Towards the Definition of a Pattern Sequence for
Real-Time Applications Using a Model-Driven
Engineering Approach*

Juan Angel Pastor, Diego Alonso, Pedro Sanchez, and Barbara Alvarez

Division of Systems and Electronic Engineering (DSIE)
Technical University of Cartagena, Campus Muralla del Mar, E-30202, Spain
juanangel .pastor@upct.es

Abstract. Real-Time (RT) systems exhibit specific characteristics that make
them particularly sensitive to architectural decisions. Design patterns help
integrating the desired timing behaviour with the rest of the elements of the
application architecture. This paper reports a pattern story that shows how
a component-based design has been implemented using periodic concurrent
tasks with RT requirements. The Model-Driven Software Development (MDSD)
approach provides the theoretical and technological support for implementing
a pattern-guided translation from component-based models to object-oriented
implementations. This work has been done and validated in the context of the
development of robotic applications.

1 Introduction

There is a well established tradition of applying Component Based Software
Development (CBSD) [19] principles in the robotics community, which has resulted
in the appearance of several toolkits and frameworks for developing robotic
applications [15]. The main drawback of such frameworks is that, despite being
Component-Based (CB) in their conception, designers must develop, integrate and
connect these components using Object-Oriented (OO) technology. The problem comes
from the fact that CB designs require more (and rather different) abstractions and tool
support than OO technology can offer. For instance, the lack of explicit “required”
interfaces makes compilers impossible to assure that the components are correctly
composed (linked). Also, component interaction protocols are not explicitly defined
when using an OO language. Moreover, most of these frameworks impose the overall
internal behaviour of their components, and therefore they lack of formal abstractions
to specify it. In this way, framework components have so many platform-specific details
that it is almost impossible to reuse them among frameworks [[12]. In particular, robotic
systems are reactive systems with RT requirements by their very nature, and most of the
frameworks for robotics do not provide mechanisms for managing such requirements.
The Model-Driven Software Development (MDSD) paradigm [18] can provide the

* This work has been partially supported by the Spanish CICYT Project EXPLORE (ref.
TIN2009-08572), and the Fundacién Séneca Regional Project COMPAS-R (ref. 11994/P1/09).

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 167 2010.
(© Springer-Verlag Berlin Heidelberg 2010

168 J.A. Pastor et al.

theoretical and practical support to overcome the above drawbacks. MDSD is starting
to catch the attention of the robotics community [6]] mainly due to the very promising
results it has already achieved in other application domains (e.g., automotive, avionics,
or consumer electronics, among many others) in terms of improved levels of reuse,
higher software quality, and shorter product time-to-market [[13].

In our opinion, it is needed a new CBSD approach for robotic software development
that: (1) considers components as architectural units, (2) enables components to be
truly reusable among frameworks (by separating their design from the implementation
details), and (3) considers application timing requirements. In the context of the robotics
domain and the aforementioned technologies (CBSD and MDSD), the authors have
defined the 3-View Component Meta-Model (V?GCMM) [10] as a platform-independent
modelling language for component-based application design. V3CMM is aimed at
allowing developers to model high-level reusable components, including both their
structural and behavioural facets. Such behavioural facets are modelled by means of
state-charts and activity diagrams. Though these diagrams abstract designers away from
run-time issues (such as the number of tasks, the concurrency model, etc.), these details
must be realised in further steps. The problem then is how to translate V3CMM models
into executable code that, on the one hand, reflects the behaviour of the original
V3CMM models, and, in the other hand, is organised in a set of tasks compliant with
the application-specific timing requirements.

This paper describes the approach we have taken for solving this problem, and
the results we have obtained so far. This approach revolves around the definition of
a framework that provides the required run-time support, and a set of ’hot-spots’
where a model-to-code transformation will integrate the code generated from the
V3CMM models describing the concrete application. The patterns that have been
selected to design such framework are described as a pattern story [§].

In short, the main contributions of the work presented in this paper are:

— An object-oriented interpretation of CBSD architectural concepts.

— A framework supporting such interpretation and taking into account timing
requirements.

— A rationale of the framework design following a pattern story.

The remainder of this paper is organised as follows. Section 2 provides a general
overview of the overall approach of the paper. Section 3 describes the patterns that
comprise the architecture of the developed framework. Section 4 is devoted to detail
the main issues of the dynamic of the applications generated using the framework.
Section 5 relates this work with other proposals found in the literature. And finally,
Section 6 discusses future work and concludes the paper.

2 General Overview of the Approach

The proposed development process starts with the modelling of the application
architecture using the V3CMM language. For the purpose of this paper any language
enabling the modelling of components (such as UML, SysML or other UML profiles)
could have been used. The reasons why we decided to develop a new modelling

Towards the Definition of a Pattern Sequence for Real-Time Applications 169

language (V3CMM) are outside the scope of this paper and are described in [4], but, for
the curious reader, they are mainly related to keeping a strong control over the concepts
considered in the language and their semantics, and for easing model transformations.

V3CMM comprises three complementary views, namely: (1) a structural view, (2) a
coordination view for describing the event-driven behaviour of each component (this
view is based on UML state-charts), and (3) an algorithmic view for describing the
algorithm executed by each component depending on its current state (this view is based
on a simplified version of UML activity diagrams). V3CMM enables describing the
architecture (structure and behaviour) of CB applications, but provides no guidelines for
developing implementations. Therefore, as stated in the introduction, it is necessary to
provide designers with tools that enable them to generate the program code from these
high level abstractions. This code must take into account application-specific timing
requirements, and reflect the behaviour of the original V3CMM models.

The most important and challenging implementation issue is related to the
implementation of real-time constraints in the framework structure, and among it, how
many tasks must be created and how to distribute the component activities among them.
Taking into account that each system might need a different task scheme (e.g. number
of tasks, periods, deadlines, etc.), and that even given a system, this scheme can greatly
vary (due to different execution resources, varying timing requirements, change of
algorithms, etc.), a very flexible solution is required. This solution should allow task
derivation from V3CMM models, and specifically from the coordination view, since
this view models both the concurrent behaviour (in the form of orthogonal regions),
and the timing requirements of the algorithms (i.e. execution time, period, deadline,
etc.) executed by the component.

shows the pursued ideal solution, where it is possible to ’arbitrarily’ allocate
the activities associated to the states of the state-chart of a V2CMM component to a set
of tasks. It is worth clarifying that, in the rest of the paper, when we mention *activity’ we
really mean activity diagram. The solution must not force a direct one-to-one relationship
between components and execution tasks, but instead allow for more flexible schemes.
In a given system, activities allocation would be driven by the RT requirements of
each activity, the selected scheduling algorithms, different heuristics, execution platform
constraints, etc. As these requirements, algorithms, heuristics and constraints could
greatly differ from system to system, a great flexibility is then required for allocating
activities to tasks. The proposed solution (see [Fig. 2)), detailed in the following section,
considers that application code can be classified into the following three sets:

CS1. Code that provides a run-time support compliant with the domain specific
requirements. Normally, this involves making trade-offs among the requirements
of the application domain. For instance, in domains where hard real-time is usually
needed (e.g. robotics, embedded systems, avionics, etc.), CS1 code should support
characteristics such as different concurrency policies, real-time scheduling, event
processing and signalling, reliability, memory management, etc., even at the cost of
sacrificing other characteristics.

CS2. Code that provides an OO interpretation of the V3CMM concepts. For instance,
how components and ports are mapped to objects, state-charts implementation, port
communication issues, etc.

170 J.A. Pastor et al.

The systemis defined by a set of components. Every component has a state-chart with orthogonal regions.

o]

Each state has associated one activity.
l Eachregion executes the activity of its
current state.

\
l | 1
1 1
i-ji ETITS @;
B e 1 D mlL mE S~

‘ ~ Se_ 7 o~ S .7
RN ’“ ~d Actlwtlesare associated to M tasks taking into N v
account different criteria

Ve, Jy, (=],

These M tasks may be reconfngred into Ktasks for planning or efficiency purposes (heuristics, etc.)
The fundtionality of the systemhas to be that defined inthe original statedharts.

[~ [~/ [a]

Fig. 1. Ideal scenario for allocating activities to tasks

/ V3CMM-based code: \

components,

V3CMM based design State-chrts, ports, "
“<Companent> connections, etc. -+
(configuration
. |-J|:I|:| tool)
Requirement -
Specificati O Er— Platform-specific code:
pecitication SCJoint X SC ot runtime support, task model,

S &
OO0 CF

<<Component>> hot-spots:

XY_Simulator
K platform-independent code /

Fig. 2. Global view of the development process

Calls to

CS3. Code corresponding to the application functionality, described by V3CMM
models.

These three code sets are arranged in a way that code sets CS1 and CS2 constitute
a framework, where CS3 must be integrated in order to obtain the final application.
The hot-spots for specialising the framework are defined in CS2. CS2 also serves for
minimising the coupling between CS3 and CS1, enabling their separate evolution and
reuse. As long as the interpretation of the V3CMM concepts (CS2) remains the same, it
would be possible to reuse the run-time support (CS1) in different applications (CS3).
And, even more interesting, it would be possible to select a given run-time support
(CS1) for the same application functionality (CS3), depending on the application
domain requirements. CS1 and CS2 have been designed and implemented manually,

Towards the Definition of a Pattern Sequence for Real-Time Applications 171

following a set of design patterns, while CS3 is automatically generated from the
V3CMM models and integrated in the framework by means of a model transformation.

3 Global Architecture of the Generated Applications

This section explains how the framework design (shown in has been obtained
starting from its main requirements. Some of the most important patterns that comprise
the pattern story are highlighted in the figure by the classes that fulfil the roles defined
by such patterns. The correspondence between the classes and the code sets will be
described at the end of the section where it will be better understood. Due to space
limitations, this section is focused on the three main challenges that were faced when
designing the framework, namely: how to allocate state activities to tasks, how to
implement state-charts, and finally how to manage the component internal data.
Among the aforementioned challenges, the main one is how to allocate the activities
associated to the states of the state-charts to different tasks. In order to achieve it, the
COMMAND PROCESSOR architectural pattern [[7] and the highly coupled COMMAND
pattern have been selected. The COMMAND PROCESSOR pattern separates service
requests from their execution. For this purpose, the pattern defines a task (the command
processor) where the requests are managed as independent objects (the commands).
Each activity associated to a state is implemented as a separate command, which can
be allocated to any command processor. The roles defined by these two patterns are
realised by the classes Activity Processor and State Activity, respectively (see
[Fig. 3). The COMMAND PROCESSOR pattern provides the required flexibility, since it
imposes no constraints over activity subscription, number of activities, activity duration,
concurrency scheme, etc. Nevertheless, this pattern has the following liabilities:

— It leads to a large number of subclasses since it is necessary to define a subclass of
State Activity for each and every activity defined in the V3CMM models. As
these subclasses will be generated by the model transformation, it is not a relevant
drawback for this work.

— Loss of performance due to the additional indirection levels. This loss is paid off
given the obtained flexibility.

— The component internal data can be simultaneously accessed by activities
belonging to the same component but allocated to different tasks by the
implementation. It will be necessary to synchronize such concurrent accesses, as
detailed below.

The second challenge is how to interpret and implement state-charts in a way that
enables its integration in the scheme defined by the aforementioned COMMAND
PROCESSOR pattern. Providing an implementation that considers all the possibilities
offered by hierarchical states and orthogonal regions is an extremely complex issue,
which can be afforded by following different techniques [[L6]. In our case, we decided
that both regions and states should be treated homogeneously, and their activities
allocated to different command processors without knowing (or caring about) their type.
This need is fulfilled by using a simplified versions of the COMPOSITE pattern. The
roles defined by this pattern are realised by the classes State, Orthogonal Region

172 J.A. Pastor et al.

pI\cal\on-Spec\fic

7{)mmon data >
structures forstate Sepecific_Leaf_ Port_Handler_
machine Blackboard Actiity Acivity

subclass specific < Paﬂ?m ;atte'rn Null Command
data . SO T Pattern

’ﬁ—b‘ \;S]I)ata '| |Onhogonf;l,Reg\on“‘{O—‘(Le‘:;f,State‘ ‘ Leaf_Activity | ‘ Region_Activity || Null_Activity
< T T

Specific Specific . K e et O O |
Component Component <L gethoc;: for \ U7
Data 1 Datan tates Pattern \ -Pon State !
T : - Vi Command
Al | o o (s] o

~ Adata type Adata type
: V3lnput_Port V3Output Port P ’ o i
Application ‘ Activity_Processor Processor Pattern

Fig. 3. Simplified class diagram of the generated code

and Leaf State. The state-chart is managed following the METHODS FOR STATES
pattern [7], where the instances of the classes representing the state-chart are stored in a
hash table, while orthogonal regions store the keys of their leaf states in order to manage
them. To shorten the implementation of the first working version of the framework, we
only considered orthogonal regions comprising non-hierarchical states. In spite of this
limitation, a broad range of systems can be still modelled.

The distinction between states and regions led us to define specific subclasses
of state Activity. Basically, we needed two hierarchies of subclasses: activities
associated to leaf states (represented by the root class Leaf Activity), and activities
associated to regions (represented by the class Region Activity). The latter is
aimed at managing the region states and transitions, and thus is provided as part
of the framework. The formers are related to (1) the activities defined in the
V3CMM models, which are generated by the model transformation and are represented
by Specific Leaf Activity subclasses, and (2) activities to manage ports, which
are also provided by the framework and are represented by Port Handler Activity
subclasses. Following the NULL OBJECT pattern, the Null Activity class has been
defined in order to smoothly integrate those states that have no associated activity.

The third and last challenge covered in this paper is how to provide concurrent access
to the component internal data. This data is organised following the BLACKBOARD
pattern. The idea behind the blackboard pattern is that a collection of different tasks can
work cooperatively on a common data structure. In this case, the tasks are the command
processors mentioned above, and the data comprise input/output port information and
the hash table that stores state information. The main liabilities of the BLACKBOARD
pattern (i.e. difficulties for controlling and testing, as well as synchronization issues
in concurrent applications) are mitigated by the fact that each component has its own
blackboard, which maintains a relatively small amount of data. In addition, it is possible
to optimize the access to the blackboard in some important cases. For instance, the hash
table that stores the component state is accessed following a I-writer/n-readers scheme.

The full pattern story comprises eighteen patterns, from which only the most
important ones from the point of view of the global architecture have been described.
There are other patterns, such as OBSERVER, COPIED VALUE, DATA TRANSFER
OBJECT, TEMPLATE METHOD, STRATEGY, PROXY, etc., which are not shown in the

Towards the Definition of a Pattern Sequence for Real-Time Applications 173

figure since the roles defined by them cannot be clearly identified in and there is
no space left to explain how they have been used in the framework design.

The classes shown in fall into the code sets described in the previous section
as follows:

CS1: Run-time support. This set comprises the classes Activity Processor and
State Activity, which have been manually coded.

CS2: Interpretation of V3CMM concepts. This set comprises almost the rest of the
classes shown in State Activity, Leaf State, Orthogonal Region,
State, Port State, V3Input Port, V3Output Port, Region Activity,
Leaf Activity, V3Data, and V3Component. Notice that State Activity is
the link between CS1 and CS2. Classes v3Input Port and V3Output Port
are defined as generics (or templates), which are instantiated with the concrete
messages types the ports exchange. The classes comprising CS2 have been manually
coded, and define the main framework hot-spots. Although the framework is mainly
specialised by sub-classing them (and therefore it can be considered a white-box
framework), it provides some concrete subclasses. These subclasses, which are
enumerated below, are defined for implementing the port behaviour, and are meant
to be directly instantiated.

— Port State: concrete leaf states modelling the state of a given port.

— Port Handler Activity: concrete strategies for managing input ports.
By default, port to port communication is implemented following the
asynchronous without response policy, since it is the basic block for distributed
systems and for designing more complex interaction schemes.

— Region Activity: concrete strategy for managing orthogonal regions.

CS3: Application functionality. This set integrates (1) new subclasses of the hot-
spots defined in CS2, and (2) instances of these new subclasses and of the
classes comprising CS1 and CS2. All these classes and instances are automatically
generated by a model-to-code transformation from the V2CMM models. The most
relevant elements of this set, generated for each component, are:

— Data types representing the messages exchanged by components through their
ports.

— Instances of the V3Input Port and V3Output Port generic classes with
the concrete messages that the ports exchange. Notice that these instances
represent only the static structure of ports. Their dynamic behaviour is defined
in the item below.

— New orthogonal regions (instances of orthogonal Region), added to the
original state-chart in order to manage the behaviour of the component ports.
These orthogonal regions comprise leaf states (instances of Port State),
as well as the activities corresponding to these states (instances of
Region Activity and Port Handler Activity, respectively). This design
decision provides regularity and flexibility to the framework, since (1) all
regions, both those derived from the V3CMM models and those added to
manage ports, are treated homogeneously by the command processors, and
(2) ports handling is explicit and can be allocated to different tasks, depending
on the timing requirements.

174 J.A. Pastor et al.

— A subclass of v3pata comprising the specific component data as described
previously.

— An instance of the class v3Component. This object acts as a container for all
the previous elements.

Finally, when all the components have been generated, the transformation connects the
components ports, creates a set of command processors, and allocates activities to them.

4 Allocation of Activities to Tasks

This section deals with relevant aspects of the application dynamics and with the
criteria followed by the transformation to allocate activities to command processors.
From a dynamic point of view, it is important to remark that command processors
can execute activities defined in the state-charts of different components. Among

Component 3
Satechart

PR32

cREle

T=8me T=20me T=20

) IR
(o] [] [=] [] [om]

Command Command
Processor # Processor #2 Prom‘#ﬂ Pl‘ocea:rm Hm&mr#ﬁ

Fig. 4. Sample allocation scenario. From state-charts to command processors

V30utput_Port | l :V3Input_Port | | ‘Activity_Processor | :CS:;?g:ent Datan | :Activity_Processor | | :V30utput_Port ‘ | :V3Input_Port
Update(data) loop _J [forever] oo | T frorever
-1_-Port_Handler N
Read() :St_Machine H
g Set(data) andler
e]

Get

-] :LeafSpecific
Action Set(data)
ket Update(data)

&

ResolfeTransitions
<

o B \

Fig. 5. A sequence diagram with a typical execution scenario

Towards the Definition of a Pattern Sequence for Real-Time Applications 175

the many feasible possibilities for allocating activities to command processors, the
main criteria is based on activity periods, since it facilitates the further schedulability
analysis of the command processors. [Fig. 4] shows a sample allocation scenario from
the activities defined in state-charts to the tasks defined in command processors. This
scenario comprises three components, each of them associated to a state-chart with three
orthogonal regions, including the region added for port management (the shaded one).
For the shake of simplicity, the example assumes that all the activities associated to the
states contained in a given region have the period of its associated region activity. Notice
that command processors 2 and 3 access the internal data corresponding to component
2 concurrently.

A typical execution scenario is shown in the sequence diagram of which
comprises the communication among three components. A Vv3Input Port object
stores the data received from an output port. Then, a task (i.e. an Activity Procesor)
will asynchronously put this data into a v3Data object (global to the component).
Afterwards, another task will asynchronously process the incoming data depending on
the current component state. As a consequence of this processing, state transitions in
one or more regions of the component may occur. Moreover, this processing includes
the execution of the activities of the set of current active states, and the updating of new
data in output ports (sub-program set (data) in|Fig. 5).

Code listing [[l shows an excerpt of the Ada specification of the Activity Proce-
ssor, which has been implemented as a generic package, while code listing [2] shows
the body of the task corresponding to a command processor. The main characteristics
of this generic package are the following:

— The priority of the task contained in the package body is assigned according to
both the timing requirements of the subscribed activities and the chosen scheduling
algorithm. As this data is known before the transformations generate the code, it is
possible to derive the priority of each Activity Processor. Thus, a fixed priority
static scheduling algorithm can always be used if required.

— The transformation takes into account that a task may include activities with
different periods. The period assigned by the transformation to each task
(Activity Processor) is equal to the lowest period of its subscribed activities.

Listing 1. Code excerpt of the specification of the Activity Processor generic package

generic
Listener : access [Activity Processor Listener *Class;
Name : Unbounded String;

Worker Priority : System.Any Priority ;
package Common. Activity Processor is
function Get Name return Unbounded String;
procedure Set Priority (Priority : System.Any Priority);
function Get Priority return System.Any Priority;

® N U AW —

9 procedure Start;

10 procedure Stop;

1 procedure Set Period (Period: Time Span);

12 function Get Period return Time Span;

13 procedure Add Activity (Act : access I State Activity *Class);
14 procedure Del Activity (Act : access I State Activity *Class);

15 end Common. Activity Processor;

176 J.A. Pastor et al.

Listing 2. Code excerpt of the body of the Activity Processor generic package showing
the task corresponding to a command processor

task body Worker is

1
2 Next Exec : Time := Clock;

3 Iterator : P DIl.Cursor;

4 Element : State Activity All;

5 begin

6 Suspend Until True (Start Lock);

7 while Continue loop

8 delay until Next Exec;

9 Next Exec := Next Exec + Period;

10 Iterator := Activity List.First;

11 while (P DIl1.Has Element (Iterator)) loop
12 Element := P DIl.Element (Iterator);
13 Element . Execute Tick;

14 P DIl.Next (Iterator);

15 end loop;

16 end loop;

17 end Worker;

It is important to highlight that activities may execute periodically or not. When
activities are sporadic, the period attribute represents the minimum separation
between two consecutive executions. The activities are executed in the same
order as they have been subscribed to the Activity Processor, although any
alternative policy could have been chosen. Tasks are executed by the operating
system according to the chosen scheduling algorithm.

— The sub-program Add Activity enables subscribing activities to tasks.

This design assumes that activities are defined to have an execution time as short as
possible to simplify scheduling. When an algorithm includes a big number of iterations
or considers a continuous control action, then the activity should be divided into a set
of sub-activities with a bounded execution time (for example, an algorithm step or a
discrete control action).

The framework design requirements impose many constraints to the flexibility
provided by the COMMAND PROCESSOR pattern. These constraints are mainly
enforced by the real-time nature of the application domain. Some examples of the
impact of these requirements are that command processors do not spawn new tasks
to execute subscribed activities (which is permitted by the pattern), and that it is not
allowed subscribing activities to command processor or modifying periods at execution
time, to mention a few.

In order to validate the framework we have developed (1) several case studies, and
(2) a tool to monitor the execution of each application and to change the number of
command processors, and the allocation of activities to tasks. The tool enables us to
experiment with the number of command processors and different activities allocation
criteria, by reconfiguring the application generated by the transformation. The case
study shown in this paper corresponds to a Cartesian robot, developed in the context of a
research project (European Union’s Fifth Framework Programme, Growth, G3RD-CT-
00794) [10]. shows an excerpt of the state-chart corresponding to the controller of
one of the robot joints, and the part of the aforementioned configuration tool in charge
of configuring command processors.

Towards the Definition of a Pattern Sequence for Real-Time Applications 177

/ FullOperative \

Rg_Limits | Rg_Reference | Rg_Enable Rg_Motion Enter_St_Max_Limit]/,
| Enter_St_Disabled/, St_Moving_To
St_Jog_Mas
Enter_St_Max_Limit/,

| Stop
St_Max_Limit_ | St_Referenced | St Enabled

l St_Jog_Menos Enter_St_Min_Limit/,

St_Referencing |Enable Disable EnterSt_Min_Limi\l/, Ef\tEl’,St,DlSa:iZd//,
|[Stupped] [Stopped] Enter_St_Disabled/,!) -
A - EndMoving /,
Pause

JogMas
[Not St_Max_Limit,
ASt_Enabled]

[
|
|
|
|
|
Reference | |
|
|
|
|
I
|

|

|

|

|

| v T dl v

|

|

| MoveTo [Referenced * St_In_Limits*Enabled]/
|

|

St_Not_Referenced | St_Disabled
| Resume[Referenced” St_In_Limits*Enabled]

a) State-chart modelling the behaviour of a joint of the Cartesian robot.

|/ Explore. States and Tasks case study) =3 £l |
Set All Period 20/ SetAll Overhead 0 Choose concurrency policy Arranca l Abortar 1 Aplicar RMA l

Controles SC_1 > Full Operative

Update Limits Enable Ref Motion
. fsc_1 1met
e L Len - :
I X sTOP Xe
Fisn s0 update _1 Limit_Mas foc_
X.
Pause ke_3 Umis_tiene m
Dec Vel Inc Vel SC_2 > Full Operative
[Speed = 1 i a
limit >
I¥ limit > ! ey
boinix—anty .|
2 W
Enable/Disable | Enable/Disable pdate [5<_2 Limit_Mas c_2 Rel [5c_2 Jog_Mas
| Referencex | Referencey 2En .2 Jog_Menos
_2 Limit_Meno: fc_2 Ref_
2oy
Selectores Tarea T ciclos Actividades 24 |
lGuiHandier w0 Hroe | 50 433 P 1
MesaHandler 200 oo ~ |l 50 493 P Menkieter] o e
T Acts > [P_Handler mm
e Py = g |] 50 493 > [P J
" = T_3 50 493 Acts > [Han_Limits]
Han_Limits 200 o0T_0 -
= = r_4 50 493 Acts > [Han_Enable]
iHan_Enable 20— 0—T_0 - - = = s > e Rel] e
Han_Ref 20— O0—T_0 hdl |) 50 493 Acts 7 [Han_Motion] e
Han_Motion 20— 0T_0 Ik 7 50 493 Acs > [P_Handler]
P_Handler 204 HT_0 ~|[r_s 50 493 Acts >[Han_Limits]
Han_Limits 200 oo Y | L] 50 493 Acts > [Han_Enable]
Han_Enable 0 oT_o - | /['=10 50 493 Acts > [Han_Ref]
= = Acts > [Han_Motian]
Han_Ref 20~ 0HT_0 - | =1 2 i) i i

b) Configuration tool. The left part enables users to set activity periods, an estimated execution
time, and to allocate activities to tasks. The right part shows, for each task, its execution period,
number of execution cycles, and the activities allocated to it.

Fig. 6. Case study of a Cartesian robot and the reconfiguration tool

5 Related Work

As said in the introduction, there is a well established tradition of applying CBSD
principles for developing robotic applications. However, there are not many initiatives
for applying MDSD principles to robotic software development. In general, existing
robotic frameworks cannot be considered to be model-driven, since they have no
meta-model foundation supporting them. Among the main examples of applying the

178 J.A. Pastor et al.

MDSD approach to robotics is the work related to the Sony Aibo robot presented in [5].
Another initiative, described in [11], revolves around the use of the Java Application
Building Center (JABC) for developing robot control applications. Although jABC
provides a number of early error detection mechanisms, it only generates Java code
and, thus, its applicability to systems with real-time requirements is rather limited.
Finally, Smartsoft [17] is one of the most interesting initiatives for applying a MDSD
approach to robotic software development. Nevertheless, as far as we know, none of
these initiatives considers real-time issues.

The current state of the application of MDSD to robotic software development
contrasts with what happens in other similar domains, where big efforts are being
carried out in this line. For instance, the ArtistDesign Network of Excellence on
Embedded Systems Design [1] and the OpenEmbeDD [3] project address highly
relevant topics regarding real-time and embedded systems, while the automotive
industry has standardised AUTOSAR [2] for easing the development of software for
vehicles.

As Buschmann et al. [7] states, not all domains of software are yet addressed
by patterns. However, the following domains are considered targets to be addressed
following a pattern-language based development: service-oriented architectures,
distributed RT and embedded systems, Web 2.0 applications, software architecture
and, mobile and pervasive systems. The research interest in the RT system domain
is incipient and the literature is still in the form of research articles. A taxonomy of
distributed RT and embedded system design patterns is described in [9], allowing the
reader to understand how patterns can fit together to form a complete application. The
work presented in this paper is therefore a contribution to the definition of pattern
languages for the development of this kind of systems with the added value of forming
part of a global MDSD initiative.

6 Conclusions and Future Research Lines

This paper has described an approach to provide a run-time support (framework) to
a component-based approach for modelling RT applications. To do that, it has been
necessary to provide an OO interpretation of the high-level architectural concepts
defined in V3CMM (components, ports, state-charts, etc.), taking into account real-time
requirements. The proposed solution is not general nor closed to future improvements,
but it is a stable and validated starting point for further development.

The adoption of a pattern-driven approach has greatly facilitated the design of
such framework. In addition, the selected patterns have been described like a pattern
story. A further step would be the definition of a pattern sequence, which comprises
and abstracts the aforementioned pattern story, so that developers can use it in other
applications as long as they share similar requirements. With several pattern stories and
pattern sequences it would be possible to define a true pattern language for a given
domain, which gives a concrete and thoughtful guidance for developing or refactoring
a specific type of system. The greatest difficulties in reporting this story have been how
to synthesize in a few pages the motivations for choosing the patterns that have been
used, and the lack of consensus about the best way of documenting pattern stories.

Towards the Definition of a Pattern Sequence for Real-Time Applications 179

The characteristics of the Ada language that have revealed most useful for the
development of the framework have been its mature concurrency facilities, strong
typing, the generics mechanism, and the flexibility provided by packages in order to
organise and encapsulate component structure. In addition, the new container library
has proven very useful for implementing the internal blackboard of each component.
The main difficulty comes from the fact that Ada is an extensive language and requires
a deep understanding of the its mechanisms in order to successfully combine them.

Regarding future research lines, we are currently working on extending the
framework with additional capabilities following a pattern-driven approach. Among
these extensions, it is worth mentioning the following: (1) component distribution,
(2) testing and adding heuristics for activities allocation and task grouping, (3) refining
and improving the patterns used for implementing hierarchical and timed state-charts,
and (4) comply with the Ravenscar profile for designing safety-critical hard real-
time systems. Assessing timing requirements fulfilment in an automated way is also
very important, and thus we plan to study strategies to generate analysis models for
different scheduling analysis tools. The usage of the UML profile for MARTE [14] as
a mechanism to formalize the models involved is also an approach to be explored.

References

[1] ArtistDesign - European Network of Excellence on Embedded Systems Design (2008-
2011), http://www.artist-embedded.org/

[2] AUTOSAR: Automotive Open System Architecture (2008-2011), http://www.
autosar.org/

[3] OpenEmbeDD project, Model Driven Engineering open-source platform for Real-Time &
Embedded systems, (2008-2011), http://openembedd.org/home_html

[4] Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J.: V3CMM: a 3-View Component Meta-
Model for Model-Driven Robotic Software Development. Journal of Software Engineering
for Robotics (JOSER) 1(1), 3-17 (2010)

[5] Blanc, X., Delatour, J., Ziadi, T.: Benefits of the MDE approach for the development
of embedded and robotic systems. Application to Aibo. In: Proc. of the 3rd National
Conference on Control Architectures of Robots (2007)

[6] Bruyninckx, H.: Robotics Software: The Future Should Be Open. IEEE Robot. Automat.
Mag. 15(1) (2008) ISSN 1070-9932

[7] Buschmann, F., Henney, K., Schmidt, D.: Pattern-Oriented Software Architecture. A Pattern
Language for Distributed Computing, vol. 4. John Wiley and Sons Ltd., Chichester (2007)
ISBN 0471486485

[8] Buschmann, F., Henney, K., Schmidt, D.: Pattern-Oriented Software Architecture. On
Patterns and Pattern Languages, vol. 5. John Wiley and Sons Ltd., Chichester (2007) ISBN
0471486485

[9] Dipippo, L., Gill, C.: Design Patterns for Distributed Real-Time Embedded Systems. In:
Real-Time, Springer, Heidelberg (2009) ISBN 0387243577

[10] Iborra, A., Alonso, D., Ortiz, FJ., Franco, J.A., Sanchez, P., Alvarez, B.: Design of
service robots. IEEE Robot. Automat. Mag., Special Issue on Software Engineering for
Robotics 16(1) (2009), doi:10.1109/MRA.2008.931635, ISSN 1070-9932

[11] Jorges, S., Kubczak, C., Pageau, F., Margaria, T.: Model Driven Design of Reliable Robot
Control Programs Using the jJABC. In: Proc. Fourth IEEE International Workshop on
Engineering of Autonomic and Autonomous Systems EASe 2007, pp. 137-148. IEEE, Los
Alamitos (2007)

http://www.artist-embedded.org/
http://www.autosar.org/
http://www.autosar.org/
http://openembedd.org/home_html

180

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

J.A. Pastor et al.

Makarenko, A., Brooks, A., Kaupp, T.: On the Benefits of Making Robotic Software
Frameworks Thin. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS 2007). IEEE, Los Alamitos (2007)

OMG: MDA success stories (2008), Available online: http://www.omg.org/mda/
products_success.html

OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems,
formal/2009-11-02 (2009), http: //www.omg.org/spec/MARTE/1.0

Robot Standards and Reference Architectures (RoSTa), Coordination Action funded un-
der EU’s FP6: http://wiki.robot-standards.org/index.php/Current_
Middleware_Approaches_and_Paradigms

Samek, M.: Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes (2008), ISBN 0750687061

Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic software systems: From code-driven
to model-driven designs. In: Proc. International Conference on Advanced Robotics ICAR
2009, pp. 1-8. IEEE, Los Alamitos (2009)

Stahl, T., Volter, M.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, Chichester (2006)

Szyperski, C.: Component software: beyond object-oriented programming. A-W, 2nd edn.
(2002), ISBN 0201745720

http://www.omg.org/mda/products_success.html
http://www.omg.org/mda/products_success.html
http://www.omg.org/spec/MARTE/1.0
http://wiki.robot-standards.org/index.php/Current_Middleware_Approaches_and_Paradigms
http://wiki.robot-standards.org/index.php/Current_Middleware_Approaches_and_Paradigms

	Towards the Definition of a Pattern Sequence for Real-Time Applications Using a Model-Driven Engineering Approach
	Introduction
	General Overview of the Approach
	Global Architecture of the Generated Applications
	Allocation of Activities to Tasks
	Related Work
	Conclusions and Future Research Lines
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

