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Preface

The 15th edition of the International Conference on Reliable Software Tech-
nologies – Ada-Europe 2010—took place in the attractive venue of Valencia,
deservedly making Spain the most visited country in the conference series. Pre-
vious editions of the conference were held in Switzerland (Montreux 1996 and
Geneva 2007), United Kingdom (London 1997 and York 2005), Sweden (Uppsala
1998), Spain (Santander 1999 and Palma de Mallorca 2004), Germany (Potsdam
2000), Belgium (Leuven 2001), Austria (Vienna 2002), France (Toulouse 2003
and Brest 2009), Portugal (Porto 2006), and Italy (Venice 2008).

The conference represents the main yearly event promoted by Ada-Europe, in
cooperation with ACM SIGAda. This third visit to Spain acknowledges the fact
that Ada-Spain is the largest national association of Ada-Europe, and is a major
contributor to Ada-Europe’s activities. This year the conference was organized
by members of the Instituto de Automática e Informática Industrial (AI2) and
the Departamento de Informática de Sistemas y Computadores (DISCA) of the
Universidad Politécnica de Valencia.

The year 2010 is important for Ada: this is the year when the new amendment
to the language (known as Ada 2012) is taking its definitive shape. The confer-
ence program was not unaware of this fact, and these proceedings reflect it by
including papers about multicore programming in Ada, along with an overview
of the key elements of the Ada 2012 amendment in the making.

The scientific program of the conference, which feeds these proceedings, also
included sessions devoted to software dependability, critical, real-time and dis-
tributed systems, and language technology, all under the more general heading
of “Reliable Software Technologies.” This program is the result of a thorough
selection process of 17 submissions out of 42 received from authors of 19 different
countries.

The conference was enriched with three keynote talks delivered by presti-
gious speakers, whose insightful contributions opened the central days of the
conference:

– Theodore Baker (Florida State University, USA), a long-time contributor to
Ada and a leading researcher in real-time systems, opened the conference by
reviewing the state of the art in multiprocessor real-time scheduling in his
talk entitled “What to Make of Multicore Processors for Reliable Real-Time
Systems?”

– Pedro Albertos (Universidad Politécnica de Valencia, Spain), a leading fig-
ure of the automatic control community, explored the relationship between
implementation and performance of control algorithms in a talk entitled
“Control Co-design: Algorithms and Their Implementation”

– James Sutton (Lockheed Martin, USA), a worldwide expert software archi-
tect, in his talk “Ada: Made for the 3.0 World,” analyzed the fitness of Ada
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for the so-called 3.0 World, where complexity and chaos are appeased, and
both can be used to the user’s advantage.

These proceedings give account of the first two keynote talks by including pa-
pers contributed by their respective authors. Both papers appear in the “Keynote
Talks” section.

As a forum that aims to connect academic with industrial knowledge and
experience around reliable software technologies, the conference also included
an interesting series of industrial presentations whose proceedings will appear in
forthcoming issues of Ada-Europe’s Ada User Journal. That part of the confer-
ence program included:

– “HRT-UML and Ada Ravenscar Profile: A Methodological Approach to the
Design of Level-B Spacecraft Software,” by R. López, A. I. Rodŕıguez from
GMV, Spain

– “Applying Model-Driven Architecture and SPARK Ada – A SPARK Ada
Model Compiler for xtUML,” by E. Wedin from Saab, Sweden

– “Ada 95 Usage Within the Airbus Military Advanced Refuelling Boom Sys-
tem,” by I. Lafoz from Airbus Military, Spain

– “Ada 95 Usage Within the Airbus Military Generic Test Environment Sys-
tem,” by B. Lozano from Airbus Military, Spain

– “Implementing Polymorphic Callbacks for Ada/C++ Bindings,” by M.
Sobczak from CERN, Switzerland

– “A Reusable Work Seeking Parallel Framework for Ada 2005,” by B. Moore
from General Dynamics Canada

– “Database Programming with Ada,” by F. Piron from KonAd GmbH, Ger-
many

– “Future Enhancements to the U.S. FAA’s En-Route Automation Moderniza-
tion (ERAM) Program and the Next Generation Air Transportation System
(NextGen),” by J. O’Leary from FAA, USA, and A. Srivastava from Nor-
throp Grumman IT, USA

– “System Architecture Virtual Integration Case Study,” by B. Lewis from
U.S. Army Aviation and Missile Command, USA

– “Lessons Learned from the First High Assurance (EAL 6+) Common Crite-
ria Software Certification,” by D. Kleidermacher from Greenhills Software,
USA

– “An Introduction to ParaSail: Parallel Specification and Implementation
Language,” by S. T. Taft from SofCheck, USA

The conference also scheduled a series of tutorials that, once more, gave
participants the opportunity to learn about particular approaches, techniques
and tools aimed at the development of reliable software. The program was formed
by the following nine tutorials, all given by recognized experts in the relevant
areas:

– “Developing High-Integrity Systems with GNATforLEON/ORK+,” by J.
A. de la Puente and J. Zamorano from the Technical University of Madrid,
Spain
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– “Software Design Concepts and Pitfalls,” by W. Bail from The MITRE Cor-
poration, USA

– “Using Object-Oriented Technologies in Secure Systems,” by J.P. Rosen from
Adalog, France

– “Hypervisor Technology for Building Safety-Critical Systems: XtratuM,” by
I. Ripoll and A. Crespo from Universidad Politécnica de Valencia, Spain

– “How to Optimize Reliable Software,” by I. Broster from Rapita Systems
Ltd, UK

– “Developing Web-Aware Applications in Ada with AWS,” by J.P. Rosen
from Adalog, France

– “MAST: Predicting Response Times in Event-Driven Real-Time Systems,”
by M. González Harbour from University of Cantabria, Spain

– “SPARK: The Libre Language and Toolset for High-Assurance Software,”
by R. Chapman from Altran Praxis Ltd, UK

– “C#, .NET and Ada: Keeping the Faith in a Language-Agnostic Environ-
ment,” by B. Brosgol and J. Lambourgh from AdaCore, USA and France

The conference success heavily depended on the active and generous contri-
bution of a number of individuals and organizations. All of them deserve our
most sincere gratitude. We especially thank all who submitted quality contribu-
tions that enabled us to offer an attractive and technically sound program. Of
course we are most grateful to all attendees, who made the conference thrive.
The Organizing Committee was formed by Albert Llemośı, Tutorial Chair, who
conjured a high-quality tutorial program; Erhard Plödereder, Industrial Chair,
who coordinated the elaboration of the industrial program; Ahlan Marriott in
his role as Exhibition Chair; and Dirk Craeynest, serving as Publicity Chair.
The members of this committee met with the Program Co-chairs in Valencia to
make the final program selection and composition.

The organizers are also grateful to the members of the Local Organizing
Committee at the Universidad Politécnica de Valencia, Francisco Blanes, Sergio
Sáez, and José Simó. The Program and Industrial Committees did a splendid job
at raising submissions and providing quality reviews that aided in the difficult
task of eliciting the final contents of the conference. Last but not least, we
wish to express our gratitude to the exhibitors at the conference, at the time of
writing: AdaCore, Altran Praxis, Atego and Ellidiss; and the sponsors: Ministerio
de Ciencia e Innovación of the Spanish Government, Conselleŕıa d’Educació of
the Generalitat Valenciana, Universidad Politécnica de Valencia and its entities
Departamento de Informática de Sistemas y Computadores, Escuela Técnica
Superior de Ingenieŕıa Informática, and Instituto de Automática e Informática
Industrial.

June 2010 Jorge Real
Tullio Vardanega
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Conselleŕıa d’Educació, Generalitat Valenciana
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The Evolution of Real-Time Programming Revisited: Programming the
Giotto Model in Ada 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Andy Wellings and Alan Burns

Language Technology

AdaStreams: A Type-Based Programming Extension for Stream-
Parallelism with Ada 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Gingun Hong, Kirak Hong, Bernd Burgstaller, and Johann Blieberger

A Comparison of Generic Template Support: Ada, C++, C#, and
JavaTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Benjamin M. Brosgol

Towards Ada 2012: An Interim Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Edmond Schonberg

Distribution and Persistency

Managing Transactions in Flexible Distributed Real-Time Systems . . . . . 251
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What to Make of Multicore Processors
for Reliable Real-Time Systems?

Theodore P. Baker�

Florida State University, Tallahassee FL 32306, USA
baker@cs.fsu.edu

http://www.cs.fsu.edu/∼baker

Abstract. Now that multicore microprocessors have become a commod-
ity, it is natural to think about employing them in all kinds of computing,
including high-reliability embedded real-time systems. Appealing aspects
of this development include the ability to process more instructions per
second and more instructions per watt. However, not all problems are
amenable to parallel decomposition, and for those that are, designing a
correct scalable solution can be difficult. If there are deadlines or other
hard timing constraints the difficulty becomes much greater.

This paper reviews some of what is known about multiprocessor
scheduling of task systems with deadlines, including recent advances
in the analysis of arbitrary sporadic task systems under fixed-priority
and earliest-deadline first scheduling polices. It also examines critically
the foundations of these theoretical results, including assumptions about
task independence and worst-case execution time estimates, with a view
toward their practical applicability.

1 Introduction

Over the past decade, the microprocessor industry has been moving increasingly
toward symmetric multicore architectures. The introduction of the AMD dual-
core Opteron, in 2004, was followed closely by the Intel dual-core Pentium D
and the IBM dual-core Power5 processor. Increases in feature density predicted
by Moore’s Law appear to be sustainable for at least a few more generations,
but increases in processing speed do not. Pipelining and speculative execution
appear to have reached a point of diminishing returns. Clock rates also seem to
have reached a limit, as power consumption increases at approximately the cube
of clock frequency. Manufacturers have decided that the way to extract improve-
ments in performance from further advances in miniaturization is through the
use of multiple processors of moderate power, executing in parallel [38]. Two-
and four-core processors are already a commodity, eight-core processors have
been delivered, and “terra-scale” computing is predicted [30].

What will we make of these new processors? This question should be on
the minds of developers of every kind of software. Appealing prospects include
� This paper is based upon work supported in part by the National Science Foundation

under Grant No. EHS-0509131.

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 T.P. Baker

the ability to process more instructions per second and more instructions per
watt. However, not all problems are amenable to parallel decomposition, and for
those that are, designing a correct scalable solution can be difficult. If there are
deadlines or other hard timing constraints the difficulty becomes much greater.

This paper seeks to convey an appreciation of the gap that exists between
what is known in theory about the problem of scheduling ideal multiprocessors
to meet deadlines, and the behaviors of actual multicore processors. It begins
with a sampling of theoretical research that appears as if it should be applicable
to this problem. It then questions the foundations of these theoretical results, in-
cluding assumptions about processor architecture, task independence and worst-
case execution time estimates, with respect to their applicability to current and
future generations of multicore processors in high-reliability real-time systems. It
finally expands the focus to consider the directions that programming languages
and software design methodologies may need to go in order to better exploit
multicore technology.

2 Scheduling Theory Foundations

Scheduling theory is based on abstract models of workloads and processors. A
great many different models have been studied. This paper focuses on just one
type of workload model and one type of processor model.

Task workload models. In real-time scheduling theory, a task is an abstraction
for a source of a potentially infinite sequence of jobs. A job is a schedulable
computation with a finite execution time. Other parameters of each job include
a release time and a deadline. Each task has a set of scheduling parameters that
constrain the execution times, arrival times, and deadlines of the sequences of
jobs that it may generate. The jobs of each task are required to be executed
serially, using only one processor at a time.

A task in scheduling theory may be used to model an execution of a sequential
thread of control, such as an Ada task1, in software. Jobs correspond to bursts of
computation between wait states. The execution time of a job is the amount of
processor time used during one such burst of computation, the release time is the
arrival time of the event that triggers the transition from waiting to competing
for execution, and the completion time is the time of the next transition to a
wait state.

This paper focuses primarily on periodic and sporadic task systems. A sporadic
task system is a set τ = {τ1, τ2, . . . , τn} of tasks, each characterized by a triple
(pi, ei, di) where: pi is the minimum separation between release times of the
jobs of the task, also known as the period of the task; ei is an upper bound
on the execution time for each job of the task, also known as the worst-case

1 This overloading of the word “task” can lead to erroneous reasoning, since not all
Ada tasks can be modeled as scheduling theory tasks. In this paper “task” always
means a scheduling theory task, except in the phrase “Ada task”. “Thread” is used
for Ada tasks and other similar threads of control.
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execution time (WCET); and di is the relative deadline, which is the length of
the scheduling window of each job. A periodic task system is said to have implicit
deadlines if di = pi for every task, constrained deadlines if di ≤ pi, and arbitrary
deadlines if there is no such constraint. A periodic task system is like a sporadic
task system except that the separation between release times of τi must be equal
to pi. Additional parameters are sometimes specified, such as the release times
of the first job of each task, and an upper bound on release time jitter.

Real systems often do not fit the periodic or sporadic model, or have any other
sufficient constraints on the patterns of arrivals and execution times of jobs to
support schedulability analysis. One way of accommodating such workloads is
to queue their jobs to be executed by a server task. The server task is scheduled
according to an algorithm that limits the amount of processor time that the
server can consume within any given time interval, by imposing a budget. In
effect, the natural job boundaries of the aperiodic workload are redrawn by
the server scheduling mechanism, which ends the current “job” of the server
whenever it reaches the limit of its budget, and releases a new “job” whenever
the server’s budget is extended. Sporadic Server [44] and Constant Bandwidth
Server [1] are examples of such bandwidth-limiting algorithms, which allow the
worst-case behavior of a server to be modeled by a sporadic task in most contexts.

Identical multiprocessor models. This paper focuses on multiprocessor platforms
with a set of identical processors and shared memory with uniform access speed.
Every job is presumed to be executable on any processor, with no difference in
worst-case execution time between processors.

The above models leave out many ugly details of real systems, including re-
lease time jitter and overheads such as context-switches and migrations of tasks
between processors, in order to make analysis more tractable. When applying the
theory, one must add sufficient margins to the task parameter values to account
for such differences between reality and the model2.

3 Scheduling Algorithms and Tests

A schedule is an assignment of jobs to processors, varying over time. A schedule is
feasible if it satisfies all the constraints of the workload, including job deadlines.
A collection of jobs is said to be feasible if there exists a feasible schedule for it.
For practical purposes schedules must be computable by a scheduling algorithm.
A particular workload is said be schedulable by a given algorithm if the algorithm
always finds a feasible schedule.

Scheduling algorithms can be dichotomized as static vs. dynamic, off-line vs.
on-line, and preemptive vs. nonpreemptive. Priority-based on-line schedulers are

2 Narrowing these margins would appear to require accounting explicitly for circu-
lar dependences between actual job execution times and decisions made by on-line
schedulers. A critical concern in the application of any such analysis would be po-
tential instability under execution time variations caused by factors other than the
scheduler.
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classified according to how priorities are allowed to vary. Rate Monotonic (rm)
scheduling, in which tasks with shorter periods are assigned higher priorities, is
an example of a fixed-task-priority (ftp) scheduling algorithm. Earliest-deadline-
first scheduling is an example of a fixed-job-priority (fjp) algorithm. pd2[2] is an
example of a dynamic priority algorithm. Within this paper, all on-line scheduling
algorithms are assumed to be applied in preemptive mode.

A schedulability test tells whether a particular workload is schedulable by a
given algorithm. A schedulability test is sufficient for a given class of workload
and processor models if passing the test guarantees the workload is schedulable.
It is exact if it also only fails when there is some sequence of jobs consistent with
the workload model that is not schedulable.

One of the subtleties of multiprocessors is that certain intuitively appealing
scheduling algorithms are subject to “anomalies”, in which a schedulable sys-
tem becomes unschedulable because of some apparently harmless change, such as
earlier-than-expected completion of a job. A good scheduling algorithm should
continue to schedule a task system satisfactorily if actual tasks behave better
than the specifications under which the system was validated, or if the speci-
fications of tasks are changed in a direction that reduces the overall workload.
This property, named “sustainability” in [14], has been shown to hold for some
multiprocessor scheduling algorithms and tests, but not for others (e.g. [9]).

Anyone making a choice of scheduling algorithm for an application should con-
sider several factors, including: (1) sufficient generality to cover the variety of
workload types expected in the application; (2) flexibility to handle the changes
in task specifications that are expected over the lifetime of the application; (3)
compatibility with the operating system that will be used; (4) run-time deter-
minism or repeatability, as an adjunct of system testability and reliability; (5)
sustainability of the algorithm and the available schedulability tests for it; (6)
effectiveness of the scheduling algorithm in scheduling jobs to complete within
deadlines; (7) effectiveness of the available schedulability tests. Studies of real-
time scheduling theory mostly focus on the last two issues, but for practical
purposes it is important to consider all of them. It is also important to consider
the last two as a pair, since a scheduling algorithm can only be trusted to schedule
a particular task system correctly if it has been verified to do so.

There are several empirical ways to evaluate multiprocessor scheduling
algorithms and tests. One is to compute the success ratio on large numbers
of randomly generated task systems (e.g. [8]). This can provide useful informa-
tion if the characteristics of the task sets considered are similar to those ex-
pected for a given class of applications. It may be the only way to compare some
combinations of scheduling algorithms and schedulability tests. Such experiments
can be especially informative if the task parameter values used in the tests are
adjusted to take into account the measured overheads of an actual implementa-
tion (e.g. [22])3.

3 Running schedulability tests on random task sets is not the same as simulating ac-
tual task system executions. The latter is not a valid way to verify schedulability for
multiprocessor systems since the “critical instant” property (c.f. [34]) no longer holds.
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Analytic ways to evaluate scheduling algorithms and tests include “speedup
factors” (e.g. [12]), which are out of scope for the present paper, and utilization
bounds. The utilization ui of a task τi is the ratio ei/pi of its execution time to
its period. A utilization bound for a scheduling policy is a function β such that
each task system τ is guaranteed to be schedulable if usum(τ) <= β(τ), where
usum is the sum of the utilizations of all the tasks in the system. The bound is
tight if there are unschedulable task systems with usum(τ) only infinitesimally
larger than β(τ).

A density bound is an extension of the notion of utilization bound, for task
systems that have other than implicit deadlines (di �= pi). The definition of
density bound is the same as utilization bound, except that the utilization ui is
replaced by the density, defined as δi

def= ei/ min(di, pi).
This paper uses utilization bounds and density bounds to provide insight into

the relative effectiveness of various methods of multiprocessor scheduling, not
because they tell the whole story, but because they can be stated concisely, can
be compared easily, and there are examples of sufficient schedulability tests.

Care must be taken when interpreting such bounds, since they can be mislead-
ing. Both pertain only to schedulability of worst-case (pathological) examples4.
Empirical studies have shown that much higher utilization levels can be achieved
for most task systems.

4 Static Scheduling

Historically, the analysis of scheduling for multiprocessors focused first on static
scheduling techniques, in which a finite schedule is computed off-line. Static
scheduling has been studied extensively in the literature of operations research
and discrete mathematics. Although optimal static scheduling is known to be
NP-hard for all but a few simple classes of problems [46], it is still practicable
for real-time task systems of moderate size. Moreover, for practical purposes
optimal scheduling is not required; any schedule that satisfies the application
constraints will do.

There is a wealth of theory and published practical experience on static
scheduling of multiprocessors. One representative example is [48], which reports
success in optimal multiprocessor scheduling for periodic systems with deadlines,
precedence, and exclusion constraints. A more recent one is [31], which shows
how to approximate optimal scheduling using linear programming.

4 Care must also be taken when applying a utilization or density bound outside the
constraints of the model for which it has been proven. Some of the original published
proofs only mention periodic task systems. There is a pattern of these analyses re-
maining valid for sporadic tasks, because good scheduling algorithms are sustainable
under later job release times that do not violate the sporadic minimum separation
constraint. Another pattern is of utilization bounds extending to density bounds.
One should not assume any such extension is valid without checking that it has
been proven.
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Static schedules have several virtues. They can handle complex forms of con-
straints and achieve a high degree of optimization. Optimizations can be applied
to a variety of criteria, including output jitter, power, and memory. They can
eliminate the need for software locking, by scheduling access to shared resources
during non-overlapping time intervals. They can also minimize buffering and
dataflow blocking, such as between producers and consumers. Though static
schedules are intrinsically periodic, they can be adapted to handle sporadic and
aperiodic workloads by means of a periodic server. Since the schedule repeats,
behavior observed during a few periods of testing is a valid predictor of behavior
over longer periods of time. Static scheduling may also prove to be a practi-
cal necessity for accurate analysis of the effects of task-dependent interference
between processors on WCET.

Static scheduling does have shortcomings, including a tendency to over-allocate
processor time, and fragility with respect to run-time variations in workload and
longer-term changes in system specifications. Static scheduling may be impracti-
cable for systems in which the release times and execution times of jobs are highly
variable or cannot be predicted with confidence. In the single-processor domain,
the limitations of static scheduling have led to widespread adoption of priority-
based on-line scheduling algorithms.

However, where the workload is sufficiently predictable, static scheduling may
still be the best way to achieve reliable high performance from a multicore pro-
cessor. Moreover, with multiple cores one can apply static scheduling to an ap-
propriate subset of the system functionality, on a subset of the processors, and
apply dynamic scheduling to the rest.

5 Partitioned Dynamic Scheduling

Until recently, partitioned scheduling was widely held to be the only way to
use multiprocessors for embedded real-time systems. It is a very natural and
convenient bridge from single-processor dynamic scheduling to a multiprocessor
platform. By assigning each task to one processor, statically, and then apply-
ing a dynamic local scheduling algorithm and schedulability test, one achieves
some of the predictability of a static schedule and some of the flexibility of a
dynamic scheduler, without having to develop any new scheduling algorithms or
schedulability tests. Finding a partition that is feasible locally on each processor
may be accepted as a sufficient system-level schedulability test, if the tasks are
sufficiently independent. Sustainability of the schedulability analysis carries over
from the single-processor local scheduling algorithm.

Optimal assignment of tasks to processors is a form of bin-packing prob-
lem, which is NP-hard, but optimality is not required. The First-Fit-Decreasing-
Utilization partitioning algorithm has been cited as being very effective in some
publications. However, in practice one would want to use an ordering heuristic
that takes into account addition considerations, including localization of data
sharing, balancing data flow rates between cores, and distributing excess proces-
sor capacity among the processors.
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Since the allocation of processing resources is forced to be done fixed-size
chunks, partitioned scheduling is generally not work conserving; that is, a pro-
cessor may be idled while tasks eligible for execution on other processors are not
able to execute. This can result in partitioning failures at low utilization levels,
and even when partitioning is successful the idling of processors can result in
longer average-case response times and lower total system throughput than with
global scheduling.

For partitioned preemptive Earliest-Deadline-First (edf) scheduling, a uti-
lization bound of m�1/umax(τ)�+1

�1/umax(τ)�+1 for m processors was derived in [36]. For the
unrestricted case where umax(τ) = 1 this reduces to (m + 1)/2. The proof is
for periodic task systems only. This worst-case utilization bound is tight in the
sense that a scheduling algorithm that does not vary priority within a single
job cannot achieve a utilization bound higher than (m + 1)/2 on m processors,
whether scheduling is partitioned or global. That is easy to see by considering
a set of m + 1 tasks, each with processor utilization infinitesimally larger than
50% [4].

For partitioned rm, a utilization bound of (n − 1)(21/2 − 1) + (m − n +
1)(21/(m−n+1) − 1) for m processors and n tasks was derived in [35]. For large
n, this reduces to (m + 1)(21/2 − 1). This result was proven to be tight for
“reasonable” partitioning schemes based on the single-processor rm utilization
bound as a test of schedulability, and the proof has been claimed to extend to
all partitioning schemes. The proof is for periodic task systems only.

Partitioned scheduling can handle periodic and sporadic task sets, and can
also handle aperiodic workloads scheduled under a bandwidth-limiting server
mechanism. Several authors have studied partitioning algorithms for these more
general workload models, but a description of those results does not fit within
the scope of the present paper.

An advantage of partitioned scheduling is that efficient single-processor lock-
ing mechanisms such as srp [5] can be applied for resources that are only shared
by tasks on the same processor, and higher-overhead global locking mechanisms
can be reserved for resources shared across processors. Space limitations here
permit only the barest summary of research on protocols for global locks, which
is still inconclusive. The most appropriate locking protocol for global resources
will depend on (1) whether task scheduling is partitioned or global, (2) the
priority model, and (3) the length of critical sections. However, a central consid-
eration in all cases is to minimize idle processor time caused by tasks awaiting
global locks. One approach, used by the Distributed Priority Ceiling Protocol
(d-pcp) [40], is to bind each globally shared resource to a single processor and
execute sections on it via remote procedure calls to a high priority server on that
processor. An alternative approach, used by the Multiprocessor Priority Ceiling
Protocol (m-pcp) [40], Multiprocessor Stack Resource Protocol (m-srp)[25], and
Flexible Multiprocessor Locking Protocol (fmlp) [20], is to raise tasks holding
global locks to nonpreemptible local priority. It was shown in [37] that using
the same priorities for local scheduling and service order on global locks could
be harmful for overall system schedulability, as compared to service based on
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tasks’ tolerance for blocking, or even FIFO. The m-srp and fmlp adopt FIFO
service. The fmlp additionally optimizes short-wait locks by using bare spin-
locks. The performances of some of these algorithms in actual implementations
on multiprocessors are reported in [21,41,26].

Unfortunately, critical sections are not the only kind of blocking that can oc-
cur in a real system. Dataflow blocking can occur, in which one task waits for
data or buffer space to be produced by another. This kind of blocking does not
require idling the processor in a single-processor system or with global schedul-
ing, because whenever one task has to wait for another to perform an action
the scheduler can give the processor of the waiting task to the awaited task. In
contrast, if the waiting task and the awaited task are on different processors,
the waiting task’s processor may become idle. This idle time can reduce sys-
tem throughput in the short term, which can cause congestion later, resulting in
missed deadlines. If care is not taken in assigning deadlines or priorities across
processors, a third task may preempt the awaited task on its processor, resulting
in potentially unbounded blocking. Appropriate buffering can reduce data flow
blocking, but the partitioning algorithm still needs to pay attention to matching
average data flow rates across processors.

A partitioning of tasks among processors may be fragile. If the execution time
of one task increases, there is no limit to the range of the potential side effects.
Repartitioning and lock protocol changes may be necessary. The effects may
cascade across every processor. Fragility may be reduced by distributing excess
capacity evenly across processors.

While it may seem wasteful to only use 50% of of the theoretical processing ca-
pacity of a system, thinking in terms of the worst-case utilization bound may not
be so bad. Pushing for high utilization of cores on multicore processors may be
just as bad for performance as pushing disk and memory utilization to high levels
on single-processor systems. For reasons explained in Section 8, trying to schedule
all processors at 100% capacity is likely to be counter-productive, as job execu-
tion times can grow with greater intercore contention for data paths and memory
access. Moreover, idle cores need not necessarily translate to wasted power.

Partitioned scheduling is easy to implement. The partitioning is done off-line.
The on-line component is low-overhead because of the per-processor task ready-
queues, which incur less contention for concurrent access and can be protected
by a lighter-weight locking mechanism than is required to maintain a global
ready-queue.

Test coverage with partitioned scheduling will be better than with a globally
scheduled system, because of the reduction in the number of possible combi-
nations of concurrent task activities on different processors. Execution times
should also be more predictable, for the preceding reason and also because of
the absence of migration events.

6 Task Splitting

An inherent limitation of all partitioned scheduling schemes is that each task must
execute entirely on one processor. This constraint makes optimal partitioning
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NP-hard, and prevents a pure partitioned scheduling algorithm from achieving
a utilization bound greater than (m + 1)/2.

Recent research has attacked this limitation using task splitting techniques.
These algorithms deviate from the strict partitioned model by allowing limited
planned migration of a few tasks, typically up to m−1 tasks for m processors. The
partitioning algorithm assigns tasks to processors in some heuristic order. When
it reaches a point where adding another task to a given processor would cause
a local deadline miss it splits that task in two, assigning a fraction to the given
processor that will fit without causing any missed deadlines, and migrating the
remainder to another processor. This approach is able to get past the (m + 1)/2
limit on utilization bounds for partitioned fixed-job-priority scheduling.

Several task splitting techniques have been proposed. One noteworthy recent
example is [29], which demonstrates that a partitioned fixed-task-priority (ftp)
scheduling algorithm can achieve the utilization bound mn(21/n − 1) on m pro-
cessors. This is of special interest because it equals the worst-case rm utilization
bound for a single processor. Another recent example is [32], which is based on
preemptive edf local scheduling and obtains a utilization bound of m(4

√
2− 5)

on m processors, or about 65% of the total processing capacity.
So far, it does not seem that any of these techniques has been tested in an

implementation, so there remain questions about their practicability.

7 Global Scheduling

As an alternative to partitioned scheduling, a dynamic scheduling algorithm
may be applied in global mode, where all tasks compete for execution on all
processors. Global dynamic scheduling can be work-conserving, which can result
in better scheduling performance than partitioned scheduling. In fact, there is a
very simple global dynamic scheduling algorithm that can meet all deadlines at
utilizations up to 100%.

The key to understanding how to get 100% processor utilization and still
meet deadlines with the workload and processor models described here is to
recognize the importance of keeping all processors busy. It is easy to keep a
single processor busy, by never idling the processor if there is work to be done;
this can be achieved without constraining the order in which jobs are executed,
and so there is no conflict with executing jobs in deadline order, and no problem
achieving all deadlines up to 100% processor utilization. With more than one
processor, the situation changes. The job execution order can affect the ability
to keep all processors busy. For example, if a dual-processor scheduler has two
short jobs and one long job ready, and decides to execute the short jobs first,
it may end up later with one processor idle. The problem is that a single job
cannot use additional processors5. One way to work around this limitation is to
split up the job’s execution and interleave it serially with other tasks. Suppose
5 Unless, of course, one breaks out of the task model and codes jobs for parallel

execution. This is one of the weaknesses of the task model, discussed further in
Section 9.
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the processor time can be split up into small enough units that each task τi

can be assigned a fraction ui of a processor between its release time and its
deadline. Such a scheduler is optimal in the sense of never missing a deadline
for a feasible task system, and can achieve 100% utilization without missing
deadlines on implicit-deadline periodic task systems.

While this ideal processor sharing model is impracticable to implement, [15]
showed that the same utilization bound can be achieved by a quantum-based
time-slicing approximation. A number of variants of this proportional fair-share
(Pfair) scheduling concept have been explored. One variant, called pd2, is work-
conserving and has been shown to be optimal for the scheduling of independent
asynchronous implicit-deadline periodic tasks [2].

A criticism of the Pfair approach is that by slicing time finely it incurs a
large scheduling overhead. Brandenburg et al. [22] performed experiments using
an implementation of the pd2 algorithm on a variant of the Linux operating
system kernel using an 8-core Sun “Niagara” processor. They measured the
scheduling overheads on a few examples, and then applied schedulability tests
to large numbers of randomly generated task systems with shared resources
and critical sections. Potential dataflow blocking was not taken into account.
The task execution times were adjusted to allow for scheduling overheads, and
schedulability tests were modified to take into account blocking times due to
critical sections. The experiments showed that that pd2 had serious problems
with high preemption and migration costs until the scheduler was modified to
stagger the time-slicing points of the processors across the cores, so that quantum
expirations no longer occurred synchronously on all processors. Even with this
improvement, pd2 did not seem to perform as well as partitioned edf, except
for systems with tasks near the 50% utilization region (which is known to be
pathological for partitioning algorithms), and without a high degree of global
resource sharing. However, it is difficult to say whether such experiments will
accurately predict performance in any particular application.

Global applications of edf and rm were neglected for decades after Dhall [24]
showed that the utilization bound on m processors is 1 (as if the system had
only one processor). The proof is a pathological case involving m low-utilization
(light) periodic tasks and one high-utilization (heavy) task with slightly longer
period. Fortunately, closer study of this phenomenon over the past seven years
revealed ways of obtaining much better performance.

A global edf utilization bound of m− (m− 1)umax(τ) was derived in [45,27].
This shows that worst-case behavior only occurs for large values of the maxi-
mum individual task utilization umax. The bound can be shown to be tight by
generalization of the Dhall example. However, it is not an exact schedulablity
test, and other forms of tests have done much better in experiments with random
task systems [8]. The global edf utilization bound extends to a density bound
for sporadic task systems with arbitrary deadlines. In this more general form it
has been called the “density test” for global edf schedulability.

For global rm, a utilization bound of m
2 − (m

2 − 1)umax(τ) was derived [17].
It also extends to a density bound.
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Variants of edf have been designed with higher utilization bounds for systems
with large umax. An algorithm called edf-us[ζ] gives top priority to jobs of tasks
with utilizations above threshold ζ and schedules jobs of the remaining tasks
according to their deadlines [45]. It achieves a utilization bound of (m + 1)/2,
which is tight.

Similar variants of rm have also been proposed. rm-us[ζ] gives higher priority
to tasks with utilizations above ζ [4,7]. A rm-us utilization bound of m+1

3 is
proven in [17]. A tight bound is not known, though [39] argued that the optimum
value of ζ is approximately 0.3748225282.

Another recently discovered ftp priority assignment algorithm, known as
sm-us[ζ] and based on ordering tasks by slack, has been shown to have a uti-
lization bound of m(2/(3 +

√
3)) on m processors, or approximately 38% of the

total processing capacity [3].
Despite the low worst-case utilization bounds, fixed-job-priority algorithms

have severaladvantages.They perform fewer context switches than the Pfairmeth-
ods, and hence have lower scheduling overhead. They can achieve more precise
control over timing, by using interval timers that are finer grained than the over-
head of quantum-based scheduling methods would permit. In the case of fixed-
task-priority, support already exists in most operating systems, including Linux.

Although the fixed-job-priority (fjp) algorithms do not have any practicable
exact schedulability tests,6. there is a steadily growing collection of practicable
sufficient-only tests for fjp scheduling policies, including the utilization bounds
cited above and a number of more accurate tests that cannot be described within
the space limitations here. Examples for edf include [6,16,11,18] and examples
for ftp include [7,17,13]. These tests are difficult to compare. They generally
cannot be strictly ranked in scheduling effectiveness, in the sense that there are
examples of schedulable task systems that are recognized as schedulable by each
test that are not recognized as schedulable by others. Some definitely appear to
be more effective than others, on the average, for randomly chosen task systems.
Some have good speed-up factors but do not perform well on the average. Some
have been shown to be sustainable, some have been shown to be unsustainable,
and the sustainability of others remains unknown. Other important properties,
including the effects of blocking due to critical sections have not been studied
well. So, it is likely to take several more years of study for any consensus to
emerge on which of these tests are most useful in practice.

Global scheduling is more difficult to implement than partitioned scheduling.
The shared dispatching queue is a bottleneck which becomes more serious as the
number of cores grows7. The interprocessor interrupts needed to trigger scheduling
on other processors are also costly. However, experiments with implementations of
several global scheduling algorithms, including pd2 and global edf, in a variant of

6 The only known exact tests are based on exhaustive exploration of the scheduling
state space, are limited to integer time values, and have unacceptable growth in time
and space [10,28].

7 The standard Linux kernel maintains per-core task dispatching queues, and only per-
forms migrations at longer intervals, for this reason.
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the Linux kernel have been reported, and the performance looks good [22]. Adding
support for the rm-us and edf-us hybrids would be extremely simple, and would
increase scheduling effectiveness without adding any overhead.

Testing is likely to be more difficult for globally scheduled systems, unless
explicit interprocessor synchronization points are inserted to reduce timing vari-
ations. That is, introduction of task migrations on top of preemptions increases
hugely the number of different combinations of potential parallel interactions
that may occur between tasks.

Another current area of weakness of global scheduling is the handling of crit-
ical sections. Intrinsically, global scheduling will incur greater overhead for lock
and unlock operations than partitioned scheduling, because using light-weight
local locking protocols for some critical sections is not an option. Moreover, the
state of knowledge regarding suitable protocols for globally scheduled systems
is behind that for partitioned systems. This author is unaware of any experi-
ments with global scheduling analogous to those cited for partitioned scheduling
in [26,21,41], but conjectures that when such experiments are done they will
reveal that allocating global locks in scheduling priority order (as in [43,42])
out-performs FIFO service if scheduling priorities or deadlines are applied glob-
ally. Likewise, global application of scheduling priorities should also result in
reduced blocking if the srp’s highest-locker priority is assigned to global lock
holders, rather than the m-srp’s total nonpreemptibility.

8 Cracks in the Foundations

Despite progress in theoretical understanding of real-time scheduling on multi-
processors, there is cause for concern about the validity of the theory for actual
systems. The problem is that real multicore processors do not fit the assumptions
of the models on which the theory is based.

One false assumption is that jobs running on different processors have inde-
pendent execution times. Concurrent jobs can already interfere on a single pro-
cessor, but the interferences occur around context switch points, which are not
very frequent and can be bounded. On a multiprocessor, cache and memory bus
conflicts between jobs can occur throughout the jobs’ executions. Even predict-
ing context switching costs is potentially more complicated on a multiprocessor,
as the cost of a switch will depend on whether it includes migration between
processors, whether the migration crosses cache domains, and what other tasks
do to the cache between context switches. For example, [22] reports cases, on an
8-core processor with shared L2 cache, where the cost of migration was less than
the cost of preemption. They attributed this effect to migration allowing a pre-
empted task to resume executing sooner than if it had been forced to wait for its
previous processor to become available again, and so incurring less loss of cache
affinity. Besides concurrent cache contention and task migrations, other dynamic
factors that can affect execution times include prefetching-hardware contention,
memory-controller contention, and memory-bus contention. These are reported
to account for variations in execution time of “60%, 80% and sometimes 100%”
between executions of the same program [19].
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A second false assumption is that the execution time of a job will be indepen-
dent of which core executes it and when. One example is reported in [47], where
an undocumented asymmetry with respect to memory bandwidth between the
cores on an Intel Xeon 5345 quad-core processor resulted in differences of up to
400% in completion times of identical jobs running in parallel on different cores.
Another example is the “Turbo Boost” feature of the IntelTM Core i7TM pro-
cessor, which varies the execution speed of each core in response to developing
hot spots within the chip [23].

The central false assumption, which underlies both of those above, is that one
can schedule processors to meet deadlines effectively while entirely ignoring the
on-chip bus and memory network. The emerging picture is that with more cores
the primary scheduling bottleneck shifts from the processors to the resources
that move information between them. Scheduling the cores without accounting
for this network is näıve and unlikely to produce satisfactory outcomes.

A few efforts have been made at static WCET analysis that predicts and
accounts for cache misses on multicore processors. The methods appear to be
intrinsically limited, by growth of the number of combinations of potentially
interfering concurrent computations that must be considered, to very simple
task and hardware models. None appear to have been tested against actual
performance of a real system.

Perhaps the most ambitious WCET analysis attempt so far is [33]. It assumes
the workload is specified as a finite set of jobs assigned statically to processors,
which are related by precedence constraints. The system is represented graph-
ically as a UML-like “message sequence chart”, which shows how jobs trigger
releases of other jobs across processors over time. The example studied is a
two-core processor with private 2KB direct-mapped L1 cache and shared set-
associated L2 cache with associativity ranging from 1 to 4 and size ranging
from 1KB to 16KB. The analysis only considers instruction cache. The tasks are
assumed to be scheduled by priority, but given the way the analysis process iter-
atively refines estimates of earliest start times and latest completion times along
with the job WCET estimates, it could just as well produce a static schedule.
So, this work supports consideration of static scheduling.

It is going to be very difficult to find WCET bounds for multicore machines
that are simultaneously trustworthy and not absurdly high, and it is likely to be-
come more difficult as one moves from static to partitioned to global scheduling.
The lack of good WCET estimates is likely to severely limit practical appli-
cations of hard-real-time scheduling theory for multicore processors. Obtaining
useful guarantees of hard deadlines at significant levels of system loading may
just be impracticable.

9 Predictions

Supposing that the claims above about multicore processors are valid – including
growing difficulties with execution time variability and bottlenecks within the
on-chip – where are we headed? With the acknowledgment that this is a case of
piling speculation upon speculation, here are some predictions.
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The end of hard real time? There will be increasing pressure to design real-
time systems that are “softer” in order to accommodate the increasing difficulty
of obtaining reliable WCET estimates and the resultant decrease in precision
and trustworthiness of schedulability analyses. Where hard deadlines cannot
be avoided, designers will need verify them under conservative assumptions.
Softer real-time tasks will need to get by with statistical performance estimates,
derived from testing and static analysis based on observed execution times. The
system scheduling policy will need to enforce bandwidth limitations on all tasks
accurately enough support the requirements of the tasks with hard deadlines.

If it turns out that processors are no longer the system bottleneck, and if
power can be saved while they are idle, achieving high processor utilization will
be less important. Queuing theory and the utilization-bound results suggest that
as the number of cores and the number of tasks go up, work flow will increasingly
approximate a fluid – so long as individual tasks are small. Dedicating a core
to a task that is too large to fit this model or has a very strict deadline may be
wiser than trying to push processor utilizations to some limit that is believed to
be safe based on an unrealistic theoretical model.

As suggested in Section 5, the time may be coming when the processor al-
location problem resembles the memory and disk allocation problems. If so, it
may be time to adopt similar management strategies, such as allocating time in
equal quanta to better fit the fluid model, and allowing a reasonable amount of
spare capacity to even out the flow.

Threads considered harmful? There will be pressures to re-think the thread-
based concurrent programming paradigm. The concept of a thread as the basic
unit of concurrent programming and the idea of threads sharing their entire
address space seem to be firmly entrenched in programming languages, operat-
ing systems, and programming culture. However, if the rules of microprocessor
architecture are changing, it may be time for these conventions to change also.

We should look closely at the current thread model with respect to demand
for on-chip network bandwidth, ability to handle fine-grained concurrency, and
inappropriate scheduling constraints.

Threads enforce more serialization than is required for some applications.
Thinking in terms of threads has led researchers in scheduling theory to constrain
the jobs of each task to be executed serially, and use only one processor at a time.
If these constraints stand in the way of fully exploiting the parallel execution
possibilities of a multiprocessor, pressure will build to relax them.

With enough processors, it becomes profitable to split jobs into smaller units
that can run in parallel. The ability to split a job requires forethought in the
software’s design and coding, but the number of ways in which a job is split
is a performance-tuning and scheduling decision, which depends on the hard-
ware configuration and the rest of the workload. It is not clear that such details
should be hard-coded into the software. It is not clear, either, that fine-grained
parallelism introduced solely as an opportunity for performance improvement
should be expressed using the same programming constructs as are used to
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express mandatory elements of asynchrony and concurrency derived from the
problem domain, or be burdened by their heavier-weight semantics.

Several problems with threads come from implicit sharing of their entire mem-
ory space. If the programming language and operating system make it easy
for threads to share variables, programmers will access variables from multi-
ple threads without careful consideration, or even without awareness of doing
it. This is bad, since variable sharing has negative consequences for software
reliability, performance, and schedulability analysis. The more shared memory
accesses a task makes, the more load it puts on the data paths between proces-
sors, caches, and memory, and the longer and more variable its execution times
become. The more variables are shared intentionally the more chance for errors
in synchronization, and of course every instance of unintentional sharing is a
ticking bomb.

What to do in Ada? It is a good time to take inventory of the Ada language, to
see what it provides for constructing reliable highly concurrent real-time software
using multicore processors. What does the language have that helps or hurts? It
is good that Ada has a well developed concurrent programming model. However,
some specifics may not be so good. Should the language be changed, or should
a particular style of usage be developed for multicore systems? Questions to
consider include:

– How can we reduce casual memory sharing, and make intentional memory
sharing more visible, with a view to modeling and managing the flows of
data between cores?

– How can we design software that can make use of additional cores as they
become available, without redesigning and re-coding, and in a way that is
amenable to schedulability analysis?

Ada already has several features that make data sharing visible, including task
entry parameters, protected objects, and the package sharing model of the Dis-
tributed Systems Annex. Would it be practical to program in Ada under the
restriction that these be the only avenues for data sharing between threads?
Would this be enough?

It might help to adopt an event-driven programming style, in which all com-
putations are explicitly broken into jobs, which are queue-able data objects,
executed by virtual servers. The servers could be implemented as Ada tasks. A
system could be tuned by allocating multiple servers to a single queue, or having
a single server serve multiple queues. Having the jobs carry much of their own
data may reduce memory contention between cores. If the primary flows of data
are via job objects, the flow of data between cores may be modeled and managed
in terms of the flow of jobs. In this context, it may also be time to take a second
look at the “featherweight task” model of [5] as well as other ways of expressing
parallelism at a finer grain and with lower overhead than current Ada tasks.

These are just a few initial considerations. Inventive minds, with further prac-
tical experience using multicore processors, will surely think of more.
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process knowledge, regardless of their subsequent implementation [10], whereas
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interactive control loops are implemented, should be reviewed to extract their
main requirements. Special attention should be devoted to new and widespread
control scenarios where the controller is not anymore implemented in a dedicated
computer without resources constraints, but sharing and competing for comput-
ing, storage and communication facilities with several other tasks. Embedded
control systems [3], networked control systems [16] and event-based control sys-
tems [9] challenge the design of the control and its implementation where ar-
chitectural issues play a relevant role in the controlled system performance [21].
Main issues in control co-design [8], other than control algorithms themselves, are
the communication (networking) issues, the hybrid behavior, RT constraints in
computing and scheduling, multi-mode operation and safety constraints. There
is a need of support for RT activities, device drivers access, fault tolerance and
distribution [20] with special emphasis on the minimal use of hardware and soft-
ware. In this context, new software development models and middlewares ([27],
[11]) are proposed to deal with quality of service of control performance as well
as computing, communications and power resources availability. The ultimate
goal of this technology is to allow the separation of complex control systems
design from the RT tasks dynamic reconfiguration. Some key concepts interact-
ing with both, the control performance and the control implementation, such as
the control effort [5] or the control kernel [2] are emphasized and some general
directions in the co-design are summarized.

Let us consider some examples:

Automotive. The so-called electronic car should rather be termed as auto-
matic control car. A number of devices are located everywhere in different
parts of the car to measure speed, temperature, flow, lightness, sliding... Ini-
tially most information provided by these devices was used for monitoring,
to be displayed to the driver. At present instead, all these measurements are

Fig. 1. A car with multiple distributed sensors
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increasingly used to control many processes. They include servo braking
(even brake-by-wire), computer assisted steering, traction control systems,
active suspension, besides all the climate control, and invisible engine control,
fuel efficiency and pollution control systems and the trusted cruise control.
Some cars include collision avoidance systems and automated parallel park-
ing. The information is distributed, and so is the actuation combining data
from different sensors to elaborate the control actions (see Figure 1). And
there are several local control units but there is a central control unit to
coordinate all the activities. Anti-sliding control, speed control, engine con-
trol... do not work independently and according to the time and resources
availability, the “best possible” control action is sent to the actuators.
The control, computer and communication network infrastructure in a car
is substantial. At the present state of the art it may be viable to consider
an internal wireless network rather than a wired network, purely from a fuel
efficiency point of view (less cables = less weight = more fuel efficiency).

Aerospace and flight control. The continuous improvement in aerospace
control should rely on integrated control systems seeking a variety of goals:
flight control, control of power units, engine controls, utility systems, data fu-
sion and concentration... All this requires a modular approach to design with
upgradeable units and reusable components providing a fast and reliable op-
eration, fault tolerance, reconfigurability and minimal resource requirements.
Working in a harsh environment, the control must operate under different
scenarios with variable availability of signals, power and general resources.
In this context, special tools to rapid development and testing of the control
solutions are required: design requirements translation at different levels,
control design, code generation and testing.
Platforms to develop and test embedded control solutions have been pro-
posed elsewhere [12]. We have built a very modular system involving the
use of simulation facilities (Matlab�), RT development tools (Linux and
Partikle1) and simple communication facilities to design and test control
strategies for helicopters.

Industrial systems. Applications in the process industry are not in general
as time demanding as the previous ones, but the number of signals, the
distribution of subprocesses, sensors and actuators and the need to reduce
the wiring and increase the reliability and safety of the applications also
ask for a joint design of the control and its implementation. Networked and
coordinated control are crucial issues in the process industry.

1 PaRTiKle is a small footprint RT operating system designed for use in embedded
systems. PaRTiKle [24] is especially well suited, but not limited, to work in com-
bination with XtratuM technology. XtratuM [18] is a bare-metal hypervisor for RT
systems that provides spatial and temporal isolation to many operating systems run-
ning as partitions. Several partitions can run simultaneously under RT constraints
on top of the hypervisor. It is especially useful when a strong isolation of critical
code is required.
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Fig. 2. A platform for prototypes development

The paper is structured as follows. In the next section, the computing require-
ments for control applications are reviewed. Then, the control algorithm require-
ments for an efficient RT implementation are discussed. New control scenarios
with a space distributed operation have been developed recently. This is the
topic of the next section, where networked systems and control over the network
raise new challenges. Merging altogether, the need of simultaneously design the
control and its implementation, the co-design, appears as the logical frame for
the design of most RT control applications in the near future.

2 Computing Requirements for Control Applications

A standard periodic control loop implementation written in Ada 95 has the
scheme shown in figure 3. The code is composed of two parts: specification and
implementation. In the specification part the parameters associated with the task
(initial-time, period and phase) are defined, while in the implementation part an
infinite loop that executes at each period the actions related to the control (get
external values, calculate the action value, send it, and compute global state) is
included. This sequence may be changed or some tasks can be skipped according
to the availability of resources.

This code corresponds to a classical control scheme where the computation of
the control action can be undertaken using traditional techniques. However, more
and more applications require complex computation and the use of exhaustive
algorithms (unbounded algorithms) that can compromise the responsiveness of
the system. If this is the case, the computation time should be split into a fixed
(mandatory) part and an optional part (improvement).

The main requirements on SW/HW to run a control application are:
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Fig. 3. Standard control-loop implementation in Ada 95

– To have a quick an secure dispatch of a control action.
– To get a basic “picture” of the current situation.
– To compute a simple and fast control action to be improved if resources are

available.
– To switch to the appropriate control mode, based on the resources availability.
– To reconfigure under detected faults.

To always provide a control action to the process, there should be a basic task
organizing the back-up pile of control actions, by either pre-assignment or as
a result of a batch computation. For instance, in model predictive control the
algorithm computes a sequence of control actions to be applied at the next
time instants, unless they are updated at the next sampling period. This default
backlog should be stored and used, if no option to get better suggestions is
available.

Not all the signals being treated have the same relevance (see next section).
Thus, the system should give priority to those signals providing the fundamental
knowledge about the current situation and the actions to be computed and
delivered. In this sense, on-line rescheduling should allow to give the highest
priority to these signals and their related treatment. This will ensure a safe
operation of the control system.
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In order to keep the process under control at any moment, a control action
should be delivered at due time to the process. To that end, simple and fast con-
trol algorithms, probably not too performing but providing an adequate response,
should be implemented with high priority, to be executed at the time required by
the controlled process. If there is more time or, in general, more resources, a better
action could be evaluated and the simplest one would be discarded.

Task mode management is related to the organization of tasks in different
modes of operation. Several tasks included in a mode cooperate in the system
control when some external conditions stand. For instance, under normal opera-
tion of a cruise navigation control, tasks involved in this mode take control of the
different control loops, visualization and monitoring. If the system state changes
and the system has to be managed in a different way, a mode-change event is
raised and the operating system should stop the tasks involved in the previ-
ous mode and start those involved in the new mode. Tasks can be included in
several modes with the same or different timing constraints. A mode change pro-
tocol is the method to implement this task switch. Protocols have to be efficient
guaranteeing the system schedulability during the change phase [13], [17], [26].

Fault tolerance management is related to the detection and management of
abnormal situations, such as missing data, emergency control or components
fault. Error detection is a service that should be regarded as a basic functionality
to achieve fault tolerance. Error management should advise in detail how the
error or fault has to be handled, but it is more application dependent. Fault
tolerance involves both questions, the detection of faults and, depending on the
fault nature, its management or its propagation to the application.

RT control applications are paradigmatic applications where hard RT issues
should be taken into account. They are reactive systems, gathering information
from the environment, processing it and providing some actions in due time. And
the information processing is done by sharing many resources with some other
applications which also can be as demanding as them. Moreover, these applica-
tions may run in uncertain scenarios where operating conditions may change.

New trends in the control implementation regards infrastructure abstraction
by means of middleware (Mw) components. Communication Systems such as
DDS (Data Distribution System) [23],[22] provide the abstraction of commu-
nication details driving the data flow by specified QoS (Quality of Service)
requirements. Data-centric approaches like DDS are specially well suited to de-
velop event-based control systems (see Section 4.3). Using a publish/subscribe
model, control applications can optimize the bandwidth usage but the control
theory required to develop this kind of applications needs further development
and maturity. In a similar way, the execution environment can be provided by
middleware by using virtual machine technologies, i.e. RT Java (RTSJ).

Objects and agents can be deployed in a distributed execution platform also
with the support of specific middleware like ORBit, PolyORB, RT-Corba or
ACE+TAO2. In a similar way some research is focused on the definition of a

2 These open source middlewares can be downloaded from the corresponding web
pages, like [25].
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middleware abstraction of basic control services: the Control Kernel (see Sec-
tion 5). This abstraction provides an execution environment to deploy control
applications.

In summary, let us consider the final picture of a software infrastructure sup-
porting control applications as a bundle of interacting middlewares (Real-Time
and Control Kernel) with the following desirable features:

– Real-time Mw: Data-centric and event-based communications driven by QoS
and QoC (Quality of Control), specific time meta-information (time-stamps,
temporal fire-walls, actual delays), Real-time Object Brokers, Redundancy
support, Execution introspection in terms of QoC, delays and resources in-
volved (bandwidth, computing time, power).

– Control Kernel Mw: Sampling, acting, signals holding, controller’s switching
management, default and ”emergency” actions support, QoC management.

– Operating System: Real-time scheduling with dynamic load support, power
management, fine-grained timing.

3 Control Algorithmic Requirements for RT
Implementations

The execution of a control algorithm is not a unique activity and its parts may have
different treatment, also depending on the environment. Let us discuss in some
detail the issues involved in the RT implementation of the control algorithm.

3.1 Control Activities

In classic control design there are a number of basic assumptions about the
control implementation [6], [7]:

– The data acquisition system is providing the required data.
– The actuators’ drivers timely deliver the control actions.
– The CPU computes on-time the control action.
– The data required to perform the computations are stored in the memory.
– The sampling pattern is regular (constant, synchronous and uniform for any

control task).
– The control goals as well as the control algorithms are fixed and well defined.
– Power supply is guaranteed.

It is difficult to guarantee the fulfilment of these assumptions in autonomous
distributed control applications.

In digital control, the code to implement the control algorithm only takes a
few lines but there are many other control related activities which are crucial to
properly implement the control. The activities carried out in running a control
algorithm should be analyzed and those which are more critical should be guar-
anteed under no matter which conditions the system is operating. Moreover, to
run a control application in a safe mode, the following requirements should be
fulfilled:
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– A safe control action should be delivered at any required time to the process.
This action may be the result of a detailed computation or simply a safe
back-up command such as: do nothing.

– A supervisory control must make executive decisions and propose actions
such as: switch controllers, disconnect, etc.

– A control action should be computed based on gathered data and a prede-
fined algorithm: On-Off, PID3, Robust, Adaptive, etc.

– Some data should be recorded, displayed, stored, updated.
– Communication links with other activities should be provided.

Not all activities have the same importance. It is evident that if there is no
reaction to the process the computed control action becomes irrelevant.

Fig. 4. Control activities

The activities shown in figure 4 can be ranked in order of relative importance
as follows:

1. Assure the execution of a control action (CA) delivering. At least,
– a safe back-up, or
– a back-up based on previous (stored) data (defining the process situa-

tion).
That is, there is always an action to be sent to the process. This action may
be just a safe action (disconnect, open, close, etc) or it may depend on the
current situation. It could be an emergency control action or, for instance,
a previously computed suboptimal action.

2. Data acquisition of essential data, and then

3 PID stands for Proportional-Integral-Derivative controller. See [4] for a basic
overview of control concepts.
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3. Compute (and deliver) a safe control action based on current data.
If fresh data are gathered, the decision can be refined and updated, improving
the safe control action or it can be decided to

4. Instigate a change of operation mode. This may require
– Alarm treatment
– Change to a new controller (structure and parameters)
– Deliver a proper (back-up) control action.

Under normal operation, without resources constraints, these activities will be
complemented by the following:

– Get the full set of required data and process it.
– Compute the current control action and deliver it.
– Evaluate and select the most appropriate control structure (i.e. which are

the variables and the controllers involved in computing the control action).
– Communicate with the environment, other systems and/or the operator.
– Coordinate with higher decision levels.

Other than the control action delivering, the mode changing protocol and the
fault treatment, a number of local decisions should be taken with a high priority:

– Detect missing data. Missing data should be replaced by estimated data. If
it is not possible, a mode change should be initiated, in order to use a control
structure not requiring the missing data.

– Evaluate control performance. This will allow the monitoring of the control
task to decide if the control is properly working or some extra action should
be taken.

– Determine the control action to be issued. Alternative controllers may com-
pute different control actions. It should be decided which action is the most
convenient to be applied and delivered to the process.

– Change the operating mode. As a result of any of the previous decisions.
– Compute back-up signals (CA and outputs). Have some alternatives ready

in case there is some incident in the next sampling periods.

3.2 Models, Signals and Controllers

Most control algorithms are designed by using model-based approaches. That is,
the controller design procedure uses in some way an abstraction, a model of the
process to be controlled. Obviously, the more complex the process model is the
more complex the controller results. And a complex controller implementation
requires more computing resources, availability of a larger number of signals and
usually a longer computation time.

In hard RT control applications alternative controllers based on different mod-
els should be available so as to use the most appropriate according to the current
resource availability.

In the control action computation, some signals are fundamental and some
others are complementary. Also, there may be different representations of the
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same variable depending on its accuracy, estimation procedure or time print.
The quality of the signals will also determine their use. Missing data are usually
replaced by old data, and are updated by extrapolation or prediction algorithms.

To compute the control action different controllers may be used. Each con-
troller is characterized by its complexity (the number of operations required for
its computation), the information required to run it (parameters and involved
variables) and its computing time. The system must be able to decide the con-
troller to be used as well as the required pre- and post- computing treatment of
the involved signals.

3.3 Control Action Relevance: The Control Effort

In the sequential execution of multitasking activities as a result of simultane-
ously controlling several variables, that is dealing with multiloop control, there
are inherent delays and jitter between the sampling of process signals and the
delivering of control actions.

In digital control, the control loop is open in between two updates of the
control input. Thus both delays and jitter influence the control performance. This
influence4 depends on the changes the controller produces in the controlled plant
dynamics. In fact, if there is a soft control the absence of control action is not
necessarily significant, but if we pretend to strongly change the plant behavior by
the control action, then any delay will modify the result. In general, the stronger
the change in dynamics is the worse the effect of any unaccounted delay. There
are different ways to determine the relevance of a signal. In a qualitative way,
the most relevant signal is that whose failure provokes the highest performance
degradation in the system.

In this framework, it is interesting to introduce the concept of control effort
as a measure of the change in the plant dynamics the control action produces[5].
Assume a multivariable process, with p measurements being stabilized/controlled
by means of m control actions. Among these variables (m+p) the most relevant
one is the one that leads to a less stable behavior, if disconnected.

Altogether, the signals to be more accurately computed are those involving
the greater control effort but also related to the more relevant controlled signals.

3.4 Control Algorithm

As a result, the design of the control algorithm must be able to adapt parameters
and data of the controller as well as to reconfigure the control structure based on:

– New jitters and delays due to the rescheduling.
– Changes in the sampling period, due to changes in the resources availability.
– Model reduction of the process and/or controller, also due to changes in the

resources and specially in the event of missing data.

4 In some special cases this influence may be positive [1] but, in general, the control
performance is degraded.
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– Power availability, to change to simplest controllers if a lack of energy is
expected in the next future.

Moreover, for many autonomous RT control applications, changes in operation
mode and environment should be accounted for in the equations of the control
algorithm.

There are several approaches to control algorithm design. First, to try to maxi-
mize the determinism of the control algorithm computation, avoiding looping and
options. This will result in a perfectly schedulable algorithm. If some flexibility is
introduced, then a robust design allowing to cope with different scenarios would
be required. The price we pay for that is a conservative and less performant con-
trol. Next step is to introduce a dynamic (active) robustness by changing the frame
according to the situation (i.e., gain scheduling). The best performing approach,
from the control viewpoint, but also the more demanding from the computing
viewpoint is to implement feedback scheduling [15], that is, to schedule the dif-
ferent activities based on current measurements taken on the process.

4 Challenging Control Scenarios

As already mentioned, new control scenarios have emerged. In particular, deal-
ing with resource constraints (embedded control systems), distributed resources
(networked control systems) and non uniform/periodic sampling (event-driven
control). Let us discuss the main features of these new scenarios.

4.1 Embedded Control Systems

Most of the warnings and concerns discussed above apply to the design of Em-
bedded Control Systems (ECS). RT control applications on embedded systems
require the best use of the available computation resources. The main advantages
they offer include the reduced price and size, broadening the scope of possible
applications: mass-production systems due to the cost reduction and specific ac-
curate applications for their reduced size and high performance. But the most
important problem is the limited computational capabilities they can use. Short
sampling periods and non-delayed control actions which warrant better control
performance cannot be ensured.

Hence, one of the most important issues is related with the reliable and opti-
mal use of the computational resources and what the resource shortage involves
in the design and implementation of the control algorithms. For these appli-
cations, it is not always possible to implement the control by using general
purpose operating systems because of the particular requirements in terms of
delays and jitter limitation. Thus, the control computations should be imple-
mented as RT tasks being executed under a specific RT scheduling policy. In
this sense, the basic common features of ECS can be summarized as: compact
and reduced size, autonomy, reconfigurability, safety, fault tolerance and ability
to work under missing data operation conditions. In the end, one CPU, with its
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own power supply, must control a number of variables in an uncertain environ-
ment. The problems to be considered are related to implementation, workload
and resources sharing, and control performance degradation.

From the implementation point of view the same resources, and in particular
the CPU, must be shared between different tasks. As a result of this compe-
tition for the CPU, time delays and jitter affect the activation times of tasks,
which in turn has an effect on the performance of the control algorithm. Work-
ing in a changeable environment, the control goals and options may change and
the control algorithms should be adequate to new scenarios. Thus, alternative
control algorithms should be ready to get the control of the process. The change-
able scheduling and data availability determines that variable delays should be
considered, [14]. The synchronicity of signals cannot be ensured anymore. Any
embedded control system should be proved to be reliable and safe operation
should be ensured.

From a computational point of view low-cost algorithms should be designed to
use as little computation time and memory as possible, and an easy update of in-
formation should be provided to allow for the shortest time in controller changes.
Control algorithms should be split in mandatory and optional tasks, the later
being only run if time is available. Switching between different control scenarios
requires to consider supervisory levels, and resource saving claims for memory sav-
ing (storing only what is necessary) and optimal data transfer. On the other hand,
for safety reasons hardware redundancy may be implemented if its cost, size and
involved complexity is affordable and fault detection, isolation and system recon-
figurability should be provided to allow an autonomous behavior.

ECS algorithms should be designed by using the most appropriate process
model, with different levels of detail. Thus model reduction techniques should
be considered to simplify either the plant model or the designed controller. As
already mentioned, supervisory control is required to decide about the most
suitable operation mode. This implies the design of hybrid controllers, taking
care of the transfer between modes of operation. It is well known that, in general,
the performance of the digital control degrades if the sampling period increases.
Thus, if resources are available, the control tasks periods should be reduced
and this implies changes in the controller parameters as well as in the stored
information. One mandatory feature of ECS is a safe operation. Thus, control
algorithms should provide always a control action, even under adverse conditions
such as data missing, faults or lack of computation time to compute the most
convenient control action.

Also, as discussed in the sequel, non regular sampling should be considered.

4.2 Networked Control Systems

A new order of complexity arises when the the control system is spread over
a network of computing-sensing-acting devices (nodes) linked through different
networking technologies.

Each node may house different devices, see figure 5, acting locally or through the
network. In this scenario the RT analysis must be extended to take into account the
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Fig. 5. Networked processes, processors, sensors and actuators

delays introduced by the communication infrastructure. Additionally, if some RT
communication infrastructure is available, a scheduling plan for the involved buses
should be obtained to ensure delay bounds. Given the specification of control tasks
and the capabilities of computing and communication infrastructures, the off-line
scheduling analysis should follow the next rough steps:

1. Identification of control tasks and mapping between tasks and processing
nodes. After this mapping, the worst case execution time (WCET) of each
task can be computed as resulting from the target processing architecture.

2. Identification of shared information and bus scheduling. Once the bus access
protocols and scheduling have been determined the worst case for commu-
nication delays can be obtained.

3. Tasks scheduling for each node. If some task cannot meet its deadline, return
to Step 1 and reassign tasks to nodes.

This approach has some weak aspects:
- The final implementation of the entire control system is too rigid. Tasks are

assigned to nodes in the way that the movement of tasks among nodes or the
inclusion/rejection of tasks from nodes should be foreseen at the design stage
and modeled as “operation modes”. Each operation mode provides a different
scheduling scenario that must be analyzed off-line following the above mentioned
three steps. Moreover, tasks belonging to each operation mode should be pre-
loaded in affinity nodes in order to be ready to run if the operation mode changes.
This fact usually leads to a memory over-consumption that impacts the hardware
requirements. The design complexity can be assumed when the operation modes
are well defined and the number of them is not too high taken into account the
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design resources and perhaps business bounds for design cost. This design com-
plexity becomes intractable when the physical system to be controlled is highly
dynamic and reconfigurable. In these cases a hierarchical decomposition of the
problem must be made with, again, a consequent increase in design complexity.

Although from the computational point of view, the problems derived from
the “operational modes” decomposition can be overcome, the main criticism to
this approach comes from the control engineering field. The main problem here
is the “mode switching” procedure. Engineers can ensure a stable performance of
the controllers running in each mode but it is hard to ensure stability during the
switching time, even more if the switching is random. New components should
be included in the architecture to manage the mode switching in closed loop.

- As for the memory, the communication and processing specifications should
be defined by the peak of load found among all operation modes (and perhaps
influenced by the switching strategy). This leads to an increase of the cost of the
computing infrastructure. This cannot be avoided but regarding the general low
resource usage, systems should integrate into the scheduling components power
management techniques as fine grained as possible in order to spend energy only
when needed. This is especially important in nodes using wireless technology
and battery powered.

- The maximum delay for a data transaction over the communication infras-
tructure provided by the off-line analysis is enough to feed schedulability analysis
and verify that control deadlines are satisfied. But, again from the control engi-
neering point of view, this maximum delay cannot be used to align samples in
time and correct the control action by taking into account explicitly the real de-
lay in the controller computations. In this context, communication technologies
providing time meta-information together with data are very valuable.

4.3 Event-Driven Control

Regular sampled data systems are very popular. First because their mathemati-
cal treatment is well established and there are many control analysis and design
techniques for them. Also, because digital control has been traditionally im-
plemented in computer-based systems with a time driven operation. These two
conditions match perfectly and excellent results are reported in the literature.
Problems arise if there is lack of resources. Regular sampling implies the re-
peating of the control cycle at every period. It does not matter if it is needed
or not, and it does not take into account if the sampling frequency is the one
the control performance requires. The first change in this scenario is when the
processed signals have different power spectrum. In this case they do not need
to be sampled at the same rate. Then, multirate systems become a necessity,
optimizing the use of the sensors, actuators and computing units. But we can go
further. We can compute the control action just when it is needed. This is the
basis of the so called event-driven control systems.

As summarized in the work of K. Åström [9], regular sampled data are unfea-
sible when dealing with distributed, asynchronous and multi time scale systems.
In these cases, the control should be updated anytime an event is detected,
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Fig. 6. Basic control loop: a) regular sampled data; b) event-driven

analyzed and a new control action is generated. In this conceptual case the
control structure is different, as depicted in figure 6.

The sensor can be a local virtual sensor, processing the measurements and
detecting an event signal e∗(t) to be sent to the controller. The event processor
determines (s∗(t)) what should be done and fires the control action generator.
This block is a kind of “generalized hold” generating the series of signals u∗

(it could be just a permanent one) to be sent to the actuator as far as no new
event appears. In this way, the communication load is highly reduced and it only
happens upon the occurrence of an event. As discussed in the next section, both
the event detection and the storage of the future control actions can be done at
a lower (the kernel) level.

There is a lot of work to do in this area and new tools to analyze the stability
and performance of event-driven controllers should be developed. What is un-
doubtable is that this is the right approach to save resources without degrading
performance.

5 Control Co-design: The Control Kernel

To fulfill the basic and common features of software applications, the kernel of
a RT operating system (RTOS) provides an “abstraction layer” that hides from
the application the hardware details of the target processor on which it runs.
This permits the development of portable applications. Moreover, it ensures the
execution of the most important activities.
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In a similar way, the control kernel concept [2] can be interpreted as the
basic services to be provided in order that the control application can be safely
performed. This also requires to define which are the basic and most important
control activities, in any control application, as outlined in Section 3.1.

The control kernel will be run with high priority. Its main goals are [2]:

1. To provide a flexible interface to manipulate the gathered information (in-
cluding the registration and elimination of sensors) from a control application
at execution time. In this way, it is possible to reconfigure the application
under changing environments.

2. To provide a flexible interface to manipulate actuator devices, including their
registration and elimination.

3. To keep control over the system in all situations. Each control subsystem
must be able to autonomously control its corresponding part within the
system.

4. The control kernel should be robust and adaptable to changing situations.
Furthermore, it should detect fault conditions in sensors, actuators, commu-
nication networks, etc.

5.1 Main Features of the Control Kernel

As the processors operation has a sequential behavior, some basic activities
should be implemented at a low level and with high priority to guarantee the
availability of the resources they need and a timely response. Furthermore, as
the ultimate platform where the controller will be implemented can change in
the sense of computational resources, it is necessary to use a layered structure
to accomplish the basic requirements of the control system.

The control kernel should be able to interact with the environment (sensors,
actuators, communication channels), the OS and exchange information with the
control algorithm implemented at application level. Also, it should cluster all
common jobs of the control activities related to any variable, such as the data
acquisition and the delivering of the control action [19].

Figure 7 shows these interactions, where the following abbreviations stand for:

– ADQ: Samples of variables.
– REF: Control references.
– ESM: Outputs, references and inputs estimation.
– CO: Control commands, including

• Controller commuting
• Change of controllers’ parameters.

– SCA: Sending of control actions.
– SDI: State and diagnostic of inputs.

Taking into account the elements analyzed in section 3.1 the proposed archi-
tecture should have a supervisor component at the control kernel level. It will
permit to apply each control strategy at the needed time and to carry out the
following actions:
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Fig. 7. Layers and interactions of the control kernel

1. To check the control variable measurements.
2. To check the control performance index.
3. To switch controllers.
4. To change the parameters of the controllers.
5. To send the estimated control actions.

The control kernel should have access to a set of alternative control actions from
where it is possible to select and send the most appropriate one to the process.
The algorithms corresponding to the most complex control strategies (i.e. opti-
mal control, adaptive control, predictive control and intelligent control) should
be run at the application level because they need a larger processing capacity.
Other control strategies such as PID (all variants) or simple state feedback con-
trol will be allocated at the control kernel level and they will be identified as
basic controllers. It is worth clarifying that the full control algorithm is not a
part of the control kernel because it depends on the process to be controlled.
This makes it possible to assure that the control kernel behaves deterministi-
cally because it is possible to determine with good precision the time required
to compute the control action.

5.2 A Distributed Control Kernel Implementation

The control kernel should be conceived in a modular way, allowing a distributed
implementation as well as different levels of complexity depending on the ap-
plication. To this end, a distributed embedded control model can be defined as
composed by two node types: Light nodes and Service nodes (see figure 8). Ser-
vice nodes are powerful embedded computers running a full featured RTOS and
complete networking with I/O capabilities. Light nodes are small and low power
consumption processors with limited computing and networking capabilities but
complete I/O features.
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Fig. 8. Architecture of the distributed control kernel

Control applications run in service nodes on top of a fully featured Con-
trol Kernel Middleware (CKM). This middleware provides for abstractions and
functionalities related to RT execution of control tasks, access to sensors and
actuators, and communications management. The programming model of the
CKM follows the concept of code delegation. In this sense, a control application
delegates the execution of some control code to the CKM that provides computa-
tional resources to execute it. Note that a control task, once inside the CKM, can
run on whatever service node of the DCS that has access to the communications
space of the task.

Light nodes are a cost-effective solution to have some computing resources
as close as possible to each actuator. This is mandatory in order to reduce the
non-determinism in the time of delivering control actions to the controlled pro-
cess. Light nodes run a retail of the CKM: the CKM Runtime. This Runtime
communicates with the CKM offering interfaces for management, sensing and
acting and code upload. Features of the CKM Runtime include network inter-
facing to sensors and actuators and controller code pages upload. A light node
can be used as a simple slave component to interface the DCS or it can run local
controllers in a cyclic executive environment.

Any controller of a control application that has been delegated to the CKM
with attached native code page for the light node type, can be delegated to this
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Fig. 9. Light nodes ensure that always exist a control action to be sent to the process
(uo(k) or us(k))

light node by uploading this codepage and asking for switching. Controller pages
can be uploaded through the CKM Runtime without any interference with the
controllers currently running in the node. The uploaded pages are activated for
running by the switching mechanism provided by the CKM Runtime.

In particular, service nodes may include supervising and optimizing control
activities and light nodes can run activities to drive the system to a safe state
or run a simple algorithm that guarantees a minimum of stability in the system
at any time.

Let us consider the model depicted in figure 9. Two nodes are defined for this
control kernel structure:

- The service node produces high-quality control responses (uo(k)) which are
sent to the light node to be applied on the plant. If uo(k) is not received or it has
some delay, then the light node will apply his calculated control action us(k).

- The light node controls directly the process and the service node only mon-
itors and analyzes the sensory data and the control action us(k) to determine
if it is suitable. It ensures that there always exists a control action (uf (k)) to
be sent to the process. This signal may be just a safe action (disconnect, open,
close, unchange, etc.) or the result of a simple calculus (computed locally in the
node) (us(k)) or it may be the signal calculated (uo(k)) and received from a
service node.
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When uo(k) is not detected or it is wrong, immediately the signal uf(k) is
switched to a safe signal us(k). This switching may be executed into a light or a
service node. Under these circumstances, the service node can determine if it is
necessary to change and delegate new code into the light node to execute other
controller.

6 Discussion and Conclusions

In this work a biased analysis of the co-design of control algorithms and their
implementation has been presented, mainly from a control viewpoint.

Initially, the requirements from both the control and computing perspective
have been reviewed and some relevant application areas have been visited to
emphasize the embedded character of many applications as well as the need
for development platforms capable of speeding up the design and validation of
integrated and complex RT control applications.

To fully develop a demanding RT control application, other than the end user
requirements the constraints imposed by the implementation environment should
be taken into account to get the best possible performance and, in any case, a
safe operation. This co-design approach is always convenient but it becomes
necessary if dealing with new control developments where resources are scarce,
operating conditions are very changeable and there is a great uncertainty in the
achievable results. In this sense, embedded control systems, with high autonomy
and resources constraints, and networked control systems, with distributed and
shared resources, are emblematic frameworks. And these settings are pervading
most control applications.

The first consequence of this analysis is the re-structuring of the control algo-
rithm implementation. It is not anymore a cyclic loop to be repeated periodically.
The relevance of activities and signals should be pointed out. The most funda-
mental activities should be scheduled at a very low level and priority should be
given to the most relevant signals. This leads to the concept of control effort and
evokes the need for a basic layer, the control kernel, to execute the fundamental
activities.

To save resources, all the activities leading to compute the control action
should be only performed if needed, and in many cases there is a waste of re-
sources to compute a control action being the same as the previous one or easily
predicted from it. In this framework, event-based control systems offer a way to
go. Unfortunately, the control theory required to design event-controlled plants
is still in its dawn, and much effort should be devoted to reach the maturity
that regular sampled-data-based approaches offer to the designers. Also from
the communications viewpoint, event-based behavior is quite natural and new
developments of communication systems, like DDS, go in this direction.

Let us conclude by emphasizing the concept of control kernel. This layer,
implemented as a middleware in the control application, allows for greater relia-
bility, reusability, transportability and safety in the design and operation of RT
control applications.
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2. Albertos, P., Crespo, A., Simó, J.: Control Kernel: a Key concept in Embedded
Control Systems. In: IFAC Conf. on Mechatronics (2006)

3. Albertos, P., Crespo, A., Vallés, M., Ripoll, I.: Embedded control systems: some
issues and solutions. In: 16th IFAC World Congress (2005)

4. Albertos, P., Mareels, I.: Feedback and Control for Everyone. Springer, Heidelberg
(2010)

5. Albertos, P., Olivares, M.: Time Delay Limitations in Control Implementation.
In: European Control Conference, Karlsrue, Germany (1999)

6. Albertos, P., Vallés, M., Cuenca, A., Valera, A.: Essential control in Embedded
Control Systems. In: IFAC Symp. On Cost Oriented Automation, Havana, Cuba
(2007)
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scheduling of control tasks. Real Time Systems 23(6), 25–53 (2002)

16. Chow, M.-Y., Tipsuwan, Y.: Network-Based Control Systems: a Tutorial. In: The
27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1593–1600
(2001)

17. Crespo, A., Albertos, P., Vallés, M., Lluesma, M., Simó, J.: Schedulability is-
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Abstract. Multiprocessor platforms are becoming the norm for more powerful
embedded real-time systems. Although Ada allows its programs to be executed
on such platforms it provides no explicit support. If Ada is going to be an effective
language for multiprocessor real-time systems then it needs to address the map-
ping issue that will allow the programmer to express their requirements for task
to processor affinity. A number of different mapping and scheduling approaches
are advocated in the scheduling literature. The primitives in the language should
allow these schemes to be directly supported. In this paper we propose exten-
sions to Ada 2005 to introduce the notion of dispatching domains, and we show
how these can be used to implement two example multiprocessor scheduling
approaches.

1 Introduction

One of the challenges facing real-time systems is how to analyse applications that ex-
ecute on multiprocessor systems. Although current schedulability analysis techniques
are in their infancy, approaches are beginning to emerge. In this paper, we consider the
support that Ada can give to allow applications to be able to benefit from these new
techniques. The facilities described in this paper originated from ideas developed at the
International Real-Time Ada Workshop (IRTAW 14) in September 20091.

An increasing number of embedded applications are now executed on multiproces-
sor and multicore platforms. For non-real-time programs, it is usually acceptable for the
mapping of tasks to processor (we shall use the term CPU in this paper) to be imple-
mentation defined and hidden from the program. For real-time programs, this is not the
case. The control of affinities is as important as the control of priorities.

A difficulty with targeting language abstractions to multiprocessor systems is that
there is more than one multiprocessor architecture. In addition, the facilities that op-
erating systems provide to exploit the parallelism in the architecture vary with no ac-
cepted standards. Moreover, there is more than one method of representing parallel
code in languages. In this paper we consider symmetric multiprocessors – SMPs (ho-
mogeneous MPSoCs), we assume base-line operating system facilities such as those

1 The IRTAW series of workshops are unlike most workshops in that ideas are developed from
submitted position papers. One of the main themes of IRTAW 14 was to develop proposed ex-
tensions to Ada 2005 to allow programs to exploit multiprocessor systems. The related position
papers are [6,9,11,15,13,14]. This paper refines and develops the initial proposals.
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available with the Linux 2.6 kernel, and concurrency constructs such as the Ada task
and protected object.

The paper is structured as follows. We first briefly review the current provisions
within Linux and the Ada language for multiprocessor execution. We then consider the
basic requirements that any change to the language must try and address. In Section 4
we propose a set of language modifications that are aimed at satisfying these require-
ments. Two illustrations of the usage of these facilities are provided in Section 5. Some
conclusions are then given.

2 Current Facilities

2.1 Linux

Since kernel version 2.5.8, Linux has provided support for SMP systems [8] via the no-
tion of CPU affinity. Each process in the system can have its CPU affinity set according
to a CPU affinity mask. The CPU affinity mask of a process determines the set of CPUs
on which it is eligible to run.

#include <sched.h>

int sched_setaffinity(pid_t pid, unsigned int cpusetsize,
cpu_set_t *mask);

int sched_getaffinity(pid_t pid, unsigned int cpusetsize,
cpu_set_t *mask);

void CPU_CLR(int cpu, cpu_set_t *set);
int CPU_ISSET(int cpu, cpu_set_t *set);
void CPU_SET(int cpu, cpu_set_t *set);
void CPU_ZERO(cpu_set_t *set);

A CPU affinity mask is represented by the cpu set t structure. Four macros are pro-
vided to manipulate CPU sets. CPU ZERO clears a set. CPU SET and CPU CLR respec-
tively add and remove a given CPU from a set. CPU ISSET tests to see if a CPU is part
of the set. The first available CPU on the system corresponds to a cpu value of 0, the next
CPU corresponds to a cpu value of 1, and so on. A constant CPU SETSIZE specifies
a value one greater than the maximum CPU number that can be stored in a CPU set.
sched setaffinity sets the CPU affinity mask of the process whose ID is pid

to the value specified by the mask. If the process specified by pid is not currently
running on one of the CPUs specified in mask, then that process is migrated to one of
the CPUs specified in mask. This action is performed by a high priority kernel thread
called the migration thread (there is one thread per CPU)[5]. If necessary, an inter-
processor interrupt is sent to force a reschedule on another processor.
sched getaffinity allows the current mask to be obtained.
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An error is returned if the affinity mask contains no processors that are physically
in the system, or if cpusetsize is smaller than the size of the affinity mask used by
the kernel.

The affinity mask is actually a per-thread attribute that can be adjusted independently
for each of the threads. The value returned from a call to gettid (get thread id) can
be passed in the argument pid.

Two final points are worth making. The first is that unless the Real-Time Preemption
patch is installed then preemptive priority-based scheduling across processor cannot be
guaranteed. The second point is that the set of CPUs that are allocated to a process can be
constrained externally to that process. Hence, the set passed to sched setaffinity
is filtered by the Linux kernel so that only the allowed CPUs are used. This allowed set
can be changed asynchronously using the “cpuset virtual file system”[7].

Other operating systems provide slightly different facilities, but the Linux support is
typical of what can be expected.

2.2 Ada

The Ada Reference Manual allows a program’s implementation to be on a multiproces-
sor system. However, it provides no direct support that allows programmers to assign
their tasks onto the processor in the given system. The following ARM quotes illustrate
the approach.

“NOTES 1 Concurrent task execution may be implemented on multicomputers,
multiprocessors, or with interleaved execution on a single physical processor.
On the other hand, whenever an implementation can determine that the required
semantic effects can be achieved when parts of the execution of a given task
are performed by different physical processors acting in parallel, it may choose
to perform them in this way.” ARM Section 9 par 11.

This simply allows multiprocessor execution and also allows parallel execution of a
single task if it can be achieved, in effect, “as if executed sequentially”.

“In a multiprocessor system, a task can be on the ready queues of more than
one processor. At the extreme, if several processors share the same set of ready
tasks, the contents of their ready queues is identical, and so they can be viewed
as sharing one ready queue, and can be implemented that way. Thus, the dis-
patching model covers multiprocessors where dispatching is implemented us-
ing a single ready queue, as well as those with separate dispatching domains.”
D.2.1 par 15.

This allows the full range of partitioning identified below. However, currently the only
way that an implementation can provide the mechanisms to allow programmers to
partition their tasks amongst the available processors is via implementation-defined
pragmas, or non-standard library packages. For example, GNAT uses a pragma called
Task Info and an associated package System.Task Info which provides plat-
form specific information.
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3 Basic Requirements

The primary real-time requirement for supporting the execution of Ada tasks on SMPs
is to manage the mapping of tasks to processors. We assume that we are concerned
with real-time code, in which case the execution of any task can be view as a sequence
of invocations or jobs. Between jobs, the task is blocked, waiting either for an event
(typically an external interrupt) or for a future time instance2.

To cater for the allocation/mapping of tasks/jobs to processors, two basic approaches
are possible:

1. Fully Partitioned – each task is allocated to a single processor on which all its jobs
must run; and

2. Global – all tasks/jobs can run on all processors, jobs may migrate during execu-
tion.

There are many motivation for choosing either global or partitioned allocation, some of
these motivations come from issues of scheduling [2]. These details are not significant
here, what is important is that the Ada language should be able to support both schemes.

From these schemes, two further variants are commonly discussed: for global sched-
uling, tasks are restricted to a subset of the available CPUs; and for partitioned schedul-
ing, the program can explicitly change a task’s affinity and hence cause it to be moved
at run-time.

Restricting the set of CPUs on which a task can be globally scheduled supports
scalability – as platforms move to contain hundreds of CPUs, the overheads of allowing
full task migration become excessive and outweigh any advantage that might accrue
from global scheduling. Controlled changing of a task’s affinity has been shown to lead
to improved schedulability for certain types of application [12,1].

There may be other non-real time requirements for a mapping facility. For example,
coscheduling where tasks must run in parallel is sometimes quoted as a requirement for
high performance computing [10]. Alternatively, there is often a perceived need to have
a group of tasks share access to a processor’s data cache. The programmer doesn’t care
which processor they run on as long as it is the same processor. In both these cases,
the tasks are tightly coupled and regularly exchange data. From a real-time perspective,
the former can be achieved (approximately) by setting the priorities of the tasks to the
same value. The later can only be achieved by fixing the tasks to a single processor (or a
set of globally scheduled processors that have a common cache). We note that analysis
models for these two use cases (with their strict definitions) have yet to be derived.

In the following discussions, in keeping with the terminology in the current Ada
Standard, we will use the term processor dispatching domain (or just dispatching do-
main) to represent a group of processors across which global scheduling occurs. A task
is said to be assigned to a dispatching domain; and if it is partitioned to execute on just
one CPU, it said to be set to that CPU.

2 Of course, this view of an Ada task is not explicitly enforced by the Ada language semantics.
Rather, tasks should follow this convention to be amendable to schedulability analysis.



Dispatching Domains for Multiprocessor Platforms and Their Representation in Ada 45

4 Language Modifications

We propose facilities to allow the processors allocated to an Ada program to be parti-
tioned into a number of non-overlapping dispatching domains. Every task is scheduled
within a dispatching domain. A task may also be assigned to execute on just one CPU
from within its associated dispatching domain. We assume that the set of processors
allocated to a program is not changed during its execution. Any external change to the
set is outside the control of the Ada program and is likely to result in erroneous program
execution. The following issues are addressed:

– representing CPUs and CPU sets,
– representing dispatching policies and dispatching domains,
– identifying interrupt affinities,
– ceiling priorities and locking.

Although the these proposals are designed to support SMP systems, the goal is that they
should be applicable to more general systems such as those with different CPU speeds
and/or those with non-uniform memory access times3. All the facilities discussed here
are on a per-partition basis.

4.1 Representing CPUs and CPU Sets

First, a simple representation of the multiprocessor platform is required. A simple in-
teger type is used to represent the range of CPUs (CPU Range). These definitions are
give here in a child package of System, although they could just be added to System:

package System.Multiprocessors is
type CPU_Range is range 0 .. <implementation-defined>
function Number_Of_CPUs return CPU_Range;

end System.Multiprocessors;

Typically, operating systems provide a means of specifying a collection of CPUs using
a bitset. Here, we provide a private type in a child package4.

package System.Multiprocessors.CPU_Sets is

type CPU_Set is private;
Default_CPU_Set : constant CPU_Set; -- includes all processors

procedure Zero(Set: in out CPU_Set);
procedure All_Set(Set: in out CPU_Set);
procedure Set_One(Set: in out CPU_Set; Processor : CPU);
procedure Clear(Set: in out CPU_Set; Processor : CPU);
procedure Set_Many(Set: in out CPU_Set; Processors : CPU_Set);

3 Platforms containing processors with different instruction sets are not considered here. The
assumption is that they are best addressed using the Ada partition concept, and treated more
like distributed systems than multiprocessor systems.

4 As the Ada language evolves to support other architectures such as NUMA and cc-NUMA,
further data structures may need to be introduced; for example, the processor domain and the
node domains that are defined in Linux.



46 A. Burns and A. Wellings

procedure Clear(Set: in out CPU_Set; Processors : CPU_Set);
function Is_Set(Set: in CPU_Set; Processor : CPU) return Boolean;

private
...

end System.Multiprocessors.CPU_Sets;

We note that for SMPs, a simpler representation is possible using just a subrange within
CPU Range.

4.2 Representing Dispatching Policies and Dispatching Domains

Dispatching Policies
Ada supports a range of dispatching options all from within a priority-based dispatching
framework. These are defined in a hierarchy of packages rooted in the Ada.Dispat-
ching package. Each of the policies can be applied across the whole priority range
or within bands of priorities. The dispatching policy is set using pragmas and ap-
plies at the partition level. To extend this framework to allow the dynamic creation
of dispatching domains, it is first necessary to have a more formal definition of a
dispatching policy as a predefined type within the language. Here, we introduce this
type (Dispatching Domain Policy) in the Ada.Dispatching package. We
also define a subtype to represent the policies that can be used with priority-specific
dispatching.

with System; use System;
package Ada.Dispatching is

pragma Pure(Ada_Dispatching);

Dispatching_Policy_Error : exception;

type Dispatching_Domain_Policy is private.

type Policy is (Priority_Specific_Dispatching,
Non_Preemptive_FIFO_Within_Priorities,
FIFO_Within_Priorities,
Round_Robin_Within_Priorities,
EDF_Across_Priorities);

subtype Priority_Specific is Policy range
FIFO_Within_Priorities .. EDF_Across_Priorities;

procedure Set_Policy(DDP : in out Dispatching_Domain_Policy;
P : Policy);

procedure Set_Priority_Specific_Policy(
DDP : in out Dispatching_Domain_Policy;
P : Priority_Specific; Low : Priority; High : Priority);

-- raises Dispatching_Policy_Error if
-- DDP has not been set to Priority_Specific_Dispatching, or
-- High is not greater than Low, or
-- any priority from Low to High had already been set
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private
-- not defined by language

end Ada.Dispatching;

A series of calls of the final procedure allows the program to construct the required
priority-specific allocations.

We note that a more extendible representation of these policy types is possible.

Dispatching Domains
Although this proposal allows the dynamic creation of dispatching domains, there is
one main restriction. This is the dispatching policy for the domain must be specified at
the time the domain is created. Once specified it cannot be changed.

The following package (defined here as an extension to Ada.Dispatching) al-
lows the group of CPUs to be partitioned into a finite set of non-overlappingDispat-
ching Domains. One dispatching domain is defined to be the System dispatching
domain; the environmental task and any derived from that task are allocated to the
System dispatching domain by default. Subprograms are defined to allow new dis-
patching domains to be created and their scheduling policies defined.

Tasks can be assigned to a dispatching domain and be globally scheduled within that
dispatching domain according to the defined scheduling policy for its priority level.
Alternatively they can be assigned to a dispatching domain and set to a specific CPU
within that dispatching domain. Tasks cannot be assigned to more than one dispatching
domain, or set to more than one CPU.

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
with System.Multiprocessors; use System.Multiprocessors;
with Ada.Dispatching; use Ada.Dispatching;
with System; use System;
package Ada.Dispatching.Domains is

type Dispatching_Domain is private;

System_Dispatching_Domain : Dispatching_Domain;

function Create(PS : in CPU_Set;
DDP : in Dispatching_Domain_Policy) return Dispatching_Domain;

-- Checks to see if the processors are in the system
-- dispatching domain; if so, remove from system scheduling
-- domain and add to the new domain, set the scheduling policy
-- for the domain
-- raise Dispatching_Policy_Error
-- if the system cannot support global scheduling
-- of the processors identified in PS, or
-- if processors not in system dispatching domain, or
-- if in system scheduling domain but has a task set, or
-- if the allocation would leave the system dispatching domain
-- empty, or
-- if Dispatching_Domain_Policy has not been assigned
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function Get_CPU_Set(DD : Dispatching_Domain) return CPU_Set;
function Get_Dispatching_Domain(T : Task_Id := Current_Task)

return Dispatching_Domain;

procedure Assign_Task(DD : in out Dispatching_Domain;
T : in Task_Id := Current_Task);

-- raises Dispatching_Domain_Error if T is already assigned
-- to a dispatching domain

procedure Assign_Task(DD : in out Dispatching_Domain;
P : in CPU_Range;
T : in Task_Id := Current_Task);

-- raises Dispatching_Domain_Error if P not in DD or if
-- T is already assigned

procedure Set_CPU(P : in CPU_Range; T : in Task_Id := Current_Task);
-- raises Dispatching_Domain_Error if P not in current DD for T

procedure Free_CPU(T : in Task_Id := Current_Task);

function Get_CPU(T : in Task_Id := Current_Task) return CPU_Range;
-- returns 0 if T is not set to a specific CPU

procedure Delay_Until_And_Set_CPU(
Delay_Until_Time : in Ada.Real_Time.Time; P : in CPU_Range);

-- raises Dispatching_Domain_Error if P not in
-- current DD for calling task

private
-- not defined by the language

end Ada.Dispatching.Domains;

The required behaviour of each subprogram is as follows;

– Create – Creates a dispatching domain with a dispatching policy. The identified
CPUs are moved from the System dispatching domain to this new domain. A CPU
cannot be moved if it has a task assigned to it. The System dispatching domain
must not be emptied of CPUs as it always contains the environmental task5.

– Get CPU Set and Get Dispatching Domain – as their names imply.
– Assign Task – There are two Assign Task procedures. One allocates the task

just to a dispatching domain (for global scheduling) the other allocates it to a dis-
patching domain and sets a specific CPU within that dispatching domain (for parti-
tioned scheduling).

– Set CPU – sets the task to a specified CPU. The task will now only execute on that
CPU.

– Free CPU – removes the CPU specific assignment. The task can now execute on
any CPU within its dispatching domain.

– Get CPU – returns the CPU on which the designated task is assigned.
– Delay Until And Set CPU – delays a task and then sets the task to the speci-

fied CPU when the delay expires. This is needed for some scheduling schemes.

5 Note, there still is only one environmental task. There is no requirement for parallel elaboration
of an Ada partition.
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In addition to these two packages there are two new pragmas required to control the
affinity of tasks during activation:

pragma Dispatching_Domain (DD : Dispatching_Domain);
pragma CPU (P : CPU_Range);

The following points should be emphasized.

– All dispatching domains have the same range of priorities (System.Any Prio-
rity).

– The ‘System’ dispatching domain, System Dispatching Domain, is sub-
ject to the policies defined using the configuration pragmas: Task Dispatching
Policy and Priority Specific Dispatching.

– A task has, by default, the dispatching domain of its parent. If the parent is assigned
to a processor, then so is the child task.

– A task that wishes to execute, after a delay, on a different CPU and with a different
deadline (for EDF scheduling) must use a Timing Event.

Finally, there are a number of implementation characteristic that must be documented,
and there will be certain implementation advice useful to include in the ARM. For
example the CPU(s) on which the clock interrupt is handled and hence where delay
queue and ready queue manipulations (and user code - Timing Events) executed must be
documented. As there is no scheduling between dispatching domains an implementation
is recommended to have distinct queues per dispatching domain. If the Ada environment
is being implemented on a system that has predefined dispatching domains, the details
of these domains should also be documented.

4.3 Interrupt Affinities

Ada programs identify interrupt handlers using pragmas within protected objects. Al-
though interrupts may be directed (on some architectures) to particular CPUs, the as-
sumption here is that their Ada handlers (the associated protected objects) are accessible
from all CPUs as they simply reside in main memory.

There is, however, a need to know on which CPU interrupt code will execute. Hence
the following should be added:

function Get_CPU(I: Interrupt_Id) return CPU_Range;
-- returns 0 if interrupt is handled by more than one CPU

4.4 Ceiling Priorities and Locking

The current Ada mechanism for accessing protected objects from multiple CPUs is not
fully defined by the language. Instead, implementation advice is given. In this, the as-
sumption is that tasks will busy-wait (spin) at their active priorities for the lock (although
other implementations are allowed). This is not changed by the proposals in this paper.

However, the non-lock optimization that is typically used in uniprocessor implemen-
tation is no longer viable on a multiprocessor platform. Generally, protected objects
require a real lock in this environment unless all user tasks accessing the object are set
to the same CPU.

The following guidelines on setting ceiling priorities can be given:
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– For global scheduling – setting the ceiling priority of a protected object that is only
accessed within a single dispatching domain can use the usual approach of setting
ceilings to max priority of the accessing tasks plus 1 (note it must be plus 1 for
global scheduling to work).

– Fixed tasks – Where tasks are fixed to a processor in the same dispatching domain,
care must be taken and the interaction between tasks and protected object must be
understood when setting the ceilings. It is probably safest to force non-preemptive
execution of protected subprograms by setting the ceiling to the highest priority. It
may also be advantageous to spin at this ceiling level as well.

– For protected objects shared between dispatching domains, the protected objects
must run non-preemptively. This is because there is no relationship between the
priorities in one allocation domain and those in another.

It should also be noted that on multiprocessor systems:

– Nested protected object locks can cause deadlock (there are some schemes in the
literature to avoid this – for example for each chain another lock must be acquired
first[4]).

– Chain blocking is possible.
– In the absence of deadlock, blocking can be bounded.

Programmer control over ceilings allows protocols such as non-preemptive execution
of ‘shared’ POs to be programmed. No further language provision is required.

5 Examples

To illustrate the expressive power of the facilities advocated in this paper we will outline
how two particular scheduling schemes can be programmed. Further examples of the
use of the basic model is presented in [3], which can be found in the same proceedings
as this paper.

5.1 Task-Splitting

Here we will use only the system dispatching domain but we will set tasks to execute
on specific processors.

This scheme, called task-splitting, has gained some attention recently[12,1] as it at-
tempts to combine the benefits of static and global partitioning. The scheme uses EDF
scheduling on each CPU with task-partitioning for most tasks. A small number of tasks
are however allowed to migrate at run-time, they execute for part of their execution
time on one CPU and then complete on a different CPU. For N CPUs, there are N-1
split tasks.

Consider a dual-processor system with therefore just one split task. This task, Split,
will be assumed to have a period of 20ms and a relative deadline equal to its period. The
worst-case execution time of the task is 3.2ms. The splitting algorithm (the details are
not relevant here) calculates that the task should execute on CPU 1 for 1.7ms (within a
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deadline of 5ms) and then switch to CPU 2 to execute its remaining 1.5ms (within its
final relative deadline of 20ms).

It uses a Timer to change the task’s processor allocation and deadline of the task
once it has executed for 1.7ms. This is achieved by the following protected object:

with Ada.Dispatching.EDF; use Ada.Dispatching.EDF;
with Ada.Dispatching.Domains; use Ada.Dispatching.Domains;
...
protected Switcher is

procedure Register(ID : Task_ID; E : Time_Span);
procedure Handler(TM :in out Timer);

private
Client : Task_ID;
Extended_Deadline : Time_Span;

end Switcher;

protected body Switcher is
procedure Register(ID : Task_ID; E : Time_Span) is
begin
Client := ID;
Extended_Deadline := E;

end Register;

procedure Handler(TM :in out Timer) is
New_Deadline : Deadline;

begin
New_Deadline := Get_Deadline(Client);
Set_Deadline(New_Deadline + Extended_Deadline,Client);

-- extends deadline by fixed amount passed in as E
Set_CPU(2,Client);

end Handler;
end Switcher;

The task itself would have the following outline.

pragma Task_Dispatching_Policy(EDF_Across_Priorities);
with Ada.Dispatching.EDF; use Ada.Dispatching.EDF;
with Ada.Dispatching.Domains; use Ada.Dispatching.Domains;
...

task Split is
pragma Relative_Deadline(Milliseconds(5));
pragma Priority (15); -- computed from deadline of task
pragma CPU(1);

end Split.

task body Split is
Id : Task_ID := Current_Task;
Switch : Timer(ID’Access);
Next : Time;
First_Phase : Time_Span := Microseconds(1700);
Period : Time_Span := Milliseconds(20); -- equal to full deadline
First_Deadline : Time_Span := Milliseconds(5);
Temp : Boolean;
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begin
Switcher.Register(ID,Period-First_Deadline);
Next := Ada.Real_Time.Clock;
loop
Switch.Set_Handler(First_Phase,Switcher.Handler’Access);

-- code of application

Next := Next + Period;
Switch.Cancel_Handler(Temp); -- to cope with task

-- completing early (ie < 1.7ms)
Set_Deadline(Next+First_Deadline);
Delay_Until_And_Set_CPU(Next,1);
-- a Timing Event could be used to combine the last two operations

end loop
end Split;

5.2 Two Separate Domains

Here we consider a system with 8 or more processors, the first 4 are to be placed in
one dispatching domain (the default) and will employ fixed priority dispatching (i.e. the
default dispatching policy). The other processors will be placed into a second domain
employing a partitioned scheme in which the lower 20 priorities are to be used for EDF
scheduling and the others for fixed priority scheduling.

Here we provide the library package that will set up the second domain. The relevant
predefined packages are assumed to be present.

procedure Set_Up(Second_Domain : out Dispatching_Domain);
DP : Dispatching_Domain_Policy;
CP : CPU_Set;

begin
Set_Policy(PP, Priority_Specific_Dispatching);
Set_Priority_Specific_Policy(PP, EDF_Across_Priorities,
Priority’First, Priority’First + 20);

Set_Priority_Specific_Policy(PP, FIFO_Within_Priority,
Priority’First+21, Priority’Last);

Zero(CP); -- clear mask
for CPU in 5 .. Number_Of_CPUs loop
Set_One(CP, CPU);

end loop;

Second_Domain := Create(CP,DP);
end Set_Up;

6 Conclusions

Historically, Ada has always taken a neutral position on multiprocessor implementa-
tions. On the one hand, it tries to define its semantics so that they are valid on a mul-
tiprocessor. On the other hand, it provides no direct support for allowing a task set to
be partitioned. This paper has presented a set of facilities that could gain wide support
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and would help Ada system developers migrate their programs to what is becoming the
default platform for embedded real-time systems.

The assumptions underlying the proposals made in this paper is that an Ada program
has access to a fixed set of CPUs on the execution platform. Any external changes to
the set of available processors is outside the control of the Ada program and is likely to
result in erroneous program execution.
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Abstract. Multiprocessors, particularly in the form of multicores, are becoming 
standard building blocks for executing reliable software. But their use for appli-
cations with hard real-time requirements is non-trivial. Well-known real-time 
scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Ear-
liest-Deadline-First [1]) do not perform well on multiprocessors. For this reason 
the scientific community in the area of real-time systems has produced new al-
gorithms specifically for multiprocessors. In the meanwhile, a proposal [2] ex-
ists for extending the Ada language with new basic constructs which can be 
used for implementing new algorithms for real-time scheduling; the family of 
task splitting algorithms is one of them which was emphasized in the proposal 
[2]. Consequently, assessing whether existing task splitting multiprocessor 
scheduling algorithms can be implemented with these constructs is paramount. 
In this paper we present a list of state-of-art task-splitting multiprocessor 
scheduling algorithms and, for each of them, we present detailed Ada code that 
uses the new constructs. 

Keywords: Ada, multiprocessors, multicores, real-time scheduling. 

1   Introduction 

Despite multiprocessors, in the form of multicores, becoming the norm in current 
computer systems, their use for applications with real-time requirements is non-
trivial. The reason is that although a comprehensive toolbox of scheduling theories is 
available for a computer with a single processor, such a well-established comprehen-
sive toolbox is currently not available for multicores. 

One of the emerging and most interesting classes of multiprocessor scheduling al-
gorithms today is called task-splitting scheduling algorithms [3-9]. With such an algo-
rithm, most tasks are assigned to just one processor, whilst a few tasks are assigned to 
two or more processors and may migrate in a controlled manner (the migration may 
be performed in the middle of the execution of a job) so that at every instant, such a 
task never executes on two or more processors simultaneously. This class is appealing 
because the algorithms in this class (i) cause few (and provably small number of) pre-
emptions and (ii) can be proven to be able to schedule task sets to meet deadlines 
even at high processor utilizations. 
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The Ada community has shown an increasing interest in real-time scheduling on 
multicores [2,10,13] and a proposal exists [2] for extending the language for real-time 
scheduling on multicores. Our initial opinion was that the proposed extension seemed 
useful for implementing task splitting, but it is important to fully evaluate its appro-
priateness considering the task splitting scheduling algorithms that have already been 
published. 

Therefore, in this paper, we present Ada code for implementing a subset of the cur-
rent task splitting scheduling algorithm. From the extensive set of previously pub-
lished algorithms, we have selected the ones [4,8,9] that perform best (in terms of 
being able to schedule tasks at high utilization and generating few preemptions), and 
that allow showing how different types of approaches can be programmed in Ada. We 
would like to note, nevertheless, that the algorithm in [3] could be also used, but it 
may require very small execution segments at highly precisely specified time inter-
vals, something which is difficult to achieve in practice. 

We find that the new proposal [2] is sufficient for implementing those task splitting 
algorithms [4,8,9] that we believe are useful to designers. Attaining efficient imple-
mentations of them may require a new timing construct however. 

The remainder of this paper is organized as follows. Section 2 presents the system 
model and gives an overview of the algorithms. Section 3 presents the recently pro-
posed language extension. Sections 4 to 6 present Ada programs for the dispatchers of 
the task splitting algorithms. Section 7 provides conclusions. 

2   System Model and Algorithm Overview 

We consider the problem of scheduling a set of tasks τ  = {τ1, τ2,…, τn} on m proces-
sors. A task τi is characterized by Ti, Di, and Ci with the interpretation that the task τi 
releases a (potentially infinite) sequence of jobs such that (i) the time between two 
consecutive jobs of the same task is at least Ti and (ii) each job must complete Ci units 
of execution within at most Di time units from the release of the job. We assume that a 
job cannot execute on two or more processor simultaneously. We also assume that a 
processor cannot execute two or more jobs at the same instant. We assume that a job 
needs no resource (such as shared data structures) other than a processor for execution.  

We distinguish between three types of task sets: 

• In an implicit-deadline task set, each task τi has Di = Ti; 
• In a constrained-deadline task set, each task τi has Di ≤ Ti; 
• In an arbitrary-deadline task set, each task τi is not constrained by the above 

(Di = Ti or Di ≤ Ti). 

In this paper, we focus on algorithms for constrained-deadline task sets. In order to 
understand task splitting algorithms, let us consider the following example.  

Example 1. Consider three tasks to be scheduled on two processors. Each task τ i 
has Ti=Di=1 and Ci=0.51. We can assign task τ 1 to processor 1 and task τ 3 to proces-
sor 2 and then let task τ 2 be assigned to both processors 1 and 2; we say that τ 2 is a 
split task. This splitting should be done in a controlled manner; for example do the 
splitting of τ 2 so that τ 2 requires 0.379 units of execution on processor 1 and 0.131 
units of execution on processor 2. Since τ 2 is assigned to two processors, it is  
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important that dispatchers on each processor ensure that τ 2 never executes on two or 
more processors simultaneously.              
In task splitting algorithms, there are three approaches for ensuring that a split task 
does not execute on two or more processors simultaneously: 

• Slot-based split-task dispatching; 
• Job-based split-task dispatching; 
• Suspension-based split-task dispatching. 

Slot-based split-task dispatching is used in [4, 5, 7]. Figure 1 shows the idea. Time is 
organized into timeslots of equal size and these timeslots are synchronized across all 
processors. The time interval of a timeslot is partitioned into three sub-time-intervals, 
one in the beginning of the timeslot, one in the middle of the timeslot and one in the 
end of the timeslot. A split task is assigned to the beginning sub-time-interval of one 
processor and the end sub-time-interval of another processor; these time intervals 
must be dimensioned so that the task meets its deadline and so that there is no overlap 
in time between the subintervals. 

capacity reserved for 2 on processor P1

time 

time 0 S 2S 4S 5S3S 

P2

P1

capacity reserved for 2 on processor P2  

Fig. 1. Slot-based split-task dispatching: How to perform run-time dispatching of a task that is 
assigned to two processors. A white rectangle with black dots indicates capacity reserved for 
task τ2.  

2 is a split task. When a job of 2 arrives, it executes on processor 1 and then it migrates to processor 2. 

time 

time 

deadline of the job. arrival of a job of task 2

P2

P1

 

Fig. 2. Job-based split-task dispatching: How to perform run-time dispatching of a task that is 
assigned to two processors. A dark rectangle with white dots indicates execution of the job of 
task τ2. 
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Job-based split-task dispatching is used in [8, 9]. Figure 2 shows the idea. There 
are no timeslots. Instead, when a job is released, a certain condition is setup specify-
ing when the job should migrate to another processor. This condition can be that a 
certain amount of time has elapsed since the release of the job (used in [9]) or that a 
certain amount of execution has been performed by the job (used in [8]). 

Suspension-based split-task dispatching is similar to job-based split-task dispatch-
ing but the default case is that all pieces of a job are ready all the time on all proces-
sors to which the split task is assigned. But when the job executes on one processor, it 
suspends the job on the other processors. 

Slot-based split-task dispatching and job-based split task dispatching are areas of 
active research in the real-time systems research community. The slot-based split-task 
dispatching offers higher utilization bounds whereas the job-based split task dispatch-
ing offers fewer preemptions. 

Suspension-based split-task dispatching is not possible in the proposed Ada model 
for multiprocessors, since there is a single ready queue within the same allocation do-
main. It is also currently not explored in the real-time systems research community. 
The authors believe this is because suspension-based split-task dispatching provides 
utilization bounds and preemption bounds similar to the job-based split-task dispatch-
ing but with the suspension-based split-task dispatching there is the drawback that it 
can happen that an event (say a release of a job) on processor 1 causes a context switch 
on processor 2 which in turns causes a context switch on processor 3 and so on. 

Hence, we will only discuss (i) slot-based split-task dispatching and (ii) job-based split-
task dispatching, because we believe they are most relevant for software developers. 

3   Language Extensions 

Burns and Wellings have proposed in [2, 10] language extensions for real-time 
scheduling on multicores, which after discussion in the International Real-Time Ada 
Workshop [13] have been proposed for the upcoming Ada revision [14]. This section 
presents the proposed extension, but limited to what is necessary for implementing 
the task splitting algorithms (more details on this proposal can be found in [16]). 

The proposed extension defines appropriate packages for handling the set of CPUs 
available to the program, and the creation of non-overlapping dispatching domains: 

 
package System.MultiProcessors is 
   type CPU_Range is range 0..<implementation-defined>; 
   function Number_Of_CPUs return CPU_Range; 
end System.MultiProcessors; 
 
package System.MultiProcessors.CPU_Sets is 
   type CPU_Set is private; 
   Default_CPU_Set : constant CPU_Set; 
   procedure All_Set( Set: in out CPU_Set); 
end System.MultiProcessors.CPU_Sets; 
 
package Ada.Dispatching is 
   type Dispatching_Domain_Policy is private; 
   -- other declared types and subprograms not shown here  
end Ada.Dispatching; 
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package Ada.Dispatching.Domains is 
   type Dispatching_Domain is  private; 
   System_Dispatching_Domain: Dispatching_Domain; 
 
   -- other declared subprograms not shown here 
 
   procedure Set_CPU(P : in CPU_Range;  
                     T : in Task_Id := Current_Task); 
 
   procedure Delay_Until_And_Set_CPU( 
                     Delay_Until_Time : in Ada.Real_Time.Time;  
                     P : in CPU_Range);    
end Ada.Dispatching_Domains; 

 
Procedure Set_CPU is fundamental for task splitting as it allows to dynamically 
change the allocation of tasks to specific CPUs.  

Although not used in this paper, the capabilities for supporting more than one dis-
patching domain are very interesting for other approaches. For example, it is also  
important for some partitioned cluster approaches (such as in [7]) since it allows de-
tecting incorrect assignment of tasks to processors. Also, it is useful for improving the 
performance of algorithms that do not use task splitting. For example, global schedul-
ing with EDF suffers from poor ability to meet deadlines for certain task sets but this 
effect can be mitigated by subdividing processors into disjoint dispatching domains 
and applying global scheduling with EDF on each dispatching domain (such an ap-
proach is sometimes called clustered-global EDF [12]). 

4   Slot-Based Split Tasks Dispatching 

The algorithm described in this section is the one in [4], and it is shown in Figure 1. 
The algorithm is intended for implicit-deadline sporadic tasks. The left column of 
page 4 in [4] gives a good description of the dispatching algorithm. In this section, we 
reformulate it with the proposed Ada extensions. 

To illustrate task splitting, we will consider a task set τ={τ1, τ2, τ3} to be scheduled 
on two processors. The tasks are characterized as T1=100 ms, T2=200 ms, T3=400 ms, 
D1=100 ms, D2=200 ms, D3=400 ms and C1=51 ms, C2=102 ms, C3=204 ms.  

Recall that the algorithm depends on a timeslot; the size of the timeslot is TMIN/δ, 
where TMIN is the minimum of Ti of the task set and the parameters δ can be chosen by 
the user. We choose δ=4 and apply it to the example above and this gives us that the 
timeslot has a duration of 25 ms. Also, the algorithm depends on a parameter SEP 
which specifies how much we can fill-up a processor when we (i) assign tasks to proc-
essors and (ii) split tasks. Using Equation 27 in [4] tells us for δ=4 that SEP=0.889. 

The task assignment/splitting algorithm in [4] gives us the following (for δ=4, 
SEP=0.889). Task τ1 is assigned to processor 1; task τ3 is assigned to processor 2; task 
τ2 is assigned to both processor 1 and to processor 2 and the splitting of this task is 
specified by two variables, hi_split and lo_split, with values hi_split[1]=0.379 and 
lo_split[2]=0.131. Intuitively, this means that 37.9% of the processing capacity of 
processor 1 will be used for task τ2 and analogously 13.1% of the processing capacity 
of processor 2 will be used for task τ2. Together these figures (37.9% and 13.1%) give 
us the utilization of the task τ2 (51%). 
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Recall that the timeslot duration is 25 ms. Due the unknown phasing of the task ar-
rival related to the slot start, the algorithm specifies that a reserve on processor 1 for 
task τ2 should occupy a fraction hi_split[1]+2α of the duration of the timeslot and a 
reserve on processor 2 for task τ2 should occupy a fraction lo_split[2]+2α of the dura-
tion of the timeslot. (The value of α is computed based on δ; see Equation 9 in [4]; in 
this example α becomes 0.02786.) Therefore, the duration of the reserve for processor 
1 becomes 4.668 ms and for processor 2 becomes 10.868 ms.  

The code is as follows: 

 
pragma Priority_Specific_Dispatching (EDF_Across_Priorities, 1, 10) ; 
pragma Priority_Specific_Dispatching (FIFO_Within_Priorities, 11, 12); 
 
with Ada.Real_Time.Timing_Events; use Ada.Real_Time.Timing_Events; 
with Ada.Task_Identification; use Ada.Task_Identification; 
with Ada.Dispatching.Domains; use Ada.Dispatching.Domains; 
with System.Multiprocessors; use System.Multiprocessors; 
with Ada.Real_Time; use Ada.Real_Time; 
with Ada.Dispatching.EDF; use Ada.Dispatching.EDF; 
with Ada.Asynchronous_Task_Control; use Ada.Asynchronous_Task_Control; 
 
Period_Task_1            : constant Time_Span:=Milliseconds( 100);   
Min_Inter_Arrival_Task_2 : constant Time_Span:=Milliseconds( 200); 
Period_Task_3            : constant Time_Span:=Milliseconds( 400); 
 
Deadline_Task_1          : constant Time_Span:=Milliseconds( 100);  
Deadline_Task_2          : constant Time_Span:=Milliseconds( 200); 
Deadline_Task_3          : constant Time_Span:=Milliseconds( 400); 
 
Execution_Time_Task_1    : constant Time_Span:=Milliseconds(  51); 
Execution_Time_Task_2    : constant Time_Span:=Milliseconds( 102);  
Execution_Time_Task_3    : constant Time_Span:=Milliseconds( 204); 
 
TMIN : constant Time_Span := Milliseconds( 100); 
Time_Slot_Delta : constant integer := 4; 
Time_Slot_Length : constant Time_Span := TMIN / Time_Slot_Delta; 
Alpha : constant float := 0.02786; -- this is computed based on  
                                   -- Time_Slot_Delta 
 
CPU_1 : constant CPU_Range := 0; 
CPU_2 : constant CPU_Range := 1; 
Reserve_Phase_1_Task_2 : constant Time_Span:= Microseconds( 4668); 
Reserve_Phase_2_Task_2 : constant Time_Span:= Microseconds(10868); 
 
Start_Time : Time := Clock; 
 
type Current_Phase is (Not_Released, Phase_1, Suspended, Phase_2); 
      
    
protected type Sporadic_Switcher is 
   pragma Priority(12); 
   procedure Register(ID : Task_ID; Phase_1_CPU, Phase_2_CPU: CPU_Range; 
                      Phase_1_Reserve, Phase_2_Reserve : Time_Span); 
   procedure Handler(TM :in out Timing_Event); 
   procedure Release_Task; 
   procedure Finished; 
   entry Wait; 
private 
   Released: Boolean := False; 
   Switch_Timer: Timing_Event; 
     
   Client_ID : Task_ID; 
   Client_Phase_1_CPU, Client_Phase_2_CPU   : CPU_Range; 
   Client_Phase_1_Reserve, Client_Phase_2_Reserve : Time_Span; 
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   Client_Current_Phase : Current_Phase; 
    
   End_of_Phase_1, Start_of_Phase_2, End_of_Slot: Time; 
end Sporadic_Switcher; 
 
task Task_1 is 
   pragma Priority (1); 
end Task_1; 
    
task Task_2 is 
   pragma Priority (11); 
end Task_2; 
    
task Task_3 is 
   pragma Priority (1); 
end Task_3; 
 
protected body Sporadic_Switcher is 
   procedure Register(ID : Task_ID; Phase_1_CPU, Phase_2_CPU: CPU_Range; 
                      Phase_1_Reserve, Phase_2_Reserve : Time_Span) is 
   begin 
      Client_ID := ID; 
      Client_Phase_1_CPU := Phase_1_CPU; 
      Client_Phase_2_CPU := Phase_2_CPU; 
      Client_Phase_1_Reserve := Phase_1_Reserve; 
      Client_Phase_2_Reserve := Phase_2_Reserve; 
   end Register; 
 
   procedure Handler(TM :in out Timing_Event) is 
   begin 
      case Client_Current_Phase is 
         when Not_Released =>             
            Set_CPU(Client_Phase_2_CPU, Client_ID);  
            Switch_Timer.Set_Handler(End_of_Slot, Handler'Access); 
            Client_Current_Phase := Phase_2;  
            Released := True; 
         when Phase_1 =>     
            Client_Current_Phase := Suspended; 
            Switch_Timer.Set_Handler(Start_of_Phase_2, Handler'Access); 
            -- between slots - do nothing just set timer, alternative would  
            -- be to lower priority to a "background" level priority 
            -- more work conservative but we decided to maintain the algorithm as 

             -- is in the original paper 
            Hold(Client_ID); -- This call puts the task to sleep; it will not                            

-- execute on any CPU until “continue” has been 
                             -- performed on it. 
         when Suspended =>  
            Set_CPU(Client_Phase_2_CPU, Client_ID);  
            Switch_Timer.Set_Handler(End_of_Slot, Handler'Access); 
            Client_Current_Phase := Phase_2;  
            Continue(Client_ID); 
         when Phase_2 =>  
            Set_CPU(Client_Phase_1_CPU, Client_ID);  
            Switch_Timer.Set_Handler(End_of_Phase_1, Handler'Access); 
            Client_Current_Phase := Phase_1;  
      end case; 
   end Handler; 
       
 
   procedure Release_Task is -- called by someone else or by interrupt 
      Number_of_Slots: Integer; 
      Release_Time, Slot_Start: Time; 
   begin 
      -- calculate parameters 
       
      Release_Time := Clock; 
      Number_of_Slots := (Release_Time - Start_Time) / Time_Slot_Length; 
      Slot_Start := Start_Time + Time_Slot_Length * Number_of_Slots; 
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      End_of_Phase_1 := Slot_Start + Client_Phase_1_Reserve; 
      Start_of_Phase_2 := Slot_Start + Time_Slot_Length - Client_Phase_2_Reserve; 
      End_of_Slot := Slot_Start + Time_Slot_Length; 
            
      -- decide if release or not depending of phase           
      if Release_Time >= Slot_Start and Release_Time < End_of_Phase_1 then  
         Set_CPU(Client_Phase_1_CPU, Client_ID);  
         Switch_Timer.Set_Handler(End_of_Phase_1, Handler'Access); 
         Client_Current_Phase := Phase_1;  
         Released := True;            
      elsif Release_Time >= Start_of_Phase_2 and Release_Time < End_of_Slot 

then 
         Set_CPU(Client_Phase_2_CPU, Client_ID);  
         Switch_Timer.Set_Handler(End_of_Slot, Handler'Access); 
         Client_Current_Phase := Phase_2;  
         Released := True; 
      else 
         -- between slots - do nothing just set timer 
         -- alternative would be to lower priority to a "background" level 
         -- priority  
         -- more work conservative but we decided to maintain the 
         -- algorithm as is in the original paper 
         Client_Current_Phase := Not_Released; 
         Switch_Timer.Set_Handler(Start_of_Phase_2, Handler'Access); 
      end if; 
   end Release_Task; 
     
   procedure Finished is 
      Cancelled: Boolean; 
   begin 
      -- cancel the timer. 
      Switch_Timer.Cancel_Handler(Cancelled); 
   end Finished; 
             
   entry Wait when Released is 
   begin 
      Released := False; 
   end Wait; 
                  
end Sporadic_Switcher; 
 
    
task body Task_1 is 
   Next : Time; 
begin 
   Next := Ada.Real_Time.Clock; 
   Set_CPU( CPU_1 ); 
   loop 
      Delay_Until_and_Set_Deadline( Next, Deadline_Task_1); 
      -- Code of application 
      Next := Next + Period_Task_1; 
   end loop; 
end Task_1; 
       
My_Switcher: Sporadic_Switcher; 
       
task body Task_2 is 
begin 
   My_Switcher.Register(Current_Task, 
                        CPU_2, CPU_1, 
                        Reserve_Phase_1_Task_2, 
                        Reserve_Phase_2_Task_2); 
   loop 
      My_Switcher.Wait; 
      -- Code of application 
      My_Switcher.Finished; 
   end loop; 
end Task_2; 
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task body Task_3 is 
   -- similar to Task 1 
end Task_3; 
 

We can make three observations. First, the non-split tasks, task 1 and task 3 have very 
simple code; they are basically programmed like we would have done if we wanted to 
implement partitioned EDF. Second, implementing task 2 requires some extra work. 
First of all, split tasks execute in the processor which they are currently allocated in 
preference to other tasks. Therefore, a priority level was created for the split task (pri-
ority 11), higher than the band for the regular EDF tasks.  

Note also that the algorithm in [4] was designed for sporadic tasks, therefore a  
protected type is created to simultaneously control the release of the sporadic and to 
control the allocation of the task to the processors, depending on the phase within the 
slot. When the task is released (procedure Release_Task), first it is necessary to 
determine in what phase of the slot the release instant occurred. If it is within the in-
terval reserved in a specific processor (Phase 1 – CPU 2; Phase 2 – CPU 1) then the 
task is allocated to that processor, and immediately released. Note that if the release 
instant is between the reserved slots, the task is not released. In all cases, a timer is 
armed for the next instant that the task attributes need to be changed.  

When the timer handler is called, it changes the allocation of the task, or, if it is the 
end of the first phase, it needs to suspend the task with asynchronous task control. A 
better approach (for improving average responsiveness) would be to decrease the pri-
ority of the task to the EDF band (with a Deadline of Time’Last) or to create a 
background tasks lower priority band, which would allow the task to execute if the 
processor is idle. However, the task is suspended in order to maintain the equivalence 
to the algorithm of [4]. 

In the code-example above, we let tasks 1 and 3 arrive periodically and task 2 ar-
rive sporadically. The algorithm allows any subset of tasks to arrive periodically and 
any subset of tasks to arrive sporadically however. For example, Task_1 can easily 
be changed so that it arrives sporadically as well; changes needed for doing so are 
listed below: 

 
protected PO_for_Task_1 is 
   pragma Priority(1); 
   procedure Release_Task; 
   entry Wait; 
private 
   Released: Boolean := False; 
end PO_for_Task_1; 
 
protected body PO_for_Task_1 is 
   procedure Release_Task is -- called by someone else or by interrupt 
   begin 
      Released := True;            
   end Release_Task; 
             
   entry Wait when Released is 
   begin 
      Released := False; 
   end Wait; 
end PO_for_Task_1; 
 
task body Task_1 is 
begin 
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   Set_CPU( CPU_1 ); 
   loop 
      PO_for_Task_1.Wait; 
      -- Code of application 
   end loop; 
end Task_1; 

 
Note that the protected object used for releasing Task 1 has the same priority (pre-

emption level) of the task as we are assuming that the release event is only within 
CPU_1. If that was not the case, the preemption level would need to be higher [15] 
than the priority of Task 1, as in the case of the switcher protected object.  

For arbitrary-deadline sporadic tasks, although different off-line scheduling algo-
rithms are used [5], the algorithm for dispatching is the same as for implicit-deadline, 
with only the parameters being calculated differently. 

5   Job-Based Split Tasks Dispatching for Implicit-Deadline 
Sporadic Tasks 

The algorithm described in this section is the one in [9]. The text in the right column 
of page 3 in [9] describes the dispatching algorithm. The algorithm is based on con-
figuring different priorities for each phase of the split task. The task starts to execute 
in one CPU, and after a certain clock time its affinity is changed to the second CPU, 
with a different priority.  

To illustrate task splitting, we will consider the same task set as in Section 4; con-
sider a task set τ={τ1, τ2, τ3} to be scheduled on two processor. The tasks are charac-
terized as T1=100 ms, T2=200 ms, T3=400 ms, D1=100 ms, D2=200 ms, D3=400 ms 
and C1=51 ms, C2=102 ms, C3=204 ms. The approach in [9] uses a rule called HPTS 
(Highest Priority Task Splitting) and therefore, task τ1 is split between processor 1 
and processor 2. (Note that this is different from Section 4, where task τ2 was split 
between two processors.). Task τ2 is assigned to processor 1; task τ3 is assigned to 
processor 2 and task τ1 is split between processor 1 and processor 2.  

The splitting of task τ1 is done such that (i) the first piece of τ1 has execution time 
49 ms, relative deadline 49 ms and is assigned to processor 1 and (ii) the second piece 
of τ1 has execution time 2 ms, relative deadline 51 ms and is assigned to processor 2. 
It is easy to see that the sum of the execution times of these pieces of task τ1 is C1 and 
the sum of the relative deadlines of the pieces of task τ1 is D1. 

In this section, we formulate the algorithm with the new Ada constructs. For brev-
ity we just show the main differences to the previous section. 

The code is as follows: 
 
pragma Task_Dispatching_Policy(FIFO_Within_Priorities); 
with System; use System; 
with Ada.Dynamic_Priorities; use Ada.Dynamic_Priorities; 
-- includes and constants similar to the previous section 
-- The constants are used for task 2 
C_First_Phase   : constant Time_Span:=Milliseconds(49); 
C_Second_Phase  : constant Time_Span:=Milliseconds( 2); 
D_First_Phase   : constant Time_Span:=Milliseconds(49); 
D_Second_Phase  : constant Time_Span:=Milliseconds(51); 
 
Priority_Task1_First_Phase  : constant Priority := 20; 
Priority_Task1_Second_Phase : constant Priority := 19; 
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Priority_Task2 : constant Priority := 18; 
Priority_Task3 : constant Priority := 17; 
 
protected body Job_Based_Switcher is 
   procedure Register( ID : Task_ID; Phase_1_CPU, Phase_2_CPU: CPU_Range; 
                       Phase_1_C, Phase_2_C, Phase_1_D, Phase_2_D: Time_Span; 

Phase_1_Prio, Phase_2_Prio: Priority) is 
   begin 

-- ... just update protected data 
   end Register; 
 
   procedure Handler(TM :in out Timing_Event) is 
   begin 
      -- in this algorithm, handler is just called in the end of phase 1    
      Set_CPU(Client_Phase_2_CPU, Client_ID);  
      Set_Priority(Client_Phase_2_Prio, Client_ID); 
   end Handler; 
       
   procedure Release_Task is  
   begin 
      -- calculate parameters 
       
      Release_Time := Clock; 
      End_of_Phase_1 := Release_Time + Client_Phase_1_D; 
       
 -- set first phase parameters 
      Set_CPU(Client_Phase_1_CPU, Client_ID);  
      Set_Priority(Client_Phase_1_Prio, Client_ID); 
  
      -- set timer            
      Switch_Timer.Set_Handler(End_of_Phase_1, Handler'Access); 
 
 -- release 
      Released := True;            
   end Release_Task; 
     
   procedure Finished is 
      Cancelled: Boolean; 
   begin 
      -- cancel the timer. 
      Switch_Timer.Cancel_Handler(Cancelled); 
   end Finished; 
             
   entry Wait when Released is 
   begin 
      Released := False; 
   end Wait; 
                  
end Job_Based_Switcher; 
                  
My_Switcher: Job_Based_Switcher; 
                  
task body Task_1 is 
begin 
   My_Switcher.Register( ... ); 
   loop 
       My_Switcher.Wait; 
       -- Code of application 
       My_Switcher.Finished; 
   end loop; 
end Task_1; 
 
 

In this approach, the dispatching algorithm performs the migration at a certain time 
relative to the arrival of a job. Thus, both Release_Task and Handler procedures 
are much simpler. The first simply calculates the time to arm the timer, setting the 
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parameters of the first phase (CPU and priority), whilst the second just changes these 
parameters. Note that we use fixed-priority scheduling of the task as proposed in [9]. 

6   Job-Based Split Tasks Dispatching for Constrained-Deadline 
Sporadic Tasks 

The algorithm described in this section is the one in [8]. Figure 6 on page 6 in [8] gives 
a good description of the dispatching algorithm. The algorithm is very similar to the 
algorithm in Section 5 but differs in that (i) it uses EDF instead of RM on each proces-
sor and (ii) it performs migration when the job of a split task has performed a certain 
amount of execution. Therefore, there is no need for the mechanism to migrate the split 
task to know the arrival time of a job of a split task. Also, there are no timeslots.  

The code is as follows: 
 

pragma Task_Dispatching_Policy(EDF_Across_Priorities); 
 
protected My_Job_Based_Switcher is 
  pragma Priority(Ada.Execution_Time.Timers.Min_Handler_Ceiling); 
  procedure Register(ID : Task_ID; Phase_2_CPU : CPU_Range); 
  procedure Budget_Expired(T : in out Ada.Execution_Time.Timers.Timer); 
private 
  Client_ID : Task_ID; 
  Client_Phase_2_CPU : CPU_Range; 
end My_Job_Based_Switcher; 
 
 
protected body My_Job_Based_Switcher is 
   procedure Register(ID : Task_ID; Phase_2_CPU: CPU_Range) is 
   begin 
      -- ... just update protected data 
   end Register; 
 
   procedure Budget_Expired(T : in out Ada.Execution_Time.Timers.Timer) is 
   begin 
      -- similarly to previous section,  
      -- handler is just called in the end of phase 1    
      Set_CPU(Client_Phase_2_CPU, Client_ID);  
   end Budget_Expired; 
       
end My_Job_Based_Switcher; 
 
task body Task_2 is 
   Next : Time; 
   My_Id : aliased Task_Identification.Task_Id:= Task_2'Identity; 
   The_Timer : Ada.Execution_Time.Timers.Timer(My_Id'Access); 
   Cancelled: Boolean; 
begin 
   My_Job_Based_Switcher.Register( ... ); 
   Next := Ada.Real_Time.Clock; 
   --  note that we do not assign the task to any processor 
   --  We will do it later in the loop below 
   loop 
      Delay_Until_and_Set_Deadline( Next, Deadline_Task_2); 
      Set_CPU(Phase_1_CPU, My_ID);  
      Ada.Execution_Time.Timers.Set_Handler(The_Timer, C_First_Phase, 
                        My_Job_Based_Switcher.Budget_Expired'Access); 
      -- Code of application  
      Ada.Execution_Time.Timers.Cancel_Handler(The_Timer, Cancelled); 
      Next := Next + Period_Task_2; 
   end loop; 
end Task_2; 
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The code for execution-time monitoring that we use follows to some extent the idea 
on page 7 in [11]. But expiry of our handler for execution time monitoring does not 
need to notify the task (task 2) and this simplifies our code. 

It should also be noted that the algorithm in [8] allows a task to be split between 
more than two processors. Our Ada code can be extended to that case by letting the 
handler Budget_Expired set up a new execution-time monitoring, with a call to 
Set_Handler. 

7   Conclusions 

We have seen details on how task splitting algorithms can be implemented using the 
recently proposed Ada extensions. In terms of efficiency, we expect this Ada code to 
be acceptable on multicores with a small number of cores. For very large multicores, 
the mechanism for migrating a task may impose a significant sequential bottleneck 
and for such platforms, a direct implementation of the task splitting algorithms in the 
Ada run-time may be needed. Also, if clocks and timers are available in just one (or in 
a reduced set of) processor(s), local timers are needed for better efficiency, particu-
larly for more sophisticated algorithms such as the one in Section 4; an approach with 
user-defined clocks could be looked after. Nevertheless, multicore scheduling is still 
in its beginning, therefore it is still too soon to determine which algorithms to support. 
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Abstract. The next release of the Ada language, Ada 2012, will incor-
porate several new features that address current and future software and
hardware issues. One of these features is expected to be explicit support
for multiprocessor execution platforms. This work reviews the enhance-
ments at the language level required to support real-time scheduling over
symmetric multiprocessor platforms, and the corresponding support at
the operating system level. It analyses the preliminary support for these
features within the Linux kernel and proposes a set of language extensions
that will provide the required functionalities. Multiprocessor implemen-
tation aspects of other Ada language constructs such as timing events,
execution time clocks and interrupt management are also analysed.

Keywords: Symmetric Multiprocessor Platforms, Linux kernel, Ada
2012.

1 Introduction

Real-Time and embedded systems are becoming more complex, and multipro-
cessor/multicore systems are becoming a common execution platform in these
areas. Although schedulability analysis techniques for real-time applications exe-
cuting over multiprocessor platforms are still not mature, some feasible schedul-
ing approaches are emerging. However, in order to allow these new techniques
to be applied over existing real-time multiprocessor operating systems, a flexible
support has to be provided at the kernel and user-space levels.

Ada 2005 allows real-time applications to be executed on multiprocessor plat-
forms in order to exploit task-level parallelism, but no direct support is provided
to allow the programmer to control the task-to-processor mapping process. In
order to achieve a predictable behaviour in a real-time multiprocessor platform,
the system designer must be able to control the task-to-processor allocation
process and, in general, the processor assignment of any executable unit with
dynamic behaviour, such as timers and interrupt handlers.

At the last International Real-Time Ada Workshop (IRTAW 14) some of these
multiprocessor issues were addressed. Ada extensions were proposed to cope with
open issues in the scope of real-time application over symmetric multiprocessor

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 68–82, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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platforms (SMP) [1]. However, no specific real-time multiprocessor operating
system was considered during this analysis.

This paper analyses the existing support in the GNU/Linux platform to im-
plement the multiprocessor extensions of the Ada language that are likely to be
integrated in the forthcoming Ada 2012. Some features of Ada 2005 that are
poorly supported in the GNU/Linux platform are also considered. The work
reviews the scheduling approaches that can be used to design real-time multi-
processor systems, the programming functionalities required and some of the
proposed Ada interfaces for making use of these approaches at the application
level. Once the Ada RTS requirements have been analysed, the current support
to implement these extensions in the GNU/Linux platform is studied and simple
extensions at library and kernel level1 are proposed for those features that are
still missing. Kernel and library support for execution-time clocks, group budgets
and interrupt handling over multiprocessor platforms are also considered.

The rest of this paper is organised as follows: the next section deals with
multiprocessor task scheduling in real-time systems, and the requirements at
the language and kernel level to address the presented approaches. Section 3
addresses execution time clocks and group budget issues over the GNU/Linux
platform. Interrupt affinities and timing events are addressed in section 4. The
paper finishes with some conclusions and proposals for future work.

2 Multiprocessor Task Scheduling

A real-time system is composed of a set of tasks that concurrently collaborate to
achieve a common goal. A real-time task can be viewed as an infinite sequence of
job executions. Each job is activated by an event, such as an external interrupt
from a physical device or an internal clock event. It is assumed that a job does
not suspend itself during its execution. A task is suspended only at the end
of a job execution, waiting for the next activation event. Even so, the system
scheduler can preempt a job execution in order to execute a higher priority task.

2.1 Multiprocessor Scheduling Approaches

In order to predictably schedule a set of real-time tasks in a multiprocessor plat-
form several approaches can be applied. One classification based on the capability
of a task to migrate from one processor to another is shown next:

Global scheduling. All tasks can be executed on any processor and after a
preemption the current job can be resumed in a different processor.

Job partitioning. Each job activation of a given task can be executed on a
different processor, but a given job cannot migrate during its execution.

Task partitioning. All job activations of a given task have to be executed in
the same processor. No job migration is allowed.

1 During this work Linux kernel 2.6.31 and GNU C Library glibc 2.10 have been used.
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Depending on whether the choice of the target processor is carried out on-line or
off-line, six possible approaches arise. Static schedulability analysis techniques
that ensure timely execution of the task set in all of them have not yet been
developed. Neverthless, new techniques are continuously emerging with improved
support for several of these approaches: new global scheduling schedulability
tests for fixed [2] and dynamic priorities [3], task splitting approaches [4], etc.
Since it is not expected that a commercial Real-Time Operating System (RTOS)
would implement each possible on-line scheduling algorithm at the kernel level,
the RTOS support has to be focused on a flexible System Call Interface that
makes it possible to implement the required services at the application or run-
time level [5,6].

Next subsections analyse the required kernel functionalities that must be pro-
vided to implement these approaches at the user-space level, possible extensions
of the Ada Standard Libraries, and the available support for these functionalities
that is present in the Linux kernel and glibc library.

2.2 Required Functionalities

In order to allow efficient implementations of multiprocessor scheduling ap-
proaches at the user-space level, a RTOS must provide a flexible kernel pro-
gramming interface and a set of administration tools. These facilities must allow
the system architect to design predictable real-time applications, despite of the
current unavailability of accurate schedulability analysis techniques. Depend-
ing on the scheduling approach followed to map the real-time task set into the
platform processors, the functionalities required from the RTOS may vary.

On one hand, if target processors for every active entity (task or job) are de-
termined off-line, the resulting decisions are typically coded into the application
as is done with other real-time task attributes (priority, deadline, etc.) Thus, the
application code needs an adequate Application Programming Interface (API)
to specify the target processor for each active entity. In the case of a task par-
titioning approach, the target processor can be specified before thread creation,
by means of thread attributes, or during the task initialisation code by means
of direct processor allocation. However, if the job partitioning approach is used,
the task is responsible for setting the processor to be used by the next job at the
end of the execution of the current one. Next section shows examples of both
approaches using a possible Ada interface. The requirements for a full off-line
global scheduling approach, i.e. a cyclic multiprocessor executive, is out of the
scope of this work.

On the other hand, when the target processor for a given active entity is
determined on-line, i.e. during normal system execution, the processor allocation
decisions are normally carried out by a privileged task or by the system scheduler.
In a user-space implementation, this privileged task acts as an Application-
Defined Scheduler (ADS)[5] and has to use the API offered by the OS kernel to
allocate application tasks into specific processors. In this case, although other
kernel mechanisms could be required to allow this application-level scheduling,
e.g. normal and execution time timers, the API to specify a target processor
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would be quite similar. The only difference with respect to the off-line case is
that the ADS thread must be able to specify the target processor for the rest of
the application threads.

It is also possible that a mixed on-line/off-line approach be required by a given
real-time task set, such as an application with several operating modes. In this
case, an off-line task partitioning approach could be applied on each operating
mode, but an on-line mode change manager should be able to modify the target
processor of any system task during a mode change. Fortunately, this mixed
approach does not require any additional kernel functionality with respect to
pure on-line or off-line approaches.

Finally, an additional possibility is to use different scheduling approaches on
each processor of the execution platform. In such a way, the available processors
could be partitioned in different mutual-exclusive processor sets, applying to each
subset a different scheduling approach. This possibility only requires additional
functionalities from the OS kernel if at least one of the scheduling approaches
used in a processor subset is the global scheduling approach, and the global
scheduler is implemented at the kernel-level. In this later case, the application
should be able to specify that a given set of tasks is going to be globally scheduled
but that the set only can use a subset of the available processors. Once the
processors subset is specified, the OS scheduler decides when and where each
task is executed within the specified processor subset. No additional API is
required if the processors partition is performed and managed at user-space.

Therefore, the functionalities expected from the OS to implement the pre-
sented multiprocessor scheduling approaches can be summarised as follows:

R.1. The ability to specify the target processor of the current task or a different
task.

R.2. The ability to change the execution processor immediately, or to specify
the target processor for the next activation of a task.

R.3. The ability to specify a unique target processor or a subset of the available
ones for a given task.

2.3 Ada Programming Interface

In the last International Real-Time Ada Workshop several different Ada inter-
faces were proposed to cover the scheduling approaches presented above. The
main differences between these proposals reside in the abstractions presented at
application level. This section shows a set of similar interfaces to cope with the
multiprocessor scheduling approaches and their requirements presented above.

The current behaviour of Ada applications over multiprocessor execution plat-
forms defaults to the global scheduling approach. GNAT2 provides a basic sup-
port for switching from global scheduling to off-line task partitioning by means of
pragma Task Info. Apart from this basic support, a possible interface to address
task partitioning at the application level is shown by Listing 1.
2 GPL 2009 version of GNAT compiler from AdaCore has been used in this work as

the reference implementation of native Ada Run-Time System. www.adacore.com
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Listing 1. Basic multiprocessor support

package Ada System is
type Processor is range ...; −− implementation−defined
type Processor Set is array (Processor) of Boolean;

Any Processor : constant Processor := ...;
end Ada System;

with Ada.Task Identification; use Ada.Task Identification;
with Ada System; use Ada System;
package Ada System Scheduling is

...
function Get Available Processors return Processor Set;
procedure Set Processor(P: Processor; T : Task Id := Current Task);
function Get Processor(T : Task Id := Current Task) return Processor;

end Ada System Scheduling;

This interface provides support for requirement R.1 allowing the current task
to change its execution processor or the processor of another task. However, to
support job partitioning a given task needs to establish its next target processor.
If procedure Set Processor is supposed to be a scheduling point, i.e., it changes
the execution processor immediately, a different procedure will be required to
perform a deferred processor assignment. Since it makes no sense to perform
the complicated process involved in changing the execution processor of the
current task just before getting suspended, some deferred processor assignment
procedure is required to support the job partitioning approach efficiently.

Following the example of deadline assignment and delay until of Ada 2005, a
deferred processor assignment could be established as shown by Listing 2.

Listing 2. Processor assignment and delay until procedure

procedure Delay Until And Set Processor(DT: Ada.Real Time.Time;
P: Processor; T: Task Id:= Current Task);

However, given that the use of Delay Until And Set Something procedures will be
incompatible with the procedure Delay Until And Set Deadline, already defined
in Ada 2005 (D.2.6) [7] we propose instead the procedure shown in Listing 3.

Listing 3. Deferred processor assignment procedure

procedure Set Next Processor(P: Processor; T : Task Id := Current Task);

This procedure makes it possible to establish the next target processor to be used
when the task Task Id is awakened again to start its next job execution. In this way,
the next processor assignment can be combined with any delay until construct
or Delay Until And Set Something procedure. Both procedures Set ∗ Processor will
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cover requirement R.2 described above. Listing 4 shows a periodic task with job
partitioning that makes use of the deferred processor assignment and delay until

construct.

Listing 4. Periodic task with job partitioning based on delay until

with Ada System; use Ada System;
with Ada System Scheduling; use Ada System Scheduling;
task body Periodic With Job Partitioning is

type List Range is mod N;
Processor List : array (List Range) of Processor

:= (...); −− Decided at design time
Processor Iter : List Range := List Range’First;
Next Processor: Processor;
Next Release : Ada.Real Time.Time;
Period : Time Span := ...;

begin
Task Initialize ;
Next Release := Ada.Real Time.Clock;
Set Processor(Processor List(Processor Iter )); −− Processor for first activation
loop

Task Main Loop;
−− Next job preparation
Processor Iter := Processor Iter ’Succ;
Next Processor := Processor List(Processor Iter );
Next Release := Next Release + Period;
Set Next Processor(Next Processor);
delay until Next Release;
−− Alternatively: Delay Until And Set Processor(Next Release, Next Processor);

end loop;
end Periodic With Job Partitioning;

In this example, a periodic task uses a recurrent list of the processors where
its jobs will execute. The cyclic processor list is supposed to be computed at
design time using an off-line job partitioning tool. In this way, task migrations
between processors are determined in a predictable way at job boundaries. If
Set Processors procedure was used before delay until construct, then the task
would perform an unnecessary processor migration just before getting suspended
for the next job activation.

A different approach to implement the job partitioning scheme without requir-
ing deferred processors assignments is the use of Timing Events to implement
periodic, sporadic and/or aperiodic task as proposed in [8]. In this case, the
Timing Event handler can change the target processor of the periodic task using
Set Processor before releasing it (requirement R.1). Listing 5 shows a periodic
task using job partitioning and Timing Events to implement a periodic release
mechanism3.
3 Original code extracted from Real-Time Ada Framework [8].
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Listing 5. Periodic task with job partitioning based on Timing Events

with Ada System; use Ada System;
with Ada System Scheduling; use Ada System Scheduling;
package body Release Mechanisms.Periodic is

protected body Periodic Release is
entry Wait For Next Release when New Release is
begin

...
New Release := False;
...

end Wait For Next Release;

procedure Release(TE : in out Timing Event) is
begin

Next := Next + S.Period;
Set Processor(S.Next Processor, S.Get Task Id); −− Set next job processor
New Release := True; −− Activates the job
TE.Set Handler(Next, Release’Access);

end Release;
end Periodic Release;
...
task type Periodic With Job Partitioning (S: Any Task State;

R: Any Release Mechanism) is
pragma Priority(S.Get Priority);

end Periodic With Job Partitioning;

task body Periodic With Job Partitioning is
type List Range is mod N;
Processor List : array (List Range’First .. List Range’Last) of Processor

:= (...); −− Decided at design time
Processor Iter : List Range := List Range’First;
Next Processor: Processor;

begin
S. Initialize ;
Set Processor(Processor List(Processor Iter )); −− Processor for first activation
loop

S.Code;
−− Next job preparation
Processor Iter := Processor Iter ’Succ;
Next Processor := Processor List(Processor Iter );
S.Set Next Processor(Next Processor);
R.Wait For Next Release;

end loop;
end Periodic With Job Partitioning;

Finally, to cover requirement R.3 and allow the construction of processor par-
titions to restrict global scheduling to a subset of the available processors the
notion of scheduling allocation domains [1] has been proposed. The interface to
be added to Listing 1 is similar to the one shown in Listing 6.
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Listing 6. Scheduling domain management interface

package Ada System Scheduling is
type Scheduling Domain is limited private;

function Create(PS : Processor Set) return Scheduling Domain;
function Get Processor Set(SD : Scheduling Domain) return Processor Set;
procedure Allocate Task(SD: in out Scheduling Domain;

T : Task Id := Current Task);
procedure Deallocate Task(SD: in out Scheduling Domain;

T : Task Id := Current Task);
function Get Scheduling Domain(T : Task Id := Current Task)

return Scheduling Domain;
...

end Ada System Scheduling;

2.4 GNU/Linux Support

Although the Linux kernel is a general purpose OS, its real-time behaviour and
its expressive features are being continuously improved, making it possible to
build hard-enough real-time applications for some environments. However, the
glibc-kernel tandem on GNU/Linux systems still lacks of some of the features
required by Ada 2005 (e.g. EDF scheduling4). This gives rise to an incomplete
native implementation of the Ada RTS over this platform.

However, this is not the case for multiprocessor scheduling support. The
scheduling scheme in the Linux kernel is based on a static priority policy for
real-time processes and a variable quantum round-robin scheduling algorithm for
normal processes, as proposed by POSIX 1003.1b [9]. Each processor has its own
run queue with a separate process queue per priority level: the first 100 priority
levels for real-time processes (SCHED FIFO and SCHED RR POSIX scheduling
policies) and the next 40 priority levels for normal processes (SCHED NORMAL).
The lower the priority level, the higher the process priority. These real-time prior-
ity levels are exposed in reverse order to the applications5 that can use real-time
priorities in the range [1, 99]6.

In spite of the per-processor run queue internal structure of the Linux kernel,
processes are allowed to migrate from one processor to another. In this way,
the default scheduling approach of a real-time process inside the Linux kernel is
global scheduling based on static priorities. However, the Linux kernel offers a
flexible interface that covers almost any requirement for implementing real-time
multiprocessor scheduling approaches presented in section 2.1.

The Linux kernel interface for multiprocessor scheduling control is twofold.
On one hand, an administrative tool in the form of cpuset file system makes it
4 A new EDF scheduling class is being developed for new releases of Linux kernel.
5 Real-time priority values exposed to applications put the internal priority levels

upside-down: the higher the priority value, the higher the task priority.
6 The real-time process queue with the highest priority is reserved for Linux kernel

internal processes.
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possible to organise the processor and memory placement for SMP and NUMA
architectures [10]. These cpusets provide a mechanism for assigning a set of
CPUs and memory nodes to a set of tasks, and for establishing a set of use-
ful features to configure the behaviour of heterogeneous multiprocessor
platforms.

On the other hand, a programming interface is also provided by means of ker-
nel system calls. This API allows the specificantion of the set of processors that
are to be used by a given thread, but they are subordinated to the configuration
performed with the cpuset mechanism. Functions provided by the Linux kernel to
support scheduling requirements presented in section 2.2 are shown in Listing 7.

Listing 7. CPU-related Linux kernel system calls

#define GNU SOURCE
#include <sched.h>
#include <linux/getcpu.h>
int sched setaffinity (pid t pid, size t cpusetsize , cpu set t ∗mask);
int sched getaffinity (pid t pid, size t cpusetsize , cpu set t ∗mask);
int getcpu(unsigned ∗cpu, unsigned ∗node, struct getcpu cache ∗tcache);

These functions allow a real-time application to select between global scheduling,
specifying multiple processors in its affinity map mask, and the task partitioning
approach, using single processor affinity maps. There are a set of equivalent
functions that allow the use of thread identifiers or thread attributes to specify
the target task. Using this system call interface an Ada RTS can implement
almost the full interface proposed in section 2.3. However, as the system call
function sched setaffinity immediately enforces the process identified by pid to
be executed on a processor belonging to its affinity map, deferred processor
assignment required by the job partitioning approach still remains unsupported.
The next subsection suggest a Linux kernel extension to support Ada procedures
Set Next Processor or Delay Until And Set Processor.

2.5 Required Linux Kernel Extensions

The required functionality to allowdeferred affinity changes implies simple changes
at kernel and glibc level. The suggested extension is to modify the internal sys-
tem call kernel function sched setaffinity to accept an additional flag parameter
that specifies when the affinity change will be performed. If the new flag indicates
deferred change, sched setaffinity function avoids immediate task migration by
skipping the invocation to migrate task(). In this case, the processor switch will
be automatically performed when the corresponding thread becomes suspended
and removed from the current processor run queue. The new implementation of
this system call will be faster than the previous one for deferred processor assign-
ments and will carry almost no penalty when immediate task migration is used.
The new system call function prototype is shown in Listing 8.
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Listing 8. Linux kernel system calls modifications

#define SCHED SET IMMEDIATE 1
#define SCHED SET DEFERRED 2
long sched setaffinity (pid t pid, const struct cpumask ∗in mask, const long flag);

At the glibc library level the kernel system call will be separated into two wrapper
functions shown in Listing 9, for backward compatibility reasons.

Listing 9. Glibc library level extensions

/∗ The old one use SCHED SET IMMEDIATE flag ∗/
int sched setaffinity (pid t pid, size t cpusetsize , cpu set t ∗mask);
/∗ The new one use SCHED SET DEFERRED flag ∗/
int sched setnextaffinity (pid t pid, size t cpusetsize , cpu set t ∗mask);

Once these simple extensions are applied to the kernel and glibc library, all the
multiprocessor scheduling approaches reviewed in section 2 can be implemented,
and the proposed Ada interfaces can be incorporated within the native Ada RTS
for GNU/Linux platform.

3 Execution Time Clocks, Timers and Group Budgets

The Ada Reference Manual provides a language-defined package to measure ex-
ecution time of application tasks in section D.14 [7]. However, GNAT GPL 2009
does not implement execution time clocks in the native RTS for the GNU/Linux
platform. This section examines whether the current Linux kernel and glibc li-
brary have enough facilities to implement the Ada.Execution Time package and its
child packages Timers and Group Budgets, and the corresponding multiprocessor
extensions.

Recent Linux kernel and glibc library implement several clocks that make
it possible to measure time in different ways. Among the currently supported
clocks, we find CLOCK THREAD CPUTIME ID that performs high-resolution
measurements of the CPU-time consumed by a given thread. The interface func-
tions shown in Listing 10 provide the clock identifier of a given thread and read
its CPU-time clock and resolution.

Listing 10. GNU/Linux support functions for execution time clocks

#include <pthread.h>
#include <time.h>
int pthread getcpuclockid(pthread t thread, clockid t ∗clock id );
int clock getres ( clockid t clk id , struct timespec ∗res);
int clock gettime( clockid t clk id , struct timespec ∗tp);

These functions and the definition of the timespec structure are enough to im-
plement the package Ada.Execution Time on the GNU/Linux platform. However,
the manual pages about these functions advise about possible bogus results if
the implied thread is allowed to migrate between processors with different clock
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sources, since the processor running frequencies could be slightly different. SMP
platforms based on multicore processors should not suffer from this kind of clock
drifts.

In the same way, the Linux kernel implements POSIX timers, which imple-
ment all the functionalities required by package Ada.Execution Time.Timers. The
function prototypes in C are shown in Listing 11.

Listing 11. POSIX timers in Linux kernel

#include <signal.h>
#include <time.h>
int timer create( clockid t clockid , struct sigevent ∗evp, timer t ∗timerid);
int timer settime(timer t timerid, int flags , const struct itimerspec ∗new value,

struct itimerspec ∗ old value );
int timer gettime(timer t timerid, struct itimerspec ∗curr value );
int timer delete(timer t timerid);

However, the Linux kernel defines an additional notification mechanism that
can be specified in struct sigevent on timer creation: SIGEV THREAD ID. This
new mechanism makes it possible to notify a specific thread when the timer
expires. As described in previous sections, a thread can have a specific processor
affinity map. This notificationfacility can be used by the Ada RTS to create
a set of server tasks that manage timer expirations on a per-processor or per-
scheduling domain basis. With This structure we can add specific multiprocessor
support in package Ada.Execution Time.Timers in order to set the processor where
the protected procedure defined by the Timer Handler will be executed. The
notification thread will directly depend on the target processor specified for the
timer handler execution. Based on the previously proposed interfaces, Timer type
could be extended as shown by Listing 12.

Listing 12. Extensions to execution time timers

with Ada System; use Ada System;
with Ada System Scheduling; use Ada System Scheduling;
package Ada.Execution Time.Timers is

...
procedure Set Scheduling Domain(TM : in out Timer;

SD: access all Scheduling Domain);
function Get Scheduling Domain(TM : Timer) return Scheduling Domain;
procedure Set Processor(TM : in out Timer; P: Processor);
function Get Processor(TM : Timer) return Processor;

end Ada.Execution Time.Timers;

On the other hand, although the Linux kernel computes the execution time of
the group of threads that composes a process, no additional groups of threads
can be defined without disrupting process unity. So, to directly support group
budgets under GNU/Linux systems, a completely new set of kernel system calls
and the corresponding support will have to be added.
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4 Interrupt Affinities

In a general purpose OS like GNU/Linux system the interrupt management
rarely can be performed at user-space level. What is intended as interrupt man-
agement in Ada RTS on UNIX systems is to manage the software interrupts or
signals as defined by the POSIX standard.

4.1 Hardware Interrupts and POSIX Signals

Adding multiprocessor support to POSIX signals management is somehow prob-
lematic, since the standard specifies that signals are sent to a process as a whole.
Because of this, to establish on which thread and in which processor is a signal
handler to be executed does not have a straightforward solution. A possible inter-
face and an implementation that will allow the specification of the processor or
execution domain where a signal handler would be executed is presented bellow.

In order establish an interrupt affinity the package Ada.Interrupts can be ex-
tended as follows:

Listing 13. Explicit multiprocessor support for Ada Interrupts

with Ada System; use Ada System;
with Ada System Scheduling; use Ada System Scheduling;
package Ada.Interrupts is

...
procedure Set Scheduling Domain(Interrupt : Interrupt ID;

SD: Scheduling Domain);
function Get Scheduling Domain(Interrupt : Interrupt ID)

return Scheduling Domain;
procedure Set Processor(Interrupt : Interrupt ID; P: Processor);
function Get Processor(Interrupt : Interrupt ID) return Processor;

end Ada.Interrupts;

The proposed implementation on a GNU/Linux system is similar to that pro-
posed for handlers of execution time timers in section 3. One thread is attached
to each processor in the system where a signal handler can be executed7. Then,
all the signals are blocked on all threads allowing these signal handler threads
to catch pending signals by means of the POSIX function sigwaitinfo . The pro-
totypes of the functions involved are shown in Listing 14.

Listing 14. POSIX functions to mask and wait for signals

#include <pthread.h>
#include <signal.h>
int pthread sigmask(int how, const sigset t ∗newmask, sigset t ∗oldmask);
int sigwaitinfo (const sigset t ∗set , siginfo t ∗info );

The value of the sigset t set for a given thread represents the set of signals
that have been assigned to the processor on which the thread is allocated. Signals
7 Some processors could be reserved for non-real-time applications.
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allocated only to a scheduling domain as a whole will be present on the signal
sets of every signal handler thread of that domain.

Although hardware interrupt handlers cannot be attached at user level in
GNU/Linux systems, it could be interesting to have a programming interface
that allow an Ada real-time application to establish the processor affinity of
such interrupts. As an example, a real-time application could be interested in
allocating all its real-time tasks in a subset of the available processors and to
move non real-time related hardware interrupts to another processors.

The Ada interface will remain as shown in Listing 13, but to support hard-
ware interrupts the package Ada.Interrupt.Names needs to be extended with new
interrupt identifiers. As interrupt lines (numbers) change from one system to
another, a generic interrupt identifiers could be defined as shown by Listing 15.

Listing 15. Hardware interrupt Ada names

package Ada.Interrupts.Names is
...
HW Interrupt 0 : constant Interrupt ID := ...;
HW Interrupt 1 : constant Interrupt ID := ...;
...

end Ada.Interrupt.Names;

A Linux kernel over an Intel x86 platform will require at least 224 hardware
interrupt identifiers, although some of them are reserved for internal kernel use.
The Linux kernel offers a simple interface through its proc virtual file system
[11] to change the affinity of a hardware interrupt. The processor affinity mask
of an interrupt # can be established by writing the corresponding hexadecimal
value on /proc/irq/IRQ#/smp affinity file.

4.2 Timing Events

The standard package Ada.Real Time.Timing Events is also strongly related to
interrupt management. It allows a user-defined protected procedure to be ex-
ecuted at a specified time. This protected procedure is normally executed at
Interrupt Priority ’Last in real-time applications. When such applications exe-
cute in a multiprocessor platform, with more and more code being moved to
timing event handlers, it will be useful to allow the programmer to specify the
processor where a timing event handler will be executed. A possible extension
to support this functionality in Timing Event type is shown in Listing 16.

Listing 16. Multiprocessor support for timing events

with Ada System; use Ada System;
with Ada System Scheduling; use Ada System Scheduling;
package Ada.Real Time.Timing Events is

...
procedure Set Scheduling Domain(TM : in out Timing Event;

SD: access all Scheduling Domain);
function Get Scheduling Domain(TM : Timing Event) return Scheduling Domain;
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procedure Set Processor(TM : in out Timing Event; P: Processor);
function Get Processor(TM : Timing Event) return Processor;

end Ada.Real Time.Timing Events;

To support a multiprocessor platform, an event-driven server task can be al-
located on every available processor and execution domain. When procedure
Set Handler was invoked, the timing event information will be queued on the
appropriate server task that will finally execute the handler code.

5 Conclusions

Some of the proposed extensions of Ada 2012 have been analysed, mainly in
relation to multiprocessor platforms. The proposed Ada interfaces have been
reviewed and the required support from the underlying execution platform has
been studied. Existing support for the required features at Linux kernel and
GNU C Library level have been analysed, and simple extensions proposed to
support unaddressed requirements. Also simple Ada interfaces and implemen-
tations have been proposed to allocate any kind of execution units (timer and
interrupt handlers) to specific platform processors.

After this analysis, a preliminary support of presented features has been con-
sidered feasible and we have started the corresponding implementation at the
library and kernel level. We will presentExperimental results of the ongoing im-
plementation in the near future.

Acknowledgement. This work was partially supported by the Spanish Minis-
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ing an application-defined scheduling framework for ada tasking. In: Llamośı, A.,
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Abstract. The technology for building dependable computing systems
has advanced dramatically. Nevertheless, there is still no complete so-
lution to building software for critical systems in which every aspect
of software dependability can be demonstrated with high confidence. In
this paper, we present the results of a case study exploration of the
practical limitations on software dependability. We analyze a software
assurance argument for weaknesses and extrapolate a set of limitations
including dependence upon correct requirements, dependence upon reli-
able human-to-human communication, dependence upon human compli-
ance with protocols, dependence upon unqualified tools, the difficulty of
verifying low-level code, and the limitations of testing. We discuss each
limitation’s impact on our specimen system and potential mitigations.

1 Introduction

The past several decades have seen dramatic advances in technology for building
dependable computing systems. Proof of software functionality, for example, has
advanced from a costly manual exercise to a tool-aided endeavor that is becoming
practical for ever-larger systems [13,22]. Using languages such as SPARK Ada
and approaches such as Correctness-by-Construction, it is possible to prove that
even large systems are demonstrably free of entire classes of defects including
unhandled runtime exceptions, inadvertent memory overwrites, flow errors, and
buffer overflows. These advances have not, however, provided practitioners with
a complete solution to building software for ultra-critical systems in which every
aspect of software dependability can be demonstrated with high confidence.

In this paper, we present the results of a case study conducted to explore the
practical limitations on software dependability. In prior work, we implemented
software for a specimen life-critical medical device and a developed a rigorous
argument showing how evidence arising from our effort supports the conclusion
that the software we developed is fit for use in the context of that device [6]. In
this work, we analyze that argument and extrapolate from its weaknesses a set
of practical limitations on the assurance of software dependability.

We describe the development effort and artifacts upon which our case study
is based in section 2 and the case study process in section 3. In section 4, we
discuss the limitations that we discovered, the effect of each upon the case study
target, and any potential mitigations we are aware of. We discuss related work
in section 5 and conclude in section 6.

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 83–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 The UVA LifeFlow LVAD MBCS

In prior work [6], we introduced Assurance Based Development (ABD), an en-
gineering approach to the synergistic creation of software and assurance of the
software in the form of rigorous argument. In order to assess ABD and its unique
process synthesis mechanism, we conducted a case study development of Mag-
netic Bearing Control Software (MBCS) for a safety-critical system, the Univer-
sity of Virginia’s LifeFlow Left Ventricular Assist Device (LVAD). The details
of this case study are reported elsewhere [6].

2.1 The UVA LifeFlow LVAD

LifeFlow is a prototype artificial heart pump designed for the long-term (10–20
year) treatment of heart failure. LifeFlow has a continuous-flow, axial design.
The use of magnetic bearings and careful design of the pump cavity, impeller,
and blades reduce the damage done to blood cells, thus reducing the potential
for the formation of dangerous blood clots. Fig. 1 shows the placement of the
pump, the batteries and the controller, a cross-section of the pump, and the
overall structure of the controller. Control of the magnetic suspension bearings is
provided, in part, by software running on a Freescale MPC5554 microcontroller.
Table 1 summarizes the MBCS requirements.

2.2 The MBCS Development Process

As part of the case study evaluation of ABD, we developed an implementation
of the MBCS and completed a formal verification of its functionality. Briefly, our
software development process included:

y

z

Inner
housing

Flow

Thrust bearing
Motor

x

ImpellerInducer
blades

Diffuser 
blades

Inlet
Outlet

Active magnetic bearing coils Side 
View of 
Heart 
Pump

Pump

Control
module

MPC5554 microcontroller

Self-sensing / coil-driving circuit

ADC DSPI

Motor driver

Motor coils AMB coilsAxial position sensor

Physician control station

TLV-5630 DAC

Fig. 1. LifeFlow structure and use



Practical Limits on Software Dependability: A Case Study 85

Table 1. Magnetic bearing control software requirements

Functionality 1. Trigger and read Analog-to-Digital Converters (ADCs) to obtain
impeller position vector u.

2. Determine whether reconfiguration is necessary. If so, select
appropriate gain matrices A, B, D, and E.

3. Compute target coil current vector y and next controller state
vector x:
yk = D× xk + E × uk

xk+1 = A× xk + B × uk

4. Update DACs to output y to coil controller.

Timing Execute control in hard-real-time with a frame rate of 5 kHz.

Reliability No more than 10-9 failures per hour of operation.

1. Development of a formal specification in PVS [19] and an informal argument
showing that this specification refines the requirements.

2. Design of a cyclic executive structure to manage the real-time tasks.
3. Design of the bearing control task routines by functional decomposition.
4. Implementation of the MBCS in SPARK Ada.
5. Implementation of bootstrap code in PowerPC assembly language.
6. Use of AdaCore’s GNAT Pro compiler [1] to target the bare microcontroller.
7. Formal verification that the implementation refines the functional specifica-

tion using the PVS proof checker and the SPARK tools in accordance with
our Echo verification approach [21,22].

8. Machine analysis of Worst-Case Execution Time (WCET) and stack usage.
9. Requirements-based functional testing to Modified Condition / Decision

Coverage (MC/DC) [9] was planned but not completed because of limited
resources. For the purposes of this study, we proceeded as if the testing had
been completed and the expected evidence gained. Had the testing proved
impossible to conduct as planned, we would have revised our testing plans,
possibly resulting in more limited testing evidence.

The resulting software consisted of 2,510 lines of SPARK Ada, of which 579
implement the control calculations and 114 implement the main program and
cyclic executive structure, with much of the remaining code implementing in-
terfaces to the MPC5554’s functional and peripheral units. The software also
includes implementations of the memcpy and memset library routines called from
compiler-generated code and a bootstrap routine consisting of 106 PowerPC
assembly language instructions.

2.3 The MBCS Fitness Argument

The MBCS fitness argument, recorded in the graphical Goal Structuring No-
tation (GSN) [11], explains how evidence from the MBCS development effort
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supports the claim that the MBCS is fit for use in the context of the LifeFlow
LVAD. Fig. 2 illustrates the general form of the argument, which contains 348
GSN elements. After operationally defining “fit for use in the context of the
MBCS” to mean demonstrably satisfying the given software requirements, the
argument decomposes requirements obligations into real-time and non-real-time
requirements. Our argument that the real-time requirements of the MBCS have
been met rests largely upon the use of a WCET analysis tool to ensure that
scheduled tasks complete within their scheduled execution periods. We use two
independent lines of support to show that the MBCS’s non-real-time require-
ments have been satisfied. The first is an appeal to requirements-based func-
tional testing with MC/DC, and the second is a refinement argument based on
our Echo approach to practical formal verification [22].

3 Case Study Process

Our case study evaluation of the practical limitations on software dependability
was based upon and driven by the MBCS fitness argument. Dependability is
irreducibly a system property: software by itself cannot do any harm to people,
equipment, or the environment and so cannot be “unsafe.” In order for safety to
be a consideration, software has to be operating as part of a complete system for
which damage is possible. When a system includes software, that software must
have certain properties if the system is to be adequately dependable. Limita-
tions on software dependability preclude demonstrating that software possesses
such properties, and such limitations thus present threats to a software fitness
argument’s conclusion.

We identified two forms of threat to the MBCS fitness argument: (1) assump-
tions in the argument, such as the assumption that the PVS proof checker will
not accept an invalid proof; and (2) reasoning steps in which the premises do
not actually entail the claim, such as the argument that requirements-based
functional testing with MC/DC supports the claim that the system meets its
functional requirements. For each threat, we: (a) identified the general limita-
tion of which the identified threat was a specific instance; (b) evaluated the
limitation’s impact on to the MBCS fitness argument; and (c) enumerated any
potential mitigations of which we were aware.

We do not claim that the list of limitations presented in section 4 is complete.
Other development efforts might be subject to limitations that did not affect
the MBCS effort, and others might find limitations in the MBCS effort that we
overlooked. The range and impact of the limitations facing this effort, however,
are one indication of the challenges of dependable software engineering generally.

4 Limitations Discovered

In this section, we present the limitations uncovered by our case study. These
limitations, which overlap somewhat, are pervaded by three major themes:
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1. Dependence upon fallible human beings.
2. Incomplete or immature tools or technologies.
3. Techniques that cannot practically ensure the needed dependability.

4.1 Reliance upon Correct Requirements

The correctness of the requirements is assumed in many software development
efforts. Unfortunately, requirements gathering depends unavoidably on fallible
human beings. Requirement defects do occur: the majority of software defects
in critical embedded systems, in fact, stem from requirements defects [18].

MBCS manifestation. The correctness of the requirements is assumed in 336 of
348 elements (97%) of the MBCS fitness argument. With the exception of an
appeal to integration testing, the MBCS software fitness argument contends that
the MBCS is fit for use in the context of the LifeFlow LVAD system because the
MBCS meets the requirements imposed upon it by that system.

Potential mitigations. Many techniques have been suggested and used to re-
duce the incidence of requirements defects. Requirements can, for example, be
structured in such a way as to make omissions and contradictions more obvious,
thereby increasing the likelihood that they will be caught and corrected [10].
Prototypes can be built to demonstrate an understanding of the requirements so
that stakeholders have the opportunity to correct misconceptions. None of these
techniques, however, will yield demonstrably adequate requirements.

Requirements for embedded software are derived from the design of the sys-
tem in which the software is embedded. This replaces reliance upon a subject
matter expert to enumerate requirements with a reliance upon the derivation
process. Embedded software requirements can be no more trustworthy than the
process used to derive them: defects in hazard analysis, fault tree analysis, Haz-
Op studies, or FMECA could all contribute to erroneous software requirements.

4.2 Reliance upon Reliable Human-to-Human Communication

The construction of software requires precise communication of complex
concepts, frequently between people with different backgrounds and expertise.
Systems engineers, for example, must communicate software requirements com-
pletely and correctly to software engineers. Such communication again relies
upon fallible humans and is fraught with the potential for error. In the worst
case, the recipient of communication will be left with an understanding other
than that which the originator intended and will be unaware of the error.

MBCS manifestation. The MBCS fitness argument does not explicitly address
the sufficiency of human-to-human communication. The argument does, how-
ever, reference 16 documents written in whole or in part in natural language,
including the requirements, the specification, test plans, inspection protocols,
various reports, and tool manuals. Of these, the strength of the main fitness
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claim rests most heavily upon correct understanding of the requirements. The
potential for a misunderstanding of the requirements is mitigated somewhat by
the use of an independent test team: unless the test team and the drafters and
reviewers of the specification made the same mistake, the miscommunication
would likely result in either a failed test case or a falsely failing test case.

Potential mitigations. The use of formal languages can partially address this
problem. However, while formal semantics define precisely one meaning for a
given formal text, it is impossible to formalize all engineering communication.
Since formal languages are semantically void, natural language is unavoidable
even if its use is restricted to binding formal tokens to real-world meanings.

Research has addressed the problem of communication deficiencies in engi-
neering. The CLEAR method, for example, addresses misunderstandings of the
terms used in requirements by building definitions that are demonstrably free
of certain classes of common defects [8,20]. Unfortunately, we are aware of no
method that can demonstrably reduce the incidence of miscommunication to an
adequate level when the consequences of miscommunication are severe.

4.3 Reliance upon Understanding of the Semantics of Formalisms

In every software development effort, human beings read and write artifacts in
at least one formal language, such as a programming language or specification
language. Even if these languages contained no deliberate ambiguities (e.g. un-
specified integer storage sizes in C), and even if their specifications were not given
in natural language, the engineering processes surrounding them require fallible
humans to accurately identify the meaning of each artifact written in them. As
a result, a developer’s misunderstanding of a language’s semantics could lead to
error. For example, a developer writing a formal specification in Z might forget
which decorated arrow symbol corresponds with which type of relationship and
so express a relationship other than that intended. Such errors become hard to
reveal if the same misunderstanding is propagated to multiple artifacts (e.g. the
specification and the source code) during development.

MBCS manifestation. Several formal artifacts appear in the MBCS fitness argu-
ment: the PVS specification, SPARK annotations, Ada and assembly language
source code, the linker script, annotations for the WCET and stack usage anal-
ysis tools, and various tool configurations. Of these, the strength of the main
fitness claim rests most heavily upon human understanding of the formal specifi-
cation. While the result of a misunderstanding of the semantics of Ada or of the
SPARK annotation language should be caught during Echo formal verification,
there is no more authoritative artifact against which the specification can be
mechanically checked.

Potential mitigations. Developers should be adequately trained and skilled in the
languages that they employ, but training cannot guarantee perfect understand-
ing. Mechanical verification of each formal artifact against a more authoritative
artifact cannot address errors in the most authoritative artifacts. Moreover, the
use of independent personnel in inspections and hand proofs, while helpful, can-
not guarantee a sufficiently low rate of misunderstanding-based errors.
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4.4 Reliance upon Reviews or Inspections

Reviews or inspections, properly performed, can be an effective tool for finding
and eliminating defects [14]. Unfortunately, inspections, however performed, are
performed by fallible humans and cannot guarantee the absence of a defect.

MBCS manifestation. We rely upon inspection to validate: (1) a separate argu-
ment showing that the specification refines the requirements; (2) the loop bounds
and other configuration of the WCET tool; (3) the hand-generated bootstrap
code; (4) the linker script; (5) the (non-SPARK) memset and memcpy routines;
(6) the hardware interface routines, some written in assembly language; and
(7) our usage of floating-point arithmetic.

In our fitness argument, shown in Fig. 2, the refinement sub-argument rooted
at ST ArgOverRefinement relies solely upon inspection to establish the cor-
rectness of non-SPARK code, including the absence of side effects that would
invalidate the assumption of non-interference made during formal verification
of the remaining code. However, functional testing evidence complements this
sub-argument as shown in the figure.

Potential mitigations. Inspections can be limited to specific parts of specific ar-
tifacts, focused on answering specific questions, and structured so as to force
a thorough and systematic examination of the artifacts [14]. While these im-
provements increase the overall rate at which inspectors find specific kinds of
defects in specific work products, their use cannot justify concluding with high
confidence that the inspected work products are free of the defects in question.

4.5 Reliance upon Human Compliance with Protocols

In many software development efforts, fallible human developers are required
to precisely follow certain protocols. A configuration management protocol, for
example, might require that a developer use configuration management software
to label the version of source code to be built or ensure that the build machine
is configured with the required version of the compiler and any libraries used.
These protocols establish important properties, e.g. which versions of the source
artifacts correspond with a given version of the executable. Should the developer
fail to follow the protocol precisely, the property might not be established.

MBCS manifestation. The MBCS fitness argument requires human compliance
with: (1) an integration testing protocol; (2) an argument review protocol; (3) a
configuration management protocol; and (4) source code and tool configuration
inspection protocols. In the cases of (1), (2), and (4), compliance is forced by
requiring developers to sign off on the completion of protocol steps. Compliance
with the configuration management protocol is cited in many areas of the fitness
argument, as the protocol is used to guarantee that the various testing and
analysis activities were conducted on the correct version of the correct artifact.
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Potential mitigations. Checklists and sign-off sheets can help to ensure that
developers are aware of the responsibilities imposed upon them by a protocol.
However, even if they are taken seriously rather than treated as meaningless
paperwork, a developer might still misunderstand the protocol’s implications and
sincerely indicate compliance without actually establishing the needed property.

4.6 Reliance upon Unqualified Tools

The fitness of software often relies on one or more of the tools used in its pro-
duction. A defective compiler, for example, might produce an unfit executable
from source code that has been mechanically proven to refine a correct formal
specification. Clear and convincing evidence that tools are demonstrably fit for
the use to which they are put is, unfortunately, rarely available. Even when
available, such evidence will necessarily be limited in the same ways as evidence
of the fitness of any software product.

MBCS manifestation. The MBCS fitness argument contains 14 instances of a
“correct use of correct tool” argument pattern, explicitly denoting reliance upon
the WCET tool, the test coverage tool, the test trace collection mechanism, the
test execution and reporting tool, the PVS theorem prover, the Echo specifica-
tion extractor [22], the SPARK Examiner, the SPARK POGS tool, the SPADE
Simplifier, the SPADE proof checker, the Echo code transformer [22], the stack
usage tool, the compiler (including its Ada compiler, PowerPC assembler, and
linker), and the disassembler. In some of these cases, a defect in the tool or
its configuration is unlikely to result in unfit software. A defective Echo trans-
former, for example, would be unlikely to produce transformed source code that
did not preserve the semantics of the original and yet satisfied formal proofs of
functional correctness. In other cases, correctness of a given tool is relied upon
more heavily. The only provisions we made for catching an error introduced by
a defective compiler, for example, are the functional and integration testing.

Potential mitigations. Ideally, developers of critical software systems would be
able to choose from a range of tools, each accompanied by assurance of correct-
ness that is adequate given the use to which the tool will be put. In the absence
of such tools, developers must employ a development process in which an error
introduced by an unqualified tool is adequately likely to be caught.

4.7 Reliance upon Tools That Lack Complete Hardware Models

Ideally, an embedded system developer would specify the desired system behavior
in terms of signals visible at the boundary between the computer and the larger
system and then use mechanical tools to prove that the software, running on the
target computer, refines that specification. Unfortunately, the present generation
of analysis tools typically models the hardware more abstractly and cannot easily
be used to verify software functionality in this complete end-to-end sense.
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MBCS manifestation. As part of the Echo formal verification to which we sub-
jected the MBCS, we documented the behavior required of the implementation’s
subprograms using SPARK annotations. We then used the SPARK tools to prove
that our implementations satisfied these specifications. (We used PVS proofs to
complete the verification by showing that the subprograms, taken together, refine
the formal specification.)

Unfortunately, this approach did not allow us to verify all aspects of the
MBCS’s hardware interface routines. We could not prove, for example, that a
loop waiting on a hardware flag indicating the completion of analog-to-digital
conversion would terminate in bounded time. Such a proof would require knowl-
edge that the writes to memory-mapped variables that preceded the blocking
loop would cause the hardware to set the flag in question in bounded time.
Lacking an end-to-end solution for formally verifying this code, we relied upon
a combination of testing and inspection to establish the needed properties.

Potential mitigations. Formal models of the behavior of computing hardware
almost certainly exist, as they would be indispensable in the verification of the
hardware. If these models could be extracted and translated into a form that
could be used by software verification tools, it might be possible to extend formal
verification to routines that interact with peripherals.

We note that a complete approach to end-to-end formal verification of em-
bedded software might require using multiple tools. Tools such as the SPARK
tools, which are based on a pre- and post-condition model, might need to be
complemented by a tool such as a model checker that supports Linear Temporal
Logic modeling. Such a combination would allow us to prove a more complete
set of properties provided techniques were developed to permit the synergistic
operation of the proof systems and a machine checked synthesis of the results.

4.8 The Unavoidable Use of Low-Level Code

High-level languages operate on an abstract model of the machine. When this
model is inadequate, either because it does not permit control over some aspect of
machine state that has been abstracted away or because efficiency needs preclude
the use of a compiler, developers must write code in a low-level language such
as the target assembly language. The verification technique chosen for the high-
level code may not be applicable to this low-level language, the nature of which
might limit the available analysis tools and techniques.

MBCS manifestation. We used the GNAT Pro Ada compiler to target the bare
microcontroller with no Ada run-time library. While this obviated the need to
procure a suitably-qualified operating system and standard libraries, it created
the need for a startup routine that would configure the microcontroller to the
state required for executing compiler-generated code. Our startup routine, writ-
ten in PowerPC assembly language, configured the memory controller and en-
abled the microcontroller’s floating-point unit. This choice also obliged us to
supply implementations of the memcpy and memset library routines that are
called by compiled code. Because implementing these routines required using
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access types, they had to be coded in plain Ada rather than SPARK Ada and
verified via inspection (and testing) rather than formal verification.

Potential mitigations. Verification of assembly-level code and hardware interac-
tions has been shown to be feasible [2,3]. A hybrid verification using multiple
tools and techniques would allow the developer to exploit the unique capabili-
ties of each tool, again with the difficulty of showing that the combination of
techniques selected permits complete verification of the entire program.

4.9 The Ability to Verify Floating-Point Arithmetic

Functional requirements for computations are often conceived of in terms of real-
valued or integer-valued arithmetic, but digital computers can only implement
arithmetic on finite types. In the case of integer arithmetic, the practical dis-
tinction is well understood by programmers, who take care to allocate enough
storage to handle the largest and smallest values a given variable might take on.
The distinction between real-valued arithmetic and its floating-point approxi-
mation is less-well understood by average programmers. Even if each step is
required to be correct by the IEEE-754 standard, the floating-point semantics
(rounding and exceptions) might make the behavior of a program difficult to
foresee and analyze.

MCBS manifestation. The Echo approach to formal verification treats floating-
point arithmetic as if it were real-valued arithmetic with a bounded range. It
tells us that our implementation does not use one variable when another was
meant or multiplication where addition was meant. It cannot, however, tell us
whether single-precision floating-point arithmetic is adequately precise for this
application. We are forced to assume that it is.

Potential mitigations. Using floating-point computation to adequately substi-
tute for real-valued arithmetic is quite complicated. Programmers might know
rules of thumb such as “don’t test for equality” and “avoid adding numbers of
vastly-dissimilar exponent,” but most programmers are not experts in the nu-
merical field and we should not rely on the programmers’ knowledge to produce
correct floating-point arithmetic. Formal methods have been successfully used
both for hardware-level and high-level floating-point arithmetic. If the rounding
and approximation semantics are built into verification condition generation for
the source code, one might be able to reason about the bound between floating-
point results and the real-value results that they approximate. Such a technique
does exist [4] and has been demonstrated to be useful for small C programs.

4.10 Reliance upon Testing

Requirements-based testing is used in all software projects to establish that the
software meets its requirements, either alone or in parallel with formal verifica-
tion evidence. Demonstrably adequate testing, however, is difficult or impossible
for many critical software projects for several reasons:
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1. Toy examples aside, complete input space coverage is unattainable. Further-
more, testing sufficient to establish high levels of reliability is infeasible [5].

2. The strength of testing evidence is limited by the degree to which one can
trust the test oracle not to pass a test that should fail.

3. Instrumentation of the tested software might be required, making it uncer-
tain that the results apply to the software which will be released.

4. Special computing hardware might be required, making it uncertain that the
results apply to software running on the target hardware.

5. Test sequencing and test result collection tools may be defective.
6. Human developers may fail to follow the testing protocol faithfully.

MBCS manifestation. Functional testing evidence complements formal verifica-
tion evidence in the MBCS fitness argument as shown in Fig. 2. We avoid in-
strumentation and assume that standard precautions such as the use of skilled,
independent testers and test kit with an established history are sufficient. Since
the functional correctness of the MBCS is also established by formal verification,
some risk that the functional testing will miss an error can be tolerated.

Potential mitigations. Much has been written on the subject of testing, and
there are many ways in which testing can be improved in one respect or another.
However, we are aware of no approach to testing that can positively establish
functionality where ultra-high levels of assurance are required.

4.11 Reliance upon Human Assessment of Dependability

Were the evidence of dependability perfect —the requirements, test results, and
so on completely trustworthy— there would still be practical limitations on the
degree to which adequate dependability could be assured. Safety cases and other
rigorous assurance arguments have gained attention recently as a means of unit-
ing and explaining dependability evidence, but the technology for validating such
arguments is both immature and reliant upon fallible humans.

MBCS manifestation. Our confidence in the fitness of the MBCS rests entirely
upon the sufficiency of its fitness argument. If the fitness argument were to
contain a logical fallacy, for example, this confidence might be misplaced.

Potential mitigations. Validation of assurance arguments is an area of active re-
search interest. Researchers have proposed argument review techniques [12] and
taxonomies of argument fallacies to avoid [7]. In addition, research into improv-
ing the dependability of natural language communication in other domains [8]
might prove useful if adapted to arguments. Nevertheless, we are aware of no
approach than can positively establish the soundness of the assurance argument.

5 Related Work

The related work in specific areas of limitation have been discussed in section 4.
The practical and theoretical limits of software dependability assurance have
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been the subject of numerous papers and discussions, e.g. [15,16,17], and the
limitations discussed in this paper are known in isolation or related groups.
Our contribution lies in analyzing the MBCS fitness argument to derive the
dependability limitations affecting the MBCS and to assess the impact of each.

6 Conclusion

Analysis of our assurance argument revealed 11 major practical limitations on
software dependability that affected our specimen software development effort.
Each of these limitations embodied one or more of three themes: (1) dependence
upon fallible human beings; (2) incomplete or immature tools or technologies;
and (3) techniques that cannot practically ensure the needed dependability.

While time and investment may mitigate problems embodying only the sec-
ond theme, the first and third themes reflect fundamental problems. Addressing
these limitations in a given engineering effort requires structuring the develop-
ment process so that the resulting weaknesses in dependability assurance are
compensated for by the use of complementary efforts.

This case study demonstrates a significant benefit of assurance arguments:
they convey comprehensively and intuitively precisely what the dependability
of each software system depends upon. Furthermore, an argument explicitly
documents where developers are relying upon the independence of evidence.
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Abstract. We present a case-study of developing a simple software
module using contracts, and rigorously verifying it for safety and func-
tional correctness using two very different programming languages, that
share the fact that both are extensively used in safety-critical develop-
ment: SPARK and C/ACSL. This case-study, together with other investi-
gations not detailed here, allows us to establish a comparison in terms of
specification effort and degree of automation obtained with each toolset.

1 Introduction

In recent years, deductive program verification based on contracts and JML-like
annotation languages has been a very active and fruitful area of research. The
state of the art of currently available tools has been greatly advanced with the
use of SMT provers and other automatic proof tools targeted for verification.

The SPARK [1] programming language and toolset offers program verification
capabilities as part of a wider array of static analyses aimed at the development
of high-integrity software. The SPARK reality is different from that faced by
verification tools for general-purpose languages, since the SPARK language itself
is so restricted (as imposed by the specific application domains in which it is
used) that some of the big verification challenges (to name one: the manipulation
of data structures in the program heap) are not even present.

Curiously, our industrial research partners who work in the safety-critical con-
text (more specifically, in the development of real-time, embedded applications)
are mainly interested in two programming languages: SPARK and C. This may
sound surprising, as one can hardly think of two imperative languages that stand
farther away from each other in terms of safety restrictions, but it is a reality.
Prompted by this fact, we present in this paper an attempt to compare SPARK
with C in terms of the programming and annotation languages, as well as the
currently available verification tools. Naturally, this comparison only makes sense
for a subset of C that excludes features that are absent in SPARK.

Let us recall two fundamental differences between both programming lan-
guages, in addition to the safety issues: C has very little support for abstraction,
whereas SPARK, which is a subset of Ada, explicitly supports abstract data
types, as well as refinement. In SPARK specification contracts are part of the
language; in C we resort to the external ACSL [3] specification language.
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Our goals are (i) to explain the differences involved in coding a very simple
software module when full verification is an issue; (ii) to evaluate the relative
difficulty of establishing the safe execution of programs in both platforms (we
expect it to be easier in SPARK, as a consequence of the language design); and
(iii) to assess how the verification tools compare in terms of automatic proof.

The paper can be used by readers familiar with either ACSL (or other JML-
like language) or SPARK, as a quick introduction to the other platform, and
as a general introduction to verified development in both languages. We believe
this to be a useful contribution towards promoting the use of such tools.

2 Background

The goal of deductive program verification is to statically ensure that a program
performs according to some intended specification, resorting to the axiomatic se-
mantics of the programming languages and tools like theorem provers. Typically,
what is meant by this is that the input/output behaviour of the implementation
matches that of the specification (this is usually called the functional behaviour
of the program), and moreover the program does not ‘go wrong’, for instance no
errors occur during evaluation of expressions (the so-called safety behaviour).
Related approaches that do not concern us here are dynamic verification (which
considers a single run of a program), software model checking (based on the ex-
ploration of a limited state space), and extended static checking (which abandons
correctness and completeness for the sake of automation). Neither of these offer
as high an assurance degree as deductive verification.

The idea of a software contract – consisting, for each procedure / method,
of a precondition that should be established by the caller and a postcondition
that must be established by the callee – was initially meant to be used as part
of a software development cycle that relies on dynamic verification. The code is
compiled by a special compiler that introduces run-time checks for the contracts
in the code, that will be executed at call-time and at return-time. Since these
conditions are checked dynamically, they must be written as boolean expressions
in the syntax of the programming language, which may include calls to other
methods or functions defined as part of the same program.

Figure 1 shows a typical specification of a bounded stack that can be found in
many tutorials on the design by contract approach to software development [13].
The figure contains an informal description of each operation on stacks, and in
some cases a contract consisting of a precondition and a postcondition. Notice
that methods count, capacity, and isFull occur in several preconditions and
postconditions. In fact, the first two are not usually given as part of a stack’s
interface, and their presence is justified by their use in other methods’ contracts.

In general, annotation languages include two features that can be found in
postconditions in this example: the possibility of referring to the value of an ex-
pression in the pre-state (old_count() for count), and of referring to the return
value (Result). The preconditions state that some stack operations cannot be
performed on an empty or a full stack, while the postconditions partially specify
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– nat count() – Returns the number of elements currently in the stack.
– nat capacity() – Returns the maximum number of elements that the stack may contain.
– boolean isEmpty() – Returns information on whether the stack is empty.

Postcond: Result = (count() = 0)
– boolean isFull() – Returns information on whether the stack is full.

Postcond: Result = (count() = capacity())
– int top() – Returns the top of the stack.

Precond: not isEmpty()
– void pop() – Removes the top of the stack.

Precond: not isEmpty(); Postcond: count() = old_count() - 1
– void push(int n) – Pushes item n onto the stack.

Precond: not isFull(); Postcond: count() = old_count() + 1 and top() = n

Fig. 1. Stack operations

the functional behaviour of the methods. This is straightforward for isEmpty
and isFull. For push the postcondition ensures that the element at the top of
the stack on exit is indeed the pushed value, and the stack count is increased
with respect to its initial value; for top the contract simply states that the count
is decreased. It is implicit that the stack remains unmodified, with the exception
of its top element when performing a push or pop operation.

Although program verification based on preconditions and postconditions pre-
dates design by contract by decades, it has been revitalized by the growing
popularity of the latter and the advent of specification languages like JML [10],
intended to be used by different tools ranging from dynamic checking to test-case
generation, static analysis and verification. In contract-based program verifica-
tion each procedure C is annotated with a contract (Precond: P ; Postcond: Q);
checking its correctness amounts to establishing the validity of the Hoare triple
{P}C {Q} [8]. A program is correct if all its constituent annotated procedures
are correct. The verification process follows the mutually recursive nature of pro-
grams: in proving the correctness of procedure f that invokes procedure g, one
simply assumes the correctness of g with respect to its contract. In a deductive
framework, correctness of a program can be established by the following steps.

1. Annotating the source code with specifications in the form of contracts (for
every procedure / function / method) and invariant information for loops;

2. Generating from the code, with the help of a verification conditions generator
tool (VCGen for short), a set of first-order proof obligations (verification
conditions, VCs), whose validity will imply the correctness of the code; and

3. Discharging the verification conditions using a proof tool. If all VCs are valid
then the program is correct.

ACSL/Frama-C and SPARK. Frama-C [3] is a tool for the static analysis of C
programs. It is based on the intermediate language Jessie [11] and the multi-
prover VCGen Why [7]. C programs are annotated using the ANSI-C Specifi-
cation Language (ACSL). Frama-C contains the gwhy graphical front-end that
allows to monitor individual verification conditions. This is particularly useful
when combined with the possibility of exporting the conditions to various proof
tools, which allows users to first try discharging conditions with one or more
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automatic provers, leaving the harder conditions to be studied with the help of
an interactive proof assistant. For the examples in this paper we have used the
Simplify [6] and Alt-Ergo [5] automatic theorem provers. Both Frama-C and
ACSL are work in progress; we have used the Lithium release of Frama-C.

SPARK on the other hand is both a language and a toolset. The language is a
strict subset of the Ada 95 standard, with some added anotations, designed with
predictability and safety in mind. What we mean by strict is that every SPARK
program is a valid Ada 95 program. This is very important since the SPARK
toolset does not provide a compiler, relying instead on existing Ada compilers.
A clearly defined semantics for the SPARK subset of Ada 95 is obtained by
imposing a set of rules that precisely define a set of programming practices and
limitations that do not depend on specific aspects of the compiler.

Because SPARK was created mainly to be used in the context of critical
embedded and real-time systems, it imposes some restrictions that may seem
too harsh, but are in fact fairly standard in those scenarios. For instance in
embedded systems it is usually important to know the exact memory footprint
of the programs, so dynamic memory allocation is forbidden in SPARK. Also,
pointers / pointer operations and recursion are not present in SPARK.

The most relevant tools in the toolset are the Examiner, the Simplifier, and
the interactive Proof Checker. The Examiner is responsible for checking if the
Ada code is compliant with the set of restrictions imposed by SPARK, including
the consistency of programs with respect to data and information flow annota-
tions. It also contains the VCGen functionality responsible for generating the
proof obligations. The Simplifier tool simplifies and attempts to automatically
discharge the verification conditions, with the help of user-supplied rules. Al-
though not a powerful automatic theorem prover of the same nature as those
used by Frama-C, it is a carefully designed tool that incorporates many years of
experience in simplifying typical VCs. The Proof Checker is the manual, inter-
active prover. For this work we have used SPARK GPL edition 2009, V. 8.1.1.

3 Bounded Stack: Specification

We use the bounded stack example to illustrate the differences between the
verified development of a small software module in SPARK and C/ACSL. We
first discuss a few modifications of the typical DbC specification in Figure 1. If
we think algebraically in terms of the usual stack equations:

top(push(n, s)) = n pop(push(n, s)) = s

Only the first equation is ensured by the contracts of Figure 1. Note that the con-
tracts for push and pop do not state that the methods preserve all the elements
in the stack apart from the top element; they simply specify how the number
of elements is modified. We will strengthen the specification by introducing a
substack predicate, to express the fact that a stack is a substack of another.
The notion of substack together with the variation in size allows for a complete
specification of the behaviour of these operations. Equally, the contracts for top,
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isEmpty, and isFull must state that these methods do not modify the stack
(i.e. they have no side effects, which is not stated in Figure 1).

Additionally, we add to the specification an initialisation function that creates
an empty stack. Also, we consider that the operations count and capacity
are not part of the interface of the data type (they are not available to the
programmer). In both specification languages count and capacitywill be turned
into the logical functions count_of and cap_of that exist only at the level
of annotations, and are not part of the program. These logical functions are
sometimes also called hybrid functions because they read program data. In ACSL
they are declared inside an axiomatic section at the beginning of the file. Note
that no definition or axioms can be given at this stage for the logical functions.

In SPARK (as in Ada) the specification and implementation of a package
are usually placed in two separate files: the package specification (.ads) and
the package body (.adb) containing the implementation. Packages are separately

package Stack
--# own State: StackType;
is

--# type StackType is abstract;
--# function Count_of(S: StackType) return Natural;
--# function Cap_of(S: StackType) return Natural;
--# function Substack(S1: StackType; S2: StackType) return Boolean;

MaxStackSize: constant := 100;

procedure Init;
--# global out State;
--# derives State from;
--# post Cap_of(State) = MaxStackSize and Count_of(State) = 0;

function isEmpty return Boolean;
--# global State;
--# return Count_of(State) = 0;

function isFull return Boolean;
--# global State;
--# return Count_of(State) = Cap_of(State);

function Top return Integer;
--# global State;
--# pre Count_of(State) > 0;

procedure Pop;
--# global in out State;
--# derives State from State;
--# pre 0 < Count_of(State);
--# post Cap_of(State) = Cap_of(State~) and Count_of(State) = Count_of(State~)-1 and
--# Substack(State, State~);

procedure Push(X: in Integer);
--# global in out State;
--# derives State from State, X;
--# pre Count_of(State) < Cap_of(State);
--# post Cap_of(State) = Cap_of(State~) and Count_of(State) = Count_of(State~)+1 and
--# Top(State) = X and Substack(State~, State);

end Stack;

Fig. 2. Stack SPARK specification
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compiled program units that may contain both data and code and provide encap-
sulation. Figure 2 shows the specification file for the Stack package; StackType
is an abstract type that is used at the specification level and will later be instan-
tiated in a package body. In the package specification a variable State of type
StackType stands for an abstract stack, i.e. an element of the ADT specified.
This will be refined in the body into one or more variables of concrete types.

The specification of a bounded stack in ACSL is given in Figure 3. For the sake
of simplicity we choose to use a global stack variable, but stacks could equally be
passed by reference to the C functions. A crucial difference with respect to the
SPARK specification is that ACSL has no support for refinement (and neither
has C, of course). Thus in the figure the typedef declaration is left unfinished.
The reader should bear in mind that it will not be possible to reason about stacks
without first providing a concrete implementation. Whereas in SPARK/Ada one
can have different implementations in different body files for the same package
specification file, in C those implementations would have to be obtained using
the file in the figure as a template that would be expanded.

Some language features are directly reflected in the two specifications. The
SPARK function Init will always produce an empty stack with capacity given
by the constant MaxStackSize, since dynamic allocation is not possible. In the C
version it takes the desired stack capacity as argument. Also, we take advantage
of SPARK’s type system and set the type returned by functions Cap_of and
Count_of to Natural rather than Integer (since the number of elements cannot
be negative). C’s type system is much less precise, thus integers are used instead,
but note the use of the integer ACSL logical type (for logical functions only).

Concerning the two specification languages, different keywords are used to
identify preconditions (pre, requires) and postconditions (post, ensures), as
well as the return values (return, \result). Also, ACSL offers the possibility
of using optional behaviours in specifications, which permits the association of
more than one contract to a function. For instance the behaviour empty (resp.
not_empty) of function isEmpty corresponds to the precondition that the current
count is zero (resp. not zero), specified with an assumes clause. Behaviours allow
for more readable specifications and for more structured sets of VCs.

C functions may in general have side effects, whereas SPARK functions are
by definition pure: they are not allowed to modify the global state or to take pa-
rameters passed by reference. Thus the SPARK functions isEmpty, isFull, and
top are not allowed to modify the state of the stack, which is an improvement
(obtained for free) with respect to the contracts in Figure 1. In ACSL functions
can be annotated with frame conditions that specify the modified parts of the
state (variables, structure fields, array elements, etc). The frame conditions of
the above three pure functions are written assigns \nothing. Appropriate ver-
ification conditions are generated to ensure the validity of each frame condition.

A consequence of the previous difference is that SPARK allows for program
functions to be used in assertions, whereas in ACSL this is forbidden because of
the possibility of side effects. This is reflected in different treatments of the Top
function in both languages: in the SPARK specification Top is a program function
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typedef ... Stack;
Stack st;

/*@ axiomatic Pilha {
@ logic integer cap_of{L} (Stack st) = ...
@ logic integer top_of{L} (Stack st) = ...
@ logic integer count_of{L} (Stack st) = ...
@ predicate substack{L1,L2} (Stack st) = ...
@ } */

/*@ requires cap >= 0;
@ ensures cap_of{Here}(st) == cap && count_of{Here}(st) == 0;
@*/

void init (int cap);

/*@ assigns \nothing;
@ behavior empty:
@ assumes count_of{Here}(st) == 0;
@ ensures \result == 1;
@ behavior not_empty:
@ assumes count_of{Here}(st) != 0;
@ ensures \result == 0;
@*/

int isEmpty (void);

/*@ assigns \nothing;
@ behavior full:
@ assumes count_of{Here}(st) == cap_of{Here}(st);
@ ensures \result == 1;
@ behavior not_full:
@ assumes count_of{Here}(st) != cap_of{Here}(st);
@ ensures \result == 0;
@*/

int isFull (void);

/*@ requires 0 < count_of{Here}(st);
@ ensures \result == top_of{Here}(st);
@ assigns \nothing;
@*/

int top (void);

/*@ requires 0 < count_of{Here}(st);
@ ensures cap_of{Here}(st) == cap_of{Old}(st) &&
@ count_of{Here}(st) == count_of{Old}(st) - 1 &&
@ substack{Here,Old}(st);
@*/

void pop(void);

/*@ requires count_of{Here}(st) < cap_of{Here}(st);
@ ensures cap_of{Here}(st) == cap_of{Old}(st) &&
@ count_of{Here}(st) == count_of{Old}(st) + 1 &&
@ top_of{Here}(st) == x && substack{Old,Here}(st);
@*/

void push (int x);

Fig. 3. Stack ACSL specification: operation contracts
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and it is used in the postcondition of Push, whereas in ACSL a new logical
function top_of is used; its relation with the top program function is established
by a postcondition of the latter. In addition to logical / hybrid functions, ACSL
offers the possibility of having predicates to be used in annotations; they may be
either defined or else declared and their behaviour described by means of axioms.
In SPARK a predicate must be declared as a logical function that returns a
boolean. This is reflected in the declarations of substack in both languages.

In ACSL it is possible to refer to the value of an expression in a given program
state, which is extremely useful in any language with some form of indirect
memory access. In fact, all hybrid functions and predicates must take as extra
arguments a set of state labels in which the value of the parameters are read,
even if this set is singular. Thus, for instance, whereas in SPARK the substack
predicate takes two stacks as arguments, and is invoked (in the postconditions of
Pop and Push) with arguments State and State~, where the latter refers to the
state of the stack in the pre-state, the ACSL version takes as arguments a single
stack variable st and two state labels L1, L2 , with the meaning that the value
of st in state L1 is a substack of the value of st in state L2. It is then invoked
in annotations making use of predefined program labels Here (the current state)
and Old (the pre-state in which the function was invoked).

In SPARK the procedures Init, Pop, and Push have data flow annotations
with the meaning that the state of the stack is both read and modified, and the
new state depends on the previous state (and for Push also on the argument X). In
functions, the --# global State; data flow annotation simply means that these
functions read the state of the stack. At this abstract level of development, it is
not possible to specify with either SPARK data flow annotations or ACSL frame
conditions that the procedures do not modify some part of the state (e.g. pop
and push preserve the capacity). This has then to be done using postconditions.

Reasoning about Specifications in SPARK. A major difference between both
languages is that in SPARK it is possible to reason in the absence of concrete
implementations. To illustrate this, we will define a procedure that swaps the
values of two variables using a stack. The relevant package and body are shown
in Figure 4. Running the SPARK Examiner on this file produces 9 verification
conditions, of which, after running the SPARK Simplifier, only one is left un-
proved. This VC is generated from the postcondition of Swap, which is only
natural since we haven’t given a definition of substack.

The SPARK Simplifier allows users to supply additional rules and axioms, in
the FDL logical language, in a separate file. The following SPARK rule states
that two equally sized substacks of the same stack have the same top elements.

ss_rule(1) : stack__top(S1) = stack__top(S2) may_be_deduced_from
[stack__count_of(S1) = stack__count_of(S2), stack__substack(S1,S3), stack__substack(S2,S3)].

Unfortunately, even with this rule, the Simplifier fails to automatically discharge
the VC, so the user would be forced to go into interactive proof mode (using
the SPARK Proof Checker) to finish verifying the program. Alternatively, the
following rule allows the Simplifier to finish the proof automatically:
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with Stack;
--# inherit Stack;
package SSwap is

procedure Swap(X, Y: in out Integer);
--# global in out Stack.State;
--# derives Stack.State, X, Y from Stack.State, X, Y;
--# pre Stack.Count_of(Stack.State) <= Stack.Cap_of(Stack.State)-2;
--# post X = Y~ and Y = X~;

end SSwap;

package body SSwap is
procedure Swap(X, Y: in out Integer)
is
begin

Stack.Push(X); Stack.Push(Y);
X := Stack.Top; Stack.Pop;
Y := Stack.Top; Stack.Pop;

end Swap;
end SSwap;

Fig. 4. Swap using a stack

ss_rule(3) : stack__top(S1) = stack__top(S2) may_be_deduced_from
[stack__count_of(S3) = stack__count_of(S2)+1, stack__count_of(S1) = stack__count_of(S3)-1,
stack__substack(S1,S3), stack__substack(S2,S3)].

This also illustrates a technique that we find very useful with the Simplifier:
writing special purpose rules that follow the structure of the computation. In
this example we have simply mentioned explicitly the intermediate stack S3 that
the state goes through betwen S2 and S1. This is often sufficient to allow the
Simplifier to discharge all VCs without the need for interactive proof.

4 Bounded Stack: Implementation / Refinement

Figure 5 shows a fragment of the stack package implementation, including the
definition of the state and the definition of the Push procedure. The correspond-
ing fragment in C is given in Figure 6. The state is in both cases defined as a
set of two integer variables (for the size and capacity) together with an array
variable. In SPARK a range type Ptrs is used, which is not possible in C.

In C we simply fill in the template of Figure 3 without touching the an-
notations. We consider a straightforward implementation of bounded stacks as
structures containing fields for the capacity and size, as well as a dynamically
allocated array. This requires providing, in addition to the C function definitions,
appropriate definitions of the logical functions cap_of, top_of, and count_of,
as well as of the predicate substack. count_of and cap_of simply return the
values of structure fields. The most sophisticated aspect is the use of a universal
quantifier in the definition of substack. Note also the use of the operator \at
to refer to the value of a field of a structure variable in a given program state
(not required when a single state label is in scope – it is implicit).

SPARK on the other hand has explicit support for refinement. Thus contracts
can be written at a lower level using the state variables, as exemplified by the
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package body Stack
--# own State is Capacity, Ptr, Vector;
is

type Ptrs is range 0..MaxStackSize;
subtype Indexes is Ptrs range 1..Ptrs’Last;
type Vectors is array (Indexes) of Integer;

Capacity: Ptrs := 0;
Ptr: Ptrs := 0;
Vector: Vectors := Vectors’(Indexes => 0);

procedure Push(X: in Integer)
--# global in out Vector, Ptr;
--# in Capacity;
--# derives Ptr from Ptr & Vector from Vector, Ptr, X & null from Capacity;
--# pre Ptr < Capacity;
--# post Ptr = Ptr~ + 1 and Vector = Vector~[Ptr => X];
is
begin

Ptr := Ptr + 1;
Vector(Ptr) := X;
--# accept F, 30, Capacity, "Only used in contract";

end Push;

stack_rule(1) : cap_of(S) may_be_replaced_by fld_capacity(S) .
stack_rule(2) : count_of(S) may_be_replaced_by fld_ptr(S) .
stack_rule(3) : count_of(X) = count_of(Y) - Z may_be_replaced_by fld_ptr(Y) = fld_ptr(X) + Z.
stack_rule(4) : count_of(X) = count_of(Y) + Z may_be_replaced_by fld_ptr(X) = fld_ptr(Y) + Z.
stack_rule(5) : count_of(S) = cap_of(S) may_be_replaced_by fld_ptr(S) = fld_capacity(S).
stack_rule(6) : substack(X, Y) may_be_deduced_from

[V=fld_vector(X), Z=fld_ptr(X)+1, Z=fld_ptr(Y), fld_vector(Y)=update(V, [Z], N)].
stack_rule(7) : substack(X, Y) may_be_deduced_from

[fld_vector(X)=fld_vector(Y), fld_ptr(X)<fld_ptr(Y)].
stack_rule(8) : stack__top(X) = Y may_be_deduced_from

[fld_vector(X) = update(Z, [fld_ptr(X)], Y)] .

Fig. 5. Stack SPARK implementation (fragment) and user-provided rules

Push procedure. Since there are no logical definitions as such in SPARK, the
functions cap_of and count_ofwill be handled by the user rules stack_rule(1)
and stack_rule(2) that can be applied as rewrite rules in both hypotheses and
conclusions. The user rules 3 to 5 are auxiliary rules; their presence illustrates
the limitations of the Simplifier in applying the previous 2 rewrite rules.

Refinement Verification in SPARK. Invoking the SPARK examiner with both
package and body files will produce a set of verification conditions, establish-
ing a correspondence between specification and implementation contracts in the
classic sense of refinement: given a procedure with specification precondition Ps

(resp. postcondition Qs) and body precondition Pb (resp. postcondition Qb), the
VCs Ps =⇒ Pb and Qb =⇒ Qs will be generated, together with conditions for
correctness of the procedure’s body with respect to the specification (Pb, Qb).

A crucial refinement aspect of our example has to do with the substack
predicate. Note that there is no mention of the predicate at the implementation
level, so we must now provide rules for inferring when a stack is a substack of
another. Writing a rule based on the use of a quantifier (as we did in ACSL)
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would not help the Simplifier (although it could be used for interactive proof),
thus we provide instead rule (6) for the specific case when X is a substack of Y
that contains only one more element (fld_vector and fld_ptr correspond to
the fields Vector and Ptr respectively in the stack body), and rule (7) regarding
the case of two stacks represented by the same vector with different counters.
These basically describe what happens in the push and pop operations.

In these rules we make use of the fact that SPARK arrays are logically modeled
using the standard theory of arrays [14], accessed through the element and
update operations. In particular the expression update(V, [Z], N) denotes
the array that results from array V by setting the contents of the position with
index Z to be N. Rule (8) concerns the top of a stack after an update operation
at the ptr position. With these rules the Simplifier is able to discharge all VCs.

Verification of C code. Our C/ACSL file now contains a full implementation
of the stack operations, based on the previously given contracts. Let us add to
this a swap function (also shown in Figure 6). Running Frama-C on this file will
generate verification conditions that together assert that the code of the stack
operations and of the swap function conforms to their respective contracts. 38
VCs are generated, only 4 of which, labelled “pointer dereferencing”, are not
discharged automatically. These are safety conditions, discussed below.

typedef struct stack {
int capacity;
int size;
int *elems;

} Stack;

int x, y;
Stack st;

/*@ axiomatic Pilha {
@ logic integer cap_of{L} (Stack st) = st.capacity;
@ logic integer top_of{L} (Stack st) = st.elems[st.size-1];
@ logic integer count_of{L} (Stack st) = st.size;
@ predicate substack{L1,L2} (Stack st) = \at(st.size,L1) <= \at(st.size,L2) &&
@ \forall integer i; 0<=i<\at(st.size,L1) ==> \at(st.elems[i],L1) == \at(st.elems[i],L2);
@ predicate stinv{L}(Stack st) =
@ \valid_range(st.elems,0,st.capacity-1) && 0 <= count_of{L}(st) <= cap_of{L}(st);
@ } */

/*@ requires count_of{Here}(st) < cap_of{Here}(st) && stinv{Here}(st);
@ ensures cap_of{Here}(st) == cap_of{Old}(st) && count_of{Here}(st) == count_of{Old}(st)+1
@ && top_of{Here}(st) == x && substack{Old,Here}(st) && stinv{Here}(st);
@*/

void push (int x) {
st.elems[st.size] = x;
st.size++;

}

/*@ ensures x == \old(y) && y == \old(x);
@*/

swap() {
init(3); push(x); push(y); x = top(); pop(); y = top(); pop();

}

Fig. 6. Stack C implementation (extract) and test function (swap)
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Safety Checking. Being able to write exception-free code is a very desirable
feature in embedded and critical systems. In the stack example this is relevant
for array out-of-bounds access, and again the two languages offer different ap-
proaches. An important feature of SPARK is that, using proof annotations and
automatically generated safety conditions, programs can be shown statically not
to cause runtime exceptions. The expression runtime checks (or safety condi-
tions) designates VCs whose validity ensures the absence of runtime errors.

In the SPARK implementation the domain type of the array is a range type
(as are the other state variables), which in itself precludes out-of-bounds access.
The runtime errors that may occur concern precisely the range types: every use
of an integer expression (in particular in assignments and array accesses) will
generate conditions regarding the lower and upper bounds of the expression. For
instance the instruction Ptr := Ptr + 1 in the Push procedure generates a VC
to check that ptr + 1 lies within the range of type Indexes. Such conditions
are generated and automatically discharged in both the swap and the refinement
verification in a completely transparent way.

ACSL on the other hand treats array accesses (and pointer dereferencing in
general) through special-purpose annotations. This is motivated by the very
different nature of arrays in C – in particular they can be dynamically allocated
and no range information is contained in their types. A valid range annotation
in a function precondition expresses that it is safe for the function to access an
array in a given range of indexes. It should also be mentioned that a memory
region separation assumption is used by default when reasoning about arrays.

Frama-C automatically introduces verification conditions for checking against
out-of-bound accesses, thus the 4 VCs left unproved in our example. In order
to address this issue we create a new predicate stinv that expresses a safety
invariant on stacks (the count must not surpass the capacity, and array accesses
should be valid within the range corresponding to the capacity). It suffices to in-
clude this predicate as precondition and postcondition in all operation contracts
(with the exception of the precondition of init) for the safety conditions to be
automatically discharged. The modifications are already reflected in Figure 6.

5 Conclusion

We are of course comparing two very different toolsets, one for a language with
dynamic memory and ‘loose’ compilation, and another for a memory-bounded
language with very strict compilation rules and side-effects explicitly identified
in annotations (not to mention the refinement aspect). From our experience
with SPARK and the study of published case studies the Simplifier does a very
good job of automatically discharging safety conditions. The Simplifier has been
compared with SMT solvers, and the relative advantages of each discussed [9].

While it would be unfair to compare SPARK with Frama-C in terms of the
performance of safety checking (in particular because SPARK benefits from the
strict rules provided by Ada regarding runtime exceptions), we simply state that
safety-checking ACSL specifications requires an additional effort to provide spe-
cific safety annotations, whereas in SPARK runtime checks are transparently
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performed. On the other hand a general advantage of Frama-C is the multi-
prover aspect of the VCGen: one can effortlessly export VCs to different provers,
including tools as diverse as SMT solvers and the Coq [12] proof assistant. Fi-
nally, it is important to remark that unlike SPARK, to this date Frama-C has
not, to the best of our knowledge, been used in large-scale industrial projects.

The situation changes significantly when other functional aspects are consid-
ered. Take this example from the Tokeneer project, a biometric secure system
implemented in SPARK and certified according to the Common Criteria higher
levels of assurance (http://www.adacore.com/tokeneer). We were quite sur-
prised to find that the Simplifier is unable to prove C1 from H20:

H20: element(logfileentries__1, [currentlogfile]) =
element(logfileentries, [currentlogfile]) + 1 .

-> C1: element(logfileentries, [currentlogfile]) -
element(logfileentries__1, [currentlogfile]) = - 1 .

Simple as it is, our case study has shown that the Simplifier’s ability for
reasoning with logical functions and user-provided rules is quite limited. Also,
our experiences with more ‘algorithmic’ examples involving loop invariants show
that Frama-C is quite impressive in this aspect. For instance fairly complex
sorting algorithms, involving nested loops and assertions with quantification, can
be checked in Frama-C in a completely automatic manner, with no additional
user-provided axioms or rules. In this respect it is our feeling that the SPARK
technology needs to be updated or complemented with additional tools.

To sum up our findings, the effort that goes into verifying safe runtime execu-
tion is smaller in SPARK, whereas the situation seems to be reversed when the
specification and automatic verification of other functional aspects is considered.

One aspect that our running example has not illustrated is related to aliasing.
Reasoning about procedures with parameters passed by reference is typically
difficult because such a procedure may access the same variable through different
lvalues, for instance a procedure may access a global variable both directly and
through a parameter. In SPARK such situations are rejected by the Examiner
after data-flow analysis, so verification conditions are not even generated.

In C such programs are of course considered valid, but note that these situa-
tions can only be created by using pointer parameters, and it is possible to reason
about such functions with pointer-level assertions. For instance, a function that
takes two pointer variables may have to be annotated with an additional pre-
condition stating that the values of the pointer parameters (not the dereferenced
values) are different. We have stressed the importance of the use of state labels
in ACSL; for reasoning about dynamic structures, serious users of Frama-C will
also want to understand in detail the memory model underlying ACSL and the
associated separation assumptions, which is out of our scope here.

Finally, we should mention that other tools are available for checking C code,
such as VCC [4]. Many other verification tools exist for object-oriented lan-
guages; Spec# [2] is a good example.
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Abstract. The implementation of concurrent reliable software systems
is very difficult. Race conditions on shared data can cause a program’s
memory state to become inconsistent and result in unpredictable behav-
ior of the software. Much work has been published on analyses to identify
access sites to shared data which do not conform to an accepted synchro-
nization pattern. However, those algorithms usually cannot determine if
a computation will use a consistent version of more than one shared
data object. In this paper, we present a new static analysis algorithm to
identify computations which can potentially load values that were stored
independently of each other. These uses of global state are affected by
race conditions and may yield undesired values during the execution of
the program. We show applicability of an implementation of the analysis
on several open-source systems.

Keywords: Concurrent Programming, Data Race Condition, Static Pro-
gram Analysis.

1 Introduction

Concurrent programming is difficult due to subtle programming errors that are
hard to find manually. Every interaction of one thread with shared memory
needs to obey some global interaction protocol which the programmer has to
keep in mind all the time. A violation of that protocol can introduce a race
condition, possibly causing an inconsistent memory state. Special support from
programming systems to specify and enforce the protocol is not widely available.
Worse still, rigorous testing against concurrency bugs might prove in vain, be-
cause some of the issues only happen given very specific timing and data inputs,
which might be extremely unlikely to encounter. For reliable concurrent software
systems however, assuring the absence of harmful race conditions is essential to
avoid intermittent misbehavior.

Today, there is a great number of analysis techniques to detect data races,
both static and dynamic. Dynamic analyses are in general very precise, as they
can identify issues that have happened (or may have happened given different
scheduling) along the executed paths of execution [1], [2]. Unfortunately, dynamic
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analysis can never come to the conclusion that a system is free of bugs, since it
will always depend on specific input data into the system. To reach confidence
about the absence of certain classes of race conditions, static analysis tools can
be used. Static analysis can be conservative, meaning that all existing issues will
be found, possibly including a number of false positive warnings.

Existing static race detection techniques usually identify all the places in the
source code of a program where access conflicts might occur. Access conflicts
occur, if two different threads access a common storage location, one of the
threads writes to that location and there exists no ordering between the accesses.
To prove the absence of access conflicts, many techniques verify that locking a
common mutex variable provides mutual exclusion of the accesses [3], [4], [5],
[6], [7], [8]. Artho et al. [9] analyze programs without access conflicts to verify
that the sets of objects used inside of critical sections are consistent.

Other static analysis approaches use an extended type system to verify atom-
icity of functions, e.g. [10].

In this paper, we present a new approach that is able to identify uses of
shared memory state that may be negatively influenced by a race condition.
Our analysis technique focuses on the way in which global data is used by the
program, taking mutex-based synchronization into account where it exists. This
paper will refer to explicit mutex-lock and unlock functions, but the technique
can be adapted to higher-level synchronization constructs like Java synchronized
blocks or Ada protected units. In contrast to other work, we do not necessarily
consider access conflicts to be programming errors, but identify calculations that
are based on data which is not written into memory during an atomic operation.

The paper is organized as follows. In Section 2, we give some examples of
concurrency issues to motivate this work. In Section 3 we outline how our in-
termediate representation is created, including an explicit representation of in-
terprocedural, interthread data flow. In Section 4 we present the new analysis
algorithm. Section 5 gives some measurements performed with an implementa-
tion of our algorithm, and Section 6 concludes.

2 Motivating Examples

Our work is motivated by the observation that data race detectors based on the
lockset algorithm [5], [7], [8] produce undesired warnings in the following cases.
We have encountered situations similar to the example in Listing 1 in indus-
trial control devices. In this example, one thread thread1 repeatedly produces
a new value and stores it to a shared variable g. The threads thread2, and
thread3 repeatedly consume the value to perform some action. Both of the uses
by thread2 and thread3 are conflict accesses because g can be assigned to and
read concurrently without any synchronization. Assuming that reads and writes
on g are performed atomically, thread2 would perform as expected. In thread3
however, there is a possibility that first the value of g is loaded, then a new value
is written by thread1 and then that new value is read again by thread3. The
product g*g is then calculated from sensor values of two different read-cycles
which is unlikely to be intended semantics.
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1 int g;

2

3 void *thread1(void *p)

4 { while (1) g = read_sensor_value (); }

5

6 void *thread2(void *p)

7 { while (1) act_1(5 * g + 17); }

8

9 void *thread3(void *p)

10 { while (1) act_2(g * g); }

Listing 1. Conflict accesses on g in thread2 and thread3, but only thread3 has an
inconsistent expression

Using the traditional lockset algorithm, a static analyzer would warn about
both calculations, in thread2 and in thread3. Our technique however would
accept thread2 as intended by the programmer, because only one version of the
global state is used during the calculation of its expression, but our technique
would warn about the expression g*g in thread3 because the uses of shared
variables (of g in this case) might stem from different versions of the global state.

A less obvious example is presented in Listing 2. Here, the assignments to
g1 and g2 in Line 4 are both protected by locks m and n, respectively. Before
the values of the global variables are used in line 13, both locks are acquired
and might give a false sense of safety to a programmer. Since the assignments
are not protected by a common lock, they can still be executed concurrently
and, assuming atomic reads and writes, the reads in the main thread behave
as if performed without locking. The program is free of access conflicts, but in
contrast to traditional lockset-based data race checkers, our analysis is still able
to identify the expression g1+g2 to be run on potentially inconsistent versions.

An important issue are concurrent updates of global state if the updated value
depends on the previous state. The simplest example is the increment of a shared
counter by several threads. If two threads t1, t2 perform the operation g := g + c
where g is a global variable and c is some constant, then these operations might
be performed in a way that one increment is lost: Let g have the initial value g0.
t1 loads the value g0 of g into an register r1,1. Then t2 loads the current value g0
of g into the register r2,1 concurrently. Both perform the addition ri,2 := ri,1 +c.
Then the results r1,2 and r2,2 are both stored back to g in arbitrary order. The
resulting value of g is thus the value g0+c although given a different interleaving,
g0 + 2c might have resulted.

Traditional data race checkers would fail to discover the potential error how-
ever, if the code were executed with separate locking around the read and the
store of the shared variable as in Listing 3. In this example, the shared vari-
able has consistent protection, and there is no access conflict. Our technique is
able to identify the stale update nonetheless by comparing the versions of global
state of the left-hand side (LHS) of the assignment in Line 6 to its right-hand
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1 void *thread1(void *p) void *thread2(void *p)

2 { while (...) { while (...)

3 { mutex_lock (&m); { mutex_lock (&n);

4 g1 = ...; g2 = ...;

5 mutex_unlock (&m); mutex_unlock (&n);

6 } } } }

7

8 int main ()

9 { create(thread1 ); create(thread2 );

10 while (...)

11 { mutex_lock (&m);

12 mutex_lock (&n);

13 res = g1 + g2;

14 mutex_unlock (&n);

15 mutex_unlock (&m);

16 } }

Listing 2. Free of data races, but the mutex_lock-calls around g1+g2 have no effect

1 pthread_mutex_lock (&m);

2 int local = global;

3 pthread_mutex_unlock (&m);

4 local += 17;

5 pthread_mutex_lock (&m);

6 global = local;

7 pthread_mutex_unlock (&m);

Listing 3. Nonatomic increments

side (RHS). Only if both sides have the same version then it is certain that no
other assignment to the LHS can have occurred since calculating the RHS.

3 Program Representation

Our analysis tool uses knowledge about the syntactical structure of the program
as well as its control flow and data flow. Therefore we compile the source code into
the high-level graph representation IML [11]. In IML, the program is represented
as a graph that contains a statement tree for every function, control flow graphs,
and data flow edges from “assignment” to “read” nodes. IML is general enough
to be able to represent programs from different source languages, like C, C++,
Ada or Java.

The frontend that translates source code into our intermediate representation
decides which accesses to variables are atomic assignments and atomic reads.
Non-atomic updates of objects are explicitly represented as sequences of read
and separate store. In our experiments, we simply assume all reads and writes
of objects of primitive types to be atomic. The frontend’s implemention can be
adapted for architectures where this assumption is not valid.
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3.1 Data Flow

We use a context-insensitive, flow-insensitive, but field-sensitive points-to analy-
sis like the one by Pearce [12]. The points-to analysis associates a set of abstract
objects with each dereference of a pointer value in the program.

In the program, there are certain actions that start a new thread during
runtime of the program (using pthreads, calls to pthread_create). We associate
an abstract thread with each of these start-sites. Starting from the thread’s main
function, call graphs for every abstract thread are created. Using points-to sets,
we can then calculate the set of abstract objects accessed by every function.
Propagating this set along the call graph, from callee to caller, gives the set of
nonlocal variables accessed by a function.

Every nonlocal object that is used by functions of different threads is flagged
as a shared variable.

In the next step, lockset analysis is performed. Lockset analysis calculates a set
of mutex-locks held at a point in the programduring any execution of the program.
We define contexts of function calls to be the pair of the lockset, which is active at
the call site and the abstract thread which executes the call. Thus lockset analysis
is context-sensitive with respect to this notion of a context, but it does not incur
the complexity of treating functions like inline code at every call site.

To model data flow caused by concurrent assignments,ψ-nodes are inserted into
the intermediate representation. At all places in the program, where the value of a
shared variable v is used, an explicit “read”-node exists in IML. If the read of v is
an access conflict, then an artificial assignment to the shared variable is inserted
into the control flow graph directly in front of the read-node. That assignment is
called conflict-ψ-node. It takes the form v := ψ (vs, v1, . . . vn), where vs is later
replaced by the sequentially reaching definitions of v and the v1, . . . , vn represent
all possibly reaching definitions of v from concurrent conflict assignments.

If a read of a shared variable v is not an access conflict, then that read happens
inside of a critical section protected by a mutex-lock. In this case, a section-
ψ-node is created at all control flow entrances into the critical section. The
section-ψ-node links the effect of concurrent updates into the sequential data
flow of the critical section. Reads of a consistently protected shared variable
inside a critical section are only reached by sequential data flow edges. In the
critical section case, the ψ-node’s arguments for potentially concurrent data
flow v1, . . . , vn do not reference assignment-nodes in other threads directly, but
so called link-out nodes. Link-out nodes are created at all exists of a critical
section to represent the fact, that the critical section’s assignments to shared
variables become visible at the point of the link-out node. Note that at every
entrance into or exit from a critical section, only one section-ψ-node or link-out
node is created. The single node summarizes the data flow of all shared variables
accessed in the critical section.

Once ψ-nodes are inserted, data flow links from definitions to their uses need
to be calculated and stored into the intermediate representation. In our imple-
mentation, this is done by a transformation into SSA-form, as in [13].
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Note, that the output of lockset-based data races checkers can be extracted
from our intermediate representation, for shared variables which are read in at
least one place: simply enumerate all conflict-ψ-nodes.

3.2 Summary Edges

To speed up the analysis, as described in Section 4.1, we need to efficiently
propagate data flow facts across function call sites without re-analyzing the entire
call graph rooted at that call site. Therefore, we add summary edges to the data
flow graph. Summary edges have been used successfully in interprocedural slicing
algorithms [14]. If inside of a callee function f , the value of parameter p reaches
a set T of output parameters of f , then a summary edge is created at every call
site for f from the copy-in node that corresponds to p to every copy-out node
that corresponds to any node in T . Similarly, summary edges are created for
nonlocal objects accessed inside of f as if they were passed as parameters.

4 Analysis Algorithm

In this section, we will explain our new analysis. It reasons about the versions of
global state that are used in expressions. The analysis is performed in two suc-
cessive phases: in the first phase, all expressions are annotated with the version
of the global state they operate on. In the second phase, warnings are generated
for suspicious constructs.

4.1 State-Version Analysis

In our program representation, the execution of a ψ-node identifies one unique
observation of the global state. If two values stem from the same run-time in-
stance of a ψ-node, then those two values were stored during execution of the
same critical section. This property is ensured by the placement strategy for ψ-
nodes. The state-version analysis uses this property to identify versions of global
state with versions of the ψ-nodes whose values flow into the expressions.

We number all ψ-nodes in the program from 1 to n. The analysis uses the
state space L to describe the visible global state at a point in the program:

V = {⊥,�, ψ1, . . . , ψn}
L = {s | s : Var → V}

In every state m ∈ L, each abstract variable v ∈ Var of the program is mapped
to its version from the set V. The version can be either � if it is not influenced by
any data flow originating in a different thread, ⊥ if it can be influenced by more
than one ψ-node, or ψi ∈ {ψ1, . . . , ψn} if it can be influenced by only the most
recent execution of the ψ-node with number i. Consequently, two variables a, b
have a consistent version at a point in the program, if the analysis determines
(m (a) = m (b) and m (a) �= ⊥) or m (a) = � or m (b) = �.
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Intraprocedural versioning. The intraprocedural analysis starts off with the
optimistic assumption that a caller function does not propagate any versioned
values into the callee function. This imprecision will be healed later during in-
terprocedural analysis (see below in this section). Due to this, the functions can
be analyzed separately in reversed topological order of the call graph. Before a
caller function is entered, its callees will already be analyzed. An exception to
this rule are cycles of the call graph which require iteration.

Consider, that versions of global state are created by either a ψ-node in a
current function, or by a ψ-node in a callee function. Versions created in or
propagated out of a callee are never equal to any version created in the current
function, even if they originate from the same ψ-node (possible in case of re-
cursion). Consequently, analysis of a call site can generate new versions of the
global state. That information can be queried from the result of that function’s
analysis. The versions of nonlocal variables that are read in the callee, but not
definitely updated, only need to be propagated across the call site using the
summary edges (see Section 3.2).

The intraprocedural analysis is simple, if the ψ-nodes of the function are not
contained in cycles of the control flow graph. In this case, every ψ-node can
generate at most one version. If a ψ-node is contained in a cycle, then that node
can generate a different version during every iteration of the cycle. To deal with
a statically unknown number of different versions, the analysis simplifies the
problem and tracks only the global version of the most recent execution of each
ψ-node along every control flow path.

The data flow equations are solved by a standard monotone framework for an
iterative forward data flow analysis. The initial value is ι ∈ L:

ι = ∀v ∈ Var : v �→ �
At control flow confluence points, the states of the predecessor blocks p1, . . . , pn

are joined by the meet operation
�{p1, . . . , pn} = p1 � . . . � pn.

∀x, y ∈ V : x  y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�, if x = y = �
ψx, if x = ψx ∧ y ∈ {ψx,�}
ψy, if y = ψy ∧ x ∈ {ψy,�}
⊥, otherwise

a � b = ∀v ∈ Var : v �→ a(v)  b(v)

To determine the version of an expression, the versions r1, . . . rn ∈ V of all
variables that contribute values to the expression are joined using the operation
r = r1  . . .  rn.

The intraprocedural analysis can be summarized by the following equations.
We use in(s) to denote the information that flows into a statement s and out(s)
for information that flows out of s. The set of predecessor statements of s is
denoted pred(s).

in(s) =

{
ι, if s is the function entry
�

p∈pred(s) out(p), otherwise
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out(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f:= (in(s)) , if s is an assignment
fψi (in(s)) , if s is the ψ-node with number i

fcall (in(s)) , if s is a call site
in(s), otherwise

We distinguish between strong and weak updates of assignment-nodes. A
strong update occurs, if the analysis can definitely decide that the left-hand
side (LHS) abstract object of the assignment is a single object and the value is
fully replaced by the assigned value. Weak updates happen whenever the LHS-
object is not statically known to represent exactly one single object. This can
happen in static analysis, for example, if assignments are made to array elements
or to heap objects of which multiple instances might exist. At assignment-nodes,
the version vRHS of the expression on the right-hand side is calculated. If the
assignment is a strong update, then the original version of the LHS can be killed
and replaced by the new version. If the assignment is a weak update then the
operation  is used to combine the versions of LHS and RHS.

f:=(pre) = v �→

⎧
⎪⎨

⎪⎩

pre(v)  vRHS, if weak update and v ∈ LHS
vRHS, if strong update and v ∈ LHS
pre(v), otherwise

A ψ-node ψi represents a potential assignment of the data flow originating in
concurrent definitions to a set V of some variables. Each of the variables in V
becomes consistent to the version ψi of the global state. But since the analysis
only represents the most recent execution of a ψ-node, all variables K = Var\V
are not consistent to ψi anymore. This is reflected by setting all variables of K,
which had the version ψi before, to ⊥.

fψi(pre) = v �→

⎧
⎪⎨

⎪⎩

ψi, if v ∈ V

⊥, if v ∈ K ∧ pre(v) = ψi

pre(v), otherwise

Function calls are handled as follows. Let pre ∈ L denote the state that is
active directly before the call site. That state is mapped to a new state p′ ∈ L
using summary edges (see Section 3.2). Thus, the state p′ models the result
of the call if all ψ-nodes inside of the callee are ignored. Similarly, let R ∈ L
represent the meet of the results of the intraprocedural analysis of all possible
callee functions without any influence from the caller. The following transfer
function fcall calculates a conservative combination of p′ and R. Any version
propagated from the caller into the callee will always be different from any
version that the caller produces. Therefore all variables reached by versions of the
caller and by versions of the callee indicate that the callee only performs may-defs
and leaves the variable in doubtable state. The variable’s state is conservatively
reduced to ⊥. If the callee produces a different version of the same ψ-node (in
case of recursion) then the version of the callee will always be newer, and the
variables containing the older version are reset to ⊥.
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fcall(pre) = v �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� if p′(v) = R(v) = �
ψj if p′(v) = � ∧ R(v) = ψj

ψi if p′(v) = ψi ∧ R(v) = � ∧ {x ∈ Var|R(x) = ψi} = ∅
⊥ otherwise

It can be shown, that the transfer functions and meet operation only perform
transitions that are monotonously decreasing with respect to the partial order
defined here. For all states x ∈ L, let Tx = {v|x(v) = �}, let ∀1 ≤ i ≤ n : Ψx,i =
{v|x(v) = ψi}. The partial order of states is defined as:

a < b ⇔ (Ta = Tb and ∀1 ≤ i ≤ n : Ψa,i ⊆ Ψb,i and ∃1 ≤ j ≤ n : Ψa,j � Ψb,j)
or (Ta � Tb and ∀1 ≤ i ≤ n : Ψa,i ⊆ Ψb,i)

Since all operations are monotonous, and a single smallest state exists (∀v ∈
Var : v �→ ⊥), and the condition |L| < ∞ holds, the analysis is guaranteed to
reach the largest fixed point.

Interprocedural analysis. As described in the previous paragraph, all func-
tions are analyzed separately, based on the assumption that all of the function’s
input data have version �. Versions that are created inside of a function are
propagated to the function’s caller, but the propagation from the caller into its
callees has been omitted so far. This section will outline how context information
is added to complete the analysis.

The fundamental observation is that no version created in a caller-function
can be equal to a version created in one of its callees. The following algorithm
is performed separately for every function in topological order of the call graph
to produce the final result for a function. Inside of cycles of the call graph, the
functions are processed in arbitrary order and the cycle is iterated until one
iteration yields the same results as the previous one.

1. Use the state cc ∈ L directly before a call site,
2. initialize all nodes inside of the callee to ∀v ∈ Var : v �→ �,
3. perform copy-in assignments for parameters and nonlocal objects accessed

in the callee-function to map cc into the callee, producing the state c ∈ L,
4. for every vc ∈ Var: if c(vc) �= �, then propagate the version c(vc) along the

intraprocedural data flow edges in the callee-function. Assume this propa-
gation reaches a data flow node, which identifies a variable vs and its state
s ∈ L. Produce a new state for that node: (vs �→ c (vc) , ∀v �= vs : v �→ s (v)),

5. calculate the interprocedural meet � of the result of the intraprocedural
analysis and the new states. In contrast to the intraprocedural meet oper-
ation �, a ψi originating from the intraprocedural analysis is never treated
as equal to any ψj of the interprocedural analysis.
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a � b = v �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�, if a(v) = b(v) = �
ψa, if a(v) = ψa ∧ b(v) = �
ψb, if b(v) = ψb ∧ a(v) = �
⊥, otherwise

Note that the number of different contexts identified by a state cc before a
call site might become very large. However, it is easily possible to use the �
operation on several different contexts to bound the number of contexts at the
expense of a more conservative analysis result that produces more false positive
warnings. Since the non-recursive functions are processed in topological order,
all contexts for a callee function are available before that function is analyzed.
Inside of cycles of the call graph, a viable option is to allocate only one context
per function.

Figure 1 gives an example of a run of the analysis on an example function.
Assume that another thread is executed concurrently to the function caller.
That other thread acquires the mutex m, updates the value of the global variable
g and releases m. In the example, ψ-nodes are already inserted. In line 6, the
value of g is linked into the critical section. In lines 24 and 26, ψ-nodes represent
the conflict uses of g. The function use is omitted, it can be assumed to have
an empty implementation. In the “intra” column, the fixed point reached by
the intraprocedural analysis is displayed. The column “inter” displays the states
created by the interprocedural part of the analysis and the column “result” the
final result after intra- and interprocedural information has been joined. The
column “xpr” states the version of the expression calculated in the line of source
code, if any. The column “xpr” is consulted during the warning-generation pass.
Note that the last three columns depend on context. If there are more than one
call site for f, and the active state before those call sites differs, then multiple
instances of these three columns will be created.

Note that in line 14 the version of z is ⊥ because the loop can have been
exited by the break-statement in line 10. If that were the case, z’s version might
not be from the latest execution of the critical section. In contrast, the use of z
in line 12 is always consistent with x’s version.

In line 30, the previous version ψ4 of the global variable g is propagated across
the call-site using summary edges. Since f only performs may-defs to g, g still
has the version ψ4 directly after the call-site after the intraprocedural versioning.
In the exit-node of f, g has the version ψ1, therefore its version is reduced to ⊥
in the interprocedural phase.

In line 18, no warning would be created after the intraprocedural phase. In
that line x has version ψ1 and y has version �, which results in ψ1 for the
expression. Only after context-information is propagated across the assignment
in line 17 the conflict becomes visible. In this case, the formal parameter q has
version ψ4 which is assigned to y and therefore two different versions are joined
in the expression x + y. A similar effect happens on the return value of f. In the
intraprocedural phase, both p and q have version �, but after the interprocedural
propagation, the return value’s version is reduced to ⊥.
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intra inter result xpr
x y z g p q x y z g p q x y z g p q

1 int f(int p, int q)

2 { � � � � � � � � � 4 3 4 � � � 4 3 4
3 int x, y, z;

4 do { 1 1 1 1 � � � � � 4 3 4 1 1 1 ⊥ 3 4
5 mutex_lock(&m);

6 /*g = ψ1(g, . . . )*/ ⊥ ⊥ ⊥ 1 � � � � � � 3 4 ⊥ ⊥ ⊥ 1 3 4 1
7 x = g; 1 ⊥ ⊥ 1 � � � � � � 3 4 1 ⊥ ⊥ 1 3 4 1
8 y = g; 1 1 ⊥ 1 � � � � � � 3 4 1 1 ⊥ 1 3 4 1
9 mutex_unlock(&m);

10 if (cond2) break; �
11 z = x; 1 1 1 1 � � � � � � 3 4 1 1 1 1 3 4 1
12 use(x + z); 1
13 } while (cond1); 1 1 ⊥ 1 � � � � � � 3 4 1 1 ⊥ 1 3 4 �
14 if (x + z) ⊥
15 use(x + y); 1 1 ⊥ 1 � � � � � � 3 4 1 1 ⊥ 1 3 4 1
16 else {

17 y = q; 1 � ⊥ 1 � � � 4 � � 3 4 1 4 ⊥ 1 3 4 4
18 use(x + y); ⊥
19 }

20 return p + q; 1 1 ⊥ 1 � � � 4 � � 3 4 1 ⊥ ⊥ 1 3 4 ⊥
21 }

a b g a b g a b g
22 void caller()

23 { � � � � � � � � �
24 /*g = ψ3(g, . . . )*/ � � 3 � � � � � 3 3
25 int a = g; 3 � 3 � � � 3 � 3 3
26 /*g = ψ4(g, . . . )*/ 3 � 4 � � � 3 � 4 4
27 int b = g; 3 4 4 � � � 3 4 4 4
28

29 use(a + b); ⊥
30 use(f(a, b)); 3 4 ⊥ � � � 3 4 ⊥ ⊥
31 }

Fig. 1. Versioning analysis applied on example thread. Another thread performs up-
dates on the shared variable g, protected by mutex m.

4.2 Suspicious Pattern Recognition

After version numbers have been annotated to the expressions of the program,
Warnings are generated for suspicious ones. The warning generator traverses the
statement trees of all functions in post-order. The statement tree contains simple
nodes for accesses to variables and composite nodes for statements or expressions.
A node can be marked to express that a warning has been generated for it. The
version determined for a node, and its marking-state are propagated upwards in
the tree.

Whenever a “read”-node on some shared variable is encountered, that shared
variable’s version is loaded. When a composite node is evaluated, its version is
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function f

loop
psi: 1
l. 4-13

if
psi: 0

l. 14-19

+
psi: 0
l. 20

read g
psi: 1
l. 7

read g
psi: 1
l. 8

read x
psi: 1
l. 11

+
psi: 1
l. 12

read x
psi: 1
l. 12

read z
psi: 1
l. 12

read x
psi: 1
l. 14

+
psi: 0
l.14

read z
psi: 0
l. 14

cond

+
psi: 1
l. 15

then

seq
psi: 0

l. 16-19

else

read x
psi: 1
l. 15

read y
psi: 1
l. 15

read q
psi: 4
l. 17

+
psi: 0
l. 18

read x
psi: 1
l. 18

read y
psi: 4
l. 18

read p
psi: 3
l. 20

read q
psi: 4
l. 20

Fig. 2. Warning generation for the function f from Figure 1

calculated as the meet of all of its child nodes’ versions. If the meet of only the
unmarked child nodes of a composite node is ⊥ then a warning will be generated
for the composite node. If a warning is created for a composite node or if all of
its child nodes are marked, then the composite node will be marked.

The marking of tree nodes after a warning has been generated suppresses
multiple warnings about the same issue. However, if for example, two statements
from a sequence of statements generate individual warnings, then the warning
about the entire sequence of statements might be suppressed. As a consequence,
when inspecting source code, warnings must be considered within the individual
syntactical context they were created for.

In Figure 2, the warning generation process is illustrated for the function
f from Figure 1. The black nodes represent nodes that generate a warning.
Nodes with solid borders do not generate warnings on their own, because of
their children’s marking. Nodes with dashed borders are considered intended
code. They do not generate a warning and are ignored.

5 Empirical Results

We have implemented the algorithm described in the previous sections in the
Bauhaus system [11]. We have used the analysis tool on different open source
programs as shown in Figure 3. Manual inspection of the results for aget-0.4
showed that our tool was able to issue a warning about a race condition in a
comparison in the function updateProgressBar, which can result in undesired
output.
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results efficiency
Tool SLoC warnings ψ-nodes s. edges intra inter
aget-0.4 0.8k 10 39 <0.2s
linuxdown 1.4k 29 109 <0.4s
aaxine 46k 621 2,599 6.5s 0.8s 6.1s
clamd 66k 6,667 13,062 25s 92s 879s

Fig. 3. Measurements on different open source programs

In Figure 3 our measurements are presented. “SLoC” are measured using
SLOCCount [15]. “warnings” is the number of warnings generated by the process
explained in Section 4.2, “ψ-nodes” is the number of ψ-nodes inserted into IML,
“s. edges” is the time needed to create summary edges, “intra” is the time for the
intraprocedural analysis phase, “inter” the time for the fully context-sensitive
interprocedural phase. Note that the interprocedural phase could be done much
more efficiently if less contexts were distinguished as explained in Section 4.1.

The measurements show that our analysis runs fast on real programs. We
expect to improve precision of the shared variable classification using escape
analysis [16], resulting in better overall efficiency. At present, the number of
false positive warnings is still too high for a complete manual inspection.

6 Conclusion

We have presented a new static analysis that identifies expressions in a concur-
rent shared-memory program which depend on potentially inconsistent global
state. The analysis is able to find bugs, that previous techniques could not. It
can handle atomic reads and writes of shared variables and the decision if an
access is atomic can be configured by the frontend. The analysis supports mutex-
synchronization or other schemes that can be transformed into an explicit data
flow representation. Using the hierarchical warning generation, intuitive warn-
ings can be generated. We have found that the analysis is very efficient and able
to handle larger programs.

Acknowledgments. The author would like to thank Erhard Plödereder and
the anonymous reviewers for valuable comments on an earlier version of this
paper.
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Abstract. Embedded hard real-time systems are often under severe
pressure from a number of directions — limited processing capacity be-
ing a common issue. Having to handle a large number, or high rate, of
external stimuli (interrupts) exacerbates the processor loading problem
by compromising ideal processor behaviour through the disruption of
performance enhancing features, such as of pipelines and cache mem-
ories. This paper reports on the use of Ada with a novel architecture
that promotes the better utilisation of the processing resources for the
“real” task of executing the application. The approach described in this
paper is to use dedicated hardware facilities, a “Butler”, to assist the pro-
cessor in the management of events and the scheduling of tasks. Allied
with a cooperative (non-preemptive) approach to scheduling the appli-
cation, this allows the processing capacity available to the application
to be increased by a significant factor. Whilst the approach is largely
language independent its integration with the Ada tasking features pro-
vides for a very powerful and sympathetic platform for demanding and
high-integrity applications.

1 Introduction and Scope

Embedded real-time systems are always under pressure in terms of space, weight
and thermal constraints, and as if this was not enough there are ever increasing
processing demands to provide enhanced functionality and higher integrity. To-
gether these factors require that the maximum performance is extracted from
the processing platform whilst ensuring deterministic behaviour.

An approach to addressing this problem, and the one that is described in this
paper, is to offload key aspects of functionality to specialised hardware. Two
contrasting approaches for the provision of such support are:

– Provide bespoke hardware that implements a key application specific func-
tion — an example here might be a dedicated fast Fourier transform block [1];

– Provide hardware that provides support to tasks common across the domain
of real-time embedded systems — the classic example here would be the
provision of a floating point co-processor [2].

The former approach can be an ideal solution for a specific subset of the domain
of embedded real-time systems, however it suffers in the light of the need for

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 125–138, 2010.
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these systems to evolve over their lives, potentially rendering the specialised
hardware obsolete. The latter approach, conversely, does not suffer from this
problem as its function supports a more generalised, lower-level “need” of the
system — it is thus the latter approach that is considered in this paper.

In this case, novel hardware is used to support the scheduling of threads/tasks
and the related management of external events, with the goal being to reduce the
processing overheads, and associated overall degradation in system performance
often attributed to these functions, thereby maximising the available processing
capacity for the “real” application. It has been developed and deployed in a
number of systems over the last ten years. Whilst essentially language neutral,
the approach described naturally integrates with the Ada tasking model and
supports the provision of high performance, suitable for high integrity and safety
critical applications.

Having a device to support the management of external events, and then inte-
grating these with the internal (software-software) task interactions also directly
supports the adoption of a cooperative (cf. preemptive) approach to scheduling
the tasks of the application. As noted by Burns and Wellings [3] this coopera-
tive approach in itself provides for an improvement in schedulability, reducing
processor utilisation thus ensuring better margins on deadlines, also as observed
here it also leads to additional benefits due to the reduction in disruption of the
processor caches and pipelines.

The remainder of this paper is divided into five parts, addressing the following
areas:

1. A brief survey of related work on hardware supported scheduling;
2. Description of the various forms of scheduling support devices;
3. The use and integration of the scheduling support device with Ada;
4. Practical results and issues;
5. Conclusions and opportunities for further enhancement.

2 Related Work

There have been a number of published accounts of the use of hardware sup-
ported scheduling for software systems. Most recently, for example by Nácul et
al. [4], there has been a focus on hardware support for the scheduling of ap-
plications on symmetric multi-processor platforms. Earlier examples, are those
by Nakano et al. [5], and Lai et al. [6]; in the latter case the hardware element
of the scheduler is restricted to the management of the queues. Scheduling and
communication functions are implemented in software.

In the Ada domain Burns and Wellings [3] note that there have been a number
of examples of the use of hardware to directly support the execution of Ada
programs. Perhaps the most notable here is the support provided to Ada tasking
by ATAC described by Roos [7]; other examples of “Ada machines” being those
from Runner and Warshawsky [8], and Ardö [9].
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3 Scheduling Support Devices

The scheduling support device is not a single physical device — there have been
several incarnations each “driven” by the technology of the processing platform;
to-date the most important implementations are:

– Embedded as one of many functions in a semi-custom ASIC using asyn-
chronous design techniques, tightly coupled to the processor;

– Implemented as logic and state machines in an FPGA coupled to the pro-
cessor over a PCI bus;

– Implemented as a distributed solution across the two PowerPC processors
embedded in a System-on-Programmable-Chip (SoPC) FPGA — in this case
one of the processors is dedicated to handling the external events, with the
other being reserved for the application and software-software scheduling
controls. Communication between the two processors is through dual-ported
shared memory.

Other, software only, versions have also been implemented to allow the same
scheduling behaviour to be realised on non-embedded platforms and those where
provision of the dedicated hardware support is not a practical or cost effective op-
tion — generally these are not platforms where the absolute real-time behaviour
is important. The generic term used to describe these devices is a “Butler” [10];
so-called because it has a role very similar to that of the butler in a large house,
it organises activities according to some protocol but defers to others for the
final decisions, in this case the final decisions are made by a minimal software
kernel.

3.1 Concept — Structures and Operations

Whilst each of the above technologies is quite different the fundamentals of
operation remain constant across all of them. The basic structure of a Butler
device consists of four groups of resources:

– A set of activities — schedulable items;
– A set of pollsets — groupings of activities which are considered to be at

the same priority. Within each pollset a simple round robin approach to
scheduling its activities is adopted;

– A set of stim-wait (or control) nodes — providing a pool of resources for each
activity that allow it to wait for, and be stimulated by, particular events;

– A mechanism to determine the next activity to be executed.

The number of each of the above is dependent on the implementation technology,
and the demands of the target applications; typically the device would allow for
64 .. 128 activities and pollsets, and 24 stim-wait nodes per activity. Each activity
exists in the context of a pollset, which gives it an effective priority — multiple
activities can be associated with a single pollset hence assigning them the same
priority.
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In addition to the structures a number of “instructions” are provided to ma-
nipulate these structures allowing a simple, software scheduler kernel to be lay-
ered over the device. These include:

– Suspend — causes the currently running activity to release control and make
itself schedulable, this allows another activity at either a higher or the same
priority (i.e. in the same pollset) to run if it is ready;

– Wait <BitVector> — causes the current activity to become blocked (setting
the Wait bits defined in the BitVector), the BitVector determines which
events can cause it to become schedulable again;

– Stim <Activity, BitVector> — sets the stim bits defined in the BitVector
for the Activity, if there is a match between the Stim and Wait bits of any
stim-wait node for the Activity it becomes schedulable;

– Next Activity <Activity> — returns the next activity to be scheduled;
– Curract <Activity> — returns the number of the activity that is currently

running (this is not maintained by the scheduler kernel as maintaining mul-
tiple copies of the information could lead to inconsistencies);

– AMI <Boolean>— Anything More Important, used with cooperative schedul-
ing to determine if there is a ready activity at a higher priority than the
current one;

Other instructions are provided for the initialisation of the Butler and to support
“housekeeping” operations.

In addition to the above, each activity is associated with a “watchdog” timer
that can be programmed to trigger if the activity executes for longer than a
desired duration, these appear to provide direct support for an efficient im-
plementation of the Ada.Execution Time.Timers features introduced in Ada
2005 [11].

The Butler sets Stim bits in response to hardware events and the software
Stim “instruction” described above, it evaluates these to determine if there are
any stim-wait matches. When such matches are found, and the pollset (priority)
of the activity with the match is higher than that currently scheduled, the AMI
status is set True and, if in preemptive mode, the processor will be interrupted.
At this point the actual activity to be scheduled is undecided, the decision is only
finalised once a Suspend or Wait instruction has been executed. These cause the
device to freeze the next activity selection logic and identify the highest priority
ready activity. Where there are multiple ready activities in a single pollset the
selection logic is conditioned by the last activity which executed in that pollset.
The Next Activity instruction returns the chosen activity and unfreezes the
selection logic — any events that occurred between the Wait/Suspend and the
Next Activity instructions are now evaluated.

When no activity is schedulable the Next_Activity instruction returns the
value Activity’Last (e.g. 64 or 128); this is a special case activity that is always
considered to be schedulable. It is also the activity that the Butler considers to
be “active” when the device is in a reset state — nothing else can run until a
Suspend–Next_Activity sequence has been executed.
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3.2 Use

The basic approach to using the device is to allocate each thread in the system
to a separate activity, and organise the activities into pollsets according to the
priorities of the associated threads. The activities are then all initialised and
allowed to execute until they set a Wait condition for one of their set of stim-
wait nodes, resulting in the activity becoming stopped; this state persists until
a corresponding Stim bit is set. The Stim bit may be set by a request to the
Butler either from another software thread through execution of a Stim instruc-
tion, by some external event such as an interrupt, or a timer expiring. Once a
corresponding pair of Stim and Wait bits for an activity are both set the activity
again becomes ready.

In a preemptive environment, if the priority of the ready activity is higher
that that of the one currently executing the Butler support device will deliver
an interrupt the processor, the service of which will force a context switch to
the higher priority activity. The preempted activity will be made ready and
returned to the end of its pollset, i.e. it will be eligible to run again only after
all other ready members of its pollset.1 This is clearly a different behaviour
from that required in Ada where the preempted task is placed at the head of its
priority queue — however the “normal” Ada behaviour can be obtained if all
of the activities are simply placed in different pollsets (equivalent to a unique
priority case).

Whilst a preemptive approach has been used successfully on some projects an
alternative way of using the Butler is to adopt a cooperative, or non-preemptive,
scheduling model; this approach results in “better” processor utilisation — a
point which will be returned to later in the paper. When using a cooperative
approach the application code is seeded with “calls” which will allow activities
to be switched if certain conditions are satisfied. The density of the seeding of
the application is dependent on the worst case responsiveness required to any
event — the seeding process needs to be driven by experiment and measurement
and is also discussed later in the paper.

Each of the seeded calls executes one of two primitive operations: in the first
the activity will yield to any activity of higher priority than the current one —
Yield To Higher; or, in the second, it will yield to any of higher or equal priority
to the current activity — Yield. Generally the former is used as it results in
the better utilisation of the processor, and provides a behaviour closer to that
of fixed priority scheduling. In cases where the activities have unique priorities
the Yield and Yield To Higher primitives are, of course, equivalent.

The activity with the value Activity’Last, as has already been mentioned,
is always schedulable. In general this is mapped to some “Null” thread which
in non-interruptible and simply loops repeatedly performing Yield To Higher
operations.

1 At the point of preemption it is not possible to know how many activities will run
before the preempted one, the only safe assumption is that it will be the number of
activities in the pollset minus one.
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4 Integration with Ada

Several different integrations of the Butler with Ada have been successfully im-
plemented. These range from a “bare” solution where only a minimal Ada run-
time system is used; through an approach where a Ravenscar [12] run-time sys-
tem is used simply to create the tasks contexts and provide the context switching
service; and finally, to one where there is a “complete” integration of the device
with a Ravenscar-like runtime. In the latter case the use of tasks and protected
objects and protected procedures as interrupt handlers is fully supported; the
reason for the runtime being described as Ravenscar-like is due to the task dis-
patching scheme being a bespoke, cooperative, round-robin one rather than the
FIFO Within Priorities scheme, and the Priority Ceiling approach to locking
dictated by the Ravenscar profile. The term cooperative is used here to distin-
guish it from the non-preemptive approach defined for Ada 2005 where FIFO
ordering is still required [11].

Rather than consider all of these integrations in some depth just the two
extremes, the minimal runtime and full Ravenscar support, are discussed in
more detail in the sections below.

4.1 Minimal Runtime System

Here a very restricted Ada runtime system is provided, the majority of the task-
ing system is not available, only the basic delay until construct is supported;
this runtime is used in circumstances where the highest levels of safety integrity
are required, for example DO178B level A [13], or DefStan 00-56 [14]. In other
areas the runtime is also severely limited with no support for dynamic memory
allocation in general and access types in particular — the runtime is derived from
the GNAT “zero-footprint” runtime. In this case all of the scheduling services
are provided by a support library (scheduler.kernel) with a very limited set
of interfaces exposed to the application; these interfaces include support for:

– Thread creation;
– Thread wait — for any of a specific set of events;
– Signal event — to a particular thread;
– Yield — allowing any thread, which is ready and whose priority is at or

above the current priority to run;
– Yield-to-higher — allowing any thread that is ready and whose priority is

above the current priority to run;
– Delay until — absolute time;
– Mutex lock/unlock (only when preemptive dispatching is used).

There is no fine-grained control of priority provided with this approach; if mutual
exclusion is required then processor level mutex operations are used — of course
in a cooperative environment (the normal use of the solution), where there is no
preemption, there is no need for explicit mutual exclusion controls, thus these
are only required when used for a preemptive solution.
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There is no support for protected operations in this minimal runtime sys-
tem, posing the question: to what are external events mapped? In this case each
external event is mapped to (one or more) Butler activities, and hence to cor-
responding threads. This might appear to be a rather “heavy-weight” approach
but given the generally sporadic nature of the applications this is not the case.

In the absence of protected and suspension objects the inter-thread communi-
cations, and cross-stimulation, are encapsulated in a set of generic packages that,
using the facilities of the scheduler kernel described earlier, provide a range of
possible inter-thread interactions, both blocking and non-blocking. These inter-
actions are the focus for most of the software-software Wait and Stim scheduling
operations.

In the non-preemptive case the basic principle of operation is that all of the
threads are created by calls to the scheduler kernel in the main subprogram,
which has the lowest possible “priority”. In the creation process all of the threads
are made ready, once this is complete the main procedure enters an endless loop
within which it performs a simple Yield To Higher operation allowing anything
else to be run. This general sequence is shown in the code fragment below for
the creation of two threads, each at different priority.

procedure Main is

begin

Initialise_Kernel; -- Ensures that the Butler is initialised

-- and that Activity’Last is the current activity

Create_Thread (Activity_Ident => Act_Id_1,

Pollset_Boundary => True,

Entry_Point => Thread_1_Main’Access);

Create_Thread (Activity_Ident => Act_Id_2,

Pollset_Boundary => True,

Entry_Point => Thread_2_Main’Access);

-- All threads are now created but none have yet run

--

loop

Yield_To_Higher; -- Allows the highest priority thread to

-- run, it will only return when there is

-- nothing else that is ready to run

end loop;

end Main;

The Yield and Yield To Higher primitives are quite simple and are shown in
the code fragments below.

procedure Yield is

Current, Next : Butler.Activity_Id;

begin

Butler.Suspend;

Butler.Curract (Current);

Butler.Next_Activity (Next);

if Next /= Current then
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Switch_To (Next); -- No point in switching to self...

end if;

end Yield;

procedure Yield_To_Higher is

Current, Next : Butler.Activity_Id;

begin

if Butler.AMI then

Butler.Suspend;

Butler.Curract (Current);

Butler.Next_Activity (Next);

Switch_To (Next); -- If the priority is higher it cannot be self

end if;

end Yield_To_Higher;

The advantage of this approach is that the interface from the application to
the scheduler kernel is thin and hence introduces a very low processing overhead;
the disadvantage is that whilst relatively simple to implement in a bare-board
target it becomes somewhat more problematic to implement over an existing
operating system in either host or target environments; making it difficult to
replicate the bare-board scheduling behaviour in these environments.

4.2 Ravenscar-Like Runtime System

At the other extreme of the spectrum from the minimal runtime approach is that
where a significant, but not necessarily full, Ada runtime is provided, allowing
Ada to be used in a more “traditional” fashion. In this case the runtime used
is a specially tailored variant of the GNAT Ada runtime that supported the
Ravenscar profile.

At the application level the program comprises a number of tasks which in-
teract through protected objects and suspension objects (as provided by the
package Ada.Synchronous Task Control) — much as they would for any “stan-
dard” Ravenscar application. The fact that there is some special scheduler kernel
is transparent to the application, as it is only the Ada runtime that is interfaced
to the primitive scheduler operations. These operations are largely the same as
those for the kernel when using the minimal runtime system described above,
but in this case they are presented somewhat differently.

In this case the facilities provided by the scheduler kernel have to be presented
in a manner compatible with the requirements of the Ada runtime system.2 In
this case a single “operating system” interface package is provided at the lowest
level of the Ada runtime to provide a focus through which to interface to the
underlying kernel. The sections below discuss each of the major Ada language
(tasking) features and how they are realised using the scheduler kernel.

2 Clearly the Ada runtime could be reformulated to match the scheduler primitives,
but this route was not chosen as it was considered to be more difficult to implement.
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Ada Tasks. The Ada tasks are implemented over the threads provided by the
scheduler kernel; every task being associated with a unique thread, and each
thread in turn being associated with a unique activity provided by the Butler.
Thus there is a direct mapping from Ada task to Butler activity, with the priority
of the activity (i.e. its pollset) determining the particular activity to be used.

Priority Inheritance. As noted above when a cooperative scheduling approach
is used there is no need to provide mutual exclusion for resource access. When
used in a preemptive environment the approach to providing mutual exclusion
is dependent on the capabilities of the particular variant of Butler. Ideally the
device supports the notion of temporary priority elevation allowing a ceiling
inheritance protocol to be implemented; however with more primitive versions
of the device this feature is not provided and a simple processor-based mutex is
used — clearly this is far from ideal as it can lead to excessive blocking as in
effect the “ceilings” are set unnecessarily high.

Protected Objects. There are two aspects to protected objects that require sup-
port from the underlying kernel: protected entries; and protected procedures
attached to “interrupts”. In the first case the entry uses a Butler stim-wait pair
dedicated to the interface to the Ada runtime system.

The attachment of a protected procedure to an interrupt is effected by asso-
ciating the procedure with its own particular Butler activity, this is “achieved”
through the pragma Attach Handler.

The use of Butler activities to support handlers mapped to protected proce-
dures gives an opportunity to make the Yield To Higher and Yield operations
more efficient. If the “core” of the operations shown above are replaced by the
code fragment below it allows the invocation of the protected procedure to be
reduced to what is, in effect, a procedure call, reserving the need to perform a
context switch for the task switching case alone.

Suspend;

loop

Curract (Current);

Next_Activity (Next);

exit when Type_Of (Next) = Thread;

Invoke (Next); -- Protected operation executed in context

-- of the current task

end loop;

Switch_To (Next); -- New task

Where the procedure Invoke is:

procedure Invoke (Act : Activity_Id) is

begin

Entry_Points (Act).all; -- Execute the protected procedure

Wait (Release_Mask (Act)); -- Make the protected procedure’s

-- activity ‘‘sleep’’ again

end Invoke;
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Suspension Objects. The Suspension Object, which is provided by the package
Ada.Synchronous Task Control, maps very directly onto the concept of the
stim-wait node provided by the Butler — they are very similar concepts.

Delay Until. The delay until language construct is supported using the timers
of the Butler. Unfortunately these only support relative delays, thus the absolute
demands have to be converted (by the kernel) into this form.

Cooperative Scheduling Support Primitives. Clearly if the Yield operations are
to be used in the application then these need to be provided in some way. There
are two approaches that can be followed, either: provide a scheduler interface
package that exposes the operations directly; or, use “standard” elements of the
Ada language to obtain the desired effects.

The latter approach can only accommodate the yield operation a straightfor-
ward manner — this is achieved through the use of a delay until to either
now, or some time in the past. This has the effect of placing the current task
to the back of the ready queue for its priority and allows any ready thread
of higher or equal priority to run. The Yield To Higher primitive is not sup-
ported directly; though, if the tasks have unique priorities the effect of Yield
and Yield To Higher are identical.

The former approach could be improved if an extension to the runtime were
to be provided to incorporate these facilities. In Ada 2005 there is the concept of
extending the real-time features through a child package to Ada.Dispatching,
so a package Ada.Dispatching.Non Preemptive with a specification as shown
below would allow the operations to be exposed in a useful manner retaining
application independence from the scheduler.

package Ada.Dispatching.Non_Preemptive is

procedure Yield;

procedure Yield_To_Higher;

end Ada.Dispatching.Non_Preemptive;

Such a package has been suggested for inclusion in a future revision of the Ada
language [15].

Advantages and disadvantages. Again as with the zero footprint runtime ap-
proach there are both advantages and disadvantages. The advantages are clearly
that the application only makes use of the Ada tasking features for scheduling
and inter-task interactions (notably the discussion is around the task and not
the thread), and the mapping of the protected procedure to an activity and its
dispatching as a simple procedure call is a very efficient solution. The use of
these two features leads to an inherently more portable application.

On the other side of the coin there are two main disadvantages, these are:

– The runtime is bigger and the interactions with the scheduler are, when
compared to those with the no runtime option, marginally less efficient;
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– The provision of the yield operation is via a rather crude, and possibly ob-
scure approach, and the yield to higher primitive is not provided at all, unless
this is through a scheduler interface package; an approach which degrades
the aforementioned advantage of portability.

Protected procedure “efficiency” is adversely affected by the lack of fine-grained
priority management available in some variant of the hardware, hence this Raven-
scar approach is best suited to environments utilising the more sophisticated
devices.

5 Some Practical Results and Observations

In terms of results there are two main areas to consider: the effectiveness of
the use of the device in place of a traditional software scheduler and hardware
interrupt handler; and the impact of a cooperative scheduling approach over a
preemptive one. Each of these areas is considered in the sections below. In all
these cases the comparisons have to consider large applications, small detailed
studies do not generally provide results that scale to bigger systems.

5.1 A Comparison of Hardware-Supported and Software-Only
Approaches to Scheduling

The alternative, traditional approach considered here is one with tasks being
managed in queues, and hardware events being fielded by relatively simple inter-
rupt controllers with associated software interrupt handlers. Overall a significant
improvement in processing performance has been observed across a number of
systems where hardware assisted scheduling has been employed.

Providing precise figures for this improvement is not simple as there are a
number of interacting aspects, the major two of which are: the lower levels of
software overhead in the maintenance of the scheduler data structures; and, the
“secondary” resultant impact on the effectiveness of the data and instruction
caches. The impact of the latter should not be underestimated as relatively
small changes to the caching effectiveness can have a significant impact on the
available processing capacity.

In general the saving directly attributable to the hardware support is quite
small, in the order of 1% of load; however there are further improvements when
the cooperative approach is also used — this is described in the next section.

5.2 A Comparison of the Cooperative and Preemptive Approaches

At the extreme, in a system with no external events (including timers), these
two approaches will lead to the same scheduling behaviour. However it would
be highly unlikely that any real-time embedded system would exhibit those
attributes.

The comparison is not a simple one, the differences between the two ap-
proaches are driven by a number of factors, the most significant of which are:
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the rate of preemption driven context switches; and the degree to which the
density of the yield points is excessive. The first of these is, in the general case,
the dominant factor.

Preemption has two significant impacts on a modern processor: it disrupts the
instruction pipeline; and causes the cache to be less effective. Whilst the former
is a relatively straightforward effect the second is more complex especially where
multi-level caches are used.

As an example of the possible savings, on one system changing from the
cooperative to a preemptive model decreased the processor loading (as measured
relative to the time spent in the “idle” activity) by 5%. This might not appear
to be a significant saving but in a system where there are high levels of processor
utilisation it can make the difference between the system working or failing, it
should also be remembered that this saving is in addition to that achieved by
simply having hardware support.

5.3 Issues of Seeding the Application with Cooperative Dispatching
Points

Perhaps the biggest impediment to the use of the co-operative approach is the
need to seed the application with calls to the Yield To Higher and Yield prim-
itives. The required density of these calls relates to two factors: the speed of the
processor, and the required responsiveness to any event. If the density of these
calls is excessive then the benefits of the cooperative approach are eroded. Whilst
this seeding might seem an onerous task in reality it only becomes problematic
when the required responsiveness is very demanding — response times of the
order of 30μs (using a relatively slow 133 MHz processor) are easily achieved
whilst gaining significant benefits in available processing capacity.

Some experiments using the compiler to automatically implant the coopera-
tive scheduling calls have been made. In general the results were mixed, overall
the density was acceptable but there were areas of over- and under-seeding. At
this time a simple automated approach does not seem possible, however the
development of more sophisticated tools might be a possibility for the future.

6 Opportunities for Further Enhancements

As implementation technologies continue to evolve so too will the Butler type
devices. The provision of multiple processor cores inside FPGAs present both a
challenge and an opportunity. In the latter case FPGAs can provide a platform
on which a more flexible scheduler can be constructed; whilst in the former
there is the issue of scheduling applications distributed over many processors.
Extensions to the Butler to coordinate the scheduling of tasks across a number of
processors is one area that needs to be explored and developed if the technology
is to remain relevant.

Leaving aside these more distant future issues there are several areas where, in
the short term, the capability of the current scheduler can usefully be extended
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whilst retaining the advantages discussed earlier — in large degree these are
inspired by the changes introduced in Ada 2005 [11]. There are three of particular
interest: the provision of different scheduling policies; the use of the Butler’s
watchdog activity timers to support the concept of execution budgets; and the
development of very low overhead design approaches based on the use of timers
and protected procedures. Taking each of these in turn.

Support of additional scheduling policies. Clearly the support for a round-
robin scheduling regime is rather limited if a more deterministic ordering is
desired. Whilst the original hardware could only support this approach the more
recent “softer” variants of the Butler have been adapted to support at least a
FIFO-within-priorities approach. Equally the current lack of adherence to the
Ada preemption semantics can also be corrected in these later variants.

Beyond this, support for an EDF mechanism is an interesting option as, if it
can be implemented in an efficient manner, it should allow for better utilisation
of the processors. This could be extremely useful given the levels of processor
utilisation are already very high.

Execution time budgets. As noted earlier the Butler has a watchdog timer
associated with the execution of each activity and this can trigger an interrupt
if there is an overrun. This naturally maps on to the concept of execution time
clocks provided in the package Ada.Execution Time.Timers.

A low overhead design approach. Ada 2005 introduces the concept of pro-
tected procedures being executed at some particular time, this is provided by
the package Ada.Real Time.Timing Events. These protected procedures can be
mapped onto the concept of a Butler activity that is controlled by some hard-
ware timer. How useful this approach would be for real application needs more
exploration, but combining these timers with protected procedures for other ex-
ternal events, and using a cooperative approach to scheduling could allow for a
very low overhead solution as it could completely eliminate the need for context
switches, and allow simplification of the required runtime system.

7 Conclusions

The use of a hardware device to support the role of the scheduler has been
shown to both be easy to integrate with an Ada runtime system, and reduce the
overheads associated with task scheduling and interrupt handling. Significantly
in its practical application reported here the greatest benefits are realised when
a cooperative scheduling scheme is adopted.

The examples of use presented in this paper have focused on the issues in
the context of no more than a Ravenscar profile, and in this case there is a
high degree of compatibility. Attempting to extend the scope beyond Ravenscar
to support more fully the Ada tasking model in general does not appear to be
particularly straightforward, however this is not really a significant issue as the
device was always designed with small platforms and high integrity applications
in mind — neither of which are compatible with the full Ada tasking model.
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Abstract. The verification and validation requirements set on high-integrity real-
time systems demand the provision of highly dependable figures for the timing
behavior of applications. It is a well known fact that the adoption of hardware ac-
celeration features such as caches may affect both the safeness and the tightness
of timing analysis. In this paper we discuss how the industrial development pro-
cess may gain control over the unpredictability of cache behavior and its negative
effect on the timing analyzability of software programs. We outline a comprehen-
sive approach to cache-aware development by both focusing on the application
code and by exploiting specific compile-time and run-time support to control
cache utilization.

1 Introduction

The development of High-Integrity Real-Time Systems (HIRTS) faces the obligation to
attain extremely high verification and validation (V&V) coverage. One reflection of that
requirement is that the V&V incidence on the total software development costs nears
if not exceeds 60%. When high-integrity is a paramount concern, system validation is
no longer limited to the functional dimension, but must instead also ascertain system
correctness in the time, space and communication dimensions.

State-of-the-art approaches to the development and verification of HIRTS try to ad-
dress both functional and non-functional system requirements as early in the devel-
opment process as possible. Sound and early information on the timing behavior of
the system is obtained by applying schedulability analysis techniques on an architec-
tural model of the system instead of on the system implementation, and thus ahead of
production.

A fundamental assumption behind this approach is that a most accurate correspon-
dence must be preserved from system design throughout implementation to execution.

It therefore follows that in this development process no system or software design
decisions should ever be made without being perfectly aware of their consequences.
Unfortunately this strong requirement can only be satisfied in practice for simple pro-
cessors and can hardly be guaranteed, for example, in the presence of complex hardware
acceleration features like caches, complex pipelines and branch predictors.

Caches, in particular, may have disruptive consequences on the preservation of what
stipulated in the schedulability analysis of the system, as they cause applications to
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exhibit a disturbingly variable timing behavior. An uninformed use of caches may in fact
hinder the determination, whether by analysis or measurement, of safe and tight bounds
of the worst-case execution time (WCET) of tasks, which is an essential ingredient to
schedulability analysis.

We therefore maintain that the industrial-level development process should embrace
a cache-aware attitude so to regain control over the timing behavior of the system. In our
opinion, a cache-aware development approach should aim at guiding the cache behavior
by controlling the sources of cache-related variability.

In this paper we first reason on the impact of the application code on cache variabil-
ity; we then introduce and partially evaluate a comprehensive approach to control the
cache behavior, exploiting currently available tool, compiler and run-time support.

The rest of the paper is organized as follows: Section 2 introduces the current practice
in industrial development processes with respect to timing analysis; Section 3 discusses
the impacts of application code on the cache behavior; Section 4 elaborates our ap-
proach to restraining both statically and dynamically the cache behavior; in Section 5
we draw our conclusions.

2 Timing Analysis in Current Industrial Practice

Although no simple and exhaustive solution has yet been devised to cope with the inher-
ent unpredictability of caches [1], several approaches have been proposed in the litera-
ture to derive safe and tight bounds of the WCET of tasks running on cache-equipped
processors [2]. Some of these techniques have been successfully integrated into com-
mercial tools, such as RapiTime [3] and aiT [4], and have been successfully applied in
industrial case-studies [5,6].

This notwithstanding, software simulation and testing continue to be the common
practice for obtaining WCET values, due in part to the limited diffusion of WCET tools
and techniques in the industrial practice. Quite surprisingly, in most cases the WCET
bounds are determined on the basis of past experience. A safety margin is then added
to these WCET figures before they are given as input to schedulability analysis. Finally
the WCET bounds are consolidated by testing, where a program (or part thereof) is
executed and dynamically analyzed (measured) a number of times with a variety of
inputs that represent selected configurations and/or operation modes. Safeness of timing
and schedulability analysis thus relies on adequate test coverage and safety margins.

However, in the presence of hardware acceleration features like caches, those mea-
surements are not necessarily safe, hence it is difficult to use them with confidence in
schedulability analysis. The predictive value of scenario-based measurements is drasti-
cally reduced by the impact of caches in the timing behavior of a program [7]. In fact,
the execution time behavior of a program in a cache-equipped processor depends at
the same time on a complex set of interacting factors: execution history, memory lay-
out and task interactions. The actual sources of cache variability and thus of potential
unpredictability can be traced back to a set of cache-related impacts [1,7]:

– Size impact: if the program fits entirely in cache, most memory accesses lead to
cache hits. However, if code or data is subsequently added then many more cache
misses may ensue, resulting in degraded performance.
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– Sequential impact: since cache contents depend on the history of program execu-
tion, and a program typically has multiple paths, the performance of a program can
differ considerably depending on the path taken.

– Concurrent impact: when a task is interrupted or preempted, some of the cache lines
it uses might be evicted by the higher-priority task or interrupt. In this case, memory
accesses to the evicted program blocks on task resumption result in further cache
misses. The voluntary suspension of a task incurs a particular case of concurrent
impact as any other task or interrupt handler may change the cache state until its
resumption.

– Layout impact: where code and data are placed in main memory influences the
pattern of hits and misses. In particular, this can lead to a larger occurrence of
conflict misses, which occur when memory blocks in the working set of a program
compete for space in cache. When conflict misses are systematic, the WCET of a
program can be greatly inflated.

Trying to simultaneously account for those impacts in a scenario-based measurement
approach is very challenging and cumbersome. Moreover those factors may all change
from test to operation, incurring insidiously different execution times.

Hence, HIRTS development cannot rely on an uninformed use of caches, for their
uncontrolled effects on the timing behavior may invalidate the results of timing analy-
sis and, in turn, dissipate the trustworthiness of schedulability analysis. Provided that
none of the academic approaches alone can always produce a safe and tight WCET es-
timate, the only solution is to introduce a paradigm shift. Instead of ignoring the cache
predictability problem and relying on some low-pedigree technique or "magic" tool that
promises to solve the problem, the development process should be aware of the cache
impact and try to ease system analyzability.

In the following sections we discuss two means to reduce cache-related variability:
the first one consists in addressing predictability at the level of application code; the
second focuses on taking explicit measures to (partially) governing the cache behavior.

3 Cache-Aware Coding

Several efforts to cope with cache predictability aim at devising a sound and com-
putationally feasible analysis approach or try to avoid those hardware features or de-
sign choices that may incur less predictable behavior (e.g.: dynamic branch predictors,
out-of-order execution, unpredictable cache replacement policies). Over and above the
adoption of sound analysis approaches and hardware countermeasures, however, we
must note that cache behavior is also highly affected by the actual program code, both
in terms of performance and predictability. Let us now single out the specific dimen-
sions in which the program code may impact the cache behavior.

Code patterns. Appropriate code structure contributes to improving WCET analysis
by removing those unnecessary sources of overestimation that hamper both static anal-
ysis and hybrid measurement-based approaches to cache analysis. As observed in [7],
the I-cache may be very susceptible to some critical code patterns (cache-risk patterns)
that can incur a considerably variable cache behavior under some specific cache size,
memory layout, execution path or patterns of preemption/suspension.
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Besides these extreme instances, cache behavior is inherently affected by the fabric
of the software program. Code patterns that display greater reference locality obviously
attain better cache behavior in term of performance. With respect to I-cache, for exam-
ple, low-level loops1 highly benefit from the use of caches.

Devising good patterns for D-cache behavior is a more challenging issue: the idea of
reference locality itself is not as intuitive as for instruction caches since it actually de-
pends on how (and how often) data are accessed and reused. Data accesses are far more
input dependent than instruction fetches: they not only depend on input-dependent con-
trol flow (as for instructions) but also on the input data as far as they directly influence
the memory accesses (e.g.: an array index). A classification of data structures and access
patterns from the standpoint of D-cache predictability is provided in [8].

Coding styles. More in general, coding styles may also affect, both negatively and
positively, the tightness of timing analysis with respect to caches. We think that we
should do all we can to avoid those code constructs that may yield to overestimation
(e.g.: pointers, dynamic references, recursion, etc.). We should instead seek program-
ming styles that favor, for example, more effective detection of infeasible paths, crucial
for the tightness of WCET bounds, and reduce execution time variability. In general,
coding styles also highly influence the amount of user intervention required by anal-
ysis tools: for instance, allowing automatic loop bound detection. For example simple
enumeration-controlled for-loops are easier to bound than logically-controlled while-
loops where the exit condition does not depend on a simple iteration variable.

However, it is worth noting that the final application code is obtained through a set of
compiler transformations and optimizations which could be transparent to the program-
mer and may map the same code construct into differing machine code patterns. For
example, the switch-case construct may be implemented as a sequence of conditional
branches as well as through (less predictable) dynamic jumps via a table of indexes.
Some studies [9,10] aim at devising WCET-aware compiler optimizations to be auto-
matically applied at compile time.

Moreover, execution time variability stems from the predominant way of program-
ming, which is typically geared to optimizing the average case, rather than the worst
case. The idea behind some alternative programming paradigms, like the single-path
programming approach [11], is very effective at avoiding overly different execution
times between executions along alternative execution paths. Unfortunately, it suffers
from serious drawbacks in term of both increased WCET and code size.

Generated vs. hand-written code. Automatically generated code typically differs
from hand-written code in several respects. In the regard of the instruction cache, hand-
written code is typically more cache-worthy than generated code, as the nature of hu-
man reasoning yields better reference locality in the code. Conversely, generated code
is often characterized by the presence of long linear sequences of code that exploit no
(or poor) temporal locality and typically pollute the cache.

Although hand-written code might seem to outperform the generated one in terms of
cache performance, it is not the case with respect to code predictability and analyzabil-
ity, where generated code often is much simpler to analyze (e.g.: by easing the detection

1 Loops that neither contain any procedure call nor exceed the cache size.



Cache-Aware Development of High-Integrity Systems 143

of infeasible paths). In fact, code-generation engines usually produce structured code
that follows a set of predefined code templates: analyzability thus depends on whether
those templates are easy to analyze or not. Analysis tools can leverage this knowledge,
which is certainly easier to acquire in that it suffices to focus on and understand just a
limited set of recurring code constructs. Moreover, as code is typically generated from
the specification of a model, information required to tighten the analysis results may be
automatically derived from the model itself.

Automated code-generation facilities, which follow the Model-Driven Engineering
(MDE) paradigm, are increasingly adopted in the industrial domain (e.g. SCADE [12],
Matlab/Simulink [13]). As a matter of fact, industrial-quality HIRTS routinely integrate
generated code from different modeling tools together with manual code.

To the best of our knowledge, however, no industrial-quality code generation engine
exists that is expressly focused on generating predictable cache-aware code. Yet, some
advanced software development suites do address the integration of WCET analysis
tools in the development process (e.g. aiT integration into SCADE).

It is worth noting that both cache-aware code patterns and coding styles would be
more easily enforced through automatic code-generation approaches (as well as com-
piler transformations), thus to preserve analyzability by construction.

Software architectures. From the standpoint of a component-based engineering
approach, each software module is regarded as a component that concurs to the im-
plementation of the overall system functionality. In this setting, the role played by soft-
ware architectures is that of determining both the overall structure of the system and the
pattern of tasks interleaving and interactions.

Accordingly, the timing behavior of each single component cannot be analysed in
isolation, disregarding the impact of software architecture both in static (i.e. compile-
time) and dynamic (i.e. run-time) dimensions.

Arguably therefore, software architectures affect the timing behavior of the overall
system as they influence most sources of cache-related variability. In fact, the timing
variability suffered by single components is at least related to three of the cache impacts
discussed in Section 2: the layout, sequential, and concurrent impacts (Figure 1).

From the opposite point of view, one and the same component may incur variable
timing behavior when immersed in distinct software architectures. In that light, software
architectures should be evaluated over and above single components as a source of
impact on cache behavior and a means to better control the overall system predictability.

In HIRTS, where addressing variability and predictability in an early stage of the
development process is of utmost importance, cache-awareness should be regarded as a
factor of choice between alternative architectures. Architectural static impact addresses
the variability stemming from the static configuration of the system and can be traced
back to sequential and layout impacts. Conversely, the dynamic impact relates to run-
time variability and originates from the concurrent impact.

With respect to sequential and layout impact, each software architecture may incur
and even demand changes in the code surrounding its constituting components, or may
require the insertion of new code just inside those components (whether explicitly by
the user or automatically by the compiler).
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Fig. 1. Impact of SW architectures

Let us consider, for example, a software architecture that performs run-time monitor-
ing through code instrumentation2. The execution time overhead incurred by the (more
or less complex) instrumentation code is not limited to the time taken by the execution
of the instrumentation points themselves but accounts for a variable cache behavior,
stemming from a modified execution path and memory layout, which are no longer the
same as that of the task in isolation. In particular, a tiny modification in the memory lay-
out can incur a different amount of cache conflicts and, in turn, a considerably different
timing behavior, as observed in [1].

When it comes to system run-time behavior, software architecture specifications de-
termine the patterns of possible interrupts and preemptions, by way of synchronization
protocols, resource access protocols, timer interrupts, and so forth. The resulting run-
time variability perfectly matches our previous definition of concurrent impact.

For example, an HIRTS software architecture may include and require the use of
execution-time timers (like those of Ada 2005 [14] and, similarly of POSIX [15]) to
assure that tasks do not disobey at run time what was stipulated for the duration of
their execution. Activating, suspending or resetting such timers would activate as many
interrupts, and consequently trigger a particular concurrent impact.

A cache-aware architecture may reduce the cache variability with respect to each
cache impact (e.g.: limiting the number of conflict misses and interferences), thus im-
proving the precision of cache analysis and allowing a more predictable cache behavior.

4 Controlling the Cache Behavior

Besides the adoption of a proper programming approach, an uninformed use of caches
may lead to uncontrolled variability in the timing behavior of a system. The cache

2 A monitoring technique where each component is augmented with non-functional code tasked
to collect the run-time traces of the component behavior to ensure that it conforms to certain
bounding parameters.
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impact taxonomy introduced in Section 2 is the cornerstone to attaining control over the
cache behavior and increasing its predictability, as cache impacts well characterize the
very sources of cache-related variability. We identified and implemented two different
but complementary approaches to control statically and dynamically the cache behavior
with a view at reducing the cache impacts and thus system variability.

The first method builds on statically restraining the layout impact by controlling the
memory layout of a program. The second approach consists in controlling the cache
utilization by deciding at run time whether and when a task is allowed to use the cache,
thus affecting the extent of the concurrent impact in particular.

Both methods, of course, require some kind of aid from the compiler, as well as from
dedicated support tools. To this extent, our approach specifically leverages on the Ada
tool-chain by AdaCore and targets the LEON2 processor3. In the following sections,
we describe those two methods and discuss the support they require, both in terms of
compiler and support tools. Controlling the memory layout, in particular, relies on the
availability of precise information on the program structure (i.e., its call graph).

4.1 Understanding the Program Structure

Collecting the call-graph information of a program is a fundamental step towards the
analysis of its timing behavior. Unfortunately, some malign constructs, like indirect and
dispatching calls, can make it considerably more difficult to gather sound and detailed
information. Our approach builds on specific compiler support to devise the call graph
information of a program.

A compiler typically collects information about subprogram calls for the code it
processes. This information, together with control-flow analysis can be used to compute
the full call graph for the application.

Leveraging the compiler’s internals has a number of advantages. One of them is that
it points directly at the user level constructs, making it much easier to understand the
information than just having to do with plain references to the object code. It is also
easy to port to different targets, and it works smoothly with any optimization level.
Furthermore, a compiler has visibility on semantic information that can help tackle
some challenging issues, such as for example, potential targets of an indirect call which
can be determined based on subprogram profiles, actual references to subprograms, and
visibility information.

A possible approach consists in devising compiler extensions4 to generate per-unit
call-graph information. One node is generated per subprogram, and one directed edge
is generated to materialize a may_call relationship. The obtained information is then
parsed to produce the complete call graph.

Indirect (including dispatching) calls, challenge static analysis because the target
of these calls depend on the actual context of the execution. The approach followed
here is to restrict the set of potential targets to those that could eventually be called at
execution time. For dispatching calls we can create a global view of the class hierarchies
and primitive operations and, with this information, we can later determine the list of

3 http://www.gaisler.com
4 Such extensions have been realized by AdaCore.

http://www.gaisler.com
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potential target primitive operations for a dispatching call. Likewise, for indirect calls
(dereferences to values of access-to-subprogram types), the list of candidates is limited
to those with a compliant profile and for which a reference has been taken.

4.2 Compute Better Code Organization

Caches introduce more jitter into a program’s execution time profile because cache
misses take much longer than cache hits – this variation complicates WCET analysis.

The cache impacts, introduced in Section 2 as those factors that contribute to execu-
tion time variation in the presence of caches, are quite difficult to analyse and cope with
altogether. To a large extent, controlling the size and sequential impacts of the cache is
very challenging and perhaps even impossible. However, careful placement of code and
data in main memory can potentially avoid all conflict misses. This would eliminate, or
at least alleviate, both the concurrent and layout impacts, bringing the following advan-
tages: (1) a possible reduction in the WCET; (2) the prevention of sudden changes in
the execution time profile of a program; and (3) the provision of absolute guarantees on
the worst impact that cache misses can have on programs.

The layout mechanism implemented by a linker does not typically place code5 with
cache behaviour in mind, simply placing subprograms in consecutive memory locations
according to the order in which they appear in the object files. This is clearly susceptible
to inadvertent increases in the number of cache misses if either the ordering or the size
of subprograms change between compilations, or indeed new subprograms are added.
There is therefore a need to compute a cache-aware code layout a priori to the linking
stage, and then force the subprogram address chosen by the layout algorithm onto the
linker – this latter step can be achieved via a linker script.

Computation of a cache-aware code layout requires compiler support to emit, at a
minimum, a list of all subprograms to be placed in memory and their sizes in bytes.
One of the authors of this paper has worked on the development of an Instruction Cache
Conflict Analyzer (ICCA) [16] tool which then computes such a layout through two
different mechanisms.

The first uses a Genetic Algorithm (GA) to produce successive generations of lay-
outs, each of which is evaluated in the manner depicted in Figure 2. Assuming a rep-
resentative address trace of program execution has been collected (typically through
simulation), this is remapped according to the address ranges specified in the new lay-
out. This remapped address trace is then run through a cache simulator which records
how many misses arose through conflicts in the cache, thus disregarding cold and com-
pulsory misses. A layout with few conflict misses obtains a high fitness value, and sub-
sequent generations (of layouts) are then produced through the normal crossover and
mutation operators of GAs. This process iterates until a particular stopping criterion is
satisfied, normally after a certain number of generations has evolved or a time budget
has been exhausted.

5 Controlling the data layout is not straightforward since some data locations are dynamically,
rather than statically, computed, e.g. data on the stack and call-by-reference parameters. In-
structions, on the other hand, are fixed and unmodifiable at compile time; for this reason, we
focus exclusively on the code layout in the remainder of the discussion.
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Fig. 2. Stages involved in evaluating a layout generated by the genetic algorithm

This mechanism has a few issues, however. In practical terms the evaluation of each
generation of layouts can be quite slow, particularly as we want the representative ad-
dress trace to be large so as to mirror actual program behaviour. That is, running each
remapped trace through the cache simulator is expensive and may lead to termination
of the GA after only a few generations, potentially leading to a layout not much better
than the default one produced by the linker. A more crucial limitation of this approach
is that it ignores structural properties of the program which have been resolved at com-
pile time, such as the calling relation between subprograms and the control-flow graphs
of each subprogram. The structural layout algorithm [17], on the other hand, takes ad-
vantage of this information. In a first step, it identifies frequently executed subprograms
by eliciting loop bounds, either user annotated or automatically derived [18], and by
taking account of overall program structure. The second step then proceeds to place
subprograms with large frequencies into non-conflicting regions of memory, progres-
sively fitting in less frequently code. However, observe that this algorithm assumes that
there is compiler support in place to allow call graph and control-flow graph extraction.

Further complicating the layout algorithms is the fact that they may be subject to cer-
tain constraints. For example, as the software passes through various bug fixes, or new
functionality is added, it may be critical that particular subprograms reside in the same
location as they did in the previous layout because the software is already operational
and patching must be kept to a minimum. In a similar vein, there may also be areas of
memory where code should not be placed because, for example, they are reserved for
interrupt handlers.

Limitations of cache-aware layouts. Although control of the layout is crucial to the
goal of governing system timing behaviour, it is not without limitations. In particular,
the following problems can arise in practice:

1. The accuracy of the structural layout is highly dependent on the accuracy of loop
bounds. For many loop structures, the upper bound is not immediately obvious
from simple inspection of the source code and is further complicated by dependen-
cies on bounds between loops (so-called nonrectangular loops). In addition, static
analysis techniques cannot automatically compute all bounds since this equates to
solving the well-known Halting problem. All these properties create the possibility
of the structural layout algorithm giving priority towards code which is executed
less frequently than expected. One potential solution is to glean loop bounds dur-
ing processing of a representative address trace, but this requires thorough testing
to ensure confidence in the obtained bounds.

2. The structural layout only considers the static properties of the code, without con-
sideration of dynamic properties such as mode-specific behaviour or infeasible
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Fig. 3. Experimental framework to evaluate controlled code layout

paths. For example, in an application with many modes, it may be more desir-
able to ensure the group of subprograms in a particular mode of operation do not
collide in the cache. However, deriving this type of flow information is extremely
complicated.

3. Determining which program blocks collide in cache assumes a predictable cache
replacement policy, such as Least Recently Used (LRU). Many caches, however,
utilise pseudo-LRU or random replacement strategies, thus it is not possible in ad-
vance to deduce which memory accesses cause conflict misses.

4. The granularity of the computed layout is dictated by the level of linker support
available. Most linkers only allow the addresses of subprograms to be specified,
although in principle finer levels of granularity, e.g. at the loop level, would al-
low a better placement of code and therefore a better resolution of potential cache
conflicts. A crude source-level solution is to place loops into individual subpro-
grams, but this has the disadvantage of increasing stack overheads, not least violat-
ing sound coding guidelines.

Experimental Evaluation. In order to evaluate the effectiveness of a controlled layout
in practice, we analysed a large-scale piece of software representative of part of the
Attitude and Orbit Control System (AOCS) component of a typical satellite system. We
used a bespoke cache simulator configured with the instruction cache settings found on
a typical LEON processor; that is, size of 32 KiB, line size of 32 bytes, associativity of
4, and LRU replacement policy. The exact mechanics of the experimental framework
are shown in Figure 3 and described as follows.

The source code was compiled using a standard GCC cross-compiler for the SPARC
architecture, producing a binary that was subsequently disassembled using the objdump
utility. In order to reconstruct the control-flow graphs and the associated call graph of
the entire program — both of which are needed in the structural layout algorithm men-
tioned above — we developed a graph constructor tool, which reads SPARC disassem-
bly and then writes these data structures to a program structure file. We also developed
a tool to generate an address trace from the program structure file. This basically works
by walking the control-flow graphs and dumping the addresses of the instructions con-
tained in each traversed basic block to a file. When a basic block is encountered that
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leads to a subprogram call, a switch is made to the called control-flow graph; otherwise
we randomly choose the next (successor) basic block to visit. In this case, the address
trace generated contained 582,376 memory accesses.

The ICCA tool developed generates a best-case layout and a worst-case layout. The
former is based on the structural information of the program and uses loop bounds
obtained from a single parse of the address trace (its accuracy is therefore subject to one
of the shortcomings noted above). On the other hand, the latter is computed by placing
each subprogram on an 8 KiB (i.e. cache size divided by associativity) boundary in
order to maximise the possibility that subprograms evict each other. For both layouts
the address trace generated was remapped so that each memory reference corresponds
to the new address in the new layout. Finally, we ran both the remapped address traces
through the cache simulator, which records how many misses occurred.

Table 1. Comparison of layouts for the GNC task

Layout Hits Misses

Best layout 582,115 261
Worst layout 526,444 55,932

Table 1 reports the number of cache hits and misses for the Guidance and Navigation
Control (GNC) task, which cyclically checks for the current satellite coordinates and
computes the new direction. The GNC functional specification, excerpted from a real
HIRTS application, involves 35 different sub-procedures. The reported results clearly
underline that the best layout performs better than the worst layout as only 0.04% of
memory accesses result in misses in comparison to 9.6%. Further inspection of these
261 misses reveals that most are due to compulsory misses, whereas the worst layout
causes conflicts between subprograms and hence the degraded cache performance.

4.3 Dynamically Managing Cache Utilization

A cache-aware approach should also consider that allowing an unconditioned use of
caches to all tasks is highly unlikely to be the best choice. Since not all the application
code is worth of using the cache a naive policy would consist in favoring cache access to
cache-worthy tasks. However, since HIRTS typically implement several functionalities
at different criticality levels we may also consider that the most critical (or difficult to
analyse) part of the system should not be affected by cache variability.

There are two main approaches to manage cache utilization, based on either restrict-
ing (partitioning) or controlling (locking) the cache behavior. As this paper reflects
work that targets the LEON2 processor, which does not support partitioning, we focus
on run-time management of the cache.

The run-time mechanism to enable/disable the cache will allow users to define the
parts of the application that will execute with the cache enabled/disabled. A similar ap-
proach has been previously implemented by Universidad Politécnica de Madrid (UPM),
as an extension to ORK+[19].

The status of cache enabled/disabled will be kept per-task, with the required machin-
ery during context switches. It means that if task A decides to disable the cache for
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executing a given activity, if it gets preempted by task B, the context switch will enable
the cache for task B (assuming that task B was executing with cache enabled), until
control gets back to task A which will execute with the cache disabled until it decides
to enable again the cache.

Both the data and instruction caches can be handled this way. We can either handle
one of them or both at the same time, and the run time keeps track of the separate status
of the two different blocks. By default, the caches are handled per-task, but it is also
possible to change the behavior for all the tasks at the same time.

With respect to asynchronous interrupts, the cache status will be the same as that of
the interrupted task. This behavior can be changed for all interrupts using the freeze
on interrupt capability, by which the corresponding cache will be frozen when an asyn-
chronous interrupt is taken. The execution of the interrupt handler will not evict any
cache lines and when control is returned to the interrupted task, the cache state is iden-
tical to what it was before the interrupt.

The proposed interface for managing the cache is shown in Listing 1.1 below.

1 package System . Cache_Control is
2
3 type Cache_Type is ( I n s t r u c t i o n , Data ) ;
4 −− The g r a n u l a r i t y o f the operat ions can be on e i t h e r the
5 −− i n s t r u c t i o n or the data cache .
6
7 type Cache_State is ( Disabled , Enabled , Frozen ) ;
8 −− The three d i f f e r e n t s ta tes f o r the cache
9

10 procedure Enable_Cache
11 ( Cache : Cache_Type ; Par t i t i on_Wide : Boolean := False ) ;
12 −− Enables the use of the i nd i ca ted cache memory f o r the task
13 −− t h a t performs the c a l l . I f Par t i t i on_Wide i s set to True the cache
14 −− i s enabled f o r the whole p a r t i t i o n ( a l l the tasks i n the system ) .
15
16 procedure Disable_Cache
17 ( Cache : Cache_Type ; Par t i t i on_Wide : Boolean := False ) ;
18 −− Disables the use of the i nd i ca ted cache memory f o r the task
19 −− t h a t performs the c a l l . I f Par t i t i on_Wide i s set to True the cache
20 −− i s d isab led f o r the whole p a r t i t i o n ( a l l the tasks i n the system ) .
21
22 procedure Enable_Cache_Freeze_On_Interrupt
23 ( Cache : Cache_Type ; Par t i t i on_Wide : Boolean := False ) ;
24 −− The i nd i ca ted cache w i l l au toma t i ca l l y be f rozen when an asynchronous
25 −− i n t e r r u p t i s taken . I f Par t i t i on_Wide i s set to True then f reeze on
26 −− i n t e r r u p t i s set f o r the whole p a r t i t i o n ( a l l the tasks i n the system ) .
27
28 procedure Disable_Cache_Freeze_On_Interrupt
29 ( Cache : Cache_Type ; Par t i t i on_Wide : Boolean := False ) ;
30 −− Disable the f reeze on i n t e r r u p t c a p a b i l i t y f o r the i nd i ca ted cache . I f
31 −− Par t i t i on_Wide i s set to True then f reeze on i n t e r r u p t i s set f o r the
32 −− whole p a r t i t i o n ( a l l the tasks i n the system ) .
33
34 function Cache_Status ( Cache : Cache_Type) return Cache_State ;
35 −− Returns the cache s ta tus f o r the c a l l i n g task
36
37 procedure Cache_Flush ( Cache : Cache_Type ) ;
38 −− Flush the i nd i ca ted cache
39
40 end package System . Cache_Control ;

Listing 1.1. Cache management package
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The initial cache state for a task (that is whether instruction and data cache are ac-
tivated or not) will be the cache state at the moment of the task activation (the state at
system initialization for library-level tasks, and the state of the parent task when creat-
ing the new task).

Inhibiting the cache would be useful mainly in two different situations: first, when we
want to reduce the interference, such as when we prevent background low-priority tasks
from disrupting the cache contents (and therefore timing behaviour) of higher priority
tasks; second, to prevent counterproductive cache evictions, such as those happening
when there are parts of the code that do not take advantage of the cache (for example,
when there is a long linear sequence of code) but would force useful cache contents out.
Therefore, we can disable the use of the cache when we want to reduce the interference
or when we do not take advantage of the cache.

5 Conclusions

The current industrial approach to timing analysis, which still relies on scenario-based
measurements and safety margins, is arguably inadequate to cope with the timing vari-
ability incurred by caches. The industrial practice of HIRTS development cannot rely
on an uninformed use of caches, but should instead embrace a cache-aware attitude.

In this paper we introduced a comprehensive and multifaceted approach to cope with
cache-related variability that focuses on the properties of the application code and on
compile- and run-time support to inform or partially control the cache behavior.

The application code should be regarded as a distinct source of cache unpredictabil-
ity since code patterns, coding styles and software architectures, although at different
granularity level, can effect the cache behavior. The adoption of cache-aware code pat-
terns and coding styles, as well as the choice of cache-aware software architectures,
greatly help cache analysis and reduce its inherent variability. Automated code gener-
ation engines should help in factorizing proper coding styles and patterns, to enforce
cache-awareness and analyzability by construction.

A complementary approach consists in partially controlling the way the cache op-
erates by limiting the sources of variability. We identified two dimensions in which to
operate for the sake of improved predictability: forcing a cache-aware memory layout
by minimizing the number of conflict misses and selectively enable/disable the cache
on a per-task basis.

Unfortunately, cache-awareness is most effective when applied at the lowest level,
near the machine code. This obviously contrasts with the trend in the industrial devel-
opment process, where increasingly complex problems are dealt with at increasingly
higher levels of abstraction. In our opinion, cache-awareness and predictability issues
should be addressed – as early as possible – at higher levels of abstraction and then
automatically translated to lower levels by exploiting proper tool support.

Although much work still has to be done in this direction, the ideas and approaches
described in this paper provide supportive evidence that cache-awareness can be prac-
tically leveraged in the industrial development process.
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Abstract. Modern methodologies for the development of high-integrity real-
time systems leverage forms of static analysis that gather relevant characteristics
directly from the architectural description of the system. In those approaches it
is paramount that consistency is kept between the system model as analyzed and
the system as executing at run time. One of the aspects of interest is the tim-
ing behavior. In this paper we discuss how the timing properties of a Ravenscar
compliant system can be actively preserved at run time. The Ravenscar profile
is an obvious candidate for the construction of high-integrity real-time systems,
for it was designed with that objective in mind. Our motivation was to assess
how effective the Ravenscar profile provisions are to the attainment of property
preservation. The conclusions we came to was that a minor but important ex-
tension to its standard definition completes a valuable host of mechanisms well
suited for the enforcement and monitoring of timing properties as well as for the
specification of handling and recovery policies in response to violation events.

1 Introduction

In recent years, methodologies for the development of high-integrity real-time systems
have started to adopt styles that leverage forms of static analysis mostly based on an
architectural description of the system. One of the core concerns of those development
methodologies is to facilitate the early analysis of the design attributes that are critical to
the computation, time, space and communication behavior of the system. The adopted
architectural description language and the methodology that uses it should therefore
permit the required forms of analysis to be performed as early as possible in the devel-
opment process, typically much earlier than implementation and test on target.

This prerequisite is important, because when design attributes are used as input for
system analysis, they later constrain system execution in order that the analysis assump-
tions can actually (continue to) hold true at run time. Ultimately therefore those design
attributes turn into system properties. Preservation of properties at run time then be-
comes an essential provision to warrant consistency between the system as analyzed
and the system during execution. In fact, any deviation that the system execution may
incur at run time from the initial stipulations may invalidate the analysis results and
cause undesirable consequences. Obviously, the nature of the attributes that the analysis
techniques in use want set on the system determine how strict and taxing the preserva-
tion measures must be. A simple yet coarse analysis may demand little in the way of
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run-time preservation capabilities, but it may also result in ineffective design. More so-
phisticated analysis costs more in both the intellectual gears required of the user and the
support needed for preservation, but it also permits finer-grained control of the design.

In this paper we focus on how to ensure the preservation of timing properties at run
time. This goal can be achieved with three distinct and complementary provisions:

1. enforcing the timing properties that are to stay constant during execution;
2. monitoring the timing properties that are inherently variable in so far as they are

influenced or determined by system execution;
3. trapping and handling the violations of asserted properties.

In class 1 we include the provisions needed to enforce the period for cyclic tasks and
the minimum inter-arrival time (MIAT) for sporadic tasks. Those values are stipulated
as constants that feed schedulability and performance analysis and they must therefore
be obliged as exactly as possible during execution. Needless to say, the granularity and
accuracy of the software clock and the absolute vs. relative nature of delays have a
tremendous influence on the degree of preservation that can be attained.

Provisions in class 2 concern the monitoring of the execution time of tasks and their
deadlines. Both attributes are intrinsically variable, the latter because, while we may set
deadlines as relative, when they take effect they are obviously absolute and thus depend
on current time.

The ability to monitor those variable attributes is the prelude to being able to detect
the violations of their bounds as well as identify the failing party. The bound assumed
for task execution time is the worst-case value of it, known as WCET, which should not
be overrun. Deadlines should not be missed, which we can detect by observing whether
the jobs of tasks always complete before their respective deadline.

Those provisions belong in class 3, together with the ability to act on the violation
event following some user-defined policy.

In this paper we discuss a practical strategy to attain the preservation of the timing
properties of interest. We want this strategy to be effectively applicable under the con-
straints of the Ravenscar profile [1], which we regard as the most appropriate run-time
infrastructure for high-integrity real-time systems.

We also contend that the ability to monitor the execution time of tasks is crucial in
two distinct ways: it helps us adjudge the cause of a timing-related violation event with
suitable accuracy and it permits to trigger the designated handling procedure with the
least possible latency.

The ability to monitor execution time responds to two important yet basic needs:

– First, we must acknowledge that the worst-case execution time (WCET) of tasks
is a most fundamental input to schedulability analysis. Designers are required to
feed the analysis equations with a value that is both safe, that is, no less than the
actual task WCET, and as tight as possible so as to avoid overly pessimistic analysis
results. Unfortunately, obtaining bounds with both those two characteristics is a
tough call for both the scientific community and the current industrial practice.
Hence systems are statically analyzed on the basis of bounds that may prove unsafe
in some possibly extreme scenarios of execution, whether normal or erroneous, and
thus incur WCET overruns that invalidate the assurance of analysis.
The use of execution-time timers allows to promptly detect such overruns.
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– Second, execution-time monitoring serves industrial developers most practical, ef-
fective and standard means to measure the execution of tasks in the most accurate
and representative settings with respect to both hardware and operational scenarios.
These measurements, when obtained through high-coverage verification and vali-
dation activities provide useful confirmatory evidence of the WCET bounds used
in the analysis.

The remainder of the paper is organized as follows: in section 2 we briefly recall the
essentials of the Ravenscar profile and account for its ongoing evolution; in section 3
we show how to enforce static timing properties; in section 4 we discuss how to monitor
variable timing properties; in section 5 we propose some policies to detect and handle
violation events; in section 6 we draw some conclusions.

2 The Ravenscar Profile

The Ravenscar profile (RP) [1] was one of the most prominent outputs of the 8th Inter-
national Real-Time Ada Workshop (IRTAW), held in 1997. It was subsequently subject
to minor refinements and clarifying interpretations during the 9th and 10th IRTAW in
1999 and 2002 respectively.

The RP has ever since received growing attention by the scientific, user and imple-
mentor community alike. Several industrial-quality implementations of it exist to date.
Furthermore, with the 2005 revision of the Ada language it has also become a standard
part of the language.

The rationale for the RP is to provide a restricted tasking model suited for the devel-
opment of high-integrity real-time systems.

The Verification and Validation (V&V) activities for that class of systems include
the use of static analysis to analyze the behavior of the system in the time and space
dimensions. To best serve this need, the profile: excludes all Ada constructs that are
exposed to non-determinism or unbounded execution cost; prescribes the use of a static
memory model; and constrains task communication and synchronization to the use of
protected objects under the ceiling locking protocol. The resulting run-time system can
be implemented on top of a real-time kernel of little complexity – which is good for
certification – and high space and time efficiency.

In our timing properties preserving architecture we use the following Ada constructs
and features:

(i) the delay until statement, for the enforcement of the period of cyclic tasks and
the MIAT of sporadic tasks (see section 3 for details);

(ii) Timing_Event declared at library level, for deadline monitoring (see section
4.1); and

(iii) execution-time timers for monitoring task WCET (see section 4.2).

Timing_Events and execution-time timers were introduced in the 2005 revision of the
language, together with the standard definition of the RP. Timing_Eventswere – with
definite benefit, as we shall see later – included in the Ravenscar profile, but under the
restriction that they be declared at library level only [2]. Conversely, although the need
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to monitor the run-time behavior of tasks even under the Ravenscar constraints was
evident, execution-time timers were excluded, for it was feared that the asynchronous
nature of timer events would hamper the predictability of execution and cause a disturb-
ing increase in the run-time overhead of implementations.

Interestingly, the cost-related element of the cautionary argument behind the
exclusion of execution-time timers from the RP does not hold anymore: several industrial-
quality implementations of the RP have recently been extended with (restricted) exper-
imental support for it, e.g.: MarteOS [3] and ORK 2.1 [4]. The latter implementation
is a real-time kernel developed by the Polytechnic University of Madrid, which targets
the LEON21, a SPARC V8 processor. ORK 2.1 provides a lightweight implementation
of execution-time timers, restricted to at most one per task. To facilitate use in high-
integrity systems, ORK 2.1 provides a very comprehensive score of upper-bounds to
the timing overheads of all its primitive services, including those for execution time
monitoring.

Table 1 summarizes the run-time overhead incurred by the timer management pro-
cedures of the Execution_Time package.

Table 1. ORK 2.1 time overhead of Execution_Time procedures (in processor cycles)

Package Procedure Execution time
Execution_Time Clock 435
Execution_Time CPU_Time + Time_Span 58
Execution_Time CPU_Time − Time_Span 58
Execution_Time CPU_Time < CPU_Time 65
Execution_Time CPU_Time ≤ CPU_Time 77
Execution_Time CPU_Time > CPU_Time 73
Execution_Time CPU_Time ≥ CPU_Time 51
Execution_Time Split(CPU_Time, Seconds_Count, Time_Span) 1142
Execution_Time Time_Of(Seconds_Count, Time_Span) 80

In spite of the negative effect caused the very poor clock registers provided in the
LEON2 processor architecture, the overheads reported in Table 1 arguably demon-
strate, from the standpoints of both implementation and execution, that the inclusion
of execution-time timers can be afforded in the Ravenscar profile. The subsequent dis-
cussion will also show that the other concern, that of permitting asynchronous timer
events to unduly occur during execution is defeated under the use that we propose.

Acknowledging this evidence, the 14th IRTAW held in October 2009 formalized
an Ada Issue (AI) proposal for the inclusion of execution-time timers in the standard
definition of the Ravenscar Profile. At the time of writing, that AI has been submitted
to the approval of the Ada Rapporteur Group (ARG) for evaluation.

We look very favorably to this possible revision of the RP. As we discuss in the sequel
in fact, the availability of execution-time timers is absolutely central to the suite of run-
time mechanisms we need for the realization of detection and handling of time-related
faults in a Ravenscar-compliant system.

There has been heated (yet amicable) discussion as to whether the RP should stay
fixed as sanctioned in the Ada 2005 standard and let any extensions (as opposed to

1 http://www.gaisler.com

http://www.gaisler.com
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general modifications) of it form a distinct profile. Our view in that regard is that if a
language feature is deemed useful for the intent and purposes of the RP and its imple-
mentation incurs low-enough space and time overhead, then it should incrementally add
to the standard RP instead of feeding a separate derivative profile.

3 Enforcement of Timing Properties

The first class of timing properties we described in section 1 comprises constant prop-
erties that can be enforced explicitly, like the task period in cyclic tasks and the MIAT
in sporadic tasks.

The task period can be straightforwardly enforced with the use of an absolute delay,
as supported by the delay until statement of Ada, which separates in time successive
activations of jobs of that task, each job being represented by the inside of the outermost
loop of task body.

To enforce the MIAT in sporadic tasks we need instead to combine the use of the
absolute delay with a task structure that captures the software-generated release event
associated to the task. It is worth noting that by adopting a two-staged strategy for the
handling of hardware interrupts and sporadic tasks for the deferred (or second-level)
part we attenuate – but not obliterate – the hazard occurring from interrupts occurring
more frequently than stipulated.

For example, reference [5] defines tasks as a composition of four basic blocks (Fig-
ure 1) that mirrors HRT-HOOD [6]:

– a provided and required interface, respectively PI and RI;
– an operational control structure (OPCS), which implements the functional (sequen-

tial) behavior of each PI service;
– a thread, which implements the task behavior and thus executes PI services of the

task, one per activation as required;
– an object control structure (OBCS), which operates as the synchronization protocol

agent responsible for delivering the release event to the task, in conformance to the
Ravenscar constraint that wants inter-task communication to be asynchronous via
a protected object.

In that task structure, the PI of the task is entirely delegated to the OBCS: each in-
vocation of that PI is therefore addressed to the OBCS, which reifies it into a request
descriptor and posts it in a dedicated application-level queue.

The release event of a sporadic task is determined by the occurrence of two subor-
dinate conditions: the task has woken up from its MIAT-long suspension; and at least
one invocation request is pending in the OBCS queue. When the latter condition is true,
the guard to the corresponding entry in the OBCS opens and the thread may fetch with
mutual exclusion guarantees the request descriptor from the OBCS queue. The thread
then interprets the descriptor to determine which PI must be executed, and calls the
designated service in the OPCS (see listing 1).

Cyclic tasks can be reconciled with this structure by requiring that at every periodic
release they use a protected procedure to fetch a request descriptor from their OBCS.
This provision enables the cyclic task structure to allow the execution of commanded
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operations instead of just the nominal periodic operation. In the latter case the request
descriptor would take a default value, but explicit invocations of the cyclic task PI would
cause non-default request descriptors to be deposited in the queue of the corresponding
OBCS. Interestingly, the latency of execution of the commanded operation would not
undermine its ultimate utility, for it would be bounded by the task period.

Fig. 1. Compositional task structure

Listing 1. Task structure for the enforcement of period or MIAT

1 loop
2 < fe t ch a request from OBCS and decode i t > ;
3 <invoke the requ i red se rv i ce i n OPCS> ;
4 Next_Time := Next_Time + Mi l l i seconds ( I n t e r v a l ) ;
5 delay u n t i l } Next_Time ;
6 end loop

Much like many other real-time constructs, the efficacy of the delay until state-
ment depends on the accuracy of the implementation of hardware and software clocks,
and on the precision of the hardware timer. The lack of proper hardware support may
negatively affect the accuracy of clocks and thus of absolute delays, as described in [7].

4 Monitoring of Timing Properties

Modern development approaches employ static analysis techniques to predict the timing
behavior of the system model. Unfortunately, however, the values set for the task timing
attributes that depend on run-time behavior – most notably, the worst-case execution
time – may be exceeded. This is because the problem is difficult and prone to inaccurate
reasoning or inadequate means. The consequences of a WCET overrun misbehavior
may be dire, in that a number of tasks may miss their deadlines.

Let us now focus on the monitoring of deadlines, task WCET and blocking time
induced by the use of the Ceiling Locking protocol to warrant mutual exclusion for
shared critical sections.
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4.1 Deadline Monitoring

Schedulability analysis ascertains whether every job of a task can complete its execution
before the applicable deadline, which can be either absolute or relative to the release
time of the task.

Since the expiration of an absolute deadline intrinsically is a time event, timing
events can effectively be used to perform deadline monitoring.

In Ada 2005 the Timing_Event is a lightweight mechanism that executes a pro-
tected procedure at a specific time instant, without the need to employ a dedicated task.
The code to be executed at the given time is specified in a Timing_Event_Handler.
Timing_Events are triggered by the progression of the hardware clock. Implementa-
tions may execute the protected procedure directly in the context of the interrupt service
routine that acknowledges the clock interrupt. This is in fact an implementation advice
in the Ada specification.

Listing 2. Deadline-monitored task

1 loop
2 Set_Handler ( Deadline_Event ,
3 Mi l l i seconds ( Rel_Deadline ) ,
4 Deadline_Miss_Handler ) ;
5 <task operat ions > ;
6 Next_Time := Next_Time + Mi l l i seconds ( I n t e r v a l ) ;
7 Cancel_Handler ( Deadline_Event , i sSetHandler ) ;
8 delay u n t i l Next_Time ;
9 end loop ;

At each new task release, a timing event can be armed to expire at the absolute
deadline of the task invoking the Set_Handler procedure (see listing 2). If the task
was able to complete its activation before its deadline, the timing event would be cleared
using the Cancel_Handler procedure. Otherwise, the timing event would be fired and
the designated handler would be executed.

Unfortunately, very little can be learned from the detection of a deadline miss, for the
violation event is not directly related with the actual cause of it. A deadline miss could
in fact be incurred by a WCET overrun of the monitored task itself, or by greater inter-
ference from higher priority tasks (each element of it being a possibly marginal WCET
overrun), or even by the blocking caused by the resource access protocol, when a lower
priority task holds a resource with ceiling priority higher than that of the monitored task.
As a consequence, no other useful operations can be performed for the handling of a
deadline miss than just logging the event for the purposes of information integration
over time.

4.2 WCET Monitoring

The provisions that enable the monitoring of execution time of tasks are probably
the single most useful mechanism to ensure the preservation of timing properties. In
Ada 2005, Execution_Time.Timers provide a simple yet efficient mechanism to
monitor the execution time of tasks, to detect WCET overruns and to react in a timely
fashion to a violation event.



160 E. Mezzetti, M. Panunzio, and T. Vardanega

Execution-time clocks were first introduced in the POSIX 1003.1d standard [8] as
a means to cater for information on the run-time behavior of tasks. Execution-time
clocks have subsequently been included in the 2005 revision of Ada [2]. The inclusion
of execution-time timers in the Ada language standard is very good news indeed. Pre-
viously in fact, the industrial need for monitoring the execution time of tasks or for
measuring execution time in general could only be responded to by resorting to vendor-
specific solutions, realized in whether hardware or software.

The Execution_Time package associates a Clock to a designated task, which is
used for measuring the CPU time actually consumed by the task execution. (To tell the
truth, the language standard permits the measured value to include the execution time of
interrupt handlers occurred during the execution of the task. This may obviously cause
the resulting value to be pessimistically inaccurate. To rectify this discrepancy the 14th
IRTAW formulated an implementation advice to treat the execution time of interrupt
handlers separately from that of the preempted tasks.)

A Timer realizes a mechanism on top of an execution-time clock (thus related to a
single task) which triggers a Timer_Handler procedure when the task has consumed
a given amount of CPU time.

Listing 3. WCET-monitored task

1 loop
2 Set_Handler (WCET_Timer ,
3 Mi l l i seconds (WCET) ,
4 WCET_Violation_Handler ) ;
5 <task operat ions > ;
6 Next_Time := Next_Time + Mi l l i seconds ( I n t e r v a l ) ;
7 delay u n t i l Next_Time ;
8 end loop ;

Every individual task can be attached to a timer that monitors the CPU time that is
consumed by the task. At each task activation the timer is set to expire whenever the
task exceeds its allotted CPU time (which is meant to be its WCET). In the event of
a WCET overrun the Timer_Handler procedure is immediately executed. In contrast
with deadline monitoring, the handler need not be cancelled on self-suspension because
a suspended task does not consume CPU time. Since the timer that has fired a handler on
a violation event is directly attached to the overrunning task, a detected WCET overrun
is always correctly ascribed to the actual culprit.

Under fixed-priority preemptive dispatching, a WCET overrun may cause a missed
deadline not only in the overrunning task itself, but also on lower priority tasks owing
to greater interference.

4.3 Blocking Time Monitoring

A task that executes longer than stipulated inside the critical section of a shared resource
may cause a subtle case of timing fault. In fact, the response time equation (1) of any
task τi is determined by three additive factors: the WCET Ci of τi itself; the worst-case
interference due to the execution of higher priority tasks including kernel overheads
(Ii); and the blocking time, which is computed as the longest time the task of interest
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can be prevented from executing by lower priority tasks (Bi) in force of the resource
access protocol in use.

Ri = Ci + Bi + Ii (1)

In order to determine the blocking time factor that applies to every individual task
we must therefore compute an estimate for the longest execution time of each critical
section and then apply specific filtering scheme that depends on the resource access pro-
tocol in use. It is worth noting in this regard that the Ceiling_Locking policy, which
is prescribed in the Ravenscar profile, provides a minimized bound for the blocking time
factor value and guarantees that each task can be blocked at most once per activation
and just before release.

This notwithstanding, detecting and diagnosing this kind of timing fault can prove
quite cumbersome. The mere fact that a task executes longer than expected inside a
critical section does not necessarily incur a WCET overrun in any affected task (the
running task and that may suffer blocking from it) as the task execution as a whole may
even out this violation. Consequently, to cope with this kind of fault we cannot simply
rely on WCET monitoring through Timers.

As we inferred earlier on, a blocking-time violation can affect task schedulability
in a subtler way than just causing WCET overruns in them. In fact, whereas WCET
overruns only affect the schedulability of the faulty task or of lower priority ones, the
overrun in a critical section may cause a missed deadline even for higher priority tasks
whose priority is lower than or equal to the ceiling of the used shared resource.

An interesting study [9] targeting Real-Time Java describes an elegant approach to
directly monitor blocking time. The proposed solution leverages the inherent property
of the Ceiling_Locking policy, which ensures that blocking may occur only once
per task activation and just before its release. The essence of the proposal revolves
around using a kernel-level timer to measure the time duration that a task is prevented
from execution owing to priority inversion. Due to the lack of standard support for it,
however that approach is currently not feasible in our context.

An alternative approach consists in measuring the execution time actually spent
within shared resources instead of monitoring the blocking time incurred from their
use. The worst-case blocking time term Bi in equation (1) depends on the adopted syn-
chronization protocol; with the Ceiling_Locking policy prescribed by the Ravenscar
profile – which has the same worst-case behavior as the priority ceiling protocol [10])
– the worst-case blocking time Bi induced on task τi amounts to the duration of the
longest critical section executed by lower priority tasks in a shared resource with a
ceiling priority higher than or equal to the priority of τi.

Unfortunately, to monitor the time a task executes inside a shared resource we cannot
use the Ada Timers, for they are associated to only one task and this attachment is
statically fixed at timer creation. Hence we cannot define a timer that can be reassigned
to the tasks that enter a given critical section.

To circumvent the lack of direct language support, one might possibly resort to using
the execution-time clocks on which Timers are based. An execution-time clock can in
fact be used to measure task execution in any given code region. One could thus query
the CPU time consumed by the task of interest before and after the critical section and
then calculate the difference (see listing 4).
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Listing 4. Time monitoring of execution in shared resource

1 Time_In := Execution_Time . Clock ;
2 <beginning of c r i t i c a l sec t ion CS> ;
3 <end of c r i t i c a l sec t ion CS> :
4 Time_Out := Execution_Time . Clock ;
5 i f Time_Out − Time_In > CS_WCET then
6 < v i o l a t i o n handl ing> ;
7 end i f ;

If the CPU time spent executing in the critical section is longer than estimated we
may have a blocking-time violation for the higher priority tasks that contend for the
same resource. This can be determined by comparing the consumed CPU time against
the amount of blocking that the overruning task is predicated to induce on higher prior-
ity tasks; if that is the case, then we do have a violation event to treat.

Unfortunately however this approach suffers from at least two serious defects. First,
the scheme shown in listing 4 would not be able to promptly detect a WCET overrun
inside a critical region, but only after the task has finished executing in the shared re-
source and has released it, which may not actually occur in the case of serious program-
ming or execution error. Furthermore, in contrast with the Timer_Handler procedure
in Timers, the handling mechanism would not be executed at interrupt level but at the
priority of the overrunning task, which is immediately preempted by higher priority
tasks, perhaps even of those it was blocking. This implies that the handling of the fault
is further deferred, possibly after the preempting task has already missed its deadline.
Finally, this approach also adds considerable time and space overhead to the monitoring
framework of the architecture.

5 Handling of Timing Faults

Several policies can be adopted to try to remedy a detected timing fault. The handling
type may depend on: the severity and frequency of the timing fault; the criticality of the
affected system function; system requirements. In fact, for several high-integrity real-
time systems, the only recovery operation admissible on the detection of a severe fault
requires to either terminate the program and enter some safe mode, or else switch to a
hot redundant computer, if available.

We now enumerate the fault handling policies that can be used when a timing vio-
lation is detected at run time. Those policies can be applied in the face of occasional
or even recurrent overruns of modest or even important gravity. Some of the proposed
treatments simply contribute information for fault identification and diagnosis. Other
treatments permit to effect a recovery action, which is able to mitigate or remedy the
effects of the timing fault.

However, as we further discuss, all of those policies are unable to remedy permanent
overrun situations that arise from a task getting stuck executing forever in a loop.

Error logging. This is the simplest and most basic treatment: the WCET violation
event is simply logged. Although the logging does not remedy the problem, the log can
be used to inform some designated fault handling authority, which can then apply some
system- or partition-wide policy.
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Integration of WCET. When designers perform schedulability analysis based on Re-
sponse Time Analysis [11], they determine the worst-case response time of each task
and thus earn confidence that tasks meet their deadline. As we mentioned earlier on, the
robustness of the analysis results depends on the safeness of the WCET bounds that are
fed to the equations.

Sensitivity analysis (for example in the flavor described in [12]) instead is a theory
that is able to calculate how long the execution of a task can exceed its WCET while still
maintaining the overall system schedulable. In essence, provided that all the remaining
timing parameters stay fixed, we are able to statically calculate the maximum amount
of tolerance the system can admit for single violations of WCET.

We can leverage this information to realize some WCET overrun handling policies.
Let us call ΔCx the allowable excess execution time for task τx that we determine

using sensitivity analysis. When task τi should ever incur a WCET overrun, perhaps
because the estimated WCET bound Ci was too optimistic, we can permit the task
to execute until Ci + ΔCi without fearing consequences for system schedulability.
The timing fault incurred when execution time exceeds Ci should however be always
notified to the fault management authority so that it can set an upper bound on the
number of times the violation is allowed before escalating to other handling policies
(such as e.g., degraded mode, safe mode, etc...).

If a task should frequently incur WCET overruns that do not exceed ΔCi, an obvious
alternative strategy would consist in directly increasing the WCET bound that is moni-
tored by the execution-time timer of the task. The increment that integrates the WCET
can be applied to one and the same task multiple times as long as it does not exceed
ΔCi. Unfortunately, if we wanted to apply this policy to more than one task at a time,
we would need to recalculate the ΔCx increment factor for all tasks τx.

Fig. 2. a) Nominal execution of a task; b) The task overruns the WCET bound used in the schedu-
lability analysis; the overall system however is still schedulable; c) The task overruns the WCET
bound and the sensitivity analysis bound; the overall system is not schedulable anymore

The theory presented in [13] has potential for application in our context. That work
in fact formalizes the class of “weakly hard real-time systems” and supports it with a
suite of schedulability equations that are able to ascertain whether a task set meets “any
n in m deadlines” (with m ≥ 0 and 0 ≤ n ≤ m), or “any row n in m deadlines”.

In [14] instead, the authors leverage on [13] to determine the ΔCi of a task in a
weakly hard real-time system under EDF. Unfortunately, this theory is only able to
predict the ΔCi of a single task under the assumption that all other system parameters
stay fixed. This limitation notwithstanding, an extension of that theory that was able
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to account for shared resources and fixed priority preemptive scheduling would be an
interesting candidate for application in our context.

Period or MIAT change. Increasing the period or MIAT of a periodic or sporadic task
that is frequently overrunning its WCET may help one mitigate the effects on affected
tasks. If a sustainable schedulability analysis theory [15] was used (as for example
Response Time Analysis), then this relaxation of the system parameters is guaranteed
to preserve the overall system schedulability.

Task inhibition via OBCS. If tasks are realized with the compositional structure de-
scribed in section 3, it is possible to set the guard of the OBCS entry to false so as
to prevent any further release of an overrunning task. In order to make the mechanism
compliant to the RP, the guard of the entry shall be expressed as a simple Boolean
variable; this is simple to achieve as the guard can be set by a designated protected pro-
cedure that can be invoked by the fault handling authority. The solution applies directly
to sporadic tasks – and cyclic tasks alike – and it is reversible in that the guard can be
set to true again anytime the fault handling policy deems it safe.

The applicability of the latter two policies is contingent on the system requirements:
the system should be able to operate with degraded performances or without the func-
tions in which the faulty tasks is involved; this assessment includes the evaluation of
producer-consumer relationships in which the faulty task is involved. Table 2 recapitu-
lates the possible policies and their essential characteristics.

Table 2. Techniques against WCET overruns

Technique Recovery Ravenscar
Action Compliance

Error Logging ◦ yes
Integration of WCET ∗ yes
Period/MIAT change • yes
Inhibition via OBCS • yes

Symbols: • = the technique can be used as (part of) a recovery action;
∗ = the technique can be part of a recovery action in a

limited number of situations;
◦ = the technique does not remedy the timing fault.

The occurrence of a permanent overrun is an extremely severe situation to cope
with. For this situation to occur, a task must be stuck executing forever in a loop. In that
situation in fact, the rules of fixed-priority preemptive dispatching will never permit
lower priority tasks to ever execute again.

A fault of this kind is extremely delicate for Ravenscar systems, since the RP does
not provide for any mechanisms that permit to directly cope with it.

Task termination would be no solution, not only because it is explicitly excluded by
the RP, but also because of its inherent exposure to massive extents of non-determinism
and its disruptive costs to kernel implementation and verification.

The use of dynamic priorities and/or asynchronous task control could be advocated
to mitigate or remedy the problem. The former feature would be used to decrease the
priority of the offending task to the lowest possible value: this solution is however not
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satisfactory for data integrity in so far as the task would stay eligible for execution and
may consume data when the CPU has no other tasks to execute. The latter would not
be able to force tasks stuck in a critical section to yield as the task in question shall first
release the resource before asynchronous task control can take effect.

In the case the system was not able to direct perform ultimate maintenance on itself,
patching part of the software (in actual fact, the functional part of offending tasks) while
continuing reduced operation may become the only applicable non-disruptive course of
action. The inhibition of designated tasks by setting the corresponding OBCS entry
guard to false would permit to safely replace the faulty OPCS.

As a conclusion, there is still an open area of investigation for a practical and effec-
tive handling policy for this kind of severe faults. However it should be clear that due to
the high-integrity nature of the real-time systems in which the RP is used (and thus to
the extensive V&V campaigns they are subject to), we can assume that the probability
of occurrence of permanent overruns is negligible.

6 Conclusion

In this paper we discussed the importance of preservation of properties at run time for
state-of-the-art development methodologies. As the analysis of systems is applied in
earlier design stages, it becomes imperative to ensure that the system at run time does
not deviate from what was predicated by analysis. In our work we focused on run-
time preservation of timing properties. We centered our approach on the adoption of a
subset of the Ada language known as the Ravenscar profile (RP), which facilitates the
design of systems that are by definition amenable to static analysis in the time and space
dimensions. We described a framework for the enforcement and monitoring of timing
properties which also allows to perform a set of fault handling and recovery actions.

The framework requires only three time-related constructs of the Ada language: the
delay until statement, timing events and execution-time timers. The first two constructs
already belong in the RP. The inclusion of execution-time timers in the RP, which at the
time of this writing, is under evaluation by the Ada Rapporteur Group, would make the
RP satisfactorily fit for monitoring WCET as well as providing the mechanisms to react
to violation of that property.

Our study singled out two areas that need further investigation:

1. the monitoring of blocking time, which currently has no practical and satisfactory
solution in Ada; it would be interesting to investigate the feasibility of a solution
inspired to the proposal described in [9]. Alternatively, we might want to allow
execution-time timers to be used for measuring the duration of critical sections.

2. permanent WCET overruns (caused for example by a task stuck in an endless loop)
are critical in a Ravenscar system, since the profile does not provide any effec-
tive mechanism to cope with this situation; however, thanks to the intensive V&V
campaigns that are routinely required by the high-integrity nature of the systems
of our interest, we can assume that the occurrence of these faults has a negligible
probability to occur.
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In conclusion, we contend that in the context of high-integrity real-time systems the
Ravenscar Profile is an excellent candidate to be used as the cornerstone of a develop-
ment methodology. The RP in fact guarantees the development of statically analyzable
systems and provides adequate means to ensure property preservation from design to
implementation and eventually at run time.
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Abstract. Real-Time (RT) systems exhibit specific characteristics that make
them particularly sensitive to architectural decisions. Design patterns help
integrating the desired timing behaviour with the rest of the elements of the
application architecture. This paper reports a pattern story that shows how
a component-based design has been implemented using periodic concurrent
tasks with RT requirements. The Model-Driven Software Development (MDSD)
approach provides the theoretical and technological support for implementing
a pattern-guided translation from component-based models to object-oriented
implementations. This work has been done and validated in the context of the
development of robotic applications.

1 Introduction

There is a well established tradition of applying Component Based Software
Development (CBSD) [19] principles in the robotics community, which has resulted
in the appearance of several toolkits and frameworks for developing robotic
applications [15]. The main drawback of such frameworks is that, despite being
Component-Based (CB) in their conception, designers must develop, integrate and
connect these components using Object-Oriented (OO) technology. The problem comes
from the fact that CB designs require more (and rather different) abstractions and tool
support than OO technology can offer. For instance, the lack of explicit “required”
interfaces makes compilers impossible to assure that the components are correctly
composed (linked). Also, component interaction protocols are not explicitly defined
when using an OO language. Moreover, most of these frameworks impose the overall
internal behaviour of their components, and therefore they lack of formal abstractions
to specify it. In this way, framework components have so many platform-specific details
that it is almost impossible to reuse them among frameworks [12]. In particular, robotic
systems are reactive systems with RT requirements by their very nature, and most of the
frameworks for robotics do not provide mechanisms for managing such requirements.
The Model-Driven Software Development (MDSD) paradigm [18] can provide the
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TIN2009-08572), and the Fundación Séneca Regional Project COMPAS-R (ref. 11994/PI/09).

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 167–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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theoretical and practical support to overcome the above drawbacks. MDSD is starting
to catch the attention of the robotics community [6] mainly due to the very promising
results it has already achieved in other application domains (e.g., automotive, avionics,
or consumer electronics, among many others) in terms of improved levels of reuse,
higher software quality, and shorter product time-to-market [13].

In our opinion, it is needed a new CBSD approach for robotic software development
that: (1) considers components as architectural units, (2) enables components to be
truly reusable among frameworks (by separating their design from the implementation
details), and (3) considers application timing requirements. In the context of the robotics
domain and the aforementioned technologies (CBSD and MDSD), the authors have
defined the 3-View Component Meta-Model (V3CMM) [10] as a platform-independent
modelling language for component-based application design. V3CMM is aimed at
allowing developers to model high-level reusable components, including both their
structural and behavioural facets. Such behavioural facets are modelled by means of
state-charts and activity diagrams. Though these diagrams abstract designers away from
run-time issues (such as the number of tasks, the concurrency model, etc.), these details
must be realised in further steps. The problem then is how to translate V3CMM models
into executable code that, on the one hand, reflects the behaviour of the original
V3CMM models, and, in the other hand, is organised in a set of tasks compliant with
the application-specific timing requirements.

This paper describes the approach we have taken for solving this problem, and
the results we have obtained so far. This approach revolves around the definition of
a framework that provides the required run-time support, and a set of ’hot-spots’
where a model-to-code transformation will integrate the code generated from the
V3CMM models describing the concrete application. The patterns that have been
selected to design such framework are described as a pattern story [8].

In short, the main contributions of the work presented in this paper are:

– An object-oriented interpretation of CBSD architectural concepts.
– A framework supporting such interpretation and taking into account timing

requirements.
– A rationale of the framework design following a pattern story.

The remainder of this paper is organised as follows. Section 2 provides a general
overview of the overall approach of the paper. Section 3 describes the patterns that
comprise the architecture of the developed framework. Section 4 is devoted to detail
the main issues of the dynamic of the applications generated using the framework.
Section 5 relates this work with other proposals found in the literature. And finally,
Section 6 discusses future work and concludes the paper.

2 General Overview of the Approach

The proposed development process starts with the modelling of the application
architecture using the V3CMM language. For the purpose of this paper any language
enabling the modelling of components (such as UML, SysML or other UML profiles)
could have been used. The reasons why we decided to develop a new modelling
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language (V3CMM) are outside the scope of this paper and are described in [4], but, for
the curious reader, they are mainly related to keeping a strong control over the concepts
considered in the language and their semantics, and for easing model transformations.

V3CMM comprises three complementary views, namely: (1) a structural view, (2) a
coordination view for describing the event-driven behaviour of each component (this
view is based on UML state-charts), and (3) an algorithmic view for describing the
algorithm executed by each component depending on its current state (this view is based
on a simplified version of UML activity diagrams). V3CMM enables describing the
architecture (structure and behaviour) of CB applications, but provides no guidelines for
developing implementations. Therefore, as stated in the introduction, it is necessary to
provide designers with tools that enable them to generate the program code from these
high level abstractions. This code must take into account application-specific timing
requirements, and reflect the behaviour of the original V3CMM models.

The most important and challenging implementation issue is related to the
implementation of real-time constraints in the framework structure, and among it, how
many tasks must be created and how to distribute the component activities among them.
Taking into account that each system might need a different task scheme (e.g. number
of tasks, periods, deadlines, etc.), and that even given a system, this scheme can greatly
vary (due to different execution resources, varying timing requirements, change of
algorithms, etc.), a very flexible solution is required. This solution should allow task
derivation from V3CMM models, and specifically from the coordination view, since
this view models both the concurrent behaviour (in the form of orthogonal regions),
and the timing requirements of the algorithms (i.e. execution time, period, deadline,
etc.) executed by the component.

Fig. 1 shows the pursued ideal solution, where it is possible to ’arbitrarily’ allocate
the activities associated to the states of the state-chart of a V3CMM component to a set
of tasks. It is worth clarifying that, in the rest of the paper, when we mention ’activity’ we
really mean activity diagram. The solution must not force a direct one-to-one relationship
between components and execution tasks, but instead allow for more flexible schemes.
In a given system, activities allocation would be driven by the RT requirements of
each activity, the selected scheduling algorithms, different heuristics, execution platform
constraints, etc. As these requirements, algorithms, heuristics and constraints could
greatly differ from system to system, a great flexibility is then required for allocating
activities to tasks. The proposed solution (see Fig. 2), detailed in the following section,
considers that application code can be classified into the following three sets:

CS1. Code that provides a run-time support compliant with the domain specific
requirements. Normally, this involves making trade-offs among the requirements
of the application domain. For instance, in domains where hard real-time is usually
needed (e.g. robotics, embedded systems, avionics, etc.), CS1 code should support
characteristics such as different concurrency policies, real-time scheduling, event
processing and signalling, reliability, memory management, etc., even at the cost of
sacrificing other characteristics.

CS2. Code that provides an OO interpretation of the V3CMM concepts. For instance,
how components and ports are mapped to objects, state-charts implementation, port
communication issues, etc.
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Fig. 1. Ideal scenario for allocating activities to tasks
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Fig. 2. Global view of the development process

CS3. Code corresponding to the application functionality, described by V3CMM
models.

These three code sets are arranged in a way that code sets CS1 and CS2 constitute
a framework, where CS3 must be integrated in order to obtain the final application.
The hot-spots for specialising the framework are defined in CS2. CS2 also serves for
minimising the coupling between CS3 and CS1, enabling their separate evolution and
reuse. As long as the interpretation of the V3CMM concepts (CS2) remains the same, it
would be possible to reuse the run-time support (CS1) in different applications (CS3).
And, even more interesting, it would be possible to select a given run-time support
(CS1) for the same application functionality (CS3), depending on the application
domain requirements. CS1 and CS2 have been designed and implemented manually,
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following a set of design patterns, while CS3 is automatically generated from the
V3CMM models and integrated in the framework by means of a model transformation.

3 Global Architecture of the Generated Applications

This section explains how the framework design (shown in Fig. 3) has been obtained
starting from its main requirements. Some of the most important patterns that comprise
the pattern story are highlighted in the figure by the classes that fulfil the roles defined
by such patterns. The correspondence between the classes and the code sets will be
described at the end of the section where it will be better understood. Due to space
limitations, this section is focused on the three main challenges that were faced when
designing the framework, namely: how to allocate state activities to tasks, how to
implement state-charts, and finally how to manage the component internal data.

Among the aforementioned challenges, the main one is how to allocate the activities
associated to the states of the state-charts to different tasks. In order to achieve it, the
COMMAND PROCESSOR architectural pattern [7] and the highly coupled COMMAND

pattern have been selected. The COMMAND PROCESSOR pattern separates service
requests from their execution. For this purpose, the pattern defines a task (the command
processor) where the requests are managed as independent objects (the commands).
Each activity associated to a state is implemented as a separate command, which can
be allocated to any command processor. The roles defined by these two patterns are
realised by the classes Activity Processor and State Activity, respectively (see
Fig. 3). The COMMAND PROCESSOR pattern provides the required flexibility, since it
imposes no constraints over activity subscription, number of activities, activity duration,
concurrency scheme, etc. Nevertheless, this pattern has the following liabilities:

– It leads to a large number of subclasses since it is necessary to define a subclass of
State Activity for each and every activity defined in the V3CMM models. As
these subclasses will be generated by the model transformation, it is not a relevant
drawback for this work.

– Loss of performance due to the additional indirection levels. This loss is paid off
given the obtained flexibility.

– The component internal data can be simultaneously accessed by activities
belonging to the same component but allocated to different tasks by the
implementation. It will be necessary to synchronize such concurrent accesses, as
detailed below.

The second challenge is how to interpret and implement state-charts in a way that
enables its integration in the scheme defined by the aforementioned COMMAND

PROCESSOR pattern. Providing an implementation that considers all the possibilities
offered by hierarchical states and orthogonal regions is an extremely complex issue,
which can be afforded by following different techniques [16]. In our case, we decided
that both regions and states should be treated homogeneously, and their activities
allocated to different command processors without knowing (or caring about) their type.
This need is fulfilled by using a simplified versions of the COMPOSITE pattern. The
roles defined by this pattern are realised by the classes State, Orthogonal Region
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Fig. 3. Simplified class diagram of the generated code

and Leaf State. The state-chart is managed following the METHODS FOR STATES

pattern [7], where the instances of the classes representing the state-chart are stored in a
hash table, while orthogonal regions store the keys of their leaf states in order to manage
them. To shorten the implementation of the first working version of the framework, we
only considered orthogonal regions comprising non-hierarchical states. In spite of this
limitation, a broad range of systems can be still modelled.

The distinction between states and regions led us to define specific subclasses
of State Activity. Basically, we needed two hierarchies of subclasses: activities
associated to leaf states (represented by the root class Leaf Activity), and activities
associated to regions (represented by the class Region Activity). The latter is
aimed at managing the region states and transitions, and thus is provided as part
of the framework. The formers are related to (1) the activities defined in the
V3CMM models, which are generated by the model transformation and are represented
by Specific Leaf Activity subclasses, and (2) activities to manage ports, which
are also provided by the framework and are represented by Port Handler Activity

subclasses. Following the NULL OBJECT pattern, the Null Activity class has been
defined in order to smoothly integrate those states that have no associated activity.

The third and last challenge covered in this paper is how to provide concurrent access
to the component internal data. This data is organised following the BLACKBOARD

pattern. The idea behind the blackboard pattern is that a collection of different tasks can
work cooperatively on a common data structure. In this case, the tasks are the command
processors mentioned above, and the data comprise input/output port information and
the hash table that stores state information. The main liabilities of the BLACKBOARD

pattern (i.e. difficulties for controlling and testing, as well as synchronization issues
in concurrent applications) are mitigated by the fact that each component has its own
blackboard, which maintains a relatively small amount of data. In addition, it is possible
to optimize the access to the blackboard in some important cases. For instance, the hash
table that stores the component state is accessed following a 1-writer/n-readers scheme.

The full pattern story comprises eighteen patterns, from which only the most
important ones from the point of view of the global architecture have been described.
There are other patterns, such as OBSERVER, COPIED VALUE, DATA TRANSFER

OBJECT, TEMPLATE METHOD, STRATEGY, PROXY, etc., which are not shown in the
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figure since the roles defined by them cannot be clearly identified in Fig. 3 and there is
no space left to explain how they have been used in the framework design.

The classes shown in Fig. 3 fall into the code sets described in the previous section
as follows:

CS1: Run-time support. This set comprises the classes Activity Processor and
State Activity, which have been manually coded.

CS2: Interpretation of V3CMM concepts. This set comprises almost the rest of the
classes shown in Fig. 3: State Activity, Leaf State, Orthogonal Region,

State, Port State, V3Input Port, V3Output Port, Region Activity,

Leaf Activity, V3Data, and V3Component. Notice that State Activity is
the link between CS1 and CS2. Classes V3Input Port and V3Output Port

are defined as generics (or templates), which are instantiated with the concrete
messages types the ports exchange. The classes comprising CS2 have been manually
coded, and define the main framework hot-spots. Although the framework is mainly
specialised by sub-classing them (and therefore it can be considered a white-box
framework), it provides some concrete subclasses. These subclasses, which are
enumerated below, are defined for implementing the port behaviour, and are meant
to be directly instantiated.

– Port State: concrete leaf states modelling the state of a given port.
– Port Handler Activity: concrete strategies for managing input ports.

By default, port to port communication is implemented following the
asynchronous without response policy, since it is the basic block for distributed
systems and for designing more complex interaction schemes.

– Region Activity: concrete strategy for managing orthogonal regions.
CS3: Application functionality. This set integrates (1) new subclasses of the hot-

spots defined in CS2, and (2) instances of these new subclasses and of the
classes comprising CS1 and CS2. All these classes and instances are automatically
generated by a model-to-code transformation from the V3CMM models. The most
relevant elements of this set, generated for each component, are:

– Data types representing the messages exchanged by components through their
ports.

– Instances of the V3Input Port and V3Output Port generic classes with
the concrete messages that the ports exchange. Notice that these instances
represent only the static structure of ports. Their dynamic behaviour is defined
in the item below.

– New orthogonal regions (instances of Orthogonal Region), added to the
original state-chart in order to manage the behaviour of the component ports.
These orthogonal regions comprise leaf states (instances of Port State),
as well as the activities corresponding to these states (instances of
Region Activity and Port Handler Activity, respectively). This design
decision provides regularity and flexibility to the framework, since (1) all
regions, both those derived from the V3CMM models and those added to
manage ports, are treated homogeneously by the command processors, and
(2) ports handling is explicit and can be allocated to different tasks, depending
on the timing requirements.
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– A subclass of V3Data comprising the specific component data as described
previously.

– An instance of the class V3Component. This object acts as a container for all
the previous elements.

Finally, when all the components have been generated, the transformation connects the
components ports, creates a set of command processors, and allocates activities to them.

4 Allocation of Activities to Tasks

This section deals with relevant aspects of the application dynamics and with the
criteria followed by the transformation to allocate activities to command processors.
From a dynamic point of view, it is important to remark that command processors
can execute activities defined in the state-charts of different components. Among

Fig. 4. Sample allocation scenario. From state-charts to command processors
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Fig. 5. A sequence diagram with a typical execution scenario
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the many feasible possibilities for allocating activities to command processors, the
main criteria is based on activity periods, since it facilitates the further schedulability
analysis of the command processors. Fig. 4 shows a sample allocation scenario from
the activities defined in state-charts to the tasks defined in command processors. This
scenario comprises three components, each of them associated to a state-chart with three
orthogonal regions, including the region added for port management (the shaded one).
For the shake of simplicity, the example assumes that all the activities associated to the
states contained in a given region have the period of its associated region activity. Notice
that command processors 2 and 3 access the internal data corresponding to component
2 concurrently.

A typical execution scenario is shown in the sequence diagram of Fig. 5, which
comprises the communication among three components. A V3Input Port object
stores the data received from an output port. Then, a task (i.e. an Activity Procesor)
will asynchronously put this data into a V3Data object (global to the component).
Afterwards, another task will asynchronously process the incoming data depending on
the current component state. As a consequence of this processing, state transitions in
one or more regions of the component may occur. Moreover, this processing includes
the execution of the activities of the set of current active states, and the updating of new
data in output ports (sub-program set(data) in Fig. 5).

Code listing 1 shows an excerpt of the Ada specification of the Activity Proce-

ssor, which has been implemented as a generic package, while code listing 2 shows
the body of the task corresponding to a command processor. The main characteristics
of this generic package are the following:

– The priority of the task contained in the package body is assigned according to
both the timing requirements of the subscribed activities and the chosen scheduling
algorithm. As this data is known before the transformations generate the code, it is
possible to derive the priority of each Activity Processor. Thus, a fixed priority
static scheduling algorithm can always be used if required.

– The transformation takes into account that a task may include activities with
different periods. The period assigned by the transformation to each task
(Activity Processor) is equal to the lowest period of its subscribed activities.

Listing 1. Code excerpt of the specification of the Activity Processor generic package

1 g e n e r i c
2 L i s t e n e r : a c c e s s I A c t i v i t y P r o c e s s o r L i s t e n e r ’ C l a s s ;
3 Name : Unbounded St r ing ;
4 W o r k e r P r i o r i t y : System . A n y P r i o r i t y ;
5 package Common . A c t i v i t y P r o c e s s o r i s
6 f u n c t i o n Get Name re turn Unbounded St r ing ;
7 procedure S e t P r i o r i t y ( P r i o r i t y : System . A n y P r i o r i t y ) ;
8 f u n c t i o n G e t P r i o r i t y re turn System . A n y P r i o r i t y ;
9 procedure S t a r t ;

10 procedure Stop ;
11 procedure S e t P e r i o d ( P e r i o d : Time Span ) ;
12 f u n c t i o n G e t P e r i o d re turn Time Span ;
13 procedure A d d A c t i v i t y ( Act : a c c e s s I S t a t e A c t i v i t y ’ C l a s s ) ;
14 procedure D e l A c t i v i t y ( Act : a c c e s s I S t a t e A c t i v i t y ’ C l a s s ) ;
15 end Common . A c t i v i t y P r o c e s s o r ;
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Listing 2. Code excerpt of the body of the Activity Processor generic package showing
the task corresponding to a command processor

1 tas k body Worker i s
2 Next Exec : Time := Clock ;
3 I t e r a t o r : P D l l . Curs o r ;
4 Element : S t a t e A c t i v i t y A l l ;
5 begin
6 S u s p e n d U n t i l T r u e ( S t a r t L o c k ) ;
7 whi le Cont inue l oop
8 de lay u n t i l Next Exec ;
9 Next Exec := Next Exec + P e r i o d ;

10 I t e r a t o r := A c t i v i t y L i s t . F i r s t ;
11 whi le ( P D l l . Has E lemen t ( I t e r a t o r ) ) l oop
12 Element := P D l l . E lement ( I t e r a t o r ) ;
13 Element . E x e c u t e T i c k ;
14 P D l l . Next ( I t e r a t o r ) ;
15 end loop ;
16 end loop ;
17 end Worker ;

It is important to highlight that activities may execute periodically or not. When
activities are sporadic, the period attribute represents the minimum separation
between two consecutive executions. The activities are executed in the same
order as they have been subscribed to the Activity Processor, although any
alternative policy could have been chosen. Tasks are executed by the operating
system according to the chosen scheduling algorithm.

– The sub-program Add Activity enables subscribing activities to tasks.

This design assumes that activities are defined to have an execution time as short as
possible to simplify scheduling. When an algorithm includes a big number of iterations
or considers a continuous control action, then the activity should be divided into a set
of sub-activities with a bounded execution time (for example, an algorithm step or a
discrete control action).

The framework design requirements impose many constraints to the flexibility
provided by the COMMAND PROCESSOR pattern. These constraints are mainly
enforced by the real-time nature of the application domain. Some examples of the
impact of these requirements are that command processors do not spawn new tasks
to execute subscribed activities (which is permitted by the pattern), and that it is not
allowed subscribing activities to command processor or modifying periods at execution
time, to mention a few.

In order to validate the framework we have developed (1) several case studies, and
(2) a tool to monitor the execution of each application and to change the number of
command processors, and the allocation of activities to tasks. The tool enables us to
experiment with the number of command processors and different activities allocation
criteria, by reconfiguring the application generated by the transformation. The case
study shown in this paper corresponds to a Cartesian robot, developed in the context of a
research project (European Union’s Fifth Framework Programme, Growth, G3RD-CT-
00794) [10]. Fig. 6 shows an excerpt of the state-chart corresponding to the controller of
one of the robot joints, and the part of the aforementioned configuration tool in charge
of configuring command processors.
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a) State-chart modelling the behaviour of a joint of the Cartesian robot.

b) Configuration tool. The left part enables users to set activity periods, an estimated execution
time, and to allocate activities to tasks. The right part shows, for each task, its execution period,
number of execution cycles, and the activities allocated to it.

Fig. 6. Case study of a Cartesian robot and the reconfiguration tool

5 Related Work

As said in the introduction, there is a well established tradition of applying CBSD
principles for developing robotic applications. However, there are not many initiatives
for applying MDSD principles to robotic software development. In general, existing
robotic frameworks cannot be considered to be model-driven, since they have no
meta-model foundation supporting them. Among the main examples of applying the
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MDSD approach to robotics is the work related to the Sony Aibo robot presented in [5].
Another initiative, described in [11], revolves around the use of the Java Application
Building Center (jABC) for developing robot control applications. Although jABC
provides a number of early error detection mechanisms, it only generates Java code
and, thus, its applicability to systems with real-time requirements is rather limited.
Finally, Smartsoft [17] is one of the most interesting initiatives for applying a MDSD
approach to robotic software development. Nevertheless, as far as we know, none of
these initiatives considers real-time issues.

The current state of the application of MDSD to robotic software development
contrasts with what happens in other similar domains, where big efforts are being
carried out in this line. For instance, the ArtistDesign Network of Excellence on
Embedded Systems Design [1] and the OpenEmbeDD [3] project address highly
relevant topics regarding real-time and embedded systems, while the automotive
industry has standardised AUTOSAR [2] for easing the development of software for
vehicles.

As Buschmann et al. [7] states, not all domains of software are yet addressed
by patterns. However, the following domains are considered targets to be addressed
following a pattern-language based development: service-oriented architectures,
distributed RT and embedded systems, Web 2.0 applications, software architecture
and, mobile and pervasive systems. The research interest in the RT system domain
is incipient and the literature is still in the form of research articles. A taxonomy of
distributed RT and embedded system design patterns is described in [9], allowing the
reader to understand how patterns can fit together to form a complete application. The
work presented in this paper is therefore a contribution to the definition of pattern
languages for the development of this kind of systems with the added value of forming
part of a global MDSD initiative.

6 Conclusions and Future Research Lines

This paper has described an approach to provide a run-time support (framework) to
a component-based approach for modelling RT applications. To do that, it has been
necessary to provide an OO interpretation of the high-level architectural concepts
defined in V3CMM (components, ports, state-charts, etc.), taking into account real-time
requirements. The proposed solution is not general nor closed to future improvements,
but it is a stable and validated starting point for further development.

The adoption of a pattern-driven approach has greatly facilitated the design of
such framework. In addition, the selected patterns have been described like a pattern
story. A further step would be the definition of a pattern sequence, which comprises
and abstracts the aforementioned pattern story, so that developers can use it in other
applications as long as they share similar requirements. With several pattern stories and
pattern sequences it would be possible to define a true pattern language for a given
domain, which gives a concrete and thoughtful guidance for developing or refactoring
a specific type of system. The greatest difficulties in reporting this story have been how
to synthesize in a few pages the motivations for choosing the patterns that have been
used, and the lack of consensus about the best way of documenting pattern stories.
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The characteristics of the Ada language that have revealed most useful for the
development of the framework have been its mature concurrency facilities, strong
typing, the generics mechanism, and the flexibility provided by packages in order to
organise and encapsulate component structure. In addition, the new container library
has proven very useful for implementing the internal blackboard of each component.
The main difficulty comes from the fact that Ada is an extensive language and requires
a deep understanding of the its mechanisms in order to successfully combine them.

Regarding future research lines, we are currently working on extending the
framework with additional capabilities following a pattern-driven approach. Among
these extensions, it is worth mentioning the following: (1) component distribution,
(2) testing and adding heuristics for activities allocation and task grouping, (3) refining
and improving the patterns used for implementing hierarchical and timed state-charts,
and (4) comply with the Ravenscar profile for designing safety-critical hard real-
time systems. Assessing timing requirements fulfilment in an automated way is also
very important, and thus we plan to study strategies to generate analysis models for
different scheduling analysis tools. The usage of the UML profile for MARTE [14] as
a mechanism to formalize the models involved is also an approach to be explored.
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Abstract. This paper proposes a strategy to manage the scheduling of real-time 
component-based applications that is fully compatible with the concept of  
component viewed as a reusable and opaque software module. The strategy is 
used on top of the RT-CCM technology, which extends the OMG’s LwCCM 
technology with the purpose of building real-time distributed component-based 
applications that can be executed on embedded platforms and with heterogene-
ous communication services. The strategy is based on three services included  
in the RT-CCM framework, which are implemented by the containers of the 
components, and are in charge of supplying the threads and the synchronization 
artifacts that the business code of a component requires to implement its func-
tionality. During the components configuration process, these services are used 
to assign the values that lead to a schedulable application to the scheduling pa-
rameters of these threads and synchronization mechanisms, without having to 
know the internal code of the components. The assigned values are obtained 
from the analysis of the real-time model of the application, which is built based 
on metadata provided by the components and the elements of the platform. 

1   Introduction 

The aim of component-based development is to build applications as assemblies of 
reusable software components that satisfy three characteristics: isolation (components 
are atomic units of deployment), composability (they should be composable with other 
components) and opacity (neither the environment nor other components or a third 
party can modify their codes) [1]. Several strategies have been proposed to apply this 
component-based paradigm to the development of real-time systems. This work relies 
on the RT-CCM (Real-Time Container Component Model) technology [2], which was 
initiated in former european projects [3][4], and which results from applying two ex-
tensions to the LwCCM (Lightweight CORBA Component Model) specification [5]: 

• The interactions between components are generalized by specialized components, 
called connectors. They provide the communication mechanisms in their code,  
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allowing the components to implement only the business logic. They do not have 
to be based on CORBA, as it is required in LwCCM. 

• The interface and the implementations of a component include metadata related 
to their temporal behaviour, which are used to predict the temporal behaviour of 
the applications in which the component takes part. 

 
RT-CCM presents two outstanding features: 1) The internal architecture of the com-
ponents can be arbitrarily complex, and 2) the components incorporate all the  
informa-tion that is required to generate automatically the code of the containers and 
the connectors that adapt their codes to the corresponding platforms. As Figure 1 
shows, an RT-CCM component is delivered as a package that includes, together with 
the code, the metadata that describe its functionality (described through the set of 
required and provided ports), its temporal behaviour, its configuration properties  
and its instantiation requirements. These metadata must be enough to generate the 
component container and the required connectors without modifying or accessing  
the internal code. 
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Fig. 1. Information provided by an RT-CCM component on parameters 

For defining these metadata, RT-CCM relies on the RT-D&C extension [6]. The 
OMG’s D&C specification [7] formalizes the formats and the contents of the docu-
ments that are used to describe a component and a component-based application. These 
documents are used by the application designers (Assembler and Planner) as a guide 
for accessing to the different pieces of information that are provided by the compo-
nents and managed during the design and deployment process. RT-D&C extends D&C 
with the real-time metadata that are required to predict, analyse and configure the tem-
poral behaviour of a component-based application during its design process. 

The purpose of the real-time design of an application is to schedule the execution of 
its activities in order to satisfy the temporal requirements imposed on its specification. 
In traditional real-time design strategies, the designer has several means of getting a 
suitable scheduling for the application: (i) defining the concurrency level, i.e. the num-
ber of threads available for the execution of the application activities; (ii) assigning 
these activities to the threads in which they are scheduled; (iii) choosing the synchroni-
zation mechanisms required to coordinate the execution of the different threads; or (iv) 
assigning the policies and the scheduling parameters which are used as the basis to 
decide which thread accesses to the processing, synchronization or communication 
mechanisms when several threads compete for them.  

When a component-based strategy is applied, the designer manages the application 
at a higher level of abstraction. All the previous aspects are related with the internal 
code of the components, so they are unknown and inaccessible for the designer due to 
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the opacity required for managing the components. In this case, the designers can con-
trol or configure the execution only by means of the information included in the  
deployment plan. Through the deployment plan, the planner chooses concrete imple-
mentations for each instance that forms the application, assigns concrete values to their  
configuration parameters, maps the instances to the nodes and selects the communica-
tion mechanisms used for each connection between components. In a real-time appli-
cation, the deployment plan must also include all the information required to configure 
the execution of the application so that the specified timing requirements are met. 

This work presents the design process of a real-time component-based application 
according to the RT-CCM technology, which requires the explanation of: 

• The mechanisms that have been introduced in the framework to control the 
scheduling of the applications. 

• The models that describe the temporal behaviour of the individual components, 
which are used to generate the reactive model of the complete application. This 
final model serves as the basis to evaluate the scheduling configuration. 

• The timing metadata that are associated to the components and to the deployment 
plans in order to configure the application scheduling in an opaque way, and 
based on the results extracted from the analysis. 

Related work. Several works aim to achieve temporal predictability for the applica-
tions based on the metadata provided by the components. The temporal models and the 
associated composition process are well defined in [8], however the applied analysis is 
focused on performance, and it does not offer a way of configuring the temporal be-
haviour of the components based on the analysis results. Its concept of component is 
similar to ours: a reusable module that can offer a complex functionality by imple-
menting different services and responses to events. Other approaches, specially  
focused on control systems [9][10], are based on lower granularity components that 
implement basic passive functions. In this case, the real-time design consists in com-
posing and mapping them to the environment threads and assigning priorities to each 
thread. Similar to our approach, CIAO [11] implements the LwCCM specification and 
uses D&C to configure and deploy applications. It offers capacity for configuring real-
time characteristics of the applications by using RT-CORBA features. However, they 
do not follow any strategy to obtain this information from the analysis. The configura-
tion is made directly on the deployment plan based on the designer expertise. 

2   An RT-CCM Application Example 

Figure 2 shows the components architecture and a possible deployment of the ScadaD-
emo application: an RT-CCM application that is used along the paper as an example to 
introduce the proposed concepts1. Its functionality consists in supervising a set of ana-
log environment magnitudes, and storing statistical data about them in a logger. The 
operator can choose the magnitudes to supervise through the keyboard, and he can also 
choose one of them to be periodically refreshed in the monitor. 
                                                           
1 Since this paper deals with the real-time design strategy and the schedulability configuration 

mechanisms, for reasons of space, the used example is monoprocessor, although RT-CCM is 
specially focused on distributed applications and the same strategy can be applied to them.  
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The application is built by assembling instances of four different types of compo-
nents, organized in a three-tier architecture. The data tier is composed by leaf compo-
nents: IOCard, which manages the acquisition cards used to read the analog signals, 
and Logger, which allows registering data with timing marks in a permanent data base. 
The business logic tier is formed by a component of ScadaEngine type, which imple-
ments a standard SCADA (Supervisory Control and Data Acquisition) functionality. It 
supervises periodically (with a configurable period) a set of magnitudes, processes 
statistically the values read through the adqPort port, and registers the obtained results 
through the logPort port. Finally, the presentation tier is implemented by the Scada-
Manager component, which implements the specific functionality of this application, 
processing the commands introduced by the operator and displaying periodically the 
results of one of the magnitudes. Figure 2 shows also the basic functionality of each 
component type, by defining their provided and required ports, called facets and recep-
tacles respectively, together with the interfaces that these ports implement. 

In RT-CCM, the functionality of an application is specified in a reactive way, as the 
set of transactions that it executes concurrently in response to external or timed events. 
In this case, there are four transactions, three of them with timing requirements: 

1. Sampling transaction: Represents the periodic (samplingPeriod period) activity 
through which the value of each magnitude is read and statistically processed. 

2. Logging transaction: Every loggingPeriod period (higher than samplingPeriod) 
the information of all the supervised magnitudes is registered in the logger. 

3. Display transaction: The information about one of the magnitudes is updated in 
the monitor every displayPeriod period. 

4. Command transaction: The commands introduced by the operator are attended 
and executed, without timing requirements. 

3   Threads and Components 

The business code of a component implements the set of services offered through the 
component facets, and the responses to the events that the component attends. In the  
 

Fig. 2. Architecture (left side) and deployment (right side) of the ScadaDemo application 
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Fig. 3. Threads that concur in the engine instance of the ScadaDemo application 

general case, this code requires to be concurrently executed by multiple threads, which 
are created either by the component itself or by other components that invoke its ser-
vices. As a consequence, the code of a component must include internal synchroniza-
tion mechanisms to guarantee mutually exclusive access to the shared resources, and to 
synchronize the threads that concur in it. 

As an example, Figure 3 (a) shows the four threads that concur in the engine in-
stance (of ScadaEngine component type) during the execution of the ScadaDemo 
application. Two of them are internal to the component: samplingTh, which reads 
periodically the supervised magnitudes, and loggingTh, which registers periodically 
the statistical values in the logger. The other two threads come from invocations made 
by the manager instance (of ScadaManager component type) in the controlPort facet: 
keyboardTh modifies the list of variables to supervise, and displayTh requires the 
information about the magnitude to display. The four threads require access to some 
internal data hold by the component, so they are synchronized by a mutex called 
dataMtx. 

The real-time design and schedulability analysis of component-based applications 
require knowledge about these threads, their associated synchronization mechanisms 
and the activities that they execute. Besides, configuring the scheduling of an applica-
tion requires that the parameters that control the scheduling of the different elements 
can be assigned by the configuration and launching tools. To make the inherent 
opacity of components compatible with the real-time design process, in RT-CCM the 
creation and management of threads and synchronization artifacts have been extracted 
from the code of the components. They are implemented by the containers, whose 
codes are known and accessible by the tools.  

RT-CCM uses three elements to facilitate the scheduling of the threads in that 
opaque way, without knowing the code of the components: 

• Four new port types have been defined. They are used by the business code of the 
components to access to the threads and the synchronization mechanisms provided 
by the container. 

• The activities assigned to each thread and the points in which these threads syn-
chronize their flows are described by the real-time model of the component. 
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• Interceptors are used to establish the scheduling parameters with which each ser-
vice invoked in a component is executed, based on the concrete transaction and 
the point inside the transaction in which the invocation is made. 

The new types of ports defined in the RT-CCM technology are: 

• PeriodicActivation ports: For each port of this type declared by a component, the 
container (by means of the ThreadingService) creates a thread that periodically 
executes the update() method offered by the port. The activity executed by this 
method must have a finite duration (lower than the activation period). 

• OneShotActivation port: For each port of this type declared by a component, the 
container creates a thread that executes the run() method offered by the port once, 
when the component is activated. The method execution can have an arbitrary du-
ration, which can last the complete active life of the component. 

• Mutex port: For each declared port of this type, the container (by means of the 
SynchronizationService) creates a mutex, which the component can manage 
through the lock() and unlock() methods invoked on it through the port. 

• ConditionVariable port: For each port of this type the container (by means of the 
SynchronizationService) creates a condition variable, which the component can 
use to suspend and activate the internal threads, through the wait() and notify() 
methods invoked on it through the port. 

Figure 3(b) shows the ports through which the AdaScadaEngine implementation, the 
Ada 2005 implementation of the ScadaEngine component used in the ScadaDemo 
example, requires the two internal threads, samplingTh and loggingTh ports, and the 
mutex, dataMtx port, which it needs to implement its functionality. 

In RT-CCM a component is a complex module whose temporal response is not de-
fined by its own code in the general case, since this temporal behaviour depends on the 
temporal behaviour of other components that it uses, and on the final execution plat-
form. Therefore, the aim of the real-time model of a component is not to describe the 
temporal behaviour of the component as an isolated module, but to provide the infor-
mation about the component that is required to predict the temporal behaviour of any 
application in which it may be used. Each component implementation has its own real-
time model, which basically contains the declaration of the processing and syn-
chronization resources that the component uses to implement its offered services and 
its responses to external or timed events. The execution of a component service or the 
response to a received event are described as the execution of a set of activities ordered 
by control flow relations (sequential, fork, branch, merge and join). Each activity is 
described by enumerating the resources that it uses and the corresponding usage times.  

In RT-CCM these models are formulated according to CBSE-MAST [12], an exten-
sion of the MAST [13] modelling methodology. It incorporates parameterization and 
composability to the components models, which facilitate their composition into full 
reactive models able to be analysed with the MAST set of tools. The modelling  
concepts used in MAST are almost the same as the ones proposed in the SAM (Sched-
ulability Analysis Modelling) chapter of the OMG’s MARTE [14] profile. Figure 4 
represents the real-time model of the AdaScadaEngine implementation. The model 
includes the SchedulingServers that describe the samplingTh and loggingTh threads that  
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Fig. 4. Elements of the real-time model of the AdaScadaEngine implementation 

the component uses internally. The model states that they are scheduled by the sched-
uler of the processor in which the component is installed (HOST reference) and they 
are managed according to a fixed priority preemptive scheduling policy. The model 
declares a SharedResource to describe the dataMtx mutex, which uses a priority ceiling 
policy. The models of the getBufferedData and getLastLoggedData real-time services, 
offered through the controlPort facet, are also included. Besides, the model describes 
as transactions, the two periodic activities executed internally in the component, Sam-
plingTrans and LoggingTrans. They correspond to the code executed in the two up-
date() methods of the two declared PeriodicActivation ports. Each transaction defines 
the SchedulingServer in which it is scheduled (samplingTh and loggingTh respec-
tively), the generation pattern of the triggering events, the sequence of activities that 
are executed in response to those triggering events, and the timing requirements that 
must be met in each execution. Finally, the model includes some internal operations 
that are used to describe the transactions activities, as for example registerData.  

The real-time model of a component is parameterized in three different aspects: 

• The real-time model of the processor in which the component is executed is not 
known at development time, so it is referenced through the HOST predefined pa-
rameter. The execution times of the internal activities of the component are for-
mulated as normalized execution times, so only in the context of an application 
deployment, when the processor and its processing capacity are known, the actual 
physical execution times can be obtained. 

• The resources usages generated by those component activities that consist in in-
voking services on other components (via receptacles) can not be specified at com-
ponent development time. The model includes only a reference to the port and the 
service invoked. Only in an application, when the concrete connected component 
is known, the actual resource usages can be evaluated. This is the case e.g. of the 
invocation of the log method (in logPort) in the LoggingTrans model. 
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Fig. 5. Management of scheduling parameters in RT-CCM 

• There are some characteristics of the real-time model that are declared as parame-
ters to adapt them to the specific situation in which the component is instantiated 
in a concrete application context. In the example, the samplingThPeriod and log-
gingThPeriod are parameters of the real-time model since different values can be 
assigned to them according to the concrete application context. 

To get a more flexible scheduling of the applications, the execution of the services 
and the responses to events that the components manage can be scheduled according 
to parameters (priorities, preemption levels, etc.) that depend on the concrete 
transaction and the internal state of the transaction in which they are executed [15]. 
To make this scheduling easier, each of the transactions executed in the application 
are associated with an independent thread when they are sequential, or with a set of 
threads when they are concurrent. When the timing requirements are assigned to the 
finalization of the last activity of the transaction, the scheduling can be associated to 
the threads, making all the activities to execute with the same scheduling parameters. 
However, when the requirements are associated to intermediate points of the trans-
action, the scheduling parameters must be independently assigned for each activity.  

In RT-CCM, this kind of management of the scheduling parameters in an activity-
based manner, is managed by means of interceptors. This mechanism [16] is used to 
manage non-functional aspects, by invoking environment services before and after the 
execution of a service in a component. In RT-CCM, before a component service is 
executed, the interceptor calls the setSchedParam() method in the SchedulingService 
of the container. This method receives as argument an identifier (called stimId) of the 
transaction and the transaction state, which is used to modify the scheduling 
parameters of the invoking thread and the value of stimId. When the service execution 
ends, the interceptor invokes the recoverSchedParam() method, which recovers the 
value of stimId and the scheduling parameters that the thread had when the invocation 
was made. To clarify this concept, Figure 5 shows the scheduling management in the 
case of the Logging transaction of the ScadaDemo example. The update() method of 
the loggingTh port of the engine instance (which maps the Logging transaction) is 
started with stimId = 20 and priority = 20. The invocation of the log service in the 
register instance is made with that value of stimId. When the interceptor associated to 
this service invokes setSchedParam(), according to the configuration of the Schedul-
ingService established for the application, the priority of the invoking thread is set to 
8 and the stimId value is changed to 21 (in order to distinguish other invocations 
made inside the log service, as the handEvent invocation on the manager instance). 
When the execution of log ends, the initial values for the stimId and the priority are 
recovered, by invoking the recoverSchedParam() method.  
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4   Real-Time Components Description 

An RT-CCM component is described by means of the descriptors formalized in the 
RT-D&C specification. According to it, the information that describes a component is 
split up in two parts: the component interface and the component implementations. 

The RT-D&C’s ComponentInterfaceDescription contains the information about the 
functionality, connectivity and configurability of the component that is common to all 
its possible implementations. It provides the information required by the assembler to 
decide if a component is useful in the application that is being designed. In real-time 
applications, some specific aspects of this description must be remarked: 

• The functionality of a real-time application is described by means of a reactive 
specification, which defines the external or timed events to which the application 
responds, the activities that constitute these responses and the timing requirements 
that must be met. As a consequence, the RT-D&C descriptor for a component in-
terface must include metadata declaring the kind of responses to the events that the 
component can attend, i.e. the transactions generated in the component. 

• The connectivity of the components must be described not only from the func-
tional point of view (based on interfaces compatibility) but also from the real-time 
models composability point of view. Some metadata must be included to guarantee 
that an assembly of components leads to a real-time composed component, i.e. a 
component for which a temporal behaviour model can be generated. With that aim, 
in RT-D&C, each facet declares the operations for which the component provides 
a real-time model, and each receptacle declares the operations whose real-time 
models are needed by the component. In an application, a facet of a component 
can be connected to a receptacle of another component only if all the real-time 
models of operations required by the facet are provided by the receptacle. 

The RT-D&C’s ComponentImplementationDescription contains the specific 
information of an implementation of the component interface. The planner obtains 
from it the information that he requires to decide the deployment of an instance of the 
component in a concrete node of the platform. In case of a real-time component, it has 
to include metadata that allow the planner to configure the application scheduling: 

• Declaration of the threads required by the component to implement its functional-
ity, formulated as activation ports. 

• Declaration of the synchronization artifacts required by the component to manage 
concurrent accesses to its internal data, formulated as synchronization ports.  

• Declaration of the scheduling configuration parameters. Each implementation can 
declare the priorities, preemption levels, priority ceilings, etc. that must be config-
ured to control the scheduling of the threads and the synchronization mechanisms 
required by the component. 

Besides, the implementation description must include the reactive model that describes 
the temporal behaviour of the component. This model must include: 

• Temporal behaviour models of the services offered through the facets. Each model 
describes the sequence of activities executed when the service is invoked. 
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Fig. 6. ScadaEngine interface and AdaScadaEngine Implementation 

• Temporal behaviour models of the transactions initiated by the component in  
response to external or timed events. They are described also as the sequence of 
activities executed in them, together with the triggering patterns and the timing re-
quirements imposed on their execution. 

 
Figure 6 shows the elements that constitute the interface of the ScadaEngine compo-
nent, and the description of the AdaScadaEngine implementation. The ScadaEngine 
interface description includes the following elements:  

• The controlPort facet that implements the ScadaControl interface. The component 
declares that it offers associated real-time models for the getBufferedData and get-
LastLoggedData services. 

• For implementing its functionality, the component needs to be connected to at least 
one component implementing the AnalogIO interface through the adqPort. It re-
quires that the connected component offers a real-time model for the read service. 
It declares another required port, logPort, which must be connected to a compo-
nent implementing the Logging interface. In the case of real-time applications, the 
connected component must provide a temporal model for the log service. 

• The component defines two configuration parameters, samplingPeriod and log-
gingPeriod, for adapting its business behaviour to the corresponding application. 

• The component responds to two different events, through the SamplingTrans and 
LoggingTrans transactions. These transactions map the ones required by the ap-
plication that were identified in section 2 (Sampling and Logging transactions). 

The description of the AdaScadaEngine implementation specifies: 

• The requirements that the component imposes on a processor to be instantiated.  
• The description of the artifacts which hold the implementation code, and the way 

in which they have to be instantiated and executed. 
• The description of the activation ports. As it was said in Section 3, the AdaSca-

daEngine implementation requires two threads, which execute the update() 
method of the corresponding samplingTh and loggingTh ports.  

• The description of the synchronization ports. The AdaScadaEngine implementa-
tion requires a mutex, which is accessed through the dataMtx port. 

• Implementation configuration parameters: due to the periodic activation ports, 
two new parameters appear at this level, samplingThPeriod and loggingThPeriod, 
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which describe the activation periods for the ports. They take values directly from 
the corresponding samplingPeriod and loggingPeriod parameters. 

• Scheduling configuration parameters: The implementation introduces three 
scheduling parameters (also due to the activation and synchronization ports), 
samplingThPrty, loggingThPrty and dataMtxCeiling, which are used to contro-
lytyuthe scheduling of the internal activities of the component. 

• The reference to the file in which the reactive temporal model of the component 
is described, whose main elements were introduced in section 3. As shown in 
Figure 4, its parameters correspond to the implementation and scheduling  
configuration parameters defined in the component implementation (sam-
pling/loggingThPeriod, sampling/loggingThPrty and dataMtxCeiling). 

5   Real-Time Design of a Component-Based Application in  
RT-CCM 

Figure 7 shows the artifacts and the actors involved in the process of development of 
an application based on the RT-CCM technology. The assembler is a domain expert 
who implements the functionality of the application by assembling instances of the 
available components, based on the metadata provided by their interfaces. He generates 
the description of the application as a composed component. The planner decides the 
processor in which each instance is going to be instantiated, selects the appropriate 
implementation for each instance and chooses the communication mechanism to use 
for each connection between instances. The planner describes the application as a de-
ployment plan. Finally, the executor generates the executable codes for each node, 
transfers and installs them in the corresponding nodes and starts the application.  

When the designed application has real-time requirements, some specific character-
istics are added to this process: 

• The specification of the application has a reactive nature, so the assembler must 
build the application choosing firstly those components that have the capacity to 
manage the events to which the application responds. This is the cause of select-
ing e.g. the ScadaEngine component in the ScadaDemo example, since it imple-
ments two of the required transactions. Then, he may have to choose other  
components to satisfy the connectivity requirements of the chosen components, as 
it happens with the IOCard and Logger components in ScadaDemo, which are 
chosen to fulfil the functionality of the ScadaEngine component. 

• The assembler must formulate the real-time requirements of the application in the 
context of one or several workloads, i.e. he must specify the generation patterns 
for the events that lead the execution of the application, and the timing require-
ments that must be satisfied during the execution.  

• The assembler builds the application ensuring that it implements the functional 
specification. However, he can not guarantee that the timing requirements are go-
ing to be met, since the timing behaviour of the application depends on the execu-
tion platform and the concrete component implementations chosen. He can only 
assure that a real-time model of the application can be obtained, by checking the 
composability of the real-time models of the components involved.  
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Fig. 7. Development process of an RT-CCM component-based application 

• The planner is responsible of making the application schedulable. Besides assign-
ing instances to nodes and choosing the concrete implementations, he must assign 
values to the scheduling parameters of the components and the platform resources 
so that the timing requirements of the application are met. 

This last aspect is identified as the real-time design of a component-based application. 
It is a complex task, which requires having the temporal behaviour model of the 
complete application, in order to use it as the basis for applying real-time design 
algorithms and tools. These tools are used to obtain optimal values for the scheduling 
parameters and to analyse the schedulability of the application, certifying the 
fulfilment of the timing requirements. Figure 8 shows the final model that results from 
the deployment of the ScadaDemo application shown in Figure 2, with a workload that 
corresponds to a situation in which three magnitudes are supervised with a sampling 
period of 10 ms, a logging Period of 100 ms and a display period of 1s. The processor 
considered in this case has a speedFactor = 0.5 (i.e. with half the capacity of the proc-
essor taken as reference for specifying the normalized execution times in the real-time 
models of the components) [13][14] and its scheduler uses a fixed priority policy. 

The real-time model of the application is automatically generated by a tool that 
takes as inputs the deployment plan, and the descriptor of the execution platform. The 
model is built by identifying the component instances that form the application and 
composing the temporal models that they include in their descriptions. In this final 
model, all the references and parameters are solved since all the connections between 
components are known and also the capacity of the platform. Although the generation 
of the real-time model of the application is guided by the metadata and the 
parameterized models included in the component packages, the result is a conventional 
real-time model, which can be analysed with standard real-time design and analysis 
tools. In our case, the tools provided by the MAST environment are used.  

The results obtained from the real-time design process in RT-CCM are:  

• The initial priority for all the threads required by the components. 
• The priority ceilings that must be assigned to each required mutex. 
• The priority of execution of each invocation received in a component service in the 

context of the transaction in which the invocation is made. The tool generates the 
sequences of stimId values that identify univocally each received invocation. 

• The stimId values that the active components must use to identify each transaction 
that is triggered on them. They are given to the threads that execute the activation 
ports of the components. 
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sensors.Read
wcet=8.5µs, acet = …
lock/unlock={sensors.aiMutex} 

remoteSensors.Read
wcet=12.3µs, acet= …
lock/unlock={remoteSensors.aiMutex} 

engine.registerData
wcet=48.0µs, acet=…
lock/unlock={engine.dataMtx} 

workload.samplingDeadline

kind=HardGlobalDeadline
references: workload.samplingEv
deadline=10ms 

workload.loggingEv

engine.generateLoggedMssg

kind= PeriodicEvent
period= 100 ms

wcet=176µs, acet= …
lock/unlock={engine.dataMtx} 

register.log
wcet=7.2ms, acet  = …

workload.loggingDeadline

kind=HardGlobalDeadline
references: workload.loggingEv
deadline=100ms 

workload.displayEv

manager.print

kind= PeriodicEvent
period= 1s

wcet=235µs, acet = … 

workload.displayDeadline

kind=HardGlobalDeadline
references: workload.displayEv
deadline=1s 

engine.getLastLoggedMssg
wcet=90.0µs, acet = …

engine.getBufferedData
wcet=46.0µs, acet = … 
lock/unlock={engine.dataMtx} 

lock/unlock={engine.dataMtx} 

manager.processCommand
wcet=165µs, acet = …

engine.samplingTh engine.loggingTh manager.displayTh manager.keyboardTh

engine.SamplingTrans engine.LoggingTrans manager.DisplayTrans manager.CommandTrans

workload.samplingEv
kind= PeriodicEvent
period= 10 ms

sensors.Read
wcet=8.5µs, acet = …
lock/unlock={sensors.aiMutex} 

workload.CommandEv
minInterarrival= 0.5s
kind= BoundedSporadicEvent

manager.handEvent

wcet=1.4ms, acet  = …

 

Fig. 8. Real-time model of the deployed ScadaDemo Application 
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Fig. 9. Schedulability configuration results in the ScadaDemo example 

The tables in Figure 9 show the priority assignment obtained for the ScadaDemo ex-
ample. The Sampling and Display transactions have deadlines associated to the end of 
the transaction, so the assigned priority is the same for all the activities executed in 
them. However, the Logging transaction has a deadline associated to an intermediate 
state, so the activity register.log, which is executed after it, receives a lower priority 
than the rest of the transaction. Based on this information, the launching tool that starts 
the application execution by instantiating the components, configures the platform 
services in each node with the following information: 

• The ThreadingService receives the initial priority and stimId with which each 
thread provided to a component through an activation port must start its execution. 
Each stimId identifies univocally one transaction. 

• The SynchronizationService receives the configuration parameters for each of the 
synchronization artifacts required by the components (e.g. mutex ceilings).  

• The SchedulingService of each node receives the tables with the mappings be-
tween stimId and priority values, which are used to configure each invocation 
made on a component service. 
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With this strategy, the RT-CCM technology satisfies the objective of configuring the 
scheduling of an application respecting the opacity of the components. 

6   Conclusions 

The strategy proposed in this paper allows the designer of a real-time component-based 
application to configure its scheduling, satisfying the opacity requirement typical of the 
components paradigm. The strategy is applied on top of the RT-CCM technology, 
which uses a container/component model to extract the scheduling management from 
the business code of the components. The management of all the aspects related with 
the application scheduling are carried out by a set of services included in the compo-
nents containers. Besides, the technology relies on an extension of the D&C specifica-
tion, which incorporates metadata about the temporal behaviour of components and 
platforms. These metadata allow the designers of the applications to analyse their  
temporal behaviour, or to extract from this analysis the scheduling configuration pa-
rameters to be assigned to the component instances, through the services, in order to 
guarantee the fulfilment of the timing requirements of the application. 
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Abstract. Kirsch and Segunupta in a recent paper have argued that several gener-
ations of real-time programming models for use in digital control systems can be
identified: the Physical-Execution Time (PET) model, the Bounded-Execution-
Time (BET) model, the Zero-Execution Time (ZET) model and the Logical-
Execution-Time (LET) model. They classify Ada as belonging to the BET model
and claim that a LET model, as supported by the Giotto language, is superior.
Whilst historically one can recognise different approaches to programming real-
time systems, this paper refutes the argument that general-purpose real-time lan-
guages like Ada (or Real-Time Java) neatly slot into a BET model. Instead, we
suggest that the real issue that the LET model addresses is the ability of a pro-
gramming model to give composable abstractions that allow programs to have
bounded input and output jitter. Languages like Ada (and many real-time operat-
ing systems) have mechanisms that easily allow this to be achieved. Using Ada
as an example, we show two different ways. Each of which has advantages and
disadvantages.

1 Introduction

Kirsch and Sengupta [4] have evaluated the suitability of various approaches to pro-
gramming digital control systems and use this to draw some conclusion about the evo-
lution of real-time programming models. They argue that “digital control is defined by a
set of abstractions that are real-time programmable and mathematically tractable in the
context of the dynamics of physiochemical processes”. The claim is that these abstrac-
tions constitute “a precise definition of the real-time problem”. Essentially, the action
of a component of a control system is governed by two equations: the output equation
and the state equation. The component periodically reads input signals (measurements
from sensors, input for other components etc) and uses the two equations to compute
the component’s output (actuator commands, output to other components etc) and to
update its state. Ideally, the computation and interaction happens in zero time or with
a constant delay. There is no communication with other tasks except via the input and
output at the beginning and end of each task’s iteration. This restrictive communica-
tion model, however, is not appropriate for systems where more dynamic interactions
between tasks are required. Hence, their requirements should be viewed only in the
context of control systems.

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 196–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Using the above statement of requirements, Kirsch and Sengupta contend that lan-
guages like Giotto and Esterel are in some sense superior to languages like Ada or Real-
Time Java (or C/C++ with support from real-time operating systems). In this paper we
refute this claim. We show that their evaluation is mainly based on the requirement
to support composability of systems. Essentially this requires the ability to be able to
specify timing requirements on components and to ensure when systems are composed
these requirements are met.

The paper is structured as follows. In section 2 we review the different generations
of real-time programming models presented by Kirsch and Sengupta. In section 3 we
classify the main requirements for real-time programming in this area, and re-interpret
Kirsch and Sengupta requirements. Then in section 4 we consider the Giotto model
in the context of these requirements. We show that the main strength of Giotto is that
it allows composability of tasks with input and output jitter requirements. Section 5
shows how these input and output jitter requirements can easily be met in Ada. Finally
we draw our conclusions.

2 The Evolution of Real-Time Programming

Kirsch and Sengupta [4] contend that as real-time programming has drawn closer to
the computing abstractions of digital control, the real-time programming models have
evolved from the physical-execution-time (PET) and bounded-execution-time (BET)
programming models to higher-level programming models such as the zero-execution-
time (ZET) and logical-execution-time (LET) models.

According to Kirsch and Sengupta, the PET programming model was developed to
program control systems on processor architectures with simple instructions that have
constant execution time. The programmer designed a sequence of (usually) assembly
instructions and could not use any concurrency. The sequential nature of the resulting
program and the predictability of the early assembly instructions resulted in fixed delays
between input and output. However, as systems became more complex and processor
architectures less predictable in the temporal domain, composability of components
became difficult and the PET model needed to be replaced.

The emergence of operating system and real-time scheduling facilitated the develop-
ment of the BET model. The aim of the BET model is to handle concurrency and real
time. Each component could now be represented as a task that had a period and a dead-
line (usually the same as the period). The task was required to finish its execution in the
worst-case by its deadline. Hence the “execution time” of the task was bounded by its
deadline. Worst-case execution time analysis and schedulability theory could be used
to guarantee that each task’s execution time (response time) was bounded. Whilst com-
posability of tasks is supported by schedulability analysis, the BET model is criticised
by Kirsch and Sengupta[4] for its lack of I/O composability. Essentially their argument
is that the response time of a task can vary considerably from its best-case to its worst
case. Similarly, the start time of a task will depend on whether higher priority (or earlier
deadline) tasks are runnable at its release time. Hence, if input is read at the beginning
and output written at the end of a task’s execution then input and output will suffer
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significant jitter. This jitter will also vary when new tasks are added. Consequently, they
claim that the BET model does not support I/O composability.

To counteract the I/O composability problem, the ZET model was introduced. The
fundamental assumption underpinning this computational model is the ideal (or perfect)
synchronous hypothesis [1]:

Ideal systems produce their outputs synchronously with their inputs.

Hence all computation and communication is assumed to take zero time. Clearly, this is
a very strong, and unrealistic, assumption. However, it enables the temporal ordering of
I/O events to be determined more easily. During implementation, the ideal synchronous
hypothesis is interpreted to imply ‘the system must execute fast enough for the effects
of the synchronous hypothesis to hold’. What this means, in reality, is that following
any input event, all associated outputs must occur before any new input could possibly
happen. The system is then said to ‘keep up’ with its environment. Although a ZET
complier can guarantee the unchanged I/O behavior of old tasks with the addition of
new tasks by executing all I/O operations together, it takes no advantage of the schedul-
ing facilities of real-time operating systems – as it accepts multiple tasks but produces
a sequential program to be executed by the operating system.

Finally, Kirsch and Sengupta claim that the LET model is the most recent of the real-
time programming models. In the LET model a task computes logically from reading
input to writing output for some given amount of time that is called its logical execution
time. The task is guaranteed to read the input at the start of its release and provide
the output at the end of its logical execution time. Actually the task may complete its
computation before the end of the time, but the output will not be made available until
this time. During its logical execution time, the task may be preempted by other tasks
and resumes execution again, however it will be guaranteed (by schedulability analysis)
that the task will offer the output if it meets its deadline, which is the end of the logical
execution time.

Throughout their discussions Kirsch and Sengupta give example languages that they
claim fit the models. For example they claim Ada and Java fit the BET model, Esterel
and Lustre fit the ZET model and Giotto fits the LET model. The implication is that lan-
guages that support the “higher-level” models are more suited to programming digital
control systems. Hence, Giotto is a superior language for digital control systems than
say Ada or real-time versions of Java.

We contend in this paper that Kirsch and Sengupta arguments are rather simplistic
and do not distinguish between the expressive power of a language, and its ease of use.
We will show that Ada has the expressive power to meet the real-time requirements
implied by the LET model. Ease of use is, inevitably, subjective. A language that has
higher-level abstractions is however likely to be easier to use but only if those abstrac-
tions match closely the abstractions needed by the programmer. Any slight variation
may make the programs more difficult to write. We will show that the LET model is
only partially successful in meeting its own goals, and that for large systems I/O com-
posability becomes more difficult to bound effectively. We show how having a more
flexible model allows the programmer to exercise better control.



The Evolution of Real-Time Programming Revisited 199

3 Requirement for Real-Time Programming Models

To facilitate the specification of the various timing constraints found in real-time ap-
plications, it is useful to introduce the notion of temporal scopes[5][2]. Such scopes
identify a collection of statements with an associated timing constraint. The possible
attributes of a temporal scope (TS) are illustrated in Figure 1, and include

1. deadline – the time by which the execution of a TS must be finished;
2. minimum delay – the minimum amount of time that must elapse before the start of

execution of a TS;
3. maximum execution time – of a TS;
4. maximum elapse time – of a TS.

Now

Time

Deadline

a

b

c

Maximum
elapse time

delay
Minimum

Unit of Execution

Maximum execution time = a + b + c

Fig. 1. Temporal scopes

Temporal scopes with combinations of these attributes are also possible and, for some
timing constraints, a combination of sequentially executed temporal scopes is necessary.
For example, consider a simple control action that reads a sensor, computes a new
setting and outputs this setting via an actuator. To get fine control over when the sensor
is read (input jitter), an initial temporal scope with a tight deadline is needed. The output
is produced in a second temporal scope which has a minimum delay equal to the first
scope’s deadline but a later deadline – see code example below. If there is a need to
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also control output jitter then a third temporal scope could be added which has a long
‘minimum delay’ and a short time interval before its deadline.

Temporal scopes can themselves be described as being either periodic or aperiodic.
Typically, periodic temporal scopes sample data or execute a control loop and have
explicit deadlines that must be met. Aperiodic, or sporadic, temporal scopes usually
arise from asynchronous events outside the embedded computer. These scopes have
specified response times associated with them.

In many real-time languages, temporal scopes are, in effect, associated with the tasks
that embody them. Tasks can be described as either periodic, aperiodic or sporadic de-
pending on the properties of their internal temporal scopes. Most of the timing attributes
given in the above list can thus be satisfied by:

1. running periodic tasks at the correct rate;
2. completing all tasks by their deadline.

The problem of satisfying timing constraints thus becomes one of scheduling tasks to
meet deadlines, or deadline scheduling.

Here, we focus on periodic activities as that is the focus of the LET model. A task
that is sampling data may be composed of a number of temporal scopes:

loop
start of 1st temporal scope
... -- input activities

end of 1st temporal scope
start of 2nd temporal scope
... -- processing

end of 2nd temporal scope
IDLE
start of 3rd temporal scope
... -- output activities

end of 3rd temporal scope
end;

The input activities of this task take place in the first temporal scope and hence the
deadline at the end of this scope regulates the maximum input jitter for the task. The
input data may already be available in buffers for the task, or the task may need to read
input registers in the sensor’s device interface. The second temporal scope incorporates
whatever computations are needed to calculate the task’s output values (no input or
output takes places in this scope). The third scope is concerned with the output action.
Here the IDLE interval is important; it is measured from the beginning of the loop and
constrains the time before the output can be produced by the task. The deadline on this
final temporal scope places an upper bound on the time of the output phase.

Although it would be possible to incorporate this sequence into a single task, schedul-
ing analysis places restrictions on the structure of a task. Specifically, a task must only
have one idle (delay) statement (at the beginning of the execution sequence) and one
deadline (at the end). So, for illustration, assume the control task has a period of 100ms,
a constraint on input jitter of 5ms, a constraint on output jitter of 10ms and a deadline
of 80ms. The three necessary tasks would take the form:
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task periodic_PartA;
...

begin
loop every 100ms
start of temporal scope

input operations
write data to a shared object

end of temporal scope - deadline 5ms
end;

end;

task periodic_PartB;
...

begin
loop every 100ms
start of temporal scope

IDLE 5ms
read from shared object
computations
write data to a shared object

end of temporal scope - deadline 70ms
end;

end;

task periodic_PartC;
...

begin
loop every 100ms
start of temporal scope

IDLE 70ms
read from shared object
output operations

end of temporal scope - deadline 80ms
end;

end;

Note that as now the tasks are concurrent the second temporal scope must also have
an IDLE statement in order to stop it executing too soon.

4 Giotto

In order to understand the LET model better, this section considers in more detail the
Giotto language.

Giotto [3] is a domain-specific high-level research programming language for control
applications. As such, its focus is on the composability of components and the control
of input and output jitter.

The basic functional unit in Giotto is the task, which is a periodically executed sec-
tion of code. Several concurrent tasks make up a mode. Tasks can be added or removed
by switching from one mode to another.
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Fig. 2. The Logical Execution Time model

Tasks communicate with each other via typed ports. Ports are either input or output.
The values of a task’s input ports are set when the task is released. The value of its
output ports are only made available to other tasks when the task’s deadline has been
reached. Hence, tasks are not allowed to communicate with each other during their
execution. The code responsible for copying data from one task’s output port to another
task’s input port is called a driver. Drivers are also responsible for reading from sensors
and writing to actuators.

Driver code takes a bounded amount of execution time and is assumed to execute
(effectively) instantaneously. Tasks are assumed to take a non-negligible amount of time
to process the data in their input ports and produce their output data. Hence, Giotto
is similar to Esterel in that driver code satisfies the synchronous hypothesis. Unlike
Esterel, application code does not need to support this hypothesis. Instead, the model
is referred to as a Logical Execution Time (LET) model. This model is depicted in
Figure 2. In terms of temporal scopes that were introduced in Section 3, a LET task
and its associated driver code can be considered as a sampling task that consist of three
temporal scopes. The first and third scopes control the input and output jitter, and are
executed by the driver code.

There are various versions of Giotto, below the main characteristics of a program are
shown using pseudo code. Here, the program simply monitors two sensors: temperature
and pressure, in order to keep the system within some specified limits (by outputing
values to two actuators: a pump and a heater).

sensor
port temperature type integer range 10 .. 500
port pressure type integer range 0 .. 750

actuator
port heater type (on, off)
port pump type integer 0 .. 9

input
T1 type integer range 10 .. 500
PI type integer range 0 .. 750

output
TO type (on, off)
PO type integer 0 .. 9

task temperature input TI output TO temperature_controller
task pressure input PI output PO pressure_controller
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driver temperature_sensor
source temperature destination TI function read_temperature

driver pressure_sensor
source pressure destination PI function read_pressure

driver heater_actuator
source TO destination heater function write_heater

driver pump_actuator
source PO destination pump function write_pump

mode normal period 20 ports TO, PO
frequency 2 invoke temperature driver temperature_sensor
frequency 1 invoke pressure driver pressure_sensor
frequency 2 update heater_actuator
frequency 1 update pump_actuator

start normal

Giotto is more concerned with the architecture of the program rather than the details
of a task’s or driver’s code. It focuses on the declaration of ports (sensors, actuators,
input and output), tasks and drivers. The above code shows that there are two sensors
and two actuators and the type of their associated data. Associated with each sensor is a
driver that is responsible for taking the data from the devices’ registers and placing the
values in the input ports of the two tasks. Similarly, drivers are responsible for taking
the data from the output ports of the two tasks and writing the values to the actuators’
device registers.

The scheduling of the system is specified using the mode construct. In this simple
example, a single mode is defined (called normal). The system is time triggered with
a period of 20 milliseconds. The schedule consists of the frequencies of the two tasks
within this period – hence task temperature runs every 10 milliseconds,pressure
every 20 milliseconds. The tasks inputs are associated with the appropriate drivers.
Similarly, the actuators have associated drivers. The semantics of the statement are that
the drivers associated with the invoke statement must be scheduled at the release
time of the task according to the synchronous hypothesis. The drivers associated with
the update statement are scheduled at the deadlines of the tasks (here equal to their
periods). A task in Giotto is composable with other tasks but only if it can be shown
that the system is time safe. In other words, some form of schedulability analysis must
be undertaken by the designer before deployment.

Giotto is a good example of a language targeted to the characteristics of a particular
application domain. Its restrictive communication model, however, means that it is not
appropriate for systems where more dynamic interactions between tasks are required.
For example, where the task’s computation can takes various branches depending on
values in a real-time database, and it is difficult to efficiently extract all these routes
into different tasks (they would need to be in different modes).

5 Controlling Input and Output Jitter in Ada

In many real-time application areas, particularly control systems, real-time tasks have
the simple structure reflected in the LET programming model. In many applications,
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controlling jitter is performed by the I/O device itself. These “smart” sensors and actua-
tors can perform their I/O operations at particular points in time with minimum latency.
However where these are not available, the application must implement the necessary
requirements.

Few industrial strength real-time languages explicitly have facilities to directly spec-
ify jitter requirements (i.e. constraints). There are, however, several ways by which the
programmer can use other real-time mechanism to meet the requirements.

Section 3 showed how a jitter-constrained task could be transformed into two or
three tasks each with its own deadline. Then by judicial use of scheduling parameters
or temporal scopes, the required behavior could be achieved. This is trivial to do in
Ada. However, the main disadvantage of the approach is that it is rather heavy in its use
of Ada tasks, requiring a task to execute a small bounded piece of code. In situations
where it is necessary to undertake a small computation periodically and with minimum
jitter (for example, just reading the sensor value), a timing event can be used instead and
is more efficient. It is this approach that is considered in detail in the next subsection.

5.1 Controlling I/O Jitter in Ada Using Timing Events

The input and output from and to sensors and actuators is a good example of where
small amounts to computations are constrained by jitter requirements. Consider again
the periodic control activity. It reads a sensor, performs some computation based on the
sensor value and writes a result to an actuator. In order to ensure that the environment
does not become unstable, the control algorithm requires that the sensor be read every
100 milliseconds (for example); the variation in the time at which the sensor is read
each cycle (input jitter) is a maximum of 5 millisecond. The output should be written
to the actuator within a deadline of 80 milliseconds, and the output jitter no more than
10 milliseconds. Figure 3 illustrates these timing constraints.

start

period

Deadline
(maximum
latency|)

Time

input jitter output jitter

minimum 
latency

Fig. 3. A simple task with input and output jitter constraints

One way to satisfy a tight time constraint in Ada is to use timing events in con-
junction with a task. First, the time constraint on the input can be implemented by the
following protected type:

protected type Sensor_Reader is
pragma Interrupt_Priority (Interrupt_Priority’Last);
procedure Start;
entry Read(Data : out Sensor_Data);
procedure Timer(Event : in out Timing_Event);
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private
Next_Time : Time;
Reading : Sensor_Data;
Data_Available : Boolean := True;

end Sensor_Reader;

Input_Jitter_Control : Timing_Event;
Period : Time_Span := Milliseconds(40);

The procedure Start is used to initiate the first sensor reading. The routine then
sets up the next reading using the Input Jitter Control timing event. The timer
will call the Timer procedure at the appropriate time. This will take the next sensor
reading, and set up the next event. The control algorithm simply calls the Read entry,
which becomes open every time new data is available. The body of the protected type
is given below.

protected body Sensor_Reader is
procedure Start is
begin
Reading := Read_Sensor;
Next_Time := Clock + Period;
Data_Available := True;
Set_Handler(Input_Jitter_Control, Next_Time, Timer’Access);

end Start;

entry Read(Data : out Sensor_Data) when Data_Available is
begin
Data := Reading;
Data_Available := False;

end Read;

procedure Timer(Event: in out Timing_Event) is
begin
Reading := Read_Sensor;
Data_Available := True;
Next_Time := Next_Time + Period;
Set_Handler(Input_Jitter_Control, Next_Time, Timer’Access);

end Timer;
end Sensor_Reader;

The repetitive use of timing events is an effective solution for this type of require-
ment. A similar approach can be used for the control of the output.

protected type Actuator_Writer is
pragma Interrupt_Priority (Interrupt_Priority’Last);
procedure Start;
procedure Write(Data : Actuator_Data);
procedure Timer(Event : in out Timing_Event);

private
Next_Time : Time;
Value : Actuator_Data;

end Actuator_Writer;

Output_Jitter_Control : Timing_Event;

Here, the Start routine is called 26 milliseconds (that is, 30 - 4 milliseconds) after
starting the sensor data collection timer.
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SR.start;
delay 0.026;
AW.start;

where SR and AW are instances of the two protected types.
Finally, the control algorithm task can be given. Note that it contains no ‘delay until’

statement. The rate is controlled by the opening and closing of the Read entry.

task type Control_Algorithm (Input : access Sensor_Reader;
Output : access Actuator_Writer);

task body Control_Algorithm is
Input_Data : Sensor_Data;
Output_Data : Actuator_Data;

begin
loop
Input.Read(Input_Data); -- blocking operation
-- process data;
Output.Write(Output_Data); -- non-blocking operation

end loop;
end Control_Algorithm;

The use of timing events to represent a periodic activity is appropriate for small
execution times or when minimum jitter on the periodic activity is required.

5.2 Revisiting the Three-Tasks System

The main disadvantage of the solution presented in the previous section is that the code
is always executed at interrupt priority level and hence has a temporal interference on
the rest of the program. Furthermore, all input and output is treated with the same
urgency and requiring the same (or similarly small) amount of computational time.
Indeed, these are exactly the same criticism that can be levelled at the LET model.
There is no ability to specify the required I/O latency itself. The processing of some
sensor reading may be able to tolerate the extra noise introduced by the input jitter.

To have more control it is necessary to revert to the three tasks approach. Each task
can then be given its own deadline and scheduled so that they start at different offsets
from one and other. The flexibility afforded by Ada allows this and other solutions (for
example, a single tasks which dynamically changes its priority) to be programmed.

6 Conclusions

In this paper we have re-examined the claims made by Kirsch and Sengupta concern-
ing the evolution of real-time programming languages. Firstly, we noted the restrictive
communication model, imposed by the LET model is not appropriate for systems where
more dynamic interactions between tasks are required. Hence any claim made must be
tempered by this constraint. Secondly, we show that there are two derived requirements
from Kirsch and Sengupta’s arguments.

– Tasks (components) of a system that have deadline constraints must be composable.
That is a task that meets its deadline in one system should be capable of moving to
another system without change and still meet its deadline (it is time safe in Giotto
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terminology). We claim it is the role of schedulability analysis to support compos-
ability and to show that tasks are indeed time safe.

– I/O operations within systems must also be composable. This mean that when sys-
tems are composed, the time at which input and output occurs must be the same.
Adding new tasks should not significantly change this. We claim that bounding in-
put and output jitter is a common problem for all real-time systems, and one that
can be solved by a variety of means. We have shown two approaches in Ada to
achieving bounded (tight) I/O jitter.

Ada 2005 has the expressive power to meet the requirements for control systems iden-
tified by Kirsch and Sengupta. Its also has the flexility to allow programmers to tailor
their solutions to an actual system requirements rather than those imposed by some
idealized model of the class of systems.
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Abstract. Because multicore CPUs have become the standard with all
major hardware manufacturers, it becomes increasingly important for
programming languages to provide programming abstractions that can
be mapped effectively onto parallel architectures.

Stream processing is a programming paradigm where computations
are expressed as independent actors that communicate via data streams.
The coarse-grained parallelism exposed in stream programs facilitates
such an efficient mapping of actors onto the underlying hardware.

In this paper we propose a type-based stream programming exten-
sion to Ada 2005. AdaStreams is a type-hierarchy for actor-specification
together with a run-time system that supports the execution of stream
programs on multicore architectures. AdaStreams is non-intrusive in the
sense that no change of an Ada 2005 programming language implemen-
tation is required. Legacy-code can be mixed with a stream-parallel ap-
plication, and the use of sequential legacy code with actors is supported.
Unlike previous approaches, AdaStreams allows creation and subsequent
execution of stream programs at run-time.

We have implemented AdaStreams for Intel multicore architectures.
We provide initial experimental results that show the effectiveness of our
approach on an Intel X86-64 quadcore processor. The initial release of
our work is available for download at [1].

1 Introduction

For the past three decades, improvements in semi-conductor fabrication and chip
design produced steady increases in the speed at which uniprocessor architec-
tures executed conventional sequential programs. This era is over, because power
and thermal issues imposed by laws of physics inhibit further performance gains
from uniprocessor architectures. To sustain Moore’s Law and double the per-
formance of computers every 18 months, chip designers are therefore shifting to
multiple processing cores. The IBM Cell BE [12] processor provides 9 processing
cores, Microsoft’s Xbox CPU [2] has 3 cores, and more than 90% of all PCs
shipped today have at least 2 cores. According to a recent survey conducted by
IDC [13], all PCs (desktops, mobile and servers) will be multi-cores in 2010, with
quad and octal cores together already constituting more than 30% market share.
For programming languages it becomes therefore increasingly important to pro-
vide programming abstractions that work efficiently on parallel architectures.
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c© Springer-Verlag Berlin Heidelberg 2010



AdaStreams Stream-Programming Library 209

Many imperative and early object-oriented languages such as Fortran, C and
C++ were designed for a single instruction stream. Extracting parallelism that is
sufficiently coarse-grained for efficient multicore execution is then left to the com-
piler. However, sequential applications usually contain too many dependencies
to make automated parallelization feasible within the static analysis capabili-
ties of compilers. Ada, C# and Java provide thread-level concurrency already
as part of the programming language itself. Thread-level concurrency allows the
expression of task-parallelism (performing several distinct operations – tasks –
at the same time), data-parallelism (performing the same task to different data
items at the same time) and pipeline parallelism (task parallelism where tasks
are carried out in a sequence, every task operating on a different instance of the
problem) [19] already in the source code.

Because threads execute in a shared address space, it is the programmer’s
responsibility to synchronize access to data that is shared between threads.
Thread-level concurrency plus synchronization through protected objects, mon-
itors, mutexes, barriers or semaphores [14,11] is commonly referred to as thread
and lock-based programming. In addition to the difficulties of writing a cor-
rect multi-threaded program, thread and lock-based programming requires the
programmer to handle the following issues.

1. Scalability: applications should scale with the number of cores of the un-
derlying hardware. Encoding a programming problem using a fixed set of
threads limits scalability.

2. Efficiency: over-use of locks serializes program execution, and the provision
of lock-free data structures is difficult enough to be still considered a publish-
able result. Programs are likely to contain performance bugs:1 cache coher-
ence among cores is a frequent source of performance bugs with data that is
shared between threads. False sharing [19] is a performance bug where data
is inadvertently shared between cores through a common cache-line.

3. Composability: composing lock-based software may introduce deadlocks and
performance bugs.

It is therefore important to identify programming abstractions that avoid the
above problems. Pipeline parallelism is so common in parallel programs that
it was selected as a distinguished parallel programming pattern [20]. Because
pipeline parallelism operates on a conceptually infinite data stream, it is often
called stream parallelism.

Stream-parallel programs consist of a set of independent actors that commu-
nicate via data streams. Actors read from their input channels, perform com-
putations and write data on their output channels. Each actor represents an
independent thread of execution that encapsulates its own state. Actors are self-
contained, without references to global variables or to the state information of
other actors. The self-containedness of actors rules out any dependencies except
those implied by communication channels: an actor can execute if sufficient data
is available on its input channels and if the output channels provide enough
1 Bugs that prevent an otherwise correct program from executing efficiently.
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A/D bandpass mpeg server

Fig. 1. Example stream program

space to accommodate the data produced by the actor. Because of this lack
of dependencies stream programs provide a vast amount of parallelism, which
makes them well-suited to run on multi-core architectures.

Fig. 1 depicts an example stream program that consists of an A/D converter,
a bandpass filter, an mpeg-encoder and a network server that provides an mpeg
data-streaming service. The application domain for stream parallelism includes
networks, voice, video, audio and multimedia programs. In embedded systems,
applications for hand-held computers, smart-phones and digital signal processors
operate on streams of voice and video data.

Despite its large application domain, stream-parallelism is not well-matched
by general purpose programming languages; mainly because actors and streams
are not provided at the language level. As a consequence, programmers need
to devise their own abstractions, which are then prone to lack readability, ro-
bustness and performance. A programming language implementation that is not
aware of stream parallelism most likely will not be able to take advantage of the
abundance of parallelism provided by stream programs.

The contributions of this paper are as follows.

– We present a type-based stream programming extension for Ada 2005. Our
extension lifts the abstraction level for the development of stream programs.
Actors are expressed as tagged types and conveniently connected via a single
method call.

– We provide design and implementation of a run-time system for Ada 2005
that allows the execution of stream programs. Our run-time system manages
the data channels between actors, load-balances and schedules actors among
the parallel execution units of a processor, and provides the complete stream
program execution infrastructure.

– Unlike previous approaches, we allow the dynamic creation of stream graphs.
Instead of applying heuristics, we profile stream programs to load-balance
actors among the parallel execution units of a processor.

– The initial release of AdaStreams is available for download at [1].

The remainder of this paper is organized as follows: in Sec. 2 we provide back-
ground information and survey related work. In Sec. 3 we introduce the type-
based programming abstractions for stream-parallelism proposed for Ada 2005.
In Sec. 4 we describe the design and implementation of the run-time system re-
quired to support applications that use our programming abstractions for stream
parallelism. Sec. 5 contains our evaluation of AdaStreams on the Intel x86-64
architecture. We draw conclusions and outline future work in Sec. 6.
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2 Background and Related Work

A survey on programming languages that include a concept of streams can be
found in [22]. For example, Lustre [8] is a synchronous dataflow programming
language used for safety-related software in aircrafts, helicopters, and nuclear
power plants. However, it supports only a limited number of data types and
control statements. Esterel [5] improves on the number of control statements
and is well-suited for control-dominated synchronous systems. Both languages
require a fixed number of inputs to arrive at the same time before a stream node
executes.

StreamIt [24] uses syntax similar to Java and is more flexible than its prede-
cessors. A StreamIt programmer constructs a stream graph consisting of filters
which are connected by a fixed number of constructs: Pipelines, SplitJoins, and
FeedbackLoops. Two types of splitters are supported: Duplicate and RoundRobin.
A FeedbackLoop allows to create cycles in the stream graph. In contrast to its
predecessors, StreamIt supports a dynamic messaging system for passing irreg-
ular, low-volume control information between filters and streams.

We do not consider specification languages like SDL [4] here because in this
paper we are interested more in implementing systems than in designing systems.

Our approach differs from Kahn process networks [15] which allow data-
dependent communication. Leung et al. show in [18] how Kahn process networks
can be mapped onto parallel architectures using MPI for communication.

Summing up, our approach for AdaStreams goes beyond that of StreamIt be-
cause we allow dynamic creation of stream graphs. Messaging can be done via
standard Ada features such as protected objects. In contrast to the languages
mentioned above, the whole spectrum of data types available in Ada can be
used for streaming. However, currently we do not provide predefined structured
stream graphs like StreamIt does with its Pipelines, SplitJoins, and Feedback-
Loops. The filters, splitters and joiners provided by the AdaStreams library are
sufficient to generate structured graphs. For example, Fig. 3(d) shows how a
feedback loop can be constructed with AdaStreams. As explained in [23], it is
yet not entirely clear whether structured stream graphs are sufficient for all
possible applications. Our plan with AdaStreams is to survey the stream graph
patterns arising from real-world applications and build higher-level stream graph
constructs from commonly occurring patterns.

Stream programs expose an abundant amount of explicit parallelism already
in the source code. Actors (i.e., stream graph nodes) constitute independent units
of execution that interact only through data channels. Actors may be stateless
or encapsulate state. Despite this amount of parallelism it is still a challeng-
ing task to schedule a stream program on a parallel architecture. The obvious
solution of assigning an Ada task to each filter and to model communication
via producer-consumer style bounded buffers induces too much context-switch
and synchronization overhead for all but the largest filters. In fact filters often
contain only a small amount of computation, which makes it hard to maintain a
high computation-to-communication ratio with stream programs. StreamIt and
AdaStreams require that the amount of data consumed and produced by an
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Fig. 2. Example: SDF and minimal steady-state schedule

actor is known a priori . Stream graphs with this property employ synchronous
data-flow (SDF). Figure 2 depicts an SDF example stream graph. The num-
bers associated with each input and output of an actor denote the number of
data items consumed and produced during one actor execution. For example,
Actor a2 consumes two data items and produces one data item per execution.
Conceptually, an SDF graph repeatedly applies an algorithm to an infinite data
stream. An SDF graph is executing in steady-state if the amount of data buffered
between actors remains constant across repeated executions. The table in Fig. 2
depicts the number of iterations required for each actor such that the above SDF
graph stays in steady state. E.g., Actor a1 has to be executed three times, result-
ing in 3 × 2 data items on channel a1→a3. Actor a3 will consume those 6 data
items during its two executions. Computing the steady state for SDF graphs
has been studied in [17]2. StreamIt uses a variant of this algorithm for struc-
tured SDF graphs [16]. An SDF graph is scheduled based on its steady state.
The scheduler consists of two phases, one bootup-phase to bring the system into
steady state, and the steady-state schedule itself.

The stream programming paradigm is also applied in Google’s recently-released
systems programming language “Go” [10]. Go provides co-routines that commu-
nicate via channels.

3 A Type-Based Programming Abstraction for Stream
Parallelism with Ada 2005

To add a stream programming abstraction to the Ada programming language,
the following approaches are conceivable: (1) extend the core language itself
through language extensions, (2) provide a compiler extension for streaming
constructs, or (3) provide a programming library that the user can link with
standard Ada application code. AdaStreams is strictly a library. Although lan-
guage extensions are attractive, they create a high barrier to adoption, especially
in commercial settings. A library-based extension allows re-use of legacy code,
opens up a migration path and does not require programmers to step out of
their accustomed programming environment. Moreover, a library lowers the en-
try barrier for language researchers and enthusiasts who want to work in this
area themselves. We felt that at this stage the stream programming paradigm
is still in the state of flux, which suggests to choose a library as a light-weight
approach to begin with. Ada provides excellent support for packages, types and
2 Note that a steady state for a given SDF graph need not exist in general.



AdaStreams Stream-Programming Library 213

generic programming, which facilitates library creation. A library-only solution
is of course not perfect. We had to omit features that require compiler support,
like filter fusion/fission to improve load-balancing of stream programs on multi-
core architectures. However, libraries have been successfully applied to extend
programming languages, as demonstrated by the POSIX threads library [7] and
by the Intel Thread Building Blocks [21].

Fig. 3 shows the three actor programming primitives that AdaStreams pro-
vide: filters, splitters and joiners. Together, these primitives are sufficient to
generate arbitrary stream graph structures. Fig. 3(d) shows how a loop can be
constructed from a joiner, a filter and a splitter.

Filter

(a) Filter

Splitter

(b) Splitter

Joiner

(c) Joiner

Joiner

Filter

Splitter

(d) Loop Compound Stmt.

Fig. 3. Three AdaStreams stream-graph primitives and one compound statement

Each AdaStreams filter has an input and output type. That way filters are
allowed to convert data, which allows the generation of heterogeneous stream
graphs. Splitters and joiners are restricted to a single type. Types are used
during stream graph creation to ensure type compatibility of adjacent stream
graph primitives. Users may define arbitrary types by extending our abstract
tagged root type Root_Data_Type as depicted in Fig. 4.

Root Data Type

Int Float

Fig. 4. Root data type hierarchy

We chose a hierarchy of tagged types depicted in Fig. 5 to represent stream
program actors. The abstract type Base_Filter at the root of this hierarchy
contains the commonalities among actors. Types Filter, Splitter and Joiner
are generic types parameterized by the respective input or input and output
types from the root data type hierarchy.

Type Base_Filter is depicted in Fig. 6. Every actor has to provide a primi-
tive operation named Work (line 5) which encodes the actor’s computation. The
Base_Filter record can be extended by actors that need to keep state informa-
tion across invocations of the work function.
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Base Filter

Filter Splitter Joiner

Fig. 5. Type hierarchy for AdaStream filters

1 with Root Data Type;
2 package Base Filter is

3 type Base Filter is abstract tagged private;
4 type Base Filter Ptr is access all Base Filter’Class;

5 procedure Work (f: access Base Filter) is abstract;

6 procedure Connect(f: access Base Filter;
7 b: access Base Filter’Class;
8 out weight: Positive := 1;
9 in weight: Positive := 1) is abstract;

10 function Get In Type(f: access Base Filter)
11 return Root Data Type.Root Data Type’Class is abstract;
12 procedure Set In Weight (f: access Base Filter; in weight : positive) is abstract;
13 private
14 type Base Filter is abstract tagged null record;
15 end Base Filter;

Fig. 6. Base Filter type

Every actor needs a Connect operation (lines 6–9) to attach its streamgraph
successor(s). The arguments to the Connect operation are the downstream suc-
cessor (line 7) and the number of output data items (line 8) of this actor plus the
number of input data items (line 9) of the downstream successor. For example,
to connect actors X and Y via edge X 1 2 Y , operation X.Connect(Y,1,2)
would be used by the AdaStreams library user. In the case of multiple successors
(i.e., with splitters), the Connect operation must be invoked for each successor.
The successor’s Set_In_Weight operation is invoked from within Connect to
communicate the in_weight argument value to the successor. out_weight and
in_weight of stream-graph edges are used to compute the steady state schedule
as outlined in Sec. 2.

At run-time, operation Connect checks that the data types used in the filters
to be connected are equivalent. Operation Get_In_Type (lines 10 and 11 in
Fig. 6) is used to retrieve the input type of the downstream actor. If the data
types differ, exception RTS.Stream_Type_Error is raised. Hence we combine a
type secure approach with dynamic creation of arbitrary stream graphs.

Filters, splitters, and joiners (see Fig. 3) specific to a chosen root data type
can be instantiated from the generic packages Filter, Splitter, and Joiner.
These packages are parameterized by the respective input or input and output
types.

The generic package for filters is depicted in Fig. 7. AdaStreams filters provide
primitive operation Pop to retrieve a single data item from a filter’s input stream.
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1 with Root Data Type, Base Filter;
2 generic
3 type In Type is new Root Data Type.Root Data Type with private;
4 type Out Type is new Root Data Type.Root Data Type with private;
5 package Filter is
6 type Filter is abstract new Base Filter.Base Filter with private;
7 procedure Work(F: access Filter) is abstract;
8 procedure Push(F: access Filter; Item: Out Type);
9 function Pop(F: access Filter) return In Type;
10 . . .
11 private
12 type Filter is abstract new Base Filter.Base Filter with record
13 In Var : aliased In Type;
14 Out Var : aliased Out Type;
15 In Weight : Positive; -- # data items Work() pops per invocation
16 Out Weight : Positive; -- # data items Work() pushes per invocation
17 end record;
18 end Filter;

Fig. 7. Generic package providing the AdaStreams filter type

Likewise, operation Push allows a filter to write a data item onto the output
stream. Operations Push and Pop are to be used within a filter’s Work operation.
As already mentioned, by overriding the abstract primitive operation Work of a
filter, the user implements the actual behavior of the filter. The Work-operations
of splitters and joiners are provided by our implementation: splitters partition
the incoming data stream into sub-streams, joiners merge several incoming data
streams of the same type into a single stream.
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Fig. 8. The merge filters in the merge sort benchmark, with N=8

Fig. 8 shows a stream-parallel version of the Mergesort algorithm for N = 8
data items. During each steady-state execution (aka iteration) of this stream
program, 8 data items are popped from the input stream, sorted, and pushed
onto the output stream. We chose this example because it showcases the dynamic
creation of stream-graphs depending on user input data (parameter N). The
Mergesort example is implemented as follows:
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1. First the stream data type is declared by extending the Root_Data_Type.
In our case it is an integer type (see Fig. 9). The implementation of the
operations for this type are not shown since they are straight-forward.

2. Next the filters needed for Mergesort are defined by extending the standard
filter type. We need a filter for the source of the stream to be sorted. This is
filled via a random number generator. In addition we need a Merger for doing
the actual work and a Printer to display the final result. Splitters and joiners
are also defined as shown in Fig. 10. Note that for space-considerations we
had to move the implementations of the above filter’s Work-operations to the
paper’s accompanying technical report [9].

3. Procedure Main3 uses the recursive function SetUp_MergeSort to setup the
stream graph needed by Mergesort. This is done in a standard way. A ref-
erence to this can be found in almost any book on algorithms and data
structures. An example of the stream graph for N = 8 items to be sorted
is shown in Fig. 8. Runtime arguments of Main are the number of CPUs to
use and the number of iterations of the stream graph.

1 package Root Data Type.Int is

2 type Int is new Root Data Type with record
3 I : Integer;
4 end record;

5 function "+" (Left, Right : Int) return Int;

6 function "<=" (Left, Right : Int) return Boolean;

7 end Root Data Type.Int;

Fig. 9. Root Data Type.Int

1 with Root Data Type.Int, Base Filter, Filter, Splitter, Joiner;
2 package UserFilters is
3 package Int Filter is new Filter (Root Data Type.Int.Int, Root Data Type.Int.Int);
4 package Int Splitter is new Splitter (Root Data Type.Int.Int);
5 package Int Joiner is new Joiner (Root Data Type.Int.Int);

6 type Merger (aValue : Integer) is new Int Filter.Filter with record
7 N : Integer := aValue;
8 end record;
9 procedure Work (F : access Merger);
10
11 type Source is new Int Filter.Filter with null record;
12 procedure Work (F : access Source);

13 type Printer is new Int Filter.Filter with null record;
14 procedure Work (F : access Printer);
15 end UserFilters;

Fig. 10. Mergesort Filters

3 Shown in the paper’s accompanying technical report [9].
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4 The AdaStreams Run-Time System

We implemented the AdaStreams run-time system (RTS) as an Ada package that
must be compiled and linked with applications that wish to use the AdaStreams
library. Package RTS contains several child packages as shown in Fig 11 and
exports only two procedures, as depicted in Fig 12. Procedure Connect is used
by our generic implementations of filters, splitters and joiners. The Connect
operations from the Base_Filter type hierarchy invoke RTS.Connect to inform
RTS about connections between actors. Child-component RTS.Stream Graph
maintains the stream-graph topology from calls to RTS.Connect.

After the stream graph has been created, the RTS client calls RTS.Run to exe-
cute the stream graph on NrCPUs for NrIterations. At this stage RTS executes
the following steps:

1. The steady-state for the given stream graph is calculated as outlined in Sec. 2.
We use a thin binding to the GiNaC C++ symbolic algebra package [3]. Pack-
age RTS.Stream Graph sets up a system of linear equations that models the
input-output behavior of the stream graph. The solution to this equation sys-
tem denotes the steady state iterations for each actor. For a stream graph that
has no steady state RTS raises exception Invalid Stream Graph. This is not a
limitation of our framework but a manifestation of a defective stream graph
structure: due to sample rate inconsistencies any schedule for such a graph
will result either in deadlock or unbounded buffer sizes [17].

Stream graph PerfmonProfiler BarrierScheduler Buffer manager

compute
steady state
iterations

allocate buffersprofile/load
balance filters

assign filters
to CPU and
run

barrier waitget CPU cycles

RTS

Fig. 11. Component diagram for the AdaStreams run-time system

1 with Base Filter;
2 package RTS is
3 Stream Type Error : exception;
4 -- Raised with connections of type-incompatible filters.

5 Invalid Stream Graph : exception;
6 -- Raised for a stream that has no steady state.

7 procedure Connect(From : Base Filter.Base Filter Ptr;
8 To : Base Filter.Base Filter Ptr;
9 Out Weight : Positive := 1;
10 In Weight : Positive := 1);

11 procedure Run (NrCPUs : Positive; NrIterations : Natural);
12 end RTS;

Fig. 12. RTS run-time system package specification
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2. Buffers representing the data channels are allocated between adjacent actors.
The size of a buffer is computed as the data type size times the input or
output rate times the number of steady-state iterations.

3. A boot schedule to bring the stream graph into steady state is computed and
executed on the actors. During this bootup phase the actors are profiled to
determine the execution times of their work functions. Profiling uses the x86-
64’s hardware cycle counters exported by the clock library from [6] (again
we use a thin binding). Based on the execution times the actors are allocated
to CPUs using a simple but fast greedy algorithm: actors are sorted from
largest to smallest work function execution time. CPU allocation happens
then in a round-robin fashion from the sorted list of actors.

4. For every CPU a scheduler from package RTS.Schedulers is created and
the corresponding actors are registered with the scheduler. A scheduler is
an Ada task that maintains a list of registered actors together with the
corresponding numbers of steady-state iterations. Invocation of a scheduler’s
Run entry initiates execution of the registered actors’ work functions.

5. Stream graph execution is initiated with the schedulers.

Filter 1

Buffer 1 Buffer 2

Filter 2

push

pop

(a) Iteration N

Filter 1

Buffer 1 Buffer 2

Filter 2

push

pop

(b) Iteration N + 1

Fig. 13. Double-buffering applied with data channels

There is no need for synchronization of actor execution within a single CPU,
because schedulers invoke work functions sequentially. However, across CPUs
schedulers need to be synchronized. It is worth noting that we require only a
single barrier (implemented as a protected object) for scheduler synchronization.
As depicted in Fig. 13, we actually employ two buffers between adjacent actors.
Two buffers ensure that both the reader and the writer have their own buffer
and need not synchronize with each buffer access. After every steady state iter-
ation schedulers synchronize on the barrier and swap the read and write buffers
before the next iteration. Barriers with double buffering reduce synchronization
overhead among schedulers and keep the computation-to-communication ratio
of stream programs high.

5 Experimental Results

We devised the following Ada benchmark programs to conduct an initial evalu-
ation of the AdaStreams library:
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Table 1. Characteristics of benchmark programs implemented with AdaStreams

Benchmark Filters Splitters Joiners

Synthetic 58 1 1
Mergesort 33 15 15
Matrix Multiply 44 5 5
Block Matrix Multiply 31 7 7

1 2 3 4 5 6 7 8
Number of CPU Schedulers
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Synthetic
Block matrix multiply
Merge sort
Matrix multiply

Fig. 14. Scalability of stream benchmark programs

1. Synthetic: this is a synthetic benchmark that uses a busy wait loop to spend
CPU cycles. In this benchmark each work function spins for one second
before pushing a single data item. Consequently, this benchmark has a very
high computation-to-communication ratio.

2. Mergesort: this benchmark uses a stream of random integers, reads N el-
ements from the stream and outputs the N elements in sorted order (as
outlined in Sec. 3).

3. Block matrix multiply: Block matrix multiply splits each matrix in the
stream into blocks and multiplies blocks with small communication over-
head. Blocks are added and combined.

4. Matrix multiply: multiplies two square matrices. It transposes one of them
and multiplies two matrices in parallel.

Table 1 shows the characteristic features of our benchmark stream programs.
All benchmarks were compiled with the 64-bit version of GNAT GPL 2009
(20090511). To determine the scalability of the AdaStreams implementation with
respect to the number of CPU cores, we executed all benchmarks on an Intel
x86-64 server with two Xeon 5120 quadcore CPUs. As expected, the synthetic
benchmark with its high workload scaled best. Matrix multiply also scaled very
well, with a speedup of a factor of almost 5 with 8 CPU cores. Block matrix
multiply achieved a speedup of almost three times with more than four cores.
The work functions of Mergesort show very fine-grained parallelism; under those
circumstances scalability was reasonable. It should be noted that scalability of
stream programs was achieved without changing even a single line of source
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code—mapping of actors to different numbers of CPU cores was all transpar-
ently handled by the AdaStreams library.

6 Conclusions and Future Work

In this paper we have proposed a type-based stream programming extension to
Ada 2005. AdaStreams is a type-hierarchy for actor-specification together with
a run-time system that supports the execution of stream programs on multicore
architectures. AdaStreams is non-intrusive in the sense that no change of an
Ada 2005 programming language implementation is required. Legacy-code can
be mixed with a stream-parallel application, and the use of sequential legacy
code with actors is supported. Unlike previous approaches, AdaStreams allows
dynamic creation of stream programs. Messaging (known from StreamIt) can be
done via standard Ada features such as protected objects. The whole spectrum
of data types available in Ada can be used for streaming. Each AdaStreams filter
has an input and output type. That way filters are allowed to convert data, which
allows the generation of heterogeneous stream graphs. Splitters and joiners are
restricted to a single type.

We have implemented AdaStreams for Intel multicore architectures. We pro-
vide initial experimental results that show the effectiveness of our approach on
an Intel X86-64 quadcore processor. The initial release of our work is available
for download at [1].

Our plan with AdaStreams is to survey the stream graph patterns arising
from real-world applications and build higher-level stream graph constructs from
commonly occurring patterns. We will investigate improvements to our greedy
actor allocation algorithm.
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Abstract. Generics (also known as templates) have become a standard feature
of modern programming languages, offering parameterization by data types
and possibly other entities. Generics support efficient type-safe container
data structures, general-purpose algorithms, and other reusable components.
However, the approaches in different languages vary widely in syntax, semantics,
and usage. This paper summarizes the design of generics in Ada, C++, C#, and
Java and compares them with respect to expressiveness, implementation model /
run-time efficiency, and interaction with object-oriented programming and other
features.

Keywords: generic programming, templates, Ada, C++, C#, Java.

1 Introduction

One of the fundamental software engineering principles is abstraction: the ability to
generalize from specific instances and identify a common pattern that can be parameter-
ized. Run-time parameterization (subroutine definition and invocation) has been a staple
of programming languages since the earliest days of computing, and translation-time
parameterization (macro definition and instantiation) followed soon thereafter. Macros,
however, are rather unstructured, since instantiation simply involves text substitution
and expansion. It was only in the 1970s, with the groundbreaking work on languages
such as CLU [1] and Alphard [2], that researchers recognized that translation-time pa-
rameterization could be generalized and made more reliable and robust. Instead of a
mechanism based on text substitution, the language could enforce syntactic and seman-
tic checks on the content to be expanded, and allow parameters to be specified in terms
of program entities such as types. A well-known example is a “container” data struc-
ture (list, stack, queue, etc.) that can be parameterized by element type. The resulting
mechanism came to be known as generics or templates, and it is sometimes referred to
more fancily as parametric polymorphism.

Generics resemble macros in that each instantiation replicates the template, either
conceptually or actually, with formals replaced by actuals. However, generics are dis-
tinct from macros in at least two important ways.

• The generic template is checked for syntactic and semantic correctness; it is not
simply raw source text that gets expanded. Thus all uses of generic formal param-
eters must be consistent with their declaration, or compilation will fail.

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 222–237, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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• Instantiations are checked to ensure that their arguments (actual generic parame-
ters) match their corresponding formal parameters.

Generics offer several advantages.1 An obvious benefit is reuse; without generics, the
developer of a component has two main choices:

1. Use macros and a preprocessor. But text substitution and expansion are at the wrong
semantic level: names in the generic template would be interpreted based on the
scope of the instantiation rather than the scope of the generic’s definition, contrary
to standard block structure conventions.

2. For container-like data structures, define the component to take a general element
type (Object in many object-oriented languages, void* in C) and apply casts
when extracting elements. This approach adds run-time cost for type checking and
means that errors are detected late.

This second point brings up another benefit of generics: type safety. With generics, a
data structure such as a queue can be guaranteed to only contain elements of some spe-
cific type. It is not possible to insert an integer and then remove it and treat it as having
some other type. A corollary benefit is thus efficiency: with an appropriate implementa-
tion model, type safety can be guaranteed at compile time. There should be no need for
run-time checks to ensure that the data in the queue has the correct type.

Generics are heavily used in the definition of standard libraries. Examples are the
I/O and containers packages in Ada, the Standard Template Library in C++, and the
containers class libraries in C# and Java.

Different languages, however, take different approaches to realizing generics. The
main distinctions stem from design decisions in several areas:

• Expressiveness / Basic Semantics

◦ Which kinds of entities can be made generic? Does instantiation need to be
explicit, or can it be implicit?

◦ Which kinds of formal parameters are allowed for a generic entity, and what
are the rules for matching a formal parameter by an actual parameter at an
instantiation?

◦ What establishes an instantiation’s legality and how it may be used?
◦ If a formal parameter to a generic is a type, how may it be used in the template?

Can a formal type parameter be constrained so that the matching actual type
parameter needs to supply specific operations?

◦ Are recursive instantiations permitted?

• Implementation Model

◦ Does each instantiation of a generic yield a separate expansion, or can different
instantiations (in particular with different arguments) share common code?

◦ Are there run-time costs associated with generics?
◦ When are errors detected?

1 There are also some drawbacks. Generics introduce syntactic and semantic complexity, and, if
misused, may lead to “code bloat” in implementations that expand the template separately for
each instantiation. They also generally require special tool support, for example in a debugger.
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◦ How is separate compilation handled?

• Feature Interactions

◦ How do generics interact with Object-Oriented Programming, overload resolu-
tion, name binding, and other language features?

The remainder of this paper will summarize how these issues are addressed in practice
by four specific languages: Ada [3], C++ [4], C# [5], and Java [6]. These are not the
only languages that support generics (others include Modula-3 and Delphi) but they are
used heavily and illustrate the breadth of approaches.

Length constraints prevent inclusion of complete examples. Please refer to the com-
panion web site [7] for full listings of examples in the four languages.

Earlier work comparing generic programming features in different languages in-
cludes [8], which omits Ada, and [9], which omits C#.

2 Ada

Among the languages covered in this paper, Ada is the only one that supported generics
from its earliest release. Ada’s model is significantly different from the other languages,
principally because Ada has distinct features for modularization and data typing. A class
in C++, C#, or Java would be modeled in Ada by a (tagged) type declared in a package.

2.1 Expressiveness / Basic Semantics

• Which kinds of entities can be made generic? Does instantiation need to be explicit,
or can it be implicit?

Ada allows packages and subprograms to be generic. Types themselves are not
generic, but a type declared in a generic package has some of the properties of generic
types in other languages.

Instantiation must be explicit and has the effect of declaring a non-generic package
or subprogram. Implicit instantiation was rejected because of semantic complexity and
readability concerns [10]. Also, implicit instantiation is most useful for generic types
(classes) but in Ada types are not generic.

• Which kinds of formal parameters are allowed for a generic entity, and what are the
rules for matching a formal parameter by an actual parameter at an instantiation?

Ada has a rich facility for generic parameterization. Formal generic parameters may
be types, subprograms (including operator symbols), objects (values or variables), and
instances of generic packages. Formal types come in a variety of flavors, reflecting the
fact that different categories of types (integer types, access types, ...) have different oper-
ations available. Instantiations may make use of default values and named associations.
Unlike C++ (which requires constants), Ada allows run-time evaluable expressions in
actual parameters for formal objects.

If a unit needs to be parameterized by type, the designer chooses the appropriate cat-
egory (for example, digits <> for floating-point types) and can provide additional
formal subprogram parameters for operations that are not automatically available based
on the type’s category but that are needed within the generic template.
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• What establishes an instantiation’s legality and how it may be used?
An instantiation’s legality may depend on the full generic specification rather than

just whether the parameters match. However, embodying a principle that has come to be
known as the contract model, an instantiation’s legality does not depend on the generic
body. In general, Ada prohibits usage of features in a generic body if such features could
make some instantiations illegal.

An instance of a generic unit can be used in the same manner as a non-generic unit.
Unavailability problems with an instance’s subprograms, which are possible in C++
(see below), do not arise in Ada.

• If a formal parameter to a generic is a type, how may it be used in the template? Can a
formal type parameter be constrained so that the matching actual type parameter needs
to supply specific operations?

A formal type may only be used in ways that are allowed for every type in its category,
unless the required operations are provided as additional generic formal parameters.

• Are recursive instantiations permitted?
No. The error will be detected at compile time.

2.2 Implementation Model

• Does each instantiation of a generic yield a separate expansion, or can different
instantiations share common code?

The Ada rules allow both expansion-based and code-sharing implementations. Dur-
ing Ada’s early years, code sharing (for instantiations of the same generic with different
actual parameters) was especially useful because generics were the only way to pass
subprograms as parameters. The subject attracted considerable attention (e.g., [11]),
and the code sharing optimization was provided by several compilers.

Code sharing in general, however, is very difficult to implement. With the provision
of subprograms as run-time parameters in Ada 95 (and also the emergence of hardware
with greater code space capacity), this space optimization became less critical, and
today nearly all Ada compilers use the expansion model.

• Are there run-time costs associated with generics?
Generic instantiation in Ada is purely a compile-time activity, but in some cases run-

time checks may be generated (for example to ensure that an expression supplied as an
actual parameter satisfies the subtype constraints of a formal generic object parameter).

• When are errors detected?
All static semantic errors in generic templates, and all mismatch errors at instantia-

tions, are caught at compile time. However – and this is an issue also in C++, C#, and
Java – it is possible for an instantiation to be legal, but to generate an illegal overloading
of some subprogram P that the compiler only detects at points of P’s invocation. One
example (with analogs in C++ and C#) is a generic package that declares subprograms
P(X1:T1) and P(X2:T2) where T1 and T2 are formal generic parameters, and the
generic is instantiated with the same type as actual parameter for both.

As noted above, run-time checking may be needed for formal object parameters.
Also, a generic body must be elaborated before any instantiation, or else an “access
before elaboration” exception will be raised at run time.
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• How is separate compilation handled?
Generic units may be separately compiled, as may their instantiations. Ada’s require-

ment for explicit instantiation has the benefit of the programmer controlling code shar-
ing. A simple conceptual model is that each instantiation expands to a separate body of
code. A linker optimization can eliminate those subprograms that are not called.

2.3 Feature Interactions

• How do generics interact with Object-Oriented Programming, overload resolution,
and other language features?

Object-Oriented Programming. The main interaction with OOP concerns the exten-
sion of tagged types declared in generic packages. Ada addresses this issue through
generic child packages: a type declared in a generic child can extend a tagged type
declared in the generic parent package.

Any of the generic packages in the hierarchy may contain a dynamically bound in-
vocation for a primitive subprogram of one of the tagged types, and it will work with
the standard effect in the instantiated package.

With non-generic OOP (a tagged type in a non-generic package specification), a
derived type may appear in either a child or a client (“with”ing) unit. If a tagged type is
declared in a generic package, then the derived type may only be declared in a child.

Overload Resolution / Name Binding. Generics themselves are not overloadable, but
instances of a generic subprogram may be overloaded.

An important issue is how to resolve a (statically bound) subprogram invocation
in the generic template when some of the actual parameters of the subprogram are of a
generic formal type T. When the subprogram can be resolved as one of the other generic
formal parameters, then that is the interpretation. Otherwise, if it is an operation defined
for T based on T’s type category (e.g., “=” for a formal private type) then the built-in
(primitive) version of the operation is used. If neither of these resolutions is possible,
the subprogram invocation is illegal.

3 C++

Although not in the initial version of C++, templates were always considered essential
for parameterization of container classes. A minimal facility was added in 1990, based
on experience with prototype implementations of early design proposals, and several
enhancements have appeared subsequently. The key goals for C++’s template facility
were “notational convenience, run-time efficiency, and type safety. The main constraints
were portability and reasonably efficient compilation and linkage” [12, p. 339].

3.1 Expressiveness / Basic Semantics

• Which kinds of entities can be made generic? Does instantiation need to be explicit,
or can it be implicit?

Function and class (or struct) templates are allowed. Instantiation may be either
explicit or implicit. Explicit instantiation must be managed carefully, since multiple
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instantiations of the same template with the same arguments can cause linker errors due
to duplicate definitions.

When a function template’s implicit instantiation is invoked, the type arguments to
the instantiation may be omitted if they can be deduced from the run-time parameters:

template <typename T> void foo(T t) ...
...
foo(100); // Equivalent to foo<int>(100)

Member functions of templates must be defined as function templates themselves, and
they are only instantiated if called. Implicitly instantiating a class template does not
automatically instantiate all member function definitions.

• Which kinds of formal parameters are allowed for a generic entity, and what are the
rules for matching a formal parameter by an actual parameter at an instantiation?

Templates may have type parameters (identified by the keyword typename or
class), nontype parameters, and template parameters. At an instantiation, a template’s
type parameter is matched by a type argument, a nontype parameter is matched by a
constant value, and a template parameter is matched by a template argument.

Any type (built-in, class, struct, etc.), except class types defined within functions,
may be supplied as an argument for a type parameter.

The type of a template’s nontype parameter must be an integral or enumeration type,
a pointer type (for example a pointer-to-function type), or a reference type. The match-
ing argument must be a constant value of the corresponding type. Since instantiating a
class template with an argument produces a specific type, restricting nontype arguments
to constants ensures that the compiler can determine when two instantiations denote the
same type. However, a side effect is that string literals are not allowed as arguments for
templates, since different occurrences of the same literal may be at different addresses.

A template’s template parameter TT is matched by a template argument whose pa-
rameters correspond to (i.e. have the same types as) the parameters of TT. Such param-
eters facilitate template composition.

• What establishes an instantiation’s legality and how it may be used?
A class template instantiation’s legality depends only on whether the arguments

match the formal parameters. However, instantiating a member function from the class
instance will fail if the member function invokes a function that is not available for
the argument type. For example, consider a class template with a type parameter T and
a member template function Foo() that uses some operation for T. Unless the tem-
plate takes an additional parameter (a pointer-to-function for the required operation),
instantiating Foo with an argument type TT will fail if TT does not have the needed
operation.

The absence of a generic “contract model” makes software maintenance difficult,
since there is no way for the author of a template to know whether an implementation
change will cause errors when existing instantiations are recompiled.

• If a formal parameter to a generic is a type, how may it be used in the template? Can a
formal type parameter be constrained so that the matching actual type parameter needs
to supply specific operations?
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A template’s type parameter may be used as a regular type inside the template. C++
has no syntax for establishing constraints on a type parameter; if additional operations
are needed this will either be part of the informal contract of the template (documented
in comments) or else supplied as explicit pointer-to-function parameters to the template.

• Are recursive instantiations permitted?
Yes, for example using non-type parameters such as ints. Templates in C++ in

effect provide a compile-time functional language, with iteration realized through re-
cursive instantiation (template specialization [12, p. 373] terminates the recursion). This
style, referred to as metaprogramming, can be used to obtain highly-optimized perfor-
mance (see for example [13, p. 314]) but can be rather opaque.

3.2 Implementation Model

• Does each instantiation of a generic yield a separate expansion, or can different
instantiations share common code?

C++’s design philosophy encourages sharing of separate instantiations with the same
arguments, whether within the same translation unit or across translation units, but this
is not consistent in practice. Because of the lack of a “contract model”, sharing instan-
tiations with different arguments is more difficult than with Ada.

• Are there run-time costs associated with generics?
Template expansion and argument/parameter matching are purely compile-time (or

link-time) activities. Run-time efficiency was a major goal for the C++ design, and
techniques such as template specialization can be used to optimize performance (e.g.
by specifying pass-by-value parameters rather than const references for particular
types).

• When are errors detected?
Errors, especially instantiations with types that do not provide needed operations, are

detected during compilation (or linking), at the point of instantiation or function invo-
cation. Thus, unlike Ada, C#, and Java, such errors are not detected during compilation
of the template definition.

• How is separate compilation handled?
It is natural for the template declaration (the interface, without function bodies) to

be placed in a header file (.hpp). An issue is whether the template body (the “template
definition”) should be in the same header file, similar to an inline function, or in an
implementation file (.cpp).

Placing the template definition in the header file, referred to as the “inclusion
model” in [13], is common practice. A program that needs the template can simply
#include the header file. However, template definitions typically require further
#includes, and the closure of all of these #includes can result in considerable
code bloat and/or excessive compilation time. Also, the definition needs to be brack-
eted by #ifndef/#define and #endif brackets to avoid duplication of definition
in #includeing translation units.

An alternative is to place the template declaration in a .hpp file and the defini-
tion in a .cpp file (the “separation model”). The translation unit using the template
#includes the .hpp file. This raises the issue of how the implementation locates
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the corresponding .cpp file. One technique is to mark the declaration(s) and definition
with the export keyword. However, this mechanism is not uniformly supported by
current compilers, and in general the inclusion model is used. Precompiled headers can
help reduce compilation cost.

3.3 Feature Interactions

• How do generics interact with Object-Oriented Programming, overload resolution,
and other language features?

Object-Oriented Programming. Template classes can form inheritance hierarchies,
in the same way as regular classes. A template class may derive from non-template
classes and/or from template classes. Here’s an example adapted from [12, p. 346]:

template <typename T> class Vector /* ... */ ;
template <typename T> class OrderedVector : Vector<T> /* ... */ ;

However, if TC<T> is a template class with a class parameter, and T2 derives from T1,
it does not necessarily follow that TC<T2> derives from TC<T1>. I.e., template in-
stantiations are not covariant. The rationale is straightforward. If a List<Subclass>
reference refwere assignable to a List<Superclass> variable vbl, then through
vbl it would be possible to add Superclass objects to ref.

Overload Resolution / Name Binding. Function templates may be overloaded, and
the names used inside template definitions may likewise be overloaded.

The name binding rules are complex [12, pp. 368ff], since three different contexts
are involved: the template definition, the argument type declaration, and the template
use / instantiation. The complications are especially intense for the names that depend
on a template argument.

Other Features. There are a number of “corner case” pathologies. For example, an
instantiation SomeTemplate<int, Vector<int>> is illegal because the “>>”
at the end is parsed as a shift operator. The programmer must insert a space between the
brackets, e.g. SomeTemplate<int, Vector<int> >.

4 C#

Generics were added to C# (and to the .NET infrastructure) in Version 2, with the
goals of type safety, time efficiency (no boxing /unboxing or casts) and space efficiency
(avoidance of code duplication).

4.1 Expressiveness / Basic Semantics

• Which kinds of entities can be made generic? Does instantiation need to be explicit,
or can it be implicit?

C# allows declarations of generic types (classes, interfaces, structs, and delegates)
and generic methods. It does not permit generic properties, events, indexers, operators,
constructors, or finalizers, but these entities may be declared within generic types.

Instantiation is implicit, but a “using alias” directive can simulate an explicit instan-
tiation (for example to create a shorthand name).
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• Which kinds of formal parameters are allowed for a generic entity, and what are the
rules for matching a formal parameter by an actual parameter at an instantiation?

The only kind of formal parameter that a generic entity can take is a type.
Unless otherwise constrained (see below), instantiation with both value types (such

as the predefined type int) and reference types is permitted. However, instantiation
with pointer types is not allowed.

• What establishes an instantiation’s legality and how it may be used?
Although an instantiation’s legality is based only on the matching of parameters

(including satisfying constraints on the formal), ambiguous overloadings may result that
are only detected at method invocation. This is similar to Ada’s semantics, described
above.

• If a formal parameter to a generic is a type, how may it be used in the template? Can a
formal type parameter be constrained so that the matching actual type parameter needs
to supply specific operations?

Type parameters may be constrained so that they can only be instantiated with types
having particular characteristics. Type constraints include whether a type is a reference
type or a value type, whether it derives from a specific class or implements a particular
interface (or interfaces), and whether it supplies an accessible no-arg constructor.

If the generic requires a type parameter to have a specific method available, then the
type parameter can be constrained to derive from some specific type that includes that
method, or to implement an interface that declares that method.

Constraints that are not enforceable at compile time can be checked at run time
through the use of reflection in a static constructor. An example (checking that a type
parameter is an enum) appears in [5, p. 390].

• Are recursive instantiations permitted?
Since C# generics can only take type parameters, “metaprogramming” in the style of

C++ is not supported. However, the definition of a generic type or method may contain
instantiations of the same generic. The caching / code sharing mechanism prevents
unbounded expansion.

4.2 Implementation Model

• Does each instantiation of a generic yield a separate expansion, or can different
instantiations share common code?

The language rules were designed to allow code sharing. All instantiations with ref-
erence types can share a single code body. Each instantiation with a specific value type
has its own expansion (instantiations with the same value type share the same body).

• Are there run-time costs associated with generics?
With the standard C# implementation model, instantiation itself is performed at run

time, through the “just-in-time” (JIT) compiler, when control reaches the point of in-
stantiation. Instantiations are cached to perform code sharing as described above.

Alternatively, instantiations can be precompiled to native code through Microsoft’s
NGEN utility, also with code sharing. NGEN will process all instantiations, since it
does not know which ones are required at run time and which ones are not.

With either approach there is no run-time overhead (boxing, casts, etc).
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• When are errors detected?
Errors are detected during compilation, potentially in three different contexts: an

illegal construct in the generic itself, an illegal instantiation (non-matching argument),
or usage of an ambiguous construct resulting from an instantiation

• How is separate compilation handled?
No special rules. The compiler produces special intermediate language for generics,

and also outputs generic-specific information in the metadata.

4.3 Feature Interactions

• How do generics interact with Object-Oriented Programming, overload resolution,
and other language features?

Object-Oriented Programming. Generic classes can participate in inheritance hierar-
chies. As with C++, generics are not covariant.

Overload Resolution / Name Binding. Method overloading within a generic type def-
inition results in some complex semantics. For example:

class Gen<T>{
Foo(T t){...}
Foo(int i){...}

}
...
Gen<int> x = new Gen<int>();
x.Foo(0); // Which Foo?

The C# rules (similar to C++) dictate that the “more specific” method (here the one with
an explicit int parameter) is selected. Such preferencing rules can cause maintenance
problems. If the version with an explicit int parameter was introduced during program
maintenance, the invocation of Foo will silently change meaning when recompiled. In
the analogous examples in Ada and Java, the call on Foo would be ambiguous.

Other Features. Since information about generics is retained in the compiled assembly,
run-time reflection and introspection are permitted.

5 Java

Generics were introduced in Java 5 to support type-safe collections and general-purpose
methods in an upwards-compatible fashion (i.e., not requiring any changes to Java Vir-
tual Machine implementations, and easing the migration path for developers who had
previously used non-generic solutions). Upwards compatibility comes at a price, how-
ever; as observed in [14, p. 1], generics are “sometimes controversial” and have left “a
few rough edges”. They also introduce a run-time cost (casts implicitly inserted by the
compiler). These issues result from Java’s model of “type erasure” where all traces of
genericity in the source disappear in the generated byte codes.
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5.1 Expressiveness / Basic Semantics

• Which kinds of entities can be made generic? Does instantiation need to be explicit,
or can it be implicit?

Classes, interfaces, methods, and constructors can be defined as generic.
Instantiation is implicit, similarly to C++ and C#. Instantiating a generic class or

interface is referred to as type invocation and results in a parameterized type.
A unique aspect of Java’s generic model is that instantiations of the same generic

class Gen<T> with different type arguments, say Gen<T1> and Gen<T2>, do not
produce different classes. Instead they yield the same raw type Gen as described below.
Consequently all of the instantiations share the same static fields. This effect is generally
undesirable (e.g. preventing the common style of maintaining an instantiation-specific
counter to keep track of the number of constructed objects).

• Which kinds of formal parameters are allowed for a generic entity, and what are the
rules for matching a formal parameter by an actual parameter at an instantiation?

The only formal parameter permitted is a type (Java refers to this as a type variable.)
A matching actual parameter is a reference type that satisfies all specified constraints
(see below).

Although primitive types are not allowed, Java’s “boxing” rules allow uses of generic
instantiations with primitive values; the compiler will implicitly allocate an actual ob-
ject of the relevant type (for example an Integer for an int value).

• What establishes an instantiation’s legality and how it may be used?
Instantiation legality is based only on parameter matching. Problems with unavail-

ability of operations, as in C++, do not arise. However, as with the other languages,
instantiations may yield ambiguous overloadings that make certain method invocations
illegal.

• If a formal parameter to a generic is a type, how may it be used in the template? Can a
formal type parameter be constrained so that the matching actual type parameter needs
to supply specific operations?

Java allows the specification of type constraints (bounds) to ensure that the needed
operations on the formal type parameter are available. This is accomplished by specify-
ing that a formal type extends some other type (possibly one of the other generic formal
parameters) and/or implements any number of interfaces.

• Are recursive instantiations permitted?
Analogous to C#, Java does not support metaprogramming in the style of C++, but a

generic class may contain an instantiation of itself.

5.2 Implementation Model

• Does each instantiation of a generic yield a separate expansion, or can different
instantiations share common code?

Java’s type erasure model ensures that all instantiations share the same code. The
erasure of a generic type yields the raw type, which is obtained by replacing each formal
parameter (type variable) by Object if it does not have an “extends” bound, and by its
first bound otherwise.

• Are there run-time costs associated with generics?
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The compiler generates implicit casts, since the erasure of a generic class loses
instantiation-specific information. Thus:

Stack<String> ss = new Stack<String>();
ss.Push("Hello"); // compiled as ss.Push((String)"Hello");
String s = ss.Pop(); // compiled as String s = (String)(ss.Pop());

Also, since type parameters must be reference types, using primitive values such as
ints incurs boxing/unboxing overhead.

• When are errors detected?
Static semantic errors in the definition of the generic are caught at compile time.

These errors include invocation of operations that are not consistent with the formal
parameter’s constraints, and declaring potentially ambiguous method overloadings (see
below). Some ambiguities are detected (at compile time) when an attempt is made to
invoke an ambiguous method from an instantiation.

For upwards compatibility, Java permits converting from a parameterized type to its
underlying non-generic (raw) type. However, type errors might then remain undetected
until run time (for an example see [15, p.165]).

• How is separate compilation handled?
Compilation of a generic produces a (non-generic) raw type. Run-time reflection will

not recover the generic-related information.

5.3 Feature Interactions

• How do generics interact with Object-Oriented Programming, overload resolution,
and other language features?

Object-Oriented Programming. Similarly to C++ and C#, Java allows generic types
to extend other types (either non-generic or generic), subject to the usual rule that a class
can extend only one superclass but can implement an arbitrary number of interfaces.

Also like C++ and C#, generic classes are not covariant: if C2 extends C1, and
Gen<T> is a generic class, then it does not follow that Gen<C2> extends Gen<C1>.
Thus a Gen<C2> reference cannot be assigned to a Gen<C1> variable, nor may it be
passed as an argument to a method taking a Gen<C1> parameter. Sometimes, how-
ever, these operations make sense and should be allowed. For example, consider the
following hypothetical generic collection class:

public class Mob<T>{
public addAll( Mob<T> m){...} // Add m’s elements to this

}
...
Mob<C1> m1 = new Mob<C1>();
Mob<C2> m2 = new Mob<C2>();
m1.addAll(m2); // Illegal
}

The method invocation is illegal since m2 is not a Mob<C1>. In order to allow such
invocations, the declaration of addAll’s parameter must be changed so that it accepts
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not only a Mob<T> but also a Mob<U> for any class U in the type hierarchy rooted at
T. The form is called a wildcard and has the following syntax:

public class Mob<T>{
public addAll( Mob<? extends T> m){...}

// Add m’s elements to this
}

The example above – m1.addAll(m2); – will now succeed. As a shorthand, the
common case <? extends Object> can be abbreviated as <?>.

Wildcards are also useful in the other direction. If we are “consuming” elements
from a collection Mob<C2>, then the target may a Mob<C1> where C1 is either C2 or
any of its superclasses. Java has a wildcard form for this purpose also, with the syntax
<? super T>.

A wildcard may be used for a formal parameter and/or result type of a method in a
generic class or interface, and also as the type of a declared variable.

Overload Resolution / Name Binding. Outside of generics, Java’s overloading rules
forbid declaring two methods with the same name and the same signature. Java’s erasure
model requires strengthening this rule for generics; for example the following is illegal:

public class Gen<T1, T2>{
public void Foo(T1 : t1){...}
public void Foo(T2 : t2){...}

}

Although the two declarations of Foo have different signatures, they have the same
“erasure signatures” (obtained by replacing the type name by its corresponding bound),
and declaring two methods in the same generic type with the same erasure signature
is prohibited. (Here it is as though each declaration of Foo had a parameter of type
Object.)

The example above would be legal in Ada, C++, and C#, as would an instantiation
with the same type argument for both parameters. The illegality would be an attempt to
invoke Foo from such an instantiation.

Java’s rules are somewhat analogous to Ada’s model of “assuming the worst” in
a generic declaration, although motivated by different factors. For Ada the issue is
enforcement of the “contract model”, and for Java the issue is consistency with type
erasure.

Other Features. Java’s erasure model results in a number of restrictions. A formal
type parameter of a generic type cannot be used as the type of a static field, nor may
it be referenced within a static method or static constructor. It is also prohibited in
constructors for objects or arrays. Other restrictions are listed in [16, p. 268].

6 Conclusions

Each of the language designs has approached generics in a unique fashion, yielding
both advantages and drawbacks. Tables 1 through 3 summarize the comparison.
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Table 1. Generics Comparison Summary, Part 1

Generic entities Generic parameters Instantiation Constraints allowed
on formal types?

Ada • Packages
• Subprograms

• Types
• Subprograms
• Objects
• Package

instances

• Explicit • Yes

C++ • Classes, structs
• Functions

• Types
• Constant values
• Templates

• Implicit • No

C# • Types
• Methods

• Types • Implicit • Yes

Java • Classes,
interfaces

• Methods

• Reference types • Implicit • Yes

Table 2. Generics Comparison Summary, Part 2

Contract model? Recursive intantiation /
“metaprogramming”?

Code sharing? (same generic,
different arguments)

Ada • Yes • Neither • Implementation dependent,
but generally no

C++ • No • Both • Implementation dependent,
but generally no

C# • No • Recursion: yes
• Metaprogramming: no

• Yes for reference types, no
for value types

Java • Yes • Recursion: yes
• Metaprogramming: no

• Yes for all types
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Table 3. Generics Comparison Summary, Part 3

Avoidance of run-time
overhead

Error detection Instantiation
covariance

Ada • Yes • Compile time, generally
early (at point of generic
declaration or instantiation)
but some only at uses of
instantiation

• Not applicable

C++ • Yes • Compile or link time, late
(at uses of instantiation)

• No

C# • Yes (after JIT
compilation of
instantiation)

• Compile time, generally
early but some only at uses
of instantiation

• No

Java • No (compiler
generates implicit
casts)

• Mixed. Some caught at
compile time, analogous to
Ada; others at run time
(class cast exceptions)

• No, but may be
modeled through
wildcards

In brief:

• Ada provides the most precise and explicit interface for a generic unit, and the
requirement for explicit instantiations makes the programmer’s intent clear. But
the separation of the class concept into two features (package and tagged type)
complicates the interaction between generics and OOP (generic hierarchies), and
the number and variety of generic formal types can be confusing.

• C++ provides considerable expressive power and flexibility, and allows the pro-
grammer to fine-tune performance. But the interface for a generic template is broad
and implicit, allowing errors in a template definition to remain undetected until
triggered by an instantiation. And the semantics for name resolution in templates is
complex.

• C# allows expression of constraints on a type’s operations, and it offers a straight-
forward approach for code sharing. But arguments to a generic are restricted to
types (no constants, for example), and the preferencing rules for name resolution in
generics are complicated.

• Java provides a solution that is upwards compatible with earlier versions of Java
and the JVM, and its “erasure” model ensures code sharing. But performance is
compromised (implicit casts are generated to ensure type safety, requiring run-
time checks), and the semantics can be counterintuitive (e.g., different instantia-
tions sharing static data).
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Given the tradeoffs among different goals (generality, early error detection, run-time
efficiency, code space compactness, upwards compatibility) it is not surprising that none
of the languages is uniformly superior to the others. However, languages evolve over
time, and new languages will undoubtedly be designed. Perhaps the “lessons learned”
from user and implementer experience will lead to new insights and approaches that
bring reuse with fewer tears.
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Abstract. The Ada Rapporteur Group (ARG), following the instructions of 
ISO/IEC JTC1/SC22/WG9 is preparing an update to the Ada 2005 standard. 
This paper presents a snapshot of the more important language enhancements 
under discussion. Even though these enhancements are not yet in their final 
form, and will not become part of the proposed new standard until approved by 
ISO, the description that follows is an accurate reflection of the main directions 
in which the language is evolving.  However, the names of packages, subpro-
grams, and formal parameters, as well as some details of the syntax might 
change from what is presented here. 

1   Introduction 

The WG9 committee, after discussions with the ARG and with members of the Ada 
community, has instructed the ARG to complete the Amendment to Ada 2005 [1] so 
that ISO standardization of the new version can be completed by 2012. This is a rela-
tively short horizon. but it matches the interval between previous releases, demon-
strates that the language continues to evolve, and at the same time places a bound on 
the changes to the language, and ensures that they do not present an undue implemen-
tation burden on existing compilers.  

This paper is an informal survey of the more important enhancements that the 
ARG is discussing. These enhancement are grouped as follows: 

 
• Section 2 discusses enhancements directly related to correctness, namely the 

introduction of more powerful assertion mechanisms in the language: pre- and 
postconditions, global assertions, type invariants, are other mechanisms that 
encourage the programmer to better specify the meaning of the code they 
write, and allow the run-time to verify that this meaning is in fact obeyed. 

• Section 3 discusses enhancements to the Containers library. 
• Section 4 presents language enhancements that contribute to expressiveness 

and readability: conditional expressions, case expressions, more powerful 
membership tests, and corresponding iterator forms. Most of these are syn-
tactic enhancements whose semantics is intuitive and fit well in Ada. One 
addition in this category has a larger import because it reverses an early de-
sign decision that had been controversial ever since Ada 83: functions will 
now have in and in out formal parameters. 

• Section 5 discusses visibility mechanisms: more powerful use clauses, and in-
tegrated packages that provide better access to declarations in nested packages. 
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• Section 6 presents concurrency and real-time enhancements that address the 
multicore revolution. 

• Section 7 mentions other minor syntactic enhancements that simplify the 
programming task and polish some awkward corners of the language. 

 
Each one of the enhancements we describe corresponds to one or more Ada Issues 
(AIs). We must emphasize that our descriptions are informal, and reflect the state of 
affairs as of this writing (March 2010). Please refer to the database at the Ada Infor-
mation Clearinghouse (see http://www.ada-auth.org/AI-SUMMARY.HTML) where the 
interested reader will find up-to-date descriptions and a full list of Amendment AIs. 

2   Program Correctness 

The enhancements in this area address the familiar issue of “programming by con-
tract” (see [2] for a modern discussion). They provide the programmer with tools to 
specify formally the intent of a construct. This formal description can then be veri-
fied/enforced at execution time, or even confirmed statically by analysis tools. Such 
contract specifications allow compilers and other tools to catch errors in usage or 
implementation earlier in the development cycle. They also provide valuable docu-
mentation of the intended semantics of an abstraction. 

2.1   Aspect Specifications (AI05-0183) 

Assertions about the behavior of subprograms, types, and objects are aspects of the 
corresponding entities, and a uniform syntax will be available to specify these, as well 
as more familiar operational and representational attributes of various kinds of enti-
ties. Thus the notion of aspect generalizes the familiar Ada concept of attribute. The 
properties of these attributes can be specified with representation clauses (for example 
size representation clauses) or with pragmas (for example pragma Pack). These speci-
fications are unified with the new notion of aspect: 

 
aspect_specification ::= 

                       with aspect_mark [=> expression] {, aspect_mark [=> expression] } 
 
An aspect specification can appear in object definitions, type declarations, all manner 
of subprogram declarations, component declarations and entry declarations. 

2.2   Pre- and Postconditions for Subprograms (AI05-0145) 

These aspects are predicates, i.e. boolean expressions that must be True on entry to 
(resp. on exit from) the subprogram to which they apply. The declaration of the func-
tion Pop for the canonical Stack data type might be as follows: 

 
function Pop(S : in out Stack) return Elem 
   with 
     Pre  => not Is_Empty(S), 
     Post => not Is_Full(S); 
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A postcondition often needs to refer to the value of an in out parameter or of a global 
object before the subprogram is executed. The attribute ‘Old, applied to any nonlim-
ited entity, denotes its value on entry to the subprogram. Similarly, the attribute ‘Re-
sult denotes the value returned by a function. 

2.3   Type Invariants (AI05-0146) 

From a contractual point of view, the visible behavior of a private type is described 
indirectly through the pre- and postconditions that apply to the primitive operations of 
the type. Other contractual details of an abstraction are better described directly as 
properties of the type itself. 

The new aspect notation allows us to write: 
 

type T (...) is private 
   with Invariant => Is_Valid(T); 
 
type T2 (...) is abstract tagged private 
   with Invariant’Class => Is_Valid(T2); 
 
function Is_Valid (X : T) return Boolean; 

 
Note that Is_Valid is referenced before its declaration. This may seem like a break 
from the Ada canonical linear order of elaboration, but in fact it corresponds to the 
rule that aspects are elaborated at the point the entity to which they apply is frozen 
(this is the point at which all the characteristics of the type must be known). In most 
cases this means the end of the enclosing library package declaration. 

An invariant can be type-specific, or class-wide, in which case it applies to all ex-
tensions of the type. An invariant is checked on exit from any visible subprogram that 
is a primitive operation of the type. 

2.4   Global In/Out Annotations (AI05-00186) 

In order to more fully specify the semantics of a program, it is necessary to indicate 
what effect subprograms may have on the environment, that is to say enclosing scopes 
and library-level entities. Global in/out annotations indicate what objects global to a 
given subprogram S are read or modified by an execution of S.  The aspects in, out 
and in out can specify the following: 

 
<object_name> --  the named object, and all of its subcomponents 
 null                  --   the empty set (the subprogram is pure) 
 others              --   the universal set  (all globals may be affected) 
 others in pkg   --  all objects declared or whose designated type is declared in pkg 
 

There are additional annotations to indicate that all objects designated by a particular 
access type, or by access types defined in the current package, may be accessed or 
modified. Annotations for generic formal parameters are also available. This rather 
heavy machinery is indispensable if we want to specify to the compiler the possible 
effect of a subprogram call, without having to rely on global program analysis tools. 
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3   Containers 

Container libraries have become ubiquitous in modern programming environments. 
The enhancements in this area provide abstractions with better storage properties, 
task-safety, and useful search properties. There is one common advantage of standard-
ized containers that is worth emphasizing: memory management of collections of 
values is handled by the container operations, not directly by the user. Storage alloca-
tion and reclamation are behind the scene, thus freeing the programmer from some of 
the more delicate and error-prone aspects of low-level programming. This is particu-
larly important when indefinite types, such as class-wide types, are involved. 

3.1   Bounded Containers (AI05-0001) 

In their more general form containers place objects and auxiliary data structures in the 
heap. Even though most heap management is hidden from the programmer, thanks to 
the use of controlled types, such heap usage is forbidden in high-integrity environments, 
which renders 2005 containers virtually useless in this realm of application. Ada 2012 
introduces bounded variants of containers (vectors, lists, maps) that have a fixed capac-
ity and so can be stack-allocated.  The new container types are all discriminated types, 
constrained by capacity. The bounded containers are not themselves controlled types, 
which allows for a lighter implementation. (Of course, if the element type of a bounded 
container is controlled, the container itself will have to be finalized.) 

This AI also adds to the Ada library several general purpose packages for case-
insensitive operations on strings  for sorting  and for hashing. 

3.2   Holder Containers (AI05-0069) 

In Ada 2005 it is not possible to declare a variable of an indefinite type without giving 
it an initial value that fixes its constraints once and for all. The holder container is  
a wrapper that can hold a single value of some (possibly indefinite) type. This value 
can be queried and modified, thus providing the equivalent of a variable of an indefi-
nite type. 

3.3   Synchronized Queues (AI05-0159) 

Queues were omitted from the 2005 Container library, because they were considered 
trivial to write, and too elementary to be included in a language standard. However, 
queues that are task-safe are somewhat more complex, and it is worthwhile to  
standardize an efficient version of such shared data-structures. Ada 2012 introduces a 
synchronized interface Queue, declared in package Ada.Container.Synchronized_-
Queues, and several generic packages that implement that interface: 

 
Bounded_Synchronized_Queues 
Unbounded_Synchronized_Queues 
Bounded_Priority_Queues 
Unbounded_Priority_Queues! 
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The flexibility of Synchronized interfaces (which can be implemented by tasks or 
by protected types) is put to good use here: each of these packages is parameterized 
by an instantiation of Synchronized_Queues. For example: 

 
with Ada.Containers.Synchronized_Queues; 
generic 
  with package Queues is new 

Ada.Containers.Synchronized_Queues (<>); 
package Ada.Containers.Unbounded_Synchronized_Queues is 

pragma Preelaborate; 
 
type Queue is synchronized new Queues.Queue with private; 

private 
-- not specified by the language 

end Ada.Containers.Unbounded_Synchronized_Queues; 

3.4   Multiway Trees (AI05-0136) 

Trees are the quintessential dynamic data structures, and ones for which hiding stor-
age management activities in the implementation is particularly worthwhile. The 
Container library will now include a very general tree structure, a multiway tree, 
where each internal node has a vector of descendant nodes, so that there is easy navi-
gation from a node to its siblings and to its ancestors. Search and insertion operations 
on this structure must have a complexity of O (Log (N)). 

4   Functions, Expressions, Control Structures 

The enhancements in this group aim to simplify programming in the small: more 
expressive function declarations, new expression forms, better notation for existing 
constructs.  Most of these can be considered syntactic sugar, that is to say shortcuts to 
common program fragments that can be written in today’s Ada. The first enhance-
ment in this group, however, has a deeper semantic impact. 

4.1   In Out Parameters for Functions (AI05-0143) 

Ever since Ada 83, functions have had only in parameters, with the justification that 
they were intended to be the equivalent of mathematical (pure) functions with no side 
effects. However functions can modify global variables, and thus have arbitrary side 
effects for which there is no syntactic indication. In Ada 2012, functions will have 
both out and in out parameters, to indicate more explicitly the way in which a func-
tion call may affect the state of the program. 

4.2   Dangerous Order Dependences (AI05-0144) 

This in turn highlights a weakness in the way Ada specifies (or fails to specify) the 
order of evaluation of expressions and parameters in calls. If functions have in out 
parameters, there is a greater danger that side effects make the evaluation of an ex-
pression non-deterministic. To alleviate the problem, Ada 2012 mandates static 
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checks that make many common order-dependences illegal. For example, if F is a 
function with an in out parameter, the expression: 

 
F (Obj) + G (Obj) 

 
has an illegal order-dependence because the result may be different depending on the 
order in which the operands of this expression are evaluated. Similarly, the new rules 
force a compiler to reject aliasing between two actual parameters of an elementary 
type, when one of the formals is not an in parameter. The checks mandated by AI05-
0144 can be made linear in the size of the expression (call or assignment). These 
checks depend on a static definition of when two names denote the same object, or 
when one name denotes a prefix of another name. Unlike more rigorous verification 
systems such as Spark [3], the checks proposed by this AI cannot be complete, given 
that arbitrary side effects may be present through global variables; they do neverthe-
less eliminate the most egregious examples of order-dependences. Ada will remain 
free of idioms that rely on a particular order of evaluation, such as the celebrated C 
idiom for copying strings: 

 
(while *p++ = *q++); 

4.3   Conditional and Case Expressions (AI05-0147 and AI05-0188) 

The chief purpose of these syntactic shortcuts (familiar from other programming lan-
guages, such as C++ and various functional languages) is to simplify writing pre- and 
postconditions, as well as type invariants. These are often complex predicates which 
would have to be written as off-line functions, thus making them more opaque.  Con-
ditional and case expressions allow these predicates to be directly attached to the 
declaration of the entity to which they apply: 

 
   procedure Append (V : Vector; To : Vector) 
     with Pre => 
       (if Size (V) > 0 then 
           Capacity (To) > Size (V) else True); 
 

It is frequently the case that predicates impose a check in one case but not in the 
other, so the trailing else True can be omitted in that case: 
 
   procedure Append (V : Vector; To : Vector) 
     with Pre => 
       (if Size (V) > 0 then Capacity (To) > Size (V)); 
 

Conditional expressions can also be useful to simplify existing code involving if 
statements, though here tastes may differ. For example, there might be a definite ad-
vantage in rewriting an if statement if both of its branches control two subprogram 
calls that differ only in one actual parameter, e.g.: 
 

Eval (X + Y, F (if Cond then 1 else 0)); 
 
instead of  
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if Cond then 
   Eval (X + Y, F (1)); 
else 
   Eval (X + Y, F (0)); 
end if; 
 

The semantics of conditional expressions is identical to that of short-circuit expres-
sions. Conditional expressions are static if the condition and both dependent expres-
sions are static. 

Case expressions stand in the same relation to case statements as conditional ex-
pressions to if statements. The well-understood advantage of case expressions is that 
the compiler can verify that all cases are covered.  Thus a case expression is safer than 
a conditional expression with a series of tests. 

4.4   Iterators (AI05-0139) 

Traversing a collection is an extremely common programming activity. If the collec-
tion is described by one of the library containers, iteration over it can be described by 
means of the primitive operations First and Next.   These operations typically use 
cursors to provide access to elements in the collection. However, it is often clearer to 
refer directly to the elements of the collection, without the indirection implied by the 
presence of the cursor. This AI will make it possible to write, for example: 

 
   for  Cursor in Iterate (My_Container) loop 
      My_Container (Cursor) := My_Container (Cursor) + 1; 
   end loop; 
 

as well as: 
 
   for Element of My_Container loop 
      Element := Element + 1; 
   end loop; 
 
This syntactic extension is obtained by means of a predefined interface Basic_Iterator, 
a function with special syntax that provides the equivalent of indexing a container 
with a cursor, and an implicit “dereference” operation that retrieves an element of the 
container when presented with a reference to such an element: 

 
generic 
   type Cursor is private; 
   No_Element : in Cursor; 
package Ada.Iterator_Interfaces is 
 
  type Basic_Iterator is limited interface; 
  function First (Object : Basic_Iterator) return Cursor; 
  function Next (Object: Basic_Iterator; 
                 Position: Cursor) return Cursor; 
  type Reversible_Iterator is 
     limited interface and Basic_Iterator; 
  function Last (Object : Reversible_Iterator) 
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     return Cursor; 
  function Previous (Object  : Reversible_Iterator; 
                     Position: Cursor) return Cursor; 
end Ada.Iterator_Interfaces; 
 
An instantiation of this package is present in every predefined container, but the user 
can instantiate such a generic and provide special-purpose First and Next functions to 
perform partial iterations and iterations in whatever order is convenient. The familiar 
keyword reverse can be used to determine the direction of iteration. 

4.5   Extended Membership Operations (AI05-0158) 

The current machinery to define subtypes has no provision for declaring a subset of 
the values of a scalar type that is not contiguous. Membership in such a subset must 
be expressed as a series of tests: 

 
   type Color is (Red, Green, Blue, Cyan, 
                  Magenta, Yellow, Black); 
   Hue : Color; 
      ... 
   if Hue = Red or else Hue = Blue or else Hue = Yellow then ... 

 
The proposed membership notation allows sequences of values to appear as the right 
operand: 

 
   if Hue in (Red |  Blue | Yellow ) then ... 

 
Once this notation is introduced, it can be extended to any non-limited type: 

 
   if Name in ("Entry" | "Exit" | Dict("Urgence") | then ...  

4.6   Quantified Expressions (AI05-0176) 

Invariants declared over containers are often expressed as predicates over all the ele-
ments of the container. The familiar notation of Set Theory provides the model for 
introducing quantified expressions into Ada: 

 
Quantified_Expression ::= Quantifier  Iterator   “|”  Predicate 
 
   Quantifier ::= for all  | for some 
   Iterator ::= defining_identifier in expression 
   Predicate ::= Boolean_expression 

 
For example, a postcondition on a sorting routine might be written as: 

 
   for all J in A'First .. Index'Pred (A'Last) | 
                A (J) <= A (Index'Succ (J)); 

 
We have departed from the standard notation and rejected the use of exists as a new 
keyword, because it is in common use in existing software. Instead, the non-reserved 
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word some, appearing after keyword for, specifies that the expression is existentially 
quantified.  For example, the predicate Is_Composite applied to some positive integer 
might be (inefficiently) described thus: 

 
      (for some J in 2 .. N /2 | N mod J = 0) 

 
The iterator forms proposed in AI05-0139 will also be usable in quantified expressions. 

5   Visibility 

The AIs in this category try to simplify the programming task by providing simpler 
ways for names to denote specific entities, and by allowing wider uses for entities of 
certain kinds.  

5.1   Use All Type (AI05-0150) 

The Ada community has been divided over the use of use clauses ever since Ada 83. 
Certain style guides forbid use clauses altogether, which forces programmers to qual-
ify all names imported from another unit. To lighten this rather heavy burden, which 
among other things forces the use of the awkward notation P.”+”, the use type clause 
introduced in Ada 95 provides use-visibility to the operators of a type defined in an-
other unit, so that infix notation (X + Y) is legal even when the type of X and Y is not 
use-visible. AI05-0150 extends this visibility to all primitive operations of a type 
(including the literals of an enumeration type). If the type is tagged, this is extended 
as well to subprograms that operate on T’Class. 

5.2   Issues of Nested Instantiations (AI05-0135 and Others) 

It is common for a library package P to contain an instantiation of some other package 
Inner, in order to export a type T declared within Inner. This is often done by means 
of a derived type DT, which inherits the operations of T and makes them available to 
a client of P. However, this derivation is a programming artifact  (in the vernacular, a 
kludge) and it is desirable to find a more direct way of re-exporting the entities de-
clared in an inner package.  A related issue is that of private instantiations: a package 
declares a private type PT and needs to declare a container of objects of this type. The 
instantiation cannot appear in the same package before the full declaration for PT, 
which leads to a contorted architecture. The ARG is examining several proposals to 
simplify these programming patterns, including integrated packages (whose contents 
are immediately visible in the enclosing package) and formal incomplete types for 
generic units. 

5.3   Incomplete Types Completed by Partial Views (AI05-0162) 

In many situations we declare an incomplete type in order to provide an access type 
used in some other construct. The completion of the incomplete type must occur 
within the same declarative part. For purposes of information hiding, we may want  
to complete the incomplete declaration with a private type, but this is currently  
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forbidden by the language. This AI proposes that the completion of an incomplete 
type declaration may be any type declaration (except for another incomplete one). 
Type declarations can thus be given in three parts: an incomplete type declaration, a 
private type declaration, and finally a full type declaration. 

5.4   Incomplete Parameter and Result Types (AI05-0151) 

Limited with_clauses make it possible to describe mutually recursive types declared 
in separate packages, by providing incomplete views of types.  If such an incomplete 
view is tagged, then it can be used as the formal in a subprogram declaration and even 
in a call, because it is known to be passed by reference.  This AI extends the use of 
untagged incomplete types obtained through limited views, so they can be used as 
parameter types and result types, as long as the full view of the type is available at a 
point of call. 

6   Concurrency and Real Time 

Most programming languages are proposing new constructs to make proper use of the 
multicore chips that will dominate the hardware landscape of the next decade. The 
International Real-Time Ada Workshop has proposed a number of language exten-
sions to simplify the programming of such architectures [4]. 

6.1   Affinities (AI05-0167) 

The first requirement is a mechanism to describe the set of available processing cores 
in a chip, and to specify a mapping (partitioning) between tasks and cores. In existing 
operating systems, this mapping is often described as the “affinity” of the task, and 
the control of task affinities in multiprocessor systems is as important as the control of 
priorities. This is achieved by means of the following child packages of System (only 
the outlines are provided): 

 
package System.MultiProcessors is 
   Number_of_CPUs : constant Positive := <implementation-defined>; 
   type CPU is range 1 .. Number_of_CPUs; 
   Default_CPU : constant CPU := <implementation-defined>; 
   type CPU_Set is array (CPU) of Boolean; 
end System.MultiProcessors; 
 
with Ada.Task_Identification; use Ada.Task_Identification; 
with Ada.Real_Time;           use Ada.Real_Time; 
package System.Multiprocessors.Dispatching_Domains is 
   type Dispatching_Domain is limited private; 
   System_Dispatching_Domain: constant Dispatching_Domain; 
   function Create(PS: CPU_Set) return Dispatching_Domain; 
   function Get_CPU_Set(AD : Dispatching_Domain) return CPU_Set; 
   procedure Assign_Task (AD : in out Dispatching_Domain; 
                          T  : Task_Id :=  Current_Task); 
   procedure Delay_Until_And_Set_CPU 
          (Delay_Until_Time : Ada.Real_Time.Time; P : CPU); 
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private 
   type Dispatching_Domain is new CPU_Set; 
   System_Dispatching_Domain : constant Dispatching_Domain :=  
                                  (others => True); 
end System.Multiprocessors.Dispatching_Domains; 

Needless to say, the implementation of these operations depends on the availability of 
lower-level constructs in the underlying operating system. The paper by Sáez and 
Crespo [5] indicates that at least on GNU-Linux operating systems their implementa-
tion is relatively straightforward today. 

6.2   Extending the Ravenscar Profile to Multiprocessor Systems (AI05-0171) 

The Ravenscar profile [6] has been extremely successful for real-time applications, 
and is in wide use today. This AI proposes its extension to multi-processor systems, to 
facilitate the construction of deterministic and analyzable tasking programs that can 
be supported with a run-time system of reduced size and complexity. The proposed 
extensions to the Ravenscar profile depend on the partitioning facilities described 
above, but forbid dynamic task migration and require that a task be on the ready 
queue of a single processor. 

6.3   Barriers (AI05-0174) 

Barriers are basic synchronization primitives that were originally motivated by loop 
parallelism. Operating systems such as POSIX already provide barriers, where a set of 
tasks is made to wait until a specified number of them are ready to proceed, at which 
time all of them are released. The effect of a barrier can be simulated with a protected 
type, but only with substantial overhead and potential serialization, so a new mecha-
nism is needed. This mechanism is provided by means of a new package: 

 
  package Ada.Synchronous_Barriers is 
     type Barrier(Number_Waiting : Positive) is limited private; 
     procedure Wait_For_Release (The_Barrier : in out Barrier; 
                                 Last_Released : out Boolean); 
  end Ada.Synchronous_Barriers; 

 
When a variable of type Barrier is created with Number_Waiting = N, there are no 
waiting tasks and the barrier is set to block tasks. When the count reaches N, all tasks 
are simultaneously released and the “Last_Released” out parameter is set in an arbi-
trary one of the callers, which then performs cleanup actions for the whole set. Note 
that this is different from the Ada 2005 proxy model for a protected operation: there 
the task that modifies the barrier executes sequentially, in some unspecified order, the 
pending actions of all tasks queued on the barrier. 

6.4   Requeue on Synchronized Interfaces (AI05-0030) 

The introduction of synchronized interfaces is one of the most attractive innovations 
of Ada 2005: a concurrent construct may be implemented by means of an active entity 
(a task) or a passive one (a protected object), both of which may include queues to 
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enforce mutual exclusion.  However, only functions and procedures are allowed as 
primitive operations of interfaces. It is desirable to support the construction of concur-
rent algorithms that involve requeue statements, where the construct on which the 
requeue is to take place may be either a task or a protected object.  This AI proposes a 
pragma to indicate that a given interface operation may allow requeuing, as the fol-
lowing example demonstrates: 

 
     type Server is synchronized interface; 

     procedure Q(S : in out Server; X : Item); 

     pragma Implemented (Q, By_Entry); 

 
The pragma can also take the parameters By_Protected_Procedure and By_Any. 

7   Syntactic Frills 

The AIs in this category address small programming irritants in the syntax of the 
language, and simplify the programming of common idioms. 

7.1   Labels Count as Statements (AI05-0179) 

One of the most common uses of gotos in Ada is to provide the equivalent of a “con-
tinue” statement in a loop, namely to skip part of the body of the loop and start the 
next iteration. The following pattern will be familiar: 

 
   loop 

      ... 

      if Cond then  

         goto Continue; 

      end if;  

      ... 

      <<Continue>> null; 

   end loop; 

 
The null statement is only noise, forced by the current rule that a label is part of a 

statement.  The rule proposed in this AI is that a label by itself is a valid constituent 
of a statement sequence. This simple rule was chosen, instead of the more conten-
tious introduction of a new reserved word continue to be used as a new statement 
form. 

7.2   Pragmas Instead of Null (AI05-0163) 

Programmers have found the current rules for pragma placement confusing and error-
prone. The syntactic rules concerning them have been simplified, so that they can 
appear in an otherwise empty sequence of statements, without requiring the presence 
of an explicit null statement to make the sequence legal. 
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8   Conclusions 

The Ada 2012 amendment strikes a balance between conflicting requirements:  
• On the one hand, the evolution of software engineering suggests new lan-

guage features to facilitate the construction of ever-more-complex systems. 
• On the other hand, the large established software base mandates that all new 

constructs be upward compatible, easy to describe and relatively easy to im-
plement. 

• Finally, the Ada community expects the language to evolve, reflecting the 
development of software methodologies and the evolution of other languages 
in the same domain. 

 
Time will tell how well the proposed amendment navigates between these constraints. 
Some partial implementations of the new features are appearing in existing compilers, 
which will allow language enthusiasts to experiment with them early on. We trust that 
the Ada community will welcome the new face of the language. 
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Abstract. This paper describes the design and implementation of the Distrib-
uted Transaction Manager (DTM), a service that provides remote negotiation of 
contracts representing resource reservations in real-time distributed applica-
tions. We assume that there is an underlying middleware which can be used by 
the application to negotiate contracts locally: processor contracts have to be  
negotiated in the same processor where they will run, and network contracts 
have to be negotiated in a processing node connected to the specific network 
that will be used. In addition, the paper proposes the integration of the DTM in 
a distribution middleware based on CORBA and Ada’s Distributed Systems 
Annex (DSA) which supports advanced scheduling mechanisms based on con-
tracts. The use of the distribution middleware enhances some implementation 
aspects of the DTM and provides new capabilities as, for example, routing  
messages through different networks. 

Keywords: flexible scheduling, real-time, distribution middleware, CORBA, 
Ada DSA, communications. 

1   Introduction 

The evolving complexity of real-time systems has lead to the need for using more 
sophisticated scheduling techniques, capable of simultaneously satisfying multiple 
types of requirements such as hard real-time guarantees and quality of service re-
quirements, in the same system. To better handle the complexity of these systems, 
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instead of asking the application to interact directly with the scheduling policies, 
scheduling services of a higher level of abstraction are being designed, usually based 
on the concept of resource reservations [1]. The FRESCOR European Union project 
[2] in which we have participated was aimed at investigating these aspects by creating 
a contract-based scheduling framework. 

Future development of real-time distributed systems will be supported by  
high-level models as the one defined in the standard OMG Specification MARTE 
(Modelling and Analysis of Real-Time Embedded Systems) [3]. This standard in-
cludes the end-to-end flow as a basic entity for modelling the behaviour of distributed 
systems. This is the new name for the transaction, a set of interrelated operations with 
a timing constraint between its start and its completion (not to be confused with the 
meaning that the same word has in the domain of databases). In the context of this 
paper a distributed transaction consists of a sequence of activities that can be either 
task jobs in the processors or messages in the networks. This paper explores new 
trends in managing transactions for flexible scheduling systems. 

Although the support for contracts defined in the FRSH API (FRESCOR frame-
work application interface) [4] is enough to negotiate contracts locally, it puts a  
burden on the application to manage the negotiation process of a whole distributed 
transaction. The first objective of this work is to propose and implement a Distributed 
Transaction Manager (DTM) that extends the negotiation capabilities defined in 
FRSH to allow remote negotiations and renegotiations of contracts, and a centralized 
management of the results of the negotiation process. The implementation platform 
for the DTM is a FRESCOR environment using the C language and MaRTE OS [5] 
with RT-EP [6][7] and CAN [8] real-time networks. All of these resources have  
implementations supporting adaptive resource reservations with contracts. 

In previous works we proposed mechanisms for the integration of middleware and 
advanced scheduling services, such as contract-based reservations, with transactions. 
In [9] some initial ideas were given to allow a distribution middleware to manage 
complex scheduling parameters specified by an application in a way that minimizes 
overhead. In that work, a proposal to integrate a generic technique to express complex 
scheduling and timing parameters of distributed transactions was presented. The im-
plementation of these ideas over PolyORB [10][11] ported to MaRTE OS [5] was 
presented in [12]. PolyORB is a distribution middleware by AdaCore [13] which  
supports several distribution standards. Finally, in [14] we extended this generic  
technique and proposed it to be integrated as a part of the Distributed Systems Annex 
of Ada (DSA).  

The first implementation of the transaction manager described in this paper limits 
its capabilities just to the management of remote contracts, and as a proof of concepts 
it was implemented directly over the network services (RT-EP and CAN Bus) [7][8]. 
We are now implementing a second version to provide a full support for the transac-
tional model  integrated with the capabilities of a distribution middleware. This pro-
posal will be fully implemented in PolyORB over MaRTE OS. Currently we have 
implemented the key issues in order to check the feasibility of the proposal. 

The document is organized as follows. Section 2 describes the specification of the 
Distributed Transaction Manager and gives the details on its main services. Section 3 
deals with the architecture of the implementation of the DTM. The model of the 
transaction and its implementation in the middleware is presented in Section 4.  
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Section 5 proposes the integration of the DTM in distribution middleware based on 
standards. The extension of the DTM protocol to provide full support for the transac-
tional model as well as some issues of the implementation of the DTM in PolyORB 
are pointed out in sections 6 and 7, respectively. Finally, Section 8 draws the conclu-
sions and considers future work. 

2   Specification of the Distributed Transaction Manager 

The Distributed Transaction Manager (DTM) is a distributed application responsible 
for negotiation of distributed transactions in a FRESCOR contract-based scheduling 
framework implementation. FRESCOR contracts provide a resource reservation 
framework that, as such, provides protection among the different software compo-
nents running on top of it, facilitating the independence of their development and  
execution. But the  framework produced in FRESCOR goes well beyond the capabili-
ties of other resource reservation frameworks by providing adaptive reservations that 
can make use of spare capacity available; management of QoS parameters expressed 
at the application level; an integrated management of multiple schedulable resources 
including CPUs or networks; management of time-protected shared objects; integra-
tion with component-based design methods; off-line schedulability analysis and  
simulation tools that allow the application developer to reason about the timing be-
haviour of the application before it is built; and an API called FRSH that makes the 
application independent of the underlying operating system, networks and scheduling 
policies. Unlike other adaptive QoS approaches [15], the FRESCOR framework guar-
antees the minimum budget requested via a schedulability analysis of the system. 

The requirements of an application or application component are written as a set of 
contracts, which are negotiated with the underlying implementation. To accept a set of 
contracts, the system has to check as part of the negotiation if it has enough resources 
to guarantee all the minimum requirements specified, while keeping guarantees on all 
the previously accepted contracts negotiated by other application components. If as a 
result of this negotiation the set of contracts is accepted, the system will reserve 
enough capacity to guarantee the minimum requested resources, and will adapt any 
spare capacity available to share it among the different contracts that have specified 
their desire or ability for using additional capacity. As a result of the negotiation proc-
ess initiated by the application, if a contract is accepted, a virtual resource is created for 
it representing an adaptive resource reservation. 

The objective of the Distributed Transaction Manager is to allow in distributed sys-
tems the remote management of FRESCOR contracts, including capabilities for  
remote negotiation and renegotiation of resource reservation contracts, and manage-
ment of the coherence of the results of these negotiation processes. In this way, 
FRESCOR provides support for distributed global activities or transactions consisting 
of multiple actions executed in processing nodes and synchronized through messages 
sent across communication networks.  

Fig. 1 shows the overall DTM architecture as viewed from the application. The 
DTM has been designed as a layer between the application and the FRSH API in order 
to avoid increasing the complexity of the FRSH implementation. The DTM is  
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Fig. 1. Role of the DTM in the FRESCOR application architecture 

instanced at every node in the system. Each instance stores necessary data for the nego-
tiation process and a DTM agent, which will listen to negotiation messages either from 
the local node or from remote nodes, will perform the requested actions, and will send 
back replies when required. 

The remote negotiation process requires bidirectional communication, either direct 
or through other nodes acting as routers, between the node requesting the negotiation 
and the node performing it, because the requester needs to get the results of the nego-
tiation. As the level of resource reservations required for supporting the routing opera-
tions is difficult to configure in general, the DTM may use a static routing mechanism 
that utilizes the resource reservations assigned by the system designer to this service. 

It is expected that in some networks the DTM messages, specially those containing 
contracts, will not fit into the maximum size of a packet. For these cases, a fragmenta-
tion layer is deployed between the DTM implementation and the FRSH distribution 
services. This layer is independent of DTM and can be used by the application to send 
large messages as can be seen in Fig. 1. 

The services that the DTM offers to the application are defined by the DTM API 
[7][8]. The main services are briefly described as follows: 

• Assignment of Resources to the Transaction Manager. This service allows the 
application to specify the resource reservations made locally for the operation of 
the transaction manager itself. Some processing bandwidth must be reserved for 
the DTM manager thread responsible of executing the DTM services. In addition, 
network bandwidth must be reserved for the messages that the DTM agents must 
exchange among them. In this way, the framework will guarantee that the 
manager does not overrun the capacity assigned for its execution. 

• Initialization of the Transaction Manager. In order to use the services of the 
transaction manager it is necessary to ensure that the DTM agents and their data 
structures have been initialized in all nodes. Otherwise, a message sent to a 
remote node to request some service could be lost if nobody is at the other side to 
store and process that message. This service implies creating at each node the 
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necessary data structures and threads to implement the transaction manager, and 
synchronizing the initialization with all the nodes involved in the system, by 
waiting until all of them are initialized. 

• Creation and Management of a Transaction. This service allows the application 
to specify the set of contracts that compose a transaction and the nodes where they 
have to be negotiated. Transactions may require that the periods of all or some of 
the virtual resources associated to it be the same, to achieve synchronized 
behaviour. This requirement will be specified by the application when a contract is 
added to a transaction, and will cause the negotiation process to reach a consensus 
on the common period to be used for those virtual resources requiring a 
synchronous period. 

• Negotiation of a Transaction. This service implies: 

- Checking the consistency of the transaction. 
- Negotiating contracts in remote nodes. This is accomplished by sending a 

message to each involved DTM agent, with the corresponding contracts. Each 
DTM agent  does the local negotiation and reports back to the original DTM 
agent the results of the negotiation. 

- Negotiating local contracts. 
- Collecting the results of the remote negotiations. 
- Making a decision based on the results. If one or more of the results implied 

that a contract was rejected, the whole transaction will be rejected. If all the 
contracts were accepted and one or more contracts require synchronous 
periods it is necessary  to find out which is the most restrictive period, which 
will then become the synchronous period of the transaction. 

- Communicate the final decision to all the implied DTM agents, which in turn 
will adjust the periods of the contracts when necessary, to match the 
synchronous transaction period. 

3   Architecture and Implementation of the DTM without 
Distribution Middleware 

The implementation of the Distributed Transaction Manager in FRESCOR is a decen-
tralized architecture in which the transactions can be created and negotiated from any 
processing node. Each DTM agent contains a global data structure where the informa-
tion about the negotiations is kept. This data structure contains information about 
whole transactions that were created in the corresponding processing node, and also 
partial information about the parts of those transactions that were created remotely but 
have been negotiated locally. 

The DTM agent contains multiple threads, as can be seen in Fig. 2. One of them, 
called the DTM manager thread is in charge of performing the actions related to the 
management and negotiation of transactions. The other threads, called the DTM ac-
ceptor threads, are in charge of listening to messages arriving through the different 
networks, coming from other remote DTM agents. Fig. 2 also shows the parts that 
would be replaced with the services provided by the middleware and that will be dis-
cussed in Section 5. 
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Fig. 2. Internal architecture of a DTM agent 

The DTM acceptor threads perform two different services: 

• Routing: when the DTM message arriving at the acceptor thread is addressed to a 
different node, it resends that message through the appropriate network according 
to a static routing table. 

• Handling: when the DTM message arriving is addressed to the current node, the 
message type is checked, and a request is queued for the DTM manager thread. 

 
The DTM manager thread waits for the arrival of DTM messages at the DTM request 
queue. To minimize the service times, this is a prioritized queue. When a DTM mes-
sage arrives, either from a DTM acceptor or directly from a local thread in the applica-
tion, the DTM manager processes that message. Depending on the type of message, 
new requests to other remote nodes may be necessary, in which case the manager will 
have to wait to get the replies from the DTM request queue. Once the request is ser-
viced, a reply is correspondingly sent to the local thread or to a remote node. 

The DTM agent contains one send endpoint per connected node through which  
it can send messages. This send endpoint is bound to the virtual resource that was 
specified by the application. The DTM agent also contains one receive endpoint per 
connected network, which is used to receive remote DTM messages. 

When a local application thread invokes one of the services that requires interven-
tion of the manager thread, a request is enqueued in the DTM request queue. The  
local application thread is then put in a local reply object, which is a synchronization 
object where it will wait until the DTM manager sends a reply. Since concurrent in-
vocation of the DTM services is possible, a pool of these synchronization objects is 
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needed. The number of elements in this pool is configurable. Local reply objects will 
be identified through a handle value. 

To avoid deadlocks, processing of local and remote DTM messages by the man-
ager thread is preemptible. While a requesting application thread is waiting in the 
local reply object, the manager will continue to process other messages. Between  
the manager thread making a remote negotiation request and receiving the reply from 
the remote node it will also continue to process other DTM messages. The implemen-
tation allows concurrent negotiations being requested by multiple nodes. 

4   Transactional Model in Middleware 

In this section we summarize the architecture of the transactional model that we will 
use. This model was proposed in [14] to be included in the DSA, and it defines  
an interface to allow the middleware and the applications to manage event associa-
tions and the scheduling of the different components of a transaction. A distributed 
transaction is defined to relate parts of an application consisting of multiple threads 
executing code in multiple processing nodes, and exchanging messages through one 
or more communication networks. The scheduling parameters must be defined not 
only for processing tasks but also for the message streams in the communication net-
works. Two kinds of schedulable entities are defined: 

• The handler tasks intended to execute remote calls in the processing nodes. These 
handlers are created explicitly with the appropriate scheduling information. 

• The endpoints or communication points are used to transport messages through 
the network with specific scheduling parameters associated with the endpoint. 
The endpoints are also created explicitly with static scheduling parameters. 

 
In this transactional model, external events trigger the transactions. The only explicit 
operation that is required from the application code is to set an identifier for each of 
those events (the Event_Id). The rest of the transaction elements, including the com-
munication endpoints, the handler tasks, and all the scheduling parameters, can be 
described as a part of a configuration operation. Once the task at the beginning of the 
transaction has set the initial event, all the subsequent activities (including the task’s 
activity itself) are scheduled according to the associated event defined for each part of 
the transaction. This Event Id is set internally by the middleware at the transformation 
points defined at the following actions: setting the initial event, the start of the execu-
tion of an RPC Handler, and the reception of the reply by a task waiting for a syn-
chronous RPC. 

Pre-configured scheduling parameters will be used according to the Event_Id for 
each application task or RPC Handler. Setting the initial Event_Id parameter is suffi-
cient to enable the middleware to identify the particular point in the transaction  
and therefore the scheduling parameters required in each case. This model also allows 
an RPC Handler to be shared among different transactions executing in turn with  
different scheduling parameters. 
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5   Integration of the DTM with Distribution Middleware 

As described in previous sections, the DTM is essentially a distributed application 
that contains an agent in every node. The agents listen to incoming local or remote 
messages, perform the requested actions, and send back the replies. This architecture 
was initially implemented directly over the network communication primitives, but 
could alternatively be implemented using different distribution standards (e.g. 
CORBA [16], DDS [17], or Ada DSA [18]), thus simplifying the complexity of the 
communication among agents. 

The presence of distribution middleware implements part of the functionality in-
herent to DTM. In particular, this architecture could benefit from using a standard 
distribution model in the following aspects: 

• Simplicity of the protocol and the DTM application. The current architecture 
implements a specific communication protocol which requires the management of 
all the data involved in the remote request (i.e. source node, destination node, size 
of contracts...). However, middleware could manage the distribution aspects in a 
transparent way for the user (e.g., using the IOR in CORBA [16] or the topic 
subscription in DDS [17]). 

• Initialization. The initialization process in the DTM assures that every agent in the 
distributed system is ready to send and receive requests. In this case, a static 
approach has been proposed where the user has to specify all the connection paths 
within the system. This model could be replaced by a more dynamic approach like 
that used in DDS, where the discovery of new entities is made at runtime through 
the built-in topics (DDS entities to provide information to the application). Those 
special entities must also have another network contract associated, to limit the 
overhead introduced by the discovery process. Despite that neither CORBA nor 
DSA do not specify any mechanism to assert the initialization of entities, a 
solution based on the CORBA Naming Service [19] will be proposed in Section 7. 
Although this solution is intended to use a CORBA service, it could be also 
applied to DSA by means of the interoperable platform provided by PolyORB.  

• Removal of the Acceptor Tasks. The two services provided by those entities could 
be replaced by middleware:  

- Handling. It is the process of listening for incoming remote calls, processing 
them with the appropriate scheduling parameters and notifying any new 
requests to the local DTM agent. In this case, the same functionality could be 
provided by the RPC Handler tasks. 

- Routing Service. In this context, routing means the capacity to interconnect 
different networks in systems where nodes are not connected directly. 

• Fragmentation services. Although this service could be developed as a new 
FRESCOR service, most distribution standards implicitly integrate it (e.g., 
GIOP in CORBA [16] or the DDS Interoperability Wire Protocol [20]), so the 
use of middleware would avoid the inclusion of unnecessary extra features 
into the framework. 

 
However, a general purpose middleware could not satisfy all the requirements im-
posed by the DTM (e.g., complete support for the transactional model or a resource 
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reservation scheduler). Our previous work with GLADE [9] and PolyORB middle-
wares [21], which aimed to provide support for different scheduling policies and the 
distributed transaction, facilitates the transition to the integration by introducing: 

• Full support for the transactional model. Our model manages internally all the 
transaction-related details: identification of the transaction, mapping between 
incoming and outgoing events in the transformation points [14] and the assignment 
of the appropriate scheduling parameters for each element of the transaction. 

• Transaction identification. The identification of a transaction is performed 
through the Event_Id parameter, which is then interpreted by the middleware [9]. 
New transactions activated through the DTM will be required to have specific  
Event_Ids defined. This association could be automatically managed by 
middleware and will be discussed in the next section. 

• Routing. As we pointed out before, this service should be included as part of the 
middleware to limit the overhead that would be incurred by crossing all the 
implementation layers up to the application level. Our approach focuses on the 
routing through the Event_Id. Once the routing node has identified the event 
parameter and thus the ongoing transaction, it inquiries the middleware whether 
the invoked object is located in the local node or not. If not, the implementation 
will route the same incoming message through the pre-configured send endpoint. 

Finally, another minor enhancements could be introduced in the DTM: 

• Removal of the restriction of waiting for a specific transaction. The current API 
requires the user to specify the name of the transaction whose negotiation is 
waiting for. Such restriction could be easily solved in Ada through the use of an 
empty string as the default value for this parameter in the API function. This 
could be useful in dynamic systems where a pool of threads are supplying 
different services (e.g., a multimedia system providing video and regular voice 
calls) and thus different transactions could be executed. 

• Processing of different requests using the same RPC Handler. The proposed 
internal management of the middleware implementation allows that a single RPC 
handler task could process several requests corresponding to different 
transactions, since the handler task is just bound to a particular endpoint and not 
to a single event. The same applies now to the Acceptor Tasks because in the new 
implementation they become regular RPC Handler tasks. 

6   Extension of the DTM Protocol to Provide Support for the 
Transactional Model 

The current version of the transaction manager limits its capabilities just to the man-
agement of remote contracts. However, once integrated within the middleware, the 
automatic deployment of the complete transaction becomes desirable: after accepting 
each new transaction in the system, the user should set only the initial Event_Id pa-
rameter while the middleware would automatically direct the remote call through the 
appropriate endpoints and RPC handlers transparently using the negotiated contracts. 
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This automatic deployment requires an extension of the protocol used by the DTM 
to enable the middleware to create and automatically set up handlers and endpoints. In 
particular, the new integrated version would require: 

• The specification of the full transaction. In addition to the contract-related 
parameters, the transaction flow should be specified by the user. A possible 
solution consists of making use of a configuration language. Through the use  
of this language, middleware can bind the scheduling parameters, identified by 
their contract’s name, to the associated flow (e.g., the appropriate Event_Ids). 
Furthermore, the definition of RPC_Handlers requires differentiating these 
contracts from those related to regular application tasks which are not bound to 
any receive endpoint. 

• Choosing unused Event_Ids. Since any node can start a new negotiation, the 
maintenance of a list of all the events being used along the distributed system 
would increase the complexity and the overhead introduced by the agents. The 
proposed solution is based on the reservation of a certain amount of Event_Id 
values per node. This permits that each node that starts a negotiation, can safely 
select all the Event_Ids to be used in the transaction flow. Then, this extra 
information would be sent with the contract’s data in the same 
DTM_REQ_NEG_SET message (see Fig. 3). This approach matches most of the 
requirements imposed by small and medium-size distributed systems. 

• Choosing unused ports. Middleware should select an unused port in those nodes 
where the receive endpoints must be created, and then this new information will 
be sent back to the root node (e.g. the node which started the negotiation) in the 
DTM_REP_NEG_SET message (see Fig. 3). However, the root node must share 
this information with those nodes specified in the transaction flow and could 
include it in the DTM_REQ_STATUS (see Fig. 3) message which informs that  
the transaction has been accepted. Only then, the middleware could create  
the handlers and the endpoints with the appropriate parameters to enable the 
communication.  

 

 

Fig. 3. DTM Protocol Extended 

7   Implementation of the DTM in PolyORB 

Nowadays, CORBA is considered a very mature technology to build distributed sys-
tems within the industry. However, a variety of problems still need to be addressed 
for systems with timing requirements [12]. Bringing the FRESCOR framework to a 
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CORBA-compliant middleware will enable to establish timing protection for the real-
time distributed application components, that is, no tasks will be allowed to overrun 
their assigned and guaranteed budget execution time, or use more communication 
bandwidth than the reserved allocation. However, there could be systems that are part 
of a dynamic environment and thus the system requirements could not be completely 
known in advance at configuration time. In such systems the DTM emerges as a new 
mechanism to manage the negotiations and their results within all the nodes involved 
in the new distributed transaction. This section describes how to integrate this tool 
within the CORBA model and, in particular, in the PolyORB middleware. 

The remote data types and services provided by the DTM must be described 
through the IDL language [16]. In particular, this has required the definition of:  

• Send_Message: A remote call interface used to exchange the different kinds of 
messages between the DTM agents. 

• Idl_Dtm_Message: A record used to store a generic message unit data. It consists 
of a header, indicating the message type, and a body, storing the specific data 
associated to a particular message type. 

- Idl_Dtm_Request_Type: An enumeration type to differentiate each of the 15 
different types of messages to manage the initialization, the negotiation 
process and the status results. 

- Idl_Dtm_Body_Message: The specific data associated to a particular 
Idl_Dtm_Request_Type. Internally, it is an IDL union type which is mapped 
to a mutable discriminated Ada record [22] and therefore not optimized for 
memory requirements. However, the transmission of data is not affected by 
this kind of structure since the middleware will only send the amount of data 
strictly required through the network. 

• Exchanged data types: Each kind of message has different data structures which 
will be exchanged between the agents. All of them must be described in IDL, 
including those consisting of complex types such as the contracts. 

 
The initialization process may be configured statically as proposed in the original 
DTM or can make use of the CORBA Naming Service [19]. Each agent should regis-
ter its IOR on it when it becomes ready to start or accept requests, and get the IOR 
from the remaining agents to assert that they are also in the ready state. 

The Routing Service has been implemented in PolyORB within the GIOP protocol 
as shown in Fig. 4. Middleware requires to retrieve the Event_Id parameter stored in 
the GIOP Service Context field for any incoming message to identify the ongoing 
transaction. Once the transaction has been identified, the scheduling parameters can 
be updated if required and the middleware will try to locate the remote operation in 
the local node. If the location fails, then the message is routed through the appropriate 
send endpoint. Currently the implementation only supports routing using the same 
protocol personality (e.g., a FRESCOR network using RT-EP and CAN). 

Fig. 4 represents a general overview of the DTM integrated into PolyORB. The 
current version is partially developed and uses PolyORB-CORBA, FRSH contracts 
for the scheduling policy, and RATO tasking policy (which supports the explicit crea-
tion of handler tasks and their association with endpoints) [21]. For the moment, it  
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Fig. 4. DTM Manager integrated with middleware 

only implements the basic contract parameters to specify the timing requirements and 
the proposed DTM protocol. A future version will integrate the PolyORB-DSA per-
sonality and any other resources managed by the framework. 

We have evaluated the DTM over a platform consisting of four 800 Mhz embedded 
nodes connected through a 100 Mbps Ethernet with GNAT GPL 2008, MaRTE OS 1.9 
and the modified version of PolyORB 2.4. Three tests have been run for two, three and 
four processing nodes. The tests consist of 10 independent asynchronous transactions, 
each one negotiating one contract for each processing node and one contract for each 
link over the network. Table 1 shows the times measured for these three tests. As it 
can be seen, the distributed negotiation process takes less than 20 ms for two process-
ing nodes. In the cases of three and four processing nodes, this time is not increased 
significantly despite the higher overhead in the network and the extra negotiations of 
contracts. In spite of the fact that the DTM specification might seem at first complex 
and heavy we have found that we can get good performance time measurements. 

Table 1. DTM metrics to negotiate one transaction using middleware (times in µs)  
g g ( )

Num. of Nodes Max Avg Min Std. deviation

Two nodes 19508 19383 19133 111

Three nodes 25546 25219 24470 330

Four nodes 33255 32713 32565 199
 

8   Conclusions and Future Work 

The paper presents the Distributed Transaction Manager (DTM) to extend the nego-
tiation capabilities of the flexible contract-based scheduling framework defined in the 
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FRESCOR European Project. The DTM is intended as a middleware layer that allows 
the application components to perform remote negotiations and renegotiations of con-
tracts, and a centralized management of the results of the negotiation process. The 
DTM has been successfully implemented in the FRESCOR framework demonstrating 
its usefulness. 

As an extension of the basic capabilities, another implementation of the DTM has 
been proposed using a general purpose distribution middleware based on the CORBA 
and Ada DSA standards. This implementation provides  full support for the transac-
tional model and takes advantage of the distribution middleware to develop the DTM 
internals in a simpler way that is also more platform independent.  It also extends 
some capabilities as for example the specification of the full transaction or the routing 
service that interconnects different networks over the standard layer of GIOP.  

This features designed for DTM over the distribution middleware have been par-
tially implemented. In the short term we plan to complete this implementation and 
evaluate its benefits and performance. 
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Abstract. Persistent objects form a general and very useful method
for storing internal program data between executions of a program. And
as [1] points out, Ada is an excellent language for implementing persistent
objects. This paper introduces a low-impact, efficient implementation
of persistent objects based on storage pools and the “POSIX.Memory
Mapping” API [2]. The performance and reliability of the implementa-
tion is compared with serialisation.

1 Introduction

There are two basic ideas behind this paper. The one is that memory-mapping
is an extremely fast I/O method. The other is that Ada storage pools allow us to
control where in virtual memory dynamically allocated objects are stored. These
two ideas combined allow us to make dynamically allocated objects be stored in a
part of virtual memory which is mapped to a file, and thus automatically stored.
Binding an access type to a specific storage pool takes only a single attribute
definition clause, making this technique very easy to use.

In section 2 an interface for managing persistent objects is presented. In
section 3 the actual implementation is described. In section 4 a comparison
to other techniques for implementing persistence, including an experimental
comparison with serialisation, is presented. Finally, in section 5, we conclude
and point to possible future enhancements of this technique. The full source
code of the system, as well as demonstration programs is available from
http://www.jacob-sparre.dk/persistence/.

2 An Interface for Persistent Objects

The concept of persistent objects is about maintaining a collection of objects
created by an application from one execution of the application to the next. Two
of the techniques devised for this purpose are serialisation, where the objects are
written to a file represented as a stream, and storage in a database, where the
objects in the process memory are simply buffers for data stored in a relational
database.

J. Real and T. Vardanega (Eds.): Ada-Europe 2010, LNCS 6106, pp. 265–275, 2010.
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The reader is pointed to [3] for a general and thorough presentation of per-
sistent objects in relation to Ada. The persistent objects technique presented in
the following gives the programmer something close to orthogonal persistence,
with the major limitation that it only works on explicitly allocated objects.

2.1 Package Specification

The package “Persistent Storage Pool” declares a descendant of “System.Stor-
age Pools.Root Storage Pool”. All objects allocated on a storage pool of this
type will be persistent.

package Pe r s i s t e n t S to r a g e Poo l i s
type In s tance i s new System . Sto rage Poo l s .

Root Storage Poo l with private ;

The package also declares the abstract tagged type “Root Object”, and a func-
tion to access the root object of a storage pool:

type Root Object i s abstract tagged null record ;
subtype Root Class i s Root Object ’ Clas s ;
type Root Name i s access a l l Root Class ;
[ . . . ]
function Root ( Pool : In s tance ) return Root Name ;

The root object of a persistent storage pool is the starting point for the col-
lection of persistent objects. I.e. if one wants to make a tree structure of ob-
jects persistent, one will make the root node of the tree the root object of the
persistent storage pool. Notice that the root object of a storage pool is the
object referred to by “System.Storage Pools.Root”. Other objects in the “Sys-
tem.Storage Pools.Root Class” are only persistent if they are allocated in the
storage pool.

A persistent storage pool object is activated by a call to one of the procedures
“Create” and “Load”. “Create” takes four arguments: the storage pool to acti-
vate, a file name, an initial value for the root object, and the number of storage
elements to allocate for the pool:

procedure Create
( Pool : in out In s tance ;
As : in St r ing ;
I n i t i a l Va l u e : in Root Class ;
S i z e : in System . Storage Elements .

Storage Count ) ;

“Load” manages with two arguments: the storage pool to activate, and the name
of the file to load it from:

procedure Load ( Pool : in out In s tance ;
From : in St r ing ) ;



An Efficient Implementation of Persistent Objects 267

Before “Create” or “Load” has been called on a persistent storage pool object,
all operations on the pool will raise “Ada.IO Exceptions.Status Error”.

The specifications of “Allocate”, “Deallocate” and “Storage Size” are in the
private part of the package.

Notice that there is no “Close” operation, since that easily would result in
dangling pointers. A persistent storage pool is only closed and deallocated as
the program terminates. This is done by the operating system.

2.2 Use

Using this system for making objects persistent is actually quite simple:

– An object of the persistent storage pool type is declared.
– For each type of object which should be persistent, an access type is declared

as using the persistent storage pool object as its storage pool.
– A storage pool root type is derived from “Persistent Storage Pool.Root Ob-

ject”.
– Finally the persistent storage pool is created or loaded from a file.

with Pe r s i s t e n t S to r a g e Poo l ;
[ . . . ]
P e r s i s t e n t : P e r s i s t e n t S to r a g e Poo l . In s tance ;
[ . . . ]
type Some Reference i s access a l l Some Class ;
for Some Reference ’ Storage Poo l use Pe r s i s t e n t ;
[ . . . ]
type Another Reference i s access a l l Another Class ;
for Another Reference ’ Storage Poo l use Pe r s i s t e n t ;
[ . . . ]
type Root i s new Pe r s i s t e n t S to r a g e Poo l . Root Object

with [ . . . ] ;
[ . . . ]
Create or Load ( Pool => Per s i s t ent , [ . . . ] ) ;

2.3 Example

The demonstration program makes a single-linked list persistent by allocating
its elements in a persistent storage pool object. First the pool object is declared:

Storage Poo l : P e r s i s t e n t S to r a g e Poo l . In s tance ;

and then the access type for the nodes in the list is hooked up with the pool
object:

type Reference i s access a l l Object ;
for Reference ’ Storage Poo l use Storage Poo l ;

To access the head of the list, a descendant of “Persistent Storage Pool.Root
Object” is declared:
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type Root i s new Pe r s i s t e n t S to r a g e Poo l . Root Object
with
record

F i r s t : Re ference ;
end record ;

Now we either create a new pool:

Create ( Pool => Storage Pool ,
As => Argument (2 ) ,
I n i t i a l Va l u e => Root ’ ( F i r s t => null ) ,
S i z e => 100) ;

or load an existing one:

Load ( Pool => Storage Pool ,
From => Argument (2 ) ) ;

(We see that the name of the storage pool file is passed to the demonstration
program as the second command line argument.)

Then we can find the tail of the linked list as usual:

Ta i l := Root Reference ( Storage Poo l . Root ) . F i r s t ;
while Tai l . Next /= null loop

Tai l := Tai l . Next ;
end loop ;

And when we allocate a new object as the new tail of the linked list:

Ta i l . Next := new Object ’ ( Data => ”Tofta Teld” ,
Next => null ) ;

it automatically ends up in the persistent pool.

3 Implementation Using Memory-Mapped Files

3.1 Memory-Mapped Files

To understand memory mapped files, we can start with a quote from the POSIX
specification of the function “mmap” [4]:

The mmap() function shall establish a mapping between a process’ ad-
dress space and a file.

The actual copying of data between disk and RAM is handled by the operating
system. Essentially the mapped file is assigned as swap space to its part of the
process’ address space. This gives us the possibility of saving some copying be-
tween disk and RAM; if the operating system for example already has “swapped”
the file to disk, saving the data has zero cost – they are already in the file.

The POSIX specification of “mmap” gives us an implicit guarantee that the
mapped file will contain an exact copy of the process memory once “unmap”
has been called (i.e. once the program has stopped).
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For the purpose of the technique presented in this paper, a very important
feature of “mmap” and “POSIX.Memory Mapping.Map Memory” is that it is
possible to ask the operating system to map a file to a specified part of the process
address space. I.e. when we map a file into memory, we can have it placed at the
same address as last time, thus maintaining the validity of pointers pointing to
specific locations in the memory mapped file.

Without this feature, we would need to be able to implement relative access
types1 in Ada, to make the technique feasible. Since POSIX does not guaran-
tee that we always will be allowed to map a file to the address we request, it
would broaden the possible use of the technique, if Ada allowed us to implement
relative access types. The use of address space layout randomisation is likely to
create problems for this technique, so a future-proof version of this technique
will require relative access types.

Although this implementation is using the Ada POSIX API, it is likely that
memory mapping implementations in non-POSIX operating systems will work
equally well. According to [5] “Most modern operating systems or runtime en-
vironments support some form of memory-mapped file access”, so even if your
target platform isn’t POSIX compatible, it is likely that the technique can be
used without too many modifications.

3.2 Implementation Technique

Besides declaring access types to use a persistent storage pool, the core of the
technique lies in the procedures “Create” and “Load”, which take care of asking
the operating system to map a file to memory.

procedure Create. The first step in creating a persistent storage pool is
to create and open a file for it. With the POSIX Ada API this is done with
“POSIX.IO.Open Or Create”.

The second step is to allocate the requested space for the storage pool in
the file. This is done using “POSIX.IO.Seek” together with an instantiation of
“POSIX.IO.Generic Write”2.

The third step is to map the file into memory (at an address chosen by the
operating system) with “POSIX.Memory Mapping. Map Memory”:

Pool . Address := Map Memory ( Length => Pool . Size ,
Pro t e c t i on => Allow Read

+ Allow Write ,
Mapping => Map Shared ,
F i l e => Pool . F i l e ,
O f f s e t => 0) ;

1 I.e. access types, where the system address corresponding to an access type can be
modified with a fixed offset at run-time.

2 A more general implementation might extend the size of the storage pool automat-
ically, when needed.
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The fourth step is to store the basic parameters of the storage pool in the storage
pool itself. Since the storage pool at this point is mapped into memory, this can
be done by placing an object in the storage pool memory space with:

Header : P e r s i s t e n t S to r a g e Poo l . Header ;
pragma Import (Ada , Header ) ;
for Header ’ Address use Pool . Address ;

and then copy the parameters to the “Header” object:

Header := (Key => Pe r s i s t e n t S to r a g e Poo l . Key ,
Address => Pool . Address ,
Al located => Convers ions . Storage (Header ’

S i z e ) ,
Root => null ) ;

Finally we allocate space for the root object in the storage pool, and copy the
initial value of the root object there.

procedure Load. The first step in loading a persistent storage pool is to open
the file it is stored in. With the POSIX Ada API this is done with “POSIX.IO.
Open”.

The second step is to load the basic parameters for the storage pool from the
file with an instantiation of “POSIX.IO.Generic Read”.

The third step is to check that the memory area, where it was last time, is
not occupied. This is done with the function “mincore()” (which unfortunately
isn’t in POSIX yet). If this check fails, “Load” will raise the exception “Stor-
age Error”3.

The last step is to map the file into the memory area where it was last time, so
references will continue to point to the same objects. Like in procedure “Create”,
this is done with “POSIX.Memory Mapping.Map Memory”.

In between these steps, there are various consistency checks on the loaded
data. If these checks fail the exception “Persistent Storage Pool.Bad Pool For-
mat” will be raised.

4 Comparison with Other Techniques

To test the actual impact of this technique, two test programs have been made.
Both of them create or load a network of objects, and then explore it. The only
difference between the two programs is which persistence implementation they
use to avoid creating the network, if it already has been created. One of these
programs (B) uses Ada.Streams to implement persistence following the pattern
described in [6], while the other one (C) uses the technique presented in this
paper to implement persistence.
3 The expected reason for this check to fail, is that the operating system uses

address space layout randomisation. In that case, the solution could be to let
“POSIX.Unsafe Process Primitives.Exec” rerandomise the address space, since it
is likely that a new random layout will not occupy the relevant memory area.
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4.1 Speed

Figure 1 shows how much time it takes to run programs B and C in the mode
where they create a network from scratch and write it to disk. The measurements
appear to be dominated by the time it takes to create the network. Since program
C uses the operating system to save the data, measuring the time inside the
program would not be fair to program B. As we can see from the graph, there
appears to be a small, but significant speed difference in favour of program C,
although the large error bars on a few of the data-points make the case a bit
muddled.

Figure 2 shows how much time it takes to run programs B and C in the
mode where they load a network from disk and explore it. Here we can see that
for large numbers of objects, program C is significantly faster than program B.
The two fitted lines are linear with a small offset. For large network sizes this
corresponds to program C being approximately 8 times faster than program B.

No measurements have been made of loading a network, modifying it, and
then saving the modified network. Since program B has to rewrite the whole
network, it is likely that program C will be significantly faster for this combina-
tion of actions.
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Fig. 1. Comparing the writing speed of program C (Memory maps) and program B
(Ada streams). Error bars correspond to 95% confidence intervals.
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Fig. 2. Comparing the reading speed of program C (Memory maps) and program B
(Ada streams). Error bars correspond to 95% confidence intervals. Linear functions are
fitted to the measurements.

4.2 Persistence Manager

Using memory maps to implement persistence moves a bit of the responsibility
from the application to the operating system.

One could claim that this reduces the risk of loosing data, since the operating
system will take care of saving the persistent objects, if the application dies4.
The down-side of this is that the application may die while the persistent data
are in an inconsistent state, leaving the data inconsistent for the next time the
application is executed. A safe implementation should therefore either maintain
the persistent data constantly in a consistent state, or maintain a flag in the
persistent data, which indicates if the data are consistent or not.

4.3 Shared Data

Memory maps can be shared between several processes, such that several in-
stances of the same program can operate on the same persistent data structure.
4 The guarantee that the mapped file will contain an exact copy of the process memory

once “unmap” has been called (i.e. once the program has stopped) is only implicit
in the POSIX specification of “mmap” [4].
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Although this requires that the programmer implements the appropriate locking
using primitives supplied by the operating system5, it is still an improvement
over stream-based and other load-work-store type persistence implementations.

4.4 System Calls

System calls have a large impact on the performance of applications on practi-
cally all architectures, since the CPU has to switch from the application/user
context to an operating system context.

Using memory maps reduces the number of system calls needed to implement
persistence to a fixed number per execution of the application, no matter how
much data is being stored6.

Implementing persistence using serialisation (streams) will result in a number
of system calls which will scale linearly with the number of objects being stored.
Inserting a buffering stream between the serialisation routine and the operating
system, will reduce the number of system calls. With a careful implementation a
buffering stream may even use as few system calls as using memory-mapped files.

4.5 Virtual Memory

To understand the performance of I/O implementations on a modern operating
system, it is necessary to remember that modern operating systems work with
the concept of virtual memory. Virtual memory is not the same as RAM. Virtual
memory should rather be seen as a unified address space, where the operating
system freely moves the actual data around between disk (swap), RAM and
CPU caches. At the same time, the operating system maintains RAM caches
with parts of files. Each process has its own virtual memory, and when data are
copied from an operating system controlled resource, such as a disk, to a process,
there is a performance cost since the operation requires both a context switch
and moving data around.

Virtual memory, disk based swap space, and RAM cached files make it hard to
make an exact estimate of how large a volume of data is copied between disk and
RAM. What we can do is estimate the minimal volume of data copied around.
For a traditional persistent object system it is O(N) whereas the implementation
presented here is O(1), since the only data the operating system is required to
copy is the fixed size head of the persistent storage pool file. In practise we will of
course expect the process to access some of the objects in the persistent storage
pool, and then they will have to be copied as well. But since we use a memory
map, the whole process of managing which parts of the persistent storage pool
are in RAM, and which are on disk is handled by the operating system. – This
is not likely to be the dominant performance cost, since moving data around is
a relatively cheap process.

5 Ada protected objects cannot be shared in this way, if one wants their semantics to
be preserved.

6 Extending the persistent storage will require some system calls.
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4.6 Dangling References

If a persistent object contains a reference (access) to a non-persistent object,
the referenced object will have disappeared the next time the persistent storage
pool is loaded, resulting in a dangling pointer.

The technique presented here requires that all references from persistent ob-
jects are references to persistent objects. Currently this is checked manually, and
thus a potential source of errors. A source code analyser, such as AdaControl [7],
should be extended to make this check automatic.

Serialising objects using Ada streams pose a similar challenge, but in this
case the tool presented in [6] appears to be able to solve the problem in an
automated fashion.

4.7 Storage Format Stability

When a program is recompiled, the layout of data types, type tags, etc. may
change. Since Ada uses name based type equivalence, this makes sense. Unfor-
tunately this (and name based type equivalence) will make a persistent storage
pool from one version of a program unusable for another version of the program,
such that programs cannot rely on this technique for long-term storage. For long-
term storage – i.e. data which should persist beyond the life-time of a specific
version of a program – it is still necessary to use a documented, implementation-
independent storage format.

Implementing persistence using streams, does not automatically solve the
problem of saving in an implementation-independent file format, but it is prob-
ably easier than with memory-mapped files.

5 Conclusion and Future Work

We have demonstrated a technique for handling persistent objects in Ada. The
technique works on existing Ada compilers without any modifications.

We have demonstrated that the technique is significantly faster than the most
prominent competing technique for implementing persistent objects.

We have demonstrated that persistence can be implemented at the cost of
adding a single attribute definition clause to each persistent object access type
in an application.

Altogether the technique presented here delivers faster I/O and less impact
on the code of the program using it, compared to serialisation.

Although the technique does not require external tool support, the use of
the technique will be safer with tool support. An obvious choice would be to add
the required rule to AdaControl.

We have not yet demonstrated that the technique works on major non-POSIX
operating systems. Nor have we solved the problems which address space layout
randomisation may introduce.

The big drawback of the technique is that it isn’t guaranteed to work on all
operating systems with an Ada compiler.
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There are thus three steps, which together will improve the benefit of using
the presented technique in the areas of safety, reliability and portability:

– Extend AdaControl to check that persistent objects only contain access types
which refer to objects in the same persistent storage pool.

– Extend how Ada handles access types, so we can create relative access types,
and thus avoid the problems address space layout randomisation may intro-
duce.

– Move the handling of memory-mapped files into the Ada standard.

The first of these steps is easy, the second is difficult, and the third does not
seem all that likely to happen.
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