∈ E(G), u �= v} of u in G: for each v, w ∈ NG(u),
{v, w} ∈ E(G) iff {v, w} �∈ E(G ∗ {u}), and {v} ∈ E(G) iff {v} �∈ E(G ∗ {u})
(the case v = w). The other edges are left unchanged.

We now recall edge complementation G ∗ {u, v} on an edge {u, v} between
non-loop vertices. For a vertex x consider its closed neighbourhood N ′

G(x) =
NG(x) ∪ {x}. The edge {u, v} partitions the vertices of G connected to u or v
into three sets V1 = N ′

G(u) \N ′
G(v), V2 = N ′

G(v) \N ′
G(u), V3 = N ′

G(u) ∩N ′
G(v).

Note that u, v ∈ V3.
The graph G ∗ {u, v} is constructed by “toggling” all edges between different

Vi and Vj : for {x, y} with x ∈ Vi and y ∈ Vj (i �= j): {x, y} ∈ E(G) iff {x, y} /∈
E(G ∗ {u, v}), see Figure 1. The other edges remain unchanged. Note that, as a
result of this operation, the neighbours of u and v are interchanged.
1 The explicit formulation of case X ⊕ {x} ∈ D is often omitted in the definition of

delta-matroids. It is then understood that y may be equal to x and {x, x} = {x}.
To avoid confusion will not use this convention here.
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V1 V2

V3

u
v

V1 V2

V3

u
v

Fig. 1. Pivoting {u, v} in a graph. Connection {x, y} is toggled iff x ∈ Vi and y ∈ Vj

with i �= j. Note u and v are connected to all vertices in V3, these edges are omitted in
the diagram. The operation does not affect edges adjacent to vertices outside the sets
V1, V2, V3, nor does it change any of the loops.

r

p q

s r

p q

s

r

p q

sr

p q

sr

p q

s

∗{q}
∗{r, s} ∗{r, s}

∗{p, r}∗{p, s}

∗{r, s}
∗{q}

∗{r}

∗{s}

∗{p}

Fig. 2. The orbit of G of Example 2 under pivot. Only the elementary pivots are shown.

Example 2. Let G be the graph depicted in the upper-left corner of Figure 2.
Graph G corresponds to MG = ({p, q, r, s}, DG), where

DG = {∅, {p}, {q}, {p, r}, {p, s}, {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}}.

For example, {p, r} ∈ DG since det(G[{p, r}]) = det
(

1 1
1 0

)
= 1. The orbit of

G under pivot as well as the applicable elementary pivots (i.e., local and edge
complementation) are shown in Figure 2. For example, G ∗ {p, q, r} is shown on
the lower-right in the same figure. Note that DG ∗ {p, q, r} =

{∅, {q}, {p, r}, {p, s}, {q, r}, {q, s}, {r, s}, {p, q, r}, {p, q, s}, {q, r, s}}

indeed corresponds to G ∗ {p, q, r}. ��
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4 Unifying Pivot and Loop Complementation

We now introduce a class of operations on set systems. It turns out that this
class contains both the pivot and (a generalization of) loop-complementation.
Each operation is a linear transformation, where the input and output vectors
indicate the presence (or absence) of sets Z and Z − {j} in the original and
resulting set systems.

Definition 3. Let M = (V, D) be a set system, and let α be a 2×2-matrix over
F2. We define, for j ∈ V , the vertex flip α of M on j, denoted by Mαj = (V, D′),
where, for all Z ⊆ V with j ∈ Z, the membership of Z and Z − {j} in D′ is
determined as follows:

α (Z ∈ D, Z − {j} ∈ D)T = (Z ∈ D′, Z − {j} ∈ D′)T .

In the above definition, we regard the elements of the vectors as Boolean values,
e.g., the expression Z ∈ D obtains either true (1) or false (0). To be more explicit,

let α =
(

a11 a12

a21 a22

)
. Then we have for all Z ⊆ V , Z ∈ D′ iff{

(a11 ∧ Z ∈ D)⊕ (a12 ∧ Z − {j} ∈ D) if j ∈ Z

(a21 ∧ Z ∪ {j} ∈ D)⊕ (a22 ∧ Z ∈ D) if j �∈ Z
.

Note that in the above statement we may replace both Z∪{j} ∈ D and Z−{j} ∈
D by Z ⊕ {j} ∈ D as in the former we have j �∈ Z and in the latter we have
j ∈ Z. Thus, the operation αj decides whether or not set Z is in the new set
system, based on the fact whether or not Z and Z ⊕ {j} belong to the original
system.

Note that if α is the identity matrix, then αj is simply the identity operation.

Moreover, with α∗ =
(

0 1
1 0

)
we have Mαj

∗ = M ∗ {j}, the pivot operation on a

single element j.
By definition, a composition of vertex flips on the same element corresponds to

matrix multiplication. The following lemma shows that vertex flips on different
elements commute.

Lemma 4. Let M be a set system over V , and let j, k ∈ V . We have that
(Mαj)βj = M(βα)j , where βα denotes matrix multiplication of β and α. More-
over (Mαj)βk = (Mβk)αj if j �= k.

To simplify notation, we assume left associativity of the vertex flip, and write
Mϕ1ϕ2 · · ·ϕn to denote (· · · ((Mϕ1)ϕ2) · · · )ϕn, where ϕ1ϕ2 · · ·ϕn is a sequence
of vertex flip operations applied to set system M . Hence, the pivot operation
as a special case of the vertex flip is also written in the simplified notation. We
carry this simplified notation over to graphs G.

Due to commutative property shown in Lemma 4 we (may) define, for a set
X = {x1, . . . , xn} ⊆ V , MαX = Mαx1αx2 · · ·αxn , where the result is indepen-
dent on the order in which the operations are applied. Moreover, if α is of order
2 (i.e., αα is the identity matrix), then (MαX)αY = MαX⊕Y .
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Now consider α+ =
(

1 1
0 1

)
. The matrices α+ and α∗ given above generate the

group GL2(F2) of 2× 2 matrices with non-zero determinant. In fact GL2(F2) is
isomorphic to the group S3 = {1, a, b, c, f, g} of permutations of three elements,
where 1 is the identity, a, b, and c are the elements of order 2, and f and g are
the elements of order 3. The matrices α+ and α∗ are both of order 2 and we may
identify them with any two (distinct) elements of S3 of order 2. The generators
satisfy the relations α2

+ = 1, α2
∗ = 1, and (α∗α+)3 = 1.

As, by Lemma 4, vertex flips on j and k with j �= k commute, we have
that the vertex flips form the group (S3)V of functions f : V → S3 where
composition/multiplication is point wise: (fg)(j) = f(j)g(j) for all j ∈ V . Note
that by fixing a linear order of V , (S3)V is isomorphic to (S3)n with n = |V |,
the direct product of n times group S3. The vertex flips form an action of (S3)V

on the family of set systems over V .

5 Loop Complementation and Set Systems

For graphs G, the loop-complementation operation on a set of vertices X ⊆ V (G)
removes loops from the vertices of X when present in G and adds loops to
vertices of X when not present in G. This can be formalized using adjacency
matrices as follows. For a V × V -matrix A and X ⊆ V , we obtain the V × V -
matrix A + X by adding 1 to each diagonal element axx, x ∈ X of A. Clearly
(A + X) + Y = A + (X ⊕ Y ) for X, Y ⊆ V .

In this section we focus on vertex flips of matrix α+ (defined in the previous
section). We show that this operation is a generalization to set systems of loop
complementation for graphs and matrices (cf. Lemma 6). Consequently, we will
call it loop complementation as well.

Let M = (V, D) be a set system and j ∈ V . We denote Mαj
+ by M + {j}.

Hence, we have M + {j} = (V, D′) where, for all Z ⊆ V , Z ∈ D′ iff 1) (Z ∈
D)⊕ (Z − {j} ∈ D) if j ∈ Z, and 2) Z ∈ D if j �∈ Z.

The definition of loop complementation can be reformulated as follows: D′ =
D ⊕ {X ∪ {j} | X ∈ D, j �∈ X}.

Example 5. Let V = {1, 2, 3}. We have (V, {∅, {1}, {1, 2}, {3}, {1, 2, 3}}) + {3}
= (V, {∅, {1}, {1, 2}, {3}, {1, 2, 3}} ⊕ {{3}, {1, 3}, {1, 2, 3}})=(V, {∅, {1}, {1, 2},
{1, 3}}).

We denote, for X ⊆ V , MαX
+ by M +X . Moreover, as α+ is of order 2, we have,

similar to the pivot operation, (M + X) + Y = M + (X ⊕ Y ).
The next result states that indeed M + X is the set system generalization of

A + X on matrices.

Lemma 6. Let A be a symmetric V × V -matrix over F2 and X ⊆ V . Then
MA+X =MA + X.

Surprisingly, this natural definition of loop complementation on set systems is
not found in the literature.
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Fig. 3. Loop complementation on a graph from Example 7

Example 7. The set system M = ({1, 2, 3}, {∅, {1}, {1, 2}, {3}, {1, 2, 3}}) of Ex-
ample 5 has a graph representation: M = MG for graph G given on the left-hand
side in Figure 3. Notice that M + {3} = ({1, 2, 3}, {∅, {1}, {1, 2}, {1, 3}}) corre-
sponds to graph G + {3} given on the right-hand side in the figure.

While for a set system the property of being a delta-matroid is closed under
pivot, the next example shows that it is not closed under loop complementation.

Example 8. Let V = {1, 2, 3} and M = (V, D) with D = {∅, {1}, {2}, {3},
{1, 2}, {2, 3}, {3, 1}} be a set system. It is shown in [6, Section 3] that M is
a delta-matroid without graph representation. Consider {1} ⊆ V . Then M +
{1} = (V, D′) with D′ = {∅, {2}, {3}, {2, 3}, {1, 2, 3}} is not a delta-matroid: for
X = ∅, Y = {1, 2, 3} ∈ D′, and x = 1 ∈ X ⊕ Y , we have X ⊕ {x} = {1} �∈ D′

and there is no y ∈ X ⊕ Y such that X ⊕ {x, y} ∈ D′.

6 Compositions of Loop Complementation and Pivot

In this section we study sequences of loop complementation and pivot operations.
As we may consider both operations as vertex flips, we obtain in a straightfor-
ward way general equalities involving loop complementation and pivot.

Theorem 9. Let M be a set system over V and X ⊆ V . Then M +X ∗X+X =
M ∗X + X ∗X.

Note also that, again by the commutative property of vertex flip, we have for
X, Y ⊆ V with X ∩ Y = ∅, M ∗X + Y = M + Y ∗X .

Let us denote α∗̄ = α+α∗α+ and denote, for X ⊆ V , MαX∗̄ by M ∗̄X . We will
call the ∗̄ operation the dual pivot. As α+ is of order 2, we have, similar to the
pivot operation and loop complementation, (M ∗̄X)∗̄Y = M ∗̄(X ⊕Y ). The dual
pivot together with pivot and loop complementation correspond precisely to the
elements of order 2 in S3. The dual pivot defined here is readily shown to be the
set system equivalent of dual pivot for graphs as considered in [8].

We now obtain a normal form for sequences of pivots and loop complementa-
tions.

Theorem 10. Let M be a set system over V , and let ϕ be any sequence of
pivot and loop complementation operations on elements in V . We have that
Mϕ = M + X ∗ Y + Z for some X, Y, Z ⊆ V with X ⊆ Y .

Recall that pivot operations can be decomposed into elementary pivot opera-
tions. Hence, the normal form of Theorem 10 is equally valid for any sequence
ϕ of local, edge, and loop complementation operations.



Pivot and Loop Complementation on Graphs and Set Systems 159

The central interest of this paper is to study compositions of pivot and loop
complementation on graphs. As explained in Section 3, the pivot operation for
set systems and graphs coincide, i.e., MG∗X = MG ∗X , and we have taken care
that the same holds for loop complementation, cf. Lemma 6. Hence results that
hold for set systems in general, like Theorem 9, subsume the special case that
the set system M represents a graph (i.e., M =MG for some graph G) — recall
that the injectivity ofM(·) allows one to view the family G of graphs (over V ) as
a subset of the family of set systems (over V ). We only need to make sure that
we “stay” in G, i.e., by applying a pivot or loop complementation operation to
MG we obtain a set system M such that M = MG′ for some graph G′. For loop
complementation this will always hold, however care must be taken for pivot as
MG∗X , which is defined for all X ⊆ V , only represents a graph if detG[X ] = 1.
Hence when restricting a general result (on pivot or local complementation for
set systems) to graphs, we add the condition of applicability of the operations.

It is useful to explicitly state Theorem 9 restricted to graphs. This is a fun-
damental result for pivots on graphs (or, equivalently, symmetric matrices over
F2) not found in the extensive literature on pivots. We will study some of its
consequences in the remainder of this paper.

Corollary 11. Let G be a graph and X ⊆ V . Then G+X∗X+X = G∗X+X∗X
when both sides are defined.

In the particular case of Corollary 11 it is not necessary to verify the applicability
of both sides: it turns out that the applicability of the right-hand side implies
the applicability of the left-hand side of the equality.

Lemma 12. Let G be a graph and X ⊆ V . If G ∗X + X ∗X is defined, then
G + X ∗X + X is defined.

The reverse implication of Lemma 12 does not hold: take, e.g., G to be the
connected graph of two vertices with each vertex having a loop.

Corollary 11 can also be proven directly using Equality (1), i.e., the partial
inverse property of pivots. In fact one can explicitly express the result of the
dual pivot applied to a (not-necessarily symmetric) matrix over F2: A(x1, y1)T =
(x2, y2)T iff (A∗̄X)(x1 + x2, y1)T = (x2, y2)T (if A + X ∗X is defined), where x1

and x2 correspond to the X-coordinates of the vectors.

7 Consequences for Simple Graphs

In this section we consider simple graphs, i.e., undirected graphs without loops
or parallel edges. Local complementation was first studied on simple graphs [10]:
local complementation ∗{u} on a vertex u complements the edges in the neigh-
bourhood of u, thus it is the same operation as for graphs (loops allowed) except
that applicability is not dependent on the presence of a loop on u, and neither
are loops added or removed in the neighbourhood. Also edge complementation
∗{u, v} on edge {u, v} for simple graphs is defined as for graphs, inverting certain
sets of edges, cf. Figure 1, but again the absence of loops is no (explicit) require-
ment for applicability. The “curious” identity ∗{u, v} = ∗{u}∗{v}∗{u} for simple
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∗{u, v}
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+{u}

∗{u} ∗{v}

Fig. 4. Verification of applicability of ∗{u, v} + {u} ∗ {u} ∗ {v} + {u} ∗ {u} + {u} to
any graph F having an edge {u, v} with both u and v non-loop vertices

graphs shown in [5, Corollary 8.2] and found in standard text books, see, e.g.,
[14, Theorem 8.10.2], can be proven by a straightforward (but slightly tedious)
case analysis involving u, v and all possible combinations of their neighbours.
Here it is obtained, cf. Proposition 13, as a consequence of Theorem 9.

Proposition 13. Let G be a simple graph having an edge {u, v}. We have G ∗
{u, v} = G ∗ {u} ∗ {v} ∗ {u} = G ∗ {v} ∗ {u} ∗ {v}.

Proof. Let M be a set system, and u and v two elements from its domain.
Define ϕ = ∗{u, v}+{u}∗{u}∗{v}+{u}∗{u}+{u}. Recall that for set systems
we have ∗{u, v} = ∗{u} ∗ {v} and that the operations on different elements
commute, e.g. ∗{v}+ {u} = +{u} ∗ {v}. We have therefore ϕ = ∗{u, v}+ {u} ∗
{u} ∗ {v}+ {u} ∗ {u}+ {u} = ∗{u} ∗ {v}+ {u} ∗ {u} ∗ {v}+ {u} ∗ {u}+ {u} =
∗{u} + {u} ∗ {u} + {u} ∗ {u} + {u} = id, where in the last equality we used
Theorem 9. Therefore, Mϕ = M for any set system M having u and v in its
domain.

Hence, any graph F for which ϕ is applicable to F , we have Fϕ = F . Assume
now that F is a graph (allowing loops) having an edge {u, v} where both u and
v do not have a loop. By Figure 4 we see that ϕ is applicable to F , and therefore
Fϕ = F .

Now, modulo loops, i.e., considering simple graphs G, we no longer worry
about the presence of loops, and we may omit the loop complementation oper-
ations from ϕ. Hence ∗{u, v} ∗ {u} ∗ {v} ∗ {u} is the identity on simple graphs,
and therefore ∗{u, v} = ∗{u} ∗ {v} ∗ {u}. By symmetry of the ∗{u, v} operation
we also have that ∗{u, v} = ∗{v} ∗ {u} ∗ {v}. ��

For set systems we have the decomposition ∗{u, v} = ∗{u} ∗ {v}, whereas for
for simple graphs the decomposition of an edge pivot into vertex pivots takes
the form ∗{u, v} = ∗{u} ∗ {v} ∗ {u}. The rationale behind this last equality is
hidden, as in fact the equality ∗{u, v} = +{u} ∗ {u} ∗ {v} + {u} ∗ {u} + {u}
is demonstrated for graphs (loops allowed) (see the proof of Proposition 13).
The fact that the equality of Proposition 13 does not hold for graphs (with
loops allowed) is a consequence of the added requirement of applicability of the
operations. Applicability depends on the presence of loops, and it is curious that
loops are necessary to understand the operations for simple graphs (which are
loopless by definition)!
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The presented method allows one to discover many more curious equalities.
Start with an identity for set systems, involving pivot and loop complementation.
Then show applicability for (general) graphs for the sequence of operations. Fi-
nally drop the loop complementation operations to obtain an identity for simple
graphs. We illustrate this by stating another equality, this time for three vertices
that induce a complete graph.

Corollary 14. Let G be a simple graph, and let u, v, w ∈ V (G) be such that
the subgraph of G induced by {u, v, w} is a complete graph. Then G(∗{u} ∗ {v} ∗
{w})2 = G ∗ {v}.

In the next result, Theorem 15, we go back-and-forth between the notions of
simple graph and graph. To avoid confusion, we explicitly formalize these tran-
sitions. For a simple graph G, we define i(G) to be G regarded as a graph (i.e.,
symmetric matrix over F2) having no loops. Similarly, for graph F , we define
π(F ) to be the simple graph obtained from F by removing the loops.

As a consequence of Theorem 10, the following result characterizes the effect
of sequences of local complementations on simple graphs.

Theorem 15. Let G be a simple graph, and let ϕ be a sequence of local com-
plementation operations applicable to G. Then Gϕ = π(i(G) + X ∗ Y ) for some
X, Y ⊆ V with X ⊆ Y .

Conversely, for graph F , if F +X∗Y is defined for some X, Y ⊆ V , then there
is a sequence ϕ of local complementation operations applicable to π(F ) such that
π(F )ϕ = π(F + X ∗ Y ).

8 Discussion

We have considered loop complementation +X , pivot ∗X , and dual pivot ∗̄X on
both set systems and graphs, and have shown that they can be seen as elements
of order 2 in the permutation group S3. This group structure, in addition to
the commutation property in Lemma 4, leads to identity (+X ∗ X)3 = id, cf.
Theorem 9, and to a normal form w.r.t. sequences of pivots and loop comple-
mentation, cf. Theorem 10.

Moreover, we obtain as a special case “modulo loops” a classic relation in-
volving local and edge complementation on simple graphs, cf. Proposition 13.
Other new relations may be easily deduced, cf. Corollary 14.
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Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France

Laurent.Bulteau@ens.fr, {Guillaume.Fertin,Irena.Rusu}@univ-nantes.fr

Abstract. The gene order on a chromosome is a necessary data for
most comparative genomics studies, but in many cases only partial or-
ders can be obtained by current genetic mapping techniques. The Mini-

mum Breakpoint Linearization Problem aims at constructing a total
order from this partial knowledge, such that the breakpoint distance to
a reference genome is minimized. In this paper, we first expose a flaw in
two algorithms formerly known for this problem [4,2]. We then present
a new modeling for this problem, and use it to design three approxima-
tion algorithms, with ratios resp. O(log(k) log log(k)), O(log2(|X|)) and
m2 +4m−4, where k is the optimal breakpoint distance we look for, |X|
is upper bounded by the number of pair of genes for which the partial
order is in contradiction with the reference genome, and m is the number
of genetic maps used to create the input partial order.

1 Introduction

In a number of comparative genomics algorithms, a full knowledge of the order of
the genes on the chromosomes for the species under study is required. However,
we have access to a limited number of fully sequenced genomes, and for other
species, we only have genetic maps, in which there remains uncertainties in the
gene order. Hence, the problem of inferring a total order, compatible with the
partial knowledge on these genetic maps and optimizing some objective function,
is a first step to study nonetheless all genomes. In the past few years, growing
attention has been given to this problem, in which the objective function is an
evolutionary distance to a reference genome (e.g. number of rearrangements [7],
reversal [6,4], breakpoint [4,1,2], or common intervals [1] distance).

In this paper, we focus on the MBL problem, which aims at finding a lineariza-
tion of a partial order while minimizing the breakpoint distance to a reference
genome. In [4] and [2], the study of this problem uses the construction of a spe-
cial graph, the adjacency-order graph, which leads to respectively a heuristic
and an approximation algorithm (whose ratio depends on m, the number of ge-
netic maps used to construct the studied genome). However, we have detected a
flaw in this construction, which makes both above mentioned algorithms invalid
on general data. Thus, in this paper, we define a new type of adjacency-order
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graphs, give its construction, and show that it is effective to solve the MBL prob-
lem. This renewed approach allows us to use general graph theory results [3] to
obtain new approximation algorithms for MBL. Moreover, we also achieve an
O(m2)-approximation, in the same spirit as was done in [2].

To describe the MBL problem, let a genome be represented by a partial order
Π over a given set Σ = {1, . . . , n} of markers. A linearization of Π is a total
order (or a permutation) π = π(1)·π(2)· . . . ·π(n) on Σ, such that, for all markers
i, j, if i <Π j, then i <π j (alternatively, π−1(i) < π−1(j), or i precedes j in the
permutation π). In that case, π is said to be compatible with Π . An interval I
of π is a list of successive values from π, that is I = π(h)·π(h+1)· . . . ·π(l), with
1 ≤ h ≤ l ≤ n, from π. For any such interval, its length L is defined as l− h +1.
An adjacency in the total order π is an interval of length L = 2. The breakpoint
distance dB(π1, π2) between two total orders π1 and π2 (over the same set Σ)
is defined by the total number of adjacencies in π1 which are not adjacencies in
π2. We call Idn the identity permutation over Σ = {1, . . . , n}.

The Minimum Breakpoint Linearization Problem, in its optimization
formulation, can be defined as follows:

Problem : MBL

Input : A partial order Π .
Output : A linearization π of Π that minimizes k = dB(π, Idn).

Fig. 1a shows an example of partial order Π , that yields four optimal lin-
earizations (Fig. 1c) satisfying dB(π, Idn) = 3 for each linearization π.

It is worth noting that the input partial order is, in practice, obtained by
combining a limited number m of genetic maps [5,7]. A genetic map consists of
an ordered list of blocks B1, B2, . . . , Bq, each of which is an unordered list of
markers, i.e. any two markers from the same block are incomparable. The blocks
B1, B2, . . . , Bq induce a partial order Π as follows: for any a ∈ Bi and b ∈ Bj ,
a <Π b iff i < j. Note that it is always assumed that combining two or more
genetic maps never creates conflicts.

The Minimum Breakpoint Linearization Problem, based on the genome
rearrangement problem defined by Zheng and Sankoff [7], was studied indepen-
dently in [1] and [4] (we note that in the latter, the problem is denoted as PBD,
and deals with two partial orders instead of one partial order and one total order).
In [1], Blin et al. prove that MBL is NP-hard and give two types of algorithms
for solving MBL: (i) a heuristic and (ii) an exact, thus exponential-time, algo-
rithm based on dynamic programming. Moreover, this last algorithm is efficient
in the specific case where input genomes are created from a bounded number m
of gene maps, each with a bounded width. In [4], Fu and Jiang give an (indepen-
dent) NP-hardness proof, and present the construction of the adjacency-order
graph GΠ of a partial order Π (Π being represented as a DAG, called DAG(Π)).
Their central theorem, claiming that “All the possible common adjacencies in an
acyclic adjacency-order graph GΠ could always co-exist in some linearization of
DAG(Π)”, is used in a heuristic they provide for the problem, and is also used
by Chen and Cui [2] to obtain an m2+m

2 -approximation algorithm. However,
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as shown in Theorem 2, the above mentioned theorem from [4] is false, and
consequently both those algorithms are invalid for the general MBL Problem.

The paper is organized as follows. In Section 2, we point out the APX-
hardness of MBL and give our counter-example to the central theorem in [4].
Section 3 is devoted to the definition of a new adjacency-order graph, which is
used in Section 4 to show that solving MBL may be reduced to solving a variant
of the well-known Feedback Vertex Set problem. Section 5 presents three
approximation algorithms, two of which are based on state-of-the-art algorithms
for the variant of Feedback Vertex Set we are interested in, whereas the
third is specific to partial orders created from genomic maps, and has a ratio
depending on the number m of those genomic maps. Section 6 is the conclusion.

Due to space constraints, most of the proofs have been omitted from this
paper.

2 Revisiting Previous Works

In this section, we focus on previous works: we first show that adapting the NP-
hardness proof for MBL from [1] leads to an APX-hardness proof. We then give
a counterexample to Theorem 1 from [4], which implies, among others, that the
approximation algorithm from [2] is invalid.

Theorem 1. The MBL problem is APX-hard.

See Theorem 1 in [1], where the reduction is in fact an L-reduction from Maxi-

mum Independent Set (MIS) to MBL, if we restrict MIS to cubic graphs.
The following theorem refers to the definition of adjacency-order graph (writ-

ten GΠ) given in [4]. The construction of this graph for any Π is not reported
here, instead it is described for the directed acyclic graph given in Fig. 1a.

Theorem 2. All the adjacencies appearing in the adjacency-order graph GΠ (as
defined in [4]) of a DAG Π may not always coexist in a linearization of Π, even
if GΠ is acyclic.

Proof. Consider the directed acyclic graph DAG(Π) obtained from the following
partial order (see Fig. 1a):

Π : 4 < 1 < 2 < 3; 1 < 5; 6 < 3

�

� � � �

�

(a) DAG(Π) represents the
partial order Π

5· 6

1· 2 2· 3

(b) GΠ , as defined in [4]

� · � · � · � · � · �
� · � · � · � · � · �
� · � · � · � · � · �
� · � · � · � · � · �

(c) Optimal lineariza-
tions of Π

Fig. 1. Counterexample of the main theorem from [4]



166 L. Bulteau, G. Fertin, and I. Rusu

Here, there are only three possible common adjacencies between Π and Idn:
1· 2, 2· 3 and 5· 6. Following the definitions proposed in [4], there are three arcs
in the adjacency-order graph GΠ (Fig. 1b): one from 1· 2 to 2· 3 (because of the
common marker), one from 1· 2 to 5· 6 (because 1 < 5 in Π), and one from 5· 6
to 2· 3 (because 6 < 3 in Π). In that case, GΠ is acyclic; however, its three
adjacencies cannot coexist in any linearization of Π (see Fig. 1c: there can be
at most two adjacencies in the same linearization). Thus Theorem 2 is proved,
which contradicts Theorem 1 in [4]. ��

3 Defining a New Adjacency-Order Graph GΠ

The direct consequence of Theorem 2 is that the adjacency-order graph defined
in [4] cannot be exploited. Hence, we introduce here the construction of a new
type of adjacency-order graph, whose main structural property will lead us to
three different approximation algorithms.

This new adjacency-order graph GΠ contains both the features of the partial
order Π and of the identity permutation Idn. Some of the cycles in this graph
will express the incompatibilities between the order Π and the permutation Idn.
In order to count or to bound the breakpoint distance between a linearization
π of Π and Idn, one has to identify the vertices in the adjacency-order graph
needed to break all these conflict-cycles, and to count or bound their number.
The MBL problem thus becomes a graph theory problem, which allows us either
to use existing algorithms or to build-up new algorithms based on graphs.

Adjacency-order graph. Let Π = (Σ, D) be a directed acyclic graph (DAG)
representing a partial order over Σ = {1, . . . , n} (see Fig. 2a), i.e. we write
i <Π j iff there is a directed path from i to j in Π . We create a set W of vertices
representing the adjacencies of the identity permutation Idn by W = {i· (i+1) |
1 ≤ i < n}. Finally, let V = Σ ∪ W (Fig. 2b). Note that, in the following,
we will not distinguish the vertices of Σ and their corresponding integers (this
will always be clear from the context). Moreover, the natural order < over the
integers is also used as an order over Σ. We now construct a set of arcs F
(denoted by an arrow →) in the following way:

F = {i· (i + 1)→ i | 1 ≤ i < n} ∪ {i· (i + 1)→ i + 1 | 1 ≤ i < n}
∪ {i→ i· (i + 1) | 1 ≤ i < n} ∪ {i + 1→ i· (i + 1) | 1 ≤ i < n}

Each arc in F has one end in W and one end in Σ. We write E = D∪F (Fig. 2c)
and we define the adjacency-order graph GΠ of Π by GΠ = (V, E).

In GΠ , the arcs of D that go top-down (see Fig. 2c) intuitively show incom-
patibilities between the order in Π and the order in Idn. We note X [GΠ ] (or
only X , if there is no ambiguity) the set containing them, that is X [GΠ ] = {i→
j ∈ D | i > j}. Now, every cycle containing an arc of X is called a conflict-cycle.
In Theorem 4, we prove that the adjacencies involved in conflict-cycles are in-
compatible, so that we need to remove at least one adjacency from each of those
cycles to obtain a linearization of Π . We also define a weight map w[GΠ ] on the
vertices of GΠ , which associates 1 to each u ∈ W , and ∞ to u ∈ Σ.
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�

� � � �

�

(a) Original DAG Π

W Σ

�

�

�

�

�

�

1 · 2

2 · 3

3 · 4

4 · 5

5 · 6

(b) Vertices of GΠ

F D

�

�

�

�

�

�

1 · 2

2 · 3

3 · 4

4 · 5

5 · 6

(c) Arcs of GΠ

Fig. 2. Construction of an adjacency-order graph. The symmetric arcs in F are repre-
sented as double arrows. The arcs in X are marked with a large dot.

Notations. An arc between u and v is written u → v, or u →E′ v if it belongs to
some subset E′. A path P is a (possibly empty) sequence of arcs written u

P→∗v,
or u

P→∗
E′v if P uses only arcs from E′. A non-empty path Q is written with a

+ sign: u
Q→+v. A cycle is a non-empty path u

C→+v with v = u.
Given in GΠ a path P = v0 → v1 → . . .→ v�, we use the following notations:

�(P ) = � is the length of P , V (P ) = {vh | 0 ≤ h ≤ �}, W (P ) = V (P ) ∩W ,
Σ(P ) = V (P ) ∩ Σ, E(P ) = {vh → vh+1 | 0 ≤ h < �}, F (P ) = E(P ) ∩ F ,
D(P ) = E(P ) ∩ D, X(P ) = E(P ) ∩ X . A cycle C is said to be simple if all
vertices vh are distinct (except v0 = v�), which implies �(C) = |V (C)| = |E(C)|.

The following property gives an insight on how conflict-cycles can appear in
the adjacency-order graph. (It is not, however, used in our algorithms.)

Property 3. Let C be a simple cycle with |D(C)| ≥ 2. Then C is a conflict-cycle.

4 Cutting All Conflict-Cycles in GΠ Is Enough

Now that we have defined how to construct GΠ starting from the input partial
order Π , we turn to proving the main structural result of our paper: conflict-
cycles contain all the conflicts between the partial order Π and the identity
permutation Idn (see Theorem 4). More precisely, when appropriate adjacencies
in Idn (identified as vertices in W ) are given up, the remaining adjacency-order
graph has no conflict-cycle and this condition is necessary and sufficient to obtain
a linearization of Π that preserves all the remaining adjacencies in Idn.

Theorem 4. Let Π be a partial order, GΠ = (V, E) its adjacency-order graph
(with V = Σ ∪W and E = D ∪ F ), and W ′ ⊆ W . Then there exists a total
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order π over Σ, compatible with Π, and containing every adjacency from W ′ iff
GΠ [W ′ ∪Σ] has no conflict-cycle.

Proof. (⇒) Let π be a linearization of Π containing every adjacency of W ′. The
following lemma (of which the proof is omitted) will allow us to conclude by
contradiction.

Lemma 5. Let P = v1 → v2 → . . .→ v� be a path with vertices in W ′ ∪Σ such
that (H1) the vertices vi are pairwise distinct, (H2) � ≥ 2, (H3) v1, v� ∈ Σ, and
(H4) for any 1 ≤ i < �, vi → vi+1 ∈ F .

Let a = min(v1, v�) and b = max(v1, v�). Then the sequence a· (a + 1)· (a +
2)· . . . · b is an interval of π. Moreover, Σ(P ) = {a, . . . , b} and W (P ) = {c· (c +
1) | a ≤ c < b}.
We suppose, by contradiction, that there exists in GΠ [W ′∪Σ] a cycle C = v0 →
v1 → v2 → . . . → v� = v0 containing an arc from X (e.g., v0 →X v1). Wlog,
we may assume that C is simple (otherwise, there exists a simple sub-cycle of C
that contains an arc from X). We distinguish two cases, depending on whether
v0 →X v1 is the only arc in D(C) or not.

First case: v0 → v1 ∈ X and for all i, 1 ≤ i < �, vi → vi+1 ∈ F holds. In that
case, we can directly use Lemma 5. Indeed, the path v1 → v2 → . . . → v� = v0

satisfies hypothesis H1 (by simplicity of C), H2 (otherwise there would be a loop
v0 → v0 in X), H3 (since v� → v1 ∈ D) and H4 (this is assumed in this first case).
We also know, due to the fact that v0 →X v1, that v1 < v�. We can conclude
that v1· v1 + 1· . . . · v� is an interval of π, so v1 <π v� = v0. This contradicts the
fact that π is compatible with Π , since v0 <Π v1.

Second case: Let i0 = 0, i1, . . . , ih−1, ih = � be the increasing sequence of
indices such that vij → vij+1 ∈ D for all j such that 0 ≤ j < h. Note that
h ≥ 2 and for all j, we have vij ∈ Σ. Let us prove that for all j < h, the
relation vij <π vij+1 holds. The case where ij+1 = ij + 1 is easy, since the arc
vij →D vij+1 implies vij <Π vij+1 (by construction of GΠ) and vij <π vij+1

(since π is compatible with Π). Now, assume there are several arcs between vij

and vij+1 , i.e. ij+1 = ij +m with m ≥ 2. We use Lemma 5 with the path P in F
given by vij+1 → vij+2 → . . .→ vij+m. Path P satisfies the hypotheses H1, H2,
H3 and H4 of the lemma, thus one of the sequences vij+1· (vij+1 + 1)· . . . · vij+m

and vij+m· (vij+m + 1)· . . . · vij+1 is an interval of π. Note that vij is a distinct
vertex from vij+1 (since h ≥ 2), and from other vertices in the set Σ(P) as well
(since each of them is the source of an arc from F in C, whereas vij is the source
of an arc from D in C). Consequently, vij cannot appear in either of the intervals
vij+1· (vij+1+1)· . . . · vij+m and vij+m· (vij+m+1)· . . . · vij+1 of π. As vij precedes
vij+1 in Π (and thus in π), we have vij <π vi′ for all i′ ∈ [ij + 1, ij + m], and
particularly, vij <π vij+1 .

In conclusion, we have vij <π vij+1 for all j < h and vih
= vi0 , a contradiction

since there can be no cycle in the relation <π. Hence, the subgraph GΠ [W ′ ∪Σ]
does not contain any conflict-cycle.

(⇐) (constructive proof) We use the following method to construct a lin-
earization π of Π containing all adjacencies of W ′, where the subgraph G′ =
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GΠ [W ′ ∪ Σ], is assumed to contain no conflict-cycle. We denote by V1, . . . Vk

the strongly connected components of G′, ordered by topological order (i.e., if
u, v ∈ Vi, there exists a path from u to v ; moreover, if u ∈ Vi and v ∈ Vj and
there exists a path u →∗v in G′, then i ≤ j). We sort the elements of each set
Vi ∩ Σ in ascending order of integers, and obtain a sequence μi. The concate-
nation μ1·μ2· . . . gives π, a total order over Σ. We now check that π contains
every adjacency in W ′ and is compatible with Π .

Let a· (a + 1) ∈ W ′. Vertices a and a + 1 are in the same strong connected
component Vi, because of the arcs a ↔ a· (a + 1) ↔ a + 1. Those two elements
are obviously consecutive in the corresponding μi, and appear as an adjacency in
π. By contradiction, assume now that there exist two distinct elements a, b ∈ Σ
such that a <π b and b <Π a. We denote by i and j the indices such that a ∈ Vi

and b ∈ Vj . Since a <π b, we have i ≤ j, and since b <Π a, there exists a

path b
P1→+

Da in (Σ, D). Therefore, in G′, we have i ≥ j. We thus deduce that
i = j, and therefore a and b share the same strong connected component. This
means that there also exists a path P2 from a to b in G′. Hence, we have a cycle
b

P1→ +a
P2→ +b, which cannot be a conflict-cycle, thus those paths do not use

any arc from X . The latter is in particular true along P1, which implies b < a,
since each arc u→ v in D−X is such that u < v. On the other hand, a appears
before b in π, and therefore in μi, so a < b, a contradiction. Finally π is a feasible
solution for MBL(Π), with at least |W ′| common adjacencies with the identity
permutation Idn. ��
Since all vertices in W −W ′ count for unconserved adjacencies (and thus define
dB(π, Idn)), from Theorem 4 we directly get the following corollary.

Corollary 6. The value k of an optimal solution of MBL(Π) is the mini-
mum number of vertices one needs to delete in W to remove all conflict-cycles
from GΠ .

5 Three Approximation Algorithms for MBL

5.1 Two Approximation Algorithms Based on Subset-FVS

Our previous result implies that we have reduced the problem MBL to a gen-
eralization of the well studied Feedback Vertex Set (FVS) problem, where
only the conflict-cycles must be cut. In order to solve MBL, we use a (more
general) variant of FVS, named Subset-FVS and studied by Even et al. [3],
whose definition is the following:
Problem : Subset-FVS

Input : A directed graph G = (V, E), a set Y ⊆ V ∪E, a weight map w : V → R.
Output : A set V ′′ ⊆ V of minimum weight such that, with V ′ = V − V ′′, no
cycle in G[V ′] uses a vertex or an arc from Y .

In our paper, we are only interested in the restriction of Subset-FVS on
adjacency-order graphs, where Y is the set of top-down arcs and w is such that
only vertices in W can be deleted:
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Algorithm 1. O(log2(|X |))- and O (log(k) log log(k))-approximation for
MBL

Input: A directed acyclic graph Π = (Σ, D)
1. Create GΠ = (V, E) the adjacency-order graph of Π ;
2. W ′′ ← AOG-Subset-FVS(GΠ , X[GΠ ], w[GΠ ]);
3. W ′ ← W − W ′′;
4. (V1, V2, . . . , Vh) ← SCC-sort(GΠ [W ′ ∪ Σ]);
5. For i ← 1 to h;
6. μi ← sort(Vi ∩ Σ);
7. π ← μ1·μ2· . . . ·μh;
8. return π;

Problem : AOG-Subset-FVS

Input : An adjacency-order graph GΠ , Y = X [GΠ ], w = w[GΠ ]
Output : A set W ′′ solution of Subset-FVS(GΠ , Y, w)

We note that any algorithm for Subset-FVS is also valid for AOG-Subset-

FVS. Two approximation algorithms are given in [3] for Subset-FVS. The first
one achieves an approximation ratio of O(log2 |Y |), while the second algorithm
achieves a ratio of O (min(log(τ∗) log log(τ∗), log(n) log log(n))), where τ∗ is the
value of the optimal fractional solution for the corresponding linear programming
problem (thus τ∗ is upper bounded by the optimal solution of Subset-FVS).

We use those approximation algorithms to solve MBL (see Algorithm 1, and
Figures 3a and 3b for an example). We denote by SCC-sort() an algorithm that
decomposes a graph into its strong connected components, and then topological
sorts these components. Also, let sort() be an algorithm that sorts a set of integers

�

�

�

�

�

�

2 · 3

5 · 6

1 · 2

3 · 4

4 · 5

(a) Result of AOG-Subset-

FVS: W ′′ = {1· 2, 3· 4, 4· 5}

V1

V2

V3

V4

�

�

�

�

�

�

2 · 3

5 · 6

μ1 :

μ2 :

μ3 :

μ4 :

�

�

�

�

�

�

(b) SCC-sort gives four components V1,
V2, V3 and V4, and Algorithm 1 returns
π = 4· 1· 5· 6· 2· 3

Fig. 3. Key steps of Algorithm 1 on the example given in Fig. 2a
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according to the increasing order of its elements. Algorithm 1 is derived from the
constructive proof of Theorem 4, and its correctness follows from Theorem 4 itself.

Depending on the algorithm used for AOG-Subset-FVS, Algorithm 1 can
be either an exponential-time exact algorithm, an O(log2 |X |)-approximation or
an O (log(k) log log(k))-approximation (where |X | is the number of arcs u → v
in Π = (Σ, D) with u > v, and k the optimal value of our problem). Note that
the two latter ratios are incomparable, since we may have |X | ≈ nk or k ≈ n|X |,
as can be seen in Fig. 4a and Fig. 4b.

p + 1 p + 2 . . . 2p

Π1 :

1 2 . . . p

(a) With Π1: |X| = p2 >> k = 1

Π2 : 1→ 3→ . . .→ (2p− 1)→ 2 → 4→ . . .→ (2p)

(b) With Π2: |X| = 1 << k = 2p − 1

Fig. 4. Comparing |X| (number of arcs u → v in Π such that v < u) to k (optimal
breakpoint distance to the identity)

5.2 An (m2 + 4m − 4)-Approximation Algorithm

In this section, we assume that the partial order Π is generated from m gene
maps. Recall that a gene map is a totally ordered sequence of blocks, each of
which is an unordered set of markers. We exploit this supplementary information
to obtain an (m2 + 4m − 4)-approximation algorithm for AOG-Subset-FVS,
and therefore a new approximation algorithm, having the same ratio, for MBL.
Before giving the algorithm, we first introduce a few definitions: a path u

R→∗
Dv

in (Σ, D) is said to be a shortcut of a conflict-cycle C (see Fig. 5), if:

1

1 · 2

2

2 · 3

3

8

7 · 8

7

R

Q

P

Fig. 5. Cycle C = 2
P→∗7

Q→∗2 is a conflict-cycle (it contains 7 → 1 ∈ X). The length-1

path R forms a shortcut for C (with C′ = 2
P→ ∗7 R→ ∗2, C′ is a conflict-cycle, and

W (Q) = {1· 2}). So C′ is the only minimal conflict-cycle.
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Algorithm 2. (m2 + 4m− 4)-approximation for AOG-Subset-FVS

Input: An adjacency-order graph GΠ = (V, E), X[GΠ ], w[GΠ ]
1. W ′′ ← ∅;
2. while there exists a minimal conflict-cycle C in GΠ [V − W ′′];
3. L ← the set of low joints of C;
4. W ′′ ← W ′′ ∪ {eF : e ∈ L};
5. return W ′′;

- u, v ∈ Σ(C) (we write P and Q the paths such that C = u
P→+v

Q→+u),
- cycle C′ = u

P→+v
R→∗

Du is a conflict-cycle,
- W (Q) �= ∅ (using the shortcut removes at least one adjacency).

We say that a conflict-cycle is minimal if it has no shortcut. With the following
property, we ensure that removing minimal conflict-cycles is enough to remove
all conflict-cycles.

Property 7. If an adjacency-order graph contains a conflict-cycle, it also con-
tains a minimal conflict-cycle.

Proof. Take a non-minimal conflict-cycle C. If C is simple, we use the shortcut
to create a conflict-cycle C’ with |W (C′)| < |W (C)|. Otherwise, if C is not simple,

there exists a vertex u such that C = u
P→+u

Q→+u, and one of P and Q, say
P , uses at least one arc of X . Thus P is a conflict-cycle, with |W (P )| ≤ |W (C)|,
and |�(P )| < |�(C)|. In both cases, we create a conflict-cycle C′ with either
|W (C′)| < |W (C)|, or |W (C′)| = |W (C)| and |�(P )| < |�(C)|. If C′ is not a minimal
conflict-cycle, we can replace C by C′ and iterate this process: it necessarily
ends (�(C) and |W (C)| must remain positive integers), and reaches a minimal
conflict-cycle. ��
In a cycle C, we say that a vertex e ∈ Σ(C) is a low joint, if in this cycle, e is
adjacent to both an arc of D and an arc of F linking it to e· (e + 1). Formally,
there exist vertices eD ∈ Σ(C) and eF = e· (e + 1) ∈ W (C) such that one of the
paths eD →D e→F eF or eF →F e →D eD appears in C.

Algorithm 2 is an (m2+4m−4)-approximation for AOG-Subset-FVS. Used
as a subroutine in Algorithm 1, it gives us an (m2+4m−4)-approximation for the
MBL problem (see Corollary 10). Due to space constraints, the approximation
ratio analysis for this Algorithm 2 is only briefly summarized: the first step is to
bound the number of low joints that can appear in some minimal conflict-cycle
by m (although two markers corresponding to different low joints can appear in
the same gene map). Then, we show that for any adjacency w ∈W , at most 2m
minimal conflict-cycles using w can appear during step 2. of Algorithm 2. Hence
we can bound the number of vertices deleted by Algorithm 2 for a given vertex
w ∈W by 2m2. A tighter analysis gives us the following result.

Lemma 8. Let w ∈ W and let C be the set of all cycles considered during step
2. of Algorithm 2 going via w. Then the cardinality of the set of low joints in
cycles of C is upper bounded by m2 + 4m− 4.



Revisiting the Minimum Breakpoint Linearization Problem 173

Theorem 9. Algorithm 2 is an (m2+4m−4)-approximation of AOG-Subset-

FVS, where m is the number of gene maps used to create the input graph.

Proof. Correctness of Algorithm 2 follows from Corollary 6, since Algorithm 2
removes at least one vertex from each conflict-cycle. Let W o = {wo

1, . . . , w
o
k}

be an optimal solution of size k. For each wo
i , Algorithm 2 deletes at most

m2 + 4m − 4 adjacencies of W (by Lemma 8). Since every cycle considered by
the algorithm goes through some wo

i , the total size of the output solution is at
most k(m2 + 4m− 4). ��

Corollary 10. Using Algorithm 2 as an approximation for AOG-Subset-FVS

in Algorithm 1 yields an (m2 + 4m− 4)-approximation for the MBL problem.

6 Conclusion

In this paper, we revisited the MBL problem with the aim of providing correct
algorithms in replacement of those proposed in [4,2], which were based on an
inaccurate statement. We proposed a new graph GΠ to represent the conflicts
between the given partial order Π and the reference genome Idn, we charac-
terized the cycles containing these conflicts, we showed how the MBL problem
reduces to solving the AOG-Subset-FVS problem in GΠ , and we proposed
three approximation algorithms. These algorithms allow us to approach a given,
practical instance of MBL from different viewpoints, by choosing the appropriate
algorithm depending on the data at hand (i.e., whether the instance is created
from few gene maps) and on the parameter evaluation (k and |X |). We also
pointed out that MBL is APX-hard ; following this line, it would be interesting
to know whether there exists a constant-ratio approximation algorithm for MBL

(which would classify MBL as APX-complete). Another challenging question
is whether MBL is Fixed-Parameter Tractable, notably when the parameter is
the number m of gene maps that were used to construct the partial order Π .
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Abstract. The minimal interval completion problem consists in adding
edges to an arbitrary graph so that the resulting graph is an interval
graph; the objective is to add an inclusion minimal set of edges, which
means that no proper subset of the added edges can result in an in-
terval graph when added to the original graph. We give an O(n2)-time
algorithm to obtain a minimal interval completion of an arbitrary graph.
This improves the previous O(nm) time bound for the problem and lower
this bound for the first time below the best known bound for minimal
chordal completion.

1 Introduction

The interval completion of a graph G = (V, E) consists in adding a set of edges
F to G so that the resulting graph H = (V, E ∪ F ) is an interval graph, that
is, the intersection graph of some intervals of the real line. The problem of com-
puting such a completion that realizes the minimum number of fill edges |F |
is known as the Minimum Interval Completion problem. If the set F is only
required to be minimal for inclusion among all sets resulting in an interval com-
pletion, the problem is referred to as the Minimal Interval Completion problem.
Applications of Minimum Interval Completion arise in various contexts such as
computational biology , archeology , and clone fingerprinting . In addition, in-
terval completion has been studied for its connection with another fundamental
problem of computer science known as chordal completion (see [6] for a sur-
vey). A chordal graph is a graph that contains no chordless induced cycle on
four or more vertices. The class of chordal graphs properly includes all interval
graphs. The Minimum Chordal Completion problem (also known as minimum
fill-in or minimum triangulation) received much attention, in particular because
it plays a key role in sparse matrix multiplication [16]. Another chordal com-
pletion problem involves minimizing the maximum clique size of the completed
graph. Indeed, this parameter is nothing else but treewidth, which is extensively
studied, notably because many NP-complete problems become polynomial on
graphs having this parameter bounded. Interval completion is similarly related
to another famous graph parameters called pathwidth.
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Both for interval completion and chordal completion, it turns out that min-
imizing the number of fill edges or minimizing the maximum clique size of the
completed graph are NP-complete problems (see [1] for references). But both
kinds of solution are obtained on inclusion-minimal completions. Considering
that computing a minimal completion is polynomial (in both cases), this sig-
nificantly increases the importance of the problem and motivated many works.
Minimal completion algorithms are often used as heuristics for minimum com-
pletion and for computation of pathwidth or treewidth.

Related works. The first algorithm solving the Minimal Chordal Comple-
tion problem in polynomial time is due to Rose, Tarjan and Lueker [15], with
an O(nm) time complexity. As usual, n denotes the number of vertices and
m denotes the number of edges of the input. Several authors gave different ap-
proaches with the same running time, but it took almost 30 years to improve the
O(n3) worst-case complexity. Using the algorithm of Heggernes, Telle and Vil-
langer [10], one can compute a minimal chordal completion in O(nα log n) time,
where O(nα) is the time required for the multiplication of two n× n matrices.

The first polynomial-time algorithm for the Minimal Interval Completion
problem was given by Ohtsuki et al. [13], running in O(nm′) time; here m′ de-
notes the number of edges of the resulting completed graph. A similar approach
has been rediscovered in [9]. Using a completely different technique, Suchan and
Todinca gave an O(nm)-time algorithm in [17]. Note that several recent articles
consider different types of minimal completion problems, e.g. into split graphs [7],
comparability graphs [8] or proper interval graphs [14].

Our results. The aim of this paper is to show the following theorem.

Theorem 1. There is an O(n2)-time algorithm computing a minimal interval
completion of an arbitrary graph.

Note that our approach is faster than the previous O(nm′) algorithm of [13] and
the O(nm) algorithm of [17]. It is also faster than the best algorithms for the
Minimal Chordal Completion problem, and this is the first time that the time
bound for interval completion goes below the best known bound for chordal com-
pletion. Moreover, unlike the algorithm of [10] which uses matrix multiplication
techniques, ours is purely graph-theoretic. Like in [13], our algorithm is incremen-
tal in the sense that we add the vertices of G one by one, and each time a new vertex
vi+1 arrives, the new minimal interval completion is computed from the one ob-
tained at step i by only adding edges incident to vi+1. The second common feature
is that we use PQ-trees, which capture all interval representations of the interval
completion computed so far. But our procedure for choosing the set F of fill edges
is completely different from [13] and simpler; and we rely on the results of [3] for
efficiently updating, at each step, the PQ-tree of the new completion.

After giving, in next sections, some basic definitions and preliminary results,
we present in Section 4 our main combinatorial tool for the minimal interval
completion, while the algorithmic details and data-structures are described in
Section 5.
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2 Preliminaries

We consider simple and connected input graphs. A graph is denoted by G =
(V, E), with n = |V |, and m = |E|. For a set U ⊆ V , G[U ] denotes the subgraph
of G induced by the vertices in U . Set U of vertices is called a clique if G[U ]
is complete. For a vertex v ∈ V or a subset U ⊆ V , we will informally use
G − v and G − U to denote the graphs G[V \ {v}] and G[V \ U ], respectively.
We also consider the operation of inserting a new vertex x together with the
edges defining its neighborhood in a graph G and we denote the resulting graph
by G + x. A path is a sequence [v1, v2, . . . , vp] of pairwise distinct vertices such
that vi is adjacent to vi+1, for all 1 ≤ i < p − 1. A cycle is a path such that
the first and last vertices are adjacent. The neighborhood of a vertex v in G is
NG(v) = {u | uv ∈ E}. Similarly, for a set U ⊆ V , NG(U) =

⋃
v∈U NG(v) \ U .

When graph G is clear from the context, we will omit subscript G; in particular,
the neighborhood of vertex x in G + x will often be denoted simply N(x).

A graph H is an interval graph if continuous intervals of the real line can
be assigned to each vertex of H such that two vertices are neighbors if and
only if their intervals intersect. A graph H = (V, E ∪ F ) is called an interval
completion of an arbitrary graph G = (V, E) if H is an interval graph. If no
proper subgraph of H is an interval completion of G, we say that H is a minimal
interval completion of G. In a broader sense, we say that a graph H is inclusion-
minimal among a set of graphs referring to the inclusion relationship on edge
sets of graphs. An edge that is added to the input graph G is called a fill edge,
and the process of adding edges between a fixed vertex x and a set U of vertices
is called filling U .

Theorem 2 ([4]). A graph G is interval if and only if there is a path CPG

whose vertex set is the set of all maximal cliques of G, such that the subgraph of
CPG induced by the maximal cliques of G containing vertex v forms a connected
subpath, for each vertex v of G. Such a path will be called a clique path of G.

Let the maximal cliques of an interval graph G be labeled 1, 2, ..., k, according
to the order in which they appear in a clique path of G. Then, as a consequence
of Theorem 2, an interval representation of G can be obtained by associating
with each vertex v the closed interval that consists of the labels of the maximal
cliques containing v. In this way, every clique path of G defines an interval
representation of G.

A vertex set S ⊆ V is a minimal separator of G if there exist two vertices
u and v such that S separates them (i.e. u and v are in different connected
components of G − S) and S is inclusion-minimal among the sets of vertices
separating u and v. The following lemma shows that minimal separators can be
easily found on any clique path of the graph, and so on its PQ-tree.

Lemma 1 (see e.g. [5]). Let G be an interval graph and let CPG be any clique
path of G. A set of vertices S is a minimal separator of G if and only if S
is the intersection of two maximal cliques of G that are neighbors in CPG. In
particular, all minimal separators of G are cliques.
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It is shown in [2] that all clique paths of an interval graph G can be represented
by a structure called PQ-tree. The PQ-tree of G, denoted T in the rest of the
paper, is a rooted tree whose leaves are the maximal cliques of G. Its internal
nodes are labeled P (degenerate nodes) or Q (prime nodes). Any Q-node q is
assigned two linear orderings, denoted σq and σ̄q, on the set of its children, σ̄q

being the reverse order of σq. A solidification of a PQ-tree T , is an assignation,
to each node u of T , of a valid linear ordering on its children, that is: any linear
ordering if u is a P -node, σu or σ̄u if u is a Q-node. Choosing a solidification
of the PQ-tree, we obtain an order on the leaves by reading them from left to
right in a plane drawing of the solidified rooted tree. The main property of the
PQ-tree of G is that the set of orderings obtained this way is precisely the set
of clique paths of G (see [2]).

In this document, the subtree of T rooted at node u will be denoted by Tu.
The set of children of u will be denoted by C(u) and its parent by parent(u).

3 The Vertex Incremental Approach

Let us observe that a minimal interval completion can be obtained incrementally.
This result is due to [13].

Lemma 2 ([13]). Let H be a minimal interval completion of an arbitrary graph
G. Let G′ be a graph obtained from G by adding a new vertex x, with neighborhood
NG′(x). There is a minimal interval completion H ′ of G′ such that H ′−x = H.

Hence, in computing a minimal interval completion of G, we introduce the ver-
tices of G one by one in the order x1, x2, . . . , xn. Given a minimal interval com-
pletion Hi of Gi = G[{x1, . . . , xi}], we compute an interval completion Hi+1 of
Gi+1 by adding to Hi the vertex xi+1 together with the edges between xi+1 and
NGi+1(xi+1), plus a well chosen set of additional edges incident to xi+1. Thus, for
proving Theorem 1, it is sufficient to solve the following problem in O(n) time.

The new problem. From now, we consider as input an interval graph G =
(V, E) on n vertices and a new vertex x to be inserted in G, together with a set
of edges incident to x. We want to compute a minimal interval completion H of
G + x, obtained by adding edges incident to x only. Moreover, the PQ-tree of
graph G will be part of the input, and we will also compute the PQ-tree of H .

For the rest of this document, let G′ denote the graph G + x. Consider any
clique path CPH of the obtained completion H of G′. By property of clique
paths, the cliques containing x induce a subpath Px of CPH . Now, let us get
back to G. Delete x from every bag (clique) in CPH , and possibly remove the
bags that do not correspond to maximal cliques of G. This yields a clique path
CPG of G, which is said to be obtained by pruning vertex x from CPH . Clearly
the maximal cliques that come from Px still induce a subpath of CPG. Our aim
is to do the converse: to find a clique path CPG of G and a subpath of CPG in
which, by adding vertex x to every bag and possibly transforming the bordering
separators into new bags of H (with x contained), we obtain a minimal interval
completion of G′.
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Definition 1. A clique path CPG is called nice if there exists a minimal interval
completion H such that CPG is obtained by pruning x from some clique path of
H. In this case, we say that H respects CPG.

For obtaining a nice clique path we have to distinguish between two cases. For
lack of space, we do not detail the case where the neighborhood of x in G′ is a
clique. We concentrate on the more general case where the neighborhood of x is
not a clique.

4 When the Neighborhood of x Is Not a Clique

This is the main and most difficult case of our algorithm. We show later how
to handle it using the PQ-tree. But for now, let us first note that, as stated
in [9], any clique path of G is associated with a canonical interval completion
respecting it (Lemma 3 below). We need the following definition.

Definition 2. Let CPG be a clique path of G ordered left-to-right. If N(x) is not
a clique, we denote by KL (resp. KR) the leftmost (resp. rightmost) clique of CPG

such that x has a neighbor in KL \KL+1 (resp. KR \KR−1), in graph G′.

Lemma 3 ([9]). For any clique path CPG of G, there is a unique interval com-
pletion H respecting CPG which is inclusion-minimal. Moreover the neighbor-
hood of x in H is formed exactly by N(x) augmented with the vertices of the
cliques strictly between KL and KR in CPG, if there are any, or augmented with
the vertices of the minimal separator KL ∩KR otherwise.

Note that if CPG is a nice clique path, then H is necessarily a minimal interval
completion of G′, but it may not be otherwise. Also note that any clique path
obtained from a nice one CPG by rearranging the maximal cliques of G in an order
such that the cliques of the interval �KL, KR� of CPG still form an interval whose
endpoints are KL and KR (not necessarily in this order) is a nice clique path.

Before proving our main theorem (Theorem 3) which gives a way to obtain a
nice clique path using the PQ-tree, we need to introduce some definitions and
notations. For any node u of the PQ-tree of G, we denote by B[u] the set of
vertices of G contained in the cliques of the subtree rooted in u. We call this set
a block. The border of B[u] is the set of vertices of the block having neighbors
outside the block. The interior of B[u] is formed by the vertices of the block
that are not in the border. We say that B[u] is hit if, in the graph G′, x has a
neighbor in the interior of the block. Otherwise, the block is called clean. If all
vertices in the interior of the block are neighbors of x in G′ then the block is
called full. By extension, we also say that a node of the PQ-tree is hit, full or
clean according to the state of its corresponding block. We point out that for all
internal nodes u, the block B[u] has a non-empty interior.

In the sequel, we denote by r the lowest node of the PQ-tree such that N(x) ⊆
B[r]. Since N(x) is not a clique, node r is uniquely defined and is such that the
interior of B[r] contains at least two non-adjacent vertices both linked to x.
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The children Lσ(u) and Rσ(u) introduced in the following definition corre-
spond to the cliques KL and KR of Definition 2, the difference being that here
we consider blocks instead of cliques.

Definition 3. Consider a node u of the PQ-tree and a valid order σ of its
children. We denote by Lσ(u):

– either the leftmost child v of u such that the corresponding block B[v] contains
a neighbor of x in G′, and this neighbor is not in B[v′], where v′ is the right-
hand brother of v in σ,

– or the last element of σ if u has no such child v.

Rσ(u) is defined symmetrically.

By definition of node r, and since N(x) is not a clique, for all valid orders σ
of the children of r, Lσ(r) <σ Rσ(r). Thanks to the definition above, we can
identify two branches of a solidified PQ-tree delimiting the part of the tree
containing nodes whose blocks are filled in the canonical completion associated
to the considered solidification.

Definition 4. Let G be an interval graph and x be a vertex to be inserted in
G. Let π be a solidification of T . Denote by π(u) the ordering defined by this
solidification on the children of node u. The left branch LB(π) of π is the set of
nodes defined recursively as follows :

– Lπ(r)(r) is in the left branch.
– For any u in the left branch, Lπ(u)(u) is also in the left branch.

The right branch RB(π) of π is defined symmetrically.

The left and the right branch of π isolate a subpart of the solidified PQ-tree.
Let CPG be the clique path corresponding to this solidification π. Let H be
the unique interval completion respecting CPG that is inclusion-minimal (see
Lemma 3). Observe that, by the definition of the left and right branch, the bot-
tom of these branches correspond to KL and KR respectively (see Definition 2).
By Lemma 3, all maximal cliques strictly in between KL and KR become filled
in H . All cliques strictly outside this interval remain clean. An important con-
sequence is that, for any node of the PQ-tree not belonging to one of the two
branches and different from r, we can change the permutation of its children and
the new solidification will yield the same interval completion.

We define a class of nodes u, that we call forced, which have the property
that their corresponding block becomes filled in any interval completion of G
(Lemma 4 below).

Definition 5. A forced node is defined inductively by: a node u of the PQ-tree
is forced if and only if:

– u is full, or
– u is a degenerate node and every child v of u is forced.
– u is a prime node and the first and the last child of σu are forced.
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Lemma 4 (forced blocks). Let u be an internal forced node of the PQ-tree of
G. The block B[u] is filled in every interval completion of G′.

Consider a minimal interval completion of G′. It respects some clique path of
G, obtained from a solidification π of the PQ-tree T . The proof can be made by
induction from the leaves to the root of T . Basically, it relies on the fact that a
forced node u has, by definition, a full descendant and therefore is hit. Moreover,
its first and last children in π are forced, and so they are hit too. It implies that
all the other children of u must be filled. The fact that the first (or last) child
v of u is also filled can be obtained either from the induction hypothesis, if v is
an internal node, or from the base case of the induction if v is a leaf. Finally, u
which has all its children filled is filled itself.

We now define a set of nice orderings on the children of a node u, such that,
using these orderings, the corresponding solidification yields a nice clique path.
The idea is to group hit nodes together as much as possible and to place non-
forced nodes on the left and right branches, if possible, so that we don’t need
to fill sets of nodes that could avoid to be filled. As it is defined below, a nice
ordering suits for nodes in {r}∪LB(π): nodes in RB(π) will be in fact assigned
the reverse order of a nice ordering.

Definition 6. For each node u in the subtree rooted at r we define the set Πnice
u

of nice orders of the children of u as follows:

1. if u is degenerate, then Πnice
u is the set of orders σ such that the hit children

of u form an interval I = �Lσ(u), Rσ(u)� such that Rσ(u) is the last element
of σ and such that Lσ(u) is forced only if all the elements of I are forced,
and Rσ(r) is forced only if the elements strictly between Lσ(r) and Rσ(r)
are forced.

2. if u is prime, then Πnice
u is the set of valid orders σ ∈ {σu, σ̄u} such that

the first element of σ is forced only if the last one is forced too, and the first
element v of σ is such that (N(x) ∩B[u]) \B[v] �= ∅.

Every node of the subtree rooted at r admits at least one nice ordering of its
children. Recall that for a solidification π, and for a node u in T , we denote by
π(u) the order defined by π on the children of u.

Definition 7. A nice solidification π is a solidification such that π(r) is a nice
order, for every node u ∈ LB(π), π(u) is a nice order, and for every node
v ∈ RB(π), π̄(v) is a nice order.

The following theorem is our main combinatorial tool toward computing a nice
clique path.

Theorem 3. A clique path corresponding to a nice solidification of the PQ-tree
is a nice clique path.

Idea of the proof. Fix a nice solidification π of the PQ-tree and let CPG be
the corresponding clique path. Denote by H the interval completion respecting
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CPG that is minimal for this property (recall that it is unique, by Lemma 3).
Assume by contradiction that there exists a minimal interval completion H ′

strictly contained in H . H ′ respects the clique path of some solidification π′ of
the PQ-tree of G. Choose this solidification π′ as similar as possible to π, in the
following sense: (1) the minimum depth d of a node u such that π(u) �= π′(u) is
as large as possible (by depth we mean the distance from u to the root of the
PQ-tree) and (2) subject to the first condition, the number of nodes of depth
d such that the two solidifications differ on these nodes is as small as possible.
Let u be a node of minimum depth, with π(u) �= π′(u). We prove that, in the
solidification π′, we can replace the solidification of the subtree rooted in u such
that π′(u) becomes π(u), and the clique path defined by this new solidification
gives rise to the same interval completion H ′. This will give us a contradiction
completing our proof. From the remarks following Definition 4, our node u is
necessarily in the set {r}∪LB(π)∪RB(π). Moreover, observe that, by definition,
the left and the right branch of the two solidifications π and π′ are the same from
the root of the PQ-tree down to level d. Thus, u is also in {r}∪LB(π′)∪RB(π′).

For lack of space we cannot consider all cases: instead, we give as an example
the case where u �= r is in the left-branch of the two solidifications and is a prime
node. Then π′(u) = π̄(u). Let v be the leftmost child of u in π(u). We show that
B[v] is filled in H . By the definition of a nice ordering on the children of u, there
is another child v′ of u such that N(x) ∩B[v′] is not contained in N(x) ∩B[v].
Consequently, since u is on the left branch of π′ and, in π′(u), the child v′ of u
is to the left of v (recall that π′(u) = π̄(u)), the block B[v] is filled in H ′, and
so is filled in H too.

This implies that v = Lπ(u)(u), otherwise v would be clean, and then not filled.
It is possible to show that any non-forced node in {r}∪LB(π)∪RB(π) is not filled
in H . Then, v, which is on the left branch of π and is filled, is necessarily forced. It
follows, by construction of nice orderings on prime nodes, that the rightmost child
of u in π(u) is also forced, and so is u. By Lemma 4, B[u] is filled in H ′. Then, in
π′, we can reverse π′(u) without changing the corresponding interval completion,
which is a contradiction with our choice of π′. ��

5 The Algorithm

This section describes our O(n) time incremental algorithm for computing a
minimal interval completion of G + x.

5.1 Data-Structure: PQ-Representation

The set of leaves of the PQ-tree is the set of maximal cliques of the graph. Since
an interval graph has at most n− 1 maximal cliques, it follows that the number
of leaves of the PQ-tree is O(n). And since every internal node has at least two
children, the total number of nodes of a PQ-tree is O(n). However, to get a
complete representation of the graph, cliques have to be encoded. Classically,
this is done by assigning to each leaf of the PQ-tree the list of nodes involved
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in the corresponding maximal clique of the graph. This makes the overall size of
the structure inflate to Ω(n + m).

Here, we use a variant of the PQ-tree, called PQ-representation [3]: instead
of being stored in the leaves, the vertices of G are stored in the internal nodes of
the PQ-tree (thanks to the pointers defined below). This results in a complete
representation of the graph which takes only O(n) space and has deeper struc-
tural properties. The PQ-representation is essentially the same structure as the
MPQ-tree introduced in [11]. However, we formalize it in a different way that
fits better our purposes.

Recall that T is the PQ-tree of G. We denote ex for the least common ancestor
of the leaves of T corresponding to a maximal clique of G containing x.

Lemma 5 ([12]). For any vertex x of an interval graph G, at least one of the
two following conditions holds:

1. the maximal cliques of G containing x are exactly those corresponding to the
leaves of Tex , or

2. ex is a prime node and there exist two distinct children e1
x, e2

x of ex such that
the maximal cliques of G containing x are exactly those corresponding to the
union of the sets of leaves of Tu for any child u of ex between e1

x and e2
x in σex .

The PQ-representation of an interval graph G, denoted PQ(G), is made of
T and the set of vertices of G, where each vertex x stores a primary pointer
toward ex, and two secondary pointers toward resp. e1

x and e2
x when x does not

satisfy Condition 1 of Lemma 5 (but Condition 2). These pointers encode which
maximal cliques of G (i.e. leaves of T ) contain x.

Notation 1. For each node u of T , we define the following sets:
Xu = {y ∈ V | ey = u and y has no secondary pointers}
Yu = {y ∈ V | ey = u and y has secondary pointers toward the children of u}

Note that, by definition, if u is degenerate then Yu = ∅.
In addition to the pointers from the vertices of G toward the nodes of T , in

order to achieve the desired complexity, we also store for each node u ∈ T the
list of vertices in Xu, the list of vertices in Yu, and, if parent(u) is prime, the list
of vertices y ∈ Yparent(u) such that e1

y = u and the list of vertices z ∈ Yparent(u)

such that e2
z = u.

Since the number of nodes in T is O(n) and since each vertex of G stores at
most three pointers and is stored in at most four lists associated to some nodes
of T , it follows that the total size of the PQ-representation is O(n).

5.2 Computing a Nice Solidification of the PQ-Tree

We first collect information about the nodes of T . For each node, we determine
whether it is hit or clean by a bottom-up marking process of the tree in which
each node forwards its type to its parent, which is then able to determine its
own type. In the same way, we can determine whether the nodes are forced or
not. Both routines run in O(n) time.
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Before computing a nice solidification, we need to check whether N(x) is a
clique, and in the negative, we need to identify node r. These goals are achieved
by the following routine. Start with the root as current node. At each step, if
the current node u has a unique child v such that N(x) ⊆ B[v], then make it
become the new current node, otherwise stop the process. At this point, it is
easy to test whether N(x) is a clique, and in the negative (which is the only case
we treat in the following), the node on which the routine stopped is nothing but
node r. This preliminary step takes O(n) overall time. For sake of clearness, we
describe the computation of a nice solidification in two steps, but they can be
merged into a single top-down search from r to the leaves of T .

First step: computing nice orderings. Thanks to the information collected
initially about the nodes of T , we compute, during an arbitrary traversal of Tr, a
nice ordering πu for every node u ∈ Tr. For sake of simplicity of the presentation,
we compute a nice ordering for all the nodes of Tr while it is necessary only for
nodes of {r} ∪ LB(π) ∪ RB(π), where π is the nice solidification we intend to
build. We have to distinguish two cases depending on the label of u:

1. u is degenerate; all the clean children of u are placed at the beginning of πu,
and if u has at least one non-forced hit child then we place it right after the
clean nodes in πu, and if u has another non-forced hit child, we place it at
the end of πu.

2. u is prime; if the first child uf of u in σu is forced or is such that B[u]∩N(x) ⊆
B[uf ], then we set πu = σ̄u, otherwise we set πu = σu.

A degenerate node u can be treated in O(|C(u)|) time – recall that C(u) denotes
the set of children of u. In the treatment of a prime node u, the difficult part is
to test whether B[u]∩N(x) ⊆ B[uf ]. To that purpose, we have to check whether
all the children of u different from uf are clean and whether all the vertices of
Yu ∩ N(x) are such that e1

y = uf . This can be done in O(|C(u)| + |Yu|) time.
Thus the total running time of the first step is O(

∑
u∈Tr

|C(u)|+ |Yu|) = O(n).

Second step: reversing orderings of the right branch. The only thing left
to do in order to obtain a nice solidification π is to identify the nodes of the
right branch RB(π) and to reverse the nice ordering computed for them in the
previous step. This is achieved by following the path defined by RB(π), from r
to the leaf corresponding to KR, while, at the same time, we modify π along this
path. Similarly, we can identify the leaf lL corresponding to KL in the clique
path defined by the solidification π, with the difference that, doing so, we don’t
need to change solidification π. This step takes O(n) time.

Finally, the time needed to compute a nice solidification π of the PQ-tree is
O(n), and we can identify KL and KR in the clique path defined by π within
the same complexity.

5.3 Overview of the Algorithm

From Lemma 2, we can compute a minimal interval completion of graph G
incrementally. We start from the empty graph, and we add the vertices of G
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one by one. At each step, when a new vertex x is added, we compute a minimal
interval completion of the augmented graph by adding only edges incident to x.

We proceed by computing a nice solidification π of the PQ-tree thanks to the
PQ-representation, as shown in Section 5.2. This takes O(n) time. Moreover,
within the same complexity we can get the cliques KL and KR in the corre-
sponding clique path CPG which is, from Theorem 3, a nice clique path. Then,
we compute the set F of nodes that has to be filled according to Lemma 3.

We proceed as follows. First, from the PQ-representation solidified by π, we
compute the interval model of G based on the clique path corresponding to π,
that is, the order σ on the maximal cliques of G corresponding to π and, for
each vertex y of G, two pointers from y to the first and the last maximal clique
of G containing y, in σ, denoted respectively K1

y and K2
y . This can be done in

O(n) time by a simple search of the tree. Thanks to this interval model, we can
compute the minimal interval completion H described in Lemma 3: we must fill
the set of vertices F = {y ∈ V | K1

y <σ KR and KL <σ K2
y}. Set F can be

easily computed thanks to a scan of the vertices of G which takes O(n) time.
Thus, the only thing left to do is to update the PQ-representation in order

to perform the next incremental step. This is done by inserting x in G along
with the edges between x and N(x) ∪ F . Thanks to the algorithm of [3], we
obtain the updated PQ-representation of H in O(n) time. Since an incremental
completion step can be performed in O(n) time, including the update cost of the
data-structure, the total running time of our completion algorithm is O(n2).

6 Conclusions and Perspectives

We obtained an O(n2)-time algorithm for the Minimal Interval Completion prob-
lem. This complexity is lower than those of the best algorithms for minimal
chordal completion: O(nm) in [15] or o(n2.376) in [10]. This is somehow natural
as interval graphs are “simpler” than chordal graphs. Nevertheless, this sheds a
new light on the question of whether it is possible to achieve such a complexity
for chordal completion. In particular, one may ask whether it is possible to mimic
the approach followed here by using the intersection model of chordal graphs.

Acknowledgment. We would like to thank Karol Suchan and Christophe Paul
for useful discussions on the subject.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

3. Crespelle, C.: Dynamic representations of interval graphs. In: Paul, C., Habib, M.
(eds.) WG 2009. LNCS, vol. 5911, pp. 77–87. Springer, Heidelberg (2010),
http://www-npa.lip6.fr/~crespell/publications/DynInt.pdf

http://www-npa.lip6.fr/~crespell/publications/DynInt.pdf


186 C. Crespelle and I. Todinca

4. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Canadian J. Math. 16, 539–548 (1964)

5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals
of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

6. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Math. 306(3),
297–317 (2006)

7. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Applied Mathe-
matics 157(12), 2659–2669 (2009)

8. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions
of arbitrary graphs. Discrete Applied Mathematics 156(5), 705–718 (2008)

9. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Comple-
tions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414.
Springer, Heidelberg (2005)

10. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time
o(nαlogn) = o(n2.376). SIAM J. Discrete Math. 19(4), 900–913 (2005)
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Abstract. This paper focuses on the centdian problem in a cactus net-
work where a cactus network is a connected undirected graph, and any
two simple cycles in the graph have at most one node in common. The
cactus network has important applications for wireless sensor networks
when a tree topology might not be applicable and for extensions to the
ring architecture. The centdian criterion represents a convex combina-
tion of two QoS requirements: transport and delay. To the best of our
knowledge, no efficient algorithm has yet been developed for construct-
ing a centdian node in a cactus graph, either sequential or distributed.
We first investigate the properties of the centdian node in a cycle graph,
and then explore the behavior of the centdian node in a cactus graph.
Finally, we present new efficient sequential and distributed algorithms
for finding all centdian nodes in a cycle graph and a cactus graph.

Keywords: Distributed Algorithm, Cactus Graph, Centdian Node, Sen-
sor Network.

1 Introduction

A wireless sensor network contains a number of sensor nodes limited in power and
memory, distributed across an area using wireless communication links to deliver
information between nodes. In some sensor network applications the nodes are
barely changed [26]. In recent years, the wireless sensor network has attracted
attention [21] since this type of network can be used in a variety of applications,
such as health, military, and emergency response. One generic type of appli-
cation for these networks is monitoring where all the sensors produce relevant
information by sensing the area and transmitting the information to a central
node called a sink node.In some applications, namely data aggregation, perform-
ing in-network fusion of data packets is a useful paradigm. However, it is not
applicable in all sensing environments. For military applications, such as receiv-
ing an image of a battlefield, the data being transmitted by the nodes provide an
important point of view. In such situations, it might not be feasible to aggregate
the data from different sensors into a single data packet. In those applications
all the information is sent to the sink node. We are assuming that the sink node
has the ability to change its position [21] to improve the performance of the
network and does not have energy limitations. For example, a group of soldiers
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(considered as a sink node) collects information from other units in a battlefield.
The soldiers may move around, but have to be able to continuously receive data
reports [19].

A wireless ring is a structure for applications running on wireless sensor net-
works that provide quality of service [11]. Wireless Token Ring Protocol (WTRP)
is a medium-access-control (MAC) protocol with advantages such as robustness
against single node failure, and support for flexible topologies, in which nodes
may be partially connected [11]. Lee et al. [18] presented a WTRP for ad hoc
networks and intelligent transportation system. Xianpu et al. [25] showed a dy-
namic token protocol for MANET where all nodes in the network are clustered
into several subnets, whose functions are the same as the logic token rings in
WTRP. Ergen [11] showed a number of topologies extended to the WTRP proto-
col: Hierarchical hybrid schemes – combination of star/tree and ring topologies.
Token chain – combination of several rings. Data forwarding – clustering stations
into multiple rings. Sensor networks – hierarchical clustering by rings, where ring
leaders are connected by tree topology. Cactus graphs are motivated by models
where a tree topology would be irrelevant in telecommunications. Moreover, the
above extensions to the architectures form a cactus graph, which is why practi-
cal communication networks may have cactus graph topology. A cactus graph is
also a planar graph, enabling us to transmit between nodes without having to
consider cross-transmissions, and improving the delivery rate by using the two
available paths in each cycle. Wang et al. [23] presented a robust and energy
efficient routing scheme using a backup path; therefore, considering all the so-
lutions that use a tree topology as intra topology and merging them with [23],
will lead to cactus topology.

1.1 Model and Definitions

We model a network topology by an undirected connected graph G(V, E, W ),
where V is the node set, E the set of edges between neighboring nodes, and
W a function from E to R, which takes on positive values only. For each edge
e(u, v) ∈ E, 0 < we <∞ represents edge weight or length, where a length/weight
value represents the amount of energy required to transmit one packet from node
v to node u. Note that the edges represent logical connectivity between nodes,
i.e., there is an edge between the two nodes u and v if they can hear one another.

For a given pair of nodes u and v, P (u, v) denotes a simple path in G connect-
ing u and v, and its length, d(P (u, v)), is defined as the sum of weights (lengths)
of the edges on P (u, v). Define d(u, v) as the length of the shortest path between
u and v, the minimum of the lengths of all paths connecting u and v. For each
v ∈ V , define dist(v) = maxu∈V d(u, v), and sum(v) =

∑
u∈V d(v, u). Node c is

a center of the graph if dist(c) = minv∈G dist(v) and node m is a median of the
graph if sum(m) = minv∈G sum(v).

Let T be a spanning tree of G rooted at some node v′. The transport of
tree network T is defined as the total length of packet transmissions required
to deliver packets from all nodes to node v′ by a convergecast process on the tree.
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The maximum delay of tree network T is the maximum length to be traversed
by any packet when traveling from node v′ to other nodes. The corresponding
solution concepts for convergecast and delay constraints have been considered
in the literature as median and center. Choosing the median approach often
provides a solution overlooking the nodes at the end of the network (the farthest
leaf). The alternative center approach may therefore be applied; that is, choosing
the core to be at the center of the tree where the farthest length is the minimum
among the nodes. However, locating a core at the center might entail a large
increase in length. The problems with using only the center or median as a core
have led to a search for a compromised solution concept called centdian, where a
centdian function presents a kind of compromise between the center and median
functions (delay and transport) [12]. The centdian function for node v (given a
fixed λ ∈ [0, 1]) in the network is defined by

Dv(λ) = λ · dist(v) + (1− λ) · sum(v) ; 0 ≤ λ ≤ 1 (1)

Another possible definition for the centdian function is:

Dv(α) = α · dist(v) + sum(v), α =
λ

1− λ
(2)

For each nonnegative α, the centdian value, Cent(α), is defined by

Cent(α) = min
v∈V

Dv(α) (3)

Two neighboring nodes in a tree, a and b, have exactly two maximal connected
components whose vertex sets are denoted Va and Vb, by removing the edge
e(a, b) (a ∈ Va and b ∈ Vb). Furthermore, we define Δ(a, b) as the difference
between the number of nodes in Va and in Vb. Note that a tree network has at
most two center and two median nodes. Wherever there are two median or center
nodes, they are neighbors. For the sake of the next lemma provided by [12], we
arbitrarily select one median and one center node. All the proofs is omitted due
to lack of space.

Lemma 1. [12] Every node in the (unique) path between the center and the
median in a tree network has a λ value that minimizes the centdian function.

Lemma 2. [12] When the given tree is a path, the path’s median node has to be
the middle node if there is an odd number of nodes. If there is an even number
of nodes each of the two middle nodes are the median.

We define a cactus graph CG (sometimes called a cactus tree) as a connected
graph where any two simple cycles in the graph have at most one node in com-
mon. The node set V (CG) is partitioned into three subsets. A C-node is a node
of degree two included in exactly one cycle. An NCG-node is a node not included
in any cycle. The remaining vertices, if any, will be referred to as H-vertices,
or hinges [3]. A cycle block (CB) consists of p nodes induced by a cycle, where the
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nodes of the block are denoted clockwise by R = (r0, r1, r2, ..., rp−1). A maximal
subtree is a subtree for which the subset of NCG- and H-vertices defining it
cannot be extended. A graft is a maximal subtree with no two H-vertices be-
longing to the same cycle [3]. A k-cactus graph is a cactus graph with each block
containing at most k edges. We now define an H node radius as its dist value
and a cycle block radius as the maximum between the dist values (radius) of
its H nodes and the longest dist value in the cycle block. A cycle/graft block
containing only one H node is defined as a ”leaf” of the cactus graph. It is not
difficult to see that a cactus graph consists of blocks, where each block is either
a cycle or a graft, and is glued by H vertices [3]. One way to deal with a cactus
graph is to construct a tree TCG = (V ′

CG, E′
CG), representing the CG structure,

where each node in V ′
CG represents a block or a hinge node in CG [4]. Burkard

and Krarup [3] used the CG tree structure to find a median node in a cactus
graph, whereas Ben-Moshe et al. [2] used it to solve center problems in a cac-
tus graph. For our cactus network we assume that all the nodes share the same
frequency band, and time is divided into equal size slots that are grouped into
frames. Thus, the study is conducted in the context of TDMA (Time Division
Multiple Access). In TDMA wireless sensor networks, a transmission scenario
is valid if and only if it satisfies the following three conditions: First, a node
is not allowed to transmit and receive simultaneously. Second, a node cannot
receive from more than one neighboring node at the same time and a node re-
ceiving from a neighboring node should be spatially separated from any other
transmitter by at least some distance D. However, if nodes use unique signa-
ture sequences (i.e., a joint TDMA and CDMA (Code Division Multiple Access)
scheme), then the second and third conditions may be dropped, and the first
condition only characterizes a valid transmission scenario. Thus, our MAC layer
is based on TDMA scheduling [7, 10, 24], such that collisions and interferences
do not occur. In the case where we are using Aloha, CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance) or 802.11 as the MAC layer, we are
assuming that after a finite number of tries (in case of collision, error, failure)
the node will succeed in transmitting the message. We also assume the following:
The network is asynchronous, so that each node can start the algorithm at any
time or upon receiving a message. Messages are guaranteed to be received within
some predefined delay and processes have comparable computational speeds. In
a time unit a node can receive messages, perform local computation, and send
some messages (broadcast for example). Each node has a unique ID in range
[0 . . . n − 1]. The computation time of each node is negligible compared to the
send/receive times. The ”free” calculation is bounded in time; the nodes cannot
calculate all the topology of the network free but can do some calculations such
as calculate its sum and dist value. When a node is sending a message to its
neighbors (using the wireless link), it will use broadcast transmission. Moreover,
when a node is sending a message to one of its neighbors it will use the unicast
transmission and the id of the neighbor as the MAC address.
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1.2 Related Work

As defined above, a center node in a cactus graph minimizes the function dist(v).
Lan et al. [17] studied the center problem on general cactus graphs and showed
a linear time algorithm. Recently, Ben-Moshe et al. [2] studied a more general
model of general cactus graphs where nodes are associated with nonnegative
weights. For this general model, they [2] presented an O(n log n) time algo-
rithm to solve the node weighted 1-center problem, and an O(n log3 n) time
algorithm to solve the continuous node weighted 2-center problem. Zmazek and
Zerovnik [27] presented a linear algorithm estimating the traffic on a cactus
graph, computing the sum of all delays on cactus graphs. Das and Pal [6] found
the maximum and minimum heights spanning trees on a cactus graph in linear
time. Note, however, that all the algorithms above cannot be applied directly
for wireless sensor networks since these algorithms are sequential and not based
on local updates.

As defined above, a median problem in a cactus graph seeks a node minimiz-
ing the function sum. Similarly to the case of the center, there are linear time
algorithms for solving the median problem on 3-cactus graphs [14]. Lan and
Wang [16] showed that the median problem in 4-cactus graphs can be solved
as efficiently as on trees. Burkard and Krarup [3] presented a linear time algo-
rithm for the median problem in a cactus graph with positive and negative node
weights. Recently, Hatzl [13] presented a linear time algorithm for the median
problem on wheel graphs and cactus graphs, where a wheel graph is a graph
consisting of a cycle of order p − 1 and an additional vertex that is connected
by an edge to each of the cycle vertices. For more information on median and
center problems in cactus graphs see [2, 13, 17].

The centdian problem is well known in the context of the facility location
problem, see [22]. Dvir and Segal [9, 8] were the first to deal with the centdian
function as expressed by Eq. (1) in the context of wireless ad hoc networks and
wireless sensor networks.

1.3 Our Contribution

As mentioned, all existing cactus graph algorithms may not be applied directly
to sensor networks since they are not based on local updates. To the best of
our knowledge, no sequential or distributed algorithm presented so far has been
shown to construct a centdian node in a cactus graph. We investigate the prop-
erties of a centdian node in a cycle graph and present interesting observations on
the behavior of a centdian using a lower envelope [15, 20] of the centdian func-
tions of the nodes. Moreover, we show algorithms to determine centdian nodes
for all λ values (α values) in a cycle graph that works in O(n log n) time (sequen-
tial solution) and O(n) time with O(n log n) messages (distributed solution). We
then consider the behavior of a centdian node in a cactus graph, and present new
efficient algorithms for constructing all centdian nodes in cactus graphs that run
in O(n log n) time (sequential solution) and O(n) time with O(n log n) messages
(distributed solution).
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2 Centdian in a Cactus Graph

The purpose of this section is to explore the centdian nodes’ behavior in a cactus
graph. Dvir and Segal [9, 8] presented a distributed algorithms for a centdian
node/structure in a tree topology. In order to solve the problem in cactus graphs
we wanted to understand first the behavior of the centdian node in a cycle graph
and based on that to design an algorithm to find a centdian node in a cactus
graph. Therefore, we first show algorithms to determine centdian nodes for all
λ values (α values) in a cycle graph that works in O(n log n) time (sequential
solution) and O(n) time with O(n log n) messages (distributed solution). Finally,
we consider the behavior of a centdian node in a cactus graph, and present a
new efficient algorithms for constructing all centdian nodes in cactus graphs that
used the cycle graph algorithm as its last step, run in O(n log n) time (sequential
solution), and O(n) time with O(n log n) messages (distributed solution).

2.1 Finding a Centdian Node in a Cycle Graph: Sequential
Algorithm

We first compute the values of sum(v) for all nodes v of the cycle graph in linear
time based on the algorithm in [3]. Then, we compute the values of dist(v) for
all nodes of the cycle graph in linear time based on the algorithm in [17].

It is well known that in the case of a tree topology both the dist and sum
functions are convex. In particular, every local minimum solution of the dist
(sum) function is a global minimum. Also, the set of nodes minimizing the dist
(sum) function consists of at most a pair of nodes. Moreover, these nodes are
neighbors, i.e., they induce a connected subgraph (edge). In contrast, in the case
of cycle topology, local solutions are not necessarily global and in the case of
cycle topology the set of minimizers of dist (sum) function does not necessarily
induce a connected subgraph.

Thus, contrary to the case of tree topology, where we can find the centdian
node by starting from the median node and searching for the optimal node with
the minimum centdian function on the path between the median and center
nodes [9], we cannot apply the same technique to cactus graphs. In [12], Halpern
proved that while λ < 0.5, the centdian node coincides with the median node
in a tree network. This no longer holds for a cycle graph, which leads us to the
conclusion that in a cycle graph a node t �= m, c can be a centdian node in some
range of λ, 0 < λ < 1.

Remark 1. A centdian node in a cycle graph can zigzag between upper and lower
paths P (m, c) for various values of λ. Meaning, for various λ values the centdian
node is not in the same path between the median and the center (λ = 0, λ = 1).

Finally, given a cycle graph with n nodes, we give an O(n log n) algorithm to
construct the centdian nodes for all values of α.
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Lemma 3. For any range of α, all the centdian nodes can be found in O(n log n)
time in a cycle graph.

2.2 Finding a Centdian Node in a Cycle Graph: Distributed
Algorithm

In the following section we present a distributed algorithm to find centdian nodes
in a cycle graph in O(n) time with O(n log n) messages. In order to do this, we
have to find a way to provide distributed solutions for each of the algorithms in
Section 2.1. As the basic step of our algorithm, we find a leader and the size of
the cycle graph by using the distributed algorithm given by Awerbuch [1].

To find the median and center nodes in a distributed manner, the leader sends
info(leader = id, tempDistV ector = [e], nodes = 1) messages to its neighbors,
where id is the unique ID of the leader and e the length of the edge
between the leader and its neighbor. When node u receives an info message
from one of its neighbors, it saves the tempDistVector and nodes values, and sends
a info(leader = id, tempDistV ector = tempDistV ector, e], nodes + +) message to
another neighbor. The tempDistV ector holds the edge lengths between the nodes
receiving the info message. When node z receives info messages from both its
neighbors it has complete knowledge of the cycle graph. Using the vectors from
both messages, node z can calculate its dist and sum values in the cycle graph.
After the calculation, node z sends the info messages to its neighbors. Thus, at
the end of this process each node knows its dist and sum values.

We then need to choose the nodes with the minimum dist values to be the
centers of the cycle graph and the nodes with the minimum sum values to be
the medians of the cycle graph. Therefore, the leader needs to send a message
to the cycle graph to collect the dist and sum values and to recognize the
median/center nodes. By receiving a median/center message from the leader of
the cycle graph, each node knows whether it serves as a median/center node.
From all the median nodes the leader chooses the median with the minimum ID
as the new leader of the cycle graph.

Finally, the median leader starts the following operation of computing the lower
envelope for finding the centdian nodes of the cycle graph, using the knowledge
that each node has its own dist and sum value. The median leader starts a proce-
dure to build the lower envelope centdian functions of the cycle graph by sending
a LowerEnv(LF ) message to one of its neighbors, where the LF = Dleader(α) .
When node u receives a LowerEnv(LF ) message it merges its centdian function
with the current lower envelope, calculates the new lower envelope function, and
propagates LowerEnv(LF ) message to another neighbor. At the end of this process
the leader has obtained the lower envelope function and can find all the centdian
nodes in the cycle graph. The running time of the different parts of the algorithm
that find the centdian nodes in a cycle graph is O(n) time and O(n log n) mes-
sages. First, each of the algorithms starts with finding a leader in the cycle graph
and the cycle graph size using [1] in O(n) time and O(n log n) messages. To find
the centdian nodes in a cycle graph, each node calculates its dist and sum values,
this can be done in O(n) time using O(n) messages. Then, to calculate the lower
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envelope of the centdian functions of the nodes in the cycle graph we need addi-
tional O(n) time using O(n) messages. From the lower envelope function we can
calculate the centdian nodes for a given α range.

2.3 Finding a Centdian Node in a Cactus Graph: Sequential
Algorithm

In what follows we present a number of observations and then explain the se-
quential algorithm for finding the block containing the centdian nodes (centdian
block) in a cactus graph and finding all centdian nodes in the cactus graph in
O(n log n) time.

First, from Chen et al. [4] there exists a single block of the cactus graph
containing all the median nodes (median block). Similarly, from Chen et al. [5]
there exists a single block of the cactus graph containing all the center nodes
(center block). The effort to find the median and center block is linear [4, 5, 2].
Suppose, first, that the median block and the center block coincide. From the
definition of centdian function it follows that for each α, all the respective cent-
dian nodes are also in the common block. We can then apply the above results
to construct the centdian function in O(n log n) time. Suppose next that the
median block and the center block do not coincide.

Definition 1. Let P be the unique path connecting the pair of nodes of TCG

corresponding to the median block and center block. The set of blocks of the
cactus graph corresponding to the nodes of P is called the sausage (S) of the
cactus graph.

Lemma 4. For any α value, the set of centdian nodes of the cactus graph has
to be located on the sausage subgraph.

To understand the relation between the H nodes and the centdian nodes in a
cactus graph, given a range of α, we present the following Lemmata:

Lemma 5. Let H1, H2, ...., Ht, be the sequence of H nodes on the path P of
TCG connecting the median block and the center block, where H1 belongs to the
median block and Ht belongs to the center block. From the discussion in [4,5], it
follows that dist(H1) > dist(H2) > ... > dist(Ht) and sum(H1) < sum(H2) <
... < sum(Ht).

Lemma 6. For any Hi ∈ S, 1 ≤ i ≤ t, let [α′
i, α

′′
i ] be the maximal interval

such that for each α in the interval Cent(α) = DHi(α). Then this interval is
non-empty, and α′′

i ≤ α′
i+1.

Lemma 7. For each i, 1 ≤ i < t and α′
i < α < α′

i+1, the centdian block
corresponding to α is the single block in S containing both Hi, Hi+1

Lemma 8. Let B be a block in the sausage S (B ⊆ S) where B is not the
median or center block of the cactus graph and VB is the node set of B. Then
the set of the centdian nodes in B can be found in O(|VB |) time.
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Lemma 9. Suppose that B is either the median block or the center block of the
sausage S and VB are the node set of B. The set of the centdian nodes in B can
be found in O(|VB | log |VB |) time.1

2.4 Finding Centdian in a Cactus Graph: Distributed Algorithm

In the following section we present a new distributed algorithm for finding centdian
nodes in a cactus graph in O(n) time with O(n log n) messages of sizes O(log n)
bits. For this purpose, we define node x as the cactus graph leader, which can be
found by using the distributed algorithm in [1]. Each node in the cactus graph
having more than two neighbors needs to determine whether it is an H or an NCG
node. The following distributed algorithm recognizes the H nodes.

The main idea is to apply a Depth First Search (DFS) tour to the cactus
graph. Node x sends a findH(id) message to one of its neighbors, where id is the
unique leader ID. When a node u, having only one neighbor, receives a findH

message, it sends the message back to its neighbor. When a node v having more
than one neighbor receives a findH message from one of its neighbors, it randomly
chooses one of its unmarked edges (apart from the receiving edge), marks it, and
sends the findH message from the chosen edge. If a node has no more unmarked
edges, it sends a findH message back, through the DFS tour backtracking path. A
node that sends a findH message from one of its edges and receives a message on
another can conclude that both edges are on the same cycle. Thus, by performing
a DFS tour on the cactus graph a findH message travels on the edges no more
than 2 ∗ |E| times. At the end of the algorithm, each node determines whether
it is an H node, and if so, calculates the number of cycles it belongs to and
identifies the neighbors in each cycle.

After a node u identifies itself as an H node, we have to compute the number
of nodes in the cycle blocks with u and the number of H nodes in each cycle block
containing u. Each H node sends a countCycle(id, i = 1, h = 1) message to one of
its neighbors in each cycle block, where id is the unique node ID, i represents
the number of nodes so far in this cycle block and h is the number of H nodes
detected so far in this cycle block. When C node z receives a countCycle message,
it sends a countCycle(id, i++, h) message to another neighbor. When an H node
v receives a countCycle message it checks whether id == idv . If so, it saves the
i value as the number of nodes and the h value as the number of H nodes in
this cycle block. If not, it sends a countCycle(id, i++, h++) message to another
neighbor belonging to this cycle.

In order to find the median blocks in a cactus graph in a distributed manner,
each H node needs to compute the number of nodes in each of its subgraphs.
This can be computed by propagating information from the cactus graph leaves
to a root node, and then from the root back to the leaves. At the end, each node
1 Note that the problem of finding all centdian nodes (for all α values) in a cactus

graph can be solved in O(n log n) time. Observe that the cycle block algorithm runs
in O(|VB | log |VB|) time while the other stages of the cactus algorithm are linear.
Therefore, any improvement in the runtime of the cycle block will imply improvement
for the cactus case.
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will determine the number of nodes in each of its subgraphs. We distinguish
between the cases of NCG nodes and H nodes. An NCG node with one neighbor
sends a subGraphNodes(id, i = 1) to its neighbor, where id is its unique node ID.
Any other NCG node receiving a subGraphNodes message waits until it receives
subGraphNodes messages from all but one of its neighbors. Then, it saves the
number of nodes in each of its subgraphs and sends a subGraphNodes(id,

∑
i + 1)

message on its last edge, with the sum of all i values it received plus one (itself).
Each H node has to wait until receiving the information from all the

H nodes in each of its cycles and then propagates the information to the
rest of the cactus graph. Note that the neighbors of an H node in a graft
block are the closest neighbor nodes, while the neighbors of an H node in
a cycle block are the H nodes in this cycle. An H node that has a leaf cy-
cle sends a subGraphNodes(id, numInCycle) message under the following con-
ditions, where numInCycle is the number of nodes in the subgraph of H ; If
the H node has only one additional graft or cycle (not leaf) block, it sends a
subGraphNodes(id, numInCycle = i) message to its neighbor in the block, where
i is the number of nodes in the leaf cycle. If the H node has more than one
graft or cycle block, it waits until it receives subGraphNodes messages from all
but one of its neighbors, saves the information about the number of nodes in
each subgraph, and sends a subGraphNodes(id, numInCycle =

∑
i + 1) message,

with the sum of all the i values it receives plus one (itself) to its last neighbor.
When an H node u (without a leaf cycle) receives a subGraphNodes message with
id �= idu , u decreases its h value of this cycle by one and checks whether h

equals one. If not, u saves the information about its subgraph. If yes, u sends
a subGraphNodes message under the condition of an H node with leaf cycle as
explained above. An H node z receiving subGraphNodes messages from all its
neighbors concludes that it is the root, saves the information about the number
of nodes in each subgraph, and sends its ID as the root ID and the information
about the number of nodes in each subgraph to its neighbors. Each node (H
or NCG) receiving subGraphNodes messages from all its neighbors with root ID,
saves the information about the number of nodes in each subgraph and sends the
information to its neighbors. Therefore, at the end of this process, each H node
knows the number of nodes in each of its subgraphs. Then, using the algorithm
from [13], we can search in a distributed manner for either a cycle block in which
all its H nodes have cut(H) ≥ 0, or for an NCG node v in which Δ(v, w) ≥ 0
for all w neighbors of v are the median blocks.

The distributed algorithm for finding the center blocks in a cactus graph is
similar to the above algorithm. The main difference is that each H node prop-
agates its current dist value instead of the number of nodes in each block. At
the end, each H node calculates its radius. Then, in each cycle block one of
the H nodes is selected as the leader of the cycle block [1], and sends a radius

message in its cycle block to collect the radii of the H nodes. With this informa-
tion each cycle block leader can calculate the radius of its cycle block and check
whether its block has more than one subgraph with the maximum radius [2].
Finally, the leader of the cactus graph can find, in a distributed manner, the
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cycle blocks that have more than one subgraph with the maximum radius to
be the center blocks. The next stage is to find the sausage of a cactus graph.
Node u, which is the H leader of the median block, sends findSausage(id, TTL=n)

messages to its neighbors. A C or NCG node receiving a findSausage message,
sends it to all its neighbors. An H node receiving the findSausage message, marks
the edge receiving from the findSausage message, decreases the TLL by one and
propagates the findSausage message to its neighbors. When the findSausage mes-
sage is received by node v, which is the H leader of the center block, it sends
findSausage(id, TTL=n) messages backward with its own ID. Each H node that
receives both messages from different blocks (median and center) concludes that
it belongs to the sausage. Thus, using the algorithm described above we can
find the sausage S. Finally, to find the centdian function for each H node in the
sausage we can use Lemma 6. Then, for a given λ value, we can use Lemma 7
to recognize the relevant H nodes by sending a message from the leader of the
cactus graph to the H nodes in S. Moreover, for finding all centdian nodes in
the cycle containing the relevant H nodes we can use the distributed algorithm
in Section 2.2.

The running time of the different parts of the algorithm that find the centdian
nodes in the cactus graph is O(n) time and O(n log n) messages. First, each of
the algorithms starts with finding a leader in the cycle block/cactus graph and
the cycle block/cactus graph size using [1] in O(n) time and O(n log n) messages.
To find the centdian nodes in a cactus graph, each node determines whether it
is an H node, and this can be done in O(n) time using O(n) messages. Then,
each H node will evaluate the number of nodes in each of its subgraphs in O(n)
time using O(n) messages and, in additional O(n) time with O(n) messages we
can find the sausage S. Finally, to calculate the centdian nodes in the relevant
block we need O(n) time using O(n) messages.

References

1. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In: Annual ACM Symposium on
Theory of Computing, New York, USA, July 1987, pp. 230–240 (1987)

2. Ben-Moshe, B., Bhattacharya, B.K., Shi, Q., Tamir, A.: Efficient algorithms for
center problems in cactus networks. Theoretical Computer Science 378(3), 237–
252 (2007)

3. Burkard, R.E., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median
problem on cactus. Computing 60(3), 498–509 (1998)

4. Chen, M.L., Francis, R.L., Lawrence, J.F., Lowe, T.J., Tufekci, S.: Block-vertex
duality and the 1-median problem. Networks 15(4), 395–412 (1986)

5. Chen, M.L., Francis, R.L., Lowe, T.J.: The 1-center problem: Exploiting block
structure. Transport Science 22, 259–269 (1988)

6. Das, K., Pal, M.: An optimal algorithm to find maximum and minimum height
spanning trees on cactus graphs. Advanced Modeling and Optimization 10(1), 121–
134 (2008)

7. Deb, B., Nath, B.: On the node-scheduling approach to topology control in ad hoc
networks. In: ACM MOBIHOC, pp. 14–26 (2005)



198 B. Ben-Moshe et al.

8. Dvir, A., Segal, M.: The (k, l)-coredian tree for ad hoc networks. Journal of Ad
Hoc and Sensor Wireless Networks 6(1-2), 123–144 (2008)

9. Dvir, A., Segal, M.: Placing and maintaining a core node in wireless ad hoc sensor
networks. Wireless Communications and Mobile Computing (2009) (to appear)

10. ElBatt, T.A., Ephremides, A.: Joint scheduling and power control for wireless ad-
hoc networks. In: IEEE INFOCOM, pp. 976–984 (2002)

11. Ergen, M.: WTRP - wireless token ring protocol. M.sc. thesis, Electrical Engineer-
ing and Computer Science, Berkeley, California, USA (2002)

12. Halpern, J.: Finding minimal center-median convex combination (cent-dian) of a
graph. Management Science 24, 534–544 (1978)

13. Hatzl, H.: Median problems on wheels and cactus graphs. Computing 80(4), 377–
393 (2007)

14. Kincaid, R.K., Maimon, O.Z.: A note on locating a central vertex of a 3-cactus
graph. Computers and Operations Research 17(3), 315–320 (1990)

15. Klein, R.: Algorithmische Geometrie. Addison Wesley, Reading (1996)
16. Lan, Y.F., Wang, Y.L.: An optimal algorithm for solving the 1-median problem

on weighted 4-cactus graphs. European Journal of Operational Research 122(3),
602–610 (2000)

17. Lan, Y.F., Wang, Y.L., Suzuki, H.: A linear-time algorithm for solving the center
problem on weighted cactus graphs. Information Processing Letters 71(5), 205–212
(1999)

18. Lee, D., Puri, A., Varaiya, P., Attias, R., Sengupta, R., Tripakis, S.: A wireless
token ring protocol for ad-hoc networks. In: IEEE Aerospace Conference, Montana,
USA (2002)

19. Luo, H., Ye, F., Cheng, J., Lu, S., Zhang, L.: TTDD: Two-tier data dissemination
in large-scale wireless sensor networks. Wireless Networks 11(1), 161–175 (2005)

20. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Ap-
plications. Cambridge University Press, Cambridge (1995)

21. Soochang, P., Bongsoo, K., Euisin, L., Donghun, L., Younghwan, C., Sang-Ha,
K.: A novel communication architecture to support mobile users in wireless sensor
fields. In: IEEE Vehicular Technology Conference, Dublin, Ireland, April 2007, pp.
66–70 (2007)

22. Tamir, A., Puerto, J., Perez-Brito, D., Rodriguez-Chia, A.M.: The pareto set for
the doubly weighted center-median path problem on a tree. In: The Institute for
Operations Research and the Management Sciences, September 2005, pp. 1–28
(2005)

23. Wang, H., Kong, P.-Y., Guan, W.S.K.: A robust and energy efficient routing
scheme for wireless sensor networks. In: International Conference Workshops on
Distributed Computing Systems, DC, USA, July 2006, pp. 83–89 (2006)

24. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Algorithms for energy-effcient
multicasting in static ad hoc wireless networks. ACM MONET 6(3), 251–263 (2001)

25. Xianpu, S., Yanling, Z., Jiandong, L.: Wireless dynamic token protocol for
MANET. In: Parallel Processing Workshops, Xian, China, September 2007, pp.
1–5 (2007)

26. Yicka, J., Mukherjeea, B., Ghosal, D.: Wireless sensor network survey. Computer
Networks 52(12), 2292–2330 (2008)

27. Zmazek, B., Zerovnik, J.I.: Estimating the traffic on weighted cactus networks in
linear time. In: International Conference on Information Visualisation, London,
UK, July 2005, pp. 536–541 (2005)



Twisted Jacobi Intersections Curves

Rongquan Feng1,�, Menglong Nie1, and Hongfeng Wu2,��,���

1 LMAM, School of Mathematical Sciences, Peking University,
Beijing 100871, P.R. China

2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, P.R. China

fengrq@math.pku.edu.cn, hustnml@163.com, whfmath@gmail.com

Abstract. In this paper, the twisted Jacobi intersections which contains
Jacobi intersections as a special case is introduced. We show that every
elliptic curve over the prime field with three points of order 2 is isomor-
phic to a twisted Jacobi intersections curve. Some fast explicit formulae
for twisted Jacobi intersections curves in projective coordinates are pre-
sented. These explicit formulae for addition and doubling are almost
as fast as the Jacobi intersections. In addition, the scalar multiplica-
tion can be more effective in twisted Jacobi intersections than in Jacobi
intersections. Moreover, we propose new addition formulae which are in-
dependent of parameters of curves and more effective in reality than the
previous formulae in the literature.

Keywords: elliptic curves, Jacobi intersections, twisted Jacobi intersec-
tions, scalar multiplication, cryptography.

1 Introduction

Elliptic curve cryptosystems were proposed by Miller (1986) and by Koblitz
(1987) which relies on the difficulty of elliptic curve discrete logarithmic prob-
lem. One of the main operations and challenges in elliptic curve cryptosystem is
the scalar multiplication. The speed of scalar multiplication plays an important
role in the efficiency of the whole system. Elliptic curves can be represented in
different forms. To obtain faster scalar multiplications, several elliptic curve rep-
resentations have been considered in the last two decades. The detail of previous
works can be find in [1,3,8].

Jacobi intersections curve is the intersection of two quadratic surfaces in
three dimensional space with a point on it. The scalar multiplication on Jacobi
intersections show competitive efficiency in scalar multiplication, such as faster
doubling and tripling operations. Chudnovsky and Chudnovsky [5] proposed fast
doubling and addition formulae for Jacobi intersections in projective coordinates.
After that, Liardet and Smart [9], and Bernstein and Lange [1] presented slightly
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faster formulae.Hisil etc. [7] presented faster tripling formulae. Some slightly faster
formulae with a trick can also be found in [8].

In this paper, the Jacobi intersections is generalized to “twisted Jacobi inter-
sections” which contains Jacobi intersections as a special case. It is shown that
every elliptic curve over the prime field with three points of order 2 is isomorphic
to a twisted Jacobi intersections curve. Some fast explicit formulae for twisted
Jacobi intersections curves in projective coordinates are presented. These ex-
plicit formulae for addition and doubling are almost as fast in the general case
as they are for the Jacobi intersections. In addition, the scalar multiplication
can be more effective in twisted Jacobi intersections than in Jacobi intersec-
tions. Moreover, we propose new addition formulae which are independent of
parameters of curves and more effective in reality than the previous formulae in
the literature.

This paper is organized as follows. In Section 2, the Jacobi intersections is
reviewed, the twisted Jacobi intersections is introduced, and each twisted Jacobi
intersections is a twist of a Jacobi intersections is proved. It is shown that every
elliptic curve over the prime field with three points of order 2 is isomorphic
to a twisted Jacobi intersections curve. In Section 3, the Jacobi intersections
addition law is generalized to that for the twisted Jacobi intersections curves,
and the explicit addition formulae and formulae independent of parameters of
curves are proposed. The Jacobi versus twisted Jacobi is given in Section 4, and
the conclusion is in Section 5.

2 Jacobi Intersections and Twisted Jacobi Intersections

In this section we briefly review Jacobi intersections curves and the Jacobi in-
tersections addition law. We then introduce twisted Jacobi intersections curves
and discuss their relations to Jacobi intersections curves.

Jacobi intersections
Throughout the paper we consider elliptic curves over a non-binary field K, i.e.,
a field K whose characteristic is not 2.

A Jacobi intersection form elliptic curve over K is defined by{
u2 + v2 = 1

bu2 + w2 = 1,

where b ∈ K with b(1− b) �= 0. A point (u, v, w) on a Jacobi intersections curve
is represented as (U : V : W : Z) satisfying

U2 + V 2 = Z2, bU2 + W 2 = Z2

and (u, v, w) = (U/Z, V/Z, W/Z). Here (U : V : W : Z) = (λU : λV : λW : λZ)
for any nonzero λ ∈ K. The negative of (U : V : W : Z) is (−U : V : W : Z). The
neutral element (0, 1, 1) is represented as (0 : 1 : 1 : 1). The reader is refereed to
[5] for more details on Jacobi intersections curves.
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The affine version of the unified addition formulae, i.e., that can handle generic
doubling, simplifying protection against side-channel attacks, are given by

(u3, v3, w3) = (u1, v1, w1) + (u2, v2, w2),

where

u3 =
u1v2w2 + u2v1w1

v2
2 + u2

2w
2
1

, v3 =
v1v2 − u1w1u2w2

v2
2 + u2

2w
2
1

, w3 =
w1w2 − bu1v1u2v2

v2
2 + u2

2w
2
1

.

The point addition formulae in projective homogenous coordinates are given by

(U3 : V3 : W3 : Z3) = (U1 : V1 : W1 : Z1) + (U2 : V2 : W2 : Z2),

where

U3 = U1Z1V2W2 + V1W1U2Z2, V3 = V1Z1V2Z2 − U1W1U2W2

W3 = W1Z1W2Z2 − bU1V1U2V2, Z3 = Z2
1V 2

2 + U2
2 W 2

1 .

Twisted Jacobi intersections

Definition 1. A twisted Jacobi intersection form elliptic curve over K is defined
by {

au2 + v2 = 1
bu2 + w2 = 1,

where a, b ∈ K with ab(a−b) �= 0. A Jacobi intersection elliptic curve is a twisted
Jacobi intersection curve with a = 1.

The twisted Jacobi intersection curve Ea,b : au2 + v2 = 1, bu2 + w2 = 1 is a
quadratic twist of the Jacobi intersection curve E1,b/a : ū2 + v̄2 = 1, (b/a)ū2 +
w̄2 = 1. The map (u, v, w) �→ (ū/

√
a, v̄, w̄) is an isomorphism from Ea,b to E1,b/a

over K(
√

a). Thus if a is a square in K then Ea,b is isomorphic to E1,b/a over
K. More generally, Ea,b is a quadratic twist of Eā,b̄ for any ā, b̄ satisfying b̄/ā =
b/a. Conversely, every quadratic twist of a twisted Jacobi intersection curve is
isomorphic to a twisted Jacobi intersection curve, i.e., the set of isomorphism
classes of twisted Jacobi intersection curves is invariant under quadratic twists.

Theorem 1. Let K be a field with char(K) �= 2 and Ea,b : au2 +v2 = 1, bu2 +
w2 = 1 be a twisted Jacobi intersection form curve define over K with ab(a−b) �=
0. Then Ea,b is a smooth curve and isomorphic to an elliptic curve of the form
E : y2 = x(x− a)(x − b) over K.

The proof of Theorem 1 appears in the full version of the paper [6].

Theorem 2. Let K be a field with char(K) �= 2. Then every elliptic curve over
K having three K-rational points of order 2 is isomorphic to a twisted Jacobi
intersections curve.
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Proof. Let E be an elliptic curve over K having three K-rational points of order
2. Let (θ1, 0), (θ2, 0) and (θ3, 0) be these three distinct points of order 2 on the
Weierstrass curve E, i.e., y2 = x3 + a2x

2 + a4x + a6 = (x− θ1)(x− θ2)(x− θ3).
Replacing (x, y) by (x+θ1, y) yields the equation of the form y2 = x(x−a)(x−b),
where a = θ2−θ1, b = θ3−θ1. Therefore every elliptic curve over K having three
K−rational points of order 2 is isomorphic to a twisted Jacobi intersections
curve by Theorem 1. ��

3 Arithmetic on Twisted Jacobi Intersections

Let K be a non-binary field. In this section we present fast explicit formulae for
addition and doubling on twisted Jacobi intersections curves over K.

Theorem 3. Let P = (u1, v1, w1), Q = (u2, v2, w2) be two points on a twisted
Jacobi intersections elliptic curve Ea,b : au2 + v2 = 1, bu2 + w2 = 1, and
let R = P + Q := (u3, v3, w3). Then the affine version of the unified addition
formulae are given by

u3 =
u1v2w2 + u2v1w1

v2
2 + au2

2w
2
1

, v3 =
v1v2 − au1w1u2w2

v2
2 + au2

2w
2
1

, w3 =
w1w2 − bu1v1u2v2

v2
2 + au2

2w
2
1

.

Especially, if P = Q and R = 2P := (u3, v3, w3), then

u3 =
2u1v1w1

v2
1 + au2

1w
2
1

, v3 =
v2
1 − au2

1w
2
1

v2
1 + au2

1w
2
1

, w3 =
w2

1 − bu2
1v

2
1

v2
1 + au2

1w
2
1

.

The identity element is (0, 1, 1). The negative of the point (u, v, w) is (−u, v, w).

Proof. For the correctness of the addition law, observe that it coincides with the
Jacobi intersections addition law on

ū2 + v2 = 1,
b

a
ū2 + w2 = 1,

with ū =
√

au. These formulae also work for doubling. ��

Theorem 4. Let K be a field of odd characteristic. Let Ea,b : au2+v2 = 1, bu2+
w2 = 1 be a twisted Jacobi intersections curve over K. Let P = (u1, v1, w1) and
Q = (u2, v2, w2) be points on Ea,b. If ab is not a square in K, or if −1 is a
square in K and neither a nor b is a square in K, then v2

2 + au2
2w

2
1 �= 0.

Proof. If v = w = 0, then au2 = bu2 and a = b, therefore ab is a square in K,
contradict to ab is not a square in K. Therefore at most one in {u, v, w} is equal to
0 for a point (u, v, w) on Ea,b. Thus if u2 = 0, then v2

2+au2
2w

2
1 = v2

2 �= 0. If u1 = 0,
then w2

1 = 1, and v2
2 +au2

2w
2
1 = v2

2 +au2
2 = 1. Let u1u2 �= 0, assume that ab is not

a square in K. If v2
2 +au2

2w
2
1 = 0, then au2

2+v2
2−(v2

2 +au2
2w

2
1) = au2

2(1−w2
1) = 1.

Thus 1−w2
1 = 1/au2

2 = bu2
1. therefore ab = (1/u1u2)2 is a square in K, contradict

to the assumption. Now assume that neither a nor b is a square in K, then
w1v2 �= 0. If v2

2 + au2
2w

2
1 = 0, then a = −(v2/u2w1)2 is square in K since −1 is

a square in K, which is a contradiction. ��
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Note that Theorem 4 shows that if ab is not a square in K, then the twisted
addition formulae is complete. But generally, both a and b are non-squares in K.
Therefore ab is not a square in K is not a reasonable assumption when a �= 1.
But in this case, if −1 is a square in K, then the above twisted addition formulae
is also complete.

When using projective homogenous coordinates to eliminate field inversions,
each point is represented by the quadruplet (U : V : W : Z) which satisfies the
equations

aU2 + V 2 = Z2, bU2 + W 2 = Z2,

and corresponds to the affine point (U/Z, V/Z, W/Z) with Z �= 0.

Theorem 5. Let P = (U1 : V1 : W1 : Z1), Q = (U2 : V2 : W2 : Z2) be two
points on the twisted Jacobi intersections elliptic curve Ea,b : aU2 + V 2 =
Z2, bU2 + W 2 = Z2, and let R = P + Q := (U3 : V3 : W3 : Z3). Then the
projective version of the unified addition formulae are given by

U3 = U1Z1V2W2 + V1W1U2Z2, V3 = V1Z1V2Z2 − aU1W1U2W2,

W3 = W1Z1W2Z2 − bU1V1U2V2, Z3 = Z2
1V 2

2 + aU2
2 W 2

1 .

The identity element is (0 : 1 : 1 : 1). The negative of the point (U : V : W : Z)
is (−U : V : W : Z). ��

Note that Z2
1 (Z2

2 − V 2
2 ) = aZ2

1U2
2 and aU2

2 (bU2
1 + W 2

1 ) = aU2
2Z2

1 . We have
Z2

1V 2
2 + aU2

2 W 2
1 = Z2

1Z2
2 − abU2

1 U2
2 which can be used to simplify the formulae.

Especially, the above theorem gives the following doubling formulae.

U3 = 2U1V1W1Z1, V3 = V 2
1 Z2

1 − aU2
1 W 2

1 ,

W3 = W 2
1 Z2

1 − bU2
1 V 2

1 , Z3 = V 2
1 Z2

1 + aU2
1 W 2

1 .

Note that bU2
1 = Z2

1 −W 2
1 , and V 2

1 W 2
1 = W 2

1 (Z2
1 − aU2

1 ) = W 2
1 Z2

1 − aU2
1W 2

1 . We
have the second doubling formulae

U3 = 2U1V1W1Z1, V3 = V 2
1 Z2

1 − aU2
1 W 2

1 ,

W3 = 2W 2
1 Z2

1 − V 2
1 Z2

1 − aU2
1W 2

1 ,

Z3 = V 2
1 Z2

1 + aU2
1W 2

1 .

(1)

Moreover, from

W 2
1 Z2

1 − bU2
1 V 2

1 = W 2
1 (aU2

1 + V 2
1 )− (Z2

1 −W 2
1 )V 2

1 =aU2
1 W 2

1 + 2V 2
1 W 2

1 −V 2
1 Z2

1

= aU2
1 W 2

1 − V 2
1 Z2

1 + 2W 2
1 (bU2

1 + W 2
1 − aU2

1 )

= aU2
1 W 2

1 − V 2
1 Z2

1 + 2bW 2
1 U2

1 + 2W 4
1 − 2aU2

1W 2
1

= −aU2
1W 2

1 − V 2
1 Z2

1 + 2(bU2
1 W 2

1 + W 4
1 ),
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we have the third doubling formulae

U3 = 2U1V1W1Z1, V3 = V 2
1 Z2

1 − aU2
1 W 2

1 ,

W3 = −aU2
1W 2

1 − V 2
1 Z2

1 + 2(bU2
1 W 2

1 + W 4
1 ),

Z3 = V 2
1 Z2

1 + aU2
1 W 2

1 .

(2)

Addition in projective coordinates. By Theorem 5, the following formulae
compute (U3 : V3 : W3 : Z3) = (U1 : V1 : W1 : Z1)+ (U2 : V2 : W2 : Z2) in 13M +
2S + 5D costs, i.e., 13 field multiplications, 2 squarings and 5 multiplications
by the curve constant a and b, or in 14M + S + 4D costs. We denote the two
algorithms by ”AProjective.1” and ”AProjective.2”.

A = U1V1; B = W1Z1; C = U2V2; D = W2Z2; E = U1W2;
F = V1Z2; G = W1U2; H = Z1V2; J = AD; K = BC;

U3 = (H + F )(E + G)− J −K;
V3 = (H + E)(F − aG)− J + aK;

W3 = (B − bA)(C + D) + bJ −K;
Z3 = H2 + a ·G2 = H2 + aG ·G.

If the points represented by the sextuplet (U, V, W, Z, UV, WZ), then the addi-
tion formula can by modified by: (U3 : V3 : W3 : Z3 : A3 : B3) = (U1 : V1 :
W1 : Z1 : A1 : B1) + (U2 : V2 : W2 : Z2 : A2 : B2), where A1 = U1V1, B1 =
W1Z1, A2 = U2V2, B2 = W2Z2. The cost are 11M + 2S + 5D or 12M + S + 4D.
We denote the two algorithms bye ”MProjective.1” and ”MProjective.2”.

C = U1W2; D = V1Z2; E = W1U2; F = Z1V2; G = A1B2; H = B1A2;
U3 = (D + F )(C + E)−G−H ;
V3 = (C + F )(D − aE)−G + aH ;

W3 = (B1 − bA1)(A2 + B2) + bG−H ;
Z3 = F 2 + a · E2 = F 2 + aE ·E;
A3 = U3V3; B3 = W3Z3.

Note that, if a = ε2 is a square element in the field, then Z3 = (F + εE)2−2εH ,
the cost is 11M + 1S + 6D.
Doubling 1 in projective coordinates. The following formulae compute (U3 :
V3 : W3 : Z3) = 2(U1 : V1 : W1 : Z1) in 3M + 4S + 1D by using formulae (1),
where the 1D is a multiplication by a:

A = V1Z1; B = A2; C = U1W1; D = C2; E = 2(W1Z1)2;
U3 = (A + C)2 −B −D; V3 = B − aD;
W3 = E −B − aD; Z3 = B + aD.

Doubling 2 in projective coordinates. The following formulae compute (U3 :
V3 : W3 : Z3) = 2(U1 : V1 : W1 : Z1) in 2M + 5S + 2D by using formulae (2),
where the 2D are multiplications by a and by b:

A = V1Z1; B = A2; C = U1W1; D = C2; E = W 4
1 ;

U3 = (A + C)2 −B −D; V3 = B − aD;
W3 = 2(bD + E)−B − aD; Z3 = B + aD.
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Doubling 1 in projective coordinates with Z1 = 1. The following formulae
compute (U3 : V3 : W3 : Z3) = 2(U1 : V1 : W1 : 1) in 1M + 4S + 1D by using
formulae (1), where the 1D is a multiplication by a:

A = V1; B = A2; C = U1W1; D = C2; E = 2W 2
1 ;

U3 = (A + C)2 −B −D; V3 = B − aD;
W3 = E −B − aD; Z3 = B + aD.

Doubling 2 in projective coordinates with Z1 = 1. The following formulae
compute (U3 : V3 : W3 : Z3) = 2(U1 : V1 : W1 : 1) in 1M + 5S + 2D by using
formulae (2), where the 2D are multiplications by a and by b:

A = V1; B = A2; C = U1W1; D = C2; E = W 4
1 ;

U3 = (A + C)2 −B −D; V3 = B − aD;
W3 = 2(bD + E)−B − aD; Z3 = B + aD.

Note that V 2
1 Z2

1 = Z2
1 (Z2

1 − aU2
1 ) = Z4

1 − aU2
1 Z2

1 , U2
1 W 2

1 = U2
1 (Z2

1 − bU2
1 ) =

U2
1 Z2

1−bU4
1 and W 4

1 = (Z2
1−bU2

1 )2 = Z4
1 +b2U4

1−2bU2
1Z2

1 . We have the following
doubling formulae:

U3 = 2U1Z1V1W1, V3 = abU4
1 − 2aU2

1Z2
1 + Z4

1 ,

W3 = abU4
1 − 2bU2

1Z2
1 + Z4

1 , Z3 = Z4
1 − abU4

1 .
(3)

Doubling 3 in projective coordinates with Z1 = 1. The following formulae
compute (U3 : V3 : W3 : Z3) = 2(U1 : V1 : W1 : 1) in 2M + 2S + 3D by using
formulae (3), where the 3D are multiplications by a, b, ab:

A = U2
1 ; B = A2; C = Z2

1 ; D = C2; E = (U1 + Z1)2 −A− C;
F = (A + C)2 −B −D; G = abB;

U3 = V1W1E; V3 = G− aF + D;
W3 = G− bF + D; Z3 = D −G.

The comparison of the costs of above doubling formulae in this paper to those
in previous works is listed in Table 1.

Table 1. Algorithm comparison with other algorithms in Doubling

Coordinates Source of algorithms Doubling Doubling(Z1 = 1)

Jacobi Intersections [9] 4M+3S -

Jacobi Intersections [2] 3M+4S 2M+4S

Jacobi Intersections [7] 2M+5S+1D -

Twisted Jacobi Intersections Doubling 1 3M+4S+1D 1M+4S+1D

Twisted Jacobi Intersections Doubling 2 2M+5S+2D 1M+5S+2D

Twisted Jacobi Intersections Doubling 3 2M+6S+3D 2M+2S+3D



206 R. Feng, M. Nie, and H. Wu

Doubling formulae independent of a and b. From aU2
1 = Z2

1 − V 2
1 and

bU2
1 = Z2

1 −W 2
1 , we have the following doubling formulae which are independent

of the parameters a and b:

U3 = 2U1V1W1Z1, V3 = V 2
1 Z2

1 − Z2
1W 2

1 + V 2
1 W 2

1 ,

W3 = W 2
1 Z2

1 − V 2
1 Z2

1 + V 2
1 W 2

1 , Z3 = V 2
1 Z2

1 + Z2
1W 2

1 − V 2
1 W 2

1 .

Addition formulae independent of a and b

Theorem 6. Let P = (u1, v1, w1), Q = (u2, v2, w2) be two different points on
the twisted Jacobi intersections elliptic curve Ea,b : au2 + v2 = 1, bu2 +w2 = 1,
and let R = P + Q = (u3, v3, w3). Then the addition formulae can be given by

u3 =
u2

1 − u2
2

u1v2w2 − v1w1u2
, v3 =

u1v1w2 − w1u2v2

u1v2w2 − v1w1u2
, w3 =

u1w1v2 − v1u2w2

u1v2w2 − v1w1u2
.

Proof. From

(u2
1 − u2

2)(v
2
2 + au2

2w
2
1) = u2

1v
2
2 + au2

1w
2
1u

2
2 − u2

2v
2
2 − au2

2u
2
2w

2
1

= u2
1v

2
2 + (1 − v2

1)w2
1u

2
2 − u2

2v
2
2 − (1 − v2

2)u2
2w

2
1

= u2
1v

2
2 − u2

2v
2
2 + u2

2v
2
2w

2
1 − v2

1w
2
1u

2
2

= u2
1v

2
2 − u2

2v
2
2(1− w2

1)− v2
1w

2
1u

2
2

= u2
1v

2
2 − bu2

1u
2
2v

2
2 − v2

1w
2
1u

2
2

= u2
1v

2
2(1− bu2

2)− v2
1w2

1u
2
2

= u2
1v

2
2w2

2 − v2
1w2

1u
2
2

= (u1v2w2 + v1w1u2)(u1v2w2 − v1w1u2),

we have
u2

1 − u2
2

u1v2w2 − v1w1u2
=

u1v2w2 + v1w1u2

v2
2 + au2

2w
2
1

.

From

(u1v1w2 − w1u2v2)(u1v2w2 + v1w1u2)
= u2

1v1v2w
2
2 + u1u2v

2
1w1w2 − u1u2v

2
2w1w2 − u2

2v1v2w
2
1

= u2
1v1v2(1−bu2

2)+u1u2w1w2(1−au2
1)−u1u2(1−au2

2)w1w2 − u2
2v1v2(1− bu2

1)
= u2

1v1v2 − au2
1u1u2w1w2 − u2

2v1v2 + au2
2u1u2w1w2

= (u2
1 − u2

2)(v1v2 − au1w1u2w2),

we have

v1v2 − au1w1u2w2

v2
2 + au2

2w
2
1

=
(u1v1w2 − w1u2v2)(u1v2w2 + v1w1u2)

(u2
1 − u2

2)(v
2
2 + au2

2w
2
1)

=
u1v1w2 − w1u2v2

(u2
1 − u2

2)(v
2
2 + au2

2w
2
1)

u1v2w2 + v1w1u2

=
u1v1w2 − w1u2v2

u1v2w2 − v1w1u2
.
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Again, from

(u1w1v2 − v1u2w2)(u1v2w2 + v1w1u2)
= u2

1w1w2v
2
2 + u1u2v1v2w

2
1 − u1u2v1v2w

2
2 − u2

2v
2
1w1w2

= u2
1w1w2(1−au2

2) + u1u2v1v2(1−bu2
1)− u1u2v1v2(1−bu2

2)−u2
2w1w2(1−au2

1)
= u2

1w1w2 − bu2
1u1v1u2v2 − u2

2w1w2 + bu2
2u1v1u2v2

= (u2
1 − u2

2)(w1w2 − bu1v1u2v2),

we have

w1w2 − bu1v1u2v2

v2
2 + au2

2w
2
1

=
(u1w1v2 − v1u2w2)(u1v2w2 + v1w1u2)

(u2
1 − u2

2)(v
2
2 + au2

2w
2
1)

=
u1w1v2 − v1u2w2

(u2
1 − u2

2)(v
2
2 + au2

2w
2
1)

u1v2w2 + v1w1u2

=
u1w1v2 − v1u2w2

u1v2w2 − v1w1u2
.

The theorem follows from Theorem 3. ��

The formulae fail for point doubling. In addition, there are exceptional cases. For
example, when 2P = 2Q, then the formulae cannot work. The above formulae
in projective homogenous coordinates are given by the following theorem.

Theorem 7. Let P = (U1 : V1 : W1 : Z1), Q = (U2 : V2 : W2 : Z2) be two
different points on the twisted Jacobi intersections elliptic curve Ea,b : aU2 +
V 2 = Z2, bU2 + W 2 = Z2, and let R = P + Q = (U3 : V3 : W3 : Z3). Then the
addition formulae can be given by

U3 = U2
1 Z2

2 − Z2
1U2

2 , V3 = U1V1W2Z2 −W1Z1U2V2,

W3 = U1W1V2Z2 − V1Z1U2W2, Z3 = U1Z1V2W2 − V1W1U2Z2.

The projective addition formulae in Theorems 5 and 7 have exceptional points
in each case. But the following theorem tells us that the formulae together in
Theorems 5 and 7 cover all points.

Theorem 8. Let P = (U1 : V1 : W1 : Z1), Q = (U2 : V2 : W2 : Z2) be
two points on the twisted Jacobi intersections elliptic curve Ea,b : aU2 + V 2 =
Z2, bU2+W 2 = Z2 defined over K with ab(a−b) �= 0, let R = (U3 : V3 : W3 : Z3)
and S = (U

′
3 : V

′
3 : W

′
3 : Z

′
3), where

U3 = U1Z1V2W2 + V1W1U2Z2, V3 = V1Z1V2Z2 − aU1W1U2W2,

W3 = W1Z1W2Z2 − bU1V1U2V2, Z3 = Z2
1V 2

2 + aU2
2 W 2

1 ,

and

U
′
3 = U2

1 Z2
2 − Z2

1U2
2 , V

′
3 = U1V1W2Z2 −W1Z1U2V2,

W
′
3 = U1W1V2Z2 − V1Z1U2W2, Z

′
3 = U1Z1V2W2 − V1W1U2Z2.

Then P + Q = R = S if R = S, and P + Q = R (or S) if S = 0 (or R = 0).
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Proof. If R �= (0, 0, 0, 0), then R ∈ Ea,b and P + Q = R. Similarly, if S �=
(0, 0, 0, 0), then S ∈ Ea,b and P + Q = S. Now assume R = S = (0, 0, 0, 0).
Then U1Z1V2W2 + V1W1U2Z2 = 0 and U1Z1V2W2 − V1W1U2Z2 = 0. Thus
U1Z1V2W2 = V1W1U2Z2 = 0.

If U1 = 0, then Z2
1U2

2 = 0 since U2
1 Z2

2 − Z2
1U2

2 = 0. Thus Z1 = 0 or U2 = 0.
When Z1 = 0, then V1 = W1 = 0 from aU2 + V 2 = Z2 and bU2 + W 2 = Z2.
Therefore P = (0, 0, 0, 0), which is contradict to P ∈ Ea,b. When U2 = 0,
then V1Z1V2Z2 = 0 from V3 = V1Z1V2Z2 − aU1W1U2W2 = 0. We can get
Q = (0, 0, 0, 0) by the similar argument as above. Contradict to Q ∈ Ea,b.

The similar argument works for the cases when U2 = 0, Z1 = 0, Z2 = 0,
V2 = 0, W2 = 0, V1 = 0 or W1 = 0.

If P �= Q, From Theorem 7 we know that P + Q = R = S if R �= (0, 0, 0, 0)
and S �= (0, 0, 0, 0). ��

New addition algorithm use Theorem 7. The following formulae compute
(U3 : V3 : W3 : Z3) = (U1 : V1 : W1 : Z1) + (U2 : V2 : W2 : Z2) in 15M , We
denote the algorithm by ”Independent.1”.

A = U1Z2; B = U2Z1; C = V1W2; D = V2W1;
E = U1Z1; F = V1W1; G = U2Z2; H = V2W2;

U3 = (A + B)(A−B);
V3 = AC −BD; W3 = AD −BC; Z3 = EH − FG.

Note that U3 = U2
1 (bU2

2 +W 2
2 )−U2

2 (bU2
1 +W 2

1 ) = U2
1W 2

2 −U2
2 W 2

1 . If the points
represented by the sextuplet (U, V, W, Z, UW, V Z), then the addition formula can
by modified by: (U3 : V3 : W3 : Z3 : M3 : N3) = (U1 : V1 : W1 : Z1 : M1 : N1) +
(U2 : V2 : W2 : Z2 : M2 : N2), where M1 = U1W1, N1 = V1Z1, M2 = U2W2, N2 =
V2Z2, the cost are 13M . We denote the algorithm be ”MIndependent.2”.

A = U1W2; B = U2W1; C = V1Z2; D = V2Z1;
U3 = (A + B)(A−B);
V3 = AC −BD; W3 = M1N2 −M2N1; Z3 = AD −BC;

M3 = U3W3, N3 = V3Z3.

The comparison of the costs of above addition formulae in this paper to those
in previous works is listed in Table 2.

Note that, Table 2 show that the addition in twisted Jacobi intersections are
almost as fast as that in the Jacobi intersections. The new algorithm based on
the formula independent of parameters of curves is more effectively than the best
result in literature for Jacobi intersection curves when D > 0.6M .

4 Jacobi versus Twisted Jacobi

The twisted Jacobi intersection curve is a generalization of Jacobi intersections,
and twisted Jacobi intersection curve cover more elliptic curves than Jacobi
intersections curves do. An example in [2] shows that for prime p = 2255 − 19,
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Table 2. Algorithm comparison with other algorithms in addition

Coordinates Source Addition D = 0M S = D = 1M

Jacobi Intersections [9] 13M+2S+1D 14.6M 16M

Jacobi Intersections [7](projective) 13M+1S+2D 13.8M 16M

Jacobi Intersections [7](modified) 11M+1S+2D 11.8M 14M

Twisted Jacobi AProjective.1 13M+2S+5D 14.6M 20M

Twisted Jacobi AProjective.2 14M+1S+4D 14.8M 19M

Twisted Jacobi MProjective.1 11M+2S+5D 12.6M 18M

Twisted Jacobi MProjective.2 12M+1S+4D 12.8M 17M

Twisted Jacobi(a square) MProjective.2 11M+1S+6D 11.8M 18M

Twisted Jacobi Independent.1 15M 15M 15M

Twisted Jacobi MIndependent.2 13M 13M 13M

one multiplication by 121665 and one multiplication by 121666, which together
are faster than a multiplication by 20800338683988658368647408995589388
737092878452977063003340006470870624536394 ≡ 121665/121666 (mod p).
That is, for a large parameter b of Jacobi intersections curves U2 + V 2 =
Z2, bU2 + W 2 = Z2, we can choose smaller a′ and b′ such that the twisted
Jacobi intersections a′U2 + V 2 = Z2, b′U2 + W 2 = Z2 is quadratic twisted to
it, but can save computation costs. For example, in algorithms MProjective.1, if
a, b are smaller and a = ε2 is a square element in the field, then we can omit the
multiplications by the small constants. Thus Z3 = F 2+a·E2 = (F +εE)2−2εH ,
and the algorithm cost 11M + 1S, which is more efficient than the algorithm in
[7](modified).

5 Conclusion

In this paper, the twisted Jacobi intersections which contains Jacobi intersec-
tions as a special case is introduced. We show that every elliptic curve over
the prime field with three points of order 2 is isomorphic to a twisted Jacobi
intersections curve. Some fast explicit formulae for twisted Jacobi intersections
curve in projective coordinates are presented. These explicit formulae for addi-
tion and doubling are almost as fast as the Jacobi intersections. In addition, the
scalar multiplication can be more effective in twisted Jacobi intersections than
in Jacobi intersections. Finally, new addition formulae which are independent of
parameters of curves are proposed and it can be more effective than the previous
results in literature when D > 0.6M . At last, we hope the faster point operation
formulae on twist Jacobi intersection can be proposed.
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Abstract. An L(p1, p2, p3)-labeling of a graph G with span λ is a map-
ping f that assigns each vertex u of G an integer label 0 ≤ f(u) ≤ λ
such that |f(u) − f(v)| ≥ pi whenever vertices u and v are of distance
i for i ∈ {1, 2, 3}. We show that testing whether a given graph has an
L(2, 1, 1)-labeling with some given span λ is NP-complete even for the
class of trees.

1 Introduction

Classical graph coloring involves the labeling of the vertices of some given graph
by integers usually called colors such that no two adjacent vertices receive the
same color. In many applications the objective is to minimize the number of col-
ors. Graph coloring has been a popular research topic since its introduction as
a map coloring problem more than 150 years ago. Some reasons for this are its
appealingly simple definition, its large variety of open problems, and its many ap-
plication areas. Whenever conflicting situations between pairs of objects can be
modeled by graphs, and one is looking for a partition of the set of objects in sub-
sets of mutually non-conflicting objects, this can be viewed as a graph coloring
problem. This holds for classical settings such as neighboring countries (map col-
oring) or interfering jobs on machines (job scheduling), as well as for more recent
settings like colliding data streams in optical networks (wavelength assignment),
or colliding traffic streams (time slot allocation), to name just a few.

The graph coloring problem studied in this paper has its applications in wire-
less communication. In a wireless network, each transmitter has been assigned
a frequency channel for its transmissions. However, two transmissions can in-
terfere if their channels are too close. Whether this happens depends on the
physical structure of the network; even if two transmitters use different chan-
nels, there still may be interference if the two transmitters are located close to
each other. As radio spectrum gets more and more scarce because the number of
wireless networks is rapidly increasing, the task is to minimize the total number
of different frequencies while avoiding interference.
� Supported by EPSRC (EP/GO43434/1) and the Royal Society ((JP090172).

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 211–221, 2010.
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A wireless network can be modeled by an undirected graph G = (V, E) with
no loops and no multiple edges. The transmitters are represented by vertices and
the distance distG(u, v) between two transmitters u, v is the number of edges on
a shortest path from u to v. A labeling of G is a mapping f : V → {0, 1, . . .}
that assigns each vertex of V a label f(v) representing a frequency channel (in
this setting, the convention is to use “label” instead of “color”).

How far channels of two transmitters must be away from each other depends
on the distance of these transmitters in the network. We model this by posing
extra restrictions on a labeling. This approach is called distance constrained
labeling and it is done via a metric graph H , the vertices of which represent
the available channels and are denoted 0, . . . , |V (H)| − 1. For positive integers
p1, p2, . . . , pk, a labeling f of G with {f(u) | u ∈ V (G)} ⊆ V (H) is called an
H(p1, . . . , pk)-labeling if for i = 1, . . . , k

distH(f(u), f(v)) ≥ pi for all u, v ∈ VG with distG(u, v) = i.

It is natural to assume that frequencies must be farther apart if transmitters are
closer; so we restrict ourselves to the case in which p1 ≥ p2 ≥ · · · ≥ pk. We can
now translate the earlier mentioned task into the problem:

H(p1, . . . , pk)-Labeling

Parameters: p1, . . . , pk.
Instance: graphs G and H .
Question: does G have an H(p1, . . . , pk)-labeling?

Not only for its practical applications but also because of its many interesting
theoretical properties, distance constrained labeling has received much attention
in recent literature, in particular the cases in which H is a path or a cycle,
respectively. Below we discuss computational complexity issues for the case when
H is a path; for a survey on known algorithmic results for other metric graphs
we refer to Fiala, Golovach and Kratochv́ıl [8].

Path (Linear) Metric. Let H be a path Pλ+1 on vertices 0, . . . , λ with an edge
between vertices i and i + 1 for i = 0, . . . , λ− 1. Then an H(p1, . . . , pk)-labeling
is called an L(p1, . . . , pk)-labeling with span λ, and H(p1, . . . , pk)-Labeling is
formulated as the problem:

L(p1, . . . , pk)-Labeling

Parameters: p1, . . . , pk.
Instance: a graph G and integer λ.
Question: does G have an L(p1, . . . , pk)-labeling with span λ?

The minimum λ such that G has an L(p1, . . . , pk)-labeling is denoted λp1,...,pk
(G).

We note that an L(1)-labeling of a graph G is a proper coloring of G, and hence
λ1(G) = χ(G)− 1, where χ(G) is the chromatic number of G.

Especially, L(p1, p2)-labelings are well studied, cf. the surveys of of Calam-
oneri [2] and Yeh [17]. Below we only mention a number of algorithmic and com-
plexity results. Fiala, Kloks and Kratochv́ıl [10] showed that L(2, 1)-Labeling is
NP-complete, already for fixed λ ≥ 4. Chang and Kuo [4] presented a nontrivial
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dynamic programming algorithm to show that L(2, 1)-Labeling can be solved
in polynomial time for trees. Later on, Chang et al. [3] showed that L(p1, 1)-
Labeling is even polynomially solvable for trees when p1 is not fixed but part
of the input (see also Fiala, Kratochv́ıl and Proskurowski [12]). However, for any
fixed p1, p2, the L(p1, p2)-Labeling problem is NP-complete, even for the class
of trees, if p2 ≥ 2 and p2 does not divide p1, and polynomially solvable other-
wise [8]. It is also known that, for fixed p1 ≥ 2, L(p1, 1)-Labeling is already
NP-complete for the class of graphs of treewidth two [7]. This is in contrast
to the polynomial time result of Zhou, Kanari and Nishizeki [18] on L(1, 1)-
Labeling for graphs of bounded treewidth (but L(1, 1)-Labeling is W[1]-hard
when parameterized by the treewidth of an input graph [9]).

What about L(p1, . . . , pk)-labelings for k ≥ 3? Zhou, Kanari and Nishizeki [18]
showed that L(1, . . . , 1)-Labeling can be solved in polynomial time on graphs
of bounded treewidth. Bertossi, Pinotti and Rizzi [1] showed the same for the
class of interval graphs. For general graphs L(2, 1, 1)-Labeling is NP-complete
for any fixed λ ≥ 5 and polynomially solvable otherwise [6]. Up to now, the com-
putational complexity of L(p1, 1, . . . , 1)-Labeling for fixed p1 ≥ 2 is still open
for trees, even for p1 = 2 and k = 3. However, it is known [14] that the prela-
beling extension of L(2, 1, 1)-Labeling is NP-complete for trees (in this variant
of the problem some vertices have preassigned labels). It is also known [15] that
L(p1, 1, 1)-Labeling is NP-complete for trees if p1 is part of the input. Fiala,
Golovach and Kratochv́ıl [6] showed that λ2,1,1(T ) can be approximated almost
tightly for trees. To be more precise, they prove the following result. Here, ω(G)
denotes the size of a maximum clique in a graph G, and Gk denotes the k-th
distance power of G, i.e., the graph with vertex set V (Gk) = V (G), and edges
between any two distinct vertices that are at distance at most k in G.

Proposition 1 ([6]). For any tree T , ω(T 3)− 1 ≤ λ2,1,1(T ) ≤ ω(T 3).

Our result. Despite Proposition 1, we show that L(2, 1, 1)-Labeling is still NP-
complete for trees. This is the first hardness result on L(p1, . . . , pk)-labelings on
trees for fixed p1, . . . , pk and k ≥ 3. We prove it in Section 2 by a reduction
from 3-Satisfiability. Notice that contrary to the NP-completeness result for
L(2, 1, 1)-Labeling on general graphs [6], which holds for fixed span λ ≥ 5, in
our proof the span λ will depend on the size of the 3-SAT instance; for fixed λ,
the problem is polynomially solvable on graphs of bounded treewidth [6]. This
follows from the observation that, for fixed λ, we can describe an L(p1, . . . , pk)-
Labeling problem in Monadic Second-Order Logic, and then we can apply the
well-known theorem of Courcelle [5] for graph classes of bounded treewidth.

2 L(2,1,1)-Labelings for Trees

We prove the following theorem.

Theorem 1. The L(2, 1, 1)-Labeling problem is NP-complete for the class of
trees.
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Before we prove Theorem 1 we first introduce some additional terminology. Let
G be a graph. Then NG(v) denotes the (open) neighborhood of G and degG(v)
denotes the degree of vertex v ∈ V (G). For integers i and j, we define the interval
[i, j] as the set {i, i + 1, i + 2, . . . , j}. By [i, j]≡2 we denote the set of all even
integers in the interval [i, j].

2.1 Auxiliary Constructions

We first construct gadgets where some vertices are forced predetermined labels
in an arbitrary L(2, 1, 1)-labeling. A set of integers S ⊆ [0, λ] is called symmetric
if for each i ∈ S, λ − i ∈ S. Notice that for any L(p1, . . . , pk)-labeling l of a
graph G of span λ, the mapping l : V (G) → [0, λ], such that l(v) = λ − l(v) for
v ∈ V (G), is an L(p1, . . . , pk)-labeling of G of span λ too. Hence our gadgets
force symmetric sets of labels.

From here we assume that λ is an even positive integer and λ ≥ 14.
We consider a star K1,λ−1 with the central vertex u. Then a new vertex w is

added and joined by an edge with a leaf v of the star. Denote the obtained tree
by T1. We say that w is the root of T1. An example of T1 is shown in Fig. 4 We
need the following properties of T1.

Lemma 1. For any λ− L(2, 1, 1)-labeling of T1 with span λ,

– the vertex u is labeled by an integer from the set {0, λ};
– if u is labeled by 0 then the root w is labeled by 1 and if u is labeled by λ then

w is labeled by λ− 1.

For any i ∈ {1, λ − 1} and any integer j ∈ [3, λ − 3], there is a λ − L(2, 1, 1)-
labeling l of T1 such that l(w) = i, l(v) = j.

u v w

T1

u v w

T2

u

x1

x2

v1
w1

v2

w2

T3

Fig. 1. Gadgets T1, T2 and T3 for λ = 13
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Proof. Since all vertices of NT1(u) should be labeled by different labels which are
2-distant from the label of u and since degT1

(u) = λ− 1, for any λ− L(2, 1, 1)-
labeling of T1, the vertex u can be labeled only either by 0 or λ. Assume that
u is labeled by 0. Then vertices of NT1(u) are labeled by all integers from [2, λ].
Hence, w should be labeled by 1. Symmetrically, if u is labeled by λ, then w is
labeled by λ− 1.

The second claim of the lemma is proved by the direct check. ��

The next gadget is denoted by T2 and is constructed as follows (see Fig. 1). We
introduce a star K1,λ−3 with the central vertex u and add a copy of T1 rooted
in u. Then a new vertex w is added and joined by an edge with a leaf v of the
tree adjacent to u. The vertex w is the root of T2. The properties of T2 are given
in the following lemma.

Lemma 2. For any λ− L(2, 1, 1)-labeling of T2 with span λ,

– the vertex u is labeled by an integer from the set {1, λ− 1};
– if u is labeled by 1 then the root w is labeled by an integer from {0, 2} and if

u is labeled by λ− 1 then w is labeled by a label from {λ− 2, λ}.

For any i ∈ {0, 2, λ−2, λ} and any integer j ∈ [5, λ−5], there is a λ−L(2, 1, 1)-
labeling l of T2 such that l(w) = i, l(v) = j.

Proof. By Lemma 1 the vertex u is labeled either by 1 or λ − 1. Assume that
u is labeled by 1. Since degT1

(u) = λ − 2, for any λ − L(2, 1, 1)-labeling of T2,
the vertices NT2(u) are labeled by all integers from [3, λ]. Therefore, w should
be labeled by 0 or 2. Symmetrically, if u is labeled by λ − 1, then w is labeled
by λ− 2 or λ.

The second claim of the lemma is proved by the direct check. ��

Now we construct the gadget T3 (see Fig. 1). We consider a star K1,λ−2 with the
central vertex u. Then two copies of T1 rooted in two different leaves x1, x2 of the
star are added. Finally we add two vertices w1, w2 and join them by edges with
two different leaves (v1 and v2 respectively) of the constructed tree adjacent to
u. We call w1 and w2 the roots of T3. The properties of T3 are summarized in
the next lemma.

Lemma 3. For any λ− L(2, 1, 1)-labeling of T3 with span λ,

– the vertex u is labeled by an integer from [3, λ− 3];
– if u is labeled by i, then roots w1, w2 are labeled by labels from {i− 1, i + 1}.

For any integer i ∈ [3, λ− 3], any pair of integers j1, j2 ∈ {i− 1, i + 1} and any
pair of different integers r1, r2 ∈ [i+3, λ−(i+3)], there is a λ−L(2, 1, 1)-labeling
l of T3 such that l(u) = i, l(w1) = j1, l(w2) = j2, l(v1) = r1 and l(v2) = r2.

Proof. By Lemma 1 the vertices x1 and x2 can be labeled either 1 or λ−1. Since
they must have different labels, one of them is labeled by 1 and the second is
labeled by λ− 1. Hence, u can be labeled only by an integer from i ∈ [3, λ− 3].
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Assume that u is labeled by i. For any λ− L(2, 1, 1)-labeling of T3, the vertices
NT3(u) are labeled by all integers from [0, λ] \ [i− 1, i+1]. Therefore, w1 and w2

can be labeled only by integers from {i− 1, i + 1}.
As before, the second claim of the lemma is verified directly. Notice that neigh-

bors of x1 and x2 different from u can always be labeled by i− 1 and i + 1. ��

For further constructions we assume that k is a positive integer and 2 ≤ k ≤
λ/4− 2.

We construct a rooted tree T (k) so that the root can be labeled only by
integers from [2, 2k]≡2 ∪ [λ − 2k, λ − 2]≡2. First we introduce k − 1 copies of
trees T3. For i ∈ {1, . . . , k − 1}, denote by u(i), v

(i)
1 , v

(i)
2 , w

(i)
1 , w

(i)
2 the vertices

u, v1, v2, w1, w2 of i-th copy of T3. Then vertices w
(i−1)
2 and w

(i)
1 are identified

for i ∈ {2, . . . , k− 1}. Finally, a copy of T2 rooted in w
(1)
1 is added. Let u(0) and

v(0) be the vertices u and v of T2 respectively. We call w
(k−1)
2 the root of T (k).

Construction of T (k) is shown in Fig. 2.

w
(1)
1

v
(1)
1

u(1)

v
(1)
2

w
(1)
2 = w

(2)
1

v
(2)
1

u(2)

v
(2)
2

w
(2)
2 = w

(3)
1

v(0)

u(0)

w
(k−2)
2 = w

(k−1)
1

v
(k−1)
1

u(k−1)

v
(k−1)
2

w
(k−1)
2

T3 T3 T3T2

· · ·

T (k)

Fig. 2. Gadget T (k)

Lemma 4. For any λ− L(2, 1, 1)-labeling of T (k) with span λ,

– the root w
(k−1)
2 is labeled by an integer from [2, 2k]≡2 ∪ [λ− 2k, λ− 2]≡2;

– if w
(k−1)
2 is labeled by i, then u(k−1) is labeled either i− 1 or i + 1 if i/2 < k

and u(k−1) is labeled by i− 1 if i = k.

For any integer i ∈ [2, 2k]≡2 ∪ [λ− 2k, λ− 2]≡2 and any integer r ∈ [2k + 2, λ−
(2k + 2)] there is a λ − L(2, 1, 1)-labeling l of T (k) such that l(w(k−1)

2 ) = i and
l(v(k−1)

2 ) = r.

Proof. Notice that by Lemma 2 the vertex w
(1)
1 is labeled by an integer from the

set {0, 2, λ− 2, λ}. Since by Lemma 3 it cannot be labeled by 0 or λ, this vertex
is labeled either by 2 or λ − 2. Then the first claim of the lemma is proved by
the inductive applications of Lemma 3. We use the fact that if w

(j)
1 is labeled
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by i then u(i) is labeled by i− 1 or i + 1 and w
(i)
2 is labeled by an integer from

{i− 2, i, i + 2}.
The second claim immediately follows from Lemmata 2 and 3. It is sufficient

to notice that all vertices v
(j)
1 can be labeled by r + 1 or r − 1, the vertices v

(j)
1

and v(0) can be labeled by r for j ∈ {1, . . . , k − 1}. ��

Using gadgets T (k) it is possible to construct a rooted tree F (k) (see Fig. 3)
such that the root can be labeled only by an integer 2k or λ−2k. We construct a
star K1,2k+1 with the central vertex v and leaves w0, . . . , w2k. Then four copies
of T2 rooted in w1, w2, w3 and w4 respectively are introduced, and for each
i ∈ {2, . . . , k − 1}, two copies of T (i) rooted in w2i+1 and w2i+2 are added.
Finally, a copy of T (k) rooted in w0 is constructed. The vertex w0 is declared
the root of F (k).

Lemma 5. For any λ− L(2, 1, 1)-labeling of F (k) with span λ,

– the root w0 is labeled either by 2k or λ− 2k;
– the vertices at distance two from the root are labeled by all integers from

[0, 2k − 2]≡2 ∪ [λ − (2k − 2), λ]≡2 and one vertex is labeled by 2k − 1 or
λ− (2k − 1).

For any pair of different integers r1, r2 ∈ [2k + 2, λ − (2k + 2)] there is a λ −
L(2, 1, 1)-labeling l of F (k) such that the vertices adjacent to the root are labeled
by r1 and r2.

Proof. By Lemma 2 vertices w1, w2, w3, w4 have to be colored by 0, 2, λ − 2, λ.
By inductive application of Lemma 4 and the fact that all labels of w5, . . . , w2k

w0 v

w1 w2 w3 w4

w2k w2k−1 w6 w5

T (k)

T2 T2 T2 T2

· · ·

T (k − 1) T (2)

F (k)

v0 u

v1 v2 v3 v4

v2s+4 v2s+3 v6 v5

T (k)

T2 T2 T2 T2

· · ·

F (ps/2) F (p1/2)

R(S)

Fig. 3. Gadgets F (k) and R(S)
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have to be different we conclude that w5, . . . , w2k are labeled by all even integers
from [4, 2k − 2]≡2 ∪ [λ − (2k − 2), λ− 4]≡2. Then again by Lemma 4 the vertex
w0 is labeled either by 2k or λ − 2k and the vertex at distance two from w0 in
the copy of T (2k) is labeled either by 2k − 1 or λ− (2k − 1).

The second claim follows from Lemmata 2 and 4, since v can be labeled by
r1 and the other vertices adjacent to w0, . . . , w2k can be labeled by r2. ��

We proceed by constructing a rooted tree R(S) such that the root can be labeled
only by integers from the set of labels S (see Fig. 3). Let S ⊂ [4, 2k]≡2 ∪ [λ −
2k, λ − 4]≡2 be a symmetric set of even integers. Denote by X the set of all
integers from [4, 2k]≡2 \S and let X = {p1, . . . , ps}. We construct a star K1,2s+5

with the central vertex u and leaves v0, . . . , v2s+4. Then four copies of T2 rooted
in v1, v2, v3, v4 respectively are introduced, and for each i ∈ {1, . . . , s}, two copies
of F (pi/2) rooted in v2i+3 and v2i+4 are added. Finally, a copy of T (k) rooted
in v0 is constructed. The vertex v0 is declared the root of R(S).

Lemma 6. For any λ− L(2, 1, 1)-labeling of R(S) with span λ,

– the root v0 is labeled by an integer from S;
– the vertices at distance two from the root are labeled by integers from [0, 2k]∪

[λ− 2k, λ].

For any integer t ∈ S and any pair of different integers r1, r2 ∈ [2k+2, λ− (2k+
2)] there is a λ − L(2, 1, 1)-labeling l of R(S) such l(v0) = t and the vertices
adjacent to the root are labeled by r1 and r2.

Proof. By Lemma 2 vertices v1, v2, v3, v4 have to be colored by 0, 2, λ− 2, λ. By
Lemma 5 the vertices v5, . . . , v2p+4 are labeled by all integers from [4, 2k]≡2 ∪
[λ−2k, λ−4]≡2\S. By Lemma 4 the vertex v0 is labeled by an even integer from
[4, 2k]≡2∪[λ−2k, λ−4] and this vertex is 2-distant from the vertices v1, . . . , v2p+4.
Therefore it can be labeled only by integers from S. The fact that the vertices
at distance two from the root are labeled by integers from [0, 2k] ∪ [λ − 2k, λ]
immediately follows from Lemmata 2, 3 and 5.

To prove the second claim, let us note that by Lemmata 2 and 5 there are
labelings of all copies of T2 and F (pi/2) such that the vertices adjacent to the
roots of these trees are labeled by r1. Using Lemma 4 we can notice that there
is a labeling of T (k) such that the root is labeled by t and the vertex adjacent
to the root is labeled by r1. It remains to label u by r2 to receive the L(2, 1, 1)-
labeling of R(S) from these labelings of auxiliary gadgets. ��

We conclude this part of the proof by the following easy observation.

Lemma 7. The tree R(S) has O(λ4) vertices.

2.2 Polynomial Reduction

We proceed with reduction of the well known NP-complete 3-Satisfiability

problem [13, problem L02, page 259] to our L(2, 1, 1)-Labeling problem for
trees.
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Let Φ be a boolean formula in conjunctive normal form that has variables
x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. Each clause consists of three literals.
We choose λ = 8n + m + 9 is m is odd and λ = 8n + m + 10 otherwise.

For each variable x we define the set of integers Xi = {4i, 4i+2, λ−(4i+2), λ−
4i} and construct three copies of trees R(Xi) with roots x

(1)
i , x

(2)
i and x

(3)
i . For

each clause Cj we define the set of six integers Yj as follows. For each literal z in
Cj , integers 4i, λ−4i are included in Yj if z = xi and integers 4i+2, λ− (4i+2)
are included in Yj if z is a negation of the variable xi for some i ∈ {1, . . . , n}.
Then a copy of R(Yj) with a root yj is constructed. Finally, we add a vertex u

and join it with all vertices x
(1)
i , x

(2)
i , x

(3)
i by edges and with all vertices yj by

paths of length two with middle vertices v1, . . . , vm. Denote the obtained tree
by T (see Fig. 4).

u

x
(1)
1 x

(2)
1 x

(3)
1

x(1)
n x(2)

n x(3)
n

v1 y1

v2 y2

vm−1 ym−1

vm ym

R(Y1)

R(Y2)

R(Ym−1)

R(Ym)

R(X1)

R(X2)

R(Xn−1)

R(Xn)

...
...

Fig. 4. A tree T

Lemma 8. The tree T has an L(2, 1, 1)-labeling of span λ if and only if the
formula Φ can be satisfied.

Proof. Suppose that there is a λ − L(2, 1, 1)-labeling of T . By Lemma 6 for
each i ∈ {1, . . . , n}, vertices x

(1)
i , x

(2)
i , x

(3)
i are labeled by integers from Xi. Since

these vertices are 2-distant in T , the labels have to be different. Hence exactly
one label from Xi is not used for the labeling of x

(1)
i , x

(2)
i , x

(3)
i . Denote this label

by pi. If pi = 4i or pi = λ − 4i then we assume that xi = true and xi = false
otherwise. We prove that these values give a truth assignment which satisfies Φ.
By Lemma 6 the vertex yj is labeled by an integer from the Yj . Assume that yj

is labeled by 4i or λ− 4i for some i ∈ {1, . . . , n}. This label should be different
from the labels of vertices x

(1)
i , x

(2)
i , x

(3)
i . Therefore Cj contains the literal xi

and xi = true. Similarly, if yj is labeled by 4i + 2 or λ − (4i + 2) for some
i ∈ {1, . . . , n}, then this label is not used for the labeling of x

(1)
i , x

(2)
i , x

(3)
i , i.e.

Cj contains the literal xi and xi = false.
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Assume now that the formula Φ has a satisfying truth assignment and vari-
ables x1, . . . , xn have corresponding values. Notice that sets X1, . . . , Xn do not
intersect. We label x

(2)
i by λ − (4i + 2) and x

(3)
i by λ − 4i for i ∈ {1, . . . , n}.

The vertex x
(1)
i is labeled by 4i + 2 if xi = true, and x

(1)
i is labeled by 4i if

xi = false. Each clause Cj contains a literal z = true. If z = xi for some
i ∈ {1, . . . , n} then Yj contains the integer 4i and this label was not used for
the labeling of x

(1)
i , x

(2)
i , x

(3)
i . We use 4i to label yj . Similarly, if z = xi for some

i ∈ {1, . . . , n} then Yj contains the integer 4i + 2 and since this label was not
used for the labeling of x

(1)
i , x

(2)
i , x

(3)
i , we label yj by 4i + 2. By lemma 6 these

labeling of roots of trees R(S) can be extended to the labelings of all vertices of
these trees such that the vertices at distance two from the root are labeled by
integers from [0, 4n + 2]∪ [λ− (4n + 2), λ] and the vertices adjacent to the roots
are labeled by 4n+4 and 4n+6. We extend this labeling to the L(2, 1, 1)-labeling
of T by labeling u by 4n + 5 and v1, . . . , vm by 4n + 7, . . . , 4n + m + 6. ��

To conclude the proof of Theorem 1 it remains to note that it follows from
Lemma 7 that T has O((n + m)5) vertices.

3 Conclusions

We showed that the L(2, 1, 1)-Labeling problem is NP-complete for trees (while
L(2, 1)-Labeling can be solved in polynomial time for this graph class [4]). We
expect that L(p1, p2, p3)-Labeling remains NP-complete for all p1, p2, p3 such
that p1 > p3, but this does not follow directly from our results. Determining the
computational complexity of the corresponding problem on trees for the cyclic
metric, which we explain below, is still open.

Cyclic Metric. Let H be a cycle Cλ+1 on vertices 0, . . . , λ with an edge between
vertices i and i + 1 for i = 0, . . . , λ (modulo λ + 1). Then an H(p1, . . . , pk)-
labeling is called a C(p1, . . . , pk)-labeling with span λ, and the corresponding
decision problem is denoted C(p1, . . . , pk)-Labeling.

Fiala and Kratochv́ıl [11] showed that C(2, 1)-Labeling is NP-complete, al-
ready for fixed λ ≥ 6. Just as for the result for the path metric, Fiala, Golovach
and Kratochv́ıl [7] showed that as a matter of fact C(2, 1)-Labeling is already
NP-complete for the class of graphs with treewidth 2. On the positive side, Liu
and Zhu [16] presented a closed formula for the minimum λ such that a tree has
a C(p1, p2)-labeling. This immediately implies that C(p1, p2)-Labeling can be
solved in polynomial time for trees, even if p1 and p2 are both part of the in-
put. Similarly to the case of the path metric, Fiala, Golovach and Kratochv́ıl [6]
showed that for any tree T , ω(T 3) − 1 ≤ c2,1,1(T ) ≤ ω(T 3), where c2,1,1(G) is
the minimum λ such that G has a C(2, 1, 1)-labeling. This leads us to the fol-
lowing question: what is the computational complexity of C(2, 1, 1)-Labeling

on trees?
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Abstract. We deal with different algorithmic questions regarding prop-
erly arc-colored s-t paths, trails and circuits in arc-colored digraphs.
Given an arc-colored digraph Dc with c ≥ 2 colors, we show that the
problem of maximizing the number of arc disjoint properly arc-colored
s-t trails can be solved in polynomial time. Surprisingly, we prove that
the determination of one properly arc-colored s-t path is NP-complete
even for planar digraphs containing no properly arc-colored circuits and
c = Ω(n), where n denotes the number of vertices in Dc. If the di-
graph is an arc-colored tournament, we show that deciding whether it
contains a properly arc-colored circuit passing through a given vertex x
(resp., properly arc-colored Hamiltonian s-t path) is NP-complete, even
if c = 2. As a consequence, we solve a weak version of an open problem
posed in Gutin et. al. [17].

Keywords: Arc-colored digraphs, Properly arc-colored paths/trails and
circuits, Hamiltonian directed path, arc-colored tournaments, Polyno-
mial algorithms, NP-completeness.

1 Introduction, Notation and Terminology

In the last few years a great number of applications has been modelled as prob-
lems in edge-colored graphs [3,5]. For instance, problems in molecular biology
correspond to extracting Hamiltonian or Eulerian paths or cycles colored in spec-
ified pattern [21,22,10], transportation and connectivity problems where reload
costs are associated to pair of colors at adjacent edges [13,15], social sciences [9],
VLSI optimization [19] among others. In this paper, we are specially concerned
(from an algorithmic perspective) with different questions regarding properly
arc-colored s-t paths, trails and circuits on arc-colored digraphs.

Given a (not necessarily edge-colored) graph G = (V, E), a trail between s and
t in G (called s-t trail) is a sequence ρ = (v0, e0, v1, e1, . . . , ek, vk+1) where v0 = s,
� Sponsored by FAPERJ and CNPq.
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vk+1 = t and ei = vivi+1 for i = 0, . . . , k and ei �= ej for i �= j. A path between
s and t in G (called s-t path) is a trail ρ = (v0, e0, v1, e1, . . . , ek, vk+1) between s
and t where vi �= vj for i �= j. To extend the definitions above for digraphs we just
change edges ei = vivi+1 by arcs (or oriented edges) ei = vivi+1. In this case,
s-t trails (resp., s-t paths) are called directed s-t trails (resp., directed s-t paths).

Let Ic = {1, . . . , c} be a given set of colors (c ≥ 2). In this work, Dc denotes
a digraph whose arcs have a color in Ic, with no loops and parallel arcs linking
the same pair of vertices. The vertex and arc sets of Dc are denoted by V (Dc)
and A(Dc), respectively. For a given color i, Ai(Dc) denotes the set of arcs of Dc

colored by i. Given Dc and two vertices u, v ∈ V (Dc), we denote by uv an arc of
A(Dc) and its color by c(uv). In addition, we define N+

Dc(x) = {y ∈ V (Dc) : xy ∈
A(Dc)} the out-neighborhood of x in Dc (d+

Dc(x) = |N+
Dc(x)| is the out-degree of

x in Dc), N−
Dc(x) = {y ∈ V (Dc) : yx ∈ A(Dc)} the in-neighborhood of x in Dc

(d−Dc(x) = |N−
Dc(x)| is the in-degree of x in Dc) and NDc(x) = N+

Dc(x) ∪N−
Dc(x)

the neighborhood of x ∈ V (Dc). We say that, T c defines an arc-colored tournament
if it is obtained from a non-oriented complete edge-colored graph Kc by choosing
an arbitrary direction for each colored edge of Kc.

From now on, we write pac instead of properly arc-colored. A pac path (resp.,
pac trail) is a directed path (resp., trail) such that any two successive arcs have
different colors. A pac path or trail in Dc is closed if its end-vertices coincide
and its first and last arcs differ in color. They are also refereed, respectively, as
pac circuits and directed pac closed trails. The length of a directed trail, path,
closed trail or circuit is the number of its arcs. Here, we only deal with pac paths
of length greater or equal than 2.

1.1 Some Related Work

Problems regarding properly edge-colored paths, trails and cycles (or pec paths,
trails and cycles, for short) in c-edge-colored (undirected) graphs have been
widely studied from a graph theory and algorithmic point of views (see [3,1,24],
the book [5] and the recent survey [18]). For instance, in [23], the author gives
polynomial algorithms for several problems, including the determination of a pec

s-t path (if one exists). More recently, the authors in [1] introduced the notion of
trail-path graph. Using this concept, they extend Szeider’s Algorithm to deal with
pec s-t trails and they propose a polynomial algorithm for the determination
of a pec s-t trail. A polynomial time characterization of c-edge-colored graphs
containing pec cycles was first presented by Yeo [24] and generalized in [1] for
pec closed trails.

When dealing with pec paths or trails with additional constraints in c-edge-
colored graphs, the results are less optimistic. For example, it is well known
that deciding whether a general 2-edge-colored graph (colored in blue and red)
contains a pec Hamiltonian cycle, a pec Hamiltonian s-t path, or a pec cy-
cle passing through a prescribed pair of vertices are NP-complete problems [5].
Basically, the idea is to start from the proof of NP-completeness of these prob-
lems in uncolored digraphs and to use Häggkvist’s transformation which consists
in replacing each arc e = xy by an undirected path of length 2, xve and vey
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(where ve is a new vertex) with colors blue and red, respectively. Moreover, it
is proved in [9] that deciding whether a 2-edge-colored graph contains a pec

s-t path passing through a vertex z is NP-complete. On the other side, many
problems of this kind become polynomial in 2-edge-colored complete graphs. For
instance, in [9] the authors proved that finding a pec s-t path passing through
a vertex z (if any) can be solved in polynomial time. The authors of [11] pro-
duced a nice characterization of c-edge-colored complete graphs which admit a
pec Hamiltonian path (with a non specified source and destination), and then
they deduce a new polynomial algorithm for finding it (if one exists). In [16],
the authors show that generalizations of these last 2 problems are polynomial if
we are restricted to c-edge-colored graphs with no pec closed trails. Finally, in
[20] a characterization of c-edge-colored multigraphs which contain a pec Eu-
lerian trail is given. A O(n2logn) algorithm for finding a pec Eulerian trail in
c-edge-colored multigraphs (if one exists) is described in [7].

In [15], the authors consider edge-colored s-t paths, trails and walks with
minimum reload costs. In this case, we are given a c-edge-colored graph and a c×c
matrix R = [ri,j ] (for i, j ∈ Ic) whose entries define the reload cost when changing
color i for color j. Given a trail (path) ρ = (v1, e1, v2, e2, . . . , ek, vk+1) between
vertices s and t, we define the reload cost of ρ as r(ρ) =

∑k−1
j=1 rc(ej),c(ej+1). In

[2], the authors deal with the determination of minimum directed s-t trails with
reload costs in edge-colored digraphs whose total cost is given by the sum of
reload costs (between successive colors in a trail) and positive costs associated
to each arc. As discussed in [15], reload s-t trails (or paths) in edge-colored
graphs may be converted into pec trails (or paths) by conveniently choosing
reload costs between each pair of colors (for instance, by setting ri,i = 1 and
ri,j = rj,i = 0, ∀i, j ∈ Ic, i �= j. In this case, we seek a s-t trail (or s-t path) with
reload cost 0).

Finally, if we deal with c-arc-colored digraphs, the existing results concerning
the complexity of finding pac s-t paths and circuits are rather rare and less opti-
mistic. To our best knowledge, there is only one result which says that deciding
whether a pac circuit exists in 2-arc-colored digraphs, is NP-complete [17].

1.2 Contributions

In Section 2, we deal with the problem of finding pac s-t trails in c-arc-colored
digraphs Dc with c ≥ 2. We show that the problem of maximizing the number
of arc disjoint pac s-t trails can be solved in polynomial time. As a consequence,
we prove that is polynomial to decide whether Dc contains a directed pac closed
trail. In Section 3, we restrict our attention to path problems over c-arc-colored
digraphs with no pac circuits. We show that the determination of one pac s-t
path is NP-complete even if Dc is a planar c-arc-colored digraph containing no
pac circuits and c = Ω(|V (Dc)|). Finally, in Section 4 we focus on c-arc-colored
tournaments. We prove that deciding whether a c-arc-colored tournament T c (for
c = Ω(|V (T c)|2)) contains a pac circuit passing through a given vertex x is NP-
complete. This solves a weak version of an open problem initially posed by Gutin,
Sudako and Yeo [17], whose objective is to determine whether T c (for c = 2)
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contains a pac circuit. In addition, we prove that deciding whether T c has a pac

s-t path or a pac Hamiltonian s-t path is NP-complete. Notice that there is no
evident link between deciding whether a c-arc-colored tournament possesses a pac

s-t path and a pac Hamiltonian s-t path, although finding a pac s-t path seems
to be an easier problem than finding a pac Hamiltonian s-t path.

2 pac Trails and Closed Trails in Arc-Colored Digraphs

Here, we are interested in the complexity of finding pac s-t trails and closed
trails in arc-colored digraphs. These problems turn out to be polynomial using
minimum cost flow computation. The details of proofs are omitted due to space
limitation.

Theorem 1. Given an arbitrary c-arc-colored digraph Dc, finding a pac s-t
trail in Dc (if any) can be done within polynomial time.

As a consequence, we can prove the following results:

Corollary 1. Let Dc be a c-arc-colored digraph with c ≥ 2. The problem of finding
a directed pac closed trail in Dc (if any) can be solved in polynomial time.

Corollary 2. The problem of maximizing the number of arc disjoint pac s-t
trails in Dc can be solved in polynomial time.

3 pac Paths in Arc-Colored Digraphs with No pac

Circuits

Finding pec paths, pec trails or pec cycles in edge-colored graphs is polynomial
[23,1]. However finding pac paths or pac circuits in arc-colored digraphs seems
harder. For example, the authors of [17] proved that deciding whether a 2-arc-
colored digraph contains a pac circuit is NP-complete. However, the pac s-t
path problem is polynomial in the following simple case:

Theorem 2. If Dc is a c-arc-colored digraph containing no circuits at all (pac

or not) and s, t are two vertices of Dc then deciding the existence of a pac path
from s to t is polynomial time solvable.

Unfortunately, this result does not hold in 2-arc-colored digraphs with no pac

circuits (note that non pac circuits are allowed in this case).

Theorem 3. Deciding whether a 2-arc-colored digraph with no pac circuits con-
tains a pac path from s to t is NP-complete.

Proof. We use a reduction from the Path with Forbidden Pairs Problem (pfpp,
in short). In pfpp, we are given a (non-colored) digraph D = (V, A), two vertices
v, w ∈ V and a collection C = {{a1, b1}, . . . , {aq, bq}} of pairs of vertices (ai �= bi)
from V \ {v, w}. The objective is to determine whether there exists a directed
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path connecting v to w and passing through at most one vertex from each pair.
This problem was shown NP-complete [12] even if D is acyclic and all pairs of
C are required to be disjoint, i.e., {ai, bi} ∩ {aj, bj} = ∅ for i �= j (see problem
[GT54] page 203 in [14]).

Let D = (V, A) be an acyclic digraph containing v, w ∈ V and a subset C
of disjoint pairs of vertices. W.l.o.g., assume that d−D(v) = d+

D(w) = 0. The
construction of Dc is done in two steps. We build a digraph D′ at first and then
we build Dc from D′. The digraph D′ = (V ′, A′) is such that V ′ = V ∪ {s},
A′ = A∪A′

1 ∪A′
2 and vertices v and w are replaced by u and t respectively. Let

A′
1 := {sa1, sb1, aqu, bqu} and A′

2 := {aiai+1, aibi+1, biai+1, bibi+1 : i =
1, . . . , q − 1}. For the moment, notice that two arcs connecting the same pair of
vertices may exist.

We build Dc as follows: for arcs in A′
1, sa1 and sb1 are colored in blue (color

2), while arcs aqu and bqu are colored in red (color 1). Next, we apply a directed
version of Häggkvist’s transformation (see Subsection 1.1): each arc e = xy of
A∪A′

2 is replaced by a directed path of length two, that is xve, vey, except for
arcs incident to t. If e = xy ∈ A, then xve is colored in blue and vey is colored
in red. If e = xt, then e is colored in blue. By extension, arcs xve, vey are in
A. If e = xy ∈ A′

2 then xve is colored in red and vey is colored in blue. By
extension, arcs xve, vey are in this case in A′

2. The construction is completed
(an example is given in Figure 1).

(a) (b)

1

u

5

1

Color 1

Color 2

5

3 3

sv w

4
42

2

t

Fig. 1. Reduction from the pfpp with C = {{1, 2}, {3, 4}} to the pac s-t path problem.
Color 1 (resp., 2) corresponds to red (resp., blue).

This construction is clearly done within polynomial time and Dc is a 2-arc-
colored digraph. We now give an intermediate property.

Property 1. Any pac path of Dc cannot use two consecutive arcs xy and yz
such that xy ∈ A (resp., xy ∈ A′

1 ∪ A′
2) and yz ∈ A′

1 ∪ A′
2 (resp., xy ∈ A)

except if y = u.
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Proof. By inspection. If xy ∈ A (resp., xy ∈ A′
2) and yz ∈ A′

2 (resp., yz ∈ A)
then xy = ve1y is red (resp., blue) and yz = yve2 is red (resp., blue). If y �= u,
then either xy = sa1 (resp., xy = sb1) (recall that d−D(s) = 0) and yz ∈ A or
xy = ve1aq (resp., xy = ve2bq) and yz = aqu (resp., yz = bqu). In the first
case, these two arcs xy and yz are blue, while in the second case, these two arcs
xy and yz are red. •

From Property 1, we deduce that any pac path of Dc from s to t uses some arcs
in A′

1 ∪A′
2 at first and after it uses some arcs in A (after passing through u).

Let us show that Dc does not contain any pac circuit. Since (V ′, A) has no
circuits (by hypothesis) and (V ′, A′

1 ∪A′
2) has no circuits (by construction), any

circuit of Dc must contain two consecutive arcs such that the first arc is in A
(resp., A′

1 ∪ A′
2) and the second arc is in A′

1 ∪A′
2 (resp., A). Using Property 1,

the circuit is not pac.
Finally, using Property 1, we claim that we have a directed path from v to w

in D and visiting at most one vertex from each pair of C, if and only if, we have a
pac path from s to t in Dc. To see that, let Γ with |Γ | ≤ q be a subset of vertices
of C belonging to a directed path from v to w in D. As a consequence, we can
construct a directed pac sub-path from u to t in Dc, say α, visiting the same set
Γ of vertices and only containing arcs of A. Therefore, from Property 1, we can
determine a pac path from s to t in Dc by concatenating a pac sub-path from
s to u and containing no vertices of Γ (only with arcs of A′

1 ∪A′
2), which always

exist in this case, with the pac sub-path α from u to t. Conversely, consider a
pac path from s to t in Dc (note that all pac s-t paths in Dc contain vertex
u). Thus, by Property 1, it follows that the associated pac sub-path from s to
u only contains arcs of A′

1 ∪A′
2 and the pac sub-path from u to t only contains

arcs of A (each of them containing at most one vertex of {ai, bi} for i = 1, .., q).
After deleting all arcs of A′

1 ∪ A′
2 in Dc, the resulting path from u to t will be

directely associated to a path from v to w in D passing through at most one
vertex from each pair of C. ��

Now, we show that our previous theorem can be extended to include any number
of colors. Formally, we have the following result:

Corollary 3. Deciding whether a c-arc-colored digraph Dc with no pac circuits
contains a pac s-t path is NP-complete, even if c = Ω(|V (Dc)|2).

Theorem 3 can also be extended to planar c-arc-colored digraphs.

Corollary 4. Deciding whether a planar c-arc-colored digraph Dc
P with no pac

circuits contains a pac s-t path is NP-complete even for c = Ω(|V (Dc
P )|).

4 pac Circuits, Paths and Hamiltonian Paths in
c-Arc-Colored Tournaments

A tournament is a digraph which corresponds to a complete asymmetric binary
relation. As indicated previously, one can build a tournament as follows: take a
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complete undirected graph and assign a direction to each edge. The problems of
finding pac s-t paths and pac circuits in c-arc-colored tournaments are challeng-
ing. For example, the complexity of determining a pac circuit in a 2-arc-colored
tournament is posed in [17,5]. Here, we propose and solve a weaker version of this
problem, we show that deciding whether a c-arc-colored tournament contains a
pac circuit passing through a given vertex x is NP-complete. As a consequence,
we prove that finding pac s-t paths in tournaments is also NP-complete.

We also deal with the determination of pac Hamiltonian s-t paths in arc-
colored tournaments. When restricted to uncolored tournaments, one of the
earliest results is Rédei’s theorem, which states that every tournament has an
Hamiltonian directed path (the endpoints are not specified). More recently, in
[6] the authors gave a polynomial algorithm to find an Hamiltonian directed s-t
path (if one exists) in an uncolored tournament. Recently in [11,5] (using a nice
characterization) the authors show that the problem of finding pec Hamiltonian
s-t path is polynomial in c-edge-colored complete graphs for c ≥ 3, solving a con-
jecture posed in [4] (the case c = 2 was previously solved in [4]). Unfortunately,
we prove that these results cannot be extended to the directed case.

Thus, we begin with the following result:

Theorem 4. Deciding whether a c-arc-colored tournament contains a pac cir-
cuit visiting a given vertex x is NP-complete even for c = Ω(|V (Dc)|).

Proof. Here, we only deal with c = 2 since our proof can be easily extended for
c = Ω(|V (Dc)|) (see the Appendix for details). Thus, we start from the 2-arc-
colored digraph Dc = (V ′, A′) built in Theorem 3 and we complete it in order to
get a tournament T c. The idea is to get a tournament whose pac circuits passing
through x = s (if one exists) also visit vertex t. Then, directed paths from v to
w in D (visiting at most one vertex from each pair of C), instance of the Path
with Forbidden Pairs Problem, correspond to pac circuits passing through s in
T c and vice-versa.

Recall that in the construction of Dc (see the proof of Theorem 3), we replace
each arc e ∈ A (resp., e from A′

2), except those which are incident to t, by
a directed path of length two in A (resp., in A′

2) where the added vertex is
denoted by ve. If e ∈ A (resp. e ∈ A′

2) then we suppose that ve ∈ V (A) (resp.,
ve ∈ V (A′

2)).
Now, we show how to build the tournament T c. The construction is done in

four steps:

(1) Build a set of arcs A′
3 as follows. Add a red arc ts and a blue arc us. Do

A(Dc) ← A(Dc) ∪ A′
3. Then, add a blue arc tx for each x /∈ NDc(t), a blue

arc xu for each x /∈ NDc(u) and a blue arc xs for each x /∈ NDc(s). Do
A(Dc) ← A(Dc) ∪A′

3.
(2) Build a set of arcs A′

4 as follows. Choose an arbitrary vertex ve of V (A)
(resp., V (A′

2)) with an incoming blue (resp., red) arc yve (resp., aive or
bive), and add a blue (resp., red) arc vex for every x /∈ NDc(ve). Let A′

4 be
this new set of arcs and do A(Dc) ← A(Dc) ∪ A′

4. Repeat the process for
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the remaining vertices ve of V (A) (resp., V (A′
2)) by following an arbitrary

order.
(3) Build a set of blue arcs A′

5 = {aqx : ∀x /∈ NDc(aq)}∪{bqy : ∀y /∈ (NDc(bq)∪
{aq})}. Recall that {aq, bq} is the last pair of C. Set A(Dc) ← A(Dc) ∪A′

5.
(4) Build a set A′

6 of blue arcs with endpoints in V (Dc) \ ({s, u, t, aq, bq} ∪ {ve :
ve ∈ V (A) ∪ V (A′

2)}) and arbitrary directions. Set A(Dc)← A(Dc) ∪A′
6.

The construction is completed. It is clearly done within polynomial time, and
T c is a 2-arc-colored tournament. We now give some useful properties:

Property 2. The following properties hold:

(i) Any pac circuit passing through s (resp., u) in T c uses ts and one arc
among {sa1, sb1} (resp., uses exactly one arc among {aqu, bqu} and one
arc uve ∈ A).

(ii) No pac circuit passing through s in T c uses an arc of A′
4.

(iii) No pac circuit passing through s in T c uses an arc of A′
5 ∪A′

6.

Proof. For (i). Due to step (1) of the above procedure, there is a unique red arc
incident to s (resp., t) which is ts. Thus, any pac circuit passing through s also
visits t. Moreover, vertex s only has two outgoing arcs xa1 and xb1 which are
colored in blue.

Concerning vertex u, aqu and bq are the only red arcs incident to u. Thus, if
a pac circuit visits u then it contains one of these two arcs as incoming arc and
one arc uve ∈ A as outgoing arc. Actually, vertex u has only arcs uve ∈ A and
us as outgoing arcs and no pac circuit can use the blue arc us since all arcs
going out of s are blue.

For (ii). By contradiction, assume that there is a pac circuit passing through
s, ρ = (v1, e1, . . . , ek, vk+1) with v1 = vk+1 = s and containing some arcs of A′

4.
Consider the first arc ep ∈ A′

4 used by ρ (i.e., eq /∈ A′
4 for q = 1, . . . , p− 1). By

construction ep = vex and from (i), we deduce k > p > 1 (i.e., x /∈ {s, t}). Since
ep−1 /∈ A′

4 and ep−1 /∈ A′
3 from (i), arc ep−1 = yve ∈ A ∪ A′

2. Thus, ep−1 has
the same color as ep, which is a contradiction.

For (iii). By contradiction. Firstly assume that there is a pac circuit passing
through s, ρ = (v1, e1, . . . , ek, vk+1) with v1 = vk+1 = s and containing some
arcs of A′

5. Like previously, consider the first arc ep ∈ A′
5 of ρ (i.e., eq /∈ A′

5 for
q = 1, . . . , p − 1). W.l.o.g., suppose that ep = aqx (the same result holds for
ep = bqx); we get x �= u from (i). Then, ep−1 = veaq ∈ A is colored in red and
from (ii) we deduce that ep−2 = yve ∈ A and is colored in blue. Since all arcs in
A′

6 are blue like ep−2, by induction we deduce that eq ∈ A for q = 1, . . . , p − 1.
We obtain a contradiction since from (i) e1 ∈ A′

1 (i.e., e1 ∈ {sa1, sb1}).
Now, suppose that a pac circuit passing through s, ρ = (v1, e1, . . . , ek, vk+1)

with v1 = vk+1 = s contains some arcs in A′
6. Consider the last arc ep = xy ∈ A′

6

used by ρ (i.e., eq /∈ A′
6 for q = p + 1, . . . , k + 1). Since ep is colored in blue

and y �= t (from (i)), we deduce that ep+1 is colored in red. Then, we get
y = ai or y = bi and ep+1 = yve ∈ A′

2 since ep+1 /∈ A′
6. Moreover, from (ii),

ep+2 = vez ∈ A′
2 is colored in blue. Now, since ek ∈ A (the arc of ρ incoming
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in vertex t) is also colored in blue, the pac subpath of ρ from x to t = vk must
contain arc aqu or bqu (using Property 1 of Theorem 3, it is the only way to
flip arcs of A′

2 to arcs of A). Thus, this pac circuit ρ can be decomposed into
three pac paths: ρ1 from y to u, ρ2 from u to s (and containing arc ek+1 = ts)
and ρ3 from s to y. In particular, the pac path ρ3 begins with a blue arc (by
(i)), only uses arcs in A′

2 and ends by a blue arc, which is impossible since ρ3

does not contain u. Actually, path ρ3 cannot use some arcs of A′
6. We have

e2 = x1ve ∈ A′
2 with x1 ∈ {a1, b1} (since the arc must be colored in red) and

using (ii), arc e3 = vex2 with x2 ∈ {a2, b2} is colored in blue. Thus, e4 /∈ A′
5∪A′

6.
Then, the result follows by induction. Notice that it may exist a pac circuit
containing one arc e = xy ∈ A′

6 (but not passing through s). In this case, this
pac circuit is composed of two pac paths ρ1 from y to u and ρ2 from u to y: ρ1

only uses arcs of A′
2 from y to aq (or bq) and uses arc aqu ∈ A′

1 (or bqu ∈ A′
1)

while ρ2 only uses arcs of A from u to x and uses arc e = xy ∈ A′
6. •

Using Properties 1 and 2, we can easily see that we have a directed path from
u to w in D and visiting at most one vertex from each pair of C, if and only if,
we have a pac circuit passing through s in T c. ��

Corollary 5. Deciding whether a c-arc-colored tournament T c contains a pac

s-t path is NP-complete even for c = Ω(|V (T c)|2).

Proof. In the proof of Theorem 4, we have a pac circuit passing through s if
and only if we have a pac s-t path in T c. ��

We finish the paper by considering the pac Hamiltonian s-t path problem.

Theorem 5. Deciding whether a 2-arc-colored tournament T c contains a pac

Hamiltonian s-t path is NP-complete.

Proof. We use a reduction from the directed Hamiltonian s′-t′ path problem in
general uncolored digraphs (DHPP in short). Given a digraph D = (V, A) and
two vertices s′, t′, DHPP asks whether a directed Hamiltonian s′-t′ path exists.
DHPP is NP-complete (see problem [GT39] page 199 in [14]).

Let D = (V, A) be a digraph where V = {v1, . . . , vn} and v1 = s′, vn = t′,
instance of DHPP. W.l.o.g., assume that d−D(v1) = d+

D(vn) = 0. The construction
of the 2-arc-colored tournament T c is done in two steps: we first build a 2-arc-
colored digraph Dc and then we complete Dc into T c.

The 2-arc-colored digraph Dc = (V ′, A′) is built in the following way: V ′ =
{vi

in, vi
out : i = 1, . . . , n} and A′ = A′

1 ∪ A′
2 where A′

1 = {vi
outv

j
in : vivj ∈ A}

and A′
2 = {vi

invi
out : i = 1, . . . , n}. Arcs in A′

1 are colored in red while arcs in
A′

2 are colored in blue. See Figure 2 for an illustration of Dc.
Next we build the tournament T c from Dc as follows. For every missing arc

in Dc, we apply the following procedure where 1 ≤ i < j ≤ n is assumed. If
the endpoints of the missing arc are vi

in and vj
in (resp., vi

in and vj
out), add a blue

arc vj
invi

in (resp., vj
outv

i
in). If the endpoints of the missing arc are vi

out and vj
in

(resp., vi
out and vj

out), add a red arc vj
invi

out (resp., vj
outv

i
out). These new blue

(resp., red) arcs define a set denoted by A′′
2 (resp., A′′

1 ).
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v1

v2

v3

v4

D

v1
in v1

out

v2
in v2

out

v3
in v3

out

v4
in v4

out

Dc

Fig. 2. A digraph D and the 2-arc-colored digraph Dc. Dotted arcs are colored in blue
and rigid arcs are colored in red.

The construction is completed (see Figure 3 for an illustration). It is clearly
done within polynomial time. The resulting tournament is 2-arc-colored. Its blue
arcs belong to A′

2 ∪ A′′
2 while its red arcs belong to A′

1 ∪ A′′
1 . Let us give an

intermediate property.

v1

v2

v3

v4

D

v1
in v1

out

v2
in v2

out

v3
in v3

out

v4
in v4

out

T c

Fig. 3. A digraph D and the 2-arc-colored tournament T c. Dotted arcs are colored in
blue and rigid arcs are colored in red.

Property 3. No pac path from v1
in to vn

out in T c can use an arc of A′′
1 ∪A′′

2 .

Proof. By contradiction suppose that a pac path ρ = (v0, e0, v1, e1, . . . ,
ek, vk+1) linking v0 = v1

in to vk+1 = vn
out uses some arcs of A′′

1 ∪A′′
2 . Consider the

last arc ep ∈ A′′
1 ∪A′′

2 used by ρ (that is eq /∈ A′′
1 ∪A′′

2 for q = p + 1, . . . , k + 1).
If ep = vj

invi
in or ep = vj

outv
i
in (i < j) then it belongs to A′′

2 and it is blue. We
have vi

in �= vn
out so the path must contain an arc going out of vi

in which does not
belong to A′′

1 ∪ A′′
2 . This arc ep+1 = vi

invi
out is blue, contradiction. Otherwise,

ep = vj
invi

out (i �= j) or ep = vj
outv

i
out. Therefore ep ∈ A′′

1 and it is red. We have
vi

out �= vn
out since vn

invn
out is the unique arc coming into vn

out. Then, the path
must contain an arc ep+1 /∈ A′′

1 ∪ A′′
2 going out of vi

out but all arcs of A′
1 ∪ A′

2

going out of vi
out are red since they belong to A′

1, contradiction. ��

We deduce from Property 3 that any pac path from v1
in to vn

out in T c only uses arcs
of A′

1 ∪A′
2. Thus, D admits a directed Hamiltonian path from s′ = v1 to vn = t′,

if and only if, T c has a pac Hamiltonian path from s = v1
in to t = vn

out. ��
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{laurent.gourves,monnot}@lamsade.dauphine.fr

Abstract. An instance of the max k−cut game is an edge weighted
graph. Every vertex is controlled by an autonomous agent with strategy
space [1..k]. Given a player i, his payoff is defined as the total weight of
the edges [i, j] such that player j’s strategy is different from player i’s
strategy. The social welfare is defined as the weight of the cut, i.e. half
the sum of the players payoff. It is known that this game always has a
pure strategy Nash equilibrium, a state from which no single player can
deviate. Instead we focus on strong equilibria, a robust refinement of the
pure Nash equilibrium which is resilient to deviations by coalitions of
any size. We study the strong equilibria of the max k−cut game under
two perspectives: existence and worst case social welfare compared to a
social optimum.

1 Introduction

Given a graph G = (V, E) and a weight function w : E → R+, the max k−cut

problem is to partition V into k sets V1, V2 . . . Vk such that the sum of the
weight of the edges having their endpoints not in the same part of the partition
is maximum. In this paper we study a strategic game defined upon max k−cut.
Each vertex is controlled by a player with strategy set {1, 2, . . . , k}. A player’s
utility is the total weight of the edges incident to her and such that her neighbor
has a different strategy.

The game models a large class of situations where there are k available facil-
ities and every agent must choose one. The facilities are inherently similar but
their number is typically smaller than the number of agents (e.g. compartments
in a train). Then the agents must share the facilities. In this game every agent is
“hindered” by the other agents but solely by those who chose the same facility.
So every agent makes his choice according to the agents that he wants to avoid.
In the max k−cut game, the weight of an edge [i, j] represents the strength of
interference that agents i and j exert on each others if they choose the same
facility. The social welfare for a given state is defined as the total weight of the
edges with corresponding endpoint agents making distinct choices of a facility
(i.e. half the sum of the player’s utility).

This paper is devoted to the existence and the quality of pure1 equilibria in the
max k−cut game. Our work is motivated by the study of large scale distributed
� This work is supported by French National Agency (ANR), project COCA ANR-09-

JCJC-0066-01.
1 We only consider pure strategies so we often omit the word pure.
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systems which usually lack a central control authority. Instead these systems are
operated by self interested entities. Though the uncoordinated decisions made
by the entities often end up in a stable configuration (an equilibrium), these
configurations are rarely socially optimal. Two main questions naturally arise in
this context: For which instances an equilibrium exists? How far from the social
optimum these equilibria can be?

When the focus is on pure Nash equilibria in the max k−cut game, the
answer to these two questions is known. For every instance (and every k) an
optimal cut is a pure Nash equilibrium. Furthermore, the price of anarchy (PoA
in short) [1], defined as the worst case ratio between the social welfare of a Nash
equilibrium and the optimal social welfare, is k−1

k [2]. This paper is devoted to
the (even more) appealing concept of strong equilibrium (SE in short) [3]. This
notion refines the NE because it considers deviations by coalitions of any size
whereas NE are restricted to deviations by a single player. When it exists, a SE
is a very robust state of the game, it is also more sustainable than a NE. Strong
equilibria are the topic of many recent articles including [4,5,6,7,8].

We are interested in the existence of SE in the max k−cut game and their
quality with respect to socially optimal configurations. In particular, we resort
to the strong price of anarchy (SPoA in short) [4] which is the price of anarchy
restricted to strong equilibria.

Previous related work and Contribution. The max k−cut game or similar
games like the party affiliation game, the interference game or the consensus
game have been studied in [9,10,5,6,2] from different perspectives: existence of a
pure equilibrium, convergence time to an equilibrium, complexity for computing
an equilibrium and worst case quality of an equilibrium. In this paper we only
deal with the existence and the worst case quality of a pure equilibrium.

For the max 2−cut game, the picture is complete. A SE always exists because
the state corresponding to an optimal cut is a SE. The PoA is 1/2 by a well known
result from local search theory and the SPoA is 2/3 [5]. From now on we consider
that k ≥ 3. A NE always exists because the state corresponding to an optimal
cut is a NE. In [2] it is shown that the PoA of the unweighted max k−cut game
is k−1

k and one can easily extend the result to the weighted case. In [5] it is shown
that an optimal cut is not necessarily a SE but the instance presented admits
another optimal cut which turns out to be a SE. The state corresponding to an
optimal cut is a 3-strong equilibrium (a state immune to deviations by coalitions
of at most 3 players) but not necessarily a 4-strong equilibrium [5].

In Section 2 we provide some useful definitions and notations. The results
presented in this paper deal with the existence of a SE (Section 3) and if a SE
exists, we bound its quality compared to a social optimum (Section 4). In Sec-
tion 3 we do not prove or disprove that every instance of the max k−cut game
admits a SE. Instead we give both negative and positive results related to this
question. In Section 4 we give an upper bound of 2k−2

2k−1 and a matching lower
bound on the SPoA. It is noteworthy that the upper bound is derived without
any assumption on the instance so it applies every time a SE exists. We conclude
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in Section 5. We conjecture that a SE always exists for the max k−cut game,
but we are not able to prove this for the moment.

2 Definitions and Notations

A strategic game is a tuple 〈N, (Σi)i∈N , (ui)i∈N 〉 where N is the set of players (we
suppose that |N | = n), Σi is the set of strategies of player i and ui : ×iΣi → R is
player i’s utility function. A pure state or pure strategy profile of the game is an
element of Σ := ×iΣi. Although players may choose a probability distribution
over their strategy set, we only consider pure strategy profiles in this paper.
Players are supposed to be rational, i.e. each of them plays in order to maximize
his utility.

Given a state a ∈ Σ, (a−i, bi) denotes the state where ai is replaced by bi

in a while the strategy of the other players remains unchanged. A state a is a
Nash equilibrium (NE) if there no player i ∈ N and a strategy bi ∈ Ai such that
ui

(
(a−i, bi)

)
> ui(a).

Given two states a, a′ and a coalition C ⊆ N , (a−C , a′) denotes the state
where ai is replaced by a′

i in a for all i ∈ C. A state a is a strong equilibrium
(SE) if there is no non-empty coalition C ⊆ N and a profile a′ ∈ A such that
ui

(
(a−C , a′)

)
> ui(a) for all i ∈ C. A state a is an r-strong equilibrium (r-SE)

if there is no non-empty coalition C ⊆ N of size at most r and a profile a′ ∈ A
such that ui

(
(a−C , a′)

)
> ui(a) for all i ∈ C. Therefore a SE is a NE, a NE is a

1-SE and a n-SE is SE (n is the number of players).
The price of anarchy (PoA) measures the performance of decentralized sys-

tems [1] via its Nash equilibria. More formally, let Γ be a family of strate-
gic games, let γ be an instance of Γ , let Aγ be the strategy space of γ, let
Q : Aγ → R+ be the social welfare, let E(γ) be the set of all pure Nash equilib-
ria of γ and let oγ be a social optimum for γ (i.e. oγ = argmaxa∈Aγ

Q(a)). The
pure price of anarchy of Γ is minγ∈Γ mina∈E(γ)Q(a)/Q(oγ). If SE(γ) denotes
the set of all strong equilibria of γ then the strong price of anarchy (SPoA) [4]
is minγ∈Γ mina∈SE(γ)Q(a)/Q(oγ).

3 On the Existence of Strong Equilibria

This section contains both negative and positive results on the existence of a SE
in the max k−cut game. The negative results are (often non trivial) observations
that all proof techniques that we are aware of, to show the existence of a SE,
fail. The positive results are (often tight) sufficient conditions for the existence
of a SE, and the existence of a good approximation of it in every instance.

Negative results. The strategy profiles which correspond to optimal cuts play
an important role because they are often stable states. When k = 2 and k ≥ 3,
optimal cuts are respectively strong equilibria and 3-strong equilibria [5]. An
instance presented in [5] admits two optimal cuts: one is a SE while the other is
not a 4-SE. It shows that an optimal cut is not necessarily a SE but it does not
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prevent (at least) one optimal cut to be a SE. In this paper we propose a new
and simpler instance in which the unique optimal cut is not a SE. Consider the
instance given on the left part of Figure 1. An exhaustive search can show that
the given 3-cut is the only optimal solution. However, it is not a SE as nodes a,
b, c and f can modify their strategy and benefit (see the right part of Figure 1).

a

a b

bc

c

d de e

f

f
1

3

4

5

Fig. 1. Left: An optimal 3-cut with value 37. Right: Starting from the left configura-
tion, vertices a, b, c and f can move and benefit but the value of the cut is 36.

A second way to prove the existence of a SE is to exhibit a strong potential
function ΦS and an order ≺ such that ΦS(σ) ≺ ΦS(σ′) holds for every improv-
ing pair of strategy profiles (σ, σ′)2 [6]. This technique captures the fact that
the players naturally converge to a SE (a state σ∗ such that ΦS(σ∗) is locally
maximum for ≺) since every sequence of improvements is finite. However no pair
(ΦS ,≺) can exist for the max k−cut game since the dynamics can cycle. We are
given an instance of the max 3−cut with 4 nodes and three strategy profiles (see
Figure 2). At each deviation by a coalition, the utility of every member strictly
increases but the three configurations form a cycle. It is noteworthy that the
interference game studied by Harks, Klimm and Möhring [6], and for which they
prove the existence of a SE by the strong potential function, is slightly different
to the max k-cut game. The slight difference makes both results (existence of a
strong potential function for the interference game, and non existence of a strong
potential function for the max k−cut game) consistent.

1
1 1

11

11

11

6

6 6 9

9

9

77
7

3

3

3
AA

A

B

B
B

CC
C

D

D
D

Fig. 2. A cycle disproving the existence of a strong potential function

2 The cost (resp. the payoff) in σ of every player having a distinct strategy in σ′

strictly decreases (resp. strictly increases) when switching to σ′.
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A last attempt is to observe that the max k−cut game is a congestion game
[11,12]. Congestion games are extensively studied for two reasons, they always
admit a pure strategy Nash equilibrium and they are general models for resource
sharing in networks. Sufficient conditions on the strategy space to show the
existence of a SE were derived [7,8]. These works are based on the notion of bad
configurations in the strategy space. An instance of a congestion game without
any bad configuration admits a SE (but a bad configuration does not prevent
some instances to admit a SE). If we turn the max k−cut game into a congestion
game and consider the clique on 3 nodes then we get a bad configuration.

Positive results. A direct observation is that every k-colorable graph admits
a SE: a k coloration induces a state σ∗, where every vertex with color c plays c,
such that ui(σ∗) =

∑
[i,j]∈E w([i, j]) for all i ∈ V . However this condition is not

necessary: take a clique of size 3 for the max 2-cut game. In every state σ there
is a node i which satisfies ui(σ) <

∑
[i,j]∈E w([i, j]) but this instance admits a SE.

Another direction to prove the existence of a SE is to limit the number players.

Proposition 1. If |V | ≤ k + 2 then an optimal state of the max k-cut game
is a SE.

Proof. Let σ be an optimal state. Hence σ is a NE. Suppose there is j ∈ {1, . . . , k}
and no player i such that σ(i) = j. For every pair of nodes i, i′ such that
σ(i) = σ(i′), it must be w([i, i′]) = 0 since otherwise σ is not optimal. Thus G
is k − 1 colorable and σ must be a SE.

Now suppose that for every j ∈ {1, . . . , k}, there is at least one player i
such that σ(i) = j. By contradiction, suppose that there is a coalition C ⊆ V
of players who can modify their strategy and benefit. Let σ′ be the resulting
strategy profile. A result of [5] states that an optimal state is a 3-SE, i.e. |C| > 3.

Let V1, . . . , Vk (resp. V ′
1 , . . . , V ′

k) be the k partition corresponding to σ (resp.
σ′). By hypothesis |Vj | ≥ 1 for j = 1..k. Since |V | ≤ k + 2, we can consider two
cases:

– |V1| = 3 and |Vj | = 1 for j = 2, . . . , k. For every i ∈ V2 ∪ . . . ∪ Vk, we
know that i /∈ C because ui(σ) is maximum. Then C ⊂ V1, |C| ≤ |V1| = 3,
contradiction with |C| > 3.

– |V1| = |V2| = 2 and |Vj | = 1 for j = 3..k. For every i ∈ V3 ∪ . . . ∪ Vk, we
know that i /∈ C because ui(σ) is maximum. If V1 ∩

(
V ′

3 ∪ . . . ∪ V ′
k

)
�= ∅

or V2 ∩
(
V ′

3 ∪ . . . ∪ V ′
k

)
�= ∅ then it contradicts the fact that σ is a NE.

Indeed, if a player i belongs to V1 ∩
(
V ′

3 ∪ . . . ∪ V ′
k

)
, then it means that

it can deviate unilaterally and improve its utility, contradiction with the
fact that σ is a NE. Thus σ(i) ∈ {1, 2} ⇒ σ′(i) ∈ {1, 2}. If V1 ⊆ C then
ui(σ) ≥ ui(σ′) holds for every i ∈ V1. We deduce that V1 �⊆ C. It follows
that |C| ≤ |V1| − 1 + |V2| = 3, contradiction with |C| > 3. ��

One can observe that Proposition 1 is tight when k = 3. Every instance with
5 nodes and k = 3 admits a SE by the proposition, but one cannot go beyond
since for the 6 nodes instance of Figure 1, the optimal cut is not a SE.
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Our last positive result is about the existence of an approximate strong equi-
librium in every instance. Given a real ε ≥ 0, a state a is an ε-approximate strong
equilibrium if there is no non-empty coalition C ⊆ N and a profile a′ ∈ A such
that ui

(
(a−C , a′)

)
> (1 + ε)ui(a) for all i ∈ C. Therefore a 0-approximate SE

is a SE. Approximate equilibria are appealing concepts in game theory. They
capture the fact a player does not deviate if his gain is negligible. Approximate
equilibria are the topic of many recent articles including [13,14,15].

Theorem 1. Every NE of the max k-cut game is a 1
k−1 -approximate SE.

Proof. Let σ be a NE. Take a player p and suppose w.l.o.g. that σ(p) = k.
Let E(p, σ, i) be the set of edges [p, q] such that σ(q) = i. Let W (p, σ, i) =∑

e∈E(p,σ,i) w(e) when E(p, σ, i) �= ∅ and W (p, σ, i) = 0 otherwise. The utility of

p under σ is equal to
∑k−1

i=1 W (p, σ, i). If p unilaterally replaces his strategy by
j then his utility becomes

∑k
i=1
i�=j

W (p, σ, i). Since σ is a NE,
∑k−1

i=1 W (p, σ, i) ≥∑k
i=1
i�=j

W (p, σ, i), which is equivalent to W (p, σ, j) ≥ W (p, σ, k) for every j ∈
{1, . . . , k − 1}. Sum up this inequality for every j ∈ {1, . . . , k − 1} to get that

1
k−1

∑k−1
i=1 W (p, σ, i) ≥ W (p, σ, k). The utility of p in any state σ′ is at most∑k

i=1 W (p, σ, i). We deduce that

up(σ′)≤
k−1∑
i=1

W (p, σ, i)+W (p, σ, k) ≤ (1+
1

k − 1
)

k−1∑
i=1

W (p, σ, i)=(1+
1

k − 1
)up(σ).

It follows that σ must be a 1
k−1 -approximate SE. ��

Since the max k−cut game always possesses a NE, the existence of a 1
k−1 -

approximate SE is guaranteed. Interestingly Theorem 1 is tight because there
are instances where a NE is a 1

k−1 -approximate SE but not an ε-approximate
SE for some ε < 1

k−1 .

4 On the Quality of Strong Equilibria

In the previous section we identified some cases where a SE exists. Here we
bound the strong price of anarchy but we do not make any assumption on the
instance so the result applies for every instance admitting a SE.

Theorem 2. When k ≥ 3, the SPoA of the max k−cut game is at least 2k−2
2k−1 .

Proof. Let k ≥ 3 and G = (V, E) be an instance of the max k−cut game. Let
σ be a SE of G. Let σ∗ be an optimal state of G.

Let EOS (resp. EOO) be the set of edges which are only in cut induced by σ
(resp. σ∗). Let ECOM be the set of edges which are in common. Let OS, OO
and COM be the weight of EOS , EOO and ECOM respectively. Suppose that
the following inequality holds.
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COM + kOS ≥ (2k − 2)OO (1)

Add (2k− 2)COM on both sides to get (2k− 1)COM + kOS ≥ (2k− 2)(OO +
COM). Since k ≥ 1 ⇔ k ≤ 2k − 1, we deduce that (2k − 1)(COM + OS) ≥
(2k − 2)(OO + COM). Using COM + OS = Q(σ) and COM + OO = Q(σ∗),
the result follows.

Now let us prove inequality (1). We partition V into k2 sets Xi,j := {v ∈ V :
σ(v) = i and σ∗(v) = j} for i, j = 1, . . . , k (see Figure 3 for an illustration). Given
two disjoint sets X ⊆ V and Y ⊆ V , w(X, Y ) denotes

∑
x∈X

∑
y∈Y w([x, y]).

Similarly, w(x, Y ) denotes
∑

y∈Y w([x, y]) where Y ⊂ V and x ∈ V \ Y .

X1,2

X1,1

X1,3

X2,1

X2,2

X2,3

X3,1

X3,3

X3,2

Fig. 3. Partition of V into k2 sets according to σ and σ∗, case k = 3. Dashed edges
belong to the cut induced by σ but they are not in the cut induced by σ∗. Solid
edges belong to the cut induced by σ∗ but they are not in the cut induced by σ. Non
represented edges are in the intersection.

Let π be a permutation of {1, · · · , k}. One can list k! optimal cuts representing
the same state σ∗, one per permutation, if σ∗(v) is replaced by π(σ∗(v)) for
all v ∈ V . Let us denote by π(σ∗) the optimum state associated with π. Let
Vπ be the nodes of V which are misplaced according to π(σ∗), i.e. v ∈ Vπ if
σ(v) �= π(σ∗(v)). Let rπ = |Vπ |. We are going to rename the nodes of Vπ so that
Vπ = {v1, · · · , vrπ}.

Since σ is a SE, there is at least one node v ∈ Vπ such that uv(σ) ≥
uv(σ−Vπ , π(σ∗)). In other words, v does not benefit if all nodes of Vπ replace their
strategy in σ by their strategy in π(σ∗). Rename v by v1. Again, since σ is a SE,
there is at least one node v ∈ Vπ \ {v1} such that uv(σ) ≥ uv(σ−Vπ\{v1}, π(σ∗)).
Rename v by v2. The procedure is run until all nodes of Vπ are renamed, that
is Vπ = {v1, · · · , vrπ}.

Let us define V �
π as {v�, v�+1, · · · , vrπ} for 1 ≤ � ≤ rπ. For every v� ∈ Vπ, one

has
uv�

(σ) ≥ uv�
(σ−V �

π
, π(σ∗)) (2)

Take a vertex v� ∈ Vπ and suppose that v� ∈ Xi�,j�
. There are three cases where

the weight of an edge [v�, y] is present in uv�
(σ) but not in uv�

(σ−V �
π
, π(σ∗)):
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– CASE 1. y is not misplaced and he plays in σ the strategy that v� plays
in π(σ∗). In other words, y ∈ Xi′,j′ where i′ = π(j′) and i′ = π(j�); thus,
j′ = j� since π is a permutation. In this case [v�, y] ∈ EOS .

– CASE 2. y is misplaced, he was renamed after v�, he does not play the same
strategy as v� in σ but he plays the same strategy as v� in π(σ∗). In other
words, y ∈ Xi′,j′ ∩ V �+1

π where i′ �= π(j′), i′ �= i� and j′ = j�. In this case
[v�, y] ∈ EOS .

– CASE 3. y is misplaced, he was renamed before v�, he plays in σ the strategy
that v� plays in π(σ∗). In other words, y ∈ Xi′,j′ ∩(Vπ \V �

π ) where i′ �= π(j′),
i′ �= i� and i′ = π(j�) (hence, j′ �= j�). In this case [v�, y] ∈ ECOM .

There are three cases where the weight of an edge [v�, y] is present in
uv�

(σ−V �
π
, π(σ∗)) but not in uv�

(σ):

– CASE 4. y is not misplaced and he plays the same strategy as v� in σ. In
other words, y ∈ Xi′,j′ where π(j′) = i′ and i′ = i�. In this case [v�, y] ∈ EOO.

– CASE 5. y is misplaced, he was renamed after v�, he plays the same strategy
as v� in σ but he does not play the same strategy as v� in π(σ∗). In other
words, y ∈ Xi′,j′ ∩ V �+1

π where i′ = i�, j′ �= j� and i′ �= π(j′). In this case
[v�, y] ∈ EOO.

– CASE 6. y is misplaced, he was renamed before v� and he plays the same
strategy as v� in σ. In other words, y ∈ Xi′,j′ ∩ (Vπ \ V �

π ) where i′ �= π(j′)
and i′ = i�. In this case [v�, y] /∈ EOO ∪ ECOM ∪ EOS if y plays the same
strategy as v� in π(σ∗), i.e. j′ = j�, otherwise [v�, y] ∈ EOO.

Using cases 1 to 6, one can rewrite inequality (2) as follows.

w(v�, Xπ(j�),j�
) +

k∑
i′=1,i′ �=i�,i′ �=π(j�)

w(v�, Xi′,j�
∩ V �+1

π ) +

k∑
j′=1,j′ �=j�

w(v�, Xπ(j�),j′ ∩ (Vπ \ V �
π )) ≥

k∑
j′=1

w(v�, Xi�,π−1(i�)) +

k∑
j′=1,j′ �=j�,j′ �=π−1(i�)

w(v�, Xi�,j′ ∩ V �+1
π ) +

k∑
j′=1,j′ �=π−1(i�)

w(v�, Xi�,j′ ∩ (Vπ \ V �
π ))

(3)

Using w(v�, Xi�,j′ ∩(Vπ \V �
π )) ≥ 0 (the weight of an edge is always non negative)

and the previous inequality, we get that:

w(v�, Xπ(j�),j�
) +

k∑
i′=1,i′ �=i�,i′ �=π(j�)

w(v�, Xi′,j�
∩ V �+1

π )+

k∑
j′=1,j′ �=j�

w(v�, Xπ(j�),j′ ∩ (Vπ \ V �
π )) ≥

k∑
j′=1

w(v�, Xi�,π−1(i�)
)+

k∑
j′=1,j′ �=j�,j′ �=π−1(i�)

w(v�, Xi�,j′ ∩ V �+1
π ) +

k∑
j′=1,j′ �=π−1(i�),j

′ �=j�

w(v�, Xi�,j′ ∩ (Vπ \ V �
π )) (4)
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Actually, we have “removed” the weight of edges [v�, y] /∈ EOO ∪ ECOM ∪ EOS

which appear on Case 6. Observe that the last two terms of inequality (4) can
be grouped as follows:

w(v�, Xπ(j�),j�
) +

k∑
i′=1,i′ �=i�,i′ �=π(j�)

w(v�, Xi′,j�
∩ V �+1

π ) +

k∑
j′=1,j′ �=j�

w(v�, Xπ(j�),j′ ∩ (Vπ \ V �
π )) ≥

k∑
j′=1

w(v�, Xi�,π−1(i�)) +

k∑
j′=1,j′ �=j�,j′ �=π−1(i�)

w(v�, Xi�,j′ ∩ Vπ) (5)

Summing inequality (5) for � = 1, · · · , rπ, i.e. for each v� ∈ Vπ , we get that

rπ∑
�=1

(
w(v�, Xπ(j�),j�

) +
k∑

i′=1,i′ �=i�,i′ �=π(j�)

w(v�, Xi′,j�
∩ V �+1

π ) +

k∑
j′=1,j′ �=j�

w(v�, Xπ(j�),j′ ∩ (Vπ \ V �
π ))

)
≥

rπ∑
�=1

( k∑
j′=1

w(v�, Xi�,π−1(i�)) +

k∑
j′=1,j′ �=j�,j′ �=π−1(i�)

w(v�, Xi�,j′ ∩ Vπ)
)

(6)

Now we give an intermediate property (proof in the appendix).

Property 1. For any edge [x, y], if w([x, y]) appears in the left-hand part of in-
equality (6) then it appears once.

Cases 1 and 2 state that if w[x, y] appears in the left-hand part of inequality (6)
then [x, y] ∈ EOS . Using the fact that w[x, y] appears at most once (by Property
1), we deduce that

rπ∑
�=1

(
w(v�, Xπ(j�),j�

) +
k∑

i′=1,i′ �=i�,i′ �=π(j�)

w(v�, Xi′,j�
∩ V �+1

π )
)
≤ OS (7)

Case 3 states that if w[x, y] appears in the left-hand part of inequality (6) then
[x, y] ∈ ECOM and {x, y} ⊆ Vπ. Moreover w([x, y]) appears at most once, we
deduce that

rπ∑
�=1

( k∑
j′=1,j′ �=j�

w(v�, Xπ(j�),j
′ ∩ (Vπ \ V �

π ))
) ≤ k∑

i=1

k∑
j=1,j �=π−1(i)

k∑
j′=1,j′ �=j

w(Xi,j , Xπ(j),j′ )

(8)



The Max k-Cut Game and Its Strong Equilibria 243

Using inequalities (7) and (8), we obtain the following upper bound on the left-
hand part of inequality (6):

OS +
k∑

i=1

k∑
j=1,j �=π−1(i)

k∑
j′=1,j′ �=j

w(Xi,j , Xπ(j),j′ ) (9)

Now we give a second intermediate property (proof in the appendix).

Property 2. Let x and y be two vertices of Xi,j and Xi′,j′ respectively. Among
the k! possible permutations π of {1, · · · , k}, exactly (k − 1)! of them satisfy
simultaneously: π(j) �= i, π(j′) �= i′ and i′ = π(j).

Now sum up inequality (9) for all permutations π of {1, . . . , k}. We can give
the following upper bound of the result: k!OS + (k − 1)!COM . Indeed every
edge in EOS appears exactly once for each permutation π. Concerning the edges
[x, y] ∈ ECOM , each one appears at most (k − 1)! times by Property 2.

Now we focus on the right part of inequality (6). Take an edge [x, y] such that
x ∈ Xi,j and y ∈ Xi′,j′ . The weight of [x, y] does not appear in the right part
of inequality (6) if i �= i′. w([x, y]) appears once in the right part of inequality
(6) if π(j) = i = i′ and π(j′) �= i′; in this case x /∈ Vπ whereas y ∈ Vπ . w([x, y])
appears twice in the right part of inequality (6) if i �= i′, π(j) �= i and π(j′) �= i′;
in this case x, y ∈ Vπ.

By definition a vertex which is not in Vπ must be in Xi,π−1(i) for some i ∈
{1, · · · , k}. Then inequality (6) is equal to

k∑
i=1

( k∑
j=1,j �=π−1(i)

w(Xi,π−1(i), Xi,j) +
k∑

j=1,j �=π−1(i)

k∑
j′=1,,j′ �=π−1(i)

w(Xi,j , Xi,j′)
)
.

(10)
If we sum up inequality (10) over the k! permutations of {1, · · · , k} then every
term w(Xi,j , Xi,j′), for j �= j′, appears exactly (k − 1)!(2k − 2) times. Indeed,
a set Xi,j satisfies π(j) = i exactly (k − 1)! times, whereas π(j) �= i holds
k! − (k − 1)! times. In addition it can not be π(j) = π(j′) = i because j �= j′:
2(k− 1)!+ 2(k!− 2(k− 1)!) = (k− 1)!(2k− 2). Therefore summing up inequality
(10) over the k! permutations of {1, · · · , k} gives (k − 1)!(2k − 2)OO.

Finally, summing up inequality (6) over all possible permutations of {1, · · · , k},
we get that k!OS + (k − 1)!COM ≥ (k − 1)!(2k − 2)OO which is equivalent to
inequality (1). ��

The following matching upper bound on the SPoA of the max k−cut game can
be derived.

Proposition 2. The SPoA of the max k−cut game is at most (2k−2)/(2k−1).

Proof. Consider an instance with 2k vertices {v1, · · · , vk}∪{u1, · · · , uk} and the
following 2k − 1 edges of weight 1: [v1, vi] for i = 2..k, [uk, ui] for i = 1..k − 1
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and [v1, uk]. See Figure 4. If every vi plays i while every uj plays j then the
state is optimal and it has weight 2k− 1. If every vi plays i while every uj plays
j + 1 mod k (i.e. uk plays 1, u1 plays 2, etc) then the state is a SE of weight
2k − 2. Indeed every node in {v2, · · · , vk}∪ {u1, · · · , uk−1} has the maximum
utility that he can expect in this instance so none of them has incentive to
deviate. Now if v1 or uk moves then one of his incident edge would not be the
cut anymore while only [v1, uk] can enter the cut. Then v1 and uk can not alone
or together increase their utility. ��

u1

u2

uk−1

uk

v2

v3

vk

v1

Fig. 4. An instance for the upper bound on the SPoA

5 Concluding Remarks and Open Questions

The main question remaining open is to prove or disprove that every instance
of the max k−cut game possesses a strong equilibrium. The technique used by
Harks, Klimm and Möhring [6] considers all improving pairs of strategies while
Holzman and Law-Yone [7] require minimal improving pairs of strategies (an
improving pair of strategies is not minimal if a proper subset of the coalition can
also perform an improvement). The cycle presented in Figure 2 is made of three
improvements which are not minimal. Then it would be interesting to investigate
the existence of a strong potential function restricted to minimal improvements.

A Nash equilibrium of the max k-cut game a 1
k−1 -approximate SE, can we

prove the existence of an ε-approximate SE for some ε < 1
k−1? It is known

from [5] that every instance of the game possesses a 3-SE, a stronger notion
of equilibrium than the NE. However, it is not difficult to build an instance
containing a 3-SE σ which is also a 1

k−1 -approximate SE, but σ is not an ε′-
approximate SE for ε′ < 1

k−1 . A promising direction would be to bound the ε
such that every optimal cut is an ε-approximate SE. This ε cannot be 0 since an
optimal cut is not necessarily a SE and a better lower bound on this ε can be
derived from the instance of Figure 1.

The price of stability (PoS) is a well studied ratio whose definition is close to
the price of anarchy [13]. It is the worst case ratio between the social welfare of
the best NE and a socially optimal state. Since an optimal cut is a NE in the
max k−cut game, the PoS is 1. It is natural to restrict this notion to strong
equilibria [4]. We know that the price of stability for strong equilibria is 1 when
k = 2 and strictly less than 1 when k ≥ 3 (see the instance of Figure 1). It would
be interesting to give an explicit lower bound for the case k ≥ 3.
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Appendix

Property 1. For any edge [x, y], if w([x, y]) appears in the left-hand part of
inequality (6) then it appears once.

Proof. – If neither x nor y belong to Vπ then w([x, y]) can not appear since in
this case [x, y] ∈ ECOM or [x, y] /∈ ECOM ∪EOS ∪EOO.

– If only x (or only y) is in Vπ then w([x, y]) can appear at most once, in the
term w(v�∗ , Xπ(j�∗ ),j�∗ ) where x = v�∗ .
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– If x and y both belong to Vπ then there are �∗ and �∗∗ such that x = v�∗

and y = v�∗∗ . Without loss of generality, suppose that �∗ < �∗∗, v�∗ ∈
Xi�∗ ,j�∗ and v�∗∗ ∈ Xi�∗∗ ,j�∗∗ . w([v�∗ , v�∗∗ ]) can appear when � = �∗ and
when � = �∗∗, i.e. in the terms

∑k
i′=1,i′ �=i�∗ ,i′ �=π(j�∗ ) w(v�∗ , Xi′,j�∗ ∩ V �∗+1

π )

and
∑k

j′=1,j′ �=j�∗∗
w(v�∗∗ , Xπ(j�∗∗),j′ ∩ (Vπ \ V �∗∗

π )). However the first term
imposes j�∗∗ = j�∗ whereas the second one imposes j�∗∗ �= j�∗ , contradiction.

��

Property 2. Let x and y be two vertices of Xi,j and Xi′,j′ respectively. Among
the k! possible permutations π of {1, · · · , k}, exactly (k − 1)! of them satisfy
simultaneously: π(j) �= i, π(j′) �= i′ and i′ = π(j).

Proof. We first observe that j �= j′ by π(j′) �= i′ and i′ = π(j). Moreover i �= i′

by π(j) �= i and i′ = π(j). Then we conduct a case study where i �= i′ and j �= j′.
Let a, b, c, d are four distinct elements of {1, · · · , k}:

– Case i = a, j = a, i′ = b and j′ = b. π must satisfy b = π(a). Since a
permutation is a bijection, it follows that π(b) �= b and π(a) �= a. Then π
satisfies the three assertions iff b = π(a) and there are (k− 1)! permutations
satisfying b = π(a).

– Case i = a, j = b, i′ = b and j′ = a. π must satisfy b = π(b). It follows that
π(b) �= a and π(a) �= b. Then π satisfies the three assertions iff b = π(b).

– Case i = a, j = b, i′ = b and j′ = c. π must satisfy b = π(b). It follows that
π(b) �= a and π(c) �= b. Then π satisfies the three assertions iff b = π(b).

– Case i = b, j = c, i′ = a and j′ = b. π must satisfy a = π(c). It follows that
π(b) �= a and π(c) �= b. Then π satisfies the three assertions iff a = π(c).

– Case i = a, j = b, i′ = c and j′ = c. π must satisfy c = π(b). It follows that
π(c) �= c and π(b) �= a. Then π satisfies the three assertions iff c = π(b).

– Case i = c, j = c, i′ = a and j′ = b. π must satisfy a = π(c). It follows that
π(c) �= c and π(b) �= a. Then π satisfies the three assertions iff a = π(c).

– Case i = a, j = b, i′ = c and j′ = d. π must satisfy c = π(b). It follows that
π(d) �= c and π(b) �= a. Then π satisfies the three assertions iff c = π(b). ��
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Abstract. We study the parameterized complexity of inferring su-
pertrees from sets of rooted triplets, an important problem in phylo-
genetics. For a set L of labels and a dense set R of triplets distinctly
leaf-labeled by 3-subsets of L we seek a tree distinctly leaf-labeled by L
and containing all but at most p triplets from R as homeomorphic sub-
tree. Our results are the first polynomial kernel for this problem, with
O(p2) labels, and a subexponential fixed-parameter algorithm running

in time 2O(p1/3 log p) + O(n4).

1 Introduction

In phylogenetics, distinctly leaf-labeled trees represent the evolutionary history
of a set of species, each species corresponding to a label. Supertree methods are
widely used in this field, in order to construct a large tree from smaller trees
on overlapping subsets of species. The simplest approach in this setting consists
in inferring the smallest possible informative trees. Such trees are either rooted
triplets, rooted binary trees on three labels, or quartets, unrooted ternary trees on
four labels. Quartet methods received prominent attention over the last decade,
whereas triplets methods were somewhat overlooked though they enjoy similar
interesting properties and may be less computationally expensive.

Let L be a set of labels. A set R of rooted binary (unrooted ternary) trees
distinctly leaf-labeled by subsets of L is consistent if there exists a rooted binary
(unrooted ternary) tree distinctly leaf-labeled by L and containing every element
ofR as homeomorphic subtree; and inconsistent otherwise. Deciding consistency
for a set of triplets is polynomial-time solvable [1]; in contrast, this problem is
NP-hard for quartets [19]. For an inconsistent triplet set R, two approaches have
been studied to obtain a consistent triplet set from it.

The first approach is to find a minimum-cardinality subset L′ ⊆ L such that
removing all leaves labeled by elements from L′ from triplets in R yields a
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consistent set of trees. The problem of finding L′ is the dual of the maximum
agreement supertree problem [16,14], and we refer to it as Minimum Label

Inconsistency (MLI). The parameterization of MLI by |L′| is denoted as p-
MLI; this problem is NP-hard and fixed-parameter intractable [6]. The restriction
of p-MLI to instances that are dense, that is R contains exactly one triplet
for each 3-subset of L, is fixed-parameter tractable; call this problem p-Dense

MLI. Fixed-parameter tractability of p-Dense MLI follows from that for dense
triplet sets, consistency has a characterization in terms of obstructions involving
at most four labels and three triplets. More precisely, for a dense triplet set R on
n labels, we can build in time O(n4) the set of obstructions, and in time O(n3)
either find an obstruction or decide if R is consistent [14]. These results lead to
a O(4pn3)-time algorithm for p-Dense MLI [14].

A fixed-parameter algorithm. The other approach is to remove a minimum-size
set R′ of triplets from R such that the set R \ R′ is consistent. The problem
of finding R′ is the Rooted Triplet Inconsistency (RTI) problem [9,10].
We denote the restriction of RTI to dense instances, and parameterized by the
size of R′, by p-Dense RTI. This restriction of RTI is still NP-hard [10]. Our
first result is a simple O(4pn3)-time algorithm for p-Dense RTI, based on char-
acterization of consistency in terms of obstructions and given in Section 3. For
general instances, the parameterization of RTI by |R′| is not fixed-parameter
tractable unless some unlikely collapse of complexity classes occurs [10].

A polynomial kernel. Any fixed-parameter tractable problem Π has a kerneliza-
tion algorithm, or kernel, which is an algorithm that given a pair (x, p) outputs
in time polynomial in |x| + p a pair (x′, p′) such that (x, p) ∈ Π if and only if
(x′, p′) ∈ Π and |x′|, p′ ≤ g(p), where g is some computable function. The func-
tion g is referred to as the size of the kernel, and if g(p) = pO(1) then Π is said to
admit a polynomial kernel. Kernels are important to practically solve instances
of NP-hard problems through data reduction, but not every fixed-parameter
tractable problem admits a polynomial kernel [8]. Our second result is the first
polynomial kernel for p-Dense RTI: in Section 4, we describe a kernelization
algorithm which produces in time O(n4) a kernel with O(p2) labels.

Subexponential fixed-parameter algorithm. While interesting by itself, our poly-
nomial kernel serves as the basis for our third result. In Section 5, we present
a subexponential fixed-parameter algorithm for p-Dense RTI. The algorithm
applies the method of chromatic coding, which was recently introduced by Alon
et al. [3] to solve the tournament feedback arc set problem (FAST) in time O(n3+
2O(p1/2 log p)). Similarly, chromatic coding provided a subexponential fixed-
parameter algorithm for the Dense Betweenness problem parameterized by so-
lution size p, running in time O(n4+2O(p1/3 log p)) [18]. Let us remark that the trees
we are constructing possess a more complex structure than the linear orderings
encountered in ranking problems such as Fast and Betweenness.

Chromatic coding is a variant of the color coding technique by Alon et al. [4].
It requires several ingredients: (i) a kernel of quadratic size, (ii) an algorithm
solving instances of size n and colored with k colors in time nO(k), (iii) a coloring
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lemma stating for a given solution of size p, a “proper coloring” of the solution
with k = O(p1/3) colors exists and can be found in subexponential time. We
obtain (i) and (ii) for p-Dense RTI, while (iii) follows from results of Alon et
al. [3,18]. Overall, we obtain an algorithm for p-Dense RTI running in time
O(n4 + 2O(p1/3 log p)). This algorithm provides an exponential speed-up over our
search-tree based O(4pn3)-time algorithm. Note that p can be as large as

(
n
3

)
,

and for this value our algorithm yields a running time of 2O(n log n) which is
asymptotically not better than the brute-force algorithm which enumerates ev-
ery tree with n labels and checks consistency for each such tree. However, for
practical instances p can be expected to be much smaller than

(
n
3

)
, which makes

our result valuable in real-life applications.

2 Preliminaries

Let L be a set of labels. We say that T is a tree over L if T is a rooted tree whose
leaves are injectively labeled by the elements of L; we denote by L(T ) the set of
labels appearing at the leaves of T . We use a parenthesized notation for trees: if
T1, ..., Tm are trees over L with disjoint label sets, we denote by (T1, ..., Tm) the
tree over L whose root has each Ti has a child subtree.

Given L′ ⊆ L, the restriction of T to L′, denoted by T |L′, is the homeomorphic
subtree of T containing leaves labeled by elements of L′. When T is a binary tree
over L with three leaves, we say that T is a rooted triplet over L. We denote by
ab|c the rooted triplet containing three labels a, b, c with a, b grouped together
in a same child subtree of the root. We say that R is a triplet set over L if
R is a set of rooted triplets over L. R is dense (resp. minimally dense) if for
each x, y, z ∈ L distinct, there is at least (resp. exactly) one t ∈ R such that
L(t) = {x, y, z}. Given L′ ⊆ L, the restriction of R to L′ is the triplet set R|L′

which contains the triplets t ∈ R such that L(t) ⊆ L′.
Given a binary tree T over L and a rooted triplet t = ab|c, we say that t is

consistent with T (or symmetrically that T is consistent with t) if T |{a, b, c} = t.
We denote by rt(T ) the set of rooted triplets over L which are consistent with
T . Given R triplet set over L, we say that R is consistent with T if R ⊆ rt(T ).
Note that if R is minimally dense, this must be an equality; in this case we also
say that R represents T . A conflict in R is a set C ⊆ L such that R|C is not
consistent. A t-conflict in R is an inconsistent set S ⊆ R. An st-conflict in R is
a t-conflict of the form {ab|c, cd|b, bd|a} or {ab|c, cd|b, ad|b}.

The following Proposition gives a local characterization of consistency for
minimally dense sets. It is analogous to results for quartets originating in the
work of Bandelt and Dress [5,13].

Proposition 1. Let R be a minimally dense triplet set over L. The following
are equivalent: (i) R is consistent; (ii) R contains no conflict of size 4; (iii) R
contains no t-conflict of size 3; (iv) R contains no st-conflict.

Let R be a triplet set over L, and let T be a binary tree over L. We denote by
i(R, T ) := (R|L(T ))\rt(T ) the set of triplets of R inconsistent with T , and we
define I(R, T ) = |i(R, T )|.
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The RTI problem takes a triplet setR over L, and seeks a binary tree T over L
with I(R, T ) minimum. The value of the optimum is denoted by MRTI(R). Note
that this is equivalent to: (i) removing a minimum number of triplets to obtain
consistency, (ii) editing a minimum number of triplets to obtain consistency.

3 A Simple Fixed-Parameter Algorithm

For the needs of the algorithm, we consider an annotated version of the problem
where certain triplets are locked, meaning that they cannot be edited. We use
a bounded-search approach: at each step, we identify an st-conflict, edit one
triplet and lock it. The following Lemma, which can be checked by exhaustive
verification, will guarantee that for a given st-conflict, four different editions
cover all possible cases.

Lemma 1. Any tree on {a, b, c, d} contains one of the triplets bc|a, ac|b, bd|c,
ab|d.
This yields a simple fixed-parameter algorithm, as follows. We recall that p is
the maximum number of deletions allowed, and that n = |L| is the number of
labels.

Theorem 1. The p-Dense RTI problem can be solved in O(4pn3) time.

Proof. We use bounded search. Given a minimally dense triplet set R, using
the algorithm of [14] (Theorem 5), in O(n3) time we can either find an st-
conflict or conclude that R is consistent. If we find an st-conflict {t1, t2, t3} with
t1 = ab|c, t2 = cd|b and t3 ∈ {bd|a, ad|b}, then we branch on the four following
cases: (i) transform t1 into bc|a, (ii) transform t1 into ac|b, (iii) transform t2
into bd|c, (iv) transform t3 into ab|d. In each case we lock the new triplet and
decrement p. The correctness of the branching step follows from Lemma 1, and
this leads to an algorithm running in time O(4pn3). ��
Note that the above algorithm can be adapted to run in O(4pn+n4) time (using
ideas similar to [13]): we build in O(n4) time the set C of st-conflicts, then at
each branching step we identify an st-conflict, edit a triplet and update C in
O(n) time.

4 A Polynomial Kernel

In this section, we present three reduction rules which will lead to a problem
kernel for the p-Dense RTI problem with a quadratic number of labels. For
convenience, we describe the problem kernel for the annotated version of the
problem, since this formulation allows an earlier detection of certain negative
instances (when an already locked triplet has to be further edited). However, we
note that the problem kernel applies to the unannotated version as well.

Let t = ab|c ∈ R. A sunflower (with center t) is a family C1, ..., Cm of st-
conflicts such that (i) all the Ci’s contain t, (ii) the Ci’s have distinct fourth
labels, i.e. L(Ci) ∩ L(Cj) = {a, b, c} whenever i �= j. The following observation
will allow us to prove the correctness of our reduction rules.
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Observation 1. Let C1, ..., Cm be a sunflower with center t. Then the sets
C1\{t}, ..., Cm\{t} are disjoint.

There is a simple sufficient condition for failure, formulated by the following rule,
whose correctness is immediate in view of Observation 1.

Rule 1. If a locked triplet is the center of a sunflower of size > p, then fail.

The second rule will allow us to handle unlocked triplets which are involved in
a large number of conflicts. It relies on the following observation.

Lemma 2. Let t1, t2 be two triplets such that L(t1) = {a, b, c}, L(t2) = {b, c, d}.
Then:

1. either there is a unique tree T on {a, b, c, d} consistent with t1, t2;
2. or for each triplet t3 on {a, b, d}, the set {t1, t2, t3} is consistent.

Proof. By symmetry, it suffices to consider the following cases:

– t1 = bc|a, t2 = bc|d: then we are in Case 2, since
• for t3 = ab|d, the tree T = (((b, c), a), d) is consistent with {t1, t2, t3};
• for t3 = ad|b, the tree T = ((b, c), (a, d)) is consistent with {t1, t2, t3};
• for t3 = bd|a, the tree T = (((b, c), d), a) is consistent with {t1, t2, t3}.

– t1 =bc|a, t2 =bd|c: then we are in Case 1 since only the tree T =(((b, d), c), a)
is consistent with t1, t2.

– t1 = ba|c, t2 = bd|c: then we are in Case 2, since
• for t3 = ab|d, the tree T = (((a, b), d), c) is consistent with {t1, t2, t3};
• for t3 = ad|b, the tree T = (((a, d), b), c) is consistent with {t1, t2, t3};
• for t3 = bd|a, the tree T = ((a, (b, d)), c) is consistent with {t1, t2, t3}.

– t1 =ba|c, t2 =cd|b: then we are in Case 1 since only the tree T = ((a, b), (c, d))
is consistent with t1, t2.

This proves the Lemma. ��

Corollary 1. Let C = {t1, t2, t3} be an st-conflict. There exists a unique way
to edit t3 in a triplet t′3 such that C′ = {t1, t2, t′3} is consistent.

Proof. C must involve the four labels a, b, c, d and w.l.o.g. we can assume that
L(t1) = {a, b, c}, L(t2) = {b, c, d}. Then we are in the conditions of Lemma 2,
and we must be in Case 1 since C is an st-conflict. It follows that there is a
unique tree T on {a, b, c, d} consistent with t1, t2, hence the triplet T |L(t3) is the
only way to edit t3 to achieve consistency. ��

By Corollary 1, if a triplet t belongs to an st-conflict C, in order to achieve con-
sistency there is a unique way to edit t into a triplet t′ without editing the other
triplets of C. Let S(t, C) denote this alternative triplet t′. We are now ready to
formulate the rule and prove its correctness.

Rule 2. If an unlocked triplet t is the center of a sunflower C1, ..., Cm with
m > 2p: let t′ be the majority element among the triplets S(t, Ci). Transform t
into t′, lock it, and decrease p.
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Lemma 3. Rule 2 is correct.

Proof. Suppose that there is a solution S editing ≤ p triplets. Let C1, ..., Ci be
the st-conflicts containing a triplet distinct from t which was edited in S. By
Observation 1, it follows that i ≤ p. For the remaining st-conflicts Cj (i + 1 ≤
j ≤ Cm), t is the only triplet edited in S, hence by Corollary 1 S(t, Cj) equals
the triplet t′ into which t has been edited. Since m > 2p, it follows that t′ is the
majority element among the triplets S(t, Cj) (1 ≤ j ≤ m). We conclude that in
any solution S, t is edited into t′. ��

Suppose that (R, p) is an instance reduced with respect to Rules 1 and 2. Let
L be the label set of R, partition L into L1 (the set of labels which appear in
some st-conflict) and L2 = L\L1. We can bound the size of L1, according to the
following Lemma.

Lemma 4. If (R, p) is a positive instance, then |L1| ≤ 2p2 + 3p.

Proof. Suppose that R can be made consistent by editing triplets t1, ..., ti with
i ≤ p. Then L1 = L′

1 ∪ L′′
1 , where L′

1 is the set of labels appearing in some tj
and L′′

1 = L1\L′
1. Clearly, |L′

1| ≤ 3p.
We show that |L′′

1 | ≤ 2p2. For each x ∈ L′′
1 , let Cx be an st-conflict containing

x, then Cx must contain one triplet tj , let j := j(x). Now, since (R, p) is reduced
with respect to Rules 1 and 2, a sunflower with center tj has size ≤ 2p. It follows
that for each 1 ≤ j ≤ i, there are at most 2p elements x ∈ L′′

1 such that j(x) = j.
We conclude that |L′′

1 | ≤ 2pi ≤ 2p2. ��

It remains to handle the labels of L2. In fact, we will simply remove them.

Rule 3. Remove the labels of L2.

In the following, we justify that labels not appearing in an st-conflict can be
safely removed. Note that the situation is similar for the Fast problem, where
we can safely remove vertices not involved in a directed triangle without changing
the optimum. As pointed out in [15], for edge-modification problems in general
it is not safe to remove vertices outside of an obstruction (unlike the case of
vertex-deletion problems). However, it is interesting to observe that this holds
in most known kernelizations for edge-modification problems.

Lemma 5. Rule 3 is correct.

Proof (Sketch). Say that an L-tree is a rooted tree with each leaf x labeled by
a subset Lx ⊆ L, such that the sets Lx partition L. A binary L-tree T induces
a set of triplets rt(T ) where: uv|w ∈ rt(T ) if and only if there exists x, y, z
leaves of T with u ∈ Lx, v ∈ Ly, w ∈ Lz and xy|z a triplet of T . We say that T
complies with R if rt(T ) ⊆ R. Given S ⊆ L, we say that T resolves S if each
u ∈ S corresponds to a leaf of T labeled by {u}. The definition of L2 entails the
following result:

Claim 1. There exists a binary L-tree T which complies with R and which
resolves L2.
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To prove the correctness of Rule 3, we now show that: if R′ = R\L2, then
MRTI(R′) = MRTI(R). On the one hand, MRTI(R′) ≤ MRTI(R) follows from
the inclusionR′ ⊆ R. On the other hand, let us show that MRTI(R)≤MRTI(R′).
Suppose that T is an L-tree given by Claim 1, and let S be an optimum solution
for R′. Let S′ be the tree obtained from T by substituting each leaf labeled by
L′ ⊆ L1 with the tree S|L′. We then have I(R, S′) = I(R\rt(T ), S′) ≤ I(R′, S),
since for a triplet uv|w ∈ R\rt(T ) we have u, v, w ∈ L1, and uv|w is present in S
if and only it is in S′. We conclude that MRTI(R) ≤ MRTI(R′), as claimed. ��
Putting all together, we obtain the following result regarding the kernelization
of p-Dense RTI.

Theorem 2. p-Dense RTI has a kernel with ≤ 2p2 + 3p labels, that is con-
structible in O(n4) time.

Proof. Let (R, p) be an instance reduced with respect to Rules 1,2 and 3. By
Lemma 4, we can reject if the number of labels is greater than 2p2+3p. Otherwise,
this is a problem kernel for p-Dense RTI with ≤ 2p2 + 3p labels.

We justify that the kernel can be constructed in O(n4) time. The idea is
to maintain: (i) the set C of st-conflicts, (ii) for each triplet t ∈ R, the size
n(t) of a largest sunflower with center t, (iii) for every 0 ≤ i ≤ n, the set
Ri = {t ∈ R : n(t) = i}. This information is collected in O(n4) time at the
beginning of the algorithm. Now, assuming that we have this information, thanks
to the sets Ri we can in O(n) time find a triplet t to which Rule 1 or 2 applies.
Then, applying Rule 1 clearly takes constant time. Applying Rule 2 takes O(n)
time since after editing the chosen triplet t = ab|c, we have: (a) to update the set
C by considering for each d ∈ L, the new st-conflicts which may appear in the
set {a, b, c, d}; (b) for each d ∈ L, for each triplet t with |L(t) ∩ {a, b, c, d}| = 3,
to update n(t) and the sets Ri accordingly. Since each application of Rule 2
decrements p, computing an instance reduced for Rule 2 takes O(pn) time, which
is O(n4) since p = O(n3). Finally, applying Rule 3 takes O(n4) time, which is
the time required to build L2 by traversing C. ��

5 A Subexponential Fixed-Parameter Algorithm

We now present our subexponential fixed-parameter algorithm (Theorem 3 be-
low). We will need the following terminology. Consider an instance (R, p) of
p-Dense RTI, where R is a minimally dense triplet set over L. In this section,
we call peacemaker of R a set S ⊆ R such that R\S is consistent. As stated in
Section 1, solving p-Dense RTI for (R, p) amounts to finding a peacemaker of
R of size ≤ p.

5.1 Solving the Problem on Colored Instances

In the case of triplets, if S is a peacemaker of size ≤ p, we say that S is colorful
(for a given coloring of the labels) if no triplet of S is monochromatic. We show
how to solve the problem on colored instances, i.e. how to find a minimum
colorful peacemaker.
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Proposition 2. Suppose that R is a minimally dense triplet set on n labels,
which is k-colored. Then we can compute a minimum colorful peacemaker using
O(k3(6n)k) time and O((2n)k) space.

Proof. Let L1, ..., Lk be the color classes. If there exists a colorful peacemaker,
then each R|Li must be consistent, and represent a tree Ti. Then we have to
compute the minimum of I(R, T ) for each tree T over L containing every Ti as
a subtree.

A position is a tuple π = (π[1], ..., π[k]), where each π[i] is a node of Ti, or the
special value ⊥. The label set of π is L(π) = ∪iL(π[i]), where L(π[i]) denotes
the set of labels occurring under the node π[i]. The root position is the position
π� = (r1, ..., rk), where ri is the root of Ti. The positions are ordered as follows:
π � π′ holds iff for every i ∈ [k], either π[i] =⊥, or π[i] is a descendant of π′[i].
We let ≺ denote the strict part of �. Say that π is terminal if each π[i] is either
a leaf or ⊥. For a given position π, let I(π) denote the minimum of I(R, T ) for
each tree T such that L(T ) = L(π) and T |Li = Ti|L(π[i]) (for every 1 ≤ i ≤ k).
We will compute the values I(π) by dynamic programming. At the end of the
algorithm, I(π�) will be the desired value. Clearly, if π is a terminal position
then I(π) = 0.

We now consider nonterminal positions. Let π be a nonterminal position. A
decomposition of π is a pair of positions (π1, π2) such that for each i ∈ [k],

– if π[i] =⊥, then π1[i] = π2[i] =⊥;
– if π[i] is a leaf x, then {π1[i], π2[i]} = {x,⊥};
– if π|i] is an internal node u with children v1, v2, then {π1[i], π2[i]} is either
{u,⊥} or {v1, v2}.

Let D = (π1, π2) be a decomposition of π. Say that D is proper if π1, π2 are
distinct from π; observe that in this case, π1 ≺ π and π2 ≺ π. Consider the
set L′ formed of the components of the positions π1, π2, and define the triplet
set Qπ,D over L′ which contains uv|w whenever there is a, b ∈ {1, 2} distinct,
1 ≤ x, y, z ≤ k such that πa[x] = u, πa[y] = v, πb[z] = w. Define the triplet set
Rπ,D over L(π) as the set of triplets xy|z such that there exists uv|w ∈ Qπ,D

with x ∈ L(u), y ∈ L(v), z ∈ L(w). Define I(π, D) := |Rπ,D\R|+ I(π1) + I(π2).
The values I(π) can be computed thanks to the following claim.

Claim 2. If π is nonterminal, then I(π) is the minimum of I(π, D) over each
proper decomposition D of π.

This claim yield a dynamic-programming algorithm for computing the values
I(π), where the positions π are ordered by the relation ≺. The runtime analysis
is omitted due to space limitations. ��

5.2 Colorings of Hypergraphs

For the p-Dense RTI problem, we will need to find proper colorings of an hypo-
thetical peacemaker of size≤ p. As in [3], this can be done either probabilistically
(by generating random colorings) or deterministically (by explicit constructions
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of families of colorings). In our case, the correctness of the probabilistic con-
struction depends on a conjecture, but we include it since it holds the promise
of smaller hidden constants than the deterministic construction.

We use a generalization of the results by Alon et al. [3] to colorings of r-uniform
hypergraphs, obtained by the same authors to solve the Dense Betweenness

problem [18]. Let H = (V, E) be a r-uniform hypergraph. Let c : V → [k] be a
coloring of H . An edge e ∈ E is called monochromatic under c if all elements
of e have the same color. We say that c is a proper coloring of H if H contains
no monochromatic edges. Ideally, we would like to generalize a construction of
random colorings of [3] from graphs to r-uniform hypergraphs.

Conjecture 1. Let H = (V, E) be a r-uniform hypergraph, and let m = |E|.
There exists constants α, β (depending only on r) such that if we randomly color
the vertices with k = (αm)1/r colors, then H is properly colored with probability
p = e−(βm)1/r

.

For integers n, m, k, r, a family F of functions from [n] to [k] is called a uni-
versal (n, m, k, r)-coloring family if for any r-uniform hypergraph H on the set
of vertices [n] with at most m edges, there exists an f ∈ F which is a proper
coloring of H . While we only conjecture the correctness of the random construc-
tion, the deterministic construction of [3] can be readily adapted to r-uniform
hypergraphs.

Proposition 3 ([18]). There exists an explicit universal (αm2, m, O(m1/r), r)-
coloring family F of size |F| ≤ 2Õ(m1/r).

By combining the above results, we obtain the following subexponential fixed-
parameter algorithms for the problem.

Theorem 3. p-Dense RTI can be solved by a deterministic algorithm using
O(n4 + 2O(p1/3 log p)) time and 2O(p1/3 log p) space. Moreover, assuming Conjec-
ture 1, p-Dense RTI can be solved by a randomized algorithm using O(n4 +
2O(p1/3 log p)) time and 2O(p1/3 log p) space.

Proof. We first run the kernelization algorithm of Section 2 to build in O(n4)
time a kernel (R, p′) with |L(R)| = O(p2) and p′ ≤ p. The randomized algorithm
is obtained by repeating r times the following: (i) choose a random coloring of
R with k colors, (ii) find a minimum colorful peacemaker using the result of
Proposition 2, and accept if and only if one execution finds a colorful peacemaker
of size ≤ p′. Conjecture 1 implies that we can choose r = 2O(p1/3) and k =
O(p1/3). The deterministic algorithm is obtained by constructing a family F
as stated in Theorem 3. Then for each f ∈ F , we find a minimum colorful
peacemaker of R under the coloring f . We accept if and only if only one f yields
a peacemaker of size ≤ p′. Both algorithms applied to the kernel (R, p′) clearly
have space and time requirements bounded by 2O(p1/3 log p). ��
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6 Concluding Remarks

In this article, we have obtained a quadratic kernel and a subexponential fixed-
parameter algorithm for the p-Dense RTI problem. Can the kernel size be
further improved? A subquadratic or even linear kernel would be practically
interesting; note that a linear kernel was recently obtained for the FAST problem
[7]. Regarding the subexponential fixed-parameter algorithm, is it possible to
improve the running time to 2O(p1/3), as it was done for the FAST problem [11]?
Finally, we would like to know whether the (n− 2)-approximation for RTI from
[12] could be improved in the dense case. Analogies with FAST suggest that
Dense RTI could admit a constant-factor approximation, and even a PTAS
[2,17].
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Abstract. Incrementally k-list coloring a graph means that a graph is
given by adding stepwise one vertex after another, and for each inter-
mediate step we ask for a vertex coloring such that each vertex has one
of the colors specified by its associated list containing some of in to-
tal k colors. We introduce the “conservative version” of this problem by
adding a further parameter c ∈ N specifying the maximum number of
vertices to be recolored between two subsequent graphs (differing by one
vertex). This “conservation parameter” c models the natural quest for a
modest evolution of the coloring in the course of the incremental process
instead of performing radical changes. We show that the problem is NP -
hard for k ≥ 3 and W [1]-hard when parameterized by c. In contrast, the
problem becomes fixed-parameter tractable with respect to the combined
parameter (k, c). We prove that the problem has an exponential-size ker-
nel with respect to (k, c) and there is no polynomial-size kernel unless
NP ⊆ coNP/poly. Finally, we provide empirical findings for the prac-
tical relevance of our approach in terms of an effective graph coloring
heuristic.

1 Introduction

We study an incremental version of the graph coloring problem:

Incremental Conservative k-List Coloring (IC k-List Color-

ing)

Input: A graph G = (V, E), a k-list coloring f for G[V \{x}] and c ∈ N.
Question: Is there a k-list coloring f ′ for G such that |{v ∈ V \ {x} :
f(v) �= f ′(v)}| ≤ c?

Herein, a function f : V → {1, . . . , k} is called a k-coloring for a graph G =
(V, E) when f(u) �= f(v) for all {u, v} ∈ E. For color lists L(v) ⊆ {1, . . . , k},
v ∈ V , a k-coloring for G is called a k-list coloring when f(v) ∈ L(v) for all
v ∈ V . Occasionally, we also study IC k-Coloring, which is the special case
that L(v) = {1, . . . , k} for all v ∈ V .
� Partially supported by the IBM Germany Research & Development GmbH,

Böblingen.
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Intuitively, IC k-List Coloring models that a graph is built by sequen-
tially adding vertices (together with the incident edges). Thereby, referring to
the added vertex by x, the task is to efficiently compute a k-list coloring for G
from a known k-list coloring of G[V \ {x}]. It can be seen as an incremental ver-
sion of List Coloring, where one has to find a k-list coloring from scratch. As
will turn out, the introduction of the conservation parameter c in the above def-
inition helps in making the otherwise hard problem (fixed-parameter) tractable.
Notably, conservation has a natural justification from applications where one
may rather prefer an “evolution” of the coloring through the incremental pro-
cess than a “revolution”.

Related Work. We start with describing the related incremental clustering
problem Incremental Constrained k-Center (IC k-Center). Here, we
are given a discrete distance function on objects and a partition of the objects
into k clusters such that the maximum distance within each cluster is minimized.
Then, after adding one new object, the task is to compute a new “k-clustering”
under the constraint that at most c objects of the previous clustering change
their cluster. Here the conservation parameter c reflects the fact that in many
settings users would not accept a radical change of the clustering, since this may
cause a big loss of information acquired in a costly process for the previous clus-
tering. It is easy to see that IC k-Center can be interpreted as a special case
of IC k-List Coloring. Moreover, IC k-Center is only one example for the
field of constrained clustering [1].

Incremental coloring is also related to the Precoloring Extension prob-
lem (PrExt), which is the special case of List Coloring where each color list
contains either one or all colors. In other words, the task is to extend a partial k-
coloring to the entire graph. It has been shown that on general graphs PrExt is
not fixed-parameter tractable with respect to parameter treewidth [9] but, other
than List Coloring, it becomes fixed-parameter tractable when parameterized
by vertex cover size [12]. Moreover, it is NP -complete for fixed k ≥ 3 on planar
bipartite graphs [14] and W [1]-hard with respect to the number of precolored
vertices for chordal graphs [15].

Our incremental coloring setting based on the conservation parameter c can
also be interpreted as a local search where c measures the degree of locality. Re-
cently, there has been strong interest in analyzing the parameterized complexity
of l-local search in terms of some locality parameter l [11, 16]. Our locality mea-
sure c can also be seen as “transition cost” between old and new solutions—to
keep this cost small has been identified as an important target [18].

A further related field is reoptimization [2]. Here, starting with an optimal
solution of an optimization problem, one asks how to compute a solution for a
locally modified instance more efficiently by using the known solution for the old
instance instead of starting the computation from scratch. Without adding the
conservation parameter the reoptimization of coloring problems remains hard.

Our Results. We initiate a study of IC k-List Coloring in terms of pa-
rameterized complexity [8, 13, 17], considering the two parameters k (number
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of colors) and c (number of recolored vertices). We show that the problem is
NP -hard for fixed k ≥ 3 and W [1]-hard when parameterized by c. In contrast, it
becomes fixed-parameter tractable with respect to the combined parameter (k, c).
We show that IC k-List Coloring has a 3(k − 1)c-vertex problem kernel and
that there is no hope for a polynomial-size problem kernel with respect to (k, c).
Finally, we provide first empirical evidence for the practical relevance of “pa-
rameterizing by conservation” by demonstrating how our algorithms can be suc-
cessfully employed as subroutines in a very effective (local search) heuristic for
graph coloring.

Preliminaries. For a graph G = (V, E), we set V (G) := V and E(G) := E.
Analogously, for a path P = [v1, . . . , vj ], we write V (P ) := {v1, . . . , vj} and
E(P ) := {(vi, vi+1) : 1 ≤ i < j} for all directed edges on P . For a graph G =
(V, E) and a vertex set S ⊆ V , we write G[S] to denote the graph induced by S
in G, that is, G[S] := (S, {e ∈ E : e ⊆ S}). We define the (open) neighborhood of
a vertex v by N(v) := {u ∈ V : {u, v} ∈ E}. Moreover, for a given k-coloring f
of G and a color i, we set N(v, i) := {u ∈ V : f(u) = i ∧ {u, v} ∈ E}.

A parameterized problem is called fixed-parameter tractable if it can be solved
in f(k) · nO(1) time, where f is a computable function depending only on the
parameter k, not on the input size n [8, 13, 17]. A parameterized reduction from
a language L to another parameterized language L′ is a function that, given
an instance (x, k), computes in f(k) · nO(1) time an instance (x′, k′) (with k′

only depending on k) such that (x, k) ∈ L ↔ (x′, k′) ∈ L′. Based on that,
[8] established a hierarchy of complexity classes (basic class W [1]) in order to

classify (likely) fixed-parameter intractable problems.
Problem kernelization is the reduction of an instance I with parameter k by

data reduction rules to a smaller instance I ′ with parameter k′ ≤ k in polynomial
time such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance [8, 17].
If the size of I ′ is bounded by a (polynomial) function in k, then the instance
(I ′, k′) is called a (polynomial) kernel.

2 Parameterized Complexity

In this section, we first study the parameterized complexity of IC k-List Col-

oring with respect to the single parameters k (number of colors) and c (number
of recolored vertices). Since we encounter computational hardness with respect
to these single parameterizations, we proceed with a simple search tree strategy
showing that IC k-List Coloring is fixed-parameter tractable with respect to
the combined parameter (k, c). Since k-Coloring is NP -complete for k ≥ 3,
the following may come without surprise.

Theorem 1. IC k-List Coloring for fixed k ≥ 3 is NP -complete.

Proof. Containment in NP is obvious. We reduce k-Coloring to IC k-List

Coloring as follows. Let G = (V, E) with V = {v1, . . . , vn} be an instance of
k-Coloring. We set Gi := G[{v1, . . . , vi}] for i ≤ n. To decide the k-colorability



Incremental List Coloring of Graphs, Parameterized by Conservation 261

of G, we proceed inductively: Obviously, if any Gi, 1 ≤ i ≤ n, is not k-colorable,
then G also is not. Note that Gn = G. Assume that Gi−1 is k-colorable. For each
vertex of G, we fix its color list to be {1, . . . , k}. Moreover, we choose c := |V |.
Clearly, Gi is k-colorable iff Gi can be incrementally colored by recoloring at
most c vertices in a k-coloring for Gi−1. Thus, we can decide the question about
the k-colorability of G inductively by deciding at most n recoloring problems,
implying the NP -hardness of IC k-List Coloring for k ≥ 3. ��

Using the above proof strategy, the result that k-List Coloring is W [1]-hard
with respect to the parameter treewidth [9] can be transferred to IC k-List Col-

oring. Moreover, it also follows that IC k-List Coloring is NP -complete for
fixed k ≥ 3 for all hereditary graph classes1 where the ordinary List Coloring

problem is NP -hard for fixed k ≥ 3, e. g., planar bipartite and chordal graphs.
The proof strategy is also used in Section 4 to devise an empirically effective
heuristic for graph coloring.

We proceed by considering the parameterized complexity of IC k-List Col-

oring with respect to the parameter c (for unbounded k). In contrast to the
parameter k, when c is a constant, then IC k-List Coloring clearly becomes
polynomial-time solvable. However, it is W [1]-hard, again excluding hope for
fixed-parameter tractability.

In order to show the W [1]-hardness with respect to c, we present a param-
eterized reduction from the W [1]-complete k-Multicolored Independent

Set problem [9, 10]. The problem is to decide for a given k-coloring f for a
graph G = (V, E) whether there exists a multicolored k-independent set, that is, a
vertex subset S ⊆ V with |S| = k such that ∀u, v ∈ S : {u, v} �∈ E ∧ f(u) �= f(v).

Theorem 2. IC k-List Coloring is W [1]-hard with respect to the parameter c.

Proof. Let G = (V, E) with V = {v1, . . . , vn} be a k-colored graph (through
a coloring f), taken as an instance for k-Multicolored Independent Set.
We construct a graph G′ = (V ′, E′) from G such that by choosing c := 2k
the instance (G′, f ′, L, c) is a yes-instance of IC k-List Coloring iff G is a
yes-instance of k-Multicolored Independent Set. Herein, f ′ is an (n +
1)-coloring of G′[V ′\{x}] and L stands for the color lists L(v), v ∈ V ′. Note that
x is the vertex added in the incremental process. We add k+1 new vertices to V ,
setting V ′ := V ∪{x, s1, . . . , sk}. For vi ∈ V , set f ′(vi) := i in G′. Moreover, the
color list for vi is L(vi) := {i, n + 1}. To complete the construction, it remains
to define f ′ for the vertices from {x, s1, . . . , sk}, the edge set E′ with E ⊆ E′,
and the color lists for x and all si. To this end, note that each vertex si one-to-
one corresponds to the subset of vertices from V colored i. Set f ′(si) := n + 1
for 1 ≤ i ≤ k and L(si) := {f ′(v) : v ∈ Vi} ∪ {n + 1}, where Vi := {v ∈
V : f(v) = i}. Note that L(si) ∩ L(sj) = {n + 1} for i �= j. Moreover, we
add edges between si and all vertices from Vi. Finally, we set f ′(x) := n + 1,
L(x) := {n + 1}, and make x adjacent to all vertices from {si, . . . , sk}. This
completes the construction.

1 A graph class is hereditary if it is closed under taking induced subgraphs.
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The idea behind the construction of G′ is that those vertices in V ⊂ V ′ which
can be recolored to the color n + 1 one-to-one correspond to the vertices in a
multicolored k-independent set. We omit the correctness proof. ��

The results presented so far are negative in terms of fixed-parameter tractability,
motivating the study of the combined parameter (k, c). A simple search strategy
leads to fixed-parameter tractability in this case.

Theorem 3. IC k-List Coloring can be solved in O(k·(k−1)c ·|V |) time, that
is, it is fixed-parameter tractable with respect to the combined parameter (k, c).

Proof. Clearly, if for the inserted vertex x it holds that {f(v) : v ∈ N(x)} ⊂ L(x),
then there is a “free color” left for x and x can be colored using this free color.
Otherwise, {f(v) : v ∈ N(x)} ⊇ L(x). Hence, a recoloring is necessary. First,
branch into the |L(x)| ≤ k possibilities how to color x. In each branch, at least
one of the neighbors of x has the same color as x and hence needs to be recolored.
Now, we have at most k−1 options to do so. This process continues until all “color
conflicts” have disappeared or in total c vertex recolorings have been performed
without obtaining a k-coloring. It is easy to see that this strategy leads to a
search tree of size O((k − 1)c) (depth c and branching factor k − 1). From this,
the running time O(k · (k − 1)c · |V |) follows. ��

Note that all results above also hold for IC k-Coloring; we have a stronger
focus on IC k-List Coloring since this more general problem allows for an
elegant formulation of data reduction rules.

3 Data Reduction and Kernelization

By developing a polynomial-time executable data reduction rule, next we de-
scribe how to the transform an instance of IC k-List Coloring into an equiva-
lent but size-reduced instance, known as problem kernel in parameterized
algorithmics.

An Exponential-Size Kernel. Assume that the graph G = (V, E), c ∈ N, and
the k-list coloring f for G[V \{x}] form a yes-instance for IC k-List Coloring.
Furthermore, let the k-list coloring f ′ for G be a recoloring, that is the number
of elements in the corresponding recoloring set S := {v ∈ V \ {x} : f ′(v) �=
f(v)}∪{x} is at most c+1. Intuitively speaking, the set S contains all recolored
vertices (including x).

Our kernelization approach makes use of the following observations. If there
exists a connected component Z in G[S] such that x /∈ Z, then one can simply
remove Z by setting f ′(v) = f(v) for all v ∈ Z, obtaining a smaller recoloring
set. Hence, we can assume without loss of generality that for every vertex v ∈ S
there exists a path from x to v in G[S]. Actually, there must exist a so-called
conflict path for every vertex, that is, a simple path from x to v with the special
property that for every edge (u, w) on the path f ′(u) = f(w). The non-existence
of a conflict path for a vertex v ∈ S implies f ′(u) �= f(v) for all u ∈ N(v),
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thus, we can again remove v, setting f ′(v) = f(v). Therefore, one can view the
recoloring of u as the reason why w must also be recolored. The following lemma
summarizes the above observations.

Lemma 1. The graph G[S] contains a conflict path of length ≤ c for every
vertex in S.

In order to describe the idea behind our data reduction rule, assume that v ∈ S
and denote the corresponding conflict path in G[S] by Pv. Clearly, if V (Pv)
denotes the set of all vertices on Pv, then V (Pv) ⊆ S. Consider an arbitrary
edge (u, w) on Pv. Since f ′(u) = f(w), it follows that N(u, f(w)) ⊆ S. By
summing up these vertices, this can be viewed as the costs (#recolored vertices)
of a conflict path Pv. Utilizing this idea, our data reduction rule computes for
some vertex a possible conflict path of minimum cost and removes the vertex
when the costs are greater than the conservation parameter c.

Removing a vertex v means to remove v and all its incident edges and to
delete the color f(v) in the color list of all neighbors. This makes sure that
we can reinsert v with color f(v) in any solution for the kernel. Actually, the
possibility to conveniently remove and reinsert a vertex is the main reason why
we work with list coloring.

As the name suggests, a possible conflict path for a vertex v is a path which
could become a conflict path for v when v ∈ S. Therefore, a possible conflict
path Pv is a simple path such that f(u) ∈ L(w) for each edge (u, w) ∈ E(Pv).
Next, a cost function l : V → N gives for each vertex a lower bound for the
number of vertices that need to be recolored when reaching the vertex on a
possible conflict path. Using this, we now formulate our data reduction rule; its
correctness can be directly inferred from Lemma 1.

Reduction Rule 1. If there is a vertex v with l(v) > c, then remove v.

We define our cost function l in an iterative manner. We start with an empty
set M and initialize l(x) := 0 and l(v) := ∞ for all v ∈ V \{x}. The set M
contains the vertices for which the cost function is already computed. Next, we
choose a vertex v ∈ V \M with minimum cost function value and add it to M
(in the first step we add x). Next, consider a neighbor u of v with f(u) ∈ L(v).
When v is the ancestor of u on a cheapest possible conflict path for u, then the
cost function value l(u) is the sum of l(v) and |N(v, f(u))\M |. Thus, we update
the cost function value by setting l(u) := min{l(u), l(v)+ |N(v, f(u))\M |}. This
process will be continued while M �= V . Furthermore, with the help of a priority
queue, the cost function l can be computed in O(|V | log |V |+ |E|) time.

Using the cost function described above, Rule 1 leads to the following.

Theorem 4. IC k-List Coloring admits a (3 · (k − 1)c)-vertex kernel, which
can be computed in O(|V | log |V |+ |E|) time.

Proof. We show that the exhaustive application of Rule 1 leads to the asserted
kernel. In order to bound the size of a reduced graph G, at first we construct a
worst-case graph T . Next, we prove that the size of T is bounded by the asserted
kernel size. We complete our proof by showing that |V (G)| ≤ |V (T )|.
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The graph T is a tree in which the distance of all leaves to the root is exactly c.
We set L(v) := {1, . . . , k} for all v ∈ V (T ). In addition, the root has one child
of each color and all other inner vertices have one child of each color except their
own color. The cost function lT assigns each vertex its distance to the root. Thus,
the instance (T, c, k) for IC k-List Coloring is reduced with respect to Rule 1.

For a reduced graph and its corresponding cost function, for instance, T and lT ,
we define a partition of V (T ) by V j

T := {v ∈ V (T ) : lT (v) = j} for 0 ≤ j ≤ c.
By construction, it follows that V 0

T = {x} and |V j
T | = k · (k − 1)j−1. Thus, the

overall size bound for V (T ) is as follows:

|V (T )| = 1 + k ·
c∑

j=1

(k − 1)j−1 = 1 + k ·
(

1− (k − 1)c

2− k

)
= 1 +

k

k − 2
((k − 1)c − 1) ≤ 3 · (k − 1)c.

Next, we prove the kernel size for the reduced graph G. Let lG be the corre-
sponding cost function and consider the partition V j

G for 0 ≤ j ≤ c of V (G). In
the following, we will show that |V j

G| ≤ |V
j
T |, implying |V (G)| ≤ |V (T )|.

Consider a vertex v ∈ V j
G for some 1 ≤ j ≤ c and a cheapest possible conflict

path Pv = [x, . . . , w, v] for v. Because w is the ancestor of v on Pv, it holds that
lG(w) < lG(v). Suppose that w ∈ V j−t

G for some 1 ≤ t ≤ j. Then, by definition
it follows that lG(v)− lG(w) = t. Thus, there exist at most t vertices with color
f(v) in V j

G, whose ancestor on a cheapest conflict path is w. Formally, defining
the ancestor function by p(v) := w and p−1(w) := {v ∈ V j

G : p(v) = w} we
can infer that |p−1(w) ∩ N(w, f(v))| ≤ t. Considering all colors, it follows that
|p−1(w)| ≤ t · (k − 1).

To show |V j
G| ≤ |V j

T |, next, by removing all vertices in p−1(w) from G we
construct a graph G̃. Then, we insert tree Tw with w as root into G̃. Similarly
to the structure of T , every inner node of Tw has exactly one child of each color
and all leaves of Tw have distance exactly t to the root w. Thus, V j

G̃
contains all

(k−1)t leaves of Tw. Assuming k ≥ 3, it follows that (k−1)t ≥ t·(k−1) ≥ |p−1(w)|
and, by this, we can infer that |V j

G| ≤ |V j

G̃
|. This process can be executed for

all ancestors w on a cheapest possible conflict path for each v ∈ V j
G. Since the

structure of Tw is similar to that of T , we obtain that |V j
G| ≤ |V

j

G̃
| ≤ |V j

T |. ��

Non-Existence of a Polynomial Kernel. [4] showed that a compositional
parameterized problem (whose unparameterized formulation is NP -complete)
does not have a polynomial kernel, unless NP ⊆ coNP/poly. A parameterized
problem is compositional if there exists an algorithm which receives as input a
sequence of instances (I1, c), . . . , (Ir , c) and outputs an instance (I, c′) such that
(I, c′) is a yes-instance iff (Ij , c) is a yes-instance for some 1 ≤ j ≤ r. Further-
more, the running time of the algorithm has to be bounded by a polynomial in∑r

j=1 |Ij |+ c and c′ ≤ poly(c).
To prove the non-existence of a polynomial kernel, we first show that

IC 3-Coloring is compositional.
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Fig. 1. Example for the composition algorithm for IC 3-Coloring. The left part shows
a graph Gj of an input instance. The right part shows the three duplications of Gj and
the modifications on them. To keep the figure simple, the neighbors of the constant
vertices, which prevent their recoloring, are omitted.

Theorem 5. IC 3-Coloring has no polynomial kernel, unless NP ⊆
coNP/poly.

Proof. Suppose that we are given a sequence of instances (G1, x1, c), . . . ,
(Gr, xr , c) of the IC 3-Coloring problem. Our composition algorithm makes a
case distinction depending on the size of r relative to c.

Case 1 (3r > 2c): We use the search tree algorithm introduced in Section 2
and simply solve all instances. Depending on whether we found a yes-instance
or not, we construct a trivial yes- or no-instance as a result of our composition
algorithm. We need O(2c · |Gj |) time per instance, hence, the overall running
time is bounded by O(r · 2c ·max1≤j≤r |Gj |) or O(r2 ·max1≤j≤r |Gj |).

Case 2 (3r ≤ 2c): In this more complicated case, we construct a new graph G
by connecting the graphs G1, . . . , Gr by a binary tree. The rough idea is as
follows. Starting at the root x of the binary tree, it is then possible to traverse
the tree on a conflict path for reaching any subgraph Gj . Then, every recoloring
of Gj for some 1 ≤ j ≤ r is a recoloring for G, and vice versa. We first describe
the construction of G in detail and then prove its correctness.

Starting with an empty graph G, we first insert a constant vertex si of color i
for each color i ∈ {1, 2, 3}. By adding c′ + 1 neighbors of each color (except for
si’s color), we make sure that the color of a constant vertex will never change.

In order to insert the graph Gj for some 1 ≤ j ≤ r into the graph G, we have to
assign a 3-coloring to Gj . Therefore, preserving the color of the vertices, we dupli-
cate the graph Gj three times (referred to as G1

j , G
2
j , G

3
j). We adjust the graphs

for all i ∈ {1, 2, 3} as follows: Using the permutation π = (1, 2, 3) (cycle nota-
tion), we set the color of xi

j in Gi
j to π(i). Furthermore, we remove all edges in Gi

j

between the vertex xi
j and every vertex in Nπ(xi

j) := N(xi
j , π(i)) ∪N(xi

j , π
2(i)).

After this, Gi
j is correctly colored. To prevent a recoloring of the vertices in

Nπ(xi
j) with color i, we insert an edge from the constant vertex si to each vertex

in Nπ(xi
j). Adding the edge {xi

j, sπ2(i)} then completes the construction of Gi
j .

Figure 1 shows an example.
Next, for all colors 1 ≤ i ≤ 3 and 1 ≤ j ≤ r, we insert the graphs {Gi

j} into G

and connect the vertices {xi
j} through a balanced binary tree. The first property
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of the tree is that every inner vertex connects two differently colored vertices
and we set the third color to it. Second, balanced means that each vertex xi

j has
the same distance to the root. Both properties can be fulfilled by “filling up” the
tree with constant vertices.

Finally, we prove the correctness of our composition algorithm. The algorithm
outputs the instance (G, x, c′) with c′ := c + !log(3r)". The construction of G
can be done in polynomial time and since 3r ≤ 2c, it follows that c′ ∈ O(c2).

In order to show equivalence, the first property of the binary tree implies that
(starting at the root x) each inner vertex serves as a “switch” between on which
of its both children a conflict path can continue. Hence, by a path through the
tree we can reach each vertex xi

j . Note that, because of the second property, such
a conflict path requires !log(3r)" recoloring operations.

Consider the situation where a conflict path through the tree reaches xi
j . Re-

calling that xi
j has color π(i) and G contains the edge {xi

j , sπ2(i)}, one has to
recolor xi

j with color i. Now, when Gj can be recolored by at most c changes such
that xj obtains color i, then this recoloring is also a proper recoloring for Gi

j .
The reverse direction also holds, because we excluded the possibility of recolor-
ing the vertices in Nπ(xi

j) with color i. ��

According to the framework of Bodlaender et al. [3, 4], there are two ways to
show that a problem does not admit a polynomial kernel. First, as we did for
IC 3-Coloring, one can show that the problem is compositional. Second, one
can reduce by a polynomial parameter transformation a problem for which the
non-existence of a polynomial kernel is already known to the problem in question.
Adding the color list L(v) = {1, 2, 3} for each vertex v is a simple polynomial
parameter transformation from IC 3-Coloring to IC k-List Coloring. The
generalization of this idea leads to the following.

Corollary 1. IC k-List Coloring has no polynomial kernel, unless NP ⊆
coNP/poly.

We close the section with the following strengthening of Theorem 5, showing
that there is also no hope to find a polynomial kernel even when we restrict
IC k-List Coloring to planar bipartite or chordal graphs. The correctness
follows from the fact that the composition algorithm for IC 3-Coloring (proof
of Theorem 5) composes the sequence of instances by a binary tree.

Corollary 2. IC k-List Coloring for fixed k ≥ 3 restricted to planar bipartite
or chordal graphs has no polynomial kernel, unless NP ⊆ coNP/poly.

4 Implementation and Experiments

To demonstrate the practical relevance and usefulness of IC k-List Coloring,
we have implemented our search tree algorithm (see Section 2) as a subroutine
of a popular greedy algorithm for the graph coloring problem. We will show
that the derived algorithm outperforms an often used heuristic algorithm called
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Iterated Greedy [5] in terms of quality and running time. Furthermore, we pro-
vide practical evidence that in this graph coloring approach the conservation
parameter c can often be set to pretty small values, typically smaller than k
(number of colors).

Graph Coloring Instances. We performed our tests on a collection of graph
coloring instances, previously used in the “Graph Coloring and its
Generalizations“-Symposium (2002) [6]. Before that, some of these graph color-
ing instances were studied in the DIMACS Implementation Challenge (1993) [7].

Altogether, the collection of instances contains 64 graphs, where the number
of vertices ranges from 25 to 4730 (avg: 1067). The average density of the graphs
(ratio of the number of vertices to the number of edges) is 15%. The instances
cover a wide range of graph classes such as Leighton and latin square graphs.

Implementation Details. The implementation of all algorithms is written in
Java, it is open source and freely available.2 All experiments were run on an
AMD Athlon 64 3700+ machine with 2.2GHz, 1M L2 cache, and 3GB main
memory running under the Debian GNU/Linux 5.0 operating system with Java
1.6.0 12 (option: -Xmx256M).

Next, we describe some details of the implementation of the graph coloring
algorithms. Our algorithm is based on the following greedy strategy. Processing
the vertices in descending order according to their degree, color a vertex with
an already used color whenever possible, otherwise use a new color for the ver-
tex. There exist many strategies how to choose a color from all possible already
used colors. We implemented the strategies Simple (choose the first color accord-
ing to any ordering), Largest First (choose the color which is used most often)
and Random (random color). For all our results we ran the algorithm with all
strategies and list the best result that was found during these trials.

The greedy algorithm suffers from the fact that the color of an already colored
vertex cannot be revoked. This is the point where our search tree algorithm
comes into play. Consider the situation where the greedy algorithm “fails”, that
is, during the coloring of a graph G = (V, E) with V := {v1, . . . , vn} a vertex vi

for some 1 < i ≤ n cannot be colored with the already used colors {1, . . . , k},
since vi has at least one neighbor of each color in Gi := G[v1, . . . , vi]. Instead of
adding a new color k + 1 for vertex vi, we try to solve an IC k-List Coloring

instance on the graph Gi with vi as the uncolored vertex x by our search tree
algorithm to get a k-coloring for Gi. If our search tree algorithm cannot find a
k-coloring for Gi, then we color the vertex vi with the new color k + 1.

Our search tree implementation incorporates the idea, also used in our data
reduction rule (Rule 1), to check after each recoloring whether the number of
conflicts is at most c (conservation parameter). Using our cost function (see
Section 3), the fact that the cost of a cheapest possible conflict path is greater
than c implies that the number of conflicts is greater than c. Thus, our search
tree algorithm will never recolor a vertex which would be reduced by Rule 1.

2 Source code & a full list of results: http://theinf1.informatik.uni-jena.de/inc_
cluster/

http://theinf1.informatik.uni-jena.de/inc_cluster/
http://theinf1.informatik.uni-jena.de/inc_cluster/
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Table 1. Summary of our experiments. The first column k for each algorithm denotes
the best number of colors which was found and the last column provides the running
time in seconds. Each value was obtained as the average over four runs (standard
deviation in brackets). For the Iterated Greedy algorithm #iter denotes the number of
iterations. For our search tree based algorithm, c denotes the conservation parameter.

name greedy Iterated Greedy search tree
k time (s) k #iter time (s) k c time (s)

ash608GPIA 8 0.2 5.0 [0.0] 1058.8 33.2 [1.3] 5.0 [0.0] 8 0.2 [0.0]
DSJC1000.1 29 0.1 27.5 [0.6] 1243.8 24.5 [5.0] 25.0 [0.0] 6 0.5 [0.1]
DSJC500.1 17 0.0 16.8 [0.5] 1217.5 6.7 [2.3] 14.8 [0.5] 8 0.3 [0.1]
latin square 10 148 0.3 109 [1.4] 2765.3 68.8 [9.2] 116.8 [2.6] 4 1.5 [0.6]
le450 15a 18 0.0 18.0 [0.0] 1000 5.0 [0.0] 16.0 [0.0] 7 1.2 [0.2]
qg.order40 44 0.3 42.0 [0.0] 1033.8 59.9 [1.7] 41.0 [0.0] 5 4.8 [0.3]
queen16 16 26 0.0 20.3 [0.5] 1295 2.2 [0.7] 19.3 [0.5] 7 0.4 [0.2]
school1 nsh 31 0.0 14.0 [0.0] 1443.8 3.7 [0.3] 23.0 [5.4] 6 0.2 [0.1]
wap03 55 4.0 53.8 [0.5] 1006.3 475.5 [3.4] 50.0 [0.0] 5 3.9 [0.3]

The potential to find a k-coloring for Gi (if possible) depends on the choice of
the value for the conservation parameter c. On the one hand, the higher the value,
the higher the potential; on the other hand, the value of c makes the “major con-
tribution” to our algorithm’s running time. Based on preliminary experiments,
we choose c ≤ 8 maximal under the constraint k · (k − 1)c ≤ 1010.

We compare our above described algorithm to the Iterated Greedy Algorithm [5],
which is also based on the described greedy algorithm. Its main idea is to itera-
tively run the greedy algorithm (mixing the described strategies how to choose a
possible color). Thereby, the algorithm makes use of the fact that if the greedy
algorithm processes the vertices with respect to an already known k-coloring, it
will not produce a worse coloring. Clearly, the hope is, while using a “smart per-
mutation” of the vertices, to get a better coloring (in terms of number of colors).
We implemented Iterated Greedy in basically the same manner as proposed in [5],
meaning that we adopt the strategies how generating “smart permutations” and
aborting the iteration when 1000 times no better coloring was found.

Results. Our experimental findings are as follows. Table 1 contains the results
for some important instances. Our algorithm (called search tree in Table 1) finds
for 89% and Iterated Greedy for 83% of the instances a better coloring than
the naive greedy algorithm. Thereby, our algorithm could decrease the number
of colors by about 12% and Iterated Greedy by about 11%. Furthermore, our
algorithm is by a factor of 50 and Iterated Greedy is by a factor of 170 slower
than the greedy algorithm. In other words, the greedy algorithm needs 23 seconds,
our algorithm needs 19minutes and Iterated Greedy needs 1 hour 5minutes for
coloring all instances.

In summary, in most cases our algorithm is clearly superior to the Iterated
Greedy algorithm, both in terms of number of used colors and running time. We
emphasize that the potential of our algorithm is bounded by having chosen an
upper bound of 8 for the conservation parameter c.
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5 Conclusion

Webelieve that the incremental setting combinedwith theparameterizationby con-
servation provides a fruitful approach to numerous other optimization problems
besides coloring, e. g. clustering problems such as Incremental Constrained

k-Center. There remain numerous challenges for future research even when re-
stricting the focus to coloring problems. Among others, for IC k-List Coloring

it is open to achieve a problemkernel ofO(ck) vertices contrasting ourO(kc)-vertex
kernel. Improving on the upper bounds of our simple search tree algorithm is desir-
able. By means of a reduction from List Coloring we have shown that IC k-List

Coloring is also NP -hard for restricted graph classes such as planar bipartite or
chordal graphs. However, it would be interesting to study whether improvements
in terms of parameterized algorithms and data reduction rules are achievable for
such restricted graph classes.
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Abstract. Geometric routing by using virtual locations is an elegant
way for solving network routing problem. In its simplest form, greedy
routing, a message is forwarded to a neighbor that is closer to the des-
tination. One major drawback of this approach is that the virtual coor-
dinates requires Ω(n log n) bits to represent, which makes this scheme
infeasible in some applications.

In this paper, we introduce a modified version of greedy routing which
we call generalized greedy routing algorithm. Instead of relying on de-
creasing distance for routing decision, our routing algorithms use other
criterion to determine routing path, solely based on local information.
We present simple generalized greedy routing algorithms based on Schny-
der coordinates (consisting of three integers between 0 and 2n), which
are derived from Schnyder realizer for plane triangulations and Schnyder
wood for 3-connected plane graphs. The algorithms are simple and can
be easily implemented in linear time.

1 Introduction

Routing certainly is one of the most important algorithmic problems in network-
ing. Extensive research has been devoted to discover efficient routing algorithms.
(For example, see [5,21]). Routing was previously done via routing protocols.
Such solutions are space inefficient and require considerable setup overhead,
which makes it infeasible for some networks such as wireless sensor networks.

Recently, a new approach geometric routing has been proposed. This approach
uses geometric coordinates of the vertices to compute the routing paths. Greedy
routing is one of the simplest geometric routing, in which a vertex simply for-
wards messages to a neighbor that is closer to the destination.

Greedy routing is simple, but also has some problems. First, GPS devices used
to determine geometric coordinates are expensive and increase the energy con-
sumption. This should be avoided, esp. for sensor networks. More importantly,
bad geographical locations of network nodes can lead to situations in which the
� Research supported in part by NSF Grant CCR-0635104.
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routing fails because a void position has been reached. Namely, a packet has
reached a vertex all whose neighbors are no closer from the destination than the
vertex itself.

An elegant solution was proposed in [18] to solve these problems: For geometric
routing of a graph G, we could ignore its pre-defined geometric coordinates (e.g.,
GPS coordinates) Instead, we could use graph drawing, based on the structure
of G, to compute virtual coordinates for the vertices of G. Geometric routing
algorithms then rely on such virtual coordinates rather than on the real geo-
graphic ones to compute routes. Greedy drawing is introduced as a solution for
greedy routing. Simply speaking, a greedy drawing is a drawing in which greedy
routing works.

Intense research has been done on greedy routing schemes that assign network
nodes to virtual coordinates in a natural metric space. Papadimitriou and Rata-
jczak [17] showed that any 3-connected planar graph can be embedded in R3

that supports greedy geometric routing. However, a non-standard metric func-
tion is used in [17]. They conjectured that such embeddings are possible in R2.
This conjecture has drawn a lot of interests [2,4,6,13,14,15,16]. Greedy embed-
dings in R2 were first obtained only for graphs containing power diagrams [4],
then for graphs that contain Delaunay triangulations [15], and then existentially
(but not algorithmically) for plane triangulations [6]. Leighton and Moitra [14]
proved this conjecture positively by designing a greedy embedding algorithm for
any 3-connected planar graph in R2. A similar result was independently found
in [2]. However, neither of the two papers give the time efficiency analysis of
their algorithms.

Eppstein and Goodrich in [8] pointed out another problem of greedy routing:
They are still not yet practically feasible because, in the worst case, the virtual
coordinates, produced by greedy drawing and used in greedy routing, require
Ω(n log n) bits to represent them. Hence, these greedy drawing based routing al-
gorithms have the same space usage as traditional routing table approaches. The
main obstacle for the applicability of greedy routing is not only the existence of
a greedy drawing, but also the existence of a succinct greedy drawing, in which
the virtual coordinates are represented in O(log n) bits. However, Angelini et
al. [1] showed that succinct greedy drawing does not always exist in R2. They
proved that there are infinitely many trees which are greedy drawable, but all
greedy drawings need exponential size grids. This again shows that greedy rout-
ing may not be practically feasible even such drawing exists. In a recent work
[13], Goodrich and Strash show that succinct greedy drawing for the Euclidean
metric in R2, for 3-connected planar graphs, with coordinates that can be repre-
sented succinctly with O(log n) bits. They use a sophisticated coordinate system
for R2. No result on running time is given in their paper.

The essence of the geometric routing is the following: When an origin vertex
u needs to send a message to a destination vertex w, it forwards the message
to a neighbor t, solely based on the location of w and the location information
(namely the locations of u and all neighbors of u.) In the greedy routing scheme,
the decision is based on decreasing distance. For this approach to work, however,
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the decision needs not be based on decreasing distance. As long as the decision
is made locally, this approach works fine.

In this paper, we introduce the generalized greedy routing algorithm. A gen-
eralized greedy routing algorithm uses other criterion, instead of relying on de-
creasing distance for routing decisions, to determine routing path. In Section 2
we present a generalized greedy routing algorithm for plane triangulations based
on Schnyder realizer. In Section 3, we present a generalized greedy routing algo-
rithm for 3-connected plane graphs based on Schnyder woods. Both algorithms
use Schnyder coordinates (consisting of three integers between 0 and 2n). In
order to send a message from the origin u to the destination w, our routing
algorithm determines the routing path from the Schnyder coordinates of u, w
and all neighbors of u. The algorithms are natural and simple to implement.

2 Generalized Greedy Routing for Plane Triangulations

Most definitions we use are standard. We abbreviate the words “counterclock-
wise” and “clockwise” as ccw and cw respectively.

Definition 1. [19,20]: Let G be a plane triangulation of n vertices with three
external vertices v1, v2, v3 in ccw order. A Schnyder realizer (or simply realizer)
R = {T1, T2, T3} of G is a partition of its internal edges into three sets T1, T2, T3

of directed edges such that the following hold:

– The internal edges incident to vi are in Ti and directed toward vi.
– For each internal vertex v of G, v has exactly one edge leaving v in each of

T1, T2, T3. The ccw order of the edges incident to v is: leaving in T1, entering
in T3, leaving in T2, entering in T1, leaving in T3, and entering in T2. Each
entering block may be empty. (See Fig 1 (1)).

Fig 1 (2) shows a realizer of a plane triangulation G. The solid lines (dashed lines
and dotted lines, respectively) are the edges in T1 (T2 and T3, respectively).
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Fig. 1. (1) Edges around a vertex v. (2) A triangulation G and a realizer R.
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In [19,20], Schnyder showed that every plane triangulation has a realizer which
can be constructed in linear time. Each Ti of a realizer is a tree rooted at vi,
spanning all vertices of G except vi−1 and vi+1. (We assume a cyclic structure
on the set {1, 2, 3}. Namely if i = 3 then i + 1 = 1; if i = 1 then i− 1 = 3).

For each internal vertex u of G and i ∈ {1, 2, 3}, Pi(u) denotes the path in
Ti from u to the root vi of Ti. It was shown in [20] that P1(v), P2(v) and P3(v)
have only the vertex v in common, and for two vertices u �= v and two indices
i �= j, Pi(u) and Pj(v) can have at most one common vertex. Let pi(w) denote
the parent of w in Ti. If u = pi(w), then w is an i-child of u. If there is a path
in Ti from w to u, then u is an i-ancestor of w, and w is an i-descendant of
u. Ri(u) denotes the region of G bounded by the paths Pi−1(u), Pi+1(u) and
the exterior edge (vi−1, vi+1). We also use Ri(u) to denote the set of vertices
in the region Ri(u). Let R◦

i (u) denote the interior of Ri(u). Namely R◦
i (u) =

Ri(u)− (Pi−1(u) ∪ Pi+1(u)). We further partition R◦
i (u) into three subsets:

1. The i-Descendants: Di(u) = {v | v is an i-descendent of u}.
2. The i-Left-Cousins: LCi(u) = {v | v is an i-descendent of a vertex w ∈

Pi+1(u) where w �= u}.
3. The i-Right-Cousins: RCi(u) = {v | v is an i-descendent of a vertex w ∈

Pi−1(u) where w �= u}.

For instance, in the realizer shown in Fig 1 (2): P2(a) = {a, v2}. P3(a)={a, b, c, v3}.
R1(a) consists of all vertices of G, except v1. R◦

1(a)={d, e, f, g, h, i, j, k}. D1(a) =
{d, h, i, j, k}. LC1(a) = ∅. RC1(a) = {e, f, g}.

Definition 2. Let u and v be two vertices of G and i ∈ {1, 2, 3}.

1. xi(u) denotes the number of faces in the region Ri(u).
2. The Schnyder coordinate of u is: S(u) = (x1(u), x2(u), x3(u)). (Note that

x1(u) + x2(u) + x3(u) = 2n− 5 = the number of internal faces of G.)
3. The direction signature (or simply signature) of v with respected to u is:

DSu(v) = (sign(x1(v)− x1(u)), sign(x2(v)− x2(u)), sign(x3(v) − x3(u)))
(If a = b, define sign(a− b) = 0.)

For example, consider the realizer shown in Fig 1 (2). We have S(a) = (19, 3, 1)
and S(e) = (4, 12, 7). Thus DSa(e) = (− + +).

When a vertex u wants to send a message to the destination vertex w, our
routing algorithm first calculates the signature DSu(w), which indicates to which
”direction” the message should be sent. The following lemma classifies the di-
rection signatures of vertices in the different regions.

Lemma 1. Let u be an interior vertex of G.
1. ∀v ∈ D1(u), DSu(v) = (− + +) 2. ∀v ∈ P3(u), DSu(v) = (−−+)
3. ∀v ∈ P2(u), DSu(v) = (−+−) 4. ∀v ∈ RC1(u), DSu(v) = (−?+)
5. ∀v ∈ LC1(u), DSu(v) = (−+?)
The symbol ? indicates that the corresponding component can be −, + or 0.
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Fig. 2. The illustrations of proof of Lemma 1

Proof. We only prove the statements (1) and (2). The proof of other statements
are similar.

(1) Let v be a vertex in D1(u). Let y be the first common vertex of P2(u)
and P2(v). Let z be the first common vertex of P3(u) and P3(v). (See Fig 2 (1).)
Clearly, we have R1(v) ⊂ R1(u). The inclusion is proper because the regions A
and B are in R1(u), but not in R1(v). Thus sign(x1(v) − x1(u)) = −. We also
have R2(u) ⊂ R2(v). The inclusion is proper because the region B is in R2(v),
but not in R2(u). Thus sign(x2(v)− x2(u)) = +. Similarly, R3(u) ⊂ R3(v). The
inclusion is proper because the region A is in R3(v), but not in R3(u). Thus
sign(x3(v)− x3(u)) = +.

(2) Let v be a vertex in P3(u). Let x be the first common vertex of P1(u) and
P1(v). Let y be the first common vertex of P2(u) and P2(v). (See Fig 2 (2).)
Clearly, we have R3(u) ⊂ R3(v). The inclusion is proper because the regions
A and B are in R3(v), but not in R3(u). Thus sign(x3(v) − x3(u)) = +. We
also have R2(v) ⊂ R2(u). The inclusion is proper because the region A is in
R2(u), but not in R2(v). Thus sign(x2(v)− x2(u)) = −. Similarly, we can show
sign(x1(v)− x1(u)) = −.

By symmetry, we can determine the direction signatures in other regions. These
results are illustrated in Fig 3.

Definition 3. Let α = (α1, α2, α3) be a direction signature.
α is the i+ signature if αi = +, and αj = − for j = i− 1 and j = i + 1.
α is the i− signature if αi = −, and αj = + for j = i− 1 and j = i + 1.

As indicated in Fig 3, we have the following:

Lemma 2. Let u be an interior vertex of G and i ∈ {1, 2, 3}.

1. u has exactly one neighbor, which is pi(u), with the i+ signature.
2. The number of neighbors t of u with the i− signature equals the number of

i-children of u, which can be 0, or 1, or more.
3. For any vertex w of G, if DSu(w) is the i− signature, then w ∈ R◦

i (u).



276 X. He and H. Zhang

− + ? − ? +

? − +? + − − + − − − +

+ − −

+ ? −

+ + −
+ − +

+ − ?

u

− + +

v 
1

v
2 v 

3

D  (u)
1

D  (u)
2

D  (u)
3

LC  (u)1 RC  (u)1

LC  (u)2

RC  (u)2LC  (u)
3

RC  (u)3

Fig. 3. The direction signatures for vertices in different regions

Let u be the origin, and w the destination of a message. The following routing
algorithm determines the neighbor t of u to forward the message, solely based
on the the Schnyder coordinates S(u), S(w) and S(t) of all neighbors t of u.

Schnyder Routing Algorithm 1:

1. If w is a neighbor of u, forward the message from u to w and stop.
2. Compute the direction signature α = DSu(w). If a component of α is 0,

replace it by −. Let β be the resulting signature. (If there’s no 0 component
in α, let β = α.)

3. If β is the i+ signature, forward the message to t = pi(u), which is the unique
neighbor of u with the i+ signature.

4. If β is the i− signature, find a neighbor t of u such that DSt(w) is also the
i− signature, forward the message to t.

Theorem 1. For any two vertices u and w in a plane triangulation G, Schnyder
Routing Algorithm 1 always forwards a message from u to w in finite steps. The
algorithm can be implemented in linear time.

Proof. We prove the following statements:

1. Schnyder Routing Algorithm 1 can always find a neighbor t of u to forward
the message.

2. If w ∈ Ri(u) for i ∈ {1, 2, 3}, then w ∈ Ri(t) and xi(t) < xi(u).

We prove these statements case by case.
Case 1. α = DSu(w) = (α1, α2, α3) has a 0 component. The two remaining

components of α are + and −. Without loss of generality, assume α = (−0+).
(Other cases are symmetric). Thus β = (− − +) is the 3+ signature. As shown
in Fig 3, we must have w ∈ RC1(u). In this case, the algorithm forwards the
message to t = p3(u). Note that we have w ∈ R1(t). Since DSu(t) = (− − +),
we have x1(t) < x1(u).
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Case 2. α = β has no 0 component, and it is the i+ signature. Without loss
of generality, we assume β = α = (− − +). (The other cases are symmetric).
As shown in Fig 3, we must have w ∈ RC1(u) ∪ P3(u) ∪ LC2(u). Although the
algorithm cannot distinguish to which subset w belongs, it always forwards the
message to t = p3(u) in this case. Note that if w ∈ R1(u) then w ∈ R1(t) and if
w ∈ R2(u) then w ∈ R2(t). Since DSu(t) = (− −+), we have x1(t) < x1(u).

Case 3. α = β has no 0 component, and it is the i− signature. Without loss
of generality, we assume β = α = (−+ +). (The other cases are symmetric). As
shown in Fig 3, we must have w ∈ D1(u) ∪RC1(u) ∪ LC1(u).

Case 3a: w ∈ D1(u). Let t be the 1-child of u that is a 1-ancestor of w. Then
DSt(w) = (−+ +). So we can find a neighbor t of u that satisfies the condition
specified in the algorithm.

Note that u might have more than one neighbor satisfying this condition. For
example, u may have another 1-child t′ (that is not a 1-ancestor of w) such that
DSt′(w) = (− + +). The algorithm might forward the message to t′ instead of
t. As we will see later, this will work fine.

Case 3b: w ∈ RC1(u). Let t = p3(u) be the parent of u in T3. We want to
show DSt(w) = (−+ +). There are two cases:

(i) w ∈ D1(t). Then we have DSt(w) = (−+ +). (See Fig 4 (1).)
(ii) w ∈ RC1(t). Then γ = (γ1, γ2, γ3) = DSt(w) = (−?+). (See Fig 4 (2).) We

need to show γ2 = +. Note that DSu(t) = (− − +). Thus x2(t) < x2(u). Since
DSu(w) = (− + +), we have x2(w) > x2(u). Hence x2(w) > x2(t). Therefore
γ2 = sign(x2(w)− x2(t)) = + as to be shown.

Hence we can find a neighbor t of u that satisfies the condition in the algo-
rithm. (Note that u might have another neighbor t′ such that DSt′(w) = (−++).
The algorithm might forward the message to t′ instead of t. This is fine).

Case 3c: w ∈ LC1(u). Symmetric to Case 3b.
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Fig. 4. The two subcases for Case 3b

In all three subcases, the algorithm forwards the message to a neighbor t of
u such that DSt(w) = (− + +). By Lemma 2 (3), we have w ∈ R◦

1(t) ⊆ R1(t).
Also, in all three subcases, u forwards the message to a neighbor t such that
DSu(t) = (− + +), or (−−+). In either case we have x1(t) < x1(u).

Next, we show that the algorithm can always forward the message from u to
the destination w in finite steps. This follows from the following observations:
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1. If w ∈ Ri(u), then the message is sent to a neighbor t with w ∈ Ri(t).
2. Since xi(t) < xi(u), the message is sent through a path from u to w that is

strictly xi(∗) decreasing. So the process stops in at most xi(u) steps.
The only computation needed by the algorithm is the calculation of Schnyder

coordinates. This can be done in linear time [20].

3 Generalized Greedy Routing for 3-Connected Plane
Graphs

In this section, we present a generalized greedy routing algorithm for 3-connected
plane graphs. The algorithm is based on Schnyder wood, which generalizes the
realizer concept from plane triangulation to 3-connected plane graph [7]:

Definition 4. Let G be a 3-connected plane graph with three external vertices
v1, v2, v3 in ccw order. A Schnyder wood of G is a triplet of rooted spanning trees
{T1, T2, T3} of G with the following properties:

1. For i ∈ {1, 2, 3}, the root of Ti is vi, the edges of G are directed from children
to parent in Ti.

2. Each edge e of G is contained in at least one and at most two spanning trees.
If e is contained in two spanning trees, then it has different directions in the
two trees.

3. For each v �∈ {v1, v2, v3} of G, v has exactly one edge leaving v in each of
T1, T2, T3. The ccw order of the edges incident to v is: leaving in T1, enter-
ing in T3, leaving in T2, entering in T1, leaving in T3, and entering in T2.
Each entering block may be empty. An edge with two opposite directions is
considered twice. The first and the last incoming edges are possibly coinci-
dent with the outgoing edges. (Fig 5 (1) and (2) show two examples of edge
pattern around an interval vertex v.)

4. For i ∈ {1, 2, 3}, all the edges incident to vi belong to Ti.

We color the edges in T1 by red, T2 blue, and T3 green. According to the defini-
tion, each edge of G is assigned one or two colors, and is said to be 1-colored or
2-colored, respectively. It was shown in [7] that every 3-connected plane graph
has a Schnyder wood, which can be computed in linear time. Fig 5 (3) shows an
example of a Schnyder wood of a 3-connected plane graph G.

For each vertex v of G and i ∈ {1, 2, 3}, Pi(v) denotes the path in Ti from v to
the root vi of Ti. The subpath of the external face of G with end vertices v1 and
v2 and not containing v3 is denoted by ext(v1, v2). The subpaths ext(v2, v3) and
ext(v3, v1) are defined similarly. The three paths P1(u), P2(u) and P3(u) divide
G into three regions R1(u), R2(u), R3(u). Define R◦

i (u) = Ri(u) − (Pi−1(u) ∪
Pi+1(u)). As before, R◦

i (u) can be partitioned into three subsets:

1. The i-Descendants: Di(u) = {v ∈ R◦
i (u) | the first i-ancestor of v in Pi−1(u)∪

Pi+1(u) is u}.
2. The i-Left-Cousins: LCi(u) = {v ∈ R◦

i (u) | the first i-ancestor of v in
Pi−1(u) ∪ Pi+1(u) is in Pi+1(u)− {u}}.
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3-connected graph G with its Schnyder wood

3. The i-Right-Cousins: RCi(u) = {v ∈ R◦
i (u) | the first i-ancestor of v in

Pi−1(u) ∪ Pi+1(u) is in Pi−1(u)− {u}}.

For example, consider the graph shown in Fig 5 (3). We have R1(b) =
{v2, a, b, d, e, g, v3}. P2(b) = {b, a, v2}, P3(b) = {b, e, v3}. D1(b) = {d}, LC1(b) =
∅ and RC1(b) = {g}. (Note that although g is a 1-descendent of b, since the first
1-ancestor of g is e ∈ P3(b)− {b}, g �∈ D1(b).) The properties of Schnyder wood
have been studied in [3,7,9,10,11] and are summarized in the following lemmas.

Lemma 3. Let G = (V, E) be a 3-connected plane graph and R = (T1, T2, T3) a
Schnyder wood of G.

1. For each v of G, P1(v), P2(v), P3(v) have only the vertex v in common.
2. For i, j ∈ {1, 2, 3} (i �= j) and two vertices u and v, the intersection of Pi(u)

and Pj(v) is either empty or a common subpath.
3. For vertices v1, v2, v3 the following hold: P1(v2) = P2(v1) = ext(v1, v2);

P2(v3) = P3(v2) = ext(v2, v3); P3(v1) = P1(v3) = ext(v3, v1).

Lemma 4. [9,10] Let G = (V, E) be a 3-connected plane graph with a Schnyder
wood R = {T1, T2, T3}.

1. If e = (a, b) is an unidirectional edge directed from a to b in Ti, then Ri(a) ⊂
Ri(b), Ri−1(a) ⊃ Ri−1(b) and Ri+1(a) ⊃ Ri+1(b).

2. If e = (a, b) is bidirectional directed from a to b in Ti and from b to a in
Ti+1, then Ri−1(a) = Ri−1(b), Ri(a) ⊂ Ri(b) and Ri+1(a) ⊃ Ri+1(b).

3. If e = (a, b) is bidirectional directed from a to b in Ti and from b to a in
Ti−1, then Ri+1(a) = Ri+1(b), Ri(a) ⊂ Ri(b) and Ri−1(a) ⊃ Ri−1(b).

Fig 6 (1) illustrates the statement 1 in Lemma 4 with i = 1. Fig 6 (2) illustrates
the statement 2 in Lemma 4 with i = 3. Fig 6 (3) illustrates the statement 3 in
Lemma 4 with i = 3.



280 X. He and H. Zhang

2P  (u)

R  (u)

R  (u)

1v

R  (u)
2

2

P  (u)

3

1

(1)

B z

1

1

1
P  (u)

2
R  (u)

v1

(2)

a

b

a

b
y y

x

1

3

1

v

(3)

A

B

a

b

R  (u)

R  (u)

P  (u)P  (u) 32

3

v

P  (u)
1

3v
2v

3P  (u)

R  (u)
2

3v
2v3v

2

3P  (u) P  (u)

R  (u)

R  (u)

A

Fig. 6. Illustration of Lemma 4

Lemma 5. Let u be any vertex of G.
1. ∀v ∈ D1(u), DSu(v) = (− + +) 2. ∀v ∈ P3(u), DSu(v) = ($$+)
3. ∀v ∈ P2(u), DSu(v) = ($+$) 4. ∀v ∈ RC1(u), DSu(v) = (−?+)
5. ∀v ∈ LC1(u), DSu(v) = (−+?)
The notation $ means that the corresponding component in the signature can

be either 0 or −.

Proof. (1) Let t be a 1-child of u that is not p2(u) nor p3(u). Thus the edge
e = (t, u) is in T1 and directed from t to u. We claim e must be an unidirectional
edge. If not, then e is directed from u to t in T2 (or T3, respectively). But then
t = p2(u) ∈ P2(u) (or t = p3(u) ∈ P3(u), respectively). By the statement (1)
in Lemma 4 (with i = 1), we have x1(t) − x1(u) < 0, x2(t) − x2(u) > 0 and
x3(t)− x3(u) > 0. Thus DSu(t) = (− + +).

Now consider a vertex v ∈ D1(u). Let t be the 1-child of u such that v
is a 1-descendent of t. Since v ∈ D1(u), t is not p2(u) nor p3(u). When we
move from t to v along a T1 path, the first component of Schnyder coordinate
always decreases by Lemma 4 (with i = 1). Similarly, the second component of
Schnyder coordinate either increases or remains unchanged, the third component
of Schnyder coordinate either increases or remains unchanged. Thus x1(v) <
x1(t) < x1(u), x2(v) ≥ x1(t) > x2(u), and x3(v) ≥ x3(t) > x3(u). Hence
DSu(v) = (−+ +).

(2) When we move from u toward v3 along the path P3(u), depending on
whether we move through a unidirectional or bidirectional edge, by Lemma
4 (with i = 3), the first component of Schnyder coordinate either remains
unchanged or decreases, the second component of Schnyder coordinate either
remains unchanged or decreases, the third component of Schnyder always in-
creases. Thus we have DSu(v) = ($$+).

(3) Symmetric to (2).
(4) Consider a vertex v ∈ RC1(u). Let t be the first 1-ancestor of v that is in

P3(u). By (2), we have DSu(t) = ($$+). When we move from t toward v along
a T1 path, by Lemma 4 (with i = 1), the first component of Schnyder coordinate
always decreases, the third component of Schnyder coordinate either increases
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or remains unchanged. Thus DSu(v) = (−?+). (Note that no claim can be made
for the second component of the signature DSu(v).)

(5) Symmetric to (4).

By symmetry, we can determine the direction signatures in other regions. These
results are illustrated in Fig 7.
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Fig. 7. The direction signatures for vertices in different regions

Definition 5. A direction signature α = (α1, α2, α3) is called a fuzzy i+ signa-
ture if αi = +, and αj = − or 0, for j = i− 1 and j = i + 1.

As indicated in Fig 7, we have the following counter-part of Lemma 2:

Lemma 6. Let u be an interior vertex of G and i ∈ {1, 2, 3}.
1. u has exactly one neighbor, which is pi(u), with the fuzzy i+ signature.
2. The number of neighbors t of u with the i− signature equals the number of

its i-children that are not pi+1(u) nor pi−1(u).
3. For any vertex w of G, if DSu(w) is the i− signature, then w ∈ R◦

i (u).

Compare Fig 7 with Fig 3, we can see the only difference is that the signature
DSu(pi(u)) is a fuzzy i+ signature in Fig 7, while it is a i+ signature in Fig
3. Since pi(u) is the only neighbor of u with the fuzzy i+ signature, u can still
recognize which of its neighbors is pi(u).

Schnyder Routing Algorithm 2:

1. If w is a neighbor of u, forward the message from u to w and stop.
2. For each neighbor t of u, compute the signature γ = DSu(t). If γ is a fuzzy

i+ signature, replace any 0 component by −. Let δ be the resulting signature.
If γ has no 0 component, let δ = γ.

Compute the direction signature α = DSu(w). If a component of α is 0,
replace it by −. Let β be the resulting signature. (If there’s no 0 component
in α, then β = α.)
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3. If β is the i+ signature, forward the message to t = pi(u). (Note that t is
the unique neighbor of u with the i+ signature.)

4. If β is the i− signature, find a neighbor t of u such that DSt(w) is also the
i− signature, forward the message to t.

The only difference between Schnyder Routing Algorithm 2 and Schnyder Rout-
ing Algorithm 1 is that if a neighbor t of u has a fuzzy i+ signature γ (in this
case t must be pi(u)), we replace it by the i+ signature δ. The following theorem
is the counter-part of Theorem 1. The proof is almost identical to the proof of
Theorem 1, and hence omitted.

Theorem 2. For any two vertices u and w in a 3-connected plane graph G,
Schnyder Routing Algorithm 2 always forwards a message from u to w in finite
steps. The algorithm can be implemented in linear time.
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Abstract. Clique-width is an important graph parameter whose com-
putation is NP-hard. In fact we do not know of any algorithm other than
brute force for the exact computation of clique-width on any graph class
of unbounded clique-width, other than square grids. Results so far in-
dicate that proper interval graphs constitute the first interesting graph
class on which we might have hope to compute clique-width, or at least
its variant linear clique-width, in polynomial time. In TAMC 2009, a
polynomial-time algorithm for computing linear clique-width on a sub-
class of proper interval graphs was given. In this paper, we present a
polynomial-time algorithm for a larger subclass of proper interval graphs
that approximates the clique-width within an additive factor 3. Previ-
ously known upper bounds on clique-width result in arbitrarily large
difference from the actual clique-width when applied on this class. Our
results contribute toward the goal of eventually obtaining a polynomial-
time exact algorithm for clique-width on proper interval graphs.

1 Introduction

Clique-width is a graph parameter that has many algorithmic applications [4].
NP-hard problems that are expressible in a certain type of extended monadic
second-order logic admit algorithms with running time f(k) · n on input graphs
of clique-width k with n vertices, where function f depends only on k [5]. Un-
fortunately it is NP-hard to compute the clique-width of a given graph [8].
This hardness result is also true for its variant linear clique-width, which gives
an upper bound on clique-width. Fellows et al. ask whether the computation of
clique-width is fixed parameter tractable when parametrised by the clique-width
of the input graph [8]. This question is still open. Furthermore, we do not know
of an algorithm with running time cn, where c is a constant.

Clique-width has received a lot of attention recently [1,3,7,8,13,14,15,16,17].
Nevertheless, positive results known on the computation of clique-width so far
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are very restricted. There exist efficient algorithms that, for fixed integer k,
decide whether the clique-width of a given graph is more than k or bounded
above by some exponential function in k [12,18,19]. Graphs of clique-width at
most 3 can be recognised in polynomial time, and their exact clique-width can be
computed efficiently [6,2]. Examples of such graph classes are cographs, trees and
distance-hereditary graphs [9]. Graphs of bounded treewidth have also bounded
clique-width, and their clique-width can be computed in polynomial time [7].
Regarding classes of unbounded clique-width, the class of square grids is the
only class for which a polynomial-time clique-width computation algorithm is
known [9].

Proper interval graphs have unbounded clique-width and the best approxi-
mation of their clique-width so far is maximum clique size plus 1, which can be
arbitrarily larger than the actual clique-width. Still this is the most promising
class of graphs of unbounded clique-width with respect to whether or not we
will be able to obtain a polynomial-time algorithm for the exact computation
of their clique-width. There are additive approximation algorithms for grids and
for very regular-structured subclasses of proper interval graphs and permutation
graphs [9]. The first polynomial-time algorithm to compute linear clique-width
on a graph class of unbounded clique-width was given by Heggernes et al. in
a TAMC 2009 paper for path powers, which form a subclass of proper interval
graphs [10].

In this paper, we continue this line of research and attack the hardness of
clique-width by exploiting the linear structure of proper interval graphs. This
time we study a significantly larger subclass of proper interval graphs than path
powers. We give a polynomial-time approximation algorithm for computing the
clique-width and linear clique-width of these graphs within an additive factor of
at most 3. Previously known upper bound results do not give an additive ap-
proximation when applied to this graph class. Furthermore, the studied graphs
constitute the largest graph class on which an algorithm for computing or ad-
ditively approximating the clique-width is known. The main difference between
previously considered graph classes and the graph class that we study in this
paper is that our graphs have a much more irregular structure.

2 Definitions, Notation and Clique-Width

We consider simple finite undirected graphs. For a graph G = (V, E), V = V (G)
denotes the vertex set of G and E = E(G) denotes the edge set of G. Edges
of G are denoted as uv, which means that u and v are adjacent in G. For a
vertex u of G, NG(u) denotes the neighbourhood of u in G, which is the set of
vertices of G that are adjacent to u. For a vertex pair u, v of G, u is a true twin
of v if NG(u) ∪ {u} = NG(v) ∪ {v}. Note that a vertex can have several true
twins. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a
set S ⊆ V (G), the subgraph of G induced by S, denoted as G[S], has vertex set
S and contains exactly the edges uv of G where u, v ∈ S. For a vertex x of G,
G−x denotes that subgraph of G that is induced by V (G)\{x}. We also say that
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G−x is obtained from G by deleting x. The disjoint union of two graphs G and
H is (V (G)∪V (H), E(G)∪E(H)). When applying the disjoint union operation,
we always assume that the two involved graphs have disjoint vertex sets.

Clique-width is defined based on a set of operations. Let k ≥ 1 be an integer.
A k-labelled graph, k-graph for short, is a graph each of whose vertices is labelled
with an integer from the set {1, . . . , k}. We define four sets of operations on
k-labelled graphs:

– i(u) creates a k-graph on vertex set {u} where i ∈ {1, . . . , k} and u has
label i

– ηi,j(G) adds edges between all vertices with label i and all vertices with
label j of G where G is a k-graph, i, j ∈ {1, . . . , k} and i �= j

– ρi→j(G) changes all labels i into label j in G where G is a k-graph and
i, j ∈ {1, . . . , k}

– G⊕H is the disjoint union of G and H where G and H are k-graphs.

A k-expression is a properly formed expression using the four types of operations.
We say that a graph G has a k-expression if there exists a k-expression α such
that G is equal to the graph defined by α without the labels. The clique-width
of a graph G, denoted by cwd(G), is the smallest integer k such that G has a
k-expression. An example for a 3-expression for an induced path on five vertices,
(a1, a2, a3, a4, a5), is this:

ρ3→1

(
η2,3

(
3(a3)⊕

(
(η1,2(1(a1)⊕ 2(a2))) ⊕ (η1,2(1(a5)⊕ 2(a4)))

)))
.

Linear clique-width is a restriction of clique-width that allows the disjoint union
to operate on at most one labelled graph with at least two vertices. An ex-
pression that respects the restriction on the disjoint union operation is called
a linear expression. The linear clique-width of a graph G, denoted by lcwd(G),
is the smallest integer k such that G has a linear k-expression. Since linear
k-expressions are k-expressions, it immediately follows that cwd(G) ≤ lcwd(G).

3 Proper Interval Graphs and the Bubble Model

A graph G is called proper interval graph if each vertex of G can be assigned a
closed interval of the real line such that: (1) no interval is properly contained in
another, and (2) two vertices of G are adjacent if and only if the corresponding
assigned intervals have a non-empty intersection. The class of proper interval
graphs is equal to indifference graphs [20].

The clique number of a graph G, denoted as ω(G), is the largest number of
vertices in a clique of G. The pathwidth of G is the smallest clique number of
an interval graph that contains G as a subgraph. The linear clique-width of a
graph G is bounded from above by its pathwidth pw(G); precisely, lcwd(G) ≤
pw(G) + 2 [8]. Since proper interval graphs are interval graphs, it holds for
every proper interval graph G that pw(G) = ω − 1. Together with the general
pathwidth upper bound on the linear clique-width, we obtain for every proper
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Fig. 1. On the left hand side, find a proper interval graph, and on the right hand side,
find a bubble model for the depicted graph. The bubble model contains two empty and
ten non-empty bubbles.

interval graph G that cwd(G) ≤ lcwd(G) ≤ ω(G) + 1 [8]. Note that this upper
bound can be much larger than the actual linear clique-width. A simple example
is a complete graph, that has clique-width and linear clique-width 2 and clique
number equal to n.

For the study of the clique-width on proper interval graphs, we use a 2-
dimensional model for proper interval graphs. Let G be a graph. A bubble model
for G is a 2-dimensional structure B = 〈Bi,j〉1≤j≤s,1≤i≤rj such that the following
conditions are satisfied:

– for 1 ≤ j ≤ k and 1 ≤ i ≤ rj , Bi,j is a (possibly empty) set of vertices of G
– the sets B1,1, . . . , Brk,k are pairwise disjoint and cover V (G)
– two vertices u, v of G are adjacent if and only if there are 1 ≤ j ≤ j′ ≤ s

and 1 ≤ i ≤ rj and 1 ≤ i′ ≤ rj′ such that u, v ∈ Bi,j ∪ Bi′,j′ and (a) j = j′

or (b) j + 1 = j′ and i > i′.

A graph is a proper interval graph if and only if it has a bubble model [10]. Let G
be a proper interval graph with bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj . A column
of B is the collection of all bubbles Bi,j for a fixed 1 ≤ j ≤ s. The jth column of
B is the collection of B1,j , . . . , Brj ,j and is denoted as Bj . We assume throughout
the paper that there is at least one non-empty bubble in the first and last column
of B, which means that for j ∈ {1, s} there is 1 ≤ i ≤ rj such that Bi,j �= ∅. The
column number of B, denoted as #col(B), is the number of columns of B; in our
case, #col(B) = s. A simple example of a proper interval graph and a bubble
model for it is given in Figure 1. As in the figure, a bubble model may contain
empty and non-empty bubbles, and the number of non-empty bubbles in the
single columns can be different. As a convention throughout the paper, if the
indices of a bubble Bi,j exceed the values of B, i.e., if j < 1 or j > s or i < 1 or
i > rj (for 1 ≤ j ≤ s), we assume that Bi,j still exists and is empty. The interior
of B is the set of bubbles of B that are above a non-empty bubble. Formally, the
interior of B, denoted as in(B), is the set {(i, j) : 1 ≤ j ≤ s and 1 ≤ i and ∃i′(i ≤
i′ and Bi′,j �= ∅)}. We say that B is full if for every (i, j) ∈ in(B), Bi,j contains
at least one vertex. Proper interval graphs with full bubble models are efficiently
recognisable.

Proposition 1. There is a linear-time algorithm that on input a connected
proper interval graph G decides whether G has a full bubble model, and if so,
outputs a full bubble model for G where true twins appear in the same bubble.
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4 An Upper Bound on the Linear Clique-Width

We will give an efficient algorithm for computing a linear expression for proper
interval graphs with full bubble models. This expression will provide an upper
bound on the linear clique-width, and thus the clique-width, of the graph.

Let G be a proper interval graph with bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj .
For k ≥ 0, a k-box in B is the collection of bubbles Ba,b, . . . , Ba+k,b, Ba,b+1, . . .,
Ba+k,b+k−1 for 1 ≤ b ≤ s− k + 1 such that a + k ≤ rj for all b ≤ j ≤ b + k − 1.
Intuitively, a k-box is a rectangle of height k +1 and width k that can be placed
in B in the range of in(B). The pair (a, b) is called the origin of the box. It is
immediately clear that if (a, b) is the origin of a k-box then also (1, b) is the
origin of a k-box. The box number of B is the largest k such that B has a k-box.

Lemma 1. Let G be a connected proper interval graph that has a full bubble
model. Let B = 〈Bi,j〉1≤j≤s,1≤i≤rj be a full bubble model for G where true twins
appear in the same bubble.

1) Let κ be the box number of B plus 1.
2) Let α =def 0 if B has at most one vertex per bubble; otherwise, let α =def 1.
3) Let b ≤ s be smallest such that B contains a (κ − 1)-box with origin (1, b).

If Bb+κ−1 contains at least two vertices then let β =def 0; otherwise, let
β =def −1.

Then, lcwd(G) ≤ (κ + 2) + α + β and a linear (κ + 2 + α + β)-expression for G
can be computed in time O(n2).

Proof. We define a linear (κ + 2 + α + β)-expression for G. Let H be the set of
indices j with 1 ≤ j ≤ s and rj ≤ κ. Informally, H represents the set of “short”
columns of B; the other columns are called “long”. Let H = {j1, . . . , jp}, where
we assume without loss of generality that j1 < · · · < jp. By definition of H ,
it holds that rj ≥ κ + 1 for every 1 ≤ j ≤ s with j �∈ H . Let j0 =def 0 and
jp+1 =def s + 1. It follows that ji+1 − ji ≤ κ for all 0 ≤ i ≤ p. Otherwise,
ji+1 − ji ≥ κ + 1 for some 0 ≤ i ≤ p implies the existence of a κ-box with
origin (1, ji + 1) in B, which contradicts the definition of κ as being larger than
the box number of B. So, there are at most κ−1 long columns between each pair
of consecutive short columns in B. For the construction of our expression for G,
we partition B into small parts of long columns, separated by short columns,
and process B from right to left. Due to space restrictions, we concentrate on
the case when α = 0 and β = 0.

We construct the linear expression for G inductively. For convenience reasons,
we assume that B also has columns B0 and Bs+1, and r0 =def rs+1 =def 0.
Let 1 ≤ a ≤ p + 1. Denote by Ga the subgraph of G that is induced by the
vertices in the columns Bja , . . . ,Bs+1. We assume that we already have a linear
expression Ea for Ga that defines a labelled graph with the following labels: the
vertices in the columns Bja+1, . . . ,Bs+1 have label 1, and the vertices in Bi,ja

have label i+1 for every 1 ≤ i ≤ rja ≤ κ (remember that Bja is a short column).
It is important to note that we can assume this particularly for the induction
base case of a = p + 1. For the later arguments, observe the following facts:
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– (since Ea defines a labelled graph) all vertices of Ga have a label
– only labels from the set {1, . . . , κ + 1} are used
– vertices with the same label have the same neighbours outside of Ga and no

vertex with label 1 has a neighbour outside of Ga.

We show that we can define a linear expression Ea−1 for Ga−1 that uses at most
(κ + 2) + α labels.

We construct Ea−1 in three phases. We partition the vertices in columns
Bja−1+1, . . . ,Bja−1 into three areas, as indicated by the three different area back-
grounds in Figure 2:

– area 1: bubbles Bja−j+1,j , . . . , Bκ,j for all ja−1 < j < ja

– area 2: bubbles Bκ+1,j , . . . , Brj ,j for all ja−1 < j < ja

– area 3: bubbles B1,j , . . . , Bja−j,j for all ja−1 < j < ja.

We first add the vertices from area 1, then from area 2 and finally from area 3.
Let W =def ja − ja−1 − 1, which is the number of columns that are properly
between Bja−1 and Bja . In other words, these are the W consecutive long columns
that we will add during this phase. Note that area 3 has the shape of an isosceles
triangle, whereas area 1 has the ideal shape as in Figure 2 only in case when W
has its maximum possible value, which is W = κ− 1.

Throughout the following construction, we will use label κ+2 for introducing
a new vertex; we will refer to it as “creating the vertices in a bubble”. For
obtaining Ea−1 by extending Ea, we consider the vertices in areas 1, 2, 3. This

1
3

2

Fig. 2. Depicted is a bubble model for a proper interval graph. The box number is 5,
as the largest box has width 5 and height 6. The vertical line segments identify “short
columns”, that have no vertex in row 7. The other, “long”, columns, which have a
vertex in row 7, form areas that are partitioned into subareas. There are two areas
of long columns in the depicted bubble model. Each of the areas of long columns is
partitioned into three subareas, that are identified by the shaded backgrounds and
numbered in the right hand side occurrence. The proof of Lemma 1 gives an algorithm
for computing a linear expression and treats long columns particularly different from
short columns.
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Area 2Area 1 Area 3

Fig. 3. In the proof of Lemma 1: the three areas in Figure 2 are processed separately
and according to the scheme, indicated by the curves

is of particular interest, if W ≥ 1. Otherwise, the three areas are empty. Due to
space restrictions, we concentrate on the case when W ≥ 2.

We partition the construction for this case into three smaller parts according to
the description in Figure 2. The vertices in each area are processed according to
special pattern. The three patterns are sketched in Figure 3.

Area 1
This area is marked with number 1 in Figure 2. We process W column inter-
vals of B, starting with the longest one. The first interval consists of the bub-
bles B2,ja−1, . . . , Bκ,ja−1; we process these bubbles in a bottom-to-top manner.
We create the vertices in Bκ,ja−1, then we make all vertices with label κ + 2
adjacent to all vertices with labels 2, . . . , κ. After this, the vertices in Bκ−1,ja

and Bκ,ja are not distinguishable anymore. So, we change label κ to label κ +1,
and then, we change label κ + 2 to label κ.

If κ ≥ 3, we proceed with the vertices in Bκ−1,ja−1. We create the vertices in
Bκ−1,ja−1, then we make the vertices with label κ + 2 adjacent to the vertices
with labels 2, . . . , κ. We change label κ− 1 to label κ + 1, and then, we change
label κ+2 to label κ−1. This process is continued analogously until the vertices
in B2,ja−1 have been processed. Then, it holds that all vertices in Bja have
label κ + 1, and the vertices in Bi,ja−1 have label i for all 2 ≤ i ≤ κ.

We analogously continue with the next intervals, until all bubbles of area 1
have been processed. At the end of the process, the followings holds for the
vertices in area 1: the vertices in column Bja−1+j have label κ − W + j for
all 2 ≤ j ≤ W , the vertices in bubble Bi,ja−1+1 have label i − W + 1 for all
W + 1 ≤ i ≤ κ, and the vertices in column Bja have label κ + 1.

Area 2
This area is marked with number 2 in Figure 2. We process the rows in a top-
to-bottom manner and within a row from left to right. The first vertices to
process are from bubble Bκ+1,ja−1+1. We create the vertices in Bκ+1,ja−1+1.
The vertices with label κ + 2 have to be made adjacent to all already created
vertices in columns Bja−1+1 and Bja−1+2, which are exactly the vertices with
labels 2, . . . , κ −W + 2. So, we make all vertices with label κ + 2 adjacent to
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all vertices with labels 2, . . . , κ − W + 2, and then, we change label κ + 2 to
label κ −W + 1. Note here that the vertices with label κ −W + 1 are exactly
the vertices in bubbles Bκ,ja−1+1 and Bκ+1,ja−1+1, that have no neighbours in
column Bja−1 .

We continue and create the vertices in Bκ+1,ja−1+2, make the vertices with
label κ+2 adjacent to the vertices with labels κ−W +2 and κ−W +3, and then
change label κ + 2 to κ−W + 2. This process continues until bubble Bκ+1,ja−1

has been executed.
If there is rj > κ+1 for some ja−1 < j < ja, we repeat the procedure with the

bubbles Bκ+2,ja−1+1, . . . , Bκ+2,ja−1, and so on until all vertices from area 2 have
been created. When all rows of area 2 have been processed, all neighbours of
the vertices in column Bja have been created and made adjacent, so that we can
change label κ+1 to 1. It holds that after completion of this area 2, the already
created vertices in column Bja−1+j have label κ − W + j for all 2 ≤ j ≤ W .
For Bja−1+1, it holds that the vertices in Bi,ja−1+1 have label i−W + 1 for all
W + 1 ≤ i < κ and the other vertices have label κ −W + 1. The vertices in
columns Bja , . . . ,Bjp+1 have label 1. It is important to note here that label κ+1
is not used.

Area 3
This area is marked with number 3 in Figure 2. We process diagonals. Remember
that the shape of this area is an isosceles triangle. This also means that there
are exactly W diagonals to process. We begin with the longest diagonal and end
with the shortest diagonal. Bubbles on diagonals are processed from upper right
to lower left. We create the vertices in B1,ja−1, make all vertices with label κ+2
adjacent to all vertices with label κ, and change label κ + 2 to label κ + 1. Next,
we create the vertices in B2,ja−2, make all vertices with label κ + 2 adjacent
to the already created vertices from Bja−2 and to the vertices with label κ + 1,
change label κ + 1 to κ, and then change label κ + 2 to κ + 1. We continue
this until we completed bubble BW,ja−W = BW,ja−1+1. Note that, similar to
the case of area 2, special care has to be taken of the different labels of the
vertices in Bja−1+1. All vertices in column Bja−1 have now been created and
made adjacent to all their neighbours. So, we change label κ to label 1. Then,
we change label κ + 1 to label κ.

We continue and repeat the process analogously with the next smaller diagonal
until all bubbles from area 3 except for B1,ja−1+1 have been processed. The
situation now is the following. The vertices from columns Bja−1+2, . . . ,Bjp+1 have
label 1. The vertices in bubble Bi,ja−1+1 have label κ−W+i for all 2 ≤ i ≤ W , the
vertices in bubble Bi,ja−1+1 have label i−W +1 for all W +1 ≤ i < κ, and finally,
the vertices in bubble Bi,ja−1+1 have label κ −W + 1 for all κ ≤ i ≤ rja−1+1.
Note again that label κ + 1 is not used.

We complete area 3 by creating the vertices in B1,ja−1+1 and making them
adjacent to all other vertices in Bja−1+1. Then, all vertices from Bja−1+1 have
been created, and all neighbours of the vertices in Bκ,ja−1+1, . . . , Brja−1+1,ja−1+1

have been created and made adjacent. So, the label of these vertices, that are
exactly the vertices with label κ−W + 1, can be changed to label 1. Remember
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that Bja−1 is a short column. Using the free label κ+1, we can change the labels
of the other vertices in Bja−1+1 so that it holds for all 1 ≤ i < κ that the vertices
in Bi,ja−1+1 have label i + 1. This completes the construction for the vertices in
area 3.

For completing the definition of Ea−1, it remains to add the vertices from
column Bja−1 . This follows the procedure laid out for the vertices in area 1.
If W = 0 then the vertices in Bκ,ja have no neighbour in Bja−1 , and so we
change label κ+1 to label 1. We create the vertices in Bκ,ja−1 , make all vertices
with label κ + 2 adjacent to all vertices with labels 2, . . . , κ, change label κ to
label 1, and then change label κ + 2 to label κ + 1. We continue with Bκ−1,ja−1

and proceed until the vertices in B1,ja−1 have been created and finally received
label 2. This completes the definition of Ea−1 and satisfies the conditions. By
induction, we obtain the claimed result. ��

5 The Approximation Result

The previous section has established an upper bound on the linear clique-width
of proper interval graphs with full bubble models. The upper bound is dependent
on the box number parameter. In this section, we complete this result by giving
lower bounds. The upper and lower bounds together will provide an approxima-
tion on the clique-width and linear clique-width of proper interval graphs with
full bubble models.

An induced path is a graph P that admits a vertex sequence (x1, . . . , xn) such
that E(P ) = {x1x2, . . . , xn−1xn} are the edges of P . For k ≥ 1, the kth power
of P is the graph G on vertex set {x1, . . . , xn}, and two vertices xi, xj of G are
adjacent if and only if |i − j| ≤ k. For k ≥ 1, a k-path power is a graph that is
the kth power of some induced path. Every k-path power is a proper interval
graph. The linear clique-width of k-path powers is completely characterised [11],
and there exists a very good lower bound on the clique-width of k-path powers
[9]. The following proposition summarises the cases that are important for our
results.

Proposition 2 ([11], [9]). Let G be a k-path power on n vertices, where k ≥ 1.

– If n = k(k + 1) + 2 then lcwd(G) = k + 2 and cwd(G) ≥ k.
– If n = k(k + 1) then lcwd(G) = k + 1 and cwd(G) ≥ k.

Corollary 1. Let G be a proper interval graph with full bubble model B =
〈Bi,j〉1≤j≤s,1≤i≤rj . Let B contain a k-box with origin (1, b), where k ≥ 1. Then,
lcwd(G) ≥ k+1 and cwd(G) ≥ k. If b ≤ s−k and rb+k ≥ 2 then lcwd(G) ≥ k+2.

Let G be a graph. If G contains no pair of adjacent vertices then cwd(G) ≤
lcwd(G) ≤ 1. Otherwise, lcwd(G) ≥ cwd(G) ≥ 2. It is easy to check that
lcwd(G) ≥ cwd(G) ≥ 3 if G contains an induced path on four vertices as induced
subgraph. With these additional and easy bounds on clique-width, we are ready
to prove the main result of the paper.
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Theorem 1. There is an O(n2)-time algorithm that on input a connected proper
interval graph G with full bubble model, approximates the clique-width of G within
cwd(G)+3 and approximates the linear clique-width of G within lcwd(G)+3. If
G contains no true twins then the algorithm approximates the linear clique-width
of G within lcwd(G) + 1.

Proof. Let G be a connected proper interval graph with full bubble model. If u
and v are true twins of G then cwd(G) = cwd(G−v). With iterated application
of this argument, it holds that cwd(G) = cwd(G′) where G′ is a maximal induced
subgraph of G without true twins. Let B = 〈Bi,j〉1≤j≤s,1≤i≤rj be a full bubble
model for G where true twins appear in the same bubble. Remember that B
exists according to Proposition 1. Let k be the box number of B. If G is a
complete graph then cwd(G) ≤ lcwd(G) ≤ 2. Henceforth, let G not be complete.
This particularly means that s ≥ 2 and r1, . . . , rs−1 ≥ 2. Thus, k ≥ 1, since B
has a 1-box with origin (1, 1). We distinguish between two cases according to
the value of k. As the first case, let k = 1. If s = 2 and rs = 1 then 2 ≤
cwd(G) ≤ lcwd(G) ≤ 3. Otherwise, if r2 ≥ 2, G contains an induced path on
four vertices as induced subgraph, by choosing a vertex from each of the four
bubbles B1,1, B2,1, B1,2, B2,2. This means that lcwd(G) ≥ cwd(G) ≥ 3. We apply
the algorithm of Lemma 1. It holds that κ = 2 and β ≤ 0 and α ≤ 1. This gives
3 ≤ cwd(G) ≤ lcwd(G) ≤ (κ + 2)+ α ≤ cwd(G)+ 2. If G has no true twins then
α = 0, and thus, (κ + 2) + α ≤ lcwd(G) + 1.

Now, let k ≥ 2. We first consider linear clique-width. We apply the algorithm
of Lemma 1. It holds that κ = k + 1 and β ≤ 0 and α ≤ 1. Hence, cwd(G) ≤
lcwd(G) ≤ (k + 3) + α + β. We first consider linear clique-width and the case
when G has no true twins; in particular, α = 0. Let b be smallest such that B has
a k-box with origin (1, b). Due to definition, β = 0 if and only if rb+k ≥ 2, where
we assume rs+1 = 0. Due to Corollary 1, it holds that lcwd(G) ≥ k + 2 + β.
We combine the upper and lower bound results and obtain that lcwd(G) ≤
(k + 3) + β ≤ lcwd(G) + 1. If G has true twins then α = 1. Due to Corollary 1,
lcwd(G) ≥ k +1, which shows that lcwd(G) ≤ (k +3)+1 ≤ lcwd(G)+3. In case
of clique-width, we consider cwd(G′). We obtain a bubble model B′ for G′ by
deleting the vertices in V (G) \ V (G′) from B. Due to the assumption about the
true twins being in the same bubble, B′ is a full bubble model for G′, and the
box number of B′ is k. Due to Corollary 1, cwd(G′) ≥ k, and applying Lemma 1,
where κ = k + 1, β ≤ 0 and α = 0, we obtain together with the above lower
bound that cwd(G) ≤ k + 3 ≤ cwd(G) + 3. This completes the proof of the
theorem. ��

6 Final Remarks

We gave an efficient approximation algorithm for computing the clique-width
and the linear clique-width of proper interval graphs with a full bubble model.
The correctness and quality of the result relies on almost tight lower and upper
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BA C D E F

A B C D E F

Fig. 4. The left hand side shows a bubble model of the right hand side depicted graph.
The graph has clique-width 3 and linear clique-width 3 and the box number of the
bubble model is 4.

bounds. The lower bound on the clique-width and linear clique-width is obtained
from the results about path powers and the close relationship between the box
number and the existence of large path powers as induced subgraphs in these
proper interval graphs. In Figure 4, we give an example showing that this close
relationship does not extend to arbitrary proper interval graphs.

Can our results help to understand and solve the general case for proper
interval graphs? We think that our results are indeed very helpful for the con-
tinuation of the work with the aim of computing the clique-width and linear
clique-width of proper interval graphs exactly. A closer study of our results
shows that the approximation result can be extended to a much larger class of
proper interval graphs, namely to all proper interval graphs for which the box
number gives a good approximation on the size of an induced subgraph that is
a large path power. Another possible extension is by identifying another class of
well-structured proper interval graphs, similar to path powers, that can provide
a lower bound on the clique-width and linear clique-width of proper interval
graphs. Up to now, path powers are the only proper interval graphs for which
such lower bound results exist.

Finally, we want to mention that our approximation result gives hope even for
an algorithm that computes the clique-width and linear clique-width of proper in-
terval graphs with full bubble models exactly. We believe that our upper bounds
for graphs without true twins are tight. So, the main challenge is a matching
lower bound. The currently most promising approach is again the identifica-
tion of small and well-structured induced subgraphs that already require larger
clique-width.
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Abstract. In property testing, the goal is to distinguish between ob-
jects that satisfy some desirable property and objects that are far from
satisfying it, after examining only a small, random sample of the object
in question. Although much of the literature has focused on properties
of graphs, very recently several strong results on hypergraphs have ap-
peared. We revisit a logical result obtained by Alon et al. [1] in the light
of these recent results. The main result is the testability of all properties
(of relational structures) expressible in sentences of Ramsey’s class.

Keywords: property testing, logic, Ramsey’s class.

1 Introduction

Alon et al. [1] proved the testability of all graph properties expressible in sen-
tences of first-order logic where all quantifier alternations are of the type ‘∃∀’.
This class is the restriction of Ramsey’s [12] class to undirected graphs. Fis-
cher [7] extended this (and other results of [1]) to tournaments. However, Ram-
sey’s [12] class is traditionally not restricted to undirected graphs; any (finite)
number of predicate symbols with any (finite) arities may appear. It is therefore
natural to ask whether one can extend this result to relational structures.

This result of Alon et al. [1] has been influential, and has already been ex-
tended several times, cf., e.g., [2,8,13]. These extensions have generally focused
on an intermediate result: the testability of colorability (and eventually hered-
itary1) properties. In particular, Austin and Tao [4] have recently obtained a
strong result: the testability (with one-sided error) of hereditary properties of
directed, colored, not necessarily uniform hypergraphs. We return to the logical
classification begun by Alon et al. [1] and show that this result and generaliza-
tions of the remaining parts of the proof in Alon et al. [1] combine to give our
desired result, the testability of all properties expressible in Ramsey’s class.

2 Preliminaries

Instead of restricting our attention to graphs, we focus on properties of relational
structures. We begin by defining vocabularies of such structures.
� Supported by a Grant-in-Aid for JSPS Fellows under Grant No. 2100195209.

�� Supported by MEXT Grant-in-Aid for Scientific Research on Priority Areas under
Grant No. 21013001.

1 A hereditary property is one that is closed under the taking of induced substructures.
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Definition 1. A vocabulary τ is a tuple of distinct predicate symbols Rai

i with
associated arities ai, i.e., τ := (Ra1

1 , . . . , Ras
s ) .

The vocabulary (unique up to renaming) of directed graphs is τG := (E2).

Definition 2. A structure A with vocabulary τ is an (s + 1)-tuple,

A := (U,RA
1 , . . . ,RA

s ) ,

where U is a finite universe, and RA
i is an ai-ary predicate corresponding to the

symbol Rai

i of τ , i.e., RA
i ⊆ Uai .

The natural numbers are denoted by N := {0, 1, . . .}. For any set U we write
|U | to denote the cardinality of U and we generally identify U with the set
{0, . . . , |U | − 1}. The size of A is denoted by #(A) and defined as #(A) := |U |.
Let STRUCn(τ) be the set of structures with vocabulary τ and size n, and
STRUC (τ) :=

⋃
n∈N

STRUCn(τ) be the finite structures with vocabulary τ .
A property P with vocabulary τ is any subset of STRUC (τ). We say that

a structure A has P if A ∈ P . In property testing, we are interested in distin-
guishing between structures that have some property and those that are far from
having the property, and so we require a distance measure. Jordan and Zeug-
mann [9] introduced several possible distances and considered the relationship
between the resulting notions of testability. We are proving a positive result, and
so it suffices to use only the most restricted variant considered there.

We begin by noting that relations have subrelations, for example monadic
loops in a binary predicate. In property testing, it can be useful and is more
restrictive (see Jordan and Zeugmann [9]) to consider these subrelations as sep-
arate relations when defining the distance between structures. We first define
the syntactic notion of subtype before proceeding to subrelations.

Definition 3. A subtype S of a predicate symbol Rai

i is any partition of the set
{1, . . . , ai}.

For example, graphs have a single, binary predicate symbol E2 which has two
subtypes: {{1, 2}} and {{1}, {2}}, corresponding to loops and non-loops respec-
tively. Let SUB(Rai

i ) denote the set of subtypes of predicate symbol Rai

i .

Definition 4. Let A ∈ STRUC (τ) be a structure with vocabulary τ and uni-
verse U , and let S be a subtype of predicate symbol Rai

i ∈ τ . We define sU (S),
the tuples that belong to S, as the set (x1, . . . , xai) ∈ Uai satisfying the fol-
lowing condition. For every 1 ≤ j, k ≤ ai, xj = xk iff j and k are contained
in the same element of S. The subrelation sA(S) of A corresponding to S is
sA(S) := sU (S) ∩RA

i .

Returning to our example of graphs, the sets of loops and non-loops are the
subrelations of E corresponding to the subtypes {{1, 2}} and {{1}, {2}} of E2,
respectively. We denote the symmetric difference of sets U and V by U ' V ,

U ' V := (U\V ) ∪ (V \U) .
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Definition 5. Let A, B ∈ STRUCn(τ) be structures with vocabulary τ and
size n. The distance between A and B is

mrdist(A, B) := max
R

ai
i ∈τ

max
S∈SUB(R

ai
i )

|sA(S)' sB(S)|
n|S| .

The distance between structures is the fraction of assignments that differ in the
most different subtype. The distance between structures generalizes to distance
from properties in the usual way.

Definition 6. Let A ∈ STRUCn(τ) be a structure with vocabulary τ and size n,
and let P ⊆ STRUC (τ) be a property with vocabulary τ . The distance between A
and P is

mrdist(A, P ) := min
B∈P∩STRUCn(τ)

mrdist(A, B) .

If P ∩ STRUCn(τ) is empty, we let the distance be infinite.

We are now able to define property testing itself.

Definition 7. Let P ⊆ STRUC (τ) be a property with vocabulary τ . An (ε, q)-
tester T for P is a probabilistic algorithm which satisfies the following conditions,
when given ε and access to an oracle that answers queries for the universe size
#(A) and for the assignment of any tuple (x1, . . . , xai) ∈ RA

i :

1. If A ∈ P , then T accepts with probability at least 2/3.
2. If mrdist(A, P ) ≥ ε, then T rejects with probability at least 2/3.
3. T makes at most q queries.

In property testing, we are particularly interested in properties that can be tested
with a number of queries depending only on ε.

Definition 8. A property P is testable if there exists a function c(ε) such that
for every ε > 0, there exists an (ε, c(ε))-tester for P .

This is a non-uniform definition because we do not require the testers to be, e.g.,
computable given ε. There exist properties that are non-uniformly testable but
not uniformly testable (see, e.g., Alon and Shapira [3]). Our results hold in either
case2 (i.e., one can replace all occurrences of “testable” below by “uniformly
testable” and maintain correctness) and so we will not distinguish between them.

We also require logical definitions. These definitions are standard and we
review them quickly. See Enderton [6] for an introduction to logic and Börger et
al. [5] for background on classification problems.

The first-order language of τ is the closure of the atomic formulae xi = xj and
Rai

i (x1, . . . , xai) for variable symbols xk under Boolean connectives ∧, ∨ and ¬
and first-order quantifiers ∀ and ∃. We do not allow ordering or arithmetic. These
sentences are interpreted in the usual way and so, for a structure A ∈ STRUC (τ)

2 In the uniform case, we must restrict Lemma 1 to decidable properties. All properties
considered here are clearly decidable.
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and sentence ϕ of vocabulary τ , we can decide whether A |= ϕ. Logical sentences
define properties; if ϕ is a sentence with vocabulary τ , then it defines property
Pϕ := {A | A ∈ STRUC (τ), A |= ϕ}.

Our logic does not contain arithmetic or ordering, and so all properties ex-
pressible in it are closed under isomorphisms. We formalize this as follows.

Definition 9. Let A, B ∈ STRUCn(τ) be two structures with universe U and
vocabulary τ . We say that A and B are isomorphic if there exists a bijection
f : U → U such that for all 1 ≤ i ≤ s and x1, . . . , xai ∈ U , we have

(x1, . . . , xai) ∈ RA
i ⇐⇒ (f(x1), . . . , f(xai)) ∈ RB

i .

Definition 10. Let P be a property with vocabulary τ . We say that P is closed
under isomorphisms if for all isomorphic A, B, A has P iff B has P .

Our goal is a classification of the syntactic subclasses of first-order logic accord-
ing to their testability. These subclasses are traditionally formulated as prefix-
vocabulary fragments. Here we are only interested in Ramsey’s class, and so we
omit more general definitions, see, e.g., Börger et al. [5] for details.

Ramsey’s class is denoted [∃∗∀∗, all]=. This is the set of sentences of first-
order predicate logic in prenex normal form, where all existential quantifiers
precede all universal quantifiers. Function symbols do not appear, but any num-
ber of predicate symbols of any arity may appear, as may the special atomic
predicate =. Ramsey’s class has a number of nice algorithmic properties. For ex-
ample, Ramsey [12] showed the satisfiability problem for this class is decidable,
and Lewis [11] showed it to be NEXPTIME-complete. Kolaitis and Vardi [10]
proved a 0-1 law holds for existential second -order sentences, if the first-order
part is in Ramsey’s class. The class that Alon et al. [1] proved testable is essen-
tially the restriction of Ramsey’s class to graphs, denoted [∃∗∀∗, (0, 1)]=.

3 Testability of Ramsey’s Class

We show that all properties expressible in [∃∗∀∗, all]= are testable. The proof fol-
lows that of Alon et al. [1]. First, we show that their notion of indistinguishability
preserves testability after generalizing to relational structures. Then, we prove
that all sentences in our class define properties that are indistinguishable from
instances of a generalized colorability problem. Finally, we show that all such
problems are hereditary and therefore testable in the setting defined by Austin
and Tao [4]. This implies testability under our definitions, giving the following.

Theorem 1. All sentences in [∃∗∀∗, all]= are testable.

Alon et al. [1] introduced the concept of indistinguishability and showed that it
preserves testability of graph properties. We begin by extending their notion to
relational properties.
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Definition 11. Let P1, P2 ⊆ STRUC (τ) be properties with vocabulary τ that are
closed under isomorphisms. We say that P1 and P2 are indistinguishable if for
every ε > 0 there exists an N := N(ε) ∈ N such that the following holds for all
n > N . For every A ∈ STRUCn(τ), if A has property P1, then mrdist(A, P2) < ε
and if A has P2, then mrdist(A, P1) < ε.

The importance of indistinguishability is that it preserves testability.

Lemma 1. Let P1, P2 ⊆ STRUC (τ) be indistinguishable properties with vocab-
ulary τ . Property P1 is testable iff P2 is testable.

The proof of Lemma 1 is a simple extension of the proof by Alon et al. [1]
and is omitted due to space constraints. Next, we will show that all sentences
in [∃∗∀∗, all]= define properties that are indistinguishable from instances of a
generalized colorability problem. We begin by defining the colorability problem.

For any fixed set F of structures with vocabulary τ , some positive number of
colors c, and functions that assign a color between 1 and c to each element of
each structure in F , we define the F -colorability problem as follows. A structure
A ∈ STRUC (τ) is F -colorable if there exists some (not necessarily proper) c-
coloring of A such that A does not contain any induced substructures isomorphic
to a member of F . We let PF be the set of structures that are F -colorable.

For example, we can consider the case of graphs and let F contain c copies
of K2. We enumerate these copies in some fashion from 1 to c, and for copy i,
color both vertices with i. The resulting problem is of course the usual (k- or
equivalently) c-colorability. The following is a straightforward generalization of
the proof by Alon et al. [1].

Lemma 2. Let ϕ be any first-order sentence in the class [∃∗∀∗, all]=. There
exists an instance of the F -colorability problem that is indistinguishable from Pϕ,
the property defined by ϕ.

Proof. Let ε > 0 be arbitrary and ϕ := ∃x1 . . . ∃xt∀y1 . . . ∀yu : ψ be any first-
order formula with quantifier-free ψ and vocabulary τ . We note, as did Alon et
al. [1], that we can restrict our attention to formulas ψ where it is sufficient to
consider only cases where the variables are bound to distinct elements. This is
because, given any ψ′, we can construct a ψ satisfying this restriction that is
equivalent on structures with at least t + u elements, and the smaller structures
do not matter in the context of indistinguishability.

Let P = {A | A ∈ STRUC (τ), A |= ϕ} be the property defined by ϕ. We now
define an instance of F -colorability that we will show to be indistinguishable
from P . We denote our c colors by the elements of

{(0, 0)} ∪ {(a, b) | 1 ≤ a ≤ π1, 1 ≤ b ≤ π2, a, b ∈ N} .

Here, π1 is the number of distinct structures of vocabulary τ with exactly t
elements, π1 := 2

∑
1≤i≤s tai . Similarly, we denote by π2 the number of ways it is

possible to “connect” or “add” a single element to some existing, fixed t-element
structure of vocabulary τ , i.e., π2 := 2

∑
1≤i≤s

∑
1≤j≤ai−1 (ai

j )tai−j

. We will use fixed
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enumerations of these π1 structures with t elements and π2 ways of connecting
an additional element to a fixed t element structure.

We impose on the coloring of the structure the following restrictions. Each
can be expressed by prohibiting finite sets of colored induced substructures.

(1) The color (0, 0) may be used at most t times. Therefore, we prohibit all
(t + 1)-element structures that are colored completely with (0, 0).

(2) The graph must be colored using only {(0, 0)} ∪ {(a, b) | 1 ≤ b ≤ π2} for
some fixed a ∈ {1, . . . , π1}. Therefore, we prohibit all two-element structures
colored ((a, b), (a′, b′)) with a �= a′.

(3) We now consider some fixed coloring of a u-element structure V , whose uni-
verse we identify with {v1, . . . , vu}. We assume that this coloring satisfies
the previous restriction and that color (0, 0) does not appear. We must de-
cide whether to prohibit this structure. In order to do so, we first take the
fixed a guaranteed by the previous restriction, and consider the t-element
structure E, whose universe we identify with {e1, . . . , et}, that is the ath

structure in our enumeration of t element structures. We connect each vi to
E in the following way. If vi is colored (a, b), we use the bth way of con-
necting an additional element to a t-element structure in our enumeration.
We denote the resulting (t + u)-element structure as M and allow (do not
prohibit) M iff M is a model of ψ when we replace xi with ui and yj with vj .

We now show that the resulting F -colorability problem is indistinguishable
from P . Assume that we are given an A |= ϕ. Color the t vertices existen-
tially bound to the xi with (0, 0). Then, we can color all remaining vertices vi

with (a, b), where a corresponds to the substructure induced by {x1, . . . , xt} in
our enumeration of t-element structures, and b corresponds to the connection
between vi and {x1, . . . , xt}. It is easy to see that this coloring satisfies the re-
strictions of our F -colorability problem. We have not made any modifications to
the structure and so mrdist(A, PF ) = 0.

Next, we assume that we are given a structure with a coloring that satisfies
our restrictions. We will show that we can obtain a model of ϕ by making only
a small number of modifications. First, if there are less than t elements colored
(0, 0), we arbitrarily choose additional elements to color (0, 0) so that there are
exactly t such elements. We will denote these t elements with {e1, . . . , et}. Re-
striction (2) guarantees that all colors which are not (0, 0) share the same first
component. Let a be this shared component. We make the structure induced
by {e1, . . . , et} identical to the ath structure in our enumeration of t-element
structures, requiring at most

∑
1≤i≤s tai = O(1) modifications. Next, for each

element vi that is colored (a, b) with a, b �= 0, we modify the connections be-
tween vi and {e1, . . . , et} in order to make these connections identical to the bth

way of making such connections in our enumeration. This requires at most

(n− t)
∑

1≤i≤r

∑
1≤j≤ai−1

[(
ai

j

)
tai−j

]
= O(n)
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additional modifications, all of which are to non-monadic subrelations. Bind-
ing xi to ei, the resulting structure is a model of ϕ. We made at most O(1)
modifications to monadic subrelations and O(n) modifications to non-monadic
subrelations, and so mrdist(A, P ) ≤ max{O(1)/n, O(n)/Ω(n2)} = o(1) < ε,
where the inequality holds for sufficiently large n.

Therefore, all such properties P are indistinguishable from instances of F -
colorability. ��

A hereditary property of relational structures is one which is closed under taking
induced substructures. F -colorability is clearly a hereditary property; if A is
F -colorable, then so are its induced substructures. However, the definitions of
Austin and Tao [4] are significantly different from ours and so we explicitly
reduce the following translation in our setting to their result.

Theorem 2 (Translation of Austin and Tao [4]). Let P be a hereditary
property of relational structures which is closed under isomorphisms. Then, prop-
erty P is testable with one-sided error.

Before reducing Theorem 2 to its statement in [4], we first briefly introduce their
definitions. All of the definitions in Subsection 3.1 are from Austin and Tao [4],
although we omit definitions which are not necessary for our purposes.

3.1 Framework of Austin and Tao [4]

We begin by introducing their analogue of vocabularies: finite palettes.

Definition 12. A finite palette K is a sequence K := (Kj)∞j=0 of finite sets, of
which all but finitely-many are singletons. The singletons are called points and
denoted pt. A point is called trailing if it occurs after all non-points.

We will write K = (K0, . . . , Kk), omitting trailing points and call k the order of
K. We use the elements of Kj to color the j-ary edges in hypergraphs.

Definition 13. A vertex set V is any set which is at most countable. If V, W
are vertex sets, then a morphism f from W to V is any injective map f : W → V
and the set of such morphisms is denoted Inj(W, V ). For N ∈ N, we denote the
set {1, . . . , N} by [N ].

Of course, [N ] is a vertex set. Our structures are finite so we are mostly interested
in finite vertex sets. Next, we define the analogue of relational structures.

Definition 14. Let V be a vertex set and K be a finite palette. A K-colored
hypergraph G on V is a sequence G := (G)∞j=0, where each Gj : Inj([j], V )→ Kj

is a function. Let K(V ) be the set of K-colored hypergraphs on V .

Only finitely many of the Kj are not points, and so only finitely many Gj are
non-trivial. The Gj assign colors from Kj to the morphisms in Inj([j], V ). In our
relational setting, this set of morphisms corresponds to the set of j-ary tuples
(x1, . . . , xj) with pairwise distinct components.

Before defining hereditary K-properties, we need one last technical definition.
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Definition 15. Let V, W be vertex sets and f ∈ Inj(W, V ) be a morphism from
W to V . The pullback map K(f) : K(V ) → K(W ) is(

K(f)(G)
)

j
(g) := Gj(f ◦ g) ,

for all G = (Gj)∞j=0 ∈ K(V ), j ≥ 0 and g ∈ Inj([j], W )). If W ⊆ V and
f ∈ Inj(W, V ) is the identity map on W , we abbreviate

G �W := K(f) .

Abusing notation, the pullback map K(f) maps K-colored hypergraphs on V to
those on W , by assigning the color of f ◦ g to g, for all tuples g. Note that G �W

is equivalent to the induced subhypergraph on W . For notational clarity, we
reserve P for properties of relational structures and use P to denote properties
of hypergraphs.

Definition 16. Let K = (Kj)∞j=0 be a finite palette. A hereditary K-property
P is an assignment P : V �→ P(V ) of a collection P(V ) ⊆ K(V ) of K-colored
hypergraphs for every finite vertex set V such that

K(f)(P(V )) ⊆ P(W )

for every morphism f ∈ Inj(W, V ) between finite vertex sets.

Finally, we state the definition of (one-sided error) testability used by Austin
and Tao [4]. Here, for a vertex set V and c ∈ N, we write

(
V
c

)
:= {V ′ | V ′ ⊆

V, |V ′| = c} to denote the set of subsets of V with exactly c elements.

Definition 17. Let K be a finite palette with order k ≥ 0 and P be a hereditary
K-property. Property P is testable with one-sided error if for every ε > 0, there
exists N ≥ 1 and δ > 0 satisfying the following. For all vertex sets V with
|V | ≥ N , if G ∈ K(V ) satisfies

1∣∣∣(V
N

)∣∣∣
∣∣∣∣{W | W ∈

(
V

N

)
, G �W∈ P(W )

}∣∣∣∣ ≥ 1− δ , (1)

then there exists a G′ ∈ P(V ) satisfying

1∣∣∣(V
k

)∣∣∣
∣∣∣∣{W |W ∈

(
V

k

)
, G �W �= G′ �W

}∣∣∣∣ ≤ ε . (2)

To see that this is a variant of testability, it is easiest to consider the contraposi-
tive. If there is a G′ satisfying (2), then G is not ε-far from P , using the implicit
distance measure based on the fraction of differing induced subhypergraphs of
size k. If there is no such G′ (i.e., G is ε-far from P) and P is testable, then (1)
must not hold. That is, there are many induced subhypergraphs of size N that
do not have P . The definition is for hereditary P , and so if G has P , then so do
all induced subhypergraphs. This allows the construction of testers.

Finally, we can state one of the main results of Austin and Tao [4].
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Theorem 3 (Austin and Tao [4]). Let K be a finite palette and let P be a
hereditary K-property. Then, P is testable with one-sided error.

In the following subsection we will map our vocabularies, structures and proper-
ties to this setting. We will then show that hereditary properties in our setting
correspond to hereditary properties (in the sense of Definition 16) here, and
that testability in the sense of Definition 17 implies testability of the original
relational properties. That is, we explicitly reduce Theorem 2 to Theorem 3.

3.2 Reducing Theorem 2 to Theorem 3

We begin by mapping vocabulary τ = {Ra1
1 , . . . , Ras

s } to a finite palette Kτ =
(Ki)∞i=0. We use the color of a “tuple” to represent the set of assignments
on it. The difference between the set of j-ary tuples over a finite universe
U and Inj([j], U) is that the latter does not permit repeated components. If
S ∈ SUB(Rai

i ) has |S| < ai, then the corresponding subrelation consists of tu-
ples with repeated components. We treat such S as relations with arity |S| and
no repeated components. Here, S(n, k) is the Stirling number of the second kind.

For a ≥ 1, let Pa := {Rai

i | Rai

i ∈ τ, ai = a} be the set of predicate symbols

with arity a. We now define palette K. Let K0 := pt and Ki :=
[
2
∑

j≥i |Pj |S(j,i)
]
.

There are finitely-many predicate symbols and so only finitely-many Ki �= pt.
Let Sa := {Si

a | Si
a ∈ SUB(Rai

i ), |Si
a| = a, 1 ≤ i ≤ s} be the set of subtypes

with cardinality a for all a ≥ 1. Now, 2|Sa| = |Ka| and we have exactly enough
colors to encode the set of assignments of the a-ary subtypes on a-ary tuples.

We will now define a map h from relational structures A on universe U to
hypergraphs GA ∈ K(U). For any Si

a ∈ Sa, there is a bijection

r(Si
a) : sU (Si

a) → {(x1, . . . , xa) | xi ∈ U, xi �= xj for i �= j}

from sU (Si
a) to the a-ary tuples without duplicate components, formed by remov-

ing the duplicate components. That is, r(Si
a) maps (x1, . . . , xai) to (xi1 , . . . , xia)

where 1 ≤ i1 < i2 < . . . < ia ≤ ai. We can now define GA = h(A).
For j > 0, we define Gj : Inj([j], U)→ Kj as follows. Assign to f ∈ Inj([j], U)

the color encoding the set of assignments of the subtypes Sj on (f(1), . . . , f(j)),
using the inverses (r(Si

j))
−1 to get assignments for subtypes of high-arity rela-

tions. For j = 0, Inj([j], U) = ∅ and K0 = pt and we can use a trivial map.
Of course, we extend the map to properties in the obvious way. If P is a

property of relational structures, we let P(U) := {h(A) | A ∈ P}. Formally, we
define P(U) := P(U), but there is a small technical point. We have identified
finite universes with subsets of the naturals, allowing us to call STRUC (τ) a set.
However, Definition 13 allows a vertex set to be any finite set and Definition 16
requires hereditary hypergraph properties to be closed under bijections between
vertex sets. To remedy this, for each finite vertex set W , we fix a3 bijection
gW : W → {0, . . . , |W | − 1}. We then define P := h(P ) formally as

3 Our properties are closed under isomorphisms, so any fixed bijection is acceptable.
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P(W ) :=

{
P(W ), if W = {0, 1, . . . , |W | − 1};
K(gW ) (P({0,...,|W |−1})) , otherwise.

Hereditary relational properties are mapped to hereditary hypergraph prop-
erties, which are testable in the sense of Definition 17 by Theorem 3.

Lemma 3. If P is a hereditary property of relational structures, then h(P ) is a
hereditary property of hypergraphs.

Proof. Let P be a hereditary property of relational structures with vocabulary
τ . Assume that P := h(P ) does not satisfy Definition 16. Then, there exist finite
vertex sets V and W , and a morphism f ′ ∈ Inj(W, V ) such that

K(f)(P(V )) �⊆ P(W ) . (3)

Since f ′ exists, Inj(W, V ) cannot be the empty set and so |V | ≥ |W |. Let
UV := {0, . . . , |V |−1} and UW := {0, . . . , |W |−1}. By the definition of P , we can
fix bijections gV : V → UV and gW : W → UW such that P(V ) = K(gV ) (P(UV )

)
and P(W ) = K(gW ) (P(UW )

)
. By the definition of P = h(P ), this implies

K(f)
(
K(gV )

(
P(UV )

))
�⊆ K(gW )

(
P(UW )

)
.

Bijections are invertible, and so this implies

K

(
gV ◦f◦(gW )−1

) (
P(UV )

)
�⊆ P(UW ) .

Rename f ′ := gV ◦ f ◦
(
gW

)−1
and note f ′ ∈ Inj(UW , UV ). Let A′ ∈ P(UV ) be

such that K(f ′)(A′) �∈ P(UW ).
We defined P as h(P ) for a hereditary property P of relational structures.

Property P is closed under isomorphisms, and so there is an A := h−1(A′) ∈
P ∩STRUC |UV |(τ) such that the |UW |-element substructure induced by {a | a =
f ′(u) for some u ∈ Uw} does not have P . This contradicts the hereditariness of
P and so P must be hereditary in the sense of Definition 16. ��

We mapped hereditary relational properties to hereditary hypergraph properties,
which are testable by Theorem 3. We will show this implies testability of the
original properties.

Definition 18. Let A, B ∈ STRUCn(τ) be structures with vocabulary τ and
universe U := {0, . . . , n−1} of size n, k := maxi ai be the maximum arity of the
predicate symbols, and h : STRUCn(τ) → K(U) be the map defined above. The
h-distance between A and B is

hdist(A, B) :=
1∣∣∣(U
k

)∣∣∣
∣∣∣∣{W | W ∈

(
U

k

)
, h(A) �W �= h(B) �W

}∣∣∣∣ .
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We now relate the two distances with the following simple lemma.

Lemma 4. Let A, B ∈ STRUCn(τ) be relational structures with vocabulary τ
and size n. Then, hdist(A, B) ≥ mrdist(A, B).

Proof. Assume that mrdist(A, B) = ε. Then, there exists a predicate symbol
Rai

i ∈ τ and subtype S ∈ SUB(Rai

i ) such that
∣∣sA(S)' sB(S)

∣∣ /n|S| = ε. Let
k := maxi ai and let the universe of both structures be Un := {0, . . . , n− 1}.

Consider a random permutation of the universe (i.e., a bijection r : Un → Un)
chosen uniformly from the set of such permutations. The probability that the
substructures induced on {r(0), . . . , r(k−1)} differ in A and B is hdist(A, B). The
probability that the first |S| elements, i.e. {r(0), . . . , r(|S| − 1)}, differ in sA(S)
and sB(S) is ε and so hdist(A, B) ≥ ε. ��

Equality is obtained when |S| = k. It is possible to show that the two distances
differ by at most a constant factor, and so the corresponding notions of testability
are essentially equivalent. However, Lemma 4 suffices for our purposes.

Lemma 5. Let P ⊆ STRUC (τ) be a property of relational structures which is
mapped by h to a property of hypergraphs that is testable with one-sided error.
Then, P is testable with one-sided error.

Proof. Let P := h(P ) be the hypergraph property which P is mapped to. We
will show that the following is an ε-tester for P with one-sided error. Let N ≥ 1,
δ > 0 be the constants of Definition 17 for ε. Assume that we are testing a
structure A ∈ STRUCn(τ) and recall that U = {0, . . . , n− 1}.

1. If #(A) ≤ N , query the entire structure and decide exactly whether A ∈ P .
2. Otherwise, repeat the following q(δ) times.

(a) Uniformly select N elements and query the induced substructure.
(b) If it has P , continue. Otherwise, reject.

3. Accept if all of the induced substructures had P .

If A ∈ P , then all induced substructures have P because P is hereditary and
the tester accepts with probability 1. Next, assume mrdist(A, P ) > ε. We use
Definition 17 to show the tester will find a witness for A �∈ P with probability
at least 2/3. By Lemma 4, hdist(A, P ) ≥ mrdist(A, P ) > ε. We assumed h(P )
is hereditary, and so (by Theorem 3) it is testable in the sense of Definition 17.
The probability that a uniformly chosen N -element substructure does not have
P is at least δ. We use q(δ) to amplify the success probability from δ to 2/3. ��

This completes the proof of Theorem 1. All properties expressible in Ramsey’s
class are indistinguishable from instances of F -colorability. Indistinguishability
preserves testability and so it sufficed to show that these instances are testable.
All instances of F -colorability are hereditary relational properties, which are
testable by Theorem 2, which we reduced to the statement by Austin and Tao [4].
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4 Conclusion

We have revisited the positive result obtained by Alon et al. [1] in the light of a
strong result obtained recently by Austin and Tao [4]. We have shown that this
allows us to extend the proof that properties expressible in Ramsey’s class are
testable, from undirected, loop-free graphs to arbitrary relational structures.

A more direct proof for the testability of Ramsey’s class would be interesting,
especially if it results in better query complexity. It would also be interesting to
consider the testability of additional prefix classes and connections with other
classifications (such as, e.g., that for the finite model property).
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Abstract. Designing short DNA words is a problem of constructing n
DNA strings (words) with the minimum length such that the Hamming
distance between each pair is at least k and the words satisfy a set of
extra constraints. This problem has applications in DNA computing,
DNA self-assembly, and DNA arrays. Previous works include those that
extended results from coding theory to obtain bounds on code size for
biologically motivated constraints and those that applied heuristic local
searches, genetic algorithms, and randomized algorithms. In particular,
Kao, Sanghi and Schweller developed polynomial-time randomized algo-
rithms to construct n DNA words of length 9 · max{log n, k} satisfying
a sets of constraints with high probability. In this paper, we give de-
terministic polynomial-time algorithms to construct DNA words based
on expander codes, Ramanujan graphs, and derandomization techniques.
Our algorithms can construct n DNA words of length max{3 log n, 4k}
or 2.1 log n + 6.28k satisfying the same sets of constraints as the words
constructed by the algorithms of Kao et al. We have also extended these
algorithms to construct words that satisfy a larger set of constraints for
which the algorithms of Kao et al. do not work.

Keywords: DNA computating, DNA words design, coding theory, ex-
pander codes, Ramanujan graphs, derandomization.

1 Introduction

Building on the work of Kao, Sanghi, and Schweller [17], this paper considers
the problem of designing sets (codes) of DNA strings (words) of close to optimal
length that satisfy certain combinatorial constraints. Many applications depend
on the scalable design of such words. For instance, DNA words can be used
to store information at the molecular level [8], to act as molecular bar codes
for identifying molecules in complex libraries [8, 9, 21], or to implement DNA
arrays [5]. For DNA computing, inputs to computational problems are encoded
into DNA strands to perform computing via complementary binding [1, 27].
For DNA self-assembly, Wang tile self-assembly systems are implemented by
encoding glues of Wang tiles into DNA strands [26–28].
� Corresponding author.
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A set of DNA words chosen for such applications must meet certain combi-
natorial constraints. First of all, hybridization must not occur between any two
different words in the set, or even between a word and the reverse complement
of any other word in the set. For such requirements, Marathe et al. [18] proposed
the basic Hamming constraint (C1), the reverse complement Hamming constraint
(C2), and the self-complementary constraint (C3). Kao et al. [17] further consid-
ered certain more restricting shifting versions of these constraints (C4, C5, C6)
which require them to hold between all alignments of any pair of words [7].

Kao et al. [17] also considered three constraints unrelated to Hamming dis-
tance. The consecutive base constraint (C8) limits the length of any run of identi-
cal bases in any given word. Long runs of identical bases are undesirable because
they can cause hybridization errors [6, 7, 23]. The GC content constraint (C7)
requires that a fixed percentage of the bases in any given word are either G or
C. This constraint gives the strings similar thermodynamic properties [23–25].
The free energy constraint (C9) requires that the difference in the free energies
of any two words is bounded by a small constant. This constraint helps ensure
that the words in the set have similar melting temperatures [7, 18].

Furthermore, it is desirable for the length � of each word to be as small as
possible. The motivation for minimizing � is evident in part becasue it is more
difficult to synthesize longer DNA strands. Also, longer DNA strands require
more DNA to be used for the respective application.

There has been much previous work in the design of DNA words [7, 8, 11–
14, 16, 18, 21, 24, 25]. Most of the existing work in this area was based on heuris-
tics, genetic algorithms, or stochastic local searches that did not provide analyt-
ical performance guarantees. Notable exceptions include the work of Marathe et
al. [18] that extended results from coding theory to obtain bounds on code size
for biologically motivated constraints. Also, Kao et al. [17] formulated an opti-
mization problem that takes as input a desired number of words n and produces
n words of length � that satisfy a specified set of constraints, while minimizing
the length �. They introduced randomized algorithms that run in polynomial
time to construct words whose length is within a constant factor of the optimal
word length. However, with a non-negligible probability, the constructed words
do not satisfy the given constraint. The results of Kao et al. [17] are summarized
in Table 1 for comparison with ours.

In this paper, we present two deterministic algorithms for constructing words
of length within a constant factor of the optimal word length. Both algorithms
run in polynomial time and can construct words that satisfy more constraints
than the work of Kao et al. [17] can. Between these two algorithms, the first
algorithm constructs shorter words when the Hamming distance k required is
large and the second algorithm constructs shorter codewords when the number
of words n is large. The first algorithm uses explicitly constructible Ramanujan
graphs and expander-based linear codes. Though there is a bulk of research on
expander-based codes such as [15, 22], by focusing on the coding efficiency and
our specific problem of short DNA words design, we obtain linear codes and
expander-based codes with better parameters than available in the literature.
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Our second algorithm derandomizates the randomized algorithms of Kao
et al. [17]. Depending on the values of k and n, different parameters of derandom-
ization can be applied to minimize the length of words. Our derandomization
techniques are general, flexible and potentially applicable to other classes of
codes with the following properties. (1) The words have polynomially large den-
sities. (2) The words are uniformly distributed in some manner. (3) The words
have polynomial-time computable densities. As shown in Table 1, both of our
algorithms can be used to construct words shorter than those constructed by
the randomized algorithms of Kao et al. [17].

Table 1. Comparison of word lengths. Here, � is the length of words and k is the
maximum of the parameters associated with different constraints. The definitions of
the constraints are given in Section 2. The parameter ε tends to 0 when n is large
enough. Also, c1 = 2 + δ, δ ∈ IR+ and c2 is determined according to c1 as stated in
the equation c2 = c1/2(log c1/ log(2(c1 − 2)) + 2.5 − 1/ ln 2). For example, for δ = 0.1,
� = 2.1 log n + 6.28k and for δ = 1, � = 3 log n + 4.76k.

Codes Randomized Expander-Based Derandomization-Based
Algorithms [16] Algorithms (this paper) Algorithms (this paper)

C1,4 �� = max{(3 + ε) log n, (4 + ε)k} �� = c1 log n + c2k

C1∼6 � = 9 max{log n, k} � = �� + k

C1∼7 � = 10 max{log n, k} � = �� + 2k

C1∼3,7,8 � = 10 d+1
d

max{log n, k} � = d
d−1

(�� + 2k)

� = �� + 2k for 1
d+1

≤ γ ≤ d
d+1

� = d
d−1

�� + d
2
k + 2

C1∼8 � = �� + k
2

+
√

2k�� + 2 when d ≥ √
2��/k + 1

C1∼6,9 � = 27 max{log n, k} � = 3�� + 2k when σ ≥ 4D + Γmax

when σ ≥ 4D + Γmax

The remainder of this paper is organized as follows. Section 2 gives some
basic notations, the nine constraints of short DNA words, and some necessary
background for designing our algorithms. Section 3 and 4 detail how to design
a short DNA code C1,4 satisfying C1 and C4, using two different approaches.
In Section 5, we detail how to construct short DNA words under a series of
constraints.

2 Preliminaries

Let X = x1 · · ·x� be a word where xi belongs to some alphabet Π . For any
word X , let the reverse of X , denoted XR, is the word x�x�−1 · · ·x1, and the
complement of X is xc

1 · · ·xc
� , where for the binary alphabet ΠB = {0, 1}, 0c = 1

and 1c = 0, and for the DNA alphabet ΠD = {A, C, G, T}, Ac = T, Cc =
G, Gc = C, and Tc = A. The Hamming distance between two words X and Y ,
denoted by H(X, Y ), is the number of positions where X differs from Y .

Next we review the nine constraints as defined in [17]. W is defined as a
codeword set.
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1. Basic Hamming Constraint C1(k1): For any distinct words Y, X ∈ W ,
H(Y, X) ≥ k1. This constraint limits non-specific hybridization between the
Watson-Crick complement of some word Y with a distinct word X .

2. Reverse Complementary Constraint C2(k2): For any distinct words
Y, X ∈ W , H

(
Y, XRC

)
≥ k2. This constraint limits hybridization between

a word and the reverse of another word.
3. Self Complementary Constraint C3(k3): For any word Y , H

(
Y, Y RC

)
≥

k3. This constraint prevents a word from hybridizing with itself.
4. Shifting Hamming Constraint C4(k4): For any two distinct words Y, X ∈
W , H (Y [1 · · · i], X [(�− i + 1) · · · �]) ≥ k4 − (�− i) for all � ≥ i ≥ �− k4.

5. Shifting Reverse Complementary Constraint C5(k5): For any two dis-
tinct words Y, X ∈ W ,

H
(
Y [1 · · · i], X [1 · · · i]RC

)
≥ k5 − (�− i) for all i; and

H
(
Y [(�− i + 1) · · · �], X [(�− i + 1) · · · �]RC

)
≥ k5 − (�− i) for all i.

6. Shifting Self Complementary Constraint C6(k6): For any word Y ∈ W ,

H(Y [1 · · · i], Y [1 · · · i]RC) ≥ k6 − (�− i) for all i; and

H
(
Y [(�− i + 1) · · · �], Y [(�− i + 1) · · · �]RC

)
≥ k6 − (�− i) for all i.

7. GC Content Constraint C7(γ): γ percentage of bases in any word Y ∈ W
are either G or C. The GC content affects the thermodynamic properties of
a word. Therefore, having the same ratio of GC content for all the words
ensures similar thermodynamic characteristics.

8. Consecutive Base Constraint C8(d): No word has more than d consec-
utive bases for d ≥ 2. In some applications, consecutive occurrences (also
known as runs) of the same base increase annealing errors.

9. Free Energy Constraint C9(σ): For any two distinct words Y, X ∈ W ,
FE(Y )− FE(X) ≤ σ where FE(W ) denotes the free energy of a word. This
constraint ensures that the words in the set have similar melting tempera-
tures which allows multiple DNA strands to hybridize simultaneously.

The Hamming distance of code C is defined as minX �=Y,X,Y ∈C H(X, Y ). We call
a code C that maps k bits to n bits with Hamming distance d as an (n, k, d)-code.
The rate of code C is defined as k/n.

A binary (n, k, d)-code C is called linear if 0n ∈ C and for all x and y in C,
x ⊕ y, where ⊕ refers to the bitwise xor operation. Observe that the Hamming
distance of C equals the smallest weight, i.e., the number of nonzero entries of a
nonzero word.

For a d-regular graph G, let M be the normalized adjacency matrix of G. Let
λ1 ≥ · · · ≥ λn be the spectrum of graph G. Since G is a regular graph, λ1 = 1
is associated with eigenvector (1/n, · · · , 1/n). A graph G is said to have spectral
expansion λ if and only if λ2 ≤ λ.

Intuitively, an expander graph is sparse and high-connected; i.e., every subset
of vertices has relatively many neighbors, and to disconnect a large part of the
graph, one has to cut many edges. Alon et al. [3] were the first to formalize the
relationship of this combinatorial property and the spectral expansion of graphs.
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Lemma 1 (Alon et al. [3]). Let G = (V, E) be a d-regular graph with the
second largest eigenvalue λ of the normalized adjacency matrix. Let n = |V |.
Then for any subset S and T of V ,

∣∣∣e(S, T )− d|S||T |
n

∣∣∣ ≤ λd
√
|S||T |, where e(S, T )

is the number of edges in G with one endpoint in S and the other endpoint in T .

Note that d|S||T |/n is the expectation of the number of edges between S and
T in a random d-regular graph. A small spectral expansion λ implies a good
combinatorial expansion. Alon et al. [3] also proved a lower bound of spectral
expansion for any d regular expanders; a graph whose spectral expansion ap-
proximately equal to this lower bound is called a Ramanujan graph.

Theorem 2 (Alon-Boppana, [2]). Any infinite family of d-regular graphs has
spectral expansion (as N →∞) at least 2 ·

√
d−1
d − o(1).

Definition 1 (Ramanujan Graph). A d-regular graph is said to be a Ra-
manujan graph if λ2 ≤ 2

√
d−1
d .

Note that λ = 1 for any bipartite graph. For such graphs, the operator double
cover defined below can be used to generate a bipartite graph from any regular
graph while maintaining the combinatorial expansion of the original graph.

For a given d-regular graph G = (V, E) with V = {v1, · · · , vn}, the double
cover of G is a bipartite graph H = (L ∪ R, E�) with left vertex set L =
{�1, · · · , �n} and right vertex set R = {r1, · · · , rn}, such that (�i, rj) ∈ E� if and
only if (vi, vj) ∈ E. It is straightforward to see that if H is a double cover of a
d-regular expander G, then H is also d-regular.

3 Expander-Based Algorithms

At a high level, our construction makes use of an initial linear code, a family of
explicitly constructible Ramanujan graphs, and several combinatorial methods.
First of all, we design a code satisfying the basic Hamming constraint C1(k1).
We begin our construction by analyzing certain Ramanujan graphs.

For each prime number n, n > 3, we construct the graph Gn = (V, E) as
follows: V = ZZn, and for every vertex x ∈ V , x is connected to x + 1, x − 1
and x−1, where 0−1 is defined as 0 and all the operations described above are
modulo n.

The following theorem, originally conjectured by Selberg, was proven and
further improved by Rudnick and Sarnak.

Theorem 3 ([20]). Let G be the graph constructed above with the second largest
eigenvalue λ of the normalized adjacency matrix. Then λ ≤ 3

4 .

Corollary 1. There exists a family of explicitly constructible 3-regular Ramanu-
jan graphs.

Our construction also makes use of several results about the density distribution
of primes, as stated in Lemmas 4 and 5. Let pi be the i-th prime number and
p1 = 2.
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Lemma 4 ([19]). For n ∈ N, pn ≥ n(ln n + ln lnn− 1).

Lemma 5 ([4]). If n ≥ 6, then pn ≤ n(ln n + ln lnn).

Lemma 6. For any prime k, k ≥ 41 = p13, there exists at least one prime in
the interval [k, 1.56 · k].

We use a linear [3, 2, 2]-code C0, consisting of C0(00)=000, C0(01)=110, C0(10) =
101, and C0(11) = 011 to construct DNA words satisfying basic Hamming con-
straint C1(k1). Each desired codeword in {0, 1}3n can be considered as an as-
signment of the edges of graph Gn’s double cover. From this way, each binary
string x ∈ {0, 1}3n is a codeword of C if and only if the assignment with respect
to every vertex vi, i.e., the subsequence xixn+ix2n+i, is a codeword in C0. Note
that each edge label must satisfy constraints imposed by both its left and right
endpoints. The description of our first algorithm for DNA words is detailed as
follows.

Algorithm 1. Expander-Based Algorithm
1: C = ∅.
2: Let G = (V, E1) be a 3-regular Ramanujan graphs with vertex size |V | = n.
3: Let H = (L ∪ R, E2) be the double cover of G.
4: for every binary string x := x1 · · ·x3n ∈ {0, 1}3n do
5: if xixn+ix2n+i ∈ C0, for all 1 ≤ i ≤ n then
6: C = C ∪ {x}
7: end if
8: end for

Theorem 7. Let G be a 3-regular Ramanujan graph with n vertices and C0 be
a linear [3, 2, 2]-code. Then there exists a family of linear

[
3n, n, 3n

4

]
-code C for

every prime number n.

Proof. Given a graph G, let H = (L ∪R, E) be the double cover of G. Without
loss of generality, let C ⊆ {0, 1}3n.

From the description of Algorithm 1, it is obvious that for each vertex vi ∈ L,
the corresponding codeword consists of the i-th, (n + i)-th and (2n + i)-th’s
positions of x. Thus, a sequence x ∈ C if and only if xi, xn+i and x2n+i are
the same, i.e., xixn+ix2n+i corresponds to a valid code in C0 for vertex vi ∈
L ∪ R, 1 ≤ i ≤ n. Therefore the number of constraints in C is 4n = 6n(1 − 1

3 ),
and C’s rate is 1

3 . For a codeword x, define X = {e|xe = 1} and let S and T be
the sets of left and right vertices to which edges in X are incident. Therefore the
degree of X with respect to the vertices in S and T is 3, and |X | ≥ 3

2

(
|S|+ |T |

)
.

On the other hand, by Lemma 1 we obtain |X | ≤ e(S, T ) ≤ 3
n |S||T | +

3λ
√
|S||T |. Combining the inequalities above, we obtain 3

2

(
|S|+ |T |

)
≤ 3

4n

(
|S|+

|T |
)2 + 3λ

2

(
|S|+ |T |

)
. Since λ < 3

4 , we have |S|+ |T | ≥ n
2 .

Combining the Equations above, we have |X | ≥ 3n
4 and C’s distance is at least

3n
4 . ��
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From Theorem 7, we can construct a family of linear
[
3n, n, 3n

4

]
-code C where

n is a prime number. For the general case, we use Theorem 6 to choose a prime
number which is the nearest prime to the given codeword length.

Corollary 2. For the given codeword length log n, there exists a determinis-
tic algorithm to output a

[
3 logn, log n, 3

4 log n
]
-code C in O(n log n) time and

O(log n) space.

Then construct the desired codes for the general n, k ∈ IN. From the construc-
tion of C, observe that we only need to consider the case k > 3

4 log n. In this
case, let k = f(n) · log n, and the resulting codes can be obtained by concate-
nating sequences of length 3 logn 4

3f(n) times. It is not difficult to show that
the constraint C1 can be satisfied, and the total length is 4k. This observation
is formalized in Theorem 8 below.

Theorem 8. Given n and k, Algorithm 1 outputs n sequences of DNA words
with length max{3 logn, 4k} satisfying constraints C1 in time O(n log n) and
space O(log n).

Now we turn to the problem of constructing a code satisfying constraints C1(k1)
and C4(k4). For any sequence x = x1x2 · · ·x�, define x1 = x2x3 · · ·x�x1, · · · ,
xi = xi+1 · · ·x�x1 · · ·xi. From C1’s construction, if x ∈ C1, then xi ∈ C1 for
i ∈ {1, · · · , �}. Thus H(x1[1 · · · �− 1], x[2 · · · �]) = 0, which implies that C1 does
not satisfy constraint C4. So we seek for algorithms to construct the desired
codes C1,4.

Theorem 9. There exists an algorithm to construct a code C1,4 satisfying C1(k1)
and C4(k4) with codeword length � = max{(3 + ε) log n, (4 + ε)k}, where k =
max{k1, k4} and ε tends to 0 when n is big enough.

Proof. For any code C1 and x ∈ C1, delete x1, · · · , x�−1 from C1, and the resulting
codewords in C1 constitute our desired C1,4.

For any two sequencesxandy satisfyingx �=yi,H (x[1 · · · i], y[(�− i + 1) · · · �])
≥ k − (�− i) for all i, so the resulting code satisfies constraint C1 and C4.

Therefore, we can construct a code of length � = max{3 logn, 4k1, 4k4} satis-
fying constraints C1 and C4, such that the number of valid codes is n

log n . Thus,
C1,4 satisfies C1 and C4 and the codeword length is � = max{(3+o(1)) log n, (4+
o(1))k}, where k = max{k1, k4}. ��

4 Derandomization-Based Algorithm

In this section, we derandomize a random algorithm similar as in [17] to con-
struct n DNA words of length (c1 log n + c2k) which satisfy C1(k1) and C4(k4).
The basic idea is generating the DNA words with the occurrence probabilities
of 0 and 1 are equal with the goal that every pair of DNA words satisfy C1(k1)
and C4(k4). By setting � = c1 log n+ c2k, we can prove such a set of DNA words
exists (Theorems 11 and 12). By applying a derandomization process, we can
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construct the DNA words by Algorithm 2 in O
(
max{(k��)2, n2k��}

)
time, where

�� is the length of codewords satisfying C1 and C4.

Definition 2. An n× � binary matrix M is a k-distance matrix if for any two
distinct rows rα and rβ of M , the Hamming distance between rα[1 · · · i] and
rβ [�− i + 1 · · · �] is at least k − (�− i) for all positive integer i.

Definition 3. For any two rows rα and rβ of binary matrix M , HD(M, α, β, i)
is defined as the Hamming distance between rα[1 · · · i] and rβ [�− i + 1 · · · �].

Lemma 10. An n × � k-distance matrix M can be converted into a code C1,4

satisfying C1(k1) and C4(k4) with length �.

Proof. Each of the n length-� rows of M is an n length-� codeword. Since the
Hamming distance between rows rα[1 · · · i] and rβ [�−i+1 · · · �] is at least k−(�−i)
for any two rows rα and rβ , the codewords satisfy C4(k4). By considering i = �,
the codewords also satisfy C1(k1).

Theorem 11. There is an n × � k-distance matrix for any � satisfying � −
k log e− k log �

k − 2 logn + 2 log k > 0 and � ≥ 2k.

Proof. Assume we generate an n × � random binary matrix M , i.e., the prob-
ability that the occurrence of 0 and 1 in each entry is 1/2 each. Under the
condition � ≥ 2k, the probability that M is a k-distance matrix is at least
1−

(
n
2

)∑k−1
d = 0

(
�
d

)
2−�−2

(
n
2

)∑�−1
i = �−k+1

∑k−(�−i)−1
d = 0

(
i
d

)
2−i ≥ 1−n2k2

(
e�
k

)k
2−�.

Thus such a matrix exists if 1− n2k2
(

e�
k

)k
2−� > 0, which is equivalent to

�− k log e− k log
�

k
− 2 log n− 2 log k > 0 (1)

Therefore there exists an n× � k-distance matrix when � satisfies Inequality (1).

Theorem 12. By setting c1 = 2+δ and c2 = c1
2

[
log

(
c1

ln 2·(c1−2)

)
+ 2.5− 1

log 2

]
,

�� = c1 log n + c2k satisfies Inequality (1) for any real number δ.

Based on Theorems 11 and 12, there exists an n × ��, �� = c1 log n + c2k, k-
distance matrix where c1 = 2 + δ and c2 = c1

2

[
log

(
c1

ln 2·(c1−2)

)
+ 2.5− 1

ln 2

]
for

any positive real δ. For example, when δ = 1, �� = 3 logn+4.76k; when δ = 0.1,
�� = 2.1 logn + 6.28k.

Definition 4. Let M =
(
mi,j

)
n×�� be a 0-1 random matrix1. E(M |A) is defined

as the expected number of pairs of rows rα and rβ in M with HD(M, α, β, i) ≥
k− (�� − i) and HD(M, β, α, i) ≥ k− (�� − i) for all positive integer i under the
condition that some entries of M are assigned according to set of assignment A.

1 In Matrix theory, a random matrix is a matrix of given type and size whose entries
consist of random numbers from some specific distribution.
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Algorithm 2. Derandomization-Based Algorithm
1: Let M = (mi,j)n×�� be a matrix.
2: A = φ
3: for c = 1 to �� do
4: for r = 1 to n do
5: if E(M |A ∪ {(mr,c = 0)}) > E(M |A ∪ {(mr,c = 1)}) then
6: A := A ∪ {(mr,c = 0})
7: else
8: A := A ∪ {(mr,c = 1)}
9: end if

10: end for
11: end for
12: return the assignment A

Lemma 13. For any state in Algorithm 2, E(M |A) >
(
n
2

)
− 1.

Proof. We prove this lemma by induction with the size of A. In the initiation
step, as

E(M |φ) =
(

n

2

)
·

⎡⎣1−
k−1∑

i = 0

(
��

i

)
2−��

− 2
��−1∑

i = ��−k+1

k−(��−i)−1∑
d = 0

(
i

d

)
2−i

⎤⎦ ,

we have E(M |φ) >
(
n
2

)
− 1. Consider the assignment of the entry mr,c. Since

E(M |A) =
1
2
· E(M |A ∪ (mr,c = 0)) +

1
2
· E(M |A ∪ (mr,c = 1))

< max {E(M |A ∪ (mr,c = 0)), E(M |A ∪ (mr,c = 1))}

we have E(M |A) ≥ E(M |φ) >
(
n
2

)
− 1 for any state in Algorithm 2. ��

Corollary 3. Algorithm 2 outputs an n × �� k-distance matrix in time
O
(
k��(k�� + n2)

)
.

5 Generalizations

In this section, we generalize Algorithms 1 and 2 to design algorithms that can
construct short DNA words for various subsets of the constraints C1, · · · , C9.
Proofs for the Thoerem can be found in the Appendix.

Theorem 14. We can construct a length-(�� + k) code C1∼6 with the DNA al-
phabet satisfying C1(k1), C2(k2), C3(k3), C4(k4), C5(k5) and C6(k6) from a
length-�� code C1,4 with the binary alphabet, where k = max {k1, k2, · · · , k6}.

Theorem 15. We can construct a code C1∼7 satisfying C1(k1), C2(k2), C3(k3),
C4(k4), C5(k5), C6(k6) and C7(k7) with codeword length � = �� + 2k from a
length-�� code C1,4 with the binary alphabet, where k = max {k1, k2, · · · , k7}.
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Theorem 16. We can construct sequences of DNA words to satisfy con-
straints C1(k1), C2(k2), C3(k3), C7(k7) and C8(k8) with codeword length � =

d
d−1(�� + 2k) from a length-�� code C1,4 with the binary alphabet, where k =
max {k1, k2, k3, k7, k8}.

Theorem 17. We can construct a length-(�� + 2k) code C1∼8 with the DNA
alphabet satisfying C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), C7(k7) and
C8(k8) from a length-�� code C1,4 with the binary alphabet when the GC content
γ is in the range 1

d+1 ≤ γ ≤ d
d+1 where d is the parameter for the Consecutive

Base Constraint C8 and k = max1≤i≤8{ki}.

Theorem 18. We can construct a length-
(

d
d−1�� + d

2k + 2
)

code C1∼8 with DNA
alphabet satisfying C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), C7(k7) and
C8(k8) from a length-�� code C1,4 with the binary alphabet.

Theorem 19. When d ≥
√

2��

k + 1, we can construct a code C1∼8 of length(
�� + k

2 +
√

2k�� + 2
)

with the DNA alphabet satisfying C1(k1), C2(k2), C3(k3),
C4(k4), C5(k5), C6(k6), C7(k7) and C8(k8) from a code C1,4 of length �� with
the binary alphabet, where k = max1≤i≤8{ki}.

Proof. By applying Theorem 18 using d =
√

2��/k + 1. ��

Next we show how to construct codewords so that the free energy constraint
is satisfied. Following the approach of Breslauer et al. [10], the free energy of
a DNA word X = x1x2 . . . x� can be approximated by the formula FE(X) =
correction factor+

∑�−1
i=1 Γxi,xi+1, where Γx,y is an integer denoting the pairwise

free energy between base x and base y. As in the work of Kao et al. [17], for sim-
plicity, we denote the free energy as simply the sum

∑�−1
i=1 Γxi,xi+1 with respect

to a given pairwise energy function Γ . Let Γmax and Γmin be the maximum and
the minimum entries in Γ respectively, and D = Γmax − Γmin.

Below we present the result to construct DNA words satisfying the free energy
constraint C9(σ) for a constant σ = 4D + Γmax, while simultaneously satisfying
constraints C1, C2, C3, C4, C5 and C6.

Theorem 20. We can construct n DNA words to satisfy constraints C1(k1),
C2(k2), C3(k3), C4(k4) C5(k5), C6(k6) and C9(k9) with codeword length � =
3�� + 2k from a length-�� code C1,4 with the binary alphabet, where k =
max1≤i≤6{ki}.

Our main results described above are described in the following two theorems.

Theorem 21 (Time Complexity of the Expander-Based Algorithm).
The codewords C1,4, C1∼6, C1∼7, C1∼3,7,8 and C1∼8 can be deterministically con-
structed in time O (n��).

Theorem 22 (Time Complexity of the Derandomization-Based Algo-
rithm). The codewords C1,4, C1∼6, C1∼7, C1∼3,7,8 and C1∼8 can be deterministi-
cally constructed in time O

(
k��(k�� + n2)

)
.
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Abstract. We study the computational complexity of the hamiltonian

cycle problem in the class of graphs of vertex degree at most 3. Our goal
is to distinguish boundary properties of graphs that make the problem
difficult (NP-complete) in this domain. In the present paper, we discover
the first boundary class of graphs for the hamiltonian cycle problem
in subcubic graphs.

1 Introduction

In a graph, a Hamiltonian cycle is a cycle containing each vertex of the graph
exactly once. Determining whether a graph has a Hamiltonian cycle is an NP-
complete problem. Moreover, it remains NP-complete even if restricted to subcu-
bic graphs, i.e. graphs of vertex degree at most 3. However, under some further
restrictions, the problem may become polynomial-time solvable. A trivial ex-
ample of this type is the class of graphs of vertex degree at most 2. Our goal
is to distinguish boundary graph properties that make the problem difficult in
subcubic graphs. In our study, we restrict ourselves to the properties that are
hereditary, in the sense that whenever a graph possesses a certain property, the
property is inherited by all induced subgraphs of the graph.

Within the family of hereditary properties, we are interested in those that
are critical for the hamiltonian cycle problem. Speaking informally, these are
the minimal properties that make the problem difficult. This notion was recently
introduced under the name “boundary classes” with respect to the maximum
independent set problem [1], and then was applied to some other graph problems
[2,3,7]. The importance of this notion is due to the fact that boundary classes
separate difficult instances of a problem from polynomially solvable ones.

In [3], it was observed that there must exist at least five boundary classes
of graphs for the hamiltonian cycle problem, but none of them has been
identified so far. In the present paper, we discover the first boundary class for
the problem in question.

The organization of the paper is as follows. In Section 2, we introduce basic
notation and concepts, including the definition of boundary graph property.
� Research supported by the Centre for Discrete Mathematics and Its Applications
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In Section 3, we prove an NP-completeness result, which suggests an idea of
the structure of a boundary property for the hamiltonian cycle problem in
subcubic graphs. In Section 4, we provide a structural characterization of the
property, and in Section 5 we prove its minimality.

2 Preliminaries

All graphs in this paper are finite, without loops or multiple edges. For a graph G,
we denote by V (G) and E(G) the vertex set and the edge set of G, respectively.
The neighborhood of a vertex v ∈ V (G) (i.e. the set of vertices adjacent to v) is
denoted N(v). The degree of v is the number of its neighbors. If the degree of
each vertex of G is at most 3, we call G a subcubic graph. The vertices of degree
3 are called cubic. For a subset of vertices U ⊆ V (G), we denote by G[U ] the
subgraph of G induced by U , i.e. the subgraph of G with vertex set U , and two
vertices being adjacent in G[U ] if and only if they are adjacent in G. We say
that a graph H is an induced subgraph of G if H is isomorphic to G[U ] for some
U ⊆ V (G).

A graph property (or class of graphs) is a set of graphs closed under isomor-
phism. A property is hereditary if with any graph G it contains all induced
subgraphs of G. It is known that a graph property is hereditary if and only if
it can be characterized in terms of forbidden induced subgraphs. More formally,
given a set of graphs M , we say that a graph G is M -free if G does not contain
induced subgraphs from the set M . Then a class X of graphs is hereditary if
and only if there is a set M such that X is the class of all M -free graphs. If M
is a finite set, we call X a finitely defined class of graphs. For instance, the class
of subcubic graphs is obviously hereditary, and the set of minimal forbidden
induced subgraphs for it consists of 11 graphs on five vertices (in each graph,
one vertex is dominating and the remaining vertices induce all possible 4-vertex
graphs).

A graph property X will be called HC-tough if there is no polynomial-time
algorithm to solve the problem for graphs in X . If P �= NP , the family of HC-
tough properties is non-empty, in which case the problem of characterization
of the family of graph classes with polynomial-time solvable hamiltonian cy-

cle problem arises. By analogy with the induced subgraph characterization of
hereditary classes, we want to characterize this family in terms of minimal prop-
erties that do not belong to it. Finding the set of minimal forbidden induced
subgraphs for a hereditary class is generally a difficult problem, as the exam-
ple of perfect graphs shows [5]. Finding the set of minimal classes for a certain
family is not only more difficult, but generally is impossible, since the family of
graph classes partially ordered by the inclusion relationship is not well-founded.
In other words, the difficulty is that an HC-tough class may contain infinitely
many HC-tough subclasses.

To overcome this difficulty, we employ the notion of boundary classes (see e.g.
[3]), which can be defined as follows. A class of graphs X will be called a limit

class for the hamiltonian cycle problem, if X =
∞⋂

i=1

Xi, where X1 ⊇ X2 ⊇ . . .
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is a sequence of HC-tough classes. A minimal limit class will be called boundary
for the problem in question. The importance of this notion is due to the following
theorem [3].

Theorem 1. The hamiltonian cycle problem is polynomial-time solvable in
a finitely defined class of graphs X if and only if X contains none of the boundary
classes for this problem.

In what follows, we identify the first boundary class of graphs for the hamilto-

nian cycle problem.

3 Approaching a Limit Class

As we mentioned in the introduction, the hamiltonian cycle problem is NP-
complete for subcubic graphs [6]. Recently, it was shown [3,4] that the problem
is NP-complete for graphs of large girth, i.e. graphs without small cycles. In this
section, we strengthen both these results. First, we show that the problem is
NP-complete in the class of subcubic graphs, in which every cubic vertex has a
non-cubic neighbor. Throughout the paper, we denote this class by Γ .

Lemma 1. The hamiltonian cycle problem is NP-complete in the class Γ .

Proof. Plesńik [8] proved that the hamiltonian cycle problem is NP-complete
in the class of directed graphs, where every vertex has either indegree 1 and
outdegree 2, or indegree 2 and outdegree 1. The lemma is proved by a reduction
from the hamiltonian cycle problem on such graphs, which we call Plesńik
graphs. Given a Plesńik graph H , we associate with it an undirected graph from
Γ as follows. First, we consider all the prescribed edges of H , i.e. directed edges
u → v, such that either u has outdegree 1, or v has indegree 1 (or both). We
replace every such edge by a prescribed path u → w → v, where w is a new
node of indegree and outdegree 1. Then, we erase orientation from all edges, and
denote the resulting undirected graph by G.

Clearly, G ∈ Γ . Assume H has a directed Hamiltonian cycle. Then the cor-
responding edges of G form a Hamiltonian cycle in G. Conversely, if G has a
Hamiltonian cycle, then it must contain all the prescribed paths, and therefore
the corresponding Hamiltonian cycle in H respects the orientation of the edges.

��

Now we strengthen Lemma 1 as follows. Denote by Yi,j,k the graph represented in
Figure 1 and call any graph of this form a tribranch. Also, denote Yp = {Yi,j,k :
i, j, k ≤ p} and Cp = {Ck : k ≤ p}. Finally, let Sp be the class of Cp ∪ Yp-free
graphs in Γ .

Lemma 2. For any p ≥ 1, the hamiltonian cycle problem is NP-complete
in the class Sp.
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Fig. 1. A tribranch Yi,j,k

Proof. We reduce the problem from the class Γ to Cp ∪Yp-free graphs in Γ . Let
G be a graph in Γ . Obviously, every edge of G incident to a vertex of degree 2
must belong to every Hamiltonian cycle in G (should G have any). Therefore,
by subdividing each of such edges with p new vertices we obtain a graph G′ ∈ Γ
which has a Hamiltonian cycle if and only if G has. It is not difficult to see that
G′ is Yp-free. Moreover, G′ has no small cycles (i.e. cycles from Cp) containing
at least one vertex of degree 2. If G′ has a cycle C ∈ Cp each vertex of which
has degree 3, we apply to an arbitrary vertex a0 of C the transformation Fp

represented in Figure 2, where a3 denotes a non-cubic neighbor of a0. Clearly,
Fp transforms G′ into a new graph in Γ , which has a Hamiltonian cycle if and
only if G has. Moreover, this transformation increases the length of C without
producing any new cycle from Cp or any tribranch from Yp. Repeated applications
of this transformation allow us to get rid of all small cycles. Thus, any graph G
in Γ can be transformed in polynomial time into a Cp∪Yp-free graph in Γ , which
has a Hamiltonian cycle if and only if G has. Together with the NP-completeness
of the problem in the class Γ , this proves the lemma. ��
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4 Limit Class

The results of the previous section show that
⋂

p≥1

Sp is a limit class for the

hamiltonian cycle problem. Throughout the paper we will denote this class
by S. In the present section, we describe the structure of graphs in the class S.
Let us define a caterpillar with hairs of arbitrary length to be a subcubic tree
in which all cubic vertices belong to a single path. An example of a caterpillar
with hairs of arbitrary length is given in Figure 3.

� � � � � � � � � � �
� � � � � � � � �

� � � � ���
� � � � �

� � �
�

Fig. 3. A caterpillar with hairs of arbitrary length

Lemma 3. A graph G belongs to the class S if and only if every connected
component of G is a caterpillar with hairs of arbitrary length.

Proof. If every connected component of G is a caterpillar with hairs of arbi-
trary length, then G is a subcubic graph without induced cycles or tribranches.
Therefore, G belongs to S.

Conversely, let G be a connected component of a graph in S. Then, by def-
inition, G is a subcubic tree without tribranches. If G has at most one cubic
vertex, then obviously G is a caterpillar with hairs of arbitrary length. If G has
at least two cubic vertices, then let P be an induced path of maximum length
connecting two cubic vertices, say v and w. Suppose there is a cubic vertex u
that does not belong to P . The path connecting u to P meets P at a vertex
different from v and w (since otherwise P would not be maximum). But then a
tribranch arises. This contradiction shows that every cubic vertex of G belongs
to P , i.e., G is a caterpillar with hairs of arbitrary length. ��

In the next section, we will prove that S is a minimal limit class for the Hamilto-
nian cycle problem. In the proof we will use the following obvious lemma, where
Td (d ≥ 2) denotes a caterpillar with a path of length 2d (containing all cubic
vertices) and 2d− 1 consecutive hairs of lengths 1, 2, . . . , d − 1, d, d− 1, . . . , 2, 1
(see Figure 3 for the graph T5).

Lemma 4. Every graph in S is an induced subgraph of Td for some d ≥ 2.



Hamiltonian Cycles in Subcubic Graphs: What Makes the Problem Difficult 325

5 Minimality of the Limit Class

All results of this section are proved under the assumption that P �= NP . The
proof of minimality of the class S is based on the following lemma.

Lemma 5. If for every graph G in S, there is a constant p = p(G), such that
the hamiltonian cycle problem can be solved in polynomial time for G-free
graphs in Sp, then S is a minimal limit class for the problem.

Proof. Assume, by contradiction, that for every graph G in S, there is a constant
p = p(G), such that the hamiltonian cycle problem can be solved in polyno-
mial time for G-free graphs in Sp, but S is not a minimal limit class. Let X be a
limit class which is a proper subclass of S. Then there must exist a graph G in
S that does not belong to X . Denote by p = p(G) the constant associated with
G, and by Z the class of G-free graphs in Sp. By our assumption, the problem
is solvable in polynomial time in Z.

Clearly X ⊆ Z. Let us show that Z also is a limit class for the hamiltonian

cycle problem. Since X is a limit class, we have X =
⋂
n
Xn for a sequence

X1 ⊇ X2 ⊇ . . . of HC-tough graph classes. But then the class Zn := Xn ∪ Z is
HC-tough for each n, Zk ⊇ Zk+1 for each k, and Z =

⋂
n
Zn, i.e. Z is a limit

class for the hamiltonian cycle problem.
We observe that the class Z is defined by finitely many forbidden induced

subgraphs. Indeed, the set of forbidden subgraphs for this class consists of G,
finitely many cycles and tribranches, and the set of forbidden graphs for the
class Γ . To characterize the class Γ in terms of forbidden induced subgraphs, we
need to exclude 11 graphs containing a dominating vertex of degree 4 (which is
equivalent to bounding vertex degree by 3), and finitely many subcubic graphs
containing a cubic vertex with three cubic neighbors.

Since the set of forbidden induced subgraphs for the class Z is finite, there
must exist an n such that Zn contains none of the forbidden graphs for Z. But
then Zn = Z, which contradicts the assumption that the problem is polynomial-
time solvable in the class Z, while Zn is an HC-tough class of graphs. This
contradiction proves the lemma. ��

Now we apply Lemma 5 to prove the key result of this section.

Lemma 6. For each graph T ∈ S, there is a constant p such that the hamilto-

nian cycle problem can be solved in polynomial time for T -free graphs in Sp.

Proof. By Lemma 4, T is an induced subgraph of Td for some d. We define
p = 3 × 2d, and will prove the lemma for Td-free graphs in Sp. Obviously, this
class contains all T -free graphs in Sp.

Let G be a Td-free graph in Sp. Without loss of generality, we will assume
that G has no vertices of degree 1, since otherwise there is no Hamiltonian cycle
in G. Let us call an edge of G black, if it belongs to every Hamiltonian cycle in
G (should such a cycle exist). Similarly, we will call an edge of H white, if it
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belongs to no Hamiltonian cycle in G. We will show that every vertex of G is
incident to at least 2 black edges. This is obviously true for vertices of degree 2.
Therefore, let v be a cubic vertex of G.

Denote by H the subgraph of G induced by the set of vertices of distance at
most d from v. Since the degree of each vertex of H is at most 3, the number of
vertices in H is less than p. Since H belongs to Sp, it cannot contain small cycles
and small tribranches (i.e. graphs from the set Cp ∪ Yp). Moreover, H cannot
contain large cycles and large tribranches, because the size of H is too small
(less than p). Therefore, H belongs to S, and obviously H is connected. Thus,
H is a caterpillar with hairs of arbitrary length. Observe that each leaf u of H
is at distance exactly d from v, since otherwise u has degree 1 in G.

Let P be a path in H connecting two leaves and containing all vertices of
degree 3. If every vertex of P (except the endpoints) has degree 3, then H = Td,
which is impossible because G is Td-free. Therefore, P must contain a vertex
of degree 2. Let vi be such a vertex closest to v, and let (v = v0, v1, . . . , vi) be
the path connecting vi to v = v0 (along P ). Then the edge vivi−1 is black, as
it is incident to a vertex of degree 2. By the choice of vi, the vertex vi−1 has
degree 3, and hence it has a neighbor u that does not belong to P . Therefore,
the edge uvi−1 is also black, which implies that the edge vi−1vi−2 is white. In
its turn, this implies that vi−2vi−3 is black, and therefore, as before, vi−3vi−4

is white. By induction, we conclude that the colors of the edges of the path
(v = v0, v1, . . . , vi) alternate. If the edge v0v1 is white, then the other two edges
incident to v = v0 are black. If the edge v0v1 is black, then the edge connecting
v to the vertex outside P is also black.

Thus, we proved that every vertex of G is incident to at least 2 black edges.
Now checking whether G has a Hamiltonian cycle is equivalent to checking
whether the set of black edges forms a Hamiltonian cycle, which is obviously
a polynomially solvable task. ��

From Lemmas 5 and 6 we conclude that

Theorem 2. S is a boundary class for the hamiltonian cycle problem.
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Abstract. We prove a complexity dichotomy theorem for a class of
Holant Problems over k-regular graphs, for any fixed k. These problems
can be viewed as graph homomorphisms from an arbitrary k-regular in-
put graph G to the weighted two vertex graph on {0, 1} defined by a sym-
metric function h. We completely classify the computational complexity
of this problem. We show that there are exactly the following alterna-
tives, for any given h. Depending on h, over k-regular graphs: Either
(1) the problem is #P-hard even for planar graphs; or (2) the problem
is #P-hard for general (non-planar) graphs, but solvable in polynomial
time for planar graphs; or (3) the problem is solvable in polynomial time
for general graphs. The dependence on h is an explicit criterion. Fur-
thermore, we show that in case (2) the problem is solvable in polynomial
time over k-regular planar graphs, by exactly the theory of holographic
algorithms using matchgates.

1 Introduction

In this paper we continue the study of a class of Holant Problems [4,5,10]. We
aim to extend our previous dichotomy results [10] on 3-regular graphs to all
k-regular graphs, for an arbitrary k.

The problems we address in this paper can be described as follows. An in-
put k-regular graph G = (V, E) is given, where every e ∈ E is labeled with a
(symmetric) edge function h. In this paper we will mainly consider real-valued
functions. The function h takes 0-1 inputs from its incident nodes and outputs
arbitrary real values. Now we consider all possible {0, 1}-assignments on the
vertex set V . The computational problem is to compute the quantity

Holant(G) =
∑

σ:V →{0,1}

∏
{u,v}∈E

h({σ(u), σ(v)}). (1)
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In Section 2 we will give a more detailed account of the Holant framework,
of which (1) is a special case. Our special case of Holant problems with vertex
assignments can be also viewed as graph homomorphisms from an arbitrary k-
regular input graph G to the weighted two vertex graph on {0, 1} defined by
the symmetric function h. In general, Holant Problems are a natural class of
counting problems which can encode all counting Constraint Satisfaction Prob-
lems (#CSP) and graph homomorphisms [1,2,6,7,8,9]. For instance, if h is the
Boolean Or function on two input bits, then problem (1) is Vertex Cover:
Holant(G) is the number of vertex covers in a k-regular graph.

Dichotomy theorems (i.e., the problem is either in P or #P-hard, depending
on h) have been given in many cases [1,2,6,7,8]. However, a major tool in the
hardness proofs of these papers is to construct graph gadgets whose vertices have
varying degrees, especially some vertices have arbitrarily high degrees. Therefore
if we inquire about the computational complexity of these counting problems on
k-regular graphs, these dichotomy theorems are not applicable. More intrinsi-
cally, over k-regular graphs, there are in fact new tractable cases computable in
P, which would be #P-hard over non-regular graphs.

In the same spirit, holographic algorithms using matchgates [3,15] have pro-
duced surprisingly novel P-time algorithms if we restrict to planar graphs. In this
paper we will add to the body of evidence that a wide class of counting problems,
which are #P-hard on general graphs, become tractable in P on planar graphs,
and they do so precisely due to holographic algorithms using matchgates.

The inability to use graph gadgets with arbitrarily high degrees makes hard-
ness proofs more difficult. We denote the (symmetric) edge function h by [x, y, z],
where x = h(00), y = h(01) = h(10) and z = h(11). Functions will also be called
gates or signatures. To tackle the hardness of these counting problems on regular
graphs, we proved in [4] a dichotomy theorem which implies the case when G
is a 3-regular graph and the function h is a 0-1 valued Boolean function. The
main proof technique is to extend the method of interpolation introduced by
Valiant [13,14] which had been further developed by many others [1,7,8,12]. One
new ingredient in [4] is an algebraic criterion which ensures that interpolation
succeeds. However that criterion is Galois theoretic, and to go beyond integer
valued functions h = [x, y, z], this approach will be difficult. In [5] the dichotomy
theorem is extended to all real-valued functions h over 3-regular graphs, and we
have to deal with infinitely many problems, where each tuple (x, y, z) ∈ R3

defines a problem. So instead of the Galois theoretic approach we used a compu-
tational approach: We devised a large number of recursive gadgets and showed,
with the help of symbolic algebra, especially the decidability of semi-algebraic
sets, that this collection of gadgets in aggregate covered all the hardness cases.
The drawback of this proof is that the computational task is enormous (and
many additional ideas were needed to carry this out). In particular, it would
seem hopeless to extend that approach further by simply adding computational
muscle.

The immediate predecessor to the present paper is [10]. In that paper we man-
aged to find a way to drastically reduce the dependence of symbolic computation
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and extend the theorem of [5] to all complex valued functions h. This was accom-
plished by a new method of higher dimensional iteration for gadget construction,
and by finding a new polynomial expression for Holant(G) for 3-regular graphs
G. More precisely, after a normalization we may assume h takes the form [a, 1, b],
for a, b ∈ C. Then for any 3-regular graph G, there exists a polynomial P (·, ·)
with integer coefficients, such that Holant(G) = P (X, Y ), where X = ab and
Y = a3 + b3.

In this paper we extend the dichotomy theorem to all k-regular graphs. We
will use the technique of higher dimensional iteration [5], adapting it to the case
of k-regular graphs. We will also find a corresponding polynomial expression
for Holant(G). The situation with an arbitrary degree k requirement creates at
least two additional difficulties. The first is that with infinitely many k, it seems
likely that we will need an infinite number of collections of gadgets, one for each
k. The statement involving a variable k cannot be stated for a semi-algebraic
set. If we follow this strategy, we can hope to prove at best a small number of
concretely given constants k; the symbolic computation from the decidability of
semi-algebraic sets will soon overwhelm this attempt, as k increases.

The second difficulty is presented by the parity of k. It turns out that for
even degree k, the proof cannot be directly extended from degree 3. The techni-
cal reason is that it is not possible to construct an F -gate with an odd number
of dangling edges in a regular graph of even degree (see Section 2 for definitions).
In particular this means that the approach in [10] to construct all unary signa-
tures will not work. It is not possible to construct starter and finisher gadgets
as described in [10]. We overcome the first difficulty by fortuitously choosing
a universal set of gadget families for all k, and showing that collectively they
always work. Here a symbolic substitution X = ab and Y = ak + bk is shown
to essentially eliminate all symbolic dependence on k. We overcome the second
difficulty by changing the strategy of constructing all unary signatures to con-
structing all binary signatures of a certain kind. This set of binary signatures
plays the virtual role of all unary signatures for our purposes. Our main theorem
is as follows:

Theorem 1. Suppose a, b ∈ R, and let X = ab and Y = ak + bk where k ≥ 3 is
an integer. Then the Holant Problem in (1) on k-regular graphs with h = [a, 1, b]
is #P-hard except in the following cases, for which the problem is in P.

1. X = 1
2. X = 0 and Y = 0
3. X = −1 and Y = 0
4. X = −1, k is even, and Y = ±2

If we restrict the input to planar k-regular graphs, then these four categories are
solvable in P, as well as a fifth category Y 2 = 4Xk (equivalently, ak = bk), and
the problem remains #P-hard in all other cases.

We actually prove the above theorem for all a, b ∈ C such that X, Y ∈ R. This
is slightly stronger than Theorem 1. Furthermore, our methods are not sensitive
to the exact model of computation using complex numbers.



A Dichotomy for k-Regular Graphs with {0, 1}-Vertex Assignments 331

2 Background and Notation

We state the counting framework more formally in terms of bipartite graphs. As
we will see, any k-regular graph with vertex assignments is interchangeable with a
certain bipartite (2, k)-regular graph with edge assignments, but it is often more
convenient to work in terms of bipartite graphs. A signature grid Ω = (G,F , π)
consists of a labeled graph G = (V, E) where π labels each vertex v ∈ V with a
function fv ∈ F . We consider all edge assignments ξ : E → {0, 1}; fv takes inputs
from its incident edges E(v) at v and outputs values in C. The counting problem
on the instance Ω is to compute HolantΩ =

∑
ξ:E→{0,1}

∏
v∈V fv(ξ |E(v)).

Suppose G is a bipartite graph (U, V, E) such that each u ∈ U has degree
2. Furthermore suppose each v ∈ V is labeled by an Equality gate =k where
k = deg(v). Then any non-zero term in HolantΩ corresponds to a 0-1 assignment
σ : V → {0, 1}. In fact, we can merge the two incident edges at u ∈ U into one
edge eu, and label this edge eu by the function fu. This gives an edge-labeled
graph (V, E′) where E′ = {eu : u ∈ U}. For an edge-labeled graph (V, E′) where
e ∈ E′ has label ge, HolantΩ =

∑
σ:V →{0,1}

∏
e=(v,w)∈E′ ge(σ(v), σ(w)). If each

ge is the same function g (but assignments σ : V → [q] take values in a finite
set [q]) this is exactly the H-coloring problem (for undirected graphs g is a sym-
metric function). In particular, if (U, V, E) is a (2, k)-regular bipartite graph,
equivalently G′ = (V, E′) is a k-regular graph, then this is the H-coloring prob-
lem restricted to k-regular graphs. In this paper we will discuss k-regular graphs
where each ge is the same symmetric real-valued or complex-valued function.
We also remark that for general bipartite graphs (U, V, E), giving Equality (of
various arities) to all vertices on one side V defines #CSP as a special case of
Holant Problems. But whether Equality of various arities are present has a
major impact on complexity, thus Holant Problems are a refinement of #CSP.

A symmetric function g : {0, 1}k → C can be denoted as [g0, g1, . . . , gk], where
gi is the value of g on inputs of Hamming weight i. They are also called signa-
tures. Frequently we will revert back to the bipartite view: for (2, k)-regular
bipartite graphs (U, V, E), if every u ∈ U is labeled g = [g0, g1, g2] and every
v ∈ V is labeled r = [r0, r1, . . . , rk], then we also use #[g0, g1, g2] | [r0, r1, . . . , rk]
to denote the Holant Problem. The main dichotomy theorem in this paper is
about #[x, y, z] | =k, for all x, y, z ∈ R. If y = 0 then this is easily computable in
P, so we assume y �= 0. The problem #[x, y, z] | =k has the same complexity as
#[x/y, 1, z/y] | =k, hence we can normalize [x, y, z] so that y = 1. We will also
denote Holk(a, b) = #[a, 1, b] | =k, or Pl-Holk(a, b) to denote #[a, 1, b] | =k when
restricted to planar graphs as input. More generally, If G and R are sets of sig-
natures, and vertices of U (resp. V ) are labeled by signatures from G (resp. R),
then we also use #G | R to denote the bipartite Holant Problem. Signatures in G
are called generators and signatures in R are called recognizers. This notation is
particularly convenient when we perform holographic transformations. Through-
out this paper, all (2, k)-regular bipartite graphs are arranged with generators
on the degree 2 side and recognizers on the degree k side.

Signatures from F are available at each vertex as part of an input graph.
Instead of a single vertex, we can use graph fragments to generalize this notion.
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An F -gate Γ is a pair (H,F), where H = (V, E, D) is a graph with some dan-
gling edges D (Figure 1 contains some examples). Other than these dangling
edges, an F -gate is the same as a signature grid. The role of dangling edges
is similar to that of external nodes in Valiant’s notion [15], however we allow
more than one dangling edge for a node. In H = (V, E, D) each node is as-
signed a function in F (we do not consider “dangling” leaf nodes at the end
of a dangling edge among these), E are the regular edges, and D are the dan-
gling edges. Then we can define a function for this F -gate: Γ (y1, y2, . . . , yq) =∑

(x1,x2,...,xp)∈{0,1}p H(x1, x2, . . . , xp, y1, y2, . . . , yq), where p = |E|, q = |D|,
(y1, y2, . . . , yq) ∈ {0, 1}q denotes an assignment on the dangling edges, and
H(x1, x2, . . . , xp, y1, y2, . . . , yq) denotes the value of the signature grid on an
assignment of all edges, i.e., the product of evaluations at every vertex of H , for
(x1, x2, . . . , xp, y1, y2, . . . , yq) ∈ {0, 1}p+q.

We will also call this function the signature of the F -gate Γ . An F -gate can be
used in a signature grid as if it is just a single node with the same signature. We
note that even for a very simple signature set F , the signatures for all F -gates
can be quite complicated and expressive. Matchgate signatures are an example,
where F consists of just the Exact-One function [15].

The dangling edges of an F -gate are considered as input or output variables.
Any m-input n-output F -gate can be viewed as a 2n by 2m matrix M which
transforms arity-m signatures into arity-n signatures (this is true even if m
or n are 0). The F -gates in this paper will transform symmetric signatures
to symmetric signatures. This implies that there exists an equivalent n + 1 by
m+1 matrix M̃ which operates directly on column vectors written in symmetric
signature notation. We will henceforth identify the matrix M̃ with the F -gate
itself. The constructions in this paper are based upon three different types of
bipartite F -gates which we call starter gadgets, recursive gadgets, and finisher
gadgets. An arity-r starter gadget is an F -gate with no input but r output edges.
If an F -gate has r input and r output edges then it is called an arity-r recursive
gadget. Finally, an F -gate is an arity-r finisher gadget if it has r input edges 1
output edge. With the exception of gadget F2 (which has two inputs and two
outputs), we consider any dangling edge incident with a generator as an output
edge and any dangling edge incident with a recognizer as an input edge; see
Figure 1.

Throughout this paper, we denote X = ab and Y = ak + bk, and we assume
that X, Y ∈ R and a, b ∈ C. In all cases our gadgets have signature [a, 1, b]

k − 2

(a) Gadget M1

k − 4

(b) Gadget M2 (c) Gadget S1

k−3
2

(d) Gadget F1

k−4
2

(e) Gadget F2

Fig. 1. Labels indicate the number of pairs of edges in parallel
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assigned to the degree 2 vertices and signature =k assigned to the degree k
vertices. We use Si, Mi, and Fi to denote the (recurrence matrices of the) gadgets
displayed in Figures 1 and 2 with the vertex signatures assigned as described.

3 Interpolation Technique

In this section we introduce the interpolation technique we will use in this paper.
We start with Lemma 3.2 from [10].

Lemma 1. Suppose that the following gadgets can be built using complex-valued
signatures from a finite generator set G and a finite recognizer set R.

1. A binary starter gadget with nonzero signature s = [z0, z1, z2].
2. A binary recursive gadget with nonsingular recurrence matrix M , for which

[z0, z1, z2]T is not a column eigenvector of M � for any positive integer �.
3. Three binary finisher gadgets with rank 2 matrices F1, F2, F3 ∈ C2×3, where

the intersection of the row spaces of F1, F2, and F3 is the zero vector.

Then for any x, y ∈ C, #G ∪ {[x, y]} | R ≤T #G | R.

It will be more convenient to reframe condition 2 in terms of the eigenvalues
of M . Assume that we are using a nonsingular recursive gadget M and a starter
gadget whose signature s is not orthogonal to any row eigenvector of M . Addi-
tionally assume that there exist eigenvalues α and β of M for which α

β is not
a root of unity. Then we want to show that s is not a column eigenvector of
M � for any positive integer � (note that s is nonzero). Writing out the Jor-
dan Normal Form for M , we have M �s = T−1D�Ts, where D� has the form⎡⎣α� 0 0

0 β� 0
0 ∗ ∗

⎤⎦. Let t = Ts and write t =

⎡⎣ c
d
e

⎤⎦. The first two rows of T are

row eigenvectors of M . Then s is not orthogonal to the first two rows of T ,
hence c, d �= 0. If s were an eigenvector of M � for some positive integer �, then
T−1D�Ts = M �s = λs for some nonzero complex value λ (λ �= 0 since M � is
nonsingular), and D�t = T (λs) = λt. But then cα� = λc and dβ� = λd, which
means α�

β� = 1, contradicting the fact that α
β is not a root of unity.

We satisfy condition 3 by demonstrating a finisher gadget family suitable for
all odd values of k ≥ 3. Note that since no single-output binary finisher gadget
exists when k is even, we will have to deal with even k separately (in regular
graphs with even degree it is impossible to build an F -gate with an odd number
of dangling edges).

Lemma 2. Suppose k ≥ 3 is odd, X /∈ {0, 1}, and ak �= bk. Then F1, F1M1,
and F1M

2
1 (see Figures 1(d) and 1(a)) are all rank 2 matrices and their row

spaces have trivial intersection.

Proof. We get F1 =
[
a(k−1)/2 0 b(k−3)/2

a(k−3)/2 0 b(k−1)/2

]
. Build two more finisher gadgets F ′

1

and F ′′
1 using M1 so that F ′

1 = F1M1 and F ′′
1 = F1M

2
1 . Since F1 and M1
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both have full rank (note det(M1) = Xk−2(X − 1)3 and F1 has a submatrix
with determinant X(k−3)/2(X − 1)), it follows that F ′

1 and F ′′
1 also have full

rank. To show that the row spaces of F1, F ′
1 and F ′′

1 have trivial intersection,
it suffices to show that the cross products of the row vectors of F1, F ′

1, and
F ′′

1 (which we denote by v1, v′1, and v′′1 respectively) are linearly independent.
Let N be the matrix which has as its rows, v′1, v′1, and v′′1 respectively. Then
det(N) = 4X(5k−13)/2(X − 1)7(ak − bk) �= 0.

Now consider even k ≥ 4. The construction is similar to the odd case, with
two important differences. Firstly, instead of standard finisher gadgets with a
generator output vertex we use F -gates, each with a recognizer output vertex, so
for even k we will be interpolating recognizer signatures. Secondly, there are two
output edges from each F -gate. It may appear as though this causes a problem
with the main construction, but for any such “modified finisher gadget” Fi, there

is a unique matrix F ∈ C2×3 such that Fi =

⎡⎣1 0
0 0
0 1

⎤⎦F . Thus, the interpolation

technique still applies, but in the case of even k we end up with the reduction
#G | R ∪ {[x, 0, y]} ≤T #G | R for any x, y ∈ C. The proof of the following
Lemma is similar to Lemma 2, and is omitted.

Lemma 3. Suppose k ≥ 4 is even and let F be the unique C2×3 matrix such

that F2 =

⎡⎣1 0
0 0
0 1

⎤⎦F (see Figure 1(e)). If X /∈ {0, 1}, and ak �= bk then F , FM1,

and FM2
1 are all rank 2 matrices and the row spaces have trivial intersection.

We will interpolate generator signatures of the form [x, y] for odd k and recog-
nizer signatures of the form [x, 0, y] for even k. In the case of odd k, connecting
an =k signature vertex to a vertex with signature [x, y] and k − 3 vertices with
signature [1, 1] results in an F -gate with signature [x, 0, y]. This means that
regardless of which variant of finisher gadget we apply, we can simulate any rec-
ognizer signature of the form [x, 0, y]. With [x, 0, y] signatures in hand, we can
simulate the generator signature [0, 1, 1] directly by Lemma 3.3 from [10]. (Tech-
nically, that lemma requires generator signatures of the form [x, y]. However,
it is easy to verify that recognizer signatures of the form [x, 0, y] suffice with
only trivial modifications to the construction). Thus we have a reduction from
Vertex Cover on k-regular graphs (i.e. #[0, 1, 1] | =k), which is known to be
#P-hard for all k ≥ 3 even if the input is restricted to planar graphs (counting
Vertex Cover on 3-regular planar graphs is proved to be #P-hard in [16]; this
can be generalized to a proof for any k ≥ 3). This gives us the following result.

Theorem 2. If the following can be built using generator [a, 1, b] and recognizer
=k where X /∈ {0, 1}, k ≥ 3, and ak �= bk, then Pl-Holk(a, b) is #P-hard:

1. A planar binary recursive gadget with nonsingular recurrence matrix M
which has eigenvalues α and β such that α

β is not a root of unity.
2. A planar binary starter gadget with signature s which is not orthogonal to

any row eigenvector of M .
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4 Classification of Real Valued Signatures on k-Regular
Graphs

4.1 Tractable Problems

Once we show that X and Y capture the complexity of the Holant problems
we are studying, the problem of proving tractability (or #P-hardness) becomes
easier. To extend this idea from [10] to k-regular graphs for all k ≥ 3, we need
to consider a parity issue that arises when k is even and the number of vertices
in the graph is odd. It is impossible to have an odd number of vertices when k
is odd, and when the number of vertices in the graph is even the Holant is a
polynomial in X and Y . However, when the number of vertices is odd (which
can only happen for even k), the Holant is no longer a polynomial in X and Y ;
there is an extra factor (ak/2 + bk/2). Nevertheless, the following lemma can be
proved using an argument similar to Lemma 4.1 in [10].

Lemma 4. Let G be a k-regular graph with n vertices. If n is even, then there
exists a polynomial P (·, ·) with two variables and integer coefficients such that for
any signature grid Ω having underlying graph G and every edge labeled [a, 1, b],
the Holant value is HolantΩ = P (ab, ak + bk). If n is odd, then there exists a
polynomial P (·, ·) as before such that HolantΩ = (ak/2 + bk/2)P (ab, ak + bk).

Corollary 1. Let G be any k-regular graph with n vertices, where k is even and
n is odd, and let Ω be any signature grid having underlying graph G and every
edge labeled [a, 1, b]. If ak/2 + bk/2 = 0, then HolantΩ = 0.

If the number of vertices n is odd then k must be even, and we may assume
ak/2 +bk/2 �= 0. Then we can change Ω to Ω′ by adding an extra vertex with k/2
simple loops. Then Ω′ has an even number of vertices. The Holant value of Ω′ is
HolantΩ′ = (ak/2+bk/2)HolantΩ, hence we can compute HolantΩ from HolantΩ′ .
Therefore we will always assume the number of vertices is even from now on.
For even n, Lemma 4 says that X and Y capture the essence of (in)tractability
for the Holant Problems under consideration. If we find the complexity for any
one setting of a and b such that X = ab and Y = ak + bk, then we have already
characterized all settings of a and b that result in the same X and Y . Specifically,
given a signature [a, 1, b] as input, one can compute the Holant in terms of any
a′ and b′ for which a′b′ = X and (a′)k + (b′)k = Y .

Theorem 3. If any of the following four conditions is true, then Holk(a, b) is
solvable in P:

1. X = 1
2. X = 0 and Y = 0
3. X = −1 and Y = 0
4. X = −1 and [ Y = ±2 if k is even, and Y = ±2i if k is odd ]

If Y 2 = 4Xk then Pl-Holk(a, b) is solvable in P.
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Proof. If X = 1 then the signature [a, 1, b] is degenerate and the Holant can
be computed in polynomial time. If X = Y = 0, then a = b = 0 and a
connectivity argument can be applied to the edges to calculate the Holant. If

X = −1, then applying a holographic transformation under basis T =
[

1 0
0 a

]
,

we get T⊗2g = [a, a,−a]T and r(T−1)⊗k = [1, 0, 0, . . . , 0, a−k], where r =
[1, 0, 0, . . . , 0, 1] is the =k signature and g = [a, 1,−a−1]T (note this g corre-
sponds to the assumption X = −1). Multiplying the signature [a, a,−a] by a−1

does not change the complexity of the problem, so #g | r is equivalent in com-
plexity to #[1, 1,−1] | [1, 0, 0, . . . , 0, a−k], which is known to be tractable in P if
ak ∈ {1,−1, i,−i}, by families F1 and F3 in [2]. If k is even, then Y = ak + a−k,
which can be set to −2, 0, or 2 by using any a ∈ C such that ak is −1, i, or 1
respectively. If k is odd, then Y = ak − a−k, which can be set to −2i, 0, or 2i by
using any a ∈ C such that ak is −i, 1, or i, respectively. Finally, if Y 2 = 4Xk,
then ak = bk and holographic algorithms using matchgates can be applied when
the input graph is planar (see [3], Lemmas 4.4 and 4.8).

4.2 Intractable Problems

In this section we show that the remaining problems are #P-hard. This is carried
out primarily by applying binary recursive gadgets to Theorem 2 for different
real-valued settings of X and Y (note this includes some cases where a or b are
complex). Usually when we speak of a gadget in this section, we really mean a
member of a family of gadgets; most of the gadgets in Figures 1 and 2 actually
define families of gadgets, with a different gadget for each k. We will make use
of the following lemma, proved in [10].

Lemma 5. If all roots of the complex polynomial x3 + Bx2 + Cx + D have the
same norm, then C|C|2 = B|B|2D.

This criterion can be used to study the suitability of binary recursive gadgets
for interpolation. Every recursive gadget we use has a recurrence matrix with
a characteristic polynomial of the form x3 + Bx2 + Cx + D where B, C, and
D are polynomials in X and Y with integer coefficients. Since X and Y are
real, the condition of Lemma 5 is simply the zero set of the real polynomial
f(X, Y ) = C3 − B3D, and this becomes an important tool in proving #P-
hardness. We want to show that for any remaining X and Y , there is a pla-
nar binary recursive gadget with a nonsingular recurrence matrix such that the
corresponding polynomial f(X, Y ) is nonzero. This implies that condition 1 of
Theorem 2 is satisfied (condition 2 can be shown separately). However, there is
some difficulty in applying this lemma; not only is the degree of f high in a and
b for all but the smallest of gadgets, but the exponents in the polynomial f are
functions of k. It is not obvious how to obtain suitable binary recursive gadgets
for all k. Furthermore, for a family of gadgets indexed by k, if we treat k as a
variable, the question can no longer be formulated as one about semi-algebraic
sets. Nevertheless, there exists a pair of binary recursive gadget families M1 and
M2 suitable for handling these difficulties (see Figures 1(a) and 1(b)). It is the
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combination of these two gadget families and the algebraic relationship between
them, combined with the coordinate change X = ab and Y = ak + bk, which
allows us to eliminate k entirely and to finally derive a general result. When
k ≤ 4 this family of gadget pairs does not work, so we will deal with this case
separately, by selecting different binary recursive gadgets for k = 4. We also
need to find starter gadgets suitable to be used with M1 and M2 in the recursive
construction, so we state an easy way of identifying such starter gadgets first.

Lemma 6. Let M ∈ Cn×n and let s ∈ Cn×1. If det([s, Ms, . . . , Mn−1s]) �= 0
then s is not orthogonal to any row eigenvector of M .

Proof. Suppose s is orthogonal to a row eigenvector v of M with eigenvalue λ.
Then v[s, Ms, ..., Mn−1s] = 0, since vM is = λivs = 0. Since v �= 0 this is a
contradiction.

Lemma 7. Suppose k ≥ 5, X /∈ {0, 1}, and ak �= bk. If X = −1, additionally
assume that k is odd and Y �= 0. Then Pl-Holk(a, b) is #P-hard.

Proof. We show that for every setting of X and Y under consideration, either
gadget M1 or M2 satisfies Theorem 2 when used with S1 as a starter gadget.
The recurrence matrices of gadgets M1 and M2 are as follows.

M1 =

⎡⎣ ak 2a bk−2

ak−1 ab + 1 bk−1

ak−2 2b bk

⎤⎦ , M2 =

⎡⎣ ak 2a2b bk−2

ak−1 ab(ab + 1) bk−1

ak−2 2ab2 bk

⎤⎦
Starter gadget S1 has signature [a, 1, b]. Then det([S1, M1S1, M

2
1S1]) = (X −

1)3(bk − ak)(Xk−2 − 1) �= 0 and det([S1, M2S1, M
2
2S1]) = X2(X − 1)3(bk −

ak)(Xk−4− 1) �= 0, so S1 is not orthogonal to any row eigenvector of M1 or M2.
Let the characteristic polynomials of gadgets M1 and M2 be x3+B1x

2+C1x+D1

and x3 + B2x
2 + C2x + D2 respectively, and let Z = Xk−3. Then det(M1) =

ZX(X − 1)3 �= 0 and det(M2) = ZX2(X − 1)3 �= 0. Now suppose X �= −1. If
all eigenvalues of Mi have the same norm, then by Lemma 5, C3

i − B3
i Di = 0.

We claim that this cannot be the case for both gadgets. Otherwise, we factorize
polynomials to get

C3
1 − B3

1D1 = (X − 1)3(XZ − 1)(ZX(1 + X)2(X2Z + XZ + 3Y + X + 1) − Y 3)

C3
2 − B3

2D2 = X2(X − 1)3(Z − X)(ZX(1 + X)2(XZ + Z + 3Y + X2 + X) − Y 3)

hence Y 3 = ZX(1+X)2(X2Z +XZ+3Y +X +1) and Y 3 = ZX(1+X)2(XZ+
Z + 3Y + X2 + X). But then, by some fortuitous factorization,

0 = ZX(1 + X)2(X2Z + XZ + 3Y + X + 1)

−ZX(1 + X)2(XZ + Z + 3Y + X2 + X) = (X − 1)X(1 + X)3(Z − 1)Z �= 0.

Now suppose X = −1, k is odd, and Y �= 0. We will show that gadget M1 has a
pair of eigenvalues with distinct norm. In this case, the characteristic polynomial
of M1 is x3 − Y x2 − 2Y x − 8, so by Lemma 5, if all roots of the characteristic
polynomial have the same norm, then −8Y 3 = C3 = B3D = 8Y 3, but this
implies Y = 0.
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k
2

k−2
2

k−4
2

(a) Gadget M3 (b) Gadget M4 (c) Gadget M5

k − 2

(d) Gadget S2

Fig. 2. Labels for gadget M3 indicate the number of 2-cycles on each recognizer vertex.
The label in gadget S2 indicates the number pairs of edges in parallel.

The following Lemma deals with even k ≥ 4, X = −1 and Y ∈ R − {−2, 0, 2}.
Note that when k is even, X = −1, and Y ∈ {−2, 0, 2} the problem Holk(a, b)
is tractable.

Lemma 8. Suppose k ≥ 4 is even, X = −1 and Y ∈ R − {−2, 0, 2}. Then
Pl-Holk(a, b) is #P-hard.

Proof. If X = −1, then the characteristic polynomial of gadget M3 is x3 + (4−
Y 2)x2 +2(4−Y 2)(2+(−1)k/2Y )x+8(4−Y 2)(2+(−1)k/2Y ), so the determinant
is nonzero. By Lemma 5, if all roots of the characteristic polynomial have the
same norm, then C3 = B3D and this amounts to (2 + (−1)k/2Y )2 = 4 − Y 2,
but then 4 ± 4Y + Y 2 = 4 − Y 2 and Y (Y ± 2) = 0, which is not true. Finally,
applying Lemma 6 to M3 and S1, we get det([S1, M3S1, M

2
3 S1]) = −16Y (Y 2 −

4)3(2 + (−1)k/2Y )(2(−1)k/2 + Y ) �= 0.

The bulk of the work is now done.

Lemma 9. Suppose k ≥ 3, X /∈ {0, 1}, ak �= bk, (X, Y ) �= (−1, 0). Then
Pl-Holk(a, b) is #P-hard.

Proof. This result is already known for k = 3 (see [10]). If k ≥ 5 then this is
established by Lemmas 7 and 8 (note that if k is even, X = −1, and Y = ±2
then ak = bk). If k = 4, then some symbolic computation shows that gadgets
M1, M4, M5, and S1 together satisfy Theorem 2 provided X /∈ {0, 1}, ak �= bk,
and (X, Y ) �= (−1, 0) and hence the problem Pl-Hol4(a, b) is #P-hard for any
such setting of X and Y (we omit the details).

Two cases that remain are X = 0 and ak = bk. Whenever X = 0 and Y /∈
{0,−1}, either gadget M1S1 or gadget S2 simulates a signature that is already
covered in Lemma 9 so we are done by reduction from that case. Similarly, when
X = 0 and Y = −1 a reduction from the case where X = 0 and Y /∈ {0,−1} can
be made using gadget M1S2. If ak = bk and X /∈ {−1, 0, 1}, then after a suitable
holographic reduction we can use gadget S1 and either M1 or M2 (without a
finisher gadget) to interpolate all signatures of the form [x, 1, x]. Then we can
apply the [1, 1, 1] signature to pairs of vertices with the =k signature to simulate
=3 and we are done by a reduction from #[a, 1, b] | =3 (see [10]). Note that
planarity does not need to be preserved in this case and we can assume that the
number of vertices in the input graph is even. This completes Theorem 1.
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1 Introduction

Dan Brown devised the following pizza puzzle in 1996 which we formulate using
graph notation. The pizza with n slices of not necessarily equal size, can be
considered as a cycle Cn with nonnegative weights on the vertices. Two players,
Bob and Alice, are sharing it by taking turns alternately. In every turn one
vertex is taken. The first turn is Alice’s. Afterwards, a player can take a vertex
only if the subgraph induced by the remaining vertices is connected. Dan Brown
asked if Alice can always obtain at least half of the sum of the weights. Peter
Winkler and others solved this puzzle by constructing graphs where Bob had
a strategy to get even 5/9 of the pizza. Later Peter Winkler posed the pizza
problem asking how much of the pizza can Alice gain. He conjectured that the
bound 5/9 is tight. This problem has been solved in the affirmative by showing
that Alice can always get 4/9 of the pizza [1,2].

Here we investigate a generalized setting where the cycle Cn is replaced with
an arbitrary connected graph G. Consider the following two conditions:

(T) the subgraph of G induced by the taken vertices is connected during the
whole game,

(R) the subgraph of G induced by the remaining vertices is connected during
the whole game.

Observe that the two conditions are equivalent if G is a cycle. The generalized
game is called game T, game R, or game TR if we require condition (T), condition
(R), or both conditions (T) and (R), respectively. In games T and R, there are
graphs where Bob can ensure (almost) the whole weight to himself; see Fig. 1
for examples where the graph G is a tree. The same results hold even if G is
restricted to be k-connected (for any k ≥ 2), in any of the three variants of the
game. See Fig. 2 for examples of such 2-connected graphs.

Theorem 1. For games T, R and TR, for every ε > 0 and for every k ≥ 1
there is a k-connected graph G for which Bob has a strategy to obtain (1− ε) of
the total weight of the vertices.

Micek and Walczak [3] also studied, independently of us, generalizations of the
pizza game. They investigated how the parity of the number of vertices affects

1 1 1 1

1
1

Fig. 1. Left, game T: a tree where Alice gets at most one vertex of weight 1. Right,
game R: a path of even length, Bob gets the only vertex of positive weight. Vertices
with no label have weight 0.
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1 1 1 1

1 11 11

Fig. 2. Examples of 2-connected graphs where Alice gets at most one vertex of weight
1. Left: game T, or game TR. Right: game R; the number of vertices of degree 4 (and
of weight 1) must be odd. Vertices with no label have weight 0.

Alice’s chances to gain a positive fraction of the total weight in games T and
R, particularly when the game is played on a tree. They proved that Alice can
gain at least 1/4 of the total weight in game R on a tree with an even number
of vertices and in game T on a tree with an odd number of vertices. For the
opposite parities they constructed examples of trees (such as those in Figure 1)
where Bob has a strategy to get almost all the weight.

Note that in games T and R, regardless of the strategies of the players, there is
always an available vertex for the player on turn until all vertices are taken as the
graph G is connected. For game TR, there is a sequence of turns to take all the
vertices of G if and only if each cut vertex of G separates the graph into precisely
two components and every 2-connected component of G contains at most two
cut vertices. Game TR will end with all vertices taken for any sequence of turns
if and only if each cut vertex of G separates the graph into two components and
the set of all cut vertices in G induces a path.

As game TR does not always end with all vertices taken, it is natural to
consider the following variation of the game, which we call a canonical game
TR. Given a graph G, Alice and Bob take turns alternately. In each turn a
player takes one vertex of G. The first player who is forced to violate condition
(T) or (R) loses the game. We show the following complexity result.

Theorem 2. It is PSPACE-complete to decide who has the winning strategy in
the canonical game TR.

We also consider the complexity of determining the winning strategy (i.e., gain-
ing more than half of the total weight) for the original three types of the game.
We show the following.

Theorem 3. It is PSPACE-complete to decide who has the winning strategy in
game R and TR.

However, we are unable to determine the complexity of deciding the winner for
game T. The reason might be the following difference in the “nature” of games T
and R. Once a vertex becomes available in game T, it remains available until the
end of the game. The same holds for game R played on a tree. In games R and
TR on general graphs, however, a vertex may become available and unavailable
several times during the game.
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Problem 4. What is the complexity of deciding who has the winning strategy
in game T? What is the complexity of deciding who has the winning strategy in
game R and in game T when the input graph G is a tree?

In this extended abstract many proofs are omitted due to space limitations.

2 Proof of Theorem 1

In games T and TR, Bob can choose the following k-connected graph with an
even number of vertices (for any given k ≥ 2): Take a large even cycle and replace
each vertex in it by a 2!k/4"-clique and each edge by a complete bipartite graph
K2�k/4�,2�k/4�. Assign weight 1 to one vertex in every other 2!k/4"-clique, and
weight 0 to all the other vertices of the graph. It is easy to see that Bob can
make sure that Alice takes at most one vertex of weight 1.

In game R, Bob can choose the following k-connected (bipartite) graph G
with an odd number of vertices. The vertex set is a disjoint union of sets X, Y
and Z, where Y is an m-element set for some large m ≥ k + 2, Z is the set of
all k-element subsets of Y and X is chosen to be a set of at least |Y |+ |Z|+ 2
elements so that the total number of vertices is odd. The edge set of G consists
of all edges between X and Y and all edges that connect a vertex z ∈ Z with
each of the k vertices y ∈ Y such that y ∈ z. Each vertex from Y has weight 1,
all the other vertices have weight 0.

Claim 5. Bob can force Alice to get at most *k/2+ vertices of weight 1.

As the weight of the graph may be arbitrarily large, this completes the proof
of Theorem 1. Note that the graphs for games T and TR in the proof have an
even number of vertices and the graphs for game R an odd number of vertices.
Micek and Walczak (personal communication) asked whether also k-connected
graphs with opposite parities satisfying the conditions of Theorem 1 exist. We
find examples of such graphs for all three variants of the game.

For game T and game TR and for every k ≥ 1, we can construct a (2k + 1)-
connected graph Hn,k with an odd number of vertices starting from the graph
Hn described by Micek and Walczak [3, Example 2.2], replacing each vertex of
weight 0 by 2k + 1 vertices of weight 0 forming a clique, and replacing each
original edge by a complete bipartite graph. The graph Hn consists of vertices
a1, a2, . . . , an of weight 1, vertices b1, b2, . . . , bn of weight 0, and a vertex cS of
weight 0 for every non-empty subset S ⊆ {1, 2, . . . , n}. Each ai is joined by an
edge to bi and each cS is joined to all bi such that i ∈ S. For the graph Hn,k Bob
has a strategy to take all but one vertex of weight 1, analogous to the strategy
for Hn [3].

For game R, for every k ≥ 1 we construct a k-connected weighted graph G′
n,k

with n +
(
n
k

)
vertices (we may assume that n = 2m for some positive integer m

so that the total number of vertices is even). The construction generalizes the
graph G′

n [3, Example 5.2] consisting of a clique of n vertices of weight 1, with
a leaf of weight 0 attached to each vertex of the clique. The graph G′

n,k consists
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b
a

Ti Fic

a′
b′

Fig. 3. Variable gadget for xi where Ti and Fi represent the two possible values, TRUE
and FALSE, of the variable xi

of a clique on n vertices a1, a2, . . . , an of weight 1 and a vertex bS of weight 0 for
each k-element subset S ⊆ {1, 2, . . . , n}. The vertex bS is connected by an edge
to all k vertices ai such that i ∈ S.

Claim 6. Bob can force Alice to get at most k + 1 vertices of weight 1.

3 Proof of Theorem 2

We proceed by polynomial reduction from the standard PSPACE-complete prob-
lem TQBF (also called QBF). An instance of the TQBF problem is a fully
quantified boolean formula starting and ending with the existential quantifier:

Φ = ∃x1∀x2∃x3∀x4 . . . ∃xnϕ(x1, x2, . . . , xn).

The question is whether Φ is true. Without loss of generality we may assume
that ϕ in the previous expression is a 3-SAT formula.

As the game always ends after polynomially many turns, one can search
through all possible game states and determine who has the winning strategy in
PSPACE. To show that the problem is also PSPACE-hard, it suffices to prove
that for every formula Φ there is a graph GΦ constructible in polynomial time
such that Φ is true if and only if Alice has a strategy to win on GΦ in the
canonical game TR.

3.1 The Construction of GΦ

Let n be the number of variables in ϕ. Note that n is odd as ϕ starts and ends
with the existential quantifier. First we introduce the V-gadget that will be used
many times in the construction of GΦ. The V-gadget is a path P of length four.
The middle vertex c of P is distinguished because c will be identified with other
vertices during the construction. For every variable of ϕ we build a variable
gadget. For the variable xi the gadget will consist of a path Pi of length two
between the vertices Ti and Fi that represent the two possible values of xi, and
we attach a V-gadget to the middle vertex of Pi, see Figure 3. The variable
gadgets are connected by edges TiTi+1, TiFi+1, FiTi+1 and FiFi+1 in GΦ for all
i < n, see Figure 4.

For every clause cl of ϕ we introduce a new vertex Cl in GΦ. The vertex Cl is
connected to the three vertices in GΦ corresponding to the literals of the clause
cl. In case the literal xi stands with negation in cl, the vertex Cl is connected to
Ti in GΦ, otherwise Cl is connected to Fi. We attach a V-gadget to Cl. Further
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Fi

Fj

Fi+1

Fk

Fn

L1 L2

Ti+1

Ti

Tj

Tk

Tn

Cl

Fig. 4. Variable gadgets and the clause cl = (xi,¬xj , xk)

u

u2 u1

Eu

u3u4

Fig. 5. Order enforcer for u where u1, u2, u3, u4 are the indicated neighbors of u and
Eu is the newly added vertex

we add two special vertices L1 and L2 to GΦ and edges TnL1, FnL1, L1L2 and
L2Cl for each Cl, see Figure 4.

The order enforcer for the vertex u is a gadget that prevents Alice to start at
u. This we will prove later after the description of the construction. The special
neighbors of a vertex are the neighbors of the vertex among Ti, Fi and Li for all i.
The order enforcer for the vertex u connects u to a newly added vertex Eu, adds
a path Si of length two, avoiding u, between Eu and each special neighbor of u,
and adds a V-gadget to the middle vertices of each Si, see Figure 5. We attach
an order enforcer simultaneously for each Ti, Fi and Li except of T1 and F1.

3.2 The Game

In the following we make some easy observations. Their proofs are omitted from
this extended abstract.

Observation 7. In a game where Alice wins, no vertex of the V-gadget can be
taken.

As a straightforward consequence of Observation 7 we get that no vertex Cl

corresponding to some clause cl can be taken from GΦ.

Observation 8. For every i, only one of Ti and Fi can be taken.
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Observation 9. Let u be a vertex in GΦ to which an order enforcer is attached.
If in the first turn Alice takes u or Eu, then she loses the game.

Observation 10. If some neighbor of u is taken, Eu cannot be taken anymore.

The game must proceed as follows. As a consequence of Observations 7, 8 and 9
Alice will take T1 or F1 in the first turn. By observations 8 and 10, the only
possible choices in the ith turn for the player on turn are Ti and Fi for i ≤ n. In
the (n+1)st turn Bob has to take L1 to obey the rules of the game TR. Similarly,
Alice has to take L2 in the (n+2)nd turn, or she has no turn and loses the game.
If Alice cannot take L2, it means that some vertex Cl corresponding to a clause cl

would get disconnected from the part of GΦ that contains the remaining vertices
Ti and Fi. This occurs if and only if previously all three vertices corresponding
to the literals of cl were taken. If after taking L2 the subgraph induced by the
remaining vertices of GΦ is connected, then there is no further vertex to take as
it would necessarily disconnect GΦ.

For i ≤ n, let xi be TRUE if Ti was taken by one of the players and FALSE
if Fi was taken. It follows that the formula ϕ is satisfied if and only if Alice can
take L2 at the end of the game, that is, if and only if she wins the game. As
Alice’s turns in GΦ correspond to the variables with the existential quantifier in
Φ and Bob’s turns in GΦ to the variables with the universal quantifier, it follows
that Alice wins if and only if Φ is a true formula.

Obviously the construction of GΦ was carried out in polynomial time. This
completes the proof of Theorem 2.

4 Proof of Theorem 3

As in the proof of Theorem 2, we show a polynomial reduction from the TQBF
problem. Without loss of generality we may assume that the considered formula
Φ is of the form Φ = ∃x1∀x2∃x3∀x4 . . .∃xnϕ(x1, x2, . . . , xn), where ϕ is a NAE-
3-SAT formula. That is, each clause of ϕ has three literals and it is satisfied if
and only if at least one of the three literals is evaluated as TRUE and at least
one as FALSE.

4.1 The Construction of GΦ

Let m be the number of clauses in ϕ. We construct a 3-connected weighted graph
GΦ of size O(m+n) in the following way (see Figure 6). For each variable xi we
take a path Pi with 4 vertices. The end vertices of Pi are labeled xi and ¬xi.
If a variable xi occurs in the j-th clause of ϕ, we add a vertex xj

i connected by
an edge to xi and a vertex ¬xj

i connected by an edge to ¬xi. The vertices xj
i

and ¬xj
i are connected by clause gadgets depicted in Figure 7. We add a set Z

of 50(m + n) + 1 vertices that are connected to all vertices xi and ¬xi. Finally,
we add two vertices a and b connected to all other vertices (including the edge
between a and b). Observe that the constructed graph GΦ is 3-connected and
has an odd number of vertices.
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x1
¬x1

cj

x2¬x2

x3¬x3
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cj = (x1, x2,¬x3)
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b

Fig. 6. An illustration of a part of the graph GΦ
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Fig. 7. Examples of NAE-3-SAT clause gadgets

The weights w : V (GΦ)→ [0,∞) are set as follows:

w(xi) = w(¬xi) = 9n+1−i,

w(xj
i ) = w(¬xj

i ) = 10/999j,

w(cj) = w(c′j) = 11/999j,

w(b) = 9n+2,

w(a) = 9n+2 + 2 · 9n−1 + 2 · 9n−3 + · · ·+ 2 · 92 + 1/999m+1.

All other vertices (that is, the inner points on the paths Pi and the vertices of
Z) have weight 0. The 2n+8m+2 vertices of positive weight can be partitioned
into the following groups: V0 = {a, b}, V1 = {x1,¬x1}, . . . , Vn = {xn,¬xn}, and
the m groups Vn+1, . . . , Vn+m, each Vn+j consisting of 8 vertices of the j-th
clause gadget. Note that the weights are chosen so that each vertex in a group
Vk has larger weight than the sum of weights of all the vertices from groups
Vl, l > k. Let W denote the total weight of all vertices in GΦ.

We show that Alice has a winning strategy in game TR played on GΦ if and
only if Φ is true.
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4.2 Starting the Game

We start with the following easy observations.

Observation 11. Once one of the vertices a or b is taken, game TR reduces to
game R as condition (T) is always satisfied further on. ��

We will call the graph induced by the remaining vertices in some position in the
game briefly the remaining graph.

Observation 12. If in some position in game R played on GΦ the remaining
graph has a cut vertex v, then Bob has a strategy to get v.

Corollary 13. If Bob is on turn in game R, he has a strategy to get any of the
remaining vertices. ��

Now in a sequence of lemmas we show that the players do not have much freedom
in taking the vertices, if they want to play optimally.

Lemma 14. If both players play optimally, then Alice’s first turn is on a and
Bob’s first turn is on b.

4.3 Variable and Clause Gadgets

The variable gadget for the variable xi is the path Pi connecting vertices xi and
¬xi, with only the end vertices connected to Z.

Lemma 15. If both players play optimally, then for each i = 1, 2, . . . , n, in the
(i + 2)-nd turn of the game either xi or ¬xi is taken.

Let w1, w2, . . . , wn be the sequence of the remaining vertices from the groups
V1, V2, . . . , Vn. The vertices wi determine a truth assignment σ of the variables:
σ(xi) = TRUE if wi = xi and σ(xi) = FALSE if wi = ¬xi. See Figure 8.

cj = (x1, x2,¬x3)

cj

c′j

xj
1

xj
2

xj
3

¬xj
1

¬xj
2

¬xj
3

x2

¬x3

¬x1 T

F

F

cj

c′j

xj
1

xj
2

xj
3

¬xj
1

¬xj
2

¬xj
3

¬x2

x3

¬x1 T

T

T

TRUE FALSE

Fig. 8. A clause gadget after the players chose the evaluation σ of the variables. Left:
σ(x1) = TRUE, σ(x2) = FALSE, σ(x3) = TRUE, the clause cj is evaluated as TRUE.
Right: σ(x1) = TRUE, σ(x2) = TRUE, σ(x3) = FALSE, the clause cj is evaluated as
FALSE.
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The subgraph induced by the group Vn+j acts as a clause gadget for the j-th
clause. Call the two vertices of the group Vn+j of weight 11/999j heavy and the
six vertices of weight 10/999j light .

Lemma 16. Suppose the players are restricted to play on the subgraph of GΦ

induced by Vn+j with Bob being on turn, with all vertices Z ∪ {w1, w2, . . . , wn}
still remaining. If both players play optimally, then Alice takes one heavy and
three light vertices if the j-th clause is satisfied by σ, otherwise she takes four
light vertices. That is, Alice takes exactly half of the weight of the group Vn+j

(namely 41/999j) if the j-th clause of ϕ is satisfied by σ and 40/999j otherwise..

Lemma 17. If both players play optimally, then during the 8m (or 8m+1) turns
following the first n + 2 turns of the game, the players take sequentially vertices
of the groups Vn+1, Vn+2, . . . , Vn+m, with the following possible exceptions: there
are indices 1 ≤ j1 < k1 ≤ j2 < k2 ≤ · · · ≤ jl ≤ m such that Bob takes one vertex
of Vn+kp instead of a vertex of Vn+jp , p = 1, 2, . . . , l − 1, and he takes a vertex
outside Vn+1 ∪ Vn+2 ∪ · · · ∪ Vn+jl

instead of a vertex of Vn+jl
.

Moreover, Alice takes one heavy and three light vertices from each group Vn+j

corresponding to a satisfied clause and four light vertices otherwise..

Bob has a strategy to get all the vertices wi after all vertices from clause gadgets
are taken: 1) take an available vertex wi; 2) if 1) cannot be applied, take any
vertex except the vertices that lie on a path Pi and neighbor an available vertex
wi. The weights of the two vertices a, b are set in such a way that if all clauses
of ϕ are satisfied by σ, then by Lemma 17 Alice gets slightly more than half of
the total weight W , and less than half if at least one clause is not satisfied.

The existence of a winning strategy for Alice on the graph GΦ is thus nat-
urally reformulated as the quantified boolean formula Φ, where the existential
quantifiers correspond to Alice’s turns and the universal quantifiers to Bob’s
turns on the variable gadgets.
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A Visual Model of Computation
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Abstract. Many new models of computation have emerged over the last
years to meet the demands of modelling new features or new concepts
in programming languages. Rarely do we find a model that becomes a
programming paradigm. The aim of this paper is to show how a fine-
grained model of computation can be used directly as a programming
language. Moreover, the model can also exhibit visually properties of
algorithms, such as space and time usage.

1 Introduction

Lafont [10] put forward interaction nets as a model of computation with a number
of novel features. Unlike models such as Turing machines, cellular automata, λ-
calculus or combinators, interaction nets model the computation process with
constant time operations, and the model allows for parallelism (many steps can
take place at the same time). The model therefore is an interesting one if we are
interested in cost models of computation, and also taking advantage of possible
parallelism.

The aim of this paper is to show through a number of examples that this model
of computation can be used directly as a programming language. This idea is not
new: the λ-calculus for instance has often been documented as a programming
language with example programs showing how to represent numbers, simple data
types and operations over this data. However, unlike the λ-calculus, interaction
nets do not require sophisticated encoding of simple data types, and the main
novelty of the model is that algorithms can be expressed in simple and efficient
ways. By simple we mean that it resembles the algorithm we have in mind, and
by efficient we mean that the computation steps correspond to what is required
to compute the answer (the algorithm) rather than manipulating data structures
that are part of the representation of the algorithm. Indeed, interaction nets can
be seen as modelling internal representations of data, and as such is not weighed
down by textual syntax.

Interaction nets are a particular kind of rewriting system (cf. term rewriting
systems [9,2]). They were put forward as a generalisation of proof nets which
are a graphical representation of linear logic proofs [4]. The theory and language
have now developed into a powerful programming paradigm [6]. In this paper
we put forward a variant of this paradigm as a formalism for programming with
models. We present a number of example algorithms directly in the model to
demonstrate that the approach is appropriate for algorithm design in addition
to providing an aid to debug programs. The examples demonstrate also that the
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approach is appropriate for learning and understanding algorithms, as well as
visualising a number of properties.

Related works. Lafont demonstrated that interaction nets are a graphical pro-
gramming language when they were introduced [10]. In particular, programming
examples involving lists were given (for instance an append operation). Numbers
were also used, using the constructors zero and successor. Other people, notably
Lippi [11] investigated further the programming paradigm, but still based on
the original definition of interaction nets. He gave a sorting algorithm and an
implementation of the Towers of Hanoi. The current paper develops program-
ming further with an extended version of interaction nets which includes built-in
data types such as numbers. This approach allows for a more economic represen-
tation of data, and thus allows for easier comparison with other programming
languages.

Structure. The rest of this paper is organised as follows. In the next section we
briefly recall the rewriting system of interaction nets, generalised to include data
types. In Section 3 we illustrate the main ideas of the paper through two sort-
ing algorithms. Section 4 looks at Dijkstra’s partition algorithm, before giving
quicksort and selection sort as the final examples. Section 5 is a discussion about
the direction of this work and perspectives. We conclude in Section 6.

2 Interaction Nets

Here we define the rewrite system, which is a generalisation of interaction nets
found in the literature [10]. We have a set Σ of names of the nodes in our
diagrams. Each node has an arity ar that determines the number of auxiliary
ports that the node has. If ar(α) = n for α ∈ Σ, then α has n + 1 ports: n
auxiliary ports and a distinguished one called the principal port.

α




· · ·
x1 xn

Nodes are drawn variably as circles, triangles or squares. The position of the
ports on the nodes is not important, but the order is. They optionally have an
attribute, which is a value of base type: integers and booleans. We write the
attribute in brackets after the name: e.g. c(2) is a node called c which holds the
value 2. A net built on Σ is an undirected graph with nodes at the vertices. The
edges of the net connect nodes together at the ports such that there is only one
edge at every port. A port which is not connected is called a free port.

Two nodes (α, β) ∈ Σ ×Σ connected on their principal ports form an active
pair, which is a reducible expression (redex). A rule ((α, β) ⇒ N) replaces the
pair (α, β) by the net N . All the free ports are preserved during reduction, and
there is at most one rule for each pair of nodes. The following diagram illustrates
the idea, where N is any net built from Σ.
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��
�	

α ��
�	

β��
�

�

�

�

...
...

x1

xn

ym

y1

⇒ N
...

...
x1

xn

ym

y1

If either (or both) of the nodes are holding a value, then we can use these
values to give different right-hand sides of the rule by labelling the arrow with
a condition. The condition can be built out of the usual boolean operators (<,
>, =, ! =, etc.). However, the conditions must be all disjoint (there cannot be
two rules which can be applied). Each alternative must of course give a net
satisfying the property given above for the case without attributes. The most
powerful property that this system has is that it is one-step confluent: the order
of rewriting is not important, and all sequences of rewrites are of the same
length and equal (in fact they are permutations). This has practical aspects: the
diagrammatic transformations can be applied in any order, or even in parallel, to
give the correct answer. One of the consequences of this is that once a program
is written, the strategy of the algorithm is fixed up to permutation (i.e. the
efficiency of the algorithm is fixed).

3 Insertion Sort

Insertion sort is one of the first sorting algorithms that we learn, and has been
well studied in all programming languages. We first explain how to represent
data using interaction nets. We can represent a memory location, containing an
integer i, simply as a node holding the value. This can then be used to give the
representation a list of nodes, with the addition of a nil node.

�m(i) � nil

In the diagram above, the node m has one principal port that will be used to
interact with it, and one auxiliary port to connect to the remaining elements
of the list. The nil node just has one principal port, and no auxiliary ports. To
simplify the diagrams, we often just write the contents of the node and omit the
name when no confusion will arise. For example, here is a list of 4 elements:

1 2 3 4 nil� � � � �

Note that this representation of a list will only allow rewrites through the first
element, but just like in other languages, other variants can be implemented. We
can now implement insertion sort over this data structure, then we compare with
other paradigms.

IS nil�� ⇒ nil�

IS x�� ⇒ I(x) IS� �
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I(x) nil�� ⇒ x nil� �

I(x) y�� x≤y⇒ x y� �

I(x) y�� x>y⇒ y I(x)� �

The above five rules fully describe the algorithm: there is no other computa-
tional machinery required. The example net below can be used to illustrate the
dynamics, which we leave for the reader.

IS � 2� 4� 1� 3� nil�

This algorithm can be written in Prolog, Haskell and C for example. See
Figure 1.

insertion_sort(Xs, Ys):-

insertion_sort_1(Xs, [], Ys).

insertion_sort_1([], Ys, Ys).

insertion_sort_1([X|Xs], Ys0, Ys):-

insert(Ys0, X, Ys1),

insertion_sort_1(Xs, Ys1, Ys).

insert([Y|Ys], X, [Y|Zs]):-

Y < X, !, insert(Ys, X, Zs).

insert(Ys, X, [X|Ys]).

Alternatively, in Haskell:

insert e [] = [e]

insert e (x:xs)

| e < x = e : (x:xs)

| otherwise = x : (insert e xs)

iSort lst = iSort’ lst [] where

iSort’ [] lst = lst

iSort’ (x:xs) lst =

iSort’ xs (insert x lst)

And finally in C:

void iSort(int a[], int len){

int i, j, v;

for(i = 1; i < len; i++) {

v = a[i];

for(j=i-1; j>=0 && a[j]>v; j--)

a[j + 1] = a[j];

a[j + 1] = v;

}

}

Fig. 1. Insertion sort

Our focus here is to draw out the advantages of the visual model, but of
course, each programming paradigm has its own advantages. The visual model
is graphical, so removed much of the syntax of the other languages. The data
structures are also different (lists, arrays, etc.) which make a fair comparison
difficult. However, there are much more significant differences that we want to
harness here.

– Insertion sort can be implemented in-place. It is not clear if any of the
programming languages have this property. However, the interaction net
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implementation does implement the algorithm in-place, and we can see this
by observing the rules: each rule preserves the data structure size, and since
the program and data are in the same formalism this is an in-place algorithm.

– The careful reader might have noticed that there is a choice of application
of the rules in the example given. However, the order of application does not
matter, as this system of rewriting is deterministic (all reductions lead to
the same answer). However, the algorithm is in-place no matter what order
we take, which is very strong property.

We show a second sorting algorithm to illustrate another feature of the for-
malism. Bubble sort can be encoded by the following rules, where the node M
is a marker representing the part of the list which has already been sorted.

BS nil�� ⇒ nil�

BS x�� ⇒ BS B(x)� �

BS M�� ⇒

B(x) nil�� ⇒ M x nil� � �

B(x) M�� ⇒ M x� �

B(x) y�� x≤y⇒ x B(y)� �

B(x) y�� x>y⇒ y B(x)� �

Comparing algorithms in any programming language is usually a study of
complexity of the underlying algorithms. Here, however, we can compare algo-
rithms in the model quite directly, and see relationships and efficiency differences
directly in the rules. Bubble sort, without the rules for the marker M , can be
related very directly to insertion sort: the algorithmic difference is seen in the
second rules of each algorithm—insertion sort inserts an element into a sorted
list, whereas bubble sort inserts an elements into a list that has yet to be sorted.
These connections and differences are hard to see in traditional languages, but
are clear in this model.

4 Partition and Sorting

Dijkstra’s partition algorithm, known as the Dutch national flag algorithm, is
a 3-way partition algorithm of complexity O(n). Here we recast the algorithm
using the French national flag. The idea is to sort the flag from strips, as shown
on the left below to give the flag on the right:
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This is a popular algorithm that benefits from animation. Usually, imple-
mented using an array, and several pointers to allow the array to be partitioned.
Below we give a solution in an imperative language for arrays:

static void restoreFlag() {

int white = 0;

int grey = 0;

int red = flag.length;

while (grey < red) {

switch (flag[grey]) {

case blueColor :

swap(white,grey);

white++; grey++; break;

case whiteColor :

grey++; break;

case redColor :

swap(grey,red-1);

red--; break;

}

}

}

It is clear that this is a linear algorithm (just one while-loop is used), but it
is much less clear that it works. Typically, we would write this program using
assertions and while-loop invariants to ascertain the correctness of the algorithm,
or at least to have any idea of what is happening (something different happens
for each colour). Using the visual model we can reproduce the algorithm with
the same ideas, and the same complexity, but with an additional advantage that
we perform essentially the same operation for each case. The first three rules
deal with the three different colours, and partitions them:

partition �� B ⇒ partition

B




�

partition �� W ⇒ partition

W




�

partition �� R ⇒ partition

R




�
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The final rule deals with the end of the list, which just concatenates the stored
elements to produce one list. Note in particular that one constant time rewrite
rule concatenates three lists.

partition �� nil ⇒ nil




This algorithm is clearly linear—each element is examined once. It is also
interesting to note that we can extend this algorithm to any number of parti-
tions and still maintain a linear algorithm (which is not the case with arrays).
Comparing with the imperative solution, we do not need all the variables to par-
tition the array, as we created lists for each partition, so the program is simpler
to follow. However, it is also in-place by observing the rules.

To use this program, we need to begin with a correct application of the par-
tition node. The following diagram shows how the program is used with a list of
six elements:

partition �� W � R � R � B � W � B � nil

After seven rewrite steps (one for each element of the list, plus one for nil),
we get the following net in normal form, which is the correctly partitioned list:

� B � B � W � W � R � R � nil

Quicksort. The partition algorithm above can be simplified for use in the quick-
sort algorithm, where only two partitions are needed. One way in which we
can implement this algorithm in this model is given by the following starting
configuration, where we show a list of elements to be sorted.

nil�

QS �� 2 � 5 � 3 � 1 � 4 � nil

The QS node has two auxiliary ports: one for the result of sorting the list, and
a second which is used like an accumulating parameter. This additional port is
linked to a nil node, and the following two rules give the main structure of the
algorithm:

nil

QS



 ⇒

x

QS



 ⇒

QS

x�

QS

part(x)




�� ��
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The first rule sorts the empty lists to give the accumulated list, and the second
rule does all the work in quicksort: partition the list, and append the sub-lists to
create a sorted list. The structure of the second rule brings out the visual aspect
of the language, in that this rule is describing the algorithm. The remaining
rules that we need to complete quicksort are given below, which partition a list
to generate the two lists required.

part(x)

nil



 ⇒

nil nil

 

part(x)

y


 y≤x⇒

y


part(x)




part(x)

y


 y>x⇒

y


part(x)




We end this section with one final sorting algorithm: selection sort. The rules
are given in Figure 2, where the node SS is used to start the sorting. It is included
here to demonstrate the ideas that can be used to implement a swap of elements
that are not adjacent in the list.

5 Discussion

Interaction nets are a model of computation, and as an alternative to general
graph rewriting, they have a number of striking features. In particular, in graph
rewriting, locating (by graph matching) a reduction step is an expensive opera-
tion, as is finding the next redex. In interaction nets these problems are overcome.
Matching only involves two nodes of the graph (as specified in the definition of a
rewrite rule), and maintaining a list of redexes, updated by looking locally after
each rewrite, is a simple addition to any implementation. Just like term rewriting
systems, interaction nets are user defined. Because we can write systems which
correspond to rewrite systems we can see them as specification languages. But,
because we must also explain all the low-level details (such as copying and eras-
ing) then we can see them as a low-level operational semantics/implementation
language. There are interesting aspects of interaction nets for parallel evaluation.

The aim of this paper is to demonstrate that a model of computation can be
used directly as a programming language. The application of the model does not
lead to inefficient encodings of data, as is the case with λ-calculus for instance.
Indeed, we have demonstrated that the resulting programs are as efficient, if not
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SS nil�� ⇒ nil�

SS x�� ⇒ SS x� �

x nil�� ⇒ nil� x 

x y�� x<y⇒ y� x �

x y�� y≤x⇒ x
y �

x
y nil�� ⇒ nil�

y

x






x
y z�� y≤z⇒ � x

y �z

x
y z�� z<y⇒ x

z �

y



Fig. 2. Selection sort
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more efficient, than current programming languages. The further advantages
are that properties of algorithms are visible from directly from the program.
Specifically, the local property that each rule preserves the size of the data
structure tells us that globally this algorithm is implemented in-place. This kind
of property is very hard to obtain from other models of computation, and requires
sophisticated static analyses for programs.

The development of a number of case studies does not prove the usefulness
of this model, but it does give a significant step towards building a framework
where we can program with this paradigm and in a more efficient way than
in traditional languages. There are a few directions that are currently being
investigated.

1. A programming language for interaction nets has been developed, together
with a compiler for the language to enable some of these ideas to be tested.
The language is textual at the time of writing, and graphical tools to pro-
vide a visual programming environment are not yet available. Once we have
completed the visual environment, we can demonstrate better the princi-
ples outlined in this paper, and compare with other visual programming
languages, such as [13,8,1].

2. A second theme of work is to investigate translating (compiling) other pro-
gramming languages into interaction net. This will allow properties of the
underlying algorithm to be visualised in the model, but will also serve as a
framework where programs can be transformed (optimised) to make better
use of the model. The current state of this technology is a number of hand-
coded examples that illustrate the feasibility of the approach, but much
implementation work remains.

3. Finally, related to the previous point, translating other models of compu-
tation directly into interaction nets provides an alternative approach. This
has been very successful for models such as the λ-calculus [5,12], where sig-
nificantly more efficient implementations have been developed. Using this
approach, any language modelled on the λ-calculus can be implemented
through the translation.

This approach is not limited to the λ-calculus. For instance term rewriting
systems have been studied through interaction nets [3]. Other models such as
process networks [7] can also be represented. An example of this is generating
the Fibonacci sequence as a stream of numbers is the following net:

δ 1 δ 1

+

�� ��




We leave the details of the rules to the interested reader.
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6 Conclusions

Interaction nets are a model of computation that capture computation particu-
larly well and are visually appealing. They are equivalent to Turing Machines and
the λ-calculus, but they offer computation steps that are known, constant-time
operations, and are also local so that no two rewrite rules overlap.

The purpose of this paper is to demonstrate through several examples pro-
grams, that programming directly in this model of computation is not only
possible, but leads to implementations of algorithms that are simpler than many
programming languages, and more efficient. Moreover, the model allows certain
properties, such as time and space use to be seen visually in the rules. Visual
editors are now being developed to compare with textual implementations of in-
teraction nets to identify the best way forward with this programming paradigm.

The point that interaction nets can be implemented efficiently, and algorithms
can be represented efficiently in interaction nets makes this formalism an interest-
ing model of computation for further investigation as a programming language.
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Abstract. In this paper a new family of stateless (non-deterministic)
pushdown automata are used to accept languages of the Chomsky hier-
archy. Having only a stack with at most 1 symbol the regular languages
can be recognized. The usual pushdown automata accept the context-free
languages. The extended version which uses additional half-translucent
shadow symbols accept the context-sensitive languages. Finally, allowing
a kind of λ-transitions the automata accept any recursively enumerable
languages.

1 Introduction

The theory of formal languages and automata is one of the most important
and most developed fields of theoretical computer science. Some decades ago
it was said by Aho, Salomaa etc. that formal language theory is “the flower of
theoretical computer science”. The Chomsky hierarchy of languages, the gener-
ative grammars and the corresponding classes of automata are well-known. The
regular languages are recognized by (deterministic or non-deterministic) finite
automata. The context-free languages are accepted by (non-deterministic) push-
down automata. The automata used to accept the context-sensitive languages
are the linear bounded Turing machines. Every recursively enumerable language
is accepted by a Turing machine ([12]).

In this paper variations of the pushdown automata are used. It is known,
that its stateless non-deterministic version accepts exactly the context-free lan-
guages. We will consider a translation of the finite automata to stateless push-
down automata (and back) using at most 1 symbol in their pushdown stack. To
go beyond context-free, extended versions of pushdown automata will be pre-
sented. There are several known extension of pushdown automata: In two-way
pushdown automata the reading head on the input tape can move in both di-
rections [3]. In the stack automata it is allowed to scan inside of the stack in
read only mode [4]. Higher level pushdown automata [6] have stacks of stacks.
Deep pushdown automata may make expansions deeper in the pushdown stack
[7] etc. None of these devices (having only 1 stack) fits to the context-sensitive
languages, therefore our work fills this gap. There are several characterizations
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of context-sensitive languages known: They are exactly the frontiers of recogniz-
able picture languages [5]. They coincide with the languages generated by one-
dimensional cellular automata [1]. Moreover it is proved that the rational graphs
trace context-sensitive languages ([8]) by linear bounded Turing machines. The
class of recursively enumerable languages has several characterizations as well.
In this paper our approach is closely related to the usual derivation-trees for
context-free grammars. We use the context-sensitive and recursively enumer-
able grammars as extensions/generalisations of the context-free grammar. In
this paper, a new extension of the pushdown automata will be shown, which
accepts exactly the recursively enumerable and with a kind of restriction, the
context-sensitive languages. The work of the pushdown automata is based on
the left-most derivation in context-free grammars. Generally the pure concept of
derivation trees does not work for context-sensitive grammars. Therefore a gener-
alised concept is used working for grammars in Penttonen normal form including
additional context-edges to signal context-sensitive dependencies. We introduce
a new normal form, the so-called context normal form with special (context)
non-terminals. The left-most derivations cannot be defined in the usual (senten-
tial form) sense for non context-free grammars without loosing the generative
power ([12]). Opposite to this fact the derivation graphs can be obtained by a
left-most construction. In several applications, such as in parsing technologies,
the existence of left-most derivation in context-free grammars is crucial. Our
work is also important in this point of view, since our left-most construction can
effectively be used in non context-free case, e.g., this left-most construction and
the context normal form of the formal grammars give the basis of the work of
our shadow-pushdown automata.

2 Preliminaries

In this section we recall some basic definitions, notations and facts about the
Chomsky hierarchy. For more details see [4,12].

A grammar is a quadruple G = (N, T, S, H), where N, T are the non-terminal
and terminal alphabets, with N ∩ T = ∅; they are finite sets. S ∈ N is a special
symbol, called initial letter. H is a finite set of pairs, where a pair is written in
the form v → w with v ∈ (N ∪ T )∗N(N ∪ T )∗ and w ∈ (N ∪ T )∗. H is the set
of derivation rules. A sequence of letters v ∈ (N ∪ T )∗ is called a string, while
we refer u ∈ T ∗ as a (terminal) word. Let v, w ∈ (N ∪ T )∗. Then v ⇒ w is
a direct derivation if and only if there exist v1, v2, v

′, w′ ∈ (N ∪ T )∗ such that
v = v1v

′v2, w = v1w
′v2 and v′ → w′ ∈ H . The derivation v ⇒∗ u is the reflexive

and transitive closure of the direct derivation. The sentential forms are those
strings which can be derived from S. The language generated by a grammar
G is the set of all terminal words that can be derived from the initial letter:
L(G) = {w|S ⇒∗ w ∧ w ∈ T ∗}. Two grammars are equivalent if they generate
the same language modulo λ (where λ denotes the empty word). In this paper
we mostly deal with λ-free languages and do not care about if λ ∈ L or not.

A grammar is type 3, or regular, if each derivation rule has one of the following
forms: A → a, A → aB, A → λ; where A, B ∈ N and a ∈ T . (In this paper the
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capitals A, B, C, .. and S usually refer for non-terminals, while lower case letters
a, b, c, .. refer for terminal symbols.) A language is regular if there is a type 3
grammar that generates it. Every regular language can be generated by only
rules of type A → aB and A → λ. We will refer to such grammars as regular
grammars in normal form.

A grammar is context-free (type 2) if each of its rules has the form A → v
with A ∈ N and v ∈ (N ∪ T )∗. A language is context-free if it can be generated
by a context-free grammar. For each context-free grammar there is an equivalent
grammar having rules of forms A→ BC, A → a (Chomsky normal form).

A grammar is context-sensitive (type 1) if each of its derivation rules has
the following form v1Av2 → v1wv2, with v1, v2 ∈ (N ∪ T )∗, A ∈ N and w ∈
(N∪T )∗\{λ}. A language is context-sensitive if it can be generated by a context-
sensitive grammar. Now we recall the Penttonen normal form ([11]), where it was
called one-sided normal form. Every (λ-free) context-sensitive language can be
generated by a grammar having rules of the forms A → BC, AB → AC, A → a.

Generative grammars having no restriction on the form of the rules are phrase-
structure (type 0) grammars. They generate the class of recursively enumerable
languages. Every recursively enumerable language can be generated by a gram-
mar having rules only of the forms A → BC, AB → AC, A → a and A → λ.
This normal form is the Penttonen normal form for type 0 grammars.

Context-free derivations are represented by derivation-trees (this is one of
the main reasons why context-free grammars are popular and frequently used).
The leaves of the tree (from left to right) give the actual sentential form or the
derived word. Based on Penttonen normal form derivations in non context-free
grammars can also be represented in similar tree-like graphs [9]. We consider
grammars in which every non context-free rule is of the form AB → AC. The
used context-free productions are represented in these graphs in the same way as
in the derivation trees. At (context-sensitive) rules type AB → AC the neighbor-
hood of the replaced non-terminal is important, therefore a new type of edges
is introduced. These context-edges connect the node of the graph which play
the context (A) at the derivation step to the node which is substituted (B)
by the production. For instance, let G = ({S, A, B, C, D, E}, {a, b, c}, S, {S →
AD, A → AC, A → a, B → DC, B → b, B → λ, C → AB, C → DE, C →
c, D → AC, D → BC, E → CC, BA → BB, BD → BE, BE → BA, BE →
BB, EB → EE, EC → EB}). Having a derivation it is very easy to make its
graph representation, as it can be seen on Figure 1, where context edges are
broken (dashed) arrows. These derivation graphs have the following important
properties. If a context edge goes from a node α to a node β, then they are
neighbors in the following sense. They are in neighbor branches (see [9] for de-
tailed formal description) or λ is derived from the branches that are between
them – as it can be seen on the figure. It corresponds to the fact that the used
context-sensitive rule could be applied, therefore the nodes α and β represent
neighbor symbols of the corresponding sentential form. Several context edges
can start from a node, but there is at most 1 context edge goes into any of them.
There are no context-edges crossing each other, i.e., if there is a context-edge
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from a node α to a node β, then there is not any context edge to a node γ having
ancestor β from any ancestor of α and from any node between the branches of
α and β. Considering the graph theoretical meaning of these two properties, we
could roughly say that context-edges cannot cross other edges (nor traditional
derivation edges, nor other context-edges).

Derivation graphs with the above properties exactly correspond to real deriva-
tions (see [9] for more details), i.e., we have:

Theorem 1. For a grammar G (in Penttonen normal form) there exists a
derivation-graph for a string w if and only if S ⇒∗ w (i.e., w is a sentential
form).

For technical purpose we introduce a new normal form for context-sensitive and
phrase-structure grammars. Let G = (N, T, S, H) be a grammar in Penttonen
one-sided normal form that generates L. One could consider the grammar G1 =
(N1, T, S, H1), where N1 = N ∪ N with N = {A | A ∈ N} and H1 = {A →
uA | A → u ∈ H, A ∈ N, u ∈ (N ∪ T )∗} ∪ {(AB → ACB | AB → AC ∈
H} ∪ {A → λ | A ∈ N}. Then, the classical algorithm for deleting erasing
(now type A → λ) rules yields the grammar in our context normal form: G2 =
(N1, T, S, H2), where: H2 = {A → uA, A → u | A → u ∈ H, A ∈ N, u ∈
(N ∪ T )∗} ∪ {AB → ACB, AB → AC, AB → CB, AB → C | AB → AC ∈ H}.
One can see that for any successful derivation in G2, a symbol A appears only
if it is used subsequently in the derivation as a context. (We call the elements of
N shadow symbols, as they are not real non-terminals, the derivation is already
continued form them, but they are only remained ‘shadows’ of the corresponding
non-terminals.) Since the shadow symbols used only as contexts it is obvious that
the difference between grammars generating context-sensitive and recursively
enumerable languages is the existence of rules of erasing non shadow symbols as
in Penttonen normal form.

Now we recall the concept of stateless pushdown automata. A (non-determin-
istic, stateless) pushdown automaton M consists of an input tape, a finite control
and a pushdown stack (we consider it as a string having right the top-most part),
formally it is a system (Σ, Γ, δ, Z0), where Σ is a finite alphabet called the input
alphabet, Γ is a finite alphabet called stack alphabet, Z0 ∈ Γ is a special symbol,
initially in the bottom of the stack and δ is a mapping form (Σ∪{λ})×Γ to finite
subsets of Γ ∗. The interpretation of δ is the following. The relation z ∈ δ(λ, Z)
with Z ∈ Γ and z ∈ Γ ∗ means that M can replace the top of the stack Z by
z without moving its head. The relation z ∈ δ(a, Z) with a ∈ Σ, Z ∈ Γ and
z ∈ Γ ∗ means that M can erase the top of the stack Z and put z to the top of
the stack advancing the input head on a symbol a. If z = λ, then the content
of the stack is decreasing. A configuration of a pushdown automaton M is a
pair (v, z) where v ∈ Σ∗ is the unprocessed part of the input word and z ∈ Γ ∗

is the actual content of the stack. A word w ∈ Σ∗ is accepted by M if there
is a finite sequence of configurations starting by (w, Z0) and finishing by (λ, λ)
such that in each step the configuration is given by δ. The automaton accepts a
word w simulating a left-most derivation in the grammar. A derivation is called
left-most (for context-free grammars) if the first non-terminal of the sentential
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form is replaced in each step by an appropriate derivation rule. The set of all
accepted words forms the accepted language of the automaton. It is well-known
in formal language and automata theory that the class of (non-deterministic
stateless) pushdown automata accepts exactly the context-free languages. In the
literature pushdown automata with several states are also known. In this paper
we will use pushdown automata only with one state, they are universal among
pushdown automata.

3 Variations of Pushdown Automata for the Chomsky
Hierarchy

In this section, first, the concept of the new stateless pushdown automata is
introduced. Then we show that restricted versions accept regular, context-free
and context-sensitive languages. The accepting power of the general version is
shown to coincide with the class of recursively enumerable languages.

Definition 1. A shadow-pushdown automaton M consists of an input tape, a
finite control and a stack with two kinds of symbols, formally it is a system
(Σ, Γ ∪ Γ , δ, Z0), where Σ is the input alphabet, Γ is the stack alphabet and it
is extended by (half-translucent) symbols Γ = { A |A ∈ Γ} (they are called the
shadow symbols of the original ones). Z0 ∈ Γ is a special stack symbol as for
pushdown automata. The mapping δ goes from (Σ∪{λ})×Γ×(Γ ∪{λ}) to finite
subsets of ΓΓ ∗∪Γ ∗∪Γ ∗Γ ∪ΓΓ ∗Γ as we detail below. The interpretation of δ is
the following. The top A ∈ Γ symbol is accessed (together with the shadow-symbol
directly above). There are five possible types of movements:

(a) {λ, A} ⊆ δ(a, A, λ). The transition is possible if there is no shadow symbol
above the top non-shadow symbol (A). The head reads the letter a from the input
tape and the top symbol A is replaced by its shadow-symbol A or deleted from
the stack.
(b) {B, AB} ⊆ δ(a, A, λ). This transition is allowed if there is no shadow symbol
above the top non-shadow symbol. The head reads an input letter a, the top non-
shadow symbol A is replaced by its shadow or deleted and the non-shadow symbol
B is pushed on the top of the stack.
(c) {CB, ACB} ⊆ δ(λ, A, λ). In these steps the symbols C and B are put imme-
diately above the top symbol A, and A is replaced by its shadow or deleted. All
shadow symbols that were above A remain above B.
(d) {λ, A} ⊆ δ(λ, A, λ). The top non-shadow symbol A is replaced by the corre-
sponding shadow symbol or deleted from the stack.
(e) {C, BC, BCA, CA} ⊆ δ(λ, B, A). This step can be used, if there is a shadow
symbol A directly above the top symbol B in the stack. The symbol C is put
immediately above the top non-shadow symbol B, B is replaced by its shadow or
deleted, and the used shadow symbol A may be deleted from the stack.

A configuration is a pair (r, z) where r ∈ Σ∗ the unprocessed part of the input
word and z ∈ (Γ∪Γ )∗ is the actual content of the stack. A word w ∈ Σ is accepted
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by the shadow-pushdown automaton, if there is a sequence of transitions starting
from (w, Z0) and finishing by (λ, λ) according to the mapping δ in each step. The
set of accepted words form the accepted language.

We name and describe the five different types of (allowed) movements of the
automata.

(a) terminating: an input letter is processed and the number of non-shadow stack
symbols is decreasing by 1 in the stack.

(b) reading an input letter: it is processed, but the number of non-shadow sym-
bols does not change in the stack.

(c) extending the stack: the number of stack symbols is increasing (only in these
steps).

(d) empty-deletion: the number of non-shadow stack symbols is decreasing with-
out reading an input letter.

(e) shadow using: only these steps use shadow symbols, a shadow symbol directly
above the top non-shadow symbol is needed to these transitions.

Steps of type (e) extend the power of the traditional pushdown automata;
since no other steps depend on the shadow symbols, they work in the same way
in the traditional pushdown automata without creating and deleting shadow
symbols.

In the next subsections restricted forms of these automata will be shown.

3.1 Pushdown Automata for Regular Languages

Let us restrict the automata defined previously in the following way. Only steps
of types (b) and (d) are allowed.

Let a regular grammar G = (N, T, S, H) be given in normal form such that
it generates L. The automaton (Σ, Γ ∪ Γ , δ, Z0) with Σ = T, Γ = N, Z0 = S
accepts exactly L, where δ is given in the following way: (B) ∈ δ(a, A, λ) if
(A→ aB) ∈ H and (λ) ∈ δ(λ, A, λ) if (A → λ) ∈ H .

Starting with S in the stack steps type (b) keep exactly 1 non-shadow sym-
bol in the stack, while a step type (d) make the stack empty. The automaton
accepts L. Moreover the construction works also in the opposite direction. Hav-
ing a shadow-pushdown automaton with only steps type (b) and (d) a regular
grammar can be constructed which generates the accepted language. The shadow
symbols are never used in any steps of this automaton.

Actually, if the shadow symbol was stored in every step (i.e., transitions
(AB) ∈ δ(a, A, λ) and (A) ∈ δ(λ, A, λ) were used), then they will keep a historic
trace of the way of accepting (and so, it will show how the word can be gener-
ated/accepted). The machine would work till there is a non-shadow symbol in
the stack.

Without using shadow symbols a traditional stateless pushdown automaton
is used. The work of this automaton simulates a non-deterministic finite au-
tomaton. The pushdown automaton has no states, but the stack symbols and
the states of a corresponding finite automaton has a one-to-one correspondence.
The final states coincide with symbols which are used in transitions type (d).
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Thus, stateless pushdown automata with only stack having length (depth) at
most 1 accept exactly the regular (type 3) languages. We note here that any
pushdown automata having stack of bounded depth (i.e., there is an n ∈ N such
that the stack never can contain more than n symbols) recognize exactly the
regular languages. The finitely many possible contests of the stack can be stored
by states in a finite automaton. However, for complexity theoretical view, they
are interesting devices [2].

3.2 Accepting Context-Free Languages

Without step (e) the shadow symbols are not used at all, therefore the work of
the shadow-pushdown automata is effectively the same as the the work of the
pushdown automata. We note, that every λ-free context-free language can be
accepted by a shadow-pushdown automaton using only transitions of types (a)
and (c). These two types of transitions refer to forms of the rules in Chomsky
normal form.

Now we are turning to more interesting cases, where shadow symbols are also
used.

3.3 The Case of Context-Sensitive Languages

Let us consider shadow-pushdown automata with allowed steps of the types
(a), (c) and (e). The context normal form is used to connect shadow-pushdown
automata and generative grammars: let the following coincidence be given Σ =
T, Γ = N, Z0 = S. The possible movements of the shadow-pushdown automata
correspond to the three kinds of derivation steps of the grammar in normal form.

– steps type (a) correspond to rules type A → a and A→ aA,
– steps type (c) correspond to rules type A→ BC and A→ BCA,
– steps type (e) correspond to context-sensitive rules type AB → C, AB →

AC, AB → CB and AB → ACB.

3.4 The General Case: The Whole Recursively Enumerable Class

The shadow-pushdown automaton is a formally defined system and it can be
simulated by a Turing-machine, therefore only recursively enumerable languages
can be accepted. In other way around, the possible steps refer for derivation
rules. In addition to the context-sensitive case there are:

– steps type (b) correspond to rules type A→ aB, A → aBA,
– steps type (d) correspond to rules type A→ λ, A → A,

Since every recursively enumerable language can be generated by rules in
Penttonen, and so in context normal form, we can say that transitions of types
(a), (c), (d) and (e) are enough to accept any recursively enumerable languages.

In the next section we show how and why the automata work.
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4 The Work of the Shadow-Pushdown Automata

The introduction of shadow-symbols in context normal form and in shadow
pushdown automata allow to keep tracks of the variables previously derived.
They are used to represent and simulate context-sensitive derivation steps.

To understand how the automata work we introduce the concept of left-most
construction of derivations. This construction is a method how the derivation
graphs can be obtained. The left-most construction of a derivation graph is the
following.

In each step the left-most non-terminal leaf symbol is used to provide new
node(s) by derivation edge(s) (maybe using an in-context-edge from one of its
(left) neighbor nodes).

The left-most construction is exactly the same order of construction as a left-
most traversal goes in the tree (using the order given by the tree with the deriva-
tion edges). In this construction the already constructed left-hand-side part of
the graph is never changed, but the right-most non-terminals of the graph may
needed as contexts to build up the remaining part. One can imagine that the
non-terminals have shadows to the right-neighbor branch. And when a context
is needed one can choose among the non-terminals having shadow at this node.

We note here, that in regular case each derivation is a left-most construction
itself, while in context-free case the concept of the usual left-most derivation
coincides with the concept of left-most construction. Using the classical definition
of left-most derivation only context-free languages can be obtained even if the
grammar is phrase-structure [12]. Therefore in non context-free cases the left-
most construction is more powerful than the (sentential) left-most derivation.

In our example presented in Figure 1 the left-most construction goes in the fol-
lowing way (using grammar in context normal form it is a left-most derivation):

S ⇒ AD ⇒ ACD ⇒ aCD ⇒ aDED ⇒ aACED ⇒ aaCED ⇒ aaABED ⇒
aaaBED ⇒ aaabBED ⇒ aaabBBED ⇒ aaabBBED ⇒
aaabBBEBC ⇒ aaabBBEC ⇒ aaabBAEC ⇒ aaabBEC ⇒ aaabbBEC ⇒
aaabbBB ⇒ aaabbBDC ⇒ aaabbEC ⇒ aaabbCCC ⇒∗ aaabbccc.

Since the shadow-pushdown automata can access only the top non-shadow
symbol and make only local changes the following theorem can be proved based
on our context normal form.

Theorem 2. The configuration (v, z) of a shadow-pushdown automaton work-
ing on the word w ∈ Σ∗ represents the sentential form uz−1 in the left-most
derivation in corresponding context normal form grammar, where u ∈ Σ∗ is the
processed part of w, i.e., w = uv; and z−1 is the content of the stack reading top
down. Thus, the shadow-pushdown automata simulate the left-most derivations
(and so, construction of derivation trees). The accepting power of the automata
is equal to the generative power of the corresponding grammar class.

Proof. We use induction by steps. At the starting configuration (w, S) the condi-
tion holds. Now assume that it is true for the configuration (v, z). There are five
cases (by definition) according to the type of the next transition to get (v′, z′)
and u′.
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The shadow-pushdown automata have the following operations coinciding to
various types of derivation rules:

– (a) For rules of type A→ a:
(λ) ∈ δ(a, A, λ) or (A) ∈ δ(a, A, λ). This step can be used if there is no
shadow symbol above the top non-shadow A. It means that derivating a ter-
minal symbol a branch is terminated (by terminal a). The new configuration
will be: u′ = ua, the first letter (that is an a is deleted from v to get v′ and
z′ is obtained from z in the following way: The top symbol A is replaced by
its shadow-symbol A or deleted. Actually if this letter A is needed later as
a context, then (A) ∈ δ(a, A, λ) is used, otherwise (λ) ∈ δ(a, A, λ) is used.

– (b) For rules of type A→ aB:
(B) ∈ δ(a, A, λ) or (AB) ∈ δ(a, A, λ). Since the automaton reads a letter
from the input this step is allowed only if there is no shadow symbol on the
top non-shadow symbol in the stack. In these steps there is also a terminated
derivation branch with terminal symbol a: u′ = ua, the first letter (that is an
a is deleted from v to get v′, furthermore z′ is obtained from z by replacing
the top A of the stack to B or AB depending on the fact that A is needed
as a context in the derivation-tree or not.
(Remark: There is no way to use context (shadow symbols) for the top symbol
B.)

– (c) For rules of type A→ BC:
(CB) ∈ δ(λ, A, λ) or (ACB) ∈ δ(λ, A, λ). In these steps u′ = u and v′ = v
and z′ is obtained from z: the two non-shadow symbols (C and B) are
inserted immediately above the top non-shadow symbol A according to their
place in the graph; we delete symbol A from the stack, but it may needed as
a context later, therefore we may leave its shadow (A) in the stack instead
of the original symbol.
(Remark: The shadow symbols above them remain in the stack, because the
set of possible context nodes of the next derivation step has not changed,
they are needed later as contexts.)

– (d) For rules of type A→ λ:
(λ) ∈ δ(λ, A, λ) or (A) ∈ δ(λ, A, λ). This step is allowed even if there are
shadow symbols on A in the stack. A branch is finished with λ, therefore
the actual top shadow symbols are still possible contexts in the next branch:
u′ = u and v′ = v, z′ is obtained from z by deleting or replacing the top
non-shadow symbol A to the corresponding shadow symbol A.

– (e) For rules of type AB → AC:
(C) ∈ δ(λ, B, A), (BC) ∈ δ(λ, B, A), (CA) ∈ δ(λ, B, A) or
(BCA) ∈ δ(λ, B, A). In these steps u′ = u and v′ = v. The content of the
stack are changing in the following way: The used shadow symbol A (directly
on B) may be deleted form the stack, a new non-shadow symbol C is put
immediately above the top non-shadow symbol B, and finally B may be
deleted or replaced by its shadow symbol.
(Remark: The top non-shadow symbol and the shadow symbol immediately
above are together used and the shadow-symbol may be deleted.)
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So, the new configuration refers for the sentential form u′(z′)−1 in all these cases.
It is remained to show only that the order of the steps of the shadow-pushdown

automata coincide with the left-most derivation. The automata can check only
the top non-shadow symbol which represents the first (real) non-terminal letter
of the sentential form, i.e., the left-most non-terminal leaf of the derivation graph.
In each step this non-terminal will be processed. Therefore the theorem holds. ��

An input letter is being read at exactly steps (a) and (b). According to the
derivations, steps (b) and (c) lengthen the sentential form, and only step (c)
increases the number of non-shadow symbols in the stack (i.e., the number of
non-terminals in the sentential form). All the derivation steps are context-free,
but those ones that refer for step (e). Step (d) refers for not context-sensitive
derivation steps. Only steps (a) and (d) allow to empty the stack (i.e., allow to
finish derivations).

Since the various types of grammars allow different types of rules, the various
types of restricted shadow-pushdown automata correspond to different language
classes. Based on the previous reasoning we have the following statement.

Corollary 1. The class of shadow-pushdown automata with allowed steps of the
forms (a), (c) and (e) accepts exactly the (λ-free) context-sensitive languages.
The shadow-pushdown automata with transitions types of (a), (c), (d) and (e)
are universal.

We note here that a new iteration-free normal form for context-sensitive gram-
mars can be found in [10] excluding the context-sensitive iterations of the Pent-
tonen normal form, such as, AB → AC, AC → AB. This normal form can
effectively be used in shadow-pushdown automata as well.

5 Conclusions

In this paper a special extension of stateless pushdown automata is presented.
The shadow symbols are used in the stack representing the non-terminals from
which the derivation is already continued, but they have shadow, i.e., they are
needed as contexts in context-sensitive rules later. The stacks of these automata
are used in the following way: it is assumed that the shadow symbols are half-
translucent. One can access the top non-shadow symbol through them and it
is also possible to check the shadow-symbol directly above the top non-shadow
symbol. There are five different types of steps allowed, and the new class of au-
tomata is universal, i.e., every recursively enumerable language can be accepted.
Restricting the work by forbidding some types of steps the regular, the context-
free and the context-sensitive languages are characterized in automata theoretic
way. The work of our shadow-pushdown automata is based on left-most con-
structions of the derivation graphs. Summarizing our results we present Table 1,
in which the accepted language classes are shown for the shadow-pushdown au-
tomata depending on the type of allowed transitions. Besides the basic classes
described earlier all the possibilities are given in Table 1. Obviously without
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Fig. 1. Derivation-tree for a gram-
mar in Penttonen normal form with
context-edges

Table 1. Language classes accepted by
shadow-pushdown automata defined by
their possible movements

transitions type (d) only λ-free languages can be generated. With steps type (a)
and (b) all (λ-free) regular language can be accepted. Using steps type (c) in-
stead of type (b) the (λ-free) context-free languages are accepted. Allowing rules
type (e) the class of (λ-free) context-sensitive languages is accepted. Additional
steps type (d) give computational universality to the automata. Automata with-
out steps (a) and (d) cannot make empty the stack, while automata without
steps (a) and (b) cannot read the input word, so they cannot accept any words
containing letters. Our formalism is based on derivations in generative gram-
mars, rather than the work of Turing-machines and other equivalent devices.
Our construction is also useful from the didactic point of view.

Moreover one-turn automata (concerning the number of non-shadow symbols
in the stack) without transitions type (e) accept the linear languages. Having
arbitrary, but bounded stack the pushdown automata cannot go beyond regular.
There are some interesting open problems. What is the language class accepted
by one-turn shadow-pushdown automata allowing transitions type (e)? How can
deterministic version be defined? The complexity analysis of the work of the
shadow-pushdown automata (based on the normal form presented in [10]), the
stack-languages of accepted runs are also subjects of future work.
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Abstract. We show that Maximum Independent Set on connected
graphs of average degree at most three can be solved in O(1.08537n) time
and linear space. This improves previous results on graphs of maximum
degree three, as our connectivity requirement only functions to ensure
that each connected component has average degree at most three.

We link this result to exact algorithms of Maximum Independent

Set on general graphs. Also, we obtain a faster parameterised algorithm
for Vertex Cover restricted to graphs of maximum degree three run-
ning in time O∗(1.1781k).

1 Introduction

Maximum Independent Set is one of the most intensively studied problems
in the field of exact exponential time algorithms. This started in the seventies
when Tarjan and Trojanowski [18] gave an algorithm solving the problem in
O(1.2600n) time on general graphs. This result has been improved often since.

It is well known that Maximum Independent Set is linear time solvable on
graphs of maximum degree two. For graphs of maximum degree three, Johnson
and Szegedy [12] have shown that subexponential time algorithms for Maximum

Independent Set exist if and only if they exist for the problem on general
graphs. Therefore, Maximum Independent Set on graphs of maximum degree
three most likely requires exponential time to solve, as under the Exponential
Time Hypothesis (ETH) [11] the general problem requires exponential time.
Thus, on graphs of maximum degree d, the problem first becomes exponentially
hard when d = 3: this makes it an interesting problem on its own.

The current state of the art algorithms for Maximum Independent Set on
general graphs often rely on the use of non-standard measures of the instance
size to prove their running times [8]. These measures allow the generally faster
results on Maximum Independent Set restricted to sparse graphs to be used to
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Table 1. Previous result on Independent Set on graphs of maximum degree three

Authors Running time

J. Chen, I. Kanj, W. Jia [5] O(1.1740n)
R. Beigel [1] O(1.1259n)
J. Chen, L. Liu, W. Jia [7] O(1.1504n)
J. Chen, I. Kanj, G. Xia [6] O(1.1255n)
F. V. Fomin and K. Høie [9] O(1.1225n)
A. Kojevnikov and A. Kulikov [14] O(1.1225n)
M. Fürer1 [10] O(1.1120n)
I. Razgon [15] O(1.1034n)
N. Bourgeois, B. Escoffier, V. Th. Paschos1 [2] O(1.0977n)
M. Xiao [19] O(1.0919n)
I. Razgon [16] O(1.0892n)
N. Bourgeois, B. Escoffier, V. Th. Paschos, J. M. M. van Rooij1 O(1.0854n)
1 These results are on the broader class of graphs where each connected component has average

degree at most three.

prove faster running times on general graphs. In this way, Fomin et al. obtained
an O(1.2203n) time algorithm [8], Kneis et al. an O(1.2132n) time algorithm
[13], and the authors of this paper obtained an O(1.2125n) time algorithm [3].
This makes the problem important for algorithmic results on general graphs as
improvements on graphs of maximum degree three directly relate to these results.
We should mention that the above running times are dominated by Robson who
gives an O(1.1889n) algorithm in his unpublished technical report [17].

In this paper, we give an O(1.08537n) time algorithm for Maximum Inde-

pendent Set on connected graphs of average degree at most three. As separate
connected components can be solved independently, this directly improves pre-
vious algorithms on graphs of maximum degree three while being applicable to
a much larger class of graphs; our connectivity requirement only exists to ensure
that the average degree of each connected component is at most three. This
improves the results from a long line of papers as can be seen in Table 1.

Theorem 1. There exists an algorithm solving Maximum Independent Set

on connected graphs of average degree at most three in O(1.08537n) time and
linear space.

We have used this result to obtain a faster algorithm for Maximum Indepen-

dent Set on general graphs. Using our own bottom up method based on the
average degree of a graph [3] together with measure and conquer, we obtained
the following corollary.

Corollary 1 ([3]). There exists an algorithm solving Maximum Independent

Set on general graphs in O(1.2125n) time and polynomial space.

The proof is beyond the scope of this paper and can be found in [3,4]. We note
that the improvement over the very recent paper of Kneis et al. [13] is small,
and wonder whether both approaches can be combined.
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A third reason why the Maximum Independent Set problem on maximum
degree three graphs is interesting comes from the field of parameterised com-
plexity. In this field, the Minimum Vertex Cover problem parameterised by
the size of the vertex cover is a benchmark problem. On graphs of maximum
degree three, we obtain the fastest known parameterised algorithm.

Corollary 2. There exists an algorithm solving Minimum Vertex Cover on
graphs of maximum degree three parameterised by the size of the vertex cover k
in O∗(1.1781k) time and polynomial space.

Proof. This problem admits a kernel of size 2k [6] allowing us to transform the
problem in polynomial time into an equivalent instance G on n ≤ 2k vertices.
Because the complement of a vertex cover is an independent set, we can use
Theorem 1 to test whether G has an independent set of size at least n − k
which is equivalent to G having a vertex cover of size at most k. This is done in
O∗(1.085372k) < O∗(1.1781k) time and polynomial space.

This improves the previous fastest O∗(1.1864k) algorithm of Razgon [16].

Notation and definitions. We assume the reader to be familiar with standard
graph notation and terminology. To avoid confusion, let N(v), N [v] be the open
and closed neighbourhoods of a vertex v, respectively. I.e., N [v] = N(v) ∪ {v}.

An independent set I in G is a subset I ⊆ V such that no two vertices in I
are adjacent. A maximum independent set is an independent set of maximum
size. A vertex cover C in G is a subset C ⊆ V such that every edge of G has at
least one endpoint in C. It is easy to see that I is an independent set if and only
if V \ I is a vertex cover.

In this paper, G = (V, E) is a graph on n vertices and m edges, and I is the
independent set the algorithm is constructing.

2 Overview of the Algorithm

We propose an O(1.08537n) branch and reduce algorithm for Maximum Inde-

pendent Set on connected graphs of average degree at most three.
Our algorithm has the following form. First it applies a series of well known

reduction rules that simplify the instance. Secondly, it looks for vertex separators
of size one or two in the graph and uses these to further simplify the instance.
Thirdly, it exploits any separators that consist of the closed neighbourhood of a
single degree three vertex that separate a tree from the rest of the graph. Finally,
the algorithm looks for a suitable structure in the graph and branches on it: it
generates a series of subproblems that are solved recursively and from which the
largest solution is returned.

Similar to [2,10], we use the number of edges m minus the number of vertices
n as a measure of progress in the analysis of the algorithm. The resulting up-
per bound on the running time of O(αm−n) implies an O(α0.5n) algorithm on
graphs in which each connected component has average degree at most three.
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The requirement on the average degree of each connected component exist be-
cause trees have measure m−n = −1; these trees are removed by the reduction
rules and can increase m− n to over 0.5n for the remaining graph.

2.1 Simple Reduction Rules and Small Separators

Our algorithm applies the following well known reduction rules. These are thor-
oughly described in many publications, for example [2,8,10], and require little
explanation.

– Degree 0, 1: If G contains a vertex of degree 0 or 1, then take it in I and
remove any neighbours.

– Connected Components: If G is disconnected, solve each connected compo-
nent separately.

– Domination: If for two vertices u, v: N [u] ⊆ N [v], then u dominates v and
we remove v.

The domination rule is correct because in any maximum independent set con-
taining v, v can be replaced by u. Notice that domination forces degree two
vertices with adjacent neighbours in I.

– Degree 2: If there exists a vertex v of degree two with non-adjacent neigh-
bours u, w, the algorithm removes v, merges u and w to a single vertex, and
adds one to the size of I.

The degree two rule is also called vertex folding. Its correctness is based on the
fact that if v is not in I, then we can put both neighbours in I because taking
v gives an alternative of the same size to taking only one neighbour of v.

If these reduction rules do not apply, the graph is of minimum degree three.
The algorithm then follows the approach of Fürer [10] and looks for vertex
separators of size at most two.

– Small Separators: If the graph contains a vertex separator of size one or
two, then recursively solve the smallest component and adjust the rest of
the graph to the computed solution.

The proof can be found in [10].
Finally, if G is of maximum degree four, the algorithm looks at local configu-

rations in which the closed neighbourhood of a vertex separates a tree from the
rest of the graph.

– Tree Separators: If in a maximum degree four graph the closed neighbour-
hood of a single degree three vertex v separates a tree from the rest of the
graph, then we replace this local configuration with a smaller equivalent one.

This rule is a small improvement of [2, Section 4]; its details are given in Section 3.
Before considering the branching of our algorithm, we look at the effect of

the reduction rules to the m − n measure. The measure is invariant under the
degree one and two rules: they remove as many edges as vertices. The degree zero
rule increases the measure, but we always treat this (one vertex) tree separately.
And, after application of these rules, the domination and small/tree separator
rules decrease m− n by at least two.
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2.2 The Branching Rules of the Algorithm

Let us start by giving the main idea as to why our algorithm is faster than pre-
vious publications. On maximum degree three graphs, most previous branching
algorithms first branch on vertices that are in a cycle of length three or four as
one easily observes that this leads to a smaller number of generated subprob-
lems. Thereafter, these algorithms give a long subcase analyses to prove that
efficiently enough branchings exist for graphs without such cycles.

We use these cycles not only to restrict the worst case to small cycle free
graphs, but to improve the branching on these graphs as well. As we reduce
low degree vertices, the only maximum degree three graphs that our algorithm
considers are 3-regular. If no small cycles exists and we are forced to perform a
relatively inefficient branching on a vertex v, then vertices near v get degree two
in the subproblems generated. These vertices are folded by the degree two rule,
resulting in new vertices of degree at least four. If new small cycles emerge by
this folding, they must contain the new higher degree vertices: this combination
allows for very good branching counterbalancing the inefficient branching we
started with. And, if no new small cycles emerge, then the new higher degree
vertices are spread out in the graph enough to allow us to use them for branching
in a way that counterbalance the initial inefficient branching even more.

If no reduction rule applies, our algorithm branches producing several sub-
problems that are solved recursively; the maximum independent set in the graph
is the maximum over the results of the recursive calls. The description of the
branching of our algorithm is divided over the proofs of four lemmas.

The proofs of the four lemmas are based on an extensive subcase analysis.
For each case, we thoroughly analyse the local structures involved to removing
as many vertices and edges as possible. Due to space restrictions, we will not
give full proofs of all four lemmas in this paper. We will prove the two simpler
Lemmas 1 and 3 and give large parts of the proofs of Lemma 4 in Section 4. For
the full proofs, see [4]. In the analysis, we let T (k) be the number of subproblems
generated when branching on a graph G of complexity m− n = k.

We start with non 3-regular graphs, with extra attention to small cycles if the
maximum degree is four.

Lemma 1. If G has a vertex of degree at least 5, then T (k) ≤ T (k−4)+T (k−7).

Lemma 2. If G is of maximum degree 4 with a vertex of degree 4, then either:

1. G has a vertex of degree 4 that is part of a 3- or 4-cycle also containing at
least one degree 3 vertex, and there are no 3- or 4-cycles containing only
degree 3 vertices, then: T (k) ≤ T (k − 5) + T (k − 6) or T (k) ≤ 2T (k − 8) +
2T (k − 12).

2. or, G has a vertex of degree 4 that is part of 3- or 4-cycle also containing
at least one degree 3 vertex, and the constraint on the degree 3 vertices in
item 1 does not hold, then: T (k) ≤ T (k − 4) + T (k − 6) or T (k) ≤ 2T (k −
8) + 2T (k − 12).

3. or, the previous does not apply and then T (k) ≤ T (k − 3) + T (k − 7).
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If G is 3-regular and contains 3- or 4-cyles, we branch efficiently.

Lemma 3. If G is 3-regular and contains a 3- or 4-cycle, then T (k) ≤ T (k −
4) + T (k − 5).

And, in the remaining case, we use Lemma 2 to counterbalance the less effi-
cient branching. This works in the following way. In the general case, we branch
generating two subproblems: one to which we can apply Lemma 2 case 1 and
one where we can apply Lemma 2 case 3. The rest of the proof of this lemma
eliminates all cases to which this general case does not apply.

Lemma 4. If G is 3-regular and 3- and 4-cycle free, then T (k) ≤ T1(k − 2) +
T3(k− 5), or a better sequence of branchings exist. Here, we apply cases 1 and 3
from Lemma 2 to the branches denoted by T1 and T3, respectively.

We proof Theorem 1 by taking all four Lemmas together. The worst case of all
branchings from Lemmas 1 up to 4 is T (k) ≤ T (k−8)+2T (k−10)+T (k−12)+
2T (k − 14). This recurrence relation is formed by combining Lemmas 4 and 2
and leads to a running time of O(1.17802k). On average degree three graphs this
is O(1.178020.5n) = O(1.08537n).

3 The Tree Separators Rule

In this section, we give the details on our tree separators rule. This is the only
new reduction rule introduced in Section 2.1. We stated it in the following way:

– Tree Separators: If in a maximum degree four graph the closed neighbour-
hood of a single degree three vertex v separates a tree from the rest of the
graph, then we replace this local configuration with a smaller equivalent one.

We will now prove that such a rule exists.

Lemma 5. We can replace any local neighbourhood satisfying the requirements
of the tree separators rule by an equivalent one. This operation reduces the m−n
measure by at least two.

Proof. Let v be a degree three vertex as described in the rule with neighbours
a, b and c. Notice that a, b and c all have at least one edge not incident to v
or the tree T : otherwise a vertex separator of size at most two would exist and
we can apply the small separators rule. Because of this and the fact that G is
of maximum degree four, there are at least three and at most six edges between
N(v) and T , and there exists at most one edge in G[N(v)].

First consider the case where there exists an edge in G[N(v)], hence |T | ≤ 2.
In this case, the maximum independent set in G[N [v]∪T ] is of size two, therefore
we can safely pick those vertices in I that pose no restrictions on the remaining
graph: v and one vertex from T . This is easy to see if T is a single vertex, namely
taking v or T in I forbids taking a, b and c, and because of the edge in N(v)
it is not possible to take all tree vertices of N(v). If |T | = 2 and without loss
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b

v

T

c a

Fig. 1. T consists of three vertices and at least two neighbours of v, here a and b, have
two tree neighbours

of generality a is connected to both vertices in T , then we cannot take three
vertices if we take v because this forbids taking a, b and c while there is an edge
in T . Also, we cannot take three vertices if we take a because this forbids taking
v and T while there is an edge between b and c. The remaining vertices form a
four cycle, and thus I has at most two vertices from N(v) ∪ T .

Secondly, if there is no edge in N(v) and |T | ≤ 2, then we merge N(v) ∪ T
to a single vertex and add two to the size of I. This is similar to vertex folding.
Namely, the only maximum independent set in G[N [v] ∪ T ] equals N(v), while
if we do not take these three vertices we can safely pick the non-restricting size
two option consisting of v and one vertex from T . Merging the local structure to
a single vertex postpones this choice: taking the merged vertex corresponds to
taking the three vertex option, while discarding the merged vertex corresponds
to taking the two vertex option with no vertices in N(v). This is clearly correct if
|T | = 1 since taking v or T in I forbids taking any vertex in N(v). And, if |T | = 2,
then taking v in I again forbids taking any vertex in N(v) and taking any vertex
of T in I forbids taking anything except for v and one of its neighbours, again
not allowing three vertices to be picked.

Finally, if |T | ≥ 3, then we can safely pick v and a maximum independent
set in G[T ]. Let us first look at the case where |T | = 3; see Fig. 1. At least two
neighbours of v, say a and b have two neighbours in T . If we would have taken
a in I, then we would forbid all vertices in N [v] ∪ T except for b, c and one
vertex in T . By adjacencies, we can take only two of these vertices making our
initial choice a safe alternative. The same argument goes for taking b in I. Thus,
with a and b discarded, we can safely pick the degree one vertex v and hence
also the maximum independent set in G[T ] to be in I. What remains is the case
|T | = 4. If T has three leaves, then there is only one way to pick four vertices in
I: v and the three leaves of T . This does not restrict any choices in the rest of
the graph and hence is optimal. Otherwise, T is a four vertex path and all local
configurations of G[N [v] ∪ T ] have a maximum independent set of size three.
Again, picking v and a maximum independent set in G[T ] is a safe choice. ��

4 Proof of Lemmas 1-4

What remains is to prove Lemmas 1-4. Due to space restrictions of this confer-
ence version of our work, we cannot give a full proof of all four lemmas here. The
missing proofs can be found in [4]. Lemmas 1 and 3 allow short proofs; these
will be given below. These proofs also function to give an idea of the proof of
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Lemma 2 as this proof uses similar ideas although involving a much more exten-
sive case analysis. Finally, we give parts of the proof of Lemma 4, also omitting
a large portion of the case analysis.

We will need the concept of a mirror (see for example [8]). A vertex m ∈ V is a
mirror of v ∈ V if G[N(v)\N(m)] is a clique, or equivalently, every combination
of two non-adjacent vertices in N(v) contains a vertex from N(m). Whenever
the algorithm branches on v and discards it, it can discard all its mirrors as
well. This is because at least two neighbours of v should be in I in this branch
because taking v is an alternative of equal size to taking only one.

Using the m−n measure, we have to be careful when trees are separated from
G since they have complexity−1. This will not happen in branches where at most
two vertices are removed because of the small separator rule. The same goes for
branches where the neighbourhood of a single degree three vertex (sometimes
through domination) is removed in a maximum degree four graph because of
the tree separators rule. When trees can be separated, we often bound this by
counting the number of external edges. When considering to remove a set of
vertices S ⊂ V from G, these are the edges connecting S to the rest of G.

We often use counting arguments involving the external edges. If no trees are
separated, each external edge reduces the m−n measure by one as it is removed,
while for each tree that is separated, this measure increases again by 1. Notice
that at most one tree can be separated per three external edges.

4.1 Proof of Lemma 1

Lemma 1. If G has a vertex of degree at least 5, then T (k) ≤ T (k−4)+T (k−7).

Proof. Consider such a vertex v as in Fig. 2 and assume that we branch on it. If
v is discarded, one vertex is removed and at least five edges are removed giving
T (k − 4). If v is taken in I, N [v] is removed. All vertices in N(v) have at least
one neighbour outside of N [v] by domination. In the worst case, N(v) consists of
degree three vertices, hence there are at most two edges in G[N(v)] and at least
six external edges. If no trees are created, this sums to 13 edges and 6 vertices
giving T (k− 7). And, if there are more external edges because either a vertex in
N(v) has degree four or more, or there are fewer edges in G[N(v)], then these
extra external edges compensate for the possible trees that can be separated.

What remains is to handle the special case in Fig. 2 where the minimum
amount of 13 edges is removed and a separate tree is created. This tree will be a
single degree three vertex t since otherwise there exists a two separator in N(v).

t

v

Fig. 2. A vertex of degree five whose removal removes 13 edges and separates a tree
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Notice that v is a mirror of t. We branch on t. Taking t in I leads to the removal
of 4 vertices and 9 edges: T (k−5). And, discarding t and v leads to the removal of
8 edges and 2 vertices: T (k−6). This branching with T (k) ≤ T (k−5)+T (k−6)
is better than the required T (k) ≤ T (k − 4) + T (k − 7). ��

4.2 Proof of Lemma 3

Lemma 3. If G is 3-regular and contains a 3- or 4-cycle, then T (k) ≤ T (k −
4) + T (k − 5).

Proof. Let a, b, c form a 3-cycle in G. When one of these vertices, say a, has a
third neighbour v that is not part of a 3-cycle, then we branch on v. If v is taken
in I, then 9 edges and 4 vertices are removed: T (k− 5). If v is discarded and by
domination a is taken in I, then 8 edges and 4 vertices are removed: T (k − 4).

This covers the 3-cycles, unless all third neighbours of a, b and c are in a
3-cycle also. Moreover, they are in different 3-cycles because otherwise there
would exist a size two vertex separator. We branch on a. In the branch where
a is discarded, domination results its third neighbour to be taken in I giving
T (k − 4) as before. In the other branch, a is taken in I, and by domination the
third neighbours of b and c are taken in I. This removes their corresponding
3-cycles completely: at least 16 edges and 10 vertices are removed. We notice
that a tree can be separated from G, but then we still have T (k − 5) or better.

Finally, suppose that G is 3-cycle free and let v be a vertex on a 4-cycle.
Any vertex opposite to c on a 4-cycle is a mirror of v. We branch on v. In one
branch, we take v in I and 3-cycle freeness results in the removal of 9 edges
and 4 vertices: T (k − 5). In the other branch, we discard v and all its mirrors.
This results in the removal of 6 edges and 2 vertices if v has only one mirror
and possibly more if v has two or three mirrors: T (k − 4). Again trees can be
separated from G, but then v must have three mirrors. There is only one local
configuration representing this case in which 12 edges and 7 vertices are removed:
this is more than enough. ��

4.3 Large Parts of the Proof of Lemma 4

Lemma 4. If G is 3-regular and 3- and 4-cycle free, then T (k) ≤ T1(k − 2) +
T3(k− 5), or a better sequence of branchings exist. Here, we apply cases 1 and 3
from Lemma 2 to the branches denoted by T1 and T3, respectively.

Proof. Our reduction rules guarantee that no trees can be separated from G
since we branch on a degree three vertex in a maximum degree three graph.
We can also assume that no other reduction rules than the degree one and two
rules can be applied after branching. Namely, if such a reduction rule fires in
the branch where we discard v, then we have the sufficient relation of T (k) ≤
T (k − 4) + T (k − 5). And, if such a rule fires only in the branch where we take
v in I, then we follow the proof below and obtain T (k) ≤ T1(k − 2) + T (k − 7).

Let v be a vertex of G with neighbours x, y and z. We systematically consider
the possible local neighbourhoods around v and observe what happens to this



382 N. Bourgeois et al.

local neighbourhood when we branch on v. Because of 3- and 4-cycle freeness,
v is the only common neighbour of any two vertices from the set {x, y, z}. By
the same argument, there cannot be any adjacent vertices within N(x), N(y) or
N(z). There can, however, be at most six adjacencies between vertices from two
different neighbourhoods. These adjacencies are important in the branch where
v is discarded. Here, the remaining neighbours of x, y and z are folded to single
vertices, and hence these adjacencies determine the newly formed local structure
on which we will branch next. Notice that when there are two adjacencies be-
tween the same neighbourhoods, then the vertex folding after discarding v will
lead to the removal of an extra edge since we do not allow double edges.

We begin by showing that we can easily deal with cases involving more than
three of these adjacencies between the neighbourhoods of x, y and z. If there
are six, then we are looking at a connected component of constant size that
can be solved in constant time. If there are five, then there are only two exter-
nal edges out of N [x] ∪ N [y] ∪ N [z] and hence there exists a small separator.
Finally, we consider the case when there are four such adjacencies. These four
adjacencies cannot all be between the same two neighbourhoods as this creates
a 4-cycle. If these adjacencies form two pairs of adjacencies between the three
neighbourhoods, then vertex folding will remove two additional edges giving
T (k) ≤ T (k− 4) + T (k− 5). What remains is that all three neighbourhoods are
adjacent. In the branch where we discard v, the neighbourhoods of x, y and z
are folded resulting in two degree three vertices between which a double edge is
removed that are in a 3-cycle with a degree four vertex. This allows us to apply
Lemma 2 case 2 to obtain the following recurrence relations with a better branch-
ing behaviour than we are proving: T (k) ≤ T (k−5)+T (k−3−4)+T (k−3−6)
or T (k) ≤ T (k−5)+2T (k−3−8)+2T (k−3−12). Note that the term T (k−5)
comes from the standard branch when taking v in I.

We will now show that we can always obtain a T3(k−5) branch when taking v
in I and discarding its neighbours. Removing N(v) results in the creation of six
degree two vertices that will be folded. If any of these vertices are folded to degree
four vertices, we can apply Lemma 2 and we are done. Consider the case in which
no degree four vertices are created. In this case, the degree two vertices must
form a set of chains of even length. By the previous argument, we know that there
are at most three adjacencies between the vertices in (N(x)∪N(y)∪N(z))\{v}.
These vertices are the new degree two vertices, and therefore the only possible
way for them to be divided in even length chains is when they form three pairs of
adjacent vertices. In this particular local structure, v lies on three 5-cycles, each
pair of which overlaps in v and a different neighbour of v. We obtain the required
branching behaviour by deciding not to branch on v: either this connected graph
G has a vertex with a different local configuration, or G has no such vertex and
it must equal the dodecahedron. We finish the argument by noting that the
dodecahedron has 20 vertices and can be solved in constant time.

What remains is the T1(k − 2) branch when discarding v. In this branch,
vertex folding results in three folded vertices. Notice that these folded vertices
are of degree four unless folding results in the implicit removal of double edges.
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Because the graph is 3- and 4-cycle free before applying this lemma, a new 3- or
4-cycle created by folding after discarding v must involve the folded vertices.

If all folded vertices are of degree four and such a 3- or 4-cycle that contains a
degree three vertex is created, we can apply Lemma 2 case 1. If, additional edges
are removed and we also consider the possibility that 3- or 4- cycles involving
only degree three vertices are created, we can apply the slightly worse case 2 of
Lemma 2 on the graph of complexity k − 3; this results in T (k) ≤ T3(k − 5) +
T (k− 3− 4)+T (k− 3− 6) or T (k) ≤ T3(k− 5)+2T (k− 3− 8)+2T (k− 3− 12).

The only cases that remain are those in which no new 3- or 4-cycles are create
by folding, or in which a 3-cycle is created consisting of folded degree four vertices
only. We consider six different cases depending on the relative location of the
vertices that are the result of folding in the graph obtained after discarding v.
These three vertices will be of degree four unless there are double adjacencies
between the neighbourhoods N(x), N(y), and N(z): in these case folding results
in double edges that will be removed. Hence, the following six cases arise:

1. Three non-adjacent degree four vertices.
2. Three degree four vertices only two of which are adjacent.
3. Three degree four vertices on a path of length three.
4. Two adjacent degree three vertices and a non-adjacent degree four vertex.
5. Two degree three vertices adjacent to a degree four vertex.
6. Three degree four vertices that form a 3-cycle.

For each of these six cases, we give efficient sequences of branchings in our
technical report [4]. These are based on the following reasoning that is quite
similar to exploiting mirrors. Namely, if v is discarded, we know that we need to
pick at least two of the three neighbours of v: if we pick only one we could equally
well have taken v which is done in the other branch already. This observation
becomes slightly more complicated because we just folded the neighbours of v.
The original vertex x ∈ N(v) is taken in the independent set if and only if the
vertex x′ that is created by folding N(x) is discarded in the reduced graph.
Thus, the fact that we needed to pick at least two vertices from N(v) results in
us being allowed to pick at most one vertex from the three degree four vertices
created by folding the neighbours of v. Therefore, picking any vertex from the
three folded vertices allows us to discard the other two. ��
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Abstract. Various brand of event structures, prime, bundle, flow, asym-
metric, inhibitor just to mention some, have been proposed to face the
various kinds of causality and conflict arising in computation. The no-
tion of simultaneity, i.e., the faithful representation that certain events
have to occur together, is usually left out from the models for concurrent
computations, with some notably exceptions like Pratt’s Chu spaces or
Bruni&Montanari’s Zero-Safe nets. In this paper we propose a notion of
event structures with simultaneity to take into account the simultaneity
and we relate the introduced notion with the prime event structures and
domains.

1 Introduction

In concurrent and distributed computations the focus is usually posed on two
basic phenomena: causality and conflict, the first one aiming at modeling the
dependencies arising among various activity and the other at capturing the im-
possibility that certain activities are present in the same computation.

The classical way to model causality is using a partial order relation, which
has been put forward in the 70s in the realm of Petri nets (e.g., Goltz and Reisig
approach to non sequential processes [7]) and further consolidated by Nielsen,
Plotkin and Winskel in [16] and [22]. In [16] and [22] it is also proposed to model
conflicts using a symmetric and irreflexive relation on events which is inherited
along the partial order modeling the causality. Since these seminal works, the
investigations on the notions of causality and conflicts have revealed several
aspects that are neither completely nor satisfactorily reflected by the these first
suggestions, and many other proposals have been developed aiming at modeling
causality and/or conflict in a more precise and accurate way, in order to be
able to faithfully reflect situations arising in concurrent computations. Among
many others we recall Hoogers, Kleijn and Thiagarajan ([10]) where the notion
of causality is made dependent on the state; Baldan, Corradini and Montanari
([3]) where a notion of weak causality is introduced which is able to model
causality, conflict and a weaker notion of conflict, namely asymmetric conflict;
or flow event structure proposed by Boudol ([4]) where a flow relation among
events is introduced to model causality, relation that is weaker than the partial
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order; or by the first author with Poigné ([18]) where a more operational model
for causality and conflict is presented, and causality can be presented in a logical
fashion; or Gunawardena’s work on causal automata ([8,9]) and finally we recall
the notion of inhibitor event structure ([2]) where a ternary relation is introduced
which is able to model causality, conflict and a sort of “non monotone” enabling.

A situation which is never modeled by these approaches is what we can call
simultaneity. Let us briefly describe this situation with some examples. Con-
sider the novel computational paradigm of membrane computing introduced by
Pãun in [17]. Here we have a system of nested membranes where to each mem-
brane a multiset of objects is associated (the local state) and a set of rules
transforming the local states. Rules may send multisets of objects in other mem-
brane, provided that they are close (i.e., either directly contained in or directly
containing), but the crucial point is that rules have to be applied in a maxi-
mal concurrent fashion, which account to say that they have to be regarded as
simultaneous with respect to any observation. GCausality and conflict in mem-
brane computing have received in recent years some attention, as these notions
are central ones in models of concurrent and parallel computations, among the
others Kleijn, Koutny and Rozenberg in [15] have proposed a non sequential
semantics based on nets, and Busi in [6] studied the dependencies among rules
occurrence in a more precise way, but none of these approaches takes into ac-
count the simultaneity of rule occurrences, which is moved to the level of the
possible observations. Thus, simultaneity in these approaches can only be ob-
served but never prescribed, which fails to capture one of the main feature of this
paradigm. Another example regards the net with inhibitor arcs depicted here.

• a

• b

According to some semantics, in this net only one
of the two may happen but never both. How-
ever when the two transition would fire simultane-
ously, the step {a, b} could be observed. In other
words, if we could observe transitions synchroniza-
tion (where the single transition still retains its
identity), the observation {a, b} is perfectly rea-
sonable. This situation can be observed using the stratified order structures of
Janicki and Koutny ([13,11]) where two relations model together the synchro-
nization of events. The two relations, earlier than and not later than, model
causality (what must have happened) and inhibition, and configurations of strat-
ified order structure allow to reflect the simultaneity of the execution. It if worth
to remark that synchronization, despite it is often confined to the level of obser-
vation, has received attention also on the structural level. The synchronization of
transitions in Petri nets have been studied and formalized by Bruni and Monta-
nari ([5]). In their Zero-Safe Nets the synchronization of transitions is formalized
with the aid of zero-safe places, this on the level of net theory rather than by
means of suitable observations. This notion have been used to give another non
sequential interpretation of membrane computing in [19], the idea being that
rule occurrences happening together can be synchronized with the aid of zero
safe places.
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In this paper we begin a line of research aiming at modeling faithfully the
simultaneity of the happening of certain events. As we want to prescribe si-
multaneity rather than putting some machinery to be able to infer simultaneity
afterward, we extend the notion of prime event structure of [16,22] with a set
of finite subsets of events that are simultaneous. The introduced notion is a
conservative extension of the classical one, and to show that the model has
computational ground, we prove that the configurations of this new brand of
event structure is again a coherent, prime algebraic and finitary domain. When
looking at the elements of the domain we abstract from the information about
the simultaneity of events. On this level the happening of simultaneous events
should be seen as a single activity. We will highlight the relationships with do-
mains and prime event structures. Finally we want to stress that there are some
other approaches where simultaneity can be prescribed: for example, Chu-spaces
introduced by Pratt ([21,20]), where basically both states and events are rep-
resented together hence simultaneity can be described by deleting those states
where some but not all of the simultaneous events appear; and the Relational
Structures of Janicki ([12]) where a relation is introduced to be able to model, to
some extent, simultaneity. Finally some research in a similar direction has been
done in [14].

The paper is organized as follows: in the next section we recall the notions of
prime event event structure and of domain and their relations, then, in section 3,
we introduce the notion of event structure with simultaneity and we show that its
configurations form a coherent, prime algebraic and finitary domain. In section
4 we study the notion of morphism for these event structures, showing that
they can be turned out into a category. We show that prime event structures
can be turned into a full subcategory of event structures with simultaneity,
and we establish an adjunction between the category of event structures with
simultaneity and the category of domains.

2 Prime Event Structures and Domains

In this section we recall some basic notions and results on prime event structures
and domains, as developed in [16,22]. Given a set A, with 2A we denote the set
of the subsets of A. The set of all finite sets over A is denoted by 2A

fin .
Prime event structures (pes) [16] are a simple event-based model of concurrent

computations in which events are considered as atomic and instantaneous steps,
which can appear only once in a computation. The relationships between events
are expressed by means of two relations: causality and conflict.

Definition 1. A prime event structure (pes) is a tuple P = 〈E,≤, #〉, where E
is a set of events and ≤, # are binary relations on E called causality relation
and conflict relation respectively, such that: (1) the relation ≤ is a partial order
and *e+ = {e′ ∈ E : e′ ≤ e} is finite for all e ∈ E, and (2) the relation # is
irreflexive, symmetric and hereditary with respect to ≤, i.e., e#e′ and e′ ≤ e′′

imply e#e′′ for all e, e′, e′′ ∈ E.



388 G.M. Pinna and A. Saba

An event can occur only after some other events (its causes) have taken place,
and the execution of an event can prevent the execution of other events. This
is formalised via the notion of configuration of a pes P = 〈E,≤, #〉, which is
a subset of events C ⊆ E such that for all e, e′ ∈ C ¬(e#e′) (conflict-freeness)
and *e+ ⊆ C (left-closedness). Given two configurations C1 ⊆ C2 if e0, . . . , en is
any linearisation of the events in C2 −C1, compatible with causality, then C1 ⊆
C1∪{e0} ⊆ C1∪{e0, e1} ⊆ . . . ⊆ C2 is a sequence of well-defined configurations.
Therefore subset inclusion can be safely thought of as a computational ordering
on configurations. The set of configurations of a prime event structure P , ordered
by subset inclusion, is denoted by Confpes(P ).

Given a pes P = 〈E,≤, #〉, with co we denote the relation on E ×E defined
as follows: e co e′ ⇔ e �≤ e′ ∧ e′ �≤ e ∧ ¬(e# e′), and with co(A) we indicate
that either e co e′ ∀e, e′ ∈ A or A is a singleton.

A preordered or partially ordered set 〈D,,〉 will be often denoted simply as
D, by omitting the (pre)order relation. Given an element x ∈ D, we write ↓ x
to denote the set {y ∈ D | y , x}. Given a subset X ⊆ D, the least upper bound
and greatest lower bound of X , when they exist, are denoted by

⊔
X and

�
X ,

respectively. A subset X ⊆ D is compatible, written ↑ X , if there exists an upper
bound d ∈ D for X (i.e., x , d for all x ∈ X). It is pairwise compatible if ↑ {x, y}
(often written x ↑ y) for all x, y ∈ X . A subset X ⊆ D is directed if any finite
subset of X has an upper bound in X . The partial order D is complete (cpo) if
any directed subset of X has a least upper bound in D. Let D be a cpo. Recall
that an element e ∈ D is compact if for any directed set X ⊆ D, e ,

⊔
X implies

e , x for some x ∈ X . The set of compact elements of D is denoted by K(D).

Definition 2. A partial order D is called coherent (pairwise complete) if for
all pairwise compatible X ⊆ D, there exists the least upper bound

⊔
X of X in

D. A complete prime of D is an element p ∈ D such that, for any compatible
X ⊆ D, if p ,

⊔
X then p , x for some x ∈ X. The set of complete primes of

D is denoted by Pr (D). The partial order D is called prime algebraic if for any
element d ∈ D we have d = (

⊔
↓ d ∩ Pr(D)). The set ↓ d ∩ Pr(D) of complete

primes of D below d will be denoted Pr (d). We say that D is finitary if for
each compact element e ∈ K(D) the set ↓ e is finite. Coherent, prime algebraic,
finitary partial orders will be referred to as (Winskel’s) domains.

Being not expressible as the least upper bound of other elements, the complete
primes of D can be seen as elementary indivisible pieces of information (events).
Thus prime algebraicity expresses the fact that any element can be obtained by
composing these elementary blocks of information.

Given a domain D and two distinct elements d �= d′ ∈ D we say that d is an
immediate predecessor of d′, written d ≺ d′ if d , d′ ∧∀d′′ ∈ D. (d , d′′ , d′ ⇒
d′′ = d ∨ d′′ = d′). Moreover we write d � d′ if d ≺ d′ or d = d′. According to
the informal interpretation of domain elements sketched above, d ≺ d′ intuitively
means that d′ is obtained from d by adding a quantum of information.

Both event structures and domains can be seen as models of systems where
computations are built out from atomic pieces. Formalising this intuition, in [16]
it is shown that domains and event structures are essentially the same.



Simultaneity in Event Structures 389

Theorem 1. Let P be a pes. Then L(P) = (Confpes(P ),⊆) is a coherent, fini-
tary and prime algebraic domain.

Vice versa, to each domain a pes is associated whose configuration are the do-
main. Mapping domains back to pes’s requires the introduction of the notion of
prime interval. Let 〈D,,〉 be a domain. A prime interval is a pair [d, d′] of ele-
ments of D such that d ≺ d′. Let us define [c, c′] ≤ [d, d′] if (c = c′�d) ∧ (c′�d =
d′) and let ∼ be the equivalence obtained as the transitive and symmetric clo-
sure of (the preorder) ≤. The intuition that a prime interval represents a pair
of elements differing only for a “quantum” of information is confirmed by the
fact that there exists a bijective correspondence between ∼-classes of prime in-
tervals and complete primes of a domain D (see [16]). More precisely, the map
[d, d′]∼ �→ p where p is the only element in Pr(d′) − Pr(d), is an isomorphism
between the ∼-classes of prime intervals of D and the complete primes Pr(D)
of D, whose inverse is the function: p �→ [

⊔
{c ∈ D | c � p}, p]∼.

Definition 3. Let D be a domain, then P(D) = 〈Pr(D),≤, #〉 where p ≤ p′ iff
p , p′ and p#p′ iff ¬(p ↑ p′), in a pes.

Two domains D and D′ are essentially the same (we denote it with D 0 D′)
whenever there exists a bijection f among the elements in D and D′ such that
d , d′ iff f(d) , f(d′). Similarly two pes’s P and P ′ are essentially the same
(we will indicate this with P ∼= P ′) whenever there exists a bijection g among
the events such that e ≤ e′ iff g(e) ≤′ g(e′) and e#e′ iff g(e)#′g(e′). It is worth
to observe that:

Theorem 2. L(P(D)) 0 D and P(L(P)) ∼= P.

3 Event Structures with Simultaneity

Events in prime event structures may occur concurrently, i.e., neither being
causally related nor being in conflict. Nevertheless there are situations in reality
where a bunch of concurrent events have to happen simultaneously, or better,
have to happen together, as we have discussed in the introduction. In this section
we introduce the notion of prime event structure with simultaneity (ess) and
study the relationship with prime algebraic domain.

We briefly illustrate the intuition behind our formalization of ess with some
examples. Assume that there are three events e1, e2 and e3, none of them is
in conflict with the others and e2 depends on e1. Assume that e2 should be
simultaneous with e3. In a pes we would have a configuration containing only e3,
as well as one with e1 and e3. However now we know that, despite e1 and e3 may
occur independently, e3 is simultaneous with e2. There is no explicit dependency
on e1, and more complex situations would rule out this ad hoc solution. Now
we have that the intuitively legal configurations are {e1} and {e1, e2, e3}, as we
will formalize later. Assume now that we have 5 events, ei with 1 ≤ i ≤ 5,
and e1 ≤ e2, e3 ≤ e4 and e5 is simultaneous either with e2 or with e4, and
that e1 is in conflict with e3 (we omit the inherited pairs). It is clear that e5
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will happen either simultaneously with e2 or with e4, but we cannot conclude
anything concerning any dependency of e5 from other events.

We can now turn to the formal treatment.

Definition 4. Let P = 〈E,≤, #〉 be a pes and let s, s′ ∈ 2E
fin \ {∅} such that

co(s), co(s′) and s ∩ s′ = ∅. We say s precedes s′, denoted with s � s′ if there
exists e ∈ s and e′ ∈ s′ such that e ≤ e′, and we say the s immediately dissents
from s′, denoted with s �i s′, if there exists e ∈ s and e′ ∈ s′ such that e#e′.

Let S ⊆ 2E
fin , with �̂ we denote the transitive and reflexive closure of � on S,

and with � ⊆ S×S the relation defined as s � s′ iff s �i s′ or ∃s′′ ∈ S such that
s′′�̂s′ and s �i s′′.

We enrich the notion of prime event structure with a set of subset of events that
have to occur together.

Definition 5. An event structures with simultaneity (ess) is a tuple G = 〈E,
≤, #,S〉 where (1) 〈E,≤, #〉 is a pes; (2) S ⊆ 2E

fin is such that (a)
⋃

S = E,
(b) ∅ �∈ S, (c) ∀s ∈ S. co(s), (d) ∀s ∈ S � ∃s′ ∈ S. s′ ⊂ s, and (e) ∀s, s′ ∈ S,
s ∩ s′ �= ∅ implies that ∀e ∈ s \ s′, ∀e′ ∈ s′ \ s. e#e′; (3) (S, �̂) is a partial
order; and (4) �̂ and � on S are such that �̂ ∩� = ∅.

The unique novelty in this definition with respect to the usual one of prime
event structure is that we explicitly indicate which subsets of events may occur
simultaneously (S). On S we pose some obvious requirements: (a) the union of
all simultaneous events must cover the whole set of events; (b) the empty set
does not belong to S; (c) each subset of simultaneous events must contain only
concurrent events, unless it is a singleton; (d) a set of simultaneous events cannot
be extended with other simultaneous events; and (e) two subsets of simultaneous
events may overlap but when they do so then the elements not in common must
be in conflict. This last requirement captures the idea that if an event can be
simultaneous with two other different events which do not belong to the same set
of simultaneous events, then these two must belong to alternative computations.
Finally we require that the relations defined on S according to definition 4 are
disjoint and that �̂ is a partial order on S. These conditions capture the fact that
each set of simultaneous events can be executed, i.e., added to a configuration
(which we will formalize later).

Proposition 1. Let G = 〈E,≤, #,S〉 be an ess. Then � is an irreflexive and
symmetric relation which is hereditary with respect to �̂.

Requiring that some events have to occur together implies that the notion of
configuration have to be changed accordingly. We recall that a configuration of
a pes is a left-closed and conflict-free subset of events. Now we have to consider
the fact the certain set of events have to be simultaneous.

Definition 6. Let G = 〈E,≤, #,S〉 be an ess. Then C ⊆ E is a configuration
iff (a) for all e, e′ ∈ C ¬(e#e′) (conflict-freeness), (b) *e+ ⊆ C, (left-closedness),
and (c) there exists S ⊆ S such that

⋃
S = C (coverability). The set of config-

urations of an ess is denoted with Confess(G).
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A configuration C of an ess is a left-closed and conflict free subset of events as
for the underlying pes; and furthermore there should be a partition of events
in C such that each element of the partition is a set of simultaneous events. It
is worth noting that each configuration has a unique decomposition into sets of
simultaneous events. To show this, assume that there exists another partition
S′ ⊆ S of C such that C =

⋃
S′. For an event e ∈ C there must be sets of

simultaneous event s ∈ S and s′ ∈ S′ such that s �= s′ and e ∈ s ∩ s′. But then,
by definition of ess, all the events in s and s′ not belonging to their intersection
are in conflict, contradicting the assumption we have made that S′ is another
coverability of the events in C. Furthermore each set of simultaneous events
belong to a configuration.

Proposition 2. Let G = 〈E,≤, #,S〉 be an ess, and let C ⊆ E be a configura-
tion. Then there exists a unique S ⊆ S such that C =

⋃
S.

Proposition 3. Let G = 〈E,≤, #,S〉 be an ess, and let s ∈ S. Then there
exists a configuration C such that s ⊆ C.

We investigate now on the order on configurations.

Definition 7. Let G = 〈E,≤, #,S〉 be an ess, and let A, A′ ⊆ E be sets of
events. We say that A′ extends A (written A , A′), if (1) A ⊆ A′, and (2)
A′ \A �= ∅ implies that there exists S ⊆ S such that

⋃
S = A′ \A.

We simply require that the events in A′ \A can be covered by sets in S.

Proposition 4. Let G be and ess, then (Confess(G),,) is a partial order.

We relate now pes and ess. We show that ess’s are a proper extension of pes’s,
in the sense that, as one would expect (and require), prime event structures can
be identified with a subclass of event structures with simultaneity where the set
of sets of simultaneous events is given by singletons. The fact that, given a pes

〈E,≤, #〉, the set {{e} | e ∈ E} is a well defined set of sets of simultaneous
events, is a trivial observation.

Proposition 5. Let P = 〈E,≤, #〉 be a pes. Then J (P) = 〈E,≤, #,S〉 where
S = {{e} | e ∈ E} is an ess.

It is straightforward to observe that the configurations of a pes P are the same of
the associated ess J (P). In fact, given C ∈ Confpes(P), then C ∈ Confess(J (P))
as well as it is clearly coverable being S = {{e} | e ∈ E}.
Proposition 6. Let P be a pes and let J (P) be the associated ess. Then
Confpes(P) = Confess(J (P)).

Here we relate the new kind of event structure we have introduced and domains,
by showing that the configurations of an ess form a domain. We start identifying
the least upper bound and the greatest lower bound of compatible configurations.

Lemma 1. Let G = 〈E,≤, #,S〉 be an ess. Then (1) if A ⊆ Conf
ess

(G) is
pairwise compatible, then

⊔
A =

⋃
A, and (2) if C0 ↑ C1 then C0�C1 = C0∩C1.
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An event e can be added to a configuration provided that all the events which are
simultaneous with e can be added, hence an event may have different histories,
as each event may belong to various sets of simultaneous events. Recall the
second example we have discussed at the beginning of this section, there the
event e5 is simultaneous either with e2 or with e4. Thus it can happen in two
different histories. Let s ∈ S, with ⇓ s we denote the set As ⊆ S defined as
As = {s′ ∈ S | s′�̂s}. We can now formalize, for each event in an ess, what its
possible histories are.

Definition 8. Let G be an ess and let e ∈ E. Given a configuration C ∈
Confess(G) such that e ∈ C, then the history of e in C is defined as C[[e]] = (

⋃
⇓

se)∩C, where se ∈ S is such that e ∈ s. The set of possible histories of e, denoted
by Hist(e), is then defined as Hist(e) = {C[[e]] | C ∈ Confess(G) ∧ e ∈ C}.

With Hist(G) we denote the set of all possible histories of events in G, namely
Hist(G) =

⋃
{Hist(e) | e ∈ E}.

The intuition is that, in a possible history of an event e with respect to a con-
figuration C, we have to include all the events belonging to C which are simul-
taneous. We state now some properties of the possible histories that are needed
in proving that (Confess(G),,). Let G = 〈E,≤, #,S〉 be an ess. Then (1) if
C ∈ Confess(G), then C[[e]] ∈ Confess(G) and C[[e]] , C, and (2) if C, C′ ∈
Confess(G), C ↑ C′ and e ∈ C ∩C′, then C[[e]] = C′[[e]]. Furthermore, for all con-
figurations C ∈ Confess(G) the followings hold: C =

⊔
{C′ ∈ Hist(G) | C′ ⊆ C}

=
⊔
{C[[e]] | e ∈ C}, Pr(Confess(G)) = Hist(G) and Pr(C) = {C[[e]] | e ∈ C}.

We can now prove the following theorem, stating the main contributions of this
section, namely that the configurations of an ess are a domain.

Theorem 3. Let G be an ess. Then Less(G) = (Confess(G),,) is a domain.

We associate an ess to a domain as before, the only difference being that the
sets of simultaneous events are singletons, as in the domain any information on
which events may be simultaneous is not available.

Proposition 7. Let D be a domain, then Pess(D) = 〈Pr(D),≤, #,S〉, where
p ≤ p′ iff p , p′, p#p′ iff ¬(p ↑ p′), and S = {{p} | p ∈ Pr(D)}, is an ess.

As in the case of prime event structure we can show that the domain obtained by
the configuration of the ess associated to the original domain is essentially the
original domain, namely given a domain D, then Less(Pess(D)) 0 D. However
we cannot prove the vice versa, i.e., that, given an ess G, Pess(Less(G)) ∼=ess G,
being ∼=ess the obvious extension to ess’s of ∼= defined on pes’s, as the following
example shows. Consider an ess with only two simultaneous events, say e, e′.
The configurations are ∅ and {e, e′}. The ess obtained by this domain has only
one event, say p, hence there cannot be any bijection between {e, e′} and {p}.
We can still prove that, given a pes P , Pess(L(P)) ∼=ess J (P).

4 Morphisms

In the previous section we have introduced the notion of ess and shown that
its configurations form a domain. The fact that Pess(Less(G)) ∼=ess G does not
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hold suggests that turning ess into a category would not easily lead to the same
positive results as in the case of pes and domains. In this section we investigate
on the notion of morphism for ess. Being able to define morphism is quite crucial,
as we can relate in this way various models. As in the case of pes, the notion of
morphism should capture the idea that an ess G should simulate another one,
say G ′. Another requirement is that morphisms carry over the constructions
we have seen so far, i.e., the domain associated to an ess, turning out these
constructions into functors.

Let first recall the notion of morphism on pes. Let P0 = 〈E0,≤0, #0〉 and
P1 = 〈E1,≤1, #1〉 be two pes’s. A pes-morphism f : P0 → P1 is a partial
function f : E0 → E1 such that for all e0, e

′
0 ∈ E0, assuming that f(e0) and

f(e′0) are defined, *f(e0)+ ⊆ f(*e0+), f(e0) = f(e′0) ∧ e0 �= e′0 ⇒ e0#0e
′
0,

and f(e0)#1f(e′0) ⇒ e0#0e
′
0. With this notion of morphism, pes are turned

out into the category of prime event structures and pes-morphisms, which is
denoted by PES.

We could easily adapt this notion to the case of ess, by requiring simply
that the image of a set of simultaneous events is still a set of simultaneous
events, i.e. for all s ∈ S0, f(s) �= ∅ implies f(s) ∈ S1, but this notion basically
fails in capturing the possible gluing of two events belonging to the same set
of simultaneous events, which we will allow. The usual notion of morphism is
injective on configurations, but this requirement forbids that simultaneous events
can be identified. Similarly to our setting, Abbes in [1] drops this requirement
asking in turn for an order preserving mapping. Events can be identified in
a configuration (hence dropping the first part of condition 2 in the definition
above). As observation it happens that some classical morphism are not Abbes’
morphism, but still an adjunction with the category of domain is established.
Here we propose another approach, weakening the requirement that morphisms
on configurations should be injective, but requiring that another mapping is an
ordinary pes morphism. Before introducing the notion, we recall that to each
ess G, another pes can be associated, different from the one obtained forgetting
the set S, which is a consequence of proposition 1.

Corollary 1. Let G = 〈E,≤, #,S〉 be an ess. Then 〈S, �̂, �〉 is a pes.

Let f : E0 → E1 be a partial function, then f̂ : 2E0
fin → 2E1

fin is the mapping
defined as f̂(X) = {f(e) | e ∈ X and f(e) is defined}.

Definition 9. Let G0 = 〈E0,≤0, #0,S0〉 and G1 = 〈E1,≤1, #1,S1〉 be two
ess’s. An ess-morphism f : G0 → G1 is a function f : E0 → E1 such that:
(1) ∀s ∈ S0. f(s) �= ∅ implies f(s) ∈ S1, and (2) f̂ : 〈S0, �̂0, �0〉 → 〈S1, �̂1, �1〉
is a pes-morphism

The last requirement states that the two pes associated to the ess, are related
by a morphism arising from f .

We show that this is well defined notion of morphism, as it composes and
preserves configurations, hence ess together with ess-morphism form a category.
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Proposition 8. Let G0 = 〈E0,≤0, #0,S0〉 and G1 = 〈E1,≤1, #1,S1〉 be two
ess’s. Let f : G0 → G1 be a morphism, and C ∈ Confess(G0). Then f(C) ∈
Confess(G1).

Proposition 9. Let f : G0 → G1 and g : G1 → G2 be two ess-morphisms.
Then g ◦ f : G0 → G2 is an ess morphisms.

Proposition 10. Event structures with simultaneity and ess-morphisms form
a category which is denoted by ESS.

We show that there is precise and nice relation between pes and ess. Consider
two pes P0 and P1. If f : P0 → P1 is a pes-morphism, then f is an ess-morphism
between the corresponding ess’s J (P0) and J (P1). Moreover if g : J (P0) →
J (P1) is an ess-morphism then it is also a pes-morphism between P0 and P1.
Thus account to say that J is a full embedding of PES into ESS.

Proposition 11. The functor J : PES → ESS defined by J (〈E,≤, #〉) =
〈E,≤, #,S〉, where S = {{e} | e ∈ E}, and J (f : P0 → P1) = f is a full
embedding of PES into ESS.

Let us recall now the notion of domain morphisms.

Definition 10. Let D0 and D1 be domains. A domain morphism f : D0 →
D1 is a function, such that: (1) ∀x, y ∈ D0, if x � y then f(x) � f(y) (�-
preserving), (2) ∀X ⊆ D0, X pairwise compatible, f(

⊔
X) =

⊔
f(X) (Additive),

and (3) ∀X ⊆ D0, X �= ∅ and compatible, f(
�

X) =
�

f(X) (Stable). We
denote by Dom the category having domains as objects and domain morphisms
as arrows.

Definition 11. Given a domain morphism f : D0 → D1, the associated pes-
morphism P(f) : P(D0) → P(D1) is the function P(f)(p0) = p1 if p0 �→
[d0, d

′
0]∼, f(d0) ≺ f(d′0) and [f(d0), f(d′0)]∼ �→ p1, and P(f)(p0) = ⊥ other-

wise, i.e., if f(d0) = f(d′0).

Now, the category Dom is known to be equivalent to the category PES, the
equivalence being established by two functors L : PES→ Dom and P : Dom→
PES:

PES
L
∼ Dom
P

We extend this machinery to ESS and Dom. We first show that the set
extension of an ess-morphism is indeed a domain morphism, and then Less can
be easily extended to be a functor.

Proposition 12. Let G0 = 〈E0,≤0, #0,S0〉 and G1 = 〈E1,≤1, #1,S1〉 be two
ess’s, and let f : G0 → G1 be an ess-morphism. Then the set extension of f is
a domain morphism f : Confess(G0) → Confess(G1).

Proposition 13. The functor Less : ESS → Dom associating to each ess the
domain of its configuration and to each ess-morphism its set extension is a well
defined functor.
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Similarly to what we have done for PES and Dom, we associate to each domain
morphism an ess-morphism, which acts on prime intervals as the pes-morphism
does. Note that the definition of ess-morphism associated to a domain morphism
does not change with respect to the case of pes-morphism.

Proposition 14. Let f : D0 → D1 be a domain morphism, then the morphism
Pess(f) : Pess(D0)→ Pess(D1) is an ess-morphism.

With this machinery we have the following:

Proposition 15. The functor Pess : Dom → ESS is a well defined functor.
Furthermore Pess = J ◦ P.

We can now show that Pess is the right adjoint to Less.

Theorem 4. Pess 2 Less.

5 Conclusions and Future Works

In this paper we have introduced ess in order to model simultaneity of events
and shown that their configurations form a prime algebraic domain and we have
established an adjunction between the categories ESS and Dom. The notion
we have developed has the advantage of representing faithfully the situations
where several independent agents, when possible, really cooperate to accomplish
a task. Up to now this is modeled by observing ex-post, whereas we believe that
the correct modeling of this situation helps in allowing abstractions that are not
too abstract, making them of little interest.

Several problems remain. First of all, till now we have not put forward any
relation on events which will generate the set S. This will subject to further in-
vestigation, along the line of the Relational Structure approach of Janicki ([12]).
Here the problem is that an event may belong to various sets of simultaneous
events, provided that they differ for conflicting ones, thus just imposing the
transitivity to the relation of concurrency would not work. Furthermore this
interpretation would require that concurrent events have to happen always to-
gether, that contrast our intuition. Second we have to extend out machinery
to the other brands of event structures. It should be noticed that, similarly to
what happen with Chu-spaces, Less is the left adjoint, which contrast with the
adjunction that is usually established.

Acknowledgement. We thank the anonymous referees for the useful suggestions.
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Abstract. Safety verification of hybrid systems is undecidable, except
for very special cases. In this paper, we circumvent undecidability by
providing an algorithm that can verify safety and provably terminates for
all robust and safe problem instances. It need not necessarily terminate
for problem instances that are unsafe or non-robust. A problem instance
x is robust iff the given property holds not only for x itself, but also
when x is perturbed a little bit. Since, in practice, well-designed hybrid
systems are usually robust, this implies that the algorithm terminates
for the cases occurring in practice. In contrast to earlier work, our result
holds for a very general class of hybrid systems, and it uses a continuous
time model.

1 Introduction

Terminating algorithms for the verification of hybrid systems are known only for
very special cases. In fact, most classes of hybrid systems verification problems
are known to be undecidable [8] (and not even semi-decidable). Recently, there
have been attempts at circumventing this [6,5] by observing that, in practice,
hybrid systems can never model a given real system precisely, but only up to
perturbations. Hence it suffices to verify robust systems, that is, systems that
do not change the desired property under perturbations.

We say that a property is quasi-semidecidable iff a (possibly non-terminating)
algorithm exists that can correctly check the correctness of the property, but
which is required to terminate only for robust problem instances. We show
quasi-semidecidability of safety verification of a class of hybrid systems that
allows arbitrary Boolean combinations of non-linear differential equalities and
inequalities for defining the continuous flow, and arbitrary Boolean combinations
of non-linear equalities and inequalities for defining the set of initial and unsafe
states, and for defining the set of possible discontinuous jumps of the system.
We also have a proof for the dual case, verifying that a robust system is not safe,
but due to space restrictions, we will leave this case for an extended version of
the paper.

� The work of Stefan Ratschan has been supported by GAČR grant 201/08/J020 and
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This theoretical result has heavy practical consequences: Up to now, hybrid
systems verification algorithms have been evaluated purely experimentally, on
finitely many benchmark examples. However, one would like a practical verifi-
cation algorithm to terminate for all robust inputs. Hence, for the first time,
we now have a formal tool to evaluate practical verification algorithms for a
comprehensive class of hybrid systems.

Concerning related work, a recent article [2, Section 5] includes a survey on
the role of noise and robustness in continuous-time dynamical systems.

Similar quasi-decidability results as the ones presented in the present paper
have been obtained (under different names) for systems with simpler dynamics:
Fränzle [6] provides results for the case where the input system is completely
defined by polynomials. Especially, continuous evolution is given by explicit
polynomial flows which, in general, does not even allow the modeling of linear
differential equations, since these can have non-polynomial flows as solutions.

Puri and co-authors [12] show how to compute an over-approximation of Lip-
schitz differential inclusions with known Lipschitz constant over a finite time
horizon. This implies a corresponding quasi-decidability result. In contrast to
that, our result allows unbounded time, and does not require a previously known
Lipschitz constant.

Collins [3] studies approximation of reach sets of dynamical system in an
effective computable analysis framework which again implies a corresponding
quasi-decidability result. He uses a discrete time model (such a model can in
certain cases encode a continuous time model). In the continuous time case there
is corresponding work on approximating reach sets over a finite time horizon [4].

Damm and co-authors [5] provide a similar result as ours for a discrete time
model. The continuous time model employed in this paper, implies several ad-
ditional difficulties:

– When considering syntactic descriptions of systems, in a discrete time model
all variables vary over the state space of the system, whereas in a continuous
time model, some variables (describing differentiation) do not. Hence these
variables may take unbounded values even if the state space is bounded. This
needs additional deduction mechanisms for capturing the set of possible val-
ues that these variable may take and proofs of their correctness (Theorem 2)
and convergence (Lemma 1).

– In a discrete time model, a trajectory only reaches finitely many states in a
finite time interval, whereas in a continuous time model it usually reaches
uncountably many. This uncountable set has to be captured by correspond-
ing algorithms. As a consequence, abstraction to a finite state systems, as
used in the earlier paper, cannot capture system behavior arbitrarily closely,
since even arbitrary refinements cannot separate two subsequent steps of the
system.

Asarin and Bouajjani provide a comparison on the effect of perturbations in
various dynamical system models [1].

On the negative side, Henzinger and Raskin showed that certain undecidabil-
ity results for hybrid systems continue to hold, even if in the proof one only
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allows encodings into robust trajectories [9]. This does not contradict our result
for two reasons: First, quasi-decidability allows an algorithm that does not al-
ways (i.e., for non-robust inputs) terminate, whereas undecidability (even when
based on robust trajectories) proves non-existence of an algorithm that termi-
nates always. Second, in a similar way as Fränzle [6], we require a compact state
space, whereas Henzinger and Raskin do not (although their dynamics is much
simpler than ours).

2 Hybrid Systems and Their Quasi-Decidability

In this section we describe the solved problem in detail. In the literature, state
spaces of dynamical systems are usually defined using tuples (for example, tuples
in Rn). Here, we take a little bit more flexible approach, that allows us to directly
access the individual tuple elements using names. For these names we use a finite
set V whose elements we call variables. Moreover, we use the set V̇

.= {v̇ | v ∈ V }
to access the values of derivatives, and the set V ′ .= {v′ | v ∈ V } to access the
result of a discrete state change (i.e., of jumps). Moreover, we fix a finite set
M whose elements we call modes, and use the additional specific variable name
mode to access them, and the variable name mode′ to access them in the case of
the result of a discrete jump.

Now we call a function that assigns to some symbols from {mode, mode′} a
value from M and to some elements of V ∪ V̇ ∪V ′ a real value a valuation. These
valuations will take the role of tuples to form the state space of hybrid systems.
For a subset X of {mode, mode′} ∪ V ∪ V̇ ∪ V ′ we denote the set of valuations
that assigns values exactly to the elements of X by Γ (X).

For every valuation σ in Γ ({mode} ∪ V ), we denote by Prime(σ) the corre-
sponding valuation with primed variables, that is, Prime(σ) is a valuation in
Γ ({mode′} ∪ V ′), and for all v ∈ {mode} ∪ V , Prime(σ)(v′) = σ(v).

For two valuations σ1, σ2 that coincide on joint variables, we define their
concatenation σ1 • σ2 as the valuation that is defined on the union of the two
domains of definition and always assigns the corresponding value. That is, for
σ1 ∈ Γ (X1) and σ2 ∈ Γ (X2) such that for all v ∈ X1∩X2, σ1(v) = σ2(v), we have
that for all v ∈ X1, (σ1 •σ2)(v) = σ1(v), and for all v ∈ X2, (σ1 •σ2)(v) = σ2(v).

Definition 1. A hybrid system is a tuple of the form (S, Init ,Flow , Jump,
Unsafe) where S (the state space of the hybrid system) is a subset of Γ ({mode}∪
V ) such that for every v ∈ V we have a non-empty closed real interval Iv such
that S = {σ | σ ∈ Γ ({mode} ∪ V ), σ(v) ∈ Iv, v ∈ V }. In other words, the
continuous part of the state space has the form of a hyper-rectangle. In addition,

– Init ⊆ S, Unsafe ⊆ S.
– Flow ⊆ Γ ({mode} ∪ V ∪ V̇ ), such that for all σ ∈ Flow, for all v ∈ V ,

σ(v) ∈ Iv,
– Jump ⊆ Γ ({mode} ∪ V ∪ {mode′} ∪ V ′), such that for all σ ∈ Jump, for all

v ∈ V , σ(v) ∈ Iv and σ(v′) ∈ Iv.
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That is, a hybrid system has a set of initial and unsafe elements that are sub-sets
of the state space. Moreover, it relates derivatives to state space elements, and
relates state space elements to primed versions of state space elements.

We will use the following objects to describe continuous evolution of hybrid
systems:

Definition 2. A flow of length t over S ⊆ Γ ({mode} ∪ V ) is a function φ :
[0, t]→ S such that

– φ(t)(mode) is constant over all t ∈ [0, t], and
– for every v ∈ V , the function φv that assigns to every s ∈ [0, t] the value

φ(t)(v), is differentiable.

Based on this, we define φ̇ : [0, t]→ Γ (V̇ ) in such a way that for every s ∈ [0, t],
v ∈ V , φ̇(s)(v̇) = φ̇v(s).

The property we study in this paper is reachability of the set of unsafe states:

Definition 3. For a given hybrid system (S, Init , Flow, Jump, Unsafe), an
error trajectory is a sequence of flows (φ0, . . . , φn) over S of lengths (t1, . . . , tn)
such that, for all i ∈ {0, . . . , n}

– if i < n, then φi(ti) • Prime(φi+1(0)) ∈ Jump or φi(ti) = φi+1(0)
– for all s ∈ [0, ti], φi(s) • φ̇i(s) ∈ Flow,

and φ0(0) ∈ Init , φn(tn) ∈ Unsafe. A hybrid system is safe if it does not have
an error trajectory.

For describing hybrid systems we use constraints. We define an arithmetical
term to be an expression that may contain variables in V , rational constants,
and function symbols in {+,×, sin, cos, exp}. Now we define a constraint to be
a Boolean combination of two types of atomic constraints:

– equalities and inequalities of the form t r 0, where t is an arithmetical term,
and r ∈ {=,≤,≥, <, >}.

– equalities and inequalities of the form mode = m or mode �= m, where m ∈M
(we call this a mode constraint).

A flow constraint is a constraint that, in addition to the above, allows atomic
constraints of the form v̇ r t, where r ∈ {=,≤}, v is a variable from V , and t is
an arithmetical term over V . A jump constraint is a constraint that, in addition
to the variables in {mode}∪V , allows their primed versions, that is, variables in
{mode′} ∪ V ′.

The definition of the semantics of such constraints is straight-forward. We
denote the function from valuations to real numbers described by a term t by
[[t]]. We write σ |= φ for the fact that a valuation σ satisfies a constraint φ,
and we write [[φ]] for the set of valuations satisfying φ. We use corresponding
definitions for flow and jump constraints in analogy.

Now we have a way of syntactically describing hybrid systems using con-
straints. For a given state space S, and constraints Init , Flow , Jump, and Unsafe
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we call the tuple (S, Init ,Flow , Jump,Unsafe) a hybrid systems description, and
denote by [[(S, Init ,Flow , Jump,Unsafe)]] the hybrid system (S, [[Init]], [[Flow ]],
[[Jump]], [[Unsafe ]]).

In this case we also say that the hybrid system fulfills the corresponding hybrid
systems description. We straightforwardly lift Definition 3 from hybrid systems
to hybrid system descriptions.

It is well-known that—except for very special cases—checking whether a hy-
brid system is safe is an undecidable problem [8]. However, in the real world,
we will not be able to implement a hybrid system description exactly and we
do not want to prove a hybrid systems description safe, if the system fulfilling
this description is safe but there is a system that fulfills the description up to
small perturbations and is unsafe. Hence it suffices to have an algorithm that
can prove safety of hybrid systems descriptions for which all hybrid systems that
fulfill the description up to small perturbations are safe.

Here it does not suffice to perturb hybrid systems without regard to the
language they are described in (i.e., it does not suffice to consider perturbations
on the semantic level; one has to take into account syntactic perturbations). The
reason for this can be seen in the example of a constraint 0 = 0 whose solution
set does not vanish under slight changes (since every valuation is a solution),
but still, small perturbations of the constraint itself change the solution set
essentially.

The basic idea for introducing such perturbations is to define a distance mea-
sure on constraints that measures in how far two constraints are the same up to
”addition of constants up to a certain size”:

Definition 4. We call a term basic, if it is either a variable, or a constant, or
a term of the form x + c, where x is a variable, and c a constant. If the set of
variables contained in a term (this is either a singleton set or the empty set) is
the same in two basic terms, we define the distance between these terms as the
distance between the corresponding constants, using the constant 0 if one of the
terms does not contain a constant. If the set of contained variables is not the
same in both basic terms, their distance is ∞.

The distance d(φ, φ′) between two constraints φ and φ′ is ε iff φ′ can be ob-
tained from φ by replacing some basic terms by basic terms of finite distance and
ε is the maximum of these distances. Otherwise, the distance is ∞.

Example 1. For measuring the distance between the constraint (x+2)2 +1x ≤ 0
and x2+2x ≤ 0 we observe that for getting from the first to the second constraint
we have to replace the basic term x + 2 by x, and the basic term 1 by the basic
term 2. The distance is the maximum of the distances of corresponding basic
terms, that is, the distance is 2.

The constraints (x−2)2−1 ≤ 0 and x2−4x+4−1 ≤ 0, although semantically
equivalent, have infinite distance. This does not pose any problem here. On the
contrary, this makes our result stronger, since it leads to many hybrid systems
descriptions being robust, and hence to a strong termination condition for our
algorithms.
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We continue with defining an analogon of the notion of ”fulfilling a hybrid sys-
tems description up to ε” for our constraint language.

Definition 5. A set P of valuations is an ε-perturbed solution set of a con-
straint φ iff for every valuation σ ∈ P , there is a constraint φ∗ with d(φ, φ∗) ≤ ε
such that σ |= φ∗, and for every valuation σ �∈ P , there is a constraint φ∗ with
d(φ, φ∗) ≤ ε such that σ �|= φ∗.

In other words, the set P may contain valuations that do not satisfy the con-
straint, and may not contain valuations that do satisfy constraint, but we have
to make sure that in both cases the error that we make is not too large.

Lifting this definition to hybrid systems is straightforward:

Definition 6. Given a hybrid systems description D, a hybrid system H fulfills
D up to ε iff for every constraint Init, Flow, Jump, Unsafe defining D, the
corresponding set in H is an ε-perturbed solution set of the constraint.

Definition 7. A given hybrid systems description D is robustly safe iff there
is a real number ε > 0 (the robustness margin) such that all hybrid systems
fulfilling D up to ε are safe.

Only in the non-robust case we do not require our algorithms to terminate, that
is, in that case an algorithm trying to verify safety of a given hybrid system is
allowed to run forever. This is the essential point, why the following notion of
quasi-semidecidability is weaker than semidecidability.

Definition 8. We call the problem of safety verification of hybrid systems quasi-
semidecidable iff there is an algorithm A such that for a given hybrid systems
description D

– if A(D) terminates then D is safe (i.e., A is correct),
– A(D) terminates if D is robustly safe.

We are now ready to formulate the main theorem of this paper:

Theorem 1. Safety of hybrid system descriptions is quasi-semidecidable.

3 Quasi-Semidecidability of Verification

For proving quasi-semidecidability of verification we use the fact that for ev-
ery hybrid system there is a rectangular ε-approximation [7]. Here we have to
overcome two major obstacles:

– The original proof of this existence property was not constructive.
– Although rectangular automata have a much simpler structure than general

hybrid systems, their safety is still undecidable.
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Before solving these problems, we introduce a representation of rectangular
sets: A box is a function that assigns to some variables in V ∪ V̇ ∪ V ′ a non-
empty closed real interval, and to some variables in {mode, mode′} a subset of
modes from M . Throughout the paper we use the situation that a box B does
not assign a value to a given variable as a shortcut for the value B(v) being M ,
if v ∈ {mode, mode′}, and being [−∞,∞], otherwise. We will say that a box has
dimension d iff it assigns d real intervals (i.e., d intervals not equal to [−∞,∞]).
We lift set membership to boxes by defining a valuation σ to be element of a box
B iff for every variable v on which σ is defined, σ(v) ∈ B(v). Analogously we
lift other set operations such as ⊆ and ∩ using the corresponding variable-wise
operations on intervals and sets of modes, respectively. Box union 3 is defined
by lifting union for variables in {mode, mode′}, and interval union (the smallest
interval containing both arguments) for the other variables. For boxes we define
concatenation analogously as for valuations. We call a box proper, if it only
assigns intervals (and no modes).

A sat-box (for satisfiability box) is either a box, or the value ⊥ which we
call the empty box. Such sat-boxes will be used for flow constraints where we
either deduce unsatisfiability or a box bounding the set of possible derivatives.
A sat-box has dimension d iff it is equal to ⊥ or if it is a box of dimension d
(hence ⊥ can have any dimension). Sometimes we will write F for ⊥ and T for
the unique zero-dimensional box, and use them in the role of the corresponding
Boolean constants. The box operations ∩ and 3 can be easily lifted from boxes
to sat-boxes by considering ⊥ to be the smallest element in the ⊆ order. Also,
the element relation ∈ can be naturally lifted by defining ⊥ to have no element
(which, of course, corresponds to its name “empty box”).

Now we start with removing the first obstacle mentioned at the beginning
of this section: computing a rectangular over-approximation of a hybrid system
such that the over-approximation error is smaller than a given bound.

The algorithm uses interval arithmetic as its basis. For a term t, and proper
box B, let I(t)(B) denote the evaluation of t on B using interval arithmetic [11].
The result over-approximates the set of all values the term t takes in the box B,
due to the so-called Fundamental Theorem of Interval Arithmetic [10], that is,
I(t)(B) ⊇ {[[t]](σ) | σ ∈ B}.

Now we can over-approximate the satisfiability information of constraints by
defining the symbol |=I (interval satisfiability check) for a box B as follows:

– B |=I mode = m is T if m ∈ B(mode), and F otherwise,
– B |=I t r 0, where t does not contain dotted variables, is T iff there exists a

real value x ∈ I(B)(t) such that x r 0, and F, otherwise,
– B |=I φ1 ∧ φ2 is B |=I φ1 ∩B |=I φ2, and
– B |=I φ1 ∨ φ2 is B |=I φ1 3B |=I φ2.

Example 2. Let φ be the constraint x2 − 1 = 0 ∧ x − 2 ≥ 0, and let B be the
box x �→ [−10, 0]. Interval arithmetic evaluates the terms in φ recursively. So
I(x2)(B) = [0, 100], and I(x2 − 1)(B) = [−1, 99]. Since this interval contains
zero, (B |=I x2 − 1 = 0) = T. Moreover, I(x − 2)(B) = [−12,−2], and (B |=I

x − 2 ≥ 0) = F. In the zero-dimensional case, intersection and union of boxes
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implements conjunction and disjunction of the corresponding Boolean values. So
(B |=I φ) = T ∩F = F.

Remember that, by default, variables are assigned the interval [−∞,∞]. Hence
the semantics is also well-defined in cases where the branches of a conjunction
(or disjunction) contain different variables.

We generalize the interval satisfiability check to constraints containing dot-
ted variables (denoting derivatives). In this case, the result is a sat-box, whose
dimension (if containing a box) is equal to the number of dotted variables. The
purpose of this definition is to over-approximate the projection of the solution
set of the constraint to these variables:

– B |=I ȧ = t is defined as {ȧ �→ I(t)(B)}
– B |=I ȧ ≤ t is defined as {ȧ �→ [−∞, I(t)(B)]}
– B |=I ȧ ≥ t is defined as {ȧ �→ [I(t)(B),∞]}

The rest of the definition is kept unchanged.

Example 3. Let φ be the flow constraint ẋ = x2∧x−2 ≥ 0, and let B be the box
x �→ [1, 3]. Then B |=I ẋ = x2 is the box {ẋ �→ [1, 9]} and (B |=I x−2 ≥ 0) = T.
Hence {ẋ �→ [1, 9]} ∩ T = {ẋ �→ [1, 9]} (remember that T is the unique zero
dimensional box that assigns to every variable the default interval [−∞,∞]).

For the slightly modified constraint x2 − 1 = 0 ∧ x− 10 ≥ 0, however, B |=I

x− 10 ≥ 0 evaluates to F, and hence also the whole constraint.

This definition fulfills its purpose due to the following generalization of the fun-
damental theorem of interval arithmetic to our constraints:

Theorem 2. For every constraint φ, box B on the un-dotted variables of φ,
valuation σ ∈ B, and valuation σ̇ on the dotted variables of φ such that σ•σ̇ |= φ,
we have σ̇ ∈ B |=I φ.

Proof. Let B, σ, σ̇ arbitrary, but fixed, fulfilling the assumptions above. We
prove that σ̇ ∈ B |=I φ. We proceed by induction over the structure of φ.
Due to space restrictions we discuss only the base case where φ is of the form
ẋ = t. In this case, since σ • σ̇ |= ẋ = t, it holds that σ̇ = [[t]](σ). To prove
that σ̇ ∈ B |=I φ, we have to prove that σ̇ ∈ I(t)(B). This holds since due
to the fundamental theorem of interval arithmetic, [[t]](σ) ∈ I(t)(B) for σ ∈ B.
The other cases of atomic constraints are analogous, and the induction step is
easy. ��

Example 4. Continuing Example 3, let in addition σ be the valuation {x �→ 2}
(which is an element of B), and let σ̇ be the valuation {ẋ �→ 4} (for which
σ • σ̇ |= φ). Then the box B |=I φ which is {ẋ �→ [1, 9]} contains the valuation
{ẋ �→ 4}.

In the special case of constraints without dotted variables, the interval satisfia-
bility just over-approximates satisfiability:
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Corollary 1. For every constraint φ without dotted variables, box B on the
variables of φ, if B contains a valuation σ such that σ |= φ, then (B |=I φ) = T.

Reading this corollary in the opposite direction, we can conclude that (B |=I

φ) = F implies that there is no valuation σ ∈ B such that σ |= φ.
Now we are preparing to present an algorithm for which we will prove that

it over-approximates a given hybrid system arbitrarily closely. For bounding the
over-approximation error we use a bound on the size of the boxes. For a non-
empty interval [a, b], its width is defined to be b − a, and for a non-empty set
of modes M∗ ⊆ M , we define its width to be zero if M∗ is a singleton set, and
∞, otherwise. We define the diameter diam(B) of a box B to be the maximum
width of B(v) over all variables v on which B is defined (i.e., not equal [−∞,∞]).

The algorithm will approximate a given hybrid systems description using a
hybrid systems description completely defined by boxes. Here we use the notation
x ∈ [a, a] as a short-cut for the constraint a ≤ x ∧ x ≤ a. The idea is to put
a grid of boxes onto the state space, and then testing on each box using the
interval satisfiability check, whether it might contain an initial or unsafe state,
testing for every pair of boxes whether it might contain a jump between them,
and computing an interval containing the possible derivatives for each box.

In contrast to the discrete time case [5], here it does not suffice to abstract to a
purely discrete system. The reason is that in discrete time, if the hyper-rectangles
are sufficiently small, they can separate two subsequent steps of the system. How-
ever, for continuous evolution, this is not possible. We use the following algorithm
that takes as input a hybrid systems description (S, Init ,Flow , Jump,Unsafe),
and a strictly positive real value δ:

G← set of boxes of diameter δ covering the state space S
InitR ←

∨
B∈G,B|=IInit

[
mode = B(mode) ∧

∧
v∈V v ∈ B(v)

]
FlowR ←

∨
B∈G[mode = B(mode)∧∧

v∈V v ∈ B(v) ∧
∧

v∈V v̇ ∈ (B |=I Flow )]
JumpR ←

∨
B,B′∈G,〈B,B′〉|=IJump[
mode = B(mode) ∧

∧
v∈V v ∈ B(v)∧

mode′ = B′(mode) ∧
∧

v∈V v′ ∈ B′(v)]
UnsafeR ←

∨
B∈G,B|=IUnsafe [
mode = B(mode) ∧

∧
v∈V v ∈ B(v)]

(S, InitR,FlowR, JumpR,UnsafeR)

We denote the result computed by this algorithm by A(H, δ). This is again
a hybrid system description, and from Theorem 2 it easily follows that A(H, δ)
over-approximates H , and hence the result of the algorithm can be used to prove
safety of the original system.

Theorem 3. For the result (S, InitR, FlowR, JumpR, UnsafeR) of the algorithm
application A((S, Init , Flow, Jump, Unsafe), δ), Init implies InitR, Flow im-
plies FlowR, Jump implies JumpR, and Unsafe implies UnsafeR. Hence the safety
of [[A((S, Init ,Flow , Jump,Unsafe), δ)]] implies the safety of [[(S, Init ,Flow ,
Jump,Unsafe)]].
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However, the amount of over-approximation of the algorithm can still be arbi-
trarily large. In order to arrive at bounds for this over-approximation, we first
study such bounds for constraints. In earlier work [5] we proved results bound-
ing the over-approximation of |=I for constraints without dotted variables. We
generalize those results here to the case with dotted variables:

Lemma 1. For every constraint φ, box B defined on all un-dotted variables of
φ, for all ε > 0 there is a δ > 0 such that for every box B′ with B′ ⊆ B,
diam(B′) < δ, for every σ ∈ B′, and for every σ̇ ∈ (B′ |=I φ), there is a φ∗ with
d(φ, φ∗) ≤ ε, such that σ • σ̇ |= φ∗.

Proof. For proving this lemma we use the fact (which we will call convergence
of interval arithmetic in the rest of the proof) that for every arithmetical term
e with function symbols in the set {+, ∗, ,̂ exp, sin, cos}, denoting a function [[e]]
and box S, for every ε > 0 there is a δ > 0 such that for every box B with B ⊆ S,
diam(B) < δ, for all y ∈ I(e)(B), there is an x ∈ B such that d([[e]](x), y) ≤ ε.
This fact follows from Lipschitz continuity of interval arithmetic (e.g., Theorem
2.1.1 in Neumaier’s book [11]).

Now let φ, B, ε be as required by the assumptions of the lemma. We discuss
the case where φ is of the form ȧ = t.

Let δt be the value ensured for t, B, and ε by convergence of interval arith-
metic. We choose δ as min{δt, ε}, assume an arbitrary but fixed box B′, σ, and
σ̇ with B′ ⊆ B, diam(B′) < δ, σ ∈ B′, and σ̇ ∈ (B′ |=I ȧ = t).

From σ̇ ∈ B′ |=I ȧ = t we know that σ̇ ∈ I(t)(B′). We construct a φ∗

with σ • σ̇ |= φ∗ by providing the necessary perturbations. Let x be such that
d([[t]](x), σ̇) ≤ ε, as ensured by the convergence of interval arithmetic.

We perturb every un-dotted variable v of φ by x(v)− σ(v) (this perturbation
is smaller than ε since d(σ(v), x(v)) ≤ diam(B′) ≤ δ = min{δt, ε} ≤ ε); the
dotted variables by [[t]](x) − σ̇ (this perturbation is smaller than ε by choice of
x); and do not perturb the right-hand side of the constraint. Then σ • σ̇ |= φ∗

is equivalent to x • {ȧ �→ [[t]](x)} |= φ, that is, x • {ȧ �→ [[t]](x)} |= ȧ = t which
holds according to the definition of |=.

In the case where φ is of the form mode = m, the lemma easily holds by
choosing φ∗ to be equal to φ, in which case d(φ, φ∗) = 0. The other base cases
are similar to the case ȧ = t above.

For considering general constraints with conjunction and disjunction, we pro-
ceed by induction. This easily goes through by choosing the minimum of the
δ for the different atomic constraints and combining the φ∗ for the different
branches. ��

Using Lemma 1 we can bound the over-approximation of the algorithm up to
arbitrary precision.

Theorem 4. For every hybrid system description D, for all ε > 0 there is a
δ > 0 such that [[A(D, δ)]] is an ε-perturbed instance of D.

Proof. Let δφ,B,ε be the value of δ, as ensured by Lemma 1 for the constraint φ,
the box B, and ε. Let ε > 0 be arbitrary, but fixed. Choose δ as the minimum



Safety Verification of Non-linear Hybrid Systems Is Quasi-Semidecidable 407

of δφ,B,ε over all constraints φ defining D, and boxes B forming the state space
(one box for each mode).

We assume that D is of the form (S, Init , Flow , Jump, Unsafe), and [[A(D, δ)]]
is of the form (S, [[InitR]], [[FlowR]], [[JumpR]], [[UnsafeR]]). To prove that [[A(D, δ)]]
is an ε-perturbed instance of D we have to prove the corresponding result for each
pair of corresponding constraints of D and A(D, δ). Here, in each case, Theorem 3
implies the second item of Definition 5. Hence it suffice to prove the first item for
each pair of corresponding constraints:

– To prove that [[InitR]] is a ε-perturbed instance of Init , we have to prove that
for every σ ∈ [[InitR]], there is a constraint Init∗ with d(Init , Init∗) ≤ ε such
that σ |= Init∗. Let σ be an arbitrary, but fixed element of [[InitR]]. Then σ
satisfies at least one disjunct of InitR. Let B be the mode/box pair generating
this disjunct. Then σ ∈ B, B |=I Init and diam(B) ≤ δInit ,S,ε ≤ δ, where
S is the box forming the state space of the mode of σ. Then, by Lemma 1,
there is a constraint Init∗ with d(Init , Init∗) ≤ ε, σ |= Init∗.

– Flow: To prove that [[FlowR]] is a ε-perturbed instance of Flow , we have
to prove that for every σ • σ̇ ∈ [[FlowR]], there is a constraint Flow∗ with
d(Flow ,Flow∗) ≤ ε such that σ • σ̇ |= Flow∗. Let σ • σ̇ be an arbitrary,
but fixed element of [[FlowR]]. Then σ • σ̇ satisfies at least one disjunct of
FlowR. Let B the mode/box pair generating this disjunct. Hence σ ∈ B,
σ̇ ∈ (B |=I Flow ) and diam(B) ≤ δFlow ,S,ε ≤ δ, where S is the box forming
the state space of the mode of σ. Then, by Lemma 1, there is a constraint
Flow∗ such that d(Flow ,Flow∗) ≤ ε, and σ • σ̇ |= Flow∗.

– Jump and Unsafe: analogous to Init ��

The hybrid system A(H, δ) has a very simple form that is equivalent to a rectan-
gular automaton. Still, this rectangular automaton is not necessarily initialized
and hence it belongs to an undecidable class [8]. However, after explicitly solving
the flow constraints, it can be completely defined by polynomials. Moreover, it
has a bounded state space. Hence one can apply a result by Fränzle [6] which
provides an algorithm that, while it does not terminate always, still terminates
for all robust inputs. Hence we have:

Theorem 5. Safety verification of the results of A(H, δ) is quasi-decidable.

However, it is possible that A(H, δ) is not robust—even if H is robust. In the
case of such non-robustness Fränzle’s algorithm does not terminate. This can be
circumvented, resulting in the following proof of the main theorem of this paper
(i.e., Theorem 1):

Proof. We use the following algorithm:

i ← 1
while there is no j ∈ {1, . . . , i} such that F2i(A(H, 1/2j))

i ← i + 1
return true
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Here Ft is a version of Fränzle’s algorithm [6] for safety verification that, if it
terminates within t time units, it return the corresponding (Boolean) result, and
otherwise returns false. The above algorithm obviously is correct. It remains to
prove termination for robustly safe H .

Due to Theorem 4, if H is robustly safe, then there is a strictly positive real
number δ such that also [[A(H, δ)]] is robustly safe. Moreover, due to the nature
of Definition 5, also for all δ′ < δ, [[A(H, δ′)]] is robustly safe. Hence we can
choose n such that [[A(H, 1/2n)]] is robustly safe. Assume that Fränzle’s algo-
rithm (that terminates for all robustly safe inputs) needs time t to prove safety
of [[A(H, 1/2n)]]. Eventually the above algorithm will start F2i(A(H, 1/2n)) with
2i being greater than t which will prove safety. ��
Note that in the case where the constraint defining the hybrid system contain
transcendental function symbols like sin, or exp, the test |=I cannot be imple-
mented exactly. However, by using conservatively rounded finite arithmetic of
a suitable precision, one can retain the above results. Our experience on re-
lated algorithms shows that for practical problems, one can even expect hard-
ware floating point computation (again conservatively rounded for soundness) to
suffice.
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Abstract. A closed rectangle-of-influence (RI for short) drawing is a straight-
line grid drawing in which there is no other vertex inside or on the boundary of
the axis parallel rectangle defined by the two end vertices of any edge. Biedl et
al. [2] showed that a plane graph G has a closed RI drawing, if and only if it has
no filled 3-cycle (a cycle of 3 vertices such that there is a vertex in the proper
interior). They also showed that such a graph G has a closed RI drawing in an
(n − 1) × (n − 1) grid, where n is the number of vertices in G. They raised an
open question on whether this grid size bound can be improved [2]. Without loss
of generality, we investigate maximal plane graphs admitting closed RI drawings
in this paper. They are plane graphs with a quadrangular exterior face, triangular
interior faces and no filled 3-cycles, known as irreducible triangulations [7]. In
this paper, we present a linear time algorithm that computes closed RI drawings
for irreducible triangulations. Given an arbitrary irreducible triangulation G with
n vertices, our algorithm produces a closed RI drawing with size at most (n −
3) × (n − 3); and for a random irreducible triangulation, the expected grid size
of the drawing is ( 22n

27
+ O(

√
n)) × ( 22n

27
+ O(

√
n)). We then prove that for

arbitrary n ≥ 4, there is an n-vertex irreducible triangulation, such that any of its
closed RI drawing requires a grid of size (n− 3)× (n− 3). Thus the grid size of
the drawing produced by our algorithm is tight. This lower bound also answers
the open question posed in [2] negatively.

1 Introduction

A planar graph is a graph which can be drawn in a plane so that the edges do not
intersect at any point other than their end vertices. A planar graph with a fixed pla-
nar embedding is called a plane graph. A plane graph divides the plane into regions
called faces. The unbounded region is called exterior face, the other faces are called
interior faces. An edge is an exterior edge if it belongs to the exterior face, otherwise it
is an interior edge. A vertex is an exterior vertex if it is an endpoint of an exterior edge,
otherwise it is an interior vertex. A 3-cycle of a plane graph is a filled 3-cycle if the
proper interior of the 3-cycle contains a vertex. A plane graph G is an irreducible tri-
angulation, if G has a quadrangular exterior face, triangular interior faces and no filled
3-cycles.
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Fig. 1. (1) A closed RI drawing, (2) an open RI drawing, (3) a non RI drawing, of an inner
triangulated plane graph with no filled 3-cycles

A straight-line planar drawing of a planar graph G is a drawing in which all the
vertices of the graph are represented by points and all edges are represented by straight-
line segments without intersections except at their common ends. A straight-line grid
drawing is a straight-line planar drawing in which every vertex is placed on a grid point
with integer coordinates. A rectangle-of-influence (RI for short) drawing is a straight-
line grid drawing in which the axis parallel rectangle defined by the two vertices of
any edge does not contain any other vertex [8]. The classes of graphs that admit RI
drawings are investigated in [11]. A RI is closed if it includes the boundary of the axis
parallel rectangle defined by the two vertices of an edge and open if it does not include
the boundary (see Fig. 1). In [2], Biedl et al. showed that a planar graph has a closed RI
drawing, if and only if it has no filled 3-cycles and presented a linear time algorithm to
construct a closed RI drawing in a grid of size (n− 1)× (n− 1).

Applying the above necessary and sufficient conditions for the existence of closed
RI drawings in [2], it is easy to see that the maximal plane graphs admitting closed
RI drawings are irreducible triangulations. Without loss of generality, we only consider
irreducible triangulations in this paper. We present a linear time algorithm that computes
a closed RI drawing of an arbitrary irreducible triangulation G with n vertices. Its grid
size is at most (n− 3)× (n− 3). For a random irreducible triangulation, the expected
grid size is (22n

27 +O(
√

n))×(22n
27 +O(

√
n)). We then prove that the size of the drawing

produced by our algorithm is tight, by showing that a lower bound on the grid size for
a closed RI drawing for an arbitrary irreducible triangulation is (n− 3)× (n− 3). This
lower bound also answers the open question posed in [2] negatively.

The reminder of the paper is organized as follows. In Section 2, we introduce some
preliminaries. In Section 3, we introduce our algorithm that computes a closed RI draw-
ing for an irreducible triangulation. We also present a lower bound on closed RI draw-
ings for an arbitrary graph.

2 Preliminaries

A graph G = (V, E) is called a directed graph (digraph for short) if each edge of G
is assigned a direction. An orientation of a graph G assigns a direction to every edge
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of G. An orientation is said to be acyclic if it does not contain any directed cycle in the
graph. A st-orientation [7] (also known as bipolar orientation or st-numbering [4]) is
an acyclic orientation with a unique source s and a unique sink t. The properties of st-
orientations have been extensively studied [10,12,3]. For a 2-connected plane graph G
with st-orientation, we have for any vertex v ∈ V(G) where v �= s, t, the edges incident
to v are partitioned into a non-empty consecutive block of incoming edges and a non-
empty consecutive block of outgoing edges around v. Each face f of G has two vertices
sf and tf , known as the source vertex and sink vertex of f respectively, such that the
boundary of the face f consists of two non-empty directed paths both originating at sf

and ending at tf . Going from sf to tf , the path on the left (right, respectively) of f is
defined as the left-lateral path of f (right-lateral path of f , respectively).

Let G be an irreducible triangulation. Let W, S, E and N be four exterior vertices in
counterclockwise order. A transversal structure (also known as regular edge labeling
[9]) T (G) of G assigns a direction to each interior edge of G and partitions the set of
all the interior edges of G into two groups, say red and blue, such that the following
conditions are satisfied:

– Interior vertices: In clockwise order around each interior vertex v, its incident edges
form a non empty interval of red edges entering v, a non empty interval of blue
edges entering v, a non empty interval of red edges leaving v and a non empty
interval of blue edges leaving v.

– Exterior vertices: All interior edges incident to S are red edges leaving S, all interior
edges incident to N are red edges entering N, all interior edges incident to W are
blue edges leaving W and all interior edges incident to E are blue edges entering E.
Each of these blocks is non empty.
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Fig. 2. The minimal transversal structure
for the graph G
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Fig. 3. The closed RI drawing of G gen-
erated by Algorithm 1 using the minimal
transversal structure in Fig. 2

Given an irreducible triangulation G endowed with a transversal structure, Fusy [7,6]
defined an alternating 4-cycle as a cycle C = (e1, e2, e3, e4) of 4 edges of G that are
color alternating (i.e., two adjacent edges of C have different colors). Given a vertex v



412 S. Sadasivam and H. Zhang

on C, Fusy defined the left-edge (right-edge, respectively) of v as the edge of C starting
from v in clockwise direction (counterclockwise direction, respectively) along the cycle
C. Fusy [7] observed that an alternating 4-cycle C in a transversal structure satisfies
either of the following two configurations: (1) All edges inside C and incident to a
vertex v of C have the color of the left-edge of v. Then C is called a left alternating
4-cycle; (2) All edges inside C and incident to a vertex v of C have the color of the
right-edge of v. Then C is called a right alternating 4-cycle.

The minimal transversal structure T (G) of an irreducible triangulation G is the
unique transversal structure with no right alternating 4-cycle [7]. For example, con-
sider the transversal structure T (G) in Fig. 2. Consider the vertex n in the cycle C1 =
{(n, e), (e, d), (d, a), (a, n)}. Its left-edge is (n, e), while its right-edge is (n, a). The
edge inside C1 and incident to n is (n, d), which has the same color as the left-edge of n.
The edge (n, d) also has the same color as the left-edge (d, a) of d. Hence, C1 is a left al-
ternating 4-cycle. Similarly, one can easily verify that C2 = {(p, k), (k, j), (j, i), (i, p)}
is also a left alternating 4-cycle. There is no right alternating 4-cycle. Hence, the
transversal structure is the minimum transversal structure of G.

3 Algorithm for Closed RI Drawing

Consider an irreducible triangulation G with a transversal structure T (G). The sub-
graph of G induced by all red edges (blue edges, respectively) and the four exterior
edges is called the red map of G (blue map of G, respectively), it is denoted by Gr (Gb,
respectively). For an interior vertex v in Gr (Gb, respectively), the edges entering v and
the edges leaving v form two non empty contiguous blocks. When walking from u to
v in Gr (Gb, respectively), if we always pick the first feasible outgoing edge (i.e., the
outgoing edge could still lead to the vertex v) in counterclockwise direction at all its in-
termediate vertices in the path, then the path is unique and it is called the rightmost path
from u to v [7]. Similarly, the leftmost path always chooses the first feasible clockwise
outgoing edge at all its intermediate vertices in the path [7].

In particular, we use P in
r (v) to denote the rightmost path from S to v and P out

r (v)
to denote the leftmost path from v to N in Gr. We use P in

b (v) to denote the rightmost
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Fig. 5. The left alternating 4-cycle around a
red free edge and blue free edge
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path from W to v and P out
b (v) to denote the leftmost path from v to E in Gb. For any

interior vertex v of G, let Pr(v) denote the concatenated path of P in
r (v) and P out

r (v),
it is called the red separating path for v. Similarly, let Pb(v) denote the concatenated
path of P in

b (v) and P out
b (v), it is called the blue separating path for v. Fig. 4 shows

the red separating path and blue separating path of a vertex v ∈ V (G). A red edge
(blue edge, respectively) is defined as a red separating edge (blue separating edge, re-
spectively) if it belongs to a red separating path (blue separating path, respectively)
of a vertex v ∈ V (G), otherwise we define it as a red free edge (blue free edge, re-
spectively). We denote by Efree(T (G)), the set of all the free edges in T (G). For
example, for the transversal structure in Fig. 2, the red separating path for the ver-
tex d is Pr(d) = (S, b, d, f, j, l, N) and the blue separating path for the vertex d is
Pb(d) = (W, o, e, d, c, E). The edge (n, d) is a red free edge and the edge (k, i) is a
blue free edge.

Let e be a free edge in a transversal structure T (G). Ignoring the direction of the
edges, let C be the 4-cycle (vs, vr, vt, vl) that encloses the free edge e. This 4-cycle
C has to be a left alternating 4-cycle of T (G) as per the color and orientation of the
edges in T (G) [7]. See Fig. 5 for the two cases of the color and orientation of the
edges around a free edge e. After deleting the free edge e enclosed in C, the interior
enclosed by C becomes a quadrangular face, which we denote by f(e). It is called
the enclosing face of the free edge e. Apparently, the mapping e → f(e) from the
set of free edges to the set of their enclosing faces is a one-to-one and onto mapping.
Consider the four vertices of an enclosing face f(e) for the free edge e, it has a unique
source, and a unique sink. We denote by Vs(e) (Vt(e), respectively) the unique source
vertex (unique sink vertex, respectively) of f(e). Consider the enclosing face f(e),
the vertex �= Vs(e), Vt(e) on the left-lateral path (right-lateral path, respectively) of
f(e) is defined as the left vertex (right vertex, respectively). We denote by Vl(e) (Vr(e),
respectively) the left vertex (right vertex, respectively) of f(e). Observe that, if e is a red
free edge (blue free edge, respectively), then e = (Vs(e), Vt(e)) (e = (Vl(e), Vr(e)),
respectively). See Fig. 5. It presents the two cases where e is either a red free edge or
a blue free edge. The vertices vs, vt, vl and vr are the source vertex, sink vertex, left
vertex and right vertex of the enclosing face f(e) respectively.

We have the following lemma, its proof is omitted.

Lemma 1. Consider a transversal structure T (G) of an irreducible triangulation G:

1. An st-orientation Grb with S as the single source and N as the single sink can
be constructed using T (G) (with all the edge directions in T (G)) and assigning
directions to the four exterior edges as S to E, S to W , E to N and W to N .

2. An st-orientation Grb with S as the single source and N as the single sink can
be constructed from Grb, by simply reversing the direction of the blue edges, i.e.,
if (u, v) is a blue edge directed from u to v in Grb, then that edge becomes (v, u)
(i.e., directed from v to u) in Grb. The direction of the red edges remain as in Grb.

3. An st-orientation Gx with S as the single source and N as the single sink can be
constructed from Grb, by deleting the free edges Efree(T (G)) and the vertices W
and E and the edges having W or E as one of their end points.

4. An st-orientation Gy with S as the single source and N as the single sink can be
constructed from Gx, by simply reversing the direction of the blue edges.
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Next, we present our closed RI drawing algorithm for irreducible triangulations:

Algorithm 1. Closed RI drawing
Input: An irreducible triangulation G = (V, E).
Output: A closed RI drawing for G.

1. Construct a transversal structure T (G) of G.
2. Construct the following graphs:

(a) Construct a graph Gx from T (G) by deleting the free edges Efree(T (G)) and
the vertices W and E and the edges having W or E as one of their end points.

(b) Construct a graph Gy from Gx by simply reversing the direction of all the blue
edges, i.e., if (u, v) is a blue edge directed from u to v in Gx, then that edge
becomes (v, u) (i.e., directed from v to u) in Gy . The direction of the red edges
remain as in Gx.

3. Compute x(v) and y(v) as follows:
x(v) = the length of a longest path from S to v in Gx

y(v) = the length of a longest path from S to v in Gy

Note that we have x(S) = y(S) = 0.
4. For the vertices W and E we define:

x(W) = x(S), y(W) = y(N), x(E) = x(N), y(E) = y(S).
5. Construct a closed RI drawing for G in the xy − grid such that each vertex v ∈

V (G) is located at coordinates (x(v), y(v)) and for each edge (u, v) ∈ E(G), the
vertices u and v are connected by a straight line in the drawing.

Fig. 3 shows the closed RI drawing for the irreducible triangulation G, by applying
Algorithm 1 on the minimum transversal structure T (G) in Fig. 2. In order to prove
the correctness of Algorithm 1, we need to introduce several technical lemmas in the
following. The proof of Lemma 2 is omitted.

Lemma 2

1. If (u, v) is a red separating edge in G, then x(u) < x(v) and y(u) < y(v).
2. If (u, v) is a blue separating edge in G, then x(u) < x(v) and y(u) > y(v).
3. If (u, v) is a red free edge in G, then x(v)− x(u) ≥ 2.
4. If (u, v) is a blue free edge in G, then y(u)− y(v) ≥ 2.

Lemma 3. The drawing produced by Algorithm 1 satisfies the following:

1. Each vertex is placed on a grid point and each edge is drawn as a straight-line,
with no edge crossings except possibly at a common vertex.

2. For the axis parallel rectangle formed by the end vertices of each edge, there are
no other vertices (i.e., vertices other than the two end vertices of that edge) inside
or on the boundary of the rectangle.

Proof. We now show that Algorithm 1 produces a closed RI drawing for the input graph
G. The proof is based on induction on k, 1 ≤ k ≤ (n−4), where the (n−4) is because
of |V (G)−{S, W, E, N}|. We denote by D0 the partial drawing consisting of only the
vertices S and W and the edge connecting S and W . Obviously, S and W are placed
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at coordinates (x(S), y(S)) and (x(W ), y(W )) respectively. Let Dk denote the partial
drawing after k more vertices are added to D0. At each step, Dk+1 is constructed from
Dk by adding a vertex vk+1 at coordinates (x(vk+1), y(vk+1)) and all its incoming
edges. This vertex vk+1 is chosen such that it has all its incoming edges from vertices
in Dk, i.e., when vk+1 is added to Dk to generate Dk+1, all the vertices that have an
outgoing edge to vk+1 must already be in the drawing Dk. Note that, at each step, there
does exist such a vertex vk+1, since we can use the topological sorting of the vertices
from the st-orientation Grb.

Base Case: Let v1 be a vertex whose only two incoming edges are from S and W . Both
the incoming edges to v1 must be separating edges. We have x(v1) > x(S) = x(W )
and y(S) < y(v1) < y(W ). Thus, the drawing D1 is a partial closed RI drawing.

k+1

N

E

W

S

v

Fig. 6. Direction of incoming edges to vk+1 when it gets added to Dk

Induction Step: Assume that the algorithm produces a partial closed RI drawing Dk

after adding k vertices. Fig. 6 shows the (k + 1)th vertex and all its incoming edges
getting added to Dk to generate Dk+1. Let RDk

denote the closed region formed by
Dk. For the region RDk

, a red free edge directed from u to v cannot be an exterior
edge, as the vertex v must have an incoming red separating edge and an incoming blue
separating edge that enclose the red free edge. Thus, we can only have a red separating
edge, blue separating edge or a blue free edge as an exterior edge. Thus, if we travel in
a counterclockwise direction from S to N along the exterior edges in the boundary of
Dk, the y-coordinates of the exterior vertices in Dk are in a strictly increasing order.

For every exterior vertex other than S and W in Dk, the two exterior edges adja-
cent to it can be red incoming and blue incoming, red incoming and red outgoing, blue
incoming and blue outgoing or red outgoing and blue outgoing. Note that we cannot
have the red incoming and blue outgoing (since the red incoming edge will be placed
between a blue incoming edge and blue outgoing edge) or blue incoming and red out-
going (since the blue incoming edge will be placed between a red incoming edge and
red outgoing edge) combination.

Due to the properties of the transversal structure, for a red (blue, respectively) ex-
terior edge (u, v) in Dk, u and v cannot both have red (blue, respectively) outgoing
edges to vk+1. Fig. 7, 8, 9 and 10 show vk+1 getting added to Dk to generate Dk+1.
Let (vr

1 , v
r
2 , ...v

r
p) be p exterior vertices on a path of red separating edges that have an

outgoing blue separating edge to vk+1 and (vb
1, v

b
2, ...v

b
q) be q exterior vertices on a
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Fig. 7. Proof of Lemma 3: Case 1
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Fig. 9. Proof of Lemma 3: Case 3

b
q

v
b
1

w
v

v
r
p

1
r

v

v
r
2

2
b

v

R
w

b
R

R
r

v
k+1

k+1
R

NW

E

z

S

R

v
z

v

Fig. 10. Proof of Lemma 3: Case 4

path of blue separating edges that have an outgoing red separating edge to vk+1, where
p, q ≥ 0. Rr (Rb, respectively) denotes the axis parallel rectangular region having the
vertices vr

1 and vr
p (vb

1 and vb
q , respectively) on its boundary. The vertex vw has a red

separating edge to vr
1 and either a blue separating edge or a blue free edge to vb

1. This
vertex vw has either a red free edge, red separating edge or blue separating edge to vk+1.
The vertex vk+1 may or may not have an incoming blue free edge (vz , vk+1). Rw, Rz

and Rk+1 represent the regions where vw, vz and vk+1 could possibly be placed by
Algorithm 1 in the drawing respectively.

In the following cases we assume that vk+1 has an incoming blue free edge
(vz , vk+1). The proof for the cases where vk+1 does not have an incoming blue free
edge (vz, vk+1) is similar to the following cases and is omitted. For each case, we need
to prove the following claim:

Claim 1:

1. There is no other vertex inside the closed RI of the edges (vr
i , vk+1), (vb

j , vk+1) or
(vz , vk+1), where 1 ≤ i ≤ p and 1 ≤ j ≤ q.
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2. There is no other vertex inside the closed RI of the edge (vw, vk+1) since the closed
RI of the edge (vw, vr

1) or the edge (vw , vb
1) does not contain any other vertex (by

induction).
3. The vertex vk+1 is outside of the region RDk

and is not in the closed RI of any of
the edges of Dk.

4. There are no edge crossings except at a common vertex.

Case 1: (vw, vk+1) is a red free edge. Then (vw , vb
1) must be a blue separating edge.

In this case we have p ≥ 1 and q ≥ 1. This case is illustrated in Fig. 7. From Lemma
2, we have: (1) x(vw) < x(vr

1) < x(vr
2) < ... < x(vr

p) < x(vz) and x(vr
p) < x(vk+1);

(2) y(vw) < y(vr
1) < y(vr

2) < ... < y(vr
p) < y(vz) and y(vk+1) < y(vr

1); (3)
x(vb

1) < x(vb
2) < ... < x(vb

q) < x(vk+1) and x(vw) < x(vb
1); (4) y(vb

q) < ... <

y(vb
2) < y(vb

1) < y(vk+1) and y(vb
1) < y(vw).

From the above inequalities, we have: (1) Rz is strictly above and strictly to the right
of Rr; (2) Rw is strictly below Rr, strictly above Rb and strictly to the left of both Rr

and Rb; and (3) Rk+1 is strictly below Rr, strictly above Rb and strictly to the right of
both Rr and Rb. Thus, Claim 1 is proved for this case.

Case 2: (vw, vk+1) is a red separating edge. In this case we have p ≥ 1 and q = 0
(see Fig. 8). The proof of Case 1 covers this case as well, since we only have an added
inequality that y(vw) < y(vk+1), i.e., Rw is strictly below Rk+1.

Case 3: (vw, vb
1) is a blue free edge. Then (vw, vk+1) must be a blue separating

edge. In this case we have p ≥ 0 and q ≥ 1. This case is illustrated in Fig. 9. We
have: (1) x(vw) < x(vr

1) < x(vr
2) < ... < x(vr

p) < x(vz) and x(vr
p) < x(vk+1); (2)

y(vw) < y(vr
1) < y(vr

2) < ... < y(vr
p) < y(vz) and y(vk+1) < y(vw); (3) x(vb

1) <

x(vb
2) < ... < x(vb

q) < x(vk+1); and (4) y(vb
q) < ... < y(vb

2) < y(vb
1) < y(vk+1).

From the above inequalities, we have: (1) Rz is strictly above and strictly to the right
of Rr; (2) Rw is strictly below Rr, strictly above Rk+1 and strictly to the left of Rr;
and (3) Rk+1 is strictly above Rb, strictly below Rw and strictly to the right of both Rr

and Rb. Thus, Claim 1 is proved for this case.
Case 4: Both (vw, vk+1) and (vw, vb

1) are blue separating edges. In this case we have
p ≥ 0 and q ≥ 1 (see Fig. 10). The proof of Case 3 covers this case as well, since we
only have an added inequality that x(vw) < x(vb

1), i.e., Rw is strictly to the left of Rb.

Next, we present our main theorem, its proof is omitted.

Theorem 1

1. Let G be an irreducible triangulation. Algorithm 1 produces a closed RI drawing
for G in linear time, with size bounded by (n− 3)× (n− 3).

2. Let G be an irreducible triangulation with n vertices taken uniformly at random.
Then G has a closed RI drawing obtainable in linear time whose expected grid size
is (22n

27 + O(
√

n))× (22n
27 + O(

√
n)).

3. There exists an irreducible triangulation G with n vertices, whose closed RI draw-
ing requires a grid size of at least (n− 3)× (n− 3).

Fig. 2 shows the minimal transversal structure for the graph G and Fig. 3 shows the
closed RI drawing generated with this minimal transversal structure by Algorithm 1.
Figure 11 present a graph G whose closed RI drawing requires a grid size of at least
(n− 3)× (n− 3).
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Fig. 11. Lower bound for a closed RI drawing
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Abstract. Many algorithms for analyzing social networks assume that
the structure of the network is known, but this is not always a reason-
able assumption. We wish to reconstruct an underlying network given
data about how some property, such as disease, has spread through the
network. Properties may spread through a network in different ways:
for instance, an individual may learn information as soon as one of his
neighbors has learned that information, but political beliefs may follow a
different type of model. We create algorithms for discovering underlying
networks that would give rise to the diffusion in these models.

Keywords: Social Networks, Diffusion, Contagion, Graph Algorithms.

1 Introduction

The area of social network analysis raises many interesting and important ques-
tions, like determining which members of a population to vaccinate to stem the
spread of a virus[5]. Such questions assume that the structure of the underlying
network is known. This assumption is often valid, but in some cases, such as for
criminal networks, it is less plausible. However, even in such cases, we may have
information about the spread of something through the network. For instance,
if authorities know that some new drug first appeared in City X, and then in
Cities Y and Z, and so on, can we use this knowledge to recreate the underlying
network of drug dealers? The general structure of criminal networks has been
studied[6][4], but algorithms for analyzing social networks are often sensitive to
the exact, as opposed to general, structure of the network[2]. Algorithms to help
authorities recreate such networks would help them greatly.

In this paper, we investigate the situation in which some property is spreading
through a population and we know when each individual adopts the property
as well how the property spreads. For instance, information spread may follow
the rule that an individual learns information as soon as one of his neighbors
learns that information, but political belief might follow the rule that an indi-
vidual adopts a belief after some proportion of his neighbors have adopted that
belief[2]. First, we briefly describe an algorithm for constructing a graph under
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the model of information spread. After that, we consider the case when a vertex
adopts a property after half of its neighbors adopt the property. The model in
which every vertex adopts a property after half of its neighbors have adopted
it is applicable to many situations[3]. This is a reasonable threshold whenever
individuals desire to be in the majority. For example, an individual may decide
to attend a social event after a majority of his friends decide to attend that
event. There are certainly more complex cases, and we believe that algorithms
for such cases will be based upon the work in this paper.

2 The General Problem

We wish to reconstruct a network given information about how a property has
spread through it, and the time at which each vertex adopted that property.

2.1 Terminology and Problem Statement

A model of contagion describes how a property spreads. We consider the case of
one property spreading through the network, and assume that vertices cannot
‘unadopt’ that property. A simple model of contagion, corresponding to the
spread of information, is: “A vertex adopts the property in the time interval
after at least one of its neighbors adopts the property.”

A time vector is a vector of positive integers whose ith element is the time at
which vertex i adopts the property. The smallest integer in the vector is 1 (these
vertices are the first to adopt the property) and the vector contains all integers
up to its maximum value. In other words, no times are ‘skipped.’

If vertex x adopts the property at time t, then x is in level t. In this paper,
we depict vertices sorted into levels so that vertices in level 1 are at the top, and
vertices in the last level are at the bottom (Fig. 1).

An edge (w, x) is incoming to x if w is in a level prior to x, and outgoing
from x otherwise. Despite this terminology, edges in this graph are undirected.
Although the graph itself is not directed, we use such terminology because we
can treat the property as ‘flowing’ from one vertex to another in some direction.

Fig. 1. Vertex Levels
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For a given model of contagion, a graph G solves a time vector if, when
we introduce the property to vertices in level 1, and the property spreads in
accordance with the model of contagion, all other vertices adopt the property
at the appropriate time. Given a set of vertices, a time vector, and a model of
contagion, we wish to find a graph G that solves the time vector.

3 Algorithm for a Simple Model of Contagion

To help develop intuition about this problem, first consider a model of contagion
in which a vertex adopts a property immediately after a neighbor adopts the
property. Creating a graph to solve a time vector for this model of contagion is
easy- begin by connecting every level 2 vertex to some level 1 vertex, and then
connect every level 3 vertex to some level 2 vertex, and so on. Note that there
are multiple ways to do this.

4 Algorithms for a Proportional Model of Contagion

Now consider the model where a vertex adopts the property after some propor-
tion p of its neighbors adopt the property. The algorithms here are for p = 1

2 .
For G to solve a time vector under this model of contagion, every vertex in

level 2 and later must have at least one edge from the previous level. Call this
requirement the recency condition, and an edge fulfilling this requirement a re-
cency edge. Also, a vertex in level 2 or later cannot have more outgoing than
incoming edges; if it did, then less than half of its neighbors would be in a level
earlier than it, but for the vertex to adopt the property at the correct time, half
of its neighbors must have already adopted the property by that time. Call this
requirement the balance condition. Vertices in level 1 can have arbitrarily many
outgoing edges, since we assume that they always adopt the property at time 1.
A vertex is satisfied if it meets both the balance and recency conditions.

4.1 Problem Intuition

We will satisfy each vertex by giving it a recency edge while ensuring that the
balance condition is not violated. Consider the vertices in Fig. 2a. The level 2
vertices need a recency edge from a level 1 vertex, so we begin by adding two

Fig. 2. Finding a Solution Graph for the Proportional Model of Contagion
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such edges (Fig. 2b). Note that there are other possible choices. Next, the level 3
vertex gets a recency edge from a level 2 vertex (Fig. 2c). The first vertex in level
2 now has one outgoing edge, but it also has one incoming edge, so the balance
condition is not violated. Next, the three vertices in level 4 must obtain recency
edges from the vertex in level 3 (Fig. 2d). The vertex in level 3 only has one
incoming edge, but three outgoing edges, so the balance condition is violated.
To fix this, the level 3 vertex needs two additional incoming edges (Fig. 2e).

4.2 A Flow-Based Algorithm

The balance condition requirement resembles a flow problem, where outgoing
flow is no more than incoming flow, so we will use a flow network[1] to deter-
mine which edges to put in the graph. Consider what a solution graph looks like.
Vertices in levels 2 or later need a recency edge from a vertex in the previous
level. If a vertex has outgoing edges, then it needs the same number of incoming
edges. In our flow network, most edges will have a maximum capacity of 1, and
all capacities will be integers. Thus, we will be able to find an integral flow. If an
edge has a flow of 1 in this network, then we will add that edge to the solution
graph. If it has a flow of 0, we will not.

The flow network contains all edges except those between vertices in the same
level or vertices in adjacent levels. The edges are directed from earlier levels to
later levels and have a capacity of 1. Edges between vertices in the same level
are not a necessary part of a minimal solution, and so are not included in the
flow network. Edges between vertices in adjacent levels are potential recency
edges and must be handled in a special way, so we create a special structure
representing these edges. See Fig. 3a. The ‘unended’ edges at level 4 originate
at level 1, and the dashed box represents the special structure.

To construct the special structure between vertices in adjacent levels, add a
row of vertices between each pair of adjacent levels k and k + 1. In this inter-
mediate row, there is one vertex for each vertex in level k + 1. There will be an
edge from each vertex in level k to each vertex in the intermediate row, each
with a maximum capacity of 1. There will be an edge from each vertex in the
intermediate row to the corresponding vertex in level k + 1. These edges have a
minimum capacity of 1 and unlimited maximum capacity. See Fig. 3b. Because

Fig. 3. Constructing the Flow Network
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these edges have a minimum capacity of 1, each vertex in the intermediate row
must have an edge from at least one vertex in level k. This ensures that every
vertex in level k + 1 has a recency edge from level k.

The vertices in level 1 serve as sources of unlimited flow. We will also need a
sink vertex, because some vertices may have one incoming recency edge and no
outgoing edges. Thus, each vertex in levels 2 or later should have an edge to the
sink vertex with capacity 1.

Find a satisfying flow over this network. If an edge has a flow of 1, we add it
to the solution graph.

4.3 Generalizing the Flow Based Algorithm

This algorithm works for the case p = 1
2 , where flow in is equal to flow out,

but what about for other values of p? A natural case to consider is p = 2
3 ,

where a vertex adopts the property once 2
3 of its neighbors have adopted the

property. In other words, for every outgoing edge, there must be two incoming
edges. Unfortunately, the flow-based algorithm cannot be generalized to this case.
Consider the general problem of finding a valid integer flow over an arbitrary
network with multiple sinks and sources, where the flow out of a vertex is the
floor of half the flow into the vertex (i.e., for every unit of outgoing flow there are
two units of incoming flow). With such an algorithm, we could use the algorithm
given in the previous section to solve the problem for p = 2

3 : simply use the
same network as described above, and then find a satisfying flow for the case
when every unit of outgoing flow must be supported by two units of incoming
flow. Then each vertex would have two incoming edges for every outgoing edge.
Unfortunately, this general flow problem is NP-complete. (Note that this does
not necessarily imply that our original problem is NP-complete).

Theorem 1. The problem of finding a satisfying integer flow over an arbitrary
network with multiple sinks and sources, where the flow out of a vertex is the
floor of half the flow into the vertex, is NP-complete.

Proof. We will reduce 3SAT to this problem. Fig. 4a represents one variable and
Fig. 4b represents one clause. There is one sink vertex for each variable and one
sink vertex for each clause. Each sink vertex has a demand of 1. The thick black
lines carry flow from the source. In this flow network, there will be one source
vertex for the entire network (not shown).

Consider Fig. 4a, corresponding to one variable, first. There is one version of
this structure for each variable in the 3SAT formula, so, for instance, the flow
network will contain multiple instances of A and B. Sink vertex B, on the right
side, has a demand of 1. Vertex A, on the left side, has an incoming flow of 2
from a source vertex and thus an outgoing flow of 1. Vertex A can send this
outgoing flow across either the top row or bottom row of solid black vertices.
In this example, the flow was sent across the top row. This corresponds to setting



424 S. Soundarajan and J.E. Hopcroft

the variable to FALSE. In order for the flow across the top row to reach vertex B,
each solid black vertex in the top row must receive one additional unit of flow.
The vertices with a cross through the middle send out one unit of flow. This
unit of flow can go to either a solid black vertex or to a clause vertex. In this
case, since the top row of solid black vertices needs supplementary flow at each
vertex, the clause vertices at the top receive no flow from this structure. The
clause vertices at the bottom can each receive one unit of flow. In this example,
there are 5 clauses containing the variable as TRUE and 3 clauses containing
the variable as FALSE.

Now consider Fig. 4b, corresponding to one clause. There is one version of
this structure for each clause in the 3SAT formula, so the final flow network will
contain multiple instances of vertex C. One instance of Vertex C is shown in
Fig. 4b, but observe that Fig. 4a contains multiple instances of vertex C along
the top and bottom, corresponding to various different clauses. Vertex C in Fig.
4b has an edge incoming from the source and three edges incoming from either
the top row or the bottom row of the structures representing the three variables
contained in the clause. Vertex C must receive 2 units of flow to send 1 unit to
the sink vertex. Vertex C receives 1 unit of flow from the source, so it must also
get 1 more unit of flow from one of the variable structures. There is a satisfying
flow for this problem if and only there is a solution for the 3SAT problem. �

The general flow problem is NP-complete, but it is possible that we do not need
the full power of a flow algorithm to solve our problem. Following is a different
algorithm for the case p = 1

2 , in which some of the details are more explicit.

Fig. 4. Reducing 3SAT to a Flow Problem

4.4 Simplified Problem

We will simplify the original problem, and then show that the algorithm for
solving this simplified problem also solves the original problem.

Given a set of vertices and a time vector, create a graph G over the vertices
such that every vertex x in levels 2 or later has at least one neighbor in the pre-
vious level and at least half of x’s edges are incoming. In the following algorithm
and proof, the term solves will refer to this simplified problem. A graph solving
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this problem may not solve the original problem; although a vertex has at least
half of its edges incoming, if too many edges are incoming from much earlier
levels, it may still adopt the property too early.

4.5 A Backtracking Algorithm

In this algorithm we will construct a graph to solve the simplified problem.
We proceed through the vertices in order, adding recency edges to each vertex.
If the vertex being asked to provide the outgoing recency edge does not have
sufficiently many incoming edges to send out another outgoing edge, then we
attempt to modify the graph so that we can safely add the recency edge. Section
4.7 describes an implementation of this algorithm.

Construct a graph G by first connecting each vertex in level 2 to a vertex in
level 1. Then for each vertex v in level 3 or later find a path from v which goes
through a vertex in the previous level and then back through earlier and earlier
levels until it reaches a vertex with more incoming edges than outgoing edges
or level 1, such that no edge in the path is already in G. Call such a path a
satisfying sequence. This sequence represents adding an edge to v from a vertex
in the previous level, but that vertex must now find a new incoming edge to
allow the addition of the outgoing edge to v, and so on until a vertex with an
excess of incoming edges is found. If a satisfying sequence can be found for v,
then adding these edges to G will satisfy v while still leaving all previous vertices
with at least as many incoming edges as outgoing edges.

Perhaps no such sequence can be found unless G is modified. For example,
suppose we find a sequence from v back to some vertex w, but then we are
unable to proceed further because w is unable to obtain any more incoming
edges. Because w is in a level prior to v, w has already been satisfied and so
there must be some edge incoming to w. This edge is currently being used to
support some other satisfying sequence going through w and eventually on to
some later vertex x. If x can find a different satisfying sequence which does not
use w, then the edge incoming to w can be used to support a satisfying sequence
to v.

More precisely, the algorithm must find a path (v, uk), (uk, uk−1), ..., (u2, u1)
such that:

1. uk is in the level immediately before v.
2. For all i < k, either:

2a. ui is in a level previous to ui+1 and (ui, ui+1) does not exist in G, or
2b. ui is in a level after ui+1 and (ui, ui+1) does exist in G.

3. If (ui, ui+1) exists in G and is the only recency edge for ui, then ui−1 is in
the level immediately before ui.

4. If u1 is in a level previous to u2, then u1 is either in level 1 or has more
incoming than outgoing edges in G. If u1 is in a level after u2, then u1 has more
incoming edges than outgoing edges in G and the edge (u1, u2) was not necessary
to satisfy the recency condition for u1.

5. No vertex appears more than twice in the path.
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Condition 2a represents vertex ui+1 obtaining an additional incoming edge, and
2b represents vertex ui+1 removing an outgoing edge to ui. Condition 3 rep-
resents removing a recency edge from vertex ui, and then ui obtaining a new
recency edge. Call such a path a backtracking sequence . Although a backtracking
sequence is represented as a series of edges, it is actually a series of proposed
actions. If an edge in the sequence does not yet exist in the graph, then its
presence in the sequence represents a proposal to add that edge to the graph.
If an edge in the sequence already exists in the graph, then its presence in the
sequence represents proposing removing that edge from the graph.

Another way to interpret this method is to consider an individual edge at a
time. If v is attempting to obtain an edge from a vertex w in a previous level,
then w must have more incoming than outgoing edges. If that is not currently
the case, then w can either obtain a new incoming edge or remove an outgoing
edge. If we remove an edge outgoing from w and incoming to some vertex x,
then x may now have fewer incoming edges than outgoing edges, and so x must
either obtain a new incoming edge or remove an outgoing edge, and so on. If the
edge removed was necessary to satisfy the recency condition for x, then x must
obtain a new incoming edge which satisfies the recency condition.

Fig. 5. A Backtracking Example

Consider Fig. 5. In Fig. 5a, vertex a must get a recency edge, so we attempt
to add an edge from vertex b in the previous level. If vertex b does not have
enough incoming edges to add this edge, then b must obtain a new incoming
edge. Suppose that vertex b asks vertex c for an edge (Fig. 5b). If vertex c does
not have enough incoming edges to send an outgoing edge to vertex b, then there
are two possible options (Fig. 5c). Vertex c may attempt to get a new incoming
edge from a vertex in a previous level, such as vertex d, or vertex c may remove
an existing outgoing edge to a later vertex, such as vertex e. We then apply this
same procedure to either d or e.

Note that although we originally intended for this algorithm to solve the sim-
plified problem, as stated above, it actually solves the original problem as well.
A vertex only obtains a non-recency condition incoming edge when it needs that
edge to support some outgoing edge. Thus, a vertex will never have too many
incoming edges relative to the number of outgoing edges, so the vertex will not
adopt the property too early.
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4.6 Proof of Correctness

Claim. Given a set of vertices and a time vector, then for the model of contagion
in which a vertex adopts the property after half of its neighbors have adopted
the property, the backtracking algorithm described above will create a minimal
graph solving the time vector.

Proof. Clearly, any graph constructed by the algorithm solves the problem, so
we must show that if there is a solution to a time vector, then this algorithm
can find it. Suppose we have a solution graph S to a time vector, and the algo-
rithm has created a partial solution G to that same time vector. We can assume
without loss of generality that S is minimal; that is, no edges can be removed
from S while leaving a graph that still solves the time vector. Let v be the first
vertex in G that is not satisfied. We will create a backtracking sequence for v.

Since v is satisfied in S, v in S has an edge incoming from some vertex u in
the previous level. This edge doesn’t exist in G, since if it did, then v would be
satisfied. This edge is the beginning of the backtracking sequence. If u in G has
enough incoming edges to send an outgoing edge to v right away, then we are
done. If not, then u in G either doesn’t have enough incoming edges or has too
many outgoing edges, as compared to u in S. So either u in S has some incoming
edge that it doesn’t have in G, or u in G has some outgoing edge that it doesn’t
have in S. This edge is next in the backtracking sequence.

Now the next vertex in the backtracking sequence is in the same position as u
was previously. We may be able to immediately add or remove the edge from G,
but if not, then this vertex must get a new incoming edge or remove an outgoing
edge. To find this edge, again compare G to S. Continue this process recursively.
To show that this process terminates, we must show that the backtracking se-
quence is of finite length. Every edge in the sequence represents an edge in either
G or S, and there are only finitely many such edges, so we need to show that
each edge is added at most once. See Lemma 1 in the Appendix for proof of this.

After this process ends, some vertices may appear multiple times. However,
in most situations, we can easily remove duplicates. Suppose a vertex x appears
multiple times. If both the first and last copies of x can obtain any new incoming
edge or remove any existing outgoing edge, then the edge that was obtained or
removed at the last occurrence could have been obtained or removed at the first
occurrence, and so we can delete the part of the sequence between these two
copies. In the case when the first copy of x must obtain a new recency edge,
but the last copy of x can obtain or remove any edge, we must allow 2 copies of
x. The other two cases are similar to the first case. In all cases, we can remove
cycles so that there are at most 2 copies of x. �

4.7 A Recursive Closure Algorithm and Running Time

The recursive closure algorithm implements the backtracking algorithm. Going
through the vertices in order of level, for each vertex recursively create a set
containing vertices in a potential backtracking sequence. Progressing through
the vertices in order of level, for each vertex x, do the following:
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Recursively create a set of vertices, initially containing only x. Add all vertices
from which x can obtain a recency edge. At each successive step, expand the set
to contain vertices from which newly added members can obtain a new incoming
edge or remove an outgoing edge. Continue until a vertex with an excess of
incoming edges is found (including level 1 vertices). If no such vertex is found,
then there is no backtracking sequence for x. Note that if a vertex is deprived of
a recency edge, it must obtain a new recency edge. To handle this, associate a
‘flag’ with each vertex in the set. If a vertex is not flagged, it may obtain any new
incoming edge or remove an existing outgoing edge. If it is flagged, it can only
obtain a new recency edge. See Fig. 6 for pseudocode showing how to satisfy one
vertex. x′ is a flagged version of x and S is an ordered list.

This algorithm runs in polynomial time, since duplicate elements are removed
from S. Each vertex appears at most twice- once flagged and once unflagged. For
each vertex, we may inspect every edge adjacent to that vertex, so the satisfying
operation takes O(n2) time, where n is the number of vertices. This operation
is performed once for every vertex, so the overall running time is O(n3).

Create l i s t S conta in ing x ’ //x needs recency edge
FOR every element y in S
IF y i s unf lagged
FOR every ver tex z
IF z occurs be f o r e y AND ( z , y ) does not e x i s t // po t e n t i a l incoming edge
Add z to S , Add a po in t e r from z in S to y in S

ELSEIF z occurs a f t e r y AND (y , z ) e x i s t s // e x i s t i n g outgoing edge
IF (y , z ) i s the only recency edge f o r z
Add z ’ to S , Add a po in t e r from z ’ in S to y in S

ELSE
Add z to S , Add a po in t e r from z in S to y in S

ELSE //y i s f l agged , so must get a new recency edge
FOR every ver tex z in the prev ious l e v e l
Add z to S , Add a po in t e r from z in S to y in S
FOR every vertex w in S
IF w’ and w both appear in S
Remove w’ from S

IF w appears mu l t ip l e t imes in S
Remove extra cop i e s o f w

FOR every unf lagged vertex w in S
IF vertex w has an exce s s o f incoming edges or w i s in l e v e l 1
// found a s a t i s f y i n g sequence
Reduce number o f edges incoming to w by 1
Follow po in t e r s from w back to x ’ to determine s a t i s f y i n g sequence
Modify graph in accordance with s a t i s f y i n g sequence
TERMINATE SATISFY

No s a t i s f y i n g sequence e x i s t s // ex i t ed f o r loop without f i nd i n g a sequence
TERMINATE SATISFY

Fig. 6. The Satisfy Function of the Recursive Closure Algorithm

4.8 Generalizing the Backtracking Algorithm

Unfortunately, the backtracking algorithm runs in exponential time for p = 2
3 .

For p = 1
2 , the backtracking algorithm runs in polynomial time because each

vertex is added to or modified in S at most twice. This does not hold for p = 2
3 .
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5 Conclusion and Future Directions

We have described a new problem: recovering social networks given information
about how a property has spread through the network. We primarily focused on
the case in which a vertex adopts the property after p = 1

2 of its neighbors adopt
the property. A flow-based algorithm solved this case but did not generalize
to other values of p. We thus considered the backtracking algorithm, in which
details were made explicit. Finally, we discussed some difficulties in extending
the backtracking algorithm.

The next step is to find algorithms for other values of p. Another extension
is to consider multiple properties spreading through the network with different
starting points, so instead of a time vector, we would have a time matrix. We
could also weight each edge, so that heavier edges are more likely. Another class
of problems acknowledges that many solutions are possible, and asks questions
about the set of all solutions, such as: do any edges appear in all the graphs?
which edges are the most likely to appear? There is much to be done in this
area, and we believe that the work presented here will provide a foundation for
future work.
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Appendix

Lemma 1. When showing that there is always a valid backtracking sequence,
if multiple outgoing edges are requested or incoming edges are deleted from a
vertex, then that vertex can obtain that many new incoming edges or delete that
many existing outgoing edges, or some combination.

Proof. In the backtracking sequence, some vertex x may be encountered multiple
times. Each time, we add an edge outgoing from x or remove an edge incoming
to x. These are edges outgoing from x in S but not G or incoming to x in G but
not S. In response to this, x must find a new incoming edge or remove an existing
outgoing edge. These edges are incoming to x in S but not G, or outgoing from
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x in G but not S. We need to show that there are enough edges of the latter
two types that we can respond to edges of the first two types without repeating
edges. Define the following: Let aG be the number of edges incoming to x in G
but not S, and aS be the number of edges incoming to x in S but not G. aGS

is the number of edges incoming to x in both G and S. Define bG, bS , and bGS

similarly, but for outgoing edges. So we need to show that aG + bS ≤ aS + bG.
Consider the possible values of these variables. S is minimal, so either x in S

has the same number of incoming and outgoing edges, or it has one incoming edge
and zero outgoing edges. The same holds for G, since when an edge incoming
to x in G is created, it is either to satisfy x’s recency condition or to allow the
addition of an edge outgoing from x on to some later vertex. In the first case, x
has one incoming edge and zero outgoing edges, and in the second case, x has
an equal number of incoming and outgoing edges. Thus, we must consider four
cases, based on the combinations of the above possibilities for x in G and S.

Case 1: x has an equal number of incoming and outgoing edges in
G and S. We need to show that aG + bS ≤ aS + bG. x has an equal number
of incoming and outgoing edges in both G and S, so aG + aGS = bG + bGS and
aS + aGS = bS + bGS . Subtracting the second equation from the first, we get
aG−aS = bG−bS, and rearranging gives us the desired result aG+bS = aS +bG.

Case 2: x has an equal number of incoming and outgoing edges in
S, x has one incoming edge and zero outgoing edges in G. We need
aG+bS ≤ aS +bG. x has an excess of incoming edges in G, so if an outgoing edge
is requested from x the algorithm terminates and we do not need to make any
more modifications. Thus, we can assume that bS = 0, so we need aG ≤ aS + bG.

There are two sub-cases here: first, that aG = 1 and aGS = 0, and second,
that aG = 0 and aGS = 1. Suppose the first sub-case holds, so aG = 1 and
aGS = 0. We assumed that bS = 0, so aG + bS = 1, and aS ≥ 1, so certainly
aG + bS ≤ aS + bG. Suppose the second sub-case holds, so aG = 0 and aGS = 1.
Since aG = 0, we need to show that bS ≤ aS . We treat bS as 0, so bS ≤ aS .

Case 3: x has an equal number of incoming and outgoing edges in
G, x has one incoming edge and zero outgoing edges in S. Again, there
are two sub-cases: first, aS = 1 and aGS = 0, and second, aGS = 1 and aS = 0.
Suppose the first sub-case holds. We need that aG + bS ≤ aS + bG. Since bS = 0,
we need aG ≤ 1 + bG. Since bGS = 0 and aGS = 0, and aG + aGS = bG + bGS ,
we get that aG = bG, so certainly aG ≤ 1 + bG and aG + bS ≤ aS + bG. Now
suppose we are in the second sub-case. We need aG + bS ≤ aS + bG. Since bS = 0
and aS = 0, we need that aG ≤ bG. We know that aG + aGS = bG + bGS, so
aG + 1 = bG, so then aG ≤ bG and so aG + bS ≤ aS + bG.

Case 4: x has one incoming edge and zero outgoing edges in G and
S. We need aG + bS ≤ aS + bG. bG, bGS , and bS are all zero, so we need that
aG ≤ aS . Since x has one incoming edge in both G and S, either aG = 1, aS = 1,
and aGS = 0, or aG = 0, aS = 0, and aGS = 1. In either case, aG ≤ aS .

In each of the four cases, we showed that aG + bS ≤ aS + bG. �
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Abstract. Given an undirected graph G and an integer k ≥ 0, the NP-
hard 2-Layer Planarization problem asks whether G can be trans-
formed into a forest of caterpillar trees by removing at most k edges.
Since transforming G into a forest of caterpillar trees requires breaking
every cycle, the size f of a minimum feedback edge set is a natural pa-
rameter with f ≤ k. We improve on previous fixed-parameter tractability
results with respect to k by presenting a problem kernel with O(f) ver-
tices and edges and a new search-tree based algorithm, both with about
the same worst-case bounds for f as the previous results for k, although
we expect f to be smaller than k for a wide range of input instances.

1 Introduction

The focus of this work is on finding good 2-layered drawings of graphs. Such
drawings appear in the “Sugiyama” approach [17,13] to multilayered graph draw-
ing [5,8].

In this context, a graph is called biplanar if it can be drawn in two layers
without edge crossings (while edges are drawn as straight lines). It has been
shown that biplanar graphs are exactly the graphs that consist of disjoint cater-
pillar trees (or caterpillars for short) [13,5]. A caterpillar is a tree where every
vertex is adjacent to at most two non-leaf vertices. In this work, we concentrate
on the NP-hard 2-Layer Planarization (2LP) problem, that is, the problem
to transform a given graph into a forest of caterpillars by deleting a minimum
number of edges. Formally, this problem is defined as follows. Given an undi-
rected graph G = (V, E) and a non-negative integer k, determine whether there
is an edge subset E′ ⊆ E with |E′| ≤ k such that (V, E \ E′) is biplanar.

Apart from being proposed as an alternative method to minimize crossings [13],
solving 2LP is important in DNA mapping [19] and global routing for row-based
VLSI layout [12]. 2LP is NP-hard even in the case that the input graph is bi-
partite and in one partition each vertex has degree at most two [7]. Shahrokhi
et al. [15] presented a dynamic programming based linear-time algorithm solving
the problem on trees. Concerning the parameter k (number of edge deletions),

� Supported by the DFG, research projects PABI (NI 369/7) and DARE (GU 1023/1,
NI 369/11).

J. Kratochvil et al. (Eds.): TAMC 2010, LNCS 6108, pp. 431–442, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



432 J. Uhlmann and M. Weller

Dujmović et al. [5] showed that 2LP can be solved in O(k · 6k + |G|) time by de-
vising a search tree algorithm and several polynomial-time data reduction rules
leading to a problem kernel with O(k) vertices and edges. Later, Fernau [8] pre-
sented a refined search tree for 2LP leading to a running time of O(k2 ·5.19276k +
|G|). Finally, based on a different branching analysis, Suderman [16] developed an
O(k · 3.562k + |G|)-time algorithm.

2LP is a special case of the problem of transforming a binary matrix into
a matrix with so-called “consecutive ones property” by a minimum number of
column removals. More specifically, 2LP coincides with this problem for matrices
without identical columns that have a maximum of two 1s in each column [3].

In this work, we investigate the parameterized complexity of 2LP with respect
to the parameter “feedback edge set number” f , that is, the minimum number
of edges whose removal results in an acyclic graph. Note that the feedback edge
set number of a connected n-vertex and m-edge graph is f(G) = m−n+1 and a
minimum feedback edge set can be determined by the computation of a spanning
tree in O(n + m) time via depth-first search. We develop efficient preprocessing
rules for 2LP that lead to a problem kernel with O(f) vertices and O(f) edges.
Moreover, we present a new search tree algorithm leading to a total running time
of O(6f + f ·m) for solving 2LP.

Our work is motivated as follows. First, note that for 2LP the number of
necessary edge deletions is at least the feedback edge set number, since one has
to destroy all cycles to obtain a forest of caterpillars. In this sense, we improve
on the results of Dujmović et al. [5] by providing fixed-parameter algorithms and
kernelizations with about the same worst-case bounds for a parameter that we
expect to be significantly smaller for a wide range of input instances. Second,
Dujmović et al. [5] pointed out that “instances of 2-Layer Planarization

for dense graphs are of little interest from a practical point of view” since the
resulting drawings are unreadable anyway. Thus, they expect the solution size
to be small in practice. This is even more plausible for the feedback edge set
number of a graph which is directly linked to the number of edges, and, hence, the
sparseness of the graph. Also note that the solution size can be arbitrarily large
even for trees (the sparsest connected graphs) while the feedback edge set number
of trees is zero. Measuring the distance from trees by the feedback edge set
number can be seen as a parameterization by “distance from triviality” [10]. In
this sense, our results generalize the liner-time algorithm for trees by Shahrokhi
et al. [15]. Third, the feedback edge set number f is a parameter that can easily
be computed in advance and, hence, allows for a meta-algorithm that chooses
an algorithm for a given input by computing an estimation on the running time
prior to running the algorithm for the problem itself. Since the parameter k
(“number of edge deletions”) is NP-hard to compute, such an algorithm could
not efficiently determine the running time of an algorithm parameterized by k
in advance. Fourth, looking for smaller parameters may help to further extend
the range of solvable instances. However, this seems only possible if the new
algorithms have a modest exponential part of the running time.
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Last but not least, efficient preprocessing or polynomial-time data reduction
seems to be essential to obtain good fixed-parameter algorithms. Indeed, ker-
nelization has been recognized as one of the key techniques of parameterized
algorithmics [1,11,14]. In this context, one of our main contributions is to pro-
vide a set of new polynomial-time data reduction rules for 2LP. Due to the lack
of space, most proofs are deferred to a long version of this paper.

Preliminaries. Let G be a graph. For every vertex set V ′ ⊆ V (G), we denote the
subgraph of G that is induced by V ′ by G[V ′] and we write G−V ′ for G[V (G)\
V ′]. Equivalently, for every edge-set S ⊆ E(G), consider G− S an abbreviation
for (V (G), E(G) \ S) and V (S) the set of endpoints of edges in S. We denote
the neighborhood of a vertex v ∈ V (G) in G with NG(v) and the degree of v
in G with degG(v). If clear from the context, we omit the index. Furthermore,
let I(G) (isolated vertices) and L(G) (leaves) denote the set of vertices in G
with degree zero and one, respectively. Following [5], we define the non-leaf
degree d̂egG (v) := |NG(v) \ L(G)| for every vertex v ∈ V (G).

A caterpillar tree (or caterpillar for short) is a tree where every vertex has
non-leaf degree at most two. Equivalently, a caterpillar is a tree that does not
contain a 2-claw [7] (see Figure 1a)). Thus, caterpillars have a forbidden subgraph
characterization. A leaf v ∈ L(G) is called critical if its only neighboring vertex
has non-leaf degree two. The definition of critical vertices is motivated by the
observation that being a caterpillar is invariant with respect to adding neighbors
to non-critical vertices.

Informally speaking, G∗ denotes the subgraph of G that contains all edges that
are contained in a cycle or that connect vertices that are contained in a cycle.
Formally, set G0 := G and recursively define Gi+1 := Gi − (L(Gi) ∪ I(Gi)).
Finally, let G∗ denote the graph Gi with minimum i such that Gi = Gi+1.
Note that G∗ is the empty graph iff G is acyclic (a forest). Moreover, for G
being a forest of caterpillar trees, G1 is a forest of paths. Furthermore, note
that G − V (G∗) is acyclic (a forest). For a vertex v ∈ V (G∗) let T v denote the
tree of G \E(G∗) that is rooted at v. The tree T v is called the pendant tree of v
and v is called its connection point. Furthermore, for a rooted tree T and for a
vertex x ∈ T let Tx denote the subtree of T rooted at x.

The following special pendant trees are of particular interest in this work.
For a vertex v, let L(v) := L(G) ∩ N(v). A path p = ({v, w}, {w, x}) is called
a P2 with connection point v if deg(v) ≥ 2, deg(w) = 2, and deg(x) = 1, see
Figure 1b) for an example. Vertex w is called the middle point and we refer to
it as m(p) and vertex x is called the leaf of p denoted by l(p). For a vertex v
let P2(v) denote the set of all P2’s that have v as their connection point. A Y-
graph is defined as shown in Figure 1c). Vertex v is called the connection point
and vertex w is called the center point of the Y-graph. We refer to w by c(Y ).
Let Y(v) denote the set of all Y-graphs that have v as their connection point.

Our results are in the context of parameterized complexity, which is a two-
dimensional framework for studying computational complexity [4,9,14]. One di-
mension is the input size n, and the other one is the parameter (usually a positive
integer). A problem is called fixed-parameter tractable (fpt) with respect to a
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Fig. 1. Terminology. a) A 2-claw. The degree-three vertex of a 2-claw is called its
center vertex. Caterpillars can be characterized as graphs containing neither cycles nor
2-claws. Figure b) shows a P2 and Figure c) a Y-graph. In c) the gray leaf may or may
not be present in the Y-graph (formally, there are two different Y-graphs, one with and
one without the gray leaf).

parameter k if it can be solved in f(k) · nO(1) time, where f is a computable
function only depending on k. A core tool in the development of fixed-parameter
algorithms is polynomial-time preprocessing by data reduction. Here, the goal
is to transform a given problem instance x with parameter k into an equivalent
instance x′ with parameter k′ ≤ k such that the size of x′ is upper-bounded by
some function only depending on k. This is usually achieved by applying data
reduction rules. We call a data reduction rule correct if the new instance after an
application of this rule is a yes-instance iff the original instance is a yes-instance.
An instance is called reduced with respect to some data reduction rule if this rule
can not be applied to the instance. The whole process is called kernelization.

2 Kernelizing 2-Layer Planarization

In this section, we present a kernelization for 2LP parameterized by f , denoting
the size of a minimum feedback edge set. We present a number of polynomial-
time executable data reduction rules and show that a graph that is reduced
with respect to these rules cannot contain more than O(f) vertices and O(f)
edges. As noted before, this result improves previous work by Dujmović et al. [5].
The kernelization consists of two phases. In the first phase, which we call “tree
reduction”, roughly speaking, the goal is to reduce the “acyclic part” of the
input graph. In the second phase, the goal is to reduce the long non-branching
paths in the remaining “cyclic core” G∗, shrinking its size to a function linear
in f . We call the second phase “path replacement”.

Tree Reduction. Subsequently, we present reduction rules for repeatedly replac-
ing a pendant tree T u for some u ∈ V (G) with a smaller tree, until its size is a
constant value (see Figure 2 for an illustration). Tree Reduction Rule 1 below is
from [5].

Tree Reduction Rule 1. If there is a vertex v in T u with |L(v)| ≥ 2, then
delete all but one leaf in L(v).

Tree Reduction Rule 2. If there is a vertex v in T u with |Y(v)| ≥ 1 and
|Y(v)|+ |L(v)|+ |P2(v)| ≥ 2, then, for an arbitrarily chosen Y-graph Y ∈ Y(v),
delete all vertices of Y except for v and decrease k by one.



Two-Layer Planarization Parameterized by Feedback Edge Set 435

w1 w2 w3
vv v

v v

ww w

b)
c)

xx

a)

Fig. 2. a) Example for the application of Tree Reduction Rule 3. Note that we must
delete one of the edges {v, wi}, i = 1, 2, 3 in order to destroy the 2-claw centered at v. By
symmetry, there is an optimal solution that contains the edge {v, w3}. b) Example for
the application of Tree Reduction Rule 4. Note that the edge {w, x} is not contained
in any 2-claw and hence, x can be deleted. c) Example for the application of Tree
Reduction Rule 5. Since the deletion of the edge {x, v} destroys the same 2-claws as
the deletion of any other edge in the tree rooted at x, there is an optimal solution that
contains {x, v}.

Tree Reduction Rule 3. Consider a vertex v in T u with |P2(v)| ≥ 3. Let
P2(v) = {p1, p2, . . . , pq}. Delete the vertices l(pi) and m(pi) for 3 ≤ i ≤ q and
decrease k by q − 2.

Tree Reduction Rule 4. Consider a vertex v in T u with d̂egT u (v) = 2 and
|P2(v)| = 1. Let P2(v) = {p}. Then delete the vertex l(p).

Tree Reduction Rule 5. Consider a vertex v in T u with degG(v) = 2 and
|Y(v)| = 1. Let Y(v) = {Y }. Then delete all vertices of Y (including v) and
decrease k by one.

Tree Reduction Rule 6. If C is a connected component of G that is a cater-
pillar, then delete all vertices of C.

Lemma 1. Tree Reduction Rules 1–6 are correct. An instance reduced with re-
spect to Tree Reduction Rules 1–6 can be computed in O(|V |+ |E|) time.

The structure of an instance reduced with respect to these rules is described by
the following lemma, which concludes the presentation of the “tree reduction”.

Lemma 2. In a reduced instance, for every vertex v ∈ V (G∗), its pendant
tree T v is either a singleton or isomorphic to one of the trees shown in Figure 3.

Path Replacement. The tree reduction rules presented in the previous paragraph
are not sufficient to yield a problem kernel for our parameterization. For example,
if the input graph G is a simple cycle, then none of the above data reduction
rules applies. Recall the notions of G∗ (also called the “cyclic core” of G) and
pendant trees. The purpose of the subsequently presented data reduction rules
is to reduce non-branching paths of G∗ (hence, they are called “path reduction
rules”). The first two reduction rules take care of paths containing Y-graphs as
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f)

a)

b) c) d) e)

v v v v v v

Fig. 3. In a reduced instance, the pendant tree T v of a vertex v ∈ V (G∗) is isomorphic
to one of the trees shown in a) to f). Note that the tree shown in f) is exactly the
Y-graph as defined in Figure 1b).

pendant trees. Then, we introduce the notion of tokens which allows us to handle
the remaining cases in a unified manner. The reduction rules in this paragraph
are more intricate than in the previous paragraph.

In the following, we assume the input to be reduced with respect to all tree
reduction rules (see previous paragraph). Consider vertices u, w ∈ V (G∗) that
may be identical. We denote a path Pu,w = (u = v0, v1, . . . , v�, v�+1 = w) be-
tween u and w as degree-2 path if degG∗(vi) = 2 for all 1 ≤ i ≤ l. Its length
is � + 2. We refer to the vertices vi, 1 ≤ i ≤ l, as inner path vertices. Further-
more, denote the edges {vi−1, vi} by ei for all 1 ≤ i ≤ � + 1. Throughout this
paragraph, let P be some degree-2 path in the given graph G and let vi be
some inner path vertex of P . In this context, let TP := G[

⋃l
i=1 V (T vi)∪ {u, w}]

and for 1 ≤ i ≤ j ≤ l, let Ti,j denote the subtree of TP containing all vertices
reachable from vi in TP − {ei, ej+1}. Note that Ti,i = T vi .

The next two data reduction rules handle all Y-graphs that have a vertex on
a degree-2 path as their connection point. First, observe that for any Y-graph Y ,
deleting the edge that is incident to the connection point is at least as good as
deleting any combination of edges of Y .

Observation 1. Let Y denote some Y-graph in G with connection point v. Then
there is an optimal solution S for G with S ∩ E(Y ) ⊆ {{v, c(Y )}}.

The first rule identifies Y-graphs Y with connection point vi for which it is
optimal to delete the edge {vi, c(Y )}.

Path Reduction Rule 1. Let P denote a degree-2 path and let both vi and vi+1

be inner path vertices of P such that Y := T vi is a Y-graph. If
1. T vi+1 is neither a singleton nor a Y-graph, or
2. degG(vi+1) = 2, vi+2 is an inner path vertex, and T vi+2 is either a singleton

or a Y-graph,
then delete {vi, c(y)} and decrease k by one.

The second rule handles almost all remaining cases where a Y-graph occurs as
the pendant tree of some inner path vertex vi of P by bypassing vi in P .
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Path Reduction Rule 2. Let P denote a degree-2 path and let both vi and vi+1

be inner path vertices of P such that Y := T vi is a Y-graph. If
1. T vi+1 is a Y-graph, or
2. vi−1 and vi+1 have degree two, or
3. vi+2 is an inner path vertex, deg(vi+1) = 2, and T vi+2 is neither a singleton

nor a Y-graph,
then remove all vertices of Y from G, insert the edge e = {vi−1, vi+1}, and
decrease k by one.

For the correctness of Path Reduction Rule 2, we need the following lemma.

Lemma 3. Let v be a degree-2 vertex in G∗ such that T v is neither a singleton
nor a Y-graph. Then there is an optimal solution S for G such that v is non-
critical in G− S.

Lemma 4. Path Reduction Rule 2 is correct.

Proof. Let G′ denote the graph that results from applying Path Reduction Rule 2
to some vi in G and let eY := {vi, c(Y )}. For the correctness, we prove that G
has a solution S of size k if and only if G′ has a solution S′ of size k − 1.

Let Ĝ denote the result of contracting ei+1 in G − {eY } and observe that Ĝ
is identical to G′ with the exception of one connected component (containing all
vertices of Y but vi) which is a caterpillar. Obviously, Ĝ and G′ are equivalent
in the sense that a solution for one is also a solution for the other (considering
that ei in Ĝ plays the role of e in G′).

“⇒:” If eY ∈ S, then, since contracting an edge does not create 2-claws
or cycles, S′ := S \ {eY } is a solution of size k − 1 for Ĝ and, thus, for G′.
Otherwise, by Observation 1, no edge of Y is in S and thus, ei ∈ S and ei+1 ∈
S. Moreover, by construction, G′ − {e} is a subgraph of G − {ei, ei+1} and
thus, S′ := S \ {e1, e2} ∪ {e} is a solution for G′ of size k − 1.

“⇐:” First, if a solution S′ for G′ of size k− 1 contains e, then the equivalent
solution Ŝ for Ĝ contains ei, and clearly, S := Ŝ ∪ {ei+1} is a size-k solution
for G. Thus, in the following, we assume that there is no solution for G′ of
size k − 1 that contains e (in particular, e �∈ S′ and thus vi−1 and vi+1 are
neighbors in G′ − S′).

Second, observe that the subdivision of an edge e′ of a caterpillar can only
create a 2-claw if e′ is incident to a critical vertex. Hence, if vi−1 and vi+1 are both
non-critical in G′ − S′, then we can subdivide e without affecting the solution
and thus, S := S′ ∪ {eY } is a size-k solution for G. Hence, in the following, we
assume that vi−1 or vi+1 is critical in G′ − S′. In the following, we consider the
three cases of Path Reduction Rule 2 separately.

Case 1: The first condition of Path Reduction Rule 2 applies.
Then, Y ′ := T vi+1 is a Y-graph. Let eY ′ := {vi+1, c(Y ′)}. By Observation 1, we
can assume that S′ contains either eY ′ or both e and ei+2. However, by the above
assumption, e �∈ S′ and thus, ei+2 �∈ S′ and eY ′ ∈ S′, implying degG′−S′(vi+1) =
2. Thus, neither vi+1, nor vi−1 is critical in G′−S′, contradicting the assumption
above.
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Case 2: The second condition of Path Reduction Rule 2 applies.
Then, degG(vi−1) = degG(vi+1) = 2. Clearly, if any of vi−1, vi+1 is a leaf in G′−
S′, then the other cannot have non-leaf degree two in G′ − S′. Thus, neither of
them is critical in G′ − S′, contradicting the assumption above.

Case 3: The third condition of Path Reduction Rule 2 applies.
By Lemma 3 we can assume that vi+2 is non-critical in G′ − S′. Clearly, vi−1 is
non-critical in G′ − S′ since degG(vi+1) = 2. Hence, vi+1 is critical in G′ − S′

and thus, S′ ∪ {e} isolates vi+1. Since vi+2 is non-critical in G′ − S′, it follows
that (S′ ∪{e}) \ {ei+2} is a size-k solution for G′ containing e, contradicting the
assumption above. ��

The twopath reduction rules presented so far eliminate Y-graphs in all long degree-
2 paths. In the following, consider P to be Y-graph-free, that is, P does not contain
an inner path vertex whose pendant tree is a Y-graph. Consider a graph that is re-
duced with respect to Path Reduction Rules 1 and 2. All degree-2 paths P ′ that
are not Y-graph-free contain at most two inner path vertices, whose pendant trees
are a singleton and a Y-graph, respectively. Thus, it is clear that |V (TP ′)| ≤ 9. In
the following, we focus on Y-graph-free degree-2 paths. In this case, we can show
that we do not need to consider deleting edges in pendant trees, thus allowing us
to restrict our attention to deleting edges on the degree-2 path.

Lemma 5. Let P be a Y-graph-free degree-2 path. There is an optimal solution
for G that does not contain any edge of E(TP ) \ E(P ).

To handle the remaining paths in a unified manner, we introduce the notion of
“tokens” as sets of consecutive edges of P . Consider a vertex v in P that is the
center of a 2-claw. Then, Lemma 5 tells us that this 2-claw must be destroyed by
deleting an edge of P . We model this fact by letting v generate a token containing
all edges that may be deleted in order to destroy this 2-claw. The introduction of
this notion is split into three parts. First, we define tokens, second, we point out
how they are generated, and third, we specify what it means to destroy a token.

In the following, a vertex v in P is called crossable if degG(v) = 2. A token K
of P is a set of at most 4 consecutive edges of P . Let vi be a vertex in P .
If i ≤ �−1, then the upper token Kup (vi) of vi is {ei+1, ei+2} if vi+1 is crossable
and it is {ei+1}, otherwise. Equivalently, if i ≥ 2, then the lower token K low (vi)
of vi is {ei−1, ei} if vi−1 is crossable and it is {ei} otherwise. In this sense, we say
that tokens can only “span” over crossable vertices. For the vertices u, v1, v�,
and w, we need the following auxiliary tokens: K low (u) := Kup (w) := {4},
K low (v1) := {4, e1}, and Kup (v�) := {e�+1, 4}.

Each inner path vertex vi of P for which P2(vi) �= ∅ generates tokens in the
following way: If |P2(vi)| = 1 (in this case T vi is isomorphic to one of the trees
shown in Figure 3 b) and c)), then vi generates one token Kup (vi) ∪K low (vi).
If |P2(vi)| = 2 (in this case T vi is isomorphic to one of the trees shown in
Figure 3 d) and e)), then vi generates two tokens, Kup (vi) and K low (vi). We
define K(vi) as the set of tokens generated by vi and K(P ) as the set of all tokens
generated by inner path vertices of P . See Figure 4 for an illustration.
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e1 e2 e3 e4 e5 e6 e7

a) b)

Fig. 4. a) Illustration of the tokens generated by a degree-2 path. The tokens are
depicted by horizontal bars. That is, the tokens are {e2, e3, e4}, {e3, e4}, {e5, e6},
and {e5, e6, e7, �}. b) Example of a chained degree-2 path. The tokens are depicted
by horizontal bars. Furthermore, dashed lines represent auxiliary tokens.

A non-auxiliary token (token that does not contain 4) K ∈ K(P ) is destroyed
by an edge set E′ if K ∩ E′ �= ∅. Observe that if K contains 4, then it either
contains e1 or e�. We say that a token containing e1 and 4 is destroyed by E′ if
either K ∩ E′ �= ∅ or E′ contains all edges incident to v0 except for e1. A token
containing e�+1 is destroyed analogously. Informally speaking, a token represents
the need to delete an edge. By Lemma 5 it suffices to consider edges in P . Thus,
the task is to destroy all tokens by deleting only few edges.

In the following, we present path reduction rules to shrink degree-2 paths.
The first rule reduces degree-2 paths that do not contain any tokens.

Path Reduction Rule 3. If there is a degree-2 path P with |V (TP )| > 7 and
K(P ) = ∅, then contract T2,�−1 to a single vertex.

Next, we concentrate on degree-2 paths generating tokens. Note that for some
degree-2 path P , the end vertices u and w could be the center of a 2-claw
containing inner path vertices of P . To account for this possibility, we de-
fine K′(P ) := K(P ) ∪ {Kup (u) , K low (w)}. Furthermore, since tokens are ba-
sically edge sets, they may overlap. This behavior is exploited in the following
reduction rules requiring a more formal definition. We call an inner path ver-
tex vi of P a token separator if there is no token in K′(P ) containing both ei

and ei+1. Finally, P is called chained, if it does not have a token separator (see
Figure 4b)).

Path Reduction Rule 4. Let P be a degree-2 path with K(P ) �= ∅ and P is
not chained. Let vi be a token separator of P . Then replace Ti,i by two copies
of Ti,i, connect one to vi−1 (by inserting an edge between its connection point
and vi−1), and connect the other to vi+1.

See Figure 5 for an illustration of Path Reduction Rule 4.

Path Reduction Rule 5. Let P be a chained degree-2 path with K(P ) �= ∅.
Let MP := {i ∈ N | K(vi) �= ∅}, let p := minMP and q := max MP , and suppose
that q − p > 1. If |K(P )| is even, then delete Tp+1,q−1, insert the edge e :=
{vp, vq}, and reduce k by (|K(P )| − 2)/2; otherwise delete Tp+1,q, insert the
edge e := {vp, vq+1}, and reduce k by (|K(P )| − 1)/2.
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Fig. 5. The graph that results from applying Path Reduction Rule 4 to the graph
shown in Figure 4a)

Lemma 6. Let G be reduced with respect to all reduction rules presented in this
section and let V3 denote the set of vertices with degree at least 3 in G∗. If two
vertices u, w ∈ V3 are connected in G by a degree-2 path, then the subgraph of G
connecting u and w contains at most 10 vertices and at most 11 edges.

Theorem 1. 2-Layer Planarization admits a linear problem kernel contain-
ing at most 44(f − 1) vertices and at most 45(f − 1) edges, with f > 0 being the
size of a minimum feedback edge set of G. The problem kernel can be constructed
in O(f · |E|) time.

Proof. Assume that the input G is reduced with respect to all presented data
reduction rules. For the analysis of the kernel size, we need the following notation.
Let V3 denote the set of vertices with degree at least 3 in G∗ and let G∗

3 :=
(V3, E3) denote the mulitgraph on V3 that contains an edge for every maximal
degree-2 path in G. More specifically, E3 contains an edge {u, w} for every
edge {u, w} ∈ E with u, w ∈ V3, and, in addition, E3 contains an edge {u, w} for
every maximal degree-2 path of length at least three between two (not necessarily
different) vertices u, w ∈ V3. Thus, G∗

3 may contain loops. Furthermore, let F
with |F | = f be a minimum feedback edge set of G and let F3 be a minimum
feedback edge set of G∗

3 (we require that a feedback edge set of G∗
3 contains all

loops and all but at most one edge between any two vertices). Clearly, |F3| ≤ f
and G∗

3−F3 is a forest and, thus, |E3| ≤ |V3|+f−1. Since the minimum degree1

of a vertex in G∗
3 is 3, we know that

∑
v∈V3

degG∗
3
(v) ≥ 3|V3|, and since the sum

on the left hand side equals 2|E3|, we know that 2(|V3|+f−1) ≥ 3|V3|, implying
|V3| ≤ 2(f − 1) and |E3| ≤ 3(f − 1).

With G∗
3 bounded, we can use Lemma 6 to bound G. Each edge in G∗

3 corre-
sponds to a degree-2 path in G∗. Each vertex in V3 may additionally be incident
to a pendant tree (see Figure 3). Thus, we can bound the number of vertices
in G by |V (G)| ≤ |E3| · 10 + |V3| · 6 + |V3| ≤ 44(f − 1) and the number of edges
in G by |E(G)| ≤ 45(f − 1). ��

3 Search Tree, Further Results, and Open Questions

In this section, we provide an algorithm that solves the 2-Layer Planariza-

tion problem in O(6f · f2 + f · |E|) time. It employs a search tree based
strategy that makes use of the kernelization presented in the previous section.

1 A loop at vertex v contributes 2 to the degree of v.
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The algorithm runs in three phases. First, we apply a search tree enumerating
partial solutions by branching on a certain type of 2-claw. Second, we branch
on small cycles in the remaining graph. In the third phase, we branch on the
tokens (see Section 2, page 438) that remain in the graph. The input graph G
considered in each phase is assumed not to be subject to the previous phase, that
is, G does not contain a structure that is branched on in the previous phase.
Furthermore, the input graph of each phase is assumed to be reduced with
respect to the data reduction rules presented in the previous section. We split
the number of edge deletions done by branching in the three phases into f1, f2,
and f3 with f1 + f2 + f3 = f .

Theorem 2. 2-Layer Planarization can be solved in O(6f · f · |E|) time.

By initially kernelizing the input instance, we can assume |E| to be linear in f
for the branching algorithm.

Corollary 1. 2-Layer Planarization can be solved in O(6f · f2 + f · |E|)
time. Moreover, if |E| ≤ |V | + O(log |V |), then 2-Layer Planarization can
be solved in polynomial time.

We can show that our kernelization results for 2LP can be extended to the closely
related NP-hard Node Duplication based Crossing Elimination(NDCE)
problem [2]. In NDCE the task is to transform an input graph into a forest of
caterpillar trees by a minimum number of node duplications. Herein, duplicating
a vertex v means to delete v, add two new vertices v1, v2, and make every former
neighbor of v adjacent to exactly one of v1 or v2. NDCE arises in the design of
molecular quantum-dot cellular automata [2] and visualization of gene ontologies
in bioinformatics [18]. Chaudhary et al. [2] showed the NP-hardness of NDCE
and presented an ILP formulation for it. The parameterized complexity of NDCE
seems unexplored. We can show that NDCE has a linear problem kernel with
respect to the feedback edge set number of the graph. Note that the feedback
edge set number is also a lower bound for the number of node duplications
required to transform a graph into a forest of caterpillars. Since the techniques
employed by this kernelization are very similar to the ones presented for 2LP,
we defer these elaborations to a long version of this paper.

We conclude with some open questions for future work. It is interesting to
investigate whether our kernelization approach also holds for the edge-weighted
case. Moreover, it is interesting to investigate whether the branching analysis
suggested by Suderman [16] can be used to obtain a better search tree algorithm
for the parameter feedback edge set number. Providing efficient fixed-parameter
algorithms for parameters upper-bounded by the feedback edge set is a natural
next step to extend the range of solvable instances. The feedback vertex set
number would be a canonical candidate. Finally, it would be interesting to extend
our results to the multilayered problem versions [6].
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5. Dujmović, V., Fellows, M., Hallett, M., Kitching, M., McCartin, G.L.C., Nishimura,
N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-
parameter approach to 2-layer planarization. Algorithmica 45(2), 159–182 (2006)
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Abstract. Timed transition systems are a widely studied model for
real-time systems. The intention of the paper is twofold: first to show
the applicability of the general categorical framework of open maps in
order to prove that timed weak bisimulation is indeed an equivalence
relation, and, second, to investigate how several categorical (open maps,
path-bisimilarity and coalgebra based) approaches to an abstract charac-
terization of bisimulation relate to each other and to timed weak bisim-
ulation, in the setting of timed transition systems.

1 Introduction

Monitoring real-time concurrent systems is a challenging problem. In order to
cope with the problem, different formal models for real-time systems have been
put forward. Over the last two decades, much of the theory of observational
equivalences of models has been lifted to real-time settings (see [2,3,6,9,15,29]
among others). Klusener [19] was the first who extended bisimulations with silent
step (weak, delay and branching bisimulations) to the setting with time. A key
property of a semantics is that it is an equivalence. In general for concurrency
semantics in the presence of silent step, reflexivity and symmetry are easy to see,
but transitivity is much more difficult. In a setting with time, proving equivalence
of a concurrency semantics becomes more complicated, compared to untimed
case. Still, equivalence properties for timed semantics are often claimed, but
hardly even proved (see [4,19,32] among others). In the paper [13] it has been
shown that timed branching bisimulation as defined by van der Zwaag [32] does
not constitute an equivalence relation, in case of a dense time domain. The
authors of [13] have proposed an adaptation and proved that the resulting timed
branching bisimulation is an equivalence indeed.

In an attempt to explain and unify apparent differences between the extensive
amount of research within the field of untimed behavioural equivalences, several
category-theoretic approaches to the matter have appeared (see [27,17] among
others). One of them was initiated by Joyal, Nielsen, and Winskel in [17] where
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they have proposed abstract ways of capturing the notion of bisimulation through
open maps based bisimilarity and its logical counterpart — path bisimilarity. As
shown in [8,17,23,24], bisimilarity induced by open maps makes possible a uni-
form definition of the numerous suggested behavioural equivalences (e.g., trace
and testing equivalences, bisimulation, barbed and weak bisimulations, strong
history preserving bisimulation, etc.) across a wide range of models for concur-
rency (e.g., transition systems, event structures, Petri nets, higher dimensional
automata, etc.). The situation is less settled in the case of real-time models. In
[16] and [31], the open maps based approach has been applied to provide an ab-
stract characterization of interleaving bisimulation on timed transition systems
and of partial order based equivalences on timed event structures, respectively.
The general categorical framework of open maps has been used in [14] to prove
that timed delay equivalence is indeed an equivalence relation in the setting of
timed transition systems with invariants.

Another way to provide categorical characterizations is to adopt the coal-
gebraic approach. During the last years, it is becoming increasingly clear that
a great variety of state-based dynamical systems, like transition systems, au-
tomata, process calculi and class-based systems can be captured uniformly as
coalgebras. There is also a coalgebraic notion of bisimulation, the research in this
area has been initiated by Aczel and Mendler [1]. The papers [20,21,22,28,25,26]
have provided a coalgebraic rendering of various behavioural equivalences in
untimed settings. For discrete and continuous stochastic systems, researchers
have investigated coalgebras for probability distribution functors on categories
of metric or measurable spaces (see [7,12,30] among others). The paper [18] has
given a coalgebraic formulation of timed processes and their operational seman-
tics, where time is modelled by a monoid called a time domain, and processes
are modelled by timed transition systems, which amount to coalgebras for an
evolution comonad generated by the time domain.

The contribution of the paper is twofold: first to show the applicability of the
general framework of open maps in order to prove that timed weak bisimulation
is indeed an equivalence relation, and, second, to investigate how several cat-
egorical (open maps, path-bisimilarity and coalgebra based) approaches to an
abstract characterization of bisimulation relate to each other and to timed weak
bisimulation, in the setting of timed transition systems.

The rest of the paper is organized as follows. The basic notions and nota-
tions related to the structure and behaviour of timed transition systems with
invariants are introduced in section 2. In the next section, we define a notion of
weak bisimulation and give its alternative characterization. A category of timed
transition systems is introduced in section 4. An open maps based characteriza-
tion of timed weak bisimulation is given in section 5. In the subsequent section,
we show how the equivalences under consideration can be captured by another
category-theoretic bisimulation — path-bisimulation. In section 7, a coalgebraic
formulation of the equivalences is treated. Section 8 contains conclusion and
some remarks on future work. Proofs are omitted because of space limitations
and can be found in a forthcoming paper.
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2 Timed Transition Systems

In this section, we introduce some basic notions and notations concerning timed
transition systems [16] and their behaviour.

Let R be the set of non-negative reals and R+ the set of positive reals. Also, let
Σ be a finite alphabet of actions without the silent action τ , and Στ = Σ ∪{τ}.
A timed word over Στ ∪R+ is a finite sequence of the form: α = σ1 . . . σn such
that σi ∈ Στ ∪ R+ (1 ≤ i ≤ n). We consider a finite set V of clock variables.
A clock valuation over V is a mapping ν : V → R which assigns time values to
the clock variables. Define (ν + c)(x) := ν(x) + c for all clock variables x ∈ V .
For a subset λ of clock variables, we shall write ν[λ → 0](x) := 0, if x ∈ λ, and
ν[λ → 0](x) := ν(x), otherwise. Given a set V , we define the set Δ(V ) of clock
constraints by the following grammar: δ := c # x | x + c # y | δ ∧ δ, where
# ∈ {≤, <,≥, >, =}, c is a real valued constant and x, y are clock variables from
V . We shall say that a clock constraint δ is satisfied by a clock valuation ν if
the expression δ[ν(x)/x]1 evaluates to true. A clock constraint δ defines a subset
of Rm (m is the number of clock variables in V ). We call the subset as the
meaning of δ and denote it as ‖δ‖V . A clock valuation ν defines a point in Rm

(denoted ‖ν‖V ). So, the clock constraint δ is satisfied by the clock valuation ν
iff ‖ν‖V ∈ ‖δ‖V .

We are now prepared to consider the definition of timed transition systems.

Definition 1. A timed transition system T is a sextuple (S, s0, Στ , V, T, I) where
S is a set of states and s0 is the initial state, Στ is a finite alphabet of actions, V
is a set of clock variables, T ⊆ S × Στ × Δ(V ) × 2V × S is a set of transitions,
I ∈ Δ(V )S assigns to each state an invariant given by the same syntax as a clock
constraint. For each transition (s, a, δ, λ, s′), if a = τ , then λ = ∅. We shall write
s

σ→
δ, λ

s′ to denote a transition (s, σ, δ, λ, s′).

Define the behaviour of timed transition systems.

Definition 2. Let T = (S, s0, Στ , V, T, I) be a timed transition system.
A configuration of T is a pair 〈s, ν〉, where s is a state and ν is a clock

valuation. The set of configurations of T is denoted as Conf(T ).
For 〈s, ν〉, 〈s′, ν′〉 ∈ Conf(T ) and σ ∈ Στ ∪R+, 〈s, ν〉 σ→ 〈s′, ν′〉 is defined as

follows: 1) if σ ∈ Στ , then there is a transition s
σ→

δ,λ
s′ such that ‖ν‖V ∈ ‖δ‖V ,

ν′ = ν[λ → 0] and ‖ν′‖V ∈ ‖I(s′)‖V , 2) if σ ∈ R+, then s = s′, ν′ = ν + σ and
∀0 < σ′ ≤ σ � ‖ν + σ′‖V ∈ ‖I(s)‖V .

A run of T is a sequence 〈s0, ν0〉
σ1→ 〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σn→ 〈sn, νn〉, where

s0 is the initial state, ν0 is the constant 0 function and σi ∈ Στ ∪R+ (i = 1..n).
A run as above is said to generate the timed word α = σ1 . . . σn. A configuration
〈s, ν〉 of T is called reachable iff T has a run with an occurrence of 〈s, ν〉. The
set of reachable configurations of T is denoted by RC(T ).

1 δ[y/x] is the substitution of y for x in δ.
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In the following we shall use some auxiliary notations. Let a ∈ Σ and d ∈ R+.
For 〈s, ν〉, 〈s′, ν′〉 ∈ Conf(T ), we shall write:

– 〈s, ν〉 ε⇒ 〈s′, ν′〉 iff 〈s, ν〉 τ→ 〈s1, ν1〉 · · · 〈sn−1, νn−1〉 τ→ 〈sn, νn〉 = 〈s′, ν′〉,
where n ≥ 0,

– 〈s, ν〉 ε⇒ d→ ε⇒ 〈s′, ν′〉 iff 〈s, ν〉 ε⇒ d1→ ε⇒ 〈s1, ν1〉 · · · 〈sn−1, νn−1〉 ε⇒ dn→ ε⇒
〈sn, νn〉 = 〈s′, ν′〉, where n ≥ 1 and d = d1 + · · ·+ dn,

– 〈s, ν〉 a⇒ 〈s′, ν′〉 iff 〈s, ν〉 ε⇒ a→ ε⇒ 〈s′, ν′〉,

– 〈s, ν〉 d⇒ 〈s′, ν′〉 iff 〈s, ν〉 ε⇒ d→ ε⇒ 〈s′, ν′〉,

– for σ ∈ Στ ∪R+, we define 〈s, ν〉 σ̂⇒ 〈s′, ν′〉 as follows:

• 〈s, ν〉 τ̂⇒ 〈s′, ν′〉 iff 〈s, ν〉 ε⇒ 〈s′, ν′〉,

• 〈s, ν〉 â⇒ 〈s′, ν′〉 iff 〈s, ν〉 a⇒ 〈s′, ν′〉,

• 〈s, ν〉 d̂⇒ 〈s′, ν′〉 iff 〈s, ν〉 d⇒ 〈s′, ν′〉.

A weak run of T is a sequence 〈s0, ν0〉
σ̂1⇒ 〈s1, ν1〉 . . . 〈sn−1, νn−1〉

σ̂n⇒ 〈sn, νn〉,
where s0 is the initial state, ν0 is the constant 0 function and σ1, .., σn ∈ Στ∪R+.
A weak run as above is said to generate the timed word σ̂1 . . . σ̂n over Σ ∪R+.

3 Timed Weak Bisimulation

In this section we define the concept of timed weak bisimulation and give its
alternative characterization.

Definition 3. Given timed transition systems T = (S, s0, Στ , V, T, I) and T ′ =
(S′, s′0, Στ , V ′, T ′, I ′), a relation B ⊆ RC(T )×RC(T ′) is a timed weak bisimu-
lation if (〈s0, ν0〉, 〈s′0, ν′

0〉) ∈ B and for any (〈s, ν〉, 〈s′, ν′〉) ∈ B it holds:

1. if 〈s, ν〉 σ→ 〈s1, ν1〉 (σ ∈ Στ ∪R+), then
(a) either σ = τ and (〈s1, ν1〉, 〈s′, ν′〉) ∈ B,
(b) or 〈s′, ν′〉 ε⇒ σ→ ε⇒ 〈s′1, ν′

1〉 and (〈s1, ν1〉, 〈s′1, ν′
1〉) ∈ B for some 〈s′1, ν′

1〉,
2. if 〈s′, ν′〉 σ→ 〈s′1, ν′

1〉 (σ ∈ Στ ∪R+), then
(a) either σ = τ and (〈s, ν〉, 〈s′1, ν′

1〉) ∈ B,
(b) or 〈s, ν〉 ε⇒ σ→ ε⇒ 〈s1, ν1〉 and (〈s1, ν1〉, 〈s′1, ν′

1〉) ∈ B for some 〈s1, ν1〉.

T1 and T2 are called timed weak bisimilar if there exists a timed weak bisimulation
between the sets of their reachable configurations.

Example 1. To illustrate the concept consider the timed transition systems shown
in Fig. 1. The timed transition systems Ť and Ṫ are timed weak bisimilar, whereas
the timed transition systems T̂ and T̃ are not because in T̃ after passing 5 time
units an execution of a is possible, but it is not the case in T̂ .
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Fig. 1.

We give another characterization of timed weak bisimulation which is more con-
venient to work with.

Lemma 1. Given timed transition systems T , T ′ and a relation B ⊆ RC(T )×
RC(T ′), B is a timed weak bisimulation iff (〈s0, ν0〉, 〈s′0, ν′

0〉) ∈ B and for any
(〈s, ν〉, 〈s′, ν′〉) ∈ B it holds:

(i) if 〈s, ν〉 σ→ 〈s1, ν1〉 (σ ∈ Στ ∪R+),

then 〈s′, ν′〉 σ̂⇒ 〈s′1, ν′
1〉 and (〈s1, ν1〉, 〈s′1, ν′

1〉) ∈ B for some 〈s′1, ν′
1〉,

(ii) if 〈s′, ν′〉 σ→ 〈s′1, ν′
1〉 (σ ∈ Στ ∪R+),

then 〈s, ν〉 σ̂⇒ 〈s1, ν1〉 and (〈s1, ν1〉, 〈s′1, ν′
1〉) ∈ B for some 〈s1, ν1〉.

4 A Category of Timed Transition Systems

In this section we first define a category of timed transition systems and then show
that it has pullbacks. For this purpose, we start with a notion of a morphism.

Definition 4. Given timed transition systems T = (S, s0, Στ , V, T, I) and T ′ =
(S′, s′0, Στ , V ′, T ′, I ′), a pair (μ, η) is a morphism between T and T ′, if μ : S →
S′ is a mapping between the states and η : V ′ → V is a mapping between the
clock variables, satisfying the following conditions:
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– 〈μ(s0), η−1(ν0)〉 is the initial configuration of T ′,
– if 〈s, ν〉 ∈ RC(T ) and 〈s, ν〉 σ→ 〈s1, ν1〉 (σ ∈ Στ ∪R+) in T , then

〈μ(s), η−1(ν)〉 ∈ RC(T ′) and 〈μ(s), η−1(ν)〉 σ̂⇒ 〈μ(s1), η−1(ν1)〉 in T ′.

Here, for a function η : V ′ → V and a clock evaluation ν : V → R, we define
η−1(ν) : V ′ → R, the inverse image of ν under η, as η−1(ν)(x) := ν(η(x)).

Notice, the morphisms defined prior to that represent some notions of simulation
of the behaviour of one system by the other morphisms, with an accuracy of
observable actions.

Timed transition systems with alphabet Στ and morphisms between them
form a category of timed transition systems, CTTS, in which the composition
of two morphisms (μ, η) : T −→ T ′ and (μ′, η′) : T ′ −→ T ′′ is defined as
(μ′, η′) ◦ (μ, η) := (μ′ ◦ μ, η ◦ η′), and the identity morphism is the morphism
where both μ and η are the identity functions.

The category CTTS has a number of useful properties. For our purpose here
we only need the following.

Theorem 1. CTTS has pullbacks.

5 Open Maps Bisimulation

In this section, we provide an abstract characterization of timed weak bisimula-
tion in terms of open morphisms.

We start with defining the terminology from [17]. First, a category M whose
objects represent models of computations has to be identified. Inside the cate-
gory M, we have to choose a subcategory of ‘path objects’ and ‘path extension’
morphisms between these objects. The path subcategory is denoted by P. Given a
path object P in P and a model object X in M, a path is a morphism p : P −→ X
in M. We think of p as representing a particular way of realizing P in X .

Second, we identify morphisms m : X −→ Y which have the property that
whenever a computation of X can be extended via m in Y then that extension
can be matched by an extension of the computation in X . A morphism m :
X → Y in M is called P-open if whenever f : P1 → P2 in P, p : P1 → X and
q : P2 → Y in M, and m ◦ p = q ◦ f , there exists a morphism h : P2 → X in M

such that p = h ◦ f and q = m ◦ h.
Third, an abstract notion of bisimilarity is introduced. The definition is given

in terms of spans of open maps. Two objects X and Y in M are said to be

P-bisimilar if there exists a span X
m←− Z

m′
−→ Y with a common object Z

of P-open morphisms. Clearly, the relation of P-bisimilarity between objects is
reflexive (identities are P-open) and symmetric (in the nature of spans). It is
also transitive provided M has pullbacks, and so always an equivalence relation
on objects, by virtue of the following fact:

Proposition 1. ([17]) Pullbacks of P-open morphisms are P-open.
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A category CTTS of timed transition systems has been identified in the previous
section. Now a path subcategory should be chosen. For this purpose, we need to
define the construction below.

Consider an arbitrary timed word α = d0,1 . . . d0,n0 σ1 d1,1 . . . d1,n1 . . .
dn−1,1 . . . dn−1,nn−1 σn dn,1 . . . dn,nn with di,j ∈ R+ and σk ∈ Στ , where n ≥ 0,
ni ≥ 0, i = 0..n, j = 1..ni and k = 1..n. For α, define a function γ as follows:

γ(α) =
n0∑

j=1

d0,j σ1

n1∑
j=1

d1,j . . .
nn−1∑
j=1

dn−1,j σn

nn∑
j=1

dn,j . Furthermore, for a timed

word α, we shall use the set Γ (α) = {α′ | γ(α′) = γ(α)}.

Definition 5. Let α be a timed word with γ(α)=
n0∑

j=1

d0,j σ1

n1∑
j=1

d1,j . . .
nn−1∑
j=1

dn−1,j

σn

nn∑
j=1

dn,j. We define a timed transition system T Γ (α) = (SΓ (α), s
Γ (α)
0 , Στ ,

V Γ (α), T Γ (α), IΓ (α)), corresponding to Γ (α), as follows:

– SΓ (α) = {0, 1, . . . , n},
– s

Γ (α)
0 = 0,

– V Γ (α) consists of the 2|A
Γ(α)| subsets of the states AΓ (α) = {i | 1 ≤ i ≤ n,

σi �= τ},
– T Γ (α) = {(i − 1, σi, δi, λi, i) | 1 ≤ i ≤ n, λi := {x ∈ V Γ (α) | i ∈ x},

δi :=
∧

x∈V Γ (α)

(x =
i−1∑

l=Reset(i,x)

nl∑
j=1

dl,j)}. Here, Reset(i, x) = max{0, k | k <

i ∧ k ∈ x}, i.e. Reset returns the last state at which x was reset,
– IΓ (α) is inductively defined as follows. The invariant on the state 0 is∧

x∈V Γ (α)

(0 ≤ x ≤
n0∑

j=1

d0,j). Assume the invariant on the state i− 1 is
∧

x∈V Γ (α)

(c(i − 1, x) ≤ x ≤ ĉ(i − 1, x)). Then the invariant on the state i is
∧

x∈V Γ (α)

(if i ∈ x then (0 ≤ x ≤
ni∑

j=1

di,j), else (ĉ(i− 1, x) ≤ x ≤ ĉ(i− 1, x) +
ni∑

j=1

di,j).

The class of timed transition systems of the form T Γ (α) is denoted as T T SΓ (α)
Στ

.

Consider a helpful property of a timed transition system T Γ (α).

Lemma 2. Let α′ ∈ Γ (α) be a timed word with γ(α′) =
n0∑

j=1

d0,j σ1

n1∑
j=1

d1,j . . .

nn−1∑
j=1

dn−1,j σn

nn∑
j=1

dn,j. Then, there exists a run 〈s0, ν0〉
d0,1→ . . .

d0,n0→ 〈s0, ν
n0
0 〉

σ1→ 〈s1, ν1〉 . . . 〈sn−1, νn−1〉
dn−1,1→ . . .

dn−1,nn−1→ 〈sn−1, ν
nn−1
n−1 〉

σn→ 〈sn, νn〉
dn,1→ . . .

dn,nn→ 〈sn, νnn
n 〉 in T Γ (α).

With respect to a set of actions Στ , let P denote the subcategory of the category
CTTS with objects from T T SΓ (α)

Στ
and morphisms of the form (μ, η) : T Γ (α) →
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T Γ (α′), where α′ is an extension of α, μ(i) = i (i ∈ SΓ (α)) and η(x) = {i ∈
AΓ (α) | i ∈ x} (x ∈ VT Γ (α′)). Notice, the morphisms in P simulate actions from
Στ in the strong sense, i.e. no additional τ ’s are assumed. Allowing arbitrary
morphisms between the objects in P violates correctness of Theorem 3.

Using Theorem 1 and Proposition 1, we get the following fact.

Theorem 2. P-bisimulation is an equivalence relation.

Next, we provide a behavioural characterization of P-open morphisms which is
crucial to establish the coincidence of P-bisimilarity and timed weak bisimulation.

Theorem 3. Given timed transition systems T and T ′, a morphism (μ, η) :
T → T ′ is P-open iff for any 〈s, ν〉 ∈ RC(T ), whenever 〈μ(s), η−1(ν)〉 σ→

〈s′′, ν′′〉 (σ ∈ Στ ∪R+) in T ′, then 〈s, ν〉 σ̂⇒ 〈s′, ν′〉 in T and 〈μ(s′), η−1(ν′)〉 =

〈s′′, ν′′〉.

At last, the coincidence of P-bisimilarity and timed weak bisimulation can be
established.

Theorem 4. Two timed transition systems T1 and T2 are P-bisimilar iff they
are timed weak bisimilar.

Corollary 1. Timed weak bisimulation is an equivalence relation.

6 Path-Bisimulation

To obtain a logic characteristic of bisimulation induced by open maps, Joyal,
Nielsen, and Winskel [17] have proposed a second category-theoretic characteri-
zation of bisimulation — path bisimulation which is a relation based generaliza-
tion of open maps bisimulation.

Definition 6. Let M be a category of models, let P be a small category of path
objects, where P is a subcategory of M, let I be a common initial object2 of P

and M. Then,

1) Two objects X1 and X2 of M are called path-P-bisimilar iff there is a set R
of pairs (p1, p2) of paths with common domain P , so p1 : P → X1 is a path
in X1 and p2 : P → X2 is a path in X2, such that
(o) (i1, i2) ∈ R, where i1 : I → X1 and i2 : I → X2 are the unique paths

starting in the initial object, and for all (p1, p2) ∈ R and for all m : P →
Q, where m is in P, holds

(i) if there exists q1 : Q → X1 with q1◦m = p1 then there exists q2 : Q → X2

with q2 ◦m = p2 and (q1, q2) ∈ R and
(ii) if there exists q2 : Q → X2 with q2◦m = p2 then there exists q1 : Q → X1

with q1 ◦m = p1 and (q1, q2) ∈ R.
2 In the cases when P is P and M is CTTS , the initial object I is the timed transition

system E = ({s0}, s0, Στ , {x}, ∅, I(s0) = (x = 0)).
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2) Two objects X1 and X2 are strong path-P-bisimilar iff they are path-P-
bisimilar and the set R further satisfies:

(iii) If (q1, q2) ∈ R, with q1 : Q → X1 and q2 : Q → X2 and m : P → Q,
where m is in P, then (q1 ◦m, q2 ◦m) ∈ R.

Theorem 5. P-bisimilarity, path-P-bisimilarity, strong path-P-bisimilarity all
coincide with timed weak bisimulation.

7 Coalgebraic Bisimulation

Another alternative abstract characterization of bisimulation is based on a cat-
egory of coalgebras induced by an endofunctor on an arbitrary category. In [20]
it has been shown that the concept of path-bisimilarity can be translated into a
coalgebraic setting with lax cohomomorphisms. Notice that in [21] a coalgebraic
characterization of path-bisimilarity is obtained without the use of lax notions,
however, in this case one cannot define a functor from a category of computations
to the category of coalgebras.

We start with defining the terminology from [20].
Let M be a locally small category and P a small path subcategory of M. We

will define an embedding of M into a category of coalgebras for some endofunctor
on the category Set|P| of |P|-sorted sets, where |P| is a set of objects in P. An
endofunctor FP : Set|P| −→ Set|P| is defined as follows:

{XP }P∈|P| �→ {
∏

Q∈|P|
(P(XQ))HomP(P,Q)}P∈|P|,

where for P ∈ |P|XP denotes a component of a |P|-sorted set X , and HomP(P, Q)
stands for the set of all morphisms from P to Q in P. A coalgebra for FP or FP-
coalgebra is a pair (S, tr) with S an object in Set|P| and tr : S → FP(S) a morphism
in Set|P|, which consists of a family of functions:

{trP : SP →
∏

Q∈|P|
(P(SQ))HomP(P,Q)}P∈|P|.

The set S is called the carrier and the function tr is called the coalgebra structure
of the FP-coalgebra.

A morphism γ : S1 → S2 in Set|P| is called a cohomomorphism between FP-
coalgebras (S1, tr1) and (S2, tr2) iff FP(γ)◦tr1 = tr2◦γ, where FP(γ) is defined as
follows: (FP(γ))P =

∏
Q∈|P| hQ, where hQ : g �−→ f , f(m) = {γQ(x)|x ∈ g(m)},

for all m ∈ HomP(P, Q). FP-coalgebras and cohomomorphisms between them
constitute a category, denoted by CAP.

From now on, for an FP-coalgebra (S, tr), a triple 〈m1, m, m2〉, where m1 ∈ SP ,
m2 ∈ SQ and m ∈ HomP(P, Q), satisfying m2 ∈ trP (m1)(m) will be denoted by
m1

m→ m2.
As usual in the theory of coalgebras, bisimulation is a relation represented by

a span of coalgebra morphisms [27]. An FP-bisimulation between two coalgebras
(S1, tr1) and (S2, tr2) is a |P|-sorted relation R = {RP }P∈|P| ⊆ (S1 × S2) such
that, if (m1, m2) ∈ RP and m : P → Q in P, then
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– if m1
m→ m′

1, then m2
m→ m′

2 and (m′
1, m

′
2) ∈ RQ for some m′

2 ∈ S2,
– if m2

m→ m′
2, then m1

m→ m′
1 and (m′

1, m
′
2) ∈ RQ for some m′

1 ∈ S2.

Clearly, each FP-bisimulation has a coalgabra structure trR : R → FP(R) and
together with the projections π1 : R → S1 and π2 : R → S2 form a span of
cohomomorphisms of the FP-coalgebra.

Next, following [11,20], we relax the requirement on coalgebra morphism.
A morphism γ : S → S′ in Set|P| is called a lax cohomomorphism between
FP-coalgebras (S, tr) and (S′, tr′) if for each m ∈ HomP(P, Q) and s ∈ SP ,
{fQ(r) : r ∈ tP (s)(m)} ⊆ tr′P (fP (s))(m). FP-coalgebras and lax cohomomor-
phisms constitute a category, denoted by CAlax

P .
For M, define a functor BehM

P
: M → CAlax

P
. BehM

P
acts on objects X in M

as follows: {HomM(P, X)}P∈|P| is the carrier and {trP : m1 �→
∏

Q∈|P|(xQ :
m �→ {m2 | m1 = m2 ◦m})}P∈|P| is the coalgebra structure of the FP-coalgebra.
BehM

P
acts on morphisms f : X → Y in M as follows: BehM

P
(f)P : α �→ (α; f) :

HomM(P, X)→ HomM(P, Y ).

Proposition 2. [20] For any two objects X and Y in M, a |P|-sorted relation
R is a path-P-bisimulation between X and Y iff it is an FP-bisimulation between
BehM

P
(X) and BehM

P
(Y ) containing the pair (iX , iY ), where iX : I → X and

iY : I → Y are paths, with an initial object I.

Corollary 2. ForobjectsT andT ′ inCTTS,P-bisimilarity, path-P-bisimilarity,
strong path-P-bisimilarity, timed weak bisimulation coincide with an FP-
bisimulation betweenBehCTTS

P (T ) andBehCTTS
P (T ′) containing the pair (iT , iT ′),

where iT : I → T and iT ′ : I → T ′ are paths, with an initial object I.

8 Conclusion

In this paper, we have given a uniform characterization of what should be consid-
ered a weak bisimulation in a categorical framework of timed transition systems.
In particular, we have shown how the open maps, path bisimilarity and coalge-
bra based approaches to an abstract characterization of bisimulation relate to
each other and to timed weak bisimulation, in the setting of timed transition
systems.

We conclude the paper by pointing out some possible research directions for
the future. It is well-known that the traditional timed equivalences provide no
abstraction mechanism on time, i.e. two timed processes which are close to each
other but one of them simply performs events at a slightly slower speed are
considered incomparable. Therefore, we intend to exploit the approach from [15]
as part of our future work. Also, we plan to extend the obtained results to other
classes of timed models (e.g. time Petri nets, networks of timed automata, etc.).
In particular, relying on the paper [17], we contemplate to adapt the unfolding
methods for time Petri nets from [10] and open maps based characterizations for
timed event structures from [31] to transfer the general concept of bisimulation
to the timed models mentioned above.
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Abstract. In this paper, we establish the definition of community fun-
damentally different from what was commonly accepted in previous stud-
ies, where communities were typically assumed to be densely connected
internally but sparsely connected to the rest of the network. A commu-
nity should be considered as a densely connected subset in which the
probability of an edge between two randomly-picked vertices is higher
than average. Moreover, a community should also be well connected to
the remaining network, that is, the number of edges connecting a com-
munity to the rest of the graph should be significant. In order to identify
a well-defined community, we provide rigorous definitions of two rele-
vant terms: “whiskers” and the “core”. Whiskers correspond to subsets
of vertices that are barely connected to the rest of the network, while the
core exclusively contains the type of community we are interested in. We
have proven that detecting whiskers, or equivalently, extracting the core,
is an NP-complete problem for weighted graphs. Then, three heuristic
algorithms are proposed for finding an approximate core and are evalu-
ated for their performance on large networks, which reveals the common
existence of the core structure in both random and real-world graphs.
Further, well-defined communities can be extracted from the core using
a number of techniques, and the experimental results not only justify
our intuitive notion of community, but also demonstrate the existence of
large-scale communities in various complex networks.

1 Introduction

Ever since people started to realize the importance of comprehending how inter-
actions initiate and develop, the research on complex networks has attracted a
great amount of attention. A substantial quantity of work has been devoted to
the task of identifying and evaluating close-knit communities in large complex
networks, most of which is based on the premise that it is a matter of common
experience that communities exist in these networks [4]. In particular, as the
Internet has become an indispensable part of our life, understanding community
structure is not only crucial for studying real-world societies, but also helpful to
improve the accuracy and reliability of predicting online behaviors, which may
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greatly benefit the quality and effectiveness of online services, such as search
engines, recommendation systems, and so on.

A complex network is usually modeled as a graph in which vertices repre-
sent entities and edges represent interactions between pairs of entities. In pre-
vious studies, a community was often assumed to be a subset of vertices that
are densely connected internally but sparsely connected to the rest of the net-
work [2,3,4]. Accordingly, numerous measures have been proposed to capture this
feature, out of which conductance has become one of the most widely adopted
metrics for evaluating how community-like a subset of vertices is. Particularly,
Leskovec et al. [4] conducted an extensive research on more than 100 large com-
plex networks under the assumption that a community is more densely connected
between its members than between its members and the remaining network.
They carefully examined the relationship between conductance and community
size, and discovered that the best community of the entire graph, i.e. the subset
with the global minimum conductance, is usually a small set of vertices barely
connected to the rest of the network by just a single edge.

However, it is our view that for real-world societies, communities are not only
better connected than expected solely from chance, but are also well connected
to the rest of the network. Actually, it is hard to imagine a small close-knit
community, such as an academic department, with only one edge connecting it to
the outside world. Empirically, a community displays a higher than average edge-
vertex2 ratio, which reflects the probability of an edge between two randomly-
picked vertices, and it is also connected to the rest of the network via a significant
number of edges, which is even possibly larger than the number of its internal
edges, as depicted in Fig. 1.

Fig. 1. An example friendship network. Vertices typically have a significant number of
cut edges.

Given a subset of vertices, an edge with only one endpoint inside the subset
can be thought as a cut edge. A densely connected subset with a small number
of cut edges, called a whisker, is not the type of community we are interested
in. Since many previously-used measures simultaneously maximize internal con-
nections and minimize external connections, leaving whiskers in the graph will
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interfere with the algorithms intended to extract the type of community we
are interested in. Whiskers are peripheral rather than central, thus, the type of
community we would like to identify is embedded in a special structure in which
no whiskers exist, called the core. To get rid of the interference generated by
whiskers, a community detection algorithm can be designed consisting of two
steps: 1) identifying the core in which no whiskers exist, and 2) identifying com-
munities in the core. Apparently, any subset of the core is connected to the rest
of the graph by a moderate number of edges, and conductance can still be taken
as a measure of community goodness. In this way, the best community is not
only more densely connected than expected from chance but also well connected
to the remaining network, which exactly corresponds to our intuitive notion of
community.

We prove that extracting the exact core from a weighted graph is NP-complete,
and then conjecture the unweighted version of this problem tobe alsoNP-complete.
It is not difficult to see that, generally, the exact core cannot be obtained by re-
moving whiskers one by one, but removing whiskers in a certain way can lead to an
approximate core. We develop three heuristic algorithms, all of which are capable
of finding an approximate core. Their performance can be verified by the experi-
mental results obtained from random graphs and real-world graphs. In addition,
we also discover that some algorithms are only suitable for a certain kind of net-
worksbut not for others. Further, the algorithms can be justified by the community
profile of the core, in contrast to that of the entire graph shown in [4], which plots
the smallest possible conductances with respect to fixed community sizes. In vari-
ous complex networks, the best communities have a relatively large conductance,
which means the communities are densely connected internally while preserving
a significant number of cut edges. Moreover, they also have a relatively large size,
which demonstrates the existence of large-scale well-defined communities.

The rest of this paper is organized as follows. In Section 2, we introduce some
necessary background and present definitions of whiskers and the core. Then, in
Section 3, we prove the NP-completeness of finding the exact core in weighted
graphs and propose three heuristic algorithms for finding an approximate core.
In Section 4, we apply the algorithms to random graphs and real-world graphs
to evaluate their performance and compare the experimental results. Finally, we
conclude in Section 5 with comments on the problems considered.

2 “Whiskers” and the “Core”

Let G = (V, E) be an undirected graph with n vertices and m edges. A cut C is
a collection of edges such that removing them from the graph G separates the
vertex set V into two disjoint subsets S and Sc, where Sc denotes the complement
of S and C = {(v, w) ∈ E | v ∈ S; w ∈ Sc}. Without loss of generality, we assume
|S| 	 |Sc| throughout this paper, where |S| and |Sc| denote the cardinality of sets
S and Sc, respectively. Note that both S and Sc are not necessarily connected.
Then, an edge (v, w) ∈ C is called a cut edge, and intuitively, the cut size is the
cardinality of the set C. Further, a cut is considered to be suitable if its removal
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divides the vertices into two disjoint subsets such that both have cardinality
greater than or equal to the cut size.

Definition 1. A cut of size k is a suitable cut if its removal from the graph
partitions the vertex set into two disjoint subsets S and Sc, where k 	 |S| 	 |Sc|.

Leskovec et al. [4] defined 1-whiskers to be maximal subgraphs that can be de-
tached from the rest of the graph by removing a single edge, and they also use
the term “whiskers” informally to refer to subsets of vertices barely connected to
the rest of the graph. Whiskers are generally quite small compared to the whole
graph while possessing a wide range of sizes and shapes. Moreover, they usually
correspond to low-conductance sets that are more densely connected inside than
connected to the outside. Hence, whiskers and unions of disjoint whiskers are
believed to exert a significant effect on the community structure of real-world
networks, since they are extracted and interpreted as communities by the con-
ductance measure, which, out of numerous density-based measures, has been
extensively used for detecting communities and evaluating their quality [2,4,6].

However, as clarified in Section 1, this type of community neither corresponds
to our intuitive notion of community nor widely exist in real-world societies,
where it is a matter of common observation that communities are not only
densely connected inside but also well connected to the outside. Therefore, it is of
major interest to remove whiskers from the graph in order to provide insight into
the community structure of the network core. For this purpose, we rigorously
define whiskers and the corresponding core structure where barely-connected
subsets have been removed.

Definition 2. Given an undirected graph G = (V, E) with n vertices, a k-
whisker is a connected subgraph Gw(k) = (Vw(k), Ew(k)) linked to the rest
of the graph by k edges, where k 	 |Vw(k)| 	 n/2.

Definition 3. Given an undirected graph G = (V, E) with n vertices, a maxi-
mal k-whisker is a maximal connected subgraph G∗

w(k) = (V ∗
w(k), E∗

w(k)) linked
to the rest of the graph by k edges, where k 	 |V ∗

w(k)| 	 n/2.

Small isolated components are frequently encountered in large complex networks,
and they can simply be viewed as (maximal) 0-whiskers. Definition 2 and 3 are a

(a) k-whisker vs. maximal k-whisker (b) whisker vs. maximal whisker

Fig. 2. Schematic illustrations of Definition 1 through Definition 5
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direct extension of the definition of 1-whiskers given in [4]. Then, in a similar way,
the definitions of whiskers and maximal whiskers can be formulated independent
of the value of k referring to weakly-connected subsets attached to the remaining
graph via a small number of edges.

Definition 4. Given an undirected graph G = (V, E) with n vertices, a whisker
is a connected subgraph Gw = (Vw, Ew) linked to the rest of the graph by a
suitable cut, where |Vw| 	 n/2.

Definition 5. Given an undirected graph G = (V, E) with n vertices, a maxi-
mal whisker is a maximal connected subgraph G∗

w = (V ∗
w , E∗

w) linked to the rest
of the graph by a suitable cut, where |V ∗

w | 	 n/2.

See Fig. 2 for a detailed illustration of Definition 1 through Definition 5. A max-
imal whisker is obviously a whisker, but a whisker is not necessarily a maximal
whisker, since it can be contained in a larger whisker. Besides, a 0-whisker is
also a maximal whisker by Definition 5.

As discussed above, maximal whiskers, although argued by some to be
community-like, are not what we are interested in here. Therefore, we define
the core as the remaining structure after removing the union of all maximal
whiskers from the graph. Meaningful communities can be further extracted from
the core using a variety of algorithms, which, unlike whiskers, are not only better
connected than expected from chance but also well connected to the rest of the
graph.

Definition 6. The core is a connected subgraph that is the complement of the
union of all maximal whiskers.

Clearly, there does not exist any suitable cut in the core subgraph. Before we
move on to Section 3 to design and implement algorithms for finding the core
structure and its underlying communities, we first examine some properties of
whiskers. If all maximal whiskers are disjoint in the graph, it is straightforward
that we can remove these disjoint whiskers one by one until we obtain the core.
However, whiskers may overlap with each other, and unfortunately, their union
is often no longer a whisker. In fact, a number of counterexamples can be con-
structed to justify this statement, and we conclude the following lemma:

Lemma 1. Let G be an undirected graph with two overlapping maximal whiskers
S and T . The subgraph S ∪ T is not necessarily a whisker.

Proof. As shown in Fig. 3(a), for instance, S = X ∪ Y is a maximal whisker
with 22 vertices and 21 outgoing edges. Similarly, T = Y ∪ Z is also a maximal
whisker with 20 vertices and 19 outgoing edges. However, there are a total of 25
vertices in the set X ∪ Y ∪ Z and 26 outgoing edges that connect this union to
the rest of the graph, thus S ∪ T is not a whisker. ��

In general, there are two reasons why a subset of vertices is not a whisker: 1) it
contains more than half of the vertices, and 2) the number of edges connecting
it to the rest of the graph is strictly greater than its cardinality. Thus, the union
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(a) Overlapping maximal whiskers. (b) Overlapping whiskers.

Fig. 3. Each circled integer denotes the number of vertices in the corresponding set

of two disjoint whiskers is still a whisker if and only if it is no larger than its
complement. In addition, the union of two overlapping maximal whiskers is not
a maximal whisker, since a maximal whisker cannot have any other maximal
whisker as its subset. Based on Lemma 1, there is another observation we can
make about whiskers:

Lemma 2. Let G be an undirected graph with n vertices and two overlapping
whiskers S and T , where the number of vertices in the subgraph S∪T is no more
than n/2. If S ∪ T is not a whisker, then S ∩ T must be a whisker.

Proof. Assuming that the subgraph S ∪ T is not a whisker, write S = X ∪ Y
and T = Y ∪ Z where S ∩ T = Y , as shown in Fig. 3(b). Then, it follows that

exr + exz + eyr + eyz 	 vx + vy (2a)
eyr + exy + ezr + exz 	 vy + vz (2b)
exr + eyr + ezr > vx + vy + vz (2c)

where vx, vy , and vz denote the number of vertices in the sets X , Y , and Z,
respectively. Adding Equation (2a) and (2b), we have that

exr + 2eyr + ezr + exy + eyz + 2exz 	 vx + 2vy + vz

< exr + eyr + ezr + vy .

Thus,
eyr + exy + eyz + 2exz < vy. (2d)

Since exz is non-negative as the number of edges between the sets X and Z, by
Equation (2d),

eyr + exy + eyz < vy,

and the subgraph Y = S ∩ T is clearly a whisker. ��

3 Methodology

In this section, we discuss the approach for efficiently identifying the core of a
given graph. Armed with the definitions provided in Section 2, we prove in Sec-
tion 3.1 that detecting whiskers in a weighted undirected graph is NP-complete
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and thus computationally intractable unless P=NP. This indicates that there
is no feasible algorithm for finding the exact core, which is equivalent to find-
ing the union of all maximal whiskers. Then, in Section 3.2, we propose three
heuristic algorithms for finding an approximate core, whose performance will be
experimentally justified in Section 4.

3.1 NP-Completeness

Define NAE-3-SAT as the problem of determining whether there exists a truth
assignment for a 3-CNF Boolean formula such that each clause has at least one
true literal and at least one false literal (i.e. literals in each clause are not all
equal). Then, we have the following well-known theorem:

Theorem 1. NAE-3-SAT is NP-complete [5].

Now, define WHISKER as the problem of determining whether there exists
a whisker in a given weighted undirected graph. We will formally prove that
WHISKER is also an NP-complete problem by constructing a polynomial-time
reduction from NAE-3-SAT.

Theorem 2. WHISKER is NP-complete.

Proof (Sketch). See [7] for a detailed proof. Given an instance of the WHISKER
problem, we can guess a solution and verify in linear time whether it is indeed
a whisker, thus WHISKER ∈ NP.

Given a 3-CNF Boolean formula with c clauses and n variables, a weighted
graph G∗ can be constructed in polynomial time. The edge weights of G∗ are
taken as functions of ε and δ, where ε and δ are small positive numbers. Then,
with proper values of ε and δ for the given c and n, the true literals of a not-all-
equal assignment for the formula correspond to the vertices of a whisker in G∗,
and the vertices of a whisker in G∗ also correspond to the true literals of a not-
all-equal assignment for the formula. Therefore, we have established a one-to-one
correspondence between not-all-equal truth assignments and whiskers, that is, a
weighted graph can be constructed for a given 3-CNF Boolean formula such that
whiskers can be found in the graph if and only if the formula is not-all-equal
satisfiable. Clearly, NAE-3-SAT reduces to WHISKER in polynomial time, thus,
WHISKER is NP-complete. ��

We then conjecture that detecting whiskers in an unweighted graph is also an
NP-complete problem.

3.2 Heuristic Algorithms

An intuitive approach to identifying the core is simply to remove maximal
whiskers one by one until no more whiskers exist. However, the following claim
characterizes the non-exactness and non-uniqueness of this method, which indi-
cate the generic difficulties associated with any algorithm using this approach
to find the core structure.
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Claim. Removing maximal whiskers one by one leads to different subgraphs
approximate to the exact core, depending on the order in which whiskers are
removed.

Proof. Here, we can still take Fig. 3(a) as an example. Assume that sets S
and T are both maximal whiskers and that they do not intersect with other
maximal whiskers. If the set S is first removed, we will be left with the set Z of
3 vertices and 7 outgoing edges, which is apparently not a (maximal) whisker.
However, if the set T is first removed instead, we will be left with the set X of 5
vertices and 9 outgoing edges, which is not a (maximal) whisker either. In this
case, different sets of vertices remain as part of the ultimate subgraph, neither
of which belongs to the exact core. Therefore, the approximate core subgraph
depends rather crucially on the order in which we remove these maximal whiskers
from the graph, which means that it is not necessarily unique. ��

The NP-completeness of identifying the exact core in weighted graphs has been
proved in Section 3.1. We conjecture that identifying the exact core in unweighted
graphs is also an NP-complete problem. Now, we present three heuristic al-
gorithms for finding an approximate core, whose performance on random and
real-world graphs will be experimentally demonstrated in Section 4.

Algorithm 1 (brute-force search). For each ordered pair of vertices, find its
minimum cut and remove the smaller component if the cut is suitable.

Algorithm 2. Extract the giant component and then the giant biconnected
component. Replace all degree-two vertices by a single edge and then test
the existence of suitable cuts.

Algorithm 3 (flow-based algorithm). For a given threshold value λ, find
the largest subgraph with the maximum edge-vertex ratio exceeding λ. Then,
test the existence of suitable cuts. Refer to [7] for more details.

There is no particular order in which whiskers are removed by Algorithm 1.
According to the above claim, larger maximal whiskers could be destroyed and
the resulting graph is not necessarily unique, depending rather crucially on the
order in which Algorithm 1 removes whiskers. Since a series of degree-two vertices
could result in a whisker, Algorithm 2 contracts all degree-two vertices after
obtaining the giant biconnected component. Although Algorithm 2 offers a better
run-time performance compared to Algorithm 1, it actually encounters the same
difficulties as Algorithm 1 does. The three algorithms are all capable of finding
an approximate core, but we will focus on Algorithm 2 and Algorithm 3 since
they require shorter running time. Empirically, Algorithm 2 works better for
sparse networks, while Algorithm 3 works better for dense ones.

4 Experimental Results

4.1 Random Graphs

A random graph G(n, p) can be obtained by starting with a set of n vertices
and adding (undirected) edges between them independently with probability
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(a) size of the core as a function of n
for fixed d

(b) size of the core as a function of d
for fixed n

Fig. 4. Random Graphs

p ∈ (0, 1). Although a random graph does not display any community structure,
we can still identify its core using the above algorithms. When p is relatively
small, G(n, p) is sparse with low edge-vertex ratio, where Algorithm 3 fails to
find an approximate core. In this case, Algorithm 2 can positively identify an
approximate core. When p is close to 1, both algorithms are successful in finding
an approximate core. As illustrated in Fig. 4, the size of the core of G(n, p)
grows linearly with d = np for fixed n and logarithmically with n for fixed d.
In addition, we observe the existence of phase transition at p = 1/n, above
which the core emerges with high probability and below which it emerges with
extremely low probability.

We conjecture that every G(n, p) with p > 1/n displays the core structure
with high probability. For any fixed (large) n, p = 1/n is the threshold for phase
transition at which the core structure emerges. The probability and the average
size of the core both increase as p grows. For any fixed p, the average size of the
core increases as n grows, but the probability of the core remains the same.

4.2 Real-World Graphs

Textual Graph. A textual graph consists of vertices representing words and
edges representing semantic correlations, which contains information about re-
search topics and areas of interest. We crawl more than 10,000 scientific papers
of the KDD conference from 1992 to 2003 and collect the words of each ab-
stract. A series of pre-processing steps are carried out to simplify the data,
which include word stemming, stop-word filtering, and occurrence rate thresh-
olding. Word stemming reduces inflected or derived words to their base form and
combines multiple entries of the same word in different tenses. Stop-word filter-
ing removes extremely common but meaningless words, such as and, can, the,
will, etc. Occurrence rate thresholding removes extremely rare words occurring
in only a small number of abstracts, which exert a trivial effect on the overall
community structure.

Pointwise mutual information or log-likelihood ratio can be applied to de-
termine whether there is an edge between each pair of vertices of the textual
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graph. In this section, we will only discuss the first approach. Pointwise mutual
information quantifies the semantic correlation between two words, and we may
choose a critical value α above which a strong correlation can be expected. In
other words, if the mutual information of two words exceeds α, then an edge
exists between them, which indicates a high probability for the two words to
occur together. Otherwise, no edge exists between them, which indicates a low
probability for the two words to occur together. For a pair of words (i, j) and
the threshold value α, there exists an edge between vertex i and vertex j if

log
P (i, j)

P (i)P (j)
> α,

where P (i) and P (j) are the occurrence rate of i and j, respectively, and P (i, j)
is the probability of i and j occurring in the same abstract.

For example, the textual graph has 685 vertices and 6,432 edges when α = 1.4.
Both Algorithm 2 and Algorithm 3 are successful in identifying an approximate
core, in which no whiskers exist. In particular, the core returned by Algorithm
2 is almost identical to that returned by Algorithm 3 when λ is relatively small.
Higher values of λ will result in a smaller core, and intuitively, higher values of
α will result in a graph with less edges and thus a smaller core, as verified in
Fig. 5(a).

(a) size of the core as a function of λ (b) community profile of the core (α =
1.4)

Fig. 5. Textual Graph

After the approximate core has been extracted from the graph, a simulated
annealing algorithm can be performed on the core for finding a subset of a given
size with the lowest conductance. As shown in Fig. 5(b), the best community of
the textual graph possesses a quite large conductance around 0.3, which means
the best community has only as many internal edges as cut edges. This exactly
corresponds to our intuitive notion that a community should have a significant
number of edges connecting it to the rest of the graph. Clearly, the community
profile of the core is rather different from what was obtained in [4]. Recall that the
best community of most networks examined in [4] displayed an extremely small
conductance, typically at the order of 10−2, which means the best community
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has almost 50 times as many internal edges as cut edges. Moreover, the best
community of the textual graph is of size roughly 350 for α = 1.4 and λ = 1,
containing more than half of the vertices, which demonstrates the existence of
large-scale well-defined communities.

Co-authorship Graph. A co-authorship graph reflects the common interests
among researchers working in diverse fields, which contains information about
authors’ reputation and levels of activity. We collect more than 10,000 scien-
tific papers of the KDD conference from 1992 to 2003 and refine the authors’
information [1]. Different from the textual graph discussed in Section 4.2, the
co-authorship graph is deterministic with 7,943 vertices and 20,488 edges, where
each vertex represents an author and each edge represents a co-authorship. Here,
Algorithm 2 is not successful in finding an approximate core by pulling out the
giant biconnected component and contracting degree-two vertices. In contrast,
Algorithm 3 is able to identify an approximate core, and its size decreases as the
threshold value λ increases, as shown in Fig. 6(a).

As depicted in Fig. 6(b), the community profile of the core of the co-authorship
graph is rather different from what was obtained in [4]. Recall that the best
community of most networks examined in [4] displayed an extremely small con-
ductance, typically at the order of 10−2, which means the best community has
almost 50 times as many internal edges as cut edges. Here, the best commu-
nity of the co-authorship graph possesses quite a large conductance around 0.2,
which means the best community has only twice as many internal edges as cut
edges. This, again, corresponds to our intuitive notion that a community should
have a moderate number of edges connecting it to the rest of the graph. More-
over, the best community of the co-authorship graph is of size roughly 500 for
λ = 4, containing more than a third of the vertices, which again demonstrates
the existence of large-scale well-defined communities.

(a) size of the core as a function of λ (b) community profile of the core

Fig. 6. Co-authorship Graph

5 Conclusion

We investigated large real-world complex networks and proposed an innovative
definition of community as opposed to what was generally assumed in previous
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studies, where communities were thought to be better connected internally than
connected with the rest of the network. In fact, a community is more densely
connected internally than expected solely from chance, but it is also connected
to the rest of the network by a significant number of edges. Further, we defined
two auxiliary terms: whiskers and the core. Whiskers were often interpreted as
communities, but they are not the type of community we are interested in here.
In contrast, the core exclusively contains the type of community we would like
to identify.

Armed with these definitions, we designed a community detection algorithm
consisting of two steps: 1) identifying the core in which no whiskers exist, and 2)
identifying communities within the core. However, extracting the exact core is
rigorously proved to be NP-complete for weighted graphs, and we also conjecture
the NP-completeness of this problem for the unweighted case. The three heuristic
algorithms demonstrate their capability of finding an approximate core, and a
simulated annealing algorithm is performed on the approximate core to find
its best community, i.e. the subset with the lowest conductance, for a given
community size. As expected, the network community profile of the core justifies
our definition of community and shows the existence of large-scale well-defined
communities in various real-world complex networks.
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Abstract. A biconnected plane graph G is called internally triconnected
if any cut-pair consists of outer vertices and its removal results in only
components each of which contains at least one outer vertex. In a rooted
plane graph, an edge is designated as an outer edge with a specified di-
rection. For given positive integers n ≥ 1 and g ≥ 3, let G3(n, g) (resp.,
Gint(n, g)) denote the class of all triconnected (resp., internally tricon-
nected) rooted plane graphs with exactly n vertices such that the size of
each inner face is at most g. In this paper, we present an O(1)-time delay
algorithm that enumerates all rooted plane graphs in Gint(n, g)−G3(n, g)
in O(n) space.

1 Introduction

The problem of enumerating (i.e., listing) all graphs in particular classes of
graphs is one of the most fundamental and important issues in graph theory.
Cataloguing graphs, i.e., making the complete of graphs in a particular class can
be used in a various way: search for a possible counterexample to a mathematical
conjecture; choosing the best graph among all candidate graphs; and experiment
for measuring the average performance of a graph algorithm over all possible
input graphs.

The common idea behind most of the recent efficient enumeration algorithms
is to define a parent-child relationship among all graphs in a given class in order
to induce a rooted tree that connects all graphs in the class, called the family
tree F , where each node in F corresponds to a graph in the class. Then all
graphs in the class will be generated one by one according to the depth-first
traversal of the family tree F . Time delay of an enumeration algorithm is a time
bound between two consecutive outputs. Enumerating graphs with a polynomial
time delay would be rather easy since we can examine the whole structure of
the current graph anytime. However, algorithms with a constant time delay in
the worst case is a hard target to achieve; not only the difference between two
consecutive outputs is required to be O(1), but also any operation for examining
symmetry and identifying the edges/vertices to be modified to get the next
output needs to be executable in O(1) time.

Enumeration for a particular class of graphs also has practical applications in
various fields such as virtual exploration of chemical universe, and reconstruction
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c© Springer-Verlag Berlin Heidelberg 2010



468 B. Zhuang and H. Nagamochi

of molecular structures from their signatures. It is known that 94.3% of chemical
compounds in NCI chemical database have planar structures [2]. Hence planar
graphs is an important class to be investigated. Planar graphs also plays a key
role in the field of graph drawing. Tutte [6] proved that triconnected plane graphs
is the class of plane graphs that admit convex drawings in the plane for any pre-
scribed polygonal boundary. Thomassen [5] proved that internally triconnected
plane graphs is the class of plane graphs that admit a convex drawings, where
a suitable convex polygon for the boundary is allowed to be chosen for each
plane graph.

Yamanaka and Nakano [7] gave an algorithm for generating all connected
rooted plane graphs with at most m edges in O(1) time per graph on average
using O(m) space. Li and Nakano [3] and Nakano [4] presented O(1)-time delay
algorithms that enumerate all biconnected and triconnected rooted triangulated
plane graphs, respectively. In our companion papers [10,11], we gave O(1)-time
delay enumeration algorithms for the class G2(n, g) of biconnected rooted plane
graphs and the class G3(n, g) of triconnected rooted plane graphs such that the
number of vertices is exactly n ≥ 1 and the size of each inner face is at most
g ≥ 3.

In this paper, we consider the class Gint(n, g) of all internally triconnected
rooted plane graphs with exactly n vertices such that the size of each inner
face is at most g, where G3(n, g) ⊆ Gint(n, g) ⊆ G2(n, g). The structure of in-
ternally triconnected plane graphs is more complicated than those of bicon-
nected/triconnected plane graphs, since they are combinations of triconnected
components under a planarity constraint. We present an O(1)-time delay algo-
rithm that enumerates all plane graphs in Gint(n, g)−G3(n, g) using O(n) space.
Our algorithm also yields an O(n3)-time delay algorithm for generating all inter-
nally triconnected unrooted plane graphs with exactly n vertices such that the
size of each inner face is at most g.

The rest of the paper is organized as follows. After introducing basic notations
in Section 2, Section 3 treats the class Gint of internally triconnected rooted plane
graphs, where we define the parent of each graph in Gint, and characterize the
children of a graph in Gint. Section 4 describes an algorithm for enumerating all
internally triconnected rooted plane graphs in Gint(n, g), and analyzes the time
and space complexities of the algorithm. The proofs omitted due to the space
limitation can be found in a full version of the paper [12].

2 Preliminaries

A graph is denoted by a pair G = (V, E) of a vertex set V and an edge set E.
The set of vertices and the set of edges of a given graph G are denoted by V (G)
and E(G), respectively.

For a subset E′ ⊆ E(G), G− E′ denotes the graph obtained from a graph G
by removing the edges in E′. Let X be a subset of V (G). Let G[X ] denote the
subgraph induced from G by X , and G−X denote the graph obtained from G
by removing the vertices in X together with the edges incident with a vertex
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in X . Let deg(v; G) denote the degree of a vertex v in a graph G. For a vertex
v ∈ V in a graph G, let Γ (v; G) denote the set of neighbours of v (i.e., vertices
adjacent to v). For a subset X ⊆ V , let Γ (X ; G) = ∪v∈XΓ (v; G) − X . The
vertex-connectivity of G is denoted by κ(G).

A fan is the graph obtained from a path P with at least one vertex by adding
a new vertex v together with an edge incident to each vertex in the path, where
the vertex v is called the center of a fan. A fan with n vertices is denoted by Fn.
Note that Fn (n ≥ 2) are biconnected.

A graph is called planar if its vertices and edges can be drawn as points and
curves on the plane so that no two curves intersect except for their endpoints.
A planar graph with such a fixed embedding is called a plane graph, where a
face is designated as the outer face and all other faces are called inner faces. Let
F (G) denote the set of faces in a plane graph G. For a face f in a plane graph
G, let V (f) and E(f) denote the sets of vertices and edges on the facial cycle of
f , and define the size |f | of face f to be |V (f)|. For a vertex v and an edge e,
let F (v) (or F (v; G)) denote the set of inner faces f with v ∈ V (f) and F (e) (or
F (e; G)) denote the set of inner faces f with e ∈ E(f). An inner face f ∈ F (v)
is called a v-face.

A rooted plane graph is a plane graph which has a designated outer edge (u, r)
with orientation from u to r, where r is called the root. Two rooted plane graphs
G1 and G2 are equivalent if their vertex sets admit a bijection by which the desig-
nated directed edge and the incidence-relation between edges and vertices/faces
in G1 correspond to those in G2.

3 Internally Triconnected Rooted Plane Graphs

A biconnected plane graph G is called internally triconnected if any cut-pair
consists of outer vertices and its removal results in only components each of
which contains at least one outer vertex.

For an integer n ≥ 1, let Gint(n) denote the set of all internally triconnected
rooted plane graphs with exactly n vertices.

Let G be an internally triconnected plane graph with root edge (r̂, r). Let
β[u, v] denote the clockwise sequence between two outer vertex u and v. We de-
note the sequence of outer vertices in β[r, r̂] by (v1 = r, v2, . . . , vB = r̂). The fan
factor is defined to be the maximal subsequence st = vB, st−1 = vB−1, . . . , s1 =
vB−t+1 of β[r, r̂] such that Γ (st; G) = {r, st−1} and Γ (si; G) = {r, si−1, si+1},
1 ≤ i ≤ t − 1 where we let s0 = vB−t. Let ψ(G) denote the fan factor of G.
See Fig. 1(b), where t = 3. If ψ(G) �= ∅, then ψ(G) induces Ft, t = |ψ(G)|
from G. Note that |ψ(G)| ≤ n− 2 if G with n vertices is not Fn. If G is tricon-
nected, then ψ(G) = ∅. We say that ψ(G) is augmented by 1 in a graph G with
t = |ψ(G)| ≥ 0 when we introduce a new vertex st+1 together with two new
edges (st+1, r) and (st+1, st). Conversely, we say that ψ(G) is reduced by 1 in a
graph G with t = |ψ(G)| ≥ 1 when we remove the vertex st together with two
incident edges (st, r) and (st, st−1).
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For two outer vertices u = vq and v = v�, 1 ≤ q < � ≤ B + 1 in G, the
path β[u, v] is called pendant if {u, v} is a cut-pair or {u, v} = {v1, vB}. A
pendant path β[u, v] is called reducible if it has no proper path β[u′, v′] which
is pendant. For a pendant path β[u, v], let X denote the set of vertices of the
component containing β[u, v]−{u, v} in G−{u, v}, and G[u, v] denote the graph
G[X ∪{u, v}] together with edge (u, v), where we add a new edge (u, v) if u and
v are not adjacent in G. We easily observe that path β[u, v] is reducible if and
only if G[u, v] is triconnected and {u, v} is a cut-pair or {u, v} = {v1, vB}.

A reducible path β[vq, v�], 1 ≤ q < � ≤ B and its subgraph G[vq, v�] are called
the first reducible path and the first reducible subgraph if � ≤ B − t and there is
no reducible path β[vi, vj ] with 1 ≤ i < q.

Let β[vq , v�], 1 ≤ q < � ≤ B + 1 be the first reducible path. We denote the
outer vertices in G[vq , v�] by u1 = vq, u2, . . . , uB′ = v�, (B′ = j − i + 1), and
call u1 = vq and uB′ = v� the stating vertex and ending vertex of G[vq , v�],
respectively. We treat graph G[vq, v�] as a plane graph such that u1 = vq and
(uB′ , u1) are specified as the root r′ and the root edge, respectively. An outer
edge e is called removable if G[vq, v�]−e remains triconnected. The first removable
element of G[vq, v�] is defined to be a removable edge ep = (up, up+1) or a vertex
up of degree 3 that appears for the first time along β[vq , v�] from r′ = vq to v�. We
call the vertex up the critical vertex, and call the path β[r′, up] active. For each
irremovable outer edge ei = (ui, ui+1), G[vq, v�] has a vertex cut {ui+1, w, uk}
such that w is an inner vertex and uk is an outer vertex, and we let τlast(ei) = uki

denote such an outer vertex uk (�= ui, ui+1) with the largest index k. Note that
G[vq, v�] has two faces f and f ′ with {ui, ui+1, w} ⊆ V (f) and {w, uk} ⊆ V (f ′).

3.1 Parents of Internally Triconnected Rooted Plane Graphs

As mentioned above, each reducible subgraph is a triconnected plane graph.
For triconnected rooted plane graphs, we already have obtained a definition of
parents to form a family tree which admits an O(1)-time delay enumeration algo-
rithm [11]. In this subsection, we define the parent for an internally triconnected
rooted plane graph by replacing the first reducible subgraph by its parent with
respect to triconnected rooted plane graphs [11].

An internally triconnected plane graph with n ≤ 3 vertices is unique. In what
follows, we assume that n ≥ 4 and g ≥ 3, and treat fan Fn as a plane graph
rooted at an edge (v, vc) incident to the center vc of Fn. Let G be an internally
triconnected rooted plane graph with n ≥ 4 such that G �= Fn. We define the
parent P(G) of G to be the following graph with n vertices.

In G[vq, v�], let z′ denote the second leftmost neighbour of the starting vertex
r′ = vq, and call the r′-face containing (uB′ , r′) and (r′, z′) the leftmost r′-face,
denoted by f ′

L. Note that |f ′
L| = 3 if and only if (uB′ , z′) ∈ E(G).

P1 G[vq, v�] is a triangle: The parent P(G) is defined to be the graph obtained
from G by removing vertex vq+1 and augmenting the fan factor of G by 1
(see Fig. 1(a)-(b)).
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Fig. 1. (a), (b) Illustration for the parent in P1 and operation create; (c), (d) illus-
tration for the parent in P2 and operation f-merge

P2 G has no edge joining the starting vertex u1 = vq and the ending vertex
uB′ = v�: The parent P(G) is defined to be the graph obtained from G by
inserting a new inner edge (vq , v�) (see Fig. 1(c)-(d) and Fig. 5(a)-(b)).

P3 (vq, v�) ∈ E(G), and the inner face f ′
L of G[vq, v�] containing edge (vq, v�) is

of length at least 4: Let z′ be the second leftmost neighbour of u1 = vq in
G[vq, v�] (see Fig. 2(a)). The parent P(G) is defined to be the graph obtained
from G by splitting the face f ′

L with a new inner edge (z′, v�) (see Fig. 2(b)).
P4 (vq, v�) ∈ E(G), |f ′

L| = 3, |V (G[vq , v�])| ≥ 4, and the first removable element
in β[vq , v�] of the triconnected graph G[vq, v�] is an edge e: The parent P(G)
is defined to be G− e (see Fig. 2(c) and (d)).

P5 (vq, v�) ∈ E(G), |f ′
L| = 3, |V (G[vq, v�])| ≥ 4, B′ = 3, and the degree of

u2 = vq+1 is 3, where the three neighbours of vq+1 are denoted by vq, w and
vq+2 = v� (see Fig. 3(a)-(d)): The parent P(G) is defined to be the graph
obtained from G by removing vertex vq+1, augmenting the fan factor of G
by 1 and making w incident to vq and v� by introducing new edges (w, vq)
and (w, v�) if necessary (see Fig. 3(e)).

P6 (vq, v�) ∈ E(G), |f ′
L| = 3, |V (G[vq, v�])| ≥ 4, B′ ≥ 4, and the first removable

element in β[vq, v�] of the triconnected graph G[vq, v�] is a vertex ui+1, 1 ≤
i ≤ B′ − 2 (see Fig. 4(a)-(d)): Construct G/ui+1 from G. The parent P(G)
is defined to be the graph obtained by augmenting fan factor ψ(G/ui+1) by
1 (see Fig. 4(e) and Fig. 5(c)-(d)).
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Fig. 2. (a), (b) Illustration for the parent in P3 and operation e-del; (c), (d) illustration
for the parent in P4 and operation e-add

Let fmax(G) denote the maximum size of inner faces in G, and define function
Φ(G) = |F (G)|+ 2B + |ψ(G)|, where F (G) denotes the set of faces in G.

Lemma 1. For each rooted graph G ∈ Gint(n) − {Fn} with n ≥ 4, its parent
P(G) is defined by one of the above six conditions, and it holds fmax(G) ≥
fmax(P(G)), 3 ≤ Φ(G) < Φ(P(G)) ≤ 4n− 4 and κ(G) ≥ κ(P(G)).

3.2 Children of Internally Triconnected Rooted Plane Graphs

Let G be an internally triconnected rooted plane graph with n ≥ 4 vertices.
A rooted plane graph G′ is called a child of G if G = P(G′). Let C(G) denote
the set of all children of G, and let Ci(G), i = 1, 2, . . . , 6 denote the set of all
children G′ of G such that P(G′) is given by definition Pi of parents. Let β[vq , v�]
be the first reducible path in G, and up be the critical vertex of G[vq , v�]. Now
we characterize the children in each Ci(G) by introducing corresponding six
operations, create, f-merge, e-del, e-add, v-insert and v-add as follows.

C1 Assume that |ψ(G)| ≥ 1 and i ≤ �− 1. For the outer edge (u = vi, v = vi+1)
(1 ≤ i ≤ B′−2+i), let G1

i be obtained from G by create(u, v), an operation
which adds a new outer vertex z′ together with two new outer edges (z′, u)
and (z′, v), and reduces ψ(G) by 1. This creates a new reducible path β[u, v].
See Fig. 1(a)-(b).
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Fig. 3. Illustration for the parent in P5 and operation v-add

C2 Assume that {vq, v�} is a cut-pair, and (vq, v�) ∈ E(G). For the two outer
vertices u = vq and v = v�, let G2 be obtained from G by f-merge(u, v), an
operation which deletes the edge (u, v), merging the two faces incident to
(u, v) in G into one. See Fig. 1(c)-(d) and Fig. 5(a)-(b).

C3 Assume that |f ′
L| = 3, H = G[vq, v�] has no separating r′-face, and deg

(uB′ ; H) ≥ 4, For two outer vertices u = vq and v = v�, let G3 be obtained
from G by e-del(u, v), an operation which removes the edge (v, z′) between
v = uB′ and the second leftmost neighbour z′ of r′. See Fig. 2(a)-(b) and
Fig. 5(b)-(c).

C4 Assume that |f ′
L| = 3, B′ ≥ 4, i ≤ p and j ≤ ki−1 For two outer vertices

u = ui and v = uj , where i ∈ [1, B′ − 2] and j ∈ [i + 2, B′], let G4
i,j be

obtained from G by e-add(u, v), an operation which adds a new outer edge
(u, v) as the ith outer edge ei. See Fig. 2(c)-(d).

C5 Assume that B′ = 3, |f ′
L| = 3 and |ψ(G)| ≥ 1. Define four subsets of {e1, e2}

by E0 = ∅, E1 = {e1}, E2 = {e2}, and E3 = {e1, e2}. For the second outer
vertex u = v2 in G[vq, v�] and h ∈ {0, 1, 2, 3}, let G5

h be obtained from G
by v-add(u, h), an operation which reduces ψ(G) by 1 by reducing ψ(G) by
1, and adds a new outer vertex v together with three edges (v, v1), (v, v2)
and (v, v3), deleting an edge set Eh so that deg(x; G5

h[vq, v�]) ≥ 3 for all
x ∈ Γ (v; G5

h[vq, v�]). See Fig. 3(a)-(e).
C6 Assume that |ψ(G)| ≥ 1 and |f ′

L| = 3. Let ei = (a = vi, b = vi+1) be an outer
edge such that |f(ei)| = 3, V (f(ei)) = {a, b, w} and i ≤ p (resp., i ≤ p− 1)
if the first removable element in G[vq, v�] is an edge ep = (up, up+1) (resp.,
a vertex up). Define four subsets of E(f(ei)) by E0 = ∅, E1 = {(a, w)},
E2 = {(b, w)}, and E3 = {(a, w), (b, w)}. For h ∈ {0, 1, 2, 3}, let G6

i,h be
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obtained from G by v-insert(ei, h), an operation which reduces ψ(G) by
1, replaces ei with three edges (a, v), (v, b) and (v, w), introducing a new
vertex v, and delete edge set Eh, so that deg(x; G6

i,h[vq, v�]) ≥ 3 for all x ∈
Γ (v; G6

i,h[vq, v�]) and deg(ui; G6
i,h[vq, v�]) ≥ 4 (where deg(u1; G6

i,h[vq, v�]) = 3
is allowed). See Fig. 4(a)-(e) and Fig. 5(c)-(d).
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Fig. 5. Internally triconnected rooted plane graphs. (a) G1; (b) G2 = P(G1); (c)
G3 = P(G2); (d) G4 = P(G3).

4 Algorithm

To generate all plane graphs G′ ∈ C(G) ∩ Gint(n, g), we construct only those
G′ ∈ C(G) such that the new face introduced by e-add and the face f(ei)
and/or f(ei+1) enlarged by f-merge, e-del, v-insert or v-add are of length at
most g. For this, we execute the following recursive procedure Gen(G, vq, B

′, ε),
with the initial setting G := Fn, r′ := r, B′ := 2 and ε := ∅, where the second
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and third arguments vq and B′ denote the starting vertex vq and ending vertex
v� = vq−1+B′ of the first reducible subgraph G[vq , v�] of the first argument G,
respectively, and and ε stands for the first removable element in G[vq, v�]. We set
ε = ∅ if G[vq, v�] is a triangle C3 or B′ = 2 which is used for initialize G := Fn.

In Gen(G, r′, B′, ε), we first generate children G1
i , G

2
h, G3

h ∈ C(G) if any, and
then generate children G5

i , G
6
i,h, G4

i,i+Δ ∈ C(G) for all vertices ui, i = 1, 2, . . . , p
in the active path of G by increasing step size Δ ≥ 2 by 1.

Procedure Gen(G, r′, B′, ε)
Input: An internally triconnected rooted plane graph G ∈ Gint(n, g), the starting
vertex r′ = vq, the ending vertex v� (� = q − 1 + B′), and the first removable
element ε of G[vq, v�] (if any), where ε �= ∅ is either an edge ep = (up, up+1)
or a vertex up.
Output: All descendants G′ ∈ Gint(n, g) of G.
begin

if the depth of the current recursive call is odd then Output G endif;
/* Let (v1 = r, v2, . . . , vB) denote the boundary of G in the clockwise order,

(u1 = r′, u2, . . . , uB′) denote the boundary of G[r′ = vq, uB′ = v�] in the
clockwise order, and ei =(ui, ui+1) denote the edge between ui and ui+1 */

if |ψ(G)| ≥ 1 then
for i = 1, 2, . . . , �− 1 do

Let G′ be the graph G1
i obtained from G by create(vi, vi+1);

Gen(G′, vi, 3, ∅)
endfor

endif;
if {vq, v�} is a cut-pair, (vq, v�) ∈ E(G), |f |+ |f ′| − 2 ≤ g for the two inner

faces f and f ′incident to edge (vq, v�) then
Let G′ be the graph G2

h obtained from G by f-merge(vq, v�);
Gen(G′, vq, B

′, ε)
endif;
if (vq, v�), (uB′ , z′) ∈ E(G), κ(G− (uB′ , z′)) ≥ 3 and |f | < g for the

uB′-face f adjacent to f ′
L then

Let G′ be the graph G3
h obtained from G by e-del(vq, v�);

Gen(G′, vq, B
′, ∅)

endif;
if (vq, v�), (uB′ , z′) ∈ E(G), B′ = 3 and |ψ(G)| ≥ 1 then

for h = 0, 1, 2, 3 do
Let G′ be the graph G5

h obtained from G by v-add(vk+1, h), and
let v be the newly introduced vertex;
if deg(x; G5

h[vq, v�])≥3 for all x∈Γ (v; G′) and |f | ≤ g for all v-faces f in G′

then Gen(G′, vi, 3, ε := ∅) endif
endfor

endif;
if (vq, v�), (uB′ , z′) ∈ E(G) and |ψ(G)| ≥ 1 then

for i = 1, 2, . . . , q do
if |f(ei)| = 3, and “i < p” or “i = p and ε is an edge” then
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for h = 0, 1, 2, 3 do
Let G′ be the graph G6

i,h obtained from G by v-insert(ei, h), and
let v be the newly introduced vertex;
if deg(x; G6

i,h[vq, v�]) ≥ 3 for all x ∈ Γ (v; G′), deg(ui; G6
i,h[vq, v�])≥4

(when i �= 1) and and |f | ≤ g for all v-faces f ∈ F (v; G′) then
Gen(G′, vq, B

′ + 1, v) endif
endfor endif endfor

endif;
if (vq, v�), (uB′ , z′) ∈ E(G) and B′ ≥ 4 then

for Δ = 2, 3, . . . , min{B′ − 1, g − 1} do
i := 1;
while i + Δ ≤ ki−1 and i ≤ p do

/* ki−1 be the index k ∈ [i + 1, B′] of uk =τlast(ei−1) and k0 :=B′ */
j := i + Δ;
Let G′ be the graph G4

i,j obtained from G by e-add(ui, uj);
Gen(G′, vq, B

′ −Δ + 2, ei = (ui, uj));
i := i + 1

endwhile endfor endif;
if the depth of the current recursive call is even then Output G endif;
Return

end.

We omit an analysis for time and complexity of the algorithm due to space
limitation (see [12] for the details), mentioning that the following lemma used
to show that Gen attains O(1)-time delay in the worst case using O(n) space.

Lemma 2. Let H = G[vq, v�] be a triconnected plane graph rooted at r′ = u1

such that |f ′
L| = 3.

(i) For each edge e in the active path of H, τlast(e) can be found in O(1) time
and O(n) space.

(ii) Whether H has no separating r′-face or not can be tested in O(1) time and
O(n) space.

This is another technical difficulty in getting an O(1)-time delay implementation
of this algorithm. Based on an observation of how vertex cuts with 3 vertices
change for each operation, a solution is found by keeping only a simple but
sufficient data in O(1) time and O(n) space. A similar data is used to deal with
triconnected rooted plane graphs [11].

Theorem 1. For integers n ≥ 1 and g ≥ 3, all rooted plane graphs in Gint(n, g)−
G3(n, g) can be enumerated without duplication in O(n) space and in O(1)-time
delay by outputting the difference from the previous output after an O(n) time ini-
tialization.

We can use our algorithm for generating unrooted plane graphs. During an
execution of Gen we check in O(n2) time whether a newly generated rooted
graph G is the representative among rooted graphs with the same plane graphs
or not by computing its signature [1].
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Corollary 1. For a given integer n ≥ 1 and g ≥ 3, all internally triconnected
planar graphs G with exactly n vertices such that κ(G) = 2 and the size of each
inner face is at most g can be enumerated without duplication in O(n) space and
in O(n3)-time delay on average.

5 Concluding Remarks

In this paper, we gave an enumeration algorithm for the class of internally tricon-
nected rooted plane graphs with exactly n vertices and bounded inner face size
g. The algorithm can output only internally triconnected rooted plane graphs
which are not triconnected. Since an O(1)-time delay algorithm for the class of
triconnected rooted plane graphs is available [11], we can enumerate these two
classes separately.

It is our future work to design enumeration algorithms for rooted plane graphs
with a higher vertex-connectivity and to take into account the reflectional sym-
metry around the root, as studied in our companion paper [8,9].
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