
Preservation of Timing Properties
with the Ada Ravenscar Profile

Enrico Mezzetti, Marco Panunzio, and Tullio Vardanega

Department of Pure and Applied Mathematics, University of Padova, Italy
{emezzett,panunzio,tullio.vardanega}@math.unipd.it

Abstract. Modern methodologies for the development of high-integrity real-
time systems leverage forms of static analysis that gather relevant characteristics
directly from the architectural description of the system. In those approaches it
is paramount that consistency is kept between the system model as analyzed and
the system as executing at run time. One of the aspects of interest is the tim-
ing behavior. In this paper we discuss how the timing properties of a Ravenscar
compliant system can be actively preserved at run time. The Ravenscar profile
is an obvious candidate for the construction of high-integrity real-time systems,
for it was designed with that objective in mind. Our motivation was to assess
how effective the Ravenscar profile provisions are to the attainment of property
preservation. The conclusions we came to was that a minor but important ex-
tension to its standard definition completes a valuable host of mechanisms well
suited for the enforcement and monitoring of timing properties as well as for the
specification of handling and recovery policies in response to violation events.

1 Introduction

In recent years, methodologies for the development of high-integrity real-time systems
have started to adopt styles that leverage forms of static analysis mostly based on an
architectural description of the system. One of the core concerns of those development
methodologies is to facilitate the early analysis of the design attributes that are critical to
the computation, time, space and communication behavior of the system. The adopted
architectural description language and the methodology that uses it should therefore
permit the required forms of analysis to be performed as early as possible in the devel-
opment process, typically much earlier than implementation and test on target.

This prerequisite is important, because when design attributes are used as input for
system analysis, they later constrain system execution in order that the analysis assump-
tions can actually (continue to) hold true at run time. Ultimately therefore those design
attributes turn into system properties. Preservation of properties at run time then be-
comes an essential provision to warrant consistency between the system as analyzed
and the system during execution. In fact, any deviation that the system execution may
incur at run time from the initial stipulations may invalidate the analysis results and
cause undesirable consequences. Obviously, the nature of the attributes that the analysis
techniques in use want set on the system determine how strict and taxing the preserva-
tion measures must be. A simple yet coarse analysis may demand little in the way of

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 153–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

154 E. Mezzetti, M. Panunzio, and T. Vardanega

run-time preservation capabilities, but it may also result in ineffective design. More so-
phisticated analysis costs more in both the intellectual gears required of the user and the
support needed for preservation, but it also permits finer-grained control of the design.

In this paper we focus on how to ensure the preservation of timing properties at run
time. This goal can be achieved with three distinct and complementary provisions:

1. enforcing the timing properties that are to stay constant during execution;
2. monitoring the timing properties that are inherently variable in so far as they are

influenced or determined by system execution;
3. trapping and handling the violations of asserted properties.

In class 1 we include the provisions needed to enforce the period for cyclic tasks and
the minimum inter-arrival time (MIAT) for sporadic tasks. Those values are stipulated
as constants that feed schedulability and performance analysis and they must therefore
be obliged as exactly as possible during execution. Needless to say, the granularity and
accuracy of the software clock and the absolute vs. relative nature of delays have a
tremendous influence on the degree of preservation that can be attained.

Provisions in class 2 concern the monitoring of the execution time of tasks and their
deadlines. Both attributes are intrinsically variable, the latter because, while we may set
deadlines as relative, when they take effect they are obviously absolute and thus depend
on current time.

The ability to monitor those variable attributes is the prelude to being able to detect
the violations of their bounds as well as identify the failing party. The bound assumed
for task execution time is the worst-case value of it, known as WCET, which should not
be overrun. Deadlines should not be missed, which we can detect by observing whether
the jobs of tasks always complete before their respective deadline.

Those provisions belong in class 3, together with the ability to act on the violation
event following some user-defined policy.

In this paper we discuss a practical strategy to attain the preservation of the timing
properties of interest. We want this strategy to be effectively applicable under the con-
straints of the Ravenscar profile [1], which we regard as the most appropriate run-time
infrastructure for high-integrity real-time systems.

We also contend that the ability to monitor the execution time of tasks is crucial in
two distinct ways: it helps us adjudge the cause of a timing-related violation event with
suitable accuracy and it permits to trigger the designated handling procedure with the
least possible latency.

The ability to monitor execution time responds to two important yet basic needs:

– First, we must acknowledge that the worst-case execution time (WCET) of tasks
is a most fundamental input to schedulability analysis. Designers are required to
feed the analysis equations with a value that is both safe, that is, no less than the
actual task WCET, and as tight as possible so as to avoid overly pessimistic analysis
results. Unfortunately, obtaining bounds with both those two characteristics is a
tough call for both the scientific community and the current industrial practice.
Hence systems are statically analyzed on the basis of bounds that may prove unsafe
in some possibly extreme scenarios of execution, whether normal or erroneous, and
thus incur WCET overruns that invalidate the assurance of analysis.
The use of execution-time timers allows to promptly detect such overruns.

Preservation of Timing Properties with the Ada Ravenscar Profile 155

– Second, execution-time monitoring serves industrial developers most practical, ef-
fective and standard means to measure the execution of tasks in the most accurate
and representative settings with respect to both hardware and operational scenarios.
These measurements, when obtained through high-coverage verification and vali-
dation activities provide useful confirmatory evidence of the WCET bounds used
in the analysis.

The remainder of the paper is organized as follows: in section 2 we briefly recall the
essentials of the Ravenscar profile and account for its ongoing evolution; in section 3
we show how to enforce static timing properties; in section 4 we discuss how to monitor
variable timing properties; in section 5 we propose some policies to detect and handle
violation events; in section 6 we draw some conclusions.

2 The Ravenscar Profile

The Ravenscar profile (RP) [1] was one of the most prominent outputs of the 8th Inter-
national Real-Time Ada Workshop (IRTAW), held in 1997. It was subsequently subject
to minor refinements and clarifying interpretations during the 9th and 10th IRTAW in
1999 and 2002 respectively.

The RP has ever since received growing attention by the scientific, user and imple-
mentor community alike. Several industrial-quality implementations of it exist to date.
Furthermore, with the 2005 revision of the Ada language it has also become a standard
part of the language.

The rationale for the RP is to provide a restricted tasking model suited for the devel-
opment of high-integrity real-time systems.

The Verification and Validation (V&V) activities for that class of systems include
the use of static analysis to analyze the behavior of the system in the time and space
dimensions. To best serve this need, the profile: excludes all Ada constructs that are
exposed to non-determinism or unbounded execution cost; prescribes the use of a static
memory model; and constrains task communication and synchronization to the use of
protected objects under the ceiling locking protocol. The resulting run-time system can
be implemented on top of a real-time kernel of little complexity – which is good for
certification – and high space and time efficiency.

In our timing properties preserving architecture we use the following Ada constructs
and features:

(i) the delay until statement, for the enforcement of the period of cyclic tasks and
the MIAT of sporadic tasks (see section 3 for details);

(ii) Timing_Event declared at library level, for deadline monitoring (see section
4.1); and

(iii) execution-time timers for monitoring task WCET (see section 4.2).

Timing_Events and execution-time timers were introduced in the 2005 revision of the
language, together with the standard definition of the RP. Timing_Eventswere – with
definite benefit, as we shall see later – included in the Ravenscar profile, but under the
restriction that they be declared at library level only [2]. Conversely, although the need

156 E. Mezzetti, M. Panunzio, and T. Vardanega

to monitor the run-time behavior of tasks even under the Ravenscar constraints was
evident, execution-time timers were excluded, for it was feared that the asynchronous
nature of timer events would hamper the predictability of execution and cause a disturb-
ing increase in the run-time overhead of implementations.

Interestingly, the cost-related element of the cautionary argument behind the
exclusion of execution-time timers from the RP does not hold anymore: several industrial-
quality implementations of the RP have recently been extended with (restricted) exper-
imental support for it, e.g.: MarteOS [3] and ORK 2.1 [4]. The latter implementation
is a real-time kernel developed by the Polytechnic University of Madrid, which targets
the LEON21, a SPARC V8 processor. ORK 2.1 provides a lightweight implementation
of execution-time timers, restricted to at most one per task. To facilitate use in high-
integrity systems, ORK 2.1 provides a very comprehensive score of upper-bounds to
the timing overheads of all its primitive services, including those for execution time
monitoring.

Table 1 summarizes the run-time overhead incurred by the timer management pro-
cedures of the Execution_Time package.

Table 1. ORK 2.1 time overhead of Execution_Time procedures (in processor cycles)

Package Procedure Execution time
Execution_Time Clock 435
Execution_Time CPU_Time + Time_Span 58
Execution_Time CPU_Time − Time_Span 58
Execution_Time CPU_Time < CPU_Time 65
Execution_Time CPU_Time ≤ CPU_Time 77
Execution_Time CPU_Time > CPU_Time 73
Execution_Time CPU_Time ≥ CPU_Time 51
Execution_Time Split(CPU_Time, Seconds_Count, Time_Span) 1142
Execution_Time Time_Of(Seconds_Count, Time_Span) 80

In spite of the negative effect caused the very poor clock registers provided in the
LEON2 processor architecture, the overheads reported in Table 1 arguably demon-
strate, from the standpoints of both implementation and execution, that the inclusion
of execution-time timers can be afforded in the Ravenscar profile. The subsequent dis-
cussion will also show that the other concern, that of permitting asynchronous timer
events to unduly occur during execution is defeated under the use that we propose.

Acknowledging this evidence, the 14th IRTAW held in October 2009 formalized
an Ada Issue (AI) proposal for the inclusion of execution-time timers in the standard
definition of the Ravenscar Profile. At the time of writing, that AI has been submitted
to the approval of the Ada Rapporteur Group (ARG) for evaluation.

We look very favorably to this possible revision of the RP. As we discuss in the sequel
in fact, the availability of execution-time timers is absolutely central to the suite of run-
time mechanisms we need for the realization of detection and handling of time-related
faults in a Ravenscar-compliant system.

There has been heated (yet amicable) discussion as to whether the RP should stay
fixed as sanctioned in the Ada 2005 standard and let any extensions (as opposed to

1 http://www.gaisler.com

http://www.gaisler.com

Preservation of Timing Properties with the Ada Ravenscar Profile 157

general modifications) of it form a distinct profile. Our view in that regard is that if a
language feature is deemed useful for the intent and purposes of the RP and its imple-
mentation incurs low-enough space and time overhead, then it should incrementally add
to the standard RP instead of feeding a separate derivative profile.

3 Enforcement of Timing Properties

The first class of timing properties we described in section 1 comprises constant prop-
erties that can be enforced explicitly, like the task period in cyclic tasks and the MIAT
in sporadic tasks.

The task period can be straightforwardly enforced with the use of an absolute delay,
as supported by the delay until statement of Ada, which separates in time successive
activations of jobs of that task, each job being represented by the inside of the outermost
loop of task body.

To enforce the MIAT in sporadic tasks we need instead to combine the use of the
absolute delay with a task structure that captures the software-generated release event
associated to the task. It is worth noting that by adopting a two-staged strategy for the
handling of hardware interrupts and sporadic tasks for the deferred (or second-level)
part we attenuate – but not obliterate – the hazard occurring from interrupts occurring
more frequently than stipulated.

For example, reference [5] defines tasks as a composition of four basic blocks (Fig-
ure 1) that mirrors HRT-HOOD [6]:

– a provided and required interface, respectively PI and RI;
– an operational control structure (OPCS), which implements the functional (sequen-

tial) behavior of each PI service;
– a thread, which implements the task behavior and thus executes PI services of the

task, one per activation as required;
– an object control structure (OBCS), which operates as the synchronization protocol

agent responsible for delivering the release event to the task, in conformance to the
Ravenscar constraint that wants inter-task communication to be asynchronous via
a protected object.

In that task structure, the PI of the task is entirely delegated to the OBCS: each in-
vocation of that PI is therefore addressed to the OBCS, which reifies it into a request
descriptor and posts it in a dedicated application-level queue.

The release event of a sporadic task is determined by the occurrence of two subor-
dinate conditions: the task has woken up from its MIAT-long suspension; and at least
one invocation request is pending in the OBCS queue. When the latter condition is true,
the guard to the corresponding entry in the OBCS opens and the thread may fetch with
mutual exclusion guarantees the request descriptor from the OBCS queue. The thread
then interprets the descriptor to determine which PI must be executed, and calls the
designated service in the OPCS (see listing 1).

Cyclic tasks can be reconciled with this structure by requiring that at every periodic
release they use a protected procedure to fetch a request descriptor from their OBCS.
This provision enables the cyclic task structure to allow the execution of commanded

158 E. Mezzetti, M. Panunzio, and T. Vardanega

operations instead of just the nominal periodic operation. In the latter case the request
descriptor would take a default value, but explicit invocations of the cyclic task PI would
cause non-default request descriptors to be deposited in the queue of the corresponding
OBCS. Interestingly, the latency of execution of the commanded operation would not
undermine its ultimate utility, for it would be bounded by the task period.

Fig. 1. Compositional task structure

Listing 1. Task structure for the enforcement of period or MIAT

1 loop
2 < fe t ch a request from OBCS and decode i t > ;
3 <invoke the requ i red se rv i ce i n OPCS> ;
4 Next_Time := Next_Time + Mi l l i seconds (I n t e r v a l) ;
5 delay u n t i l } Next_Time ;
6 end loop

Much like many other real-time constructs, the efficacy of the delay until state-
ment depends on the accuracy of the implementation of hardware and software clocks,
and on the precision of the hardware timer. The lack of proper hardware support may
negatively affect the accuracy of clocks and thus of absolute delays, as described in [7].

4 Monitoring of Timing Properties

Modern development approaches employ static analysis techniques to predict the timing
behavior of the system model. Unfortunately, however, the values set for the task timing
attributes that depend on run-time behavior – most notably, the worst-case execution
time – may be exceeded. This is because the problem is difficult and prone to inaccurate
reasoning or inadequate means. The consequences of a WCET overrun misbehavior
may be dire, in that a number of tasks may miss their deadlines.

Let us now focus on the monitoring of deadlines, task WCET and blocking time
induced by the use of the Ceiling Locking protocol to warrant mutual exclusion for
shared critical sections.

Preservation of Timing Properties with the Ada Ravenscar Profile 159

4.1 Deadline Monitoring

Schedulability analysis ascertains whether every job of a task can complete its execution
before the applicable deadline, which can be either absolute or relative to the release
time of the task.

Since the expiration of an absolute deadline intrinsically is a time event, timing
events can effectively be used to perform deadline monitoring.

In Ada 2005 the Timing_Event is a lightweight mechanism that executes a pro-
tected procedure at a specific time instant, without the need to employ a dedicated task.
The code to be executed at the given time is specified in a Timing_Event_Handler.
Timing_Events are triggered by the progression of the hardware clock. Implementa-
tions may execute the protected procedure directly in the context of the interrupt service
routine that acknowledges the clock interrupt. This is in fact an implementation advice
in the Ada specification.

Listing 2. Deadline-monitored task

1 loop
2 Set_Handler (Deadline_Event ,
3 Mi l l i seconds (Rel_Deadline) ,
4 Deadline_Miss_Handler) ;
5 <task operat ions > ;
6 Next_Time := Next_Time + Mi l l i seconds (I n t e r v a l) ;
7 Cancel_Handler (Deadline_Event , i sSetHandler) ;
8 delay u n t i l Next_Time ;
9 end loop ;

At each new task release, a timing event can be armed to expire at the absolute
deadline of the task invoking the Set_Handler procedure (see listing 2). If the task
was able to complete its activation before its deadline, the timing event would be cleared
using the Cancel_Handler procedure. Otherwise, the timing event would be fired and
the designated handler would be executed.

Unfortunately, very little can be learned from the detection of a deadline miss, for the
violation event is not directly related with the actual cause of it. A deadline miss could
in fact be incurred by a WCET overrun of the monitored task itself, or by greater inter-
ference from higher priority tasks (each element of it being a possibly marginal WCET
overrun), or even by the blocking caused by the resource access protocol, when a lower
priority task holds a resource with ceiling priority higher than that of the monitored task.
As a consequence, no other useful operations can be performed for the handling of a
deadline miss than just logging the event for the purposes of information integration
over time.

4.2 WCET Monitoring

The provisions that enable the monitoring of execution time of tasks are probably
the single most useful mechanism to ensure the preservation of timing properties. In
Ada 2005, Execution_Time.Timers provide a simple yet efficient mechanism to
monitor the execution time of tasks, to detect WCET overruns and to react in a timely
fashion to a violation event.

160 E. Mezzetti, M. Panunzio, and T. Vardanega

Execution-time clocks were first introduced in the POSIX 1003.1d standard [8] as
a means to cater for information on the run-time behavior of tasks. Execution-time
clocks have subsequently been included in the 2005 revision of Ada [2]. The inclusion
of execution-time timers in the Ada language standard is very good news indeed. Pre-
viously in fact, the industrial need for monitoring the execution time of tasks or for
measuring execution time in general could only be responded to by resorting to vendor-
specific solutions, realized in whether hardware or software.

The Execution_Time package associates a Clock to a designated task, which is
used for measuring the CPU time actually consumed by the task execution. (To tell the
truth, the language standard permits the measured value to include the execution time of
interrupt handlers occurred during the execution of the task. This may obviously cause
the resulting value to be pessimistically inaccurate. To rectify this discrepancy the 14th
IRTAW formulated an implementation advice to treat the execution time of interrupt
handlers separately from that of the preempted tasks.)

A Timer realizes a mechanism on top of an execution-time clock (thus related to a
single task) which triggers a Timer_Handler procedure when the task has consumed
a given amount of CPU time.

Listing 3. WCET-monitored task

1 loop
2 Set_Handler (WCET_Timer ,
3 Mi l l i seconds (WCET) ,
4 WCET_Violation_Handler) ;
5 <task operat ions > ;
6 Next_Time := Next_Time + Mi l l i seconds (I n t e r v a l) ;
7 delay u n t i l Next_Time ;
8 end loop ;

Every individual task can be attached to a timer that monitors the CPU time that is
consumed by the task. At each task activation the timer is set to expire whenever the
task exceeds its allotted CPU time (which is meant to be its WCET). In the event of
a WCET overrun the Timer_Handler procedure is immediately executed. In contrast
with deadline monitoring, the handler need not be cancelled on self-suspension because
a suspended task does not consume CPU time. Since the timer that has fired a handler on
a violation event is directly attached to the overrunning task, a detected WCET overrun
is always correctly ascribed to the actual culprit.

Under fixed-priority preemptive dispatching, a WCET overrun may cause a missed
deadline not only in the overrunning task itself, but also on lower priority tasks owing
to greater interference.

4.3 Blocking Time Monitoring

A task that executes longer than stipulated inside the critical section of a shared resource
may cause a subtle case of timing fault. In fact, the response time equation (1) of any
task τi is determined by three additive factors: the WCET Ci of τi itself; the worst-case
interference due to the execution of higher priority tasks including kernel overheads
(Ii); and the blocking time, which is computed as the longest time the task of interest

Preservation of Timing Properties with the Ada Ravenscar Profile 161

can be prevented from executing by lower priority tasks (Bi) in force of the resource
access protocol in use.

Ri = Ci + Bi + Ii (1)

In order to determine the blocking time factor that applies to every individual task
we must therefore compute an estimate for the longest execution time of each critical
section and then apply specific filtering scheme that depends on the resource access pro-
tocol in use. It is worth noting in this regard that the Ceiling_Locking policy, which
is prescribed in the Ravenscar profile, provides a minimized bound for the blocking time
factor value and guarantees that each task can be blocked at most once per activation
and just before release.

This notwithstanding, detecting and diagnosing this kind of timing fault can prove
quite cumbersome. The mere fact that a task executes longer than expected inside a
critical section does not necessarily incur a WCET overrun in any affected task (the
running task and that may suffer blocking from it) as the task execution as a whole may
even out this violation. Consequently, to cope with this kind of fault we cannot simply
rely on WCET monitoring through Timers.

As we inferred earlier on, a blocking-time violation can affect task schedulability
in a subtler way than just causing WCET overruns in them. In fact, whereas WCET
overruns only affect the schedulability of the faulty task or of lower priority ones, the
overrun in a critical section may cause a missed deadline even for higher priority tasks
whose priority is lower than or equal to the ceiling of the used shared resource.

An interesting study [9] targeting Real-Time Java describes an elegant approach to
directly monitor blocking time. The proposed solution leverages the inherent property
of the Ceiling_Locking policy, which ensures that blocking may occur only once
per task activation and just before its release. The essence of the proposal revolves
around using a kernel-level timer to measure the time duration that a task is prevented
from execution owing to priority inversion. Due to the lack of standard support for it,
however that approach is currently not feasible in our context.

An alternative approach consists in measuring the execution time actually spent
within shared resources instead of monitoring the blocking time incurred from their
use. The worst-case blocking time term Bi in equation (1) depends on the adopted syn-
chronization protocol; with the Ceiling_Locking policy prescribed by the Ravenscar
profile – which has the same worst-case behavior as the priority ceiling protocol [10])
– the worst-case blocking time Bi induced on task τi amounts to the duration of the
longest critical section executed by lower priority tasks in a shared resource with a
ceiling priority higher than or equal to the priority of τi.

Unfortunately, to monitor the time a task executes inside a shared resource we cannot
use the Ada Timers, for they are associated to only one task and this attachment is
statically fixed at timer creation. Hence we cannot define a timer that can be reassigned
to the tasks that enter a given critical section.

To circumvent the lack of direct language support, one might possibly resort to using
the execution-time clocks on which Timers are based. An execution-time clock can in
fact be used to measure task execution in any given code region. One could thus query
the CPU time consumed by the task of interest before and after the critical section and
then calculate the difference (see listing 4).

162 E. Mezzetti, M. Panunzio, and T. Vardanega

Listing 4. Time monitoring of execution in shared resource

1 Time_In := Execution_Time . Clock ;
2 <beginning of c r i t i c a l sec t ion CS> ;
3 <end of c r i t i c a l sec t ion CS> :
4 Time_Out := Execution_Time . Clock ;
5 i f Time_Out − Time_In > CS_WCET then
6 < v i o l a t i o n handl ing> ;
7 end i f ;

If the CPU time spent executing in the critical section is longer than estimated we
may have a blocking-time violation for the higher priority tasks that contend for the
same resource. This can be determined by comparing the consumed CPU time against
the amount of blocking that the overruning task is predicated to induce on higher prior-
ity tasks; if that is the case, then we do have a violation event to treat.

Unfortunately however this approach suffers from at least two serious defects. First,
the scheme shown in listing 4 would not be able to promptly detect a WCET overrun
inside a critical region, but only after the task has finished executing in the shared re-
source and has released it, which may not actually occur in the case of serious program-
ming or execution error. Furthermore, in contrast with the Timer_Handler procedure
in Timers, the handling mechanism would not be executed at interrupt level but at the
priority of the overrunning task, which is immediately preempted by higher priority
tasks, perhaps even of those it was blocking. This implies that the handling of the fault
is further deferred, possibly after the preempting task has already missed its deadline.
Finally, this approach also adds considerable time and space overhead to the monitoring
framework of the architecture.

5 Handling of Timing Faults

Several policies can be adopted to try to remedy a detected timing fault. The handling
type may depend on: the severity and frequency of the timing fault; the criticality of the
affected system function; system requirements. In fact, for several high-integrity real-
time systems, the only recovery operation admissible on the detection of a severe fault
requires to either terminate the program and enter some safe mode, or else switch to a
hot redundant computer, if available.

We now enumerate the fault handling policies that can be used when a timing vio-
lation is detected at run time. Those policies can be applied in the face of occasional
or even recurrent overruns of modest or even important gravity. Some of the proposed
treatments simply contribute information for fault identification and diagnosis. Other
treatments permit to effect a recovery action, which is able to mitigate or remedy the
effects of the timing fault.

However, as we further discuss, all of those policies are unable to remedy permanent
overrun situations that arise from a task getting stuck executing forever in a loop.

Error logging. This is the simplest and most basic treatment: the WCET violation
event is simply logged. Although the logging does not remedy the problem, the log can
be used to inform some designated fault handling authority, which can then apply some
system- or partition-wide policy.

Preservation of Timing Properties with the Ada Ravenscar Profile 163

Integration of WCET. When designers perform schedulability analysis based on Re-
sponse Time Analysis [11], they determine the worst-case response time of each task
and thus earn confidence that tasks meet their deadline. As we mentioned earlier on, the
robustness of the analysis results depends on the safeness of the WCET bounds that are
fed to the equations.

Sensitivity analysis (for example in the flavor described in [12]) instead is a theory
that is able to calculate how long the execution of a task can exceed its WCET while still
maintaining the overall system schedulable. In essence, provided that all the remaining
timing parameters stay fixed, we are able to statically calculate the maximum amount
of tolerance the system can admit for single violations of WCET.

We can leverage this information to realize some WCET overrun handling policies.
Let us call ΔCx the allowable excess execution time for task τx that we determine

using sensitivity analysis. When task τi should ever incur a WCET overrun, perhaps
because the estimated WCET bound Ci was too optimistic, we can permit the task
to execute until Ci + ΔCi without fearing consequences for system schedulability.
The timing fault incurred when execution time exceeds Ci should however be always
notified to the fault management authority so that it can set an upper bound on the
number of times the violation is allowed before escalating to other handling policies
(such as e.g., degraded mode, safe mode, etc...).

If a task should frequently incur WCET overruns that do not exceed ΔCi, an obvious
alternative strategy would consist in directly increasing the WCET bound that is moni-
tored by the execution-time timer of the task. The increment that integrates the WCET
can be applied to one and the same task multiple times as long as it does not exceed
ΔCi. Unfortunately, if we wanted to apply this policy to more than one task at a time,
we would need to recalculate the ΔCx increment factor for all tasks τx.

Fig. 2. a) Nominal execution of a task; b) The task overruns the WCET bound used in the schedu-
lability analysis; the overall system however is still schedulable; c) The task overruns the WCET
bound and the sensitivity analysis bound; the overall system is not schedulable anymore

The theory presented in [13] has potential for application in our context. That work
in fact formalizes the class of “weakly hard real-time systems” and supports it with a
suite of schedulability equations that are able to ascertain whether a task set meets “any
n in m deadlines” (with m ≥ 0 and 0 ≤ n ≤ m), or “any row n in m deadlines”.

In [14] instead, the authors leverage on [13] to determine the ΔCi of a task in a
weakly hard real-time system under EDF. Unfortunately, this theory is only able to
predict the ΔCi of a single task under the assumption that all other system parameters
stay fixed. This limitation notwithstanding, an extension of that theory that was able

164 E. Mezzetti, M. Panunzio, and T. Vardanega

to account for shared resources and fixed priority preemptive scheduling would be an
interesting candidate for application in our context.

Period or MIAT change. Increasing the period or MIAT of a periodic or sporadic task
that is frequently overrunning its WCET may help one mitigate the effects on affected
tasks. If a sustainable schedulability analysis theory [15] was used (as for example
Response Time Analysis), then this relaxation of the system parameters is guaranteed
to preserve the overall system schedulability.

Task inhibition via OBCS. If tasks are realized with the compositional structure de-
scribed in section 3, it is possible to set the guard of the OBCS entry to false so as
to prevent any further release of an overrunning task. In order to make the mechanism
compliant to the RP, the guard of the entry shall be expressed as a simple Boolean
variable; this is simple to achieve as the guard can be set by a designated protected pro-
cedure that can be invoked by the fault handling authority. The solution applies directly
to sporadic tasks – and cyclic tasks alike – and it is reversible in that the guard can be
set to true again anytime the fault handling policy deems it safe.

The applicability of the latter two policies is contingent on the system requirements:
the system should be able to operate with degraded performances or without the func-
tions in which the faulty tasks is involved; this assessment includes the evaluation of
producer-consumer relationships in which the faulty task is involved. Table 2 recapitu-
lates the possible policies and their essential characteristics.

Table 2. Techniques against WCET overruns

Technique Recovery Ravenscar
Action Compliance

Error Logging ◦ yes
Integration of WCET ∗ yes
Period/MIAT change • yes
Inhibition via OBCS • yes

Symbols: • = the technique can be used as (part of) a recovery action;
∗ = the technique can be part of a recovery action in a

limited number of situations;
◦ = the technique does not remedy the timing fault.

The occurrence of a permanent overrun is an extremely severe situation to cope
with. For this situation to occur, a task must be stuck executing forever in a loop. In that
situation in fact, the rules of fixed-priority preemptive dispatching will never permit
lower priority tasks to ever execute again.

A fault of this kind is extremely delicate for Ravenscar systems, since the RP does
not provide for any mechanisms that permit to directly cope with it.

Task termination would be no solution, not only because it is explicitly excluded by
the RP, but also because of its inherent exposure to massive extents of non-determinism
and its disruptive costs to kernel implementation and verification.

The use of dynamic priorities and/or asynchronous task control could be advocated
to mitigate or remedy the problem. The former feature would be used to decrease the
priority of the offending task to the lowest possible value: this solution is however not

Preservation of Timing Properties with the Ada Ravenscar Profile 165

satisfactory for data integrity in so far as the task would stay eligible for execution and
may consume data when the CPU has no other tasks to execute. The latter would not
be able to force tasks stuck in a critical section to yield as the task in question shall first
release the resource before asynchronous task control can take effect.

In the case the system was not able to direct perform ultimate maintenance on itself,
patching part of the software (in actual fact, the functional part of offending tasks) while
continuing reduced operation may become the only applicable non-disruptive course of
action. The inhibition of designated tasks by setting the corresponding OBCS entry
guard to false would permit to safely replace the faulty OPCS.

As a conclusion, there is still an open area of investigation for a practical and effec-
tive handling policy for this kind of severe faults. However it should be clear that due to
the high-integrity nature of the real-time systems in which the RP is used (and thus to
the extensive V&V campaigns they are subject to), we can assume that the probability
of occurrence of permanent overruns is negligible.

6 Conclusion

In this paper we discussed the importance of preservation of properties at run time for
state-of-the-art development methodologies. As the analysis of systems is applied in
earlier design stages, it becomes imperative to ensure that the system at run time does
not deviate from what was predicated by analysis. In our work we focused on run-
time preservation of timing properties. We centered our approach on the adoption of a
subset of the Ada language known as the Ravenscar profile (RP), which facilitates the
design of systems that are by definition amenable to static analysis in the time and space
dimensions. We described a framework for the enforcement and monitoring of timing
properties which also allows to perform a set of fault handling and recovery actions.

The framework requires only three time-related constructs of the Ada language: the
delay until statement, timing events and execution-time timers. The first two constructs
already belong in the RP. The inclusion of execution-time timers in the RP, which at the
time of this writing, is under evaluation by the Ada Rapporteur Group, would make the
RP satisfactorily fit for monitoring WCET as well as providing the mechanisms to react
to violation of that property.

Our study singled out two areas that need further investigation:

1. the monitoring of blocking time, which currently has no practical and satisfactory
solution in Ada; it would be interesting to investigate the feasibility of a solution
inspired to the proposal described in [9]. Alternatively, we might want to allow
execution-time timers to be used for measuring the duration of critical sections.

2. permanent WCET overruns (caused for example by a task stuck in an endless loop)
are critical in a Ravenscar system, since the profile does not provide any effec-
tive mechanism to cope with this situation; however, thanks to the intensive V&V
campaigns that are routinely required by the high-integrity nature of the systems
of our interest, we can assume that the occurrence of these faults has a negligible
probability to occur.

166 E. Mezzetti, M. Panunzio, and T. Vardanega

In conclusion, we contend that in the context of high-integrity real-time systems the
Ravenscar Profile is an excellent candidate to be used as the cornerstone of a develop-
ment methodology. The RP in fact guarantees the development of statically analyzable
systems and provides adequate means to ensure property preservation from design to
implementation and eventually at run time.

References

1. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar Tasking Profile for High Integrity
Real-Time Programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol. 1411, p. 263.
Springer, Heidelberg (1998)

2. ISO SC22/WG9: Ada Reference Manual. Language and Standard Libraries. Consolidated
Standard ISO/IEC 8652:1995(E) with Technical Corrigendum 1 and Amendment 1 (2005)

3. Aldea Rivas, M., González Harbour, M.: MaRTE OS: an Ada Kernel for Real-Time Em-
bedded Applications. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001. LNCS,
vol. 2043, p. 305. Springer, Heidelberg (2001)

4. Universidad Politécnica de Madrid: GNATforLEON cross-compilation system,
http://polaris.dit.upm.es/~ork

5. Bordin, M., Vardanega, T.: Automated Model-Based Generation of Ravenscar-Compliant
Source Code. In: Proc. of the 17th Euromicro Conference on Real-Time Systems (2005)

6. Burns, A., Wellings, A.J.: HRT-HOOD: A Structured Design Method for Hard Real-Time
Ada Systems. Elsevier, Amsterdam (1995)

7. Zamorano, J., Ruiz, J.F., de la Puente, J.A.: Implementing Ada.Real_Time.Clock and Abso-
lute Delays in Real-Time Kernels. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001.
LNCS, vol. 2043, p. 317. Springer, Heidelberg (2001)

8. IEEE Standard for Information Technology: Portable Operating System Interface (POSIX) -
Part 1: System Application Program Interface (API) - Amendment 4: Additional Real-time
Extensions (1999)

9. dos Santos, O.M., Wellings, A.J.: Blocking Time Monitoring in the Real-Time Specifica-
tion for Java. In: The 6th International Workshop on Java Technologies for Real-Time and
Embedded Systems, pp. 135–143 (2008)

10. Sha, L., Lehoczky, J.P., Rajkumar, R.: Solutions for Some Practical Problems in Prioritized
Preemptive Scheduling. In: Proc. of the 7th IEEE Real-Time Systems Symposium, pp. 181–
191 (1986)

11. Joseph, M., Pandya, P.K.: Finding Response Times in a Real-Time System. The Computer
Journal 29(5), 390–395 (1986)

12. Bini, E., Di Natale, M., Buttazzo, G.: Sensitivity Analysis for Fixed-Priority Real-Time Sys-
tems. Real-Time Systems 39(1-3), 5–30 (2008)

13. Bernat, G., Burns, A., Llamosí, A.: Weakly Hard Real-Time Systems. IEEE Trans. Comput-
ers 50(4), 308–321 (2001)

14. Balbastre, P., Ripoll, I., Crespo, A.: Schedulability Analysis of Window-Constrained Execu-
tion Time Tasks for Real-Time Control. In: Proceedings of the 14th Euromicro Conference
on Real-Time Systems, pp. 11–18 (2002)

15. Baruah, S., Burns, A.: Sustainable Scheduling Analysis. In: Proceedings of the 27th IEEE
Real-Time Systems Symposium, pp. 159–168 (2006)

http://polaris.dit.upm.es/~ork

	Preservation of Timing Propertieswith the Ada Ravenscar Profile
	Introduction
	The Ravenscar Profile
	Enforcement of Timing Properties
	Monitoring of Timing Properties
	Deadline Monitoring
	WCET Monitoring
	Blocking Time Monitoring

	Handling of Timing Faults
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

