

Lecture Notes in Computer Science 6150
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Holger Giese (Ed.)

Architecting
Critical Systems

First International Symposium, ISARCS 2010
Prague, Czech Republic, June 23-25, 2010
Proceedings

13

Volume Editor

Holger Giese
Hasso Plattner Institute for Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
E-mail: Holger.Giese@hpi.uni-potsdam.de

Library of Congress Control Number: 2010928429

CR Subject Classification (1998): C.3, K.6.5, D.4.6, E.3, H.4, D.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-13555-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-13555-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Architecting critical systems has gained major importance in commercial, gov-
ernmental and industrial sectors. Emerging software applications encompass crit-
icalities that are associated with either the whole system or some of its compo-
nents. Therefore, effective methods, techniques, and tools for constructing, test-
ing, analyzing, and evaluating the architectures for critical systems are of major
importance. Furthermore, these methods, techniques and tools must address is-
sues of dependability and security, while focusing not only on the development,
but also on the deployment and evolution of the architecture.

This newly established ISARCS symposium provided an exclusive forum for
exchanging views on the theory and practice for architecting critical systems.
Such systems are characterized by the perceived severity of consequences that
faults or attacks may cause, and architecting them requires appropriate means
to assure that they will fulfill their specified services in a dependable and secure
manner.

The different attributes of dependability and security cannot be considered
in isolation for today’s critical systems, as architecting critical systems essen-
tially means to find the right trade-off among these attributes and the various
other requirements imposed on the system. This symposium therefore brought
together the four communities working on dependability, safety, security and
testing/analysis, each addressing to some extent the architecting of critical sys-
tems from their specific perspective. To this end the symposium united the
following three former events:

– Workshop on Architecting Dependable Systems (WADS)
– Workshop on the Role of Software Architecture for Testing

and Analysis (ROSATEA)
– Workshop on Views on Designing Complex Architectures. (VODCA)

The 27 submissions and 11 published papers of this first ISARCS instance
in 2010 show that we brought together as planned expertise from the different
communities and therefore were able to provide a first overarching view on the
state of research on how to design, develop, deploy and evolve critical systems
from the architectural perspective.

The selected papers addressed issues such as rigorous development, testing
and analysis based on architecture, fault tolerance based on the architecture,
safety-critical systems and architecture, secure systems and architecture, com-
bined approaches and industrial needs.

In the symposium the design of critical systems was addressed looking at
issues such as analyzing the trade-offs between security and performance, archi-
tectural design decisions for achieving reliable software systems, and the integra-
tion of fault-tolerance techniques into the design of critical systems. In addition,
also more rigorous approaches to design were discussed.

VI Preface

The assurance of critical systems was discussed for approaches that employ
formal methods and testing for applications as well as underlying software layers.
In addition, a number of results that target specific domains such as military
systems, safety-critical product lines and peer-to-peer control and data acqui-
sition systems were presented. These papers provided a good introduction into
the specific requirements of these domains and presented specific solutions for
their domain. Furthermore, the interplay of architecture modeling and exist-
ing domain-specific safety standards was discussed in the context of automotive
systems.

The program was completed by two keynotes that were shared with the other
events of the federated CompArch conference. The first one was on a component-
based approach for adaptive user-centric pervasive applications from Martin
Wirsing from the Ludwig-Maximilians-Universität Munich, Germany, and the
second addressed how to make the definition of evolution intrinsic to architec-
ture descriptions, by Jeff Magee from the Imperial College, London, UK.

I thank the authors of all submitted papers, and the PC members and ex-
ternal referees who provided excellent reviews. I am in particular grateful to
Frantisek Plasil and the whole team in Prague as well as Stefan Neumann and
Edgar Nähter for their help and support concerning organizational issues. I fur-
thermore thank the ISARCS SC members for their support throughout the whole
process and their strong commitment to making ISARCS 2010 a success.

April 2010 Holger Giese

Organization

ISARCS 2010 was organized by the Faculty of Mathematics and Physics of the
Charles University, Prague, Czech Republic as one event of the federated confer-
ence Component-Based Software Engineering and Software Architecture (Com-
pArch 2010).

General Chair

Frantisek Plasil Charles University, Prague, Czech Republic

Program Chair

Holger Giese Hasso Plattner Institute at the University of
Potsdam, Germany

Local Organization

Petr Hnětynka Charles University, Prague, Czech Republic
Milena Zeithamlova Action M Agency, Prague, Czech Republic

Steering Committee

Rogério de Lemos University of Coimbra, Portugal)
Cristina Gacek City University, London, UK
Fabio Gadducci University of Pisa, Italy
Lars Grunske Swinburne University of Technology, Australia
Henry Muccini University of L’Aquila, Italy
Maurice ter Beek ISTI-CNR, Pisa, Italy

Program Committee

Alessandro Aldini University of Urbino, Italy
Aslan Askarov Cornell University, USA
Brian Berenbach Siemens Corporate Research, USA
Stefano Bistarelli Università di Perugia, Italy
Michel R.V. Chaudron Leiden University, The Netherlands
Betty H. C.Cheng Michigan State University, USA
Nathan Clarke University of Plymouth, UK
Ricardo Corin Universidad Nacional de Cordoba (FAMAF),

Argentina

VIII Organization

Cas Cremers ETH Zurich, Switzerland
Ivica Crnkovic Mälardalen University, Sweden
Bojan Cukic West Virginia University, USA
Eric Dashofy The Aerospace Corporation, USA
Erik de Vink Eindhoven University of Technology,

The Netherlands
Heiko Dörr Carmeq GmbH, Germany
Alexander Egyed Johannes Kepler University, Austria
Sébastien Gérard CEA LIST, France
Wolfgang Grieskamp Microsoft Corporation, USA
Ethan Hadar CA Inc., Israel
Paola Inverardi University of L’Aquila, Italy
Valérie Issarny INRIA, UR de Rocquencourt, France
Tim Kelly University of York, UK
Marc-Olivier Killijian LAAS-CNRS Toulouse, France
Philip Koopman Carnegie Mellon University, USA
Patricia Lago VU University Amsterdam, The Netherlands
Javier Lopez University of Malaga, Spain
Nenad Medvidovic University of Southern California, USA
Flavio Oquendo European University of Brittany -

UBS/VALORIA, France
Mauro Pezzè University of Lugano, Switzerland
Ralf H. Reussner Karlsruhe Institute of Technology / FZI,

Germany
Roshanak Roshandel Seattle University, USA
Ana-Elena Rugina Astrium Satellites, France
Bradley Schmerl Carnegie Mellon University, USA
Bran Selic Malina Software, Canada
Judith Stafford Tufts University, USA
Michael von der Beeck BMW Group, Germany

External Referees

Rogério de Lemos
Lars Grunske
Aaron Kane
Giovanni Mainetto
Mohamad Reza Mousavi
Henry Muccini
Marinella Petrocchi
Justin Ray
Francesco Santini
Malcolm Taylor
Maurice H. ter Beek

Table of Contents

Design

An Architectural Framework for Analyzing Tradeoffs between Software
Security and Performance . 1

Vittorio Cortellessa, Catia Trubiani, Leonardo Mostarda, and
Naranker Dulay

Architectural Design Decisions for Achieving Reliable Software
Systems . 19

Atef Mohamed and Mohammad Zulkernine

Integrating Fault-Tolerant Techniques into the Design of Critical
Systems . 33

Ricardo J. Rodŕıguez and José Merseguer

Component Behavior Synthesis for Critical Systems 52
Tobias Eckardt and Stefan Henkler

Verification and Validation

A Road to a Formally Verified General-Purpose Operating System 72
Martin Děcký

Engineering a Distributed e-Voting System Architecture: Meeting
Critical Requirements . 89

J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy

Testing Fault Robustness of Model Predictive Control Algorithms 109
Piotr Gawkowski, Konrad Grochowski, Maciej �Lawryńczuk,
Piotr Marusak, Janusz Sosnowski, and Piotr Tatjewski

Domain-Specific Results

Towards Net-Centric Cyber Survivability for Ballistic Missile Defense . . . 125
Michael N. Gagnon, John Truelove, Apu Kapadia,
Joshua Haines, and Orton Huang

A Safety Case Approach to Assuring Configurable Architectures of
Safety-Critical Product Lines . 142

Ibrahim Habli and Tim Kelly

Increasing the Resilience of Critical SCADA Systems Using Peer-to-Peer
Overlays . 161

Daniel Germanus, Abdelmajid Khelil, and Neeraj Suri

X Table of Contents

Standards

ISO/DIS 26262 in the Context of Electric and Electronic Architecture
Modeling . 179

Martin Hillenbrand, Matthias Heinz, Nico Adler,
Klaus D. Müller-Glaser, Johannes Matheis, and
Clemens Reichmann

Author Index . 193

An Architectural Framework for
Analyzing Tradeoffs between

Software Security and Performance

Vittorio Cortellessa1, Catia Trubiani1, Leonardo Mostarda2,
and Naranker Dulay2

1 Università degli Studi dell’Aquila, L’Aquila, Italy
{vittorio.cortellessa,catia.trubiani}@univaq.it
2 Imperial College London, London, United Kingdom

{lmostard,nd}@doc.ic.ac.uk

Abstract. The increasing complexity of software systems entails large
effort to jointly analyze their non-functional attributes in order to iden-
tify potential tradeoffs among them (e.g. increased availability can lead
to performance degradation). In this paper we propose a framework for
the architectural analysis of software performance degradation induced
by security solutions. We introduce a library of UML models represent-
ing security mechanisms that can be composed with performance anno-
tated UML application models for architecting security and performance
critical systems. Composability of models allows to introduce different
security solutions on the same software architecture, thus supporting
software architects to find appropriate security solutions while meeting
performance requirements. We report experimental results that validate
our approach by comparing a model-based evaluation of a software ar-
chitecture for management of cultural assets with values observed on the
real implementation of the system.

Keywords: performance, security, UML, GSPN, tradeoff analysis.

1 Introduction

The problem of modeling and analyzing software architectures for critical sys-
tems is usually addressed through the introduction of sophisticated modeling
notations and powerful tools to solve such models and provide feedback to soft-
ware engineers.

However, non-functional attributes are often analyzed in isolation. For exam-
ple, performance models do not usually take into account the safety of a system,
as well as availability models do not consider security aspects, and so on. An
early but relevant exception in this domain has been the definition of performa-
bility [19] that combines performance and availability aspects into the same class
of models. With the increasing variety and complexity of computing platforms,
we believe that the task of jointly analyzing non-functional attributes to study

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 V. Cortellessa et al.

possible dependencies is becoming a critical task for the successful development
of software architectures.

This paper works towards this goal. It presents a framework to jointly model
and analyze the security and performance attributes of software architectures.
The critical aspect that we tackle is to quantify the performance degradation
incurred to achieve the security requirements. The basic idea is that the solution
of a performance model that embeds security aspects provides values of indices
that can be compared to the ones obtained for the same model (i) without se-
curity solutions, (ii) with different security mechanisms and (iii) with different
implementations of the same mechanism. Such comparisons help software archi-
tects to decide if it is feasible to introduce/modify/remove security strategies on
the basis of (possibly new) requirements.

Security is, in general, a complex and cross-cutting concern, and several mech-
anisms can be used to impact on it. In this paper we focus on two common
mechanisms that are: encryption and digital signature.

In order to easily introduce security and performance aspects into software
models we have built a library of models that represent security mechanisms
ready to be composed. Once an application model is built, in order to conduct a
joint analysis of security and performance with our approach it is necessary for
the software designer: (i) to specify the appropriate security annotations (e.g. the
confidentiality of some data), and (ii) to annotate the model with performance
related data (e.g. the system operational profile). Thereafter, such an annotated
model can be automatically transformed into a performance model whose solu-
tion quantifies the tradeoff between security and performance in the architecture
under design. The setting where our approach works is Unified Modeling Lan-
guage (UML) [1] for software modeling and Generalized Stochastic Petri Nets
(GSPN) [15] for performance analysis.

The starting point of this work can be found in [5], where we have introduced
an earlier version of this approach and a preliminary security library of models
expressed as performance models. As envisaged in [5], thereafter we have applied
the approach to real world case studies, and the experimentation phase led us
to modify the approach as well as the security library.

An important aspect lacking in [5] that we tackle in this paper is that the
choice and the localization of the appropriate security mechanisms should be
driven from the system architecture (e.g. features of the communication chan-
nels, physical environment, etc.). For example, a message exchanged between
two components might require encryption depending on whether the commu-
nication channel between the components is a wireless one or not (see Section
5). Hence, the main progress, in comparison to [5], is that here we express se-
curity mechanisms as UML architectural models, and the model composition is
moved on the designer’s side. Thus, our approach allows designers to explicity
explore architectural alternatives for balancing security/performance conflicting
concerns in the architectural phase of the development process.

To validate our approach we have conducted extensive experiments where we
compare the results of our models with the data monitored on a real system.

Analyzing Tradeoffs between Software Security and Performance 3

The promising numerical results that we have obtained significantly support the
prediction capabilities of our approach.

The paper is organized as follows: in Section 2 we present the related work
and describe the novelty of the approach with respect to the existing literature;
in Section 3 we introduce our approach and the types of analysis that it can
support; in Section 4 we discuss the library of security models and how it is used
at the application level; in Section 5 we present the experimental results that
we have obtained on a real case study; finally in Section 6 we give concluding
remarks and future directions.

2 Related Work

The literature offers a wide variety of proposals and studies on the performance
aspects of security, but most of them analyze the performance of existing stan-
dards such as IPsec and SSL. Therefore the analysis conducted in these ap-
proaches remains confined to very specific problems and solutions. However,
noteworthy examples in this direction can be found in [4] [9] [14].

A tradeoff analysis of security and scalability can be found in [16], which
stresses the importance of understanding the security required while minimizing
performance penalties. Our concern is similar to this one because we also target
an analysis of how security solutions impact on system performance. However,
in [16] the analysis is conducted using a specific security protocol (i.e. SSL) and
a limited set of cryptographic algorithms, whereas our framework is intended to
model and analyze more general solutions.

Estimating the performance of a system with different security properties is a
difficult task, as demonstrated in [12], where they emphasize how difficult is to
choose between secure and non-secure Web services, RMI and RMI with SSL.
The authors solve the problem by performing different measurements on different
platforms to elicit guidelines for security setting selections.

There are also several works that use aspect-oriented modeling (AOM) to
specify and integrate security risks and mechanisms into a system model, such
as the one in [8]. An interesting performance study, based on AOM, can be
found in [22] where security solutions are modeled as aspects in UML that are
composed with the application logics, and the obtained model is transformed into
a performance model. This work uses an approach to the problem that is similar
to ours, in that they are both based on model annotations and transformations.
Our work, at some extent, refines the approach in [22] because we target the
problem of representing elementary security mechanisms aimed at guaranteeing
certain security properties, whereas the analysis in [22] is performed only on the
SSL protocol and a set of properties embedded in it. Furthermore this paper
differs from [22] because for each security mechanism we additionally consider
the reasonable implementation options (e.g. the key length of an encryption
algorithm) that significantly impact on the software performance.

The lack of a model-based architectural solution to this problem is the major
motivation behind our work. This paper aims at overcoming the limitations of ad

4 V. Cortellessa et al.

hoc solutions that estimate the performance of specific security technologies. To
achieve this goal, we propose a framework that manages and composes platform-
independent models of security mechanisms, thus allowing designers to estimate
and compare the performance of different architectural security solutions for
critical systems.

3 Our Approach

In this section we present a framework that allows us to quantify the tradeoff
between the security solutions introduced to cope with the application require-
ments and the consequent performance degradation.

In Figure 1 the process that we propose is reported. The process has been
partitioned in two sides: on the left side all models that can be represented with
a software modeling notation (e.g. UML) appear; on the right side all models
represented with a performance modeling notation (e.g. GSPN) appear.

Fig. 1. A joint process for security and performance goals

The starting point of the process is an Application Model that is a static and
dynamic representation of a software architecture. For sake of simplification we
assume that such model is annotated with the performance parameters related
to the application (e.g. the system operational profile)1.

A Security-Annotated model is obtained by introducing security annotations
in the former. Such annotations specify where security properties have to be
inserted, namely which software services have to be protected and how (e.g. the
entity providing a certain service must be authenticated before using it).

1 Note that the standard MARTE profile [2] has been adopted to specify performance
parameters in our UML models. However, it is out of the scope of this paper to
provide details of performance annotations, because well assessed techniques exist
for this goal [20].

Analyzing Tradeoffs between Software Security and Performance 5

The contribution of this paper can be located among the shaded boxes of
Figure 1. A Security Library of UML models is provided; in particular, models
of Basic Mechanisms are combined to build Composed Mechanisms.

The task of Enabling Security consists in embedding the appropriate security
mechanisms in the software architecture. This step is driven by the security an-
notations specified in the application model, and a Security-Enabled Application
Model is finally obtained. As an example, if a security annotation specifies that
data integrity must be guaranteed for a certain service, an additional pattern
with the steps needed for the data integrity mechanism must be introduced in
the architectural model wherever the service is invoked. Such a pattern is one of
the mechanisms modeled in our security library.

A key aspect of this task is the composability of models, and this is achieved in
our approach through two features: (i) entry points for security mechanisms are
unambiguously defined by security annotations, and (ii) mechanism models in
the security library have been designed to be easily composable with application
models (see Section 4.2).

The security-enabled application model is finally transformed into a GSPN-
based Performance Model. This step involves not only a transformation between
modeling notations2, but an additional task is necessary to appropriately in-
strument the target performance model, because security mechanisms inevitably
introduce additional performance parameters to be set in the model.

The definition of such parameters is embedded in the security library where
they are defined in an application-independent way. For example, the encryption
mechanism introduces additional parameters affecting system performance, such
as the complexity and resource requirements of the encryption algorithm, its
mode of operation (e.g. CBC), the lengths of the keys, etc. However, the task of
enabling security implies the usage of such mechanisms at the application level,
thus they can be influenced by further application-dependent characteristics.
For example, the encryption mechanism efficiency is influenced by the speed of
the CPU executing the encryption algorithm, the length of the message to be
encrypted, etc.

Hence, the GSPN performance model finally generated has to be carefully
parameterized with proper performance data.

The GSPN performance models are solved by SHARPE [11] [21], and the
model evaluation provides performance indices that jointly take into account
both the security and the performance features required for a critical system.

Note that such tradeoff analysis can be conducted on multiple security settings
by only modifying the security annotations and re-running the following steps
of our approach. In fact, in Figure 1 we can define a certain multiplicity in the
security annotations to emphasize that different strategies can be adopted for
the same architecture according to different system settings (see Section 5.1).

2 Well consolidated techniques have been exploited to transform software models (e.g.
UML diagrams) into performance models (e.g. GSPN), and readers interested can
refer to [3] for an extensive survey on this topic.

6 V. Cortellessa et al.

Finally we observe that several types of analysis can be conducted on the
models built with this approach: (i) a performance model with a set of security
requirements can be compared with one without security to simply study the
performance degradation introduced from certain security settings; (ii) the per-
formance estimates from different performance models can be compared to each
other to study the tradeoff between security and performance across different
architectural configurations.

Note that the latter analysis can be hierarchically conducted by assuming
configurations that are ever more secure. This scenario leads to continuously
raising the security settings, thus allowing us to quantify the amount of system
performance degradation at each increase of security.

4 Enabling Security

The OSI (Open Systems Interconnection) Security Architecture standard [18]
aims at defining, through basic mechanisms and their composition, various prop-
erties of a system belonging to a secure environment.

Based on OSI, in [5] we have introduced a set of performance models for Basic
and Composed Security Mechanisms. An open issue of that prelimary work was
the usage of those models on real applications. After experimenting on real case
studies, we realized that the directives in [18] led us to produce, in some cases,
models that were too abstract to be useful in practice. This consideration has
brought to substantially modify our security models.

In Table 1 a refined set of Basic and Composed Mechanisms, and their de-
pendencies, is illustrated. Each row refers to a Composed Mechanism and each
column to a Basic one. An X symbol in a (i, j) cell means that Basic Mechanism
j is used to build Composed Mechanism i.

The Basic Mechanisms that we consider are: Encryption, which refers to the
usage of mathematical algorithms to transform data into a form that is unread-
able without knowledge of a secret (e.g. a key); Decryption, which is the inverse
operation of Encryption and makes the encrypted information readable again;
the Digital Signature is a well-known security mechanism that has been split
into Generation and Verification, in order to express finer grained dependencies
among mechanisms.

Table 1. Dependencies between Basic and Composed Mechanisms

�������Composed
Basic

Digital Digital
Encryption Signature Signature Decryption

Generation Verification
Data
Confidentiality X X
Data
Integrity X X
Peer Entity
Authentication X X
Data Origin
Authentication X

Analyzing Tradeoffs between Software Security and Performance 7

The Composed Mechanisms have been defined as follows. Data Confidentiality
refers to the protection of data such that only the authorised entity can read
it. Data Integrity assures that data has not been altered without authorisation.
Peer Entity Authentication is an identity proof between communicating entities.
Data Origin Authentication supports the ability to identify and validate the
origin of a message; it has been defined as a Composed Mechanism although
it depends on only one Basic Mechanism (see Table 1). This choice allows to
interpret the generation of a digital signature as an high level mechanism that
can be used by itself to enable the (possibly future) verification of data origin.

Models of Basic and Composed Mechanisms have been expressed as UML
Sequence Diagrams (see Section 4.1).

In [13] an UML profile, called UMLsec, is presented for secure system devel-
opment. Security properties (i.e. secrecy, integrity, authenticity and freshness)
are specified as tagged values of a common stereotype (i.e. data security). We do
not use the UMLsec profile because the set of models we consider act at a lower
level of abstraction to provide a higher degree of freedom to architectural de-
signers, e.g. about the encryption algorithm and the key lengths. Ultimately we
intend to provide instruments for architecting security and performance critical
systems on the basis of quantitative estimates.

4.1 Security Library

In this section we concentrate on the security mechanisms identified in Table
1. Some preliminary operations, such as the generation of public and secret
keys and the process of obtaining a certificate from a certification authority, are
executed once by all software entities involved in the security annotations.

In Figure 2(a) the generation of public and private keys is illustrated: a com-
ponent sets the key type (setKeyType) and the key length (setKeyLenght) and
generates the public (generatePKey) and the private (generateSKey) keys.

In Figure 2(b) the process of obtaining a certificate from a certification au-
thority is shown: a component requiring a certificate (reqCertificate) sends its
information and the public key; the certification authority checks the credentials
(checkEntityInfo) and, if trusted, generates the certificate (generateCertificate)
and sends it back (sendCertificate) to the software entity.

Figure 3 shows the UML Sequence Diagram modeling Encryption. Firstly
the sender of the message decides the type of algorithm to use (setAlgorithm-
Type) and the key length (setKeyLength). The encryption can be of two different
types: asymEncrypt means asymmetric encryption (i.e. by public key), whereas
symEncrypt indicates symmetric encryption (i.e. by a shared secret key).

For asymmetric encryption the sender sets the padding scheme it requires
(setPaddingScheme) and verifies the receiver’s certificate if it is not already
known. Finally, the encryption algorithm (encryptAlgorithm) is executed on the
message (msg) with the public key of the receiver (P(R)).

For symmetric encryption the sender sets the algorithm mode (setAlgorithm-
Mode), performs a key-exchange protocol if a shared key is not already exchanged,
and requires the exchange of certificates. We have modelled the ISO/IEC 11770-3

8 V. Cortellessa et al.

(a) generateKeys (b) getCertificate

Fig. 2. UML Sequence Diagram of some preliminary operations

key exchange protocol that achievesmutual authentication and key exchange. This
requires both parties to generate a key that can be combined to form a single ses-
sion key. Three messages are exchanged. The first one is sent by the sender S and
contains the sender information, the key generated by it, and a nonce; the message
containing all this information is encrypted with the public key of the receiver. The
second one is sent by the receiver R and contains the receiver information, the key
generated by it, the nonce previously sent by S and a new nonce generated by R;
the message containing all this information is encrypted with the public key of the
sender. The third one is sent by the sender and contains the nonce sent by the re-
ceiver. Finally, the encryption algorithm (i.e. encryptAlgorithm) is executed on the
message (msg) with a session key obtained combining the keys generated by the
sender and the receiver (K(KS , KR)).

Figure 4(a) shows the the UML Sequence Diagram modeling the Digital Sig-
nature Generation. First, the hash function (setHashFunction) algorithm must
be specified, then the digest generated (generateDigest) and finally the encryp-
tion algorithm (encryptAlgorithm), by using the entity private key, applied on
the digest.

Figure 4(b) shows the UML Sequence Diagram modeling the Digital Signature
Verification. A message (msg) and the digital signature (digitSign) are received
as inputs. Two operations are performed: the first one is to calculate the di-
gest (execHashFunc); the second one is the actual execution of the encryption
algorithm applied on the input digital signature producing a forecast of the real
signature (encryptAlgorithm). The last computation involves the verification of
the digital signature (verifyDigitSign) which compares the forecast digital sig-
nature with the received one, in order to confirm the verification.

For sake of space the UML Sequence Diagram modeling the Decryption is
not shown but it can be summarized as follows: after receiving the encrypted
message, the algorithm type and the key length are extracted, and the decryption
algorithm is executed to obtain the plain text.

Analyzing Tradeoffs between Software Security and Performance 9

Fig. 3. UML Sequence Diagram of the Encryption mechanism

10 V. Cortellessa et al.

(a) Digital Signature Generation (b) Digital Signature Verification

Fig. 4. UML Sequence Diagram of the Digital Signature mechanism

4.2 Security-Enabled Application Model

In this section we briefly discuss how the Composed Mechanisms of Table 1 are
annotated and embedded in the application model to obtain a Security-Enabled
Application Model.

The Data Confidentiality mechanism can be annotated on a software connec-
tor, and it means that data exchanged between the connected components are
critical and need to be kept secret.

In Figure 5 we illustrate how the Composed Mechanism is enabled in the
application model. On the left side the security annotation is added in the static
architectural model (i.e. UML Component Diagram) on the software connector,
and it means that client and supplier components exchange critical data. On the
right side all Basic Mechanisms used to build the composed one (see Table 1)
are embedded in the dynamic architectural model (i.e. UML Sequence Diagram),
hence data are encrypted by the client component before their exchange and later
decrypted by the supplier component.

Fig. 5. Enabling Data Confidentiality mechanism

Analyzing Tradeoffs between Software Security and Performance 11

The Peer Entity Authentication and Data Integrity mechanisms are both
obtained by the generation of the digital signature followed by its verification,
as reported in Table 1. In fact they have the same modeling structure in terms
of the sequence of operations. The difference is in the content of the message
used to generate the digital signature. The Peer Entity Authentication can be
annotated for software components and the content of the message is represented
by its credentials, whereas Data Integrity can be annotated for attributes and
the message is represented by application specific data.

Finally, the Data Origin Authentication mechanism can be annotated on at-
tributes and means that data are critical and need to be authenticated. It de-
pends on the digital signature generation, as reported in Table 1.

5 Experimental Validation

In this section we apply our approach to a real case study: a large distributed
system in the domain of cultural asset management, built in the context of the
CUSPIS project [7]. This experimental validation highlights the potential of our
approach3.

We denote by SCi a system configuration that represents the required security
settings to be included in the application model. It is obvious that the same
application model may have multiple configurations, each leading certain security
characteristics to the system.

For sake of experimentation we have numbered the system configurations in
a hierarchical way SC0, SC1,..., SCn, so that for configuration SCi the required
security settings properly include all the ones adopted for SCj with i > j. SC0
represents the system without any security setting. Such hierarchical organiza-
tion of system configurations has been adopted in our case study in order to
stress the progressive performance degradation introduced by the increasing of
security.

However, our framework can be used to study the tradeoff between security
and performance across different system configurations, not strictly ordered on
raising security settings. For example, two generic configurations SCi and SCj

may share certain settings but, at the same time, they may differ for other
settings.

5.1 The CUSPIS System

The CUSPIS system aims to improve the protection of cultural assets (CA),
such as sculptures and paintings, through the use of computer-based strategies
(e.g. cryptography and satellite tracking). Our experimentation focuses on two
services: cultural asset authentication and cultural asset transportation4.
3 For sake of space we only report the most relevant results among all the evaluations

carried out.
4 For sake of space we report only the authentication scenario, whereas we refer to [6]

for the transportation one.

12 V. Cortellessa et al.

Cultural asset authentication aims to ensure that visitors to an exhibition, or
potential buyers at an auction, can obtain cultural asset information and verify
its authenticity (see [17] for details). Authentication is achieved by assigning a
Geo Data (GD) tag containing information referring to each asset. A tag must be
produced by a qualified organisation (e.g. the sculptures producer) to improve
the asset protection.

Our experimentation in the cultural asset authentication service focuses on
the GD generation scenario. It is performed in the following way: the qualified
organisation generates the GD information (genGDinfo) and sends it (send) to
a database that stores it (storeGDinfo).

The analysis of the GD generation scenario leads us to define two different
system configurations (i.e. SC1 and SC2), as motivated in the following.

Figure 6(a) shows the Security-Enabled Application Model for the configura-
tion SC1: the qualified organisation provides Data Origin Authentication of the
gd data, that is uploaded to a database. The uploading does not require any
security solution since we assume that it is performed through a secure channel.
The operation that returns that value (genGDinfo()) is defined as a critical op-
eration and tagged with a star in the UML Sequence Diagram of Figure 6(a).
A “ref” fragment that points to the Digital Signature Generation mechanism is
added, as stated in Table 1.

The system configuration SC1 is not security-wide when the qualified organ-
isation device and the database communicate through an insecure network; the
configuration SC2 solves this problem by adding Data Confidentiality to the soft-
ware connector requiring the storeGDinfo() operation. The exchange of data is
performed through the send() operation that is defined as a critical operation, and
it is tagged with a star in the UML Sequence Diagram of Figure 6(b). The refer-
ences to the Encryption/Decryption mechanisms are added, as stated in Table 1.

5.2 CUSPIS Implementation Details

Experiments for the CUSPIS system have been performed by running the same
application code on two machines. The first machine has an Intel(R) Core2
T7250 CPU running at 2GHz with 2GB RAM, and runs the Windows Vista
operating system. The second machine has an Intel Pentium4 3.4Ghz with 2GB
RAM, and runs the Windows XP operating system.

In configuration SC1 the digital signature was performed by using SHAw-
ithRSA with different key sizes of 1024, 2048 and 4096 bits. In configuration
SC2 the encryption/decryption was performed by using an AES algorithm with
a 256-bit key size in CBC mode.

5.3 Applying Our Approach to CUSPIS

In this Section we describe the experimental results that we have obtained from
applying our approach to the CUSPIS system. From a performance analysis
viewpoint, our experiments follow standard practices: construct the model, vali-
date the model by comparing model results with real numerical values obtained
from monitoring the implemented system while varying model parameters [10].

Analyzing Tradeoffs between Software Security and Performance 13

(a) GD generation in SC1

(b) GD generation in SC2

Fig. 6. Security-Enabled Application Models for GD generation

14 V. Cortellessa et al.

The validation of the GD generation scenario undergoes generic performance
and security goals of a qualified organisation, which can be summarised as fol-
lows: (i) the number of tags generated per second must be as high as possible (a
performance issue); (ii) tags must be hard to compromise (a security issue).

Based on the description in Section 5.1, two different GSPN performance
models are built5, one for each configuration considered: SC1 and SC2. Tables 2
and 3 report the results that we have obtained, respectively, for configurations
SC1 and SC2.

Table 2. GD generation - analysis of configuration SC1

KeySize
Model Solution Implementation Model Prediction

Results Monitoring Data Error

(byte) (tags/sec) (tags/sec) (%)

Platform 1
1024 17.45 17.3 0.86
2048 9.32 9.11 2.25
4096 1.98 1.92 3.03

Platform 2
1024 17.13 16.61 3.03
2048 8.45 8.11 4.02
4096 1.85 1.78 3.78

The columns of Table 2 can be divided into three sets. The first column reports
the size of the key used in the encryption algorithm. The second set of columns
reports the experimental results: the number of tags per second obtained from
the model solution, the same values as monitored on the real implementation.
Finally the last column reports the prediction error, expressed in percentage, of
the model results in comparison to the monitored ones.

Table 3. GD generation - analysis of configuration SC2

KeySize
Model Solution Implementation Model Prediction

Results Monitoring Data Error

(byte) (tags/sec) (tags/sec) (%)

Platform 1
1024 3.43 3.29 4.08
2048 2.93 2.85 2.73
4096 1.35 1.33 1.48

Platform 2
1024 4.16 4.09 1.68
2048 3.33 3.2 3.90
4096 1.38 1.34 2.90

The rows of Table 2 can be divided into two sets, one for each platform consid-
ered (see Section 5.2). Within each set, numbers are reported for three values of the
key size. For example, the first row of the Table 2 indicates the GD generation for
the configuration SC1 on Platform 1 with a 1024-bit key size: the model predicts
that the system is able to generate 17.45 tags/second, the monitoring of the imple-
mentation reveals that the system actually generates 17.30 tags/second, and this
leads to a gap between the model and the application of about 0.86%. Similarly

5 GSPN performance models are shown here [6].

Analyzing Tradeoffs between Software Security and Performance 15

promising results have been obtained for other key sizes and on both platforms,
as shown in the last column of the Table, where the error never exceeds 4.02%.

Table 3 is similar to Table 2 for the organization of columns and rows; it
collects the results for the configuration SC2. For example, the first row of Table
3 indicates the GD generation for the configuration SC2 on Platform 1 with a
1024-bit key size: the model predicts that the system is able to generate 3.43
tags/second, the monitoring of the implementation reveals that the system ac-
tually generates 3.29 tags/second, and this leads to a gap between the model
and the application of about 4.08%. In the Table this latter value is the worst
one, in fact better predictive results have been obtained for other key sizes ons
both platforms, as shown in the last column of the Table 3.

In both tables the number of tags per second for the model solution was
obtained by measuring the throughput value of the ending timed transition in
both GSPN models. Besides, the corresponding metrics has been monitored on
the actual implementation of the system. All these measures have been obtained
with the system under workload stress, which occurs when the arrival rate is
high enough to make the system always busy.

The analysis of workload for both SC1 and SC2 configurations is shown in
Figure 7. The curves are obtained by solving the GSPN models under the con-
figuration of Platform 1 with a key size of 1024 byte (i.e. the first row of Tables
2 and 3). In particular, on the x-axis the rate Λ of arrivals to the system is
reported; on the y-axis the throughput of the ending timed transition is shown.
Note that in SC1 the maximum throughput of 17.45 (see Table 2) is achieved
for Λ = 23 requests/second, whereas in SC2 the maximum throughput of 3.43
(see Table 3) is achieved for Λ = 7 requests/second.

From the comparison of Tables 2 and 3 some interesting issues emerge with re-
gard to the performance degradation induced in SC2 by raising security settings

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t

lambda

GD generation - S1 configuration
GD generation - S2 configuration

Fig. 7. GD generation throughput

16 V. Cortellessa et al.

(i.e. by introducing the additional Data Confidentiality mechanism). In Table 4
we have reported the percentage of performance degradation obtained (for model
results and for monitored data) when moving from SC1 to SC2 configuration
in both platforms while varying the key size. For example, the value 80.34% in
the upper leftmost cell of the Table is obtained as 100 − (3.43 ∗ 100)/17.45 (see
Tables 2 and 3).

Table 4. GD generation: from SC1 to SC2

Model Results Monitored Data Model Results Monitored Data
KeySize Platform 1 Platform 1 Platform 2 Platform 2
(byte) (%) (%) (%) (%)
1024 80.34 80.98 75.71 75.38
2048 68.56 68.71 60.59 60.54
4096 31.82 30.73 25.40 24.72

We note that our model consistently provides almost the same amount of per-
formance degradation as the one observed in practice. This further supports the
validity of our approach. An interesting consideration is that for smaller values
of the key size the performance degradation is more dramatic. This is due to the
fact that this key size affects the execution time of the Data Origin Authenti-
cation mechanism that is part of both configurations. Hence, while growing this
size, the latter mechanism dominates in terms of execution time with respect to
the Data Confidentiality, executed only in SC2, whose execution time does not
vary with this key size.

6 Conclusions

In this paper we have introduced a framework to support the analysis of soft-
ware architecture performance degradation due to the introduction of security
mechanisms. Such a framework is that it is able to numerically quantify the sys-
tem performance degradation while varying the adopted security solutions. This
type of analysis can in fact support many decisions of software architects that
span from simply evaluating if such performance degradation can be reasonably
accepted from users, to choosing among different security solutions the one that
provides the best tradeoff between security and performance properties.

A peculiar characteristic of our approach is the introduction of models for
Basic Security Mechanisms. With this modular approach it is possible to study
the performance degradation introduced by any meaningful combination of these
(and possible newly built) security mechanisms. By pushing this concept ahead,
a more complex type of analysis can be performed on models built by multiple
Composed Mechanisms to represent the specification of an existing protocol,
such as SSL. In this case an interesting study would be to observe how our
models estimate the performance indices, and compare these results to what
claimed in the corresponding protocol specifications.

Analyzing Tradeoffs between Software Security and Performance 17

As shown in the experiments, our architectural models very promisingly and
quite accurately predict the performance of critical systems equipped with dif-
ferent security settings and implementation options. The results that we have
obtained on our case study are somehow quite surprising in terms of percent-
age of degradation that can be introduced even from common security settings.
Furthermore, we have been able to quantify the difference of degradation across
platforms that, in some cases, achieves non-negligible thresholds.

The security mechanisms we consider (i.e. encryption and digital signature)
can be seen as test beds for more complex security concerns. Modern applications
may have to face with larger security vulnerabilities, and strategies for mitigating
most of such vulnerabilities are cross-cutting and difficult to encapsulate (e.g.,
prevention of cross-site scripting errors). In this direction, our framework has
been conceived to enable the modeling and analysis of security patterns that
do not break the defined architectural abstraction level. In other words, the
complexity of a pattern that implements a certain security strategy is not a
problem on our framework as long as it can be (even piecewise) plugged into
the application model. Moreover, such patterns can also spread from static to
dynamic features of the system architectural model (e.g. see Figure 5).

In the near future we plan to automate the tradeoff analysis of the security
configurations by automatically exploring the trade space. Such automation is
feasible because performance models embedding security properties are gener-
ated once and the exploration of the trade space can be automatically performed
by instrumenting the model with different numerical values for the input param-
eters. Besides, we devise to apply our approach to other real world examples in
order to assess the scalability of the framework.

We consider this work as a starting point for studying even more sophisticated
tradeoffs between security and performance. We plan to introduce into our eval-
uations the costs of security solutions as an additional attribute that very often
affects software architects’ decisions.

In the long term, it is of great interest to study the tradeoff between security and
other non-functional attributes, such as availability. For example, addressing the
problem of quantifying and locating data replicas for availability purposes without
heavily affecting the security of the system would be crucial in certain domains.

Acknowledgments

This work has been partly supported by the italian project PACO (Performability-
Aware Computing: Logics, Models, and Languages) funded by MIUR and by the
UK EPSRC research grant EP/D076633/1 UbiVal (Fundamental Approaches to
the Validation of Ubiqituous Systems).

References

1. UML 2.0 Superstructure Specification, OMG document formal/05-07-04, Object
Management Group (2005),
http://www.omg.org/cgi-bin/doc?formal/05-07-04

http://www.omg.org/cgi-bin/doc?formal/05-07-04

18 V. Cortellessa et al.

2. UML Profile for MARTE beta 2, OMG document ptc/08-06-09 (2008),
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE TSE 30(5), 295–310

4. Blaze, M., Ioannidis, J., Keromytis, A.D.: Trust management for ipsec. ACM Trans-
actions on Information and System Security 5(2), 95–118 (2002)

5. Cortellessa, V., Trubiani, C.: Towards a library of composable models to estimate
the performance of security solutions. In: WOSP, pp. 145–156 (2008)

6. Cortellessa, V., Trubiani, C., Mostarda, L., Dulay, N.: An Architectural Frame-
work for Analyzing Tradeoffs between Software Security and Performance - Ex-
tended results. Technical Report 001-2010, Dipartimento di Informatica - Univer-
sità dell’Aquila (2010),
http://www.di.univaq.it/cortelle/docs/001-2010-report.pdf

7. European Commision 6th Framework Program. Cultural Heritage Space Identifi-
cation System (CUSPIS), www.cuspis-project.info

8. France, R.B., Ray, I., Georg, G., Ghosh, S.: Aspect-oriented approach to early
design modelling. IEE Proceedings - Software 151(4), 173–186 (2004)

9. Gupta, V., Gupta, S., Shantz, S.C., Stebila, D.: Performance analysis of elliptic
curve cryptography for SSL, pp. 87–94 (2002)

10. Harbiterr, A., Menasce, D.A.: A methodology for analyzing the performance of
authentication protocols. ACM TISSEC (2002)

11. Hirel, C., Sahner, R., Zang, X., Trivedi, K.: Reliability and performability modeling
using sharpe 2000. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.)
TOOLS 2000. LNCS, vol. 1786, pp. 345–349. Springer, Heidelberg (2000)

12. Juric, M.B., Rozman, I., Brumen, B., Colnaric, M., Hericko, M.: Comparison of
performance of web services, ws-security, rmi, and rmi-ssl. Journal of Systems and
Software 79(5), 689–700 (2006)

13. Jurjens, J.: Secure Systems Development with UML (2004)
14. Kant, K., Iyer, R.K., Mohapatra, P.: Architectural impact of Secure Socket Layer

on internet servers, pp. 7–14 (2000)
15. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling

with Generalized Stochastic Petri Nets, 4th edn. (November 1994)
16. Menascé, D.A.: Security performance. IEEE Internet Computing 7(3), 84–87 (2003)
17. Mostarda, L., Dong, C., Dulay, N.: Place and Time Authentication of Cultural

Assets. In: 2nd Joint ITRUST and PST Conferences on Privacy, Trust and Security,
IFIPTM 2008 (2008)

18. Stallings, W.: Cryptography and network security: Principles and Practice, 4th
edn. Prentice-Hall, Englewood Cliffs (2006)

19. Tai, A.T., Meyer, J.F., Avizienis, A.: Software Performability: From Concepts to
Applications. Kluwer Academic Publishers, Boston (1996)

20. Tawhid, R., Petriu, D.C.: Towards automatic derivation of a product performance
model from a UML software product line model. In: WOSP, pp. 91–102 (2008)

21. Trivedi, K.: Sharpe interface, user’s manual, version 1.01. Technical report (1999),
http://www.ee.duke.edu/~chirel/MANUAL/gui.doc

22. Woodside, C.M., Petriu, D.C., Petriu, D.B., Xu, J., Israr, T.A., Georg, G., France,
R.B., Bieman, J.M., Houmb, S.H., Jürjens, J.: Performance analysis of security
aspects by weaving scenarios extracted from UML models. Journal of Systems and
Software 82(1), 56–74 (2009)

http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.di.univaq.it/cortelle/docs/001-2010-report.pdf
www.cuspis-project.info
http://www.ee.duke.edu/~chirel/MANUAL/gui.doc

Architectural Design Decisions
for Achieving Reliable Software Systems

Atef Mohamed and Mohammad Zulkernine

School of Computing
Queen’s University, Kingston

Ontario, Canada K7L 3N6
{atef,mzulker}@cs.queensu.ca

Abstract. Software architectural design decisions are key guidelines to achieve
non-functional requirements of software systems in the early stages of software
development. These decisions are also important for justifying the modifications
of dynamic architectures during software evolution in the operational phase.
Incorporating reliability goals in software architectures is important for success-
ful applications in large and safety-critical systems. However, most of the exist-
ing software design mechanisms do not consider the architectural reliability (the
impact of software architecture on system reliability). As a result, alternative soft-
ware architectures cannot be compared adequately with respect to software sys-
tem reliability. In this paper, we extend our previous work on failure propagation
analysis to propose a selection framework for incorporating reliability in software
architectures. The selection criterion in this framework exploits architectural at-
tributes to appropriately select software architectures based on their reliabilities.
We provide algorithms to derive the architectural attributes required by the model
and to select the appropriate architecture using a quick and a comprehensive de-
cision approach for minor and major architectural changes, respectively.

Keywords: Software architecture, architectural design decisions, architectural
service routes, and architectural reliability.

1 Introduction

Software architecture is an important artifact that provides powerful means to incor-
porate quality attributes in software intensive systems [16]. Software practitioners rec-
ognize the importance of architectural design decisions to reason about their design
choices [27]. These decisions are taken in the early design stages and their impacts are
carried out to the later development stages. They are also taken in response to a failure,
regular maintenance, repair, configuration, or other activities during the system opera-
tion. Therefore, “architectural design decisions deserve to be first class entities in the
process of developing complex software-intensive systems” [23]. Appropriate architec-
tural design decisions are critical for achieving software quality attributes.

Software system reliability (the continuity of correct service) is important for the suc-
cessful applications in large scale, safety-critical, and mission-critical software systems.
Architectural reliability is the impact of a software architecture on the software system

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 19–32, 2010.
© Springer-Verlag Berlin Heidelberg 2010

20 A. Mohamed and M. Zulkernine

reliability. Reliable interactions among architectural entities is an important mean for
ensuring the architectural reliability [3]. Unfortunately, reliability has not been suffi-
ciently addressed, and the quantitative impact of a software architecture on this quality
attribute has not been explicitly considered in the existing software architectural design
methodologies. As a result, existing software development methods do not sufficiently
explain the rationale behind the adoption of alternative architectures with respect to
their impacts on the software system reliability [31]. One of the main aspects of unre-
liable interactions of system components is the failure propagation through the compo-
nent interfaces. Failure propagation among system components has significant impact
on the reliability of the whole system [24].

Our previous work [21] proposes a technique for analyzing the behavior of failure
propagation, masking, and scattering among software system components. The anal-
ysis determines upper and lower bounds of failure masking and propagation in these
systems. In this paper, we utilize the failure propagation analysis results of our previ-
ous work [21] to implement a framework for comparing and selecting the appropriate
architectural modifications with respect to system reliability. Our selection criterion ex-
ploits the concept of Architectural Service Routes (ASRs) [21]. The concept of ASRs
allows quantifying architectural quality attributes by viewing a software architecture as
a set of components and a set of service routes connecting them. We exploit the architec-
tural attributes derived by this concept to show the appropriate design decisions based on
their impacts on system reliability. These attributes are the number and lengths of ASRs,
shortest ASR, and longest ASR between every pair of system components. We show how
to select a more reliable software architecture using two design decision approaches: a
quick approach for deciding about a minor change of an architecture based on the failure
propagation relationships to the architectural attributes and a comprehensive approach
for deciding about a whole architecture based on its quantified architectural reliability.

The main contribution of this work is the incorporation of the reliability in software
architectures based on the failure propagation among system components. Software ar-
chitectures can be compared with respect to their impacts on system reliability. The ma-
jor implication of this work is that the technique can be used in the early design stages
and its design decision impacts are carried out across the later development stages. It
can also be used during the operational stage to decide about the architectural modifica-
tions of dynamic software architectures. Moreover, it can be used to discover the weak
points of an architecture.

The rest of this paper is organized as follows. Sec. 2 discusses some related work
on software architecture reliability analysis. Sec. 3 discusses the concept and the iden-
tification of the ASRs. It also introduces some architectural attributes and shows their
relationships to failure propagation. In Sec. 4, we show how to use the architectural
attributes and the quantitative evaluations of reliability to select appropriate software
architectures. We provide a quick approach and a comprehensive approach for deciding
about an architecture. Finally, in Sec. 5, we present the conclusions and future work.

2 Related Work

There has been an ongoing drive for reasoning about reliability at the architectural level.
Consequently, Architectural Description Languages (ADLs) introduce new notations,

Architectural Design Decisions for Achieving Reliable Software Systems 21

methods and techniques that provide the necessary support for this reasoning [9]. Our
work in this paper, provides architectural design decisions for incorporating reliability
in software system architectures. The work allows comparing software architectures
based on their reliabilities. It exploits a number of architectural attributes that can be
considered as architectural notations and can be integrated with the existing ADLs to
provide more reasoning about software system reliability.

Architectural design decisions can be used to achieve quality attributes of a software
architecture during the initial construction [5,28,7] or during the evolution [30,10] of a
software system [15]. Candea et al. [5] present a technique for determining the weak
points of a software architecture by automatically capturing dynamic failure propaga-
tion information among its components. They use instrumented middleware to discover
potential failure points in the application. By using a controlled fault injection mech-
anism and observing component failures, their technique builds a failure propagation
graph among these components. Voas et al. [28] investigate an assessment technique for
software architectural reliability based on “failure tolerance” among the components of
a large scale software systems. Their approach is based on fault injection mechanism,
in which, they corrupt the data passing through component interfaces and observe the
system reaction. Cortellessa et al. [7] present an approach for analyzing the reliability
of a software based on its component interactions. They present a failure propagation
model in assessing software reliability. In this work, we utilize the failure propagation
analysis results of [21] as a design rationale for incorporating system reliability in soft-
ware architectures. We provide two decision approaches for comparing and selecting
software architectures with respect to the software system reliability. Based on this de-
cision approach, one can determine the weak points of a software architecture based on
the relationships between the failure propagation and the architectural attributes. Our
technique is more suitable for justifying the architectural design alternatives since it is
easier to implement, and it avoids instrumented middleware and fault injections.

In dynamic architectures, components and connectors can be added or removed dur-
ing the system operation. These architectural modifications could occur either as a re-
sult of some computations performed by the system or as a result of some configuration
actions [10]. In response to system monitored events, dynamic (e.g., self-organizing)
software architectures use rules or constraints to decide about the appropriate modifi-
cations. Wang [30] provide a rule-based model to extract scattered rules from different
procedures and enhance the self-adaptability of the software. Georgiadis et al. [10]
examine the feasibility of using architectural constraints to specify, design, and imple-
ment software architectures. Our selection framework can also incorporate reliability
in self-organizing software architectures based on failure propagation among system
components. The selection criterion may enrich these self-adaptive models through its
reliability consideration in specifying the dynamic rules and architectural constraints.

3 Architectural Attributes

Software architecture of a system is the structure, which comprises software compo-
nents, externally visible properties of those components, and the relationships among
them [4]. In software architectures, a component is a unit of composition with

22 A. Mohamed and M. Zulkernine

Fig. 1. Example Architectural Service Routes (ASRs)

contractually specified interfaces. A component interface is a mean by which a compo-
nent connects to other components or to the environment [26]. A component service is
a facility that a component provides to, or requires from other components as specified
in the formal contracts [21,22]. Notation languages are used to simulate the dynamism
in software architectures [2,17]. These languages describe the architectural changes of
the dynamic architectures by using configuration elements and specify dynamic control
of these configuration elements. An architectural configuration is an architecture that
results by the control decisions of a dynamic architectural configuration element. Every
configuration element selects an architectural modification among the possible changes
that are specified in the dynamic architectural design artifact.

In this section, we introduce the concept of ASRs and the related architectural at-
tributes. These architectural attributes are used to calculate failure propagation prob-
abilities and relate the software architectures to the system reliability. Based on the
failure propagation and the reliability quantification, these attributes are then used to
derive the architectural design rationale and decisions.

3.1 Architectural Service Routes

Architectural Service Routes (ASRs) [21] are used to relate software architectures and
system reliability. An Architectural Service Route (ASR) is a sequence of components in
which every component provides a service to the next component through an interface
connection. In Fig. 1, services are provided from a number of components to others.
For example, component 2 provides service to component 3. Component 3, likewise,
provides services to both component 4 and component 5. Therefore, component 2 pro-
vides its service to component 4 and 5 indirectly through component 3. In other words,
a service failure of component 2 may affect the services provided by component 4 and
5. In the bottom part of Fig. 1, we show two example ASRs between components 1
and 7 of the provided UML 2.0 component diagram. The sequences of components are
(1, C, 2, 3, C, 5, 7) and (1, C, 2, 3, C, 4, 6, 7) for the left and the right ASR, respectively.

Architectural Design Decisions for Achieving Reliable Software Systems 23

Algorithm 1. Determining ASR sets
Input: Software component diagram.
Output: Sets of ASRs between each pair of components i and j (∀i,jΨ

i,j).

01. FOR each set of ASRs Ψ i,j DO
02. Ψ i,j := Empty;
03. END FOR
04. FOR each component u DO
05. FOR each component v DO
06. IF (interface connection from u to v exists) THEN
07. ψu,v

1 := (u, v);
08. FOR each set of ASRs Ψ i,j DO
09. FOR each ASR ψi,j

k ∈ Ψ i,j DO
10. IF (u = j) THEN
11. w:=|Ψ i,v | + 1;
12. ψi,v

w := ψi,j
k ;

13. INSERT v at the end of ψi,v
w ;

14. END IF
15. IF (i = v) THEN
16. w:=|Ψu,j | + 1;
17. ψu,j

w := ψi,j
k ;

18. INSERT j at the beginning of ψu,j
w ;

19. END IF
20. END FOR
21. END FOR
22. END IF
23. END FOR
24. END FOR
25. RETURN ∀i,j Ψ i,j ;

In UML 2.0 component diagrams, an ASR can be distinguished by a series of assem-
bly and/or delegation connectors between two components. Any two different compo-
nents x and y can have zero or more ASRs. For example, in Fig. 1, components 4 and
5 have zero ASR, components 2 and 6 have one ASR: (2, 3, C, 4, 6), and components 3
and 7 have two ASRs: (3, C, 4, 6, 7) and (3, C, 5, 7). We refer to the set of ASRs from
x to y as Ψx,y, and we denote an ASR in this set as ψx,y

k , where k is the index of the
k-th ASR in Ψx,y. An ASR ψx,y

k can have zero or more components in the sequence of
components in addition to the pair of components x and y.

An architecture can be seen as a directed graph where components are the nodes
and interface connections between components are the arrows connecting these nodes.
Algorithm 1 determines the sets of ASRs between each pair of components in a software
architecture. Lines 01-03 initialize the sets of ASRs to the empty sets. Lines 04-24
navigate through the whole architecture to access every interface connection between
any two components and determine the ASRs based on these interface connections. We
visit two components at a time and check for the existence of an interface connection

24 A. Mohamed and M. Zulkernine

between them in Lines 06-22. We consider one of these two components as a service
providing component u and the other as a service requesting component v, and we
check for the interface connections between them. If a connection is found then in Line
07, the algorithm creates an ASR from u to v and marks this ASR as the first one in
the set of ASRs between the two components u and v. Moreover, in Lines 08-21, the
algorithm checks all the previously determined ASRs to find the ones that are adjacent
to the current ASR ψu,v

1 . Two ASRs ψw,x
i and ψy,z

j are adjacent if one ends with the

source component of the other, i.e., if x = y or z = w. If an adjacent ASR ψt,u
i or ψv,w

j

is found, the algorithm creates a new ASR between components (t and v) or (u and w)
that corresponds to the combined ASR ψt,v

k or ψu,w
k′ , respectively. Lines 10-14 check

the adjacent ASRs that ends with the service providing component u, create combined
ASRs, and determine their indexes. In a similar procedure, Lines 15-19 process the
adjacent ASRs that starts with the service requesting component v. Line 25 returns the
sets of ASRs.

3.2 Service Route-Based Architectural Attributes

Between every pair of components in a software architecture, we may find zero or more
ASRs. These ASRs can have zero or more components in the sequence of components
in addition to this pair of components. The attributes of the ASRs between the pairs of
components of an architecture are described in the following paragraphes.

For any two components x and y of a software architecture, we define the following
architectural attributes.

– The number of ASRs, |Ψx,y|.
– The k-th ASR length for all 0 ≤ k ≤ |Ψx,y|, Lxy

k .
– The length of the shortest ASR, Lxy

S .
– The length of the longest ASR, Lxy

L .

The number of ASRs, |Ψx,y| counts the ASRs from component x to component y, i.e.,
it is the cardinality of the set Ψx,y. For example in Fig. 1, |Ψ3,6| = 1 and |Ψ3,7| = 2.
The length of the k-th ASR, Lxy

k (where 0 ≤ k ≤ |Ψx,y|) is the number of components
in the k-th ASR from components x to y. In Fig. 1, L2,6

1 = 4, L3,5
1 = 2, and L4,5

1 = 0.
An example set of ASRs is Ψ3,7 = {(3, 4, 6, 7), (3, 5, 7)}, therefore, L3,7

1 = 4 and
L3,7

2 = 3. It is obvious that, for any component x, Lx,x
1 = 1, since ψx,x

1 is (x).
The length of the shortest ASR, Lxy

S is the number of components of the shortest ASR
from component x to component y. For example in Fig. 1, the shortest ASR between
component 3 and 7 is ψ3,7

S = (3, 5, 7) and its length is L3,7
S = 3.

The length of the longest ASR, Lxy
L is the number of components of the longest ASR

from component x to component y. For example, in Fig. 1, the longest ASR between
component 3 and 7 is ψ3,7

L = (3, 4, 6, 7) and its length is L3,7
L = 4.

3.3 Architectural Reliability

One of the major aspects of software system reliability is the propagation of failures
among its components. Failure propagation from any component x to another compo-
nent y in a software architecture indicates the probability that a failure of x propagates

Architectural Design Decisions for Achieving Reliable Software Systems 25

to y through the set of ASRs Ψx,y . Symbolically, the probability of failure propagation
from x to y through the set of ASRs Ψx,y is expressed as P f

xy [21].

P f
xy =

|Ψx,y|⋃
k=1

⎛
⎝Lxy

k −1⋂
j=1

Ef
cj+1

⎞
⎠Ef

y (1)

where Lxy
k is the length of the k-th ASR from x to y, and Ef

cj+1
is the probability that

an input error ej from component cj causes a failure f in component cj+1. Architec-
tural reliability is evaluated in terms of failure propagation probabilities among system
components as follows.

RA =
H⋂

h=1

(1 −
I⋃

i=1

pf
i P f

ih) (2)

where RA is the architectural reliability of architecture A, I is the number of the system
components, and H is the number of output interface components. pf

i is the probability
of failure occurrence in component i. P f

ih is the failure propagation probability from
component i to an output interface component h.

The failure propagation in Eq. (1) is computed based on the knowledge of the prob-
abilities of input error causing a failure f (Ef

cj
) in component cj . System reliability in

Eq. (2) is also computed based on the knowledge of the failure occurrence probabil-
ities of system components. Our model assumes the availability of these parameters.
However, several “data change probability” models [1,14,29] and component relia-
bility models [8,6,13] can be adopted to estimate these parameters for the individual
components.

To decide about each individual attribute in a software architecture based on its im-
pact on the system reliability, the relationships between failure propagation and these
architectural attributes are defined [21] as follows.

Failure propagation and shortest ASR relationship. The probability that a failure f
propagates from component x to component y is inversely proportional to the length
of the shortest ASR from x to y.

P f
xy ∝ 1

Lxy
S

(3)

Failure propagation and longest ASR relationship. The probability that a failure f prop-
agates from x to y is inversely proportional to the length of the longest ASR from x
to y.

P f
xy ∝ 1

Lxy
L

(4)

Failure propagation and number of ASRs relationship. The probability that a failure f
propagates from x to y is directly proportional to the number of ASRs from x to y.

P f
xy ∝ |Ψx,y| (5)

26 A. Mohamed and M. Zulkernine

In the following section, we show how to exploit the above relationships to decide about
software architectural modifications based on their impacts on system reliability.

4 Architectural Design Decisions

An architectural design decision is the outcome of a design process during the initial
construction or the evolution of a software system [15]. Architectural design decisions
are classified into three major classes: existence, executive, and property [23]. An exis-
tence decision is related to the existence of new artifacts in a system design or imple-
mentation. Executive decisions are business-driven and they affect the methodology of
the development process, the user training, and the choices of technologies and tools.
A property decision controls the quality of the system. These decisions can be design
rules, guidelines or design constraints. Our approach provides “property class” archi-
tectural design decisions.

We present our rationale behind the architectural design decisions based on the ar-
chitectural attributes and their impacts on architectural reliability. The technique can be
used to compare software architectures and appropriately select the more reliable archi-
tecture among them. The most radical changes of these architectures are removing or
adding components and associated interface connections and a less radical changes are
removing or adding interface connections without changing the components themselves
[11]. We present a quick approach for deciding about a minor change of an architec-
ture based on the failure propagation relationships to the architectural attributes. We
also present a comprehensive approach for deciding about a whole architecture based
on quantified architectural reliability. The choice of applying the quick approach or
applying the comprehensive approach depends on the amount of changes that need to
be decided for an architecture. If same components exist in both architectures, while
the architectures differ only in few interface connections, then the quick approach can
be used. The comprehensive approach can be used for deciding about any amount of
changes between architectures. If the quick approach is not able to provide a decision
based on those changes, the comprehensive approach must be selected. The compre-
hensive approach always succeeds to provide a decision.

4.1 Quick Decision Approach

Software designers often need to decide about a part of an architecture, i.e., a minor
change to a few number of architectural entities. For example, they may need to create
and/or remove an interface connection between two existing components in an archi-
tecture. In this case, we do not have to re-evaluate the whole architecture. Instead, we
can decide based on the direct relationships between the architectural attributes and
failure propagation exclusively with respect to the changes in the specific part of the
architecture as follows.

Consider a software architecture A contains n components with a set of ASRs be-
tween every pair of components, where Ψ i,j denotes the set of ASRs between compo-
nents i and j. Some of these components are input interface, output interface, or internal
components. Assume that components h1 and h2 are output interface components. Con-
sider that a minor change to architecture A leads to a slightly different architecture A′,

Architectural Design Decisions for Achieving Reliable Software Systems 27

Table 1. Values of an architectural attribute: number of ASRs (|Ψ i,j |) between each pair of
components

(a) Architecture A

Component h1 h2

1 |Ψ1,h1 | |Ψ1,h2 |
2 |Ψ2,h1 | |Ψ2,h2 |
3 |Ψ3,h1 | |Ψ3,h2 |
...

...
...

i |Ψ i,h1 | |Ψ i,h2 |
...

...
...

n |Ψn,h1 | |Ψn,h2 |

(b) Architecture A′

Component h1 h2

1 |Ψ ′1,h1 | |Ψ ′1,h2 |
2 |Ψ ′2,h1 | |Ψ ′2,h2 |
3 |Ψ ′3,h1 | |Ψ ′3,h2 |
...

...
...

i |Ψ ′i,h1 | |Ψ ′i,h2 |
...

...
...

n |Ψ ′n,h1 | |Ψ ′n,h2 |

where Ψ ′i,j denotes the set of ASRs between components i and j. The sets of ASRs for
architecture A and A′ can be determined by following Algorithm 1. Given these sets
of ASRs for both the architectures, we can determine the values of the architectural at-
tributes for each of them. For each attribute, we need to build a table of attribute values
for each pair of components 〈i, j〉, where i is any component of the architecture and j
is any output interface component. We only need to compare the architectural attributes
of all ASRs that end with h1 and h2 where a system failure may occur.

Table 1 shows an example architectural attribute: number of ASRs. In this table, each
of the n rows (1, · · · , n) represent a system component. The second and third columns
are the output interface components h1 and h2. For example, the value of |Ψ1,h1 | is the
number of ASRs from component 1 to the output interface component h1. Similar to
Table 1, we need to create two more tables for the length of the shortest ASR and the
length of the longest ASR. Having the values for all architectural attributes, we may be
able to select between architecture A and A′ using Algorithm 2.

This algorithm takes one of the following actions: select an architecture (select-A
or select-A′), select both architectures (select-either), or call the comprehensive deci-
sion approach. Selecting both architectures means that both of them have equal impacts
on failure propagation. Algorithm 2 calls the comprehensive decision approach (Al-
gorithm 3) when it fails to find the appropriate selection based on some contradictory
impacts on failure propagation. For example, the algorithm fails to decide when the
changes of an architecture lead to a shorter ASRs between a pair of components 〈i′, j′〉,
while it decreases the number of ASRs of 〈i′, j′〉. In this case, a comprehensive com-
parison of these architectures is required using Algorithm 3.

In the beginning, Algorithm 2 considers that both architectures A and A′ are equally
reliable (Lines 01-02). Algorithm 2 selects an architecture only when all the changes of
that architecture are not decreasing the reliability, otherwise, it calls the comprehensive
decision approach to provide the proper selection. Therefore, the algorithm searches for
cases where the changes of an architecture is negatively impacting reliability to exclude
this architecture from the selection. Lines 03-21 access the ASR sets between every
pair of a component and an output interface component to compare the architectural

28 A. Mohamed and M. Zulkernine

Algorithm 2. Quick decision approach
Input: Architectural attribute values.
Output: Selected architecture.

01. select-A := True;
02. select-A′ := True;
03. FOR each component u DO
04. FOR each output interface component v DO
05. IF (|Ψu,v| ≤ |Ψ ′u,v| and Lu,v

S ≥ L′u,v
S and Lu,v

L ≥ L′u,v
L) THEN

06. IF (|Ψu,v | < |Ψ ′u,v| or Lu,v
S > L′u,v

S or Lu,v
L > L′u,v

L) THEN
07. select-A′ := False;
08. END IF
09. ELSE-IF (|Ψu,v | ≥ |Ψ ′u,v| and Lu,v

S ≤ L′u,v
S and Lu,v

L ≤ L′u,v
L) THEN

10. IF (|Ψu,v | > |Ψ ′u,v| or Lu,v
S < L′u,v

S or Lu,v
L < L′u,v

L) THEN
11. select-A := False;
12. END IF
13. ELSE
14. select-A := False;
15. select-A′ := False;
16. END IF
17. IF (select-A = False and select-A′ = False) THEN
18. BREAK;
19. END IF
20. END FOR
21. END FOR
22. IF (select-A = True and select-A′ = True) THEN
23. RETURN select-either;
24. ELSE-IF (select-A = True and select-A′ = False) THEN
25. RETURN select-A;
26. ELSE-IF (select-A = False and select-A′ = True) THEN
27. RETURN select-A′;
28. ELSE
29. CALL Comprehensive decision approach (Algorithm 3);
31. END IF

attributes of architectures A and A′. By tracking only the ASRs from any component
to any output interface component, we identify the architectural attributes that impact
reliability based on the occurrences of failures at the output interface components. We
visit one set of ASRs at a time and compare the architectural attributes (the number of
ASRs, the length of the shortest ASR, and the length of the longest ASR) of the two
architectures in Lines 05-16. The logical conditions of the comparison is formed based
on the relationships of the architectural attributes and failure propagation in Eq. 3-5. We
have three cases with respect to this comparison as discussed in the following paragraph.

First, architecture A′ has less or equal impact on reliability based on the changes
in the current set of ASRs than architecture A (Lines 05-08). In this case, if based

Architectural Design Decisions for Achieving Reliable Software Systems 29

on any architectural attribute, architecture A positively influences the reliability more
than A′ (Lines 06-08), then we can conclude that, there is at least one change between
architectures A and A′ that causes A′ to be less reliable than A. Here, the algorithm
decides not to select architecture A′ (Line 7). Second, architecture A has less or equal
impact on reliability based on the changes in the current set of ASRs than A′ (Lines 09-
12). This is similar to case 1, while it checks whether architecture A will be selected or
not. Third, in Lines 13-16, both architectures A and A′ may have positive and negative
impacts on reliability based on the attributes of the current set of ASRs. In this case, the
algorithm chooses not to select any particular architecture (Lines 14-15). In Lines 22-
31, the algorithm returns a decision based on all sets of ASRs. The decision can include
a specific architecture (if one is more reliable), two architectures (if they are similar), or
an application of the comprehensive decision approach (if the quick decision approach
cannot select an architecture based on the provided changes).

4.2 Comprehensive Decision Approach

Software designers may also need to decide about the whole architecture whether it
satisfies the reliability attribute or to compare between two architectures based on their
impacts on reliability. This is the case when a major change to an architecture takes
place. For example, some changes lead to a different number of components or connec-
tions between them. In this case, the quick architectural design decision approach fails
to select an architecture. Therefore, we evaluate the whole architecture to measure the

Algorithm 3. Comprehensive decision approach based on failure propagation
Input: Architectural attribute values.
Output: Selected architecture.

01. FOR each component u DO
02. FOR each output interface component v DO
03. Calculate P f

uv for architecture A using Eq. 1;
04. END FOR
05. END FOR
06. FOR each component u′ DO
07. FOR each output interface component v′ DO
08. Calculate P f

u′v′ for architecture A′ using Eq. 1;
09. END FOR
10. END FOR
11. Calculate architectural reliability for architecture A using Eq. 2;
12. Calculate architectural reliability for architecture A′ using Eq. 2;
13. IF (reliability of A > reliability of A′) THEN
14. RETURN select-A;
15. IF (reliability of A < reliability of A′) THEN
16. RETURN select-A′;
17. ELSE
18. RETURN select-either;
19. END IF

30 A. Mohamed and M. Zulkernine

quantitative impacts of the new changes on the system reliability. In the comprehensive
approach, we need to calculate the failure propagation probabilities among all compo-
nents for both architectures. The failure propagation probabilities are used to quantify
the reliability of each architecture. Based on the architecture reliabilities, a designer can
select the appropriate architecture.

The comprehensive architectural design decision is taken based on the reliability
evaluation using failure propagation (Algorithm 3). The algorithm selects the architec-
ture that has higher reliability and performs more exhaustive comparison than the quick
decision approach of Algorithm 2.

In Algorithm 3, Lines 01-05 access every pair of a component and an output in-
terface component to calculate the failure masking probabilities between the pair of
components for architectures A. Similarly, Lines 06-10 calculate the failure masking
probabilities for architectures A′. Line 11 and Line 12 calculate the architectural relia-
bility for architecture A and A′, respectively. Based on the architectural reliabilities of
A and A′, Lines 13-19 select the architecture with higher reliability.

5 Conclusions and Future Work

Appropriate architectural design decisions are important for achieving quality attributes
of software architectures. Reliability has not been sufficiently addressed and its quanti-
tative impacts on software architectures have not been explicitly considered in existing
software architectural design methodologies. As a result, current architectural strategies
do not sufficiently consider the rationale behind the adoption of alternative architectures
with respect to their reliabilities.

In this paper, we present a selection framework for incorporating reliability in
software architectures based on the failure propagation among the software system
components. The proposed technique makes appropriate design decisions based on the
following architectural attributes: the number and lengths of ASRs, the shortest ASR,
the and longest ASR between every pair of system components. Based on the failure
propagation analysis [21], we show how to appropriately select a more reliable soft-
ware architecture using two design decision approaches: a quick approach for deciding
about a minor change of an architecture based on the failure propagation relationships
to the architectural attributes and a comprehensive approach for deciding about a whole
architecture based on quantified architectural reliability.

In our future work, we intend to involve the study of ASR intersections and cyclic
ASRs in the architectural design decisions. An ASR intersection is a number of com-
mon component interfaces among multiple ASRs. A cyclic ASR is a closed sequence
of connected components. By considering ASR intersections and cyclic ASRs, we may
be able to measure the architectural impacts on the reliability of more complicated soft-
ware architectures. Another direction of future research will incorporate failure sever-
ities in the architectural design decisions. Some systems are critical to specific failure
types, while they are less critical to other failures [20]. Therefore, this research will al-
low new applications in safety-critical systems that distinguish among different failure
severities. Further research will allow to estimate the failure severity of a component
based on its location and connectivity in an architecture. This will help in identifying
the components that are critical to system reliability.

Architectural Design Decisions for Achieving Reliable Software Systems 31

Acknowledgments

This research work is partially funded by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

References

1. Abdelmoez, W., Nassar, D.M., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Ammar,
H.H., Yu, B., Mili, A.: Error propagation in software architectures. In: Proceedings of the
10th IEEE International Symposium on Software Metrics (METRICS 2004), Morgantown,
WV, USA, September 2004, pp. 384–393 (2004)

2. Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Software Architec-
tures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. In: Proceedings of the IEEE Transactions on Dependable
and Secure Computing, January 2004, vol. 1, pp. 11–33 (2004)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

5. Candea, G., Delgado, M., Chen, M., Fox, A.: Automatic Failure-Path Inference: A Generic
Introspection Technique for Internet Applications. In: Proceedings of the 3rd IEEE Workshop
on Internet Applications (WIAPP 2003), California, USA, June 2003, pp. 132–141 (2003)

6. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early Prediction of Software
Component Reliability. In: Proceedings of the 30-th International Conference on Software
engineering (ICSE 2008), Leipzig, Germany, May 2008, pp. 111–120 (2008)

7. Cortellessa, V., Grassi, V.: A Modeling Approach to Analyze the Impact of Error Propagation
on Reliability of Component-Based Systems. In: Schmidt, H.W., Crnković, I., Heineman, G.T.,
Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 140–156. Springer, Heidelberg (2007)

8. Everett, W.W.: Software component reliability analysis. In: Proceedings of the IEEE Sym-
posium on Application - Specific Systems and Software Engineering and Technology,
Washington, DC, USA, pp. 204–211 (1999)

9. Gacek, C., De Lemos, R.: Architectural Description of Dependable Software Systems.
In: Besnard, D., Gacek, C., Jones, C. (eds.) Proceedings of Structure for Dependability:
Computer-Based Systems from an Interdisciplinary Perspective, pp. 127–142. Springer,
Heidelberg (2006)

10. Georgiadis, I., Magee, J., Kramer, J.: Self-Organizing Software Architectures for Distributed
Systems. In: Proceedings of the 1st workshop on Self-healing systems, Charleston, South
Carolina, USA, pp. 33–38 (2002)

11. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture based approach to reliability assess-
ment of software systems. Proceedings of the International Journal on Performance Evalua-
tion 45, 179–204 (2001)

12. Grunske, L.: Identifying “Good” Architectural Design Alternatives with Multi-Objective Op-
timization Strategies. In: Proceedings of the 28th International conference on Software engi-
neering (ICSE 2006), China, pp. 849–852 (2006)

13. Hamlet, D., Mason, D., Woitm, D.: Theory of Software Reliability Based on Components.
In: Proceedings of the 23rd International Conference on Software Engineering (ICSE 2001),
Toronto, Ontario, Canada, May 2001, pp. 361–370 (2001)

14. Hiller, M., Jhumka, A., Suri, N.: An Approach for Analysing the Propagation of Data Errors
in Software. In: Proceedings of the IEEE International Conference on Dependable Systems
and Networks, Goteborg, Sweden, July 2001, pp. 161–170 (2001)

32 A. Mohamed and M. Zulkernine

15. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions.
In: The 5th Working IEEE/IFIP Conference on Software Architecture (WICSA 2005), The
Netherlands, pp. 109–120 (2005)

16. Komiya, S.: A model for the recording and reuse of software design decisionsand decision
rationale. In: Proceedings of the 3rd International Conference on Software Reuse: Advances
in Software Reusability (ICSR 1994), Rio de Janeiro, Brazil, November 1994, pp. 200–201
(1994)

17. Kramer, J.: Configuration programming – A framework for the development of distributable
systems. In: Proceedings of the IEEE International Conference on Computer Systems and
Software Engineering (CompEuro 1990), Israel, pp. 1–18 (1990)

18. Leveson, N.G.: Software Safety: Why, What, and How. In: Proceedings of ACM Computing
Surveys (CSUR) archive, June 1986, vol. 18, pp. 125–163 (1986)

19. Littlewood, B., Strigini, L.: Software Reliability and Dependability: A Roadmap. In: Pro-
ceedings of the 22-nd IEEE International Conference on Software Engineering on the Future
of Software Engineering (ICSE 2000), Limerick, Ireland, pp. 175–188 (2000)

20. Mohamed, A., Zulkernine, M.: Improving Reliability and Safety by Trading Off Software
Failure Criticalities. In: Proceedings of the 10-th IEEE International Symposium on High
Assurance System Engineering (HASE 2007), Dallas, Texas, USA, November 2007, pp.
267–274 (2007)

21. Mohamed, A., Zulkernine, M.: On Failure Propagation in Component-Based Software Sys-
tems. In: Proceedings of the 8-th IEEE International Conference on Quality Software (QSIC
2008), Oxford, UK, August 2008, pp. 402–411 (2008)

22. Object Management Group, OMG Unified Modeling Language (OMG UML), Superstruc-
ture, Version 2.1.2, OMG Available Specification without Change Bars, formal/2007-02-05
(November 2007)

23. Philippe, K.: An ontology of architectural design decisions in software intensive systems.
In: The 2-nd Groningen Workshop on Software Variability, Groningen, The Netherlands,
December 2004, pp. 54–61 (2004)

24. Popic, P., Desovski, D., Abdelmoez, W., Cukic, B.: Error propagation in the reliability analysis
of component based systems. In: Proceedings of the 16-th IEEE International Symposium on
Software Reliability Engineering (ISSRE 2005), Morgantown, WV, USA, November 2005,
pp. 53–62 (2005)

25. Pullum, L.L.: Fault Tolerance Techniques and Implementation. Artech House (2001), ISBN
1-58053-470-8

26. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, Reading (1998), ISBN 0-201-17888-5

27. Tang, A., Ali Babar, M., Gorton, I., Han, J.: A Survey of Architecture Design Rationale.
Proceedings of the Journal of Systems and Software 79, 1792–1804 (2006)

28. Voas, J., McGraw, G., Ghosh, A., Miller, K.: Glueing Together Software Components: How
Good Is Your Glue? In: Proceedings of the Pacific Northwest Software Quality Conference,
Portland, Oregon, USA, October 1996, pp. 338–349 (1996)

29. Walter, M., Trinitis, C., Karl, W.: OpenSESAME: An Intuitive Dependability Modeling
Environment Supporting Inter-Component Dependencies. In: Proceedings of the Pacific
Rim International Symposium on Dependable Computing, Seoul, Korea, December 2001,
pp. 76–83 (2001)

30. Wang, Q.: Towards a Rule Model for Self-Adaptive Software. In: Proceedings of the ACM
SIGSOFT Software Engineering Notes, vol. 30, pp. 8–12 (2005)

31. Weihang, W., Kelly, T.: Safety Tactics for Software Architecture Design. In: Proceedings of
the 28-th Annual International Conference on Computer Software and Applications (COMP-
SAC 2004), York University, United Kingdum, September 2004, pp. 368–375 (2004)

Integrating Fault-Tolerant Techniques into the
Design of Critical Systems�

Ricardo J. Rodŕıguez and José Merseguer

Dpto. de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza, Zaragoza, Spain

{rjrodriguez,jmerse}@unizar.es

Abstract. Software designs equipped with specification of dependabil-
ity techniques can help engineers to develop critical systems. In this work,
we start to envision how a software engineer can assess that a given de-
pendability technique is adequate for a given software design, i.e., if the
technique, when applied, will cause the system to meet a dependability
requirement (e.g., an availability degree). So, the idea here presented is
how to integrate already developed fault-tolerant techniques in software
designs for their analysis. On the one hand, we will assume software be-
havioural designs as a set of UML state-charts properly annotated with
profiles to take into account its performance, dependability and security
characteristics, i.e., those properties that may hamper a critical system.
On the other hand, we will propose UML models for well-known fault-
tolerant techniques. Then, the challenge is how to combine both (the
software design and the FT techniques) to assist the software engineer.
We will propose to accomplish it through a formal model, in terms of
Petri nets, that offers results early in the life-cycle.

1 Introduction

Software failures chronically occur and in most cases do not cause damage.
However, a system is called critical when failures result in environmental dam-
age (safety-critical), in a non-achieved goal compromising the system (mission-
critical) or in financial losses (business-critical). Avizienis et al. [1] cleverly
identified the fault-error-failure chain to support specification of intricacies oc-
curring in critical systems.

Fault prevention and fault tolerance, as two of the means to attain depend-
ability [1], have to be considered by designers of critical systems. The former,
for example, by means of quality control techniques, while the latter may take
the form of replication: distribution through replication confers tolerance to the
system and allows to get a higher system availability.

This paper addresses the issue of integrating already developed fault-tolerant
(FT) techniques into software designs for their analysis through automatically
� This work has been supported by the European Community’s Seventh Framework

Programme under project DISC (Grant Agreement n.INFSO-ICT-224498) and by
the project DPI2006-15390 of the Spanish Ministry of Science and Technology.

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 33–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

34 R.J. Rodŕıguez and J. Merseguer

obtained formal models. The aim is to evaluate the effectiveness of a given FT
technique for a concrete software design, i.e., to verify if the design meets de-
pendability requirements using such FT technique. FT techniques have to be
efficaciously integrated with other system requirements, and this will be accom-
plished through the software design. In fact, we propose to represent a given FT
technique as a UML (Unified Modelling Language [2]) model with well-defined
interfaces. So, the software design of the critical system under analysis, also mod-
elled with UML, will be equipped with the FT while appropriate interfaces are
provided. The software design and the FT technique are eventually converted
into blocks of Petri nets [3] (using well-known translation approaches [4,5]) and
composed to get the desired analysable model that will report results about
system dependability.

The analysis of dependability requirements compels to capture dependabil-
ity properties (e.g., fault or failure description), which should be expressed in
UML designs assuming that we desire to free the software engineer from the
manual generation of the formal model. On the one hand, in this work we use
DAM [6] (Dependability Analysis and Modelling profile) for this purpose. DAM
is a MARTE [7] (Modelling and Analysis of Real-Time and Embedded systems
profile) specialisation, that will be useful to complement the dependability prop-
erties with performance ones. On the other hand, since we focus our work in the
context of intrusion-tolerant systems (i.e., those critical systems which apply FT
techniques to tolerate intrusions), this implies also the necessity to report secu-
rity requirements in the same UML designs. So, to avoid greater complexities,
we rely on SecAM [8] (Security Analysis and Modelling profile), which is prop-
erly integrated in the MARTE-DAM framework. Although it may seem that the
use of these profiles may bring some knottiness, in reality, a little part of the
stereotypes proposed by the above mentioned profiles greatly helps designers of
critical systems in their work.

The balance of the paper is as follows. Section 2 introduces the basis of the
paper, i.e., some FT techniques we will use to illustrate the proposal and UML
profiles. Section 3 presents UML and formal models for these FT techniques.
Section 4 describes the UML design of an example and illustrates how the FT
techniques can supplement it, moreover it shows how to obtain a final system
formal model. Finally, related work and some conclusions are given in Section 5.

2 Previous Concepts

Before starting the contribution, we summarise in Section 2.1 the kind of FT
techniques used along this work and in Section 2.2 we recall our proposal of a
security profile in the context of MARTE-DAM, i.e., SecAM [8].

2.1 Proactive and Reactive Techniques

Modern critical systems (e.g., CRUTIAL [9]) incorporate fault prevention and
fault-tolerant techniques to get a more robust system protected against faults.

Integrating FT Techniques into the Design of Critical Systems 35

They are known as intrusion-tolerant systems when protection mainly concerns
with faults coming from intrusions. Fault-tolerant techniques can be subdi-
vided [1] in several groups: fault detection, fault recovery, fault handling and
fault masking. In this work, we focus on proactive and reactive fault-tolerant
recovery techniques.

An extensive review of the application of fault-tolerant techniques to the se-
curity domain can be found in [10]. It is also worth mentioning the work in [11],
which suggests an approach to the design of highly secure computing systems
based on fault-tolerant techniques. An interesting example of application can be
found in [12], where the authors propose a technique for fragmenting the data
and then storing the pieces in different locations (as RAID technology actually
works), which reduces losses of data in case of intrusion.

Proactive recovery transforms a system state containing one or more errors
(or even visible faults) into a state without detected errors or faults. Proactive
techniques were presented in [13] as a long-term protection against break-ins
and implemented, for example, in the scope of an on-line certification-authority
system [14]. These techniques borrow ideas from proactive discovery protocols
(e.g., IPSec [15]), session-key refreshment (SSL/TLS [16]) or secret sharing al-
gorithms [17]. Hence, proactive security is defined as a combination of periodic
refreshment and distribution [18,19].

Following Avizienis et al.’s fault taxonomy [1], reactive recovery can be clas-
sified as a fault-tolerant technique: it does a concurrent error detection, that is,
errors in the system are detected meanwhile it is working. Then, a detection
implies some actions must be performed in order to recover the system to a
free-error state.

Proactive and reactive recovery techniques should not be considered as mu-
tually exclusive but as complementary. Briefly, proactive techniques are worried
about fault prevention (passive part of the system), while reactive ones are con-
cerned with fault removal (active part). Sousa et al. presented in [20] a real
application of proactive and reactive recovery techniques to an existing critical
system, which tolerates up to f failure nodes and is able to recover in parallel up
to k nodes. The rationale behind this idea is a scheduled time-line, which will be
modelled in Section 3 (Fig. 1, adapted from [20], depicts it) and it is explained
in the following.

Reactive slot Proactive slot

Tslot = (� f
k
� + 1) · Tdelay

� f
k
� · Tdelay Tdelay

Reactive slot Proactive slot

Tslot = (� f
k
� + 1) · Tdelay

� f
k
� · Tdelay Tdelay

Tperiod = �n
k
� · Tslot

Fig. 1. Schedule time-line showing activations of reactive and proactive recoveries

36 R.J. Rodŕıguez and J. Merseguer

A system with n distributed devices is initially divided into �n
k � groups, con-

taining each one up to k devices, being k the number of simultaneous recoveries
the system can support. Assuming a period of time Tperiod, then each one is
divided in �n

k � slices (called Tslot from now on) where both (i.e., proactive and
reactive) recoveries have to be performed. In a Tslot, one proactive recovery will
be activated for a selected group which has a duration equal to Tdelay, being
Tdelay the maximum expected time for recovering a device. Regarding reactive
recovery, if we assume up to f failures and k simultaneously recoveries, that
implies a maximum of � f

k � reactive activations may happen in a Tslot. As can be
inferred, Tslot has a duration equal to (� f

k �+1)·Tdelay. There exists a relation [20]
between values of n, f and k as is shown in Equation 1.

n ≥ 2 · f + k + 1 (1)

A deeper description of the schedule time-line for proactive and reactive recover-
ies, as well as justification for inequality shown in Equation 1, can be found in [21].

2.2 The Security Analysis and Modelling (SecAM) Profile

The UML [2] (Unified Modelling Language) is a standard and comprehensive lan-
guage that allows to specify functional software requirements through diagrams
from architectural to deployment system views. UML can be tailored for analysis
purposes through profiling. A profile defines stereotypes and tagged values for
annotating design model elements extending its semantic. In particular, the Mod-
elling and Analysis of Real-Time and Embedded systems (MARTE) [7] profile
enables UML to support schedulability and performance analysis for real-time
(RT) and embedded systems. Although focussed on RT, MARTE sub-profiles
for performance and schedulability have also been proved useful in a wide range
of other application domains. Performance as a Non-Functional Property (NFP)
is specified in the MARTE context according to a well-defined Value Specifica-
tion Language (VSL) syntax. Recently, the non-standard Dependability Analysis
and Modelling (DAM) [6] profile was introduced to address dependability also
as a NFP in UML design models. Indeed, as DAM is a MARTE specialisation,
they can play together to specify performance and dependability NFPs in UML
models. The entire set of MARTE stereotypes can be found in [7], while DAM
stereotypes, including UML meta-classes that the stereotypes can be applied to,
can be found in [6].

The close relation among dependability and security, cleverly disclosed by
Avizienis et al. [1], was an argument in [8] for developing a new profile, called
Security Analysis and Modelling (SecAM), to model and analyse security NFPs.
Currently, the SecAM profile only addresses the topic of resilience, although
its design favours easy integration of other security concerns. As the SecAM
profile was constructed on top of DAM (indeed, as its specialisation), a joint
DAM-SecAM specification on a UML design allows to accomplish a comprehen-
sive dependability and security specification of system NFPs. The work here
presented relies on the DAM-SecAM relation: we aim to specify fault-tolerant
techniques, a dependability issue, for intrusion-tolerant systems, a security issue.

Integrating FT Techniques into the Design of Critical Systems 37

SecAM_Library

SecAM_Library::Basic_SECA_Types

SecAM_Library::Basic_SECA_Types::Enumeration_Types

<<enumeration>>
TypeOfAttack

active
passive

<<enumeration>>
Degree

low
medium
high

SecAM_Library::Complex_SECA_Types

<<tupleType>>
SecaVulnerable

degree : Degree

<<tupleType>>
SecaAttack

type : TypeOfAttack

<<tupleType>>
SecaIntrusion

successProb : NFP_Real
origin : SecaVulnerable
cause : SecaAttack

(a)
<<profile>>

SecAM::SecAM_UML_Extensions

<<stereotype>>
DAM::DaStep

kind : StepKind

<<stereotype>>
SecaStep

vulnerability : SecaVulnerable
intrusion : SecaIntrusion

<<stereotype>>
MARTE::GQAM::

GQAM_Workload::WorkloadGenerator

pop : NFP_Integer

MARTE::GQAM::
GaWorkloadEvent

pattern : ArrivalPattern

<<stereotype>>
SecaAttackGenerator

attack : SecaAttack

<<stereotype>>
DAM::DaFaultGenerator

0..1

generator
<<stereotype>>

(b)

Fig. 2. (a) SecAM library and (b) SecAM UML extensions

Figure 2(b) depicts some SecAM stereotypes used in this work, concretely
secaStep and secaAttackGenerator. The SecAM library (Fig. 2(a)) describes
the types associated to the tagged values of these stereotypes. The secaStep
stereotype inherits from DAM::daStep stereotype and is meant to describe a sys-
tem vulnerability or an attack, being both security faults [8]. For description

38 R.J. Rodŕıguez and J. Merseguer

of system malicious intrusions, the secaAttackGenerator stereotype is intro-
duced, besides, the MARTE and DAM classes it specialises (Fig. 2(b)) allow
to describe the occurrence probability pattern of the intrusion. DaFault DAM
annotation, later used in this work, supports fault definition in [1] and means
the basis for the actual SecAM annotations.

3 Modelling Proactive and Reactive Recovery Techniques

We develop, in this section, a generic and reusable model of proactive and reac-
tive recovery techniques. In first term, we model them using UML state-machine
(UML-SC) diagrams annotated with the previously discussed profiles. Then, we
obtain a Coloured Petri Net (CPN) [22] which maps the behaviour of these UML
diagrams. In fact, this CPN accurately represents proactive and reactive recovery
techniques. Our intention is then to reuse such CPN through different software
designs to conclude about the appropriateness of the techniques for the design,
Section 4 will show an example. To accomplish this target, these software designs
will also be modelled using UML-SC and each one will be eventually converted
into a CPN. So, our proposal to reuse the “proactive-reactive” CPN within a
given software design has to offer adequate “interfaces” to compose both CPNs.
Then, we finally get a CPN that embeds both the proactive-reactive techniques
and the software design as explained in Section 4.

3.1 UML Modelling

We have distinguished two components, one in charge of controlling the sched-
uled time-line presented in Section 2, and the other controlling the device to be
recovered. The latter has been called Proactive and Reactive Recovery (PRR)
component following terminology in [20].

Schedule controller UML state-chart is depicted in Figure 3. Initial analysis
variables (gaAnalysisContext stereotype) are: tDelay, which determines the
duration of each recovery; f, number of faulty devices allowed; and k, number
of devices recovered in parallel. Only one controller will be placed in the system
(tag pop of gaWorkloadGenerator stereotype). Once created, it calculates in g
the first group which will be proactively recovered. Upon entrance into Reactive
slot state, it invokes event nextSchedule() for PRR devices in g to inform
them that the components they control will be proactively recovered in the next
proactive slot, so their monitoring activity will not be necessary since for sure
they will be recovered. Then, it starts the countDown() activity with duration
hostDemand equals to � f

k � · tDelay seconds (that is, it makes room for up to
� f

k � parallel recoveries). Completion of countDown() activity means to schedule
elements in g and to change to Proactive slot state, where all PRR devices are
disabled and it starts the proactive countDown() activity, in this case with a
duration equal to tDelay seconds. Once finished, it enables all PRR devices and
before entering again in the Reactive slot state, it calculates the next proactive
group.

Integrating FT Techniques into the Design of Critical Systems 39

Fig. 3. Scheduler UML state-machine diagram

Fig. 4. PRR controller UML state-machine diagram

Figure 4 shows UML-SM for PRR component controller. Obviously, the pop-
ulation is equal to the number of effectively monitored devices, nDevices. It
starts in Enabled state and executing the activity monitor(), which abstracts
two processes: 1) detection of errors in the monitored device and 2) checking for
room in current time slot for a reactive recovery. So, when it positively informs,
then enters in Reactive state to perform a recovery (reactiveRecovery() ac-
tivity), which has a duration of rRecovery seconds on average. Once finished,
it comes back to Enabled state. From there, event nextSchedule() evolves to
Waiting4Schedule state, where the PRR will wait for event scheduled() invoked
by the scheduler to start the proactive recovery. In both recovery states (Reactive
or Proactive) the PRR invokes upon the entrance (recovery()) and on the exit

40 R.J. Rodŕıguez and J. Merseguer

(recovered()) events in the monitored device switching it off/on, respectively.
Finally, note that events enable() and disable() received from the scheduler
effectively prevent the PRR to monitor its device.

3.2 Formal Modelling through Petri Nets

Following ideas in [5] we obtained two Generalized Stochastic Petri Nets (GSPNs)
[23] by model transformation of UML design (Figs. 3 and 4). Considering that
ideas proposed in [5] were given for performance analysis purposes, some minor
changes have emerged. Indeed, we used the ArgoSPE [24] tool, which imple-
ments the algorithm given in [5], to perform the transformation of UML-SCs
annotated with SPT [25] (Schedulability, Performance and Time profile, precur-
sor of MARTE) into GSPNs. Seeing that ArgoSPE does not support MARTE,
nor DAM nor SecAM profiles, the GSPNs obtained from the transformation
have been manually modified to incorporate such annotations. In the following
we summarise the algorithm implemented in ArgoSPE.

Each SC simple state is transformed in a PN place, which represents its en-
trance. The latter is followed by two causally connected PN transitions which
represent, respectively, the entry action and the do-activity of the SC state. Entry
actions are modelled by immediate PN transitions (assuming its execution time
is negligible) while do-activities are represented by timed PN transitions, which
are characterised by one output place (i.e., the completion place) modelling the
SC completion state. If the SC state has outgoing immediate transition, this is
translated into a PN immediate transition with the completion place as its input
place. For conflicting outgoing transitions, the transformation adds immediate
transitions with probabilities to stochastically resolve the choice. In this case, the
probability values are taken from the annotations attached to the transitions.

In order to take advantage of the hierarchy and symmetries in the problem,
and then gaining readability, we slightly modified these semi-automatically ob-
tained Petri nets to gain an equivalent Coloured Petri Net (CPN) [22].
Figure 5(b,c) depicts these CPNs, while Figure 5(a) offers a hierarchical CPN [26]

Table 1. CPN initial marking, token colour definition and functions

Token colour definitions

type D is {1 . . . nDevices}
type G is {G1 . . . G� nDevices

k
�}

subtype Gi is {(k · (i − 1) + 1) . . . k · i}
var i : D, g : G

Initial marking

m0(Enable) =
∑

i ∈ D

m0(nextGroup) = G1

m0(Idle) = 1
m0(maxParallel) = k

Functions definitions

belonging(g : G) =
∑

i ∈ G

cSubset(g : G) =
∑

i ∈ D|i � G

allDevices() =
∑

i ∈ D

Integrating FT Techniques into the Design of Critical Systems 41

(a
)

(b
)

(c
)

F
ig

.
5
.
(a

)
H

ie
ra

rc
hi

ca
l
C

P
N

,
(b

)
C

P
N

of
P

R
R

co
nt

ro
lle

r
an

d
(c

)
C

P
N

of
sc

he
du

le
r

42 R.J. Rodŕıguez and J. Merseguer

view for an easy understanding of interactions between each subnet. Interac-
tions occur via event places (e enable, e nextSchedule, e schedule and e disable),
which model the real interfaces among components. Controlled devices are also
depicted (light gray box) just to highlight their communication with the PRR
controllers. CPNs in Figure 5(b,c) depict deterministic delays through grey tran-
sitions, stochastic delays through white transitions, while black transitions are
immediate ones. The initial marking, token colour and functions definition are
summarised in Table 1.

The CPN of scheduler SC (Figure 5(c)) has an initial marking represented
in places Idle and nextGroup, with values indicated in Table 1, which come
from gaWorkloadGenerator annotation and calculateNextProactive() func-
tion in the SM. Transitions fkTOut and TOut represent the reactive and proactive
countdowns and are characterised by deterministic durations given in the corre-
sponding gaStep SC annotations. Note that the firing of TOut enables all PRR
controllers (through place e enable), generates the next group which will be
proactively recovered and starts up the cycle again.

Regarding CPN of PRR controller (Figure 5(b)), its initial marking in places
Enabled and maxParallel represent the number of PRR devices in the system
and the maximum number of devices the system can recover in parallel, according
to annotations in the SC. Firing of transitions PRactions and RRactions respec-
tively lead the activation of proactive and reactive recovery. Monitored devices
are informed about the starting and ending of both recoveries (proactive and reac-
tive) through places e recovery and e recovered. Transition Detect abstracts
the activity monitor() in the SC, which once fired checks activation conditions to,
in positive case, inform the device about the starting of the reactive recovery. Note
that this can take place only if there exist room enough for a new parallel recovery.

4 Example: On-Line Shopping Website

Proactive and reactive recovery techniques such as the ones here described, but
also many others, can be implemented in critical systems. However, it would be
highly interesting to assess their actual convenience for a given system before
to carry out them physically. Thereby, we think that the models developed in
previous section can be useful for this purpose and with this thought in mind,
we show in this section how a software design can offer interfaces through which
eventually it will be combined, at UML level, with the FT target techniques.
The example tries to be a blueprint about how to:

(a) add proactive and reactive techniques to a critical system for improving its
fault tolerance;

(b) obtain an analysable formal model and
(c) get results from such model that can assess system dependability.

We model a business-critical system of the kind of an on-line shopping website,
where a balance loader is in charge of placing customers in several servers. Each
server manages a defined number of customers in parallel. A physical view of the

Integrating FT Techniques into the Design of Critical Systems 43

WAN

. . .Balance
loader

Server 1

Server N

Server 2

Scheduler

Customers
PRRD

PRRD

PRRD

Fig. 6. Physical view of the system

system is depicted in Figure 6. Note that it incorporates an external PRR device
(assumed tamper-proof and not subjected to failures) that embeds proactive and
reactive recovery techniques. The system also features the scheduler device wired
to PRRDs. Even achieving a complete failure prone device it is not a reality, this
kind of device can be seen as an embedded tamper-proof device, that is, there is
no possibility of deliberate altering or adulteration of the device. The addition of
other FT techniques (e.g., replication, redundancy or diversity) to PRR devices
will still fit within the techniques presented in this paper because the effort
should be done in the modelling of the interaction between techniques.

4.1 UML Modelling

Figure 7 depicts the behaviour of the balance loader, of which only one copy exists
(pop tagged value) and starts in Idle state. An open workload generates customer’s
requests (gaWorkloadGenerator stereotype) with an inter-arrival time defined as
an exponential distribution. Customer arrivals provoke this component to execute
an algorithm (balanceLoader()) that ends up asking a server to attend the new
customer. This component does not interplay with the target techniques, so no
interface is required. However, its behaviour is mandatory to get some system pa-
rameters such as workload (see gaWokloadEvent annotation).

Server state-machine diagram is depicted in Figure 8. Initial pseudo-state
indicates nDevices servers ready in the system. Each available server can con-
currently attend up to nThreads started up through event attendCustomer(),
which indeed initiates a sub-state machine specified in Figure 9. The server has
been supplied with interfaces (recovery() and recovered()) to interact with
the PRR component via events (note that here is where we incorporate the recov-
ery techniques into the system). Consequently, the actual functional behaviour
of a server is specified in the sub-state machine, which inherits the interfaces
then allowing to abort normal behaviours. Besides, we have wanted to show
how other kinds of faults, e.g. hardware faults, can also be expressed within this

44 R.J. Rodŕıguez and J. Merseguer

Fig. 7. Balance loader UML state-machine diagram

Fig. 8. Server UML state-machine diagram

modelling approach. So, when a hardware crash occurs (daStep annotation in
Fig. 8) it will be properly handled, of course the resulting formal model will also
embed this kind of fault.

During normal behaviour (Fig. 9) a server can be attacked and/or suffer
intrusions. In the example we have reduced, as much as possible, the specifi-
cation of system normal behaviour (Processing) to focus on the critical part.
Hence, the customer’s requests (attendCustomer) can be a source of attack
(see secaAttackGenerator annotation) and occasionally become an intrusion
(secaStep annotation), i.e., the attack successes. Obviously, other kind of de-
pendability faults could be here specified by means of DAM-SecAM. A final
remark to point out that conflicting outgoing transitions of Processing state are
evidently solved by the probabilities in the annotations.

4.2 Formal Modelling

Again, following ideas in [5] and assisted by ArgoSPE [24] tool, we obtained
GSPNs by model transformation of UML design (Figs. 7, 8 and 9). Thereafter,
the nets were composed by interface places (e attendCustomer), simplified and
converted into a CPN (depicted in Fig. 10) for readability purposes. The initial
marking and transition rates are summarised in Table 2.

Integrating FT Techniques into the Design of Critical Systems 45

Fig. 9. Available UML sub-state machine diagram

Fig. 10. CPN of case study

Interface light grey places allow combination with the PRR component as
depicted in Figure 5(a), so to gain the target Petri net that models both: sys-
tem behaviour and recovery techniques. Now we can discuss the role of interface

46 R.J. Rodŕıguez and J. Merseguer

Table 2. (a) Example parameters and (b) experiments parameters

Initial marking

m0(ThreadIdle) = nThreads ·
∑

i ∈ D

m0(Idle) =
∑

i ∈ D

Transition Parameter (type)
customerArrival 1/customerLoad (rate)
bLoader 1/balance (rate)
pCustomer 1/process (rate)
Crash 1/crash (rate)
HWrec 1/HWrec (rate)
intrusion attack · success (weight)
nonintrusion 1 − attack · success (weight)

Parameters Value
nDevices 12
k 2, 3, 4
f 1
timeOut 120, 180s
detect 100 ms
pRecovery 120 s
rRecovery 120 s
nThreads 10
crash 432000 s
HWrec 43200 s
balance 200 ms
customerLoad 0.5 customers/s
process 300 s
attack 30%
success 0% · · · 75%

(a) (b)

place e activationConditions, but firstly remember that a token in this place
means for the PRR component to activate a reactive recovery. From the point
of view of our system, we desire to activate the reactive recovery whenever 7
out of 10 threads (see nThreads variable in Table 2(b)) in a given server become
hung. So, the actConditions() function in the test arc of place ThreadHung
implements the algorithm that checks out such condition and when it is true
then a token is placed in place e activationConditions. Obviously, other sys-
tems should implement this function differently, but always preserving place
e activationConditions as an interface place.

In Balance loader area, the system open workload is represented by an expo-
nentially distributed transition customerArrival of mean customerLoad (taken
from gaWorkloadEvent stereotype, Fig. 7). In the Thread area, transitions
intrusion and nonintrusion represent whether if an attack had success or
not, respectively. Finally, we manually added the part of the net called Cleaning
(indeed, composed only by two transitions) to remove tokens from Processing
and ThreadHung as long as the server becomes not available (arc inscription #Pi

means all tokens in place Pi).

4.3 Analysis and Assessment

The analysis was carried out using simulation programs of GreatSPN [27] tool.
We actually simulated the original GSPNs obtained by ArgoSPE instead of
the readable CPNs in Figures 5 and 10. Simulation parameters were set to a
confidence level of 99%, accuracy of 1%, length of evolution phase equal to
604800 time units and a length of initialisation phase equal to 86400 time units.
The Petri nets parameters and its values were summarised in Table 2(b) (note

Integrating FT Techniques into the Design of Critical Systems 47

Table 3. Analysis parameters required in UML statecharts

Input parameter Provided by Annotation (profile)

balance Manufacturer gaWorkloadEvent (MARTE)
customerLoad Designer gaStep (MARTE)
nDevices Designer gaWorkloadGenerator (MARTE)
HWrec Manufacturer gaStep

crash Manufacturer daStep (DAM)
nThreads Manufacturer resource (MARTE)
process Manufacturer secaStep (SecAM)
attack Designer secaAttackGenerator (SecAM),

paStep (MARTE)
success Designer secaStep (SecAM),

paStep (MARTE)

that the number of servers was 12 (nDevices), each one able to attend up to 10
customers in parallel (nThreads)).

All values of the parameters can be known at design time: some of them, such
expected customer load, probabilities of attack and success, should be estimated
by the software engineer, while other parameters, such as time performing recov-
ery actions should be given by manufacturer of PRR device. Table 3 summarises
input analysis parameters and by whom they should be provided.

In the experiments, reactive recovery is always performed when the number
of active threads for a device drops to 3 (function activationConditions()).
Regarding proactive recovery, 12 servers allow setting several configurations that
we have tested: three proactive groups of four servers (solid lines in Figure 11),
four proactive groups of three servers (dot-dashed lines) and six proactive groups
of two servers (dashed lines). Under these parameters, we have simulated the net
to point out the best configuration among the previous ones w.r.t. throughput.
In Figure 11 we show the relation between the incoming customer throughput
(customerLoad) and the system throughput (Thr(attendCustomer)). The hor-
izontal axis represents the percentage of successful attacks (0%..75%, variable
success), having the percentage of system attacks (variable attack) set to 30%
for all the experiments.

The results indicate that the more servers are simultaneously recovered, the
more throughput the system obtains. In terms of absolute time, smaller groups
recover more number of servers than bigger groups, which ensures higher avail-
ability for the formers and consequently better performance. In the example,
it could be assessed that groups of three serves are the right choice regarding
throughput. The computed measure is a performability one (i.e., performance in
the presence of faults). Although some other interesting results were obtained
(e.g., results of dependability nature) from this formal model, we do not present
them since this is not the main focus of the paper.

48 R.J. Rodŕıguez and J. Merseguer

Fig. 11. Simulation results

5 Related Work and Conclusion

Several approaches [28,29,30] in the literature bring Petri nets for the design
of critical systems. In [28] Heiner et al. used a combined model of Z and Petri
Net formalisms, the first for specifying data and its evolution and the latter
to validate the safety-critical system. The union of both formalisms allows to
obtain an approach where data-combination and behaviour are described. Ghezzi
et al. presented in [29] a high-level Petri Net formalism (TB nets, a particular
case of Timed Environment/Relationship nets) to specify control, function and
timing issues in time-critical systems. In [30], Houmb et al. quantified operational
system integrity of security critical systems using the formalism of Coloured Petri
Nets (CPN).

Regarding fault-tolerant techniques applied at software architectural level also
several works can be found [31,32,33,4,34]. In [31] Harrison and Avgeriou stud-
ied how several fault-tolerant techniques can be carried out as best-known ar-
chitectural patterns. By the use of architectural patterns they aim to directly
create software architectures satisfying quality attributes. Nguyen-Tuong and
Grimshaw presented in [32] a reflective model, called Reflective Graph & Event
(RGE), which is applied for making failure-resistant applications. Using this
reflective model they are able to express fault-tolerant algorithms as reusable
components allowing composition with user applications. Rugina et al. propose
in [33] an approach for system dependability modelling using AADL (Architec-
ture Analysis and Design Language), being the design model transformed into
GSPN. This approach was applied to an Air Traffic Control System. Bondavalli
et al. [4,34] have a vast work in the area of translating UML diagrams into de-
pendability models, having also used Petri nets as a target model in some of
these works. Their proposal of translation could be used in this paper instead

Integrating FT Techniques into the Design of Critical Systems 49

of [5], but it should be taken into account that they propose an intermediate
model as a first step.

In this paper, we have explored the idea of combining models that represent
FT techniques and software behavioural designs. The combined model is useful
for dependability assessment. Although the example has shown feasibility in
the approach to integrate well-known recovery techniques into software designs,
we are conscious that a long path has to be walked for the approach to reach
applicability. So, we want to clearly establish that, from our point of view, the
contribution of the paper is restricted to the achievements in the example, i.e.,
how to combine proactive and reactive techniques with a software design and
their analysis. However, we are confident of the second one, i.e., reuse of the
approach with other FT techniques. The key point is to gain a “library” of UML
models representing FT techniques ready to use in critical designs. Being the
crucial aspect for the UML model of a FT technique to have clearly defined
its interfaces, we strongly believe that events and conditions are the means to
attain it as we did in our proposal. Moreover, each technique has to define also
how their interfaces play in the software design, for the case of the recovery
techniques we have advocated for a superstate which offers suitable interfaces
and embeds the system normal behaviour.

As a critic, we recognise that UML-SC should not be the only UML diagram
used in this context, since for example, sequence diagrams may help the engineer
in understanding system usage situations. So, we plan to extend our approach to
take advantage of other UML diagrams. Another critic stems from the fact that
the combination of FT techniques and software designs should be explicitly made
at UML level, instead of deferring the combination to the Petri net models. This
would bring advantage to the engineer for completely avoid the formal model.
Being aware of this fact, we are working on a feasible solution to this problem.

The use of an approach such as the one here developed should otherwise
bring several benefits from the point of view of a software engineer. The easy
integration of FT techniques into software designs and the existence of such
“library” may allow to test different techniques for the same design to find the
ones fitting better. Such “library” will also free the engineer of worrying about
how to model FT and concentrate on the problem domain. Finally, it is well-
known that the use of formal models early in the life-cycle to prove requirements
is less expensive than other approaches.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Trans. on Dependable and
Secure Computing 1, 11–33 (2004)

2. OMG: Unified Modelling Language: Superstructure. Object Management Group
(July 2005) Version 2.0, formal/05-07-04

3. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77, 541–580 (1989)

50 R.J. Rodŕıguez and J. Merseguer

4. Bondavalli, A., Dal Cin, M., Latella, D., Majzik, I., Pataricza, A., Savoia, G.:
Dependability Analysis in the Early Phases of UML Based System Design. Journal
of Computer Systems Science and Engineering 16(5), 265–275 (2001)

5. Merseguer, J., Bernardi, S., Campos, J., Donatelli, S.: A Compositional Semantics
for UML State Machines Aimed at Performance Evaluation. In: Giua, A., Silva,
M. (eds.) Procs. of the 6th Int. Workshop on Discrete Event Systems, Zaragoza,
Spain, October 2002, pp. 295–302. IEEE Computer Society Press, Los Alamitos
(2002)

6. Bernardi, S., Merseguer, J., Petriu, D.: A Dependability Profile within MARTE.
Journal of Software and Systems Modeling (2009), doi: 10.1007/s10270-009-0128-1

7. Object Management Group: A UML profile for Modeling and Analysis of Real
Time Embedded Systems (MARTE) (November 2009), v1.0, formal/2009-11-02

8. Rodŕıguez, R.J., Merseguer, J., Bernardi, S.: Modelling and Analysing Resilience as
a Security Issue within UML. In: SERENE 2010: Procs. of the 2nd Int. Workshop
on Software Engineering for Resilient Systems. ACM, New York (2010) (accepted
for publication)

9. Veŕıssimo, P., Neves, N.F., Correia, M., Deswarte, Y., Kalam, A.A.E., Bondavalli,
A., Daidone, A.: The CRUTIAL Architecture for Critical Information Infrastruc-
tures. In: de Lemos, R., Di Giandomenico, F., Gacek, C., Muccini, H., Vieira, M.
(eds.) Architecting Dependable Systems V. LNCS, vol. 5135, pp. 1–27. Springer,
Heidelberg (2008)

10. Rushby, J.: Critical System Properties: Survey and Taxonomy. Technical Report
SRI-CSL-93-1, Computer Science Laboratory, SRI International (1994)

11. Dobson, J., Randell, B.: Building Reliable Secure Computing Systems Out Of
Unreliable Insecure Components. In: IEEE Symposium on Security and Privacy,
p. 187. IEEE Computer Society, Los Alamitos (1986)

12. Fray, J.M., Deswarte, Y., Powell, D.: Intrusion-Tolerance Using Fine-Grain
Fragmentation-Scattering. In: IEEE Symposium on Security and Privacy, p. 194.
IEEE Computer Society Press, Los Alamitos (1986)

13. Canetti, R., Gennaro, R., Herzberg, A., Naor, D.: Proactive Security: Long-term
Protection Against Break-ins. CryptoBytes 3, 1–8 (1997)

14. Zhou, L., Schneider, F.B., Van Renesse, R.: COCA: a Secure Distributed Online
Certification Authority. ACM Trans. on Computer Systems (TOCS) 20(4), 329–368
(2002)

15. Tran, T.: Proactive Multicast-Based IPSEC Discovery Protocol and Multicast Ex-
tension. MILCOM, 1–7 (2006)

16. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1.
RFC 4346, Internet Engineering Task Force (April 2006)

17. Shamir, A.: How to Share a Secret. Communications of ACM 22(11), 612–613
(1979)

18. Canetti, R., Halevi, S., Herzberg, A.: Maintaining Authenticated Communication
in the Presence of Break-ins. In: PODC 1997: Procs. of the 16th annual ACM
symposium on Principles Of Distributed Computing, pp. 15–24. ACM, New York
(1997)

19. Ostrovsky, R., Yung, M.: How To Withstand Mobile Virus Attacks. In: PODC
1991: Procs. of the 10th annual ACM symposium on Principles Of Distributed
Computing, pp. 51–59. ACM, New York (1991)

20. Sousa, P., Bessani, A., Correia, M., Neves, N., Verissimo, P.: Resilient Intrusion
Tolerance through Proactive and Reactive Recovery. In: Procs. of the 13th IEEE
Pacific Rim Dependable Computing Conference, pp. 373–380 (2007)

Integrating FT Techniques into the Design of Critical Systems 51

21. Kalan, A.A.E., Baina, A., Beitollahi, H., Bessani, A., Bondavalli, A., Correia, M.,
Daidone, A., Deconinck, G., Deswarte, Y., Garrone, F., Grandoni, F., Moniz, H.,
Neves, N., Rigole, T., Sousa, P., Verissimo, P.: D10: Preliminary Specification of
Services and Protocols. Project deliverable, CRUTIAL: Critical Utility Infrastruc-
tural Resilience (2008)

22. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science. Springer, Heidelberg (1997)

23. Chiola, G., Marsan, M.A., Balbo, G., Conte, G.: Generalized Stochastic Petri Nets:
A Definition at the Net Level and its Implications. IEEE Trans. Soft. Eng. 19(2),
89–107 (1993)

24. ArgoSPE: http://argospe.tigris.org
25. Object Management Group: UML Profile for Schedulability, Performance and Time

Specification (January 2005), V1.1, f/05-01-02
26. Huber, P., Jensen, K., Shapiro, R.M.: Hierarchies in Coloured Petri Nets. In: Rozen-

berg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 313–341. Springer, Heidelberg (1991)
27. University of Torino: The GreatSPN tool (2002),

http://www.di.unitorino.it/~greatspn

28. Heiner, M., Heisel, M.: Modeling Safety-Critical Systems with Z and Petri Nets.
In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698,
pp. 361–374. Springer, Heidelberg (1999)

29. Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A Unified High-Level Petri Net
Formalism for Time-Critical Systems. IEEE Trans. Softw. Eng. 17(2), 160–172
(1991)

30. Houmb, S.H., Sallhammar, K.: Modelling System Integrity of a Security Critical
System Using Colored Petri Nets. In: Proceedings of Safety and Security Engineer-
ing (SAFE 2005), Rome, Italy, pp. 3–12. WIT Press (2005)

31. Harrison, N.B., Avgeriou, P.: Incorporating Fault Tolerance Tactics in Software
Architecture Patterns. In: Procs. of the 2008 RISE/EFTS Joint Int. Workshop on
Software Engineering for Resilient Systems (SERENE), pp. 9–18. ACM, New York
(2008)

32. Nguyen-Tuong, A., Grimshaw, A.S.: Using Reflection for Incorporating Fault-
Tolerance Techniques into Distributed Applications. Technical report, University
of Virginia, Charlottesville, VA, USA (1998)

33. Rugina, A.E., Kanoun, K., Kaâniche, M.: A System Dependability Modeling
Framework Using AADL and GSPNs. In: de Lemos, R., Gacek, C., Romanovsky, A.
(eds.) Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 14–38. Springer,
Heidelberg (2007)

34. Majzik, I., Pataricza, A., Bondavalli, A.: Stochastic Dependability Analysis of
System Architecture Based on UML Models. In: de Lemos, R., Gacek, C.,
Romanovsky, A. (eds.) Architecting Dependable Systems. LNCS, vol. 2677,
pp. 219–244. Springer, Heidelberg (2003)

Component Behavior Synthesis for Critical
Systems�,��

Tobias Eckardt and Stefan Henkler

Software Engineering Group, Heinz Nixdorf Institute, University of Paderborn,
Warburger Str. 100, Paderborn, Germany
{tobie,shenkler}@uni-paderborn.de

Abstract. Component-based architectures are widely used in embed-
ded systems. For managing complexity and improving quality separation
of concerns is one of the most important principles. For one component,
separation of concerns is realized by defining the overall component func-
tionality by separated protocol behaviors. One of the main challenges of
applying separation of concerns is the later automatic composition of the
separated, maybe interdependent concerns which is not supported by cur-
rent component-based approaches. Moreover, the complexity of real-time
distributed embedded systems requires to consider safety requirements
for the composition of the separated concerns. We present an approach
which addresses these problems by a well-defined automatic composition
of protocol behaviors with respect to interdependent concerns. The com-
position is performed by taking a proper refinement relation into account
so that the analysis results of the separated concerns are preserved which
is essential for safety critical systems.

1 Introduction

Component-based architectures are widely used in the domain of embedded real-
time systems. The main benefits of using components are their support for in-
formation hiding and reuse. The interface of a component is well defined by
structural elements and a collaboration of protocols (cf. [1]). The overall com-
ponent behavior is defined by the (parallelly executed) protocol behaviors. De-
pendencies between components are reduced to the knowledge of interfaces or
ports. Thus, a component can be exchanged if the specified port remains fulfilled.

� This work was developed in the course of the Special Research Initiative 614 -
Self-optimizing Concepts and Structures in Mechanical Engineering - University of
Paderborn, and was published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.

�� This work was developed in the project “ENTIME: Entwurfstechnik Intelligente
Mechatronik” (Design Methods for Intelligent Mechatronic Systems). The project
ENTIME is funded by the state of North Rhine-Westphalia (NRW), Germany and
the EUROPEAN UNION, European Regional Development Fund, “Investing in your
future”.

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 52–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Component Behavior Synthesis for Critical Systems 53

The port and interface definitions of architectural components therefore facili-
tate the construction of complex functionality by the composition of components
and protocols.

For managing complexity and improving quality of systems, separation of
concerns [2] is one of the most important principles. It enables primary software
engineering goals like adaptability, maintainability, extendability and reusabil-
ity. Accordingly, advanced applications of separation of concerns have gained
popularity like aspect-oriented programming (AOP) [3], for example. For one
component, separation of concerns is realized by defining the overall component
functionality by separated protocol behaviors [4].

One of the main challenges of applying separation of concerns is the later
(application specific) composition of the separated, maybe interdependent con-
cerns [5]. In general, we can distinguish between structural, data, and behavioral
composition. In the area of structural composition, approaches exist for exam-
ple, that consider the software architecture as well as architectural patterns
[6,7]. For data composition approaches like [8] support the generation of suitable
translators. In [9,4] approaches for the behavioral composition are presented.
The overwhelming complexity of embedded real-time systems, however, requires
to also consider safety and bounded liveness requirements for the composition
which is not included in these approaches. On the other hand, component-based
approaches for embedded real-time systems (e. g. [10,11]) suffer the support for
interdependent concerns for the well-defined composition.

In this paper, we present an approach which addresses these problems by a
well-defined automatic composition of protocol behaviors with respect to inter-
dependent concerns specified as composition rules. The defined composition rules
preserve timed safety properties which is inherently important for safety critical
systems. The composition is performed by taking a proper refinement relation
into account, which we call role conformance. This way also untimed liveness
properties are preserved which is equally essential for safety critical systems.
This work extends the fundamental work of [4] to the domain of critical systems
(cf. Section 7).

In contrast to approaches which integrate interdependent behavior by an ad-
ditional observer automaton (e.g., our former work as presented in [12]), our
approach enables the explicit specification of interdependent concerns and the
synthesis algorithm integrates the specified concerns automatically.

In general, the observer based approach is difficult to apply and error prone.
Owned by the implicit specification of composition rules by the observer au-
tomata, the developer did not know if the composition rule in mind is really
correctly implemented by the observer automata. To forbid for example that two
protocol behaviors are at the same time in a specific state, all “relevant” events
(timing and messages) have to be observed which lead to the forbidden states.
After a corresponding observer automaton has been specified the developer did
not know if all relevant events are observed, if too much behavior is observed
(forbidden) or if timed safety properties and untimed liveness properties of the
protocol behaviors are violated.

54 T. Eckardt and S. Henkler

Additionally, the developer of the observer automaton has to instrument the
protocol behaviors to enable the observation. This is not intended, however, as
this may cause malfunctions originating from mistakes of the developer. Alto-
gether the observer based approach is not well suited for safety critical systems.

For our synthesis approach, we extend our modeling approach Mecha-
tronic UML which addresses the development of complex embedded real-time
systems. Mechatronic UML supports the compositional specification and veri-
fication of real-time coordination by applying component-based development and
pattern-based specification [12]. Furthermore, it also supports the integrated de-
scription and modular verification of discrete behavior and continuous control
of components [13].

We evaluate our approach by the RailCab project of the University of Pader-
born1. The vision of the RailCab project is a mechatronic rail system where
autonomous vehicles, called RailCabs, apply a linear drive technology, as used
by the Transrapid system2, for example. In contrast to the Transrapid, RailCabs
travel on the existing track system of a standard railway system and only re-
quire passive switches. One particular problem (previously presented in [12]) is
the convoy coordination of RailCabs. RailCabs drive in convoys in order to re-
duce energy consumption caused by air resistance and to achieve a higher system
throughput. Convoys are established on-demand and require small distances be-
tween RailCabs. These small distances cause the real-time coordination between
the speed control units of the RailCabs to be safety critical which results in a
number of constraints that have to be addressed when developing the RailCabs
control software.

In the following section, we present the relevant parts of Mechatronic UML
and give an overview of our synthesis approach. For the formalization of the
approach, we give fundamental definitions for the input behavioral specifications
in Section 3. In Section 4, we present the concept of composition rules which
formalize interdependent concerns. These composition rules are applied within
the automatic composition of protocol behavior, as defined by the synthesis
algorithm in Section 5. As the effect of the application of a set of composition
rules cannot be anticipated, the result of the synthesis can violate properties of
the protocol behavior. Therefore, we present the check for role conformance in
Section 6. Related work is discussed in Section 7 and at last we conclude with a
summary and future work in Section 8.

2 Approach

In Mechatronic UML separation of concerns is realized by applying
component-based development and in accordance with that by rigorously separat-
ing inter-component from intra-component behavior. Following this concept, the
system is decomposed into participating components and real-time coordination
patterns [12], which define how components interact with each other.
1 http://www-nbp.uni-paderborn.de/index.php?id=2&L=1
2 http://www.transrapid.de/cgi-tdb/en/basics.prg

Component Behavior Synthesis for Critical Systems 55

Fig. 1. RailCab example

Fig. 2. Combining Separate Specifications in Mechatronic UML

To exemplify this, we use our RailCab case study. In Figure 1, we depict
a situation of RailCabs driving in a convoy. The figure on the left shows this
situation in the real test bed and on the right an abstraction is shown. In addition
to the RailCabs, we depict a base station which is responsible for the power
supply of the RailCabs and the management of track information for a specified
section. The track information includes the data of all RailCabs in this section.
RailCabs use this information to be aware of other RailCabs in their section in
order to avoid crashes and possibly build convoys.

We specify two components BaseStation and RailCab (Figure 2) and two co-
ordination patterns Registration and Convoy, which define the before described
communication behavior between RailCabs and base stations.

In real-time coordination patterns, roles are used to abstract from the actual
components participating in one coordination pattern. This way, it is possible
to specify and verify coordination patterns independently from other coordi-
nation patterns and component definitions and therefore to reduce complexity.
In Figure 2 the participating roles of the Registration pattern are registrar and
registree; the roles of the Convoy pattern are front and rear. Each role behavior is

56 T. Eckardt and S. Henkler

Fig. 3. Simplified Rear Role Timed
Automaton

Fig. 4. Simplified Registree Role Timed
Automaton

specified by one timed automaton3 [15,16]. The automata of the rear role and the
registree role are depicted in Figure 3 and Figure 4. The automata for the front

role and the registrar role only form corresponding counterparts and are therefore
not depicted. We present only a simplified version of the behavior in order to
present the complete approach by an example.

Initially, the rear role is in state noConvoy and sends a startConvoy event. The
clock cr is set to zero before entering the convoy state. In the interval of 200 to
1000 time units the breakConvoy event has to be received as the location invariant
of state convoy is cr ≤ 1000 and the time guard of the transition is cr ≥ 200 or
in the interval of 400 to 1000 time units, periodically an update event is sent.
The registree role is initially in the unregistered state, sends a register event and
resets the clock. In the registered state in the interval of 800 to 2000 time units,
periodically the lifetick event is sent or in the interval of 500 to 2000 time units
the unregistered event is sent. The decision of sending the lifetick or unregistered

event is at this point of nondeterministic choice.
To obtain an overall system specification later in the development process,

the separated components and coordination patterns have to be combined again
(Figure 2). The problem which inherently arises at this point is that separate
parts of the system were specified as independent from each other when they are
in fact not. This means that during the process of combining the separate parts of
the system, additional dependencies between the particular specifications have to
be integrated. At the same time, the externally visible behavior of the particular
behavioral specifications may not be changed in order to preserve verification
results [12].

In the overall system view of the RailCab example (Figure 2), the RailCab

component takes part in both, the Registration and the Convoy pattern. While
those patterns have been specified independently from each other, a system
requirement states:

In convoy operation mode, each participating RailCab has to be registered
to a base station.

Accordingly, a dependency between both patterns exists, when applied by the
RailCab component. As a result, the behavior of the registree role and the
3 In Mechatronic UML, realtime statecharts [14] are used to describe role behavior.

Realtime statecharts, however, are based on timed automata. Therefore, we define
the complete synthesis procedure on the basis of timed automata in order to make
the approach as general as possible.

Component Behavior Synthesis for Critical Systems 57

Fig. 5. Activity Diagram Illustrating the Basic Synthesis Approach

behavior of the rear role have to be refined and synchronized with each other
when applied by the RailCab component in order to fulfill the system require-
ments. Still, it has to be regarded that the externally visible behavior of the
RailCab component does not change. If this process of refinement and synchro-
nization is performed manually, it is a time consuming and error-prone process.
Consequently, this implies the necessity for automation in order to guarantee
the required quality of safety critical systems.

In the proposed approach, we formalize the specification of inter-role dependen-
cies and further separate this specification from the specification of pattern role
behaviors in order to perform an automatic synthesis for the overall component
behavior. Once the synthesis is performed, it is checked if the synthesized compo-
nent behavior refines each of the particular pattern role behaviors properly.

The approach requires (1) the definition of a suitable refinement relation for
(real) dense time systems and (2) the employment of a suitable and efficient
abstraction of the timed behavioral models which is needed to perform the refine-
ment check. The result is a fully automatic synthesis algorithm where dependen-
cies between separate behavioral specifications are specified explicitly by so-called
composition rules (cf. [5]). Accordingly, the input for the algorithm are composi-
tion rules and separate behavioral specifications (Figure 5) in the form of timed
automata. If the synthesis is possible without violating the externally visible be-
havior of any of the input specifications, the output is one parallelly composed
component behavior which combines all of the input behavioral specifications as
well as the composition rules. If the synthesis is not possible, the algorithm returns
a conflict description indicating the reason for the impossibility.

We continue with the basic definitions for the input behavioral specifications
in the form of timed automata.

3 Prerequisites

For the verification of real-time coordination patterns, Mechatronic UML
employs the model checker UPPAAL4. UPPAAL uses timed safety automata
[16] as the input model [17]. Consequently, we also employ the concept of timed
4 http://www.uppaal.com/

58 T. Eckardt and S. Henkler

safety automata for the entire approach and refer to them as timed automata in
the following.

Within a timed automaton, we use clock constraints to make the behavior of
the automaton dependent on the values of certain clocks of the automaton. A
general clock constraint is a Boolean formula joining a set of equations and in-
equations describing the lower and upper bounds for clocks and clock differences.

Definition 1 (General Clock Constraint). For a set C of clocks, the set
Φ(C) of general clock constraints is inductively defined by the grammar ϕ ::=
x ∼ n | x − y ∼ n | ϕ ∧ ϕ | true | false, where x, y ∈ C, ∼∈ {≤, <, =, >,≥},
n ∈ N.

We further define downwards closed clock constraints as those constraints, which
only define upper bounds for clock values. The lower bound of all clocks in a
downwards closed clock constraint, consequently, is always zero.

Definition 2 (Downwards Closed Clock Constraint). For a set C of
clocks, the set Φdc(C) ⊂ Φ(C) of downwards closed clock constraints is in-
ductively defined by the grammar ϕ ::= x ∼ n | x − y ∼ n | ϕ ∧ ϕ | true, where
x, y ∈ C, ∼∈ {≤, <}, n ∈ N.

With the definitions of clock constraints we can proceed with the definition of
the syntax of a timed automaton. Note that this definition corresponds to the
one given in [18], which is employed in UPPAAL.

Definition 3 (Timed Automaton). A Timed Automaton A is a tuple (L, l0,
Σ, C, I, T) where L is the set of locations, l0 ∈ L is the initial location, Σ is
the finite set of events where the symbol τ is used for internal events (silent
transitions), I : L → Φdc(C) assigns each location a location invariant as a
downwards closed clock constraint, C is the finite set of clocks, and T ⊆ L×Σ×
Φ(C)× 2C ×L is the finite set of transitions t = (l, e, g, r, l′) ∈ T with l ∈ L the
source location, e ∈ Σ the related event, g ∈ Φ(C) the time guard as a general
clock constraint, r ⊆ C a set of clocks to be reset, and l′ ∈ L the target location.

Examples of timed automata are depicted in Figure 3 and Figure 4 describing
the communication behavior of the rear role and the registree role of the Convoy

and the Registration real-time coordination pattern as described in Section 2. On
the basis of the above given definitions, we formally define inter-role dependency
specifications in the form of composition rules in the next section.

4 Composition Rules

With composition rules, interdependent concerns for the separate role behaviors
can be specified as system properties which synchronize parts of the separated
role behavioral models.

We divide composition rules into two distinct formalisms that are state com-
position rules and event composition automata. With state composition rules

Component Behavior Synthesis for Critical Systems 59

we are able to synchronize the role behavior with respect to certain state com-
binations of the particular role automata. Event composition automata, on the
other hand, provide the possibility to synchronize the role automata on the
basis of events and event sequences. Both formalisms also include the specifica-
tion of timing information for synchronization referring to the clocks of the role
automata.

Generally speaking, system properties can be specified in terms of safety and
liveness properties for a given behavioral specification [19,20]. Safety properties
state that something bad will never happen during the execution of a program.
Liveness properties state that something good will happen eventually. Transfer-
ring this to the context of automata synchronizations, these properties always con-
cern two or more automata. Consequently, a safety property for synchronization
states that something bad will never happen, when executing the corresponding
automata in parallel, while a liveness property for synchronization expresses that
something good will eventually happen during this parallel execution.

Transferring these properties to composition rules, we are able to specify both
safety and liveness properties. Safety properties can be specified (1) by means of
state composition rules in terms of forbidden state combinations of the parallel
execution and (2) by means of event composition automata by adding further
time constraints to time guards of selected transitions. Liveness properties in
turn can be specified through state composition rules and event composition
automata by adding further time constraints to location invariants of location
combinations of the parallel execution.

State composition rules define forbidden state combinations, including timing
information, in the parallel execution of the role automata. In order to make
statements about forbidden state combinations of a component behavior, we
need to define which clock values are forbidden in which automaton location. As
the location invariant of an automaton location must be downwards closed (see
Definition 3), the forbidden clock valuations can only be described by an upwards
closed clock constraint. This is then used in a location predicate to connect the
forbidden clock valuations to a certain location.

Definition 4 (Upwards Closed Clock Constraint). For a set C of clocks,
the set Φuc(C) ⊂ Φ(C) of upwards closed clock constraints is inductively defined
by the grammar ϕ ::= x ∼ n | x−y ∼ n | ϕ∧ϕ | true, where x, y ∈ C, ∼∈ {≥, >},
n ∈ N.

Definition 5 (Location Predicate). For a timed automaton A = (L, l0, Σ,
C, I, T), a location l ∈ L and an upwards closed clock constraint ϕ ∈ Φuc(C) the
set Γ (A) of location predicates γ = (l, ϕ) is defined by Γ (A) = L × Φuc(C).

With state composition rules, we want to restrict certain state combinations of
the concerned role automata. Consequently, we define these state combinations
by connecting location predicates by Boolean joins and meets in order to express
which timed location combinations are not allowed in the composed component.

Definition 6 (State Composition Rule). For two timed automata A1 =
(L1, l

0
1, Σ1, C1, I1, T1) and A2 = (L2, l

0
2, Σ2, C2, I2, T2) the set RS(A1, A2) of

60 T. Eckardt and S. Henkler

state composition rules ρ is defined by the grammar ρ ::= ¬ργ , ργ ::= ργ ∧ ργ |
ργ ∨ ργ | γ, where γ ∈ Γ (A1) ∪ Γ (A2).

An example of a state composition rule is the rule r1, given with:

r1 = ¬((unregistered, true) ∧ (convoy, true)).

The state composition rule r1 formalizes the pattern overlapping system re-
quirement explained in Section 2. Correspondingly, it defines that a RailCab
is not allowed to rest in states (unregistered, true) and (convoy, true) at the
same time, where the clock constraint true denotes that all clock values of the
corresponding automata are concerned.

Event composition automata synchronize the parallelly executed role au-
tomata on the basis of events and event sequence by adding further timing
constraints to the parallel execution.

For event composition automata, we also apply the syntax of timed automata
themselves, as event composition automata are also used to describe possible
event sequences of the component behavior. In contrast to pattern role automata,
event composition automata do not add any further event occurrences, which
means that they do not consume or provide any signals from the channels of the
corresponding role automata. In other words, event composition automata are
only monitoring event occurrences for a given set of role automata while they do
not distinguish between sending or receiving events. They do, however, allow to
add further timing constraints to the monitored event occurrences, also in terms
of location invariants for the locations between the monitored events. This way,
safety and liveness properties for the synchronization of several role automata
can be specified. Formally, an event composition automaton is defined as follows.

Definition 7 (Event Composition Automaton). Let A1 = (L1, l
0
1, Σ1, C1,

I1, T1) and A2 = (L2, l
0
2, Σ2, C2, I2, T2) be two timed automata. An event com-

position automaton AE ∈ RA(A1, A2) is again a timed automaton as a tuple
(LE , l0E, ΣE , CE , IE , TE) , where LE is a finite non empty set of locations, l0E
⊆ L is the initial location, ΣE ⊆ Σ1∪Σ2 is the finite set of events to be observed,
I : L → Φdc(CE) assigns each location a downwards closed clock constraint, CE

is a finite set of clocks, with CE∩(C1∪C2) = ∅ TE ⊆ LE×ΣE×Φ(CE)×2CE×LE

is a finite set of transitions t = (l, e, g, r, l′) ∈ TE, l ∈ LE is the source location,
e ∈ ΣE is the observed event, g ∈ Φ(CE) is the time guard, r ⊆ CE is a set of
clocks to be reset, and l′ ∈ LE is the target location.

Semantically, an event composition automaton only observes event occurrences
of the given role automata. Consequently, only those events can be used in an
event composition automaton, as others can never be observed. Additionally, the
set of clocks of the event composition automaton is restricted to be disjoint to
the set of clocks of the role automata. This way, it is guaranteed that the event
composition automaton cannot widen the time intervals of event sequences of the
automata to be synchronized. This in turn guarantees that all verified deadlines
of the role automata can still be met and, therefore, that all verified safety
properties of the role automata are preserved (see section 6).

Component Behavior Synthesis for Critical Systems 61

Fig. 6. Event Composition Automaton eca1

To give an example for the pattern role automata of the rear role and the
registree role (Figure 3 and Figure 4), assume a further pattern overlapping sys-
tem requirement stating that a RailCab has to be registered to a base station
for at least 2500 time units before starting a convoy. Observe that this require-
ment cannot be implemented using a state composition rule, as it is based on
the occurrence of the startConvoy! event of the rear role automaton. Accordingly,
we specify the event composition automaton eca1 (Figure 6) to implement this
requirement.

For implementing the requirement, the event composition automaton eca1
monitors the register! event of the registree role automaton. Along with the oc-
curence of this event the clock ec c1 is reset. The time interval, in which the first
following startConvoy! event my occur is then restricted by the time guard ec c1

>= 2500. This means that a startConvoy! may not occur earlier than 2500 time
units after the register! event which realizes that the RailCab has to be registered
for at least this time to be able to start a convoy.

Once in ec registeredConvoy, eca1 changes its location only on the occurrence
of the event unregister!, as in this situation the monitoring has to be started once
more from the initial location. In all other situations, the component does not
change its state of being registered and therefore this event composition rule
does not have to add any further constraints.

With composition rules, we defined a suitable formalism to describe inter-role
dependencies. We proceed with the definition of the synthesis algorithm in the
next section, which includes the application of composition rules.

5 Synthesis Algorithm

The synthesis algorithm is divided into four distinct steps (see Figure 7). First,
the parallel composition of the role automata is computed, which forms an ex-
plicit model for the parallel execution of the pattern role automata. On this
parallelly composed timed automaton the composition rules are applied, by re-
moving the forbidden system states specified by the state composition rules and
by including the specified event composition automata in the parallelly composed

62 T. Eckardt and S. Henkler

Fig. 7. Synthesis Algorithm for Timed Automata

automaton. In the last step, it is verified that the externally visible behavior of
the particular role automata is preserved, as the changes made on the parallelly
composed automaton by means of the application of composition rules might
lead to violations of properties of the original role behaviors. Note that the
overall procedure can also be applied iteratively in the development process.

The parallel composition applied in our approach is derived from the parallel
composition operator of the process algebra Calculus of Communicating Systems
(CCS) [9] as it has also been applied in networks of timed automata in [21,17]. In
these approaches, the parallel composition allows for both synchronization and
interleaving of events. The pattern role automata applied to one Mechatronic
UML component, however, are defined such that they are independent from
each other, in order to allow for compositional model checking. Consequently,
we do not need to consider synchronizations in the parallel composition defined
here. The parallel composition of the example automata of the rear role and the
registree role (Figure 3 and Figure 4) is depicted in Figure 8.

Definition 8 (Parallel Composition). Let A1 = (L1, l
0
1, Σ1, C1, I1, T1) and

A2 = (L2, l
0
2, Σ2, C2, I2, T2) be two timed automata with C1 ∩ C2 = ∅ and

Σ1 ∩ Σ2 = ∅. We define the parallel composition A1 ‖ A2 as a product au-
tomaton AP = (LP , l0P , ΣP , CP , IP , TP), where LP = L1 × L2, l0P = (l01, l

0
2),

ΣP = Σ1∪Σ2, IP : LP → Φ(C1)∪Φ(C2) with IP ((l1, l2)) = I1(l1)∧I2(l2), CP =
C1 ∪C2, TP ⊆ LP ×ΣP ×Φ(CP)× 2CP ×LP , with ((l1, l2), e1, g1, r1, (l1′, l2)) ∈
TP ⇒ (l1, e1, g1, r1, l1

′) ∈ T1, and ((l1, l2), e2, g2, r2, (l1, l2′)) ∈ TP ⇒
(l2, e2, g2, r2, l2

′) ∈ T2.

The application of a state composition rule requires to evaluate each location
predicate of that rule for a given parallelly composed automaton location.

Component Behavior Synthesis for Critical Systems 63

Fig. 8. Parallelly Composed Timed Automaton

Definition 9 (Location Predicate Evaluation). Given two timed automata
A1 = (L1, l

0
1, Σ1, C1, I1, T1), A2 = (L2, l

0
2, Σ2, C2, I2, T2), their parallelly compo-

sition AP = A1 ‖ A2 = (LP , l0P , ΣP , CP , IP , TP), a corresponding parallelly com-
posed location lp = (l1, l2), and a location predicate γ = (l, ϕ) with l ∈ L1 ∪ L2
and ϕ ∈ Φuc(C1) ∪ Φuc(C2) the location predicate evaluation is a function
γ : LP → Φuc(CP) ∪ {false} defined with

γ(lp) =

{
ϕ, iff (l = l1) ∨ (l = l2),
false, else.

On the basis of the evaluation of each location predicate of a state composi-
tion rule, the entire composition rule can be applied to a parallelly composed
automaton location as defined by the state composition rule evaluation.

Definition 10 (State Composition Rule Evaluation). Given two timed au-
tomata A1 = (L1, l

0
1, Σ1, C1, I1, T1), A2 = (L2, l

0
2, Σ2, C2, I2, T2), their parallel

composition AP = A1 ‖ A2 = (LP , l0P , ΣP , CP , IP , TP), a corresponding paral-
lelly composed location lp = (l1, l2), and a state composition rule ρ ∈ RS(A1, A2)
the state composition rule evaluation is a function ρ : LP → Φdc(CP)∪ {false}
defined with

ρ(lp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
¬ρ1(lp), iff ρ is of the form ¬ρ1,

ρ1(lp) ∧ ρ2(lp), iff ργ is of the form ρ1 ∧ ρ2,

ρ1(lp) ∨ ρ2(lp), iff ργ is of the form ρ1 ∨ ρ2,

γ(lp), iff ργ is the literal γ.

where γ ∈ Γ (A1) ∪ Γ (A2).

The application of a state composition rule results in a state composition con-
form timed automaton. This automaton originates from the parallel composition

64 T. Eckardt and S. Henkler

Fig. 9. Synthesized Component Behavior of the RailCab Component

but is modified such that the corresponding state composition rule has been ap-
plied to each automaton location. Automaton locations whose invariant is false
are further removed from the automaton. The example state composition rule
r1 applied to the parallel composition of the rear and registree role automata
(Figure 8) results in the automaton depicted in Figure 9.

Definition 11 (State Composition Conformance). Let AP = A1 ‖ A2 =
(LP , l0P , ΣP , CP , IP , TP) be the parallel composition of the timed automata A1
and A2. Further let RS

1 ⊆ RS(A1, A2) be a set of state composition rules specified
over A1 and A2. The state composition conform, parallelly composed timed au-
tomaton ASC = (LSC , l0SC , ΣSC , CSC , ISC , TSC) is defined with LSC = LP \LR,
where LR = {lp | lp ∈ LP and ∀ ρ1, . . . , ρn ∈ RS

1 : I(lp) ∧ ρ1(lp) ∧ . . . ∧ ρn(lp) =
false}, l0SC = l0P ⇔ l0P ∈ LSC, ΣSC = ΣP , ISC : LSC → Φ(CSC) with
ISC(lp) = IP (lp) ∧ ρ1(lp) ∧ . . . ∧ ρn(lp), ∀ ρ1, . . . , ρn ∈ RS

1 , CSC = CP ,
TSC ⊆ LSC × ΣSC × Φ(CSC) × 2CSC × LSC , with (lp, e, g, r, lp

′) ∈ TSC ⇔
(lp, e, g, r, lp

′) ∈ TP ∧ lp, lp
′ ∈ LSC.

Similar to the parallel composition used for the parallel execution of the role
automata, applying event composition automata can also be compared to the
parallel composition operator of the process algebra Calculus of Communicat-
ing Systems (CCS) [9] or the networks of timed automata formalism defined in
[21]. Here, the resulting automaton is a composition of the event composition
automaton and the parallel composition of the role automata.

The fundamental difference is that for the event composition automaton appli-
cation only synchronization of events is taken into account, as event composition
automata do not define any new event occurrences for the parallel execution. Fur-
thermore, these synchronizations do not take the channel concept into account,
which means that a sending event is synchronized with a sending event and also
results in a sending event. This also holds for receiving events and originates
from the fact that the event composition automaton only observes the event

Component Behavior Synthesis for Critical Systems 65

occurrences of the parallel execution. We call this type of synchronization silent
synchronization.

In the resulting automaton the additional time guards, clock resets and loca-
tion invariants of the event composition automaton are added to the composed
locations and synchronized transitions as defined in the following.

Definition 12 (Event Composition Conformance). Let ASC = (LSC , l0SC ,
ΣSC , CSC , ISC , TSC) be a state composition conform, parallelly composed timed
automaton originating from the timed automata A1 = (L1, l

0
1, Σ1, C1, I1, T1) and

A2 = (L2, l
0
2, Σ2, C2, I2, T2) with C1 ∩ C2 = ∅ and Σ1 ∩ Σ2 = ∅. Further-

more, let AE = (LE, l0E , ΣE , CE , IE , TE) ∈ RA(A1, A2) be an event compo-
sition automaton for A1 and A2. We define the event composition conform
and state composition conform, parallelly composed timed automaton AEC =
(LEC , l0EC , ΣEC , CEC , IEC , TEC) with LEC ⊆ L1 × L2 × LE, with (l1, l2, le) ∈
LEC iff (l1, l2) ∈ LSC and ISC((l1, l2))∧ IE(le) �= false) and (l1, l2, le) is reach-
able trough TEC , l0EC = (l01, l

0
2, l

0
e), iff (l01, l

0
2, l

0
e) ∈ LEC, ΣEC = Σ1 ∪ Σ2,

IEC : LEC → Φ(C1)∪Φ(C2)∪Φ(CE) with IEC((l1, l2, le)) = ISC((l1, l2))∧IE(le),
CEC = C1 ∪ C2 ∪ CE, TEC ⊆ LEC × ΣEC × Φ(CEC) × 2CEC × LEC,
with ((l1, l2, le), e1, g1, r1, (l1′, l2, le)) ∈ TEC ⇔ ((l1, l2), e1, g1, r1, (l1′, l2)) ∈
TSC ∧ ∀ le

′ ∈ LE : (le, e1, ge, re, le
′) /∈ TE, ((l1, l2, le), e2, g2, r2, (l1, l2′, le)) ∈

TEC ⇔ ((l1, l2), e2, g2, r2, (l1, l2′)) ∈ TSC ∧ ∀ le
′ ∈ LE : (le, e2, ge, re, le

′) /∈ TE,
((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1′, l2, le′)) ∈ TEC ⇔ ((l1, l2), e1, g1, r1, (l1′, l2)) ∈
TSC ∧ (le, e1, ge, re, le

′) ∈ TE, ((l1, l2, le), e1, g1 ∧ ge, r1 ∪ re, (l1, l2′, le′)) ∈ TEC ⇔
((l1, l2), e2, g2, r2, (l1, l2′) ∈ TSC ∧ (le, e2, ge, re, le

′) ∈ TE.

To exemplify this, we apply the event composition automaton eca2 to the par-
allel composition of the simplified rear role and registree role automaton, where
the state composition rule r1 has already been applied (Figure 9). This results
in the timed automaton depicted in figure 10. Note that every location of this
automaton refers to both the locations of the role automata as well as the loca-
tions of the event composition automaton eca1. Furthermore, observe that those
composed locations which are not reachable from the initial composed location
(noConvoy, unregistered, ec initial) are omitted.

In the resulting automaton, the clock reset ec c1 := 0 and the time guard
ec c1 >= 2500 originating from the event composition automaton is added to
the register! and to the startConvoy! transition respectively. Furthermore, it is now
distinguished between the (noConvoy,registered,. . .) locations where the RailCab
has just been registered (noConvoy,registered,ec registered) and where the RailCab
has already been in a convoy without being unregistered in-between (noCon-

voy,registered,ec registeredConvoy)).
The resulting automaton describes the synthesized component behavior of

the RailCab component. We have not yet ensured, however, that the externally
visible behavior of each of the role automata is preserved. This is described in
the next section.

66 T. Eckardt and S. Henkler

Fig. 10. Event Composition Rule eca2 Applied to the Timed Automaton Depicted in
Figure 9

6 Preserving Role Behavior

After composition rules have been applied to the parallelly composed timed au-
tomaton, it is not ensured anymore that the visible behavior of each of the par-
ticular role automata is still preserved. Assume for example, the application of an
additional state composition rule r2 = ¬((registered, true)∧ (convoy, cr > 100))
to the composed timed automaton given in Figure 9. This results in a new location
invariant (cr<=100 && ce<=2000) for the location (convoy,registered). As a conse-
quence, the outgoing breakConvoy? transition cannever be enabled, as its timeguard
cr>=200cannever evaluate to true.Accordingly, the relevantbehaviorof theconvoy
role is not anymore included in the composition conform automaton. Furthermore,
note that this is not always trivial to see when specifying composition rules, as some
relevant behavior is removed not before two or more rules are applied. The rule r2
applied on the original parallel composition (see Figure 8), for example, would not
remove the executability of the breakConvoy? transition, as the automaton could
switch to (unregistered,convoy) to execute the breakConvoy? transition.

In order to preserve the relevant role behavior, we need to ensure that in the
refined component behavior all timed safety properties and all untimed liveness
properties are preserved. This would imply that no deadlines of the original role
automata are violated while still all events of the original automata are (in the
correct order) visible within the original time interval. If both of these properties
are preserved, we say that the refined component behavior is role conform. In
the following, we give a sketch of a proof for role conform component behavior.
A detailed proof is discussed in [22].

For preserving timed safety properties, we have defined the composition rule
formalism exactly the way that neither any time interval can be widened nor

Component Behavior Synthesis for Critical Systems 67

can additional events be added to the refined behavior. This means that com-
position rules can only restrict the time intervals of existing behavior or can
remove certain state combinations completely. Thus, all timed safety properties
are inherently preserved by the synthesis procedure.

For preserving untimed liveness properties, we have to ensure that each path of
each single role automaton still exists in the refined (parallel composed) compo-
nent automaton. This problem can be split up into analyzing the offered behavior
of each refined component automaton location (cf. protocol conformance in [4]).
This means that we verify that each refined location offers the same sending and
receiving events as each of the corresponding role automaton locations. In the
refined automaton of the RailCab component (Figure 9), for example, we have
to verify for the (noConvoy,unregistered) location that it offers a startConvoy! event
for the rear role automaton and a register! event for the registree role automaton.

The offered behavior, however, is defined such that it does not require the
concerned location to have a direct outgoing transition with the corresponding
event. Instead we also allow for transitions in-between, which are triggered by
events of other role automata. This is possible because, for one particular role, the
behavior of other roles is invisible. In the refined RailCab component automaton
this means that the (noConvoy,unregistered) location also offers a startConvoy! event
through the register! transition which originates from the registree automaton.

In addition to that we analyze timed systems. Therefore, we have to take the
timing information in terms of clock values of the automaton into account. We
cope with this by constructing the zone automaton [18,23] of the refined compo-
nent automaton and verifying the offered behavior of each zone location instead
of the automaton location. For this we also include the timing information of
each original role automaton location in terms of location invariants and time
guards of outgoing transitions in the analysis. The analysis is finally performed
by applying operations on zones (cf. [18,23]) and comparing the offered events of
each zone location with the offered events of each corresponding role automaton
location in the time interval of the zone location.

If each zone location offers the required behavior, we also preserve all un-
timed liveness properties of the role behaviors and, thus, the refined component
behavior is a correct refinement of the parallel composition of the particular role
behaviors5. If this is not the case, one or more of the specified composition rules
violate the externally visible behavior of at least one of the role behaviors. In
this case the developer must either adapt the composition rules or go back to
the specification of the corresponding real-time coordination patterns.

7 Related Work

Work which is related to our approach exists in the field of controller synthesis
as well as in the field of component-based software development.

5 The correct refinement is defined by a weaker form of a (timed) bisimulation equiv-
alence [24,25] which we call observational timed bisimulation.

68 T. Eckardt and S. Henkler

The field of controller synthesis [26,27,28] deals with the problem of synthesiz-
ing a behavioral model for a controller which interacts with some environment.
In a controller, interaction is specified through alternating actions between the
controller and the environment. Consequently, for the behavioral model a spe-
cial type of timed automaton, a timed game automaton [26], is applied. In a
timed game automaton, transitions are partitioned into those controllable by
the controller and those controllable by the environment.

There exist a number of approaches for the controller synthesis of system and
component-level behavior models from system specifications which considers no
time (e.g. [29,30]). Current work in this domain focuses on synthesis approaches
based on modal transition systems (e.g.[31]). The motivation of these approaches
is to capture the possible system or component implementations. In general,
these approaches are also able to restrict the forbidden behavior by properties.

As we presented in [32], we divide the specification in two phases. First, we
specify and analyze the protocol behavior independently from the concrete ap-
plication of a component which results in independent pattern role automata.
These behavior, which we can synthesize by our parameterized synthesis ap-
proach [33,34,32], is multiple applicable by different component implementa-
tions. In a second step, we specify the restrictions for the different component
implementations and synthesize the component behavior by considering these
restrictions and a refinement relation which preserves the formal verification
results of the protocol behavior.

Therefore, the main difference to our synthesis approach is that the given
behavioral model of controller synthesis does not take a compositional charac-
ter of this model into account as this is not necessarily given in the underlying
controller behavior. As the compositional character is mandatory for safety crit-
ical systems to be able to handle the complexity especially for the analysis,
these approaches are rather not appropriate. In our approach this is given by
the independent pattern role automata. In the controller synthesis approach,
the compositionality can consequently also not be considered for the specifica-
tion of the properties which have to be synthesized. Altogether, this results in
a different equivalence relation between the original and the synthesized model
which in turn results in different synthesis algorithms. Furthermore, none of
these approaches takes all the relevant characteristics of safety critical systems
into account that are time, safety and bounded liveness properties.

In [4], Giese and Vilbig present a synthesis procedure for the behavior of in-
teracting components. While the basic idea of their approach and our approach
is the same, the main goal of the synthesis differs. Giese and Vilbig propose
to synthesize a maximal consistent component behavior which allows for rep-
resentational non-determinism by the explicit use of τ -transitions representing
internal component behavior. Our goal, on the other hand, is to synthesize a
correct refined component behavior with respect to safety and liveness proper-
ties where the behavior of other ports is treated as internal component behavior.
Furthermore, we employ real-time behavioral models as input specifications in
order to suit the requirements of safety critical systems.

Component Behavior Synthesis for Critical Systems 69

8 Conclusion and Future Work

In this paper we proposed an approach to automatically synthesize the behavior
of components applied in critical systems. Therefore, we propose to specify de-
pendencies between several role behaviors separately by means of composition
rules. Additionally, we defined a procedure to automatically integrate the com-
position rules for a given set of role behaviors. Afterwards it is checked that the
resulting component behavior refines each of the role behaviors properly. We ex-
emplify the approach by extending the Mechatronic UML. A first prototype
and an evaluation of our approach is presented in [32,35]. For future work we
plan to perform an exhaustive evaluation of the approach in the RailCab project
and industrial applications. This way, it could also be evaluated if the proposed
composition rule formalism is sufficient to specify dependencies between several
coordination roles in a multi-cast setting.

References

1. Bosch, J., Szyperski, C.A., Weck, W.: Component-Oriented Programming. In:
Malenfant, J., Moisan, S., Moreira, A.M.D. (eds.) ECOOP 2000 Workshops. LNCS,
vol. 1964, pp. 55–64. Springer, Heidelberg (2000)

2. Dijkstra, E.: A Discipline of Programming. Prentice-Hall Series in Automatic Com-
putation (1976)

3. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

4. Giese, H., Vilbig, A.: Separation of Non-Orthogonal Concerns in Software Archi-
tecture and Design. Software and System Modeling (SoSyM) 5(2), 136–169 (2006)

5. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: ICSE 1999: Proceedings of the 21st Inter-
national Conference on Software Engineering, pp. 107–119. ACM, New York (1999)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture, vol. 1. John Wiley & Sons, Chichester (1996)

7. Garlan, D., Perry, D.: (introduction to the) Special Issue on Software Architecture.
IEEE Transactions on Software Engineering 21(4) (April 1995)

8. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

9. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

10. Selic, B.: Real-Time Object-Oriented Modeling (room). In: 2nd IEEE Real-Time
Technology and Applications Symposium (RTAS 1996), Boston, MA, USA, June
10-12, p. 214. IEEE Computer Society, Los Alamitos (1996)

11. Jackson, E.K., Sztipanovits, J.: Using Separation of Concerns for Embedded Sys-
tems Design. In: EMSOFT 2005: Proceedings of the 5th ACM International Con-
ference on Embedded Software, pp. 25–34. ACM, New York (2005)

12. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Composi-
tional Verification of Real-Time UML Designs. In: Proc. of the 9th European Soft-
ware Engineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-11), September
2003, pp. 38–47 (2003)

70 T. Eckardt and S. Henkler

13. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Ver-
ification of Component-Based Mechatronic Systems with Online-Reconfiguration.
In: Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE
2004), Newport Beach, USA, pp. 179–188. ACM Press, New York (2004)

14. Giese, H., Burmester, S.: Real-Time Statechart Semantics. Technical Report
tr-ri-03-239, Lehrstuhl für Softwaretechnik, Universität Paderborn, Paderborn,
Germany (June 2003)

15. Alur, R., Dill, D.L.: Automata for Modeling Real-time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

16. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time Systems. In: Proceedings of the Seventh Annual Symposium on Logic
in Computer Science (LICS), pp. 394–406. IEEE Computer Society Press, Los
Alamitos (1992)

17. Pettersson, P.: Modelling and Verification of Real-Time Systems Using Timed
Automata: Theory and Practice. PhD thesis, Department of Computer Systems,
Uppsala University (February 1999)

18. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

19. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering SE-3(2), 125–143 (1977)

20. Henzinger, T.A.: Sooner is Safer than Later. Information Processing Letters 43(3),
135–141 (1992)

21. Yi, W., Pettersson, P., Daniels, M.: Automatic Verification of Real-time Communi-
cating Systems by Constraint-solving. In: Hogrefe, D., Leue, S. (eds.) Proceedings
of the 7th IFIP WG6.1 International Conference on Formal Description Formal
Techniques, Berne, Switzerland. IFIP Conference Proceedings, vol. 6, pp. 243–258.
Chapman & Hall, Boca Raton (1994)

22. Eckardt, T., Henkler, S.: Synthesis of Reconfiguration Charts. Technical Report
tr-ri-10-314, University of Paderborn, Paderborn, Germany (January 2010)

23. Alur, R.: Timed Automata. In: NATO-ASI 1998 Summer School on Verification of
Digital and Hybrid Systems (1998)

24. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking (January 2000)
25. Tripakis, S., Yovine, S.: Analysis of Timed Systems Using Time-Abstracting Bisim-

ulations. Formal Methods in System Design 18(1), 25–68 (2001)
26. Asarin, E., Maler, O., Pnueli, A.: Symbolic Controller Synthesis for Discrete and

Timed Systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

27. Altisen, K., Tripakis, S.: Tools for Controller Synthesis of Timed Systems. In:
Pettersson, P., Yi, W. (eds.) Proceedings of the 2nd Workshop on Real-Time Tools
(RT-TOOLS 2002) (August 2002)

28. Geist, S., Gromov, D., Raisch, J.: Timed Discrete Event Control of Parallel Pro-
duction Lines with Continuous Outputs. Discrete Event Dynamic Systems 18(2),
241–262 (2008)

29. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Mod-
els from Scenario-Based Requirements. In: Kreowski, H.-J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)

30. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: ICSE
2000: Proceedings of the 22nd International Conference on Software Engineering,
pp. 314–323. ACM, New York (2000)

Component Behavior Synthesis for Critical Systems 71

31. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of Partial Behavior Models from
Properties and Scenarios. IEEE Transactions on Software Engineering 35, 384–406
(2009)

32. Henkler, S., Greenyer, J., Hirsch, M., Schäfer, W., Alhawash, K., Eckardt, T.,
Heinzemann, C., Löffler, R., Seibel, A., Giese, H.: Synthesis of Timed Behavior
from Scenarios in the Fujaba Real-Time Tool Suite. In: Proceedings of the 31st In-
ternational Conference on Software Engineering (ICSE 2009), Vancouver, Canada,
Washington, DC, USA, May 16-24, pp. 615–618. IEEE Computer Society, Los
Alamitos (2009)

33. Giese, H., Klein, F., Burmester, S.: Pattern Synthesis from Multiple Scenarios for
Parameterized Real-Timed UML Models. In: Leue, S., Systä, T.J. (eds.) Scenar-
ios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 193–211. Springer,
Heidelberg (2005)

34. Giese, H., Henkler, S., Hirsch, M., Klein, F.: Nobody’s Perfect: Interactive Synthesis
from Parametrized Real-Time Scenarios. In: Proc. of the 5th ICSE 2006 Workshop
on Scenarios and State Machines: Models, Algorithms and Tools (SCESM 2006),
Shanghai, China, May 2006, pp. 67–74. ACM Press, New York (2006)

35. Eckardt, T., Henkler, S.: Synthesis of Component Behavior. In: Gorp, P.V. (ed.)
Proceedings of the 7th International Fujaba Days, November 2009, pp. 1–5. Eind-
hoven University of Technology, The Netherlands (2009)

A Road to a Formally Verified General-Purpose
Operating System

Martin Děcký

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics, Charles University

Malostranské náměst́ı 25, Prague 1, 118 00, Czech Republic
martin.decky@d3s.mff.cuni.cz

Abstract. Methods of formal description and verification represent a
viable way for achieving fundamentally bug-free software. However, in
reality only a small subset of the existing operating systems were ever
formally verified, despite the fact that an operating system is a critical
part of almost any other software system. This paper points out several
key design choices which should make the formal verification of an operat-
ing system easier and presents a work-in-progress and initial experiences
with formal verification of HelenOS, a state-of-the-art microkernel-based
operating system, which, however, was not designed specifically with for-
mal verification in mind, as this is mostly prohibitive due to time and
budget constrains.

The contribution of this paper is the shift of focus from attempts to use
a single “silver-bullet” formal verification method which would be able to
verify everything to a combination of multiple formalisms and techniques
to successfully cover various aspects of the operating system. A reliable
and dependable operating system is the emerging property of the combi-
nation, thanks to the suitable architecture of the operating system.

1 Introduction

Operating systems (OSes for short) have a somewhat special position among
all software. OSes are usually designed to run on bare hardware. This means
that they do not require any special assumptions on the environment except the
assumptions on the properties and behavior of hardware. In many cases it is
perfectly valid to consider the hardware as idealized hardware (zero mathemati-
cal probability of failure, perfect compliance with the specifications, etc.). This
means that it is solely the OS that defines the environment for other software.

OSes represent the lowest software layer and provide services to essentially all
other software. Considering the principle of recursion, the properties of an OS
form the assumptions for the upper layers of software. Thus the dependability of
end-user and enterprise software systems is always limited by the dependability
of the OS.

Finally, OSes are non-trivial software on their own. The way they are gen-
erally designed and programmed (spanning both the kernel and user mode,

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 72–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Road to a Formally Verified General-Purpose Operating System 73

manipulating execution contexts and concurrency, handling critical hardware-
related operations) represent significant and interesting challenges for software
analysis.

These are probably the most important reasons that led to several research
initiatives in the recent years which target the creation of a formally verified OSes
from scratch (e.g. [14]). Methods of formal description and verification provide
fundamentally better guarantees of desirable properties than non-exhaustive en-
gineering methods such as testing.

However, 98 %1 of the market share of general-purpose OSes is taken by Win-
dows, Mac OS X and Linux. These systems were clearly not designed with formal
verification in mind from the very beginning. The situation on the embedded,
real-time and special-purpose OSes market is probably different, but it is un-
likely that the segmentation of the desktop and server OSes market is going to
change very rapidly in the near future.

The architecture of these major desktop and server OSes is monolithic, which
makes any attempts to do formal verification on them extremely challenging
due to the large state space. Fortunately we can observe that aspects of several
novel approaches from the OS research from the late 1980s and early 1990s
(microkernel design, user space file system and device drivers, etc.) are slowly
emerging in these originally purely monolithic implementations.

In this paper we show how specific design choices can markedly improve the
feasibility of verification of an OS, even if the particular OS was not designed
specifically with formal verification in mind. These design choices can be grad-
ually introduced (and in fact some of them have already been introduced) to
mainstream general-purpose OSes.

Our approach is not based on using a single “silver-bullet” formalism, method-
ology or tool, but on combining various engineering, semi-formal and formal
approaches. While the lesser formal approaches give lesser guarantees, they can
complement the formal approaches on their boundaries and increase the coverage
of the set of all hypothetical interesting properties of the system.

We also demonstrate work-in-progress case study of an general-purpose re-
search OS that was not created specifically with formal verification in mind
from the very beginning, but that was designed according to state-of-the-art OS
principles.

Structure of the Paper. In Section 2 we introduce the design choices and our
case study in more detail. In Section 3 we discuss our approach of the combina-
tion of methods and tools. In Section 4 we present a preliminary evaluation of
our efforts and propose the imminent next steps to take. Finally, in Section 5 we
present the conclusion of the paper.

2 Operating Systems Design

Two very common schemes of OS design are monolithic design and microkernel
design. Without going into much detail of any specific implementation, we can
1 98 % of client computers connected to the Internet as of January 2010 [13].

74 M. Děcký

define the monolithic design as a preference to put numerous aspects of the core
OS functionality into the kernel, while microkernel design is a preference to keep
the kernel small, with just a minimal set of features.

The features which are missing from the kernel in the microkernel design
are implemented in user space, usually by means of libraries, servers (e.g. pro-
cesses/tasks) and/or software components.

2.1 HelenOS

HelenOS is a general-purpose research OS which is being developed at Charles
University in Prague. The source code is available under the BSD open source
license and can be freely downloaded from the project web site [11]. The authors
of the code base are both from the academia and from the open source commu-
nity (several contributors are employed as Solaris kernel developers and many
are freelance IT professionals).

HelenOS uses a preemptive priority-feedback scheduler, it supports SMP hard-
ware and it is designed to be highly portable. Currently it runs on 7 distinct hard-
ware architectures, including the most common IA-32, x86-64 (AMD64), IA-64,
SPARC v9 and PowerPC. It also runs on ARMv7 and MIPS, but currently only
in simulators and not on physical hardware.

Although HelenOS is still far from being an everyday replacement for Linux
or Windows due to the lack of end-user applications (whose development is
extremely time-consuming, but unfortunately of no scientific value), the essential
foundations such as file system support and TCP/IP networking are already in
place.

HelenOS does not currently target embedded devices (although the ARMv7
port can be very easily modified to run on various embedded boards) and does
not implement real-time features. Many development projects such as task snap-
shoting and migration, support for MMU-less platforms and performance mon-
itoring are currently underway.

HelenOS can be briefly described as microkernel multiserver OS. However,
the actual design guiding principles of the HelenOS are more elaborate:

Microkernel principle. Every functionality of the OS that does not have to
be necessary implemented in the kernel should be implemented in user space.
This implies that subsystems such as the file system, device drivers (except
those which are essential for the basic kernel functionality), naming and
trading services, networking, human interface and similar features should be
implemented in user space.

Full-fledged principle. Features which need to be placed in kernel should be
implemented by full-fledged algorithms and data structures. In contrast to
several other microkernel OSes, where the authors have deliberately chosen
the most simplistic approach (static memory allocation, näıve algorithms,
simple data structures), HelenOS microkernel tries to use the most advanced
and suitable means available. It contains features such as AVL and B+ trees,
hashing tables, SLAB memory allocator, multiple in-kernel synchronization
primitives, fine-grained locking and so on.

A Road to a Formally Verified General-Purpose Operating System 75

Multiserver principle. Subsystems in user space should be decomposed with
the smallest reasonable granularity. Each unit of decomposition should be
encapsulated in a separate task. The tasks represent software components
with isolated address spaces. From the design point of view the kernel can
be seen as a separate software component, too.

Split of mechanism and policy. The kernel should only provide low-level me-
chanisms, while the high-level policies which are built upon these mechanisms
should be defined in user space. This also implies that the policies should be
easily replaceable while keeping the low-level mechanisms intact.

Encapsulation principle. The communication between the tasks/components
should be implemented only via a set of well-defined interfaces. In the user-
to-user case the preferred communication mechanism is HelenOS IPC, which
provides reasonable mix of abstraction and performance (RPC-like primitives
combined with implicit memory sharing for large data transfers). In case
of synchronous user-to-kernel communication the usual syscalls are used.
HelenOS IPC is used again for asynchronous kernel-to-user communication.

Portability principle. The design and implementation should always main-
tain a high level of platform neutrality and portability. Platform-specific code
in the kernel, core libraries and tasks implementing device drivers should be
clearly separated from the generic code (either by component decomposition
or at least by internal compile-time APIs).

In Section 3 we argue that several of these design principles significantly improve
the feasibility of formal verification of the entire system. On the other hand,
other design principles induce new interesting challenges for formal description
and verification.

The run-time architecture of HelenOS is inherently dynamic. The bindings
between the components are not created at compile-time, but during bootstrap
and can be modified to a large degree also during normal operation mode of the
system (via human interaction and external events).

The design of the ubiquitous HelenOS IPC mechanism and the associated
threading model present the possibility to significantly reduce the size of the
state space which needs to be explored by formal verification tools, but at the
same time it is quite hard to express these constrains in many formalisms. The
IPC is inherently asynchronous with constant message buffers in the kernel and
dynamic buffers in user space. It uses the notions of uni-directional bindings,
mandatory pairing of requests and replies, binding establishment and abolish-
ment handshakes, memory sharing and fast message forwarding.

For easier management of the asynchronous messages and the possibility to
process multiple messages from different peers without the usual kernel threading
overhead, the core user space library manages the execution flow by so-called
fibrils. A fibril is a user-space-managed thread with cooperative scheduling. A
different fibril is scheduled every time the current fibril is about to be blocked
while sending out IPC requests (because the kernel buffers of the addressee are
full) or while waiting on an IPC reply. This allows different execution flows within
the same thread to process multiple requests and replies. To safeguard proper

76 M. Děcký

sequencing of IPC messages and provide synchronization, special fibril-aware
synchronization primitives (mutexes, condition variables, etc.) are available.

Because of the cooperative nature of fibrils, they might cause severe perfor-
mance under-utilization in SMP configurations and system-wide bottlenecks. As
multicore processors are more and more common nowadays, that would be a
substantial design flaw. Therefore the fibrils can be also freely (and to some de-
gree even automatically) combined with the usual kernel threads, which provide
preemptive scheduling and true parallelism on SMP machines. Needless to say,
this combination is also a grand challenge for the formal reasoning.

Incidentally, the full-fledged principle causes that the size of the HelenOS mi-
crokernel is considerably larger compared to other “scrupulous” microkernel im-
plementations. The average footprint of the kernel on IA-32 ranges from 569 KiB
when all logging messages, asserts, symbol resolution and the debugging kernel
console are compiled in, down to 198 KiB for a non-debugging production build.
But we do not believe that the raw size of the microkernel is a relevant quality
criterion per se, without taking the actual feature set into account.

To sum up, the choice of HelenOS as our case study is based on the fact that
it was not designed in advance with formal verification in mind (some of the
design principles might be beneficial, but others might be disadvantageous), but
the design of HelenOS is also non-trivial and not obsolete.

2.2 The C Programming Language

A large majority of OSes is coded in the C programming language (HelenOS
is no exception to this). The choice of C in the case of kernel is usually well-
motivated, since the C language was designed specifically for implementing sys-
tem software [10]: It is reasonably low-level in the sense that it allows to access
the memory and other hardware resources with similar effectiveness as from
assembler; It also requires almost no run-time support and it exports many fea-
tures of the von Neumann hardware architecture to the programmer in a very
straightforward, but still relatively portable way.

However, what is the biggest advantage of C in terms of run-time performance
is also the biggest weakness for formal reasoning. The permissive memory access
model of C, the lack of any reference safety enforcement, the weak type system
and generally little semantic information in the code – all these properties do
not allow to make many general assumptions about the code.

Programming languages which target controlled environments such as Java
and C� are generally easier for formal reasoning because they provide a well-
known set of primitives and language constructs for object ownership, threading
and synchronization. Many non-imperative programming languages can be even
considered to be a form of “executable specification” and thus very suitable for
formal reasoning. In C, almost everything is left to the programmer who is free
to set the rules.

The reasons for frequent use of C in the user space of many established OSes
(and HelenOS) is probably much more questionable. In the case of HelenOS,
except for the core libraries and tasks (such as device drivers), C might be

A Road to a Formally Verified General-Purpose Operating System 77

easily replaced by any high-level and perhaps even non-imperative programming
language. The reasons for using C in this context are mostly historical.

However, as we have stated in Section 1, the way general-purpose OSes are
implemented changes only slowly and therefore any propositions which require
radical modification of the existing code base before committing to the formal
verification are not realistic.

3 Analysis

In this section, we analyze the properties we would like to check in a general-
purpose OS. Each set of properties usually requires a specific verification method,
tool or toolchain.

Our approach will be mostly bottom-up, or, in other words, from the lower
levels of abstraction to the higher levels of abstraction. If the verification fails on
a lower level, it usually does not make much sense to continue with the higher
levels of abstraction until the issues are tackled. A structured overview of the
formalisms, methods and tools can be seen on Figure 1.

Some of the proposed methods cannot be called “formal methods” in the rig-
orous understanding of the term. However, even methods which are based on
semi-formal reasoning and non-exhaustive testing provide some limited guar-
antees in their specific context. A valued property of the formal methods is

Fig. 1. Overview of the formalisms and tools proposed

78 M. Děcký

to preserve these limited guarantees even on the higher levels of abstraction,
thus allowing the semi-formal methods to complement the big picture where the
formal methods do not provide any feasible verification so far. This increases
the coverage of the set of all hypothetical interesting properties of the system
(although it is probably impossible to formally define this entire set).

Please note that the titles of the following sections do not follow any partic-
ular established taxonomy. We have simply chosen the names to be intuitively
descriptive.

3.1 C Language Compiler and Continuous Integration Tool

The initial levels of abstraction do not go far from the C source code and common
engineering approaches. First, we would certainly like to know whether our code
base is compliant with the programming language specification and passes only
the basic semantic checks (proper number and types of arguments passed to
functions, etc.). It is perhaps not very surprising that these decisions can be
made by any plain C compiler. However, with the current implementation of
HelenOS even this is not quite trivial.

Besides the requirement to support 7 hardware platforms, the system’s com-
pile-time configuration can be also affected by approximately 65 configuration
options, most of which are booleans, the rest are enumerated types.

These configuration options are bound by logical propositions in conjunctive
or disjunctive normal forms and while some options are freely configurable, the
value of others gets inferred by the build system of HelenOS. The overall number
of distinct configurations in which HelenOS can be compiled is at least one order
of magnitude larger than the plain number of supported hardware platforms.

Various configuration options affect conditional compilation and linking. The
programmers are used to make sure that the source code compiles and links fine
with respect to the most common and obvious configurations, but the unforeseen
interaction of the less common configuration options might cause linking or even
compilation errors.

A straightforward solution is to generate all distinct configurations, starting
from the open variables and inferring the others. This can be part of the contin-
uous integration process which would try to compile and link the sources in all
distinct configurations.

If we want to be really pedantic, we should also make sure that we run all
higher level verification methods on all configurations generated by this step.
That would certainly require to multiply the time required by the verification
methods at least by the number of the distinct configurations. Constraining the
set of configurations to just the most representative ones is perhaps a reasonable
compromise to make the verification realistic.

3.2 Regression and Unit Tests

Running regression and unit tests which are part of HelenOS code base in the
continuous integration process is fairly easy. The only complication lies in the

A Road to a Formally Verified General-Purpose Operating System 79

technicalities: We need to setup an automated network of physical machines and
simulators which can run the appropriate compilation outputs for the specific
platforms. We need to be able to reboot them remotely and distribute the boot
images to them. And last but not least, we need to be able to gather the results
from them.

Testing is always non-exhaustive, thus the guarantees provided by tests are
strictly limited to the use cases and contexts which are being explicitly tested.
However, it is arguably easier to express many common use cases in the pri-
mary programming language than in some different formalism. As we follow the
bottom-up approach, filtering out the most obvious bugs by testing can save us
a lot of valuable time which would be otherwise waisted by a futile verification
by more formal (and more time-consuming) methods.

3.3 Instrumentation

Instrumentation tools for detecting memory leaks, performance bottlenecks and
soft-deadlocks are also not usually considered to be formal verification tools
(since it is hard to define exact formal properties which are being verified by the
non-exhaustive nature of these tools). They are also rarely utilized on regular
basis as part of the continuous integration process. But again, it might be helpful
to just mention them in the big picture.

If some regression or unit tests fail, they sometimes do not give sufficient
information to tell immediately what is the root cause of the issue. In that case
running the faulting tests on manually or automatically instrumented executable
code might provide more data and point more directly to the actual bug.

3.4 Verifying C Language Compiler

C language compilers are traditionally also not considered to be formal veri-
fication tools. Many people just say that C compilers are good at generating
executable code, but do not care much about the semantics of the source code
(on the other hand, formal verification tools usually do not generate any exe-
cutable code at all). However, with recent development in the compiler domain,
the old paradigms are shifting.

As the optimization passes and general maturity of the compilers improve
over time, the compilers try to extract and use more and more semantic infor-
mation from the source code. The C language is quite poor on explicit semantic
information, but the verifying compilers try to rely on vendor-specific language
extensions and on the fact that some semantic information can be added to the
source code without changing the resulting executable code.

The checks done by the verifying compilers cannot result in fatal errors in the
usual cases (they are just warnings). Firstly, the compilers still need to success-
fully compile a well-formed C source code compliant to some older standard (e.g.
C89) even when it is not up with the current quality expectations. Old legacy
source code should still pass the compilation as it did decades ago.

80 M. Děcký

Secondly, the checks run by the verifying compilers are usually not based on
abstract interpretation. They are mostly realized as abstract syntax tree trans-
formations much in the line with the supporting routines of the compilation
process (data and control flow graph analysis, dead code elimination, register
allocation, etc.) and the evaluation function is basically the matching of antipat-
terns of common programming bugs.

The checks are usually conservative. The verifying compilers identify code
constructs which are suspicious, which might arise out of programmer’s bad
intuition and so on, but even these code snippets cannot be tagged as definitive
bugs (since the programmer can be simply in a position where he/she really
wants to do something very strange, but nevertheless legitimate). It is upon the
programmer to examine the root cause of the compiler warning, tell whether it
is really a bug or just a false positive and fix the issue by either amending some
additional semantic information (e.g. adding an explicit typecast or a vendor-
specific language extension) or rewriting the code.

Although this level of abstraction is coarse-grained and conservative, it can be
called semi-formal, since the properties which are being verified can be actually
defined quite exactly and they are reasonably general. They do not deal with
single traces of methods, runs and use cases like tests, but they deal with all
possible contexts in which the code can run.

3.5 Static Analyzer

Static analyzers try to go deeper than verifying compilers. Besides detecting
common antipatterns of bugs, they also use techniques such as abstract inter-
pretation to check for more complex properties.

Most commercial static analyzers come with a predefined set of properties
which cannot be easily changed. They are coupled with the commonly used se-
mantics of the environment and generate domain-specific models of the software
based not only on the syntax of the source code, but also based on the assump-
tions derived from the memory access model, allocation and deallocation rules,
tracking of references and tracking of concurrency locks.

The biggest advantage of static analyzers is that they can be easily included
in the development or continuous integration process as an additional automated
step, very similar to the verifying compilers. No manual definition of code-specific
properties is needed and false positives can be relatively easily eliminated by
amending some explicit additional information to the source code within the
boundaries of the programming language.

The authors of static analyzers claim large quantities of bugs detected or
prevented [1], but static analyzers are still relatively limited by the kind of bugs
they are designed to detect. They are usually good at pointing out common issues
with security implications (specific types of buffer and stack overruns, usage of
well-known functions in an unsafe way, clear cases of forgotten deallocation of
resources and release of locks, etc.). Unfortunately, many static analyzers only
analyze a single-threaded control flow and are thus unable to detect concurrency
issues such as deadlocks.

A Road to a Formally Verified General-Purpose Operating System 81

3.6 Static Verifier

There is one key difference between a static analyzer and a static verifier: Static
verifiers allow the user to specify one’s own properties, in terms of preconditions,
postconditions and invariants in the code. Many static verifiers also target true
multithreaded usage patterns and have the capability to check proper locking
order, hand-over-hand locking and even liveliness.

In the context of an OS kernel and core libraries two kinds of properties are
common:

Consistency constrains. These properties define the correct way how data is
supposed to be manipulated by some related set of subroutines. Checking
for these properties ensures that data structures and internal states will not
get corrupt due to bugs in the functions and methods which are designed to
manipulate them.

Interface enforcements. These properties define the correct semantics by
which a set of subroutines should be used by the rest of the code. Checking
for these properties ensures that some API is always used by the rest of the
code in a specified way and all reported exceptions are handled by the client
code.

3.7 Model Checker

On the first sight it does not seem to be reasonable to consider general model
checkers as relevant independent tools for formal verification of an existing OS.
While many different tools use model checkers as their backends, verifying a
complete model of the entire system created by hand seems to be infeasible both
in the sense of time required for the model creation and resources required by
the checker to finish the exhaustive traversal of the model’s state space.

Nevertheless, model checkers on their own can still serve a good job verifying
abstract properties of key algorithms without dealing with the technical details
of the implementation. Various properties of synchronization algorithms, data
structures and communication protocols can be verified in the most generic con-
ditions by model checkers, answering the question whether they are designed
properly in theory.

If the implementation of these algorithms and protocols do not behave cor-
rectly, we can be sure that the root cause is in the non-compliance between the
design and implementation and not a fundamental flaw of the design itself.

3.8 Architecture and Behavior Checker

All previously mentioned verification methods were targeting internal properties
of the OS components. If we are moving to a higher-level abstraction in order to
specify correct interaction of the encapsulated components in terms of interface
compatibility and communication, we can utilize Behavior Protocols [2] or some
other formalism describing correct interaction between software components.

82 M. Děcký

To gain the knowledge about the architecture of the whole OS in terms of
software component composition and bindings, we can use Architecture Descrip-
tion Language [12] as the specification of the architecture of the system. This
language has the possibility to capture interface types (with method signatures),
primitive components (in terms of provided and required interfaces), composite
components (an architectural compositions of primitive components) and the
bindings between the respective interfaces of the components.

It is extremely important to define the right role of the behavior and architec-
ture description. A flawed approach would be to reverse-engineer this description
from the source code (either manually or via some sophisticated tool) and then
verify the compliance between the description and the implementation. However,
different directions can give more interesting results:

Description as specification. Behavior and architecture description created
independently on the source code serves the role of specification. This has
the following primary goals of formal verification:
Horizontal compliance. Also called compatibility. The goal is to check

whether the specifications of components that are bound together are
semantically compatible. All required interfaces need to be bound to pro-
vided interfaces and the communication between the components cannot
lead to no activity (a deadlock), bad activity (a livelock) or other com-
munication and synchronization errors.

Vertical compliance. Also called substituability. The goal is to check whe-
ther it is possible to replace a set of primitive components that are nested
inside a composite component by the composite component itself. In
other words, this compliance can answer the question whether the archi-
tecture description of the system is sound with respect to the hierarchical
composition of the components.

Specification and implementation compliance. Using various means
of generating artificial environments for an isolated component a checker
is able to partially answer the question whether the implementation of
the component is an instantiation of the component specification.

Description as abstraction. Generating the behavior and architecture de-
scription from the source code by means of abstract interpretation can serve
the purpose of verifying various properties of the implementation such as
invariants, preconditions and postconditions. This is similar to static verifi-
cation, but on the level of component interfaces.

Unfortunately, most of the behavior and architecture formalisms are static, which
is not quite suitable for the dynamic nature of most OSes. This limitation can
be circumvented by considering a relevant snapshot of the dynamic run-time
architecture. This snapshot fixed in time is equivalent to a statically defined
architecture.

The key features of software systems with respect to behavior and architecture
checkers are the granularity of the individual primitive components, the level of
isolation and complexity of the communication mechanism between them. Large

A Road to a Formally Verified General-Purpose Operating System 83

monolithic OSes created in semantic-poor C present a severe challenge because
the isolation of the individual components is vague and the communication be-
tween them is basically unlimited (function calls, shared resources, etc.).

OSes with explicit component architecture and fine-grained components (such
as microkernel multiserver systems) make the feasibility of the verification much
easier, since the degrees of freedom (and thus the state space) is limited.

Horizontal and vertical compliance checking can be done exhaustively. This
is a fundamental property which allows the reasoning about the dependability
of the entire component-based OS. Assuming that the lower-level verification
methods (described in Sections 3.1 to 3.7) prove some specific properties of the
primitive components, we can be sure that the composition of the primitive
components into composite components and ultimately into the whole OS does
not break these properties.

The feasibility of many lower-level verification methods from Sections 3.1 to
3.7 depends largely on the size and complexity of the code under verification. If
the entire OS is decomposed into primitive components with a fine granularity,
it is more likely that the individual primitive components can be verified against
a large number of properties. Thanks to the recursive component composition
we can then be sure that these properties also hold for the entire system.

The compliance between the behavior specification and the actual behavior of
the implementation is, unfortunately, the missing link in the chain. This compli-
ance cannot be easily verified in an exhaustive manner. If there is a discrepancy
between the specified and the actual behavior of the components, we cannot
conclude anything about the properties holding in the entire system.

However, there is one way how to improve the situation: code generation. If we
generate implementation from the specification, the compliance between them
is axiomatic. If we are able to generate enough code from the specification to
run into the hand-written “business code” where we check for the lower-level
properties, the conclusions about the component composition are going to hold.

3.9 Behavior Description Generator

To conclude our path towards higher abstractions we can utilize tools that can
generate the behavior descriptions from textual use cases written in a domain-
constrained English. These generated artifacts can be then compared (e.g. via
vertical compliance checking) with the formal specification. Although the com-
parison might not provide clean-cut results, it can still be helpful to confront
the more-or-less informal user expectations on the system with the exact formal
description.

3.10 Summary

So far, we have proposed a compact combination of engineering, semi-formal and
formal methods which start at the level of C programming language, offer the
possibility to check for the presence of various common antipatterns, check for

84 M. Děcký

generic algorithm-related properties, consistency constrains, interface enforce-
ments and conclude with a framework to make these properties hold even in the
case of a large OS composed from many components of compliant behavior.

We do not claim that there are no missing pieces in the big picture or that the
semi-formal verifications might provide more guarantees in this setup. However,
state-of-the-art OS design guidelines can push further the boundaries of practical
feasibility of the presented methods. The limited guarantees of the low-level
methods hold even in the composition and the high-level formal methods do
not have to deal with unlimited degrees of freedom of the primitive component
implementation.

We have spoken only about the functional properties. In general, we cannot
apply the same formalisms and methods on extra-functional properties (e.g.
timing properties, performance properties, etc.). And although it probably does
make a good sense to reason about component composition for the extra-functi-
onal properties, the exact relation might be different compared to the functional
properties.

The extra-functional properties need to be tackled by our future work.

4 Evaluation

This section copies the structure of the previous Section 3 and adds HelenOS-
specific evaluation of the the proposed formalisms and tools. As this is still
largely a work-in-progress, in many cases just the initial observations can be
made.

The choice of the specific methods, tools and formalisms in this initial phase
is mostly motivated by their perceived commonality and author’s claims about
fitness for the given purpose. An important part of further evaluation would
certainly be to compare multiple particular approaches, tools and formalisms to
find the optimal combination.

4.1 Verifying C Language Compiler and Continuous Integration
Tool

The primary C compiler used by HelenOS is GNU GCC 4.4.3 (all platforms) [3]
and Clang 2.6.0 (IA-32) [4]. We have taken some effort to support also ICC
and Sun Studio C compilers, but the compatibility with these compilers in not
guaranteed.

The whole code base is compiled with the -Wall and -Wextra compilation
options. These options turn on most of the verification checks of the compilers.
The compilers trip on common bug antipatterns such as implicit typecasting
of pointer types, comparison of signed and unsigned integer values (danger of
unchecked overflows), the usage of uninitialized variables, the presence of unused
local variables, NULL-pointer dereferencing (determined by conservative local
control flow analysis), functions with non-void return typed that do not return
any value and so on. We treat all compilation warnings as fatal errors (-Werror),
thus the code base must pass without any warnings.

A Road to a Formally Verified General-Purpose Operating System 85

We also turn on several more specific and strict checks. These checks helped
to discover several latent bugs in the source code:

-Wfloat-equal Check for exact equality comparison between floating point val-
ues. The usage of equal comparator on floats is usually misguided due to the
inherent computational errors of floats.

-Wcast-align Check for code which casts pointers to a type with a stricter
alignment requirement. On many RISC-based platforms this can cause run-
time unaligned access exceptions.

-Wconversion Check for code where the implicit type conversion (e.g. from float
to integer, between signed and unsigned integers or between integers with
different number of bits) can cause the actual value to change.

To enhance the semantic information in the source code, we use GCC-specific
language extensions to annotate some particular kernel and core library routines:

attribute ((noreturn)) Functions marked in this way never finish from the
point of view of the current sequential execution flow. The most common case
are the routines which restore previously saved execution context.

attribute ((returns twice)) Functions marked in this way may return
multiple times from the point of view of the current sequential execution
flow. This is the case of routines which save the current execution context
(first the function returns as usual, but the function can eventually “return
again” when the context is being restored).

The use of these extensions has pointed out to several hard-to-debug bugs on
the IA-64 platform.

The automated continuous integration building system is currently work-in-
progress. Thus, we do not test all possible configurations of HelenOS with each
changeset yet. Currently only a representative set of 14 configurations (at least
one for each supported platform) is tested by hand by the developers before
committing any non-trivial changeset.

From occasional tests of other configurations by hand and the frequency of
compilation, linkage and even run-time problems we conclude that the auto-
mated testing of all feasible configurations will be very beneficial.

4.2 Regression and Unit Tests

As already stated in the previous section, the continuous integration building
system has not been finished yet. Therefore regression and unit tests are executed
occasionally by hand, which is time consuming and prone to human omissions.
An automated approach is definitively going to be very helpful.

4.3 Instrumentation

We are in the process of implementing our own code instrumentation framework
which is motivated mainly by the need to support MMU-less architectures in the
future. But this framework might be also very helpful in detecting memory and
generic resource leaks. We have not tried Valgrind [17] or any similar existing
tool because of the estimated complexity to adopt it for the usage in HelenOS.

86 M. Děcký

4.4 Static Analyzer

The integration of various static analyzers into the HelenOS continuous inte-
gration process is underway. For the initial evaluation we have used Stanse [16]
and Clang Analyzer [5]. Both of them showed to be moderately helpful to point
out instances of unreachable dead code, use of language constructs which have
ambiguous semantics in C and one case of possible NULL-pointer dereference.

The open framework of Clang seems to be very promising for implementing
domain-specific checks (and at the same time it is also a very promising compiler
framework). Our mid-term goal is to incorporate some of the features of Stanse
and VCC (see Section 4.5) into Clang Analyzer.

HelenOS was also scanned by Coverity [7] in 2006 when no errors were de-
tected. However, since that time the code base has not been analyzed by Coverity.

4.5 Static Verifier

We have started to extend the source code of HelenOS kernel with annotations
understood by Frama-C [9] and VCC [18]. Initially we have targeted simple
kernel data structures (doubly-linked circular lists) and basic locking operations.
Currently we are evaluating the initial experiences and we are trying to identify
the most suitable methodology, but we expect quite promising results.

As the VCC is based on the Microsoft C++ Compiler, which does not support
many GCC extensions, we have been faced with the requirement to preprocess
the source code to be syntactically accepted by VCC. This turned out to be
feasible.

4.6 Model Checker

We are in the process of creating models of kernel wait queues (basic HelenOS
kernel synchronization primitive) and futexes (basic user space thread synchro-
nization primitive) using Promela and verify several formal properties (deadlock
freedom, fairness) in Spin [15]. As both the Promela language and the Spin model
checker are mature and commonly used tools for such purposes, we expect no
major problems with this approach. Because both synchronization primitives
are relatively complex, utilizing a model checker should provide a much more
trustworthy proof of the required properties than “paper and pencil”.

The initial choice of Spin is motivated by its suitability to model threads,
their interaction and verify properties related to race conditions and deadlocks
(which is the common sources of OS-related bugs). Other modeling formalisms
might be more suitable for different goals.

4.7 Architecture and Behavior Checker

We have created an architecture description in ADL language derived from SOFA
ADL [12] for the majority of the HelenOS components and created the Behavior
Protocol specification of these components. Both descriptions were created inde-
pendently, not by reverse-engineering the existing source code. The architecture

A Road to a Formally Verified General-Purpose Operating System 87

is a snapshot of the dynamic architecture just after a successful bootstrap of
HelenOS.

Both the architecture and behavior description is readily available as part
of the source code repository of HelenOS, including tools which can preprocess
the Behavior Protocols according to the architecture description and create an
output suitable for bp2promela checker [2].

As the resulting complexity of the description is larger than any of the previ-
ously published case studies on Behavior Protocols (compare to [6]), our current
work-in-progress is to optimize and fine-tune the bp2promela checker to process
the input.

We have not started to generate code from the architecture description so far
because of time constrains. However, we believe that this is a very promising
way to go and provide reasonable guarantees about the compliance between the
specification and the implementation.

4.8 Behavior Description Generator

We have not tackled the issue of behavior description generation yet, although
tools such as Procasor [8] are readily available. We do not consider it our priority
at this time.

5 Conclusion

In this paper we propose a complex combination of various verification methods
and tools to achieve the verification of an entire general-purpose operating sys-
tem. The proposed approach generally follows a bottom-up route, starting with
low-level checks using state-of-the-art verifying C language compilers, following
by static analyzers and static verifiers. In specific contexts regression and unit
tests, code instrumentation and model checkers for the sake of verification of key
algorithms are utilized.

Thanks to the properties of state-of-the-art microkernel multiserver operat-
ing system design (e.g. software component encapsulation and composition, fine-
grained isolated components), we demonstrate that it should be feasible to suc-
cessfully verify larger and more complex operating systems than in the case of
monolithic designs. We use formal component architecture and behavior descrip-
tion for the closure. The final goal – a formally verified operating system – is
the emerging property of the combination of the various methods.

The contribution of this paper is the shift of focus from attempts to use a
single “silver-bullet” method for formal verification of an operating system to
a combination of multiple methods supported by a suitable architecture of the
operating system. The main benefit is a much larger coverage of the set of all
hypothetical properties.

We also argue that the approach should be suitable for the mainstream
general-purpose operating systems in the near future, because they are grad-
ually incorporating more microkernel-based features and fine-grained software
components.

88 M. Děcký

Although the evaluation of the proposed approach on HelenOS is still work-
in-progress, the preliminary results and estimates are promising.

Acknowledgments. The author would like to express his gratitude to all con-
tributors of the HelenOS project. Without their vision and dedication the work
on this paper would be almost impossible

This work was partially supported by the Ministry of Education of the Czech
Republic (grant MSM0021620838).

References

1. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,
C., Kamsky, A., McPeak, S., Engler, D.: A Few Billion Lines of Code Later:
Using Static Analysis to Find Bugs in the Real World. Communications of the
ACM 53(2), 66–75 (2010)

2. Kofron, J.: Checking Software Component Behavior Using Behavior Protocols and
Spin. In: Proceedings of Applied Computing 2007, Seoul, Korea, pp. 1513–1517
(2007)

3. GCC, the GNU Compiler Collection, http://gcc.gnu.org/
4. Clang: a C language family frontend for LLVM, http://clang.llvm.org/
5. Clang Static Analyzer, http://clang-analyzer.llvm.org/
6. Bulej, L., Bures, T., Coupaye, T., Decky, M., Jezek, P., Parizek, P., Plasil, F.,

Poch, T., Rivierre, N., Sery, O., Tuma, P.: CoCoME in Fractal. In: Rausch, A.,
Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling
Example. LNCS, vol. 5153, pp. 357–387. Springer, Heidelberg (2008)

7. Coverity, http://scan.coverity.com/
8. Mencl, V.: Deriving Behavior Specifications from Textual Use Cases. In: Proceed-

ings of Workshop on Intelligent Technologies for Software Engineering (WITSE
2004), Linz, Austria, September 21, part of ASE 2004, pp. 331–341. Oesterreichis-
che Computer Gesellschaft (2004)

9. Frama-C, http://frama-c.cea.fr/
10. Lawlis, P.K.: Guidelines for Choosing a Computer Language: Support for the Vi-

sionary Organization. Ada Information Clearinghouse (1998),
http://archive.adaic.com/docs/reports/lawlis/k.htm

11. HelenOS Project, http://www.helenos.org/
12. Oplustil, T.: Inheritance in Architecture Description Languages. In: Reviewed sec-

tion of Proceedings of the Week of Doctoral Students 2003 conference (WDS 2003),
Charles University, Prague, Czech Republic, vol. 2003, pp. 124–131 (2003)

13. Operating System Market Share,
http://marketshare.hitslink.com/report.aspx?qprid=

8&qptimeframe=M&qpsp=132(retrieved on 2010-02-28)
14. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,

Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an OS kernel. In: Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, Big Sky, MT, USA (2009)

15. Spin, http://spinroot.com/
16. Stanse: Static Analysis Framework for C code, http://stanse.fi.muni.cz/
17. Valgrind, http://valgrind.org/
18. VCC, http://vcc.codeplex.com/

http://gcc.gnu.org/
http://clang.llvm.org/
http://clang-analyzer.llvm.org/
http://scan.coverity.com/
http://frama-c.cea.fr/
http://archive.adaic.com/docs/reports/lawlis/k.htm
http://www.helenos.org/
http://marketshare.hitslink.com/report.aspx?qprid=8&qptimeframe=M&qpsp=132
http://marketshare.hitslink.com/report.aspx?qprid=8&qptimeframe=M&qpsp=132
http://spinroot.com/
http://stanse.fi.muni.cz/
http://valgrind.org/
http://vcc.codeplex.com/

Engineering a Distributed e-Voting System
Architecture:

Meeting Critical Requirements

J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy

Département Logiciels-Réseaux (LOR),
Telecom & Management SudParis,

9 rue Charles Fourier, 91011
Évry cedex, France

Abstract. Voting is a critical component of any democratic process; and
electronic voting systems should be developed following best practices
for critical system development. E-voting has illustrated the importance
of formal software engineering in the development of complex systems:
poorly engineered and poorly documented voting systems have had se-
rious negative consequences for all system stakeholders. It is clear that
the formal verification of e-voting system models would help to address
problems associated with certification against standards, and would im-
prove the trustworthiness of the final systems. However, it is not yet
clear how best to carry out such formal modelling and verification in
order to leverage the compositional nature of the problem, and manage
the complexity of the task.

The choice of modelling language - for expressing the high level design
and architecture of an e-voting system - poses many problems due to the
complex mix of requirements that such a system is required to meet.
Different modelling languages are more-or-less suited to the verification
of different critical requirements. Thus, we report on a mixed model
approach: where we address 3 different types of critical requirements
using 3 different modelling languages and development strategies. Firstly,
we report on network quality-of-service issues that are analyzed through
simulation models. Secondly, we report on functional correctness of a
counting process that can be validated through algebraic techniques.
Finally, we report on the use of formal refinement to reason about the
correctness of design steps when adding detail to an architecture model.
To conclude, we acknowledge the main problem that arises from such a
mixed-model approach to architecture verification: how can we be sure
that the different models are coherent when we integrate them in a final
implementation?

1 Introduction

1.1 Overview

The work presented in this paper is part of an applied research project in which
the objective is to develop a prototype for an innovative e-voting system for use

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 89–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

90 J.P. Gibson, E. Lallet, and J.-L. Raffy

in France1. The project is constrained by existing rules, regulations, laws and
standards that the specific elections are supposed to meet, including European
recommendations[25]. A main goal is that the prototype demonstrates that such
a system can be manufactured at reasonable cost, and that it meets the needs of
the electorate. A secondary objective is to demonstrate the application of formal
methods — as in [5,6] — in the engineering of the software in the e-voting system,
which we consider to be critical[24].

The software process that we followed was that of rapid-prototyping, as dic-
tated by the limited time frame of the project. However, we applied formal
modelling techniques where we felt they would add rigour to the development
process without compromising the time limits. The development was intended
as a learning process where we would use different formal techniques as the need
arose. Thus, as well as developing a prototype e-voting system that would help
us to build a final version in the future, we would also develop a better under-
standing of the role of the different formal methods that would help us to follow
a more formal development process in future development.

The main innovation in the system is concerned with allowing the voter to
choose to vote at any official voting location (and not to be restricted to a single
voting station). The challenge with this innovation is to design a distributed
architecture which is robust against denial of service attacks during the voting
process. Currently, in France, in order to meet the requirement that no person
can have more than one vote counted during an election, a person can vote at
most one time. This is enforced by having a list of all people who have voted
stored locally at each voting station. By allowing voters to VoteAnywhere, we
chose not to enforce the restriction on voting only one time; as this would require
either use of a network during voting in order to allow sharing of information
between voting locations, or use of some complex protocol involving physical
tokens that voters would “pay” in order to vote. Rather, we chose to allow re-
voting and to guarantee that only a single vote for each voter is counted after the
voting process is terminated.Revoting is not strictly necessary to permit a voter
to VoteAnywhere, but — as we demonstrate later in this paper — it simplifies
the development of the system, as well as offering some advantages to the voter.

The solution that we propose does not completely remove the need for some
sort of global functionality during the voting process: we require the use of
clocks that are synchronized between election locations; but demonstrate that
this solution is much more robust against a denial of service attack.

1.2 Structure of Paper

In section 2 we review the specific innovative features of our chosen system and
comment on the main architectural concerns. In section 3 we provide a brief
summary of previous research on distributed and remote e-voting system ar-
chitectures. Section 4 focuses on the key requirement that the e-voting system
1 The system documentation is in French and we have translated the main concepts

and components into English. Where multiple translations are equally reasnaoble,
we have noted this in the text.

Engineering a Distributed e-Voting System Architecture 91

should be — as far as possible — robust against denial-of-service attacks. In par-
ticular, section 4 shows that support for simulation is a major advantage when
choosing a modelling language with operational semantics; in our study we used
Estelle[17]. In section 5, we report on the formal specification of the fundamen-
tal data (and data transformations) that are used in the counting (tabulation)
process. In particular, we illustrate how the simple algebraic specification of in-
variant properties can aid validation[12,7] and help developers avoid types of
tabulation error that are common to e-voting systems. Section 6 illustrates the
use of refinement (with Event-B and the RODIN toolset[1]) for the specification
and verification of a design transformation step. Section 7 reviews the develop-
ment of a prototype implementation where the main difficulty was a coherent
integration of multiple views as specified by our different modelling languages.
We conclude the paper in section 8.

2 Revote Anywhere (By Procuration): Our Specific
Requirements and Architecture Concerns

We consider the requirements for secrecy and accuracy[8] to be fundamental
to all voting systems of interest to the research community. In all discussions
that follow with regards to voting systems, it is implicit that no additional
requirement should compromise the need for secrecy and accuracy.

We also consider quality-of-service to be a critical property in any voting
system - the effort required to vote must not discourage electors from engaging
in the voting process. In particular, the time that is required to vote must not
be unreasonable.

In the following, we introduce 2 voting innovations (for France) — permitting
voters to vote at numerous different locations and at numerous different times
— and illustrate some of the problems that may arise when these innovations
have to be integrated with existing features, such as allowing a third party to
vote on behalf of an elector.

2.1 VoteAnywhere: A First Innovation

Restricting each elector to vote at a single specific location can have a significant
negative impact on voter turnout. Providing flexibility in where electors can go
to vote should improve voter turnout, and this is the major high-level objective
of the VoteAnywhere innovation.

This paper is not proposing remote electronic voting where electors are able
to vote over the internet — in the next section we review many of the problems
that can arise if such unconstrained remote voting is allowed. We agree with the
conclusions in a review paper — The Development of Remote E-Voting Around
the World: A Review of Roads and Directions[21] — that: “Overall remote elec-
tronic voting has not reached the maturity to be applied in large-scale elections of
major importance.” Rather, we are proposing that electors be allowed to vote at
any authorised polling station. This VoteAnywhere requirement provides many

92 J.P. Gibson, E. Lallet, and J.-L. Raffy

of the advantages of remote voting whilst not being vulnerable to most of the
weaknesses[13,30]. We note that a less general variation on VoteAnywhere func-
tionality is the use of remote voting centers[30], for “voters far from their home
precincts”. This approach does not meet our objective of allowing all electors
to vote at any authorised voting center (but it does illustrate that the need for
remote voting is well acknowledged.)

Two other requirements are key to the development of our prototype sys-
tem: Revote and Procuration. In the subsections that follow we summarise the
potential interactions between each of these features[14].

2.2 VoteAnywhere with ReVote

Revote facilitates the implementation of a system that meets our VoteAnywhere
requirement without risk of denial of service attacks. However, it also provides
additional benefits to the voter when we consider elections run over a long time
period. Restricting electors to vote during a narrow time frame can reduce
turnout. However, widening the times when electors can vote (as with early
voting in the USA) introduces the problem that electors may be discouraged
from voting early because they do not have an opportunity to change their vote
at a later time (while the voting process is still open.) The main objective of
the ReVote innovation is to encourage early voting (and consequently improve
turnout) by permitting an elector to revote if they wish to change a previous
recorded ballot. A fundamental requirement is that only a single vote is counted
for each elector. In our chosen system we refine this fundamental requirement
into a rule that states that if an elector votes multiple times then only the last
vote recorded by this elector will be counted.

Provided that an elector has to vote at the same polling station then there
should be no problem in identifying which vote was the last recorded when a
ReVote occurs. Some obvious options are:

1. Use a local clock to stamp each signature.
2. Use a local counter to stamp each signature.
3. Use a “destructive-write” so that a signed bulletin2 added to the local urn

automatically results in the destruction of any bulletin that shares the same
signature already in the urn3.

However, integrating VoteAnywhere with ReVote poses problems in all three of
the optional designs above:

1. Local clocks would need to be synchronised or replaced by a global clock.
2.&3. Require a reliable non-local network for communication of data between

distributed polling booths.

In section 4 we show that option 1 is the only acceptable (and feasible) solution
to meeting all our requirements.
2 A bulletin is also know as a ballot.
3 An urn is also known as a ballot box.

Engineering a Distributed e-Voting System Architecture 93

2.3 Procuration, ReVote and VoteAnywhere: A Feature Interaction

Procuration4 is the feature that permits one elector (the elector-by-procuration5)
to vote on behalf of another elector. In many elections, procuration does not
necessarily prohibit an elector from voting. In France, for example, the elector
may be able to go to a polling station and vote, provided that the elector-by-
procuration has not already done so. Given a reliable non-local communication
network then there are no undesirable interactions between Procuration and
VoteAnywhere as a central voter list could guarantee that the elector and the
elector-by-procuration cannot record two suffrages “at the same time” at differ-
ent polling stations; in the same way that this is currently guaranteed by local
voter lists at each polling station.

There is a clear undesirable interaction between Procuration and ReVote dur-
ing the election process. In the first instance, an elector may be denied the right
to record a suffrage whilst in the second instance an elector must never be denied
the right to record a suffrage. Consequently, to provide the ReVote feature it may
be necessary to change the existing regulations with respect to Procuration.

Using local clocks to implement ReVote Anywhere can lead to additional re-
quirements when combined with Procuration. Without procuration, a design
which uses global clocks to time-stamp ballots can safely make the assump-
tion that a “single elector” cannot be in two places at once. As a consequence,
the accuracy of the clocks is not critical and inexpensive solutions should be
considered. However, with Procuration and VoteAnywhere it is possible that an
elector is in two different polling stations at the same time6. This scenario may
require much more accurate (and much more expensive) global clocks.

In our chosen system, we address these potential problems by adhering to the
spirit of procuration - a vote from the original (non-procured) elector should
take priority over a procured vote, irrespective of the time at which they are
recorded.

2.4 Audits and Recounts

A main weakness of our proposed system is that the votes cannot be recounted
by hand. The voter does have a paper record of their vote but it is impossible for
them to be decrypted and hand counted — the encrypted votes must be counted
as a whole before the result is decrypted.

The paper record of the vote allows a limited type of verifiability (or audit)
— a voter can verify that their vote was counted after the election, but they
cannot verify that it was correctly counted. The voter can also verify that the
encryption process correctly records votes (during the voting process).

4 Procuration is also known as proxy voting or vote delegation.
5 The elector-by-procuration is also known as the proxy voter.
6 This arises if the elector goes to one polling station and the elector-by-procuration

goes to another.

94 J.P. Gibson, E. Lallet, and J.-L. Raffy

3 Distributed/Remote E-Voting Systems: Architecture
and Design Issues

In all distributed voting systems, denial-of-service of the underlying communi-
cation architecture is a major threat. In remote voting there are also increased
threats of voter coercion and/or the voting machine being untrustworthy. In
the VoteAnywhere system, because electors vote in a controlled polling station,
voter coercion should be no greater an issue than with traditional voting. Trust-
ing e-voting machines is a major concern for all voting systems, but one which
is much more serious for remote voting where the machines are not under the
direct control of the voting authorities.

The design of remote electonic voting machines — requiring a network for
communication between machines — is clearly a much more complex problem
than the design of standalone machines. In the remainder of this section we
review some of the most relevant previous research in these areas.

3.1 Denial-of-Service

In 1998, Susan King Roth identified voter disenfranchisement as a main risk of
poorly designed e-voting systems[28]. Her analysis raised interesting questions
with respect to poorly designed machines discouraging voter participation. This
is particularly relevant when we consider the requirement that voting takes a
reasonable amount of time.

In2000,Hoffmanasked InternetVoting:Will it SpurorCorruptDemocracy?[16],
and commented on the perceived risk of denial-of-service attacks: “Imagine what a
concerted denial of service attack might do to an election with Internet/Web-based
voting . . . ”.

In 2003 the design of an internet voting system is proposed in REVS — A Ro-
bust Electronic Voting System[19]. The authors write that they have designed: “a
robust electronic voting system . . . that tolerates failures in communications and
servers while maintaining all desired properties of a voting system.” However,
the key issue of anonymity is mentioned only briefly in the conclusions, where the
authors state that “REVS can beneficiate from a more sophisticated anonymity
mechanism”. In 2004, further analysis of the REVS architecture identified weak-
nesses inherent in the design due to voter information being centralised[33],
which introduces additional dependency on the underlying communication net-
work.

In the same year, Chen et al. proposed the Design of a secure anonymous In-
ternet voting system[9] and claim that their “scheme does not require a special
voting channel and communications can occur entirely over the current Inter-
net”. They do consider the robustness of their system with respect to election
disruption (through voter behaviour): “Even if a voter intends to disrupt the
election, there is no way to do it. The only way to disrupt the elections is for the
voter to keep sending ballots to the TC and SC.” They then continue by explic-
itly forbidding re-voting: “ However, the TC and SC will verify the validity of
the voter-pseudonym signature and will not allow the same voter-pseudonym to

Engineering a Distributed e-Voting System Architecture 95

vote twice.” This approach — which ignores potential denial of service attacks
on the network (independent of voter behaviour) and which forbids revoting —
is very different to our proposal.

In Verifiable AnonymousVote Submission[36] theREVS architecture is adapted
to better deal with anonymity and verifiability. This work is based on two previ-
ous anonymization architectures — Mix Nets and Mix Rings — which were not
originally intended for e-voting systems but which now form the central design
feature of many proposals for remote electronic voting. In general, the design of
such systems focuses on security aspects rather than on denial-of-service issues.

We note that relying on the internet provides opportunities for attack from
foreign agents. Jefferson et al. write in Analyzing Internet Security[18]: “Because
the internet is independent of national boundaries, an election held over the
internet is vulnerable to attacks from anywhere in the world.”

In 2004, Selker and Goler report on The SAVE system — secure architecture
for voting electronically[31]: “ This voting architecture provides a means to vote
over open networks in a way that is reliable, secure, and private. ” Their proposal
is based on demonstrating that — through n-version redundancy techniques
— there is no single point of failure in their system. However, their proposed
architecture is not robust against denial-of-service attacks.

Two years later, in 2006, another article — E-voting in Estonia 2005. The first
Practice of Country-wide binding Internet Voting in the World[23] — reports
on the co-ordination activities that are necessary when relying on the internet
during e-voting: “System and network monitoring was performed by different
parties on different levels during the e-voting period on a 24h basis. All major e-
service providers (e.g. banks) and Internet operators were involved in the process
with monitoring the overall “health” of Internet network traffic loads, analysis of
possible Trojans/viruses etc.” They do not detail the contingency plans if their
network fails during an election; but it is likely that the election would have to
be aborted and re-run. Thus, one could say that their design is not dependable.
The notion of “Design for dependability” appears in an article by Bryans et al.
in 2006[4], where they consider the importance of robustness and fault-tolerance.
They conclude that: “. . . aborted elections are still failures.”

Qadah and Taha propose an alternative remote e-voting architecture and il-
lustrate how mobile devices can be used as voting client machines[27]. However,
they do note that their implementation — using public wireless networks —
is not suitable for secure elections: “. . . for highly secure elections, such as po-
litical ones, voters need to access the e-voting system through secure channels
including the use of secure client devices located at secure polling locations and
connected to the e-voting system through secure Intranets/private networks”. It
is interesting to note that they focus on the security of channels and networks
without explicitly mentioning reliability.

3.2 Coercion and Anonymity

Coercion is a major issue in any voting system where voters are able to demon-
strate how they have voted. In most traditional systems, specific procedures have

96 J.P. Gibson, E. Lallet, and J.-L. Raffy

evolved in order to minimize the risk of coercion. Anonymous voting is the most
widely applied technique for mitigating coercion — if all ballots are anonymous
then there is no way for an elector to demonstrate (to a coercer) how they have
voted. Thus, even if an elector is coerced there is no risk that the coercer can
verify if the coercion has worked.

Remote e-voting would appear to increase the risk of coercion. Maaten, in
Towards Remote E-Voting: Estonian case[22] provides evidence of coercion in
remote e-voting: “During the last elections in Estonia some vote-buying incidents
became public.”

The design of a secure (coercion-free) remote e-voting system is proposed in
Civitas: A Secure Remote Voting System[10]. The paper addresses one of the
major problems with remote voting: how can one ensure that voters cannot
be coerced when the voting location is unsupervised? In particular they use
the requirement that “voters cannot prove whether or how they voted, even if
they can interact with the adversary while voting.” It should be noted that the
architecture may be susceptible to denial-of-service attacks: “Civitas does not
guarantee availability of either election authorities or the results of an election.

Our proposed system introduces no significant risks — over the paper system
— with respect to anonymous voting. However, there is a coercion attack which
could be used to force a voter to make a random vote: as a voter has a printed
record of their vote against a random permutation of candidates it is possible
that they would be obliged to vote randomly if an attacker forces them to record
a particular sequence of preferences. This attack could not force a voter to record
a particular vote because the attacker has no way of knowing how the preferences
have been permutated but it does introduce an additional risk.

3.3 Other Related Issues

In 2002, Rubin analyses the Security Considerations for Remote Electronic Vot-
ing over the Internet[29] and concludes that: “ . . . the technology does not yet
exist to enable remote electronic voting in public elections.” We argue that, 8
years later, there have been no major technological advances that would require
one to change this conclusion.

In Swiss E-Voting Pilot Projects: Evaluation, Situation Analysis and How to
Proceed[3], the authors note that: “Parliament demanded of e-voting a similar
level of security to that of postal voting.” As postal voting is the most problem-
atic with respect to meeting requirements, it should not be a surprise that they
conclude: “ The required benchmark was exceeded in the pilot trials.” We argue
that the benchmark for comparison must be set to a level equivalent to the best
paper systems.

In e-VotingRequirements and Implementation[2], “the complexity of the deploy-
ment of e-voting systems and the inherent security issues that arise from the un-
derlying distributed system” is considered. An architecture that focuses on “the
security of the election servers and the channels between client machines and the
servers” is proposed. Unfortunately, the authors identify a major weakness in their

Engineering a Distributed e-Voting System Architecture 97

architecture (and with remote voting, in general) — they cannot guarantee the se-
curity of the client machine from which a vote is cast.

4 Denial-of-Service: Our Specific Requirements

4.1 Our Specific Requirements

Elections that depend on distributed communicating (sub)systems are open to
denial-of-service attacks on the underlying communication architecture. The con-
sequences of such attacks are likely to be critical during the voting process — if
electors are unable to vote for long periods of time then the election will almost
certainly have to be re-run. Contrastingly, such attacks occuring before or after
voting should not, if properly managed, have such serious consequences.

We propose that distributed voting systems must not depend on a reliable
internet connection during the voting process in order to meet functional and
non-functional requirements. In particular, no part of the voting process should
depend on the sending or receiving of information on the internet (during the
vote). This is the only way to guarantee that successful denial-of-service attacks
cannot prevent electors from voting in a reasonable amount of time.

4.2 Simulation of Estelle Architecture Models

In previously reported research [13,14], through simulations of the formal mod-
els (written in Estelle[17]), we established that certain architectures could not
provide an acceptable quality of service (to the voter) when the underlying com-
munication network was open to denial-of-service attacks during voting. How-
ever, one particular architecture — using clocks for timestamping, but no other
network communications during voting — appeared (through analysis of the
simulation data) to be a possible solution to our problem.

In figure 1 we show the three alternative architectures that we modelled, in
Estelle, for simulation. The first uses global lists for recording which electors
(who are entitled to vote) have already voted and for the choice of candidates
(vote options) offered to them. The second uses local lists to record information
of/for electors who have gone to their local voting station; whilst using global
lists for those who have chosen to vote elsewhere. The third has local copies of all
electoral and candidate lists. The diagrams are generated from the semantics of
the formal Estelle specifications. The key difference between the architectures is
concerned with when the network is un use. Architecture one requires a network
connection for every elector. Architecture two requires a network connection for
electors who have chosen to vote at their non-default polling station. Architecture
three never depends on a network connection during the voting process.

It is important to note that our simulation models — including the archi-
tecture of our chosen system — abstracted away from key aspects of e-voting
systems that require the use of security protocols. As we evolved our design to
incorporate these aspects, it was critical that we ensured the soundness of the
abstraction: no new behaviour should introduce a need for communication across
an unreliable network during the vote process.

98 J.P. Gibson, E. Lallet, and J.-L. Raffy

Fig. 1. Abstract Architecture Alternatives

4.3 Final Design: When Do We Need a Network?

Our design went through a number of stages. In figure 2 we show that consistency
with our abstract architecture — with respect to network dependency — was
maintained as further requirements for security, authentication, encryption and
voter verifiability were added to the system. The key is that communication
between these additional components (and the polling stations) is not necessary
during the voting process. All new components are connected to local urns in
each of the polling stations;

Fig. 2. Additional requirements do not require network during voting

Engineering a Distributed e-Voting System Architecture 99

In the top left of the figure we represent bulletin generation before the voting
process starts:

1. The system uses generic bulletins which are permutations of the ordered list
of candidates.

2. The bulletins are generated by mix-nets. The permutations are duplicated
and each part is encrypted with a different algorithm:
(a) One in ElGamal with a public key for each booth (booth PuK).
(b) A second in BGN with the public key of the global urn.

3. After encryption, the bulletins are signed by a trusted authority.

During the voting process all communications between components are local:

1. The booth verifies the signature of the bulletin.
2. The booth decrypts the permutation encrypted in ElGamal.
3. The elector makes his/her choice and the decrypted permutation is

destroyed.
4. The bulletin (the choice and the permutation encrypted in BGN) is then

signed by the voter and put in the local urn.

Thus, the voting process does not depend on network communications.
We chose to use 2 different encryption schemes to meet 2 different require-

ments. BGN is required in order to provide a homomorphic mechanism for
counting encrypted votes (as a whole) and decrypting the final result. This is a
computationally complex algorithm and so we do not wish to use it to implement
all our cryptolographic functionality. Thus, we chose to use El Gamal where we
optimize the computation by not requiring a homomorphic technique.

A final aspect that should be noted is that voter authentication, in our cho-
sen system, is carried out (indirectly) after the voting process has terminated.
No person is refused permission to record a vote in an urn — but during the
counting process (in the global urn) all non-authentic votes are rejected in a
first step. This approach can be complemented by additional checks at voting
stations that permit only people entitled to vote (over-18s, for example) access
the voting booths. However, our approach is robust to any failures in this intitial
filtering that would allow unauthorised voters access to the booth or urn. Our
system would also be robust against someone authorised to vote being refused
permission to vote at a particular station because this voter could try voting
elsewhere.

5 Algebraic Specification

5.1 Specification and Validation of Count Rules

In previous work[12] algebraic techniques were used to model and validate the
complex counting rules of the Irish parliamentary elections. A snippet of the
algebraic specification of a Vote — a list of preferences for candidates — is
given below:

100 J.P. Gibson, E. Lallet, and J.-L. Raffy

--> **************************

--> defining the Vote module

--> **************************

mod! Vote {

[Vote]

protecting(NAT)

protecting(ListNats)

--> some ops hidden

op empty : Nat -> Vote

op isempty : Vote -> Bool

op addP : Vote Nat -> Vote

op numCandidates : Vote -> Nat

op invariant : Vote -> Bool

op hasPref : Vote Nat -> Bool

--> some variables hidden

--> some equations hidden

eq invariant(empty(numCs)) = false .

ceq invariant(addP(v,n)) = true if (n <= numCandidates(v)) and

(not(hasPref(v,n))) .

ceq invariant(addP(v,n)) = false if (n <= numCandidates(v)) and

(hasPref(v,n)) .

ceq invariant(addP(v,n)) = false if n > numCandidates(v) .

}

A separate study[7] has shown the advantages of such formal models, over
natural language descriptions, for the specification and validation of such al-
gorithmic requirements. Motivated by their conclusions — and by the fact that
requirements validation has been a major problem in voting systems — we chose
to follow an algebraic approach to the specification of the data and data trans-
formations in our e-voting system architecture. Further, in order to demonstrate
that our approach is generally applicable, we chose not to develop a system that
was appropriate only for the simplest type of counting algorithm (as with Pres-
idential elections in France): our architecture has been designed to support the
most complicated PRSTV voting schemes.

We note that these algebraic specifications in CafeObj were re-used because
they provide a formal model that had already been validated to correctly rep-
resent the count algorithm. The transformation of the CafeObj models to an
object oriented implementation language (like Java) follows well established
methods[11]. The count implementation that results from the CafeObj speci-
fications has an important role to play in later verification of the final prototype
where rhe count operates on encrypted votes and involves a single decryption of
the result.

This encrypted-count mechanism has not been formally verified and so we
need some means of checking that it is correct. Our approach uses the

Engineering a Distributed e-Voting System Architecture 101

un-encrypted count (whose development was rigorously driven by the CafeObj
models) as an oracle for testing the encrypted-count. In other words, we apply a
form of regression testing to show that the results produced by the secure system
are in agreement with the insecure system.

5.2 Verification of Data Transformations (Using Event-B Contexts)

A recurring reported problem with e-voting systems is the loss of votes arising
from transport between system components; for example, from interface to urn,
and from urn to count module. This problem is excacerbated by changing the way
in which votes are represented as they move through the system. For example,
with preferential voting, votes are typically recorded at the interface as an array
of preferences.

In figure 3 we see how the way in which vote information is stored can change
as votes move through the system.

In the interface, the voter conceptualises their vote as an array of candidates,
some of whom are accorded preferences. However, in the ballot module the count
algorithm “sees” each vote as an ordered sequence of preferences. As votes are
transformed from one representation to another it is possible that a bug could
transform a valid vote into an invalid vote[6]. Thus, we chose to specify such func-
tions using Event-B contexts. In this way we formally verify (with the RODIN

Fig. 3. Votes represented in different ways in the same system

Fig. 4. Proving theorems about the data in the e-voting context

102 J.P. Gibson, E. Lallet, and J.-L. Raffy

tool) that such transformations are correct. A simplified context specification,
in figure 4 illustrates how the RODIN tool is used to prove theorems about the
election data, as specified in an Event-B context.

The main property that we wish to prove is that the move transformation is
a bijection. We note that the algebraic specification (in Event-B) of the module
corresponds to that which is used in the CafeObj specification of the Vote. The
advantage of re-formulating the model in Event-B is that the invariant properties
can be proven when we specify the dynamic properties of the system as a machine
which executes events.

6 Refinement for Formal Verification of Design Steps
(Using Event-B)

As a first step towards verifying our system to be correct, we abstract away
from multiple voting locations. Our goal is to prove certain properties about
this simple architecture and then to refine the architecture in order to add fur-
ther details/components. If we can prove this refinement to be correct then all
properties that we have proven for the initial simple architecture will be guar-
anteed to be correct for the more detailed architecture.

Our first refinement step is to offer 2 voting locations. (This will then be
refined to an arbitrary number of voting stations). A simplified part of the ma-
chine specification, in figure 5 illustrates how a new event — for adding a new
voting station – can be added to the architecture in such a way that the RODIN
tool verifies the correctness of the design step as a refinement. Here, the Event-
B is used to model refinement between abstract machines, where behaviour is
partially specified by the shared context in which the machines operate.

Fig. 5. Modelling an architectural step as a refinement

7 The Prototype Implementation

As a proof of concept, we wished to implement this architecture as quickly
as possible (following a rapid-prototyping development process). This imple-
mentation would replace the abstract network in our formal specifications with
concrete communication protocols across the internet. Thus, we would be able to

Engineering a Distributed e-Voting System Architecture 103

demonstrate the feasibility of an implementation and validate the analysis from
simulation of our formal models.

The underlying technology used to implement the distributed voting system
prototypes — without any security mechanisms — was: Windows XP, Apache
2.2.9, MySQL 5.0.51, and PHP 5.2.6. On top of this, we built — using the
httpunit tool that is popular in agile development of web sites[34] — an election
simulation which simulated the behaviour of voters during the voting period
(instantiating the same parameters as used in simulating our formal models).

We note that our final prototype — including the security mechanisms —
is built on Java technology. The architecture of the final prototpye is consistent
with that used in our initial simulation. This increases confidence that the quality
of service requirements will continue to be met; but we have not yet been able
to execute the same simulations on the final prototype.

7.1 Simulation: Validation of Formal Requirements Model

Although not a primary goal of the prototype development, it was clear that
we could build a generic implementation that could be instantiated to all of our
main architectural options (including the only one which we felt was feasible).
Thus, we were able to simulate VoteAnywhere elections — using the internet
as our underlying communication network — for all the options. In figure 6 we
see that — for the purposes of simulation — we instantiated only two different
polling stations, each with three polling booths. This was sufficient for simulating
all different scenarios of interest.

It was no surprise that the architectures that failed to meet quality-of-service
requirements when we simulated the formal models also failed to meet the re-
quirements when implemented using a real network: it is necessary but not suf-
ficient that the abstract models meet the requirements in order for the concrete
implementations to meet them. (For more details of the simulation results see
[13].)

Fig. 6. Generic Architecture With 2 Polling Stations

104 J.P. Gibson, E. Lallet, and J.-L. Raffy

We note that our formal models also abstracted away from communication
time between system components, whether connected on a local or non-local
network. We argued that such delays would be insignificant compared with the
time taken for the elector to record a vote. Our election simulations validated
the correctness of our abstraction — the speed of the internet connection (pro-
vided the service was available) had no effect, for all architectures tested, on the
quality-of-service offered to the voter.

To conclude, our election simulation prototype demonstrated the feasibility
of our architecture for meeting its requirements. The main outstanding concern
was the implementation of the global clocks (see next section).

7.2 Trustworthy Global Clocks: Implementation Choices

In our simulations we made the assumption that the clocks on our different
machines were synchronised; but we made no effort to guarantee that the as-
sumption was met. We considered three implementation choices for ensuring
that our clocks are synchronised in any further development of our distributed
system:

1. Network Time Protocol (NTP)[26]: is a protocol for synchronizing the
clocks of computer systems over packet-switched, variable-latency data net-
works. It would be the most appropriate solution to providing synchronised
clocks between polling booths if we had a reliable network connection.

2. Atomic Radio Clocks[35]: the IEEE 1588 standard is designed for local sys-
tems requiring better accuracy than that provided by NTP. It is also designed
for use where the cost of a GPS receiver in each communicating component is
too high, or for where GPS signals are not reliable (or accessible)

3. GPS Clocks[32]: have already proven themselves in distributed real-time
systems. We note that such a component could also facilitate automated ver-
ification of the location of voters (at particular polling stations). The poten-
tial impact (both positive and negative) of such information being available
requires further analysis.

As none of these options is costly (with respect to the total cost of each voting
booth and polling station) we propose that each booth have access to time
generated by all three options (which may be controlled by a central machine in
each polling station). Thus, the system would be robust against denial-of-service
for any two of these three options during voting. Furthermore, the redundancy
would introduce an extra level of security against some attacker attempting to
manipulate the timestamp information on recorded votes (through manipulation
of the local clocks).

7.3 Model Integration

The first prototype — without the security mechanisms — was developed by a
software engineer with 4 years experience. The engineer was presented with all
the different formal models that we had produced. The Estelle model was used

Engineering a Distributed e-Voting System Architecture 105

to construct the communication architecture. The algebraic specification (of a
simplified count process) was used to develop the tabulation algorithm. The
Event-B specifications of the design steps (refinements) played no role in the
coding process — other than convincing us that the design was correct before it
was implemented. The Event-B context specifications guided the implementation
of Java code for specifying and verifying invariant properties. The engineer chose
not to use extensions to the Java language that directly supported design by
contract. Rather, they simply specified boolean invariant methods and threw
runtime exceptions when such invariant properties were broken. These invariant
properties helped identify coding errors (in the initial stages of implementation)
but played little role in the verification of the design. Through documentation
of the implementation code, we identified minor inconsistencies between the
different models — these were mostly syntactic in nature.

The final prototype — with the security mechanisms — is in the process of
being tested (against functional requirements). Through these tests (which were
independently developed from the requirements models) we can verify that the
count is correct, and that the three main features — VoteAnywhere, Revote and
Procuration interact as required. We have no formal verification that the encryp-
tion algorithms central to the security mechanisms are correctly implemented —
but the developers are experienced in using these same algorithms in a large
number of security-critical systems.

It is clear from analysis of our development approach that the integration of
our formal models is ad-hoc. We believe that are advantages from using different
formal models at different stages of the development. However, establishing a
re-usable method that coherently integrates such a mix of approaches is future
research.

8 Conclusions

We have developed a prototype of an innovative voting system and addressed
the major problem of denial-of-service attacks in a distributed architecture.

We have demonstrated that the development of an e-voting system can be
done more rigorously through the use of formal methods, and that different
modelling languages offer different advantages and disadvantages. The case study
has not formally modelled all aspects and components of our voting system; a
more complete model is work in progress. An important issue is a more formal
integration of the different models that we have developed.

In current and future work we model our specific chosen system as a single mem-
ber of a family of voting systems, where family members offer a unique subset of
voting features[14]. We are also analysing the role of formality in maintaining these
systems as requirements evolve (often due to changes in standards [15]).

Acknowledgements

Thanks to the anonymous reviewers for their comments and suggestions.

106 J.P. Gibson, E. Lallet, and J.-L. Raffy

References

1. Abrial, J.-R., Butler, M.J., Hallerstede, S., Voisin, L.: An open extensible tool
environment for event-b. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 588–605. Springer, Heidelberg (2006)

2. Anane, R., Freeland, R., Theodoropoulos, G.: E-voting requirements and imple-
mentation. In: The 9th IEEE International Conference on E-Commerce Tech-
nology and the 4th IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services. CEC/EEE, Tokyo, Japan, July 2007, pp. 382–392
(2007)

3. Braun, N., Brändli, D.: Swiss e-voting pilot projects: Evaluation, situation analysis
and how to proceed. In: Krimmer [20], pp. 27–36

4. Bryans, J.W., Littlewood, B., Ryan, P.Y.A., Strigini, L.: E-voting: Dependability
requirements and design for dependability. In: ARES 2006: Proceedings of the First
International Conference on Availability, Reliability and Security, Washington, DC,
USA, pp. 988–995. IEEE Computer Society Press, Los Alamitos (2006)

5. Cansell, D., Gibson, J.P., Méry, D.: Formal verification of tamper-evident stor-
age for e-voting. In: Hinchey, M., Margaria, T. (eds.) Fifth IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2007), London,
England, UK, pp. 329–338. IEEE Computer Society Press, Los Alamitos (2007)

6. Cansell, D., Gibson, J.P., Méry, D.: Refinement: A constructive approach to formal
software design for a secure e-voting interface. Electronic Notes in Theoretical
Computer Science 183, 39–55 (2007)

7. Carew, D., Exton, C., Buckley, J., McGaley, M., Gibson, J.P.: Preliminary study
to empirically investigate the comprehensibility of requirements specifications. In:
Romero, P., Good, J., Acosta Chaparro, E., Bryant, S. (eds.) Psychology of Pro-
gramming Interest Group 17th annual workshop (PPIG 2005), pp. 182–202. Uni-
versity of Sussex, Brighton (2005)

8. Chaum, D., van der Graaf, J., Ryan, P.Y.A., Vora, P.: Secret ballot elections with
unconditional integrity. Report CS-TR-1058, Department of Computing Science,
University of Newcastle upon Tyne (2007)

9. Chen, Y.-Y., Jan, J.k., Chen, C.-L.: The design of a secure anonymous internet
voting system. Computers & Security 23(4), 330–337 (2004)

10. Clarkson, M.E., Chong, S., Myers, A.C.: Civitas: A secure remote voting system. In:
Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A. (eds.) Frontiers of Elec-
tronic Voting. Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), vol. 07311, Schloss Dagstuhl, Germany
(2007)

11. Gibson, J.P.: Formal Object Oriented Development of Software Systems Using
LOTOS. Thesis CSM-114, Stirling University (August 1993)

12. Gibson, J.P.: E-voting requirements modelling: An algebraic specification approach
(with cafeobj). Report NUIM-CS-TR-2005-14, Department of Computer Science,
National University of Ireland, Maynooth (2005)

13. Gibson, J.P., Lallet, E., Raffy, J.-L.: Analysis of a distributed e-voting system
architecture against quality of service requirements. In: The Third International
Conference on Software Engineering Advances (ICSEA 2008), pp. 58–64. IEEE
Computer Society Press, Los Alamitos (2008)

14. Gibson, J.P., Lallet, E., Raffy, J.-L.: Feature interactions in a software product line
for e-voting. In: Nakamura, Reiff-Marganiec (eds.) Feature Interactions in Software
and Communication Systems X, Lisbon, Portugal, June 2009, pp. 91–106. IOS
Press, Amsterdam (2009)

Engineering a Distributed e-Voting System Architecture 107

15. Gibson, J.P., McGaley, M.: Verification and maintenance of e-voting systems and
standards. In: Remenyi, D. (ed.) 8th European Conference on e-Government, Lau-
sanne, Switzerland, July 2008, pp. 283–289. Academic Publishing International
(2008)

16. Hoffman, L.J.: Internet voting: will it spur or corrupt democracy? In: CFP 2000: Pro-
ceedings of the tenth conference on Computers, freedom and privacy, pp. 219–223.
ACM, New York (2000)

17. ISO/IEC. Estelle: A formal description technique based on an extended state tran-
sition model. Technical Report ISO 9074, Information technology - Open Systems
Interconnection (1997)

18. Jefferson, D., Rubin, A.D., Simons, B., Wagner, D.: Analyzing internet voting
security. ACM Commun. 47(10), 59–64 (2004)

19. Joaquim, R., Zuquete, A., Ferreira, P.: REVS — A Robust Electronic Voting Sys-
tem. In: Proceedings of the IADIS International Conference on e-Society, Lisbon,
Portugal, June 2003, pp. 95–103 (2003)

20. Krimmer, R. (ed.): Electronic Voting 2006: 2nd International Workshop, Co-
organized by Council of Europe, ESF TED, IFIP WG 8.6 and E-Voting.CC, Castle
Hofen, Bregenz, Austria, August 2-4. LNI, vol. 86. GI (2006)

21. Krimmer, R., Triessnig, S., Volkamer, M.: The development of remote e-voting
around the world: A review of roads and directions. In: Alkassar, A., Volkamer, M.
(eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 1–15. Springer, Heidelberg (2007)

22. Maaten, E.: Towards remote e-voting: Estonian case. In: Prosser, A., Krimmer, R.
(eds.) Electronic Voting in Europe. LNI, vol. 47, pp. 83–100. GI (2004)

23. Madise, Ü., Martens, T.: E-voting in estonia 2005. the first practice of country-wide
binding internet voting in the world. In: Krimmer [20], pp. 15–26 (2005)

24. McGaley, M., Gibson, J.P.: E-voting: a safety critical system. Report NUIM-
CS-TR-2003-2, Department of Computer Science, National University of Ireland,
Maynooth (2003)

25. McGaley, M., Gibson, J.P.: A critical analysis of the council of europe recommenda-
tions on e-voting. In: EVT 2006: Proceedings of the USENIX/Accurate Electronic
Voting Technology Workshop 2006 on Electronic Voting Technology Workshop, pp.
9–22. USENIX Association (2006)

26. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans-
actions on Communications 39(10), 1482–1493 (1991)

27. Qadah, G.Z., Taha, R.: Electronic voting systems: Requirements, design, and im-
plementation. Comput. Stand. Interfaces 29(3), 376–386 (2007)

28. Roth, S.K.: Disenfranchised by design: voting systems and the election process.
Information Design Journal 9(1), 1–8 (1998)

29. Rubin, A.D.: Security considerations for remote electronic voting. ACM Com-
mun. 45(12), 39–44 (2002)

30. Sandler, D.R., Wallach, D.S.: The case for networked remote voting precincts. In:
EVT 2008: Proceedings of the USENIX/Accurate Electronic Voting Technology
Workshop 2008 on Electronic Voting Technology Workshop, Berkeley, CA, USA,
July 2008. USENIX Association (2008)

31. Selker, T., Goler, J.: The save system — secure architecture for voting electroni-
cally. BT Technology Journal 22(4), 89–95 (2004)

32. Sterzbach, B.: Gps-based clock synchronization in a mobile, distributed real-time
system. Real-Time Syst. 12(1), 63–75 (1997)

33. Storer, T., Duncan, I.: Practical remote electronic elections for the uk. In: PST,
pp. 41–45 (2004)

108 J.P. Gibson, E. Lallet, and J.-L. Raffy

34. Tappenden, A., Beatty, P., Miller, J.: Agile security testing of web-based systems
via httpunit. In: ADC 2005: Proceedings of the Agile Development Conference,
Washington, DC, USA, pp. 29–38. IEEE Computer Society Press, Los Alamitos
(2005)

35. Weibel, H., Béchaz, D.: IEEE1588 Implementation and Performance of Time
Stamping Techniques. In: Conference on IEEE 1588, Gaithersburg (september
2004)

36. Zúquete, A., Almeida, F.: Verifiable anonymous vote submission. In: SAC 2008:
Proceedings of the 2008 ACM symposium on Applied computing, pp. 2159–2166.
ACM, New York (2008)

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 109–124, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Testing Fault Robustness of
Model Predictive Control Algorithms

Piotr Gawkowski1, Konrad Grochowski1, Maciej Ławryńczuk2, Piotr Marusak2,
Janusz Sosnowski1, and Piotr Tatjewski2

1 Institute of Computer Science
{P.Gawkowski,J.Sosnowski}@ii.pw.edu.pl

2 Institute of Control and Computation Engineering
{M.Lawrynczuk,P.Marusak,P.Tatjewski}@ia.pw.edu.pl

Warsaw University of Technology, ul. Nowowiejska 15/19, 00–665 Warsaw, Poland

Abstract. The paper deals with the problem of evaluating fault robustness of
the software implemented Dynamic Matrix Control (DMC) Model Predictive
Control (MPC) algorithms. Numerical and explicit implementations of the
DMC algorithms are considered. It is shown that faults affecting the algorithms
can provoke undesirable behaviour or even destabilize the process. Dependabil-
ity was evaluated experimentally using two different software implemented
fault injection approaches, the old one (FITS) and a new one (InBochs). FITS
was not sufficient in case of the numerical DMC implementation. InBochs is
based on the system emulator and delivers the same level of functionality as
FITS while having capability to extend fault models.

Keywords: dependability evaluation, fault injection, process control, model
predictive control.

1 Introduction

The testing of fault robustness of the software implementations of the Dynamic Ma-
trix Control (DMC) Model Predictive Control (MPC) algorithms is discussed in the
paper. The algorithms are designed to operate in a control system of a rectification
column. It is the complex process with two inputs and two outputs, strong cross-
couplings and significant time delays. High dependability and safety in particular are
important features required in many control systems used in industry, automotive,
medicine, civil engineering applications, etc. So, an important issue is to analyse
system susceptibility to internal faults and identify unsafe situations. For this purpose
various fault simulation techniques have been proposed and described in the litera-
ture, e.g. [1, 2]. Most of them were used to study calculation oriented applications. In
case of real time systems with control feedback the fault effect analysis is more com-
plex as the trace of the generated control signals and the reaction of the controlled
process must be taken into account to qualify its behaviour. This is application de-
pendent. In the literature such studies are rarely encountered. In most cases they relate
to simple control algorithms (e.g. based on PID controller) and using dedicated simu-
lation platforms, e.g. [5, 14, 19]. In the paper we present a more universal approach
based on software implemented fault injectors (SWIFI).

110 P. Gawkowski et al.

Both numerical and explicit implementations of the DMC algorithms are re-
searched. In case of the numerical DMC algorithm, it derives control action by solv-
ing a quadratic optimization problem at each iteration. It is an approach often used in
practical applications. However, from the computational point of view, it is much
more complicated than an explicit control algorithm. As a consequence, the numerical
DMC control algorithm is hard to test using the conventional SWIFI approach. Thus,
a new SWIFI system is proposed to address this problem.

The organization of the paper is as follows. Section 2 describes the numerical and
the explicit versions of the DMC algorithm. Section 3 discusses the SWIFI systems.
The new fault injection approach, capable of conducting more complex test scenarios
than the old one, is also presented. Experiment set–up is described in Sect. 4. The
experiments are discussed in Sect. 5. The last section concludes the paper.

2 DMC Algorithm

Model Predictive Control, thanks to performance it offers, is a widely used advanced
control technique [12–18]. It has found acceptance in industry and is successfully
applied practice. In the MPC algorithms the control action is calculated using a model
of the process. Thus, during control signal calculation, the predicted behaviour of the
control plant and constraints can be easily taken into consideration. If the model is
accurate enough, MPC algorithms can offer better performance than classical control
algorithms, especially for processes with difficult dynamics, e.g. with significant time
delay. MPC algorithms are very useful to control Multi–Input Multi–Output (MIMO)
processes with strong cross-couplings. It is so because, thanks to using the process
model, the MPC algorithms contain the decoupling mechanism. Among different
MPC techniques, Dynamic Matrix Control (DMC) is very popular because it uses a
step–response model of the process which is easy to obtain [6, 18].

In the MPC algorithms the control signal is derived in such a way that predicted
behaviour of the control system minimizes a performance function subject to the
constraints of control and output signals. Thus, at each iteration of the algorithm the
following optimization problem is solved:

() ()∑∑∑∑
=

−

=
+

= =
+

Δ
Δ⋅+−⋅

+

i uy

j
kik

n

j

N

i

j
kik

j
n

j

N

i

j
kik

j
k

j

u
uyy

1

1

0

2

|
1 1

2

|
|

min λψ ,

(1)

subject to:

jj
kik

j yyy max|min ≤≤ + ,

jj
kik

j uuu max|min ≤≤ + ,

jj
kik

j uuu max|min Δ≤Δ≤Δ + ,

where j
ky is a set-point value for the jth output, j

kiky |+ is an output value for the (k+i)th

sampling instant predicted at kth sampling instant, j
kiku |+ are future values of the ma-

nipulated variables, j
kiku |+Δ are future changes of the manipulated variables (decision

 Testing Fault Robustness of Model Predictive Control Algorithms 111

variables of the optimization problem), ψ j ≥ 0 and λ j ≥ 0 are weighting coefficients
for the predicted control errors of the jth output and for the changes of the jth manipu-
lated variable, respectively, N and Nu denote prediction and control horizons, ny, ni
denote the number of outputs and inputs, respectively.

The optimization problem (1) can be expressed in the matrix–vector form as:

() () uΛuyyΨyy ΔΔ ⋅⋅+−⋅⋅−= TTJ , (1a)

subject to:

maxmin yyy ≤≤ ,

maxmin uuu ≤≤ ,

maxmin uuu ΔΔΔ ≤≤ ,

where Ψ is a diagonal matrix of dimensionality nyN×nyN, Λ is a diagonal matrix of
dimensionality niNu×niNu, these matrices are composed of ψ j and λ j elements;

[] T
in

kkk uuuu ΔΔΔ=Δ ,,, 21 … , []j
kNk

j
kk

j
k u

uu |1| ,, −+ΔΔ=Δ …u ,

(2)

[] T
in

kkk uuuu ,,, 21 …= , []j
kNk

j
kk

j
k u

uu |1| ,, −+= …u ,

(3)

[] T
yn

kkk yyyy ,,, 21 …= , []j
kNk

j
kk

j
k yy ||1 ,, ++= …y ,

(4)

[]T
yn

kkk yyyy ,,, 21 …= ,

elements

,,= …

yy j
k

j
k

j
ky ,

N

(5)

Δumin, Δumax, umin, umax, ymin, ymax are vectors of lower and upper bounds of increments
of the manipulated variables, values of the manipulated variables and of the values of
output variables, respectively.

If the prediction is performed using a linear process model then the superposition
principle can be used and the vector y can be decomposed as:

,~ uAyy Δ⋅+= (6)

where y~ is a vector of dimensionality nyN called a free response because it contains

elements equal to the values of the process outputs in future in the situation if manipu-
lated signals are frozen at the kth sampling instant [13, 17, 18]:

[] ,~,,~,~~
T 21 yn

kkk yyyy …= [] ,~,,~~
||1

T j
kNk

j
kk

j
k yy ++= …y

(7)

A is a matrix of dimensionality nyN×niNu called a dynamic matrix composed of the
elements of the process step response:

112 P. Gawkowski et al.

,

21

22221

11211

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

iyyy

i

i

nnnn

n

n

AAA

AAA

AAA

A ,
00

000

,
1

,
2

,
1

,

,
1

,
2

,
1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+−+−−
mj

NN
mj

NN
mj

N
mj

N

mjmj

mj

jm

uu
aaaa

aa

a

A

(8)

where mj
ia , (i = 1,…, D) are step response coefficients of the control plant describing

influence of mth input on jth output as the step response model has the following form:

,
1

,
1

1

,∑∑
=

−

−

=
− ⋅+Δ⋅=

in

m

m
Dk

mj
D

D

i

m
ik

mj
i

j
k uauay

(9)

where m
kuΔ is a change in the mth manipulated variable at the kth sampling instant, D is

equal to the number of time instants after which the coefficients of the step responses
can be assumed as settled, m

Dku − is a value of the mth manipulated variable at the

(k–D)th sampling instant.
The optimization problem (1) is solved by the numerical DMC algorithm at each

iteration. As the result of optimization the vector Δu of future control increments is
obtained. Then, the elements j

kku |Δ of the vector Δu are applied to the process and the

optimization is repeated in the next sampling instant.
If constraints are not important in the particular control problem or a fast controller

must be obtained, then the performance index from the problem (1) is minimized
without constraints. As a result the following control law is obtained:

() ()yyΨAΛAΨAu ~1 −⋅⋅⋅+⋅⋅=Δ − TT .

(10)

This DMC control law can be formulated as:

,
2

1

1

1

22

11

|

2
|

1
|

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

−

−

−

−

=
∑

iyyi n
jk

jk

jk

D

j

n
k

n
k

kk

kk

n
kk

kk

kk

u

u

u

yy

yy

yy

u

u

u

u
j

e KK

(11)

where eK is a matrix of dimensionality ni×ny and u
jK , j=1,…,D–1 are matrices of

dimensionality ni×ni composed of coefficients of the controller; these matrices and the
resulting control law are calculated off-line. The detailed description of the DMC
algorithm can be found, e.g. in [18].

3 Software Implemented Fault Injectors

Software Implemented Fault Injectors (SWIFI) have a numerous advantages over
other fault injection techniques [3]. One of the most important is the very high level
of controllability over injected disturbances and observability of fault propagation and
effects. In the research two fault injectors are used: FITS and InBochs.

 Testing Fault Robustness of Model Predictive Control Algorithms 113

3.1 FITS Fault Injector

FITS is a specialized debugger as it uses Windows Debugging API to control the
execution of the application under tests (AUT) [8, 19]. It can suspend/resume the
AUT’s threads, read/write AUT’s memory (data, stack or code), CPU/FPU registers
states, etc. The whole concept is depicted in Fig. 1. To examine the control algorithm,
the reactive application is implemented that contains implementations of the control
algorithm, the controlled process model (i.e. rectification column), the environmental
disturbances, and the layer for data exchange between the controller and the con-
trolled process. FITS disturbs only during the execution of selected parts of AUT –
called testing areas. Separated code and data of the controller from the rest of the
emulated environment allow FITS to selectively disturb only the controller.

FITS can emulate the existence of faults of different types (stuck-at, bit-flips, etc.)
or even can emulate complex fault or error models. However, the most commonly
used in the community is the single bit-flip fault as it well mimics the occurrence of
Single Event Upsets (SEU [1, 3]).

To examine the fault sensitivity of the given fault location, the set of tests is per-
formed (i.e. experiment). Each test is single execution of the AUT with the distur-
bance of a given type injected. During the test FITS pauses the AUT at the precisely
defined time instant of its execution, injects the fault into the target fault location (e.g.

Fig. 1. FITS – detailed concept of fault injection approach

114 P. Gawkowski et al.

CPU register, memory location, instruction code), and (after AUT resumes the execu-
tion) collects (with the post-injection monitoring module) all events occurring in AUT
(like exceptions triggered by AUT, messages, result files, etc.). As the AUT finishes
its execution the results are judged for correctness by FITS oracle module on the basis
of the data collected during the referential (i.e. fault-free) AUT execution (called
golden run). The whole experiment is conducted by FITS automatically. At the end of
the experiment summarized results are given. In general, four classes of test results
are distinguished: C (correct results produced), INC (incorrect/unacceptable results), S
(test terminated by the system due to un-handled exception, e.g. memory access viola-
tions, invalid opcode), and T (timed-out test). Additionally, if the application signals
the user that error is detected before the termination, the U category may also be pre-
sent (a user being warned).

The examined implementation of the explicit control algorithm takes 124 machine
instructions (405 bytes of the static code). The algorithm needs execution of 1020000
instructions for the whole simulation horizon (300 discrete sampling instants). The
numerical DMC controller introduced significant increase of the code and run time in
terms of the number of executed instructions – the reference execution (100 discrete
sampling instants) required 6811 machine instructions in code and in execution of
1 522 115 055 instructions at runtime. Unfortunately, such big number of instructions
is not possible to be handled by the FITS fault injector in reasonable time. FITS effi-
ciency of the golden run execution is at the level of 20÷30 thousands of instructions
per second depending on the target machine performance. So, approximately 14 hours
would be required only for the golden run execution.

In case of fault injection tests FITS offers high level of controllability over the
place and time instants of injections (each execution instant of particular machine
instruction is distinguished). That is implemented as trapping the execution at the
fault triggering instruction and the bypassing action (if the required instant is not
reached): the breakpoint is disabled, the triggering instruction is executed in single-
step mode and the breakpoint is enabled once again. Described bypassing introduces
four context switches. The efficiency of this process is around 16 000 of bypassed
iterations per second. The performance problems described here are resolved with the
new fault injection system – InBochs.

3.2 InBochs Fault Injector

The InBochs is based on the open-source x86 system emulator Bochs project [4]. The
concept is presented in Fig. 2. The whole system is purely emulated – no virtualiza-
tion features are used. However, Bochs executed at the single core of double core
AMD Opteron 280 (running at 2.4 GHz) assures the performance at the level of 30
millions of machine instructions per second enabling quite smooth work with the
guest operating systems. As the InBochs extends the original Bochs emulator with
fault injection capabilities, the InBochs can also be executed on a variety of hosting
operating systems (e.g. Windows, Linux, Solaris, MacOS) and it supports any avail-
able x86 operating systems as guest OS. The impact of the injector module within the
InBochs (see Fig. 2) is practically imperceptible as it uses the Bochs internal struc-
tures and functions to pause the system execution at the precisely defined time instant
of the AUT execution and to disturb the AUT context.

 Testing Fault Robustness of Model Predictive Control Algorithms 115

Fig. 2. InBochs fault injector concept

InBochs has the whole functionality of FITS. However, the fault injection is real-
ized by the interpretation of the script in a script language dedicated for injectors.
Experiment showed that such interpreter is not introducing much time delays while it
significantly increases the flexibility of the fault injection system (e.g. new fault mod-
els can be easily implemented as scripts).

To conduct the experiments the supervising application has to be executed at the
guest OS. It is responsible for the communication with the InBochs’s injector module
– it initiates the experiment starting the AUT within the guest OS, provides the AUT’s
process identifier to the injector module, and (at the end of the test) sends the results
to the InBochs.

Contrary to FITS, the AUT execution is not debugged and execution performance
is the same during the experiments as during the normal system emulation. So, after
crossing a certain threshold the test duration can hopefully be shorter in InBochs.
Figure 3 presents the comparison of test duration in both fault simulators in the func-
tion of the triggering instruction iteration instance. The tested application executes
1000 machine instructions in a sequential block within the loop. As the fault is in-
jected into further loop iterations, the time needed by FITS increases significantly (it
is dependent to the injection moment) while in the case of InBochs it only depends on
the total number of executed instructions within the whole test. However, in case of
Windows systems guests, the supervising application requires additional time for the
initialization of Windows Debugging Tools (from 8 to 20 seconds – that time is con-
stant for each test). In case of Linux guest the initialization of the supervisor is only
0.3 seconds. Please note that this time delays are not considered in Fig. 3.

In practice, if the fault triggering iteration is bigger than 1 million, the test will
probably be faster on InBochs in case of the Windows target. On Linux that threshold
is much lower (30 thousands). Nevertheless, despite the target operating system, the
InBochs outperforms FITS in golden run execution (see Sect. 3.1) – for the consid-
ered numerical DMC implementation golden run takes 230 seconds (approx. 14 hours
in FITS). Additionally, InBochs has access to some very internals of the system while
FITS can access only user application. To conclude, it is worth to stress that despite
some drawbacks, the InBochs solution has much bigger potential of use.

116 P. Gawkowski et al.

0

1

2

3

4

5

6

7

0 20 000 40 000 60 000 80 000 100 000 120 000

Iteration of the triggering instruction

te
st

 d
u

ra
ti

o
n

 [
s]

FITS

InBochs

Fig. 3. The comparison of the test duration for FITS and InBochs

4 MIMO Process Description and Experiment Set-up

The considered process is a rectification column with two manipulated (inputs) and
two controlled (outputs) variables (shown in Fig. 4). The process has strong cross–
couplings and significant delays. It is described by the continuous-time transfer func-
tion model [20] (time constants are given in minutes):

).(

12,13

9,4
19,14

8,3

)(

)(

14,14

4,19

19,10

6,6
10,21

9,18

17,16

8,12

)(

)(3

4

2

1

48

4

2

1

sU

s

s

e

sU

sU

s

e

s

e
s

e

s
sY

sY

s

ss

s

⋅

+

++⋅

+
−

+

+
−

+=

−

−−

−

(12)

where the controlled variables are: y1 – methanol concentration in the distillate (the
top product), y2 – methanol concentration in the effluent (the bottom product), the
manipulated variables are: u1 – flow rate of the reflux, u2 – flow rate of the steam into
a boiler, u3 is feed flow rate (a disturbance). All process variables are scaled.

For the considered rectification process the numerical and explicit DMC algo-
rithms were designed. In the case of the numerical implementation the sampling pe-
riod Tp=2 min was assumed. The dynamics and prediction horizons were assumed
equal to D=N=50. Other values of the parameters of the controller are: the control
horizon Nu=25 and the values of coefficients: ψ 1=ψ 2=1, λ1=λ2=10. The simulation
horizon is 100 sampling instants. In the case of the explicit version the sampling pe-
riod Tp=1 min is assumed, the dynamics horizon is equal to the prediction horizon
D=N=100, the control horizon Nu=50, the values of coefficients are: ψ1=ψ 2=1,
λ1=λ2=10, and the simulation horizon is 300 discrete sampling instants.

The simulation scenario is as follows. At the beginning, the process is driven to a
given set–point. Then, at sampling instant 30 the change in the feed stream flow rate
(u3) is introduced (from 0 to 0.1). Another change in u3 is made at the instant 140
(from 0.1 to –0.05). However, in the case of the numerical implementation only the
first change of the feed stream flow rate manifests as we limited the overall simula-
tion horizon for that version.

 Testing Fault Robustness of Model Predictive Control Algorithms 117

Evaporator

Condenser

Feedstream

Bottom
product

Top product

LC

LC

DMC algorithm

y2

y1

FC

u1

Lsp

 Lsp

u3

Boiler

u2

FC

Q

Fig. 4. Structure of the control system of the rectification column

Fault simulators used in this research (Sect. 3) can limit the scope of disturbances
only to the selected parts of the application. Here, only the code of the control algo-
rithm and its data are disturbed. The tested applications are also instrumented to send
some measures (e.g. related to values of internal variables, output signal deviations,
and signalisation of failures detected by the controller itself) to the fault injector using
user-defined messages (collected by fault simulators – [8, 19]).

In this study the single bit-flip faults within CPU registers, application’s data and
machine instruction code (latching and non-latching [19]) are considered. Faults are
injected pseudorandomly in time of the program execution and in space (bit position
within the disturbed resource, distribution over application's memory) to mimic Single
Event Upset (SEU) effects [1, 2, 3]. To get better insight into the numerical DMC
implementation fault sensitivity, some specific fault injection policies are also consid-
ered (described later). One fault is injected per single run of simulation. At the end of
each test run the qualification of control performance is assessed (Sect. 3). Here, the
SSE factor (Sum of Squared Errors – calculated over y1 and y2) is used (13)

()∑
=

−+−=
n

k
kkkk yyyySSE

1

222211)()(

(13)

where n denotes the simulation horizon (Sect. 2). The reference SSE value for consid-
ered output trajectories from fault-free execution is 2.53 (1

ky , 2
ky are corresponding

set-point values). Because of a dynamic nature of the process, the SSE value is differ-
ent from 0, as it takes some time to reach desired reference output values. Experi-
ments shown that responses with SSE<5 can be qualified as correct ones. However,
the threshold SSE must be chosen arbitrarily by an expert (Sect. 5). By changing SSE

118 P. Gawkowski et al.

threshold we can admit various levels of the control quality. Moreover, it is possible
to detect temporary violations of safety conditions.

Analysis of fault effects requires detailed information on the faults injected and the
application behaviour. FITS provides details about every test (simulated fault injec-
tion). Hence, manual replay of the whole test execution can be done. Moreover, all
the events and user messages occurring during the test are recorded. The tested appli-
cation is instrumented to save its outputs (here simulation results, i.e. a set of process
signals (u1, u2, y1, y2) in subsequent sampling instants) into separate files for each test
(file names managed by fault injectors). This gives a possibility for post-experiment
analysis of fault effects in the correlation with the injected fault and observed behav-
iour for each test (see Sect. 5).

5 Fault Sensitivity Experiments

The explicit DMC version is written in C language and compiled using Microsoft
Visual C++ 2005. The fault sensitivity analysis is conducted with the described FITS
fault injection system (Sect. 3.1) [9]. It is worth noting that floating point instructions
constitute 38% of the code in the static code while dynamically they are executed in
54,8% of time. Moreover, instructions organizing computational loops in the DMC
implementation (sub, test, add, jnz, jg) take another 38%. Hence, the application is
strongly computational with high degree of FPU utilization and rather limited instruc-
tion set. On the other hand, the activity ratio for CPU resources is high (98, 94, 80, 98,
97, 81 % for EAX, EBX, ECX, EDX, ESI and EDI, respectively) [8].

Faults in the CPU and FPU registers, data area of the application, executed instruc-
tion stream, and static code image are considered. For each fault location approximately
1000 disturbed executions are investigated (single fault injected in each application
execution). The summary of results (according to categories described in Sect. 3) is
presented in Fig. 5 (explicit DMC [9]). Figure 6 presents results of the numerical DMC
implementation for comparison (discussed later on).

As the explicit algorithm uses many parameters (400) it is very robust to fault located
in the data area – there are only few data memory locations critical for the algorithm –
most of the data correspond to the algorithm’s parameters. Also the high degree of FPU
robustness could be astonishing. Past experience shows that the FPU is rarely used hard
[7] (e.g. only few FPU stack locations used simultaneously). This results in overall low
fault sensitivity of the FPU. Nevertheless, there are some very sensitive locations within
the FPU (e.g. control registers). Moreover, the analysis of used floating point value
ranges showed that the considered single bit inversions are unlikely to provoke much
difference in the value of disturbed variable. Similar effect was reported in [19]. The
most fault sensitive resource of the DMC controller is its code. Fortunately, there are
software techniques (e.g. exception handling, duplication of critical data and code) that
can be applied at the source code level to provide fault robustness ([8, 11] and refer-
ences therein). Despite that, the rare errors on the controlled process inputs are not criti-
cal for its behaviour.

 Testing Fault Robustness of Model Predictive Control Algorithms 119

0%

10%
20%

30%

40%

50%
60%

70%

80%
90%

100%

CPU Data FPU Instr.

Stream

Static

code

T

S

INC

C

Fig. 5. Experimental results of the explicit DMC implementation; FITS fault injector; catego-
ries of results: C - correct results produced, INC - incorrect/unacceptable results, S - test termi-
nated by the system, and T - timed-out tests

0%

20%

40%

60%

80%

100%

Data CPU
registers

Instructions

T

S

C

Fig. 6. Experimental results of the numerical DMC implementation; InBochs fault injector

Analyzing fault susceptibility it is worth correlating the observed effects (the simu-
lated process behaviour) with the injected fault details in accordance to the source and
machine code of the disturbed DMC. Figures 7 and 8 present plots of the application
outputs (y1, y

2 – left plots and u1, u
2 – right plots) over the explicit DMC iteration

number in case of sample fault disturbed executions [9]. For reference the undisturbed
simulation results are shown, i.e. the golden run (solid lines).

In the case considered in Fig. 7a, the fault is injected at the sampling instant 28. It
results in the change of the faddp instruction into the fmulp (operands remained un-
changed). The instruction disturbed is used to calculate the du1 variable of the DMC
algorithm (corresponding to the Δu vector element – see Sect. 2). As a result the
source code statement du1+=r1[i]*vektup[i] is changed to
du1*=r1[i]*vektup[i]. The result of this disturbance varies on the control
signal and process states. For instance, the considered fault injected at the 28th sam-
pling instant results in SSE=3.39 (Fig. 7a), at the 101st sampling instant in SSE=4.25
(Fig. 7b), at the 224th – SSE=2.53 (Fig. 7c) (the same as the reference SSE value).
Hence, it disturbs the top product composition.

120 P. Gawkowski et al.

a)

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

b)

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

c)

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

Fig. 7. Single bit inversion within the faddp disturbs the top product composition. Faults in-
jected at sampling instants: a) 28th, SSE=3.39, b) 101st, SSE=4.25, c) 224th, SSE=2.53; golden
run responses – solid line, fault injected responses – dashed line.

 Testing Fault Robustness of Model Predictive Control Algorithms 121

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

Fig. 8. Single bit inversion within the faddp destabilizes the process. Fault injected at the 61st
sampling instant, SSE=4.40; golden run responses – solid line, fault injected responses – dashed
line.

It is worth noting that the overwhelming majority of incorrect behaviour relates to
very high SSE values (higher than 1000). It means that the values of control errors
cumulate. On the other hand it is possibly easier to detect such big deviations using
additional diagnostic subroutines (e.g. assertions on DMC variables) like in [11].

However, some rare critical situations with relatively low SSE deviation were ob-
served (as in Fig. 8). Single bit inversion (at 61st sampling instant) within the same
instruction as described above destabilises the process. In this case the instruction
mnemonic remains unchanged while its first operand changed from st(2) to st(0).
Observed SSE is 4.40. Similar problems were identified in the results of the numerical
DMC implementation (discussed later on).

A series of tests of fault robustness of the numerical DMC algorithms were per-
formed with the InBochs system (Sect. 3.2). The overview of the results is presented
already in Fig. 6. As one can see, the numerical implementation is even more fault ro-
bust than the explicit one. Unfortunately, due to long test durations, the number of tests
for each presented fault location is limited to 200. In these experiments no incorrect
result was noticed. In fact, this can be explained by the application specificity. The
numerical DMC implementation uses a lot of very large matrices of parameters. More-
over, they are dynamically allocated resulting in significant ratio of memory addressing
instructions. Previous research showed that faults affecting such applications usually
finish their execution correctly or applications are terminated by the operating system
due to unhandled exceptions (typically the memory access violations) [7].

To get better insight into the fault sensitivity, two more experiments were con-
ducted. The target fault locations were the model parameters of the process in two
matrices. For each matrix 20 tests were performed. To provoke more destructive ef-
fects, the injected faults inversed the whole byte (the second after the most significant
one) of the double format parameter (randomly chosen) within the given matrix.
Analysis showed that such faults result in the most significant changes of the target
parameters. As already mentioned, this is unique property of the floating point values
– bit inversions are very unlikely to provoke big value deviations. Also in these

122 P. Gawkowski et al.

experiments the most frequent situations were the differences of the SSE at the level
of 0.001 and less – not noticeable in practice.

Despite that, in the mentioned additional experiments some interesting situations
were reported. Example responses are shown in Figs 9 and 10. The undisturbed simu-
lation results (the golden run) are shown in each figure for comparison (solid lines).
At the beginning, the process is driven to a given set–point. Then, at 30th minute of
simulation the change in the feed stream flow rate (u3) is introduced (from 0 to 0.1).
The SSE index calculated for the golden run is equal to SSE=2.53.

In the case considered in Fig. 9, the fault is injected at the beginning of simulation
and SSE=2.79. As a result the bottom product response almost does not change.
However, the top product composition is disturbed – it is shifted towards bigger val-
ues. Moreover, the steady–state control error is nonzero. Such a situation should be
detected but it is not critical. It is possible to continue process operation till the con-
troller is fixed.

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y
1

y
2

0 10 20 30 40 50 60 70 80 90 100

-0.05

0

0.05

0.1

0.15

0.2

time (min)

u
1

u
2

Fig. 9. Responses obtained after fault injection at the beginning of simulation; SSE=2.79;
golden run responses – solid line, fault injected responses – dashed line

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y
1

y
2

0 10 20 30 40 50 60 70 80 90 100

-0.05

0

0.05

0.1

0.15

0.2

time (min)

u
1

u
2

Fig. 10. Oscillatory responses obtained after fault injection at the beginning of simulation;
SSE=3.38; golden run responses – solid line, fault injected responses – dashed line

 Testing Fault Robustness of Model Predictive Control Algorithms 123

More critical situation is illustrated in Fig. 10. The SSE=3.38 is bigger than in the
previous case. All signals are oscillating. However, fortunately, they are oscillating
near the golden run responses and are not growing. The above results showed that the
SSE value threshold for the correctness judgment has to be revised after detailed
analysis and it should probably involve more sophisticated oracle procedure (e.g.
detection of oscillations, violations of control constrains).

6 Conclusion

The paper deals with fault–sensitivity evaluation of software implementations of the
numerical and explicit DMC algorithms. The fault sensitivity was evaluated by fault
simulation. The new fault injection system based on system emulator can handle long
lasting experiments which was not possible with the old FITS fault injector used pre-
viously [8, 10, 11, 19]. Results proved that the InBochs fault injector is capable of
such tasks. Moreover, the presented InBochs system delivers the same functionality
and the same level of fault injection controllability and effects observability as the old
one. Additionally, it introduces very flexible scripting language (e.g. providing the
capability to extend fault models) and promises wider range of fault targets (i.e. new
operating systems, fault locations in different system components, etc.). Further re-
search will extend the InBochs capabilities in the above mentioned directions.

An interesting observation is that a large number of faults do not result in control
errors. A detailed analysis of the controller behaviour revealed various kinds of
natural (intrinsic) redundancy. We have found that even in the case of sophisticated
control algorithms involving quite long history of state variables the natural fault
tolerance capabilities are quite high. Moreover, they can be improved significantly
with simple software mechanisms. On the other hand, we have identified unstable
behaviour of the system for some faults, which needs special treatment. The explicit
DMC implementation was hardened and described in [9, 10]. Analogous software-
based fault hardening is planned to be designed and evaluated for the numerical DMC
implementation.

Acknowledgements. P. Gawkowski and J. Sosnowski realised this research within
grant 4297/B/T02/2007/33 from Polish Ministry of Science and Higher Education.

References

1. Anghel, L., Leveugle, R., Vanhauwaert, P.: Evaluation of SET and SEU effects at multiple
abstraction levels. In: 11th IEEE IOLTS Symposium, pp. 309–314. IEEE Press, Los
Alamitos (2005)

2. Arlat, J., Crouzet, Y., Karlsson, J., Folkesson, P., Fuchs, E., Leber, G.H.: Comparison of
physical and software implemented fault injection techniques. IEEE Transactions on Com-
puters 52(9), 1115–1133 (2003)

3. Benso, A., Prinetto, P.: Fault Injection Techniques and Tools for Embedded Systems Reli-
ability Evaluation. Kluwer Academic Publishers, Dordrecht (2003)

4. The Bochs project homepage, http://bochs.sourceforge.net/

124 P. Gawkowski et al.

5. Corno, F., Esposito, E., Reorda, M., Tosato, S.: Evaluating the effects of transient faults on
vehicle dynamic performance in automotive systems. In: ITC 2004, pp. 1332–1339. IEEE
Press, Los Alamitos (2004)

6. Cutler, R., Ramaker, B.: Dynamic matrix control – a computer control algorithm. AIChE
National Meeting, Houston (1979)

7. Gawkowski, P., Sosnowski, J.: Dependability evaluation with fault injection experiments.
IEICE Transactions on Information & System E86-D, 2642–2649 (2003)

8. Gawkowski, P., Sosnowski, J.: Experiences with software implemented fault injection. In:
International Conference on Architecture of Computing Systems, pp. 73–80. VDE Verlag
GMBH (2007)

9. Gawkowski, P., Ławryńczuk, M., Marusak, P., Sosnowski, J., Tatjewski, P.: Dependability
of the software implementation of the explicit DMC algorithm. IADIS International Jour-
nal on Computer Science and Information System 8(1), 44–58 (2008)

10. Gawkowski P., Ławryńczuk M., Marusak P., Sosnowski J., Tatjewski P.: Software Imple-
mentation of Explicit DMC Algorithm with Improved Dependability. In: T. Sobh, et al.
(eds) Novel Algorithms and Techniques In Telecommunications, Automation and Indus-
trial Electronics, pp. 214–219, Springer (2008)

11. Gawkowski, P., Ławryńczuk, M., Marusak, P.M., Tatjewski, P., Sosnowski, J.: On im-
proving dependability of the numerical GPC algorithm. In: Proc. European Control Con-
ference 2009, Hungary, pp. 1377–1382 (2009)

12. Ławryńczuk, M., Marusak, M., Tatjewski, P.: Cooperation of model predictive control
with steady–state economic optimisation. Control and Cybernetics 37, 133–158 (2008)

13. Maciejowski, J.M.: Predictive control with constraints. Prentice-Hall, Harlow (2002)
14. Mariani, R., Fuhrmann, P., Vittorelli, B.: Fault Robust Microcontrollers for Automotive

Applications. In: Proc. IEEE On-line Test Symposium, pp. 213–218. IEEE Press, Los
Alamitos (2006)

15. Marusak, P., Tatjewski, P.: Actuator Fault Tolerance in Control Systems with Predictive
Constrained Set-Point Optimizers. International Journal of Applied Mathematics & Com-
puter Science 4, 539–551 (2008)

16. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Computers and
Chemical Engineering 23, 667–682 (1999)

17. Rossiter, J.A.: Model-based predictive control. CRC Press, Boca Raton (2003)
18. Tatjewski, P.: Advanced control of industrial processes. In: Structures and algorithms.

Springer, London (2007)
19. Trawczynski, D., Sosnowski, J., Gawkowski, P.: Analyzing Fault Susceptibility of ABS

Microcontroller. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS,
vol. 5219, pp. 360–372. Springer, Heidelberg (2008)

20. Wood, R.K., Berry, M.W.: Terminal Composition Control of a Binary Distillation Col-
umn. Chemical Engineering Science 28, 1707–1717 (1973)

Towards Net-Centric Cyber Survivability for
Ballistic Missile Defense�

Michael N. Gagnon, John Truelove, Apu Kapadia��,
Joshua Haines, and Orton Huang

Massachusetts Institute of Technology, Lincoln Laboratory
244 Wood Street, Lexington MA, 02420, USA

{michael.gagnon,jtruelove,jhaines,orton}@ll.mit.edu
Indiana University, School of Informatics and Computing

901 E 10th Street, Bloomington IN, 47408, USA
kapadia@indiana.edu

Abstract. The United States Department of Defense (DoD) is engaged
in a mission to unify its software systems towards a “net-centric” vision—
where commanders gain advantage by rapidly producing, consuming, and
sharing information using service oriented architectures (SOAs). In this
paper, we study the cyber survivability of mission-critical net-centric
systems, focusing on Ballistic-Missile-Defense (BMD) systems. We pro-
pose a net-centric architecture for augmenting the survivability of crit-
ical DoD net-centric systems. Our architecture draws inspiration from
several theories of warfare, focusing on the goal of giving cyber com-
manders “decision superiority.” Our architecture prescribes a net-centric
decision-support system that implements the Cyber OODA loop (the cy-
cle of observing, orienting, deciding, and acting within the cyber do-
main). We present an illustration-of-concept prototype implementation,
and describe its role in a ballistic-missile exercise. We relate our experi-
ences from this exercise and suggest future directions towards achieving
net-centric cyber survivability.

1 Introduction

Faced with a multitude of special-purpose systems suited to individual mis-
sions such as Ballistic Missile Defense (BMD) and Space Situational Awareness
(SSA), the United States Department of Defense (DoD) has recognized the need
to integrate these systems into a service oriented architecture (SOA). SOAs al-
low various entities to maintain control of their critical systems, and yet offer
their services over the network. For example, a radar will be able to track both
satellites and missiles in support of either space or BMD missions—previously
� This work is sponsored by the Department of Defense under Air Force Contract

FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by the United States
Government.

�� This work was performed while Apu Kapadia was at MIT Lincoln Laboratory.

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 125–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 M.N. Gagnon et al.

an unavailable capability. The DoD is thus engaged in a mission to unify its
computer networks towards a “net-centric” vision, where various systems are
available via the Global Information Grid (GIG).

We expect that adversaries may attempt to employ cyber attacks to inter-
fere with the DoD’s SOA systems. For example, an adversary may accompany a
ballistic missile attack with a multitude of cyber attacks designed to inhibit de-
fensive missile counter-measures. It is therefore imperative that mission-critical
net-centric systems operate dependably, even when under cyber attack.

We propose a net-centric architecture for augmenting the survivability of crit-
ical DoD network services. Our architecture draws inspiration from several theo-
ries of warfare, focusing on the goal of giving commanders “decision superiority”
in the cyber domain. Commanders have decision superiority when they are able
to make better and quicker decisions than their adversaries [5].

We evaluate our architecture in the context of a BMD demonstration. In
November 2009, MIT Lincoln Laboratory demonstrated a proof-of-concept net-
centric BMD decision-support system during the simulation of an interconti-
nental ballistic missile (ICBM) attack [10]. For this exercise, we developed and
deployed an illustration-of-concept implementation of our survivability architec-
ture. This exercise demonstrated the principles of our survivability architecture
in a realistic simulation of a coordinated ICBM and cyber attack. Our experience
developing this survivability architecture taught us several important lessons
learned, which we share in this paper.

We make the following contributions:

– We propose that critical SOA systems support cyber survivability by em-
ploying our “Net-centric Cyber Decision-Support” (NCDS) architecture. The
NCDS architecture represents an interesting point in the space of techniques
for achieving cyber survivability. The NCDS architecture complements exist-
ing approaches to survivability by improving the user’s ability to (1) correct
runtime faults and (2) collaborate with artificial-intelligence systems to pro-
duce higher-quality decisions.

– We instantiate the NCDS architecture as an illustration-of-concept imple-
mentation. We evaluate our implementation in the context of a simulated
ICBM and cyber-attack exercise.

– We relate our experiences from developing our survivability architecture, and
suggest future directions towards achieving cyber survivability for mission-
critical SOA services.

The rest of our paper is organized as follows. Section 2 presents background
material on the theory of warfare, which provides the inspiration for our surviv-
ability architecture. Section 3 presents our proposed survivability architecture.
Section 4 presents our demonstration, including the scenario, implementation
details, and results. In Section 5 we relate the lessons we learned while design-
ing, implementing, and testing our survivability architecture. We conclude the
paper in Section 6.

Net-Centric Cyber Survivability for Ballistic Missile Defense 127

2 Background

The design of our survivability architecture draws from several theories of war-
fare. In particular our design uses concepts from information warfare, net-centric
warfare, and decision superiority. In this section we present background mate-
rial on these concepts and relate them to decision-support systems and cyber
survivability.

2.1 Information Warfare

Information warfare is concerned with protecting, improving, and leveraging
one’s own information while simultaneously corrupting the adversary’s informa-
tion [15]. Two central concepts of information warfare are the related concepts
of situational awareness and decision-making processes. Situational awareness is
one’s perception and comprehension of their environment [8]. A decision making
process is simply a method by which an entity makes decisions. It could be a
formally specified routine or an unspecified ad-hoc approach. Regardless of the
level of formality, military strategists often conceptualize the decision-making
process as a four-part cycle of observing, orienting, deciding, and acting—the
OODA loop [3]. Figure 1 graphically presents a simplified graphical view of the
OODA loop.

Actors attempt to achieve decision superiority by making better decisions
more quickly. Adversaries attempt to prevent decision superiority by conduct-
ing offensive information operations that attempt to corrupt their opponent’s
decision-making processes [15,19]. Actors cannot enact good decisions if their
observations are corrupted or if they cannot synthesize observations into sat-
isfactory intelligence. While there are many ways to disrupt the OODA loop’s
feedback cycle, (including such things as physical attack and psychological op-
erations), in this research we are principally concerned with cyber activities.

Fig. 1. The OODA loop

128 M.N. Gagnon et al.

There are two specific OODA loops we discuss in this paper.

1. The BMD OODA Loop is the decision-making process enabling ballistic mis-
sile defense. This OODA loop includes all the systems that allow decision-
makers to observe and analyze potential missile threats as well as to enact
defensive counter-measures. A proof-of-concept service-oriented-architecture
(SOA) system has been developed that strengthens the BMD OODA loop
by giving decision-makers better access to observations and intelligence. We
use this SOA system as the platform to evaluate the implementation of our
survivability architecture; our architecture protects the BMD OODA loop
from cyber attack.

2. The Cyber OODA Loop is the decision-making process enabling cyber-attack
defense. Similar to the BMD OODA Loop, the Cyber OODA loop facilitates
the observation and analysis of cyberspace and enables decision-makers to
enact defensive counter-measures. Our survivability architecture augments
cyber-survivability by strengthening the Cyber OODA loop.

While cyberspace generally refers to the global domain of interconnected
computing systems, in this work we focus on the specific cyber domain that
supports ballistic missile defense in the United States. Thus when we refer
to the Cyber OODA loop we are referring to the specific decision-making
process used to defend the BMD mission from cyber attack.

2.2 Decision-Support Systems

A decision-support system (DSS) is a system that improves a particular decision-
making process by making it more effective, less risky, and faster. A DSS essen-
tially aims to strengthen a particular OODA loop. For example, the SOA system
for BMD is a decision-support system. Likewise, our cyber-survivability architec-
ture is a DSS intended to augment the survivability of mission-critical software
systems.

DSS-based survivability architectures are not new. Schwaegerl et al. propose
to use a DSS to increase the survivability of complex power systems [17]. Lee
et al. developed a DSS system that improves the survivability of damaged sub-
marines [11]. Relating to cyber survivability, a wide variety of existing software
systems can be viewed as decision-support systems that employ automated de-
cision making to improve the survivability of software systems [9,18,16].

Our cyber-survivability architecture is a decision-support system. Our ap-
proach diverges from existing approaches by using net-centric services to facili-
tate human and automated decision making.

2.3 Net-Centric Warfare

The DoD has adopted the theory of network-centric warfare in its campaign to
adapt to warfare in the information age [1]. Net-centricity promises to enhance
mission effectiveness based on the following premises:

Net-Centric Cyber Survivability for Ballistic Missile Defense 129

1. “A robustly networked force improves information sharing.
2. Information sharing enhances the quality of information and shared

situational awareness.
3. Shared situational awareness enables collaboration and self-

synchronization, and enhances sustainability and speed of command.
4. These, in turn, dramatically increase mission effectiveness.” [13]

Net-centric forces leverage high-quality information networks to strengthen their
OODA loops. By rapidly sharing observations and intelligence, decision makers
can make better decisions more quickly—achieving decision superiority.

Service-oriented architectures (SOAs) facilitate information sharing and col-
laboration, enabling net-centricity. Accordingly, the DoD is increasingly inter-
ested in developing SOA systems to facilitate mission-critical decision-support
systems.

In the next section we outline our net-centric survivability architecture, which
we use to augment the survivability of the net-centric BMD system.

2.4 Cyber Survivability

We consider the concept of cyber survivability as the ability of a system to con-
tinue to provide a specified level of mission functionality while being subjected
to system faults [12].

We believe that engineers should follow a three-prong approach to building
systems with cyber survivability. First, it is imperative that engineers follow en-
gineering best-practices to maximize the robustness of net-centric SOA systems.
Second, we believe that engineers should augment the survivability of net-centric
SOA systems at run time by using cyber decision-support systems. Third, the
architecture should be able to evolve to meet as yet unforeseen threats by using
secure architectural principles.

3 The Net-Centric Cyber Decision-Support Architecture

As the DoD intends to use net-centric SOA systems during warfare, we ex-
pect these systems to be subject to attack. More importantly than usual, such
mission-critical systems must be robust to system faults that result from either
innocent error or malicious attacks.

As defined in Section 2, we believe that engineers should augment the cyber
survivability of their systems by using cyber decision-support systems. In this
section we describe such systems as they apply to net-centric architecture: net-
centric cyber decision-support (NCDS) systems.

AnNCDS systemutilizesnet-centricSOA services (cyber services) to strengthen
the Cyber OODA loop. By strengthening the Cyber OODA loop, NCDS systems
allowdecisionmakers to intelligently respond to system faults, such as those caused
by cyber attacks. We prescribe a particular architecture for building NCDS sys-
tems. Our NCDS architecture prescribes six roles that cyber services and human
operators fulfill.

130 M.N. Gagnon et al.

1. Cyber sensors monitor events in cyberspace.
2. Cyber analyzers coalesce sensor data, provide situational awareness, and syn-

thesize actionable intelligence.
3. Decision-mediators facilitate decision-making by presenting situational

awareness and potential actions to decision makers in an intelligent
manner.

4. Automated decision-makers produce “reflex” decisions.
5. Human decision-makers produce “cognizant” decisions.
6. Actuators enact decisions.

These roles facilitate both localized and distributed decision making. For exam-
ple, a particular server could contain several sensors, analyzers, and actuators.
In addition, it could contain its own decision mediator and automated decision
maker. This way the server is capable of self-sufficiently performing reflexive deci-
sion making. In addition, the server publishes its own observations and analysis,
contributing to global situational awareness.

In the following subsections we describe the components of our NCDS archi-
tecture in greater detail.

Analyzer

Sensor

Observations

Decision
mediator

Intelligence

Decision
maker

Actuator

Decisions

Decision
making

Fig. 2. Our NCDS architecture component implements the Cyber OODA Loop

3.1 Cyber Sensor Services

Cyber sensors directly observe the cyber environment. Cyber sensors should
be indicative. An indicative sensor reveals important information about system
state, such as the presence or cause of faults.

To maximize situational awareness, a variety of indicative sensors should be
placed throughout the network such as on network devices as well as on desktop
and server systems. These sensors will provide direct observations that—once
transformed into intelligence—will give decision makers critical information nec-
essary to enact decisions to remedy faults.

Net-Centric Cyber Survivability for Ballistic Missile Defense 131

In order for observations to be useful, they must be communicated to decision
makers (via intermediary services). Each cyber sensor is subsequently a net-
centric service. Individual cyber analyzers subscribe to the specific observations
that they require for their analysis. As a sensor observes its domain, it continually
publishes observations to its subscribers.

3.2 Cyber Analyzer Services

Sensors merely observe and report events. Without analysis, raw sensor data
is often meaningless to decision makers. Cyber analyzers synthesize actionable
intelligence from raw sensor data. For example, an application sensor might
monitor program control flow, while a complementary analyzer would determine
if the observations were suspicious. If an analysis reveals suspicious behavior, the
analyzer would summarize the observations in a way that would be meaningful
to a decision maker.

Because an NCDS system will likely contain many sensors and analyzers, we
expect that it would be overwhelming to allow analyzers to directly report in-
telligence to decision makers. To manage information overload, analyzers report
intelligence to decision makers through decision mediators.

3.3 Decision Mediator Services

When a system fault has occurred, one or more decision makers must study the
intelligence and decide to enact one or more responses to remedy the fault. To
facilitate decision making and manage information overload, each decision maker
interacts with a single decision mediator. A decision mediator is an automated
process that intelligently chooses the most relevant information to present to
the decision maker. Additionally, the mediator culls the universe of possible
responses, selecting the most promising actions to present to the decision maker.

Consider, for example, a scenario where an adversary launches a denial-of-
service attack against a defended computer system. The attack produces de-
viations in application control flow, network traffic, and CPU utilization. Au-
tomated analyzers study observations (gained from the suite of cyber sensors)
and notice that the deviations are indicative of an attack. The analyzers subse-
quently publish this intelligence to the relevant decision mediators. The decision
mediators survey the analyses and guesses which information will be most useful
to the decision maker. In this example, the decision mediator forms a belief that
the analysis of CPU utilization will be most useful to its decision maker. The
decision mediator then presents an abridged form of the analyses to the decision
maker, emphasizing the importance of the CPU-utilization analysis. In addition,
the mediator also presents a set of suggested responses to the decision maker.

This example illustrates the heuristic nature of the decision mediator. Due to
the limitations of artificial intelligence, the mediator may fail to present the most
relevant information and responses to the decision maker in its first attempt. It
is therefore important that decision mediation be an interactive process. When
the decision maker is unsatisfied with its information or response palette, it

132 M.N. Gagnon et al.

redirects the mediator to re-analyze and re-present the intelligence and palette
of responses. This interaction continues until the decision maker chooses to enact
one or more responses to remedy the fault.

3.4 Decision Makers

Our NCDS architecture prescribes employing both human decision makers and
automated decision makers to achieve decision superiority. Automated decision
makers provide reflex decisions—i.e. quick and safe decisions. We say a decision
is safe if it is unlikely to cause harm or when its harm can easily be undone.
Human decision makers provide cognizant decisions—potentially dangerous de-
cisions that take into account the myriad information that cannot easily be
modeled in the NCDS domain.

Our prescription constrains automated decision-makers to making safe deci-
sions since we believe that state-of-the-art artificial intelligence (AI) is not ma-
ture enough to enact potentially dangerous decisions. This reflects current DOD
doctrine that AI is too immature to allow unmanned systems to automatically
make the decision to fire lethal weapons [14]; in the cyber domain, dangerous
decisions may also have lethal consequences. With regards to ballistic missile
defense, for example, a poorly chosen firewall rule could accidentally block radar
communication—breaking the BMD OODA loop and preventing missile defense.

Automated decision makers are important because they maintain a fast
OODA tempo—contributing to decision superiority. However, automated de-
cision makers are constrained by the decisions they make (via policy) as well as
their cognitive ability to choose good decisions (via the limits of AI). To achieve
decision superiority, it is therefore important to also employ human decision
makers.

Like automated decision-makers, human decision-makers review intelligence
and potential actions and direct actions when appropriate. However, we expect
human operators (1) to have access to more situational awareness than can be
encoded in an NCDS system and (2) to be better able to consider the conse-
quences when choosing to enact potentially dangerous decisions.

3.5 Actuator Services

Cyber actuators enact decisions. Similar to cyber sensors, actuators are deployed
throughout the network on servers, client machines, network devices, etc. For
example, a firewall actuator could allow a decision maker to change the firewall
rules for a particular firewall. In our illustration-of-concept demonstration, we
use a hypervisor actuator to dynamically switch to an alternate guest operating
system.

4 Demonstration

We implemented an illustration-of-concept NCDS system and demonstrated its
operation during a simulated ballistic missile attack. During the demonstration

Net-Centric Cyber Survivability for Ballistic Missile Defense 133

a human operator used the NCDS system to observe, analyze, and respond to
a cyber attack conducted in coordination with the missile attack. We describe
the demonstration here detailing the scenario, the components of our NCDS
implementation, and the cyber attack.

4.1 Scenario

A proof-of-concept BMD net-centric decision support system was demonstrated
during the simulation of an intercontinental ballistic missile (ICBM) launch in
November 2009. During the demonstration, operators used the BMD net-centric
system to receive situational awareness about the ICBM. While the projectile
was in flight, the simulated adversary launched a denial-of-service cyber attack
targeting a critical radar-sensor service. Our illustration-of-concept implementa-
tion of the NCDS architecture observed symptoms of the attack and sent an alert
to a “cyber operator.” The intelligence indicated that the radar-sensor service’s
operating-system kernel was consuming a disproportionate amount of CPU time.
In response, the cyber operator directed the radar-sensor service’s hypervisor to
switch to an alternate operating system and restart the service. This successfully
mitigated the attack, since it was targeting a vulnerability that was specific to
the previous operating system.

In the following subsections we describe the components of this demonstration
in greater detail. We begin by briefly describing the net-centric BMD system,
then follow with a description of the cyber attack. We conclude this section
by describing the illustration-of-concept NCDS implementation that we used to
mitigate the cyber attack.

4.2 Cyber Victim: Radar-Sensor Service

Our NCDS architecture was deployed during the demonstration of a proof-of-
concept net-centric BMD decision-support system [10]. Similar to our NCDS
architecture, this system uses SOA services to strengthen the Ballistic-Missile-
Defense OODA loop.

One principal component of the net-centric BMD system is the Radar-Sensor
Service, which publishes radar data that authorized users may subscribe to
through a web interface. (These services are analogous to NCDS Sensor Ser-
vices.) This radar data is consumed by subsequent analytical components, which
ultimately present the data as an executive summary to an end user who acts as a
decision-maker. Without the data feed from the radar-sensor service, situational
awareness for the entire BMD mission is lost.

The radar-sensor and subsequent components are implemented as SOA ser-
vices in Java. For the demonstration, each service executed on its own computer
system. To facilitate integration with the cyber sensor and actuator, the Radar-
Sensor Service ran within VMware Workstation (the host operating system was
Linux CentOS 5, while the guest operating system alternated between Linux
CentOS 5 and FreeBSD). The other services executed on non-virtualized Linux
Red Hat hosts, though in principle they could just as easily have been virtualized.

134 M.N. Gagnon et al.

4.3 Cyber Attack

We expect that a capable adversary will use all available means to circumvent
ballistic missile defense, including using information operations to weaken the
defender’s ability to enact missile countermeasures. We implemented such a cy-
ber attack that targets the Radar-Sensor Service. By disabling the Radar-Sensor
Service, the cyber attack disrupts the BMD OODA loop—preventing BMD com-
manders from potentially enacting effective missile counter-measures.

We model an adversary that has gained execute access on a single computer
within the mission network. From their perch inside the network, the adversary
launches an algorithmic-complexity attack by sending a continuous stream of
specially crafted packets to the computer hosting the Radar-Sensor Service.

A single computer cannot usually generate enough traffic to cause a denial-
of-service with a simple packet flood. However, algorithmic-complexity attacks
effect worst-case performance in vulnerable algorithms, allowing attackers to
consume a disproportionate amount of victim resources [6]. Our attack causes
disproportionate CPU consumption of the operating system running the Radar-
Sensor Service. Our attack exploits a specific Linux-kernel vulnerability that
was patched in 2003 [7,20]. We re-introduced the vulnerability on our system by
“un-patching” the CentOS 5 kernel. With this vulnerability, a 34-byte exploit
packet, transmitted at a sustained rate of 800 Hz (for an average bandwidth
consumption of 26 kbps), is sufficient to cause a complete denial of service.

4.4 NCDS Implementation Overview

To illustrate how our NCDS system can augment the survivability of mission-
critical software systems, we developed an illustration-of-concept implementa-
tion of the NCDS architecture. We tailored our implementation to mitigate the
demonstration’s particular cyber attack. Though the defense’s success was prede-
termined, the implementation is valuable for presenting the concept of operations
(CONOPS) for our NCDS architecture. Further, we also believe that the imple-
mentation represents an effective approach for augmenting survivability through
application-specific fault tolerance implemented using virtualization. This imple-
mentation also led to several lessons learned, which we describe in Section 5. Our
implementation employs each component of the NCDS architecture described in
section 3:

– VTop implements a cyber-sensor service that monitors CPU utilization.
We also implemented a trivial cyber-analyzer service that publishes an
alert when CPU utilization is suspicious (when kernel-space utilization is
above a preset threshold).

– VM-Switch implements a cyber-actuator service that can dynamically
switch the operating system of Radar-Sensor-Service instantiations.

– Our implementation only supports a human decision maker, the “cyber
operator.” We provided a trivial implementation of the decision-mediator
service. The decision-mediator provides the cyber operator with the output

Net-Centric Cyber Survivability for Ballistic Missile Defense 135

of VTop, any alerts generated by the cyber-analyzer, as well as an interface
to VM-Switch via a Java graphical user interface.

4.5 Cyber Sensor: VTop

Overview. The VTop Cyber Sensor monitors and publishes a specific statistic
pertaining to CPU utilization. At a rate on the order of 1000 Hz, the sensor
samples the processor’s state, recording whether the processor is idle or is exe-
cuting in user or kernel space. Every second, the sensor aggregates the tally and
publishes the proportion of time spent idle or in user or kernel space. This sensor
is indicative of system faults that manifest themselves is anomalous utilization
patterns. For example, our cyber attack manifests itself by causing the CPU to
spend approximately 100% of its time in kernel space.

Implementation. VTop uses virtualization technology to make its observations.
The observed system (the Radar-Sensor Service computer) runs as a virtual ma-
chine within VMware Workstation. VTop uses VMware’s VProbes facility to trace
the execution of the observed system [2]. VTop is implemented as a 10-line VProbe
script piped to a Ruby script that parses the VProbe output. A Java application
publishes the latest window of observations every second.

VTop relies on performance isolation provided by VMware Workstation.
VProbes (and hence VTop) is not adversely affected by the cyber attack since
the performance of the guest operating system does not adversely affect the per-
formance of the hypervisor. If VTop were implemented as a component of the
observed system, then the attack would likely interfere with the sensor. Here we
rely on the assumption that an adversary cannot affect the operation of the hy-
pervisor; we essentially assume that the hypervisor is a trusted computing base
(TCB). While this assumption is not warranted in our setup,1 we believe that
it should be possible to implement a trustworthy hypervisor that is dependably
immune to attack.

Results. VTop and its accompanying analyzer successfully detected the cyber
attack. Our main concern was that VTop would impose undue computational
and network overhead. Due to the difficulty of benchmarking hypervisors, it is
difficult to ascertain precise quantitative measurements of VTop’s computational
overhead. For the demonstration though, we did observe that VTop’s perfor-
mance was satisfactory; it did not degrade the throughput of the Radar-Sensor
Service.

From running informal tests offline, we measured VTop’s network overhead. On
average, each VTop sensor observation requires ∼ 9.5 KB uncompressed (∼ 1.5

1 In our setup, it might be possible for an adversary to exploit a vulnerability in
the host operating system. In addition, VMware Workstation itself might be vul-
nerable to attack. For example, it is possible that VMware workstation contains
an algorithmic-complexity vulnerability that would allow an adversary to violate
Workstation’s performance-isolation property.

136 M.N. Gagnon et al.

KB compressed). A large portion of this communication overhead is due to the
message format imposed by our net-centric messaging protocol. In future work it
will be important to significantly reduce the network overhead of sensors and an-
alyzers since we expect them to continually publish data throughout the network.

4.6 Cyber Actuator: VM-Switch

Overview. The VM-Switch actuator uses the hypervisor to dynamically switch
the Radar-Sensor Service’s operating system from Linux CentOS 5 to FreeBSD.
Since the Radar-Sensor Service is implemented as a Java application, we are able
to run the service on both Linux and FreeBSD. After the actuator switches to
FreeBSD it restarts the Radar-Sensor Service.

This actuator is capable of remedying faults within the operating system.
Since the demonstration’s cyber attack is specific to the Linux operating system,
switching to FreeBSD makes the Radar-Sensor Services immune to the attack.

Fault Tolerance. Though this actuator is tailored to our demonstration, it
represents the general technique of achieving fault tolerance through design di-
versity. Design diversity is a standard approach to achieving fault tolerance. In
software systems, identical duplicates do not provide useful redundancy since
software faults are usually caused by design errors [4]. Usefully redundant soft-
ware is obtained by redundant copies that provide desired semantics with in-
dependent designs. The hope is that independent designs will experience faults
under different circumstances. When one design experiences a fault, switch to
an alternate design in the hope that the circumstances will not cause a fault in
the alternate design. There are many open problems with using design diversity
to achieving fault tolerance, but we are optimistic that future work will provide
useful mechanisms for NCDS actuators.

Implementation. Like VTop, the VM-Switch actuator relies on virtualization
to achieve its effect. Before the demonstration we prepared each VM (Linux and
FreeBSD) by installing a copy of the Radar-Sensor Service. We used VMware’s
vmrun utility to “pause” the FreeBSD VM and activate the Linux version. The
guest VM communicates via the host’s network interface using network-address
translation (NAT). When VM-Switch activates, it (1) pauses Linux and un-
pauses FreeBSD, (2) also updates the NAT to maintain the same IP address,
and (3) restarts the Radar-Sensor Service in FreeBSD.

Luckily, the Radar-Sensor Service is semantically stateless since the service
simply publishes data that it directly receives from the radar (i.e. the application
does not need to maintain any state to operate). Being stateless simplifies the
design and implementation since application state does not need to be transferred
from the Linux VM to the FreeBSD VM during activation.2 Our approach is
still applicable to stateful applications. For such applications greater care must
2 Although the service is semantically stateless, the service was not implemented to

be stateless. As a consequence we were forced to transfer a small amount of “initial-
ization state” between VMs during switches.

Net-Centric Cyber Survivability for Ballistic Missile Defense 137

be taken to not only transfer state, but to also ensure that an attack cannot
propagate through the transferred application state.

Results. As expected, VM-Switch successfully mitigated the attack. However,
the response latency is longer than we anticipated. On average, the response
took 33 seconds. This latency is largely due to the latencies imposed by our
messaging framework. The VMware pause and un-pause operations contributed
little latency. We expect that future work will show that significantly shorter
actuation latencies are possible.

4.7 Cyber Analyzer and Decision Mediator

As mentioned before, the components developed for the cyber analyzer and deci-
sion mediator are trivial and included solely to provide an end-to-end illustration-
of-concept of our NCDS architecture.

The cyber analyzer receives the CPU consumption of the target system, pro-
vided as a SOA service by VTop, and generates an alert message if the CPU
consumption of the kernel exceeds a threshold for a given time (in this case, the
CPU consumption only needs to be at 100% for over 1 second).

The decision mediator simply provides an interface to VTop and VM-Switch to
a human operator. Figure 3 presents a graphical view of VTop output during an
offline test of the NCDS implementation. During the demonstration the cyber
operator reviewed VTop intelligence like this graph to detect and respond to
the cyber attack. Figure 3 shows the progression from normal operation under
Linux, through the attack, and finally remedied operation under FreeBSD once
the cyber operator initiated the response.

time
 20 40 80 100 120

100 %

80%

60%

40%

20%

0%

C
PU

 u
til

iz
at

io
n

A B C

Fig. 3. Graphical view of VTop output over a two minute window (120 seconds).
Legend: idle (white), kernel-space (gray), user-space (black). At time 0, the Radar-
Sensor Service is operating normally under Linux. (A) Attack commences, (B) Attack
becomes fully effective, (C) The VM-Switch actuator activates the FreeBSD alternate
virtual machine.

138 M.N. Gagnon et al.

5 Lessons Learned and Future Directions

5.1 Human and Automated Decision Maker

In our demonstration, we relied on a human decision maker to activate the
VM-Switch actuator. On one hand, humans have a greater ability to recognize
patterns and have access to more situational awareness than can be easily en-
coded in a computer system. On the other hand, humans are slow relative to
the speed that automated decision makers can react. It is important that future
work clarifies the roles of automated and human decision makers in such a way
that leverages the strengths of each approach.

5.2 False Positives and False Negatives

Though the VTop sensor is indicative, it is subject to false positives (the kernel
may consume 100% of the CPU but the Radar-Sensor Service may actually
work fine if its throughput is maintained) and false negatives (many attacks will
not manifest symptoms observable via VTop).

In general, false negatives are tolerable because we expect other sensors and
analyzers to compensate for a particular sensor’s blind spots. We expect that
false positives will not be problematic for VTop since a cyber operator can use
the decision mediator to rapidly investigate a potential fault.

VTop’s accuracy is only acceptable because we rely on the assumption that
other, more indicative sensors exist. For example, we could employ a cyber sen-
sor that subscribes to the Radar-Sensor Service; when it observes the absence of
expected radar data it is strongly indicative that a fault has occurred. Such sen-
sors are also desirable because their accuracy seems more amenable to analysis.
Future NCDS must balance the benefits and costs of generic versus specialized
sensors and analyzers. Perhaps generic frameworks for developing specialized
components can provide the solution.

5.3 Adversary Model

In our demonstration we use a limited adversary model where an adversary used
a single denial-of-service attack. During warfare, we expect real adversaries to
launch a multitude of attacks targeting all components of the BMD OODA loop.
Further, we should also expect non-DOS attacks, such as disinformation attacks
and attacks against the Cyber OODA loop.

To combat the wide range of attacks we expect to encounter during warfare it
will be important to develop a diverse suite of sensors, analyzers, and actuators
that are capable of mitigating all of these types of attacks.

5.4 Statefulness

The VM-Switch actuator is easiest to implement when it is applied to a stateless
application. When developing this actuator we assumed that since the Radar-
Sensor Service is semantically stateless that its implementation would also be

Net-Centric Cyber Survivability for Ballistic Missile Defense 139

stateless. This turned out to be a wrong assumption, as the Radar-Sensor Ser-
vice maintained a small amount of state, which we needed to transfer during
a VM-Switch activation. Since it is easier to protect stateless implementations,
we recommend that semantically stateless applications should also use stateless
implementations.

However, even if a distributed application is completely stateless with respect
to application-layer semantics, it does not necessarily mean that it will be state-
less on all layers of the network stack. In traversing a modern, secure, enterprise
network, a typical data packet will need to pass through multiple network de-
vices, such as firewalls and proxy servers, which will track some sort of state.
Therefore, in order to ensure application layer survivability, security restrictions
at lower levels of the network stack will need to be relaxed, creating additional
attack surface. We seek to further investigate this trade off, in order to optimize
cyber survivability.

5.5 Mission-Level Awareness

Based on user feedback obtained from BMD subject-matter experts, we recognize
the importance of generating “mission-level awareness.” It is of little value to
a commander to know that a service has failed; it is of great value to know
that the BMD mission is currently compromised during a missile attack because
a critical service has failed. Mission-level awareness can be embedded in the
NCDS architecture by implementing analyzers that correlate system faults with
mission impact. It remains an open problem though how such analyzers should
be implemented.

6 Conclusion

As the DoD increases its reliance on net-centric systems it becomes increasingly
important to protect those systems from cyber attack. Towards this end, we have
developed the Net-centric Cyber-Decision-Support (NCDS) architecture. Our
architecture aims to improve the user’s ability to quickly enact good decisions
that will remedy faults at run time. Our approach to survivability stands to
advance the state of the practice by leveraging existing dependability approaches
in two ways.

First, our approach adds another “layer” of dependability on top of existing
approaches. We acknowledge that it is not currently possible to develop flawless
complex-system software. However, there are numerous techniques for improv-
ing the “quality” of such software. We expect that software developers will use
current engineering best practices to develop the highest quality software possi-
ble. Much research in computer dependability is dedicated to establishing and
improving methods for developing dependable software. Our architecture com-
plements this research by providing a scheme to improve the user’s ability to
detect and remedy faults at runtime.

Similarly, our approach adds a layer of collaborative decision-making on top of
existing intrusion-detection-and-response (IDR) approaches. Much IDR research

140 M.N. Gagnon et al.

is dedicated to establishing and improving methods for (1) observing computing
systems, (2) analyzing observations, and (3) formulating and enacting responses.
Rather than developing such a technique, in this research we propose an archi-
tecture that integrates existing IDR approaches into a complete system that
improves decision making. We also acknowledge that current AI technology is
insufficient to completely supplant human decision making. Thus we propose
to facilitate collaboration between AI systems and human decision makers to
produce higher-quality decisions.

Thus our design of the NCDS architecture represents an interesting point in
the space of techniques for achieving cyber survivability; it complements existing
approaches for developing dependable software and for detecting and responding
to cyber attacks.

Though we believe that the NCDS architecture provides a promising approach
to improving cyber survivability, it is not yet mature for production. Several open
questions remain before we can endeavor to engineer a production implementa-
tion of the NCDS architecture. For example, how do we balance the competing
needs to share information and to conserve bandwidth? What are the limits of
automated decision making? How should automated and human decision makers
interact? Is it possible to implement a trustworthy hypervisor? Is survivability
assurable? Though such questions abound, we believe that future work can an-
swer these questions.

Our experience developing the NCDS architecture and illustration-of-concept
implementation has proven valuable for the lessons we have learned. We expect
that these insights will be valuable to ourselves and to others as we continue to
work towards achieving survivability in cyber space.

Acknowledgments

We would like to thank Michael Locasto for contributing to early discussions in
the development of our architecture.

Succeeding in such a large-scale operational-like event required a team of 25
people, all of whom we would like to thank. In particular John Urbano was key
to the development and integration of the cyber-survivability components within
the net-centric framework.

References

1. Alberts, D.S., Garstka, J.J., Stein, F.P.: Network centric warfare: Developing and
leveraging information superiority (1998)

2. VMware Technology Network Blog. Introducing VProbes: a stethoscope for your
VM (June 2008),
http://blogs.vmware.com/vmtn/2008/06/introducing-vpr.html

3. Boyd, J.R.: A discourse on winning and losing. Maxwell Air Force Base, AL: Air
University. Library Document No. M-U 43947, Briefing slides (1987)

http://blogs.vmware.com/vmtn/2008/06/introducing-vpr.html

Net-Centric Cyber Survivability for Ballistic Missile Defense 141

4. Chen, L., Avizienis, A.: N-version programming: A fault-tolerance approach to
reliability of software operation. In: International Symposium on Fault-Tolerant
Computing, FTCS (1978)

5. Coakley, T.: Decision superiority. Air & Space Power Journal (May 2001)
6. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.

In: USENIX Security Symposium (2003)
7. National Vulnerability Database. Vulnerability summary for CVE-2003-0244,

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0244

8. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human
Factors 37(1), 32–64 (1995)

9. Keromytis, A.D.: Characterizing self-healing software systems. In: Proceedings of
the 4th International Conference on Mathematical Methods, Models and Architec-
tures for Computer Networks Security (MMM-ACNS) (2007)

10. MIT Lincoln Laboratory. Air and missle defense technology principal accomplish-
ments (2008),
http://www.ll.mit.edu/mission/airmissile/

airmissileaccomplishments.html

11. Lee, D., Lee, J., Lee, K.H.: A decision-support system to improve damage sur-
vivability of submarine. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS
(LNAI), vol. 2358, pp. 61–78. Springer, Heidelberg (2002)

12. Lipson, H.F., Fisher, D.A.: Survivability—a new technical and business perspective
on security. In: NSPW 1999: Proceedings of the 1999 workshop on New security
paradigms, pp. 33–39. ACM, New York (2000)

13. United States Department of Defense. The implementation of network-centric war-
fare. United States Government Printing Office (January 2005)

14. United States Department of Defense. FY2009–2034 Unmanned systems integrated
roadmap (2009), http://www.acq.osd.mil/uas/

15. United States Joint Chiefs of Staff. Joint publication 3-13: Information operations
(February 2006), http://www.dtic.mil/doctrine

16. United States National Institute of Standards (NIST). Guide to intrusion detection
and prevention systems (IDPS) (Special publication 800-94) (February 2007)

17. Schwaegerl, C., Seifert, O., Buschmann, R., Dellwing, H., Geretshuber, S., Leick,
C.: Increase of power system survivability with the decision support tool CRIPS
based on network planning and simulation program PSS R©SINCAL. In: Setola,
R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 119–130. Springer,
Heidelberg (2009)

18. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a reactive
immune system for software services. In: In Proceedings of the USENIX Annual
Technical Conference, pp. 149–161 (2004)

19. United States. Information operations [electronic resource]. U.S. Air Force, Wash-
ington, D.C (2005)

20. Weimer, F.: Algorithmic complexity attacks and the linux networking code (May
2003), http://www.enyo.de/fw/security/notes/linux-dst-cache-dos.html

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0244
http://www.ll.mit.edu/mission/airmissile/airmissileaccomplishments.html
http://www.ll.mit.edu/mission/airmissile/airmissileaccomplishments.html
http://www.acq.osd.mil/uas/
http://www.dtic.mil/doctrine
http://www.enyo.de/fw/security/notes/linux-dst-cache-dos.html

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 142–160, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Safety Case Approach to Assuring Configurable
Architectures of Safety-Critical Product Lines

Ibrahim Habli and Tim Kelly

Department of Computer Science, University of York, United Kingdom
{Ibrahim.Habli,Tim.Kelly}@cs.york.ac.uk

Abstract. Companies are increasingly adopting a product-line approach to the
development of safety-critical systems. A product line offers large-scale reuse
by exploiting common features and assets shared by systems within a specific
domain. In this paper, we discuss the challenges of justifying the safety of ar-
chitectural configurations and variation when developing product-line safety
cases. We then address these challenges by defining an approach to developing
product-line safety cases using the patterns and modular extensions of the Goal
Structuring Notation (GSN). In this approach, we use the GSN patterns exten-
sion for explicitly capturing safety case variations and tracing these variations
to their extrinsic source in the architectural model. Further, we use the GSN
modular extension to organise the safety case into core and variable argument
modules which are loosely coupled by means of argument contracts. We dem-
onstrate this approach in a case study based on a product line of aero-engine
control systems.

Keywords: Safety Cases, Architectures, Product Lines, Variation Management.

1 Introduction

To reduce the engineering costs of safety-critical systems, companies are increasingly
adopting a product-line approach which offers large-scale reuse by exploiting com-
mon features and assets shared by systems within a specific domain. In particular, the
safety case in a safety-critical product line is a valuable asset which should be sys-
tematically documented, reused and maintained. Otherwise, the value of a safety-
critical product line can be easily undermined if the safety case is developed from
scratch, or in an ad-hoc manner, for each product within the product line. Given that
products in a product line share most of their functional features, components, failure
modes and risk mitigation measures, it is reasonable to expect that these products also
share strategies which can be used to argue why they are acceptably safe to operate
within certain environments. For example, if products derived from a product-line
share a set of functional configurations, which pose similar risks managed using
common risk-mitigation measures, it would be sensible to expect that the safety case
for these products share a set of core (i.e. common) argumentation strategies too.

However, like most reusable product-line assets, the challenges do not lie simply in
exploiting and managing commonalities. Rather, the key challenges often lie in the

 A Safety Case Approach to Assuring Configurable Architectures 143

management of the way in which assets may vary, according to predefined architec-
tural constraints. In other words, it is important to identify and manage both the com-
mon and the variable structures of the product-line safety case and the ways in which
these structures may be reused and composed in order to derive a compelling, com-
prehensible and traceable safety case for each individual product.

In this paper, we describe and evaluate a safety case approach to justifying the ar-
chitectures of safety-critical product lines. We start by introducing product-lines. We
then discuss the challenges of managing variations within product-line safety cases
and how they can correspond to architectural configurations. We then present an ap-
proach to developing product-line safety cases using the patterns and modular exten-
sions of the Goal Structuring Notation (GSN) [3]. Finally, this approach is evaluated
in an aerospace case study.

2 Product-Line Engineering

A product line comprises a configurable architecture and a set of reusable core assets.
Products can be derived from the product-line architecture and core assets based on a
predefined process that manages and controls permitted configurations and variations.
These variations in a product line are not an indication that the development is unstable.
Instead, they indicate that differences between products are identified, analysed and
controlled. Product-line development is an integrated approach in that any development
or assessment artefacts, particularly early-lifecycle artefacts such as requirements and
analysis models, can be reused as long as they adhere to the context, architectural con-
straints and variation rules defined in the product line. To reap the benefits of product
lines, the development should be carried out according to defined processes and within
certain technical and business constraints. The following definition by the Software
Engineering Institute (SEI) provides a comprehensive description of product lines
[1]:“A software product line is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way”.
What distinguishes the SEI’s definition from many other accounts of product lines is
that it explicitly addresses the need to develop the product-line core assets and derive
new products “in a prescribed way”, i.e. according to defined processes. There are two
essential processes in any product line, namely:

• Product-line establishment process (domain engineering)
• Product derivation process (application engineering)

In the domain engineering process, the product-line scope is defined, permitted varia-
tions are identified and the reference architecture and core assets are developed [2].
Subsequently, in the product derivation process, products within the scope of the
product line are developed from the reusable assets, according to permitted variations.

3 Variation in Product-Line Safety Cases

The safety case of a product line is not immune from the impact of environmental and
system variations. Ignoring or underestimating the impact of these variations may

144 I. Habli and T. Kelly

seriously weaken confidence in the product-line safety case. For example, any mis-
matches between the product line’s permitted architectural options and the assumed
architectural options considered in the safety case can invalidate certain safety case
claims and evidence. Fig. 2 shows an example safety argument, represented in GSN,
for a safety-critical system. GSN represents safety arguments in terms of basic ele-
ments such as goals, solutions, and strategies (Fig. 1). Arguments are created in GSN
by linking these elements using two main relationships, ‘supported by’ and ‘in context
of’ to form a goal structure. The principal purpose of any goal structure is to show
how goals (claims about the system) are successively broken down into sub-goals
until a point is reached where claims can be supported by direct reference to available
evidence (solutions). As part of this decomposition, using the GSN it is also possible
to make clear the argument strategies adopted (e.g. adopting a quantitative or qualita-
tive approach), the rationale for the approach and the context in which goals are stated
(e.g. the system scope or operational role). GSN has been adopted by a growing num-
ber of companies within safety-critical industries (such as aerospace, railways and
defence) for the presentation of safety arguments within safety cases. The key benefit
experienced by those companies adopting GSN is that it improves the comprehension
of the safety argument amongst all of the key project stakeholders (i.e. system devel-
opers, safety engineers, independent assessors and certification authorities). In turn,
this has improved the quality of the debate and discussion amongst the stakeholders
and has reduced the time taken to reach agreement on the argument approaches being
adopted.

Fig. 1. Core Elements of GSN

The style of the reasoning in the argument in Fig. 2 is hazard/risk directed. Briefly,
the top-level claim, that the system is safe to operate within the specified environment
(SysSafe), is substantiated by arguing that the risk posed by the identified hazards is
acceptable. The top-level claim is made in the context of some definition of the sys-
tem and its environment (CSys and CEnvironment). Next, the argument considers the
acceptability of the risk posed by each identified hazard in the context of specific risk
tolerability criteria (CTolerabilityCri). Finally, the risk acceptability of each hazard is
supported by appealing to the deployment of sufficient risk-mitigation measures
(CRiskMitig) which are implemented by a number of components and interactions
(CompSafe1, CompSafe2, CompSafe3 and ComInter).

 A Safety Case Approach to Assuring Configurable Architectures 145

Fig. 2. Impact of Product-Line Variation on the Safety Argument

Product-line variation can potentially affect the argument in Fig. 2 in any of the
following ways:

• Context and system definition: In a product line, the context and feature models
define how products, derived from the product line, vary from one another. To
this end, the safety argument context elements (CSys and CEnvironment) have to
vary to correspond accurately to the way in which each product is configured,
based on the context and feature models.

• Hazard identification and risk assessment: Depending on the features selected
and the environmental conditions assumed for each derived product, the way in
which the argument considers the risk posed by hazards could vary (ArgSysHz).
Not all hazards may be relevant to all product configurations. Also, the risk
assessment results for each applicable hazard may vary due to some variable ex-
ternal or system features. Further, the risk tolerability criteria may vary across
products if these products are deployed in different environments with different
certification requirements, e.g. civil vs. military applications.

146 I. Habli and T. Kelly

• Risk mitigation measures: The product-line reference architecture may offer a
number of options for mitigating certain risks (CRiskMitig). Not all these options
may be selected for each product. Consequently, the product-line safety argument
needs to accommodate variation concerning how each derived product may miti-
gate its associated risks.

• Implementation of risk mitigation measures: Two derived products may share
the same risk-mitigation strategy, but may vary in how they implement such a
strategy. For example, two products may adopt a strategy for fault-detection by
means of monitoring. However, the product-line reference architecture may offer
two or more alternatives for implementing a monitor, e.g. either in software or in
hardware. The product-line safety case should therefore explicitly address possi-
ble variation in how risk mitigation measures may be implemented.

The above example safety case variations show the importance of developing the
product-line safety case in such a way that permitted safety case variations are explic-
itly defined and traced to other variations in the environment and architectural con-
figuration of a derived product.

4 Managing Product-Line Safety Cases Using GSN

In this paper, we address the challenges presented in the previous section by defining
an approach to developing product-line safety cases using the patterns and modular
extensions of GSN. The patterns and modular extensions of GSN are introduced in
the next two sections, followed by a detailed description and analysis of how they can
be used to create and manage product-line safety cases.

4.1 GSN Patterns Extension

Based in part on the principles of the work on design patterns by Christopher Alexan-
der [9] and the ‘Gang of Four’ (Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides) [10], the concept of a safety case pattern was developed as “a means
of documenting and reusing successful safety argument structures” [3]. A safety case
pattern captures argument structures observed to be common in forming the backbone
of certain safety cases in a particular domain or across different domains. To create
safety case patterns, the core of GSN was extended by adding the following types of
abstraction (Fig. 3):

• Structural Abstraction – supporting generalised n-ary, optional and alterna-
tive relationships between GSN elements

• Entity Abstraction – supporting generalisation/specialisation of GSN
elements

Safety case patterns are created in GSN by abstracting the details of commonly-used
safety argument structures. These patterns describe a successful and a proven style of
argumentation rather than a concrete argument for a particular system.

 A Safety Case Approach to Assuring Configurable Architectures 147

Multiplicity Extensions

A solid ball is the symbol for many (meaning zero or more). The
label next to the ball indicates the cardinality of the relationship

A hollow ball indicates “optional” (meaning zero or one)

A line without multiplicity symbols indicates a one to one
relationship (as in conventional GSN)

Optionality Extension

This symbol is defined for use over the existing relation types.
Choice can be used to denote possible alternatives in satisfying a
relationship. It can represent a 1-of-n and m-of-n selection.

Entity Abstraction Extensions

Uninstantiated Entity

Entity remains to be instantiated i.e. at some later stage the
‘abstract’ entity needs to be replaced (instantiated) with a more
concrete instance.

Undeveloped Entity

This placeholder denotes that the attached entity requires
further development, i.e. at some later stage the entity needs to be
(hierarchically) decomposed and further support by sub-entities.

Fig. 3. GSN Pattern Notation – Entity Abstraction Extensions [3]

4.2 GSN Modular Extension

To support the certification of highly-integrated, modular and reconfigurable systems
such as Integrated Modular Avionics (IMA), the core of GSN was extended with
modular features [4]. These features support the development of modular and compo-
sitional safety cases. One fundamental objective of modular and compositional safety
cases is to reduce the amount of effort needed for the reassessment of a safety case
after system changes or reconfiguration. Rather than considering the safety case as a
single monolithic structure, it can be viewed as a set of well-defined and scoped mod-
ules, the composition of which defines the system safety case. Each argument module
is specified by an interface, comprising [4]:

1. Goals addressed by the module
2. Evidence presented within the module
3. Context defined within the module
4. Arguments requiring support from other modules

Inter-module dependencies:
5. Reliance on goals addressed in other modules
6. Reliance on evidence presented within other modules
7. Reliance on context defined within other modules

Elements 5, 6 and 7 are called Away Goals, Away Context and Away Solutions
(Fig. 4). In particular, an Away Goal is a goal reference which is used to support, or
provide contextual backing for, an argument presented in one module. However, the
argument supporting that goal is presented in another module (hence creating interde-
pendencies between the safety case modules).

148 I. Habli and T. Kelly

Argument Module Away Goal

Away Solution
Argument Contract Away Context

Fig. 4. GSN Modular Notation [4] [5]

Further, in order to promote loose coupling and therefore minimise the impact of
change between interrelated safety case modules, the concept of an argument contract
was created in [4], and later refined in [5] [7] (Fig. 4). Argument contracts preserve
the overall integrity of the modular safety case when the internal details of one or
more argument modules are modified. This is mainly because these contracts are
specified using the interfaces of the interrelated argument modules rather than using
the internal details of these modules (hence protecting interdependent modules from
changes to the internal details of the arguments contained in these modules). Essen-
tially, a safety case contract captures a ‘rely-guarantee’ relationship between two
argument modules. In a contract, items 4 to 7 in a module interface define the ‘rely’
conditions whereas item 1 defines the guarantee conditions (items 2 and 3 should hold
during the composition of the two or more argument modules).

5 Capturing Safety Case Variations Using the GSN Patterns
Extension

In this section, we show how the GSN patterns extension can be used to capture varia-
tion in the product-line safety case. A product-line safety case comprises reusable
argument structures and evidence used as the basis for the definition of the safety case
for each product derived from the product-line assets. Some of these argument struc-
tures and evidence are shared between all product safety cases, and therefore are core,
while others differ from one product safety case to another, and therefore are variable.
Generally, there are two types of product-line safety case variation: intrinsic and ex-
trinsic variation.

Intrinsic variation exists whenever there is more than one argumentation style to
support the safety claims of a particular product-line instance. Extrinsic variation, in
contrast, is more peculiar to product-line safety cases. The source of this type of
variation is not the product-line safety case itself but rather the reusable assets refer-
enced in the safety case from product-line models such as the feature and reference
architectural models. This is because many of these assets are expected to vary in how
they are developed, configured and composed. This variation may change the contri-
bution of these assets to safety and therefore may change the way in which the safety
of the system is justified in the safety case. To this end, it is important that extrinsic

 A Safety Case Approach to Assuring Configurable Architectures 149

variation in a product-line safety case be explicitly linked to, and constrained by, its
source, be it a variation in the context model, the feature model or the reference archi-
tecture model.

Fig. 5. Defining Safety Case Variations using Entity Abstraction Extensions

As discussed in Section 4.1, there are two types of abstraction supported in the
GSN patterns extension: Entity Abstraction (supporting generalisation/specialisation)
and Structural Abstraction (supporting optionality and multiplicity). Here, we use
Entity Abstraction to capture and restrict variation in GSN elements (goals, strategies,
context, assumptions, justifications and evidence). On the other hand, we use Struc-
tural Abstraction to capture and restrict variation in the relationships between the
GSN elements (‘supported by’ and ‘in the context of’ relationships). The left hand
side of Fig. 5 shows example un-instantiated GSN elements (types of Entity Abstrac-
tion). The items in the curly brackets represent types of un-instantiated information
(‘Moving objects’, ‘X’ and ‘Coverage Analysis Data’). These items need to be instan-
tiated before they can be used as part of a concrete safety argument. When represent-
ing extrinsic variation in the product-line safety case, the un-instantiated GSN
elements should be explicitly associated with their source of variation. As shown on
right hand side of Fig. 5, ‘Moving objects’ are limited to ‘Automated Vehicles’, ‘Peo-
ple’ or ‘Automated Vehicles and People’, which are objects defined in the product-
line context model. In other words, these are the moving objects which are assumed to
be within the scope of the product-line and, as such, the safety argument is only valid
in the context of one of these sets of moving objects. Similarly for the ‘Monitoring
Component {X}’ in the ‘MComp’ Goal, two variants of this component exist in the
‘PL_MComp’ Goal: ‘Sensor T.13’ and ‘Sensor T.54’. These variants are alternative
design components offered by the reference architecture. Variations in the safety case
do not only affect the GSN elements, but they also affect the way in which these ele-
ments are connected. To capture and restrict variation in the relationships between the
GSN elements of a product-line safety case, we use the Multiplicity and Optionality
symbols which are part of the GSN patterns extension (Structural Abstraction).

150 I. Habli and T. Kelly

Fig. 6. Thrust Reverse Deployment Protection Argument (adapted from [6])

Fig. 6 illustrates how variation in the way in which GSN elements may be con-
nected can be captured and traced to the product-line models. For each multiplicity
and optionality, we attach a GSN element called ‘Obligation’ (octagon symbol),
which describes the basis on which options and alternatives may be selected. More
specifically, each obligation element that is based on extrinsic variations should be
traced to one or more product-line variations in the context, feature or reference archi-
tectural models. The argument in Fig. 6 is an adaptation of the thrust reverse deploy-
ment defined in [6]. In order to prevent an inadvertent deployment of thrust reversers
in flight, three core checks should be performed: ‘The EEC commands the Isolation
Valve closed’ (R2), ‘The EEC and Airframe command the Directional Control Valve
Forward’ (R3) and ‘The Aircraft commands the Tertiary Locks on’ (R4). The use of
throttle interlocks on certain engines is optional (labelled in Fig. 6 as design variation
point ‘D22’). In other words, the use of throttle interlocks is only required by some
airframe manufacturers. As such, ‘Obligation 13’ is used in Fig. 6 to indicate that
‘R5’ is optional and its selection depends on the instantiation of the design variation
point ‘D22’ (the design assumption here is that, regardless of whether ‘D22’ is instan-
tiated or not, as a minimum requirement, the overall failure rate is not greater than
10-9 per flight hour).

6 Composing Product-Line Safety Cases Using the GSN Modular
Extension

The product-line safety case should be highly reconfigurable in order to support the
derivation of a safety case for each product developed from the product-line assets. In
the previous section, we described how to embed variations into the product-line
safety case using the GSN patterns extension. These variations need to be instantiated

 A Safety Case Approach to Assuring Configurable Architectures 151

for each derived product safety case. However, a key constraint is to instantiate these
variations in a way that minimises the effort needed to assess the suitability of a de-
rived safety case used for the assurance of a particular product. In this section, we
propose that the effort needed for the assessment of each product safety case could be
reduced by the adoption of the concept of modular and compositional safety cases.
Modularity is a proven design technique for improving the flexibility of software
systems, particularly through promoting loose coupling and high cohesion between
modules interacting through a stable set of interfaces. These interfaces hide the details
of each module, exposing only information required for module integration, hence
reducing unnecessary dependencies between interacting modules.

In this section, we use the GSN modular extension, reviewed in Section 4.2, to
structure the safety case into core and variable argument modules. These argument
modules are defined and composed in a way that protects core argument modules
from the permitted variation in the optional argument modules by means of prede-
fined argument contracts. In order to improve the process of deriving a safety case
instance from the product-line safety case, we establish a clear and traceable mapping
between the structures of the product-line safety argument and the structures of the
product-line feature and reference architecture models. Further, it is important to
define a product-line safety case in such a way that variations, e.g. options and
choices, can be added or removed with little impact on the overall structure of the
product-line safety case and its instances. This can be achieved by defining the safety
case in terms of loosely-coupled argument modules. One mechanism for defining
loosely-coupled argument modules is to reduce ‘hardwired’ dependencies between
the argument modules by means of predefined argument contracts [5]. These argu-
ment contracts can serve as a mediator or a proxy between interrelated argument
modules, isolating the way in which one argument module is ‘supported’, or ‘contex-
tually-backed’, by another argument module. More specifically, argument contracts
can be used to contain the impact of variation in one argument module and prevent it
from propagating to other argument modules. The way in which argument contracts
can be used to contain the impact of product-line variations within a safety case is
illustrated in Fig. 7. The top-left hand side of Fig. 7 shows an argument structure in
which the argument module ‘Function X’ is supported by either the argument module
‘Redundancy’ or the argument module ‘Monitoring’, i.e. variation in the form of al-
ternativity. Here, because these two argument modules are directly connected to the
argument module ‘Function X’, a change to these modules may propagate to the ar-
gument module ‘Function X’ and vice versa. The top right hand side of Fig. 7 shows
how the insertion of an argument contract between the argument module ‘Function X’
and the argument modules ‘Redundancy’ and ‘Monitoring’ creates a ‘buffer zone’ that
masks the way in which the argument module ‘Function X’ is supported. For exam-
ple, if a new optional argument module is later added to the product-line safety case
to support the argument module ‘Function X’, any required change should be con-
tained within the argument contract and should not propagate to the argument module
‘Function X’. Fig. 7 also shows internal details of the argument contract, showing
how the public goal ‘SysDesign’, which is part of the public interface of the argument
module ‘Function X’, is supported by a strategy which is based on either a claim of
adequate redundancy, provided by the argument module ‘Redundancy’, or a claim of

152 I. Habli and T. Kelly

adequate monitoring, provided by the argument module ‘Monitoring’. In other words,
within the scope of the argument module ‘Function X’, the actual way in which the
goal ‘SysDesign’ is supported is unknown but entrusted to the argument contract, i.e.
breaking any direct coupling between the argument module ‘Function X’ and the
argument modules ‘Redundancy’ and ‘Monitoring’.

Fig. 7. Variations within an Argument Contract

In short, modularity in the product-line safety case can support the encapsulation of
the arguments behind product-line functions and components in reusable and self-
contained modules. Equally importantly, dependencies between these modules should
be minimised in order to contain potential ripple-effects resulting from changes in the
options and choices provided by the product line.

 A Safety Case Approach to Assuring Configurable Architectures 153

7 Case Study – Assuring Safety of Aero-Engine Sensors

We have demonstrated how a product-line safety case can be constructed using the
patterns and modular extensions of GSN by means of case studies from the aerospace
and automotive domains. The case study presented in this section is partly based on
an aero-engine control system described in [8].

7.1 System Overview

Modern aircraft gas turbine engines are controlled by a Full Authority Digital Electron-
ics Control (FADEC) system. This control system is a high-integrity computer system
that controls and monitors the operation of the engine. Within aero-engine product
lines, not only may these product lines vary at the engine level (e.g. optional/alternative
physical and interface characteristics), but also they can vary at the control system
level (e.g. optional/alternative functional and technological characteristics). The con-
trol system variants can be considered as part of a product line embedded within the
larger engine product line. In this case study, we focus on the commonalities and vari-
abilities within an engine control system product line.

Fig. 8. Block Definition Diagram

A depiction of the reference architecture of the control system product line is
shown in Fig. 8 and Fig. 9 (specified in the Systems Modelling Language (SysML)
[11]). Here we focus on three different types of variations within this architecture.
Firstly, the reference architecture provides two alternative means for measuring the
engine’s inlet air temperature (T1) and inlet air pressure (P1) using either passive or
smart sensors. The key differences between these two types of sensor are as follows.
The reliability of T1 and P1 measurements is higher when smart sensor are used.
Also, signal conditioning, signal selection, fault detection and fault accommodation
can be carried out locally by the smart sensors T1 and P1 (as opposed to being fully
performed by the Electronic Engine Controller when passive sensors are used). Fur-
ther, smart sensors can communicate with the Electronic Engine Controller via the
Engine Databus, and not through a dedicated pipe, and therefore can simplify “wiring
and connections, piping and reduce weight” [8]. The second key architectural varia-
tion lies in the Aircraft Interface block. This variation supports the realisation of vari-
ous interface requirements requested by different customers (e.g. special interface

154 I. Habli and T. Kelly

Fig. 9. Internal Block Diagram

requirements by aircraft manufacturers). Finally, the reference architecture offers
engine health monitoring as an optional block. This block comprises an Engine Health
Monitoring Unit and P0 (ambient pressure) and vibration sensors.

7.2 Safety Case

In this case study, we developed a safety case which considered six different hazards.
In this paper, due to page constraint, we only consider the argument over the risk of
hazardous overspeed. Fig. 10 shows the argument over the mitigation of the faults
contributing to hazardous overspeed, e.g. faults in fuel flow, speed measurements and
T1/P1 measurements. In particular, the ‘T1/P1’ argument module, referenced in the
above argument concerning the contribution of the T1/P1 measurements, requires
further instantiation as it embodies variations which are associated with the ability to
choose between the deployment of either smart or passive sensors.

The argument within the ‘T1/P1’ module is shown in Fig. 11. In this argument, the
top-level claim is made in the context of either passive or smart sensors. This choice
is captured using the GSN choice pattern symbol. This choice is associated with ‘Ob-
ligation 2’ which references design variation concerning the selection of either pas-
sive or smart sensors in the reference architecture. Here, regardless of the selected
design choice, the reasoning strategy is common – arguing over the T1/P1 reading,
conditioning and transmission. The claims concerning the T1/P1 reading, condition-
ing and transmission are supported by three argument contracts, each of which
requires instantiation based on the T1/P1 design choice. The importance of these
argument contracts is that they defer the instantiation of variations associated with the
T1/P1 design choice and therefore preserve the overall integrity of the T1/P1 argu-
ment, i.e. localising the impact of the T1/P1 design choice by hiding this impact
behind the contracts.

 A Safety Case Approach to Assuring Configurable Architectures 155

RiskHzdOvSpeed

Risk of hazardous
overspeed is acceptable

ArgRiskAssManag
Argument over
mitigation of faults
contributing to
hazardous overspeed

SpeedMeasure_Module - Speed
Measurement

Contribution of speed measurements to
hazardous overspeed is acceptable

Module - Speed Measurement

FuelFlow_Module - Fuel Flow

Contribution of fuel flow process
control to hazardous overspeed is
acceptable

Module - Fuel Flow

FMV_Module - FMV

Contribution of FMV position
control to hazardous overspeed is
acceptable

Module - FMV

FuelMetering_Module - Fuel Metering

Contribution of fuel metering to
hazardous overspeed is acceptable

Module - Fuel Metering

OverspeedProtect_Module -
Overspeed Protection

Contribution of overspeed protection to
hazardous overspeed is acceptable

Module - Overspeed Protection

T1/P1_Module - T1/P1

Contribution of T1/P1
measurements to hazardous
overspeed is acceptable

Module - T1/P1

CHzdOvSpeed

Hazardous
overspeed

Fig. 10. Argument Module – Hzd Overspeed

Fig. 11. Argument Module - T1/P1

156 I. Habli and T. Kelly

Fig. 12. T1/P1-EEC Contract

Module - Top-Level
Argument

Module - Allocated
Safety Requirements

Module - Risk

Module - Safe Control Module - Hzd
OverspeedModule - Overheat Module - Engine

Shutdown Module - EHM
Module - AC
Communication

Module - Overspeed
Protection Module - T1/P1Module - Speed

Measurement Module - Fuel Flow Module - FMV Module - Fuel Metering

T1/P1-EEC ContractT1/P1Cond ContractT1/P1 Reading
Contract

Module - Engine
Databus

Module - T1/P1 Pipe

Fig. 13. Safety Case - Module Viewpoint

 A Safety Case Approach to Assuring Configurable Architectures 157

Fig. 12 shows the argument presented within the ‘T1/P1-EEC’ contract. The claim
that the transmission of T1/P1 values to EEC is acceptably safe is either supported
by arguing over Engine Databus partitioning if smart sensors are chosen or arguing
over pipe redundancy if passive sensors are chosen. The choice is made based on the
instantiated design variation in the reference architecture regarding the T1/P1 sensor
alternatives. Subsequently, depending on the T1/P1 sensor choice, the instantiated
contract relies either on the ‘Engine Databus’ argument module or the ‘T1/P1 Pipe’
argument module to fulfill the guarantee in supporting the claim that the transmis-
sion of T1/P1 values to EEC is acceptably safe (‘T1/P1TransEEC’).

Finally, in order to show a modular viewpoint of the safety case developed in this
case study, we have generated the safety case model shown in Fig. 13. This viewpoint
represents a high-level depiction of the top-level safety case in terms of the safety
case’s argument modules and contracts. This viewpoint also shows the distinction
between core argument modules such as the ‘Engine Shutdown’ and ‘Fuel Metering’
modules and variable argument modules such as the ‘AC Communication’ and
‘T1/P1’ modules (variability indicated using the un-instantiation symbol). Further,
this viewpoint reveals some ‘structural stability’ in the way in which the safety case is
organised where the higher-level modules address individual hazards and lower-level
modules address how the architectural blocks and properties contribute to these haz-
ards. Also, at these two levels, the impact of product-line variation is contained within
the argument modules and contracts.

8 Related Work

Safety standards acknowledge the economic need to employ previously developed
systems, functions and components [12] [13] [14] [15]. In civil aerospace for exam-
ple, systems may be reused across different aircraft types, without the need for addi-
tional assessment, provided that evidence of similar design, installation, application
and operation can be produced [15]. Otherwise, the safety assessment process should
be performed to examine the impact of the reusable systems on the aircraft functions.
Also in civil aerospace, particularly for airborne software, the American Federal
Aviation Administration (FAA) created an Advisory Circular (AC), offering means to
satisfy the requirements of the aerospace software guidance DO-178B regarding the
use of reusable software components [16].

Generally, most standards place additional constraints on the way in which reusable
components are developed, verified, integrated, and maintained. The goal of such con-
straints is to ensure that the safety of the overall system is not compromised as a result
of incorporating reusable components. For example, the flexibility developed into
reusable software components may result in unreachable code, and therefore, some
standards require that system developers demonstrate that the risk of leaving unreach-
able code is less than the risk of removing it [13]. In extreme cases where a reusable
component was not developed to the safety integrity level of a new system, reverse
engineering and the application of more rigorous techniques may be required (in addi-
tion to the generation of a new safety argument). In short, although most safety stan-
dards do not address product-lines explicitly, they take into account the need to employ
previously developed artefacts. They often require additional activities to assess the
impact of a reusable component or function on the safety of the overall system.

158 I. Habli and T. Kelly

Research in the field of product-line safety has focused on adapting traditional
safety analysis techniques, such as Fault Tree Analysis (FTA) and Failure Modes and
Effects Analysis (FMEA), to suit product-line processes. The majority of this work
has been produced within the Laboratory for Software Safety at Iowa State Univer-
sity. Most noticeable is the extension of Software FTA (SFTA) to address the impact
of product-line variation on safety analysis [17] [18] [19] [20]. This approach is based
on a technique for the development of a product-line SFTA in the domain engineering
phase and a pruning (or trimming) technique for reusing this SFTA for the analysis of
new product-line instances. The approach offers a systematic approach to treating
SFTA results as a reusable product-line asset. In particular, the ability to partially
automate the pruning of a product-line SFTA, supported by domain expert reviews,
should improve confidence in the analysis outcomes. The approach was later ex-
tended to demonstrate how to integrate product-line SFTA with the product-line re-
quirements [21]. Further, it was used to integrate the results of the product-line SFTA
with state-based models [21]. Based on this integration, reusable test scenarios can be
generated for examining the validity of design definitions.

Finally, in a case study examining the impact of product-line variation on the
safety assessment data for a Full Authority Digital Engine Control (FADEC), ob-
tained from Rolls-Royce Controls, Stephenson et al created a dependency matrix that
traces “areas of vulnerability” in the safety assessment data as a consequence of
changes “when moving from one product to another”. A key conclusion of this case
study was that a dependency matrix has the potential to improve traceability between
product-line design and safety assessment, particularly in “enhancing the complete-
ness and robustness of a product line’s safety-related requirements” [23].

9 Summary and Conclusions

In this paper, we showed how a product-line safety case can be developed in such a
way that it can be reused for the assurance of individual product-line instances. We
showed that, in addition to the reuse of typical design assets, safety case structures
can form a key part of a safety-critical product line’s core assets. We adopted a ‘neat’
way for developing product-line safety cases using the GSN patterns and modular
extensions. In particular, we demonstrated how optionalities and multiplicities in
GSN patterns can be restricted to address the extrinsic variation in a product-line
safety case in a traceable way. This traceability was realised using explicit obligations
linking extrinsic safety case variation to their source in the context, feature and archi-
tectural models. Further, this paper did not introduce any new symbols which would
unnecessarily complicate the development or comprehension of GSN-based safety
arguments. This paper only introduced guidance on how the existing GSN (core,
patterns and modular GSN) can be used to develop product-line safety cases.

Finally, it is important to note that the approach presented in this paper is suitable for
safety-critical product-lines where the impact of variation can be traceably identified,
examined and justified. For example, aerospace and automotive applications often satisfy
this criterion by being driven by the need to reduce unnecessary complexity in order to
simplify the design, and therefore the assessment, of safety-critical functions. To this end,
this approach is not suitable for novel and complex applications in poorly understood

 A Safety Case Approach to Assuring Configurable Architectures 159

domains, as variation would aggravate an already complex problem, an aspect that
should be avoided for safety applications. It is also noteworthy that, like in any intellec-
tual design activity, the usage of a particular notation does not mechanically guarantee
the production of the intended artefact. Therefore, although the modular and patterns
extensions of GSN can help in defining a clear, structured and configurable product-line
safety case, engineers needs first and foremost to demonstrate a good understanding of
design concepts related to abstraction, information hiding and separation of concerns.
The product-line safety case approach presented in this paper can only be of value to
competent safety case developers with adequate understanding of the product-line scope
and domain.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2001)

2. Weiss, D.M., Robert, C.T.: Product-Line Engineering: A Family-Based Software Devel-
opment Process. Addison-Wesley Professional, Reading (1999)

3. Kelly, T.P.: Arguing Safety – A Systematic Approach to Safety Case Management. DPhil
Thesis, Department of Computer Science, University of York, UK (1998)

4. Bate, I.J., Kelly, T.P.: Architectural Considerations in the Certification of Modular Sys-
tems. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS, vol. 2434,
p. 321. Springer, Heidelberg (2002)

5. Industrial Avionics Working Group (IAWG): Modular Software Safety Case Process –
Part A: Process Definition (October 2007), http://www.assconline.co.uk/

6. Attwood, K., Kelly, T.P., McDermid, J.A.: The Use of Satisfaction Arguments for Trace-
ability in Requirements Reuse for System Families. In: International Workshop on Re-
quirements Reuse in System Family Engineering (2004)

7. Fenn, J., Hawkins, R., Kelly, T.P., Williams, P.: Safety Case Composition Using Contracts
– Refinements Based on Feedback from an Industrial Case Study. In: 15th Safety Critical
Systems Symposium (2007)

8. Dowding, M.: Maintenance of the Certification Basis for a Distributed Control System –
Developing a Safety Case Architecture. MSc Report, Department of Computer Science,
University of York, UK (2002)

9. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. OUP, USA (1978)
10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
11. Object Management Group (OMG): Systems Modelling Language. vol. 1.1, OMG (2008)
12. EUROCAE/RTCA: ED-12B/DO-178B: Software Considerations in Airborne Systems and

Equipment Certification. EUROCAE/RTCA (1994)
13. UK Ministry of Defence (MoD): 00-55 Requirements of Safety Related Software in De-

fence Equipment. Part 2: Guidance, Issue 2, Defence Standard, UK Ministry of Defence
(1997)

14. International Organization for Standardization (ISO): ISO26262 Road vehicles – Func-
tional safety. Draft, Baseline 15 (2009)

15. Society of Automotive Engineers (SAE): Aerospace Recommended Practice 4754: Certifi-
cation Considerations for Highly-Integrated or Complex Aircraft Systems. SAE
(November 1996)

160 I. Habli and T. Kelly

16. Federal Aviation Administration (FAA): AC 20-148: Reusable Software Components
(December 2004)

17. Dehlinger, J., Lutz, R.: PLFaultCAT: A Product-Line Software Fault Tree Analysis Tool.
Automated Software Engineering 13(1), 169–193 (2006)

18. Feng, Q., Lutz, R.: Bi-Directional Safety Analysis of Product Lines. Journal of Systems
and Software 78(2), 111–127 (2005)

19. Dehlinger, J., Lutz, R.: Software Fault Tree Analysis for Product Lines. In: 8th IEEE Inter-
national Symposium on High Assurance Systems Engineering (HASE 2004), Florida,
USA (2004)

20. Dehlinger, J., Lutz, R.: Fault Contribution Trees for Product Families. In: 13th Interna-
tional Symposium on Software Reliability Engineering (2002)

21. Dehlinger, J., Humphrey, M., Suvorov, L., Padmanabahn, P., Lutz, R.: Decimal and
PLFaultCAT: From Product-Line Requirements to Product-Line Member Software Fault
Trees, Research Demonstration. In: 29th International Conference on Software Engineer-
ing (ICSE 2007), Minneapolis (2007)

22. Liu, J., Dehlinger, J., Lutz, R.: Safety Analysis of Software Product Lines Using State-
Based Modeling. Journal of Systems and Software 80(11), 1879–1892 (2007)

23. Stephenson, Z.R., de Souza, S., McDermid, J.A.: Product Line Analysis and the System
Safety Process. In: 22nd International System Safety Conference (2004)

Increasing the Resilience of Critical SCADA
Systems Using Peer-to-Peer Overlays

Daniel Germanus, Abdelmajid Khelil, and Neeraj Suri�

DEEDS Group, Computer Science Department, TU Darmstadt, Germany
{germanus,khelil,suri}@cs.tu-darmstadt.de

http://www.deeds.informatik.tu-darmstadt.de

Abstract. Supervisory Control and Data Acquisition (SCADA) sys-
tems are migrating from isolated to highly-interconnected large scale
architectures. In addition, these systems are increasingly composed of
standard Internet technologies and use public networks. Hence, while
the SCADA functionality has increased, its vulnerability to cyber threats
has also risen. These threats often lead to reduced system availability or
compromised data integrity, eventually resulting in risks to public safety.
Therefore, enhancing the reliability and security of system operation is
an urgent need. Peer-to-Peer (P2P) techniques allow the design of self-
organizing Internet-scale communication overlay networks. Two inherent
resilience mechanisms of P2P networks are path redundancy and data
replication. This paper shows how SCADA system’s resilience can be
improved by using P2P technologies. In particular, the two previously
mentioned resilience mechanisms allow circumventing crashed nodes and
detecting manipulated control data.

1 Introduction and Contributions

Supervisory Control and Data Acquisition (SCADA) systems form key com-
ponents for Critical Infrastructure (CI) trustworthy monitoring and control.
The ubiquitous communication developments are also leading to highly inter-
connected CIs, resulting in large scale and heterogeneous SCADA networks [23].
While the Internet scale ranges to 109 nodes, the US powergrid is currently
comprised of 105 nodes and steadily increasing [10]. The transition from local
area to wide area SCADA systems also corresponds to an increasing replacement
of proprietary and vendor-specific communication protocols by open standards
[17] and Commercial-Off-The-Shelf (COTS) protocols mainly based on Internet
hardware and the Internet Protocol (IP) suite. Overall, the wide area SCADA
systems entail immense heterogeneity in terms of network technologies and node
properties. Heterogeneity mainly manifests in the interconnection of legacy and
state-of-the-art devices, both varying in terms of their computational capacities.

The growing usage of low cost COTS components comes at the cost of po-
tentially increasing the vulnerability of SCADA systems to node and communi-
cation failures and cyber attacks. The crash of SCADA network nodes usually
� Research supported in part by EU INSPIRE, CASED (www.cased.de), and EU

CoMiFin.

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 161–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 D. Germanus, A. Khelil, and N. Suri

implies the disturbance of SCADA message flows and consequently may perturb
the required trustworthy monitoring and control of the corresponding CI and
physical processes. More and more SCADA systems are interconnected through
public networks and mainly the Internet. Public networks expose them to cyber
threats [7]. Being exposed to cyber threats through the Internet eventually re-
sults in data integrity attacks, i.e., the deliberate injection of incorrect data to
the SCADA system which may have fatal consequences on the proper operation
of CIs. Such SCADA perturbations may result in severe CI failures at the basic
level of service disruption to critical impact on public/CI safety. Consequently,
SCADA resilience against failures and attacks is essentially needed.

Paper Contributions. To achieve increased SCADA system resilience against
cyber threats in large-scale systems, our paper proposes a minimally intrusive
and low cost communication overlay onto legacy SCADA systems using Peer-to-
Peer (P2P) technologies [3]. In particular, we show that our approach efficiently
(i) prevents data loss due to node crashes, and (ii) detects and remedies data
integrity attacks. Path redundancy and data replication are two P2P mecha-
nisms that we rely on for this purpose. Path redundancy refers to multiple paths
between pairs of peers; data replication implies distributed and redundant data
storage across the network.

We propose a middleware-based approach that requires only minimal changes
to the existing SCADA software system. Furthermore, our solution is scalable
to accommodate ongoing developments of interconnected SCADA systems. In
addition, our P2P-based data integrity approach enables avoiding the usage of
public key infrastructures. This enables the integration of SCADA nodes with
low computational capacities, as the timeliness overhead introduced by crypto-
graphic operations may violate SCADA timeliness requirements. Our simulation
results show that the SCADA system remains stable in the presence of the con-
sidered perturbations. Our approach is currently evaluated in the INSPIRE EU
research project [24] by using both, simulation and testbed experiments.

The paper is structured as follows. In Section 2, the system, data, fault, and
attack models as well as the requirements on SCADA protection are introduced.
Section 3 presents our solution. The simulation environment and evaluation re-
sults are described in Section 4. The related work is presented in Section 5 and
the conclusion as well as future work are provided in Section 6.

2 Preliminaries

We now present our system model which describes a large-scale SCADA system
along with the data model and a fault/attack model. The system model gives
an overview of the node types in the system and how they interact with each
other. The data model specifies the different data flows and control loops within
the SCADA system. Furthermore, the attack and fault model describes faults
and attacks that are addressed by our solution to enhance the overall SCADA
system resilience. Finally, requirements for SCADA systems are presented to
provide mitigation for the considered faults and attack classes.

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 163

2.1 System Model

The SCADA system is a network connecting a large number of sensor/actuator
clusters with a small set of central control rooms. A generalized SCADA system
topology is illustrated in Figure 1. Following the trend to interconnect CIs, the
corresponding autonomous SCADA systems are increasingly interconnected in
order to facilitate sharing among the different involved authorities, operators etc.
Here, autonomy describes a self-contained operator domain, which is not depen-
dent on data exchange with other operator domains to guarantee proper opera-
tion. Figure 1 highlights the interconnection of SCADA systems while showing
one representative autonomous SCADA system in detail. In the following para-
graphs we describe the common components of SCADA systems.

SensorsandActuators are themonitoring/response componentsof theSCADA
system. Sensors report measurements such as pressure or temperature. Actuators
are the controlling elements and conduct operations such as opening or closing
valves. Sensors and actuators offer very limited computational and storage
capacities.

Remote Terminal Units (RTU) are located “in the field”, i.e., they are
scattered along the CI. Both, sensors and actuators are attached to a designated
remote terminal unit (RTU), either wired (e.g., through serial interface) or wire-
less (e.g., through ZigBee [30]). RTUs communicate with superordinate stations
using IP encapsulated SCADA protocols.

Master Terminal Units (MTU) collect sensor data from several RTUs and
provides the data to other high-level stations (e.g., human machine interfaces
(HMI) to give human users a system overview). MTUs also send actuator com-
mands to the appropriate RTU which executes them.

Fig. 1. Basic Components of Interconnected SCADA Systems

164 D. Germanus, A. Khelil, and N. Suri

Other stations may reside in a SCADA system as well. The two most promi-
nent ones being a data historian, which preserves relevant information over long
durations. The second involves Human Machine Interfaces (HMI) and repre-
sents stations that provide human SCADA operators insights and controlling
capabilities of the SCADA system.

2.2 Data Model

The communication between SCADA nodes is usually message-based. In each
autonomous SCADA system, two message flow directions exist: (i) Upward mes-
sages are sent on behalf of RTUs and contain raw or aggregated sensor values,
and (ii) downward messages are sent by high-level stations through an MTU to
specific RTUs. Examples for downward messages are status requests (e.g., to re-
trieve a specific sensor value) or actuator commands. Also, different autonomous
SCADA systems exchange messages. The message types to be exchanged are
individually defined, depending on the participants of an interconnection. Espe-
cially, data confidentiality and privacy are considered to address legal obligations,
e.g., due to business or political reasons. Therefore, we consider only a subset of
data is exchanged that is necessary to support the operation of a distant CI.

Two different control loop classes exist: (i) Safety-critical and (ii) operation-
critical. Safety-critical control loops are found between each RTU and its sensors
or actuators. Immediate reaction in milisecond ranges is required here to keep the
surveilled CI processes stable. On the other hand, operation-critical control loops
exist between all SCADA nodes and also across autonomous SCADA system
boundaries. Operation-critical control loops have weaker timeliness requirements
than safety-critical control loops.

2.3 Fault and Attack Model

In this paper we focus on two fundamental fault and attack classes: Node crashes
and data integrity attacks.

Data flow interruptions are usually consequences of node crashes and may con-
ceal crucial monitoring information to decision making SCADA stations. There-
fore, node crashes endanger each CIs correct operation. We consider node crashes
between source and destination nodes, i.e., the source node is still able to send
data, but the transmission path to the destination is disturbed by the crashed
node and therefore data gets lost.

Data corruption may be a result of illegitimate data modification on behalf
of an attacker. Furthermore, we assume that attackers are not omnipresent and
take over a small fraction of peers. The target of data corruption attacks may be
any RTU or router in the SCADA system which we assume to be IP based. We
do not consider attacks directed against sensors, actuators, or high-level stations.
Consequent on a data integrity attack is the provision of incorrect data to the
SCADA system which results in an inconsistent system state. The introduced
fault and attack classes endanger both safety-critical and operational-critical
control loops.

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 165

2.4 Design Requirements

In the following, we present the main design requirements demanded to pro-
vide protection of large-scale SCADA systems against the discussed faults and
attacks. Our objective is to design an add-on protection layer for legacy and
evolvable SCADA systems. The protection strategy should besides supervising
the SCADA system also provide for immediate and active reaction to reach grace-
ful degradation and a timely recovery of the system in case of faults/attacks.

Flexibility. The solution should be capable to withstand temporary network
disconnection or churn effects like frequent entering and leaving nodes. These
effects can happen in large interconnected topologies due to node or link failures.

Interoperability. For the multitude of different node types present in a large-
scale SCADA system, it is beneficial to mask the nodes heterogeneity. This lowers
the customization efforts and eases the solution’s deployment.

Minimal Intrusiveness. The desired solution should be minimally intrusive,
so existing SCADA applications can be integrated with minimal efforts.

The requirements above show the need for a software layer that mediates be-
tween the SCADA applications and the underlying network. This layer should
ensure the continuous operation of the applications across the heterogeneous
SCADA platforms with their varied network perturbations. This protection soft-
ware layer is commonly realized by a middleware approach. A middleware should
intercept, process and forward SCADA messages, e.g., between the application
layer and the network transport layer. In addition, this middleware should fulfil
the following crucial requirements.

Protection Enhancement. The new middleware should not introduce new
threats to the system, but support it to increase the system’s overall resilience
against the presented threats.

Resource Frugality. SCADA systems exist for several decades now. Some of
these systems employ devices which cannot be regarded as state-of-the-art in
terms of computational or storage capacities. Therefore, a solution should not
be too resource-intensive in order to meet SCADA’s timeliness criteria.

Scalability. Due to many interconnected SCADA networks, a large number of
nodes shall cooperate efficiently. Thus, the solution needs to be scalable.

3 P2P-Based Middleware for SCADA Protection

In the following subsection, several middleware approaches will be discussed
regarding their suitability in a SCADA context. Subsequently, our approach and
its concordance to the requirements will be presented.

166 D. Germanus, A. Khelil, and N. Suri

3.1 Middleware Approach Selection

There are a variety of approaches to build a middleware.
Publish/Subscribe (pub/sub) [13,4] is an approach that mediates between

event/data producers (publishers) and its consumers (subscribers). Pub/sub sys-
tems are usually maintained by so called brokers who decide on the dissemination
paths. Broker systems represent a weak point of the overall system, since in case
they become unavailable for some reason (e.g., an attack), the pub/sub system
is rendered ineffective.

Transactional middlewares [9,2] provide strong data consistency and address
reliable data dissemination and persistent storage. Yet, this class of systems
requires a noteable amount of system resources and thereby contradicts the
requirement of small overhead consumption.

Web Services [19,15] provide a state-of-the-art communication and data dis-
semination paradigm. While web services offer high interoperability, the scalabil-
ity and protection enhancement requirements are violated. Like for the pub/sub
approach, web services require central authorities that provide discovery services.

Mobile Agent Systems [21,27,15] are autonomous and decentralized systems
used for self-organizational tasks. Their primary target is neither data dissem-
ination nor replication, but they may be employed for network or node reor-
ganization during perturbations. Mobile agent systems meet the scalability and
flexibility requirements. However, the less provable dependability and security
of mobile agent systems made these systems less accepted.

We propose the usage of P2P technology as a solution, because P2P meets all
previously introduced requirements. A detailed comparison of our approach with
the given requirements is presented in Section TODO 3.3. P2P architectures out-
perform pub/sub systems in terms of the scalability and protection enhancement
requirements. Since the broker system functionality is not distributed among all
participating nodes. P2P-based middleware outperforms the transactional and
web services middlware approaches as these are ”heavy” systems with high com-
putational requirements to reach high data consistency. Mobile agents require
complex management and fault-tolerance mechanisms which are easily overcome
by P2P.

3.2 PeSCADA Architecture

The network architecture of PeSCADA involves RTUs, MTUs, and high level
stations (cf. Figure 1). To increase system resilience, PeSCADA is integrated
like a middleware into each of the previously mentioned nodes (cf. Figure 2). It
resides between the SCADA application and the IP layer, listens to and extracts
SCADA messages of the original SCADA application and finally stores them
in the P2P network (cf. Figure 3). The listener component is hooked into the
SCADA application communication. A SCADA model describes message formats
and relevant payload is extracted from the original messages. Consequently, the
extracted payload is forwarded to the local P2P client which stores the data in
the P2P overlay.

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 167

Fig. 2. Integration of PeSCADA into existing SCADA Systems

Fig. 3. PeSCADA Middleware Building Blocks

Data storage within PeSCADA is realized with a DHT, which is a distributed
associative array that stores key/value pairs and assigns, according to the key’s
value, maintenance responsibilities to overlay nodes. The architecture of a DHT
is flat, while interconnected SCADA systems are hierarchically organized. To ad-
dress this architectural difference, each autonomous SCADA system introduces
its own local overlay network. Local overlays promote legal and performance
aspects in interconnected large scale topologies, e.g., data that may reflect cor-
porate secrets is stored locally in the domain of its originating operator. Also,
lookup and data retrieval latencies are improved in case overlays are limited to
the network of each autonomous SCADA system. Besides local overlay networks
all autonomous SCADA systems are part of a global overlay network. Data to
be shared among different autonomous SCADA systems is specified in filter lists
and stored in the global overlay. The notion of local and global overlays is also
depicted in Figure 4.

Thus, the functionality of the PeSCADA middleware layer is threefold: (i)
Overlay management, (ii) data management, and (iii) SCADA communication

168 D. Germanus, A. Khelil, and N. Suri

Fig. 4. Arrangement of Local and Global Overlay Networks

interception. The overlay management includes the functionality that is required
to maintain a P2P network, in the PeSCADA case either a Chord [26] or Kadem-
lia [18] protocol implementation.

3.3 PeSCADA’s Concordance with Requirements

PeSCADA is based upon structured P2P networks [18,26], since they provide
good scalability properties and require O(log n) routing steps in a network with
n peers, whereas unstructured networks require up to O(n) steps.

Structured P2P networks are also capable to handle churn, i.e., frequent en-
tering and departing peers in notable amounts. Therefore, these overlays provide
flexibility according to our requirements.

Furthermore, P2P technology meets our interoperability requirement, by pro-
viding an identical interface for all peers and thereby masking heterogeneity.

The P2P functionality is inserted into existing SCADA applications as a mid-
dleware. This forms a logical layer between the operating system and the SCADA
application to intercept, process, and forward SCADA messages. The existing
SCADA application needs minimal changes, eventually only a reconfiguration
and no source code changes is needed.

Integrating new technology into an existing system bears the risk of intro-
ducing new threats. Different P2P-related attacks, like for instance the Sybil
attack [12], require an adversary to newly introduce a notable amount of peers
to infiltrate the network. Since SCADA systems are no open networks like for ex-
ample P2P filesharing networks, attackers are not able to arbitrarily introduce
new peers. Furthermore, a secure admission protocol [25] could be applied to
disallow entering of unsolicited peers. The proposed P2P-based approach does
not replace the SCADA system functionality, but represents a supplement to
increase SCADA system resilience.

While the previously mentioned attack class targets the P2P routing mecha-
nism, other attacks against structured P2P networks exist [28,8], although they
also require malicious peers colluding on behalf of an adversary. It is part of
the future work to address these attacks in detail. Due to the natural physical
distribution, it is unlikely that an attacker is able to hijack all peers that hold
replicas of a specific datum at the same time; this property of P2P networks
provides protocol inherent resilience.

The overhead requirement is met as well, since no computationally challenging
operations are executed. This requirement was the main driver to decide against

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 169

the application of cryptographic methods, since legacy devices cannot achieve
both, cryptographic computations and SCADA timeliness requirements.

3.4 P2P-Inherent Resilience Mechanisms

Path redundancy presents a simple robustness concept in P2P networks: Re-
quests can be sent along different paths to both speed up data retrieval and
offer increased resilience against node or link failures. The number of redundant
paths to be chosen can be configured. Clearly, using more redundant paths im-
plies lower latencies for data retrieval but generates more network traffic in the
system.

We evaluated [16] the choice of suitable P2P technology for SCADA systems.
Regarding the requirements of interconnected large-scale SCADA systems, struc-
tured P2P networks with Distributed Hash Tables (DHT) are appropriate for
three reasons, i.e., (i) low routing latencies, (ii) good scalability, and (iii) data
discovery guarantees in DHTs [16].

Data replication in DHTs increases the availability of data throughout the
network. DHT entries are stored at k different peers, usually k = 3. Large
values of k result in increased availability and fault tolerance of the system. The
downside is reduced system performance due to increasing network traffic. If a
peer p that provides a datum d leaves the network, d is still available at k − 1
other peers. Subsequent to peer p’s departure, P2P self-organization mechanisms
adapt the P2P network’s routing tables and choose another peer to store the
replicas formerly stored on p.

3.5 PeSCADA Strategies to Increase SCADA System Resilience

In this subsection, we present PeSCADA’s anticipation approach for the con-
sidered perturbations described in Section 2.3, namely node crashes and data
integrity attacks.

Protecting SCADA from Node Crashes. The PeSCADA middleware tracks
the reception of sensor messages in MTUs by using expectancy timers to suspect
message loss. In case a message becomes overdue, PeSCADA requests the specific
sensor message from the P2P overlay network. This mechanism bridges the time
between a node crash and its recovery (e.g., by reboot) or until the routing
tables are updated through the distributed routing algorithm (e.g., OSPF [22]).
This helps to deliver data to the SCADA application during perturbations, i.e.,
PeSCADA acts as a surrogate data delivery mechanism.

Protecting SCADA from Data Integrity Attacks. PeSCADA is able
to discover data corruption attacks, if the location of corruption is between
source and destination. We consider corruptions that occur after initial message
replication in the overlay, i.e., the corruption occurs on a compromised router.
PeSCADA operates as follows: Whenever a SCADA message arrives at an MTU
through the conventional SCADA communication channel, the MTU requests
the same message via the P2P overlay from q different replica locations and

170 D. Germanus, A. Khelil, and N. Suri

compares it to the initially received message which is accepted if they are iden-
tical. The parameter q needs to be less or equal to k which is the system wide
replication degree. Choosing large q means that attackers are required to hijack
more nodes to successfully spoof the system. On the other hand, choosing small
q results in better performance as less messages will be sent through the network.

The DHT data storage does not take the duties of a distributed SCADA data
historian. Since autonomous SCADA systems contain up to 106 datapoints that
send data in second to deca-second intervals, long term storage in devices with
varying and potentially very limited resource capacities cannot be realized. Re-
garding the two previously introduced strategies, the DHT serves for effects like
node crashes or to detect ongoing data integrity attacks. These effects require
countermeasures near in time, therefore, short term data storage is in favor.
Short term storage also decreases the P2P network load because no republishing
of DHT entries is performed. Republishing is required to counteract churn ef-
fects in P2P networks and thereby to guarantee long-term data availability. [18]
proposes to republish data every 24 hours, PeSCADA does not republish data at
all. Furthermore, as an extension to [18] we implemented a time to live (TTL)
management for DHT entries.

4 Performance Evaluation

This Section first describes the simulation environment. Next, PeSCADA is eval-
uated for the two considered perturbation scenarios, i.e., data loss mitigation and
detection of data integrity attacks.

4.1 Simulation Environment and Settings

We follow a simulation-based evaluation, since our full-scale system model in-
volving many protocol layers and a large set of parameters is unfavorable to
break down into an analytical model.

The simulation is implemented using OMNet++ [20], a discrete event simu-
lator. It provides core concepts like message queues, message passing between
objects, and an interpreter programming language to define nodes and networks
of nodes. Other simulators exist, but the availability of extensions like INET [1]
and OverSim [5] revealed OMNet++’s adequacy for PeSCADA. INET provides
an implementation of the IP suite to model and simulate large scale SCADA
scenarios. Due to lack of open source SCADA scenario generators that could be
coupled with OMNeT++, we created our own SCADA scenario generator for
OMNeT++, which we made available for the community. Accordingly, we gather
simulation results involving the following INET protocol implementations: ARP,
IP, TCP, UDP, and OSPF [22].

OverSim builds upon INET and provides the implementation of different P2P
overlay networks. We performed simulations using OverSim’s Chord [26] and
Kademlia [18] protocol implementations. Both protocols provide a DHT as ap-
plication layer on top of the P2P network. SCADA sensor data is replicated

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 171

within a local DHT to provide it to an MTU in case the regular SCADA appli-
cation communication is perturbed. The simulation results provided later in this
section show the performance of a local DHT which consists of 8 through 512
RTUs acting as peers and 64 sensors per RTU. At startup each sensor chooses
a random but fixed sampling period in the range of 1 to 30 sec. The simulation
terminates after 600 sec. Faults and attacks are initiated at t = 100s to provide
simulated nodes sufficient time for self-configuration tasks and the P2P network
setup. The system wide packet drop rate is set to 10−3 to model an unreliable
underlay network. The TTL for DHT entries is set to 300 seconds.

The following key is an example for the addressing scheme of DHT key/value
pairs: RAW 042 017 20100102122124. The key represents raw sensor data of
RTU 42’s sensor number 17, processed and replicated by the RTU on January,
2nd 2010 at 12:21:24. Clearly, key calculation for a sequence of keys is trivial in
case of static sensor intervals. In case that the sequence calculation is not trivial,
other mechanisms exist which are omitted here.

4.2 Case Studies

Data Loss Mitigation. A router is set to a dead state. Consequently, the
OSPF [22] protocol detects this unresponsive router and initiates a route repair.
The time span between router crash and the completion of the reconfiguration
process is bypassed via P2P, because packets routed across the dead router get
lost. MTUs run expectancy timers for sensor messages, and in case a message
is indicated to be overdue, the MTU requests this missing message via the P2P
network. Simulations use a replication degree of k = 2, i.e., two copies of each
DHT key/value pair exist in the network to provide basic redundancy. Therefore,
we simulate a SCADA network with a mesh topology, such that alternative
routing paths may be taken up to a certain amount of node crashes. In our
simulation, MTUs run expectancy timers for sensor messages, and in case a
message is indicated to be overdue, the MTU requests after a short waiting
period the missing data via the P2P network.

Detection of Data Integrity Attacks. An arbitrary RTU is set to a malicious
state leading to sensor messages in transfer being corrupted. For each received
SCADA sensor message on an MTU, the same datum is requested from q dif-
ferent replica locations. With the multiple received messages, the receiver can
check for their SCADA payload equality. Simulations use a replication degree of
k = 3, i.e., three copies of each DHT key/value pair exist in the network.

4.3 Metrics

To quantify the benefit of our approach, we define several metrics. The evaluation
criteria can be split up according to three dimensions, namely reliability/security,
timeliness, and overhead.

172 D. Germanus, A. Khelil, and N. Suri

Reliability is measured as a percentage of received messages, that would be
lost without the P2P mechanism. The metric’s formula is:

Reliability =
#Receipts

#Requests

#Receipts is the number of messages received via DHT and #Requests is the
total number of missing messages that have been requested.

Security is evaluated as percentage of discovered corrupted messages. The met-
ric’s formula is:

Security =
#Identified

#TotalInjected

#Identified is the number of identified corrupted messages, #TotalInjected is
the total number of corrupted messages that have been injected. Both metrics
value ranges are [0, 1], where 1 indicates 100% reception or discovery, depending
on the respective scenario.

Timeliness is examined in terms of latency from a request until its completion.

Overhead is evaluated in terms of the number of messages sent/received per
peer, and the corresponding incoming and outgoing network traffic per peer.
P2P traffic is split up into three subcategories: (i) Application (DHT), (ii) peer
discovery (lookup), and (iii) overlay maintenance.

4.4 Simulation Results

In terms of timeliness evaluation, PeSCADA recovers lost messages within the
range of 3 to 7 sec using Kademlia [18] and 2 to 5 sec using Chord [26].

Fig. 5. Success Rate of Lost Message Recovery (Chord & Kademlia)

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 173

Fig. 6. Sent Messages (Chord)

Fig. 7. Received Messages (Chord)

Recovery rates for the router crash scenario are given in Figure 5 in terms of
the reliability metric. Kademlia provides success rates above 75% with 16 peers
or more. Chord ranges between 65% and 95% with 16 peers or more. Recovery
failures occur due to two different causes: (i) The P2P network communication
is partially disturbed due to the router crash and therefore unable to satisfy all
requests or (ii) P2P messages get lost due to the packet error rate. Fluctuations
in the success rates occur due to PeSCADA’s replication and routing scheme: In
case the RTUs that are affected by the router crash are responsible for the spe-
cific address space range of the requested datum, the MTU cannot retrieve the

174 D. Germanus, A. Khelil, and N. Suri

Fig. 8. Sent Messages (Kademlia)

Fig. 9. Received Messages (Kademlia)

data. Our simulations show that Kademlia has increased robustness compared
to Chord. However, Kademlia communication overhead exceeds Chord. Figure
8 shows the average amount and the 95% confidence interval of Kademlia mes-
sages sent per peer. Figure 9 shows received messages for Kademlia. Compared
to Kademlia, Chord requires an order of magnitude less data bytes for DHT
messages (for both sending and receiving), as can be seen for the corresponding
RTU numbers across Figures 6 and 7 as well as Figures 8 and 9.

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 175

For the data integrity attack scenario, PeSCADA is able to discover 90% of
the faked messages by requesting each datum from q = 3 different peers for
comparison. If the SCADA message corresponds to the message received from
at least two of three peers, it is regarded as valid. In other cases, the SCADA
message is discarded and counted as corrupted message. Consequently, a message
copy that is retrieved from the DHT is used. Traffic consumption in this scenario
is clearly higher than in the previous scenario, since each received message is
requested threefold.

5 Related Work

Several related approaches to increase SCADA system resilience exist in the lit-
erature. The approaches presented in this Section differ in terms of the employed
technology (P2P based, pub/sub based, MPLS), requirements (data provision,
group communication, fast delivery), and communication paradigm (many-to-
one, one-to-many, many-to-many).

Some of the previous works [6,11,29] propose a non-intrusive communication
infrastructure that is built from scratch. Our approach is minimally intrusive
as we build the protection layer on existing already deployed SCADA systems
while keeping the change of the existing SCADA system minimal.

P2P for protecting CIs has been proposed before. In [6], the authors quali-
tatively discuss the advantages and disadvantages of using Chord [26] for the
surveillance of power grids. The main contribution is an agent-based layer on
top of a P2P network to improve message exchange reliability. In [11] the au-
thors propose a hybrid unstructured overlay network without central indexing
services to increase power grid surveillance and monitoring resilience. Although
the higher timeliness requirements in comparison to structured networks are
mentioned, no evaluation is provided to compare both overlay classes.

In contrast to our approach, pub/sub models [14,13,4] require message broker
nodes which conduct the message reception and forwarding mechanism. The
notion of message brokers represent like super peers in hybrid P2P systems
potential weak points in the system.

[14] proposes a pub/sub middleware to meet the strong timeliness require-
ments for data delivery within power grid SCADA systems. It aims at satisfying
the needs of the electric power system, i.e., low latency and reliable delivery
of data produced anywhere in the network and to multiple interested sites. The
middleware is based upon a pub/sub communication model, which provides data
item transport from a source (the publisher) to various sinks (subscribers) with-
out requiring the publisher to track its subscribers. Experiments show, that the
performance in terms of forwarding latency and reliability is sufficient according
to power grid requirements.

[29] focuses on power grids and proposes an information architecture aiming
at increased reliability. The architecture is twofold, addressing operational and
planning aspects, where the first has stronger timeliness requirements than the
second. To meet security and reliability requirements, a potpourri of technolo-
gies is applied: Multi-protocol label switching (MPLS), Virtual Private Networks

176 D. Germanus, A. Khelil, and N. Suri

(VPN), and firewalls. Finally, different redundancy topologies are introduced
with different scalability properties. [29] provides a solution that requires funda-
mental changes to the SCADA systems in terms of both, software and hardware.

6 Conclusion and Future Work

We presented PeSCADA, a middleware solution to increase SCADA system re-
silience in the presence of faults or attacks using a P2P based approach. Our
approach consists of building a self-organized structured P2P overlay on top
of the SCADA network and in exploiting the inherent path redundancy and
data replication to enhance the resilience of the SCADA system. We consid-
ered two highly probable fault/attack case studies, namely node crashes and
data integrity attacks. In the first case, our solution detects delayed/lost mes-
sages through message expectancy timers and requests copies from the overlay
network. In the second case, our solution requests for each regularly received
SCADA message the same datum from the overlay for comparison, in order to
detect data manipulations without any use of cryptographic methods.

As ongoing work, we are customizing PeSCADA to the specific needs of power
grids. Furthermore, we are considering the mitigation of further perturbations
of SCADA systems through P2P technology.

References

1. INET Framework, http://inet.omnetpp.org
2. PostgreSQL, http://www.postgresql.org/
3. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of Peer-to-Peer Content Dis-

tribution Technologies. ACM Comput. Surv. 36(4), 335–371 (2004)
4. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman,

D.C.: An efficient multicast protocol for content-based publish-subscribe systems.
In: ICDCS 1999: Proceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems, p. 262. IEEE Computer Society Press, Washington
(1999)

5. Baumgart, I., Heep, B., Krause, S.: OverSim: A Flexible Overlay Network Simu-
lation Framework. In: Proceedings of 10th IEEE Global Internet Symposium (GI
2007) in conjunction with IEEE INFOCOM 2007, pp. 79–84 (2007)

6. Beitollahi, H., Deconinck, G.: Analyzing the Chord Peer-to-Peer Network for Power
Grid Applications. In: Fourth IEEE Young Researchers Symposium in Electrical
Power Engineering, p. 5 (2008)

7. Bowen III, C.L., Buennemeyer, T., Thomas, R.: Next generation SCADA Security:
Best Practices and Client Puzzles. In: Proceedings from the Sixth Annual IEEE
SMC Information Assurance Workshop, 2005. IAW 2005, June, pp. 426–427 (2005)

8. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev. 36(SI),
299–314 (2002)

9. Codd, E.F.: The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., Boston (1990)

http://inet.omnetpp.org
http://www.postgresql.org/

Increasing the Resilience of Critical SCADA Systems Using P2P Overlays 177

10. Bakken, D.: Smart Grid Data Delivery Service,
http://ec.europa.eu/research/conferences/2009/ict-energy/

pdf/dave bakken en.pdf
11. Deconinck, G., Rigole, T., Beitollahi, H., Duan, R., Nauwelaers, B., Van Lil, E.,

Driesen, J., Belmans, R., Dondossola, G.: Robust overlay networks for microgrid
control systems. In: DSN 2007, 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, Edinburgh, U.K., June 25-28, p. 6 (2007)

12. Dinger, J., Hartenstein, H.: Defending the sybil attack in p2p networks: taxon-
omy, challenges, and a proposal for self-registration. In: The First International
Conference on Availability, Reliability and Security, ARES 2006, April 2006, p. 8
(2006)

13. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

14. Gjermundrod, H., et al.: GridStat: A Flexible QoS-Managed Data Dissemina-
tion Framework for the Power Grid. IEEE Transactions on Power Delivery 24(1),
136–143 (2009)

15. Ketel, M.: A mobile agent based framework for web services. In: ACM-SE 47:
Proceedings of the 47th Annual Southeast Regional Conference, pp. 1–6. ACM,
New York (2009)

16. Khelil, A., Jeckel, S., Germanus, D., Suri, N.: Benchmarking of P2P Technologies
from a SCADA Systems Protection Perspective. In: MOBILIGHT 2010: Inproceed-
ings of the 2nd International Conference on Mobile Lightweight Wireless Systems
(to appear 2010)

17. Krutz, R.L.: Securing SCADA Systems. Hungry Minds Inc. (2005)
18. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based

on the xor metric. In: IPTPS 2001: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pp. 53–65. Springer, London (2002)

19. Papazoglou, M.P., Heuvel, W.J.: Service oriented architectures: approaches, tech-
nologies and research issues. The VLDB Journal 16(3), 389–415 (2007)

20. Pongor, G.: OMNeT: Objective Modular Network Testbed. In: MASCOTS 1993:
Proceedings of the International Workshop on Modeling, Analysis, and Simula-
tion On Computer and Telecommunication Systems, pp. 323–326. The Society for
Computer Simulation, International, San Diego (1993)

21. Pridgen, A., Julien, C.: A secure modular mobile agent system. In: SELMAS 2006:
Proceedings of the 2006 international workshop on Software engineering for large-
scale multi-agent systems, pp. 67–74. ACM, New York (2006)

22. RFC Standards Track: RFC 2328, OSPF Version 2
23. Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing

Critical Infrastructure Interdependencies. IEEE Control Systems Magazine 21(6),
11–25 (2001)

24. D’Antonio, S., Romano, L., Khelil, A., Suri, N.: INcreasing Security and Protection
through Infrastructure REsilience: the INSPIRE Project. In: Setola, R., Geretshu-
ber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 109–118. Springer, Heidelberg
(2009)

25. Sandhu, R., Zhang, X.: Peer-to-peer access control architecture using trusted com-
puting technology. In: SACMAT 2005: Proceedings of the tenth ACM symposium
on Access control models and technologies, pp. 147–158. ACM, New York (2005)

26. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001:
Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 149–160. ACM, New York (2001)

http://ec.europa.eu/research/conferences/2009/ict-energy/pdf/dave_bakken_en.pdf
http://ec.europa.eu/research/conferences/2009/ict-energy/pdf/dave_bakken_en.pdf

178 D. Germanus, A. Khelil, and N. Suri

27. Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R., Mitro-
vich, T.S., Pouliot, B.R., Smith, D.S.: Nomads: toward a strong and safe mobile
agent system. In: AGENTS 2000: Proceedings of the fourth international confer-
ence on Autonomous agents, pp. 163–164. ACM, New York (2000)

28. Urdaneta, G., Pierre, G., van Steen, M.: A survey of DHT security techniques. ACM
Computing Surveys, http://www.globule.org/publi/SDST_acmcs2009.html (to
appear)

29. Xie, Z., et al.: An information architecture for future power systems and its relia-
bility analysis. IEEE Power Engineering Review 22(6), 60–60 (2002)

30. ZigBee Alliance: http://www.zigbee.org, http://www.zigbee.org

http://www.globule.org/publi/SDST_acmcs2009.html
http://www.zigbee.org
http://www.zigbee.org

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 179–192, 2010.
© Springer-Verlag Berlin Heidelberg 2010

ISO/DIS 26262 in the Context of Electric and Electronic
Architecture Modeling

Martin Hillenbrand1,∗, Matthias Heinz1,*, Nico Adler2,*, Klaus D. Müller-Glaser1,*,
Johannes Matheis3, and Clemens Reichmann3

1 Institute for Information Processing Technology, KIT, Germany
{hillenbrand,heinz,klaus.mueller-glaser}@kit.edu

2 FZI Forschungszentrum Informatik, Germany
adler@fzi.de
3 aquintos GmbH

{matheis,reichmann}@aquintos.com

Abstract. The draft international standard under development ISO 26262 describes
a safety lifecycle for road vehicles and thereby influences all parts of development,
production, operation and decommissioning. All systems affected by the standard,
like anti-trap protection or advanced driver assistance systems, contain hierarchical
electric and electronic parts. After publishing the final version, they all should be
designed, assessed and documented to the demands of ISO 26262.

The intercommunication structure of the distributed automotive control sys-
tem, consisting of electronic control units (ECU), sensors and actuators, and
functions computed by this control system, are specified by the electric and
electronic architecture (EEA). In the context of the ISO 26262, the EEA con-
tributes to the intercommunication of distributed, safety related functions plus
the determination of architectures.

This article discusses the impact of the standard on the EEA development
and the handling of safety requirements demanded by ISO 26262 during early
development phases.

Keywords: Automotive, Architecture modeling, Functional Safety, ISO 26262.

1 Introduction

The increase of number, complexity and interaction of electric and electronic systems in
a vehicle, bears growing challenges for development activities in the automotive domain.
Besides the decreasing development time, the increasing distribution of functions and
their computing control system, the draft international standard for functional safety of
road vehicles ISO/DIS 26262 (International Organization for Standardization / Draft
International Standard 26262) requires attention. Automotive systems demand safety
and reliability, which results in consideration of safety requirements with the same level
of priority as the functional requirements of the system to develop [1].

∗ This research work was supported by the Ministerium für Wissenschaft, Forschung und Kunst

Baden-Württemberg (AZ: 32-720.078-1/14).

180 M. Hillenbrand et al.

In the aerospace domain, safety considerations, methods, guidelines and certifica-
tions are applied for a long time [2] [3], establishing a safety lifecycle. State of the art
processes, concerning safety in the automotive domain, base on hazard analysis, fail-
ure mode and effect analysis (FMEA) [4], fault tree analysis (FTA) [5], Markov
chains and reviews. A standardized safety lifecycle is not yet applied in the automo-
tive domain.

ISO 26262 [6] standardizes a safety lifecycle process, concurrent to the already ap-
plied development processes, which, in the automotive industry, are based on the V-
Model '97 [7]. ISO 26262 is the interpretation of the DIN EN 61508 [8] [9] for road
vehicles with a maximum weight of 3,5t. The draft standard has been published in
July 2009, its publication as international standard is expected for 2011.

ISO 26262 enlarges the concept and design space by another dimension. This is
why good processes and well applied tool support are mandatory to compete with
legal requirements and in the meantime develop safe vehicles, containing forward-
looking technologies.

ISO 26262 is based on the system architecture. The vehicle itself consists of differ-
ent systems; their electric and electronic architecture is modeled in the according
development process. The design and development of the EEA of a vehicle is based
on the work products from preceding development phases like the design of a broadly
defined system architecture concept. In the future it has to consider the results of
analysis, considerations and classification of safety aspects, demanded by ISO 26262.
The electric and electronic (EE) part of the system architecture is iteratively refined
and detailed during the development process. The impact of ISO 26262 to the model-
ing of the EEA and the contribution of the EEA modeling towards the fulfillment of
the overall safety concept is discussed in this paper.

The following chapter gives a short overview of ISO/DIS 26262. Chapter 3
presents the modeling of EE architectures with respect to safety aspects. The in-
volvement of the EEA development in the safety lifecycle is described in chapter 4.
Chapter 5 and 6 describe the flow of interpreting and formatting work products from
preceding safety analysis and their handling during EEA development. The relations
between classes of the EEA meta-model, depicted in a UML [10] class diagram, and
safety aspects are presented in chapter 7. Chapter 8 summarizes the work and gives an
outlook to further activities.

2 ISO 26262 Lifecycle

Figure 1 depicts an overview of ISO 26262. During the concept phase, the item is
defined ([6] part 3, chapter 5). The item represents a system, an array of systems or a
function, to which the ISO 26262 is applied ([6] part 1, chapter 1.69). Based on the
item, a hazard analysis and risk assessment is performed, in which hazards are classi-
fied and assigned with an automotive safety integrity level (ASIL) [11]. Based on
these hazards, safety goals (SG) are determined, and the ASIL that was determined
for the hazardous event is assigned to the safety goal ([6] part 3, chapter 7). Func-
tional safety requirements (FSR) are derived from the SGs, inheriting the ASIL from
the SG, and are allocated to elements from a preliminary architectural draft of the
item ([6] part 3, chapter 8).

 ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling 181

In the product development phase on system level ([6] part 4), technical safety re-
quirements (TSR) are formulated to describe how to implement the functional safety
concept, containing the FSRs, along with the implementation of the functional con-
cept. During this phase, the system gets more and more refined by partitioning into
hierarchical sub-system structures. By the level of granularity, where a sub-system
can be refined or realized in software (SW) or hardware (HW) only, the phases for
product development on HW and SW level are applied ([6] part 5 and 6). TSRs must
be specified ([6] part 4, chapter 6) on each level of system and sub-system granular-
ity, followed by the system design ([6] part 4, chapter 7) on the same level of
granularity.

During further development ([6] part 5 and 6), HW and SW systems are refined
and TSRs are specified. After specification, implementation and integration on HW
and SW level, HW and SW components are integrated step by step. This system inte-
gration is covered by [6] (part 4).

1.Vocabulary

2. Management of functional safety

2-5 Overall safety management 2-6 Safety management during item development 2-7 Safety management after release of production

3. Concept phase

3-5 Item Definition

3-6 Initiation of the safety
lifecycle

3-7 Hazard analysis and risk
assessment

3-8 Functional safety concept

7. Production and operation

7-5 Production

7-5 Operation, service
(maintenance and repair),
and decommissioning

4. Product development: system level

4-5 Initiation of product
development at the system level

4-6 Specification of the technical
safety requirements

4-7 System design

4-11 Release for production

4-10 Functional safety assessment

4-9 System validation

4-8 Item integration and testing

5. Product development: hardware
level

5-5 Initiation of product
development at the hardware level

5-6 Specification of hardware safety
requirements

5-7 Hardware design

5-8 Hardware architectural metrics

5-9 Evaluation of violation of the
safety goal due to random HW
failures
5-10 Hardware integration and
testing

6-5 Initiation of product
development at the software level

6-6 Specification of software safety
requirements

6-7 Software architectural design
6-8 Software unit design and
implementation

6-9 Software unit testing

6-10 Software integration and
testing

6. Product development: software
level

6-11 Verification of software safety
requirements

8. Supporting processes

8-5 Interfaces within distributed developments 8-10 Documentation
8-6 Specification and management of safety requirements
8-7 Configuration management
8-8 Change management
8-9 Verification

8-11 Qualification of software tools
8-12 Qualification of software components
8-13 Qualification of hardware components
8-14 Proven in use argument

9. ASIL oriented and safety –oriented analyses
9-5 Requirements decomposition with respect to ASIL tailoring
9-6 Criteria for coexistence of elements

9-7 Analysis of dependent failures
9-8 Safety analyses

10. Guideline on ISO 26262 (informative)

Fig. 1. Overview of ISO 26262

3 EEA Modeling

The development of modern vehicles has to consider numerous technical and func-
tional aspects. Reliability and maintainability as well as usability, functional safety,
comfort and performance influence the overall cost function for vehicle design. The
demanded quality has to be established and integrated during the design phase.

182 M. Hillenbrand et al.

The tool PREEvision [12] facilitates designing, modeling, comparing and evaluating
the electric and electronic architecture of a vehicle in the system design phase [7] of a
vehicle development [12] to achieve the optimal overall architectural design. For the
first time, all data of the EEA design can be considered in one model. This facilitates
the usage of metrics to make an assessment of the EEA. The following section gives
a short overview about EEA modeling using PREEvision.

ECU 1

ECU 2

ECU 2

ECU 1

RAM

Software
CPU

PCB

ROM

ECU 1

Detailed

Detailed

Detailed

Co
m

po
ne

nt
de

sc
ri

pt
io

n

W
ir

in
g

ha
rn

es
s

Sc
he

m
at

ic
s

Sensor 1

Sensor 2

ECU 1

ECU 2
Fuse BoxGround

point

G
ro

un
di

ng
Co

nc
ep

t

CompositionSensor 1

Sensor 2

Function Actor 1
Actor 2

Branch off

Inline
connector

Installation space Installation space

Placed in

Segment

To
po

lo
gy

Fu
nc

ti
on

ne
tw

or
k

Require
ments

Po
w

er
di

st
ri

bu
ti

on

Networking&
Communication

Actor 1

Actor 2

Installation
Location

Installation
Location

Installation
Location

Installation
Location

Installation
Location

Placed in

Requirement 1.2 Description
Requirement 1.2.1 Description

Requirement 1.2.2 Description

1.2

1.2.1

1.2.2

Fig. 2. EEA layered architecture

An EEA model designed in PREEvision is based on the layered architecture (Fig-
ure 2) [13]. Each layer depicts a modeling view to the EEA. The EEA model contains
requirements-, software-, hardware- and networking-information, which are repre-
sented by artifacts in a model tree. Artifacts from the model tree can be visualized in
one or more diagram types, each specific to a particular view. Each diagram type
offers a specific view on the architecture-model, its artifacts and connections (Func-
tion Network Diagram (FN), Component Network Diagram (CMP), Schematic Dia-
gram, Wiring Harness Diagram, etc.). Mappings model the relations between artifacts
across diagram borders.

 ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling 183

Based on underlying rule- and meta-models, model query rules can be described in
PREEvision and later executed on the EEA model for evaluation and consistency
checking [14]. These rules can also be used to browse the EEA model for chains of
artifacts with a particular relationship.

The consideration of safety aspects and the work products from preceding safety
analysis during the EEA design phase, delivers resilient input data for further devel-
opment phases. Wrong architectural decisions can have devastating impact on safety,
reliability and operability of the vehicle and the amount of expenses resulting from
mandatory fixes during the later development. Functional safety has to be ensured top
down through the development process.

Further, there are methods and strategies applicable during EEA modeling, which
have the potential to reduce development and documentation effort (in the context of
the safety case [15]) of HW and SW elements caused by allocation, distribution, de-
composition and coexistence of safety aspects and EEA artifacts.

It is of severe importance to implement the draft international standard for func-
tional safety ISO 26262 into the vehicle development process and therewith into the
phase of EEA development. The next chapter discusses relations and influences.

4 EEA Development in the Context of ISO 26262

A brief overview of the ISO 26262 was given in chapter 2. This chapter considers the
role of the EEA development during the processes specified by the draft international
standard.

The derivation of safety goals in the EEA tool PREEvision is presented in [16].
The functional safety concept phase will be performed by the role of the safety expert
at the original equipment manufacturer (OEM). However, the role of the safety expert
at the OEM may consult the EE architect during item definition, the preliminary ar-
chitectural assumption or the allocation of FSRs to elements of this architectural
assumption.

The specification of TSRs during product development on system, HW and SW
level, might be performed by both roles, EE architect and safety expert.

The development and refinement of the EEA lies in the responsibility of the EE ar-
chitect. The compliance of the developed system to the ISO 26262 lies in the respon-
sibility of the safety manager. Although the EEA is not a system within the meaning
of the ISO 26262, the development process of the EEA strongly correlates with the
ISO 26262 [6] (part 4, chapter 7). This includes the allocation of TSRs ([6], part 4,
chapter 7.4.5) to the elements of the system architecture, which are artifacts of the
EEA model, the accomplishment of ASIL decomposition ([6] part 4, chapter 7.4.2.5)
if adaptable and the assessment for the meeting of coexistence criteria ([6] part 4,
chapter 7.4.2.3). Coexistence will be detailed in chapter 6.

The development and implementation of electronic control units (ECUs), including
HW and SW parts, is usually accomplished by tier one suppliers. Because of that,
subdivision of sub-systems down to the HW- or SW-only level, which are covered by
[6] (part 5 and 6), will be mainly performed by the tier one suppliers and their con-
sulting counterpart at the OEM.

184 M. Hillenbrand et al.

The role responsible for a specific electric and electronic component specifies the
component HW down to its internal elements, including microcontrollers and mem-
ory, and sets up the interacting architecture of functions. This interacting architecture
is comparable with AUTOSAR software components (SW-C) put onto a virtual func-
tional bus (VFB) [17].

The EEA does not go further in subdividing the modeled systems into hardware-
and software-only systems. Therefore the EE architect is not directly involved in the
system development on hardware or software level. Nonetheless, advising during
further development phases is possible.

5 Presentation, Import and Interpretation of Safety Requirements

At an OEM, safety requirements will be entered into a requirement tracking tool like
DOORS®. At the initiation of the EEA modeling, safety requirements comprising
SGs, FSRs and TSRs, if they are already formulated, are imported from the require-
ment tracking tool into the EEA modeling tool PREEvision as requirement artifacts. If
FSRs and TSRs are available, an initial set of safety requirements to be imported to
the EEA modeling tool, can be derived from the safety requirements definitions of
former production series.

According to ISO 26262, safety requirements comprise several attributes, not all
are relevant to be considered for the development of the EEA. SGs express a state-
ment in textual form and have the attribute ASIL. Both should be available in the
EEA model. Although the SGs are not directly allocated to artifacts of the EEA ([6]
part 3, chapter 8.1), they are needed to track deriving of FSRs. Following the ISO
26262 lifecycle, FSRs are allocated to the elements of the preliminary architectural
concept for the item ([6] part 3, chapter 8.2).

Due to the level of abstraction used at the specification of the preliminary architec-
ture concept (Figure 4), the information of all aspects must be partitioned to different
diagrams, obligatorily increasing the level of detail.

From the attributes of the FSRs allocated to the elements of the preliminary archi-
tectural concept, besides their ASIL, functional redundancy aspects ([6] part 3,
chapter 8.4.2.3), warning concepts ([6] part 3, chapter 8.4.2.4), timing constraints
([6] part 3, chapter 8.4.2.3) and additional performance properties (bus load, wire
cross-section, etc.) are important, because of their correlation with the elements to
model in the EEA and their relationship.

Before and during the development on system level, TSRs are specified for refine-
ment and realization purposes of the functional safety concept. The specification of the
first set of TSRs is based on the preliminary architectural concept. TSRs also comprise
attributes and considerations ([6] part 4, chapter 6.4.1). Detection, indication and control
mechanisms of the system itself (internal architecture) or for devices interacting with the
system (sensors, actuators or control mechanisms), can be depicted by high level SW
functions (artifacts of the FN of the EEA) or wired connections between the item’s HW
artifacts and external devices (artifacts of the CMP of the EEA). More details about
how this detection, interaction and control, as well as the enabling or achieving of a safe
state works, is described by activities. The application of the EEA modeling, to develop
a static architecture, does not cover the modeling of functional behavior.

 ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling 185

SGs should be structured to keep the derivation structure to FSRs and TSRs trace-
able. During the safety concept and the system development, safety requirements are
derived from each other considering additional aspects (environmental, interfacing,
architectural, etc.). Similar specialized requirements derived from different abstract
requirements can be combined. Therefore, the hierarchical structure with SGs as root,
FSRs on the second level and TSRs on the third level is not feasible. We suggest a flat
hierarchy of safety requirements with separate packages for SGs, FSRs and TSRs.
The correlation between the requirements is then modeled by links, which addition-
ally allows 1..n relations bottom up, from TSRs over FSRs to SGs. The correlation
between the requirements can be tracked and visualized on demand by the execution
of predefined model query rules browsing the EEA model for artifacts bearing spe-
cific relations.

Generally, the most important attributes of safety requirements are the ASIL and
the type of requirement (SG, FSR or TSR). Among others, these attributes require
typecasting, to enable automatable analyses on the EEA model based on ASIL and
safety requirement types by the application of model query rules.

6 How to Handle Safety Requirements during EEA Development

Based on the preliminary architectural concept and assumptions, used during the
development of the safety concept or EEAs from former production series, the EEA is
set up. Figure 3 depicts exemplary safety requirements and their attributes ASIL and
requirement type, organized and formatted according to the preceding discussion in a
PREEvision requirements table. These requirements are allocated to artifacts of the
EEA during further EEA development activities. Safety goals and functional safety
requirements as well as the following explanations are leant on the example of a pow-
ered sliding door from [6] part 10. The technical safety requirements depicted in
Figure 3 are additional examples, why their ASIL-cells are grayed out.

ASIL Type

1.1 Not to open the door while the vehicle speed is higher than 15 km/h ASIL_C SG

2.1 The door actuator will only open the door when powered by the PSDM ASIL_C FSR
2.2 The DSC will send the accurate vehicle speed information to the PSDM ASIL_C FSR
2.3 The PSDM will allow the powering of the actuator only if the vehicle speed is below 15 km/h ASIL_C FSR

3.1 The information about the actual vehicle speed should be actualized with a cycle time of 100ms. TSR
3.2 The transmission of the information of the actual vehicle speed should be secured by a CRC TSR
3.3 The plausibility of successive information about the actual vehicle speed should be verified by the receiver TSR
3.4 The wheel rotation sensors should be diagnosed by the connected ECU TSR
3.5 A failure at a wheel rotation sensor should be signalized by a yellow warning light TSR
3.6 If a failure at a wheel rotation sensor is recognized, an according information should be stored in the ECU memory TSR
3.7 The wheel rotation speed should be measured with an accuaracy of at least 30 rad/min TSR
3.8 The status of the door lock should be monitored all 500 ms TSR
3.9 On a motion of the vehicle between 0,1 and 15 km/h, an ajar door should be signalized to the driver with a yellow warning light TSR
3.10 On a motion of the vehicle above 15 km/h, an ajar door should be signalized to the driver with a red warning light TSR
3.11 The button should be activated longer than 200ms to trigger an action. TSR
3.12 If the button is pressed more than 10 times within 30sec, the function should be blocked for 5 min. TSR
3.13 If a false activity of the sliding door actuator is recogniczed, the controlling and actuator should be transfered in a safe state. TSR
3.14 The actuator activity of the sliding door should be monitored TSR

List of Safety Goals and Safety Requirements
Safety Goals

Functional Safety Requirements

Technical Safety Requirements

Fig. 3. Safety requirements in PREEvision, example powered sliding door from [6] part 10

186 M. Hillenbrand et al.

Power Sliding Door
Module

Powertrain Controller

Sliding Door
Actuator

Item PerimeterVehicle Speed

Opening
Request Command to

Actuator

Fig. 4. Item perimeter of a powered sliding door

Figure 4 depicts a preliminary architectural concept of the system in block diagram
form, used during safety considerations in the concept phase. The opening of the
sliding door during driving activities, and the possibility of people getting seriously
injured by accidently falling out, was identified as hazard for the item (powered slid-
ing door) and classified with ASIL C ([6] part 10).

This simplified architecture, presenting static as well as functional and communi-
cation aspects, will in the next steps be refined to a detailed EEA model, presented by
PREEvision FN and CMP diagrams.

A FN is set up to realize the demanded functionality. ISO 26262 contains aspects
towards safety considerations of hardware-software-interfaces ([6] part 4, chapter
7.4.6) like interrupts, timing consistency, data integrity, memory management, etc.
([6] part 4, Annex B). Regarding the AUTOSAR layered architecture, these are ser-
vices of the AUTOSAR Basic Software (operating system, communication, micro-
controller abstraction, etc.) [17]. These functions and services are not subject of the
EEA model. FSRs and TSRs are allocated / mapped to function blocks realizing the
functionality and considered under safety aspects ([6] part 4, chapter 7.4.5). Figure 5
depicts the function network including the mapped safety requirements displayed in
external boxes.

DoorOpener

Typ: DoorOpener

WheelRotationSpeed

Typ: WheelRotationS...

DoorOpenerReque...

Typ: DoorOpenerReq...

WheelRotationSpe...

Typ: WheelRotationS...

ComputationVehicl...

Typ: ComputationVeh...

ComputationOpen...

Typ: ComputationOp...

OpenDoorSignalGen...

Typ: OpenDoorSignalG...

SlidingDoorActuator

Typ: SlidingDoorActua…

The DSC will send the accurate vehicle speed...
The wheel rotation speed should be measure...

The DSC will send the accurate vehicle speed information to the PSDM
The wheel rotation speed should be measured with an accuaracy of at least 3...
The wheel rotation sensors should be diagnosed by the connected ECU

The DSC will send the accurate vehicle speed infor...
The information about the actual vehicle speed sho...

The button should be activated longer than ...

The door actuator will only open the door when p...
The PSDM will allow the powering of the actuator...
On a motion of the vehicle between 0,1 and 15 k...
On a motion of the vehicle above 15 km/h, an aj...

Fig. 5. Function network (FN)

 ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling 187

WheelRotationSpeed

Typ: WheelRotationS...

SlidingDoorActuat...

Typ: SlidingDoorActu...

DoorOpener

Typ: DoorOpener

DoorOpenerReque...

Typ: DoorOpenerReq...

WheelRotationSpe...

Typ: WheelRotationS...

ComputationOpen...

Typ: ComputationOp...

ComputationVehicl...

Typ: ComputationVeh...

SlidingDoorActuat...

Typ: SlidingDoorActu...

VehicleSpeedInteg...

Typ: VehicleSpeedInt...

OpenDoorSignalGe...

Typ: OpenDoorSignal...

SlidingDoorActuator

Typ: SlidingDoorActu...

The DSC will send the accurate vehic...

The wheel rotation speed should be ...

The DSC will send the accurate vehicle speed infor...

The wheel rotation speed should be measured with...

The wheel rotation sensors should be diagnosed by...

The DSC will send the accurate vehicle speed...

The information about the actual vehicle spe...

The plausibility of successive information abo...

A failure at a wheel rotation sensor should b...

If a failure at a wheel rotation sensor is reco...

The door actuator will only open the door wh...

The PSDM will allow the powering of the actu...

On a motion of the vehicle above 15 km/h, a...
On a motion of the vehicle between 0,1 and ...

If a false activity of the sliding door actuator...

The button should be activated longer than 200ms to...

The status of the door lock should be monitored all 5...

The actuator activity of the sliding door should be mo...

The actuator activity of the sliding door shou...

Fig. 6. Refined function network

DSC Control Unit

Power Sliding
Door Module

Sliding Door
Actuator

Wheel Sensors

ButtonDoorOpener

SlidingDoorActuat
orSensor

BatteryVehicle Ground

WheelRotationSpeed...

ComputationVehicleSp...

VehicleSpeedIntegrity...
WheelRotation...

DoorOpener

SlidingDoorActu...

OpenDoorSignalGener...

DoorOpenerRequestP...

ComputationOpenDoo...

SlidingDoorActuatorM...

SlidingDoorActu...

Fig. 7. Component network

If some safety requirements, like plausibility checking or actuator monitoring were
not mapped, because no function blocks were available, contributing to the fulfillment
of these particular safety requirements, the FN needs additional refinement.

Figure 6 depicts the refined FN. The remaining safety requirements are allocated.
The modeled software architecture must be computed by the computation nodes of

the CMP. After setting up the CMP, the functions from the FN are mapped to their
computation nodes of the CMP (Figure 7). The mapped functions are depicted in
external boxes.

188 M. Hillenbrand et al.

Every electric component including sub-systems and external interfaces inherits
the highest ASIL from the functions mapped to them. In addition to hardware ele-
ments inheriting an ASIL by computing a function which has an ASIL assigned, there
may be TSRs only affecting hardware elements like contact safe plug connections or
special wires for electromagnetic compliance.

During EEA modeling, preliminarily, simplified modeled function- or component-
systems with ASIL assignment are refined, which includes specification of their in-
ternal structure by sub-systems. The criteria for coexistence ([6] part 10, chapter 6)
can be applied to the refined system, if it can be proven, that only some of the sub-
systems are involved in fulfilling the safety requirements and that these determined
sub-systems are not influenced by the others. In that case, only the safety related sub-
systems inherit the ASIL. This procedure can be applied to compositions of functions
in the FN and component refinement in the CMP.

Figure 8 depicts an example for the application of the criteria for coexistence. The
ECU at the left hand side contains two proven independent microcontrollers, only one
of them computing a safety related function. The dashed border encircles safety re-
lated elements.

Function_I

Typ: Function_I

Function_II

Typ: Function_II

Safety_Controller

DualPort
Memory

Comfort_Controller

RAM_II ROM_IIRAM_I ROM_I

ECU_I

Controller

RAM ROM

ECU_II

Functional /
Technical Safety

Requirement

Mapping / Allocation

Mapping

Fig. 8. Coexistence

While designing automotive systems, it will be indispensable to trace the depend-
encies between artifacts of the EEA, the allocated safety requirements and the ASILs
according to which the architecture elements have to be developed later on. Based on
the specification of model query rules, the EEA model can be browsed for chains of
artifacts in a specific relationship. Based on this, for example all hardware elements
involved in fulfilling a SG, all functions assigned to a specific ASIL, or all artifacts
having the same safety requirement allocated, can be determined. The results of these
model query rules can be displayed to support the overview of the dependencies.

Figure 9 depicts the dependency between ECU (upper right), computed function
(middle) and allocated safety requirements (left) by the support of model query rules.

ISO 26262 demands the verification of the system design ([6] part 4, chapter 7.4.8).
The verification of the EEA for consistency is mandatory, because work products from
the EEA modeling phase are input data to following development phases. The EEA

 ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling 189

can support to this by consistency checks executed on the model and browsing for
specified inconsistency cases like not correctly inherited safety requirement, etc.

Parts 3 to 7 of the ISO 26262 contain chapters requesting development activities in
the context of functional safety. Each of these chapters specifies work products as
input to subsequent processes of the lifecycle or for documentation purposes used for
the deployment of the safety case. Reports, documenting content and relations of the
EEA model, can be automatically generated and formatted out of PREEvision and
thereby support the deployment of the safety case. The content of reports is based on
results of predefined model query rules.

Power Sliding
Door Module

Vehicle Ground Battery

ButtonDoorOpener

OpenD...
DoorOp...
Comput...
SlidingD...

LableFunction

The door actuator will only open the door when powered by …

LableFunction

The button should be activated longer than 200ms to trigger …

LableFunction

The door actuator will only open the door when powered by …
The PSDM will allow the powering of the actuator only if the …
On a motion of the vehicle between 0,1 and 15 km/h, an ajar …
On a motion of the vehicle above 15 km/h, an ajar door …
If a false activity of the sliding door actuator is recogniczed …

Fig. 9. Dependencies between HW elements, functions and safety requirements

7 Relations between Safety Requirements and PREEvision EEA
Artifacts

The assignment of safety requirements and ASILs to artifacts of the EEA is an impor-
tant step during the EEA development. Especially the determination to which artifacts
of the EEA safety requirements have to be assigned and to which not, does not repre-
sent an easy task.

EAST-ADL supports determination and modeling of FSRs by safety cases. The
derivation of FSRs is not supported [16]. In EAST-ADL-2.0, the relation between an
item and its containing elements or systems is depicted by a composition between the
class item definition, which is interpreted as a collection of entities defining the item
that the safety case is valid for (i.e. a "system"), and the abstract class ADLEntity [18].
More precise statements about specializations of ADLEntity are not provided.

Therefore, the following chapter discusses and specializes the connection between
EEA artifacts modeled in PREEvision and safety requirements. A simplified excerpt
of the PREEvision meta-model, extended by safety aspects encircling the super class
Safety Related Element, is applied for this discussion. The class diagram of the ap-
plied meta-model is depicted in Figure 10.

190 M. Hillenbrand et al.

Abstract Hardware Interconnect Element

Abstract Hardware Component

Port Communication Requirement

-ASIL
-Timing Constraints
-Functional Redundancy Aspects
-Warning Strategies

Functional Safety Requirement

-ASIL

Technical Safety Requirement

Conventional Connection Conventional Connector

Abstract Function Type

-IsSafetyRelevant

Safety Related Element

Required Port Type

Provided Port Type

Requirement Link

Actuator Function

Sensor Function

Bus Connection Bus Connector

Required Port

Actuator Type

Function Type

Provided Port

Data Element

Sensor Type

Controller

Interface

Function

Actuator

Sensor

ECU

Fig. 10. Simplified EEA meta-model

The super class Safety Related Element adds a boolean value for safety relevance to
the inheriting instance. The dependence and derivation between the safety require-
ments can be tracked by the associated requirement link.

Abstract Function Type is a typecast for a function (Actuator Type, Function Type
and Sensor Type). It is instantiated to fulfill functional safety or non-safety require-
ments in the FN. The purpose of the usage of an Abstract Function Type cannot be
foreseen. The instantiation becomes a safety related element by the context of applica-
tion, but not the type. Therefore the Abstract Function Type is not a Safety Related
Element.

The class Interface specifies the communicated data between function objects.
Based on their characteristic as types, for most of them, safety relevance can't be
determined, caused by the unknown application of their instances. During further
modeling, signals are instantiated based on the specification of Interfaces. If a signal
is a unique communication unit, used to transfer safety related information between
hardware elements, it must be regarded as safety relevant.

 ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling 191

Like Abstract Function Types, Port Types are not safety relevant, but their in-
stances can be.

Port Communication Requirement specifies the communication properties of ports
(cycle time, etc.). This information has to be considered independently from the fact,
if the instance of the specified port belongs to a safety relevant function or not.

Attributes of Required Port and Provided Port realize the interface of a function.
The ASIL is inherited from the function to the ports, realizing the communication of
safety relevant information. If a function fulfills safety requirements with different
ASILs, all ports of the function get the highest ASIL unless criteria the for coexis-
tence is applicable. Regarding the development of the FN in the phases of EEA
modeling, this concerns more compositions (systems of functions) than functions.
Functions are atomic elements from the EEA point of view. Compositions outline the
demanded functionalities and can be detailed during the EEA modeling, which is
strongly correlated to the explained scenario.

Elements, realizing interconnection between HW elements (Abstract Hardware In-
terconnect Element), must be considered as being safety relevant. If two intercon-
nected functions are necessary to fulfill a safety requirement, this also concerns the
interaction between these functions. If both functions are processed on different HW
elements, the HW elements and their interconnection elements inherit the ASIL of the
safety requirement.

8 Summary and Outlook

This paper discussed the impact of the future standard for functional safety of road
vehicles ISO 26262 to the development in the automotive domain, with special focus
on the development of the electric and electronic architectures of vehicles. The addi-
tional engineering effort for design, analysis, assessment and documentation, which is
demanded by the standard, can be reduced by the well-wrought application of tools.
As presented by the handling of safety requirements and their mapping to the item,
which comprises software and hardware systems, the decisions of the EE architect
influences succeeding development phases of the vehicular systems and systems of
systems. The presented methods for the allocation of safety requirements, the refine-
ment of the design, the determination and application of the criteria for coexistence as
well as the fast tracking and convincing presentation of the relations between safety
information and the artifacts of the EEA model, enables for development of systems
demanding functional safety (according to ISO 26262) and support succeeding devel-
opment activities throughout the vehicle development lifecycle.

Further activities will among others concentrate on the seamless design flow from the
development of the safety concept, based on simplified preliminary system architecture
and the import and refinement of this architecture during the phase of EEA modeling.

References

[1] Benz, S.: Eine Entwicklungsmethodik für sicherheitsrelevante Elektroniksysteme im
Automobil. Dissertation. Bosch (2004)

[2] SAE ARP4754. Certification Considerations for Highly-Integrated Or Complex Aircraft
Systems (1996), http://www.sae.org/technical/standards/ARP4754

192 M. Hillenbrand et al.

[3] SAE ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment (1996),

 http://www.sae.org/technical/standards/ARP4761
[4] VDA Verband der Automobilindustrie e.V. Produkt- und Prozess-FMEA. Band 4.

Sicherung der Qualität vor Serieneinsatz. Qualitätsmanagmenet-Center (QMC) (2009)
[5] VDA Verband der Automobilindustrie e.V. Fehlerbaumanalyse (FTA). Band 4.

Sicherung der Qualität vor Serieneinsatz. Qualitätsmanagmenet-Center (QMC) (2009)
[6] ISO/DIS 26262 Road vehicles – Functional safety – Part 1-10, Standard under develop-

ment (2009), http://www.iso.org
[7] iABG, V-Modell-97 (1997), http://www.v-modell.iabg.de/
[8] DIN EN 61508-1,VDE 0803-1:2009-06. Funktionale Sicherheit sicherheitsbezogener

elektrischer / elektronischer / programmierbarer elektronischer Systeme; Allgemeine An-
forderungen (IEC 65A/522/CDV:2008), German Version. Beuth Verlag, Berlin-Vienna-
Zurich

[9] DIN EN 61508-2. VDE 0803-2:2009-06. Funktionale Sicherheit sicherheitsbezogener
elektrischer / elektronischer / programmierbarer elektronischer Systeme; Anforderungen
an sicherheitsbezogene elektrische / elektronische / programmierbare elektronische Sys-
teme (IEC 65A/523/CDV:2008). German Version. Beuth Verlag, Berlin-Vienna-Zurich
(2009)

[10] Rupp, C., Queins, S., Zengler, B.: UML 2 glasklar. Praxiswissen für die UML-
Modellierung und Zertifizierung. Carl Hanser Verlag, Munich-Vienna (2005)

[11] Maag, B.: Functional Safety of Software Determined Systems Where is the red line?
Some Snapshots (2007)

[12] aquintos GmbH. E/E-Architekturwerkzeug PREEvision (2009),
 http://www.aquintos.com

[13] Matheis, J., Gebauer, D., Reichmann, C., Müller-Glaser, K.D.: Ganzheitliche abstraktion-
sebenenübergreifende Beschreibung konsistenter Elektrik/Elektronik-Architekturen. In:
Systems Engineering Infrastructure Conference Seisconf. (2008)

[14] Gebauer, D., Matheis, J., Reichmann, C., Müller-Glaser, K.D.: Ebenenübertreifende,
variantengerechte Beschreibung von Elektrik/Elektronik-Architekturen. In: Diagnose in
mechatronischen Fahrzeugsystemen, pp. 142–151, Haus der Technik Fachbuch. Expert-
Verlag GmbH (2008)

[15] Bishop, P., Bloomfield, R.: A Methodology for Safety Case Development. Adelard
(1999), http://www.adelard.com

[16] Matheis, J.: (TBP 2009). Abstraktionsebenenübergreifende Darstellung von Elek-
trik/Elektronik-Architekturen in Kraftfahrzeugen zur Ableitung von Sicherheitszielen
nach ISO 26262. Dissertation. aquintos (2009)

[17] AUTOSAR development partnership. Technical Overview, Document V2.2.2, R3.1 Rev.
0001 (2008), http://www.autosar.org

[18] EAST ADL 2.0 Specification. ATESST (Advancing Traffic Efficiency and Safety though
Software Technology) (2008), http://www.atesst.org

Author Index

Adler, Nico 179

Cortellessa, Vittorio 1

Děcký, Martin 72
Dulay, Naranker 1

Eckardt, Tobias 52

Gagnon, Michael N. 125
Gawkowski, Piotr 109
Germanus, Daniel 161
Gibson, J. Paul 89
Grochowski, Konrad 109

Habli, Ibrahim 142
Haines, Joshua 125
Heinz, Matthias 179
Henkler, Stefan 52
Hillenbrand, Martin 179
Huang, Orton 125

Kapadia, Apu 125
Kelly, Tim 142
Khelil, Abdelmajid 161

Lallet, Eric 89
�Lawryńczuk, Maciej 109

Marusak, Piotr 109
Matheis, Johannes 179
Merseguer, José 33
Mohamed, Atef 19
Mostarda, Leonardo 1
Müller-Glaser, Klaus D. 179

Raffy, Jean-Luc 89
Reichmann, Clemens 179
Rodŕıguez, Ricardo J. 33

Sosnowski, Janusz 109
Suri, Neeraj 161

Tatjewski, Piotr 109
Trubiani, Catia 1
Truelove, John 125

Zulkernine, Mohammad 19

	Title
	Preface
	Organization
	Table of Contents
	Design
	An Architectural Framework for Analyzing Tradeoffs between Software Security and Performance
	Introduction
	Related Work
	Our Approach
	Enabling Security
	Security Library
	Security-Enabled Application Model

	Experimental Validation
	The CUSPIS System
	CUSPIS Implementation Details
	Applying Our Approach to CUSPIS

	Conclusions
	References

	Architectural Design Decisions for Achieving Reliable Software Systems
	Introduction
	Related Work
	Architectural Attributes
	Architectural Service Routes
	Service Route-Based Architectural Attributes
	Architectural Reliability

	Architectural Design Decisions
	Quick Decision Approach
	Comprehensive Decision Approach

	Conclusions and Future Work
	References

	Integrating Fault-Tolerant Techniques into the Design of Critical Systems
	Introduction
	Previous Concepts
	Proactive and Reactive Techniques
	The Security Analysis and Modelling (SecAM) Profile

	Modelling Proactive and Reactive Recovery Techniques
	UML Modelling
	Formal Modelling through Petri Nets

	Example: On-Line Shopping Website
	UML Modelling
	Formal Modelling
	Analysis and Assessment

	Related Work and Conclusion
	References

	Component Behavior Synthesis for Critical Systems
	Introduction
	Approach
	Prerequisites
	Composition Rules
	Synthesis Algorithm
	Preserving Role Behavior
	Related Work
	Conclusion and Future Work
	References

	Verification and Validation
	A Road to a Formally Verified General-Purpose Operating System
	Introduction
	Operating Systems Design
	HelenOS
	The C Programming Language

	Analysis
	C Language Compiler and Continuous Integration Tool
	Regression and Unit Tests
	Instrumentation
	Verifying C Language Compiler
	Static Analyzer
	Static Verifier
	Model Checker
	Architecture and Behavior Checker
	Behavior Description Generator
	Summary

	Evaluation
	Verifying C Language Compiler and Continuous Integration Tool
	Regression and Unit Tests
	Instrumentation
	Static Analyzer
	Static Verifier
	Model Checker
	Architecture and Behavior Checker
	Behavior Description Generator

	Conclusion
	References

	Engineering a Distributed e-Voting System Architecture: Meeting Critical Requirements
	Introduction
	Overview
	Structure of Paper

	Revote Anywhere (By Procuration): Our Specific Requirements and Architecture Concerns
	VoteAnywhere: A First Innovation
	VoteAnywhere with ReVote
	Procuration, ReVote and VoteAnywhere: A Feature Interaction
	Audits and Recounts

	Distributed/Remote E-Voting Systems: Architecture and Design Issues
	Denial-of-Service
	Coercion and Anonymity
	Other Related Issues

	Denial-of-Service: Our Specific Requirements
	Our Specific Requirements
	Simulation of Estelle Architecture Models
	Final Design: When Do We Need a Network?

	Algebraic Specification
	Specification and Validation of Count Rules
	Verification of Data Transformations (Using Event-B Contexts)

	Refinement for Formal Verification of Design Steps (Using Event-B)
	The Prototype Implementation
	Simulation: Validation of Formal Requirements Model
	Trustworthy Global Clocks: Implementation Choices
	Model Integration

	Conclusions
	References

	Testing Fault Robustness of Model Predictive Control Algorithms
	Introduction
	DMC Algorithm
	Software Implemented Fault Injectors
	FITS Fault Injector
	InBochs Fault Injector

	MIMO Process Description and Experiment Set-up
	Fault Sensitivity Experiments
	Conclusion
	References

	Domain-Specific Results
	Towards Net-Centric Cyber Survivability for Ballistic Missile Defense
	Introduction
	Background
	Information Warfare
	Decision-Support Systems
	Net-Centric Warfare
	Cyber Survivability

	The Net-Centric Cyber Decision-Support Architecture
	Cyber Sensor Services
	Cyber Analyzer Services
	Decision Mediator Services
	Decision Makers
	Actuator Services

	Demonstration
	Scenario
	Cyber Victim: Radar-Sensor Service
	Cyber Attack
	NCDS Implementation Overview
	Cyber Sensor: VTop
	Cyber Actuator: VM-Switch
	Cyber Analyzer and Decision Mediator

	Lessons Learned and Future Directions
	Human and Automated Decision Maker
	False Positives and False Negatives
	Adversary Model
	Statefulness
	Mission-Level Awareness

	Conclusion
	References

	A Safety Case Approach to Assuring Configurable Architectures of Safety-Critical Product Lines
	Introduction
	Product-Line Engineering
	Variation in Product-Line Safety Cases
	Managing Product-Line Safety Cases Using GSN
	GSN Patterns Extension
	GSN Modular Extension

	Capturing Safety Case Variations Using the GSN Patterns Extension
	Composing Product-Line Safety Cases Using the GSN Modular Extension
	Case Study – Assuring Safety of Aero-Engine Sensors
	System Overview
	Safety Case

	Related Work
	Summary and Conclusions
	References

	Increasing the Resilience of Critical SCADA Systems Using Peer-to-Peer Overlays
	Introduction and Contributions
	Preliminaries
	System Model
	Data Model
	Fault and Attack Model
	Design Requirements

	P2P-Based Middleware for SCADA Protection
	Middleware Approach Selection
	PeSCADA Architecture
	PeSCADA’s Concordance with Requirements
	P2P-Inherent Resilience Mechanisms
	PeSCADA Strategies to Increase SCADA System Resilience

	Performance Evaluation
	Simulation Environment and Settings
	Case Studies
	Metrics
	Simulation Results

	Related Work
	Conclusion and Future Work
	References

	Standards
	ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling
	Introduction
	ISO 26262 Lifecycle
	EEA Modeling
	EEA Development in the Context of ISO 26262
	Presentation, Import and Interpretation of Safety Requirements
	How to Handle Safety Requirements during EEA Development
	Relations between Safety Requirements and PREEvision EEA Artifacts
	Summary and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

