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Preface

In 1908 Hermann Minkowski gave the four-dimensional (spacetime) formulation of
special relativity [1]. In fact, Henri Poincaré [2] first noticed in 1906 that the Lorentz
transformations had a geometric interpretation as rotations in a four-dimensional
space with time as the fourth dimension. However it was Minkowski, who success-
fully decoded the profound message about the dimensionality of the world hidden
in the relativity postulate, which reflects the experimental fact that natural laws
are the same in all inertial reference frames. Unlike Poincaré, Minkowski did not
regard spacetime – the unification of space and time – as a convenient mathematical
space, but insisted that this absolute four-dimensional world, as Minkowski called
it, represents physical phenomena and the world more adequately than the relativity
postulate: “the word relativity-postulate... seems to me very feeble. Since the postu-
late comes to mean that only the four-dimensional world in space and time is given
by the phenomena... I prefer to call it the postulate of the absolute world” [3].

The impact of Minkowski’s ideas on the twentieth century physics has been so
immense that one cannot imagine modern physics without the notion of spacetime.
It would hardly be an exaggeration to say that spacetime has been the greatest
discovery in physics of all times. The only other discovery that comes close to space-
time is Einstein’s general relativity, which revealed that gravity is a manifestation
of the curvature of spacetime. But it was the discovery of spacetime, which paved
the way for this deep understanding of what gravity really is. Einstein saw the link
between the geometry of spacetime and gravitation only after he overcame his initial
hostile attitude toward the notion of spacetime.

The implications of Minkowski’s revolutionary ideas of space and time for
philosophy, and especially for the philosophy of space and time, have also been
enormous. I think just one example will suffice to demonstrate the extent of those
implications. The views of time flow, becoming, and ultimately of what exists are all
defined in terms of simultaneity. For instance, the present – the three-dimensional
world at the present moment – is defined as everything that exists simultaneously at
the moment ‘now’. When Einstein published his special relativity in 1905 the impli-
cations of one of its major consequences – relativity of simultaneity – for the view of
reality had not been immediately realized. But it is now evident that the widely held
presentist view of the world contradicts relativity of simultaneity – on the presentist
view it is only the present (the class of absolutely simultaneous events at the present
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vi Preface

moment) that exists, whereas according to special relativity two observers in relative
motion have different classes of simultaneous events. The temptation to interpret the
fact that every observer has a different class of simultaneous events in a sense that
what exists is relative to an observer could hardly be defended, especially in view
of the understanding, stressed by Minkowski, that the very appearance of relative
quantities in a theory is a manifestation of the existence of an absolute underly-
ing reality. And indeed, the different presents (the different classes of simultaneous
events) of two observers in relative motion are merely different three-dimensional
‘cross-sections’ of spacetime and the truly challenging question then is – Is reality
an absolute four-dimensional world?

In 2008 the one hundredth anniversary of Minkowski’s talk “Space and Time”
given on September 21, 1908 in Cologne provided an excellent opportunity to
commemorate his major contribution to physics and its profound implications for
physics, philosophy, and our entire worldview. There were several events which
marked this anniversary. The Third International Conference on the Nature and
Ontology of Spacetime (http://www.spacetimesociety.org/conferences/2008/) held
at Concordia University, Montreal, on June 13–15, 2008 was dedicated to the
centennial anniversary of Minkowski’s talk. On September 7–12, 2008 the 414th
WE-Heraeus-Seminar (http://www.uni-koeln.de/minkowski/) also commemorated
Minkowski’s famous lecture at its meeting “Space and Time 100 Years after
Minkowski” in the Physikzentrum Bad Honnef, Germany. The September–October
2008 special issue of Annalen der Physik “The Minkowski spacetime of special
relativity theory – 100 years after its discovery” [5] was dedicated to the mem-
ory of Minkowski. The volume Minkowski Spacetime: A Hundred Years Later [4]
published in the Springer series Fundamental Theories of Physics contains a new
translation of Minkowski’s talk “Raum und Zeit”, accompanied by the original
German version, and papers by physicists specifically written on the occasion of
Minkowski’s anniversary.

This volume is part of the celebration of the centennial anniversary of spacetime
and compliments [4] by exploring the implications of Minkowski’s discovery for
issues in physics not covered in [4] and most importantly for the physical founda-
tions and the philosophy of space and time, which alone warrants the publication
of a separate collection of papers. The volume contains selected papers by physi-
cists and philosophers, most of which were presented at the Third International
Conference on the Nature and Ontology of Spacetime. One of the selection cri-
teria was to have examples of the influence of Minkowski’s ideas on different issues
in physics, philosophy, and other disciplines. The first six papers, comprising Part
I of the book, provide examples of the impact of Minkowski’s spacetime represen-
tation of special relativity on the twentieth century physics. Part II also contains
six papers which deal with implications of Minkowski’s ideas for the philosophy
of space and time. The last part is represented by two papers which explore the
influence of Minkowski’s ideas beyond the philosophy of space and time.

Montreal Vesselin Petkov
June 2010
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Part I
Minkowski’s Representation of Special

Relativity – Examples of Its Impact on the
Twentieth Century Physics



The Minkowskian Background of Whitehead’s
Theory of Gravitation

Ronny Desmet

Abstract Whitehead’s 1922 theory of gravity, an alternative to Einstein’s 1916
theory of general relativity, cannot be understood well apart from the context of
the British reception of both Einstein’s special and his general relativity, and more
specifically, apart from the Minkowskian nature of that reception. The aim of this
essay is to emphasize the latter: the (indirect) influence of Minkowski onWhitehead
was a major one.

1 Introduction

Alfred North Whitehead (1861–1947) is known by many for his Principia Mathe-
matica collaboration with Bertrand Russell, and by some for his later philosophical
works. However, in order to discover Whitehead’s Minkowskian background, we
must not primarily focus on the mathematics of his Cambridge period (1880–1910),
nor on the metaphysics of his Harvard period (1924–1947), but on his involvement
with relativity during the London period of his professional career (1910–1924).
This involvement culminated in an alternative rendering of Albert Einstein’s gen-
eral theory of relativity, outlined in a number of publications, most notably in his
1922 book, The Principle of Relativity with applications to Physical Science.

Whitehead’s alternative theory of gravitation is a Minkowski background-
dependent theory of gravity, both in the historical sense of being rooted in a
Minkowskian context, and in the technical sense of describing the gravitational field
against a Minkowskian space-time background. In 1920 Whitehead wrote: “A trib-
ute should be paid to the genius of Minkowski. It was he who stated in its full
generality the conception of a four-dimensional world embracing space and time
Œ: : :� He built on Einstein’s foundations and his work forms an essential factor in the
evolution of relativistic theory.” (ESP 334–335) The aim of this paper is to show that
the latter sentence is not only true in general, but also holds for Whitehead in par-
ticular – Minkowski’s work forms an essential factor in the genesis of Whitehead’s
relativistic theory.

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
DOI 10.1007/978-3-642-13538-5 1, c� Springer-Verlag Berlin Heidelberg 2010
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4 R. Desmet

2 Why Whitehead Was Interested in Special Relativity

The following publications are representative for the British knowledge about
Einstein’s special theory of relativity in the decade after its conception1:

� Edwin Bidwell Wilson and Gilbert Newton Lewis’s 1912 memoir “The Space-
Time Manifold of Relativity”

� Ludwik Silberstein’s 1914 monograph, The Theory of Relativity
� Ebenezer Cunningham’s 1914 and 1915 books, The Principle of Relativity and

Relativity and the Electron Theory

Linking Whitehead with the Wilson and Lewis 1912 memoir, and with Silberstein’s
1914 monograph, is straightforward. Indeed, in 1919, Whitehead wrote: “In con-
nection with the theory of relativity I have received suggestive stimulus from Dr L.
Silberstein’s Theory of Relativity, and from an important Memoir (‘The Space-Time
Manifold of Relativity,’ Proc. of the Amer. Acad. of Arts and Sciences, Vol. XLVIII,
1912) by Profs. E. B. Wilson and G. N. Lewis.” (PNK vii) However, in order to
understand why the co-author of Principia Mathematica took interest in these writ-
ings, as well as in Cunningham’s writings, it is important to stress three biographical
facts on Whitehead.

First, we should avoid the mistake of reducing Whitehead to a pure mathemati-
cian, but take into account Russell’s remark that “Clerk Maxwell’s great book on
electricity and magnetism [was] the subject of Whitehead’s Fellowship disserta-
tion,” and that “on this ground, Whitehead was always regarded at Cambridge as
an applied, rather than a pure, mathematician.” (Russell 1959: 33) In fact, looking
at Whitehead’s Cambridge training, we can notice a remarkable similarity with his
near contemporaries J. H. Poynting, J. J. Thomson, and Joseph Larmor – three major
proponents of the second generation of British Maxwellians. Poynting, Thomson,
Larmor, and Whitehead can be qualified as similar Cambridge products.2 Poynt-
ing did his Cambridge Mathematical Tripos exam in 1876, Thomson and Larmor in
1880, andWhitehead in 1883; all four were coached by Edward Routh, who excelled
during the Tripos examination of 1854, and beat Maxwell into second place; and all
four attended the intercollegiate courses on Maxwell’s 1873 Treatise on Electricity
and Magnetism, given by Maxwell’s friend W. D. Niven. Being slightly younger,
Whitehead also attended Thomson’s lectures on electromagnetism. As is manifest
in his writings, Whitehead developed a life-long interest in Maxwell’s theory of
electromagnetism, Poynting’s theorem on the energy flow of an the electromagnetic
field, and Thomson and Larmor’s electronic theory of matter. In line with Hermann
Minkowski’s electromagnetic worldview, Wilson and Lewis in 1912, Silberstein in
1914, and Cunningham in 1914 and 1915, presented Einstein’s special theory of
relativity primarily as a contribution to electromagnetism, and more specifically, as

1 Cf. Eddington (1918: vi–vii) and Henry Brose’s Translator’s Note in Freundlich (1920: vii).
2 Cf. Warwick (2003: 333–398) and Lowe (1985: 92–109).
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a contribution to the electronic theory of matter. This constitutes a first explanation
of why Whitehead took interest in them.

Secondly, we should avoid the mistake of reducing Whitehead’s mathematical
research to the Principia Mathematica project, and his philosophy of mathematics to
Russell’s logicism. Prior to his collaboration with Russell, Whitehead’s mathemati-
cal research had already given birth to his 1898 Treatise on Universal Algebra with
Applications – a publication that led toWhitehead’s election as a Fellow of the Royal
Society.3 In Book VII of his Universal Algebra, Whitehead forged a vector calculus
fromHermann Grassmann’s algebra of extensions, applicable in various branches of
physics, especially hydrodynamics and electrodynamics. This was an important first
step in Whitehead’s career to make the philosophical dream of applied mathematics
come true, “that in the future these applications will unify themselves into a mathe-
matical theory of a hypothetical substructure of the universe, uniform under all the
diverse phenomena.” (ESP 285) Whitehead was well aware of the similar approach
by Josiah Willard Gibbs at Yale University.4 Gibbs forged a three-dimensional vec-
tor calculus fromWilliam Rowan Hamilton’s algebra of quaternions, and one might
say that it belonged to Whitehead’s core business to pay attention to the further
development of both Grassmannian and Hamiltonian vector calculus. In line with
Minkowski’s formal developments, Wilson and Lewis in 1912, Silberstein in 1914,
and Cunningham in 1914 and 1915, each presented a tailor-made four-dimensional
vector calculus to deal with special relativity. This constitutes a second explanation
of Whitehead’s interest in them.

Thirdly, we should avoid the mistake of reducing the Principia Mathematica
project to the three volumes that have been published. Early on in their collabora-
tion, Russell and Whitehead decided that the latter would write a fourth volume
in which all of geometry was going to be based on the symbolic logic of rela-
tions.5 This was an obvious decision, given the prominence of Euclidean and
non-Euclidean, projective and descriptive geometry in Whitehead’s earlier Univer-
sal Algebra research. However, following the lure of the applied mathematician,
Whitehead’s attention shifted from the logical reformulation of all known pure
geometries to the search for an answer, in terms of the symbolic logic of relations,
to a question that had long occupied him: How is the geometry of physics rooted
in experience?6 Not only did this question lead Whitehead into an area of research
that had been dominated by men like Hermann von Helmholtz, Henri Poincaré, and
Ernst Mach, hence necessitatingWhitehead to position himself with respect to these
giants, it also made him hypersensitive to the impact of special relativity, for this the-
ory required the replacement of Euclidean space as the object of physical geometry
by Minkowskian space-time. Of course, the Minkowskian unification of space and

3 Cf. Lowe (1966: 137). That Whitehead was an FRS explains his presence at the famous meeting
of the Royal Society and the Royal Astronomical Society on November 6th, 1919, a meeting that
will be delt with in the remainder of this paper.
4 Cf. UA 573.
5 Cf. Lowe (1990: 12, 14–15, 92–95, 273).
6 Cf. PNK v.
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time was the point of departure of Wilson and Lewis in 1912, Silberstein in 1914,
and Cunningham in 1914 and 1915, and hence, constitutes a third explanation of
Whitehead’s interest in them.

To summarize: For Whitehead, the special relativistic writings of Wilson and
Lewis, Silberstein, and Cunningham, represented a threefold attraction. This attrac-
tion can safely be called ‘Minkowskian,’ for it is associated with the imperative
unification of space and time, with the mathematics developed to formulate phys-
ical laws against the background of this unified space-time, and with the thus
reformulated electromagnetic worldview.

3 Cunningham

According to Whitehead’s biographer,7 in June 1911, Karl Pearson vacated the
Goldschmidt chair of Applied Mathematics and Mechanics at University College,
London, and Ebenezer Cunningham – by then Pearson’s assistant – was asked to
continue Pearson’s teachings prior to naming a final successor. In July 1911, how-
ever, Cunningham was already released to accept a lectureship at Cambridge, and
Whitehead – who had moved from Cambridge to London in 1910, and was in search
for a job – gladly accepted to replace Cunningham during the interregnum year
1911–1912. Whitehead hoped to be the final successor of Pearson, but mid March
1912, his hopes were destroyed when he learned of the appointment of another
applied mathematician (L. N. G. Filon). Yet,Whitehead stayed at University College
during the years 1912–1913 and 1913–1914, occupying a chair in pure mathemat-
ics, prior to leaving it for the Imperial College of Science and Technology, where he
was able to secure a professorship in applied mathematics.

Anyway, the fact that Whitehead succeeded Cunningham in 1911 is one of the
factors to conclude that, most likely, he was familiar with Cunningham’s work on
special relativity. Other factors are: their similar training and teaching curricula;
their common interest in Thomson and Larmor’s electronic theory of matter; the
text-book status of Cunningham’s The Principle of Relativity. Moreover, White-
head and Cunningham met at least once in the context of the annual meetings of
the British Association for the Advancement of Science, namely, in 1916, when
Whitehead presided over Section A (mathematics and physics), and when Cunning-
ham and Eddington introduced Einstein’s general theory of relativity to the British
scientific community.8

7 Cf. Lowe (1990: 6–14).
8 Cf. Nature, Vol. 98, Nr. 2450 (October 12, 1916), p. 120, and Sanchez-Ron (1992: 60 and 76).
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4 Silberstein and the Aristotelian Society

According to Ludwik Silberstein’s biographers,9 this physicist from Polish ori-
gin, German student of, e.g., Helmholtz and Max Planck, and Italian lecturer in
mathematical physics, moved from Italy to London in 1912, where he obtained a
lectureship at University College, London. Consequently,Whitehead and Silberstein
becameUniversity College colleagues that year. Moreover, it is Silberstein’s Univer-
sity College course of lectures on the special theory of relativity, delivered during the
academic year 1912–1913, which developed into his 1914 monograph, The Theory
of Relativity.10 Hence, Whitehead most likely knew of Silberstein’s work prior to
Silberstein’s 1914 publication. Next to the fact that during a brief period Whitehead
and Silberstein were colleagues, there are quite a number of other facts that imply
a more personal relationship. These facts are related with Whitehead being elected
a member of the London Aristotelian Society in 1915 – in Whitehead’s words: “a
pleasant center of discussion,” where “close friendships were formed.” (ESP 14)

As from 1912, the Aristotelian Society now and again welcomed Silberstein
to take part in the discussions.11 And when Whitehead joined it in 1915, Wildon
Carr was its president, Samuel Alexander and Lord Haldane were among its vice-
presidents, Percy Nunn was its treasurer, and Charles Dunbar Broad was one of its
younger members.12 That these Aristotelian Society members became Whitehead’s
friends, even close friends in the case of Haldane and Nunn,13 is not the only reason
for mentioning them here. All these men were deeply engaged in the philosophical
issues with regard to relativity. This involvement with relativity – most likely one of
the major reason for the mutual attraction between Carr, Alexander, Haldane, Nunn,
Broad, Silberstein, and Whitehead – culminated in Carr’s The General Principle
of Relativity, in Its Philosophical and Historical Aspect (1920), Alexander’s Space,
Time and Deity (1920), Haldane’s The Reign of Relativity (1921), Nunn’s Relativity
and Gravitation (1923), and Broad’s Scientific Thought (1923). Whitehead figures
in the latter four books, especially in Haldane’s, and Silberstein figures in Nunn’s
book. In fact, Nunn and Silberstein were close. In 1914 Nunn already read the proofs
of Silberstein’s Theory of Relativity,14 and in 1922 Nunn recalled that he “mixed a

9 Cf. Duerbeck and Flin (2006: 1087–1089).
10 Cf. Silberstein (1914: v).
11 For instance, on November 4th, 1912, when Russell gave a lecture on “The Notion of Cause,”
and on January 5th, 1914, when a paper was read on “Philosophy as the Co-ordination of Science.”
Cf. Proceedings of the Aristotelian Society, New Series, Vol. 13, p. 362 and Vol. 14, p. 425. Notice
that even though Silberstein participated in the discussions prior to Whitehead, Whitehead became
a member prior to Silberstein, for Whitehead was elected in 1915, and Silberstein in 1919, only a
year before he left London for New York. Cf. Proceedings of the Aristotelian Society, New Series,
Vol. 19, p. 310.
12 Cf. Proceedings of the Aristotelian Society, New Series, Vol. 15, p. 437.
13 Cf. Lowe (1990).
14 Cf. Silberstein (1914: v).
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good deal with men like Silberstein, who are keen followers and even developers of
the theory of relativity when it first came among us.”15

So: Whitehead and Silberstein were colleagues during the academic year 1912–
1913; as from 1915, they were both active in the Aristotelian Society; and they had
a close friend in common (Nunn). All this leads to the conjecture that Whitehead
and Silberstein knew each other well, and frequently met. The latter is confirmed
by the minutes of the meetings of the Aristotelian Society. On January 3rd, 1916,
when Whitehead read some explanatory notes on his first relativity paper, “Space,
Time, and Relativity,”16 Silberstein was present, and took part in the subsequent
discussion. And on December 18th, 1916, when Whitehead read “The Organiza-
tion of Thought,”17 Silberstein was again present, and again joined the discussion.18

Of course, the hypothesis that Whitehead and Silberstein frequently met is also
supported by their joint presences at other Aristotelian Society meetings, e.g., on
January 6th, 1919, and on March 3rd, 1919, when both took part in the discus-
sion.19 And finally, one should not forget that they were both present at the famous
joint meeting of the Royal Society and the Royal Astronomical Society on Novem-
ber 6th, 1919, when Eddington presented the observational data gathered during the
May 1919 solar eclipse, and when Silberstein, contrary to Eddington, pointed out
that they were insufficient to confirm Einstein’s general theory of relativity.20

5 Minkowski’s 1908 Papers

Whitehead’s acquaintance with the work of Wilson and Lewis, Silberstein, and
Cunningham – and hence, with Einstein and Minkowski’s unification of space and
time, with the Minkowskian mathematics to formulate physical laws against the
background of Minkowski’s unified space-time, and with the Minkowskian refor-
mulation of electromagnetism, naturally led him to the work of Minkowski himself.
In May 1941,Whitehead told his biographer, Victor Lowe: “Minkowski’s paper was
published in 1908, but its influence on me was postponed approximately ten years.”
(Lowe 1990: 15) Given the fact that Whitehead got to know Minkowski’s work via
Wilson and Lewis, Silberstein, and Cunningham, accounts for a retardation of the
direct influence of Minkowski’s 1908 paper on Whitehead, although, as Lowe adds:

15 Letter of Nunn to Haldane, dated July 8th, 1922. Cf. National Library of Scotland, Haldane
Papers, Manuscript 5915, Folio 192.
16 This paper of Whitehead was first read to Section A (mathematics and physics) at the Manchester
Meeting of the British Association for the Advancement of Science in 1915. Cf. OT 191–228.
17 This paper of Whitehead was his Presidential Address to Section A at the Newcastle Meeting of
the British Association for the Advancement of Science in September 1916. Cf. OT 105–133.
18 Cf. Proceedings of the Aristotelian Society, New Series, Vol. 16, p. 364 and Vol. 17, p. 481.
19 Cf. Proceedings of the Aristotelian Society, New Series, Vol. 19, p. 293 and p. 294.
20 Cf. SMW 10 for Whitehead’s presence, and Duerbeck and Flin (2005: 191 and 200–203) for
Silberstein’s presence and intervention.
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“Ten may be an overstatement by one to three years.” Also, it is not immediately
clear whether Whitehead pointed at Minkowski’s 1908 paper “Die Grundgleichun-
gen für die elektromagnetischen Vorgänge in bewegten Körpern,” or to his famous
1908 Cologne lecture “Raum und Zeit” – the two texts of Minkowski to which
Wilson and Lewis, as well as Silberstein, frequently refer.21

It was in the Grundgleichungen that Minkowski first employed the term “space-
time” (Walter 2007: 219), but it was in his famous “Space and Time” lecture that he
said: “Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent real-
ity.” (Minkowski 1952: 75) The Grundgleichungen, with its treatment of space-time
vectors of the first and the second kind, and of the matrix-method to operate with
these vectors,22 is more mathematical than “Space and Time,” but the latter, with
its vision of the whole universe being resolved into world-lines, and of a world-line
as “the everlasting career of the substantial point” (Minkowski 1952: 76), is more
likely to be remembered by an 80 year old philosopher –Whitehead in 1941 – whose
notion of ‘historical routes’ in The Principle of Relativity is a slightly more concrete
version of Minkowski’s abstract notion of ‘world-lines.’23 Moreover, in “Space and
Time” Minkowski holds that “physical laws might find their most perfect expres-
sion as reciprocal relations between those world-lines,” and after describing the
electrodynamical relations between the world-lines of point-charges in terms of
the Maxwell-Lorentz electron theory and the Liénard-Wiechert retarded potentials,
Minkowski expresses his belief that the resolution of the universe in world-lines of
point-charges can be seen as “the true nucleus of an electromagnetic image of the
world.” (Minkowski 1952: 91) Well, with some exaggeration, one might say that
Whitehead’s relativity of historical routes of events is the true nucleus of the philo-
sophical image of the world as presented in his later works, again implying that most
likely Whitehead pointed at Minkowski’s famous 1908 Cologne lecture, “Space and
Time,” when telling Lowe about Minkowski’s influence on him.

6 The Search for a Relativistic Theory of Gravitation

Next to space-time unification, mathematical formalism, and electromagneticworld-
view, there is another important aspect in both Minkowski’s appendix to the Grund-
gleichungen24 and his “Space and Time” lecture, as well as in the Wilson and Lewis

21 E.g., Wilson and Lewis (1912: 391 and 495), and Silberstein (1914:127, 129–130, 143, 266,
282). Remarkably, even though Cunningham devotes a whole part of his 1914 book toMinkowski’s
work (Part II Minkowski’s Four-Dimensional World, pp. 85–134), he does not explicitly refer to
any of Minkowski’s papers or lectures.
22 Cf. Minkowski (1910: 483–486 and 495–503).
23 Cf. R 30.
24 This appendix is titled “Mechanics and the Relativity Postulate.” For an English translation, see
Minkowski (2007).
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memoir, and the Silberstein and Cunningham textbooks. Inspired by Poincaré –
“Poincaré’s scientific output fascinated Göttingen scientists in general, and
Minkowski in particular” (Walter 2007: 214) – Minkowski sought to bring gravi-
tation within the purview of Einstein’s principle of relativity.

In the appendix to the Grundgleichungen Minkowski wrote that “it would be
highly unsatisfactory” if Einstein’s principle of relativity “could be accepted as
valid for only a subfield of physics” (Minkowski 2007: 274), and he proposed a
first relativistic law of gravitation, formulated in terms of a four-scalar gravitational
potential, and inspired by his own reformulation of Maxwell’s equations in terms of
a four-vector electromagnetic potential.25

In “Space and Time” Minkowski expressed the belief that the gravitational
relations between the world-lines of point-masses should be treated just like the
electromagnetic relations in the case of point-charges, and he accordingly proposed
a second relativistic law of gravitation, expressing the driving gravitational force in
terms of a four-vector gravitational potential.26

However, the challenge to solve the problem of the incorporation of gravitation in
a relativistic image of the word remained, because, as Scott Walter poignantly puts
it: “By proposing two laws instead of one, Minkowski tacitly acknowledged defeat,”
and “could hardly claim to have solved unambiguously the problem of gravitation.”
(Walter 2007: 234)

At the end of their 1912memoir,Wilson and Lewis echoMinkowski’s vision that
the searched for formulae expressing the gravitational force and potential must be
“completely analogous” to the new formulae expressing the electromagnetic force
and potential, and suggest – by analogy – the use of the term “gravito-magnetic”
instead of gravitational. (Wilson and Lewis 1912: 496) Silberstein – in his 1914
book – mentions Poincaré’s 1906 attempt to use the general form of the Lorentz
transformations for the treatment of both the dynamics of the electron and universal
gravitation, and notices the advantage Minkowski’s approach seems to offer for a
relativistic theory of gravity.27 The most elaborate treatment of the search for a
relativistic theory of gravity, however, is given in Cunningham’s The Principle of
Relativity.

While dealing with the electron theory in Minkowskian format, and, more specif-
ically, with the Lorentz covariant four-vector expression of the Liénard-Wiechert
potentials for the field due to the motion of a single point-charge, Cunningham
refers to “the work founded on that of Poincaré for modifying the law of gravi-
tation to conform to the Principle of Relativity.” (Cunningham 1914: 109) Contrary
to Wilson and Lewis, and to Silberstein, Cunningham does not leave it at a sim-
ple suggestion of the gravitation-electrodynamics analogy. An important part of his
treatment of the dynamics of a particle is devoted to the search for a relativistic

25 Cf. Walter (2007: 224).
26 Cf. Walter (2007: 234).
27 Cf. Silberstein (1914: 87 and 241).
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theory of gravitation.28 Moreover,Cunninghamdoes not only refer to the 1906 paper
of Poincaré – “Sur la dynamique de l’électron” – but also treats the 1911 paper of
the Dutch astronomer Willem de Sitter – “On the Bearing of the Principle of Rela-
tivity on Gravitational Astronomy” – which has been called “the most authoritative
account in English of the astronomical importance of the principle of relativity Œ: : :�
before the appearance of Einstein’s general theory.” (Warwick 2003: 453)

None of the relativistic theories of gravitationWhitehead encountered in the writ-
ings on relativity at his disposal prior to 1916 was satisfactory. None of the theories
which can be found in Poincaré’s 1906 paper, Minkowski’s 1908 papers, de Sitter’s
1911 paper, and Cunningham’s 1914 book, were in accordance with the astronomi-
cal observations of the secular motion of the perihelion of Mercury, as de Sitter and
Cunningham clearly highlight.29

It seems to have been Minkowski’s opinion that the incorporation of gravita-
tion into relativistic thinking was not a major problem, and – as Minkowski died
on January 12, 1909, at the age of 44 of a sudden and violent attack of appendici-
tis – he never lived to see how elusive and difficult the task would turn out to be.30

By 1913, Einstein characterized the attempt to find a relativistic generalization of
Newton’s law of gravitation as “a hopeless undertaking,” at least, in the absence of
some good physical guiding principles, such as the “laws of energy and momen-
tum conservation,” and the “equality of the inertial and the gravitational mass,” and
Einstein adds:

To see this clearly, one need only imagine being in the following analogous situation:
suppose that of all electromagnetic phenomena, only those of electrostatics are known
experimentally. Yet one knows that electrical effects cannot propagate with superluminal
velocity. Who would have been able to develop Maxwell’s theory of electromagnetic pro-
cesses on the basis of these data? Our knowledge of gravitation corresponds precisely to
this hypothetical case: we only know the interaction between masses at rest, and probably
only in the first approximation. (Einstein 2007: 544)

Contrary to Minkowski, but in line with Einstein, when Whitehead read his first
relativity paper, “Space, Time, and Relativity,” before the members of the Aris-
totelian Society, he added the following comment: “We have begun to expect that
all physical influences require time for their propagation in space. This generaliza-
tion is a long way from being proved. Gravitation stands like a lion in the path.” (OT
225) However, in September 1916, 8 months after making this comment,Whitehead
first learned about Einstein’s general theory of relativity – a theory that claimed to
have defeated the lion that blocked the road to an empirically adequate relativistic
treatment of gravitation.

28 Cf. Cunningham (1914: 171–180).
29 Cf. Cunningham (1914: 180).
30 Cf. Corry (2004: 192 and 227).



12 R. Desmet

7 Eddington and de Sitter

Linking Whitehead and Eddington is easy, because in 1902, Eddington – thanks
to his outstanding ability in mathematics and physics – was granted a natural sci-
ence scholarship to Trinity College, Cambridge, where he was coached by Robert
Herman,31 and where “among the formal lectures which Eddington and most of his
group attended were those of Œ: : :� A. N. Whitehead.” (Douglas 1957: 10) So when
Whitehead presided over Section A (mathematics and physics) at the 86th meeting
of the British Association for the Advancement of Science in Newcastle-On-Tyne
in September 1916,32 he already knew Eddington personally, at the very least as his
former student. And that the two men met at this section, and, moreover, that their
meeting was related to Einstein’s general theory of relativity, is made clear by the
following account of it in the October 12th, 1916, issue of Nature:

The first of the two organized discussions arranged for this section was on “Gravitation.”
The discussion followed immediately after Prof. Whitehead’s presidential address,33 and it
happened that the arrangement was appropriate, for the president’s exposition of the logical
texture of geometry had carried us far from the ordinary conceptions of space, and paved
the way for the revolutionary ideas associated with the space-time world of Einstein and
Minkowski. Mr. E. Cunningham, who opened the discussion, and Prof. A. S. Eddington,
who followed, dealt with Einstein’s recent work, which brings gravitation within the scope
of the principle of relativity. (Nature, Vol. 98, Nr. 2450, p. 120)

This Nature quote is in harmony with two of this paper’s claims: Whitehead’s
Principia Mathematica Volume 4 research on the logical texture of geometry formed
his pathway to relativity; and, in 1916, Cunningham was one of the most promi-
nent British mathematicians engaged in the quest of bringing gravitation within the
scope of the principle of relativity. At the same time, the quote also links Whitehead
with Eddington’s research on general relativity. It must be said, however, that in
September 1916, Cunningham and Eddington’s research on general relativity was
still premature, and according to AndrewWarwick: “It is a measure of Cunningham
and Eddington’s ignorance of Einstein’s work at this time that the official account of
the session (published in 1917) made no mention of their presentations, but referred
the reader directly to de Sitter’s first two papers in the Monthly Notices.” (Warwick
2003: 462–463)

This Warwick quote does not only point at the British ignorance of Einstein’s
general theory of relativity in 1916. It also points at the fact that the official account
of Section A, presided by Whitehead, referred to two of de Sitter’s general relativity
papers, which immediately establishes a link between Whitehead and de Sitter’s
general relativity output. Actually, both elements – the British ignorance with regard
to general relativity in 1916, and the fact that the ignorant British readers, including

31 Cf. Douglas (1957: 5 and 9–10) and Warwick (2003: 449–451).
32 Cf. Sanchez-Ron (1992: 76).
33 “The Organization of Thought,” to which I already referred, because Whitehead also read it at
the Aristotelian Society in December 1916.



The Minkowskian Background of Whitehead’s Theory of Gravitation 13

Whitehead, were referred to De Sitter’s papers instead of Einstein’s papers – are
closely related. A common cause was World War I.

Germany and Britain being at war, the German publications of Einstein did not
easily reach the British, partially explaining their ignorance.34 However, the Nether-
lands was neutral, and the news of Einstein’s completion of the general theory of
relativity in November 1915 reached Britain in the form of a letter from the Nether-
lands.35 Indeed, on the one hand, the Dutch astronomer de Sitter was one of the three
Leiden University physicists who acted as Einstein’s sounding board during the
development of his general theory of relativity – the other two were Hendrik Antoon
Lorentz and Paul Ehrenfest. So, de Sitter was well informed on Einstein’s struggle
with, and completion of, a new theory of gravitation. On the other hand, when Ein-
stein published a general summary of his new theory in May 1916, including some
discussion of its cosmological consequences,36 de Sitter realized its importance for
astronomers in the English-speaking world, while at the same time realizing that
one could not very well reprint the work of a German in a British journal during
the wartime. So, in June 1916, de Sitter wrote a letter to inform Eddington, then
Secretary of the Royal Astronomical Society, and he offered to submit a paper of
his own on the subject. In his reply to de Sitter, Eddington confirmed that he was
immensely interested, and he encouraged de Sitter to submit the promised paper. In
the event, de Sitter published a paper in The Observatory magazine, and a series of
three papers in the Monthly Notices of the Royal Astronomical Society.

In a letter of July 4th, 1916, Eddington informed de Sitter:

We are having a discussion at the British Association on Gravitation – at Newcastle, Dec.
5–8. I wish we could have invited you to come over to take part; but we are not inviting any
foreign guests this year because Newcastle is a “restricted area” and aliens are not allowed
in it. Œ: : :� I feel sure you will allow me to make use of the papers you send, in making my
contribution to the discussion. So far as I can make out, no one in England has yet been able
to see Einstein’s paper and many are very curious to know the new theory. So I propose to
give an account of it at the Meeting.37

34 Einstein’s struggle to formulate a relativistic theory of gravitation started not long after the 1905
publication of his special theory of relativity, and hence, prior toWorldWar I. However, his pre-war
attempts, and his corresponding publications, were undervalued in Britain. This undervaluation has
to be included in order to fully explain the British ignorance in 1916, and is exemplified by both
Cunningham and Eddington. In 1914, Cunningham wrote: “No attempt has been made to present
the highly speculative attempt of Einstein at a generalization of the principle [of relativity] in
connection with a physical theory of gravitation.” (Cunningham 1914: vi) And whereas Cunning-
ham dismissed Einstein’s pre-war attempts as too speculative, Eddington – who knew Einstein’s
1911 paper “On the Influence of Gravitation on the Propagation of Light” – mainly focused on
Einstein’s empirical predictions, and undervalued the fact that these predictions were based upon
a new hypothesis concerning the physical nature of gravity (Einstein’s equivalence principle). Cf.
Warwick (2003: 455–457).
35 For more complete accounts than the one I can give here, cf. Stachel (2002: 455–456), Warwick
(2003: 457–462), and Crelinsten (2006: 94–98).
36 Cf. Einstein (1916).
37 This quote is taken from Stachel (2002: 456). The British Association meeting was held in
September.
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Whitehead listened at Eddington’s account at Newcastle, but this account was
not included in the official report. However, a good idea of what Whitehead heard
can be formed by reading Eddington’s first published paper devoted to the gen-
eral theory of relativity, “Gravitation and the Principle of Relativity,” published in
the December 28th, 1916, issue of Nature. The reason is offered by John Stachel’s
remark that “it is presumably based on his talk on the same subject to the British
Association for the Advancement of Science.” (Stachel 2002: 457) Eddington refers
his readers – and hence, presumably referred his audience – to the following three
paper on the subject: Einstein’s May 1916 paper “Die Grundlage der algemeinen
Relativitätstheorie,” de Sitter’s October 1916 Observatory paper, and de Sitter’s first
1916 Monthly Notices paper. This means that, most likely, Whitehead was referred
to de Sitter’s writings on general relativity prior to the appearance of the official
report of the Newcastle meeting in 1917.38

Of course, The Observatory, the Monthly Notices, and Nature, were readily avail-
able to Whitehead, but we do not know whether Eddington offered his former
Cambridge lecturer the opportunity to read the paper that led to all the excitement
in the first place – Einstein’s summary paper, which Eddington got from de Sitter.
Likewise, we do not know whether, half a year later, Silberstein offered his former
University College colleague a reprint of Einstein’s summary paper. Silberstein, by
then, had also received reprints via a neutral country, namely via Michele Besso in
Switzerland. In fact, on May 7, 1917, Einstein wrote to his close friend: “Lieber
Michele! Ich sende Dir einige Abhandlungen mit der Bitte, Sie an Herrn Dr. L.
Silberstein, 4 Anson Road Cricklewood London N.W.2. weiterzusenden, der mich
darum gebeten hat.”39 But what we do know is that Whitehead had both the appro-
priate personal contacts, and the references to all 1916–1917 English articles on the
topic, to get acquainted with Einstein’s general theory of relativity.

Despite his remarkable speed to master new mathematical theories, and despite
his prior knowledge on differential geometry, acquired a decade earlier in the lec-
tures of his coach, Herman, at Trinity College, it took Eddington almost 2 years
to master Einstein’s general theory of relativity, and even then, upon completion
of his 1918 official Report on the Relativity Theory of Gravitation for the Physi-
cal Society of London, he asked for de Sitter’s “general criticism and detection of
blunders.”40 Nonetheless, as AndrewWarwick puts it, “for many British mathemati-
cians and physicists the Report represented the definitive English-language account

38 Further research might provide an answer to the following question: Was Whitehead himself,
having been the Section A president in 1916, responsible for the official report on that section
or not?
39 “Dear Michele! I’m sending you some reprints, asking you to forward them to Dr. L. Silberstein,
4 Anson Road Cricklewood London N.W.2., who has requested them.” The German quote in the
main text is a quote from Document 335 in The Collected Papers of Albert Einstein, Volume 8, Part
A, p. 446. For the English translation, and more details on the Silberstein-Einstein correspondence,
cf. Duerbeck and Flin (2006: 1089).
40 Letter of Eddington to de Sitter, dated August 16th, 1918. Cf. Warwick (2003: 467–468).
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of general relativity and further established Eddington’s emergent reputation as the
theory’s master and champion in Britain.” (Warwick 2003: 468)

One cannot imagine that Whitehead – whose research dealt with the question of
how to derive, by means of the Principia Mathematica logic, the space-time geom-
etry of physics from the spatio-temporal texture of our experience; who repeatedly
discussed relativity with his Aristotelian Society friends, e.g., with Alexander on
July 5th, 1918, following Alexander’s address on “Space-Time”41.; whose lecture
courses on applied mathematics at the Imperial College of Science and Technol-
ogy culminated in his postgraduate lecture course on “Relativity and the Nature of
Space”42; and who started Herbert Dingle’s lifelong interest in the theory of rel-
ativity, and encouraged him to write Relativity for All 43 – ignored the definitive
English-language account of general relativity, written by his former student, and
meanwhile famous astronomer, Eddington.

8 Whitehead’s Enquiry

After all that has been said and done in this paper to link Whitehead with Eddington
and de Sitter, a surprise awaits the reader when turning to Whitehead’s first book on
relativity, his 1919 Enquiry Concerning the Principles of Natural Knowledge. The
book shows no trace of any Eddington or de Sitter impact! However, the explanation
is straightforward.

Whitehead’s Enquiry is the apex of his research to find – in terms of the logic
of relations – an answer to the question: “How is space rooted in experience?” The
first output of this research, written in 1905, and published in 1906, wasWhitehead’s
Royal Society memoir “OnMathematical Concepts of theMaterial World,” in which
‘space’ still meant ‘Euclidean space,’ and in which ‘points’ were logically defined
by Whitehead in terms of ‘linear objective reals’ – entities closely resembling
Faraday and Maxwell’s spatial lines of force. However, Einstein and Minkowski’s
unification of space and time prompted Whitehead to replace ‘space’ with ‘space-
time’, ‘substantial points’ with ‘event-particles’, the electromagnetic lines of force
with Minkowski’s world lines, and so on. In other words, special relativity caused
an update ofWhitehead’s research question into: “How canMinkowski’s space-time
geometry be logically abstracted from our experience of spatio-temporal events?”

By the time he wrote his Enquiry, Whitehead had developed a method – the
method of extensive abstraction – to do just that; a method which harmonized the
world of physics with the world of everyday experience – Whitehead’s main philo-
sophical motivation; and hence, a method he was not willing to put aside because
Einstein’s general relativity invited us to give up Minkowski’s non-curved space-

41 Cf. Proceedings of the Aristotelian Society, New Series, Vol. 18, p. 640, and CN viii
42 Cf. Lowe (1990: 64–65).
43 In the July 1921 Preface of Relativity for All Dingle wrote: “The author is glad to acknowledge
his deep indebtedness to Professor Whitehead for invaluable help and unwearying kindness in
unveiling the mysteries of a difficult subject.” (Dingle 1922: vi) Cf. also Lowe (1990: 65).
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time geometry in favor of a variably curved space-time geometry. In the April 20th,
1919, Preface of his Enquiry, Whitehead expresses this concern as follows:

The whole investigation is based on the principle that the scientific concepts of space and
time are the first outcome of the simplest generalizations from experience, and that they
are not to be looked for at the tail end of a welter of differential equations. This position
does not mean that Einstein’s recent theory of general relativity and of gravitation is to be
rejected. The divergence is purely a matter of interpretation. Œ: : :� It has certainly resulted
from Einstein’s investigations that a modification of the gravitational law [: : :] will account
for the more striking outstanding difficulties otherwise unexplained by the law of gravita-
tion. This is a remarkable discovery for which the utmost credit is due to the author. Now
that the fact is known, it is easy to see that it is the sort of modification which on the simple
electromagnetic theory of relativity is likely to be required for this law. I have however been
anxious to disentangle the considerations of the main positions in this enquiry from theories
designed to explain special laws of nature. Also at the date of writing the evidence for some
of the consequences of Einstein’s theory is ambiguous and even adverse. In connection with
the theory of relativity I have received suggestive stimulus from Dr L Silberstein’s Theory
of Relativity [: : :]. (PNK vi–vii)

The first sentence of this quote confirms Whitehead’s main philosophical chal-
lenge – to avoid the bifurcation of nature into the mathematical world discovered by
Einstein (and his predecessors) “at the tail end of a welter of differential equations,”
and the common word of our day-to-day experience – and it confirms Whitehead’s
main answer at the time, both to this challenge, and to his research question: a
method of “the simplest generalizations” – the method of extensive abstraction.

Clearly, Whitehead was well aware of the general theory of relativity when
writing his Preface, and he did not reject its new law of gravitation. On the con-
trary, he credited Einstein for solving the outstanding difficulties of Newton’s law
of gravitation, such as the difficulty of accounting for the observed precession of
the perihelion of Mercury, a difficulty Poincaré, Minkowski, de Sitter, and Cun-
ningham, were unable to solve. At the same time, Whitehead distanced himself
from Einstein’s general relativistic interpretation of his new law of gravitation, and
already gave two hints on how to reinterpret it: (1) by learning from how Einstein
modified Newton’s law, and by performing a similar modification while adhering
more closely to the special theory of relativity, that is, while respecting the main
position of his research, that the Minkowskian space-time structure was at one with
the spatio-temporal texture of our experience; and (2) by disentangling the problem
of discovering the general structure of space-time from the problem of discovering
the particular character of physical laws, or, in other words, by separating again
what Einstein had unified, space-time geometry and physics.

To summarize, the Preface of An Enquiry Concerning the Principles of Natural
Knowledge clearly confirms our claim that Whitehead was familiar with Einstein’s
general theory of relativity on April 20, 1919, while at the same time providing
an explanation of why no trace leading to Eddington or de Sitter can be found in
the book. Whitehead’s research aimed at thinking together the geometrical world of
Minkowski, and the spatio-temporal world of the events we experience. And with
his Enquiry, Whitehead wanted to communicate how he had managed to do so, with-
out explicitly addressing and answering the next question on his research agenda:
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“How to interpret Einstein’s new law of gravitation in terms of a gravitational field
against the background of Minkowski’s space-time, instead of accepting Einstein’s
interpretation of his new law in terms of the identification of the field of gravitation
with a variably curved space-time?”

9 Silberstein’s 1918 Paper

Early 1919, Whitehead had a good reason for not yet addressing his new research
question. Its relevance was dependent on “the evidence for some of the conse-
quences of Einstein’s theory,” and when writing the Preface of his Enquiry, this
evidence was still “ambiguous and even adverse,” even though a month later it
was going to be strengthened thanks to some relevant observations by British
astronomers, including Eddington, at the occasion of the May 29th, 1919, solar
eclipse.

It is no coincidence that Whitehead indicated to have received “suggestive stimu-
lus fromDr L Silberstein’s Theory of Relativity.” I claim that Whitehead’s referral to
Silberstein in the context of reinterpreting Einstein’s new law of gravitation, disen-
tangling space-time geometry and physics, and highlighting adverse evidence with
regard to empirical consequences, points to the fact that Silberstein was a source of
inspiration to help Whitehead answer his new, but still private, research question of
reinterpreting general relativity. I will now first add an element to substantiate the
latter claim, and then return to the solar eclipse.

In 1923, George Temple – a mathematician who had taken his first degree as an
evening student, and at the time was working as a research assistant at Birkbeck Col-
lege, London – gave a lecture on “AGeneralization of ProfessorWhitehead’s Theory
of Relativity” at the Physical Society of London. The importance of mentioning
Temple’s lecture at this point is formed by the following facts. Temple treated Sil-
berstein’s 1918 paper, “General Relativity without the EquivalenceHypothesis,” as a
precursor of Whitehead’s alternative theory of gravitation. Whitehead was present,
and responded to Temple’s paper. His extensive response is registered in the Pro-
ceedings of the Physical Society of London, and shows that he was very pleased
with this paper “from the pen of a young scientist whose work augurs a very distin-
guished career.”44 At no point did Whitehead object to treating Silberstein’s 1918
paper as a precursor of his own 1920–1922 theory. The opposite is true. Whitehead
emphasized that at the heart of his alternative theory of gravitation lies the dis-
tinction “between space-time relations as universally valid and physical relations
as contingent.”45 In other words, Whitehead stressed the importance of separat-
ing the general space-time structure from the more particular physical structures,
a separation that is central in Silberstein’s 1918 paper, in which Einstein’s equiva-
lence principle – Einstein’s identification of inertial and gravitational descriptions

44 Temple (1923: 192).
45 Temple (1923: 193).
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to the point of identifying space-time geometry and gravitational physics – was
rejected. This adds to what has been said before on the Whitehead-Silberstein link,
and thus helps to substantiate the claim that Silberstein was a source of inspiration
for Whitehead.

Silberstein, who had a kind of love-hate relationship with Einstein’s general
theory of relativity, willing to accept it wholeheartedly, and yet, relentlessly criti-
cizing it, has been called Einstein’s “advocatus diaboli” (Pais 1983: 305), as well
as “Einstein’s antagonist” (Duerbeck and Flin 2005: 186). This might suggest that
Whitehead mainly derived his critical attitude towards Einstein from Silberstein.
However, in order not to overestimate the influence of Silberstein on Whitehead, an
important comment is due. Whitehead’s critique of Einstein’s approach has many
more sources, too many to list here. Some date from his Cambridge period, oth-
ers from his London period. Some are to be found in the domain of mathematical
physics, others in the domain of philosophy.

Also, one must not forget that from its introduction in Britain, Einstein’s gen-
eral theory of relativity was exposed to critique. Most importantly, the 1916–1917
Monthly Notices papers of de Sitter reflect an at that time ongoing Einstein-de Sitter
debate on Einstein’s Machian explanation of inertia, and on the priority of mat-
ter over space-time.46 So there never was a “pure” or “uncritical” transmission of
Einstein’s general theory of relativity from the Continent to Britain to start with.
When Eddington, Silberstein, andWhitehead learned about it, Einstein’s theory was
already wrapped in de Sitter’s anti-Machian critique, elements of which became part
of their critiques. I deliberately include Eddington, because in his 1918 Report, he
clearly sided with de Sitter in the debate with Einstein on the various cosmological
hypotheses at the time.

No wonder that Whitehead, inspired by de Sitter, Eddington, and Silberstein,
repeatedly attacks the Machian explanation of inertia in his 1920–1922 writings
on relativity, and that he replaced Einstein’s theory, in which matter has priority
over space-time, and in which space-time is constantly curved at the local and at
the cosmological scale (respectively zero curved and non-zero curved), while being
variably curved at the intermediate scale (e.g., of the solar system), with an alter-
native in which space-time has priority over matter, and in which the universe is
Minkowskian (and hence at one with our common experience) at all scales.

10 The 1919 Solar Eclipse

One of the most important consequences of the general theory of relativity was
Einstein’s prediction concerning the deflection of rays of starlight passing near the
limb of the sun. If the starry sky is photographed twice, once by night, and once

46 For an account of the 1916–1917 Einstein-De Sitter dialogue, see Janssen (1998: 351–357)
(can also be found on http://www.tc.umn.edu/�janss011/), Crelinsten (2006: 103–108) and Matteo
Realdi’s (2007) lecture “The Universe of Willem de Sitter” (can be found on http://www.phil-inst.
hu/�szekely/PIRT BUDAPEST/).



The Minkowskian Background of Whitehead’s Theory of Gravitation 19

during a solar eclipse, all other things being equal, then, upon comparison of the
two pictures, we will observe exactly calculated deflections of rays of starlight
(that is, shifts of starlight spots on the pictures) near the solar corona. The pic-
tures taken by English astronomers during the solar eclipse on May 29th, 1919,
seemed to confirm Einstein’s prediction, and when Eddington made this confirma-
tion public on November 6th, 1919, at a joint meeting of the Royal Society and the
Royal Astronomical Society, it immediately launched Einstein’s career to superstar-
heights, despite Silberstein’s unease with Eddington’s way of handling the solar
eclipse data, and his warning to await confirmation of Einstein’s red shift prediction.
As said before, Whitehead was present at this meeting, and in an account published
years later in Science and the Modern World, Whitehead wrote:

The whole atmosphere of tense interest was exactly that of the Greek drama: we were the
chorus commenting on the decree of destiny as disclosed in the development of a supreme
incident. There was dramatic quality in the very staging: – the traditional ceremonial, and
in the background the picture of Newton to remind us that the greatest of scientific gener-
alizations was now, after more than two centuries, to receive its first modification. Nor was
the personal interest wanting: a great adventure of thought had at length come safe to shore.
(SMW 10)

Not only wasWhitehead present at this memorable meeting, by November 1919, the
British consideredWhitehead as an authority on the subject of general relativity. On
November 15th, 1919, his first article on the momentous confirmation of Einstein’s
revolutionary theory appeared in The Nation under the title “A Revolution in Sci-
ence.” Also, Wildon Carr (already mentioned in this paper as one of Whitehead’s
Aristotelian Society friends), Frederick Lindemann (a famous Oxford physicist),
and Whitehead, were asked to write a contribution on “Einstein’s Theory” for the
readers of the Educational Supplement of The Times. Carr’s article was published
on January 22nd, 1920, Lindemann’s on January 29th, andWhitehead’s on February
12th.47

The opening of Whitehead’s 1920 article reads: “The articles on this subject,
which appeared on January 22 and 29, summarized the general philosophical theory
of relativity and the physical ideas involved in Einstein’s researches. The purpose
of the present article is in some respects critical, with the object of suggesting an
alternative explanation of Einstein’s great achievement.” (ESP 332)WhereasWhite-
head’s 1919 article, “A Revolution in Science,” does not give away Whitehead’s
critical attitude, and is as orthodox as Lindemann’s Times article, his 1920 article,
“Einstein’s theory,” not only reveals Whitehead’s critique of Einstein, but also gives
a first outline of his alternative theory of gravitation.

In it, Whitehead starts with the analysis of Einstein’s work in three factors:
“a principle, a procedure, and an explanation.” (ESP 332) According to White-
head, Einstein’s principle is the unification of space and time into space-time, and
he writes: “What I call Einstein’s principle is the connexion between time and
space.” (ESP 332) Whitehead does not give similarly clear definitions of Einstein’s

47 Whitehead’s “Einstein’s Theory” is reprinted in ESP (pp. 332–342) and in IS (pp. 125–135).
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procedure and Einstein’s explanation, but their meaning is rendered clear by the
continuation of his article. According to Whitehead, Einstein’s procedure is the pro-
cedure to formulate invariant tensor laws to describe physical phenomena in general,
and gravitational phenomena in particular, and Einstein’s explanation is the expla-
nation in terms of Mach’s principle (inertia is determined by matter), and the closely
related equivalence principle (inertia and gravity are identical). So, whenWhitehead
writes: “Einstein’s [: : :] discovery of the principle and the procedure constitute an
epoch in science. I venture, however, to think that the explanation is faulty” (ESP
332), this 1920 way of expressing himself is completely in line with his 1922 way
of putting things: “My whole course of thought presupposes the magnificent stroke
of genius by which Einstein and Minkowski assimilated time and space. It also
presupposes the general method of seeking tensor or invariant relations as general
expressions for the laws of the physical field, a method due to Einstein. But the
worst homage we can pay to genius is to accept uncritically formulations of truths
which we owe to it.” (R 88)

By rejecting Einstein’s explanation, Whitehead rejects the principles that were
already criticized by de Sitter in 1916 and 1917, and by Eddington and Silberstein
in 1918. Whitehead was fully aware that he thus dropped two of the major prin-
ciples that actually guided Einstein’s search for a new law of gravitation. Indeed,
Mach’s principle and the principle of equivalence “formed the clue by which Ein-
stein guided himself along the path from his principle to his procedure.” However, as
Whitehead immediately adds: “It is no novelty to the history of science that factors
of thought which guided genius to its goal should be subsequently discarded. The
names of Kepler and Maupertuis at once occur in illustration.” (ESP 332) Of course,
the rejection of Einstein’s explanation implies the challenge to offer an alternative
explanation. No wonderWhitehead ends his 1920 article with a brief outline of such
an alternative.

11 Whitehead’s Alternative Theory of Gravitation

Whitehead writes that his alternative theory of gravitation starts from the general
theory of time and space which is explained in his Enquiry, in other words, from
Minkowski’s space-time, and that it also starts “from Einstein’s great discovery that
the physical field in the neighborhood of an event-particle should be defined in terms
of ten elements” (ESP 342), meaning that the gravitational field should be defined
as a symmetrical second rank tensor.

Einstein’s gravitational field tensor is called the fundamental tensor, and does not
define a gravitational field apart from space-time, but space-time as being equal to
the gravitational field. Contrary to Einstein, Whitehead calls his gravitational field
tensor the impetus tensor, and he uses it to define the gravitational field against
the background of Minkowski’s space-time. This implies that Whithead keeps field
physics and space-time geometry apart, as Silberstein did in 1918. Consequently, he
writes: “According to Einstein such elements [the ten elements of the gravitational
field tensor] merely define the properties of space and time in the neighborhood.
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I interpret them as defining in Euclidean space [or better: in Minkowskian space-
time] a definite physical property of the field which I call the ‘impetus.”’ (ESP 342)

Einstein’s law of gravitation equates two tensors: the Einstein tensor, which
results from second order differential operations on the elements of his fundamen-
tal tensor; and the energy-momentum-stress tensor, which represents the source of
gravitation. However, Whitehead’s treatment of gravitation focuses on point-masses
(event-particles) as the sources of gravitation, and it does not take into account the
more general case of a continuous mass-energy distribution. Hence, when compar-
ing his law of gravitation with Einstein’s, Whitehead is only taking into account
the case in which the energy-momentum-stress tensor is the zero tensor – the case
in which Einstein’s law equates the Einstein tensor with the zero tensor, hence
expressing the vanishing of this invariant tensor.

Consequently, differentiating his law from Einstein’s law, Whitehead writes that
“the essence of the divergence of the two methods lies in the fact that my law of
gravitation is not expressed as the vanishing of an invariant expression, but in the
more familiar way by the expression of the ten elements in terms of Œ: : :� what I
call the ‘associate potential.”’ (ESP 342) Whitehead means that the elements of
Einstein’s fundamental tensor are determined by solving the equation ‘Einstein ten-
sor D 0,’ whereas the elements of his impetus tensor are determined by some kind
of potential.

The gravitational potential Whitehead refers to, is a scalar potential satisfy-
ing the wave equation. In fact, it is the scalar and gravitational equivalent of the
retarded Liénard-Wiechert four-vector potential of electrodynamics, as expressed
by Cunningham in 1914. So, whereas in Einstein’s procedure the ten elements of
the fundamental tensor are solutions of a tensor equation, Whitehead’s alternative
defines the ten elements of the gravitational field tensor in terms of a single scalar –
a Liénard-Wiechert-like retarded potential satisfying the familiar wave equation. In
other words, Whitehead fulfils the hope that Minkowski expressed in “Space and
Time,” and describes the gravitodynamic relation between point-masses in terms of
an electrodynamic-like retarded potential.

Enough has been said about Whitehead’s 1920 article to claim that Whitehead’s
alternative theory of gravity was a Minkowkian theory, and that it was largely devel-
oped by February 1920. In his Enquiry, Whitehead had not explicitly addressed, let
alone answered, the question: “How to reinterpret Einstein’s new law of gravitation
in terms of a gravitational field against the background ofMinkowski’s space-time?”
However, the April Preface of his 1919 book did make it clear that this was the
next question on his agenda. Hence we are led to the conclusion that Whitehead
developed his alternative theory of gravitation during the academic year 1919–1920,
most likely in conjunction with the development of his postgraduate lecture course,
“Relativity and the Nature of Space.”48

Apart from his 1920 article, “Einstein’s Theory,”Whitehead also gave an outline
of his Minkowskian theory of gravitation in his 1920 lecture for the students of

48 Lowe (1990: 65).
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the Chemical Society of the Imperial College of Science and Technology (Chapter
VIII of CN). However, his most elaborated account was offered in 1922, in The
Principle of Relativity. For further details on its content, I must refer the reader to
the book itself, for the aim of my paper was not to present a fully-fledged account
of Whitehead’s theory of gravitation. My only aim was to reveal the Minkowskian
background of Whitehead’s theory.
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Boston: Birkhäuser, 1999: 45–86.

Walter, Scott. “Breaking in the 4-Vectors: The Four-Dimensional Movement In Gravitation, 1905–
1910.” The Genesis of General Relativity: Volume 3. Ed. J. Renn. Dordrecht: Springer, 2007:
193–252.

Warwick, Andrew. Masters of Theory: Cambridge and the Rise of Mathematical Physics. Chicago:
The University of Chicago Press, 2003.

Whitehead, Alfred North. In chronological order:
UA. A Treatise on Universal Algebra, with Applications. 1898. New York: Hafner Publishing, 1960.
MCMC. “On Mathematical Concepts of the Material World.” 1905/1906. Alfred North Whitehead:

An Anthology. Eds. F.S.C. Northrop & M.W. Gross. New York: MacMillan, 1961: 7–82.



24 R. Desmet

OT. The Organisation of Thought. 1917. Westport Connecticut: Greenwood Press, 1974.
PNK. An Enquiry Concerning the Principles of Natural Knowledge. 1919. New York: Dover, 1982.
RS. “A Revolution of Science.” The Nation of November 15, 1919: 232–233.
CN. Concept of Nature. 1920. Cambridge: Cambridge University Press, 1986.
R. The Principle of Relativity with Applications to Physical Science. Cambridge: Cambridge

University Press, 1922.
SMW. Science and the Modern World. 1925. New York: The Free Press, 1967.
AI. Adventures of Ideas. Cambridge: Cambridge University Press, 1933.
ESP. Essays in Science and Philosophy. 1947. Westport Connecticut: Greenwood Press, 1968.
IS. Interpretation of Science: Selected Essays. Ed. A.H. Johnson. New York: Bobbs-Merril

Company, 1961.
Wilson, Edwin Bidwell & Lewis, Gilbert Newton. “The Space-Time Manifold of Relativity.”

Proceedings of the American Academy of Arts and Sciences. 48(11), 1912: 389–507.



The Experimental Verdict on Spacetime
from Gravity Probe B

James Overduin

Abstract Concepts of space and time have been closely connected with matter
since the time of the ancient Greeks. The history of these ideas is briefly reviewed,
focusing on the debate between “absolute” and “relational” views of space and
time and their influence on Einstein’s theory of general relativity, as formulated
in the language of four-dimensional spacetime by Minkowski in 1908. After a brief
detour through Minkowski’s modern-day legacy in higher dimensions, an overview
is given of the current experimental status of general relativity. Gravity Probe B
is the first test of this theory to focus on spin, and the first to produce direct and
unambiguous detections of the geodetic effect (warped spacetime tugs on a spin-
ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime
around with it). These effects have important implications for astrophysics, cosmol-
ogy and the origin of inertia. Philosophically, they might also be viewed as tests of
the propositions that spacetime acts on matter (geodetic effect) and that matter acts
back on spacetime (frame-dragging effect).

1 Space and Time Before Minkowski

The Stoic philosopher Zeno of Elea, author of Zeno’s paradoxes (c. 490-430 BCE),
is said to have held that space and time were unreal since they could neither act nor
be acted upon bymatter [1]. This is perhaps the earliest version of the relational view
of space and time, a view whose philosophical fortunes have waxed and waned with
the centuries, but which has exercised enormous influence on physics. The opposing
absolutist view, that space and time do possess independent existence apart from
matter, has an equally distinguished history that might be traced back to the Stoics’
philosophical rivals, the Epicureans, whose founder Leucippus of Abdera (active c.
450 BCE) introduced the concept of a pre-existing void as the “emptiness between
atoms” [2]. The earliest explicit statement of the absolutist view has been attributed
by Max Jammer to the Pythagorean philosopher Archytas (428-347 BCE): “Since
everything which is moved into a certain place, it is plain that the place where the
thing moving or being moved shall be, must exist first” [3].

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
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Aristotle (384-322 BCE) constructed a hybrid of the absolute and relational
views. He accepted arguments similar to that of Archytas, but was deeply unhappy
with the atomistic idea of void, “since no preference can be given to one line of
motion more than to another, inasmuch as the void, as such, is incapable of differ-
entiation . . . how [then] can there be any natural movement in the undifferentiated
limitless void?” To get around this difficulty Aristotle developed the arguably rela-
tional idea that space is defined by that which contains it. He was led in this way
(in the Physics) to his influential picture of a cosmos pinned simultaneously to the
center of the earth and the firmanent of fixed stars: “The center of the universe
and the inner surface of the revolving heavens constitute the supreme ‘below’ and
the supreme ‘above’; the former being absolutely stable, and the latter constant in
its position as a whole.” Such was Aristotle’s authority that few questioned it for
two millenia. An exception was John Philoponus (c. 490-570), who argued for a
more purely absolute picture and reacted in particular against the idea that space is
somehow defined by that which contains it: “Place is not the adjacent part of the
surrounding body . . . It is a given interval, measurable in three dimensions; it is
distinct from the bodies in it, and is, by its very nature, incorporeal. In other words,
it is the dimensions alone, devoid of any body.”

Claudius Ptolemy (c. 85-165) elaborated on Aristotle’s system, using only cir-
cular motions and uniform speeds so as to “save the phenomena” in the face of
increasingly accurate observations. However, the way in which he did so points up
the limited extent to which Aristotle’s thinking can truly be considered relational.
The fact that the “firmanent of fixed stars” and “center of the earth” defined the
rest frame of Aristotle’s cosmos did not mean that space was physically anchored
to the matter making up the earth or stars. Rather it so happened that these refer-
ents stood still in a background space that was more properly conceived as existing
absolutely. Thus, adopting an earlier idea of Hipparchus, Ptolemy first detached
the sun’s “orbit” from the center of the earth (giving it an “eccentricity”). Later he
added planetary “deferents,” “epicycles” and finally “equants”–all reference points
or paths in empty space (some of them even with inherent motions of their own).
These so-called “void points” make sense only with respect to absolute space–or
perhaps to “matter” of a divine kind, as hinted at in the Almagest: “The first cause
of the first motion of the universe, if one considers it simply, can be thought of as an
invisible and motionless deity.” Here Ptolemy anticipated Newton, who would later
refer to absolute space (in the Opticks) as the “sensorium” of God.

The nature of time as well as space was eagerly debated in this way by the
ancients. The Epicurean philosopher Lucretius (c. 99-55 BCE) may have been
the first to argue explicitly for a relational view of time, writing in The Nature of
the Universe that: “Time by itself does not exist . . . It must not be claimed that any-
one can sense time by itself apart from the movement of things.” Saint Augustine
(354–430) put a theological twist on this argument in his Confessions, emphasizing
that “God created the world with time, not in time.”

Nicolaus Copernicus (1473–1543) relocated the center of Aristotle’s universe
from the earth to the sun. This step was not quite so daring as often thought, for
Hipparchus and Ptolemy had already nudged the sun’s “orbit” away from the center
of the earth by introducing “eccentricity.” As Copernicus himself noted near the
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beginning of De Revolutionibus: “Nothing prevents the earth from moving . . . For,
it is not the center of all the revolutions.” Furthermore, although he re-centered the
cosmos kinematically on the sun, Copernicus did not attach space dynamically to the
rest frame of the sun or any other physical body, but followedAristotle in associating
it with the metaphysical “sphere of the fixed stars,” which (he wrote): “contains
itself and everything, and is therefore immovable. It is unquestionably the place of
the universe, to which the motion and position of all the other heavenly bodies are
compared.”

Fifty years later, the notion of rigid planetary spheres could no longer be rec-
onciled with astronomical observations, leading Johannes Kepler (1571–1630) to
declare: “From henceforth the planets follow their paths through the ether like the
birds in the air. We must therefore philosophize about these things differently.”
Thoughts such as these led him to the radical idea of attaching the rest frame of
space to physical bodies rather than a metaphysical construct such as absolute space
(he conceived of forces extending outward from the sun and sweeping the planets
along in their orbits). The laws of planetary motion that he subsequently derived
have been wonderfully characterized by Julian Barbour as a “pre-Machian triumph
of Mach’s Principle” [2].

A similar shift in thinking is apparent in Galilei Galileo (1564–1642). Rather
than identifying the fixed stars with the rest frame of space in an abstract sense, he
asserted (in the Dialogo) that they are physically at rest in space: “The fixed stars
(which are so many suns) agree with our sun in enjoying perpetual rest.” However,
Galileo did not further define this state of “rest,” and appears to have implicitly
adopted the absolutist view. In fact he was the first to use the actual term “abso-
lute motion,” in his theory of the tides. Réné Descartes (1596–1650) also relied
on the concept of absolute space (which he referred to as a “plenum”) in arriving
at something similar to Newton’s eventual first law of motion. After learning of
Galileo’s trial by the Inquisition, however, he put off publishing his results by more
than a decade and eventually prefaced them (in the Principia Philosophiae) by a
disclaimer stating that all motion was, after all, relative. He may have been the first
to hold both absolutist and relational views at the same time.

This inconsistency irritated Isaac Newton (Fig. 1), who complained in De Grav-
itatione that if all motion was really relative as Descartes said, then “it follows that
a moving body has no determinate velocity and no definite line in which it moves.”
It was partly to do away with any such confusion that he expressed himself so

Fig. 1 Isaac Newton
(1643–1727) and his bucket
experiment: the concavity of
the water’s surface indicates
that the water is rotating with
respect to “absolute space”



28 J. Overduin

categorically in the famous opening of his Principia: “Absolute, true and mathe-
matical time, of itself and from its own nature, flows equably without relation to
anything external . . . absolute space, in its own nature, without relation to anything
external, remains always similar and immoveable.” He added that the existence of
absolute space could be demonstrated by watching the water in a spinning bucket.
The fact that the water’s surface gradually assumed a concave shape showed that it
was spinning with respect to something; how else would it know what to do? Proof
of the reality of space, in other words, could be found in the inertia of matter.

Newton’s most formidable relational critic was the mathematician and philoso-
pher Gottfried Wilhelm Leibniz (1646–1716), who retorted (in a letter to Christiaan
Huygens): “If there are 1,000 bodies, I still hold that . . . each separately could be
considered as being at rest . . . Mr. Newton recognizes the equivalence of hypotheses
in the case of rectilinear motion, but with regard to circular motion he believes that
the effort which revolving bodies make to recede from the axis of rotation enables
one to know their absolute motion. But I have reasons for believing that nothing
breaks this general law of equivalence” [4]. The philosopher Bishop George Berke-
ley (1685–1753) went even farther, writing in De Motu that the very concept of two
bodies “moving” around a common center is meaningless in empty space, since a
co-rotating observer will not see anything change. “Suppose,” however, “that the
sky of fixed stars is created; suddenly from the conception of the approach of the
globes to different parts of the sky the motion will be conceived.”

If Newton’s was the definitive statement of the absolutist view of space, then
his most notorious relational counterpart was Ernst Mach (Fig. 2), who addressed
himself directly to Newton’s bucket argument, writing in The Science of Mechanics:
“No one is competent to say how the experiment would turn out if the sides of the
vessel increased in thickness and mass until they were ultimately several leagues
thick.” A sufficiently large or massive bucket, in other words, might carry the local
inertial frame of the water around with it and leave the water’s surface flat. This was
perhaps the first explicit, though physically incomplete suggestion of a phenomenon
now generally referred to as frame-dragging.

Fig. 2 Ernst Mach (1838–1916) and his revision of Newton’s bucket experiment: would the water
still climb up the walls if the bucket were arbitrarily large and massive?
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Mach’s principle, as his rather vague suggestion has come to be known, has
proved stubbornly difficult to formulate in a precise physical way, and even more
difficult to test experimentally. At a conference on this subject in Tübingen in 1993,
leading experts discussed at least 21 different versions of “Mach’s principle” in
the scientific literature, some of them mutually contradictory [5]. It is probably for
this reason that Mach’s relational ideas have proved to be more inspirational than
fruitful in physics. Nevertheless they led to some fascinating experimental investi-
gations, even before Einstein’s time. In 1894 the German vulcanologist Immanuel
Friedländer (1871–1948) and his brother Benedict (1866–1908) looked for evidence
that heavy rotating millstones could exert a Mach-type force on a sensitive torsion
balance, and confessed (in Absolute or Relative Motion?) that they could find no
definite results either way. In 1904, fellow German physicist August Föppl (1854–
1924) published the results of an experiment designed to detect the influence of the
rotating Earth on the angular momentum of a pair of heavy flywheels whose spin
axis could be aligned along either lines of latitude or longitude (Fig. 3). He too found
nothing, but noted that his accuracy was limited to about 2%.

Experiments like Gravity Probe B should not be seen as tests of Mach’s principle
(which is ill-defined as it stands), but rather as tests of specific theories of gravity
(which may or may not incorporate well-defined “Machian” features such as frame-
dragging). Nevertheless, it is possible to think of Gravity Probe B as a realization
of the experiment suggested by Mach (and actually attempted by Föppl) in which
the role of the “bucket” is played by the earth and the dragging of local inertial

Fig. 3 Early experimenters in frame-dragging: Benedict Friedländer (top left), August Föppl
(bottom left), Föppl’s experimental apparatus (right)
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frames is measured not by water but by orbiting gyroscopes over a million times
more sensitive than the best navigational gyros on earth.

2 Spacetime After Minkowski

Albert Einstein (1879–1955) radically re-ordered the traditional priorities of meta-
physics when he showed in 1905 that there is a quantity more fundamental than
either space or time, namely the speed of light c. Space and time are inter-
convertible, and must be so in order to preserve the constancy of c for all observers.
The geometrical inference that space and time could be seen as components of a
single four-dimensional spacetime fabric came from Hermann Minkowski (Fig. 4),
who announced it in Cologne 100 years ago with the words:

“Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality.”

Einstein initially dismissed Minkowski’s four-dimensional interpretation of his the-
ory as “superfluous learnedness” [6]. To his credit, he quickly changed his mind.
The language of spacetime (tensor calculus) proved to be essential in making the
transition from special to general relativity.

This transition required two main steps, a physical one and a mathematical
one, and both relied crucially on Minkowski’s spacetime picture. The physical step
occurred in 1907 when, in the patent office in Bern, Einstein was struck by what
he later called his “happiest thought”: a man falling off the side of a building
feels no gravity. The significance of this observation lies in the fact that the same
choice of accelerated coordinates suffices to transform away the earth’s gravitational
field, regardless of who or what is dropped. If gravity were like any other force–
electromagnetism, say–differently charged objects would “fall” quite differently,
some of them even accelerating upward. By contrast, gravity appears matter-blind.
From this observational fact (now known as the equivalence principle) Einstein
leapt to the spectacular inference that gravitation must originate, not in any property
of matter, but in spacetime itself. He eventually identified the relevant property of

Fig. 4 Hermann Minkowski
(1864–1909)
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spacetime as its curvature. This idea is the physical foundation of general relativity,
succinctly summarized by John Wheeler as: “Spacetime tells matter how to move;
matter tells spacetime how to curve.” But while the resulting theory has been very
successful, Einstein himself saw it as incomplete. In particular, he was unhappy
with its dualistic division of physical reality into “spacetime” and “matter,” describ-
ing these in 1936 as being like two wings of the same building, one made of “fine
marble . . . the other of low-grade wood.” In the 1956 edition of The Meaning of
Relativity, published in the year after his death, he still expressed the belief that this
distinction would prove to be a temporary one: “In reality space will probably be of a
uniform character and the present theory be valid only as a limiting case.” If indeed
matter and spacetime could be described as aspects of a single, unified field (as
many physicists still hope), the very philosophical distinction between “relational”
and “absolute” points of view might lose its meaning.

The second, more mathematical step toward general relativity was the search for
a way to describe the dynamics of curved spacetime in a way that would hold for
all observers–even accelerating ones–regardless of their choice of coordinates. By
contrast with the equivalence principle, this principle (known as general covari-
ance) did not arrive in a flash but required years of difficult slogging through the
forest of tensor analysis (Fig. 5). Einstein memorably described the goal of express-
ing physical laws without coordinates as “equivalent to describing thoughts without
words.”

Today it is commonplace to speak of equivalence and general covariance as the
two foundations of general relativity. In 1918, however, Einstein himself identified
a third, philosophical pillar of his theory: Mach’s principle. This characterization
is now widely regarded as wishful thinking. Einstein was undoubtedly inspired by
Mach’s relational views, and initially hoped that his new theory of gravitation would
“secure the relativization of inertia” by binding spacetime so tightly to matter that
one could not exist without the other. In fact, however, the equations of general
relativity are perfectly consistent with spacetimes that contain no matter at all. Flat
(Minkowski) spacetime is a trivial example, but empty spacetime can also be curved,
as demonstrated by Willem de Sitter in 1916. There are even spacetimes whose dis-
tant reaches rotate endlessly around the sky relative to an observer’s local inertial
frame, as demonstrated by Kurt Gödel in 1949. The bare existence of such solutions

Fig. 5 Albert Einstein in
1916



32 J. Overduin

in Einstein’s theory shows that it cannot be Machian in any strong sense; matter
and spacetime remain logically independent. The term “general relativity” is thus
something of a misnomer, as emphasized by Minkowski and others since. The the-
ory does not make spacetime more relational than it was in special relativity. Just
the opposite is true: the absolute space and time of Newton are retained. They are
merely amalgamated and endowed with a more flexible mathematical skeleton (the
metric tensor). When this became clear, Einstein’s interest in Mach faded, and he
wrote to a colleague in 1954: “As a matter of fact, one should no longer speak of
Mach’s principle at all.”

Nevertheless, Einstein’s theory of gravity represents a major swing back toward
the relational view of space and time, in that it answers the objection of the ancient
Stoics. Space and time do act on matter, by guiding the way it moves. And mat-
ter does act back on spacetime, by warping and twisting it. Perhaps nowhere is
this more strikingly illustrated than in the two effects Gravity Probe B is designed
to detect directly for the first time: the geodetic effect, in which curved spacetime
around the massive earth causes an orbiting gyroscope to precess about an axis
perpendicular to the plane of its motion; and the frame-dragging effect, in which
the rotating earth pulls spacetime around with it, twisting the gyroscope’s spin axis
along the equatorial plane (Fig. 6). In that sense, general relativity is indeed nearly
as relational as Mach might have wished. Some physicists, most notably Julian Bar-
bour, have asserted that general relativity is in fact perfectly Machian, at least for
closed (i.e. finite) spacetimes [7]. Key to this claim is the argument that allegedly
“un-Machian” empty spacetimes (like those of Minkowski and de Sitter) are ideal-
izations that do not take gravitational degrees of freedom into account. (The idea
that gravitational radiation is responsible for transmitting inertia between mutually
accelerated masses has been explored by Dennis Sciama [8], John Wheeler [9] and

Fig. 6 In Einstein’s theory of general relativity, spacetime acts on matter through its curvature,
causing the spin axis of a gyroscope in orbit around a large mass like the earth to “fall into” the
direction of travel (geodetic effect). Matter acts back on spacetime, not only by curving it, but also
by pulling spacetime with it, causing the spin axis of a gyroscope to precess in the direction of the
earth’s rotation (frame-dragging effect). Gravity Probe B is designed to detect both of these effects
directly and unambiguously for the first time
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others [10].) In the context of modern quantum field theory, the distinction between
absolute and relational views of spacetime breaks down as “empty space” becomes
populated not only by gravitational waves but also by matter in the form of virtual
particles, zero-point fields, etc. [11]. Within the classical world of Minkowski and
Einstein, however, the majority viewmight best be summed up as follows: spacetime
behaves relationally but exists absolutely.

3 Minkowski’s Legacy in Higher Dimensions

By uniting space and time in a common metrical framework Minkowski shattered
the prejudice, going back to the ancient Pythagoreans, that geometry applies only
to lengthlike quantities. He was the first to make such a proposal in the context of
a fully realized physical theory (special relativity) and it is entirely appropriate to
consider him the father of spacetime. Nevertheless there were intriguing precursors
for such a union before 1908, and these may have helped to prepare the conceptual
ground for the eventual acceptance of relativity theory.

Possibly the first to refer to time as a fourth dimensionwas the Frenchmathemati-
cian Jean d’Alembert, in an article in the Encyclopédie that he co-edited with Denis
Diderot in 1754. Mysteriously, d’Alembert attributed the idea to “an enlightened
man of my acquaintance” [12]. This unnamed source is thought to be the French-
Italian mathematician Joseph-Louis Lagrange, who though only 18 years old at the
time of the publication of the Encyclopédie, later observed in Theory of Analytical
Functions (1797) that with time as a fourth coordinate “one can regard mechanics
as four-dimensional geometry.”

The German philosopher Arthur Schopenhauer referred repeatedly to matter,
motion and causation as equivalent to the “union of space and time” in The World as
Will and Representation (1818). He was, however, not concerned with physics, but
rather with staking out a philosophical position relative to his predecessor Immanuel
Kant. By equating these concepts Schopenhauer aimed to reduce the number of
mental categories that Kant had argued were necessary for the mind to make sense
of experience. For both thinkers space and time were “united” mainly in the sense
that they existed more as forms of perception than as features of any external real-
ity. Schopenhauer in turn exerted tremendous influence on the composer Richard
Wagner, whose opera Parsifal (1877) contains this fascinating exchange between
two knights on their way to the temple of the holy grail: “I barely tread, yet seem
already to have come so far . . . You see, my son, time here becomes space.”1

1 Much scholarly ink has been spilt on this passage by Wagner; see for instance Hans Melderis’
Space-Time-Myth: Richard Wagner and modern science [14]. The composer’s debt to Kant and
Schopenhauer is suggested by a letter he wrote while working on Parsifal in 1860: “Since time
and space are merely our way of perceiving things, but otherwise have no reality, even the greatest
tragic pain must be explicable to those who are truly clear-sighted as no more than the error of the
individual” [13].
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Ideas of unifying space and time were not restricted to Europe, as evidenced by
this line from the prose poem Eureka (1848) by the American author Edgar Allan
Poe: “. . . the considerations through which, in this Essay, we have proceeded step
by step, enable us clearly and immediately to perceive that Space and Duration are
one.” This has sometimes been interpreted as a prophetic anticipation of relativity
theory,2 but it is likely that Poe was merely stressing in a literary way that the size
and age of the visible universe are correlated via the speed of light (a fact that he used
elsewhere in Eureka to present the germ of the first scientifically correct solution to
Olbers’ paradox in astronomy [16]).

A more mathematical precursor to the spacetime concept is found in the general-
izations of complex numbers known as quaternions, invented by the Irish physicist
and mathematician William Rowan Hamilton in 1843. The fact that these objects
consist of one real (scalar) component plus an imaginary (three-vector) component
led Hamilton to argue as follows: “Time is said to have only one dimension, and
space to have three dimensions . . . The mathematical quaternion partakes of both
these elements; in technical language it may be said to be ‘time plus space,’ or
‘space plus time’ ” [17]. But probably the most explicit anticipation of Minkowski
came from “S.,” an anonymous contributor to the British journal Nature in 1885,
who wrote: “. . . there is a new three-dimensional space for each successive instant
of time; and, by picturing to ourselves the aggregate formed by the successive posi-
tions in time-space of a given solid during a given time, we shall get the idea of a
four-dimensional solid . . . ” [18]. “S.” was likely the English mathematician James
Joseph Sylvester [19]. In the wake of articles such as this, the idea of time as a fourth
dimension seeped into public awareness, culminating in novels like H.G. Wells’ The
Time Machine (1895), whose hero opens the book by telling his listeners that “there
is no difference between Time and any of the three dimensions of Space except that
our consciousness moves along it.”3 One final illustration of the extent to which
spacetime was in the air prior to Minkowski’s pronouncement is the “New theory of
space and time” (1901) of Hungarian philosopherMenyhért Palágyi, in which space
and time were combined in a four-dimensional “flowing space” by means of mixed
coordinates x C i t; y C i t; z C i t [20].4

Minkowski’s 1908 geometrization of time via the relation x0 D ct was, of
course, physically motivated by Einstein’s successful union of Newtonian mechan-
ics and Maxwellian electromagnetism in the form of special relativity. Given our
present mania for further kinds of unification in higher dimensions, it is surprising
that more physicists have not taken Minkowski’s example to heart and attempted to
expand the domain of geometry beyond space and time.

2 Einstein was apparently familiar with Poe’s Eureka, referring to it in 1934 as “a beautiful
achievement of an unusually independent mind” [15].
3 Hubert Goenner [20] makes the interesting observation that Minkowski could have read Wells’
Time Machine, as it appeared in German translation in 1904.
4 After learning of Minkowski’s speech in 1908, Palágyi attempted unsuccessfully to claim priority
for the discovery of spacetime.
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Historically, the reluctance to consider new kinds of coordinates is a practical
one: we see no evidence for extra dimensions at experimentally accessible scales
of length, time and energy. The same objection applied in Minkowski’s day. The
reason why time and space appeared independent until 1908 is that the size of
the dimension-transposing constant “c” that converts one into the other is many
orders of magnitude larger than the characteristic speeds of everyday life. The main
effect of the new coordinate in four-dimensional (4D) special relativity is to multiply
familiar (non-relativistic) quantities by the factor

�4D D 1p
1 � .dx=c dt/2 : (1)

When dx=dt � c, as is true nearly everywhere on earth outside modern particle
accelerators, then �4D � 1 and spacetime looks like space.

Inspired by the unification of mechanics and electromagnetism in four dimen-
sions, the Finnish physicist Gunnar Nordström (1914) and the German mathemati-
cian Theodor Kaluza (1921) hit upon the idea of further unifying electromagnetism
and gravity by means of a fifth lengthlike coordinate x5 D ` (Fig. 7).5 Nordström’s
was a scalar theory of gravity that was soon proven incompatible with observation.
Kaluza’s, however, was a five-dimensional (5D) extension of Einstein’s tensor the-
ory. The resulting theory turned out to contain both standard general relativity and
Maxwell’s electromagnetism in four dimensions, a miracle that is nowadays under-
stood as arising from the fact that U(1) gauge invariance is “added onto” Einstein’s
theory in the guise of invariancewith respect to coordinate transformations along the
extra dimension. To explain why this new coordinate is not seen in nature, Kaluza
imposed a “cylinder condition” whereby 4D physics is essentially independent of `
by fiat. The Swedish physicist Oskar Klein (1926) showed that this independence
could arise in a more natural way if the new coordinate had a circular topology

Fig. 7 First to consider extending Minkowski’s spacetime with a fifth dimension: Gunnar
Nordström (left), Theodor Kaluza (center) and Oskar Klein (right)

5 The superscript “4” is generally reserved for an imaginary version of Minkowski’s fourth coor-
dinate x0, written as x4 D ict , which allows the metric of flat Minkowski space to be written in
Euclidean form.
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and a compact scale (below � 10�18 cm). Compactified Kaluza-Klein theory was
picked up by Einstein and Bergmann (1938), Jordan (1947) and others, and eventu-
ally re-emerged as the basis for nearly all higher-dimensional unified theories today,
including string and M-theory [21].

However, while it has been immensely influential, Nordström, Kaluza andKlein’s
idea is less radical than Minkowski’s in that the proposed new coordinate shares the
lengthlike character of ordinary three-space. Philosophically, this represents a return
to the Pythagorean prejudice that geometry should deal only in quantities that can
be measured with a meter-stick. Others have been bolder. The remainder of this sec-
tion is intended as a brief and undoubtedly incomplete introduction to some of the
non-lengthlike coordinates that have been considered in the literature. Among the
earliest such proposals were those of W. Band (1939) and O. Hara (1959) relating
x5 to particle spin [22, 23], and that of Y.B. Rumer, who proposed in 1949 a fifth
coordinate based on action via x5 D S=mc [24]. Rumer applied this idea to what
he termed “5-optics” and imposed a restriction (called the “requirement of physical
admissibility”) similar to Kaluza’s cylinder condition [25]. Related work has been
done more recently by Yu and Andreev [26].

At its most fundamental, physics deals with dimensions of length [L], time [T]
and mass [M], so the most natural choice for a new “post-Minkowskian” coor-
dinate is arguably one related to mass via either x5 D Gm=c2 or x5 D h=mc.
Newton’s gravitational constant G (or alternatively Planck’s constant h) is thereby
promoted to the same dimension-transposing role as “c” in 4D special relativity.
This proposal is most closely associated with P.S. Wesson and his collaborators
beginning in 1983 [27, 28], though related ideas were discussed as early as 1967
by de Vos and Hilgevoord [29] and 1974 by Edmonds [30, 31].6 In the context
of non-compactified or Space-Time-Matter (STM) theory, where Kaluza’s cylinder
condition is relaxed in principle, the identification of x5 with rest mass is suggested
by several lines of argument including the fact that the 4D relativistic energy-
momentum relation p˛p˛ D E2 � c2p2 D m2c4 reduces simply to pApA D 0

in 5D (where ˛ D 0; 1; 2; 3 and A D 0; 1; 2; 3; 5); and that the 4D free-particle
action principle ı.

R
mds/ D 0 is contained in the simpler 5D one ı.

R
dS/ D 0

(where ds2 D g˛ˇdx
˛dxˇ and dS2 D gABdx

AdxB ) [21, 33, 34]. The size of
the dimension-transposing constantG=c2 provides a natural explanation for the fact
that no mass-like fifth dimension has yet been detected. “Velocity” along such a
direction means varying rest mass, and the 5D generalization of (1) reads:

�5D D 1p
1 � .1=c2/.dx=dt/2 ˙ .G2=c6/.dm=dt/2

: (2)

The factor 1=c2 is already small enough that time was not recognized as part of
space until 1908. The factor G2=c6 is so much smaller yet (by 54 orders of magni-

6 The idea that x5 might be related to mass has also been independently attributed to M.A. Neacsu
in 1981 [32].
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tude in SI units) that it is no surprise that possible variation in, say, the rest masses
of elementary particles has yet to be observed. Such variation, if it exists, likely
takes place on cosmological scales. STM theory is consistent with the classical tests
of general relativity in the solar system as well as cosmological and other experi-
mental data [35–37]. The status of mass as a fifth coordinate has been most recently
reviewed by Wesson in 2003 [38].

Additional timelike dimensions in the context of Kaluza-Klein theory lead to the
wrong sign for the Maxwell action, and to the appearance of tachyons (negative-
mass eigenstates) in the theory. More generally, extra temporal dimensions raise the
specter of causality violation via closed timelike curves (CTCs). For these reasons
few physicists have taken Minkowski’s example literally enough to posit additional
coordinates with the dimensions of time (i.e., x5 D c�). The earliest such proposal
may be that of A.D. Sakharov in 1984 [39]. Sakharov considered even numbers
of additional compact time dimensions and argued that causality could be pre-
served for macroscopic processes if the radius of compactification were suitably
small. This work was further developed by Aref’eva and Volovich [40]. Other “two-
time” theories have been propounded by Burakovsky and Horwitz [41], Bars and
Kounnas [42], Wesson [43], Kociński and Wierzbicki [44], Erdem and Ün [45] and
Quiros [46].

Other ways of extending Minkowski’s four-dimensional spacetime have been
considered as well. Fukui [47] studied the possibility of extra coordinates propor-
tional to both mass and charge via x5 D p

G=c4 q. Such an identification goes
somewhat against the spirit of Kaluza’s original theory, in which electric charge
arises in the form of momentum along x5 D `. M. Carmeli, in his theory of
cosmological special relativity [48], proposed a fifth coordinate proportional to cos-
mological recession velocity via x5 D v=H , where H DHubble’s constant (the
expansion rate of the universe). The resulting theory is intended to supplant general
relativity on cosmological scales where, for example, it has been claimed to pre-
dict cosmic acceleration [49] and obviate the need for dark matter [50]. Additional
kinds of “post-Minkowskian” coordinates have been explored by Redington [32],
Matute [51] and Delbourgo [52] and others.

It is too early to say whether any of these candidate coordinates will eventually
prove to be as useful as Minkowski’s in unifying the laws of physics. If and when
that happens, we may find ourselves amending his speech of 100 years ago only
slightly so that, for instance: “Space and time by themselves, and mass by itself , are
doomed to fade away into mere shadows, and ony a kind of union of the three will
preserve an independent reality.”

4 Experimental Tests: An Unfinished Job

General relativity, based on a flexible and animated version of Minkowski’s four-
dimensional spacetime, has survived over 90 years of experimental test. Neverthe-
less there are at least four good reasons to think that the theory is incomplete and
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must be overthrown just as Newton’s was. First, general relativity predicts its own
demise; it breaks down in singularities, regions where the curvature of spacetime
becomes infinite and the field equations can no longer be applied. These cannot be
dismissed as mere academic curiosities, because they do apparently occur in the real
universe if general relativity holds. Theoretical work by S. Hawking, R. Penrose and
others has proven that singularities must form within a finite time (the universe is
necessarily “geodesically incomplete”), given only very generic assumptions such
as the positivity of energy. Two places where we expect to find them are at the big
bang, and inside black holes like the one at the center of the Milky Way. If we are
to fully understand these phenomena, then general relativity must be modified or
extended in some way.

Second, there is the question of cosmology. Under the reasonable assumptions
that the universe on large scales is homogeneous and isotropic (the same in all
places and in all directions), as implied by observation in combination with the
Copernican principle, general relativity has led to a cosmological theory known as
the big bang theory. This theory has had some spectacular successes; for instance,
the prediction of the cosmic microwave background radiation, the calculation of the
abundances of light elements, and a basis for understanding the origin of structure
in the universe. It also has some weaknesses, notably involving finely tuned ini-
tial conditions (the “flatness” and “horizon problems”). More troublingly, in recent
decades it has become impossible to match the predictions of big-bang cosmology
with observation unless the thin density of matter observed in the universe (i.e. that
which can be seen by emission or absorption of light, or inferred from consistency
with light-element synthesis) is supplemented by much larger amounts of unseen
dark matter and dark energy that cannot consist of anything in the standard model
of particle physics. The observations are quite clear: the required exotic dark matter
has a density some five times that of standard-model matter, and the required dark
energy has an energy density some three times greater still. To date, there is no direct
experimental evidence for the existence of either component, and there are strong
theoretical reasons (the “cosmological constant problem”) to be suspicious of dark
energy in particular. There is also no convincing explanation of why two new and
as-yet unobserved forms of matter-energy should be so closely matched in energy
density (the “coincidence problem”). While the majority of cosmologists seem pre-
pared to accept both dark matter and dark energy as necessary, if inelegant facts of
life, others are beginning to interpret them as possible evidence of a breakdown of
general relativity at large distances and/or small accelerations.

Third, existing tests of general relativity have been restricted to weak gravita-
tional fields (or arguably moderate ones in the case of the binary pulsar). Major
surprises in this regime would have been surprising, since Einstein’s theory goes
over to Newton’s in the weak-field limit, and we know that Newtonian gravity works
reasonably well. But surprises are quite possible, and even likely, in the strong-field
regime, where we hope to see hints about the ways in which general relativity must
be modified in order to unify it with the other forces of nature.

Fourth, Einstein’s theory as it stands is incompatible with the rest of physics (i.e.
the “standard model” based on quantum field theory). The problem stems from the
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fact that the gravitational field carries energy and thus “attracts itself” (by contrast
the electromagnetic field, for example, carries no charge). In field-theory language,
the quantization of gravity requires an infinite number of renormalization param-
eters. It is widely believed that our present theories of gravity and/or the other
interactions are only approximate “effective field theories” that will eventually be
seen as limiting cases of a unified theory in which all four forces become compa-
rable in strength at very high energies. But there is no consensus as to whether it is
general relativity or particle physics–or both–that must be modified, let alone how.
Experimental input may be our only guide to unification.

Gravitational experiments can be divided into two kinds: those that test fun-
damental principles, and those that test individual theories (including general rel-
ativity). The fundamental principles include such basic axioms as local position
invariance (or LPI; the outcome of any experiment should be independent of where
or when it is performed) and local Lorentz invariance (or LLI; the outcome of any
experiment should be independent of the velocity of the freely-falling reference
frame in which it is performed). The fundamental principle of most direct physi-
cal relevance to general relativity is the equivalence principle, which predicts that
different test bodies should accelerate the same way in the same gravitational field,
independent of their mass or internal structure, provided they are small enough not
to disturb the environment or to be affected by tidal forces. The approximate validity
of this statement has been known to some since at least the sixth century, when John
Philoponous noted in a critique of Aristotle that “the ratio of the times of fall of
the bodies does not depend on the ratio of their weights.” It is most famously asso-
ciated with Galileo at the leaning tower of Pisa. Historians of science are divided
on whether that particular event actually took place, and similar ones were reported
decades earlier by other people such as the Flemish engineer Simon Stevin in 1586.
However, Galileo was the first to understand the significance of the measurement,
and pushed it further by using a variety of different materials including gold, lead,
copper and stone. He also refined the experiment by rolling his test masses down
inclined tables and eventually by using pendulums.

Many people have improved on these tests since, most notably Newton and
Loránd Eötvös. Newton refined Galileo’s pendulumexperiments, and brilliantly per-
ceived that celestial bodies could also serve as test masses (he checked that the earth
and moon, as well as Jupiter and its satellites, fall at the same rate toward the sun).
This idea was reintroduced as a test of the equivalence principle by K. Nordtvedt
in the 1970s, and is now applied together with laser ranging to the moon to set an
upper limit on any difference in lunar and terrestrial accelerations toward the sun
at less than three parts in 1013 (this is particularly significant because the earth has
a nickel-iron core while the moon is largely composed of silicates). Eötvös pio-
neered the use of the torsion balance, enabling a six-order-of-magnitude advance
in sensitivity over pendulum tests. Torsion balances are still the basis for the best
equivalence-principle tests today; these limit any difference between the accelera-
tions of different kinds of test masses in the gravitational field of the sun (or in a
component of the field of the earth) to less than two parts in 1013.
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Fig. 8 The proposed Satellite Test of the Equivalence Principle (STEP)

It may be possible to reach even higher accuracy in the future through the use of
laser atom interferometry to measure the rates of fall of isotopes of the same element
with slightly different atomic weight. In general, however, gravitational experiments
on earth are subject to inherent limitations due to factors such as seismic noise,
and it is likely that further significant increases in precision will require going into
space. One such proposal, the Satellite Test of the Equivalence Principle (STEP),
is currently under development at Stanford University (Fig. 8). STEP is conceptu-
ally a return to Galileo’s free-fall method, but one in which pairs of test masses are
continuously “dropped” inside an orbiting spacecraft, allowing for a longer integra-
tion time and a periodic rather than quadratic signal. It inherits key technologies
from Gravity Probe B, including drag-free control and a cryogenic readout system.
STEP’s design sensitivity of one part in 1018 would make it a true test, not only of
the foundation of general relativity, but also of theories that attempt to unify gravity
with the standard model of particle physics [53].

The “three classical tests” of general relativity were historically inaugurated by
Einstein’s derivation of gravitational redshift. In fact, this effect follows from the
equivalence principle alone, so it is not a test of general relativity per se and is
more properly grouped with the fundamental tests. (Some have called it the “half”
in Einstein’s “two and a half classical tests.”) A clock in a gravitational field is,
by the equivalence principle, indistinguishable from an identical one in an acceler-
ated frame of reference. The gravitational redshift is thus equivalent to a Doppler
shift between two accelerating frames. The most precise measurement of this shift
to date was carried out by R. Vessot and M. Levine in 1976 (Fig. 9). Known as
Gravity Probe A, their experiment compared a hydrogen maser clock on earth to an
identical one in orbit at about 10,000km and confirmed expectations based on the
equivalence principle to an accuracy of 0.02%. The modern-day Global Positioning
System (GPS) also functions as a de facto confirmation of gravitational redshift.
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Fig. 9 Robert Vessot and
Martin Levine with the
Gravity Probe A payload
(1976)

GPS satellites must coordinate their time signals to about 30 ns in order to reach
their specified civilian accuracy of about 10m. This required precision in time is
more than a thousand times smaller than the discrepancy between clocks on the
surface and those aboard GPS satellites due to gravitational redshift, which must
consequently be correct to at least 0.1% for GPS trackers to work.

The first true “classical test” of general relativity came with its successful expla-
nation of the anomalous perihelion shift of the planet Mercury (the rate at which
its orbit slews around the sun, as measured by its point of closest approach). This
effect (along with most of the other gravitational tests) is now described in terms
of a formalism invented by A. Eddington and later developed by K. Nordtvedt and
C. Will into what is known as the Parametrized Post-Newtonian (PPN) framework.
Here, weak, spherically-symmetric gravitational fields like that around the sun are
modeled with two parameters � (describing the warping of space) and ˇ (describ-
ing the warping of time, or the nonlinearity of the theory). General relativity predicts
that ˇ and � are both equal to one, and most of the experimental tests effectively
place upper limits on jˇ � 1j and/or j� � 1j. Mercury’s anomalous perihelion shift
is proportional to .2C 2� � ˇ/=3, which is equal to one in general relativity. Initial
measurements relied on optical telescopes; modern ones are based on radar data and
constrain any departure from general relativity to less than 0.3%. An important early
source of systematic error came from uncertainty in solar oblateness (quadrupole
moment), but this has now been well constrained from helioseismology. Perihelion
shift has also been observed using radio telescopes in distant binary pulsar systems,
where it is known as periastron shift.

Perihelion shift led to the rapid acceptance of general relativity among Einstein’s
peers but light deflection, the last of the three classical tests, brought him public
fame. He had already found in 1911 that the equivalence principle implies some light
deflection, since a beam of light sent horizontally across a room will appear to bend
toward the floor if the room is accelerating upwards. In 1915, however, Einstein
realized that space curvature doubles the size of the effect, and that it might be
possible to detect it by observing the bending of light from background stars around
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the sun during a solar eclipse. Teams led by Eddington and A. Crommelin were
able to confirm this prediction to an accuracy of about 30% during the eclipse of
May 1919. The light deflection angle is proportional to .1C �/=2, which is equal to
one in general relativity. Constraints on � from optical telescopes were superseded
in the 1960s by the use of linked arrays of radio telescopes (Very Long-Baseline
Interferometry or VLBI) to measure the deflection around the sun of radio waves
from distant quasars. By 1995 these observations had confirmed general relativity to
an accuracy of 0.04%. In cosmology, light deflection (better known as gravitational
lensing) is used to weigh dark matter, measure the expansion rate of the universe
and even function as a cosmic “magnifying glass” to bring the faintest and most
distant objects into closer view.

The space age made possible what is sometimes known as a “fourth classical
test” based on the time delay of light signals in a gravitational field. I.I. Shapiro
realized in 1964 that if general relativity was correct, then a light signal sent past
the sun to a planet or spacecraft would be slowed in the sun’s gravitational field by
an amount proportional to the light-bending factor, .1C �/=2, and that it would be
possible to measure this effect if the signal were reflected back to earth. Typical time
delays are on the order of several hundred microseconds. Passive radar reflections
from Mercury and Mars were consistent with general relativity to an accuracy of
about 5%. Use of the Viking Mars lander as an active radar retransmitter in 1976
confirmed Einstein’s theory at the 0.1% level. The most precise of all time delay
experiments to date has involved Doppler tracking of the Cassini spacecraft on its
way to Saturn in 2003; this limits any deviations from general relativity to less than
0.002%–the most stringent test of Einstein’s theory so far.

Radio astronomy provided a fifth test in the form of the binary pulsar. Gen-
eral relativity predicts that a non-spherically-symmetric system (such as a pair of
masses in orbit around each other) will lose energy through the emission of gravita-
tional waves. While these waves themselves have not yet been detected directly, the
loss of energy has. The evidence comes from binary systems containing at least one
pulsar. Pulsars are rapidly rotating neutron stars that emit regular radio pulses from
their magnetic poles. These pulses can be used to reconstruct the pulsar’s orbital
motions. The fact that these objects are neutron stars makes them particularly valu-
able as experimental probes because their gravitational fields are much stronger than
those of the sun (thus providing arguably “moderate-field” tests of general relativ-
ity, if not strong-field in the sense that Gm=c2r � 1). The first binary pulsar was
discovered by R.A. Hulse and J.H. Taylor in 1974. Timing measurements produce
three constraints on the two unknown masses plus one more quantity; when applied
to the general-relativistic energy loss formula, the results are consistent at the 0.2%
level. Several other relativistic binary systems have since been discovered, including
one whose orbital plane is seen almost edge-on and another in which the companion
is probably a white dwarf rather than a neutron star. Most compelling is a double
pulsar system, in which radio pulses are detected from both stars. This imposes
six constraints on the two unknown masses and allows for four independent tests
of general relativity. The fact that all four are mutually consistent is itself impres-
sive confirmation of the theory. After two and a half years of observation, the most
precise of these tests (time delay) verifies Einstein’s theory to within 0.05%.



The Experimental Verdict on Spacetime from Gravity Probe B 43

The perihelion-shift, light-deflection and time-delay tests firmly establish the
validity of general relativity in the slow-velocity, weak-field limit within the solar
system. The binary pulsar provides extra-solar confirmation of these tests and also
goes some way toward extending them into the “moderate-field” regime. But there
is, as yet, little accurate confirmation of Einstein’s theory for strong fields such as
those found near neutron-star surfaces or black-hole horizons, or over distances on
the scale of the galaxy or larger. Both these difficulties may be addressed by exper-
imental efforts aimed at the direct detection of gravitational waves. Most of these
efforts employ interferometers to measure the difference in displacement between
the lengths of two perpendicular “arms” as they are alternately stretched and com-
pressed by the waves’ passage. No gravitational waves have been detected to date.
This null result does not yet impose a meaningful constraint on general relativity
because of the astrophysical uncertainties inherent in predicting the strength and
number of gravitational wave sources in the universe, as well as the computational
challenges in modeling the characteristics of the expected signals. The strongest lim-
its so far, from the Laser Interferometry Gravity-wave Observatory (LIGO), imply
that the most frequent source events (binary neutron-star mergers) occur no more
than approximately once per year per galaxy. The best theoretical estimates imply
that they would not be expected more than once per 104 � 105 years per galaxy. An
upgraded version of LIGO (Advanced LIGO) is currently under construction with
at least ten times the initial sensitivity.

Ground-based detectors are sensitive primarily to the high-frequency gravita-
tional waves produced by transient phenomena (explosions, collisions, inspiraling
binaries). A complementary Laser Interferometer Space Antenna (LISA) is being
planned jointly by NASA and ESA; this will use a trio of spacecraft arranged in
an equilateral triangle with 5 million km-long arms to look for lower-frequency
waves from quasi-periodic sources, like compact objects well before coalescence
and mergers between the supermassive black holes thought to lie at the centers of
galaxies. LISA will rely crucially on the drag-free technology proven by Gravity
Probe B. If successful, it will go a long way toward confirming the validity of general
relativity, not only for strong fields but also throughout the universe.

5 The Geodetic and Frame-Dragging Effects

There is one other regime in which general relativity has been poorly tested to date:
spin. Einstein’s theory predicts that the spin axis of a rotating test body will precess
in a gravitational field (geodetic effect), and that it will undergo an additional preces-
sion if the source of the gravitational field is itself rotating (frame-dragging effect).
These phenomena might be termed the sixth and seventh tests of general relativity.
Gravity Probe B is designed to confirm or disprove them directly and unambigu-
ously for the first time. However, it is important to note that the significance of
these effects goes beyond testing Einstein’s theory. The question of spin is partic-
ularly important from a fundamental point of view, because it is the intrinsic spin
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of elementary particles that poses one of the greatest obstacles to the geometriza-
tion of standard-model fields via higher spacetime dimensions, the most promising
route to unification of these fields with gravity. Thus Nobel prizewinner C.N. Yang
commented in 1983 that, general relativity, “though profoundly beautiful, is likely
to be amended . . . whatever [the] new geometrical symmetry will be, it is likely
to entangle with spin and rotation, which are related to a deep geometrical concept
called torsion . . . The proposed Stanford experiment [Gravity Probe B] is especially
interesting since it focuses on the spin. I would not be surprised at all if it gives a
result in disagreement with Einstein’s theory.”

The physical content of both the geodetic and frame-dragging effects can be
understood in terms of analogies with electromagnetism. (Such analogies go back to
Michael Faraday’s experiments with “gravitational induction” beginning in 1849.)
When gravitational fields are weak and velocities are low compared to c, then it
becomes feasible to perform a “3C1 split” and decompose 4D spacetime into a
scalar or 0-dimensional “time–time” component, a vector or 1-dimensional “time-
space” component and a tensor or 2-dimensional “space–space” component. If
one calls the scalar component a “gravito-electric potential” and the vector one
a “gravito-magnetic potential,” then the “gravito-electric field” g and “gravito-
magnetic field” H constructed in the usual way from the divergence and curl of
these potentials turn out to obey equations that are nearly identical to Maxwell’s
equations and the Lorentz force law of ordinary electrodynamics. Based on this
analogy, the geodetic and frame-dragging effects are sometimes referred to as
“gravito-electricity” and “gravito-magnetism” respectively. However, such an iden-
tification must be used with care because the distinction between gravito-electricity
and gravito-magnetism depends on the frame in which it is observed, just like its
counterpart in Maxwell’s theory. This means that observers using different coor-
dinate systems as, for example, one centered on the earth and another on the
barycenter of the solar system, may disagree on the relative size of the effects they
are discussing.

It is possible to argue that these effects have already been observed indirectly
in the solar system, since gravito-electromagnetic fields are a necessary manifes-
tation of Einstein’s gravitational field in the low-velocity, weak-field limit, and the
validity of general relativity is now routinely assumed in, for instance, updating the
ephemeris of planetary positions. In this sense, it would be surprising if an exper-
iment like Gravity Probe B, which is designed to observe gravito-electromagnetic
effects directly, did not see them. Such a result would suggest that general relativ-
ity needs to be extended or modified in some way such that terms involved in the
geodetic and/or frame-dragging effects are strongly affected while leaving predic-
tions for other post-Newtonian effects unchanged. Nevertheless, surprises do occur
in science, and a surprise here would have major implications for unification of
gravity with the rest of physics. On such fundamental questions, history has shown
that there is no substitute for the direct test.

Symmetry considerations dictate that the earth’s gravito-electric field must be
radial and its gravito-magnetic one dipolar (Fig. 10). From these facts one can
immediately write down the precessions due to the geodetic effect .˝g/ and
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Fig. 10 The earth’s radial gravito-electric field (left) and dipolar gravito-magnetic field (right)

frame-dragging effect .˝ fd/ by referring to standard formulae governing the motion
of a test charge in an external electromagnetic field, and replacing the electric and
magnetic fields by g andH respectively. The result is:

˝GR D ˝g C˝ fd D 3GM

2c 2r3
.r � v/C GI

c 2r3

�
3r

r2
.S � r /� S

�
; (3)

where M , I and S refer to the mass, moment of inertia and angular momentum
of the central body and r and v are the radial position and instantaneous velocity
of the test body. Equation (3) is sometimes referred to as the Schiff formula after
Leonard I. Schiff, who derived it in 1959.

The geodetic or r � v term in (3) arises from the way that angular momentum
is transported through a gravitational field. Einstein’s Dutch friend and colleague
Willem de Sitter (1872–1934; Fig. 11) began to study this problem in 1916 when
general relativity was less than a year old. He found that the orbital angular momen-
tum of the earth-moon system precesses in the field of the sun, a special case
now referred to as the de Sitter or “solar geodetic” effect (although “heliodetic”
might be more descriptive). De Sitter’s calculation was extended to the spin angular
momentum of rotating test bodies by two of his countrymen: in 1918 by the math-
ematician Jan Schouten (1883–1971) and in 1920 by the physicist and musician
Adriaan Fokker (1887–1972). Eddington brought these results to the attention of
the wider community in The Mathematical Theory of Relativity (1923), writing that
“If the earth’s rotation could be accurately measured . . . by gyrostatic experiments,
the result would differ from the rotation relative to the fixed stars.” This was the
germ of the idea that would eventually grow into Gravity Probe B.

In the framework of the gravito-electromagnetic analogy, the geodetic effect can
be seen partly as a spin-orbit interaction between the spin of the gyroscope and the
“mass current” of the rotating earth. This is the analog of Thomas precession in elec-
tromagnetism, where the electron experiences an induced magnetic field due to the
apparent motion of the nucleus around it (in its rest frame). In the gravitomagnetic
case, the gyroscope “feels” the massive earth orbiting around it (in its rest frame) and
experiences an induced gravito-magnetic torque, causing its spin vector to precess.
This spin-orbit interaction accounts for one third of the total geodetic precession; the
other two thirds arise due to space curvature alone and cannot be easily interpreted
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Fig. 11 Discoverers of the geodetic effect in general relativity: Willem de Sitter (left), Jan
Schouten (center) and Adriaan Fokker (right)

gravito-electromagnetically. They can however be easily understood geometrically
(Fig. 12). The gyroscope’s spin vector remains always perpendicular to its plane of
motion (arrows), and in flat space its direction remains constant as the gyroscope
completes an orbit (left). If, however, space is folded into a cone to simulate the
effect of curvature, then part of the area of the circle (shaded) must be removed
and the gyroscope’s spin vector no longer lines up with itself after one making one
complete circuit (right). The angle between the spin vectors “before” and “after”
produces the other two thirds of the geodetic effect. In the case of Gravity Probe B
this is sometimes referred to as the phenomenon of the “missing inch” because
space curvature shortens the circumference of the spacecraft’s orbital path around
the earth by 1.1 in. In polar orbit at an altitude of 642 km the total geodetic effect
(comprising both the spin-orbit and space curvature effects) causes a gyroscope’s
spin axis to precess in the north-south direction by 6,606 milliarcseconds over the
course of a year–an angle so small that it is comparable to the average angular size
of the planet Mercury as seen from earth.

Experimental limits on geodetic precession place new constraints on a broad
class of alternatives to Einstein’s theory of gravity known as “metric theories”
(loosely speaking, theories that differ from Einstein’s but still respect the equiva-
lence principle). These are characterized by the PPN parametersˇ and � , both equal
to one in general relativity [55]. The geodetic effect is proportional to .1 C 2�/=3,
so an experimental detection translates directly into a constraint on � . It also probes
other kinds of “generalizations of general relativity” such as those involving extra
spacetime dimensions [35], scalar fields [56], torsion [57, 58] and violations of
Lorentz invariance, the conceptual foundation of special relativity [59, 60].

The frame-dragging or S -dependent term in (3) is smaller in magnitude than
the geodetic one, but reveals more clearly the Machian aspect of Einstein’s theory.
In fact, it is curious that Einstein did not discover this effect himself, given that
he had explicitly looked for dragging phenomena in his earlier attempts at gravita-
tional field theories, and that he still attached enough importance to Mach’s principle
to refer to it as a pillar of general relativity in 1918. For whatever reason, frame-
dragging within general relativity was first discussed that same year by Austrian
physicists Hans Thirring (Fig. 13; 1888–1976) and Josef Lense (1890–1985); it is
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Fig. 12 Geodetic precession and the “missing inch”

often referred to as the Lense-Thirring effect. Thirring originally approached this
problem as an experimentalist; he hoped to look for Mach-type dragging effects
inside a massive rotating cylinder. Unable to raise the necessary financing, he reluc-
tantly settled down to solve the problem theoretically instead [61]. It is his second
calculation (with Lense) involving the field outside a slowly rotating solid sphere
that forms the basis for modern gyroscopic tests. But both his results are “Machian”
in the sense that the inertial reference frame of the test particle is influenced by the
motion of the larger mass (the cylinder or sphere). This is completely unlike New-
tonian dynamics, where local inertia arises entirely due to motion with respect to
“absolute space” and is unaffected by the distribution of matter.

In terms of the gravito-electromagnetic analogy, frame-dragging is a manifes-
tation of the spin–spin interaction between the test body and central mass. It is
analogous to the interaction of a magnetic dipole � with a magnetic field B (the
basis of nuclear Magnetic Resonance Imaging or MRI). Just as a torque��B acts
in the magnetic case, so a test body with spin s experiences a torque proportional to
s � H in the gravitational case. In the case of Gravity Probe B, this torque causes
the gyroscope spin axes to precess in the east-west direction by 39 milliarcseconds
per year–an angle so tiny that it is equivalent to the average angular width of the
dwarf planet Pluto as seen from earth.

The orbital plane of an artificial satellite is also a kind of “gyroscope” whose
nodes (the points where it intersects a reference plane) will exhibit a similar frame-
dragging precession (the de Sitter effect). Such an effect has been reported in the
case of the earth-orbiting Laser Geodynamic Satellites (LAGEOS and LAGEOS II)
by Ignazio Ciufolini and colleagues using laser ranging [62, 63]. This method of
looking for frame-dragging is elegant and complementary to the more direct gyro-
scopic test. It is not definitive on its own because the general-relativistic effect
(31 milliarcseconds per year at the LAGEOS altitude of 59,000km) is swamped
by Newtonian contributions that are as much as a billion times larger. To model or
otherwise remove these terms necessarily involves systematic uncertainties whose
magnitude is still a subject of debate [64–66].

In principle, frame-dragging imposes another new constraint on alternative met-
ric theories of gravity. Lense-Thirring precession is proportional to the combination
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Fig. 13 Discoverers of the
frame-dragging effect in
general relativity: Josef Lense
(left) and Hans Thirring
(right)

of PPN parameters .�C1C˛1=4/=2where � describes the warping of space and ˛1
is a “preferred-frame” parameter that allows for a possible dependence on motion
relative to the rest frame of the universe, taking the value zero in general relativity
[55]. In practice, frame-dragging in the solar system is so weak that the experimen-
tal bounds it places on these parameters are not likely to be competitive with those
from other tests. Seen purely as a testbed for distinguishing between alternative the-
ories of gravity, therefore, frame-dragging has sometimes been dismissed as being
of little practical interest.

That way of thinking has largely disappeared with the realization that frame-
dragging takes on its true importance in the strong-field and cosmological regimes.
Astrophysicists now invoke gravitomagnetism as the engine and alignment mech-
anism for the vast jets of gas and magnetic field ejected from quasars and galactic
nuclei like the radio source NGC 6251 (Fig. 14, left). These jets are generated by
compact objects at the centers of galactic nuclei that are almost certainly supermas-
sive black holes (right). The megaparsec length scale of the jets implies that their
direction is held constant over time scales as long as tens of millions of years. This
can only be accomplished by the gyroscopic spin of the black hole, and the only
way the direction of that spin can be communicated to the jet is via the black hole’s
gravitomagnetic field H [54]. The field causes the accretion disk to precess around
the black hole, and that precession combines with the disk’s viscosity to drive the
inner region of the disk into the hole’s equatorial plane, gradually forcing the jets
to align with the north and south poles of the black hole. This phenomenon, known
as the Bardeen-Petterson effect, is widely believed to be the physical mechanism
responsible for jet alignment.

Gravitomagnetism is also thought to lie behind the generation of the astounding
energy contained in these jets in the first place. The event horizon of the black hole
can act like a gigantic “battery” where the gravitomagnetic potential of the black
hole interacts with the tangential component of the ordinary magnetic field B to
produce a drop in electric potential [54]. This phenomenon, known as the Blandford-
Znajek mechanism, effectively converts the immense gravitomagnetic, rotational
energy of the supermassive black hole into an outgoing stream of ultra-relativistic
charged particles. Gravity Probe B has thus become a test of the mechanism that
powers the most violent explosions in the universe.
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Fig. 14 Megaparsec-scale jet associated with the strong radio source NGC 6251 (left); such jets
are now thought to be aligned and powered by the gravitomagnetic fields of rotating supermassive
black holes (right)

It is on cosmological scales, however, that frame-dragging may take on its deep-
est significance, as part of the explanation for the origin of inertia. Consider the
earth’s equatorial bulge. Textbooks teach us that this phenomenon is due to rotation
with respect to the “inertial frame” in which the universe as a whole happens to be
at rest (Fig. 15, left). But what if it were the earth that stood still, and the rest of
the universe that rotated (right)? Would the equator still bulge? Newton would have
said “No.” For him, inertial frames were tied ineluctably to absolute space which
“in its own nature, without relation to anything external, remains always similar and
immoveable.” We know that the concept of absolute space (time) is retained in gen-
eral relativity, so we might have expected that the same answer would carry over to
Einstein’s theory as well. However, it does not. As demonstrated by Thirring in his
original calculation of 1918, and amplified by many others since, general-relativistic
frame-dragging goes over to “perfect dragging” when the dimensions of the large
mass become cosmological. That is, if the entire universe were to rotate, it would
drag the inertial frame of the earth around with it. On this basis, Einstein would have
had to answer “Yes” to the question posed above. In this respect general relativity
is indeed more relativistic than its predecessors, as Mach would have wished. Early
calculations were flawed in many ways, but the phenomenon of perfect dragging has
persisted through a series of increasingly sophisticated treatments, notably those of
Sciama [8], Brill and Cohen [67,68], Lindblom and Brill [69], Pfister and Braun [70]
and Klein [71,72]. Pfister sums up the situation as follows [61]: “AlthoughEinstein’s
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Fig. 15 Would the earth still
bulge, if it were standing still
and the rest of the universe
were rotating around it?
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theory of gravity does not, despite its name ’general relativity,’ yet fulfil Mach’s
postulate of a description of nature with only relative concepts, it is quite successful
in providing an intimate connection between inertial properties and matter, at least
in a class of not too unrealistic models for our universe.” The apparently instan-
taneous nature of the connection is particularly mysterious. Much remains to be
learned. What is clear, however, is that direct detection of frame-dragging by Grav-
ity Probe B will do much to give us confidence in what has been a largely theoretical
enterprise to date; namely, to understand how a relational explanation for inertia may
be possible within a theory of absolute spacetime.

6 Gravity Probe B

The English physicist P.M.S. Blackett reportedly considered the idea of looking for
the de Sitter effect with a laboratory gyroscope as early as the 1930s [73]. The
smallness of the signal, however, put such an experiment far out of reach until after
post-World War II improvements in gyroscope technology and the dawning of the
space age. To measure a yearly precession of order 10 milliarcseconds to 1% accu-
racy requires a gyroscope with drift rate less than 10�18 rad/s. On earth, where (for
instance) density inhomogeneities contribute to this drift rate with the full force of
the earth’s gravitational acceleration a � g, the gyro rotor would have to be homo-
geneous to a part in �1017–a hopelessly unattainable number. A similar argument
holds for rotor asphericity. The only way around such fundamental limitations is to
go into space, where unwanted accelerations can be suppressed–with a great deal
of work–so that a�10�11g. The rotor need then be homogeneous, for example, to
“only” one part in �106, a level that can be achieved, with great effort, using the
best materials on earth [73].

Considerations of this kind led two American physicists to take a new look at
gyroscopic tests of general relativity independently within months of each other in
late 1959 and early 1960. George E. Pugh (b. 1928; Fig. 16) was spurred by a talk
given by the Turkish-American theoretical physicist Huseyin Yilmaz on the possible
use of an artificial satellite to distinguish his theory of gravity from Einstein’s. He
noted that such an experiment “would be, in the most literal sense a direct measure-
ment of space itself” [74]. Leonard. I. Schiff (1915–1971) was inspired at least in
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Fig. 16 Leonard Schiff c. 1970 (top left), George Pugh in 2007 (bottom left) and Dan Debra, Bill
Fairbank, Francis Everitt and Bob Cannon with a model of Gravity Probe B in 1980 (right)

part by a magazine advertisement for a new “Cryogenic Gyro . . . with the possibility
of exceptionally low drift rates” [73]. Schiff had a longstanding interest in both gen-
eral relativity and Mach’s principle, and went so far as to refer to his proposal as
“an experimental test of Mach’s principle” [75]. He was joined by low-temperature
experimentalist Bill Fairbank and guidance and control specialist Bob Cannon, and
together the three men set Gravity Probe B on the path to reality. Under its original
name (the Stanford Relativity Gyroscope Experiment) the project received its first
NASA funding in 1964.

Pugh’s paper attracted less notice at the time but is now recognized as the birth
of the concept of drag-free motion. This is a critical element of the Gravity Probe B
mission, whereby any one of the gyroscopes can be isolated from the rest of the
experiment and protected from non-gravitational forces (such as those caused by
solar radiation pressure and atmospheric drag); the rest of the spacecraft is then
made to “chase after” the reference gyro by means of helium boiloff vented through
a revolutionary porous plug and specially designed thrusters. Gravity Probe B’s
demonstration that cross-track accelerations can be suppressed in this way to less
than 10�11g paves the way for the development of future gravitational experiments
such as the Satellite Test of the Equivalence Principle (STEP) and the Laser Inter-
ferometer Space Antenna (LISA). The porous plug has already proved vital to other
cryogenic NASA missions including COBE, IRAS, WMAP and Spitzer.

The experimental concept is illustrated in Fig. 17. In principle it is simplicity
itself: a gyroscope, a readout mechanism to monitor the spin axes, and a telescope
to compare these axes with the line of sight to a distant guide star. In practice,
Gravity Probe B evolved into one of the most complex experiments ever flown,
requiring at least a dozen new technologies that did not exist when it was conceived.
How, for instance, is one to locate the spin axis of a perfectly spherical, perfectly
homogeneous gyroscope, suspended in vacuum (Fig. 18)? This is the readout prob-
lem; another, closely related challenge is how to spin up such a gyroscope in the
first place. Various possibilities were considered in the early days, until 1962 when
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Fig. 17 The Gravity Probe B concept, described by William Fairbank, one of the project founders,
as “just a star, a telescope and a spinning sphere”

C.W. Francis Everitt (now in charge of the experiment) hit on the idea of exploiting
what had until then been a small but annoying source of unwanted torque in magnet-
ically levitated gyroscopes. Spinning superconductors develop a magnetic moment,
known as the London moment, which is aligned with the spin axis and proportional
to the spin rate. If the rotors were levitated electrically instead of magnetically, this
tiny effect could be used to monitor their spin axes. (Measuring it would require
magnetic shielding orders of magnitude beyond anything available in 1962, another
story in itself.) Thus was born the London moment readout, which in its modern
incarnation uses niobium-coated quartz spheres as rotors and SQUIDs (Supercon-
ducting QUantum Interference Devices) as magnetometers. So sensitive are these
devices that they register a change in spin-axis direction of 1 milliarcsecond in just
five hours of integration time.

How can one meaningfully compare the spin-axis direction (from the SQUID, in
volts) with the direction to the guide star (from an onboard telescope, in radians)?
The answer is to exploit nature’s own calibration in the form of stellar aberration.
This phenomenon, an apparent back-and-forth motion of the guide star position due
to the orbit of the earth around the sun, is entirely Newtonian and inserts “wiggles”
into the data whose period and amplitude are exquisitely well known. (Such is the
precision of the experiment that this calibration requires terms of second, as well as
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Fig. 18 Gravity Probe B
gyroscope rotor and housing.
Note suspension electrodes
(circular patterns) and gas
spin-up channel (groove)

first order in the earth’s speed v=c.) What about the fact that the guide star itself has
an unknown proper motion large enough to obscure the predicted relativity signal?
This apparent liability is turned into an advantage by designing the experiment in
classic “double-blind” fashion: a separate team of radio astronomers uses VLBI to
monitor the movements of the guide star relative to even more distant quasars. Only
at the conclusion of the experiment are the two sets of data to be compared; this
helps to prevent the physicists from finding what they expect to see.

Necessity in the form of a 10�18 rad/s precession rate was the mother of many
more marvels. Among these are the roundest man-made objects in the world and a
suspension system capable of keeping themwithin microns of their housings, at spin
rates averaging 4,000 rpm, over a dynamic range of eight or more orders of magni-
tude in force. A beam splitter and image divider assembly was created to increase the
resolution of the onboard telescope (inherently limited by the size of the spacecraft)
by three orders of magnitude over existing star trackers. A novel optical bonding
technique had to be devised to fasten the telescope (sculpted out of a single lump
of quartz) to the quartz block containing the science instrument. Expandable nested
lead shields were employed to reduce the strength of the magnetic field inside the
dewar to less than one-millionth that of the Earth, the lowest level ever achieved in
space. New techniques were invented to spin up the gyros, reduce vacuum pressure
and remove charge buildup on the rotors. Many of these innovations have led to
engineering and commercial spinoffs.7

Gravity Probe B was launched from Vandenberg Air Force Base in California
on 20 April 2004 (Fig. 19). Once in orbit, it underwent an initial orbit checkout
phase, during which the attitude and control system was tuned and the gyroscopes
suspended, spun up, calibrated and aligned with the guide star. These tasks required
129 days. The science or data-collecting phase of the mission lasted from 27 August
2004 until 14 August 2005, or 353 days, just under the original goal of one full year.
The mission concluded with a final post-flight calibration phase, which continued
until 29 September 2005, when there was no longer enough liquid helium in the
dewar to maintain the experiment at cryogenic temperatures.

7 For more details, see the Gravity Probe B website at http://einstein.stanford.edu.
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Fig. 19 Launch of Gravity Probe B at 09:57:24 PDT, April 20, 2004

Figure 20 shows approximately 140 days of science data from one of the
gyroscopes (points) superimposed on the predictions of general relativity (lines).
North-south (geodetic) precession is plotted in the upper panel, while east-west
(frame-dragging) precession is plotted in the lower panel. These plots give us our
first direct look at the warping and twisting of spacetime around the earth. If Newton
were correct, the data would fall on horizontal lines.

As might be expected in an experiment that pushes gyroscope performance six
orders of magnitude beyond existing limits, unexpected complications have cropped
up in the data analysis. First, it became apparent during the science phase of the
mission that there were variations in the polhode rate of the gyros. (Polhode motion
had been expected, but its period had not been expected to change appreciably over
the mission lifetime, given characteristic rotor spin-down periods on the order of
10,000years). It is critical to understand and model these polhode variations in
order to match the data from successive orbits and thereby attain integration times
long enough to realize the full precision of the SQUID readout system. Second,
two larger-than-expected forms of Newtonian torque, known as the “misalignment”
and “roll-polhode resonance” torques, were discovered during post-flight calibra-
tion. Misalignment torques were proportional to the angle between the gyroscope
spin axis and the spacecraft roll axis, while resonance torques acted on individ-
ual gyroscopes during times when there was a high-order resonance between the
slowly changing polhode period and the satellite roll period. All three phenomena
have been traced to larger-than-anticipated electrostatic patch effects. In essence,
while both the gyro rotors and housings achieved almost perfect mechanical spheric-
ity, they were not quite spherical electrically. The anomalous torques are due to
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Fig. 20 Preliminary results for the precession of one of the Gravity Probe B gyroscopes in the
north-south or geodetic direction (top) and the east–west or frame-dragging direction (bottom)

interactions between patches on the gyro rotors and housings, and the time-varying
polhode periods are caused by the fact that these interactions extract energy from
the spinning rotors.

Fortunately, Gravity Probe B was designed to take various kinds of “superflu-
ous” data, and these are now proving their worth. In particular, real-time snapshots
of trapped flux on the rotors have enabled the data analysis team to reconstruct the
polhode phase of each of the gyros to within �1ı over the entire mission. Spin
speeds are known to �1 nHz, and spin-down rates to �1 pHz/s. With this data, in
combination with a complete physical understanding of all three (fully Newtonian)
effects, it has been possible to develop a more comprehensive method of data analy-
sis that is expected to lead to final accuracies close to those originally envisioned for
the experiment. Table 1 summarizes interim results from all four gyroscopes as of
December 2008 [76]. These numbers are preliminary and do not include all sources
of systematic error or model sensitivity analysis. Nevertheless it is possible at this
stage to state that geodetic precession has been directly observed at better than 1%,
and that frame-dragging has been directly observed with an accuracy of about 15%.

Final results from Gravity Probe B are to be announced in 2010.
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Table 1 Preliminary Gravity Probe B results (milliarcsec/yr) [76]

Solar Guide star Net predicted Observed
geodetic proper motion .˝GR/ .˝obsd/

North–south: �6606 +7 C28˙ 1 �6571˙ 1 �6550˙ 14

East–west: �39 �16 �20˙ 1 �75˙ 1 �69˙ 6

7 Summary

The detection of geodetic precession and frame-dragging by Gravity Probe B can
be seen as the culmination of a debate that stretches back to Greek antiquity. That
debate was originally philosophical: do space and time exist absolutely, or only
in relation to matter? As natural philosophy evolved into natural science, it began
to take on a physical character. The absolute picture, advocated most forcefully
by Newton, was physically simpler but carried with it uncomfortable metaphysi-
cal baggage (inertia as resistance to motion with respect to “absolute space,” which
itself could neither be observed nor acted upon in any way). The relational view,
most strongly associated with Mach, was philosophically more elegant but trou-
blingly vague in the physical sense (what kind of relation, exactly, gives rise to
inertia?) Attempts were already made to distinguish between the two points of view
by experimentalists such as Föppl before the time of Einstein and Minkowski.

With the advent of general relativity, it became possible to frame the debate in
precise physical terms. It turned out that Minkowski’s spacetime, as shaped and ani-
mated in the presence of matter according to Einstein’s gravitational field equations,
took neither side in the debate–or rather, took them both. The spacetime of general
relativity exists absolutely and behaves relationally, as exemplified by the geodetic
and (especially) frame-dragging effects.

Ninety years of experiment have solidified the case for Einstein’s theory. How-
ever, most of the evidence so far is limited to the solar system where fields are
weak and velocities low. Gravitational-wave astronomy has the potential to improve
the situation, as do experiments that challenge the foundations (as opposed to
predictions) of general relativity, like tests of the equivalence principle.

The geodetic and frame-dragging effects test Einstein’s theory in another direc-
tion by focusing on the spin of the central mass and test body, with important
implications for astrophysics, cosmology and the origin of inertia. Such is their
subtlety, however, that detecting them with confidence has required 40 years of sci-
entific and engineering ingenuity and perseverance. That story is not quite finished,
and may yet fulfil the original aim of the Gravity Probe B mission: to provide the
“most rigorously validated of all tests of Einstein’s theory” [76]. Preliminary data
are consistent with general relativity. These results tighten constraints on alterna-
tive theories of gravity, improve confidence in astrophysical models of the jets and
accretion disks associated with supermassive black holes, and suggest that we may
be close to understanding why our local compass of inertia is aligned with the rest
frame of the distant galaxies.
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They also settle an old debate in metaphysics. It would be hard to imagine a
more direct demonstration that spacetime acts on matter than the geodetic effect
(warped spacetime twists a spinning gyroscope), or a more convincing proof that
matter acts back on spacetime than the frame-dragging effect (the spinning earth
pulls spacetime around with it). In that sense Gravity Probe B shows how a physics
experiment–when pushed to the furthest possible extremes of near-zero temperature,
pressure, electric charge, magnetic field and acceleration–can also become a test of
philosophy.

Acknowledgements The author thanks Ron Adler, Francis Everitt, Hans-Jörg Fahr, Bob Kahn,
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Boston, 1995), p. 530
6. Pais, A., ‘Subtle is the Lord. . . ’ (Oxford University Press, Oxford, 1982)
7. Barbour, J.B., in Barbour, J.B. and Pfister, H. (eds.), From Newton’s bucket to quantum gravity
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Rigidity and the Ruler Hypothesis

Stephen N. Lyle

Abstract In special relativity, one often speaks of rigid rods, looking at them in
one inertial frame or another and observing that they do not always have the same
length, despite their rigidity. This paper is about what happens to the rod as it gets
from one inertial frame to another, i.e., as it accelerates. The problem is not entirely
academic. For those who would like to model extended charge distributions and
their fields, and in particular the forces they exert upon themselves via these electro-
magnetic effects, when they are accelerating, some hypothesis must be made about
the way the charge distribution shifts around in the relevant spatial hypersurfaces
of Minkowski’s spacetime. A notion of rigidity is indeed usually applied and that
is discussed here (Sect. 1), in connection with frames of reference adapted to accel-
erating observers in the spacetime of special relativity. The physical legitimacy of
adapted frames of reference is discussed in some detail throughout the paper, but
particularly in the context of the Pound–Rebka experiment in Sect. 1.10. The aim is
to elucidate the roles of what are usually referred to as the clock and ruler hypothe-
ses. One would also like to consider rigid motions of any material medium in a more
general framework, even in the context of general relativity. The notion of rigidity
can be extended (Sect. 2) in a simple but perhaps questionable way. The aim here
will indeed be to cast a critical glance.

1 Rigid Rods and Rigid Spheres

1.1 A Toy Electron

If one wanted to make a model of the electron in which the electric charge were
no longer all concentrated at a mathematical point in any spacelike hypersurface of
Minkowski spacetime, one might get the idea of dividing the charge into two equal
amounts labelled A and B , each one occupying such a point, and spaced apart by
some distanceD when the system is moving inertially and observed from an inertial
frame moving with it. This would certainly be a toy electron (see Fig. 1). It would
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A B
D

e / 2 e / 2

Fig. 1 A toy electron at rest in an inertial frame. The system is in equilibrium under the forces
between A and B

A B

uA uB

Fig. 2 System in motion in an inertial frame I. If we impose some motion on A, what is the
motion of B ?

appear to a large extent to defeat the object of giving the electron a spatial extent
since there are now two mathematical points of charge instead of just one. But it
does nevertheless bring out some of the advantages and some of the difficulties. We
shall only be concerned with one of the difficulties here.

The idea of such a model is to allow it to move, then work out the electromag-
netic fields due to each point of charge using the Lienard–Wiechert potential, and
calculate the force that each charge can thereby exert on the other. One is of course
interested in the net force that such a system might exert upon itself when accel-
erated. In a first approach, one does not worry about the force required to hold the
system together. For it should not be forgotten that the two charges are alike and
will repel one another. And yet this very question raises another, more urgent one.

For suppose point A, on the left, has a one-dimensional motion given by xA.t/
along the axis from A to B , as observed relative to some inertial frame I (see
Fig. 2). What will be the motion xB .t/ of the right-hand end of the system? Let
the coordinate speed of A in I be

vA.t/ D PxA.t/ WD dxA
dt
:

If the system were rigid in the pre-relativistic sense, the speed of B would be

vB .t/ D vA.t/:

There is an obvious problem with this: if A and B always have the same coordinate
speed, the separation of A and B will always be the same in I, viz.,D, whereas we
expect lengths of objects to contract in special relativity when viewed from frames
in which those objects are moving.

If the system had been set in uniform motion, with A moving at constant coordi-
nate speed vA in frame I, and if it were rigid in the sense of special relativity, we

would expect the separation of A and B to be the contracted length D
q
1 � v2A=c

2
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A B

D√ 1− u2
A /c

2

uA (t ) ≡ uA uB (t) ≡ uA

Fig. 3 System in uniform motion vA.t/ � vA in an inertial frame I. We expect vB.t/ � vA and
the length to be contracted as shown

as observed from I (see Fig. 3). There would then be no problem for pointB to have
the same coordinate speed as point A.

The difficulty occurs, of course, when vA is changing with time, i.e., when there
is acceleration, and the system has to adjust all the time. This means that vB looks as
though it might be a very complicated function of time indeed. Perhaps we require
some physical assumption about the relaxation time of the system. One immediately
wonders how B is supposed to adjust. Indeed, what are the forces on the system?
What is accelerating it? Since we started by attributing a motion xA.t/ to A, we
might imagine some external force applied to A and ask how the effects of this
force might be transmitted to B to make it too accelerate. On the other hand, an
external force might equally be applied to both points, as would happen for example
if it were due to a force field. In addition, we know that there are mutually repulsive
electromagnetic forces between A and B due to their own fields, and we said there
had to be binding forces to oppose them, to hold the thing together. How will these
react to the changes?

In the pre-relativistic context, there was no problem because the appropriate
notion of rigidity automatically delivered the motion of point B given the motion
of point A. But this hypothesis was unequivocally pre-relativistic: if the system was
accelerated by applying a force to point A, the effects had to propagate instanta-
neously to point B , and in such a way that the net force on B was always identical.
Of course, if the system was accelerated by a uniform field acting simultaneously
on both A and B , then one had the advantage of not having to consider the binding
forces at all.

So what could be the separation of A and B as observed from I when vA.t/
changes with time? One idea is that, since A has speed vA.t/, the separation of
A and B at time t could just be D

p
1 � vA.t/2=c2, the contracted length for that

speed. This might be a good approximation in some cases, but there is an obvious
problem with it: because there is some contraction going on, this too will induce a
motion of B that ought to be included. And if B does not have the same speed as A,
why not use the speed of B to work out the contraction? Or some average of the
speeds?

Although the situation looks rather hopeless, we do appear to have an approxima-
tion. This looks especially promising ifD is small. Is there some way of makingD
infinitesimal and taking a limit? Let us switch to a material rod under acceleration.
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1.2 A Rigid Rod

Of course, we know what happens to a rigid rod when it has uniformmotion relative
to an inertial frame I. In other words, we know what we want rigidity to mean in
that context. But can we say how a rigid rod should behave when it accelerates? Can
we still have some kind of rigidity?

LetA andB be the left- and right-hand ends of the rod and consider motion xA.t/
and xB.t/ along the axis from A to B (see Fig. 4). Let us first label the particles in
the rod by their distance s to the right of A when the system is stationary in some
inertial frame (see Fig. 5). This idea of labelling particles will prove extremely useful
when considering continuousmedia later on. In the present case, we imagine the rod
as a strictly one-dimensional, continuous row of particles.

Now let A have motion xA.t/ relative to an inertial frame I (see Fig. 6) and let
X.s; t/ be a function giving the position of particle s at time t as

xs.t/ D xA.t/CX.s; t/;

where naturally we require

X.0; t/ D 0; X.D; t/ D xB .t/ � xA.t/:

A B

xB(t ) − xA(t )

uA(t ) uB(t )

Fig. 4 Material rod in motion along its axis in an inertial frame I. The position of the left-hand
end A is given by xA.t/ at time t , and the position of the right-hand end B is given by xB.t/

A B

s

Label s

Fig. 5 Stationary material rod in an inertial frame I. Labelling the particles in the rod by their
distance s from A, so that s 2 Œ0;D�

A B

suA(t ) us(t ) uB(t )

Fig. 6 Material rod with arbitrary motion in an inertial frame I
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Let us require the element between s and s C •s to have coordinate length

�
1 � v.s; t/2

c2

�1=2
•s; (1)

where v.s; t/ is its instantaneous coordinate velocity, with v.0; t/ D vA.t/. This is
precisely the criterion suggested by Rindler [1, pp. 39–40]. We can integrate to find

X.s; t/ D
Z s

0

�
1 � v.s0; t/2

c2

�1=2
ds0: (2)

This implies that

XB D
Z D

0

�
1 � v.s0; t/2

c2

�1=2
ds0: (3)

Note the highly complex equation this gives for the speed function v.s; t/, viz.,

v.s; t/ D vA.t/C @X.s; t/

@t
: (4)

Let us observe carefully that we are not assuming any simple Galilean addition law
for velocities here. This is a straightforward differentiation with respect to t of the
formula for the coordinate position of atom s at time t , viz., xA.t/ C X.s; t/. The
partial time derivative of X is not the velocity of s relative to A, that is, it is not the
velocity of s measured in a frame moving with A.

Now (2) seems to embody the idea of the rod being rigid. For surely this rod could
no longer be elastic, in the sense that (1) only allows the element •s to relativistically
contract for the value of its instantaneous speed, forbidding any other contortions.
One could well imagine the rod undergoing a very complex deformation along its
length, in which relativistic contraction effects were quite negligible compared with
a certain looseness in the molecular bonding, but we are not talking about this.
In fact we are seeking a definition of rigidity that does not refer to microscopic
structure.

Let us just note what assumption is expressed by the earlier idea that

xB .t/ D xA.t/CD
p
1� vA.t/2=c2; (5)

which would lead to

vB .t/ D vA.t/ � �.vA/vA.t/ RxA.t/D=c2; (6)

where �.vA/ is the usual function of the speed. Thinking of A as a kind of base
point, to which a force is perhaps applied, it says that the relativistic contraction
is instantaneous: when A moves at speed vA, the rod immediately has coordinate
lengthD=�.vA/ for that value of vA. We are now improving on this, accounting for
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the fact that, if the adjustment takes time, that time will depend how long the rod is,
and that in turn depends on what we are trying to establish, namely the instantaneous
length of the rod. We might imagine that a signal leaves A to tell B where it should
be, and as it moves across, the speed of B is changing in response to past messages
of the same kind. But using (2) and (4), can we tell when the new signal will get
there?

1.3 Equation of Motion for Points on the Rod

So far the main equations for the atom labelled s on the rod are (2) and (4), viz.,

X.s; t/ D
Z s

0

�
1 � v.s0; t/2

c2

�1=2
ds0 (7)

and

v.s; t/ D vA.t/C @X.s; t/

@t
: (8)

The first implies that

@X.s; t/

@s
D
�
1� v.s; t/2

c2

�1=2
: (9)

We can write one nonlinear partial differential equation for X.s; t/ by eliminating
v.s; t/ to give

c2
�
@X

@s

�2
C
�
@X

@t
C vA.t/

�2
D c2: (10)

This is effectively the equation that we have to solve to find the length of our rod. It
is important to see that there is a boundary condition too, viz.,

0 D @X.s; t/

@t

ˇ̌̌
ˇ
sD0

; (11)

because we do require v.0; t/ D vA.t/ in conjunction with (8).
We shall find a solution to this problem, although not by solving (10) directly.

Instead we shall follow a circuitous but instructive route and end up guessing the
relevant solution.

1.4 A Frame for an Accelerating Observer

Let AO be the name for an observermovingwith the left-hand endA of the proposed
rod. AO is an accelerating observer and it is well known [3] that such a person can
find well-adapted coordinates y� with the following properties (where the Latin
index runs over f1; 2; 3g):
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� First of all, any curve with all three yi constant is timelike and any curve with
y0 constant is spacelike.

� At any point along the worldline of AO, the zero coordinate y0 equals the proper
time along that worldline.

� At each point of the worldline of AO, curves with constant y0 which intersect it
are orthogonal to it where they intersect it.

� The metric has the Minkowski form along the worldline of AO.
� The coordinates yi are Cartesian on every hypersurface of constant y0.
� The equation for the worldline of AO has the form yi D 0 for i D 1; 2; 3.

Such coordinates could be called semi-Euclidean.
Let us consider a 1D acceleration and temporarily drop the subscript A on the

functions xA.t/ and vA.t/ describing the motion of AO in the inertial frame I. The
worldline of the accelerating observer is given in inertial coordinates by

t D �; x D x.�/;
dx

d�
D v.�/; (12)

d2x

d�2
D a.�/; y.�/ D 0 D z.�/; (13)

using the time t in I to parametrise. The proper time �.�/ of AO is given by

d�

d�
D .1 � v2=c2/1=2: (14)

The coordinates y� are constructed on an open neighbourhood of the AO worldline
as follows (see Fig. 7). For an event .t; x; y; z/ not too far from the worldline, there
is a unique value of � and hence also the parameter � such that the point lies in the
hyperplane of simultaneity (HOS) of AO when its proper time is � . This hyperplane
of simultaneity is given by

t � �.�/ D v
�
�.�/

�
c2

�
x � x��.�/�	; (15)

which solves, for any x and t , to give �.�/.x; t/.
The semi-Euclidean coordinates attributed to the event .t; x; y; z/ are, for the

time coordinate y0, (c times) the proper time � found from (15) and, for the spatial
coordinates, the spatial coordinates of this event in an instantaneously comoving
inertial frame at proper time � of AO. In fact, every other event in this instanta-
neously comoving inertial frame is attributed the same time coordinate y0 D c�

and the appropriate spatial coordinates borrowed from this frame. Of course, the
HOS of AO at time � is also the one borrowed from the instantaneously comoving
inertial frame.

There is just one detail to get out of the way: there are many different instanta-
neously comoving inertial frames for a given � , and there are even many different
ways to choose these frames as a smooth function of � as one moves along the AO
worldline, rotating back and forth around various axes in the original inertial frame
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y1
y2

y1
y2

y1
y2

t

HOS(¿1)

HOS(¿2)

HOS(¿3)
¿3

¿2

¿1

Fig. 7 Constructing a semi-Euclidean (SE) frame for an accelerating observer. View from an
inertial frame with time coordinate t . The curve is the observer worldline given by (12). Three
hyperplanes of simultaneity (HOS) are shown at three successive proper times �1, �2, and �3 of
the observer. These hyperplanes of simultaneity are borrowed from the instantaneously comoving
inertial observer, as are the coordinates y1 , y2, and y3 used to coordinatise them. Only two of the
latter coordinates can be shown in the spacetime diagram

I as � progresses. We choose a sequence with no rotation about any space axis
in the instantaneous local rest frame. It can always be done by solving the Fermi–
Walker transport equations (see Sect. 2.5). The semi-Euclidean coordinates are then
given by 8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂̂
:

y0 D c�;

y1 D Œx � x.�/� � v.�/.t � �/p
1 � v2=c2

;

y2 D y;

y3 D z;

(16)

where � D �.t; x/ as found from (15). The inverse transformation, from semi-
Euclidean coordinates to inertial coordinates, is given by

8̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂:

t D �.y0/C v.y0/

c2
y1
�
1 � v.y0/2

c2

��1=2
;

x D x.y0/C y1
�
1 � v.y0/2

c2

��1=2
;

y D y2;

z D y3;

(17)
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where the function �.y0/ is just the expression relating inertial time to proper time
for the accelerating observer, and the functions x.y0/ and v.y0/ should really be
written x

�
�.y0/

�
and v

�
�.y0/

�
, respectively.

The above relations are not very enlightening. They are only displayed to show
that the idea of such coordinates can be made perfectly concrete. One calculates the
metric components in this frame, viz.,

g00 D 1=g00 D
�
1C a.�/Œx � x.�/�=c2

1 � v.�/2=c2

�2
; (18)

where � D �.t; x/ as found from (15), and

gi0 D 0 D g0i ; gij D �ıij ; i; j 2 f1; 2; 3g; (19)

and checks the list of requirements for the coordinates to be suitably adapted to the
accelerating observer.

Although perfectly concrete, the coordinates are not perfectly explicit: the com-
ponent g00 of the semi-Euclidean metric has been expressed in terms of the original
inertial coordinates! This can be remedied as follows. One observes that, with the
help of (15),

y1 D Œx � x.�/�
p
1 � v2=c2: (20)

One calculates the four-acceleration in the inertial frame to be

a� WD d2x�

d�2
D a.1 � v2=c2/�2


 v

c
; 1; 0; 0

�
; (21)

and transforms this by Lorentz transformation to the inertial frame instantaneously
comoving with the observer to find only one nonzero four-acceleration component
in that frame, which is called the absolute acceleration of the observer:

a01 WD absolute acceleration D a.1 � v2=c2/�3=2: (22)

The notation a01 for the 1-component of the absolute acceleration will appear again
on p. 94. One now has the more comforting formula

g00 D 1=g00 D
�
1C a01.�/y

1

c2

�2
: (23)

To obtain still more explicit formulas, one needs to consider a specific motion x.�/
of AO, the classic example being uniform acceleration:

x.�/ D c2

g

"�
1C g2�2

c2

�1=2
� 1

#
; t D �; (24)
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where g is some constant with units of acceleration. This does not look like a
constant acceleration in the inertial frame:

dx

d�
D g�

.1C g2�2=c2/1=2
;

d2x

d�2
D g

.1C g2�2=c2/3=2
: (25)

However, the 4-acceleration defined in the inertial frame I by

a� D d2x�

d�2
; (26)

where � is the proper time, has constant magnitude. It turns out that

a2 WD a�a
� D �g2;

with a suitable convention for the signature of the metric.
In this case, the transformation from inertial to semi-Euclidean coordinates is

y0 D c2

g
tanh�1 ct

x C c2=g
; (27)

y1 D
"�
x C c2

g

�2
� c2t2

#1=2
� c2

g
; y2 D y; y3 D z; (28)

and the inverse transformation is

t D c

g
sinh

gy0

c2
C y1

c
sinh

gy0

c2
; (29)

x D c2

g

�
cosh

gy0

c2
� 1

�
C y1 cosh

gy0

c2
; y D y2; z D y3: (30)

One finds the metric components to be

g00 D
�
1C gy1

c2

�2
; g0i D 0 D gi0; gij D �ıij ; (31)

for i; j 2 f1; 2; 3g, in the semi-Euclidean frame. Interestingly, this metric is static,
i.e., g00 is independent of y0. It is the only semi-Euclidean metric that is [7].

It is worth pausing to wonder why AO should adopt such coordinates. It must be
comforting to attribute one’s own proper time to events that appear simultaneous.
But what events are simultaneous with AO? In the above construction, AO bor-
rows the hyperplane of simultaneity of an inertially moving observer, who does not
have the same motion at all. AO also borrows the lengths of this inertially moving
observer. But if AO were carrying a rigid measuring rod, what lengths would be
measured with it?
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1.5 Lengths Measured by the Rigid Rod

In fact the rigid rod of Sect. 1.2 measures the spatial coordinates of AO when this
observer uses semi-Euclidean coordinates. Let us prove this for the case of a uniform
acceleration g, where formulas are explicit.

We write down the path of a point with some fixed spatial coordinate s along the
axis of acceleration (putting the other spatial coordinates equal to zero). The for-
mula we have for the path of the origin of the SE frame as expressed in Minkowski
coordinates is

xA.t/ D c2

g

 r
1C g2t2

c2
� 1

!
; (32)

giving a coordinate velocity

vA.t/ D gtr
1C g2t2

c2

: (33)

The formula for the path of the point at fixed SE spatial coordinate s from the origin
as expressed in Minkowski coordinates is

xs.t/ D X.s; t/C xA.t/ D c2

g

"r

1C gs

c2

�2 C g2t2

c2
� 1

#
: (34)

We are going to show that the function X.s; t/ defined by the last relation actually
satisfies our equation of motion (10) in the case where the function xA.t/ gives the
path of the left-hand endA of the rod, i.e., when the pointA is uniformly accelerated
by g.

Proof That (34) Is a Solution for (10)

We begin with the partial derivatives:

@X

@t
D gtr


1C gs

c2

�2 C g2t2

c2

� vA.t/; (35)

@X

@s
D 1C gs=c2r


1C gs

c2

�2 C g2t2

c2

: (36)
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Hence, �
@X

@t
C vA.t/

�2
D g2t2


1C gs

c2

�2 C g2t2

c2

(37)

and

c2
�
@X

@s

�2
D c2.1C gs=c2/2


1C gs

c2

�2 C g2t2

c2

: (38)

Adding the last two equations together, it is clear that we just get c2, as required by
(10). The boundary condition (11) on p. 66 is obviously satisfied too. �

For a rod with arbitrary 1D acceleration, the formulas are much more involved, due
to the lack of explicitness, but the proof is nevertheless straightforward [2]. So not
only have we found the length of our rigid rod when it is accelerating along its own
axis, but we discover that any AO with 1D motion could use it to measure semi-
Euclidean coordinates along the direction of acceleration. This means that the rigid
rod automatically satisfies what is sometimes called the ruler hypothesis, namely, it
is at any instant of time ready to measure lengths in an instantaneously comoving
inertial frame, since this is precisely the length system used by the semi-Euclidean
coordinates.

The accelerating observer would not necessarily have to be holding one end of
the rod. It could be lying with one end held fixed at some semi-Euclidean coordinate
value y1 D s1 and the other end would then remain at a constant coordinate value
y1 D s2 > s1. This is shown by exactly the same kind of analysis as above. In other
words, if the rod always manages to occupy precisely this interval on the axis of
the SE coordinate system, its length as viewed in the original inertial frame I will
satisfy the rigidity (10) on p. 66. Hence, a rigid rod whose left-hand end is compelled
to follow the worldline y1 D s1 will always appear to have the same length s2 � s1
to the SE observer.

Before taking a look at some of the remarkable features of the semi-Euclidean
coordinate frame, let us just note in passing that, to first order in the rest length D
of the rod, one finds

xB.t/ D xA.t/C
�
1 � vA.t/2

c2

�1=2
D CO.D2/; (39)

which is precisely our original approximation (5) back on p. 65.

1.6 Properties of a Semi-Euclidean Frame

Since the notion of rigidity expressed by (10) fits in so nicely with the semi-
Euclidean frame of the associated observer, it is worth summarising some of the
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features of these frames. We consider any pointB with fixed spatial semi-Euclidean
coordinates .y1; y2; y3/ D .s; 0; 0/ and varying y0. Then we have:

� Viewed from the inertial frame I, B follows an accelerating worldline, but
generally with a different acceleration to the observer at the origin of the semi-
Euclidean frame. In the case of a uniformly accelerating observer, it turns out that
such a point also has uniform acceleration, but a smaller one than the observer at
the origin, and ever smaller as s increases [see (79) on p. 97].

� Viewed from the inertial frame I, if B is simultaneous with the accelerating
observer A at the origin of the semi-Euclidean frame as judged by that observer,
i.e., A and B have semi-Euclidean coordinates .c�; 0; 0; 0/ and .c�; s; 0; 0/,
respectively, for some � , then they have the same 4-velocity at those two events.
Of course, they are not then simultaneous for the original inertial observer with
frame I (except at the coincident origins of the two frames). But since the accel-
erating observer borrows the hyperplane of simultaneity of an instantaneously
comoving inertial observer, the two events in question will be simultaneous for
the latter. In other words, when an inertial observer instantaneously comoving
with A looks at B , that observer will have the same 4-velocity as B .

The first of these is not difficult to show from the definitions of the semi-Euclidean
coordinates. The second follows immediately from the expression

@X

@t
D vA.y

0/� vA.t/; (40)

which can be proven for general 1D accelerations of the observer. For then, by (8)
on p. 66,

vB.t/ D v.s; t/

D vA.t/C @X

@t

D vA.t/C vA.y
0/ � vA.t/

D vA.y
0/: (41)

So to find the speed of B at some event on its worldline, we must draw the HOS of
the accelerating observer A which contains that event and find the proper time y0

at which the HOS intersects the worldline of A. The point B has the speed which
A had at that proper time. If we draw the worldlines of A and B on the Minkowski
diagram, this result about their speeds tells us that any HOS through the Aworldline
intersects the two worldlines at points where they have the same gradient in the
Minkowski .t; x/ plane.

1.7 Behaviour of a Rigid Rod

From the properties in the last section, we may deduce something about the be-
haviour of a rigid rod under acceleration, i.e., we may deduce something about what
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the material points of the rod must do if the rod is to satisfy our rigidity criterion (1)
on p. 65.

According to the first observation, all points of the rod have different coordinate
accelerations and indeed different 4-accelerations relative to the inertial frame I
when the rod is viewed in any hyperplane of simultaneity of AO. It turns out that
all points of the rod have different 4-accelerations relative to the inertial frame I
when the rod is viewed in any hyperplane of simultaneity of I. We may deduce that
the 4-forces on different material points of the rod must always be different at any
instant of time for any inertial observer, and in a specific way that depends on the
4-force at A.

According to the second observation, all points of the rod have the same coordi-
nate velocity and indeed the same 4-velocity relative to the inertial frame I when
the rod is viewed in any hyperplane of simultaneity of AO.

What we have then here is a rather complex system of 4-forces within the rod.
We might say that they conspire in such a way that, if AO carries one end of it
(labelled A) and uses the semi-Euclidean frame to judge simultaneity, the points of
the rod will always have the same speed relative to I. They also conspire in such a
way that the rod will always instantaneously have the right length to measure semi-
Euclidean coordinate lengths for A, which are also proper lengths for AO in the
semi-Euclidean system.

Note, however, that, apart from the first instant when the rod is at rest in I, the
rod will never have the relativistically contracted length

�
1 � vA.�/2

c2

�1=2
D (42)

when observed from I. Its length according to I will be the quantityX.D; t/ defined
by inserting s D D in [2]

X.s; t/ D xA.y
0/ � xA.t/C s

�
1 � vA.y0/2

c2

��1=2
; (43)

where y0 D y0.s; t/ is given by

t D �.y0/C vA.y0/

c2
s

�
1 � vA.y0/2

c2

��1=2
: (44)

These things are illustrated in Fig. 8 for the case of a uniform acceleration of mag-
nitude g, where explicit formulas are possible. Axes t and x are those of the inertial
frame I. Of course we have dropped two space dimensions. The rigid rod is the
four-dimensional region between the two worldlines [see (32) and (34) on p. 71]

xA.t/ D c2

g

 r
1C g2t2

c2
� 1

!
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Fig. 8 Uniformly accelerating rigid rod. Slanting dotted axes are those of the instantaneously
comoving inertial observer (ICIO) for A at Minkowski time � or for B at Minkowski time t1 D
�.1C gD=c2/

and

xB .t/ D c2

g

2
4
s�

1C gD

c2

�2
C g2t2

c2
� 1

3
5 :

Sloping dotted axes are those of the instantaneously comoving inertial observer
(ICIO) for A at Minkowski time � . The hyperplane of simultaneity for this ICIO
intersects the worldline of B at an event

�
t1; xB .t1/

�
where that worldline has the

same gradient as the worldline of A at the event
�
�; xA.�/

�
, i.e., the same speed

relative to I as A at the event
�
�; xA.�/

�
. The Minkowski time t1 of this event on

the worldline of B is found to be

t1 D �

�
1C gD

c2

�
: (45)

Note that, because A has the same speed relative to I at the event
�
�; xA.�/

�
as B

at the event
�
t1; xB.t1/

�
, they have the same 4-velocity components relative to I,

and hence also relative to the ICIO for A at
�
�; xA.�/

�
. The two 4-velocities (of A

and B) are located at different events in spacetime, and the last conclusion follows



76 S.N. Lyle

because the Lorentz transformation from I to the frame of the ICIO is constant in
spacetime. But if we transform the two vectors at different events by a spacetime-
dependent transformation, such as the transformation to SE coordinates, we would
not expect to end up with the same sets of components, and indeed we do not.

Concerning the length of the rod:

� AO always considers the rod to have length D when using the semi-Euclidean
system.

� The instantaneously comoving inertial observers with A, or indeed with B ,
always consider the rod to have length D, but only at the event where they are
instantaneously comoving with A or B . As mentioned above, this is precisely
what is meant by saying that the rod satisfies the ruler hypothesis.

� The inertial observer with frame I considers the rod to have length

X.D; t/ D xB .t/ � xA.t/ D c2

g

2
4
s�

1C gD

c2

�2
C g2t2

c2
�
r
1C g2t2

c2

3
5 :
(46)

� A rod represented by the 4D region between the two dotted time axes tangent to
the worldline of A at Minkowski time � and the worldline of B at Minkowski
time t1 would have the relativistically contracted length

�
1 � vA.�/2

c2

�1=2
D

for I, but there is no such rod here.

1.8 Rigid Spheres and Instantaneous Transmission of Motion

We can see what our rod is doing in a spacetime picture, drawn in the inertial frame
in which it is originally at rest. It sweeps out a region of spacetime and we are
saying that the SE observer is using it to measure length. It would be easy to become
euphoric about such calculations, particularly the fact that the rigidity criterion (10)
is satisfied by an expression like (46) set up for rather different reasons. But perhaps
we should be asking what we would have to do to get the rod to move like that.
Could the SE observer just accelerate the left-hand end and let the rest of the rod
adapt somehow to what is happening via its rigidity?

After all we paid no attention to microscopic structure. If we think about the
toy electron with its two point charge components, we avoided making any detailed
model of the binding forces. In fact, we appear to have gone a long way without
doing any real physics.
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r1r2
Sun

Fig. 9 Measuring stick in Schwarzschild spacetime, lying along a fixed radial coordinate interval.
The length is given by the usual formula L D R r1

r2
dr .1�2m=r/�1=2, where r is the Schwarzschild

radial coordinate. But is this really the length of a measuring stick? Could a measuring stick really
have this motion? Or put another way, what would one have to do to get it to behave in this way?

To show the generality of the problem, we find this in an elementary course on
general relativity (see Fig. 9) [4]:

To get a more quantitative feel for the distortion of the geometry produced by the gravita-
tional field of a star, consider a long stick lying radially in the gravitational field, with its
endpoints at the [Schwarzschild] coordinate values r1 > r2. To compute its length L, we
have to evaluate

L D
Z r1

r2

dr .1� 2m=r/�1=2:

Since this set of points lies in a hyperplane of simultaneity for the Schwarzschild
coordinates, a Schwarzschild observer would call this the proper distance between
the two endpoints. But is it really the length of a stick? What would we have to do to
get a stick to do this? For example, none of the points of it are in free fall, so they all
have some kind of 4-acceleration, and in fact, they all have different 4-accelerations,
exactly as we have found for the accelerating rigid rod in a flat spacetime.

Of course, we cannot say whether the measuring stick in the above quote is rigid
until we label the material particles in it and extend our definition of rigidity to the
curved spacetimes of general relativity. A step is taken in this direction in Sect. 2.7.
However, it is clear that if real rods do behave like this, there must be some physical
reason for it. On the other hand, in pre-relativistic mechanics, rigidity was always
an ideal concept, at best a convenient approximation that no one would really have
expected to be possible.

One finds the same attitude in calculations of self-force on small charge distribu-
tions. This is discussed in the recent book by Yaghjian [5]. Calculations are made
for a relativistically rigid spherical shell of charge of radius a, whose center has an
arbitrary motion:

‘Relativistically rigid’ refers to the particular model of the electron, proposed originally by
Lorentz, that remains spherical in its proper (instantaneous rest) frame, and in an arbitrary
inertial frame is contracted in the direction of velocity to an oblate spheroid with minor axis
equal to 2a=� .

This is exactly the kind of rigidity we have been talking about. Like our rod, the
sphere always has the same dimensions to the instantaneously comoving inertial
observer. Above all, this makes it possible to carry out the self-force calculation.
Like so many approximations in physics, it is largely motivated by mathemati-
cal convenience. Note, however, that the value of 2a=� for the minor axis of the
spheroid is only an approximation, as we have been at pains to show [see (42)
on p. 74].
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Yaghjian goes on to say [5]:

Even a relativistically rigid finite body cannot strictly exist because it would transmit motion
instantaneously throughout its finite volume. Nonetheless, one makes the assumption of
relativistically ‘rigid motion’ to avoid the possibility of exciting vibrational modes within
the extended model of the electron.

He imputes the last remark to Pauli. But is there really any sense in which motion
is transmitted instantaneously? That did seem to be the assumption with pre-
relativistic rigidity: if a force was applied to one end of a rod, the same force had
to be transmitted instantaneously to all the particles in the rod, so that all particles
would always have the same acceleration and the same speed.

Are we assuming something like this in the present case? Viewing from the iner-
tial frame I, imagine the left-hand end A of the rod as being accelerated in some
active way, whilst the rest of the rod follows suit in some sense. As the left-hand end
moves faster, the other points on the rod pick up speed too. In the case of a uniform
acceleration ofA, we know that each point of the rigid rod has uniform acceleration,
but always lesser, until we come to the right-hand end B , which has the smallest
value. However, the end B eventually reaches the speed that A had some time pre-
viously. In this view of things, we may be thinking that speed somehow propagates
along the rod, with a delay that we ought to be able to calculate.

On p. 73, we showed the following result. If we consider a point xA.�/ on the
worldline of A, when it has speed vA.�/, and draw the HOS of the ICIO, this HOS
will intersect the worldline xB .t/ of B at a Minkowski time t1 where vB .t1/ D
vA.�/. In the case of a uniform acceleration g, where we have explicit formulas, we
know from (45) that

t1 D �

�
1C gD

c2

�
:

We therefore know how much Minkowski time is required for the speed of A
to propagate through to the other end of the rod, if indeed there is propagation,
viz., �gD=c2. The Minkowski observer will consider that the signal, if indeed it
is one, has propagated from xA.�/ to xB .t1/, so that it has travelled a distance
xB .t1/ � xA.s/. We can calculate this from the formulas in the last section, and the
result is

xB.t1/� xA.�/ D D

�
1C g2�2

c2

�1=2
:

We know this anyway, because it is the projection onto the x axis of the imaginary
inertial rod mentioned earlier.

If we now divide the distance travelled by the putative signal by the time it has
taken, as reckoned in the Minkowski frame, we find the value

D.1C g2�2=c2/1=2

g�D=c2
D c

�
1C c2

g2�2

�1=2
> c (47)

for the speed of propagation. If speed propagates, it does so faster than light.
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Is this why our rigid rod is instantaneously ready to measure lengths when accel-
erated to a new speed? When we look back at the formulation of our equation
of motion (10) for the material particles making up the rod, it is clear that we
never explicitly introduced any delays. We merely hoped that the more sophisticated
model would cater for this.

Alternatively, it may be that we should not consider speed as propagating in the
rod. After all, the result (47) is most catastrophic when � D 0, simply because
the two ends of the rod happen to have the same speed at the same Minkowski time.
The explanation of whatever paradox there seems to be here is more likely to be this.
When the motion begins from rest (all points of the rod being at rest when � D 0),
each one has to instantaneously have the appropriate four-acceleration. This may be
a problem in itself, but once that is accomplished, there is no need for the speed to
propagate. Each point of the rod is subject to its appropriate four-acceleration and
so acquires the required speed locally as it were. The real problem is: how can each
point be subject to the appropriate four-acceleration. If a force is applied at one end,
it is indeed four-acceleration (or four-force, or just force) that has to take a little time
to transmit to the various points of the rod. The rod has to adjust in some way.

So could rigidity be equivalent to instantaneous transmission of four-accel-
eration? This too looks unnecessary since the rod may have been forever undergoing
this motion, at least theoretically. More realistically, one could always wait until
the required distribution of four-accelerations has set itself up within the rod and
thereafter describe its motion as rigid. Yaghjian says that the assumption of relativis-
tically rigid motion is made to avoid the possibility of exciting vibrational modes
within the extended electron. This corresponds to the idea that, in reality, there must
always be some time of adjustment after the motion is initiated.

Let us return to the question posed at the beginning of this section, viz., could one
just accelerate the left-hand end of a rigid rod and let the rest of the rod adapt some-
how to what is happening via its rigidity? We can investigate this idea by applying
the result (41) on p. 73. We imagine a rod that is stationary in an inertial frame I
and to which an external acceleration is applied to the left-hand end A at some time
tacc (reckoned in that frame).

On the Minkowski diagram, the worldline of A is represented by a vertical line
which we may take to be the time axis, up to t D tacc, where it begins to curve
over to the right. The hyperplanes of simultaneity of an observer moving with A are
at first horizontal, but begin to slant upwards after t D tacc, slanting up more and
more as A moves faster. This effectively determines what the right-hand end B of
the rod will do, if we recall the simple result (41) on p. 73. Because the rod is rigid,
B always moves with speed equal to the speed of A at the event on the worldline
of A that the instantaneously comoving inertial observer moving with A considers
to be simultaneous. So the worldline of B is clearly vertical up to the time t D tacc.
But what happens next?

As soon as t > tacc, the relevant HOS of A through the worldline of B must
be one of those that are beginning to slant upwards, no matter how soon after tacc
we look at the worldline of B . So B will have the speed of A at a slightly earlier
time (as reckoned in the frame I), but nevertheless at some time after tacc, when A
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was already accelerating. This means that B will have started moving. Its worldline
curves over to the right after tacc. It curves over more slowly, but the important thing
is that it does so immediately (in the I reckoning) after the time tacc.

We conclude that the acceleration ofB is indeed instantaneous, i.e., simultaneous
with the acceleration of A in this frame. And, of course, this means that in some
other inertial frame, B will begin to accelerate before A, throwing out the idea that
the acceleration of A could be the cause of the acceleration of B . Put another way,
if one really were applying an external force only at A, one would not expect B to
be able to react for at least the time it takes light to propagate along the length of the
rod. This suggests another notion of rigidity, wherein a rigid rod is one in which the
speed of sound in the rod is equal to the speed of light [6].

Presumably this shows that one cannot expect any rod to have our kind of rigid
motion when tampered with in this way. So rigid motion is not an easy behaviour to
achieve, whatever one’s medium is made of. However, one could imagine that some
other means of accelerating the medium could result in its having rigid motion, e.g.,
applying different external forces to all particles making up the rod, perhaps by
means of a force field like gravity or electromagnetism. Indeed, the accelerations
of all particles in the rod are completely determined when it has the rigid motion
specified by the criterion (1) on p. 65.

The above considerations suggest that one should investigate rigid motion, rather
than rigid spheres or rods. One might then have to conclude that rigid motion cannot
strictly occur when caused by an external force applied at just one point of the
object. This would still leave open the question of motions due to fields of force. We
consider the idea of rigid motions of a general medium in Sect. 2.

1.9 Rigid Electrons and Rigid Atoms

We asked above how each point could be subject to the appropriate four-acceleration
when the rigid rod or sphere is made to move. One could envisage an interplay of
repulsive and binding forces within these objects conspiring to move each material
point in the appropriate way. It does look possible a priori. Indeed, this idea is effec-
tively applied to the spherical shell of charge in the self-force calculations discussed
by Yaghjian in his book [5]. The binding forces are precisely those required to keep
the shell of charge spherical in its proper frame.

Of course, it could be that small particles like electrons are rigid in this sense.
In any case, one has to assume something and this seems to be as convenient an
assumption as one could hope for within the framework of relativity theory. Another
small particle is the atom. In a pre-quantum model, an electron orbits a nucleus
under an electromagnetic attraction so one only has the binding force to worry about.
One might, like Bell in his paper How to Teach Special Relativity [10], treat the
nucleus as an accelerating point charge for which the exact electromagnetic potential
(the Lienard–Wiechert potential) is known from Maxwell’s theory, then calculate
the exact orbit of the electron in this field as the nucleus accelerates. In principle,
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this would give a perfect description of the way the length of the atomwould change
in the direction of acceleration.

One might then be forgiven for forgetting the complexity of the rigid rod with its
long string of atoms and the unfortunate way they might interfere with one another
by being bound together in some manner. One could just suppose that the way mea-
suring sticks contract is just, or should be just, if they are any good for measuring,
the way their constituent atoms contract, according to the simple idea of the last
paragraph. Would this then give us a different notion of rigidity? It certainly looks
likely on the face of it, if one could carry out precise calculations.

However, one might give the following argument for supposing the Bell atom
to be at least approximately rigid. Figure 10 shows our solution for accelerating
a rigid rod from one state of uniform velocity to another. During the acceleration,
the length of the rod is always the same for an instantaneously comoving inertial
observer. This is precisely what one expects for the radius of the Bell atom if the
acceleration is slow enough, i.e., if the electron gets in plenty of revolutions around
the nucleus before the acceleration ever has time to change verymuch. In an accurate
calculation, one would expect to require some adjustment time, but to a certain level

Final velocity
state

Acceleration

Initial velocity
state

A B

C

D

Fig. 10 Rigid motion of a rod from one uniform velocity state to another. The rod is represented by
the shaded region of the spacetime diagram. The initial velocity state continues up to the horizontal
line AB, while the acceleration occupies the region up to the slanting line CD
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of approximation, the atom will behave rigidly. This is discussed further at the end
of Sect. 2.7.

The aim of the second part of this discussion (Sect. 2) will be to consider rigid
motion in a more general context, for any material medium. We are trying here
to avoid awkward questions about how the motion is brought about, or how the
medium manages to get into or remain in a state of rigid motion.

1.10 A Note on the Pound–Rebka Experiment

This is just a simplified overview to identify some hidden assumptions. We imagine
an emitter E at the bottom of a tower and a receiver R at the top (in fact, iron nuclei
emitting and absorbing gamma rays). The latter is going to detect the gravitational
redshift predicted by general relativity. We may suppose that the gravitational field
is perfectly uniform here, by which we mean that there are coordinates relative to
which the metric takes the form (31) on p. 70. (This assumption in itself is worth
examining much more closely [7].) Of course, this spacetime is flat, i.e., there is a
global inertial frame, often called the freely falling frame. By the strong equivalence
principle, electromagnetic effects relating to E and R can be examined using the
ordinary Maxwell equations, or ordinary quantum electrodynamics, in the freely
falling frame.

In his book [9, Sect. 5.7], Brown mentions the need to assume the clock hypoth-
esis, which declares that a clock worthy of the name will measure the proper time
along whatever worldline it happens to be following. This could be taken as the def-
inition of an ideal clock, or a hypothesis, to be tested, that some particular putative
clock approximates to ideality. Let us understand this in the context of the Pound–
Rebka experiment. E emits waves that leave at precise intervals, but relative to what
time scale? The proper time associated with its worldline? If the iron nuclei used
as emitter and receiver satisfy the clock hypothesis, we would answer affirmatively
there.

As an aside, which is nevertheless quite relevant to the general ethos of this book,
we may well ask why this should be. What is the physical explanation? It is sug-
gested here that the Bell approach may show that this is just a good approximation
[10], but that detailed calculations with the relevant theories in special relativity
(this spacetime is flat) or minimally extended from flat spacetime in general rela-
tivity where necessary [8], would give a better answer. So we are suggesting that
the clock ‘hypothesis’ is necessary insofar as one needs to know when the waves or
photons are emitted, but that one could also prove that this is a good approximation,
so that the only assumption needed is the assumption that one has good theories for
the emission process.

But there is already an interesting problem with identifying the emitter and
receiver worldlines in a global inertial frame when the tower is uniformly accel-
erating. In fact, there are at least two obvious possibilities:

1. The emitter E follows the usual hyperbola in spacetime of a uniformly acceler-
ating point and the receiver R likewise, with the same uniform acceleration, i.e.,
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t
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Increasing SE
separation

E R

Fig. 11 Case 1. The emitter E follows the usual hyperbola in spacetime of a uniformly accelerating
point and the receiver R likewise, with the same uniform acceleration. With a ruler satisfying the
ruler hypothesis, E considers R to recede

with the same hyperbola but shifted along the space axis (see Fig. 11). If E uses
semi-Euclidean (Rindler) coordinates, i.e., rigid rulers as described in this paper,
then R recedes from it.

2. The emitter follows the usual hyperbola of a uniformly accelerating point and
the receiver likewise, but a different one, viz., the hyperbola of a point at fixed
semi-Euclidean distance from E (see Fig. 12). If that distance is fixed, it must
have a lower uniform acceleration.

In general relativity, which is what we are doing here (even though Brown is con-
sidering a case where one is still trying to do special relativity but finding that the
results of the Pound–Rebka experiment create a problem with the notion of inertial
frame), the emitter and receiver are accelerating because they are not being allowed
to fall freely. But should they have the same acceleration for some reason related to
the fact that the gravitional field is uniform, as in (1) above (it has zero curvature, but
then that does not tell us how strong the field is, only that there are no tidal effects,
hence no variation in it); or should they have constant spatial separation as in 2, if
indeed that is what we should mean by separation (ruler hypothesis)?

If the receiver is supported by the roof of the tower, then it is indeed the structure
of the tower that determines the motion of the receiver. In fact it is usually assumed
that the tower is rigid, i.e., case 2 above. If that is so, it is important to see that one
is assuming that the emitter and receiver have different accelerations, i.e., they are
being supported differently against the uniform gravitational field. This might look
surprising when one considers that the gravitational field is supposed to be uniform.
But it just illustrates the fact that supporting something in a gravitational field in gen-
eral relativity introduces effects that are quite different from the gravitational field,
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Fig. 12 Case 2. The emitter follows the usual hyperbola of a uniformly accelerating point and the
receiver likewise, but a different one, viz., the hyperbola of a point at fixed semi-Euclidean distance
from E

viz., a supporting force which causes an acceleration (while freely falling objects
have no acceleration). In fact, supporting something is a rather arbitrary thing to do
in a certain sense. The notion of supporting is just specified by saying that a thing is
not allowed to move relative to some coordinates one happens to be using, and coor-
dinates are not fundamental in general relativity. A classic case would be an object
held at some fixed values of the usual coordinates for a Schwarzschild spacetime.

So what coordinates are being used in the Pound–Rebka experiment and how
would they be set up? Presumably one wants to say that the distance between the
emitter and receiver is constant. But what distance is this? Suppose one measures
distances up the tower using a ruler held by an observer sitting with the emitter. If
it satisfies the ruler hypothesis, then it measures semi-Euclidean (Rindler) spatial
coordinates. In case 1 above, where the receiver is supported in such a way that it
has the same uniform acceleration as the emitter, the receiver would be measured
to recede according to such measurements. But if the tower is rigid (in the usually
accepted sense, discussed in this paper) and the receiver is fixed relative to a point of
the tower, then the receiver would be considered to remain at a fixed distance from
the emitter.

The point about mentioning this is just to say that, just as one discusses the clock
hypothesis in this context, there is a similar consideration of the ruler hypothesis. If
one did measure the emitter–receiver separation with a ruler and wanted to say that
this gave the semi-Euclidean spatial coordinate (because the constancy of the sep-
aration would allow us to do the redshift calculation in the usual way), one would
effectively be assuming that the ruler satisfied the ruler hypothesis, i.e., that despite
the acceleration of the observer holding one end of it, it is always precisely ready



Rigidity and the Ruler Hypothesis 85

to give the proper distance of an instantaneously comoving inertial (freely falling)
observer. This is also the rigidity assumption, viz., the ruler is rigid, or at least under-
going what will be called rigid motion in Sect. 2 of this paper. In short, the rigidity
assumption is actually precisely the ruler hypothesis.

As an aside, it was mentioned above that there can be no such thing as a rigid
object because, if the external force is applied at one point of the object, it cannot
remain rigid. Hence the discussion of rigid motion in Sect. 2, without consideration
of how one might achieve the rigid motion of an object. But here one has a case
where one might actually achieve rigid motion, i.e., the tower might actually be
undergoing rigid motion, because the gravitational effect on it is not applied at just
one point.

In an analogous way, one assumes that the emitter and receiver satisfy the clock
hypothesis, i.e., that despite their accelerations, they emit and receive exactly as
instantaneously comoving inertial emitters and receivers would. In other words,
used as clocks, they would deliver proper time as it is usually defined. Of course,
proper time is perfectly well defined in a mathematical sense along arbitrary
worldlines in special relativity, without the need to mention any clocks. The only
hypothesis one needs there in a context like this is the hypothesis that what one is
actually hoping to use as a clock does read proper time. Of course, if it did not, it
would not be regarded as a clock. What we would like to add here is Bell’s idea
that one should be able to show theoretically that any particular device is or is not a
clock, or is a good or bad approximation to a clock, and this entirely within special
relativity if one is using special relativity. The only extra assumption in the latter
case is that one’s theories about how the clock is working (e.g., electromagnetism
for an electron going round an atom, or quantum electrodynamics for a better model)
are actually valid theories in that context.

In this context nothing is really different in general relativity, except that one has
to add the strong equivalence principle in order to be able to apply non-gravitational
bits of physics when the spacetime is curved. In a certain sense one can consider
special relativity as a special case of general relativity, viewing special relativity as
general relativity with no gravitational effects (and saying, of course, that special
relativity treats gravity very differently when there is any gravity). Moreover, gen-
eral relativity adds nothing as far as acceleration is concerned. One can perfectly
well consider accelerating test particles in special relativity, as in general relativity.
But if some process is occurring in the particle, e.g., an electron orbiting a central
nucleus, we do not know a priori whether that process is going just as it would for an
instantaneously comoving inertial particle of the same kind, insofar as the two pro-
cesses could be compared. It seems unlikely, but presumably a detailed calculation
with the relevant theories would allow one to estimate the discrepancy. Presumably
it would also show that the discrepancy is very small for most things we use as
clocks, and the scale of accuracy on which no physical process fits with the theo-
retical proper time would be the one where we would have to admit that general
relativity was beginning to fail.
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Why do some people claim that special relativity cannot treat accelerated
motions? Perhaps they are thinking, not of accelerated test particles, but accel-
erated observers. The view here is that one has exactly the same problem with
accelerating observers in general relativity as in special relativity. If an observer is
uniformly accelerating in special relativity, what coordinates would this observer set
up? Everyone seems to use the semi-Euclidean (Rindler) coordinates as though there
were something special about them. Of course, the observer remains at the spatial
origin of those coordinates, the time coordinate is the proper time of the observer,
and other obvious things like that. But are those the coordinates the observer would
set up? If we are thinking about using clocks and rulers to set them up in a real
world, it would seem that we do not actually know. The clock and ruler hypotheses
merely assert that they would be in that context. Whether our actual physical clocks
and rulers would fit the bill is another matter.

But would general relativity help here? Of course there are nice coordinates for
any timelike worldline, in which the worldline remains at the spatial origin and the
time coordinate is the proper time, etc. But are those the coordinates that an observer
following that worldline would set up using clocks and rulers? It would seem that
we are in exactly the same situation as in the last paragraph.

Both of the above cases 1 and 2 lead to redshift. The point here is just to see that
the receiver with the same uniform acceleration as the observer will still detect a
redshift (case 1), since the other case is the standard one. Consider the situation in
the local inertial frame, which happens to be global for a uniform gravitational field.
In the spacetime diagram,we have two identically shaped curves, curving over to the
right, translates of one another along the space axis. The one on the left is the emitter
and the one on the right is the receiver. A signal from the emitter leaves it when
the emitter has a certain speed and arrives at the receiver when the receiver has a
higher speed. In this freely-falling frame view, the redshift is just a Doppler shift. (To
apply this analysis in the general relativistic case considered here, where we have a
uniform gravitational field, we are of course also assuming the strong equivalence
principle.) The only difference in case 2 is that the shape of the receiver worldline in
the spacetime diagram for a freely falling observer is different from the shape of the
emitter worldline, because it curves over more slowly (lower proper acceleration).

The redshift calculation for case 2 can be found in [7, Sect. 15.6] along with a
critical discussion of the way semi-Euclidean coordinate systems are interpreted.
Case 1 here is straightforward in the freely falling frame. The worldlines of E and R
are (see Fig. 13)

xE.t/ D c2

g

"�
1C g2t2

c2

�1=2
� 1

#
; (48)

as in (24) on p. 69, and xR.t/ D xE.t/ C �, for some constant �. The two world-
lines have the same shape, because they have the same uniform acceleration, by
hypothesis 1. Then

vE.t/ D gt

.1C g2t2=c2/1=2
D vR.t/: (49)
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Fig. 13 Calculating the redshift in case 1. The emitter E emits a signal at time temit which is
received by the receiver R at time trec. The two worldlines have the same shape. The receiver
worldline is identical to the emitter worldline but shifted a distance � along the space axis. By the
time the signal reaches the receiver, the receiver worldline has curved over due to the increasing
speed of the receiver

To get the redshift, imagine a light signal sent from the worldline of E at time temit

and find the time of reception trec on the worldline of R. Find the apparent relative
velocity

v WD vR.trec/� vE.temit/ D vE.trec/� vE.temit/; (50)

and plug it into the usual special relativistic formula for the Doppler shift. If z is the
redshift, then

1C z D .1C v=c/1=2

.1 � v=c/1=2
: (51)

Interestingly, the result is much less elegant than in the standard case 2. However, it
is easy to show that

z � g�=c2; (52)

for small �, i.e., the same result as for case 2. On the other hand, for large �, the two
results will obviously differ. What is not obvious is whether experimental accuracy
could yet distinguish the two cases.

2 Rigid Motion

This section is based on the discussion of rigid motions in B.S. DeWitt’s Stanford
lectures on relativity [11]. These lectures (to be published by Springer) deal at some
length with the problem of continuousmedia in the context of curved spacetime. The
ideas below extend naturally to general relativity, but we consider a flat spacetime
for the presentation below.
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2.1 General Motion of a Continuous Medium

The component particles of the medium are labeled by three parameters �i , i D
1; 2; 3, and the worldline of particle � is given by four functions x�.�; �/, � D
0; 1; 2; 3, where � is its proper time. In general relativity, the x� may be arbi-
trary coordinates in curved spacetime, but here we assume them to be standard
coordinates of some inertial frame.

If �i C •�i are the labels of a neighbouring particle, its worldline is given by the
functions

x�.� C •�; �/ D x�.�; �/C x
�
;i .�; �/•�

i ;

where the comma followed by a Latin index denotes partial differentiation
with respect to the corresponding � (DeWitt’s notation). Note that the quantity
x
�
;i .�; �/•�

i , representing the difference between the two sets of worldline func-
tions, is formally a 4-vector, being basically an infinitesimal coordinate difference.
However, it is not generally orthogonal to the worldline of �. In other words, it does
not lie in the hyperplane of simultaneity of either particle.

To get such a vector one applies the projection tensor onto the instantaneous
hyperplane of simultaneity:

P�� D 	�� C Px� Px� ;

where the dot denotes partial differentiation with respect to � , and we note that in
general relativity the projection tensor takes the form

P�� D g�� C Px� Px� ;

with g�� the metric tensor of the curved spacetime. The result is

•x� WD P��x
�
;i .�; �/•�

i : (53)

One finds that application of the projection tensor corresponds to a simple proper-
time shift of amount

•� D 	�� Px� Px�;i•�i ;

so that

•x� D x�.� C •�; � C •�/ � x�.�; �/:

Indeed,

x�.� C •�; � C •�/ D x�.�; �/C x
�
;i•�

i C Px�•�;
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and feeding in the proposed expression for •� , we do obtain precisely •x� as defined
above.

What can we conclude from this analysis? The two particles � and �C•� appear,
in the instantaneous rest frame of either, to be separated by a distance •s given by

.•s/2 D .•x/2 D �ij •�
i •�j ; (54)

where
�ij D P��x

�
;ix

�
;j : (55)

DeWitt calls the quantity �ij the proper metric of the medium.

2.2 Rigid Motion of a Continuous Medium

At this point, one can introduce a notion of rigidity. One says that the medium
undergoes rigid motion if and only if its proper metric is independent of � . This is
therefore expressed by

P�ij D 0: (56)

Under rigid motion the instantaneous separation distance between any pair of neigh-
bouring particles is constant in time, as they would see it. Note that this criterion is
independent of the coordinates used because �ij is a scalar.

Let us see whether this coincides with the notion of rigidity discussed earlier,
i.e., whether the rigid rod of Sect. 1.2 is DeWitt rigid, or put differently, whether the
rod described in Sect. 1.2 is undergoing rigid motion according to the criterion (56).
DeWitt’s � correspond to s in Sect. 1.2 (see p. 64). In a given inertial frame, particle
s has motion described by X.s; t/, where

@X

@s
D 1

�
; � D �

�
v.s; t/

�
;

and

v.s; t/ D vA.t/C @X

@t
;

where vA.t/ is the speed of the end of the rod. Suppose we now change to a frame
moving instantaneously at speed v.s; t/ and measure the distance between particle s
and particle s C •s as viewed in this frame. Will it be constant in this model, as
required for DeWitt rigid motion? In the original frame where both particles are
moving, we have separation

X.s C •s; t/ � X.s; t/ D @X

@s
•s D •s

�
:
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In the new frame moving at speed v.s; t/, this has length

�
•s

�
D •s D constant:

This is what DeWitt rigid motion requires.

2.3 Rate of Strain Tensor

The aim here is to express the rigid motion condition P�ij D 0 in terms of derivatives
with respect to the coordinates x� by introducing the relativistic analog of the rate
of strain tensor in ordinary continuum mechanics.

The non-relativistic strain tensor can be defined by

eij WD 1

2

�
@uj
@xi

C @ui
@xj

�
;

where ui .x/ are the components of the displacement vector of the medium, describ-
ing the motion of the point originally at x when the material is deformed. One also
defines the antisymmetric tensor

!ij WD 1

2

�
@uj
@xi

� @ui
@xj

�
;

which describes the rotation occurring when the material is deformed. Clearly,

eij � !ij D @ui
@xj

;

and hence, if all distortions are small,


ui D .eij � !ij /
xj :

We can consider that eij describes non-rotational distortions, i.e., stretching, com-
pression, and shear.

In the present discussion, ui is replaced by a velocity field vi and we have a rate
of strain tensor. The non-relativistic rate of strain tensor is

rij D vi;j C vj;i ; (57)

where vi is a 3-velocity field and the differentiation is with respect to ordinary
Cartesian coordinates. Let us look for a moment at this tensor. The nonrelativistic
condition for rigid motion is

rij D 0 everywhere:
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This equation implies

0 D rij;k D vi;jk C vj;ik; (58)

0 D rjk;i D vj;ki C vk;j i : (59)

Subtracting (59) from (58) and commuting the partial derivatives, we find

vi;jk � vk;j i D 0; (60)

which, upon permutation of the indices j and k, yields also

vi;kj � vj;ki D 0: (61)

Adding (58) and (61), we obtain

vi;jk D 0;

which has the general solution

vi D �!ijxj C ˇi ; (62)

where !ij and ˇi are functions of time only. The condition rij D 0 constrains !ij
to be antisymmetric, i.e.,

!ij D �!j i ;
and nonrelativistic rigid motion is seen to be, at each instant, a uniform rotation with
angular velocity

!i D 1

2
"ijk!jk

about the coordinate origin, superimposed upon a uniform translation with velocity
ˇi . Because the coordinate origin may be located arbitrarily at each instant, rigid
motion may alternatively be described as one in which an arbitrary particle in the
medium moves in an arbitrary way while at the same time the medium as a whole
rotates about this point in an arbitrary (but uniform) way. Such a motion has six
degrees of freedom.

Note that when rij is zero, we can also deduce that vi;i D 0, i.e., divv D 0, which
is the condition for an incompressible fluid. This is evidently a weaker condition
than rigidity.

Let us see how this generalises to special relativity. We return to the continuous
medium in which particles are labelled by �i , i D 1; 2; 3. Just as the coordinates x�

are functions of the �i and � , so the �i and � can be regarded as functions of the x�,
at least in the region of spacetime occupied by the medium. Following DeWitt [11],
we write

u� WD Px�; u2 D �1; P�� D 	�� C u�u� :
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If f is an arbitrary function in the region occupied by the medium then

f;� D f;i�
i
;� C Pf �;�;

where the comma followed by a Greek index � denotes partial differentiation with
respect to the coordinate x�. We also have

Px � Rx D 0 or u � Pu D 0;

since u2 D �1, and

u�u�;� D 0; Pu� D u�;�u� ; u�u�;i D 0;

x
�
;i�
i
;� C Px��;� D ı�� ;

�i;�x
�
;j D ıij ; �i;� Px� D 0;

�;�x
�
;i D 0; �;� Px� D 1;

P�� Px�;i D P��u�;i D u�;i :

We now define the rate of strain tensor for the medium:

r�� WD P�ij �i;��j;�
D

 PP��x�;ix�;j C P�� Px�;ix�;j C P��x

�
;i Px�;j

�
�i;��

j
;�

D .Pu�u� C u� Pu� /.ı�� � u��;�/.ı
�
� � u��;�/

Cu�;i�
i
;�.ı

�
� � u��;�/C .ı�� � u��;�/u�;j �

j
;�

D Pu�u� C u� Pu� C Pu��;� C �;� Pu� C u�;� � Pu��;� C u�;� � Pu��;�
D u�;�u�u� C u�u�u�;� C u�;� C u�;�
D P �

� P �
� .u�;� C u�;�/:

This is to be compared with (57) to justify calling it the rate of strain tensor. At
any event x�, it lies entirely in the instantaneous hyperplane of simultaneity of the
particle �i that happens to coincide with that event.

Note in passing that this generalises to curved spacetimes. We define

r�� WD P�ij �i ;��j ;� ; (63)

as before, noting that it is a tensor, since �ij , P�ij , �i and �j are scalars under change
of coordinates. At any x, there are coordinates such that g��;�

ˇ̌
x

D 0, whence
covariant derivatives with respect to the Levi-Civita connection are just coordinate
derivatives at x, and it follows immediately that

r�� D P �� P
�
� .u�I� C u�I� /; (64)
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where semi-colons denote covariant derivatives and P�� is given by

P�� D g�� C Px� Px� ;

for metric g�� .
Returning now to the context of special relativity, the result

r�� WD P�ij �i ;��j ;� D P �� P
�
� .u�;� C u�;�/ (65)

expresses the rate of strain tensor in terms of coordinate derivatives of the four-
velocity field of the medium. We now characterise relativistic rigid motion by

r�� D 0; P�ij D 0: (66)

Once again, we observe that the criterion for rigid motion, viz., r�� D 0, is
independent of the coordinates, because r�� is a tensor, even in a curved spacetime.

2.4 Examples of Rigid Motion

The next problem is to find some examples. We choose an arbitrary particle in the
medium and let it be the origin of the labels �i . The problem here is to choose these
labels smoothly throughout the medium. Let the worldline x�.0; �/ of the point
�i D 0 be arbitrary (but timelike). We now introduce a local rest frame for the
particle, characterized by an orthonormal triad n�i .�/ W

ni � nj D ıij ; ni � u0 D 0; u20 D �1; u �
0 WD Px�.0; �/:

We now assume that the worldlines of all the other particles of the medium can be
given by

x�.�; �/ D x�.0; �/C �in
�
i .�/; (67)

where � is a certain function of the �i and � to be determined. On the left, � is the
proper time of the particle labelled by �. To achieve a relation of this type, given �
and �, we must find the unique proper time � of the particle � D 0 such that the point
x�.�; �/ is simultaneous with the event x�.0; �/ in the instantaneous rest frame of
the particle � D 0. Then the label �i for our particle is defined by the above relation.
There is indeed an assumption here, namely that these �i really do label particles.
That is, if we look at events with the same �i but varying � , we are assuming that
we do follow a single particle. It is unlikely that all motions of the medium could be
expressed like this, but we can obtain some rigid motions, as we shall discover.
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To determine the function �.�i ; �/, write

u� D Px�.�; �/ D .u �
0 C �i Pn �i / P�;

all arguments being suppressed in the final expression. Here and in what follows, it
is to be understood that dots over u0 and the ni denote differentiation with respect
to � , while the dot over � denotes differentiation with respect to � .

In order to proceed further, one must expand Pni in terms of the orthonormal tetrad
u0; ni :

Pn �i D a0iu
�
0 C˝ijn

�
j : (68)

The coefficients a0i are determined, from the identity

Pni � u0 C ni � Pu0 D 0;

to be just the components of the absolute acceleration of the particle � D 0 in its
local rest frame [see an example in (22) on p. 69]:

a0i D ni � Pu0; (69)

and the identity
Pni � nj C ni � Pnj D 0

tells us that˝ij is antisymmetric:

˝ij D �˝j i :

We now have

u� D
h�
1C �ia0i

�
u �
0 C �i˝ijn

�
j

i
P�:

But

�1 D u2 D �
h�
1C �ia0i

�2 � �i�j˝ik˝jk

i
P�2;

whence

P� D
h�
1C �ia0i

�2 � �i�j˝ik˝jk

i�1=2
: (70)

The right hand side of this equation is a function solely of � and the �i . Therefore
the equation may be integrated along each worldline � D const:, subject to the
boundary condition

�.�; 0/ D 0:
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We shall, in particular, have the necessary condition

�.0; �/ D �:

Note that the medium must be confined to regions where

�
1C �ia0i

�2
> �i˝ik�

j˝jk .� 0/: (71)

Otherwise, some of its component particles will be moving faster than light.
We can now calculate the proper metric of the medium. We have

ni � u D �˝ij �j P�; (72)

x
�
;i D n

�
i C .u �

0 C �j Pn �
j /�;i D n

�
i C u� P��1�;i ;

u�x
�
;i D �˝ij �j P� � P��1�;i ;
�ij D P��x

�
;ix

�
;j

D ıij �˝ik�
k�;j �˝jk�k�;i � P��2�;i�;j

C �
˝ik�

k P� C P��1�;i
��
˝jl�

l P� C P��1�;j
�

D ıij C P�2˝ik˝jl�k�l

D ıij C ˝ik˝jl�
k�l�

1C �ma0m
�2 � �n�r˝ns˝rs

; (73)

using the above expression (70) for P� .
From this expression we see that there are two ways in which the motion of the

medium can be rigid:

� All the˝ij are zero.
� All the˝ij and all the a0i are constants, independent of � .

In the second case the motion is one of a six-parameter family, with the˝ij and the
a0i as parameters. DeWitt refers to these special motions as superhelical motions.
One example, constant rotation about a fixed axis, is discussed in Sect. 2.6. Let us
first consider the case where all the˝ij are zero.

2.5 Rigid Motion Without Rotation

Saying that the˝ij are all zero amounts to saying that the triad n �i is Fermi–Walker
transported along the worldline of the particle � D 0. Let us see briefly what this
means.
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If u0.�/ is the 4-velocity of the worldline, the equation for Fermi–Walker
transport of a contravectorA� along the worldline is

PA� D .A � Pu0/u0 � .A � u0/Pu0: (74)

This preserves inner products, i.e., if A and B are FW transported along the world-
line, then A � B is constant along the worldline. Furthermore, the tangent vector u0
to the worldline is itself FW transported along the worldline, and if the worldline is
a spacetime geodesic (a straight line in Minkowski coordinates), then FW transport
is the same as parallel transport.

Now recall that the˝ij were defined by

Pn�i D a0iu
�
0 C˝ijn

�
j : (75)

When˝ij D 0, this becomes
Pn�i D a0iu

�
0 : (76)

This is indeed the Fermi–Walker transport equation for n�i , found by inserting A D
ni into (74), because we insist on ni � u0 D 0 and we have a0i D ni � Pu0 [see (69)
on p. 94].

In fact, the orientation in spacetime of the local rest frame triad n�i cannot be
kept constant along a worldline unless that worldline is straight (we are referring to
flat spacetimes here). Under Fermi–Walker transport, however, the triad remains as
constantly oriented, or as rotationless, as possible, in the following sense: at each
instant of time � , the triad is subjected to a pure Lorentz boost without rotation
in the instantaneous hyperplane of simultaneity. (On a closed orbit, this process
can still lead to spatial rotation of axes upon return to the same space coordinates,
an effect known as Thomas precession.) For a general non-Fermi–Walker trans-
ported triad, the˝ij are the components of the angular velocity tensor that describes
the instantaneous rate of rotation of the triad in the instantaneous hyperplane of
simultaneity.

Of course, given any triad n�i at one point on the worldline, it is always possible
to Fermi–Walker transport it to other points by solving (74). We are then saying that
motions that can be given by (67), viz.,

x�.�; �/ D x�.0; �/C �in
�
i .�/; (77)

where the �i are assumed to label material particles in the medium, are rigid in the
sense of the criterion given above.

Furthermore, the proper geometry of the medium given by the proper metric �ij
in (55) on p. 89 is then flat, i.e.,

�ij D ıij :

We also note that .�; �i / are the semi-Euclidean coordinates for an observer with
worldline x�.0; �/, moving with the base particle � D 0. This generalises the
construction of Sect. 1.4 to the case of a general 3D acceleration.
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What we are doing here is to label the particle �i by its spatial coordinates �i in
the semi-Euclidean system moving with the particle � D 0. Geometrically, we have
the worldline of the arbitrarily chosen particle O at the origin, viz., x�.0; �/, with
� its proper time. We have another worldline x�.�i ; �/ of a particle P labelled by �,
with proper time � . For given � , we seek � such that x�.�i ; �/ is in the hyperplane
of simultaneity of O at its proper time � . Then .�i / is the position of P in the tetrad
moving with O. Indeed, f�i g are the space coordinates of P relative to O in that
frame.

As attested by (72) on p. 95, we also have

ni � u D 0; (78)

so that the instantaneous hyperplane of simultaneity of the particle at � D 0 is an
instantaneous hyperplane of simultaneity for all the other particles of the medium
as well, and the triad n�i serves to define a rotationless rest frame for the whole
medium. In other words, the coordinate system defined by the particle labels �i

may itself be regarded as being Fermi–Walker transported, and all the particles of
the medium have a common designator of simultaneity in the parameter � . In the
semi-Euclidean system, � is taken to be the time coordinate.

Put another way, (78) says that the ni .�/ are in fact orthogonal to the worldline
of the particle labelled by �i at the value of � corresponding to � . This happens
because u.�; �/ D u0.0; �/. In words, the 4-velocity of particle � at its proper time
� is the same as the 4-velocity of the base particle when it is simultaneous with the
latter in the reckoning of the base particle (quite a remarkable thing).

Because � is not generally equal to � , however, it is not possible for the particles
to have a common synchronization of standard clocks. The relation between � and �
is given by (70) on p. 94 as

P� D �
1C �ia0i

��1
:

We can thus find the absolute acceleration ai of an arbitrary particle in terms of a0i
and the �i :

ai D ni � Pu D ni � @u

@�
P� D P�ni � @

@�

h�
1C �ja0j

�
u0 P�

i
D P�ni � Pu0
D a0i

1C �j a0j
: (79)

Here we have used the fact that u D �
1 C �j a0j

�
u0 P� D u0. We see that, although

the motion is rigid and rotationless in the sense described above, not all parts of the
medium are subject to the same acceleration.

It is important to note that, when we find �i and � , they constitute semi-Euclidean
coordinates (adapted to � D 0) for the point x�.�; �/ whether or not that point
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follows a particle for fixed �. What we have here are material particles that follow
all these points with fixed �, for a whole 3D range of values of �.

In these coordinates, the metric tensor takes the form

g00 D @x�

@�

ˇ̌̌
ˇ
�

@x�

@�

ˇ̌̌
ˇ
�

	�� D u2 P��2 D �.1C �ia0i /
2;

gi0 D g0i D @x�

@�i

ˇ̌̌
ˇ
�

@x�

@�

ˇ̌̌
ˇ
�

	�� D .ni � u/ P��1 D 0;

gij D @x�

@�i

ˇ̌̌
ˇ
�

@x�

@�j

ˇ̌̌
ˇ
�

	�� D ni � nj D ıij ;

which has a simple diagonal structure. We note that this metric becomes static, i.e.,
time-independent, with the parameter � playing the role of time, in the special case
in which the absolute acceleration of each particle is constant. This should be com-
pared with (18) and (19) on p. 69, and also (23) on p. 69 (but note that the sign
convention for the metric has been reversed).

We conclude that this rigid motion possesses only the three degrees of freedom
that the particle � D 0 itself possesses. The base particle � D 0 can move any way
it wants, but the rest of the medium must then follow in a well defined way.

2.6 Rigid Rotation

The simplest example of a medium undergoing rigid rotation is obtained by choos-
ing

a0i D 0; ˝12 D !; ˝23 D 0 D ˝31:

The worldline of the particle at � D 0 is then straight, but the worldlines of all the
other particles are helices of constant pitch. We have

P� D
n
1 � !2�.�1/2 C .�2/2

	o�1=2

and the proper metric of the medium takes the form

�
�ij
� D

0
BB@
1C . P�!�2/2 �. P�!/2�1�2 0

�. P�!/2�1�2 1C . P�!�1/2 0

0 0 1

1
CCA :

Relabelling the particles by means of three new coordinates r; �; z given by

�1 D r cos �; �2 D r sin �; �3 D z; (80)



Rigidity and the Ruler Hypothesis 99

the proper metric of the rotating medium takes the form

diag

�
1;

r2

1 � !2r2 ; 1
�
:

Indeed, we have

P�2 D 1

1 � !2r2 ;
whence

�rr D @�i

@r

@�j

@r
�ij

D cos2 �
�
1C . P�!r/2 sin2 �	 � 2. P�!r/2 sin2 � cos2 �

C sin2 �
�
1C . P�!r/2 cos2 �	

D 1;

�r� D ��r D @�i

@r

@�j

@�
�ij

D �r sin � cos �
�
1C . P�!r/2 sin2 �	 � r. P�!r/2 sin � cos3 �

Cr. P�!r/2 sin3 � cos � C r sin � cos �
�
1C . P�!r/2 cos2 �	

D 0;

�rz D �zr D @�i

@r

@�j

@z
�ij D 0;

��� D @�i

@�

@�j

@�
�ij

D r2 sin2 �
�
1C . P�!r/2 sin2 �	C 2r2. P�!r/2 sin2 � cos2 �

Cr2 cos2 ��1C . P�!r/2 cos2 �	
D r2

�
1C . P�!r/2	 D r2

�
1C !2r2

1 � !2r2

�
D r2

1 � !2r2 ;

��z D �z� D @�i

@�

@�j

@z
�ij D 0; �zz D @�i

@z

@�j

@z
�ij D 1:

In terms of these coordinates the proper distance •s between two particles separated
by displacements •r , •� , and •z therefore takes the form

•s2 D .•r/2 C r2

1 � !2r2 .•�/
2 C .•z/2:
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We are merely applying (54) on p. 89 for the new particle labels. This gives the
distance of one particle as reckoned in the instantaneous rest frame of the neigh-
bouring particle. The second term on the right of this equation may be understood
as arising from relativistic contraction. At first sight, it may look odd to find that,
when a disc of radius r is set spinning with angular frequency ! about its axis,
so that radial distances are unaffected by relativistic contraction, distances in the
direction of rotation contract in such a way that the circumference of the disc gets
reduced to the value 2�R

p
1 � !2R2. It appears to contradict the Euclidean nature

of the ordinary 3-space that the disc inhabits! DeWitt describes this as follows [11]:

What in fact happens is that, when set in rotation, the disc must suffer a strain that arises for
kinematic reasons quite apart from any strains it suffers on account of centrifugal forces.
In particular, it must undergo a stretching of amount .1 � !2r2/�1=2 in the direction of
rotation, to compensate the Lorentz contraction factor .1� !2r2/1=2 that appears when the
disc is viewed in the inertial rest frame of its axis, thereby maintaining the Euclidean nature
of 3-space. It is this stretching factor that appears in the proper metric of the medium.

Let us try to put this more explicitly. Suppose A and B are two neighbouring parti-
cles at distance R from the centre and with labels � and � C •� . When the disk is
not rotating, the proper distance between them as reckoned by either in its instan-
taneously comoving inertial frame (ICIF) is R•� . When the disk is rotating, the
expression for �ij tells us that the proper distance between them in the new ICIF
will increase to R•�=.1 � !2R2/1=2. Seen by an inertial observer moving with the
centre of the disk, this separation will thus be R•� , as before, and there will be
no contradiction with the edicts of Euclidean geometry. This shows that the matter
between A and B is stretched in the sense of occupying a greater proper distance as
judged in an ICIF moving with either A or B.

There is a direct parallel with the two accelerating rockets mentioned at the
beginning of Bell’s well known paper How to Teach Special Relativity [10]. The
separation of A and B seen by an inertial observer moving with the centre of the
disk is unchanged when the rotation gets under way, so their proper separation is
greater, leading to a strain which DeWitt claims to be due to kinematic reasons.
If the disk could somehow be made of a very fragile material already stretched to
its limit in the inertial frame moving with the center of the disk, it would shatter
under rotation, just as the fragile thread joining Bell’s two accelerating rockets was
doomed to break.

The above discussion does assume that � labels the material particles! And this
follows from the relations in (80) and the fact that �1; �2; �3 label the particles. It
would be easy to miss this point. There remains therefore the question as to whether
any association of material particles could have, or is likely to have this motion.

We note that the medium must be confined to regions where r < !�1 and that its
motion will not be rigid if ! varies with time. There are no degrees of freedom in
this kind of (superhelical) motion: once the medium gets into superhelical motion,
it must remain frozen into it if it wants to stay rigid. We note also that the proper
geometry of the medium is not flat, i.e., �ij ¤ ıij .
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2.7 Rigid Motion in Schwarzschild Spacetime

As an example in a curved spacetime, let us show that a medium in which particles
are labelled by Schwarzschild coordinates � WD .r; �; / is in rigid motion. The
metric, displayed as a matrix, is

.g��/ D

0
BB@

�c2B.r/ 0 0 0

0 B.r/�1 0 0

0 0 r2 0

0 0 0 r2 sin2 �

1
CCA ; B.r/ WD 1 � A

r
;

whereA WD 2GM=c2 is the usual constant. Themotion we have in mind is described
by the four functions

x0.�; �/ D t; x1.�; �/ D r; x2.�; �/ D �; x3.�; �/ D ;

following the general scheme set out at the beginning of Sect. 2.1. It is then a very
simple matter indeed to show that [2]

�ij D gij ; i; j 2 f1; 2; 3g;

and also
P�ij D 0:

This is all rather obvious and it is easy to see how to obtain a host of rigid motions
in curved spacetimes where the metric has a static form. Alternatively, one can cal-
culate the rate of strain tensor r�� of (64) on p. 92, and it is a trivial matter to
show that r�� D 0. So any medium in which the particles could be labelled by
the Schwarzschild space coordinates is undergoing a rigid motion according to this
criterion.

Let us think back briefly to the short quotation from a standard textbook presen-
tation on p. 77. In fact it is interesting to see how that account continues with regard
to the related question of proper distance [4]:

Note that the [increment in the] proper radius R of a two-sphere [centered on the sin-
gularity], obtained from the spatial line element by setting � D const:,  D const:,
is

dR D .1� 2m=r/�1=2dr > dr: (81)

In other words, the proper distance between spheres of radius r and radius r C dr is dR >

dr , and hence larger than in flat space.

It is intriguing to wonder what the last comment means. For this is not really a com-
parison with any spheres in flat space. The coordinate interval dr need not be at a
point where the spacetime is even approximately flat. The so-called proper distance
is something that is related to the coordinate r in this way. In fact, the quoted relation
(81) is telling us how to understand the coordinates.
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As an aside, we have the same kind of pedagogical difficulty in the following,
still in the context of the Schwarzschild metric [4]:

Let us consider proper time for a stationary observer, i.e., an observer at rest at fixed values
of r; �; . Proper time is related to coordinate time by

d� D .1� 2m=r/1=2dt < dt: (82)

Thus clocks go slower in a gravitational field.

But they go slower than what? Of course, this is a neat inequality and very simple.
But does it really tell us that the clock is going slower than the same clock in flat
spacetime? I do not think so. dt is a coordinate change at a place where r ¤ 1 and
spacetime is not flat. The above relation tells us how to understand the coordinate t
at the relevant point, provided that we understand how to interpret proper time as
given by the metric.

Now a rod permanently occupying Œr1; r2� would be undergoing rigid motion,
and so would a rod permanently occupying Œr 0

1; r
0
2�. But we do not yet knowwhether

there is some motion of the points making up the rod occupying Œr1; r2� that could
serve as a transition of the same rod from the unprimed to the primed state. It seems
likely that one could find a DeWitt rigid motion making the transition from Œr1; r2�

to Œr 0
1; r

0
2� if and only if the proper lengths (rather than the coordinate lengths) are the

same, and indeed it is not difficult to give a heuristic argument. It is worth drawing
the analogy with a rod in Minkowski (flat) spacetime when it is accelerated from
one state of constant velocity to another, as illustrated by the 4D region shaded in
Fig. 10 (see p. 81). In fact, we have a similar problem here to the one discussed
in Minkowski spacetime: we may know, or assume, that the proper length of a rod
will be different for a given inertial observer I when it moves at different constant
velocities relative to I, but we do not have a theory for what it will look like in the
transition between the two velocity states.

In the usual special relativistic discussion, rigid means suitably contracted in
one uniform velocity state as compared with the other, but we do not usually try
to say what rigid means during the transition between the states. In Fig. 10, the
rod, initially in one velocity state, then under acceleration, then in the final velocity
state, is represented by the shaded 4D region. The proposal in this paper is just one
proposal, i.e., we have found a possible solution for the motion during the transition,
but it is not based on any microscopic theory of the atomic structure of the rod.

Rigid motion is a natural enough notion, but what of a microscopic theory? There
is a clear parallel with the discussion of the acceleration of an atom in Minkowski
spacetime, as discussed by Bell [10] and mentioned in relation to Fig. 10 on p. 81.
When Bell’s (pre-quantum) atom is accelerated slowly enough, we expect it to con-
tract in exactly the way proposed for Fig. 10, i.e., so that it always has the same
radius to the instantaneously comoving inertial observer. Slowly enough just means
that many periods of the electron orbit fit in before the acceleration has changed the
velocity very much.

What about a Bell atom in Schwarzschild spacetime? In fact, a version of the
equivalence principle shows that, if an atom has radius ratom in flat spacetime, then
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when held fixed at the valueR of the Schwarzschild radial coordinate in such a way
that the plane of the electron orbit contains the Schwarzschild radial direction, it
will have Schwarzschild coordinate radius [8]

�
1 � A

R

�1=2
ratom (83)

as viewed in the hyperplane of simultaneity of the Schwarzschild observer; whence
its proper radius will still be ratom in the hyperplane of simultaneity of the SO. This
is seen as follows. One finds coordinates fz�g at R such that an atomic nucleus
fixed at R is at the origin z� D 0 and instantaneously has speed zero relative to
these coordinates, and such that

gz
��

ˇ̌̌
zD0 D 	�� ; �z

�
��

ˇ̌̌
zD0 D 0:

Assuming that the electron orbits at small enough radius and with short enough
period relative to the curvature, a standard rather strong version of the equivalence
principle says that it will behave relative to these coordinates like an atom in flat
spacetime for a certain number of orbits, e.g., following a circular orbit with radius
ratom and the same period as in flat spacetime too. When we transform this orbit
to the Schwarzschild coordinate description, we find the Schwarzschild coordinate
radius (83).

By this kind of argument, the strong equivalence principle shows that a thing
like an atom, or a rod made of a row of such atoms (without worrying about how
binding forces affect it), always measures proper length in whatever hyperplane of
simultaneity it is observed, provided that it is instantaneously stationary there rela-
tive to the relevant coordinates, where proper length is the quantity usually obtained
from the metric, and usually just assumed without further discussion to represent
the lengths of such real (if ideal) physical objects. One might say that, wherever it
is, whatever it is doing, this kind of atom or rod always measures proper lengths
if used correctly. The last proviso just refers to the fact that the atom must be
instantaneously stationary relative to suitable coordinates.

Is there a link with rigidity as we have been describing it? Are these Bell atoms
rigid? It looks as though they are. Such an atom can sit at constant Schwarzschild
space coordinates and have constant coordinate radius. Moved elsewhere, if moved
slowly enough, its Schwarzschild coordinate radius changes in such a way that its
proper radius in the hyperplane of simultaneity of the SO is roughly constant, just
like the above infinitesimal rod subjected to an approximate DeWitt rigid motion.

As an aside, the Schwarzschild coordinates arise in a purely mathematical way in
many presentations of this metric, by solving Einstein’s equations, and no attempt
is made to associate some physical counterpart with them. Although the notation
may be suggestive, the discussion after the solution should perhaps address the
question: how do we now relate these coordinates to what we measure? Further-
more, one should perhaps also ask why clock readings and measuring stick readings
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correspond the way they do to our coordinates, bearing in mind what a measuring
stick must do to lie quietly between the points r1 and r2 with all its atoms under
different 4-accelerations. What principle of the theory are we applying?

The above idea of a rigid rod (measuring stick) in Schwarzschild spacetime is
thus that we can support it in the gravitational field in such a way that the 4D region it
sweeps out crosses any Schwarzschild plane of simultaneity in the fixed coordinate
interval from r1 to r2. The term ‘support’ covers up for some complex continuum
of different 4-forces on its various atoms. Perhaps we can just hold one end of it
at r1, say, and let the internal forces within the rod do the rest naturally. According
to the above analyses, the material of such a rod would indeed be undergoing rigid
motion if all particles in the rod could be labelled by constant Schwarzschild space
coordinates. This would then be a rigid rod, quite analogous to the one discussed for
an accelerating observer.

It seems that our measuring sticks have to be like this for the theory to have
a practical application, and the principle hiding away here is (a version of) the
equivalence principle.

3 Conclusion

Rigid rods are commonly referred to in the special theory of relativity. In a certain
sense they hardly need to be rigid. If one is moving inertially with a rigid rod, it has
length L, and if one then changes to another inertial motion, it has another length
L0 which is shorter than L. Nothing is required of the rod here.

One does not even have to be present in this scenario. In the paradigm provided
by the general theory of relativity, one just has to adopt coordinates. It does not
matter what the observer is doing, only what coordinates he or she may adopt. In
this view, the new length of the rod is just an illusion, not caused by anything real.
The proper length depends on the choice of spacelike hypersurface used to intersect
the essentially 4D spacetime region occupied by the rod.

This is not the view described by Bell [10]. The relationship between observer
and rod, or between coordinate frame and rod, in which one moves relative to the
other, can be achieved in another way, namely, by accelerating the rod. The observer
does not have to do anything. The rod is accelerated and one would like to say that
as a consequence the particles making it up adjust their relationship to one another
in such a way that the rod becomes shorter as judged by the observer. There is even
a theory for this: Maxwell’s theory of electromagnetism.

In this view, rigidity would just be something like the assumption that there
are no transient oscillatory effects during or after acceleration, or that such effects
can be neglected. It would seem that the notions of rigidity discussed here are an
approximation of this kind.

Put another way, rigidity is a constraint on the motion of (the particles within) a
measuring stick that allows one to say exactly what is happening to it when it makes
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the transition from one uniform velocity state to another (in flat spacetime). Bell
was considering just such a transition in his paper [10], but using the microphysical
theory provided by Maxwell, which is presumably more realistic. The aim here is
to draw attention to the fact that the rigidity constraint is artificial, and show that the
standard, often uncritically interpreted semi-Euclidean coordinate system adapted to
the worldline of an accelerating observer (in flat spacetime) fundamentally uses this
constraint, and hence remind us that we ought to be wary of non-inertial coordinate
systems (see also [7]).

The distinguishing feature of special relativity, when it is considered as a spe-
cial case of general relativity, is that there are preferred frames of reference adapted
to observers with inertial motion. However, even in special relativity, there are no
preferred frames of reference adapted to accelerating observers. If they know the
theory, they may as well adopt inertial coordinates (relative to which they acceler-
ate, of course). One may nevertheless wonder what such people would measure with
a measuring stick, or with the kind of (pre-quantum, non-radiating) atom described
by Bell [10]. If the acceleration is not too great, one expects the Bell atom to adjust
rather quickly, whereas the rigid rod described in Sect. 1 (accelerated along its axis)
adjusts immediately for any acceleration to measure proper length in the instanta-
neously comoving inertial frame of the observer, i.e., in the spacelike hypersurface
borrowed from an instantaneously comoving inertial observer. In other words, the
rigid rod satisfies what is usually known as the ruler hypothesis.

Something like the clock and ruler hypotheses are necessary to interpret the
Pound–Rebka experiment. This is used as an example to illustrate the idea that one
should be wary of naive interpretations of appealing coordinate systems, which often
involve assumptions of this kind in a covert way.

In a curved spacetime, one expects to find a rigid motion of a rod between two
states if and only if the two states correspond to the same proper length relative to
suitably adapted frames. Once again, an atom of the type described by Bell would
provide an approximation.
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Minkowski Space and Quantum Mechanics

Paul O’Hara

1 Introduction

A paradigm shift distinguishes general relativity from classical mechanics. In gen-
eral relativity the energy-momentum tensor is the effective cause of the ontological
space-time curvature and vice-versa, while in classical physics, the structure of
space-time is treated as an accidental cause, serving only as a backdrop against
which the laws of physics unfold. This split in turn is inherited by quantummechan-
ics, which is usually developed by changing classical (including special relativity)
Hamiltonians into quantum wave equations. For example the Dirac equation is
obtained by substituting the momentum operator for the four-momentum term
in the linearized relativistic Hamiltonian. Similarly, Erwin Schrodinger used the
“purely formal procedure” [1] of replacing @W

@t
in the Hamilton-Jacobi equation

with ˙ h
2�i

@
@t

to obtain his wave equation. In both cases, the transition to quantum
mechanics relies upon additional formal assumptions associated with Hilbert Space
theory, and the final form of the wave equation does not in principle depend upon the
underlying geometry of Minkowski space, although in the case of special relativity,
the Hamiltonian indirectly reflects the geometric structure of Minkowski space.

In this article, we try to remedy this situation by taking the metrics of gen-
eral relativity as the starting point of quantum mechanics. We will associate wave
equations in a natural way with those operators which are duals of differential
one-forms (expressed locally as a Minkowski metric) rather than with operators
derived from a Hamiltonian, thus enabling the ontological structure of space-time
itself to determine in a natural and unique way the wave equations of quantum
mechanics.

This too has philosophical implications for the unity of physics. First, it means
the metric structure of the space determines the general form of the wave equa-
tion, and consequently implies that space-time is not merely a backdrop for the
laws of mechanics but is in fact an effective and quasi-formal cause of the resulting
wave equations. Secondly, because of the equivalence principle the wave equation
can always be written in a form that locally reflect a wave equation in Minkowski
space, although globally in the case of non-geodesic motion other factors need to
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be considered. Thirdly, the use of test particles to analyze the motion of a mas-
sive body within the structure of the space-time further complicates matters in
that it suggests a return to the pre-relativistic mentality of considering the laws of
mechanics as something operative within space-time but not contributing to its
ontological structure.

With regard to this last point, it is precisely here that gauge theory plays a
key role. It enables new parameters like charge to be introduced into the space-
time structure by means of non-gravitational connections which are not intrinsically
related to the geometry of that space-time. This becomes particularly pronounced
when we analyze for example the hydrogen atom. As we shall see in Sect. 4 the
understanding of the hydrogen atom is transposed into a question about an electron
as a point charge-mass moving within a space-time whose geometry is determined
by the Reissner-Walker metric of the proton. Consequently, in this case the electron
is considered to be a test particle with both charge and mass which are determined
by a gauge term, while by way of contrast the charge of the proton contributes to
the energy-momentum tensor. We could say that taken together the two approaches
produce a methodological unification but not an ontological one. Nevertheless,
the usefulness of the approach cannot be underestimated in that it allows us to
understand much about the structure of the hydrogen and other atoms.

Specifically, then the paper will be structured to reflect the three points above.
Section 2 will lay out the formalism relating metrics and waves, Sect. 3 will consider
the relationship between quantum mechanics and classical mechanics based on this
formalism, Sect. 4 will discuss non-geodesic motion and then apply the theory to
the hydrogen atom.

2 Metrics and the Dirac Equation

Before laying out the formalism proper, we need to clarify notation. Through-
out the paper, .M; g/ will denote a space-time pair, where “M is a connected
four dimensional Hausdorff manifold” and g is a metric of signature �2 on M
[3]. At every point p on the space-time manifold M we erect a local tetrad
e0.p/; e1.p/; e2.p/; e3.p/ such that a point x has coordinates x D .x0; x1; x2; x3/

D xaea in this tetrad coordinate system, while the spinor  can be written as
 D  iei .p/, where  i represent the coordinates of the spinor with respect
to the tetrad at p. Also at p we can establish a tangent vector space Tp.M/,
with basis f@0; @1; @2; @3g and a dual 1-form space, denoted by T �

p with basis
fdx0; dx1; dx2; dx3g at p, defined by

dx�@� 	 @�x
� D ı�� : (1)

We refer to the basis fdx0; dx1; dx2; dx3g as “the basis of one forms dual to the
basis f@0; @1; @2; @3g of vectors at p.”
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2.1 General Formalism

We begin with an intuitive and non-rigorous approach to our methodology by indi-
cating two ways in which quantum mechanical wave equations can be obtained
from the metrics of general relativity, without any explicit recourse to Lagrangians
or Hamiltonians. We will then combine the results of the two approaches into a
mathematical theorem. Later in the next section, we will impose more rigorous con-
straints, which will enable us to identify the spinor formulation given here with the
usual Hilbert Space formulation of quantum mechanics.

In a previous paper [12] we have shown that the quantum-mechanicalwave equa-
tions can be derived as the dual of the Dirac “square-root” of the metric. In other
words, if

ds2 D g��dx
�dx� D 	abdx

adxb (2)

where a and b refer to local tetrad coordinates and 	 to a rigid Minkowski met-
ric of signature �2, then associated with this metric and the vector ds is the scalar
ds and a matrix Qds 	 �adx

a respectively, where f�a; �bg D 2	ab , with �a trans-
forming as a covariant vector under coordinate transformations. Note also that
g��.x/ D 	abe

a
�.x/e

b
� .x/ with ea�.x/ forming local tetrads at x. Moreover, since

ds is an invariant scalar, and Qds2 D ds2 we can identify the “eigenvalue” ds with
the linear operator Qds by forming the spinor eigenvector equation Qds� D ds�. This
is equivalent to associating the metric

ds2 D g��dx
�dx� D 	abdx

adxb (3)

with the spinor equation:

ds� D �adx
a�: (4)

It follows from the general theory of eigenvectors that if � is a solution so also is
f .z0; z1; z2; z3/� where f is any complex scalar valued function. Indeed, there is no
reason why f cannot be an L2 function, and correspond to a quantum-mechanical
wave function.

As previously mentioned, corresponding to each tangent vector @
@xa , there exists

a dual one-form dxa. In a similar way, the Qds matrix above can be seen as the dual of
the expression Q@s 	 �a @

@xa , where �a is defined by the relationship f�a; �bg D 2ıa
b

and the dual map defined by

D Qds; Q@s
E

	 1

Tr.dxi@j /
�a�

bdxa
@

@xb
	 1

ıii
�a�

b @x
a

@xb
D 1; (5)

remains invariant. Moreover, if we let s describe the length of a particle’s trajectory
along a curve .x0.s/; x1.s/; x2.s/; x3.s// 2 .M; g/ then s can be regarded as an
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independent parameter with an associated 1-form ds, which is the dual of the tan-
gent vector @s . Note that in terms of the basis vectors for Tp.M/ and T �

p .M/ we

can write @s D @xa

@s
@a and ds D @s

@xa dx
a. It also follows from this and (1) that its

dual map is given by ds:@s D @s
@xi

@xi

@s
D 1. Putting these two results together allows

us to consider (4) as the dual of the equation:

@ 

@s
D �a

@ 

@xa
; (6)

where @
@s

refers to differentiation along a curve parameterized by s. We will refer
to (6) as a (generalized) Dirac equation and will show later on how it relates to the
usual form of this equation. At times, too, we shall refer loosely to it as a “dual
wave-equation.”

Now consider the motion of a test particle of mass m along a timelike geodesic.
Let pa D m.dxa=d�/, where � is the proper time (i.e ds D cd�). Then

ds2 D 	abdx
adxb is equivalent to .mc/2 D 	abp

apb : (7)

This can be expressed in spinor notation by

ds� D �adx
a� which is equivalent to �apa�.p/ D mc�.p/: (8)

Indeed, if (6) is subjected to the constraints of (8), as it should be for motion along
the timelike geodesic, we find that  D  i .

R x.s/
x0

padx
a/ei is a solution of (6),

provided the integration is taken along the curve s D c� and �.p/ D d i .p/
d�

ei (cf
Theorem 1 below). It is also worth noting that if all of i are equal then D f .x/u
where u is a spinor independent of x, and f .x/ is a function. In this particular case
the Dirac equation takes on the form

.Q@sf /u D @f

@s
u: (9)

Moreover, in terms of a 4-dimensional (complex) Euclidean spaceE4, this equation
can be directly related to the expression [4]

df D ds:rf D ds
@f

@s
; (10)

by observing that Q@sf is the matrix form of the vector rf . Also, if ds:rf is invari-
ant with respect to both rotations and reflections, then the associated spinor equation
can be immediately written in a covariant manner in a natural way. It is sufficient
to note that for the Lorentz spinor transformation D.�.x// applied to the Dirac
equation (9), we get
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D.�.x//.Q@sf /u D D.�.x//
@f

@s
u (11)

) D.�.x//.Q@sf /D�1.�.x//D.�.x//u D @f .s//

@s
D.�.x//u (12)

) Q@f s0u0.x0/ D @f .x/

@s
u0.x0/; (13)

which expresses the covariance. Note Q@s0 	 �a @
@x0

a
.

2.2 A Gauge Approach to Mass

Another approach to the above formalism is to introduce test particles by means
of a gauge term. Specifically, let .M; g/ be a pseudo-Riemannian manifold, with
metric tensor g determined by Einstein’s field equations, and introduce a massless
test particle into the field. By the principle of equivalence we can choose a local
tetrad fdx0; dx1; dx2; dx3g such that the massless test particle travels along a null
geodesic given by 0 D dxadxa, which in terms of a spinor basis can be written as

�adxa� D 0: (14)

Next define the wave equation corresponding to the metric by taking the dual of the
1-form space:

�a@a D 0; (15)

which can be interpreted as the wave equation of a massless particle.
We now introduce a test particle of massm by means of a minimal principle [2],

by adopting the same technique that is usually used to introduce test charges into a
field. In other words, let

0 D �a.@a � pa/ ; (16)

which in turn gives the fundamental wave equation

�a@a D �apa : (17)

This immediately suggests the particular solution

 D e
R x
padya�.p0/: (18)
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Moreover, if the gauge term describes a test particle of mass m moving along a
timelike geodesic as defined in (8), then

�a@a D mc : (19)

Once again, we have obtained a Dirac equation.
However, there is a difference between the two. In the first approach we strictly

work with the dual of a metric to obtain the desired equation. In the gauge approach
we not only use the dual of a null metric to obtain an answer but it implicitly restricts
us to eigenfunction solutions, in contrast to the other method which allows for an
entire family of solutions, including eigenfunctions. Another advantage of the dual
approach is that mass is intrinsically linked to the structure of space-time itself
through the metric, in contrast to the use of a gauge where mass is introduced as
extrinsic to the space.

2.3 A Theorem

The above results can be summarized in the following theorem:

Theorem 1. Let �.p/ D Œ d
ds
 i .s/�ei , where mcs D R x

padxa along a timelike
geodesic then �apa� D mc� iff  .p/ D  i .

R x
padxa/ei is a solution of

@

@s
 .p/ D �a@a .p/;

where
R x
padxa is Lorentz invariant, and integration is taken along the curve with

tangent vector pa D mdxa

d�
, where � is proper time.

Proof. Noting that  .p/ D  i .
R x
padxa/ei and assuming �apa� D mc� then

�a
@ 

@xa
D �apa

@ i

@s
ei (20)

D �apa� (21)

D mc� given (22)

D @ 

@s
(23)

To prove the converse it is sufficient to substitute  .p/ D  i .
R x
padxa/ei into

Q@s D @s to get answer. ut
Corollary 1. In the case of  i .

R x
padxa/ D e

R x
padxa then �a@a D mc .

Proof. Clearly @ 
@s

D mc . ut
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Corollary 2. If  .
R x
padxa/ D f .

R x
padxa/u where u is a spinor independent

of xa then the equation

Q@sf u D @f

@s
u: (24)

has the same solutions as

Q@s D @

@s
 : (25)

Proof. Substitute. ut

2.4 Covariance

Theorem 1 also enables us to write down a covariant form for the generalized Dirac
equation which depends directly upon the covariance of its dual metric equation.
We begin by showing that the equation Qds� D ds� is covariant under Lorentz
transformations. Specifically, if dxa D @xa

@x0b dx
0b D �a

b
dx0b then Qds� D ds�

transforms under Lorentz transformationsD.�.x// D D.x/ into

D.x/ Qds�.x/ D dsD.x/�.x/: (26)

Now the left hand side can be rewritten as

D.x/ Qds� D D.x/ QdsD�1.x/D.x/�.x/ (27)

D Qds0D.x/�.x/; where Qds0 	 �adx
0a (28)

D Qds0� 0.x0/: (29)

Equating the two equations (26) and (29) then gives

Qds0� 0.x0/ D ds� 0.x0/; (30)

which establishes the covariance.
The covariance of the Dirac equation follows if we can re-write (6) in the form

.Q@s i /ei D @ i

@s
ei : (31)

This is always possible to do in Minkowski space by choosing a single fixed
tetrad for the entire space or along geodesics in more general spaces by Fermi trans-
porting the tetrad along the curve, which is the case in this article. From Theorem 1,
we already know that equation (31) is equivalent to the covariant metric Qds� D ds�

provided � D .d i=ds/ei , where s indicates differentiation along the timelike
geodesic parameterized by s (recall mcs D R x

padx
a). It follows that Qds� D ds�
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is covariant iff �apa� D mc� is covariant iff �apa.d i=ds/ei D mc.d i=ds/ei
is covariant iff (31) is covariant with respect to the Lorentz transformation D.x/,
along the geodesic. Moreover, this latter restriction of motion along a geodesic,
may actually be relaxed and the following more general theorem can be proven:

Theorem 2. The Dirac equation defined over the manifold .M; g/ is Lorentz
covariant under the transformation D.x/ defined with respect to a tetrad ei ,
provided the equation is written in the form

�a
@ i

@xa
ei D @ i

@s
ei :

Proof. LetD.x/ be a local Lorentz transformation at x then:

D.x/ Q@s .s/ D D.x/. Q@s i /ei (32)

D .D.x/ Q@s i /D�1.x/D.x/ei (33)

D . Q@s0 i /e0
i (34)

D
�
@ i

@s

�
e0
i (35)

ut
Remark 1. Although this equation is covariant, it will turn out that in the case of
non-geodesic motion (6) and (8) cannot both hold at the same time and a more
complicated formula is involved (see Sect. 4). Also, in regular Minkowski space,
the covariant form of the generalized Dirac equation can be reduced to the form of
(6) in any inertial frame.

3 Quantum and Classical Mechanics

At this stage the reader may be wondering how the usual formulation of quantum
mechanics emerges. Indeed, the wave equations above seem to express the wave
equations of classical mechanics more than quantum mechanics, in that there is no
expression for Planck’s constant h, nor does the expression i D p�1 appear with
the operators.With regard to the latter point, we note that i could be seen as absorbed
into the � matrices, but we postpone a full discussion of this until later in this section.
First, we analyze the solutions of the wave equation for a massless particle from
three perspectives to help us better grasp the formal difference between classical and
quantum mechanics. Later on, we will formulate the axioms of quantum mechanics
as suggested by our analysis.



Minkowski Space and Quantum Mechanics 115

3.1 Wave Equation of a Massless Particle

The linearized metric for a massless particle is given by

0 D �0cdt � �1dx1 � �2dx2 � �3dx3 (36)

from which it follows by the canonical correspondence established above that the
associated wave equation for the particle is given by:

0 D �0
@ 

c@t
� �1

@ 

@x1
� �2

@ 

@x2
� �3

@ 

@x3
: (37)

This is the Dirac equation for a massless particle. Squaring this out we get an
equation analogous to the Klein-Gordan equation for a massless particle:

1

c2
@2 

@t2
D

3X
iD1

@2 

@x2i
; (38)

which is also the classical wave equation. Also note that eigenfunction solutions
of the Klein-Gordan equation are not necessarily eigenfunctions of the generalized
Dirac equation. In this regard, it should also be noted that the Klein-Gordan equation
simply prescinds from any discussion of spin or equivalently, it may be considered
as the equation for a spin 0 particle. In contrast the Dirac equation has non-zero spin
value solutions.1

Since the wave equation emerges from the structure of space-time itself, the ques-
tion arises as to how to distinguish classical mechanics from quantum mechanics.
We investigate this by analyzing the motion of a massless particle in a Minkowski
space, subject to different sets of boundary conditions.

Case 1:

Consider the motion of a classical massless particle moving on the x-axis with uni-
form velocity c, but constrained by two mirrors placed at x D 0 and x D � to move

1 This also raises the question of quantum statistics. It has been noted in a previous paper [13] that
Fermi-Dirac statistics is a consequence of indistinguishable particles forming spin-singlet states,
while Bose-Einstein statistics follows as a consequence of breaking the rotational invariance asso-
ciated with the singlet states. Moreover, the easiest way for this breaking to occur is for the spin
states of the particles to be statistically independent. It follows as a trivial consequence of the
above theory that bosons cannot be second quantized as fermions and fermions cannot be second
quantized as bosons, in that particles which are forming spin-singlet states with probability one
cannot be considered statistically independent. It also follows that spin 0 particles must obey Bose-
Einstein statistics. For example, if S and T represent the spin observables of two particles such that
P.S D 0/ D P.T D 0/ D 1 then P.S D 0; T D 0/ D P.S D 0/P.T D 0/ D 1:1 D 1, and
hence the spin observables S and T are statistically independent.
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uniformly on the interval Œ0; ��. We will assume that perfect reflection takes place at
the mirrors and that no energy is exchanged. In this case, the equation of motion for
a strictly classical particle with position x D 0 at t D 0 is given by:

x D
(
ct � 2n�; for t 2 Œ2n�

c
; .2nC1/�

c
�

2.nC 1/� � ct for t 2 Œ .2nC1/�
c

; .2nC2/�
c

�;

and its wave function  .x; t/ takes on the form

 .x; t/ D
8<
:
ıŒk.x � ct/� for x � ct D �2n�
ıŒk.x C ct/� for x C ct D 2.nC 1/�

0 otherwise.

The wave function in this case pinpoints the position of the particle with probabil-
ity 1. Moreover, there is no restriction on the energy (implicit in the term k) in this
case. Theoretically, it may have values ranging from 0 to 1.

Case 2:

The classical particle is an idealized situation. In reality, the position of a massless
particle constrained to move on the line is unknown and any attempt to know its
exact position will be subject to Heisenberg’s uncertainty relations, which we will
formulate in the next section. In other words, its exact position can not be known in
principle, because any attempt to pinpoint it will scuttle the position and defeat the
whole purpose of the experiment. The best we can do is to describe the position by
means of a uniform probability density f .x � ct/ D 1=� for x 2 Œ0; �� which also
suggests writing  .x; t/ D e˙ik.x�ct/=

p
� to preserve both the boundedness and

the periodic motion of the particle, as described by the above wave equation. This
does not mean that causality is violated nor that the particle does not have an exact
position, at least in the above case. It simply affirms that our initial conditions have
to be defined statistically, and also in such a way as to reflect the periodic motion
of the particle. As a consequence the future evolution of the wave function of the
system is best interpreted in a statistical way. Finally, note that in this model the
energy of the particle can once again vary from 0 to 1 in a continuous manner.

Case 3:

The particle may be constrained to move in a potential well in such a way that
the wave function is continuous (D 0) at the boundaries. In the case of the above
problem, this means that the wave function has harmonic solutions of the form
 .�; t/ D Aei�

0t sin.kx/, where A is a constant. Substituting, we will find that
k D n�

�
and the photon energy becomes quantized and of the formE 	 kc D �0. It

should be noted that this solution corresponds to the motion of a harmonic oscillator,
and is the key to the quantization process associated with quantum field theory in
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general [5]. Indeed, if we were to re-scale our units of energy by defining �0 D h�,
then E D h�, with h having units J:s, and the standard wavelength becomes
� D ch

E
. In the next section, h will be introduced in a more formal way.

The purpose of the above three examples is to highlight the importance of the
boundary conditions when distinguishing between a classical type problem and a
quantum mechanical problem, a point also stressed by Lindsey and Margenau [6].
Classical and quantum laws are not in opposition to each other. There is not one set
of laws on the microscopic level and another on the macroscopic. On the contrary,
classical and statistical methodologies are complimentary to each other and are in
principle, applicable at all levels. However, on the microscopic level, statistical fluc-
tuations will be more pronounced and consequently in practice (and in principle)
the effects associated with quantum physics will become more apparent.

3.2 Quantum Mechanics and Hilbert Space

The above analysis permits us to better understand something of the difference
between quantum mechanics and classical mechanics from the perspective of gen-
eral relativity. As we have noted, it suggests the difference is to be found in the
boundary conditions, which in the case of quantum mechanics is subjected to sta-
tistical conditions. With this in mind, we formulate a few axioms which not only
respect the manifold structure of general relativity, but also enable us to distinguish
quantum mechanics from classical physics, in a formal way.

Essentially what we have noted is that the metric of general relativity forces (real)
eigenvalue solutions for the free particle of the form

@ .
R
padxa/

@xa
D pa .s padxa/:

However, since the choice of eigenfunction associated with the specific eigenvalue
in this case is not unique, we restrict ourselves for the purpose of quantum mechan-
ics to those eigenfunctions  .t; x/ such that for each t ,  .t; x/ 2 L2.E3/ � H ,
whereH is a 4-dimensional Hilbert space. Also, we associate the dual of the 1-form
dx with the self-adjoint partial differential operator i„@=@x, where „ is a constant.
Consequently by defining the dual in this way, we not only find that

dx.i„@x/ 	 i„@xx D i„; (39)

But it can also be linked to the uncertainty principle (see below). At first, this may
seem artificial but actually if we look more closely at (6) we will find that to asso-
ciate the operator �i@x with a real valued momentum eigenvalue is already implicit
in this equation, and indeed is a consequence of the signature of the metric ten-
sor 	ab D f�a; �bg. In particular, if we let �a D �i˛a for a D 1; 2; 3, and set
�0 D ˛0, then the ˛a’s are the generators of the Dirac Algebra SL.2; C /. Also



118 P. O’Hara

�ap
a D �˛a.ipa/, for a D 1; 2; 3 and the linearized metric (3) can be written in

the explicit form

Qds D ˛0dx
0 � i˛1dx

1 � i˛2dx
2 � i˛3dx

3; (40)

which in order to maintain the invariant relationship
D Qds; Q@s

E
D 1 (cf (5)), gives

Q@s D ˛0@0 � i˛1@1 � i˛2@2 � i˛3@3: (41)

In other words, if we let ˛a obey the Dirac Algebra, then we can associate the
momentum operator with �i@a in a natural way. Finally, let „ D h=2� where h is
Plancks constant and re-scale the momentum operator by writing �i„@a in place of
�i@a to obtain the usual form of quantum mechanics.

This too may seem artificial, but in reality we are free to choose any scale we
wish. This being the case, we choose „ because it seems to be the scaling constant,
which nature uses. Moreover if we multiply across by �i„˛0 and note that Ǫa 	
�i˛0˛a obeys the same Dirac Algebra as ˛a, then the Dirac equation (6) can be
rewritten as:

� i„˛0 @ 
@s

D .�i„@0 � i„ Ǫ1@1 � i„ Ǫ2@2 � i„ Ǫ3@3/ : (42)

In particular, the eigenvalue of �i„@0 associated with the eigenfunction exp..i=„/R x
padx

a/ is given byp0 which we denote byE=c, whereE has the units of energy.
It now follows from Corollary 1 that

˛0mc2 D .E � ic„ Ǫ1@1 � ic„ Ǫ2@2 � ic„ Ǫ3@3/ (43)

which gives us back the usual form of the Dirac equation except for a change in the
sign of i .

Finally based on the above discussion, we formulate a few axioms which not only
respect the manifold structure of general relativity, but also enable us to distinguish
quantum mechanics from classical physics, in a formal way.

Definition 1. Space-time is a four dimensional manifold .M; g/.

Definition 2. At every point p of M there is a tangent vector space Tp.M/ with
tetrad basis f�i„@0;�i„@1;�i„@2;�i„@3g and a dual 1-form space, denoted by
T �
p with basis fdx0; dx1; dx2; dx3g at p, defined by dxa.i„@b/ D i„ @xa

@xb D i„ıa
b
.

Definition 3. Quantum mechanical operators are elements of SL.2; C/ Dirac Alge-
bra, which can be viewed as a representation of the vector spaces Tp and T �

p

on M.

Definition 4. Each element of SL.2; C/ algebra acts on the Hilbert SpaceL2.E4/�
H , where H is a 4-dimensional Hilbert Space.The elements  2 L2.E4/ �H are
called the states of the system.
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Remark 2. It follows from the definition of the Hilbert Space that if  2 L2.E4/�
H then for each t ,  .t; x/ 	  t .x/ D  it ei 2 L2.E3/ � H , where each ei 2
H and an inner product exists such that h t ;  t i D R

. �/i id 3x. Moreover, if
 t .x/ is normalized for each t then  � can be interpreted as a probability density
function for position. Likewise, for each x we can define .t; x/ 	  x.t/ D  ixei 2
L2.E1/ �H and seek quantum effects in time.

Lemma 1. Let d Qf and Q@x be the SL.2; C/ representation of df 2 T � and @x 2 T
respectively, then

D Qdf ; Q@x
E
 D ŒQ@x ; Qf � , where  2 L2.E4/:

Proof. Note d Qf D @f
@xa d Qxa and Qf D f I , where I is an identity matrix. ThereforeD

d Qf ; Q@a
E
 D @f

@xa
�a D ŒQ@a; Qf � :

The Lemma has been proven. ut

Lemma 2. (The uncertainty relationships) Let QX D R x.s/
0

d QX and QP D i„Q@s be
the SL.2; C/ representations of position and momentum respectively, defined along
a curve of length s. Also let NX 	 R

 � QX ds, NP 	 R
 � QP ds,�2 QX 	 R

 �. QX�
NX/2 ds and�2 QP 	 R

 �. QP � NP /2 ds then
 QX
 QP � „
2

ˇ̌ R s
 � 1

i„ . QP QX � QQ QX/
 ds

ˇ̌
. In particular, in the case of the components QXa; QP a we get 
 QXa
 QP a � „

2
.

Proof. Usual proof using Cauchy-Schwartz inequality. ut

3.3 Classical Mechanics

The above formulation lays the ground work for distinguishing classical from quan-
tum mechanics. Indeed, we have seen that quantum theory is highly dependent upon
„ > 0 and states  2 L2.E4/. Moreover, this suggests that classical mechanics can
be obtained by relaxing one of these two conditions either by letting „ ! 0 or by
choosing  … L2.E4/ or both. In principle what distinguishes a quantum parti-
cle from a classical one is that in contrast to quantum mechanics, the position and
momentum of a classical particle can be fully pinpointed and localized as in Case 1
above. On the other hand, in the case of a particle moving uniformly between two
mirrors, where the initial position is unknown, then as has already been noted in
Sect. 2.1 (Case 2), the wave function is given by exp.ikx/=

p
� . However, if we take

the limit as x ! 0 or „ ! 0 („ is contained in k) then this would constrain both the
position andmomentum to become increasingly localized and allow them to bemea-
sured more exactly, as the distance between the mirrors � shrinks to 0. Consequently,
the resulting wave function at any time t would be of the form  .0/ D P

n anı
.n/.

This last equation follows from a well known result in distribution theory [7], which
states
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Theorem 3. A distribution T which has a support of one point (i.e., is equal to
zero except at one point) is a finite linear combination of the Dirac function and its
derivatives: T D P

n anı
.n/.

Based on this we can formally state that

Definition 5. A classical particle is a particle whose position operator T at any time
t has support of one point.

It follows from this definition that the momentum operator QP has a support of one
point. It also follows from the definition and Theorem 1 that for a classical parti-
cle with constant momentum situated at .x0/ on a geodesic, the wave function is
given by ı4.pa.x � x0/a/. Also the set of operators T in definition 5 clearly form
a subspace of the solution set of the Dirac equation. Indeed, the set fı; : : :; ı.k/: : :g
is a spanning set for this subspace. Hence, the uncertainty in observing its value is
0 everywhere except at the single point, and the standard deviation 
 QX and 
 QP
are also zero. In other words, the uncertainty principle fails for a classical particle.
Moreover, in order for nature to circumvent classical solutions, it is sufficient that
there be a fundamental unit of wavelength given by � D ch

E
D 2�c„

E
, such that

� > 0 whenever „ > 0, which is another way of saying that if „ > 0 then classi-
cal solutions need not exist. It also strongly suggests that the process of localizing
a particle for measurement is equivalent to confining (at least during the measur-
ing process) the particle to a box. This, in turn, hints that in terms of wave-particle
duality, particle properties emerge when we attempt to experimentally localize and
isolate the wave, causing a discontinuity in the quantum solutions, closely approx-
imated by delta type functions. We have seen an example of this above, when we
considered a particle moving uniformly between two mirrors with wave-function
e˙ik.x�ct/=

p
� .

In concluding this section, we note that classical solutions to the generalized
Dirac Equation describing the motion of a particle, can be reduced to distributions
corresponding to point masses as described in Theorem 3 above, and live on a
larger space than the L2 functions associated with quantum mechanics. To better
understand this point, it might be useful to recall the definition of Lp spaces, and
some of their properties [8]. Consider a fixed measure space .X;M; �/. Let f be a
measurable function on X such that

kf kp D
�Z

jf jpd�
� 1

p

(44)

then we define

Definition 6. Lp.X;M; �/ D ff W X ! C W kf kp < 1g:
Also, in general, we can define a bounded linear functional on Lp by g.f / DR
fg, such that g 2 Lq where 1=p C 1=q D 1, and g 2 .Lp/�, the dual space

of Lp . In the case of p D 2, the L2 space is also a Hilbert space and therefore, its
own dual. In turn this allows us to formulate quantum mechanics in a very elegant
and simple manner. However, it the case of classical solutions, as described above,
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the Dirac ı functional is usually interpreted as a functional on the set of continu-
ous differential functions of compact support denoted by C1

c .X/, which in turn are
dense in Lp , where 1 
 p < 1. Moreover, in the case of a finite (probability)
measure, Lp � L1, for p � 1. With this distinction in mind, it now follows from
our formulation that general relativity while permitting a natural unification of both
quantum and classical mechanics by means of the generalized Dirac Equation, also
permits a distinction by means of L2 functions and distributions which are duals of
L1 functions.

4 Non-Geodesic Motion

In the introduction we referred to the philosophical implications of our approach for
the unity of physics, in that the metric structure of the space determines the general
form of the wave equation, and consequently implies that space-time is not merely
a backdrop for the laws of mechanics but is in fact an effective and quasi-formal
cause of the resulting wave equations. At the same time because of the equivalence
principle it was noted that the general form of the wave equation is determined only
locally and not globally, especially when we consider motion along a non-geodesic.
In addition, the use of test particles to analyze the motion of a massive body within
the structure of the space-time by its very nature seems to reflect a return to the pre-
relativistic mentality of considering the laws of mechanics as something operative
within space-time but not contributing to its ontological structure.

In fact, I would argue that the use of test particles highlights the mathematical
difficulty of dealing with a many-body problem in General Relativity, and offers a
methodological unification to the laws of physics but not necessarily an ontolog-
ical one. It does not contradict our basic premise that the structure of space-time
is determined by the mass-energy tensor and that the wave equations of quantum
mechanics is the dual of the metric. Ideally, in the case of the hydrogen atom it
would be preferable to write down a single metric for the joint proton–electron
system. Unfortunately, the two body problem in general relativity is a formidable
task and has not been solved. If it were then the motion of the electron would be
best described by tracing the path of a vector corresponding to the center of mass
(or center of charge) of the electron, and considering the dual of that path to be
the wave equation proper for describing the quantum mechanical properties of the
electron. Instead, as we shall see below, we circumvent the difficulty by taking the
electron as a test-particle. This is easier to handle mathematically, and is probably
a very good approximation to describing the actual system. Also in this approach
we avoid the problem associated with our lack of understanding of the mass-charge
relationship.

The test particle also brings to the fore another question. If the two-body problem
were to be solved then howwould non-geodesicmotion be interpreted? For example
in a Schwartzschild space consisting of a single point mass howwould the motion of
the particle be perceived if defined relative to a moving coordinate system? It would
clearly give rise to a non-geodesic motion and suggest that a force is causing the
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motion. But where does such a force come from, and does such a frame of reference
have any ontological or physical meaning? Or again, if a particle is fixed at 0 in a
Cartesian frame in Minkowski space, how does one interpret its motion from the
perspective of a frame in polar coordinates in circular motion around the origin?
Whether the motion is virtual or real some reference frames by their very nature
presuppose non-geodesic motion and the presence of forces. Consequently we can
never fully avoid non-geodesic motion even if it should turn out that in a grand
unification scheme all forces can be intrinsically related to space curvature.

The validity then of our methodology lies in its accuracy to make verifiable state-
ments about nature. To know is to know something about the real, as Aristotle noted
in his metaphysics. Equally, a correct method must incorporate physical observa-
tions into its system and be able to explain the data in a satisfying and simple way.
It means to hit the nail on the head, as did Newton in his understanding of plane-
tary motion. It means that a coherent methodology should be possible based on the
assumption that the real world is intelligible, coherent and void of contradiction. It
means that we should be able to find a solution to the current division between gen-
eral relativity and quantum field theory, at least from a methodological perspective
without in any way claiming to have unified the forces. One approach might be to
consider space-time as an explanatory cause of the physical forces, and expect both
quantum mechanics and all the forces of nature to be unified into a single unified
field theory founded on the structure of space-time itself. This does not mean that
the gravitational field needs to quantized. Indeed, in the previous section, where the
equations of quantum mechanics are the dual of a linearized metric, the quantiza-
tion takes place within the structure of space-time, but the metric (and consequently
gravity) is not quantized. Others such as Fred Cooperstock also hold that gravity
should not be quantized [11].

4.1 Methodological Unification

A first step in a possible methodological unification will be to attempt a description
of wave-particle motion along arbitrary curves defined on manifolds with metric gij
and not just on geodesics. The key to this are equations:

Qds
ds
:Q@s D 1

2

( Qds
ds
; Q@s 

)
C 1

2

" Qds
ds
; Q@s 

#
(45)

D ds
ds

� @ 
@s

C ds
ds

^ @ 

@s
; (46)

which because of the Principle of Equivalence are valid locally at any point in the
space. Note that in (45) the first expression on the right hand side is equivalent to
a dot product of a tangent vectors with the gradient of the wave function ds � @ 

@s

and the second term is equivalent to a cross product ds ^ @ 

@s
of the same two

terms. Equation (46) can be seen as defining a wave equation along an arbitrary
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curve .x0.s/; x1.s/; x2.s/; x3.s//. Also note that curvature plays a role in the par-
ticular choice of tetrad components. For example, in the case of a Schwarzschild
coordinate system a local tetrad basis at some point X can be defined by dx0 D�
1 � 2MG

r

�
dt; dx1 D �

1 � 2MG
r

��1
dr; dx2 D rd�; dx3 D r sin �d. How-

ever, it also highlights the fact that our formulation is always local and not global,
and would work equally well on any manifold where a spinor basis can be defined
at any point. Indeed, the very fact that the Dirac equation is a good predictor of the
statistical behavior of an electron in the hydrogen atom, on a planet which is rotating
both on its axis and around the sun indicates how useful the tetrad formulation is for
local results. Finally, it is worth noting the similarity between (46) and the famous
equation for Lorentz Force for a charge of size e moving in an electric field E:

F D eŒE C .v � B/�: (47)

The question arises can we decompose (45) into a metric equation and a wave
equation comparable to (8) and (6) above, especially since there would seem to be
an infinite amount of possibilities governed by both the physics and the choice of
non-inertial frames related to the acceleration introduced into the system. With this
in mind we limit ourselves to two cases which may help us to better understand the
issues.

In the first case we seek a spinor equation of the form

ds� D �adx
a� (48)

for the metric with a corresponding wave equation of the form

�.s/
@ 

@s
D �a

@ 

@xa
: (49)

Once again, @
@s

refers to differentiation along a curve parameterized by s, and this
equation is a generalization of (6) in that it reduces to (6) if �.s/ D 1. Indeed, this
seems to be the simplest form that such an equation can take when motion is not
along a geodesic.

It is important that the multiplication of these two equations be consistent with
(45) in that

.�adxa/.�
b @ 

@xb
/ D ds

d 

ds
C �a�b

�
dxa

@ 

@xb
� dxb

@ 

@xa

�
(50)

D ds

�
d 

ds
C �a�b

�
dxa

ds

@ 

@xb
� dxb

ds

@ 

@xa

��
; (51)
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should be compatible with the multiplication of (48) and (49). This requires that

� D d 

ds
C �a�b

�
dxa

ds

@ 

@xb
� dxb

ds

@ 

@xa

�
(52)

D �.s/
d 

ds
: (53)

Another consequence of this identification is that �
i

	
ds is an exact differential and

suggests that � is related to entropy.
The second approach is similar to the first and reflects the duality between curves

and waves. In this case we switch the role of �.s/ in (48) and (49) to get:

�.s/ds� D �adx
a� (54)

for the metric with a corresponding wave equation of the form

@ 

@s
D �a

@ 

@xa
: (55)

Once again these equations are compatible with (51) provided

�� D d 

ds
C �a�b

�
dxa

ds

@ 

@xb
� dxb

ds

@ 

@xa

�
(56)

D �.s/
d 

ds
: (57)

In addition this system of equations seems to be comparable to the work of
Stueckelberg and Horwitz [14]. In their approach if ds is considered to be an inde-
pendent variable then starting with Hamilton’s equations one can derive the metric
relation ds2 D m2

M2 .cd�/
2, with M an independent parameter with the units of

mass. Clearly, if this equation is linearized in spinor form, it will result in (54)
above provided �.s/ D m

M.s/
. Moreover, ifM.s/ is such that ds is an exact differ-

ential with respect to � then ds D m
M
cd� is an exact differential and can be related

to entropy. Indeed, it was precisely the introduction of such exact differentials by
means of Pfaffian equations that permitted Caratheodory and Born [10] to put the
second law of thermodynamics on a rigorous basis. Parallel mathematical conditions
seems to exist in the non-commutative terms of the above product and consequently
suggest a connection to entropy.

Finally, we note that both of these approaches can be used to introduce gauge
transformations into the system which can be associated with external interactions
and induce non-geodesic motion into the predefined space. In terms of the Stueck-
elberg this means that m2 ¤ M 2 and that the so called “mass shell” condition is
violated.
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4.2 The Hydrogen Atom

As an application of the work above we analyze the motion of an electron within the
hydrogen atom. We do this by considering the electron as a test particle lying within
the Reissner-Nordstrom metric of the proton of mass mp, and invoke the minimal
principle to incorporate charge and the vector potential in a gauge invariant way.
This principle in effect allows us to incorporate a first order interaction compatible
with the approach for non-geodesic motion.

Linearizing the metric we get:

ds� D Œ�i˛1R�1dr � ir.˛2d� C ˛3 sin �d/C ˛0Rcdt��: (58)

whereR.r/ D
�
1� 2Gmp

c2r
C Ge2

c4r2

� 1
2

. The corresponding wave equation for motion

along geodesics becomes:

@

@s
 0 D

�
�i˛1R @

@r
� i

r

�
˛2

@

@�
C ˛3

1

sin �

@

@

�
C ˛0R

�1 1
c

@

@t


 0: (59)

Furthermore, if gauge terms for the electromagnetic field are now introduced into
the wave function by means of the minimal principle then this requires that we
seek solutions of the form  0 D  0.

R x
p0
adx

a/; where p0
a D pa C e

c
Aa and Aa

represents the 4-vector potential associated with the electromagnetic field of the
proton. It also requires (in accordance with approach two above) that the metric
(58) take on the modified form:

�.s/ds� D Œ�i˛1R�1dr � ir.˛2d� C ˛3 sin �d/C ˛0Rcdt��; (60)

for non-geodesic motion, where � D @ 0

@s
. In particular, if we seek solutions of the

type  0 D exp. ie
c„
R
Aadx

a/ . i„
R
padx

a/ in tetrad coordinates then this can be
reduced to the equation

"
c

3X
aD1

ǪaP 0
a C ˛0.mc

2 C eV /

#
 D E ; (61)

where Ǫa D �i˛0˛a, P 0
a D �i„@a C e

c
Aa, m is the mass of the electron and V is

the electrostatic potential in the rest frame of the proton. Note that this can be written
in the usual form of the equation for the hydrogen atomH D E , providedH 	h
c
P3
aD1 ǪaP 0

a C ˛0.mc
2 C eV /

i
. However, there is also an important difference.

In this formulation there is the presence of a ˛0eV , instead of the usual eV , but as
we will see below this has advantages.
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If we let Ga D @V
@xa , assume Aa D 0 for a D1, 2 and 3, then the “square” of this

equation, reduces to

.�c2„2
3X
1

@2a C .mc2 C eV /2 C i„ec Ǫa˛0Ga/ D E2 : (62)

Noting that �i„ Ǫa˛0 D ˛a which can also be seen as generators of the Dirac
Algebra, this can be rewritten as:

.�c2„2
3X
1

@2a C .mc2 C eV /2 � „ec˛aGa/ D E2 : (63)

Contrast this with conventional relativistic quantum mechanics where we would
have found

.�c2„2
3X
1

@2a Cm2c4 � i„ec˛aGa/ D .E C eV /2 : (64)

Notice that the complex number coefficient associated with the electric moment G in
this latter equation has been replaced with a real coefficient in (63). In other words,
the spin electric moment „e

2imc
, which is a complex number, can be replaced with a

real spin term „
2mc

thus removing the ambiguity normally associated with electron
spin in the hydrogen atom. For example, Lindsey and Margenau [9] warn us “not to
take the electron spin to literally”, because of the presence of the imaginary term.
Happily, we can say that with the above approach the difficulty is resolved.

5 Conclusion

In this article we have attempted to unify general relativity and quantum mechanics
by viewing any metric as a dual of a wave equation. We have noted that the result-
ing wave equation contains the usual Dirac equation of quantum mechanics as a
special case. We have also noted that the difference between quantum and classical
mechanics seems to lie in boundary conditions, with quantization (as distinct from
quantum theory) emerging when the wave function is confined to a finite domain
with continuous boundary conditions, and classical mechanics being the result of
delta-function type solutions for the wave equation.

Overall, our approach was able to duplicate the standard results of quantum
mechanics but in addition, we were able to remove the anomaly of an imaginary
electric moment, when solving the hydrogen atom problem. This result in itself,
should be sufficient to encourage further development. Finally, an analysis of the
relationship between non-geodesic curves and wave equations was investigated.
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Here the problems are more open ended and many possible wave equations are
possible compatible with the structure of the metric. However, even in this case, the
approach shows itself to be compatible with the work of Stueckelberg and Horwitz
and also with gauge theory, and suggests further investigation. It also suggests that
entropy is a key factor in any analysis of wave-particles which violate the so called
“mass shell” condition.
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Relativity and Quantum Field Theory

Jonathan Bain

Abstract Relativistic quantumfield theories (RQFTs) are invariant under the action
of the Poincaré group, the symmetry group ofMinkowski spacetime. Non-relativistic
quantum field theories (NQFTs) are invariant under the action of the symmetry
group of a classical spacetime; i.e., a spacetime that minimally admits absolute spa-
tial and temporal metrics. This essay is concerned with cashing out two implications
of this basic difference. First, under a Received View, RQFTs do not admit parti-
cle interpretations. I will argue that the concept of particle that informs this view
is motivated by non-relativistic intuitions associated with the structure of classical
spacetimes, and hence should be abandoned. Second, the relations between RQFTs
and NQFTs also suggest that routes to quantum gravity are more varied than is typ-
ically acknowledged. The second half of this essay is concerned with mapping out
some of this conceptual space.

1 Introduction

The comparison of Minkowski spacetimewith classical (i.e., non-relativistic) space-
times has been fruitful in contemporary philosophy of spacetime in debates over the
ontological nature of space and time (see e.g., Earman 1989, Chap. 2). In this essay,
I extend this type of analysis to debates in the philosophy of quantum field theory.
In particular, the distinction betweenMinkowski spacetime and classical spacetimes
allows one to make a corresponding distinction between relativistic quantum field
theories (RQFTs) and non-relativistic quantum field theories (NQFTs). This lat-
ter distinction is subsequently helpful, or so I shall argue, in clarifying the debate
over whether or not RQFTs admit particle interpretations, and in investigating the
conceptual space of possible extentions of RQFTs to include gravity.

Section 2 distinguishes between RQFTs and NQFTs in terms of the distinction
between Minkowski spacetime and classical spacetimes. This distinction is then
applied to an on-going debate over the ontology of QFTs. According to a Received
View in this debate, RQFTs do not admit particle interpretations (Arageorgis et al.
2003; Fraser 2008; Halvorson and Clifton 2002). This view takes the existence of
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local number operators and a unique total number operator in the formulation of a
QFT as necessary conditions for a particle interpretation of the theory. Given that
formulations of RQFTs do not admit such objects, the Received View concludes
that RQFTs cannot be given particle interpretations. I will argue that the existence
of local and unique total number operators in a QFT requires the absolute temporal
structure of a classical spacetime. Thus the Received View’s concept of particle
appears to be motivated by a non-relativistic concept of absolute time. The moral I
draw is that the Received View’s concept of particle is inappropriate for RQFTs.

No RQFT currently exists that consistently incorporates gravity. Section 3 reviews
an example of an NQFT that does: Christian’s (1997) Newtonian Quantum Grav-
ity (NQG). NQG is an NQFT in (a version of) Newton-Cartan spacetime, the latter
being an example of a curved classical spacetime. Part of the spacetime structure of
NQG is dynamic and quantized, and its symmetry group is an extension of the non-
relativistic Maxwell group. The latter entails that NQG is not plagued by the family
of conceptual problems associated with unitarily inequivalent representations of the
canonical (anti-) commutation relations, as are QFTs in curved Lorentzian space-
times (Ruetsche 2002). In particular both local number operators and a unique total
number operator are present in NQG, again due to the absolute temporal structure
of classical spacetimes.

Using NQG as motivation, Sect. 4 undertakes the task of relating NQFTs, both in
the presence and the absence of gravity, to RQFTs and to other theories, both of par-
ticles and fields, classical and quantum, in the presence and the absence of gravity.
What emerges is a tentative map of the relations between some of the fundamental
theories in physics, including the as-yet-to-be formulated, fully relativistic quantum
theory of gravity (QG).

2 NQFTs and Particles

By an RQFT I will mean a quantum field theory invariant under the actions of the
Poincaré group, the symmetry group of Minkowski spacetime. By an NQFT, I will
mean a quantum field theory invariant under the actions of the symmetry group of a
classical spacetime. Section 2.1 reviews the distinction between classical spacetimes
and Minkowski spacetime. Section 2.2 indicates the significance this distinction has
for the debate over particle interpretations of QFTs.

2.1 Classical Spacetimes vs. Minkowski Spacetime

Minkowski spacetime can be represented by a pair .M; 	ab/, whereM is a smooth
4-dim differentiable manifold and 	ab is a (�1, 1, 1, 1) symmetric tensor field on
M , the Minkowski metric, satisfying the compatibility condition ra	ab D 0, for
the derivative operator ra associated with the connection on M . This condition
determines a unique curvature tensor Rabcd, which vanishes, encoding spatiotem-
poral flatness. The isometry group of Minkowski spacetime, the Poincaré group, is
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generated by vector fields that Lie annihilate the Minkowski metric. Symbolically,
we require £x	ab D 0, where £x is the Lie derivative associated with xa. Intuitively,
this means that the transformations between reference frames defined by the integral
curves of the vector field xa preserve the structure of the Minkowski metric. This
structure famously entails that there is no unique way to separate time from space
in Minkowski spacetime: any two observers moving inertially with respect to each
other will disagree on the time interval between any two events, and on the spatial
interval between any two events. In coordinate form, elements of the Poincaré group
may be represented by transformations

x� ! x�
0 D ���x

� C d� .PoincarKe/ (1)

where ��� 2 SL.2;C/ is a pure Lorentz boost and d� 2 R4 is a spacetime transla-
tion.

In comparison, a classical spacetime is a spacetime that minimally admits abso-
lute spatial and temporal metrics. More precisely, a classical spacetime may be
represented by a tuple (M; hab; ta; ra/, where M is a differentiable manifold,
hab is a (0, 1, 1, 1) symmetric tensor field onM identified as a spatial metric, ta is a
covariant vector field onM which induces a (1, 0, 0, 0) temporal metric tab D tatb ,
and ra is a derivative operator associated with a (non-unique) connection on M
and compatible with the metrics in the sense rchab D ratb D 0. The spatial
and temporal metrics are also required to be orthogonal in the sense habtb D 0.
These conditions allowM to be decomposed into instantaneous three-dimensional
spacelike hypersurfaces parameterized by a global time function. The most general
classical spacetime symmetry group is generated by vector fields xa that Lie annihi-
late hab and ta. Symbolically, we require £xhab D £xta D 0, and again, this means
that the transformations between reference frames defined by the integral curves of
the vector fields xa preserve the structure of the absolute spatial and temporal met-
rics. This entails that in any classical spacetime, there is always a unique way to
separate time from space: any two observers moving inertially with respect to each
other will always agree on the time interval between any two events, and on the
spatial interval between any two simultaneous events. In this sense, space and time
are absolute in a classical spacetime.

On the other hand, the compatibility conditions in a classical spacetime do not
determine a unique curvature tensor. Additional constraints on the curvature may
be imposed, and such constraints define different types of classical spacetimes. Two
examples include Neo-Newtonian spacetime, characterized by Rabcd D 0, encoding
spatiotemporal flatness; and Maxwellian spacetime, characterized by Rab

cd D 0,
encoding a rotation standard (Bain 2004, pp. 348–352). The symmetries of Neo-
Newtonian spacetime form the 10-parameter Galilei group (Gal) generated by
vector fields xa that Lie annihilate the spatial and temporal metrics, and the con-
nection. Symbolically, £xhab D £xta D £x� abc D 0 (where � abc is the connection
defined by ra), and in coordinate form,
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x ! x0 D Rx C vt C a .Gal/ (2)

t ! t 0 D t C b

where R is a constant orthogonal rotation matrix, v, a 2 R3 are velocity boost
and spatial translation vectors, and b 2 R is a time translation. The symmetries of
Maxwellian spacetime are given by the infinite dimensional Maxwell group (Max)
generated by vector fields xa that Lie annihilate the spatial and temporal metrics
and the rotational part of the connection. Symbolically, £xhab D £xta D £x� ab

c D 0

(where � ab
c D hbd� abc). In coordinate form,

x ! x0 D Rx C c.t/ .Max/ (3)

t ! t 0 D t C b

where R is a constant orthogonal rotation matrix, c.t/ 2 R3 is a time-dependent
spatial boost vector, and b 2 R is a time translation. A quick and dirty distinc-
tion between Neo-Newtonian and Maxwellian spacetime can be given in terms
of the way the absolute spatial slices are “rigged”: In Neo-Newtonian spacetime,
the rigging consists of “straight” trajectories, whereas in Maxwellian spacetime, it
consists of “straight” and “curved” trajectories. More precisely, a Neo-Newtonian
connection can distinguish between a straight and a curved trajectory, whereas a
Maxwellian connection cannot. Both connections can, however, distinguish between
straight and curved trajectories on the one hand, and “corkscrew” trajectories on the
other; i.e., in both spacetimes, there is an absolute standard of rotation.

Now, just as there can be different types of classical spacetimes, there can be
different types of NQFTs. A GQFT (Galilei-invariant Quantum Field Theory), for
instance, is an NQFT invariant under Gal (Lévy-Leblond 1967), while an MQFT
(Maxwell-invariant Quantum Field Theory) is an NQFT invariant under Max. A
slight variant of the latter is Christian’s (1997) Newtonian quantum gravity reviewed
in Sect. 3 below.

2.2 Particle Interpretations

According to a Received View (Arageorgis et al. 2003; Fraser 2008; Halvorson and
Clifton 2002), in order to admit a particle interpretation, a QFT must satisfy the
following two conditions.

(a) The QFT must admit a Fock space formulation in which local number operators
appear that can be interpreted as acting on a state of the system associated with
a bounded region of spacetime and returning the number of particles in that
region.

(b) The QFT must admit a unique Fock space formulation in which a total number
operator appears that can be interpreted as acting on a state of the system and
returning the total number of particles in that state.
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Condition (a) is supposed to encode the essential particle characteristic of local-
izability: For a system of particles distributed over various regions of space, an
adequate theory must be able to identify the number of particles located in each
region.1 Condition (b) is supposed to encode the essential particle characteristic of
countability: For a system of particles distributed over various regions of space, an
adequate theory must be able to identify a unique value for the total number of par-
ticles, counted over all regions. (Schematically, one would hope that a unique total
number operator could be defined as the sum over all regions of spacetime of local
number operators.)

One can now demonstrate that Conditions (a) and (b) fail in RQFTs. The
Received View concludes that RQFTs do not admit particle interpretations. How-
ever, it can also be shown that Conditions (a) and (b) hold in NQFTs precisely
because of the existence of an absolute temporal metric in classical spacetimes.
The moral I draw is that Conditions (a) and (b) are motivated by a non-relativistic
notion of time, and hence are inappropriate in the relativistic context. What should
be offered in their place as conditions of adequacy for particle interpretations in
the relativistic context is best left to another essay. The remainder of this section
attempts to substantiate the moral.

2.2.1 Particles in RQFTs?

It is a fairly simple matter to demonstrate that RQFTs fail to satisfy Conditions
(a) and (b). In general, Condition (b) is made problematic by the existence of uni-
tarily inequivalent Fock space representations of the canonical (anti-) commutation
relations (CCRs) of an RQFT.2 To the extent that unitary equivalence is necessary
for physical equivalence, this suggests that any given RQFT admits (uncountably)
many different ways to parse particle talk, one for every unitary equivalence class of
Fock space representations and their attendant total number operator. One is faced
with a problem of which representation to privilege (Ruetsche 2002, pg. 359). This
Problem of Privilege may appear to be solved in Minkowski spacetime by appeal
to the time-like isometry subgroup of the Poincaré group. Intuitively, the time-like
symmetries of Minkowski spacetime provide one with a way to “split” the frequen-
cies of solutions to relativistic field equations, and thereby construct a one-particle
state space on which a Fock space representation can then be built. One can then
show that this method of constructing a Fock space representation is unique up to
unitary equivalence.

This is made rigorous by a result due to Kay (1979). Let .S; �; Dt / be a classical
phase space, where S is the space of (well-behaved) solutions to a field equation, �

1 This follows the intuitions of Halvorson and Clifton (2002, pp. 17–18). This aspect of the
Received View should thus be made distinct from concepts of localized particles that require the
existence of position operators and/or localized states.
2 This is due to the failure of the Stone-von Neumann theorem for theories with infinite degrees of
freedom.
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is a symplectic form on S , andDt : S ! S is a one-parameter group of linear maps
that preserves � and represents the evolution of the classical system in time. A one-
particle structure over .S; �; Dt / is a pair .H; Ut /, whereH is a Hilbert space and
Ut is a weakly continuous one-parameter group of unitary operators onH with pos-
itive energy3, such that there is a 1-1 real linear mapK WS ! H with the following
properties: (a) The (complex) range ofK is dense inH; (b) 2ImhKf ; Kgi D �.f; g/

for all f , g S , where h; i is the inner product onH; and (c)DtK D KUt . Kay (1979)
proves that a one-particle structure associated with the classical Klein-Gordon field
is unique up to unitary equivalence (similar results hold for the Dirac field). Thus, as
Halvorson (2001, pg. 114) states, “: : : the choice of time evolution in the classical
phase space suffices to determine uniquely the (first) quantization of the classical
system.”

However, if there is more than one choice of classical time evolution, there will
be more than one choice of one-particle structure, and hence more than one unitary
equivalence class of Fock space representations. Indeed, this occurs for classical
fields defined over a portion of Minkowski spacetime referred to as the right Rindler
wedge. The time-like isometry subgroup of the Poincaré group restricted to this por-
tion admits two distinct time-like Killing vector fields, one associated with inertial
reference frames and the other with accelerated frames. This gives rise to two unitar-
ily inequivalent Fock space representations, the standard Minkowski representation,
and the Rindler representation. This has suggested to some authors that inertial
and accelerating observers will disagree over the particle content of an RQFT in
Minkowski spacetime (see e.g., Wald 1994, Chap. 5). To such authors, then, the
Problem of Privilege is not solved simply by appealing to Minkowski spacetime
structure.4

Now suppose the Problem of Privilege could be solved to the satisfaction of all
for non-interacting RQFTs in Minkowski spacetime. Haag’s Theorem indicates that
this would provide cold comfort for particle physicists engaged in experiments with
what they take to be interacting particles. Under a reasonable assumption, Haag’s
Theorem entails that representations of the CCRs for both a non-interacting and
an interacting RQFT cannot be constructed so that they are unitarily equivalent at
a given time.5 Provided, again, that unitary equivalence is a necessary condition
for physical equivalence, this suggests that an interacting RQFT cannot be inter-
preted as consisting of a system of initially non-interacting particles that interact

3 Such a Ut can be written Ut D eitH for H a positive operator.
4 Arageorgis et al. (2003, pp. 180–181) argue that the Rindler representation is unphysical and
hence, implicitly, that there is no Problem of Privilege for physical Fock space representations,
appropriately construed, in Minkowski spacetime. They effectively argue that the time-like Killing
vector field associated with accelerated frames in the right Rindler wedge should not count as a
global way to “split the frequencies”, in so far as it is not extendible to Minkowski spacetime as a
whole.
5 See, e.g., Earman and Fraser (2006, pg. 313). The reasonable assumption is that the representa-
tions admit unique Euclidean-invariant vacuum states. This assumption can be dropped by inserting
a cut-off into the interacting RQFT and renormalizing the fields, but such tactics open up the host
of conceptual problems afflicting renormalized field theories.
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over a finite period of time, and then separate back into non-interacting states; a typ-
ical scenario for scattering experiments. More precisely, Haag’s Theorem suggests
that a Fock space representation of the CCRs of a non-interacting RQFT cannot
be used to represent particle states in an interacting RQFT. One might then won-
der if particle states might be represented more directly in an interacting RQFT
by constructing an explicit Fock space representation of its CCRs, as opposed to
piggy-backing on non-interacting representations. However, it is unclear if such a
Fock space representation of the CCRs for an interacting RQFT is constructible
(Fraser 2008).6

Thus is Condition (b) foiled in RQFTs, both non-interacting and interacting. Con-
dition (a) is foiled in RQFTs by the consequences of the Reeh-Schlieder theorem.
Briefly, the Reeh-Schlieder theorem entails that the vacuum state is separating for
any local algebra of operators defined by an RQFT (Streater and Wightman 2000,
pg. 138). This means that, given any bounded region of Minkowski spacetime, and
any operator associated with that region (in the sense of being an element of the
corresponding local operator algebra), if the operator annihilates the vacuum state,
then it is identically zero. Now the annihilation operators that appear in Fock space
formulations of QFTs are defined to annihilate the vacuum state and act non-trivially
on other states. Thus separability of the vacuum state of an RQFT entails that there
can be no annihilation operator associated with a bounded region of Minkowski
spacetime; hence there can be no number operator associated with a bounded region
of Minkowski spacetime. Thus “local” number operators in the sense of Condition
(a) do not exist in RQFTs.

2.2.2 Particles in NQFTs?

In NQFTs, both free and interacting, Conditions (a) and (b) are satisfied, and one
can argue that this is due to the presence of an absolute temporal metric in classi-
cal spacetimes. Consider Condition (b) first. What would guarantee uniqueness of a
Fock space representation of the CCRs for a QFT is the presence of a unique global
time function on the associated spacetime. This would provide a unique (up to uni-
tary equivalence)means to construct a one-particle structure over the classical phase
space. And such a unique global time function is only guaranteed in those space-
times that admit an absolute temporal metric. To see this, note that the compatibility
condition, ratb D 0, on the temporal metric of a classical spacetime entails ta is
closed, and thus locally exact. IfM is topologically well-behaved (if, for instance,
it is simply connected), then ta is globally exact, and there exists a unique globally
defined time function t :M ! R satisfying ta D rat . On the other hand, suppose
there exists a unique global time function t W M ! R. Then a temporal metric tab

compatible with a connection ra can be defined by tab D .rat/.rb t/.

6 Some authors have taken the moral of Haag’s Theorem to be that (irreducible) representations of
the CCRs are inappropriate for interacting RQFTs (Streater and Wightman 2000, pg. 101).
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Thus there is no Problem of Privilege for non-interacting NQFTs. One can fur-
ther demonstrate that Haag’s theorem does not make trouble for interacting NQFTs,
either. Haag’s theorem entails the following necessary condition for the existence of
an interacting quantum field unitarily equivalent to a free field: Either the interac-
tion polarizes the vacuum7 or Poincaré-invariance does not hold (Bain preprint).
For non-relativistic quantum fields, the presence of an absolute temporal metric
guarantees both the failure of Poincaré invariance and the failure of vacuum polar-
ization. To see the latter, consider an interacting Hamiltonian H D Hfree C Hint.
Any representation of the symmetry group of a classical spacetime in which the
time-translation generator is encoded inH will be unitarily equivalent (in the sense
of satisfying the same commutation relations) to a representation in which the time-
translation generator is encoded in Hfree, provided that Hint is invariant under the
group action. Thus if Hfree annihilates the vacuum state, so will H . This does not
hold true for the Lorentz group.8

An absolute temporal metric is also sufficient for Condition (a). While a version
of the Reeh-Schlieder theorem can be proven in the NQFT context (Requardt 1982),
it does not entail that the NQFT vacuum state is separating. Briefly, separability of
the vacuum state for a local algebra <.O/ of operators associated with a region
O of Minkowski spacetime is derived under the assumptions of vacuum cyclicity
for <.O/ (guaranteed by the Reeh–Schlieder theorem), relativistic local commuta-
tivity, and the existence of a non-trivial causal complement of O.9 To extend this
result to NQFTs, one must first replace relativistic local commutativity with its non-
relativistic analogue.10 This entails keeping track of the distinction between local
algebras defined on spatial regions of spacetime, and those defined on spatiotempo-
ral regions. Requardt’s (1982) non-relativistic Reeh–Schlieder theorem only holds
for the latter; but, due to the presence of an absolute temporal metric, spatiotem-
poral regions of classical spacetimes have trivial causal complements, and hence
is separability denied.11 On the other hand, the presence of a temporal metric also

7 Vacuum polarization occurs when an interacting Hamiltonian fails to annihilate the vacuum state
of the free field.
8 Lévy-Leblond (1967, pp. 160–161) makes this comparison explicit for the particular case of the
Galilei group. Due to the presence of an absolute temporal metric in Neo-Newtonian spacetime
(and classical spacetimes in general), the commutation relations that define the Galilei Lie algebra
(and the Lie algebra of any classical spacetime symmetry group in general) are such that the gen-
erator of time-translations is independent of the other generators. In the commutation relations that
define the Lorentz Lie algebra, the time-translation generator is mixed up with the other generators.
9 Streater and Wightman (2000, pg. 139). Vacuum cyclicity for <.O/ requires that for any operator
A 2 <.O/; A� is dense in H, where � is the vacuum state. Relativistic local commutativity
requires that local fields ;  commute, Œ.f /;  .g/� D 0, when the supports of the test functions
f , g are spacelike separated. The causal complement of a region O of Minkowski spacetime
consists of all points spacelike separated from points in O.
10 Namely, Œ.f /;  .g/� D 0, when the supports of the test functions f , g have zero temporal
and non-zero spatial separation (Lévy-Leblond 1967, pg. 164).
11 The causal complement of a spatiotemporal region of a classical spacetime may be identified
with the set of all points with zero temporal separation and non-zero spatial separation from points
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guarantees that the domain of dependence for an open spatial region S of a classical
spacetimes is just S, and this ensures that the differential operators that appear in
the parabolic PDEs of NQFTs are not anti-local for such spatial regions.12 This has
the consequence that the vacuum is not cylic for algebras associated with spatial
regions, and thus is separability denied in this case, too.

3 Newtonian Quantum Gravity

While no RQFT currently exists that consistently incorporates gravity, Christian
(1997) has constructed an NQFT that does. Not only is it an explicit example of
an interacting NQFT that satisfies Conditions (a) and (b) of the Received View’s
concept of particle, it also is an instance of an NQFT in a curved classical space-
time. As such, it can be compared with QFTs in curved Lorentzian (i.e., relativistic)
spacetimes.13 This comparison will suggest, in Sect. 4, ways of extending RQFTs
to incorporate gravity. This section first reviews the distinction between two partic-
ular theories of Newtonian gravity in flat and curved classical spacetimes, and then
considers how Christian quantizes a particular version of the latter.

The standard way the theory of classical Newtonian gravity is formulated is as
a field theory set against the backdrop of flat Neo-Newtonian spacetime. Models
in this formulation may be given by a 6-tuple .M; hab; ta; ra; ; �/, where
.M; hab; ta; ra/ represents classical Neo-Newtonian spacetime, and  and � are
scalar fields on M that represent a Newtonian potential field and a mass density,
respectively. These latter objects are required to satisfy the Poisson equation, and an
equation of motion:

hab ra rb D 4�G� .Poisson equation/ (4)

�a ra�b D �hab ra .equation of motion/ (5)

whereG is the Newtonian gravitational constant, and �a is a tangent vector field for
a timelike particle trajectory worldline that encodes its four-velocity.

in the region. This assumes a prohibition on infinite causal propagations, but allows that finite
causal propagations have no upper bound.
12 The domain of dependence D.O/ of a region O of spacetime consists of points p for which
any inextendible causal worldline through p intersects O. A differential operator is said to be anti-
local for a given region of spacetime just when a function and its transform under the operator can
vanish in that region only if the function is identically zero. In classical spacetimes, for any open
spatial region S , D.S/ has no temporal extent. Thus if a solution  to a well-posed PDE vanishes
on S , it vanishes onD.S/, but this does not guarantee that it vanishes on an open set in time. This
blocks an inference to anti-locality by means of the Edge of the Wedge Theorem. One can further
demonstrate that anti-locality of a differential operator entails cyclicity of the associated vacuum
state. Segal and Goodman (1965) demonstrated this for the case of the Klein-Gordon operator, and
subsequent authors have extended their results to cover operators associated with other relativistic
field equations.
13 A Lorentzian spacetime is a pair .M; g��), where M is a differentiable manifold and g�� is a
metric defined onM with signature (�1, 1, 1, 1).
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One can also formulate Newtonian gravity by incorporating the gravitational
potential field into the spacetime connection, and such theories are referred to as
theories of Newton-Cartan gravity (NCG). Models of NCG eliminate the Newto-
nian gravitational potential, and may be given by .M; hab; ta; ra; �/. Here the
objects .M; hab; ta; ra/ still represent a classical spacetime; in particular, the spa-
tial and temporal metrics still satisfy orthogonality and compatibility constraints,
and additional constraints may still be imposed on the curvature tensor defined by
the derivative operator a. But the Poisson equation (4) is now replaced with a gener-
alized Poisson equation, and the equation of motion (5) is replaced with the geodesic
equation:

Rab D 4 G�tatb .generalized Poisson equation/ (6)

Ÿa raŸb D 0 .equation of motion/ (7)

where Rab is the Ricci tensor defined, ultimately, by the derivative operator ra.
These changes enforce the principle of equivalence in NCG. Intuitively, the Newton-
Cartan connection defined by (6) and (7) cannot distinguish “straight” inertial
trajectories from “curved” gravitationally accelerated trajectories. In this sense,
gravity is geometricized in NCG. Now there are different ways this geometrization
procedure can be carried out, depending on additional constraints one might impose
on the curvature tensor. Christian (1997) considers the following two constraints:

R
Œa c


Œb d

D 0 (8)

Rabcd D 0 (9)

Let “strong NCG” refer to the theory of NCG that, in addition to the compatibility
and orthogonality constraints of classical spacetimes, satisfies (6), (7), (8), (9), and
call the classical spacetime associated with it strong Newton-Cartan spacetime. In
strong Newton-Cartan spacetime, as in all classical spacetimes, there is a global
time function that may be associated with absolute time, and there are globally
defined spatial slices that may be interpreted as absolute space at an instant. And
as with other examples of curved classical spacetimes, what is “curved” is the way
these spatial slices are rigged together by the connection. Recall in Maxwellian
spacetime, the rigging is determined by condition (9) above and consists of either
“straight” or “curved” trajectories (a Maxwellian connection cannot tell these apart),
but not “cork-screw” trajectories (there still is a standard of rotation). In strong
Newton-Cartan spacetime, “curved” rigging is restricted to gravitationally accel-
erated trajectories, subject to the additional condition (8). More precisely, whereas
the symmetries of Maxwellian spacetime are characterized by the Maxwell group
(3), those of strong Newton-Cartan spacetime are characterized by an extension of
the Maxwell group, and thus are slightly more constrained.14

14 See, e.g., Bain (2004, pg. 372).
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Christian (1997) demonstrates that Conditions (8) and (9) are sufficient to recast
strong NCG as a constrained Hamiltonian system, and thus to quantize it. The
reduced phase space (Christian 1997, pg. 4867) consists of variables encoding
the matter degrees of freedom, and variables that encode the dynamical degrees
of freedom of the strong NCG connection, which are identified as gravitational
degrees of freedom. The matter variables are solutions to the Schrödinger equa-
tion in strong Newton-Cartan spacetime.15 The connection variables take the form
of extended Maxwell frames; i.e., rigid, non-rotating, gravitationally accelerating
frames. This phase space has a nondegenerate symplectic structure, and a unique
one-parameter family of time evolutionmaps (due to the absolute temporal metric of
strong Newton-Cartan spacetime). Hence it admits a unique one-particle structure,
and thus a unique Fock space representation of the CCRs. The result is Christian’s
Newtonian Quantum Theory of Gravity (NQG, hereafter), an interacting (extended)
Maxwell-invariant QFT set in strong Newton Cartan spacetime.

NQG is a concrete example of an interacting NQFT that satisfies the Received
View’s necessary Conditions (a) and (b) for a particle interpretation. It is also an
interacting NQFT that successfully incorporates gravity; in particular, the gravita-
tional degrees of freedom in NQG are both fully dynamical and fully quantized. This
is in stark contrast with attempts to incorporate gravity into RQFTs. For instance,
the fact that the NQG gravitational degrees of freedom are fully dynamical distin-
guishes NQG from the program of QFTs in curved Lorentzian spacetimes. This
program attempts to construct RQFTS that incorporate gravity by treating it clas-
sically as a manifestation of the curvature of spacetime. This is done by breaking
the dynamical link between spacetime and matter forged in general relativity. The
curved Lorentzian spacetime in such an RQFT is absolute in the sense that it has no
dynamical degrees of freedom. In NQG, on the other hand, strong Newton-Cartan
spacetime has quantized dynamical degrees of freedom; namely, those associated
with the quantized strong Newton-Cartan connection. Intuitively, these quantized
degrees of freedom are associated with the dynamical “rigging” of the absolute
spatial slices. Moreover, as indicated above, NQG does not face the Problem of Priv-
ilege in determining a Fock space representation of the CCRs: the absolute temporal
metric of strong Newton-Cartan spacetime decides the matter uniquely up to unitary
equivalence. This is in contrast to QFTs in curved (Lorentzian) spacetimes in which

15 Christian (1997, pg. 4855) refers to this as the Schrödinger-Kuchar equation after Kuchar
(1980), who demonstrated that it can be quantized to produce a non-interacting Galilei-invariant
NQFT in strong Newton-Cartan spacetime. Christian’s NQG is an extention of Kuchar’s non-
interacting theory to one in which the quantized Schrödinger field interacts with a quantized
strong Newton-Cartan connection field (thus Christian’s NQG is a fully interacting NQFT).
The key to this extention is Christian’s construction of a Lagrangian density that produces not
just the Schrödinger-Kuchar equation, but also the field equations of Strong NCG. In particu-
lar, all Lagrangian densities associated with NCG prior to Christian (1997) failed to recover the
generalized Poisson equation (6).
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there is not even a guarantee that the spacetime will admit time-like isometries in
the first place.16

Finally, note that the fact that the NQG gravitational degrees of freedom are fully
quantized distinguishes NQG from semi-classical approaches to incorporating grav-
ity into RQFTs. These approaches attempt to include dynamical degrees of freedom
associated with the gravitational field into an RQFT by replacing the stress-energy
tensor in the Einstein equations with its expectation value with respect to quantized
matter fields. In such approaches, one treats gravity classically (the metric is not
quantized), but one quantizes the matter fields.

4 Intertheoretic Relations

NQG has suggested to Christian (1997, 2001) a novel route to formulating a fully
relativistic quantum theory of gravity (QG, hereafter); namely, by relativizing NQG.
This section reviews this strategy and expands on Christian’s picture of intertheo-
retic relations associated with it. In particular, the existence of NQFTs suggests
modifications to Christian’s picture, which open up additional routes to QG. Since
a full investigation of all such additional routes is beyond the scope of the current
essay, this section will content itself with an initial explorative expedition.

To begin, Christian (1997, pg. 4847; 2001, pg. 307) views NQG as a means to
fill a void in the “great dimensional monolith of physics”. This is a diagrammatic
representation of the relations between fundamental theories in physics. It takes
the form of a cube with axes representing the Newtonian gravitational constant G,
Planck’s constant h, and the inverse speed of light 1/c (see Fig. 1).

The vertices of Christian’s cube are meant to represent the following theories:
classical mechanics (CM), special relativity (SR), general relativity (GR), Newton-
Cartan gravity (NCG), Newtonian quantum gravity (NQG), Galilei-invariant quan-
tummechanics (GQM), relativistic quantumfield theory (RQFT), and fully-relativistic
quantum gravity (QG). Schematically, these theories can be described by their
coordinates (G; h, 1/c/ in monolith space. GR, for instance, may be given the
coordinates (1, 0, 1), indicating thatG and 1/c are “turned on”, whereas h is “turned
off”. The cube thus entails that there are three distinct approaches to constructing
QG: quantizing GR (epitomized in “background independent” approaches like loop
quantum gravity); “turning on” gravity in an RQFT (epitomized in “background
dependent” approaches like string theory); and the approach, novel to Christian
(1997), of “relativizing” NQG.

16 As Ruetsche (2002, pg. 361) notes, one way practitioners have attempted to address this problem
is by becoming “algebraic imperialists” and elevating the status of the underlying abstract C�-
algebra over concrete Hilbert space realizations of it. (Doing so provides one access to notions
of “physical equivalence” weaker than unitary equivalence.) This strategy is adopted by Christian
(1997, pg. 4870) as a way of interpreting NQG, but this seems unnecessary, given that NQG does
not face the problem of privilege in the first place.
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Fig. 1 Christian’s (1997) dimensional monolith

To better understand Christian’s monolith, and ways of extending it, requires
understanding the nature of the limits that define the links in Fig. 1. Under closer
inspection, multiple problems arise.

(a) First, the 1/c ! 0 limit that “turns off” relativity might initially be thought
of as a contraction of the Poincaré group to obtain the Galilei group (see e.g.,
Bacry and Lévy-Leblond 1968). However, more than one such limit can be
taken for a given relativistic theory. Such limits depend in particular on the form
of the dynamical equations of the theory. For instance, there are two distinct
non-relativistic limits of the Maxwell equations (Holland and Brown 2003).
Moreover, the 1/c ! 0 link between GR and NCG cannot be described by
a group contraction. On the one hand, the Poincaré group is not the symmetry
group associated with GR (under one interpretation, the latter is Diff(M )). On
the other hand, as Sect. 3 indicates, there is more than one version of NCG,
depending on how the geometrization procedure is carried out. One of these
versions can indeed be shown to be the 1/c ! 0 limit of GR, but this version
does not have the Galilei group as its symmetry group.17

(b) The G ! 0 limit might be associated simply with setting G to zero in
the relevant dynamical equation (thus “turning off” gravity). But this would
make the link between GR and SR problematic. Setting G to zero in the
Einstein equations results in a Ricci-flat .Rab D 0/ Lorentzian spacetime,
whereas Minkowski spacetime is spatiotemporally flat .Rabcd D 0/. (Note that
Ricci-flatness only entails spatiotemporal flatness in conformally flat (4-dim)

17 This version can be referred to as “weak NCG” (Bain 2004, pg. 346). It differs from strong NCG
by dropping Condition (8). Bain (2004, pg. 365) identifies the symmetry group of weak NCG with
an extention of the Leibniz group, another classical spacetime symmetry group.
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spacetimes, in which the Weyl tensor vanishes.) This problematizes the other
G ! 0 links as well, in so far as there can be Ricci-flat classical spacetimes
other than Neo-Newtonian spacetime, which, presumably, is the spacetime of
CM and GQM.

(c) Finally, one might describe the h ! 0 limit as the inverse of quantization. But
just how the quantization procedure should be characterized is far from settled.
For instance, the quantization procedure that represents the link between SR
and RQFT is not unique: For a theory of a classical relativistic field with infi-
nite degrees of freedom, the failure of the Stone-von Neuman theorem entails
that there are uncountably many unitarily inequivalent representations of the
CCRs of the corresponding QFT. Furthermore, inequivalent quantizations are
not only associated with systems with infinite degrees of freedom; they also
arise for finite systems with topologically non-trivial state spaces.18 This prob-
lematizes the link between CM and GQM, as well as the link between NCG and
NQG (in the latter case, for topologically trivial gravitational fields, appeal to
the unique global time function in classical spacetimes solves the Problem of
Unique Quantization (viz., Privilege), as explained in Sect. 3).

In addition to these issues with the extant links in Christian’s diagram, there also
seems to be a deeper, structural problem. This problem manifests itself explicitly in
the links between NQG and GQM, and RQFT and GQM:

1. First, Christian’s NQG is an NQFT that incorporates gravity. Thus, one might
expect that turning off gravity would result in an NQFT sans gravity. One
might then wonder about the referent of “GQM”: Is it meant to include infinite-
dimensional non-relativistic quantum theories (viz, NQFTs) as well as finite-
dimensional non-relativistic quantum theories (viz, non-relativistic quantum
particle dynamics)? And moreover, it is not immediately clear that it should refer
to a Galieli-invariant theory.

2. A second related concern involves the link between RQFT and GQM. The
1/c ! 0 limit of an RQFT might be characterized by a contraction of the
Poincaré group to yield the Galilei group, with the qualifications mentioned
above. But this maneuver by itself does not take us from an RQFT to a the-
ory of GQM, if we allow that the latter includes theories with finite degrees of
freedom.

These concerns stem from the fact that NQFTs are missing from Christian’s dia-
gram. NQFTs may be thought of as appropriately qualified 1/c ! 0 limits
of RQFTs. Now suppose we relabel Christian’s GQM as NQM (Non-relativistic
Quantum Mechanics) and restrict its referent to finite-dimensional non-relativistic
quantum theories of particle dynamics (i.e., finite theories of quantum particles
invariant under the symmetry group of a classical spacetime). Then, for N D

18 An example of such a system is a charged particle moving in a region external to an operating
solenoid. Quantization of this system produces the Aharonov-Bohm effect (see e.g., Belot 1998,
pg. 546).



Relativity and Quantum Field Theory 143

degrees of freedom, NQMs may be thought of, schematically, as the “inverse ther-
modynamic” limit N ! 0 of NQFTs. This limit is intended to be applicable
to quantum theories independently of classical theories, and vise-versa (i.e., it is
intended to be “orthogonal” to the h ! 0 limit). So, for instance, it should also
hold between a classical theory with an infinite number of degrees of freedom
(a non-relativistic classical field theory, for instance), and a classical theory with
finite degrees of freedom (a non-relativistic classical theory of particle dynamics,
for instance). Whether such a limit can be precisely defined is a matter for another
essay.19 What it informally suggests is that Christian’s cube should be replaced
by a 4-dim hypercube with an additional axis representing degrees of freedom N .
Suppressing the G-dimension, we then have the diagram in Fig. 2.

The vertices in Fig. 2 represent the following theories: non-relativistic classical
particle mechanics (NCM), relativistic classical particle mechanics (RCM), non-
relativistic classical field theory (NCFT), relativistic classical field theory (RCFT),
non-relativistic quantum particle mechanics (NQM), relativistic quantum particle
mechanics (RQM), non-relativistic quantum field theory (NQFT), and relativistic
quantum field theory (RQFT). The distinctions here are between theories (classical
and quantum, relativistic and non-relativistic) with infinite degrees of freedom, and
theories (classical and quantum, relativistic and non-relativistic) with finite degrees
of freedom.20

Theories in hypermonolith space are coodinatized by 4-tuples (G; h, 1/c;N ).
There are now four distinct approaches to constructing relativistic QG: quantiz-
ing the classical field theory of GR, with coordinates (1, 0, 1, 1); “turning on”
gravity in an RQFT with coordinates (0, 1, 1, 1); “relativizing” a non-relativistic
QFT of gravity (such as Christian’s NQG) with coordinates (1, 1, 0, 1); or “taking
the thermodynamic limit” of a relativistic quantum particle theory of gravity with
coordinates (1, 1, 1, 0). Just what the latter might involve requires further analysis.

As an example of how this investigation might proceed, consider how the
eight G ! 0 links in the hypercube could be fleshed out (these all end in the
vertices/theories that appear in Fig. 2). They may be divided into links in which
gravity is turned off in a field theory, and links in which gravity is turned off in a
particle theory.

1. (Non-relativistic classical field theory of gravity (1, 0, 0, 1)) ! NCFT.
An example of a theory with coordinates (1, 0, 0, 1) that produces an NCFT
in the G ! 0 limit is asymptotically flat weak NCG. This is a version of

19 Landsman (2007) discusses a rigorous way of defining an N ! 1 limit that holds between a
quantum system withN degrees of freedom and a classical system. The definition makes use of the
C�-algebra formulation of quantum and classical systems. This formalism also admits a rigorous
definition of an h ! 0 limit, and Landsman notes that the former limit is a special case of the
latter.
20 For simplicity’s sake, the former are identified as field theories and the latter as particle theories.
This ignores field-theoretic systems on lattices (with finite degrees of freedom), as well as particle
systems with infinitely many particles; and it also glosses over conceptual issues concerning the
nature of a particle vis-à-vis a field; but nothing in the following hangs on this simplifying means
of expediency.
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Fig. 2 Relations between theories in the absence of gravity

NCG that drops condition (9) in Sect. 3 above, and imposes asymptotic spa-
tial flatness to enforce Galilei-invariance. Bain (2004, pg. 358) indicates that it is
empirically equivalent to a version of (non-geometricized) Newtonian gravity
in Neo-Newtonian spacetime in which an “island universe” boundary condi-
tion is imposed (namely,  ! 0 at spatial infinity). Hence turning off gravity
in asymptotically flat weak NCG is equivalent to turning off gravity in (non-
geometricized) Newtonian gravity in Neo-Newtonian spacetime under the island
universe assumption, and this evidently yields a Galilei-invariant classical field
theory in Neo-Newtonian spacetime.

2. (RCFT of gravity (1, 0, 1, 1)) ! RCFT.
GR is a theory with coordinates (1, 0, 1, 1). Turning off gravity in GR results in
a field theory in a Ricci-flat Lorentzian spacetime (providing non-gravitational
fields are present). This does not by itself guarantee the theory is Poincaré-
invariant. To assure coherence here, one might additionally impose the require-
ment of conformal flatness (although whether this can be motivated on physical
or other grounds remains to be seen). Alternatively, one might simply expand
one’s concept of a relativistic theory to include theories invariant under the
symmetries of Lorentzian spacetimes in general.

3. (NQFT of gravity (1, 1, 0, 1)) ! NQFT.
NQG is an NQFT of gravity in strong Newton-Cartan spacetime. Evidently, turn-
ing off gravity yields an NQFT in a Ricci-flat classical spacetime satisfying
conditions (8) and (9).

4. (RQFT of gravity (1, 1, 1, 1)) ! RQFT.
The expectation here is that the full-blown relativistic theory of quantum gravity
will reproduce a relativistic quantum field theory in the limit of no gravity (just
as it should produce GR in the classical limit).
The remaining four links involve turning off gravity in a particle theory:
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5. (Non-relativistic classical particle theory of gravity (1, 0, 0, 0)) ! NCM.
6. (Non-relativistic quantum particle theory of gravity (1, 1, 0, 0)) ! RCM.
7. (Relativistic classical particle theory of gravity (1, 0, 1, 0)) ! NQM.
8. (Relativistic quantum particle theory of gravity (1, 1, 1, 0)) ! RQM.

Whether examples of all the theories on the left hand side in links 5–8 can be iden-
tified is best left to another essay, with particular interest directed at an example of
Link 8. Such an example, together with an appropriately formulated thermodynamic
limit that links field theories with particle theories, would open up a fourth route to
the elusive fully relativistic theory of quantum gravity.

5 Conclusion

This essay has used the distinction between Minkowski spacetime and classical
spacetimes as a tool to probe two contemporary issues in philosophy of quan-
tum field theory; namely, the debate over particle interpretations of RQFTs, and
the status of approaches to a fully relativistic quantum theory of gravity. First, the
distinction between Minkowski spacetime and classical spacetimes suggested a dis-
tinction between RQFTs and NQFTs which in turn suggested that the concept of
particle that a Received View adopts in arguing against particle interpretations of
RQFTs is motivated by a non-relativistic notion of absolute time. Second, the exis-
tence of NQFTs, and in particular, consistent NQFTs of gravity, also suggested that
routes to fully relativistic quantum gravity are more varied than the current literature
suggests.

Finally, a general moral can be drawn. The existence of NQFTs suggests that the
distinction between relativistic and non-relativistic theories should not be couched
in terms of Poincaré-invariance vs. Galilei-invariance. On the one hand, as is
already evident in GR, a relativistic theory need not be Poincaré-invariant. On the
other hand, as is evident in NQFTs, a non-relativistic theory need not be Galilei-
invariant. The discussion in Sect. 4 of this essay suggests that a more appropriate
distinction should be based on theories that are invariant under the symmetries of
a Lorentzian spacetime vs. theories that are invariant under the symmetries of a
classical spacetime.
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Ether, the Theory of Relativity and Quantum
Physics

Eduardo V. Flores

Abstract In this paper we revisit some of the reasons given by Einstein that resulted
in his change of mind about the ether from denying to defending its existence. The
ether proposed by Einstein we call Einstein’s new ether. We consider the potential
use of Einstein’s new ether in quantum mechanics. The standard model of elemen-
tary particles reveals the existence of at least one component of Einstein’s new ether.
In this work we explore additional properties of Einstein’s new ether. In particular,
we consider a recent experiment known as the Afshar experiment due to its impli-
cations for the wave particle duality paradox. The Afshar experiment is perhaps the
first experiment that provides clear evidence that wave and particle aspects of the
photon have some sort of physical reality beyond the limits imposed by comple-
mentarity. We propose that the physical reality of the wave aspect of the photon has
its origin in Einstein’s new ether. Here, we report on consequences of the Afshar
experiment for Einstein’s new ether.

1 Introduction

“Ether and the Theory of Relativity” was the title of an Address delivered on May
5th, 1920, in the University of Leyden by Albert Einstein [1]. The central point of the
address was the need to retain some kind of physical ether. Einstein’s new proposal
would have been unthinkable some 15 years earlier when he wrote his famous paper
on special relativity. In 1905 Einstein was the first to realize that physicists should
abandon the fruitless and misleading concept of the ether. In essence, he accepted
the apparent fact that light propagates through vacuum, and that vacuum is really
empty [2]. This was due to Einstein’s study of the nineteenth century physics of
the theory of ether which got him to a series of contradictions and difficulties with
the ether that led him to deny its existence. But his experience dealing with general
relativity and his philosophy of natural phenomena led him to state at the address
[1]: “More careful reflection teaches us, however, that the special theory of relativity
does not compel us to deny ether.” Later he adds: “We shall see later that this point
of view is justified by the results of the general theory of relativity.” He concluded
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that “To deny the ether is ultimately to assume that empty space has no physical
qualities whatever.”

The ether proposed by early researchers fails to describe experimental observa-
tion when it comes to detecting its presence through relative motion. The problem
seems to stem not from the physical reality of the ether but from the erroneous
physical properties ascribed to it. This point is made clear in a recent article Barceló
and Jannes who study condensed matter systems that play the role of a medium for
its excited states [3]. When the collective excitations of a condensed matter system
are described by fields satisfying equations of motion formally indistinguishable
from those of relativistic field theory then relativistic effects, similar to those of
the special theory of relativity, arise naturally. In their article they claim that “By
proposing a thought experiment based on the construction of a Michelson-Morley
interferometer made of quasi-particles, we show that a real Lorentz-FitzGerald con-
traction takes place, so that internal observers are unable to find out anything about
their ‘absolute’ state of motion. Therefore, we also show that an effective but per-
fectly defined relativistic world can emerge in a fishbowl world situated inside a
Newtonian (laboratory) system: : :”. It is remarkable that even in the background
of a Newtonian world observers may not be able to identify their state of uniform
motion with respect to the medium if the collective excitations in this medium can
be described by relativistic-like equations of motion. We do not propose that the
ether is made of regular matter but the example from the condensed matter field
shows that relativistic-like mediums are possible even for regular matter.

Einstein’s view of the physical ether was that it could not be made of regular
matter since he supposed it was more fundamental than regular matter. We propose
here that Einstein’s ether is a new physical object. We define the components of
Einstein’s new ether as whatever is left in a given region of spacetime after all reg-
ular matter and radiation has been removed. In his address Einstein pointed out the
first property of the ether [1]: “We know that it determines the metrical relations in
the space-time continuum.” Thus, we propose that the first fundamental property of
Einstein’s new ether is to determine the metrical relations of spacetime.

There is physical evidence that Einstein’s new ether exists. Astronomical obser-
vations reveal of the presence of a non-zero cosmological constant or dark energy
[4]. Einstein’s equation of general relativity shows that the cosmological constant
originates not from regular matter but from empty space or vacuum energy [5]. The
standard model of elementary particles uncovers two important sources of vacuum
energy: the Higgs mechanism for mass generation and the zero point energy of every
field [6]. The zero point energy of the vacuum due to the electromagnetic field has a
measurable physical effect known as Casimir’s effect [7]. Thus, the existence of at
least one component of Einstein’s new ether, the non-zero vacuum energy, is prac-
tically undeniable. Therefore, it is clear that Einstein’s new ether as defined here
exists.

The study of Einstein’s new ether would be far more relevant if it could shed
light on aspects of quantum theory that need resolution. An important aspect of
quantum mechanics that needs clarification is the wave-particle duality paradox.
The wave-particle paradox as embodied in Bohr’s principle of complementarity has
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been a cornerstone in the interpretation of quantum mechanics since its inception
[8]. Einstein was an advocate of physical reality and was troubled by the status and
interpretation of quantum mechanics in his days. Fortunately, there have been inter-
esting developments on the complementarity issue. For instance, it is clear now that
in some cases complementarity is bound to the uncertainty principle [9], in other
cases complementarity is independent of the uncertainty principle but it is related
to quantum entanglements between the detectors and the particle [10], and in other
cases it appears that complementarity could be circumvented [11, 12]. The last pos-
sibility is the case of a new experiment known as the Afshar experiment [12, 13].
Wave and particle aspects appear to coexist for the photon beyond the limitations
of complementarity. One of the implications of the Afshar experiment is the high
level of physical reality of the wave and particle aspects of the photon. It is not easy
to describe the physical reality of a wave associated with a particle, but some prop-
erties may be derived from experimental constraints. From the Afshar experiment
and other quantum mechanical experiments we know that the wave aspect does not
originate from regular matter. However, as for any wave propagation with physical
reality a medium or ether is required. We propose that Einstein’s new ether provides
the medium for the wave phenomenon as revealed by the Afshar experiment.

The major contribution of this work is the discovery of some properties of Ein-
stein’s new ether from the Afshar experiment. Thus, in Sect. 2 we give an extensive
summary of the Afshar experiment. In Sect. 3 we report on the consequences for
the photon from the results of the Afshar experiment. In Sect. 4 we propose that
the origin of the physical reality of the wave aspect of the photons is to be found in
Einstein’s new ether and we enumerate properties of the wave aspect derived from
experimental observation. In Sect. 5 we give an overall description of Einstein’s new
ether and make some final remarks.

2 The Afshar Experiment

Afshar et al. reported experimental work that provides evidence of simultaneous
particle and wave aspects of the photon beyond the limits set by complementarity
[12]. The paradoxical results of the Afshar experiment have produced some debate
on the validity and interpretation of the experiment [14–24]. These paradoxical
findings have been fully explained only recently [28]. However, the Afshar exper-
iment result that particle and wave coexistence is possible in quantum mechanics
still stands. We note that particle and wave coexistence is a principle of Bohmian
mechanics [29]. Bohmian mechanics has been claimed to have an output equiv-
alent to standard quantum mechanics at the non-relativistic level. The relevant
outcome of the Afshar experiment for our purpose is the evidence of some sort
of physical reality associated with quantum waves beyond the limitations imposed
by complementarity.

Since the results of the Afshar experiment are crucial to this work, we present
a summary of the experiment. It turns out that a version known as the modified
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Fig. 1 Modified Afshar experiment

Afshar experiment is a simpler and more transparent version of the Afshar experi-
ment for calculation and analysis purposes [16]. A laser beam impinges on a 50:50
beam splitter and produces two spatially separated coherent beams of equal intensity
(Fig. 1). The beams overlap at some distance. Beyond the region of overlap the two
beams fully separate again. There, two detectors are positioned such that detector 1
detects only the photons originating from themirror, and detector 2 detects only pho-
tons originating from the beam splitter. Where the beams overlap the waves interfere
forming a pattern of bright and dark fringes. At the center of the dark fringes thin
wires may be placed.

When the wires are not present, photons are free all the way from the mirror
or beam splitter to its corresponding detector. Thus, the application of momentum
conservation is straight forward. When a detector clicks, momentum conservation
allows us to identify the particular path the photon took. We associate knowledge
of the path of the photon with the which-way information parameterK . Thus, once
a detector clicks we have full which-way information, K D 1, about the path of
the photon from the time it enters the interferometer until it hits the detector. The
wave aspect is gauged by the presence of interference fringes. When interference
fringes are formed we measure them using the visibility parameter V . If we do
not verify wave interference by a measurement we may not assume the presence of
interference fringes and we write, V D 0. In our particular case we get V 2CK2 D 1

which is in agreement with the Greenberger-YaSin inequality, V 2 C K2 
 1, a
modern version of the principle of complementarity [25].

However, Afshar [13] proposed a way to test whether or not an interference pat-
tern is present when the beams cross. The idea is simple: place thin wires at the
center of the presumed dark fringes. If the wires scatter a considerable number
of photons then there is no interference but if the readings at the detectors hardly
change then there is evidence of destructive interference at the location of the wires.
Experimental evidence shows that there are dark fringes. From the data it is fairly
easy to set a lower limit for the visibility of the interference pattern, V � 0:968

[12,20,23]. Thus, there is evidence of a sharp interference pattern at the location of
the wires. Interference is a reliable indicator of the wave aspect of the photon. Since
the wires are so small and do not seem to interact significantly with the photons it is
expected that the which-way information has not been altered significantly,K � 1.
Therefore, we obtain the interesting result, V 2 C K2 � 1:93. However, it is still
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possible that the wires have dramatically changed the which-way information of the
photons by randomly sending photons to either detector. This is a possibility that
has to be checked with a calculation.

We have performed a calculation that shows the change in photon momentum
due to thin wires located at the center of dark fringes [23]. In our calculation we
simulate the conditions of the experiment performed by Afshar et al. so as to be
able to compare results. Thus, we use light with � D 638 nm. We use six wires each
with a thickness of 32�m, the center to center wire separation is 319�m and the
beam width is 3.22mm. Two laser beams propagate symmetrically on a plane and
cross each other at an angle of 0.002 radians. The wires are placed at the center of
the dark fringes where the beams cross. Our purpose is to obtain the intensity of
light diffracted by the wires as a function of the angle � on the plane formed by the
beams and measured from the axis of symmetry of the incoming beams.

We notice that the resulting diffraction pattern from the calculation has been
experimentally confirmed using the Afshar experiment setup [24]. The outcome of
the calculation is that the decrease in photon count at either detector is 0.25%.
Afshar et al. reported that the percent decrease in photon count at one of their
detectors was 0.31% [2]. Our calculation is in reasonable agreement with this mea-
surement. An interesting result from our calculation is that this 0.25% decrease in
photon count can be analyzed.

To understand the results, consider 100,000 photons that come from the mirror
or beam splitter towards its corresponding detector one at a time. The calculation
shows that the detector will only collect 99,750 since 250 photons have been lost.
The losses can be easily accounted. The wires stop 126 photons. The total num-
ber of diffracted photons away from the detector is 125. So far the losses are 251
photons, however, the calculation also shows that one photon is diffracted towards
the detector. The net losses are 251�1, thus, we have accounted for the 250 decrease
in photon count at the detector. We notice that diffracted light does not have which-
way information as its origin could be either the mirror or the beam splitter, we do
not know. Fortunately, most of the diffracted light, 125 photons, do not reach the
detectors. Only one diffracted photon reaches the detector. The remaining 99,749
photons that reach the detector are not the result of diffraction. Thus, these photons
have full which-way information and the value ofK is indeed close to 1. Therefore,
the calculation confirms that the complementarity relation, V 2 CK2 
 1, has been
violated. We note that our analysis of the Afshar experiment is based on the assump-
tion that the conservation laws in quantum mechanics apply just like they apply in
classical mechanics [28].

3 Consequences of the Afshar Experiment

The most important result of the Afshar experiment for our work is the realiza-
tion that the wave aspect of the photon has some sort of physical reality. Any
level of physical reality ascribed to the wave aspect of the photons has physical
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consequences. Thus, some properties of the photon that can be deduced directly
from the results of the Afshar experiment are reported here:

1. Sharp particle-like and sharp wave-like aspects of the photon coexist,K2CV 2 �
2, beyond the limitations of complementarity,K2CV 2 
 1. Thus, it appears that
particle and wave both have simultaneous physical reality.

2. The particle component becomes explicit when the photon hits a detector. The
photon path is identified through momentum conservation. A single momentum
and a unique path are particle properties.

3. The presence of the wave component is evident by the small decrease in photon
count when the two beam paths are open. The small decrease in photon count
occurs only if the wires are located at the center of dark fringes. To get dark
fringes we must have wave interference.

4. In each trial there is only one particle in the system, thus, the particle must be
located in one of the two beams. We expect that the particle would influence
a beam proportional to its proximity. Thus, the two beams cannot be influenced
identically as the particle would affect the closer beammore. However, the exper-
imental results are consistent with the presence of two identical beams. Thus, the
particle does not influence the wave (beam). The wave (beam) must be shaped
by boundary conditions of the experiment.

5. The wave component shows that there is external influence on the particle. This
is clear by what takes place at the wire grid. When only one beam is on, the
beam is uniform since there is no interference and a large number of photons hit
the wires. In this case the decrease in photon count due to the wire grid is large,
14.55%. However, when both beams are on, destructive interference takes place
at the location of the wires and the decrease in photon count is only 0.25%. This
means that the particle, under external influence, is somehow steered away from
regions of destructive interference.

6. In the experiment, at any given time, there is only one particle and two beams.We
observe that only one detector clicks when energy and momentum are deposited
there. Assuming that the particle is the carrier of energy and momentum, we
conclude that the detector that clicks is the one that gets hit by the particle. We
can also conclude that the detectors do not respond to the presence of the empty
beam (wave).

7. The location of the particle in one of the two beams appears to be a random event.

4 Properties of the Wave Aspect of a Photon

Coexistence of particle and wave aspects of a photon implies the need for a more
accurate interpretation of quantum mechanics. An immediate consequence is a new
level of physical reality for both wave and particle. In our case we are interested
in the wave aspect. We propose that the wave aspect originates in Einstein’s new
ether. The results of the Afshar experiment together with quantum theory imply the
following properties and limitations for the wave component of a photon:
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1. Physical reality of the wave component of a photon implies the existence of a
medium or ether.

2. The observation that the particle is randomly located in one of the two beams
(waves) could be a basis for the statistical interpretation of the wave component.

3. A physical origin for the wave component of a photon does not preclude a
statistical interpretation of the wave component in relation to the particle.

4. If the wave component is limited to statistical interpretation it may mean that
the wave component can only provide an overall description of the particle
interactions with the ether which lead to wave-like effects.

5. The wave component shows where the particle can or cannot go. The particle
does not go to regions of destructive interference. Thus, the wave component
appears to describe the presence of force fields that “steer” the particle.

6. The only candidate that could provide a force field on a free particle is the ether
or structure of spacetime. Thus, it is likely that the wave component represents
an overall description of the interaction of a particle with the ether. In particular,
the wave component could be related to the state of the ether as experienced by
the particle.

7. Probability theory shows that if the wave component of a particle has proba-
bilistic interpretation then the net wave due to a set of non-interacting particles
should be the product of wave components associated with individual particles.
This observation can lead to a quantum field theory approach to deal with many
particles.

8. The relativistic Lorentz invariant treatment of the N-body problem is successfully
handled with field theory tools. A physical origin for the wave component of
particles does not preclude the application of field theory techniques to deal with
the N-body problem.

5 Einstein’s New Ether and Final Remarks

There is evidence for the existence of a physical vacuum or Einstein’s new ether.
However, there are important constraints that need to be considered. First of all, Ein-
stein’s new ether is the structure of spacetime, thus, it should be four-dimensional.
Second, this structure is physical but not made of regular matter as Einstein pointed
out [1]. Third, it provides an environment or stage for regular matter to exist. Fourth,
it provides the medium for the propagation of the wave component of particles.

The Afshar experiment provides strong evidence of the physical reality of the
wave component of the photon. A physical reality for the wave component of the
photon is problematic as it implies the existence of a medium for wave propagation.
In an otherwise perfect vacuum, totally void of regular matter, the only candidate for
a medium is the structure of spacetime itself, as there is nothing left to be considered.
We call the structure of spacetime Einstein’s new ether. Thus, we propose that the
physical origin of the wave component of the photon is to be found in Einstein’s
new ether.
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We have deduced from the results of the Afshar experiment the role played by the
wave component of the photon. The wave component of the photon shows a direct
correlation between the position of the particle and the value of the wave at a given
place, thus, the standard statistical interpretation is well suited. In view of Einstein’s
new ether, the wave component shows how a particle responds to changes that occur
in its vicinity. For a free particle its vicinity is the ether. The state of the ether at
the location of the particle would have the greatest influence on the motion of an
otherwise free particle. Thus, the most likely scenario is that the wave component
shows the state of the ether as experienced by the particle. Research on the details of
the connection between the value of the wave component and the state of the ether
as experienced by the particle should be conducted. The possibility that the ether
could be involved in the resolution of the wave-particle duality paradox would have
delighted Einstein.

To provide “the metrical relations in the space-time continuum” [1] Einstein’s
ether would have to be described mathematically by the metric tensor, g�� . If the
ether has an overall energy densityƒ, its energy momentum tensor would beƒg�� .
For the particular case when ƒ is constant, the term ƒg�� in Einstein’s equation
plays the role of an energy momentum tensor not associated with regular matter
but with empty space [5]. Thus, we may think of ƒg�� as the energy momentum
tensor of the structure of spacetime or ether. Note that in local geodesic coordinates
the above term becomes ƒ	�� , where 	�� is the Minkowski metric tensor of flat
spacetime. Thus the overall properties of the ether are homogeneous, isotropic and
Lorentz invariant when viewed in these coordinates [26].

The overall description of Einstein’s new ether, ƒg�� , is similar to the cosmo-
logical constant term in Einstein’s equation of general relativity [5]. Researchers
have studied some of the consequences of a non-zero cosmological constant and
have come to the conclusion that it has important physical effects [4]. An important
conclusion is that the cosmological constant represents a different type of energy
density; they have renamed it dark energy [4]. Dark energy is present wherever
space is; if space expands dark energy expands with it without being diluted. It is
as if dark energy would be an intrinsic property of spacetime. The origin of dark
energy is one of the open problems in physics since the theory predicts a very large
value originating from the zero point energy of fields while the observed value is
very small [3]. The possibility that the ether or structure of spacetime is involved
in the near cancellation of the dark energy has been considered before [27]. Thus,
the small value of the cosmological constant or net dark energy could be another
piece of evidence for the existence of a physical structure of spacetime or Einstein’s
new ether.
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Part II
Implications of Minkowski’s Ideas for the

Philosophy of Space and Time



Minkowski’s Proper Time and the Status
of the Clock Hypothesis1

Richard T.W. Arthur

Abstract In this chapter I argue that the concept of proper time must be regarded as
one of Minkowski’s enduring contributions to physics. I examine some confusions
that still interfere with an appreciation of this, including a conflation of proper time
with the co-ordinate time of the inertial frame of a system at rest, and the related
mistaken notion that Special Relativity cannot be applied to accelerating systems.
This sets the stage for a treatment of the so-called clock hypothesis, according to
which the instantaneous rate of a clock depends only on its instantaneous speed.
I argue that this does not have the status of an independent hypothesis, but is simply
a description of the behaviour of an ideal clock as predicted by (classical, special
and general) relativity theory. The question whether this hypothesis holds, moreover,
must be distinguished from the question of whether the restorative acceleration of
the mechanism within any real system acting as a clock is sufficiently great (rel-
ative to the acceleration undergone by the system) that the system will be able to
approximate such an ideal clock. The failure of the clock hypothesis would entail
the falsity of relativity theory in the form proposed by Einstein, as Weyl had sought
to demonstrate with his unified theory of gravity and electromagnetism in 1918. I
argue that it is the Strong Equivalence Principle in General Relativity that preserves
the chronometric significance that the metric had in Special Relativity, and thereby
preserves the relation of inertia to time assumed classically.

Discussion of Hermann Minkowski’s mathematical reformulation of Einstein’s
Special Theory of Relativity as a four-dimensional theory usually centres on the
ontology of spacetime as a whole, on whether his hypothesis of the absolute world is
an original contribution showing that spacetime is the fundamental entity, or whether
his whole reformulation is a mere mathematical compendium loquendi. I shall not
be adding to that debate here. Instead what I wish to contend is that Minkowski’s
most profound and original contribution in his classic paper of 100 years ago lies

1I am grateful to Stephen Lyle, Vesselin Petkov, and Graham Nerlich for their comments on the
penultimate draft; any remaining infelicities or confusions are mine alone.

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
DOI 10.1007/978-3-642-13538-5 7, c� Springer-Verlag Berlin Heidelberg 2010
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in his introduction or discovery of the notion of proper time.2 This, I argue, is a
physical quantity that neither Einstein nor anyone else before him had anticipated,
and whose significance and novelty, extending beyond the confines of the special
theory, has become appreciated only gradually and incompletely. A sign of this is
the persistence of several confusions surrounding the concept, especially in mat-
ters relating to acceleration. In this paper I attempt to untangle these confusions
and clarify the importance of Minkowski’s profound contribution to the ontology of
modern physics. I shall be looking at three such matters in this paper:

1. The conflation of proper time with the time co-ordinate as measured in a system’s
own rest frame (proper frame), and the analogy with proper length.

2. Misconceptions that Special Relativity (SR) applies only to objects in inertial
motion, and not to accelerated systems, and that therefore one must introduce
General Relativity to solve Langevin’s Twin Paradox.

3. Misconceptions surrounding the status of the so-called clock hypothesis (CH),
according to which the instantaneous rate of a clock depends only on its instan-
taneous speed, and not on its acceleration. I shall argue that the CH is a criterion
for ideal clocks that is implicit in SR, and does not have the status of an indepen-
dent assumption; and that it also performs this role in GR as a consequence of
the strong equivalence principle.

1 Proper Time, Local Time and Proper Length

The first symptom of this under-appreciation of the novelty of proper time I wish
to discuss is that it is often taken to be the time co-ordinate measured by a clock
at rest in an inertial frame: in its own frame, therefore, proper, as opposed to local
time. ‘Local time’, of course, was originally Lorentz’s term for the transformed co-
ordinate time t 0 of an inertial frame of reference moving with velocity v with respect
to the stationary frame. By Lorentz’s own admission, the chief cause of his failure
to discover Special Relativity “was my clinging to the idea that only the variable t
can be considered as the true time, and that my local time t 0 must be regarded as no
more than an auxiliary mathematical quantity”.3 Einstein’s correction lay in seeing
that all of these time co-ordinates or local times are on a par and equally entitled to
be regarded as the true time. It is perhaps for these reasons that the illusion arose
that proper time is simply the local time of the system’s own rest frame, the time
co-ordinate as measured in an inertial frame in which the system is at rest. And this

2 Here I concur with Roberto Torretti, who rates Minkowski’s introduction of proper time as
“probably his most important contribution to physics” (1983, 96).
3 Quoted from (Torretti 1983, p. 85).
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in turn could explain why it is not uncommon to find the introduction of proper time
attributed to Einstein, even by authors with a keen sense of the history of physics.4

The conflation of proper time with co-ordinate time in a system’s own rest frame
is also perhaps fostered by the numerical equivalence of the value of the proper time
elapsed for a body moving along an inertial path with the value measured by the
time-co-ordinate in its rest frame. Thus it is often said that proper time is simply
time measured in a body’s “proper frame”, as if a body keeps its own inertial frame
while accelerating! There are two confusions here: first, the idea that a body “has”
an inertial frame, when a reference frame is just a point of view for representing the
body’s motion, and (according to the principle of relativity) one can represent this
motion equivalently from any inertial frame; and second, of course, the idea that the
body could stay in the same inertial frame even though it is accelerating, and there-
fore moving non-inertially. At any rate, this is a confused idea of proper time, which
is not a time co-ordinate and was not introduced by Einstein, but by Minkowski, in
his famous paper of 1908 (Lorentz et al. 1923, 73–91). Introducing the concept, he
asks us to imagine at any point P (x, y, z, t) in spacetime a worldline running through
that point, so that the magnitude corresponding to the timelike vector dx, dy, dx, dt
laid off along the line is

d� D
p
.c2dt2 � dx2 � dy2 � d z2/=c (1)

Proper time is now defined as the integral of this quantity along the world line in
question: “The integral � D s d� of this quantity, taken along the worldline from
any fixed starting point P0 to the variable endpoint P, we call the proper time of the
substantial point at P.” (85) Thus for Minkowski spacetime, the proper time is:

� D
Z

Pd� D
Z

P

p
.c2dt2 � dx2 � dy2 � d z2/=c (2)

or, equivalently,

� D
PZ

P0

f1 � 1=c2Œ.dx=dt/2 C .dy=dt/2 C .d z=dt/2�g1=2dt (3)

As defined, the proper time cannot be evaluated without adopting a system of co-
ordinates. But because of the signature of the Minkowski metric, the interval d� and
its integral � are both invariants, so that their values are independent of what system
of co-ordinates is adopted. Thus for the time elapsed along any worldline, � gives
a measure that is independent of the co-ordinates, even if a particular frame must
be adopted in order to calculate its value. The whole content of relativity theory

4 See for example J.-P. Provost, C. Bracco and B. Raffaelli 2007, 498: “If one starts with SR, : : :the
first important notion, as Einstein told us in 1905, is the proper time £”.
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can now be framed in terms of such invariants, so that co-ordinates are no longer
regarded as primitive, as they had been in Einstein’s way of conceiving SR. For
instance, as Minkowski proceeded to explain, x, y, z and t – the components of
the vector OP, where O is the origin – are considered as functions of the proper
time � , and the first derivative of the components of this vector with respect to
the proper time, dx=d�; dy=d�; dz=d� and dt=d� , are those of the velocity vec-
tor at P, which is also a four-dimensional invariant. As is well known, the resulting
four-dimensional co-ordinate-free rendering of special relativity is of immense util-
ity for the further development of relativity theory, even if Einstein did not at first
appreciate its significance.

The misidentification of proper time as the time co-ordinate in its rest frame is
also encouraged by an analogy with proper length, which is the length of a body
in its rest frame. The analogy, it is often claimed, is perfect, and the invariance of
proper time is no objection. For just as the length of a path joining two events in
timelike separation is invariant under change of frame, so is the length of a curve
joining two events in spacelike separation.5 This can be seen by comparing the
expressions for proper time and proper length written in the tensor form neces-
sary for general relativistic spacetimes. Here the appropriate generalization of the
expression given by Minkowski for his flat spacetime to curved spacetimes is6

� D
Z

P d� D
Z

P.�g’“dx˛dxˇ /1=2 (4)

The flat-space expression for the proper length should be generalized so that it is the
exact analogue of proper time, a line integral along a curve joining two spacelike
separated events:

L D
Z

Pds D c

Z
P .g˛ˇdx

˛dxˇ /1=2 (5)

There is no doubt that this defines a proper distance, that between the endpoints of a
path in spacetime along which no process can travel, a spacelike curve. An arbitrary
curve joining two spacelike separated events, however, is not generally the length
of an object. It can only be the length of an object if all the points on the curve are
simultaneous in some given reference frame; for an object, such as a body or wave
front, is a three dimensional object existing at a given time. And while the path inte-
gral along such an arbitrary curve is indeed the length of a path, and is independent

5 Cf. the article on proper length in Wikipedia (http://en.wikipedia.org/wiki/Proper length: March
24, 2009). The author suggests a generalization of proper length so that (in either Special or General
Relativity) it is given by the line integral L D c sP p

Œ�g��dx�dx��, where g�� is the metric tensor
for the spacetime with C— signature, normalized to return a time, and P is the spacelike path.
The author also notes that “Proper length has also been used in a more restricted sense to help with
discussions of length contraction by textbooks, where it is defined as the length of an object when
measured by someone at rest relative to that object.”
6 Cf. Misner et al. (1973, 393).
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of the choice of reference frame, it has no particular physical significance. Proper
length is correctly defined as the path integral, not along an arbitrary curve joining
the endpoints of the path at the same time, but along the shortest curve, which is a
straight line joining them in the frame at which they are at rest. If (elapsed) proper
time were the strict analogue of this, it would be the longest time between two time-
like separated events, which would be the time in a frame of reference at rest, i.e.
the co-ordinate time in a body’s rest frame. It is precisely this interpretation that
I am contesting: proper time, according to Minkowski’s definition above, is not a
co-ordinate time; and it is not defined for only the shortest path, i.e. only within the
body’s rest frame, but is defined for any timelike curve in spacetime. Because proper
length is the interval between two events at the same co-ordinate time, it is specific
to a particular reference frame. Proper time, as defined by Minkowski, is not.

Thus proper time has a fundamentally different character from proper length.7

Although both are invariant under change of frame, proper length is the length of
an object in its own rest frame, whereas proper time is independent of frame. In this
respect proper length is analogous to proper mass. (It differs from the latter, how-
ever, in that proper mass seems to be an essential characteristic of an elementary
body (such as an electron), whereas proper length is a contingent one.) At any rate,
there is a fundamental dissymmetry between duration and length in Special Rela-
tivity, somewhat obscured by talk of their embodiments in observers’ clocks and
rods. For whereas an observer’s clock measures proper time elapsed along a path, a
dynamical variable specifiable independently of reference frame, the proper length
of the observer’s measuring rod is specific to the inertial frame in which the observer
is at rest. Thus we see that, ironically, there is a sense in which Minkowski’s intro-
duction of proper time undermines his famous pronouncement at the beginning of
his paper about the demise of time:

Henceforth space by itself, and time by itself, are doomed to fade away into mere shad-
ows, and only a kind of union of the two will preserve an independent reality. (Minkowski
1908, 75)8

2 Acceleration and Appeals to General Relativity

Relatedly, it is often stated that Special Relativity (SR) applies only to objects in
inertial motion, and not to accelerated systems, for which an appeal to General Rel-
ativity (GR) is necessary. This one finds especially in treatments of the Twin Paradox
(a.k.a. the Clock Paradox), where it is claimed that a proper resolution of the paradox

7 For a complementary analysis that comes to the same conclusion, namely that there is a profound
difference between proper time and proper length, see Petkov (2009, 89–95).
8 This famous pronouncement of Minkowski’s is echoed by Einstein in his essay “The Problem
of Space, Ether and the Field in Physics”: “Hitherto it had been silently assumed that the four-
dimensional continuum of events could be split up into time and space in an objective manner: : :
With the discovery of the relativity of simultaneity, space and time were merged in a single
continuum: : :” (1954, 281–282).
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must therefore involve General Relativity.9 In this connection one finds references
to Einstein’s “Dialogue on Objections to the Theory of Relativity” (1918), which
is interpreted as having shown how to solve the paradox using General Relativity,
through an application of the Equivalence Principle (EP). On this misreading it is
thought that since the acceleration of the travelling twin is responsible for the differ-
ence in the twins’ ages (i.e. in the proper times of their journeys), and accelerations
fall outside the scope of the special theory, and since (by the EP) this accelera-
tion will be equivalent to a gravitational time dilation, the paradox must receive its
explanation in GR.

On the contrary, the paradox receives a complete explanation within SR, which
is perfectly applicable to accelerated motions.10 This was already made clear by
Arnold Sommerfeld in a very succinct note on Minkowski’s paper of 1908, pub-
lished in (Lorentz et al. 1913), with an English translation appearing in 1923 and
again in 1952:

[T]he element of proper time d� is not a complete differential. Thus if we connect two
world-points O and P by two different world-lines 1 and 2, thenZ

1

d� ¤
Z
2

d�

If 1 runs parallel to the t -axis, so that the first transition in the chosen system of reference
signifies rest, it is evident that Z

1

d� D t;

Z
2

d� < t

On this depends the retardation of the moving clock compared with the clock at rest.
(Lorentz et al. 1913, 71, and 1952, 94)

As for Einstein’s 1918 paper, there Einstein is concerned to defend the consistency
of the explanation of time dilation given in SR, and to show its compatibility with an
equivalent explanation in GR. He argues that the differences in the time of the two
journeys is an “inevitable result” of the special theory of relativity. In his version,
there are two identical clocks, U1 and U2, and U2 is accelerated until it reaches a
velocity �v relative to U1, travels with this velocity for a while, and is then decel-
erated until its motion is reversed, moving with a velocity v back to rejoin U1. U2

will then be retarded with respect to U1 by an amount �
t . To the objection that all

9 Cf. this analysis on the Encyclopedia Britannica internet site: “The answer is that the paradox
is only apparent, for the situation is not appropriately treated by special relativity. To return to
Earth, the spacecraft must change direction, which violates the condition of steady straight-line
motion central to special relativity. A full treatment requires general relativity, which shows that
there would be an asymmetrical change in time between the two sisters. Thus, the “paradox” does
not cast doubt on how special relativity describes time, which has been confirmed by numer-
ous experiments.” http://qa.britannica.com/eb/article-252886. The number of similar confusions
on individual physicists’ web sites seems to have decreased sharply of late; but there is no excuse
for anyone who has read Misner, Thorne and Wheeler (1973): they have a separate section (6.1)
titled “Accelerated Observers Can be Analyzed Using Special Relativity” (p. 163).
10 See my thorough treatment of the twin paradox in SR in my (2008).
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motion is relative, he rejoins that in SR this is so only for systems in mutual relative
unaccelerated motion. But since here the clock U2 is accelerated, no contradiction
to SR is forthcoming. The clock U2 will be running behind U1: as in Sommerfeld’s
argument above, s2 d� D s1 d� �
t < s1 d� .

But his imaginary opponent objects that in General Relativity one is not con-
strained to take only reference frames in inertial motion: one could adopt a co-
ordinate frame co-movingwith the accelerated clock. Einstein responds by applying
the Equivalence Principle to show how things would appear from that frame. Now a
static homogeneous gravitational field appears, and clock U1 undergoes acceleration
in free fall up to a velocity v (at which point the field disappears), while the clock U2

is prevented frommoving by the action of an external force.U1 then travels with this
velocity for a while, until a static homogeneous gravitational field appears, directed
in the opposite direction to before, in which it decelerates in free fall until its motion
is reversed, movingwith a velocity �v back to rejoinU2, which had remained at rest.
Einstein explains that although the clock will be retarded while undergoing the iner-
tial legs of its journey, resulting in U1 being retarded by the same amount �
t as
was U2 in the previous scenario, when it is free-falling in the third leg of its journey
it is located at a higher gravitational potential thanU2, and, as a consequence of gen-
eral relativistic time dilation, it will be speeded up by exactly 2
t , thus completely
disposing of the paradox.

The moral of the story is that time dilation in SR arises from the fact the twins
trace different paths through spacetime because of the different accelerations they
undergo, they but it is not a direct effect of the accelerating motion itself. In the
idealized scenario of the twin paradox, the time dilation due to the acceleration
of the travelling twin is not normally considered, but it could be made arbitrarily
small compared to that produced by the inertial motions. The time dilation in the
second scenario considered by Einstein is produced not by the acceleration, but by
the difference in gravitational potential at two points in the field. Thus in the SR
case, it is the difference in the paths that results in a time dilation for the accelerated
twin; and analogously in the GR case, the compensating gravitational time dilation
is due to the difference in gravitational potential at two points in the field rather than
being an effect of the accelerating motion itself. This is what Einstein showed in
1918.11

3 Acceleration and the Clock Hypothesis

A much more subtle set of issues surrounds the “clock hypothesis”, for which the
previous two sections set the scene. Wolfgang Rindler renders it as follows:

11 An updated treatment of Einstein’s solution is given by Jones and Wanex (2006), who demon-
strate that the SR and GR paradox solutions are identical for finite accelerations (as well as the
infinite ones shown by Møller (1955)), by using the destination distance as the key observable
parameter.
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If an ideal clock moves non-uniformly through an inertial frame, we shall assume that accel-
eration as such has no effect on the rate of the clock, i.e. its instantaneous rate depends only
on its instantaneous speed v according to the above rule. This we call the clock hypothesis.
It can also be regarded as the definition of an “ideal” clock. (Rindler 1977, 43).

What Rindler refers to here as “the above rule” is the standard formula for time
dilation in Special Relativity, representing the time interval T recorded by a clock
in an inertial frame S in terms of the time interval T0 recorded by a clock at rest in
a frame S moving inertially with speed v:

T D �T0 D T0=.1 � v2=c2/1=2 (6)

This, however, is not a good definition of the clock hypothesis, since here T and
T0 are both coordinate times, so that strictly speaking formula (6) only applies to
inertial motions, not accelerated ones. Thus a better definition is to say that an ideal
clock is one that measures proper time as given by formula (2) above:

� D
Z

Pd� D
Z

P

p
.c2dt2 � dx2 � dy2 � d z2/=c (2)

or in the generalized form also appropriate to General Relativity that we gave above,

� D
Z

P d� D
Z

P.�g’“dx˛dxˇ /1=2 (4)

On the necessity and status of this hypothesis, opinion is divided. Rindler claims it
is an assumption that it is necessary to make in order to get from “purely kinematic
laws about acceleration” to the dynamics of really accelerated systems (1966, 28)
and Harvey Brown claims something similar in his recent book (Brown 2005, 9).
Brown adds that it is the clock hypothesis that “allows for the identification of the
integration of the metric along an arbitrary time-like curve – not just a geodesic –
with the proper time. This hypothesis is no less required in general relativity than it
is in the special theory.” (Brown 2005, 9).

On the other hand, Jim Hartle holds that Minkowski’s formula for the proper
time holds “even for accelerating clocks, i.e., when the velocity is dependent on the
time” (Hartle 2003, 62), and he makes no use of the clock hypothesis in his textbook.
Roberto Torretti allows that the clock hypothesis “may be viewed as a conventional
definition of what we mean by clock accuracy, and hence by physical time” (1996,
96), but argues that “Special Relativity would doubtless have been rejected or, at
any rate, deeply modified, if the clock hypothesis were not fulfilled – to a satisfac-
tory approximation – by the timepieces actually used in physical laboratories.” And
according to Misner, Thorne andWheeler, “one defines an ‘ideal’ : : : clock to be one
which measures : : : proper time as given by .�g’“ dx’ dx“/1=2 : : :” (1973, 393).

On these latter views, provided a given process approximates well enough an
ideal clock, the clock hypothesis seems to amount to little more than the desidera-
tum that, with the metric locally Minkowskian, the predictions of SR should agree
with experimental fact. So the question is, why should it be necessary to state it as
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an independent hypothesis? Two main sets of considerations have been adduced. As
we have seen, one kind of justification has been that, since many natural clocks are
subject to accelerations which result in their failing to satisfy the clock hypothesis,
we need to appeal to the hypothesis in passing from the kinematics of acceleration
of ideal clocks to the dynamics of really moving clocks. A second kind of justifi-
cation has to do with the different status of Special Relativity within the General
Relativistic context, where, as is shown by the example of Weyl’s unified theory of
electromagnetism and gravitation, the metric could be locally Minkowskian and yet
the rate of clocks could be path-dependent in such a way that the instantaneous rate
would depend on the way the clock had been accelerated hitherto, contrary to the
clock hypothesis. This, it is argued, proves the independence of the clock hypothesis
from the assumption that spacetime is locally Minkowskian.

Let’s look at the question of ideal clocks first. Rindler stresses that it is not the
case that any natural process serving as a clock will meet the condition stated in
the clock hypothesis. He gives the example of “a spring-driven pendulum clock
whose bob is connected by two coiled springs to the sides of the case (so that it
works without gravity)” (43), pointing out that it “will clearly increase its rate as it
is accelerated upward”. Rindler allows that “certain natural clocks (vibrating atoms,
decaying muons,) conform very accurately to the clock hypothesis”, and observes
that in general “this will happen if the clock’s internal driving forces greatly exceed
the accelerating force” (43). Similarly, Harvey Brown states that the “key issue is
the comparison of the magnitude of the external force producing the acceleration
and that of the forces at work in the internal mechanism of the clock.” (Brown 2005,
95) As he points out, “an important part of the history of time has been the search for
accurate clocks which withstand buffeting” (94). Exemplary in this regard were the
wonderful timepieces constructed by John Harrison in the eighteenth century in an
effort to win the Admiralty Prize for a clock accurate enough for use in determining
longitude on board ship (see Sobel 1995 for an engaging account). But Brown’s
discussion of this issue is given in the course of an inquiry into what happens when
clocks are no longer moving inertially (94). He concludes that the justification of
the clock hypothesis “rests on accelerative forces being small in the appropriate
sense”, i.e. if they are “small in relation to the internal restorative forces of the
clock” (95). The “effect of motion on the clock depends accumulatively only on
its instantaneous speed, not its acceleration” (95), provided the accelerative force is
small in comparison with the restorative forces. Similarly, Brown and Pooley write

The claim that the length of a specified segment of an arbitrary time-like curve inMinkowski
spacetime – obtained by integrating the Minkowski line-element ds along the segment – is
related to proper time rests on the assumption (now commonly dubbed the ‘clock hypoth-
esis’) that the performance of the clock in question is unaffected by the acceleration it
may be undergoing. It is widely appreciated that this assumption is not a consequence of
Einstein’s 1905 postulates. Its justification rests on the contingent dynamical requirement
that the external forces accelerating the clock are small in relation to the internal ‘restoring’
forces at work inside the clock. (Brown and Pooley 2001, 264–265)

But it seems to me that this way of describing the situation conflates two distinct
issues: the clock hypothesis as a criterion for an ideal clock, an ideal clock being a
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clock that will keep proper time; and the separate problem of whether the restorative
acceleration of the mechanismwithin any real system acting as a clock is sufficiently
great (relative to the acceleration undergone by the system) that the system will be
able to approximate such an ideal clock.12 As Misner, Thorne and Wheeler write
(2001, 393), once one has defined an ideal clock, “one must then determine the
accuracy to which a given : : : clock is ideal by using the laws of physics to analyze
its behavior”. So, I maintain (contra Brown), it is not the justification of the clock
hypothesis that depends on the accelerative force being small in comparison with
the restorative forces, but the justification of whether a given naturally occurring
periodic process approximates sufficiently well the behaviour of an ideal clock.

As an example, consider the case discussed by Misner, Thorne and Wheeler
(393) of an atomic clock accelerated to 2g in an airliner (with the airliner not
in free fall, and accelerating to avoid a mid-air collision). As they explain, in
order to determine empirically whether the clock “will still measure proper time
d� D .�g’“ dx’ dx“/1=2 along its world line to nearly the same accuracy as if it
were freely falling” – i.e. to determine whether it approximates an ideal clock – “one
can analyze the clock in its own ‘proper reference frame’ [�13.6 (pp. 327–332)],
with Fermi-Walker transported basis vectors, using the standard local Lorentz laws
of quantum mechanics as adapted to accelerated frames (local Lorentz laws plus an
‘inertial force’, which can be treated as due to a potential with a uniform gradient)”
(393). In the same vein they give a proof that a pendulum clock at rest on the Earth’s
surface is ideal (394–395).

This distinction between an ideal clock’s being implicitly determined by theory,
and a real world time-piece’s time-keeping qualities being determined by howwell it
will be able to conform to such an ideal clock, is not something new. Newton’s idea
was that the equability of absolute time was a direct correlate of equable motions,
the paradigm for which was an inertially moving body marking off equal lengths.13

Thus an inertially moving body is an ideal clock in Newtonian physics.14 But as
Newton himself conceded, it is quite conceivable that no actual body in the world
moves perfectly equably: “It is possible that there is no uniform motion by which
time may have an exact measure.” (1999, 410) But this would not preclude the
calculation of forces on the presupposition of this exact relation between uniform
motion and time. Now, of course, if a clock is subject to too violent accelerations, it

12 There is an additional problem with Brown and Pooley’s formulation, in that it assumes some
kind of gap between proper time and the integral of the line-element ds along the segment; but
proper time was defined as that by Minkowski. So the authors are using “proper time” in a different
sense, as the time read by a real clock in its own rest frame. But the issue of whether an actual clock
will read proper time is not the same issue as whether an ideal one will.
13 After writing this sentence, I discovered almost exactly the same sentiment expressed by Torretti:
“The First Law of Motion provides the paradigm of a physical process that keeps Newtonian time,
and this is enough to ensure that the latter concept is physically meaningful, even if no such process
can ever be exactly carried out in the world. : : : The flow of Newtonian time can therefore be read
directly from the distance marks the body passes by as it moves along the ruler.” (1983, 12).
14 For a discussion of this aspect of Newton’s absolute time, see Arthur (1995, 2007) and Barbour
(1989).
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will cease to function as an accurate clock. Brown quotes Eddington to this effect:
“We may force it into the track by continually hitting it, but that may not be good for
its time-keeping qualities!” (Eddington, quoted in Brown 2005, 94). But as Misner
et al. remark (2003, 393), whether it is pushed beyond the point where it can still
keep good time “depends entirely on the construction of the clock – and not at all
on any ‘universal influence of acceleration on the march of time.’ Velocity produces
universal time dilation; acceleration does not.”

Now let me turn to the claim that the clock hypothesis has a role in the transi-
tion from kinematical to dynamical considerations.Wolfgang Rindler, after defining
the clock hypothesis in his (1960), writes: “SR has no machinery to prove any but
purely kinematic laws about acceleration. All other such laws it can merely sub-
ject to the test of invariance, which requires that a physical law shall have the same
form in all inertial frames.” (1960, 28–29) This is a puzzling claim. As we saw
above, Special Relativity can certainly be applied to accelerating bodies, whatever
force is the source of the acceleration. Rindler appears to mean that SR, in the form
of the requirement of Lorentz covariance, is only a constraint on the formulation of
dynamical laws. But in what sense does that make it “purely kinematic”? By way of
justification he asks us to consider a standard clock being moved along an arbitrary
n-sided polygonal path with uniform velocities along the sides and instantaneous
velocity changes at the vertices. Then according to formula (6) above, “the total
time increment indicated by the clock will be

T D
X

iD1

n
�
1 � v2i =c

2
�1=2


ti (7)

where vi and
ti refer to the i th side and are measured in the reference frame.” (29)
He claims that this merely suggests taking the limit as n ! 1 to get the law for a
completely arbitrary motion between times ti and t2:

T D
Z t2

t1

p
.1 � v2=c2/ dt (8)

Rindler notes that this is “consistent with the relativistic demand for invariance”,
since (8) is equivalent to formula (2) above. But, he claims, (8) is not a unique gen-
eralization of (7), in that “more complicated laws could easily be devised which
incorporate an acceleration effect and which are also invariant and reduce to [(7)]
in the polygonal case” (29). Thus “it is idle to pretend that the polygonal and
continuous paths ultimately become equivalent in all physical respects”:

Consider, for example, a short thin tube placed perpendicularly across the path and contain-
ing a ball at the intersection. If this tube is moved transversely over the continuous path the
ball will be displaced by centrifugal forces, but this will not happen on the corresponding
polygonal path no matter how large its number of sides. (29)

Thus, according to Rindler, at no point in the polygonal path is there a force on the
ball, but in the curved path it experiences a centrifugal force.
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Fig. 1 Newton’s proof of the area law

But this is a most unfortunate example. For the above polygonal construction
is precisely that used by Isaac Newton in giving one of the very first derivations
of the formula for centrifugal force!15 The success of such derivations, I contend,
wholly undermines the distinction Rindler is trying to make here between a “kine-
matical” approach to acceleration, and one that is properly dynamical. Of course, the
point is that in the polygonal model one assumes that the body (in Rindler’s exam-
ple, the tube containing the ball) is deflected instantaneously and discontinuously at
each vertex by a discrete impulse m
v acting toward the centre in such a way as to
produce a new inertial motionm.vC
v/ between that vertex and the next (by appli-
cation of the parallelogram law). The ball in Rindler’s tube will experience each suc-
cessive impulse. When one takes the limit as n ! 1 and 
ti ! 0, the successive
increments of velocity effectively become elements of velocity dv directed towards
the centre during an interval dt, with the result that one has effectively integrated
from first principles to obtain an expression for the acceleration towards the centre,
dv/dt. In the limit, the impulses experienced by the ball in ever shorter and more
numerous moments, will smear out into a continuous force. Newton used precisely
this procedure in his masterwork, the Principia, to derive Kepler’s Area Law:16

Let the time be divided into equal parts, and in the first part of the time let a body by
its inherent force describe the straight line AB. In the second part of the time, if nothing
hindered it, this body would (by law 1) go straight on to c, describing line Bc equal to AB,
so that – when radii AS, BS and cS are drawn to the centre – the equal areas ASB and BSc
would be described. But when the body comes to B , let a centripetal force act with a single

15 Newton’s derivation is given in the Waste Book of 1666 (ULC MS Add. 4004), transcribed in
Herivel (1965, 128–131). For an explication, see Brackenridge (1985, 45–51).
16 As I. B. Cohen mentions in his introduction to the Principia (Newton 1999, 71), “the issue of
the mathematical rigour of Newton’s polygonal analysis has been, and still remains, a subject of
debate among scholars.” Recent analyses include Nauenberg (1998), Pourciau (2003), and Arthur
(2009).
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but great impulse and make the body deviate from the straight line Bc and proceed in the
straight line BC: : :

Now let the number of triangles be increased and their width decreased indefinitely, and
their ultimate perimeter ADF will (by lem. 3, corol. 4) be a curved line; and thus the cen-
tripetal force by which the body is continually drawn back from the tangent of this curve
will act uninterruptedly, while any areas described, SADS and SAFS, which are always pro-
portional to the times of description, will be proportional to the times in this case. Q:E:D.
(Newton 1999, 445) (Fig. 1).

The case is the same in Special Relativity. One can begin, as Rindler chooses to do,
with the time dilation formula (6) for a time interval in one inertial frame relative
to another, and consider a polygonal “orbit” created by successive impulses acting
on a body. In the limit, one recovers Minkowski’s formula for the proper time, (2).
Or one can begin with the differential form for proper time (1), and simply integrate
along the path to obtain (2), as did Minkowski. As Torretti expresses it, “The clock
hypothesis implies that the time measured by our clock between any two events
P and Q is none other than the proper time along the clock’s worldline from P

to Q.” (1983, 96). Thus, I conclude, it is no more necessary to postulate the clock
hypothesis as a separate assumption pertaining to dynamics than it is in classical
(Galilean invariant) mechanics: in SR, it is simply the condition that defines an
ideal clock. I should add: this does not mean that the CH is true by definition: it
means that if a real clock does not perform as an ideal clock, even though the theory
predicts that it should (its restorative force greatly exceeding the accelerative force
etc.), then – provided there isn’t some unsuspected force in operation, or similar
exculpatory explanation – there must be something wrong with the theory.

In passing I note that, in their insistence that the clock hypothesis is a separate
assumption in SR, Rindler and Brown could appeal to the authority of Einstein.
For in the notes he made on Minkowski’s original “Raum und Zeit” paper, Arnold
Sommerfeld attributes a remark to Einstein that may indicate the origin of the idea
that the clock hypothesis is needed – at any rate it is the first statement of it that
I have been able to find. Right after mentioning Minkowski’s remark that d� is
not a complete differential, and noting that this shows that the proper times of two
motions connecting two world points will generally differ (as discussed in Sect. 2
above), Sommerfeld adds:

This assertion is based, as Einstein has stressed, on the (unprovable) assumption that the
moving clock actually indicates the proper time, i.e. that at each instant it gives the time that
corresponds to the instantaneous state of velocity, regarded as constant. The moving clock
must naturally have been moved with acceleration (with changes of velocity or direction)
in order to be compared with the stationary clock at the world-point P .17

17 Lorentz et al. (1952, 94). Sommerfeld’s notes were included in the first German edition published
in 1913 (Lorentz et al. 1913, 71). I have translated from the original German: “Dieser Aussage
liegt, wie Einstein hervorgehoben hat, die (unbeweisbare) Annahme zu Grunde, daß die bewegte
Uhr tatsächlich die Eigenzeit anzeigt, d. h. jeweils diejenige Zeit gibt, die dem stationär gedachten,
augenblicklichen Geschwindigskeitzustand entspricht. Die bewegte Uhr muß natürlich, damit sie
mit der ruhenden imWeltpunkte P verglichen werden kann, beschleunigt (mit Geschwindigskeits-
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This remark appears to me to indicate that Einstein is here equating “proper time”
with “time in an inertial frame”, very much as Rindler did in his discussion of the
clock hypothesis in SR discussed above. The fact that there is an instantaneous
velocity at each instant, which is the velocity with which the body would continue
its motion if (counterfactually) no force were acting on it, does not entail that there is
no acceleration, any more than the fact that Zeno’s moving arrow does not move in
each instant of its motion entails that the arrow is not really moving. To reiterate, in
the context of the global Minkowski spacetime of SR, the fact that an ideal clock
indicates proper time follows straightforwardly, and is not a separate “unprovable
assumption”.

But what of Rindler’s claim that “more complicated laws could easily be devised
which incorporate an acceleration effect and which are also invariant and reduce to
[(7)] in the polygonal case” (29)”? I cannot see how this can be done for classical
mechanics or SR. In the polygonal model, the times are proportional to the lengths
between the vertices for inertial motions, and the impulses are assumed instanta-
neous, so that the time increments will still add linearly; and this will apply even
in the limit. Newton’s construction, indeed, is perfectly general, and his proof of
Kepler’s Area Law is valid for a curved segment of the orbit whatever the force law,
provided the force acts towards the centre and the orbit remains outside the centre.
But it seems that Rindler has GR in mind, for in this connection he immediately
refers to a proof by Møller “on the basis of the field equations of general relativity
that certain idealized mechanical and atomic oscillators do, in fact, satisfy the clock
hypothesis” (29–30).

In fact, it is in the context of GR that we see the motivation for thinking that
the clock hypothesis might be a separate element in the theory. For it is with the
publication in 1918 of Hermann Weyl’s celebrated attempt at a unified theory of
gravitational and electromagnetic forces (Weyl 1918b) that the status of the “clock
hypothesis” is first called into question. This is the paper that introduces the idea of
gauge symmetry into modern physics, and its significance for the clock hypothesis
has been discussed in an illuminating way by Harvey Brown and Oliver Pooley in
their (2001), as well as by Roger Penrose in his recent tour-de-force (2005).18 The
connectionwith the clock hypothesis is that inWeyl’s theory (as Einstein pointed out
in criticizing the theory) the proper time elapsed for a clock carried on a round-trip
would not only vary with the path through spacetime, as in SR, but in such a way
that if the travelling clock had encountered regions of space containing a varying
electromagnetic potential in a static gravitational field, it would return to its starting
point ticking at a different rate than one that had remained at the starting point
(Fig. 2).

The leading idea of Weyl’s paper is that the Riemannian geometry assumed by
Einstein in his GR is insufficiently local, since it “enables us to compare, with

oder Richtungsänsderungen) bewegt worden sein.” Unfortunately, Sommerfeld does not give a
reference for the attribution of this remark to Einstein.
18 See also the discussion of Torretti in his (1983, 189–190).
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Fig. 2 The speeding up of
the rate of the moving clock
(after Penrose 2005, 452)

respect to their length, not only two vectors at the same point, but also the vec-
tors at any two points” (Lorentz et al. 1923, 203). As Brown and Pooley explain,
Weyl insisted instead that “only the ratios of the lengths of vectors at the same point
and the angles between them can be physically meaningful” (265). The result is a
conformal geometry in which there is no absolute scaling for spatial and temporal
distances, so that the metric is only given up to a proportionality. In this scheme a
Lorentz metric g is still required as a constraint on all the local physics, providing
us with the local Lorentz group that is to act in the neighbourhood of each point.
As a result, the null cones of Minkowski geometry still perform the same role that
they do in Einstein’s theory; this is the so-called conformal structure. Thus transfor-
mations of the form g ! œg are permissible, where œ is a scalar function on the
spacetime (Penrose 2005, 451). These are called conformal rescalings. Weyl posited
some structure additional to the conformal structure (the Minkowskian null cones),
namely a gauge connection, a bundle connection that would have the Maxwell field
tensor F as its curvature (452). This curvature represents the (conformal) time scale
change as the difference between two infinitesimal paths from a point p to a neigh-
bouring point p0. Consequently, as Penrose explains, “in Weyl’s geometry there are
no ‘ideal clocks’. The rate at which any clock measures time would depend on its
history” (2005, 451). Of course, this turns out to be in conflict with the empirical
evidence, which is why Weyl’s theory was set aside.

Nevertheless, one might say that for Brown and Pooley the significance of this
rival theory to Einstein’s lies not in its truth or falsity, but in its very possibility.
For the possibility of such a second time dilation effect of dynamical origin (Brown
and Pooley 2001, 266) shows that Einstein has made two independent assumptions
relevant to proper time: (a) that locally the metric is Minkowskian, and (b) that the
consecutive elements d� in consecutive LIFs (local inertial frames that are locally
Lorentz) are all that contribute to total proper time elapsed, i.e. that there is no
contribution over and above that of the instantaneous velocities in timelike paths
that are not geodesics. Moreover, they see Weyl’s argument in his 1918b as being of
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a piece with a pre-existing concern he had concerning the treatment of accelerated
motion in SR:

Weyl’s opinion in Raum-Zeit-Materie (1918a) seems to have been that if a clock, say, is
undergoing non-inertial motion, then it is unclear in SR whether the proper time read off by
the clock is directly related to the length of its world-line determined by the Minkowski
metric. For Weyl, clarification of this issue can only emerge when we have built up a
dynamics based on physical and mechanical laws (1952, 177). (Brown and Pooley 2001,
264; Brown 2005, 115).

Now, as we saw above, this concern seems misplaced in the context of Special Rel-
ativity. Weyl himself seems to have realized this, for in his discussion of SR in his
(1949) he writes that “it can be shown that the metrical structure of the world is
already completely determined by its inertial and causal structure, that therefore
mensuration need not depend on clocks and rigid bodies, but that light signals and
mass points moving under the influence of inertia alone will suffice” (103). But, as
Brown is at pains to point out, the status of SR changes between its first appear-
ance as a global theory in 1905 (or its 1908 generalization by Minkowski), and its
later subsumption into GR as holding only locally: what are accelerations resulting
from gravity in the first theory are reconfigured as inertial motions, motions along
geodesics in GR.19 As a consequence, it is by no means a foregone conclusion that a
natural clock   satisfying the condition for an ideal clock in SR, namely that it mea-
sures along its worldline the proper time sP d� defined on the Minkowski metric U
of each of the successive tangent spaces to its trajectory (the local Lorentz charts),
will also do so in the global metric of GR. As Torretti explains, if the clock is a
freely falling particle in a real inhomogeneous gravitational field,

the several flat metrics which thus approximately hold good in the domain of each local
Lorentz chart cannot be regarded as the restriction to their respective domains of a global
Minkowski metric, any more than the Euclidean metrics that show up, say, in the street
plans of Mannheim and Manhattan are the restrictions to these boroughs of a Euclidean
metric defined on the entire Earth. On each domain U the worldline of   satisfies, within
the said margin of error, the variational law Œ• s d� D 0�; yet the law does not make any
sense beyond the boundary of U . (1983, 151).

Not only must the global metric g be approximated on a small neighbourhood of
each point by the local flat metric ˜, we must also stipulate that “if s d� is nowmade
to stand for the length of  ’s worldline as determined by g – i.e. for the proper time
measured along it by a natural clock at   – i.e. the variational principle • s d� D 0

is obeyed by the freely falling particle between any two events in its history.” (151)
This is the Geodesic Principle. As Torretti observes, this was regarded by Einstein
as “the core of the Hypothesis of Equivalence”, or strong equivalence principle. The
geodesic equation of motion for test bodies is now more commonly regarded as

19 “The special theory of 1905, together with its refinements over the following years, is, in one
important respect, not the same theory that is said to be a restriction of the general theory in the
limit of zero gravitation (i.e. zero tidal forces, or space-time curvature). [I]n this picture, local
inertial co-ordinate systems are freely falling systems. They are not in Einstein’s 1905 theory.”
(Brown 2005, 15; cf. also p. 88).
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a theorem, derivable from the vanishing of the covariant derivative of the energy-
momentum tensor.20

So let’s reconsider the logic of the argument from the failure in Weyl’s theory of
the clock hypothesis to the conclusion that it is an extra assumption in Einstein’s.
To be sure, the contrast with Weyl’s theory is informative, and highlights the fact
that the conforming of clocks to the clock hypothesis is a contingent matter, and
also that it is implicit in Einstein’s GR. But this is not sufficient to show that it is an
independent hypothesis, rather than something that is already built into the theory.
So let us dig deeper into the contrast betweenWeyl’s theory and Einstein’s. The fact
that the clock hypothesis fails in Weyl’s theory, despite the fact that the latter shares
its conformal structure with GR, is due to the fact that Weyl’s gauge connection is
not a metric connection. As Brown and Pooley remark, “It is a function not only of
the metric and its first derivatives, but also depends on the electromagnetic gauge
field: in particular, for a fixed choice of gauge, the covariant derivative of the metric
does not vanish everywhere.” (267). The vanishing of the latter is the condition of
metric compatibility, a condition which Brown and Pooley claim that “Schrödinger
was right to call ‘momentous”’ (267). This consistency condition requires that every
local Lorentz frame is an inertial frame, that is, a geodesic of the overall curved
spacetime geometry. In their words,

It means that the local Lorentz frames associated with a space-time point p (those for which,
at p, the metric tensor takes the form diag (1, �1, �1, �1) and the first derivatives of all its
components vanish) are also local inertial frames (relative to which the components of the
connection vanish at p.)” (267).21

Thus it is because GR obeys this condition that it becomes possible to stipulate
further that the laws for the non-gravitational interactions take their familiar Lorentz
covariant form relative to the local Lorentz frames. But this in turn is the content of
the Strong Equivalence Principle (SEP), usually taken (e.g. by Misner et al. 1973)
to be one of the essential postulates of GR:

in any and every local Lorentz frame, anywhere and anytime in the universe, all the (non-
gravitational) laws of physics must take on their familiar special-relativistic forms. (Misner
et al. 1973, 386).

20 See Misner et al. (1973, 471–480) and Brown (2005, 161–162). A very clear discussion and
derivation of the geodesic principle is given by Stephen Lyle in his (2008, 36–46). He shows
that the “principle” follows from Einstein’s equations, if we assume an almost point-like particle
in zero-pressure matter dust that is not jostled by other particles, has no torsion, and no electric
charge, and is moving in a region of spacetime where the torsion is zero (this being a sufficient
condition for the covariant derivative of the Einstein tensor to be zero) (43–44).
21 See, for instance, Misner et al., 313. Actually, this is not quite correct, as Stephen Lyle has
pointed out to me: in addition to the metric compatibility, a torsionless connection is also required
in order for this to hold (private communication).
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In his (2005), Brown seems to concur with this estimation of the SEP. He argues
that some authors22 have held that the “chronometric significance accorded to the
Minkowski metric in SR is automatically recovered locally in GR”. Against this,
perhaps with the example of Weyl’s theory in mind, he argues that “it is only
through the SEP that such chronometric significance can be given to the tangent
space geometry in the first place” (2005, 170).

This concurs with the point of view of Stephen Lyle, who shows how this chrono-
metric significance is delivered as follows: he assumes in order, de Sitter spacetime,
Schwarzschild spacetime, and the static homogeneous gravitational field, and shows
in each case that by an application of the SEP one can “carry over from theories in
SR that govern our clocks and rulers”, to demonstrate that “the metric delivers the
lengths and times that would be measured by our clocks and rulers” (2009, 5). The
CH is not then an independent unprovable assumption, but a provable theorem. (In
the case of de Sitter spacetime it is approximate, due to the fact that the inertial
transformations, if they exist, are only approximately linear in de Sitter spacetime)
(Lyle 2009).

To sum this up somewhat figuratively, it is the metric connection in Einstein’s
theory that threads together the various tangent spaces to a timelike spacetime path
in such a way that the path has the same chronometric significance as in SR, and this
is what the SEP achieves. Again, the contrast with Weyl’s theory is instructive. For
there the path dependence of the gauge connection is what spoils that chronometric
role, and indeedmakes it impossible to define an ideal clock, since “the rate at which
any clockmeasures time would depend upon its history” (Penrose 451). It is the SEP
in Einstein’s GR that allows for proper time to have the same chronometric role it
does in SR.

This relates in a suggestive way to another concern of Brown’s, namely that
GR explains something that previously should have been considered “a miracle”,
namely that bodies not under the action of external forces should “conspire to move
in straight lines at uniform speeds while being unable, by fiat, to communicate with
each other” (2005, 15). Famously, of course, Einstein’s GR takes some of the mys-
tery out of the numerical equivalence of inertial mass and gravitational mass by
simply identifying them, the root idea behind the equivalence principle. But now
we can see this as having the effect of enshrining Newton’s idea that absolute time
is the measure of time beaten out by a body undergoing inertial motion – which
Einstein and Minkowski had simply imported into Special Relativity – in a perfectly
consistent way in General Relativity. This is why the SEP manages to preserve the
chronometric significance of the metric in SR: it preserves the relation of inertia to
time assumed in modern physics. This relates in an interesting way to Einstein’s
criticism of Weyl’s unified theory. For as Penrose points out, it is not just that spec-
tral frequencies will depend on an atom’s history: so will particle masses! Given the
Einstein relation E D mc2 together with the De Broglie relation E D h�, it follows

22 Brown (2005, 170, n. 51) and Brown and Pooley (2001) specifically singles out Roberto Torretti,
a claim which the above discussion and quotation might appear to throw into doubt. But I shall not
discuss that here.
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that every particle of rest mass m will have an associated natural frequency mc2=h.
“Thus, in Weyl’s geometry, not just clock rates but also a particle’s mass will depend
upon its history.” (Penrose 2005, 453). The ideal clocks of special and general rel-
ativity, by contrast, in preserving the relation of inertia to time, also preserve the
constancy of rest mass in time.

4 Conclusion

I have argued here that proper time must be regarded as one of Minkowski’s endur-
ing contributions to physics. I have examined some confusions that still interfere
with an appreciation of this, including a conflation of proper time with the co-
ordinate time of the inertial frame of a system at rest, and the related mistaken notion
that SR cannot be applied to accelerating systems. This sets the stage for a treatment
of the so-called “clock hypothesis” (CH). If my arguments above are sound, then the
CH is not needed as an independent postulate in SR. Insofar as it can be regarded
as stating the criterion for an ideal clock in SR, it is already implicit in that theory
in the invariance of proper time, as defined by Minkowski: in a spacetime whose
global metric is Minkowskian, an ideal clock cannot fail to keep proper time, how-
ever it is accelerated. The argument that many real clocks will fail to satisfy the
hypothesis is just the claim that many processes fail to qualify as ideal clocks; but
provided we can account for that discrepancy by means of an account of the ratio
of the acceleration undergone by the clock and its restorative forces, no appeal to
any hypothesis extrinsic to the theory is needed. The argument that there is a con-
trast between a “kinematic account of acceleration” and “the dynamics of the real
forces acting on the clock” seems to misconstrue the question of whether a given
process can approximate an ideal clock with the question of whether an ideal clock
can be defined using the theory alone; and also to come close to implying that SR is
inadequate to treat real accelerations, the mistaken notion we treated in Sect. 2.

Secondly, the failure of the clock hypothesis in Weyl’s unified theory of grav-
ity and electromagnetism does not imply that it is an independent assumption
in Einstein’s theory. There is an assumption in Einstein’s GR separate from the
assumption of LIFs: this is the (strong) Equivalence Principle, that in every such
LIF, at any spacetime point all the non-gravitational laws of physics must take on
the forms they have in SR, i.e. must be Lorentz covariant. In a theory such asWeyl’s,
ideal clocks do not in general keep proper time. This is a result of the non-metric
compatibility ofWeyl’s theory: the covariant derivative of the metric does not vanish
everywhere. But by the same token, Weyl’s theory does not conform to the Strong
Equivalence Principle. Einstein’s GR, on the other hand, does conform to the Equiv-
alence Principle, and it follows from this that the clock hypothesis is no more an
additional assumption in GR than it is in SR.
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Why Spacetime Is Not a Hidden Cause:
A Realist Story

Graham Nerlich

“Spacetime acts on matter, telling it how to move” (Misner et al. 1970, p. 5; Taylor
et al. 1991 p. 275).

Abstract Spacetime realism requires that it is not hidden and not a cause. Its style
of explanation is geometrical. It is argued that causal explanation is unworkable for
cases of pure gravitation. Non-causal explanation is geometrical and exploits several
identities where one might expect causal explanation. Thus a realist understanding
of General Relativity is to be preferred.

1 Introduction

How does – how could – spacetime act on matter or tell it how to move?
The best short argument against realism runs like this: if spacetime is a real entity

for General Relativity (GR) then surely the acting and the telling must be a caus-
ing – a hidden causing. But, equally surely, spacetime is the wrong kind of thing
to make matter move. That’s bad physics and bad metaphysics. But if spacetime
causes nothing, it explains nothing either. So weed it out of the ontology of GR and
settle for a codification – whatever that is.1 [DiSalle 1994, pp. 321–328, 1995, pp.
275–277. Brown 2005, pp. 24–25; Brown and Pooley 2004; Torretti 2006 p. 3n. For
doubts about codification (in another context) see Nerlich 2005, Sects. 2.1, 3.1]

The argument goes astray from the start. Realism doesn’t need and can’t admit
spacetime as causing matter to move. Spacetime is not a hidden cause because not
a cause.2 Yet spacetime explains what matter does under pure gravitation. It does so
rather straightforwardly. It exploits various direct identities. That is misunderstood,
widely I think, perhaps because the search for causes clouds the issue.

1 For doubts see Nerlich 2005, Sects. 2.1, 3.1.
2 And not hidden either; see Nerlich 1994, 38–43.

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
DOI 10.1007/978-3-642-13538-5 8, c� Springer-Verlag Berlin Heidelberg 2010
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Familiar thoughts motivate this paper. Gravity makes no sense as action across
a distance by some massive things on others. It is not a force, not a cause. GR
makes sense only as a local theory: it demands proximal explanation. In lots of pure
gravitation situations, the only proximal feature available to explain anything is local
spacetime structure. But surely it can’t explain matter’s motion by causing it. So a
style of geometrical explanation both local and acausal surely looks at least worth
consideration. Of course the idea is frightening. Ontologists abhor spacetime just as
nature, it was once supposed, abhors a vacuum.

Apart from its last step, the premises of this paper’s argument rest on common
ground; indeed, they make up the simplest, basic ideas of GR. The step to the con-
clusion is no less simple and direct. Further, there are simple examples already to
hand of non-causal geometrical explanation. The handedness of hands depends on
whether their containing space is orientable or not. Roughly, they are handed if there
exist no paths in the space that will smoothly map an asymmetrical object onto its
mirror image, and not handed if such paths exist. This isn’t causal explanation –
space does nothing to hands. That is some sort of existential explanation. The shape
of spherical space explains why there are no similar shapes of different sizes in that
space – why it has no similarity geometry. A triangle with greater perimeter must
contain more space than contained by a Euclidean triangle of the same perimeter,
since they have greater area. That, too, is somehow existential.

What follows in this paper is familiar and obvious too. So much so, that it con-
tinues to puzzle me why it needs to be said. But that is a dangerous state of mind in
which to approach the problem. I suspect that the main difficulty lies in the horror
of spacetime realism. Dispelling the horror is the hard part of this work, but it is not
closely examined here.

I start with some prehistory of inertial motion.

2 Cause and Classical Inertial Motion

Confusion once reigned as to what keeps an arrow flying. Galileo’s giant stride
towards clarity turned on the relativity of motion and the composition of velocities.
He saw that “What keeps the arrow flying?” is the wrong question. Instead, ask what
causes it ever to stop. Then there are genuine causal answers: e.g. gravity pulls it
down to earth, or it hits something. A more precise message was fogged by the great
Italian’s preoccupation with circular (including horizontal) motion. This obscured
the role of linearity in free motion. (Chalmers 1993).

Newton’s first law of motion is clear on linearity:

Every body persists in its state of rest or of moving uniformly straight ahead, except insofar
as it is compelled to change its state by forces impressed. (Newton 1999, p. 416)

Thus Newton straightened out Galileo’s story, but only to the extent of Corollary V

When bodies are enclosed in a given space, their motions in relation to one another are the
same whether the space is at rest or whether it is moving uniformly straight forward without
circular motion. (Newton 1999, p. 423)
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Notoriously, the rest or motion of the ‘given space’ is absolute. Perhaps this is why
Newton hinted at the older thought3 that a “force of inertia” (“vis insita” or “vis
inertiae”) causes the arrow’s flying on.4 This still leaves something to be desired but
it is not the thought that space could cause anything.

The released bowstring pushes the arrow and causes it to fly. There, cause is
force. If we look for a cause why the arrow keeps on flying, we look for a cause
of inertial, free-fall motion: we look not for an initiating cause but for a proximal
one. That a thing is moving inertially at some velocity now might be because it was
just moving at that velocity. However, the earlier state doesn’t force the later one,
despite being a distinct, preceding state. A force is needed to change it. The structure
of space is plainly no such cause even though its straights are the specified paths.

But doesn’t the preceding inertial motion, the conserved momentum, cause the
present inertial motion? Not if we accept both the first law and the relativity of
inertial motion. An adroit frame-swap can transform any state of free motion to
a state of rest. The effect vanishes and the cause with it. That is because the 4-
acceleration vector is 0 so no force recognised in GR can be at work. Any further
search for a cause of inertial states must look for an account of why things endure.
I grant, more for the sake of getting along than from conviction, that it will be a
causal story (e.g. Tooley 2001, p. 398). Even if there is one, space (spacetime) has
no part in it. There is no need to ask why an object at rest in an inertial frame stays
put; for any object in uniformmotion there is a frame in which it is at rest. The thing
merely endures. This is satisfactory: questions can rest at this point.5

It’s remarkable that the first law says nothing at all about the causal powers of
any body to which it applies. It says nothing about what causes anything to endure.
The second law requires that all bodies have mass; the first mentions no property
whatever. Remarkably, too, we have good classical reason to think that no body
ever actually does escape the (gravitational) causal net or persists in its state of rest
or uniform motion (although there might be some bodies on which the resultant of
forces is zero, briefly or not). This suggests that the law is about trajectories, spatio-
temporal entities, not about what might occupy them. It tells us nothing of how any
such trajectory ever comes to be occupied. It need say nothing about why an occu-
pant remains on the trajectory, but it does explain why causes are needed to drive
it off. It is about the importance for dynamics of the default case: the non-causal
trajectory in which there is zero acceleration. The default, in pre-spacetime talk,
is rest-or-uniform-motion. I will call these Galileo trajectories. Their importance

3 Compare Buridan and Benedetti. See Wikipedia: the free encyclopedia article ‘The Principle of
Inertia’ 2.1.1.
4 See ‘A Guide to Newton’s Principia’ by Bernard Cohen, Chap. 4, 4.7 esp. p. 98 in Newton 1999).
5 If all that is sound, then there is a classical non-causal process, a changing of spatial distance
between two suitably inertially moving things. The motion of neither is an effect, since it vanishes
under frame swaps. The changing distance between them is a covariant quantity of the Galilean
(Lorentz) group: it is a real change. The change is uncaused. If so, it is odd that this was never cited
(at any rate it never caught on) as an obvious exception to the rule that all changes are caused.
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emerges in the relativity of motion and the composition of velocities, which, in turn,
depend on the spatial and temporal symmetries of classical mechanics.

The first law really is first. It is conceptually simpler and theoretically deeper than
the 2nd. Once we can decide simply when forces are on or off, we can identify the
required frames of reference (candidate rest states). Inertial motion is not defined by
laws of motion: rather it is a rather direct observational truth as to what trajectory
is found as forces approach zero. To a large extent, Newton decided this by seeing
free motion as free from impressed forces (impacts, pushes and pulls) and gravity.
This laid a groundwork: candidate forces should have (1) observable sources, and (2)
regularities governing (a) when and (b) how they are at work. This rules out arbitrary,
conventional postulations of force. Only when we have the right frames of reference
and, by implication, the right transformation group, may we explore accelerations
relative to them in a comprehensive way; only then can forces be quantified and
oriented. Then you can formulate the 2nd law and verify that 2nd derivatives are at
the core of dynamics. That the 2nd law entails the first does not rob the first of first
place.

3 GR Space, Time and Spacetime

Here’s my strategy in a nutshell. In pure gravitation examples, GR explains what
matter does by extending the idea of Galileo trajectories to 4-geodesics (straights6)
in spacetime even though these often have no rest-or-uniform-motion image relative
to frames of reference (space and time representations). Roughly, that a worldline is
a Galileo 4-trajectory explains why its occupant is innocent of causal dependence,
guidance etc. beyond its mere endurance (the mere extension of its worldline). It
merely falls (floats) freely – free of causes and forces. Of course, the object has
causal power to interact with other bodies and with force fields! However, the
images of these Galileo 4-trajectories in space and time often do call up causal
and dynamical stories about their occupants since, in that setting, they breach the
first law.

This is well illustrated by Einstein’s familiar example of a rotating disk in
Minkowski spacetime. (Einstein 1920, Chap. XXIII; Einstein et al. 1923, pp. 115–
117) Suppose an inertial frame F in which the disk’s centre is at rest. Relative to F, a
particle in uniformmotion crosses the centre of the disk. Its 4-trajectory is Galilean.
Yet, relative to a frame co-moving with the disk, the particle follows an outward
spiral at varying speed. It accelerates. The first law demands the postulation of a
force field throughout the frame. It will vanish at the centre of the disk and vary as a
function of its radius. Relative to that frame, the particle’s motion is said to be forced
and caused. Plainly the path and speed of the particle are not uniform. Yet, in the

6 I write ‘straight’ where you might expect ‘geodesic’. Geodesics just are straights of whatever
space they are in The shorter term reminds us of what matters about them for this paper.
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spacetime representation, the 4-trajectory remains straight and Galilean. There is no
force on the particle and no cause of its continuing motion-or-rest. The structure of
spacetime explains how the trajectory is Galilean; it does not cause anything.

I place two conditions on cause: (1) if x causes y, then not (x D y); (2) for
mechanics, causes are forces.

The explanatory role of spacetime in the behaviour of freely falling matter is
twofold. It explains (as illustrated) how the apparent gravitational dynamics of free-
fall particles in general frames of reference vanishes into the mere kinematics of
geodesics in flat or curved spacetimes. It explains also by citing several identities.
Suppose the trajectory of a cloud of test particles through flat spacetime projects it
into a region of curved spacetime. There may be immanent causes for the persistence
of the particles: they explain how the cloud gets into the curved region. Nothing in
this implicates spacetime causally. The flatness of the region of spacetime does not
cause the curvature of the neighbouring region that the cloud traverses. The change
in shape of the cloud, the deviation of its point-parts, is the deviation of geodesic
worldlines and not caused by it.

3.1 Free Fall in a Purely Gravitational Field

I’ll enlarge that simple GR example in which the geometric structure of spacetime
fully explains an observable behaviour of matter. Let’s begin with an idealised cloud
of matter-points (pressure free dust): it is spherical at t0, falling freely (“under grav-
ity alone”) towards a massive object. To delete any influence from local matter,
assume dust points with negligible mass, ignore gravitational forces between them,
and assume there is no other interaction among the points. “Gravity” from the dis-
tant source is not erased; it is the curvature of spacetime. The cloud will change
shape.

The origin of a space-and-time frame of reference (not inertial) floats freely at
the centre of the cloud. A point at rest there will remain at rest with zero gravita-
tional force on it. The cloud changes shape round that central point which is at rest
in the frame. In the direction of the distant source, the cloud gradually stretches out
fore and aft, but it contracts across the orthogonal section – it gets longer and thin-
ner. This closely approximates classical gravity, where it has a causal, dynamical
explanation. Clearly, the non-central points move, indeed accelerate in the frame.
The more distant points acquire larger 3-velocities in it: some move towards the
centre, others away. What accelerates them is a force demanded by the 1st law, a
tidal gravitational “force”.

A similar tale may be told selecting any point in the cloud as at rest.
That language, that array of theoretical concepts, is appropriate if we conceive of

the frame (as we conceive of ourselves) as a spatial thing enduring in time. Space-
time is nowhere in this image. ‘Spacetime’ is not among the concepts in which the
space and time explanation may be requested or provided.
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Here the changing shape of the cloud needs an explanation. It’s explained by the
curvature of the spacetime 4-region. The explaining facts must be distinct fromwhat
they explain if the explanation is causal. But they are the same facts.

Each enduring point is an extended worldline. Spacetime doesn’t explain the par-
ticle’s extension along the straight nor what causes the straight to be occupied (and
thus a worldline). Yet Galileo’s insight remains – don’t seek a cause for simplest
dynamically-default states. That’s satisfactory because the straight has a zero accel-
eration vector at every point. That’s what a straight is. No acceleration, no force, no
cause. That spacetime straights are the worldlines of simple endurance/extension is
satisfactory for the same old reason – nothing to explain.7 Here’s where question
and explanation may halt.

What spacetime explains is why a 4-straight should be the dynamical default
state. It can’t explain why anything is in that state.

The identity of the state of affairs differently presented in these descriptions
explains what happens to the cloud, so long as there is a cloud. It tells us why
the trajectories of the points change the shape of the cloud: the worldlines of differ-
ent points lie on different straights, and these straights deviate in curved spacetime.
The deviating straights project down into accelerating space and time trajectories,
among them those that happen to be trajectories of particles. The deviation doesn’t
cause the acceleration. It’s what the acceleration is; it is the change in shape made
up by the trajectories of the points. The identities forbid a causal tie.

In turn, the deviation of the worldlines is not caused by the curvature of space-
time, since it is the curvature; curvature is the deviation of all geodesics. Flat spaces
are those admitting parallels, so ‘curved space’ simply means ‘space in which
straights deviate’.

Spacetime doesn’t cause material worldlines to lie on straights. If you like, space-
time doesn’t fully explain all of this because it doesn’t explain the endurance of
the test particles. But the endurance doesn’t cause the change in shape. Spacetime
explains it through identities, not causes.

In Minkowski (1908) and Einstein (1916) this style of explanation through var-
ious spacetime identities, was without precedent and remains unique in science, both
physically and metaphysically. Thus it shows the ontic type and role of spacetime
as without parallel. That’s its metaphysical importance.

Finally, to parody Quine – no identities without entities. Only a realist can tell
this story.

7 It’s not so satisfactory that I assume that we will never find a deeper explanation for it or that the
deeper explanation will be consistent with the one made out here. There is no explanation within
General Relativity.
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3.2 Light Bending

Eddington confirmed the bending of light rays near the sun as predicted in GR. The
immediate observation was of dots on (several) photographic plates of the sun at
eclipse. The grouping of the dots was caused by a grouping of photons. Our question
is about their separation and how spacetime structure explains it.

To say that light rays bend round the sun is to say that in the 3-space of some
frame8, light rays do not move along straights of that 3-space. A tidal force, gravity,
bends them, in this story.

That’s causal. The story is a kind of fiction.
Once more, spacetime is nowhere in this picture. ‘Spacetime’ is not among the

concepts in which the space and time explanation may be requested or provided.
In this case, too, the motion of photons translates up into lightlike straight world-

lines. The mapping between space-and-time, and spacetime, representations is an
identity.

The structure of spacetime explains why the dots on the photographic plates are
separated as they are. The explanatory structure is the curvature. Spacetime curva-
ture consists in the deviation of its straights, including lightlike ones. That, in turn,
explains the separation of dots on the plate. That’s how the photographic surface
intersects the deviating luminal 4 straights, independently of whether the plate is
there or not. Curvature does not cause the deviation because it is the deviation. The
curvature tensor simply analyses and measures the deviation – an identity not a
cause.

Again, flat space is, unique in having parallels. The failure of parallels is the
curvature: it is the deviation of straights.

That completes the explanation. It is not causal; it is realistic – no identities
without entities.

4 About Matter

I’ve told my story with some idealised bit-players – test particles. My cloud of dust
was misrepresented as made of massless particles each of which tracks a straight in
a structure unaffected by these contents. But real dust is made of small but extended
specks, not particles. Even specks have some mass that will constrain spacetime
structure; clothed with specks, spacetime doesn’t have the same straights as it has
naked.

Any spacelike cross section of a speck will be intersected by more than one time-
like straight. Since these deviate in curved spacetime, the causal story within any
speck is not trivial. Elastic forces inside resist the deviation of the speck’s smaller

8 Not an inertial frame, since spacetime is curved and lacks parallels. Only in the limit is spacetime
flat and inertial frames locally available.
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parts: internal stresses, distortions, will arise in it. As elastic wholes, specks won’t
lie on G-trajectories.

The causal story about specks is exhausted in the play of electromagnetic forces
engaged in resisting the distortions and in any immanent causes of speck endurance.
As before, spacetime explains the deviation of geodesics that change the electro-
magnetic forces, but it does not cause the forces. It continues to explain as before the
causal-default part of the story – why this trajectory needs no cause for any geomet-
rically simple extended thing to lie along it. At each point, its space-like acceleration
vector is zero. The spacetime story is about the cause-free status of the trajectory.
That explanation does not encroach on any theory of matter. An occupying point is
irrelevant save as an illustrative fiction. 9

Yet we do accept exactly that explanation in real if approximate cases. The orbit
of Mercury is calculated treating the planet as a point (among other approxima-
tions). The observed advance of the planet’s perihelion, famously, is very close to
the GR-predicted Galileo-trajectory along which the idealised planet would extend.
The orbit is a spacetime straight. Unknown stresses within the planet, and unob-
served imperfections in its straight 4-trajectory are ignored. We fully understand
why the orbit is the one we see: it’s virtually a geodesic. As an illustration, it traces
the structure of spacetime. The structure is not a hidden something (not concealed,
obscured, not too small, not too fine). It is observed with highly non-trivial preci-
sion, even though we know that we see an approximation and that the unoccupied
straight itself is not a visual object.

For similar reasons, in illustrative explanations, we may ignore the epicycle of
feeding the small masses of the specks back into the T tensor. That will simply
generate a new set of straights and these will be causal-default trajectories as before;
the geometric explanation exploits just the same feature of the revised spacetime
structure and its straights. It wasn’t really ever about the properties of matter.10

5 A Parody of ‘Hidden Cause’

I turn to a lively and very explicit satire on the hidden cause part of the argument
in the first three sentences I began with; it is given in Brown and Pooley 2004,
Sect. 1 and repeated in Brown 2005, p.24. It will be clear that it contrasts sharply
with the story just told. It amusingly parodies geometric explanation as causal. In a
geometrical explanation, they suggest, matter must follow something like “grooves”
or “gutters” in spacetime alongwhich spacetime “nudges” them. (Brown 2005, p.24,

9 Nerlich 1979, Sect. 4; Nerlich 1991, Sects. 3 and 4.
10 Compare (Brown 2005, p.24) that “. . . world-lines [of test ‘particles’] follow geodesics approx-
imately and then for quite different reasons” from anything to do with the nature of test particles
(his italics). Apart, of course from their natural tendency to persist. That leaves the story told here
untouched.
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p.161 for “nudge”). The thought is that the grooves force things to follow them.
Clearly, this geometric story is causal.

I have no quarrel with the parody – but does anyone hold the view it attacks?11

Despite their calling this view popular, I can think of no published versions of
anything like it, although it sometimes – too often – comes up in discussion. It is
quite unworkable; how could it yield the crucial result that the geodesic followed in
free fall is independent of the mass of the falling body? But something makes this
mistake easy; it is exactly what makes the argument I mentioned at the beginning of
the paper so plausible. Doesn’t geometric explanation just have to be some kind of
causal explanation?

Two interesting points arise: (1) the parody rests on the presupposition that test
bodies would be doing something else if the nudge along spacetime’s grooves did
not turn them from it. Without that presupposition, the gutters, the nudges and the
parody itself have no intelligible point. (2) This never-mentioned something else
would either be a state without external cause or have such a cause. If it is uncaused,
some causal default state is tacitly recognised as necessary and intelligible: why not
the groove-free state - the 1st law - we began with? If it is an externally (e.g. electro-
magnetically) caused state, then GR tells us that the trajectories won’t be geodesical
and the geodesical grooves would play a totally obscure part in the parody. I con-
clude that the parody depends on the tacit admission that causal default states are
both essential and intelligible. I warmly welcome that, of course. It does presuppose
the 1st law as causal default explanation, however.

But, really, how can Brown or Pooley admit this? The rejection of causal defaults,
mere kinematics, is just what their constructivism weds itself to. Everything is
dynamics. Deploring mere kinematics, Brown, for instance, writes of the 1st law as
a conspiracy “among force-free bodies to move in straight lines while being unable
. . . to communicate . . . It is probably fair to say that anyone who is not amazed by
this conspiracy has not understood it.” He asks “by what mechanism is the rod or
clock informed . . . as to what this [spacetime] structure is?” (Brown 2005; p. 8, pp.
12–13) Again (24) “it cannot simply be in the nature of free test particles to ‘read’
the projective geometry, or affine connection. . . ”

11 I do quarrel with their ascribing the view to me on the basis of a three-sentence quotation from
my 1976 book in which I said (in terms of a familiar metaphor about antennae) that action at
distance plays no role in GR. There is no hint of nudges, gutters, grooves or causes, There are
seven index items in the book under ‘Geometric explanation’. Not one of them is mentioned by
Brown or Pooley; all of them argue for, state or imply a rejection of the story pinned on me. No
item refers readers to the passage they cite; it is about GR’s being a local theory. I question whether
any theory like the one parodied “has become very popular”, and their citing a mere three sentences
about something entirely different suggests some desperation in the search to find any that does; it
also suggests that Brown’s “it is one of the aims of this [his] book to rebut this and related views” is
not an aim supported by significant research. Having trod what seems to me a solitary missionary
path for 32 years, it is disappointing to find oneself cited as a leading spokesman for a supposedly
widespread view that one has always opposed. Brown 2005 p. 23 includes the relevant claims.

After an amicable discussion, I can report that the authors have withdrawn the attribution
to me.
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Of course not. If my earlier arguments are good, free rods and clocks know noth-
ing, feel nothing, ‘read’ nothing, do nothing. Their natures are completely irrelevant.
Were there unextended free fall (float) strict particles, they would do the very same
thing in one spacetime as they do in any other: they stay put, do nothing. They
simply endure. Their worldlines extend along zero acceleration, causal default, tra-
jectories without benefit of nudge or communication. Spacetime structure relates
Galileo trajectories to each other: curvature is their deviation. That the field equation
entails the law of motion in GR is a significant formal result. But it can’t tell us what
guides the point particles, since nothing can guide them. These are zero acceleration
trajectories and can’t be steered, guttered or grooved.

Nothing in my discussion suggests that we should know the causal default state
a priori. My colleague, Greg O’Hair suggested that it might have been a random
spatial walk. It is an empirical, theoretical fact that the causal default is a spacetime
straight. The identities cited before are also empirical and theoretic. That makes per-
fect sense within a contingent geometry andmechanics. I claim that it is satisfactory.
It is not causal.

6 Conclusion

Finally, there are two bits of unfinished business. Identity arguments are power-
less to settle two remaining problems. (1) They can’t relate geometric structure in
one spacetime region to that in another nearby region. But I do not think that is a
causal relation either; (2) Plausibly, if spacetime can’t act causally on matter then
matter can’t act causally on spacetime. Identity arguments look impotent to tell us
how matter is related to spacetime in that direction. The field equation is not an
identity. Nevertheless, it is not causal either, but an equation of mutual constraint.
(See Geroch 1978, p. 174, 176). One aspect of the identity of gravitational with iner-
tial mass is that GR need only consider inertial mass. The matter side of the field
equation need not be taken as a source term. This thought needs long and care-
ful reflection on the relation between curvature of spacetime, gravitational potential
energy and the mass of curved, empty spacetime and more. That is the topic of
another paper – or two or three. Further, we can’t set up matter and then see what
happens to spacetime; nor vice versa. Indeed, it is perhaps more common to specify
a metric, then look for a suitable matter tensor. So these things don’t smell causal.
But I hope there is something better to say about the problem than that.
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Structural Explanations in Minkowski
Spacetime: Which Account of Models?

Mauro Dorato and Laura Felline

Abstract In this paper we argue that structural explanations are an effective way of
explaining well-known relativistic phenomena like length contraction and time dila-
tion, and then try to understand how this can be possible by looking at the literature
on scientific models. In particular, we ask whether and how a model like that pro-
vided by Minkowski spacetime can be said to represent the physical world, in such
a way that it can successfully explain physical phenomena structurally. We con-
clude by claiming that a partial isomorphic approach to scientific representation can
supply an answer only if supplemented by a robust injection of pragmatic factors.

1 Introduction: Contractions, Dilation and Structural
Explanations

In this paper we defend the thesis that structural explanations are an effective way
of explaining well-known relativistic phenomena like length contraction and time
dilation, and then try to understand how this can be possible by looking at the
literature on scientific models. In particular, we ask whether and how Minkowski
spacetime’s model can be said to represent the physical world, in such a way that
it can successfully explain physical phenomena structurally. In the present, intro-
ductory section, we try to briefly justify the above thesis by providing a brief sketch
of structural explanations as they are used in Minkowski spacetime, in contrast to
attempts at explaining the relativistic phenomena dynamically (Brown, 2005). In the
second section we offer a brief survey of the state of the art in the debate between
the semantic and the pragmatic conception of models, with particular attention to
the inferentialist conception proposed by Suárez. In the third section we argue that,
in order both to solve some problems within Suárez’s inferentialist approach and
to account in a consistent way for the use that cognitive agents make of models, it
is necessary to assume some kind of partial isomorphism between the mathemat-
ical model and the physical target. Our conclusion – the validity of which is here
tested only in the specific case of structural explanations in Minkowski spacetime –
makes the opposition between the pragmatic and the semantic view look much more

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
DOI 10.1007/978-3-642-13538-5 9, c� Springer-Verlag Berlin Heidelberg 2010
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apparent than real, and in fact proposes a reconciliation between the two points of
view already defended with a different emphasis by Debs and Redhead (2007).

Since the publication of Einstein’s original paper on special relativity (SR), phe-
nomena like rod contractions and clocks retardations have attracted the attention of
philosophers. One of the key questions that has been raised by these phenomena
from the very beginning was: are they real?

Of course the answer to a question like this depends on what one means by the
metaphysically appealing but philosophically treacherous adjective “real” in our
context. If “real” means “measurable”, then the answer ought to be an uncontro-
versial “YES” written in capital letters, as every experimental physicist working at
Fermi Lab or at the LHC in Geneva could guarantee. If “real” means “invariantly
true”, then the answer should also be yes, written in small letters though, consid-
ering the (italicized) relativization involved in the following claim: for all possible
inertial observers, it seems true to say that, “relative to observer O, the rod con-
tracted a certain amount x in the direction of motion”. However, if “real” means
“dynamical”, the vast majority of physicists and philosophers would answer the
above question with a “NO”, again written in capital letters. We don’t need forces to
account for the relativistic phenomena of contractions and dilations: after all, can’t
we explain such effects as, respectively, cross sections of four-dimensionally con-
ceived rods and projections of four-dimensionally conceived clocks onto different,
arbitrarily chosen inertial frames of Minkowski spacetime? (see Fig. 1 below)1

That is, we would add, we can explain such phenomena via structural explana-
tions, based upon the geometrical features of Minkowski spacetime.

What are, however, structural explanations? A minimal definition of structural
explanations was briefly provided by Rob Clifton:

We explain some feature B of the physical world by displaying a mathematical model of
part of the world and demonstrating that there is a feature A of the model that corresponds
to B. (Clifton 1998, p. 7, our emphasis)

The key problem raised by this brief quotation is of course what we should mean by
“correspond”; a verb that calls into play the general problem of how mathematical
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1 Figure 1 is taken from (Minkowski 1908). Figure 2 is taken from (Petkov 2009), p. 86.
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models refer to the physical world, one of the main questions that this paper tries to
tackle. Let us say at the outset that, in our understanding of structural explanations,
their essential feature lies in the fact that their validity is independent of the question
of what categorial framework2 underlies the theory in question, a thesis that typi-
cally allows one to neglect attempts at explaining phenomena by invoking causal or
mechanistic models.

While the idea of structural explanation has mostly been developed by having
quantum mechanics in mind (Dorato and Felline, forthcoming), also SR and the
structure of Minkowski spacetime have already been regarded as a template of a
theory providing structural explanations:

Suppose we were asked to explain why one particular velocity (in fact the speed of light) is
invariant across the set of inertial frames. [. . . ] [The Lorentzian] causal explanation is now
seen as seriously misleading; a much better answer would involve sketching the models of
space-time which special relativity provides and showing that in these models, for a certain
family of pairs of events, not only is their spatial separation x proportional to their temporal
separation t, but the quantity x/t is invariant across admissible (that is, inertial) coordinate
systems; further, for all such pairs, x/t always has the same value. This answer makes no
appeal to causality; rather it points out structural features of the models that special relativity
provides. It is, in fact, an example of a structural explanation (Hughes 1989, pp. 256–257)

The following example will show in what sense structural explanations of physical
phenomena in Clifton’s sense can avoid any appeal to causality or forces. Suppose
that we want to understand why it is the case that clocks in relative motion measure
a time that is dilated with respect to the time measured by clocks at rest in the
chosen inertial frame. The typical explanation that is provided in most textbooks is
repeated from Feynman’s lectures (Feynman et al. 1963, I vol., 15–6). Take a light
ray that goes up and down between two mirrors (see Fig. 3, left). Each round trip of
the light ray (supposing it is originally emitted from the bottom) gives us one beat
of our clock. But in the moving frame, which is endowed with the same kind of

2 A categorial framework is the set of fundamental metaphysical assumptions about what sorts of
entities and what sorts of processes lie within a theory’s domain (Hughes 1989).
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Fig. 3 Clocks in relative motion

light clock, the observer at rest will observe that the light ray originating from A is
reflected at B and then comes back at the bottommirror at point C. (see Fig. 3) Since
the light ray must zigzag along a longer path, the measured time will be longer. The
explanation in question is obviously geometrical/algebraic, and therefore structural
in the sense specified by Clifton. It is geometrical because in order to show the
dependence of the dilation on the relative velocity, it relies on Pythagoras’ theorem:
if the hypotenuse in Fig. 3 has a length c, and the moving clock travels a distance
2u from emission to reception of the pulse, the height of the triangle is .c2 � u2/1=2

which is obviously smaller than c, so that 2.c2 � u2/1=2 < 2c.
Despite examples of this kind, Harvey Brown (2005) and some co-workers

(especially Dr. Oliver Pooley, a former, brilliant student of his (see Brown and
Pooley 2006)) have instead been arguing for some years that length contractions
and clock dilations, so far often regarded as purely kinematical effects, need a
dynamical, presumably quantum explanation, in terms of Lorentz covariant laws,
an explanation that does not require a privileged inertial frame.

The following brief (and admittedly incomplete) criticism of Brown’s dynamical
proposal (but see Dorato 2007; Norton 2008) will however serve to illustrate in
what sense structural explanations of length contraction rely on the structure of
Minkowski spacetime, and as such do not presuppose dynamical effects. SR tells
us that the amount of contraction of a body depends on the arbitrary choice of the
measuring frame, and therefore on the relative velocity between the two inertial
frames. If this is agreed upon, it is not clear why we should grant the deformation
a dynamic significance, rather than a simple geometrical/structural significance. If
relative to frame f the contraction F of object O is F.f /, relative to frame f0 is
F.f 0/, relative to f 00 is F.f 00/ and so on, the implication that there is no intrinsic
shape of the body O is quite natural, since length or shape in the special theory of
relativity are non-invariant notions.

One could even be tempted to conclude that there is no fact to be explained.
However, to the extent that relativistic phenomena do need an explanation, as we
believe it is actually the case,3 structural explanations do suffice, in virtue of the fol-
lowing geometric and topological aspect of Minkowski spacetime. If we conceive

3 Recall that there is a relational and objective matter of fact for all observers about the contraction
of a ruler relative to an inertial wordline O(see above).
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spacetime and the physical world four-dimensionally, as recommended by Minkow-
ski in his original paper (1908), we should conceive four-dimensionally also phys-
ical objects. Such four-dimensionality ought to be regarded as one of their key
objective features, derived by the fact that we model them as “inhabitants” of
Minkowski spacetime.4

The main fact to rely upon at this point is that four-dimensional entities can be
“sliced” in different ways: according to the frame of reference that we happen to
choose, we obtain a different spatial section of a four-dimensional entity, in the
same sense in which, by slicing a four-dimensionally conceived electromagnetic
field, we obtain different but separate electrical and magnetic fields. The geometri-
cal aspect provided by the “slicing” (a cross-section) is what makes the explanation
of length-contraction mathematical, and therefore, in Clifton’s sense, structural: we
are simply locating length contraction (the phenomena to be explained) in the math-
ematical model of Minkowski spacetime (the explanans). Notice that causation,
mechanical models or dynamical forces are never called into play and they seem
to be wholly superfluous.

Nevertheless, in defence of his claim of the necessity of a dynamical understand-
ing of special relativity, Brown (2005), Brown and Pooley (2006), and Brown and
Timpson (2006) have often appealed to the distinction between principle and con-
structive theories (Einstein 1919), and to the fact that SR, in Einstein’s own opinion,
is to be conceived as a principle theory. For the sake of brevity, Brown’s argument
can be summarized by the following two premises:

1. Geometrical explanations provided by SR with the help of the structure of
Minkowski spacetime cannot be regarded as explanations typical of constructive
theories

2. Principle theories lack the explanatory power of constructive theories

It then follows that, according to Brown, and contrary to what we argued so far,
we still lack a genuine understanding of the phenomenon of length contraction or
time dilation. A thorough understanding of the latter phenomena could only be pro-
vided by a ‘constructive theory’ in Brown’s (controversial, from our point of view)
sense. According to Einstein, a constructive theory is a theory that, like statisti-
cal mechanics, is capable of constructing, or giving a deeper account of, physical
phenomena – phenomena that the principle theory instead constrains only via very
general empirical principles which do not depend on hidden levels of description.5

4 For the importance of questions of dimensionality in Minkowski spacetime, see Petkov (2007).
For a defense of a fourdimensional metaphysics, which here we take for granted, see Sider (2003).
5 “One can distinguish various kinds of theories in physics. Most of them are constructive. These
seek to construct a model of the more complex phenomena out of a relatively simple formalism
taken as a basis. Thus the kinetic theory of gases seeks to reduce mechanical, thermal, and diffu-
sional processes to the movements of moleculesQni.e., to construct them out of the hypothesis of
molecular motion. When one says that we have succeeded in understanding a group of natural pro-
cesses, one always means that a constructive theory has been found that comprehends the relevant
processes” (Einstein 1919, transl. by Don Howard). It is possibly not irrelevant to remark that none
so far has been able to provide any such constructive theory, neither for SR nor for GR.
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In arguing for premise (2), Brown often relies on Balashov and Janssen (2003)
characterization of the different way in which explanations are provided in princi-
ple theories and constructive theories respectively. This reliance, however, creates
two sorts of difficulties, which here can only be sketched (but see Felline, (Forth-
coming)). The first difficulty originates from the fact that Brown uses Balashov and
Janssen’ characterization in order to claim that principle theories typically provide
Deductive-Nomological (DN) explanations, while constructive theories typically
rely on model-based explanations. However, this claim, as some others based on this
characterization, is unwarranted: as we hope to have shown above by illustrating the
role of structural explanations in Minkowski spacetime, also principle theories are
capable of providing perfectly acceptable model-based explanations, which (explic-
itly at least) do not mention any physical laws in their premises. To the extent that
principle theories rely on structural explanations, it is not true that the latter are only
based on DN explanations. Clearly, the sense in which structural explanations rely
on “models” is certainly different from the sense in which “model” is used, say, for
referring to the billiard-ball model typical of the kinetic theory of gases, the standard
example of a constructive theory.

The second problem is that Brown misunderstands the way structural explana-
tions function in the context of SR, by saddling themwith an implausible causal type
of substantivalism associated to Minkowski spacetime, a (dirty-water) substantival-
ism that he himself correctly rejects, unfortunately together with the baby (structural
explanations) (Brown and Pooley (2006)). In order to understand the origins of this
unfair characterization of structural explanations, it is important to keep in mind
his premise (2). Since according to him only constructive theories provide genuine
explanations, and since only such explanations rely on “models”, Brown is led to
think that also geometrical explanations, if genuine, must function like the billiard-
balls model of the kinetic theory. In order words, he is led to presuppose that since
the representation provided by the model used in constructive explanations typically
include a strong form of ontological commitment toward the target entities and pro-
cesses, the same must hold for structural explanations within Minkowski spacetime.

A constructive model of spacetime conceived in this ontic sense would then rep-
resent spacetime as a substance which exists independently of, and acts on, things,
events and processes immersed in it. A principle theory explanation would instead
not be ontically committed at all. In support of the fact that our reading of Brown’s
approach to “model” is plausible, consider how well it fits with his (misleading)
understanding of structural explanations, within what he calls the ‘orthodox’ view
of SR – i.e., the ‘constructive version’ of the geometrical explanations provided
by SR and illustrated above in a non-causal, non-metaphysical way. According to
Brown, in what he regards as the ‘orthodox’, geometrical explanation of the kine-
matic behaviour of bodies, Minkowski spacetime ought to play a causal role! But
since, as Brown correctly notes, Minkowski spacetime cannot have the function of
‘shaping’ rods by causing in this way the Lorentz contractions, the unwarranted
conclusion is that structural explanations cannot be effective. However, why sad-
dling structural explanations with this causal-metaphysical baggage, when their
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main purpose is to do away with unwanted metaphysical assumptions?6 Thinking
that in a physical theory like SR a geometrical/structural explanation can work only
if it does so causally is reducing ad absurdum this view.

Here we will not further discuss Brown’s arguments against the success of struc-
tural explanations in SR. For the aim of this paper, it is important to have shown how
a poor understanding of the relation between mathematical models and the physi-
cal world may prevent philosophical progress and cause misunderstandings. In the
next section we will therefore briefly present the debate on the nature of models, in
order to see how one should properly understand the effectiveness of the geomet-
rical explanations provided by the structure of Minkowski spacetime. How should
we explain such explanations, given that the universally agreed-upon background
dependence (or causal inertness) of Minkowski spacetime makes Brown’s causal
reading rather implausible?7

2 The Debate on Models: The State of the Art

The Semantic View (SV) has until very recently dominated the discussions in the
theory of scientific models8. According to this view, a scientific model is a set-
theoretic structure

S D <U;O;R>

i.e. an abstract triple consisting of (a) a non-empty set U of individuals called the
domain of the structure S , (b) an indexed set O of operations on U (which may
be empty), and (c) a non-empty indexed set R of relations on U . Within the SV,
the relation between a model and its target is traditionally defined as a dyadic rela-
tion of isomorphism or “embedding a physical theory in a mathematical structure”
(French 1999, p. 188), or as a weaker relation of similarity (Giere 1988). However,
both these relations have been found problematic and other morphisms have been
put forward, like a relation of partial isomorphism (French and Ladyman 1999).

The plausibility of such accounts as an explication of the concept of scien-
tific representation has recently been challenged (see Suárez 2003; Frigg, 2006).
According to Frigg, for instance, while it can be considered a requirement for the
accuracy of some kind (or, with Frigg’s term, style) of scientific representations,
isomorphisms (or other dyadic relations of morphism) are in general not sufficient
to account for the way cognitive agents (scientists) utilize models in order to per-
form “surrogative reasoning” about the target (physical) system. In other words,

6 For the discussion of another improper, metaphysical use of Minkowski spacetime, see
Dorato (2006).
7 Given that also the metric field is causally inert even though it is surely correlated to matter (a
causal reading of the metric field is very controversial to say the least), how could one regard a
causal reading of Minkowski spacetime as plausible?
8 See Suppes (1967), Suppe (1977), van Fraassen (1980), Giere (1988).
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to argue that a model M represents a target S iff M is isomorphic to S is not
sufficient to explain the complex relations holding between representation and the
different uses that are made of models. For instance, the relation of isomorphism is
symmetric, while the relation of representation clearly isn’t. Isomorphisms can hold
only between two abstract, alreadymathematized structures, not between an abstract
structure and a physical target, so that we must focus on data which have already
been mathematised (Suppes’ models of data (1962)); furthermore, the same abstract
model can be multiply realized, so that there is a problem of under-determination of
reference, accompanied by the fact that the same target can exemplify many differ-
ent structures. Finally isomorphisms, unless partial, seems incapable of explaining
cases of misrepresentation (think of gas molecules represented as billiard balls: of
course, they are not literally “balls”).

In order to overcome all of these problems, a more pragmatic approach has been
proposed, one that focuses more on the use that cognitive agents make of models. In
particular, Mauricio Suárez proposes a deflationary approach to scientific represen-
tation, according to which: “[r]epresentation is not the kind of notion that requires,
or admits such [universal necessary and sufficient] conditions. [. . . ] [F]inding nec-
essary conditions will certainly be good enough.” (Suárez 2004, p. 771, see also van
Fraassen 2008).

Suárez correctly claims that if a theory is meant to account for our deep-grounded
intuitions about scientific representations, it must also account for the fact that a
scientific representation is not just the product of an arbitrary convention between
agents. Consequently, there must be something in the model M that makes it the
case that a cognitive agent can legitimately use M to perform surrogative reason-
ing about the target. But here, let us note, some potential room is made for a more
conciliatory view between the model-theoretic and the pragmatic camp. Scientific
models, we are told, do more than merely denote an object, as they allow us to
draw relevant conclusions about their target: in other words, they are informative
about it. Suárez claims that it is in virtue of their informativity that scientific models
are objective. This word is clearly ambiguous between “intersubjectively shared”
and “representing properties of the target existing independently of the model”.
Given his anti-representationalist approach, one expects Suárez to opt decisively
for the former, merely epistemic alternative, while rejecting the latter, more onto-
logical version, which would take us back toward some sort of isomorphic view of
representation.

Suárez’s proposal is that it is exactly the capacity to allow for “surrogative rea-
soning” that determines the objectivity of scientific models. Scientific representation
is therefore characterized by the following criterion:

[inf]: A represents B only if (a) the representational force of A points towards
B, and (b) A allows competent and informed agents to draw specific inferences
regarding B. (ibid., p. 771)

The representational force of a source (or, more simply, the force of a model) is
“the capacity of a source to lead a competent and informed user to a consideration
of the target”, in virtue of “a relational and contextual property of the source, fixed
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and maintained in part by the intended representational uses of the source on the
part of agents” (ibid., p. 768, our emphasis).

Which relational and contextual property of the source is Suárez talking about?
The answer is that he cannot be more specific about it, since more specificity would
push him toward admitting the possibility of some sort of well-defined relation
always existing between model and target, and he denies exactly this point. And
yet, it is “[inf]’s part (b) that has the important function of contributing to the objec-
tivity that characterises scientific representation. In contrast to part (a), the above
mentioned relational property in no way depends on an agent’s existence or cog-
nitive activity. It requires the model A to have the internal structure that allows
informed agents to correctly draw inferences about the physical targetB , but it does
not require that there be any agent who actually does so.” (ibid., p.774). This is still
very vague, as the reader will recognize, but the idea is that the “internal structure
of the model” is not fixed by the context of inquiry, and it is this non-contextuality
which, according to our author, guarantees the objectivity or non-arbitrariness of the
model.

Suárez explains how the concepts of informativity and objectivity are related with
an example. Consider a piece of paper and two pens writing on it, and stipulate that
they represent respectively the sea and two ships sailing on it. Compare then this
representation with the opposite one, in which the paper represents the ships and the
pens represent the sea. Suárez claims that “the ships-on-sea system is more “objec-
tively” characterised by the first denotational arrangement than by the second” and
with this he means that the second representation “is certainly less informative, since
the relative movements of pens and paper can not allow us, for instance, to infer the
possibility that the two ships may crash” (p. 8).

To see why Suárez’s proposal cannot be satisfactory, consider the following sit-
uation. If it is true that, with the referential conventions: ships D paper, pens D sea,
one cannot draw the conclusion that the two ships may crash, it must be admitted
that in this non-standard representation one can draw other interesting conclusions.
One can for instance conclude (under the assumption that the paper is rigid) that
whatever movements the ships can perform, they will always remain at the same
distance one from the other, or that if you burn one of them also the other will burn.
These conclusions are obviously false, since, after all, the piece of paper is unique,
and the example has it that there are two separate ships; but if degree of faithfulness
and accuracy of the representation to the physical reality are irrelevant for objectiv-
ity, then one cannot argue that one representation is more objective than the other:
the two are on a par. One can at most claim that one representation allows to draw
more inferences than the other.

It then seems that we cannot discriminate between objective and non-objective
representations without providing some more specific characterization of the kind
of relation that must hold between target and model. The above example of the pens,
which might simply be badly chosen, suggests, however, something relevant to our
main purpose: it is the good degree of “faithfulness” to the world of one of two
representations that allows a more accurate and reliable surrogative reasoning; it is
this accuracy that, in its turn, measures the objectivity of a model. After all, a very
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good reason for more or less informativity or inferential power is given by the fact
that one representation captures key features of the world (target) much better than
the other.

Suárez rejects this account from the very beginning. He does so because, he
argues, if objectivity were defined in terms of “truthfulness” or accuracy, it would
be very difficult (if not impossible) to account for cases of misinterpretation, inac-
curacy, idealizations, etc.9 However, the notion of surrogative reasoning must be
obviously further characterized: the requirement that a user can draw inferences
about the target is too weak to grasp the objectivity of representation, since one can
draw irrelevant, or even wrong inferences; and if one has to restrict one’s attention
to successful inferences, one might be in need of an explanation of this success that
is not circular, i.e., that is not given in terms of informativity.

In a word, the problem with Suárez’s account is that, remaining as it does wholly
on the epistemic terrain, there is no possibility of knowing, for instance, how the
mathematical models hook up with the physical world, and how to claim that struc-
tural explanations are genuine accounts of physical phenomena. And for us this is a
serious drawback, since we take structural explanations to be genuine explanations
of physical phenomena.

In the following, final section, we will argue that the step from Suárez’s infer-
entialism to a more substantive account of representation, however, is not too long.
In particular, Suárez allows for additional, contextual necessary conditions that a
scientific representation must satisfy, but denies that these conditions can contribute
to the objectivity of representation, which for him is a non-contextual notion. On
the contrary, we will now see how insisting on the pragmatic aims of the users of
the model can solve a series of difficulties of the isomorphic account of representa-
tion, so as to achieve that genuine informativity of the model about the world that
Suarez was striving to capture. This will also entail a rapprochement between the
two allegedly opposed camps that we have presented in this section.

3 Minkowski’s Model and Structural Explanations

In a nutshell, our argument so far can be summarized as follows: (a) the relativistic
contractions and dilations need to be explained; (b) structural explanations provide
a genuine explanation of these physical phenomena; (c) structural explanations are
not to be cashed out in terms of causal or mechanical or DN type of explanations;
(d) it then becomes highly plausible that such explanations require some form of
morphism between the model and the target, so that the semantic view, supple-
mented with a robust doses of pragmatism, seems the only explanation for their
genuine explanatory character. Note that the first three premises have been argued

9 Batterman (2010) argues that asymptotic behaviour cannot be captured by any kind of isomorphic
relation.
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for in the first section. In order to defend the conclusion (d), we will begin from
the same starting point that is considered central by the proponents of the pragmatic
view, namely that of giving a more precise account of the way cognitive agents use
scientific models.

Going back to our case study, we can introduce the problem of explaining struc-
tural explanations in these terms: which contextual, necessary conditions should a
mathematical model meet in order to serve as a provider of a structural explanation?
While we will keep on considering structural explanations in Minkowski space-
time as our case study, we will leave open the question to which extent the remarks
offered in this section can be suitably generalized.

First, we have seen that a structural explanation typically does not require any
specific ontological commitment about what is represented by the structure, i.e., in
our case it is neutral with respect to the traditional division between substantivalism
and relationism about Minkowski spacetime.10 It follows that a cognitive agent can
use models of Minkowski spacetime to provide a consistent structural explanation,
without being committed to a specific ontology of the controversial type illustrated
by Brown (i.e., a causal form of substantivalism).

Second, in a structural explanation the physical explanandum B is understood
in terms of the relational properties of its formal counterpart A. Remember that
structural explanations make essential use of the mathematical laws and principles
defining the model. Of course, such laws and principles ought to codify physical
postulates of the theory: in our case, of the main characteristics of the mathematical
model is the invariant quantity�S, which represents the speed of light in all inertial
frames:

�S D
q
.tp � tq/2 � .xp � xq/2 � .yp � yq/2 � .zp � zq/2:

The main point is, however, that in order to transfer knowledge about the relational
properties of the model A into knowledge about the relational properties of the
physical explanandum B , we must assume that the relational properties and laws
exemplified by the model A are also (at least in part) relational properties and laws
exemplified by B . Without this exemplification of the relations and laws of A by B ,
no transfer of knowledge from A to B could ever occur, and any inference drawn
in the model would not be about the physical world. As a consequence, objectivity
would be lost. In other words, the performance on the part of an agent of a struc-
tural explanation of a physical phenomenon presupposes the assumption of a partial
isomorphism (French and Ladyman 1999) between the relations exemplified by the
model A and those exemplified by the target B .

However, how can an isomorphism exist between an abstract and a concrete
structure? In order to solve this difficulty, imagine a concrete sphere designed on
a board with chalk: this has certain structural features and properties that we can

10 Whether it is also neutral toward a form of spacetime structural realism is of course much less
clear. But see below.
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determine by studying spheres in an abstract and idealized manner (for instance, we
imagine that any point of the surface is really equidistant from the center). What
matters for us is that it is only if the Earth and the sphere on the board exemplify
approximately and partially the same structure of the abstract sphere that we can
suitably transfer knowledge from the latter to the two former, concrete, physical
objects. It is in virtue of such an assumption of partial isomorphic correspondence
that structural explanations are considered effective. The correspondence is partial
because the Earth is not exactly spherical, of course, but depending on our cognitive
aims, we can decide to go ahead with the given approximation and treat the Earth as
if it were a perfect sphere.

Going back to questions debated in Sect. 2, it is in virtue of an assumption of
partial isomorphism of this kind that the Minkowskian model can be considered
informative about the physical world, and therefore, whenever the right contextual
situations obtain, enable informed users to give a genuine structural explanation of
a physical phenomenon. Furthermore, notice that it is the use that the speaker does
of a certain model that solves many of the problems of the isomorphic account of
scientific representation. First of all, it is the fact that we intentionally use a model
to represent something physical that makes the relation of isomorphism, which is
per se symmetric, asymmetric. By using x to represent y, we thereby automatically
select one of the two directions of correspondence of model and world. Secondly,
insisting on the particular interests of the user, one can obviously avoid all the under-
determination claims, since one uses particular aspects of the model for particular
purposes, selecting particular aspects of reality as it is more convenient for the aim
at hand. Thirdly, as we have seen, also the problem of correspondence between an
abstract and a concrete structure is overcome: the ante rem abstract structure (the
abstract sphere) is exemplified by the concrete physical system, in such a way that
the former partially exists in re in the latter (the concrete sphere on the board).

This remark is linked to another important point concerning the reality of Lorentz
contractions, with which we opened the paper. If conceived as structural explana-
tions, the geometrical explanations provided by SR do not conceive of relativistic
phenomena like Lorentz contraction as merely perspectival, in the sense of unreal.
As already argued in Sect. 1, Lorentz contraction should be conceived as real in
the same sense in which the structure of spacetime is real. Minkowski spacetime
is real to the extent that it is genuinely exemplified by physical fields and events.
Likewise, Lorentz’s contractions are real to the extent that they are exemplified by
physical systems in reciprocal motion, as illustrated by a geometrical explanation of
the relevant phenomena. In order for this conception of relativistic phenomena to be
justified, however, one necessarily has to acknowledge that Minkowski spacetime
models, and in particular the invariance of the spacetime interval, actually captures
a feature of reality, in the sense that the latter is a concrete instance of the former.
The difference between a mere mathematical explanation and a mathematical expla-
nation of a physical phenomenon is therefore given by the existence of an exempli-
fication relation: without the assumption of this exemplification relation between
the target and the model, the geometrical accounts provided by SR would end
up being a mere logico/mathematical derivation of the explanandum – something
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more similar to a Deductive Nomological explanation, realized thanks to a mere
mathematical law belonging to a mere mathematical structure.11

Of course, by insisting on the importance of structural explanations in certain
contexts, we are not denying that, in other contexts, causal explanations may not be
more appropriate. It is not necessary for our main claim to argue that the isomorphic
approach works in all possible contexts, but only that it works in our particular case
study, i.e., as an explanation of structural explanations in SR.12 On the contrary, as
already anticipated above, we accept a contextual/pragmatic dimension of explana-
tion and therefore of the use of models. And we believe that there is no general set
of necessary and sufficient conditions that in all possible contexts can tell us where
a causal rather than a structural explanation is appropriate. On the contrary, it is not
impossible that the two types of explanation can coexist even in the same theory.
Obviously, depending on the kind of allowed surrogative reasoning (causal expla-
nation vs. structural explanation), one imposes different conditions for rationally
believing in the informativity of the representation.

4 Conclusion

We would like to end this paper with a general consideration about the theory of
scientific representation. The point of departure of Suárez’s defence of the inferen-
tialist view vis à vis the semantic view was that only the former accounts for the way
cognitive agents use models in science. But it is not clear at all why defenders of the
isomorphic approach could not make room for a decisive pragmatic component of
scientific representation (see Debs and Redhead 2007). Consider the question: what
justifies a rational agent to interpret the product of her surrogative reasoning as a
piece of knowledge about the target? Since knowing p entails p, we must assume
that there is some sort of truthlikeness in the representation allowed by a model.
Clearly, if the fact that the model enables us to draw correct inferences about the
target is objective in more than an epistemic sense, this fact must receive an expla-
nation in terms of the existence of some objective relationship between the model
and the world. We have argued that what kind of relationship holds is contextual (in
the context of the geometrical/structural explanations it is the assumption of a partial
isomorphism that needs to be assumed), but this contextuality does not go against a
genuine ‘objectivity’ (in the stronger sense) of the resulting scientific explanation,
because some kind of grasp into physical reality is still always necessary in order
to account for the rationality of any kind of surrogative reasoning. This conclusion
leaves space to the idea that the two accounts of representation end up being much
closer than their defenders tend to admit. Possibly, they are the two inseparable sides
of the same coin.

11 One can recognize this charge against the effectiveness of geometrical explanations also in
Brown’s works (see Felline Forthcoming).
12 For problems with the isomorphic approach, see Batterman (2010).
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Relativity of Simultaneity and Eternalism:
In Defense of the Block Universe

Daniel Peterson and Michael Silberstein

Abstract Ever since Hermann Minkowski’s now infamous comments in 1908 con-
cerning the proper way to view space-time, the debate has raged as to whether or
not the universe should be viewed as a four-dimensional, unified whole wherein the
past, present, and future are regarded as equally real or whether the views espoused
by the possibilists, historicists, and presentists regarding the unreality of the future
(and, for presentists, the past) are more accurate. Now, a century after Minkowski’s
proposed block universe first sparked debate, we present a new, more conclusive
argument in favor of the eternalism. Utilizing an argument based on the relativity
of simultaneity in the tradition of Putnam and Rietdijk and explicit novel but rea-
sonable assumptions as to the nature of reality, we argue that the past, present, and
future should be treated as equally real, thus ruling that presentism and other the-
ories of time that bestow special ontological status to the past, present, or future
are untenable. Finally, we respond to our critics who suggest that: (1) there is no
metaphysical difference between the positions of eternalism and presentism, (2) the
present must be defined as the “here” as well as the “now”, or (3) presentism is cor-
rect and physicists’ current understanding of relativity is incomplete because it does
not incorporate a preferred frame. We call response 1 deflationary since it purports
to dissolve or deconstruct the age-old debate between the two views and response 2
compatibilist because it does nothing to alter special relativity (SR), arguing instead
that SR unadorned has the resources to save presentism. Response 3 we will call
incompatibilist because it adorns SR in some way in order to save presentism a la
some sort of preferred frame.We show that neither 1 nor 2 can save presentism and 3
is not well motivated at this juncture except as an ad hoc device to refute eternalism.

1 Introduction

As Ladyman et al. [12] wisely note, the following are distinct but frequently
conflated, deeply related questions in the metaphysics of time:

1. Are all events, past, present and future, real?
2. Is there temporal passage or objective becoming?

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
DOI 10.1007/978-3-642-13538-5 10, c� Springer-Verlag Berlin Heidelberg 2010
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3. Does tensed language have tenseless truth conditions?
4. Does time have a privileged direction?

This paper will focus almost exclusively on question (1). In the philosophy of time,
this major question has captivated philosophers for decades now. This problem
stems from two competing notions of time. The first, originally suggested by Her-
aclitus, is called presentism.1 Though we will later present the presentist position
more clearly so that it can be made relevant to a more thorough and modern treat-
ment of presentist/eternalist debate, a good starting definition for presentism is the
view that only the present is real; both the past and the future are unreal.2 This view
is close to, but not the same as, possibilism, which states that the future is unreal
while both the past and the present are real. Both of these stances claim to ade-
quately capture the manifest human perception of time. We tend to view ourselves
as occupying a unique temporal frame that we call the present that always moves
away from the past towards an uncertain future.

However, with the advent of relativity, a different stance, whose primary ancient
proponent was Parmenides of Elea, provided a viable alternative to Heraclitean pre-
sentism. This new stance, eternalism, was translated into the language of relativity
by Hermann Minkowski in 1908 to suggest that time and space should be united in
a single, four-dimensional manifold. Thus arose the notion of a 4D “block universe”
(BU) in which the past, present, and future are all equally real. This view is called
eternalism, and two arguments by Putnam [16] and Rietdijk [17] allegedly show that
special relativity (SR) with its relativity of simultaneity (RoS) implies that only the
BU perspective is correct.

This paper proceeds as follows. First, we examine the basic structure of the RoS
eternalism argument suggested by Putnam, Rietdijk, and more recently Stuckey,
Silberstein, and Cifone [23, 24, 27, 28] (hereafter SSC) and present our own novel
interpretation or version of the argument for eternalism. Following our proposal, we
suggest various points of contention that presentists and possibilists might exploit
or have exploited in seeking to either refute eternalism or collapse the presen-
tism/eternalism dichotomy.We have compiled a reasonably exhaustive taxonomy of
possible outs that the presentist or possibilist could take to avoid the argument from
RoS for BU.3 After elaborating our own version of the argument, we respond to each
counter-argument and show that these objections do not dismiss RoS’s problems for
presentism.

1 Recent defenders of presentism include Bourne [1], Craig [5], and Smith [6], whom we take to
be our primary presentist opponents for the purposes of this discussion.
2 What is meant here by “real” is the topic of great debate (see Dorato [10] and Savitt [20] for
more on this issue), and we will later clarify our criteria for reality in such a way that much of the
vagueness that arises from an imprecise definition of ‘real’ is dismissed.
3 One possible refutation of the RoS argument, derived from the work of Harvey Brown (Brown [2];
Brown and Pooley[3]), suggests a kind of re-interpretation of Minkowski space-time as a codifica-
tion of the behavior of matter as opposed to representing the geometrical structure of space-time.
Our response is to be found in Appendix A but has not been integrated into the paper at large
because the objection does not fit smoothly into our primary taxonomy.
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2 The Argument from the Relativity of Simultaneity

2.1 General Outline and Definition of Terms

Before presenting our RoS argument against presentism, we first provide a general
outline of RoS arguments for eternalism and give preliminary definitions of some
relevant terms. The general form of the arguments against presentism utilized by
Putnam, Rietdijk, and SSC goes as follows:

1. Define presentism.
2. Define the term “co-real”.4

3. Show that the consequences of the definition of “co-real” and RoS contradict
presentism.

4. Conclude that presentism is false from the conjunction of 1 and 3.
5. Conclude that eternalism is true from the rejection of presentism.

To begin with, we must provide our own definitions for the terms that form the foun-
dation of our revamped version of the RoS argument. The first term to be defined is
“presentism”. Presentism is a kind of realism that takes as real only those events5

which occur in the present. For instance, since we are sitting next to our friend Joe
who is currently reading a paper, the event of his reading a paper and the event of our
writing this paper are both real while the event of Joe’s leaving to eat dinner is not
real because it has not happened yet and the event of our leaving to eat lunch is not
real because it has already happened. In terms of simultaneity, then, one can define
presentism as the view that the only real things are those which are simultaneous
with a given present event. Eternalism, by contrast, is the view that all events past,
present, and future are equally real. Thus, Joe’s reading, our typing, Joe’s leaving for
dinner, and our leaving for lunch are all equally real despite the fact that one of these
events has already occurred while another has yet to occur. Eternalists hold that all
events are equally real, regardless of whether or not said events are simultaneous.

There are two elements, then, that are important for establishing both presen-
tism and eternalism: reality and simultaneity. The debate presupposes that there is a

4 The actual term “co-real” appears only in the SSC papers, but since these present the most recent
incarnation of the RoS argument against presentism, we follow their terminology here. It should
be noted that Rietdijk does not provide an analysis of the term ‘reality’ in his paper, and while
Putnam does discuss some basic assumptions about reality that are necessary for his argument to
go through, they are not argued for or supported in any great detail.
5 We use the term “events” here to bypass any concerns that may arise due to the identity of individ-
uals like those raised by French and Krause [11] or issues of endurance and perdurance. Such issues
as identity and endurance/perdurance, while interesting, need not directly bear on this debate, and
so we invoke events that are assumed to be of infinitely small extension and duration (as such they
should be fully understood only in terms of their identifying coordinates) to bypass such debates.
We are not committed to the claim that such events are in some way the atomistic components of
what exists in space-time; rather, we simply invoke them to avoid begging the question on issues
like identity and endurance/perdurance.
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unique (non-equivocal) sense of the term reality that both sides share. The dispute
therefore is over whether or not present events have some ontologically privileged
status qua their property of “existing at time some time t where t is in the present”.
To this end we will first minimally characterize the terms “reality” and “simul-
taneity” for use in the context of our revamped argument. Before beginning, we
should emphasize that we are being purposefully vague with our first characteriza-
tion of reality here so as to determine reality’s most general non-equivocal properties
which we will build upon later in this paper. Two events which “share reality” as we
characterize it share a single, unique feature (i.e., the same ontological status with
respect to realness); this uniqueness, we believe, is the absolute minimal criterion
an event would have to satisfy for it to be considered “real” in any meaningful sense
of the word.

To better understand the minimal sense of reality at work here, we define two
separate notions: the “reality value” and “reality relation.” “Reality values” or “R-
values” can be thought of as representing the ontological status of any given event.
Within space-time, every event can be assigned an R-value that denotes its ontolog-
ical status, and there is a one-to-one and onto mapping of possible R-values onto
ontological statuses. In the interest of defining reality generally, we will not attempt
to enumerate howmany R-values exist, but one could easily take reality to be binary
and thus assert that, for any event, if its R-value is 1, that event “is real”, and if its
R-value is 0, that event “is not real.” One could use higher values to denote other
states, such as “possibly real”, “real in the future”, etc., but, as previously stated, we
will not attempt to enumerate all such possible R-values here.6 It should be pointed
out that our uniqueness criterion on reality translates into this system simply as
the claim that every event has a single unique R-value. This seems intuitive since
an event with an R-value of both 1 and 0, on our scheme, would be both real and
unreal, which would be a contradiction.

Our other sense of reality as expressed in the “reality relation” will be essential
to our discussion of co-reality. The reality relation can be recast as the idea of “equal
reality” and exists between any two or more events that can be considered “equally
real.” Translated in terms of R-values, a reality relation exists between any two
events that have the same R-value. For instance, if events A and B are equally real,
then the R-value of event A is the same as the R-value of event B. One should notice
here that our definition of “equally real” does not assume that two equally real events
are both “real”; equally real events A and B may have whatever R-value you please
as long as the R-values are the same for both A and B. This relation explains what
a presentist means when she says, “The present is the only thing that is real” since
the presentist will hold that events in the future and the past will have different R-
values from events in the present.7 Thus, our purposefully limited characterization

6 See Appendix B for a more nuanced view of R-values and possible objections to the RoS
argument that one might raise based on our naive characterization of R-values described here.
7 To reiterate, what we have characterized here is the minimal position a presentist must take with
regard to a characterization of reality. It might be objected that, at this point, we have not actually
defined “what reality is.” We will cash out a richer notion of reality later in the paper so that we are
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of the “equally real” relation has been defined so as to be useful in a definition of
co-reality.

As for simultaneity, if it is possible for one to construct a hyperplane of simul-
taneity (i.e. a four-dimensional manifold in space-time constructed in such a way
that all of the events connected by this manifold are space-like separated from one
another) between any two or more events, then these events are said to be simulta-
neous. Such simultaneous events are required to be space-like separated events that
appear to be simultaneous in some subluminal inertial reference frame. Light-like
and time-like separated events cannot have a hyperplane of simultaneity constructed
between them. Also, a hyperplane of simultaneity may be drawn between any two
space-like separated events, meaning that the space-like separation of events A and
B is necessary and sufficient for their simultaneity.

Combining the criteria of equal reality (“equally real” means that two events
have the same R-value) and simultaneity (“simultaneous” means that two events
are space-like separated such that a hyperplane of simultaneity can be constructed
between the two events) gives us the relation of “co-reality”, which refers to, as the
name suggests, two events that are equally real and “simultaneous.” The presentist
perspective can be restated in terms of this “co-reality” as the stance that “simultane-
ity between events is a necessary and sufficient condition for the reality (that is, for
both events sharing the R-value 1 corresponding to “real”) of these events if at least
one of these events occurs in the ‘present”’. For the presentist, any two space-like
separated points are thus co-real as we have defined “co-reality”. Our restatement
of presentism in terms of co-reality here is the assumption that we alluded to in step
1 above.

Our previous examples should make our notion of co-reality more explicit. For
instance, the presentist takes Joe’s paper reading and our paper typing to be co-real
events because they are space-like separated, meaning that there exists some frame
in which these two events are simultaneous. However, our paper typing and our
leaving for lunch are time-like separated, so there is no sub-luminal frame in which

careful not to beg the question against critics like Savitt and Dorato; for now, we are characterizing
reality only to a minimal degree in an attempt to determine the properties of the “co-reality” rela-
tion, and as such we need only endorse the minimal sense of reality that bears upon our discussion
of co-reality.

The presentist might object to our characterization of her conception of reality, but to refuse the
characterization of reality we have provided here would be to take an anti-realist stance since a non-
unique or equivocal conception of reality would make the idea of “reality” a useless concept for
the purposes of this debate. Thus, the presentist cannot argue against our minimal characterization
of reality and remain a committed presentist, and the same goes for the eternalist. In the words of
Dolev, if one denies this minimal ontological assumption then “neither the tensed nor the tenseless
view has the final word in the metaphysics of time.”

The presentist could argue against us on the grounds that it is relations, perhaps, that are funda-
mentally real and not events; this, however, would simply lead us to re-atomize our space-time such
that these relations become the fundamental ontic units which assume R-values and the relation of
“equally real” connects two such lesser relations. Therefore, even if one makes an argument that
forces us to change the fundamental ontic units of our setup, our basic characterization of R-values
and “equal reality” can stand unadulterated.
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these two events are simultaneous and they are therefore not co-real. These two cri-
teria of reality and simultaneity as we have defined them are necessary and sufficient
for our use of “co-real”, and so we turn next to our RoS argument that utilizes this
notion of “co-reality” to reveal the tension between presentism and relativity.

RoS Argument8

Consider the following situation: our friends John and Josephine stub their toes at
the same time in my stationary reference frame.9 The event of John stubbing his toe
is labeled A in Fig. 1 and the event of Josephine stubbing her toe is labeled B in
Fig. 1. At a later time (but again, simultaneously in our rest frame), both Josephine
and John shout in pain from stubbing their respective toes. John’s shout of pain
is labeled A0 while Josephine’s shout of pain is labeled B0 in Fig. 1. I note that
in my frame, both toe-stubs occur at time t1 in Fig. 1. Thus, events A and B are
simultaneous and co-real as per the previously-established criteria.

8 One could argue that, having already defined “co-reality” as we have, the RoS argument has
already been made for us: any two space-like separated points are equally real, and space-likeness
is not transitive (i.e. A and B could be space-like separated and B and C space-like separated but
A and C time-like separated), so we must conclude that any two events (time-like, light-like, or
space-like separated from each other) are equally real. The RoS argument in 2.2, however, is a bit
more nuanced than the argument just proposed, and it makes it easier for one to determine which
definitions and assumptions about reality play what role in the argument. As such, we hope the
reader will bear with the exposition for this longer argument.
9 We are assuming that these “toe-stubs” in this example are the kind of events described in footnote
5 for the reasons stated in that footnote.

2.2
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Now, some time before this the alien battle cruisers P and D pass each other
directly over our heads. The primed axes refer to the frame for battle cruiser P and
the double-primed axes refer to the frame for battle cruiser D. Both of these battle
cruisers tell a different story from ours. For battle cruiser P events B and A0 occur
at the same time, and thus B and A0 are equally real per co-reality. For battle cruiser
D, however, events B0 and A occur at the same time, and thus B0 and A are equally
real per co-reality. We now introduce the symbol “r” to stand for “shares an R-value
with” or “is equally real with”. The following three statements are true (at least from
someone’s perspective):

ArB
BrA0
B0rA

From the previously established criteria for equal reality, we can establish two
important facts about co-real events ˛, ˇ, and � . First, if ˛rˇ is true, then ˇr˛
is true since R-values are unique. Thus, the operator “r” is symmetric. This fact
must be true since equal reality is an equivalence relation.10 The second important
fact about equal reality is that the co-real operator is transitive, even across frames.
That means that if ˛rˇ is the case and ˇr� is the case, then ˛r� must also be the
case. This follows directly as consequence of our definition for equal reality.11 Thus,
applying the properties of transitivity and symmetry to the above relations, we arrive
at the result that:

ArA0
BrB0

10 One might object that, for historicists and possibilists in particular, the “co-real” relation is not
an equivalence relation. For instance, right now the Norman Invasion is “real” to us because it is
in our past, and so the historicist/possibilist would want to say that such an event is as real as our
writing this paper; however, at the time of the Norman Invasion, we were not yet born, so we were
“not real” at that time. The equal reality relation only holds one way.

However, one can respond to this claim by citing the fact that the equal reality of simultaneous
events is an equivalence relation in historicism and possibilism even if the “equal reality” relation in
general is not. Two events that happen at the same timemust be equally real if it is temporality alone
that bestows metaphysical status on events. The above argument only necessitates the treatment of
“equal reality” as an equivalence relation for cases where the two “equally real” relata are space-
like separated and thus simultaneous. In such a case, equal reality is an equivalence relation even
for historicists and possibilists. Thus, the fact that equal reality is not an equivalence relation in
general does not mean that equal reality is not an equivalence relation in the case of simultaneity;
in fact, the opposite is true.
11 This feature of co-reality is perhaps not intuitive, but a simple conceptual argument can show
why equal reality, as we have defined it, must be a transitive property. If two events A and B are
co-real in a given frame, this means that they share an R-value. Likewise, co-real events B and C
must also share a unique R-value. Since the uniqueness criterion on reality implies that the R-value
shared by A and B must be the same R-value shared by B and C, it then follows that A and C must
have the same R-value as well, and thus they must be equally real.
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Generalizing from this result, then, one can conclude that a prior event (the stubbing
of a toe) is as real as a later event (a shout of pain). If the first event (A, for instance)
occurs in the “present”, then A0 occurs in the future and the RoS argument suggests
that the future is as real as the present. Likewise, if A0 occurs in the present, then
A occurs in the past and the RoS argument suggests that the past is as real as the
present. Both of these conclusions contradict the presentist assertion that the present
is real while the past and future are not since past, present, and future must share
the same ontological status by the above argument. Since presentism in conjunction
with relativity and our other basic assumptions leads to a contradiction, presentism
must be false given our assumptions. Finally, since variations of this argumentwould
answer equally well anyone who would argue that only the past is real or only the
future is real, the only conclusion left for a realist is that eternalism must be correct
since both presentism and possibilism must be discarded.We have thus achieved our
goal of constructing a rigorous argument for eternalism from RoS in the tradition of
Rietdijk, Putnam, and SSC though our argument provides a more detailed analysis
of the assumptions about the nature of “is real” that go into the RoS argument.

3 Presentist Points of Contention

There are several points in the above argument for eternalism that presentists (or
anti-realists, for that matter) could attack or have attacked. The goal of this section
is to provide a basic taxonomy of points of contention presentists utilize or could
utilize to respond to both the argument presented above and eternalism in general.

3.1 Deflationary Objections: No Presentist/Eternalist
Distinction

The first attack on the RoS argument which works equally well against any argu-
ment trying to prove or disprove eternalism is that there is, in fact, no metaphysical
or empirical distinction between the views supported by presentists and those
supported by eternalists. This collapse of the dichotomy between presentism and
eternalism is most ardently argued for by Savitt [20] and Dorato [10] in recent
papers. Both of these papers utilize semantic arguments to suggest that the distinc-
tion between presentism and eternalism boils down to a difference in definitions for
“real” which translates, in various contexts, to differences in tensed versus tenseless
existence claims. These two authors claim that presentism and eternalism are both
essentially either vacuously true when viewed with the proper definition of existence
in mind (for instance, to say that the present is the only thing that “exists now” is tau-
tological since “now” is defined in terms of the present) or analytically false when
viewed with the improper sense of existence in mind (for instance, to say that the
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present is the only thing that “exists tenselessly” is to ignore the past and future that
are assumed in the phrase “exists tenselessly”). These two authors go on to attack
defenses of eternalism that rely onmodality and other semantic considerations, lead-
ing them to the conclusion that the problem posed by the presentist/eternalist debate
is truly a non-starter by way of a “Wittgenstein-like” or “Austin-like” deflation.

In an earlier paper , Dorato [9] discusses various other semantic arguments
against eternalism specifically in an attempt to show that eternalism is as prob-
lematic as presentism. The first contention Dorato raises is against the eternalist
perspective that “the past, present, and future are all real at the same time”, which he
views as meaningless since one cannot say anything about the relationship between
the past, present, and future at a given time since all three temporal regions cannot
be simultaneous. There must be a temporal separation between the past, present, and
future for them to be well defined, so any statement about how the past, present, and
future interact at a given time collapses this distinction and thus becomes meaning-
less. The second argument against eternalism on semantic grounds is that an eternal
truth like “event A takes place at time t” may be timeless, but the object of this
statement, event A, is not necessarily as timeless as the statement about it. Dorato
thus believes that eternalism confuses the following two statements:

1. “X is the case at t” is an eternal truth
2. X exists eternally

And thus, since eternalism makes this error, it is a deeply flawed and confused view.
These two linguistic objections to eternalism, as well as the much larger objection
that there is no metaphysical presentist/eternalist dichotomy, will be addressed later
in this paper.

3.2 Compatibilist and Incompatibilist Objections

Two other groups of people who reject the RoS argument for BU are the com-
patibilists and incompatibilists. Compatibilist philosophers of time attempt to hang
presentism on a given relativistic invariant (like the fact that all inertial frames
agree on the ordering of time-like events, or “proper time”).12 Incompatibilists, on
the other hand, invoke some preferred frame or other entity with which to adorn
Minkowski space-time in hopes that this new frame will provide a suitable place to
hang presentism and becoming. These positions constitute a shift in the definition of
“co-reality” as it we presented previously. Both compatibilists and incompatibilists
would reject our definition and propose another, though various compatibilists and
incompatibilists will propose differing versions of “co-reality”. There are essentially
two ways philosophers can and do object to the RoS argument:

12 It should be noted that we do not disagree with the compatibilist assertion that to be real some-
thing must be “real in all frames”; in fact, we embrace this idea, and it is a central aspect of our
definition for reality that frame-invariant properties like time-like separation are necessarily “real”
features of space-time.
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1. Reject our characterization of simultaneity in our definition of co-reality (rede-
fine simultaneity, compatibilist and incompatibilist objection)

2. Reject our characterization of reality in our definition of co-reality (reject transi-
tivity of co-reality, compatibilist objection)

Option 1 can and has been argued for on several different grounds. It has most
famously been argued that either (a) our notion of simultaneity is not a suitable
criterion for reality because the present refers to only the “here and now”, not simply
the now, or (b) simultaneity is relative to some preferred foliation of space-time.13

Objection (a) is raised most famously by Stein [26, 27] in his response to Putnam,
and objection (b) has been raised by various philosophers and physicists who have
rather disparate views as to what the preferred foliation of space-time is and from
whence it issues.14 We will address both of these objections to the RoS argument
individually in the following sections.

Compatibilist option 2 is typically raised either by those like Savitt [21] and
Dolev [8] who believe that an argument for a transitive notion of reality has not
and cannot be convincingly made especially within the framework of SR or by
anti-realists (including solipsists) who believe that the phrase “reality” should only
pertain to one’s own frame (or, worse yet, only to oneself). The first of these objec-
tions is then the only one particularly relevant to the presentist/eternalist debate
because an anti-realist would no sooner be a presentist than an eternalist. The tran-
sitivity of “is co-real with” is objected to on this view precisely because it leads
to the view that presentism is wrong. Thus, it seems like any presentist interested
in saving her stance would object to the transitivity of co-reality implied by our
definition of reality as many before her have chosen to do.

4 Response to Objections

4.1 Defining Terms: Establishing a Presentist/Eternalist
Distinction

Dorato and Savitt claim that there is no metaphysical or empirical distinction
between the eternalist and presentist perspectives by critically examining the terms
“is”, “exists”, and “real” used in several definitions of reality and in doing so
point out the shoddy conclusions that linguistic sloppiness engenders in the pre-
sentist/eternalist debate. Our goal in this section is to provide an original account of
reality which supports a metaphysical/empirical distinction between the presentist

13 The first of these objections, (a), is a compatibilist objection while the second objection, (b), is
an incompatibilist objection.
14 See Cifone (2004, PhilSci Archive) for specific examples of proposed preferred foliations to
space-time.
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and eternalist positions. Such a reasonable definition is sufficient to counter Dorato’s
and Savitt’s deflationary claims.15

Our definition of reality relies upon two concepts: “definiteness” and “distinct-
ness”. For an event to be real, we posit, the event must be both definite and distinct.
We take a definite event to be one which is meaningfully determined. A useful
example of the distinction between definite and indefinite can be found in quan-
tum mechanics.16 With respect to a particular variable like spin in the x-direction, a
pure-state quantum system may be in an eigenstate or a superposition of eigenstates.
If there exist a multitude of systems in the same eigenstate, an x-spin measurement
on any of these systems will always yield the same value. Thus, we say that an eigen-
state of x-spin is property-definite with respect to spin in the x-direction. However,
if the system is in a superposition with respect to x-spin, different systems prepared
in the same x-spin superposition may give different x-spin values when measured.
There is no way to predict the value of the x-spin of such a superposition after mea-
surement given any information about the system prior to measurement, and as such,
the superposition of x-spin is said to be property-indefinite with respect to x-spin.
Generalizing from our characterization of property definiteness, we define event-
definiteness as definiteness with respect to at least one property. Thus, if an event is
property-definite with respect to at least one property, we say it is event definite and
thus “real”.

We should note here that our event-definiteness criterion is an objective criterion
of a system, and as such, unlike property-definiteness, a system must be indefinite
with respect to all of its properties to be considered indefinite qua system. There-
fore, quantum superpositions are not objectively indefinite, for there exists some
property with respect to which this superposition is definite by the very nature of
superpositions; it is only the x-spin value of such a superposition that is indefinite.
If a given event is definite with regard to any property, it is taken to be objectively
definite and thus may be real (as long as it meets our distinctness criterion as well,
that is).

It should also be pointed out that event-definiteness is a frame-independent prop-
erty of events in the universe; though different observers may disagree about the
state of a given system (as Rovelli [18] points out in his paper on relational quantum
mechanics), they will all agree about whether or not it is definite simpliciter. One
might take issue with our assertion of the frame-independence of definiteness; for
instance, some postulate that quantum collapse is hyperplane-dependent, and thus

15 For an alternative response to such a deflation by way of logical and linguistic analysis, see pages
14–17 of Sider [22].
16 We are not claiming that quantum superpositions are unreal or non-existent simplicter; rather,
we are providing an example in an instrumental spirit of how a property might be indefinite and
thus suggesting how one might generalize from this example to form an idea of general indefinite-
ness. This indefiniteness, if made general and applicable to all properties, would make an event
effectively unreal. However, superpositions themselves are by their very nature in a determinate
state with regard to some property, so they are obviously not wholly unreal in this sense.
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an observer in one framewill see a quantum system as having some definite property
“y” while an observer in another frame might observe y to be indefinite. However,
even if collapse is so dependent, the fact remains that each of these observers will
observe there to be some definite property “z”, and thus, by our definition, one must
take the quantum superposition to be definite qua system. That is, there is no frame
of reference fromwhich one can observe the quantum system in question to be with-
out any definite properties. Therefore, our definition of definiteness directly implies
the kind of transitivity we exploit in our RoS argument.17

The other criterion for an event to be real is that it must be distinct. A distinct
event must be in some way different from other distinct events (a la Leibniz, call it
the discernability of non-identicals). Such a criterion for the distinctness of events
is different from a criterion that requires the distinctness of particles. While it may
be that two completely indistinguishable particles can both be distinct, the issue of
concern here is the reality of events, and it is the case that two completely indis-
tinguishable events cannot be distinct per the identity of indiscernables; or if you
prefer, two completely indistinguishable events cannot be numerically distinct. This
criterion of distinctness may be viewed as a more pragmatic concern (we have no
reason to take event B to be numerically distinct from event A if all of B’s properties
are identical to A’s). Such a criterion of reality keeps one from treating as real two
(allegedly distinct) “events” that might seem to be different but are truly one and
the same event – the differences are purely perspectival as in the Lorentz transfor-
mations of SR. For example, as per Newton’s third law of motion, there is no need
for us to count as distinct both the event of a car hitting a wall and the event of the
wall hitting the car; they are simply two different ways of viewing the same singular
event.18

Having established these two criteria for reality, does there appear to be a
difference between the presentist and eternalist positions? The answer is “yes”
because the distinctness and definiteness of the past and future are not analytic.
The presentist claims that past and future events lack both/either definiteness and
distinctness simpliciter while the eternalist says all events past, present and future

17 We should point out here that presentists who claim that there simply are no past or future
events can be treated as taking such event as indefinite on our picture here, since a non-existent
event cannot have any definite properties. Thus, our account of definiteness provides a criterion for
reality that explains this possible presentist stance.
18 One might well wonder what purpose introducing “distinctness” as a criterion here serves above
and beyond the work already done by definiteness. Distinctness is important in this discussion
because it allows for nuances within possible presentist positions. We believe there may be presen-
tists who concede that some future events are determined in that they have some definite property,
yet who may still reject that the future and present are “equally real”. They could do so by way
of distinctness, claiming that there are an infinite number of events (one of which will be actual,
the rest of which will not be) which are all “definite” in some sense but indistinguishable. The
future would thus be definite but not distinct, and so the presentist could write it off as unreal.
For the purposes of this discussion, it is in our interests to give as many reasonable possibilities
to the presentist as we can, and so we have included distinctness in our discussion for the sake of
completeness.
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possess both definiteness and distinctness. The first fact to note about the future is
that it is unknown to us. One might even be tempted to say that it appears indefinite
since it seems (at least on some stochastic accounts of quantum outcomes) that there
is no way for us to know the future (in principle) no matter how much we know
about the present. Such stochastic accounts of objective quantum indefiniteness
(as opposed to subjective quantum indefiniteness for deterministic interpretations)
should not be confused with what we will call O- (objective) indefiniteness and S-
(subjective) indefiniteness more generally. O- and S-indefiniteness are best under-
stood as a different kind of indefiniteness entirely which will be made clearer by an
appeal to the idea of “Newton’s god” (NG), an entity in the 5th or higher dimension
“looking down” at her space-time “sensorium”.

Depending on whether the future is O-indefinite or S-indefinite, NG would
observe different things as she looked down on her “sensorium”. If the future and
past are S-indefinite only, NG would physically see19 the past, present, and future –
all of space-time, a 4D BU. NG would see events in the past, present, and future –
a static multi-colored marble of world-lines/tubes, if you will. If the future and past
are truly O-indefinite, however, NG would not be able to see the future or past from
her 5th-dimensional perch, but only a continually temporally evolving present. If the
future is truly O-indefinite, it does not matter whether NG is observing us flipping a
coin or measuring the spin of an electron with stochastic outcomes; either way, she
will not observe the future outcome, and likewise if the future is merely S-indefinite
then in both the classical and quantum case NG will observe the future outcome. In
the O-indefinite case, NG may be able to predict the outcome just as any one of us
may be able to predict the outcome of a coin flip, but NG will not be able to observe
this future outcome.

The eternalist, presentist, and possibilist positions become clear and distinct
given this characterization of O- and S-indefiniteness. Eternalists believe that the
future and past are only S-indefinite; though beings within space-time may not be
able to observe the past or the future, a being outside of space-time would be able
to easily observe them. Thus, NG sees a 4D BU when she looks “down on” the
universe. The presentist, on the other hand, holds both the past and future as truly
O-indefinite and thus believes that NG would see an evolving 3D time-slice of the
universe when she looks “down on” her “sensorium”.20 Finally, the possibilist takes
the future to be O-indefinite but the past S-indefinite only, thus leading to the belief
that NG would see a growing BU when she looks “down” on the universe. Diagrams
of these various NG perspectives may be found in Appendix C.

Another way of viewing our “Newton’s god” argument is in terms of “where”
time is in the presentist picture compared to the eternalist picture. In the presentist
picture, NG is still constrained by time. The fact that NG is removed from spa-

19 When discussing what NG “sees” we are only invoking the traditional physical sensory modal-
ities of this entity. We make no claims about other ways of knowing or omniscience that one in
NG’s position might be able to employ by means other than perception.
20 On some presentist views, she might even see a point. See Stein [26] for more on this view.
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tial strictures does not entail her separation from some notion of time in which
she must still continue to exist. It is possible, then, for NG to remove herself from
space without removing herself from time on the presentist picture. On the eter-
nalist picture, however, NG is free from the strictures of temporality. It is unclear
what the character of the 5D universe NG inhabits is (the 5th dimension could
be conceived as some sort of second-order time, a 4th-order space, or some phe-
nomenology of dimensions we do not experience); however, the point is that NG is
free from time as well as space as it exists in the BU since the two are inextrica-
bly linked, and thus time has the same ontological status as space. The eternalist
does not have to argue that time behaves the same way as space does, simply
that time and space are inextricably linked, which is a stance that the presentist
rejects since the presentist views universe as 3D.

There may be some who believe that NG is not a suitable tool for dealing with
the presentist/eternalist distinction; in particular, one might find our NG question-
begging since a god’s eye point of view might seem to violate basic tenets of SR;
however, one must note that by hypothesis NG is removed from the 4D-manifold
(space-time) that she observes. Such a being would be constrained to see a space-
time that conforms to special relativity even though this “god-frame” itself would
not so conform. SR can only make claims about perceptions of space-time from
within space-time, and since this “god-frame” is outside of space-time, this rela-
tivistic objection does not obtain. Even without positing the existence of NG or
even a position from which NG could look, we have already shown that the pre-
sentist/eternalist distinction can be stated in terms of the separability of space and
time, and so if this objection to NG as question-begging is simply that one cannot
remove oneself from space without removing oneself from time as well, then the
objection has already conceded our point to us. Using our novel argument for the
eternalist position, Dorato’s two previous objections to eternalism can be ignored
as well. Nowhere in our argument do we claim that the past, present, and future
are all “simultaneous”, nor is there any confusion between eternal truths about exis-
tence and the eternal persistence of events. First, an appeal to some sort of “second
order” time is completely unnecessary for our formulation of the eternalist position,
and as such the accompanying language of the “past present, and future existing
simultaneously” has been discarded. As noted above, Newton’s god’s frame need
not necessarily be conceived as some sort of second order time; further, it is merely
a thought experiment to show that Dorato/Savitt type arguments are dependent on
verificationism of a sort special relativity need not entail. In the following passage
Dainton [7] paints a suggestive picture of what it means to take Newton’s god’s
perspective of the BU seriously:

Imagine that I am a God-like being who has decided to design and then create a logically
consistent universe with laws of nature similar to those that obtain in our universe. Since
the universe will be of the block-variety I will have to create it as a whole: the beginning,
middle and end will come into being together. Well, assume that our universe is a static
block, even if it never ’came into being’, it nonetheless exists (timelessly) as a coherent
whole, containing a globally consistent spread of events. At the weakest level, “consistency”
here simply means that the laws of logic are obeyed, but in the case of universes like our
own, where there are universe-wide laws of nature, the consistency constraint is stronger:
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everything that happens is in accord with the laws of nature. In saying that the consistency
is “global” I mean that the different parts of the universe all have to fit smoothly together,
rather like the pieces of a well-made mosaic or jigsaw puzzle (119).

It would be absurd to argue, therefore, that two perspectives as different as these
are, are in fact, metaphysically and empirically equivalent in principle; such a claim
could only be sensible if one assumes a spatiotemporal-anthropocentric verification-
ism, and there is no non-question begging reason to do so. For this reason, Dorato’s
and Savitt’s grander claims must be dismissed. The most these two authors can sug-
gest is that a better definition of reality is necessary before the presentist/eternalist
debate can be undertaken, and so, with such a definition provided, Dorato’s and
Savitt’s deflationary claims can be rejected. Dorato and Savitt are right to point
out concerns with definitions of terms (such as “real”) in arguments such as ours,
but generally speaking this is the most that linguistic analysis can contribute to the
presentism/eternalism debate. The most such appeals can do is determine that cer-
tain positions in the debate are “unspeakables” or that the language used must be
clarified for the debate to proceed.

4.2 The Transitivity of Reality

Our new definition of an event’s reality as a combination of definiteness and dis-
tinctness also has implications for the second compatibilist objection to the RoS
argument, namely that there is no good reason why reality or the “is co-real with”
relation ought to be transitive. The first response to this claim is that any relativis-
tically invariant relational property must be transitive across all reference frames.
For example, consider the property of “light-likeness along direction x ”.21 Any
two events that are light-like separated in some direction share this property, and all
observers in all frames will agree that two events are light-like separated if they are
so due to the fact that the speed of light in a vacuum is a universal constant. Thus,
if event A is light-like separated from event B and event B is light-like separated
from event C in the same direction, then event A must be light-like separated from
event C (in this same direction). This deduction is true even if one adds different
relativistic frames into the equation. For instance, if event A is light-like separated
from event B in direction x in a frame moving with velocity v and event B is light-
like separated from event C in direction x in a frame moving with velocity u where

21 The “x” in “along direction x” in this property should be a four-dimensional vector pointing
from one event to the other. We include this condition to rule out the following, non-transitive
case: consider a light beam shot out from a spaceship at A, reflected off of a mirror at B, and
returned to the ship at C. A and B are light-like, B and C are light-like, but A and C are time-like.
However, this non-transitivity arises from the fact that the direction of the light is changed at B,
and so the vector x shifts at this point. We thank Gordon Belot for bringing this objection to our
attention.
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u is not equal to v, it is still the case that event A and event C are light-like separated
in a frame moving with velocity w no matter what the value of w.22 Thus, from this
simple example, one can see that a relativistic invariant quantity is transitive across
inertial frames.

There are two other relativistic invariant properties aside from “light-likeness”
that we would like to discuss now. The first of these is number. All observers, no
matter their frame, will agree on the number of events that occur. Thus, no matter
what frame an observer is in, it will never be the case that she will see an event take
place that another observer does or could not see. Though observers may disagree
about some of the properties of an event, no observer will see a “novel” event;
that is, there is no event simpliciter that one can only see if one is in a certain
reference frame. This means that the very existence, the very definiteness of an
event-as-such must be a relativistic invariant, and thus as per our pre-established
criterion, definiteness must be transitive across frames.

Another relativistic invariant is the space-time interval between two events. This
separation is defined by the Minkowski space-time metric as: s2 D t2�x2�y2�z2

where “s” is the space-time interval, “t” represents time, and “x”, “y”, and “z” are
spatial coordinates in 3-space. Because the interval between events is an invari-
ant, it is always possible for observers in different frames to distinguish between
different space-time events in a consistent manner. Because of this, no observer
will confuse two events that are seen as distinct in another frame. Thus, the invari-
ance of the space-time interval implies that distinctness is a relativistic invariant.
Thus, as per our pre-established criterion, distinctness also must be transitive across
frames.

Now, since reality in our formulation has definiteness and distinctness as nec-
essary and sufficient conditions and since both definiteness and distinctness are
relativistic invariants, it follows that reality, the conjunction of definiteness and
distinctness, should also be a relativistic invariant. Finally, as has already been estab-
lished, any relativistic invariant must be transitive across frames, and therefore our
“equal reality” relation must be transitive across frames. This argument suggests
that, as a logical consequence of special relativity combined with our definition for
reality, reality must be frame-independent. This logic provides more than sufficient
reasoning to support objectivity in our co-reality definition, and so the weight now
falls on the shoulders of Savitt and the presentists to explain why “is real for” should
not be transitive if they want to continue pushing this point.

4.3 Against the Point Presentist

There have been several arguments against the “here, now” presentist as Stein23

presents him. This variety of presentist holds the present to consist of a single point

22 Within relativistic limits, of course.
23 Bourne [1] points out that Stein was not assuming a “common sense” notion of simultaneity
when he attempted to redefine simultaneity within relativity as the “here” and the “now”. It seems
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in space-time and defines the “now” as both temporal and spatial. There have already
been several excellent responses to Stein’s view, most notably those provided by
Cifone (2004) and Petkov [14]. We will here reiterate and rephrase Cifone’s and
Petkov’s points to show that the “point” presentists, as they are traditionally called,
do not hold a viable position.

The first argument against point presentism comes from Cifone. As previously
discussed, it is easy enough to see how anti-realism can be reduced to a form of
point presentism, but the opposite seems true as well. Point presentists can be taken
to be essentially solipsists since what exists at only one point (presumably, the point
where the point presentist currently exists) is all that exists. This is not an argument
in itself, and there are ways around point presentist solipsism, but these views are
almost equally bad. If there is more than one “point present” in the world (that is,
if he rejects solipsism), what is required for a point to be “the present”? Is there
some “present-maker” that defines the present, that selects it out from all possible
“presents”? And if there is, what would such a “present-maker” be? What is more,
if there are a large number of “presents” that all compose reality, why do none of
them agree with each other? For if the present is only a single point, it follows that
multiple “nows” will not count other “nows” as real. There will be no agreement
among different observers in different frames, let alone different observers in the
same frame, as to what constitutes reality. Thus, it seems that the point presentist
loses all semblance of self-consistency when he explains his position and runs the
risk of having his position collapsed into absurdity.

Perhaps most damning to the point presentist, however, is Petkov’s response.
Petkov points out that a point presentist reduces reality to a single, 0-dimensional
point. If point presentism is correct, he asks, why does the universe appear to be
four-dimensional, as evidenced by the aforementioned 4D space-time invariants?
The universe defended by presentism which lacks the 4D-manifold in favor of a 3D
universe seems unable to support or explain phenomena like length contraction and
time dilation, but it appears nearly impossible to reconcile a 0-dimensional view of
space-time with such phenomena. Such a view, Petkov argues, reduces to solipsism.
After all, consider two observers A and B. If A and B are distinct observers, any
observation event by observer A will not be real to observer B since only observer
B’s “here and now” are real to him. This solipsism leads to the loss of realism that
Cifone (2004) points out. Petkov also claims that only a 4D view is supported by
special relativity by refuting the 3D picture of the world as well. His argument is that
the phenomena of length contraction and time dilation, both of which allow different
observers to hold ontologically distinct and correct beliefs about the 3D properties
of an object, cannot be as completely described by a 3D worldview as by a 4D block
universe view. He compares the situation to looking at a 2D plane; one can certainly
describe the plane as a series of lines in the x-direction for different, constant val-
ues in the y-direction, but this “complete” description of the phenomenon does not

that Stein’s original point was not so much that simultaneity had a different nature than previously
thought but rather that the conception of simultaneity that comes to play in everyday discourse has
no currency in special relativity.



226 D. Peterson and M. Silberstein

change the fact that it is a 2D plane and not a 1D line that is being described. If a 3D
world is inadequate, then, it stands to reason that lower dimensional representations
of space-time would likewise be inadequate. Thus, the 0D description of the world
presented by the point presentist must be incorrect. If one is to believe in the point
presentist as a viable alternative to the eternalist and the traditional presentist, the
point presentist must provide physical support for a 0D universe or else abandon
his view.

Before leaving point presentism, however, there is one perspective similar to
Stein’s that advocates changing the definition of simultaneity in order to save the
presentist from the RoS argument. This more recent shift is presented by Bourne [1]
and ought to be addressed here since it is a challenge to the notion of simultane-
ity we employ, a challenge that adheres to the logic that Stein originally used when
proposing point presentism (see previous footnote). Bourne argues that simultaneity
is absolute within space-time. According to Bourne, the notion of absolute real-
ity does not translate into the language of relativity because no one can determine
whether or not two events are simultaneous by observationswithin a frame. He turns
simultaneity on its head in presentism, not by defining “what is real” by “what is
present” but rather “what is present” by “what is real.” Bourne appeals to a linguis-
tic analysis in terms of conjunction, instead of observables in the world as the basis
for reality and thus simultaneity. In short, Bourne’s reinterpretation of simultane-
ity insists that simultaneity is absolute by ruling out the possibility of determining
simultaneous events (or, it seems, reality) by observation alone.

Bourne’s reinterpretation of simultaneity shows to what extremes presentists
must go to rescue their philosophy of time from the RoS argument. By the time
Bourne is finished with simultaneity, there is nothing resembling the common-sense
notion of simultaneity left. Not only is simultaneity dictated as absolute without
empirical evidence or verification (for surely one cannot appeal to physical grounds
for such an argument), but simultaneity has now also been removed from the realm
of science altogether. There is no longer any observation that can determine if
two things occur at the same time! Not only does this assertion fly in the face of
common-sense views of simultaneity, it also poses dire consequences for science
and human knowledge when combined with presentism. If Bourne’s simultaneity
gives us no access to a distinctively “real” character for “real” events, how can any
empirical evidence help in determining which things are real and which things are
not? Does linguistics then pose a better means to come to truths about the natural
world than science does for Bourne? If we are planning on choosing a metaphysics
of time that best accounts for the phenomena at hand without making any wild
metaphysical claims, it seems clear that Bourne’s reinterpretation of simultaneity
does not save presentism since even the claim that the past, present, and future are
all equally real is a more conservative claim than that simultaneity and reality are
both phenomena to which no one has empirical access.

It is, however, possible that one can reinterpret Bourne’s claims about the
simultaneity in physical terms; such a reinterpretation of Bourne’s simultaneity
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would necessitate a preferred foliation of space-time.24 Though we will not address
Bourne’s revised notion of simultaneity directly any further since he does not
explain his simultaneity in terms of preferred foliations of space-time in any sat-
isfying way, we will address preferred foliation presentists generally in the next
section.

4.4 Preferred Foliations in Space-Time

A slightly tougher objection to RoS is raised by those suggesting that space-time has
a preferred foliation. Such a foliation would run counter to current beliefs not only
about eternalism but about relativity as well, for one of the chief tenets of relativity
as it is traditionally interpreted25 is that there exists no preferred reference frame.
The good news for the eternalist is that there is very little physical evidence26 to
support such a preferred foliation, but it such preferred foliations may be postulated.
Assuming that such a foliation is found, then, does our RoS argument for BU still
follow?

The first response to the preferred foliation objection is that no preferred foli-
ation theory as it currently stands, even if it were proven to be true, provides the
necessary physical mechanisms that would be needed to explain why such a frame
would be preferred. Until physical motivation for a preferred frame is provided, one
cannot abandon the RoS argument. Perhaps there is some way in which the “now”
transforms as it goes into other frames. Perhaps the “now”, though it is dependent
on its preferred space-time foliation, is still present or still has metaphysical influ-
ence on other frames. Until physical motivation for a preferred reference frame is
provided, one simply cannot know these things. After all, we do use CMBR (“cos-
mic time”) as a pragmatic preferred frame in physics but it does not impugn BU any
more than proper time does. In a purely relativistic context, the claim that the Big
Bang occurred 14 billion years ago is completely frame dependent; there are other
possible, equally valid choices to be made. The point is that none of these invari-
ant features internal to SR changes the fact that M4 unadorned has no resources to

24 Bourne explicitly endorses such preferred-foliation presentists in his book, though he does so in
a different section from the one in which he advocates his radical revision of simultaneity.
25 Other non-standard interpretations, like the Lorentz interpretation, yield the same results as the
M4, no preferred frame interpretation of space-time, so it should be pointed out that it is not
the physical results of special relativity that are threatened by the preferred frame but rather the
currently-held understanding of special relativity which is under fire. See Appendix A for more
information on the rejection of the geometrical special relativity interpretation.
26 There are those who claim that at the end of the day, a correct theory of quantum gravity or a
correct interpretation of quantum mechanics (such as Bohmian mechanics) might yield an absolute
preferred frame. While technically true, recent work by Callender [4] and Monton [13] suggests
that: (a) an absolute preferred frame is not a likely consequence of future theorizing in either case
and (b) even if these preferred-foliation theories do pan out as expected, they will run into all the
problems outlined in this section.
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construct an absolute and objective preferred frame and that RoS implies the equal
reality of all events. On our view, one can always conventionally define a preferred
frame such as cosmic time; however, unless one can show that a preferred frame a la
a physical mechanism is the cause of physical effects like Lorentz contraction and
time dilation (as opposed to mere relativistic effects), a pragmatic-preferred frame
of this sort does not refute BU.27

Callender’s [4] objection to the preferred foliation view, however, is perhaps
stronger. Callender proposes a problem he calls the “coordination problem”. The
idea is that even if there is a preferred reference frame,28 there is no reason to believe
that this reference frame would provide anyone with a suitable “now” upon which
to base presentism. One must in some way prove that the physical preferred frame
is precisely the same as the metaphysical preferred frame posited by the presentists.
How would one be able to make such an association? And, perhaps more impor-
tantly, even if it were possible for one to argue that the physical and metaphysical
preferred frames were, in fact, one in the same, how would this alter the presentist’s
conception of the present?

Let us try to cash out what it would mean to live in a universe in which a preferred
frame forms the basis for an absolute reality. Imagine two twins who are born in
such a preferred foliation of space-time. The absolute simultaneity of the preferred
frame mandates that these two twins will agree on their ages at all points in time
(twin 1, Alice, will turn 21 when twin 2, Bob, turns 21, etc.). However, if Bob
decides to take a trip and leave the “real” foliation of space-time, the “absolutely
simultaneous” events (picked out based on the preferred frame) involving Alice and
Bob describe Alice and Bob as being different ages (Alice, perhaps, is 23 while
Bob is only 22); however, whenever Alice and Bob interact directly with each other
by shaking hands, giving each other a high five, etc., they will agree that they are
both the same age. According to the preferred frame presentist, then, Bob’s leaving
Alice’s frame changes his ontological status. His age and size physically change as
he travels around the universe, yet Bob is completely unaware that he is undergoing
these changes.

27 Another objection to such a move comes from John Mather, winner of the 2006 Nobel prize
in physics with George Smoot for their discovery of the blackbody form and anisotropy of the
cosmic microwave background radiation, in a talk given at Swarthmore College in October 2007.
In his talk, Mather suggested that there may be many “preferred frames” provided by the CMBR
depending on how the source of the CMBR is moving. If there are, in fact, a multitude of “preferred
frames”, any idea of “reality” that could be grounded in CMBR would be useless for presentism
because our uniqueness criterion would be violated. There would be many “real” frames that one
could choose. It should also be noted that Mather himself does not believe that the CMBR frame
should be treated as anything more than a useful frame for doing calculations; that is, like the
proper time frame, the CMBR frame is not “real” in some special way but is rather just a helpful
tool for physical calculations.
28 Specifically, Callender is concerned with a preferred reference frame that might emerge from
robust violations of the locality principle in Bohmian mechanics (and other modal interpretations)
or preferred frames required for instantaneous collapse in some collapse accounts of quantum
mechanics.
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This situation produces several problems for the presentist since she must explain
why changing one’s velocity should cause one’s views about oneself to be more or
less in line with “reality.” When I get in my car and drive to the store, for instance, I
have changed my inertial frame; am I now closer to the “real” frame or farther from
it? Either way, I don’t experience the immediate world differently, nor do I perceive
any differences in myself, yet my ontological status has changed. What, then, is the
basis for calling such a velocity shift a “shift into (or out of) delusion” since I notice
no difference in myself when I speed up or slow down? The other problem for the
preferred frame presentist is a related concern: if the preferred frame is what’s “real”
but I experience the world in exactly the same way whether I’m in the preferred
frame or not, why should I care about “reality”? What makes reality a meaningful
concept to me if it is not linked with any physical, psychological, or epistemologi-
cal change? For a preferred frame presentist, reality has no important implications
other than to save presentism. Again, reality becomes distantly removed from our
experiences, and though we may be able to convert all of our dimensions, temporal
and spatial, into our “real” dimensions according to the preferred frame, these real
dimensions will be no more important to our lives than our dimensions according to
any other frame.

In the end it seems like the preferred foliation proponent is providing a view
that is perhaps as inimical to the presentist as to the eternalist. One of the major
reasons why presentists hold the position they do is that it seems to agree with the
human manifest experience of time. If this experience were hung on some preferred
frame due to microwave background radiation or preferred frames as posited by
some Bohmians and collapse theorists, it would be possible for a “now” to exist that
was completely alien to human experience. Does the phrase “now” even have any
meaning when it has been removed from human perceptions of time? The burden
falls to the presentists here to prove that a meaningful “now”, a physical preferred
foliation of space-time, and an identical metaphysical preferred foliation of space-
time are all compatible, and since no such reconciliation of all three of these space-
time features has been provided by the presentist camp, we are forced to conclude
with Saunders [19] that the burden of proof in the presentism/eternalism debate lies
entirely on the shoulders of presentists because M4 unadorned does not have the
resources to ground the presentist’s preferred frame, at least nothing not ad hoc,
merely pragmatic, or perspectival.

4.5 The Spatial Presentist: Absurdity in Incompatibilist
Presentism?

Having answered the presentist objections to the RoS argument in turn, we would
like to propose another argument along the same lines as the RoS argument which,
we believe, should serve as a preemptive criticism against incompatibilist presentist
arguments to come. Suppose that there exists a new kind of realist called a spatial
presentist. The spatial presentist believes not that all events occurring simultane-
ously are real but that all events that occur in the same place are real. Perhaps there
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Fig. 2 Spatial presentist argument

is a sphere (infinitesimally small, for our purposes) that the spatial presentist has
set aside, following which he claims that “the only things that are real are those
in this sphere”. One might ask, then, what would be real after the creation of the
sphere at an event A in the above diagram, which shows, from relativistic consider-
ations, what events will be observed to fall inside the sphere by observers in different
inertial reference frames.

From Fig. 2, it is clear that we are left in a situation directly analogous to the tem-
poral presentist situation previously established in our RoS argument, for the above
space-time diagram shows a property we will call the relativity of same position
or RoSP. One can simply rotate our Fig. 1 and make a RoSP argument to disprove
spatial presentism in the same way that the RoS argument disproves temporal pre-
sentism. The arguments are completely symmetrical in the same way that RoSP is
symmetrical with RoS.

But what does this show? Only that if an incompatibilist presentist of the non-
spatial variety wants to assert that temporal presentism and temporal presentism
alone is correct by proposing some new feature of space-time, she must be care-
ful that her argument and mechanism establish presentism but do not allow for
spatial presentism.29 This is yet another burden that the incompatibilist presentist
must carry. The symmetry between RoS and RoSP suggests that incompatibilist
presentists must establish a physical basis for temporal asymmetry so that spa-
tial presentism does not become as viable and defensible a position as presentism
itself, for reconciliation between spatial and temporal presentism must lead to point
presentism, which is an unappealing position for reasons previously discussed.

29 This is, of course, assuming that the presentist in question is not a point presentist or some new
form of presentist who wishes to tie the conception of the “now” together with some more evolved
conception of the “here.”
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5 Conclusion

Though the traditional formulations of the Putnam, Rietdijk and SSC’s RoS argu-
ment for the block universe may that leave the argument open to attacks by
philosophers of language and presentists, we have reformulated the argument with
more specific definitions that make eternalism the likely victor over presentism.
Thus, the task before the presentist in defending herself has become even grander;
she must (1) find a way to dispel the RoS argument, (2) showwhy presentism is more
likely than eternalism, and (3) integrate temporal asymmetry as fundamental to her
argument lest her argument run the risk of establishing an obviously false view (spa-
tial presentism) as well as it establishes her temporal presentism.30 It is clear from
our previous discussion that the most common presentist argument that “space and
time are not perceived to act in the same way” is not sufficient to shoulder the weight
of a full presentist defense, and thus a more developed presentist argument address-
ing all of our concerns must be proposed before presentism can escape from the
jaws of the RoS argument. Even the retreat into the position of Savitt and Dorato
that there is no significant difference between presentism and eternalism seems a
difficult one to hold in light of our definitions for definiteness and distinctness. And
so, in conclusion, we echo Saunders in stating that while eternalism in itself may
not have been conclusively proven correct by our arguments, the burden falls upon
the presentist to show why eternalism is not much more probable.31

6 Appendix A: Against the Dynamical Interpretation
of Special Relativity

A number of philosophers have defended a dynamical interpretation (“constructive”
in Einstein’s language) of SR of late (e.g. Brown [2]). In the following passage Cal-
lender [4] claims the latter interpretation is a potential problem for the RoS argument
for BU:

In my opinion, by far the best way for the tenser to respond to Putnam et al. is to adopt the
Lorentz 1915 interpretation of time dilation and Fitzgerald contraction. Lorentz attributed
these effects (and hence the famous null results regarding an aether) to the Lorentz invari-
ance of the dynamical laws governing matter and radiation, not to space-time structure.
On this view, Lorentz invariance is not a space-time symmetry but a dynamical symmetry,

30 We would like to note at this point that there is an obvious reason why spatial presentism has
never caught on in the philosophy of time: it does not agree with our perceptions of reality. How-
ever, if one wants to dismiss spatial presentism on these grounds but remain a presentist, one’s
workload is not lessened since one must now provide a link between these particular experiences
and reality.
31 We would like to thank Mark Stuckey, Michael Cifone, David Baker, Gordon Belot, and the
audience at the 3rd International Ontology of Space-time Conference at Concordia University in
2008 for comments on previous versions of this paper.
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and the special relativistic effects of dilation and contraction are not purely kinematical. The
background space-time is Newtonian or neo-Newtonian, not Minkowskian. Both Newtonian
and neo-Newtonian space-time include a global absolute simultaneity among their invari-
ant structures (with Newtonian space-time singling out one of neo-Newtonian space-time’s
many preferred inertial frames as the rest frame). On this picture, there is no relativity of
simultaneity and space-time is uniquely decomposable into space and time. Nonetheless,
because matter and radiation transform between different frames via the Lorentz trans-
formations, the theory is empirically adequate. Putnam’s argument has no purchase here
because Lorentz invariance has no repercussions for the structure of space and time. More-
over, the theory shouldn’t be viewed as a desperate attempt to save absolute simultaneity in
the face of the phenomena, but it should rather be viewed as a natural extension of the well-
known Lorentz invariance of the free Maxwell equations. The reason why some tensers have
sought all manner of strange replacements for special relativity when this comparatively
elegant theory exists is baffling (2006, 3).

See also Harvey Brown’s book Physical Relativity [2] and his essay “Minkowski
Space-time: A Glorious Non-Entity” [3] co-authored with Oliver Pooley for a more
developed argument for this stance.

First, Brown [2, p. 7] himself is clear that he is not defending either the ether
or a preferred-frame, unlike Lorentz himself. We grant that SR is neutral about the
ontology of space-time, but we think there are good reasons for preferring the kine-
matical over the dynamical interpretation, though we cannot pursue them here.32

We do want to note that we are not convinced of Callender’s claim that the dynam-
ical interpretation of SR necessarily refutes the RoS. At least in the case of Brown,
who again, does not claim to be defending absolute simultaneity, while his argu-
ments may lead to space-time relationalism, they do not obviously entail the falsity
of RoS as such. So until someone provides a cogent argument from space-time
relationalism to the falsity of the RoS, our argument remains intact. Second, even
granting an absolute frame, Brown’s dynamical interpretation does not obviously
save the presentist since she must still face some of the problems raised in Sect. 4.4.
For example, even if there is an absolute space-time and a universal moment of
the present, there is no reason to believe, as per Callender’s objection discussed in
Sect. 4.4, that such a present lines up with human experience of the present. What
is more, as long as Lorentz contractions and dilations exist, one observer traveling
at relativistic velocities may observe his present to be different from the present
of those around him. Does that mean that, since he is dealing with past or future
versions of these other beings, that they are not real since they are not actually expe-
riencing the present simultaneously with the relativistic observer? There seems to
be a suggestion of some sort of frame-dependent solipsism, which would constitute
an anti-realism that presentists would reject as readily as eternalists.

Finally, if we are to take seriously the implication that quantum mechanics
(our best theory of matter) is to special relativity what statistical mechanics is to

32 See Michel Janssen’s “Drawing the line between kinematics and dynamics in special relativity”
in the Phil. Sci. archive (reference number 3895) for good arguments favoring the kinematical
interpretation. See also Petkov [15] where the kinematic interpretation of Minkowski space-time
realism has consequences not easily or obviously accounted for by the dynamical interpretation.



Relativity of Simultaneity and Eternalism: In Defense of the Block Universe 233

thermodynamics, then had not quantummechanics better be able to explain (in some
robust sense of the word) the key features of SR such as Lorentz invariance? Obvi-
ously, this condition has not been met and merely interpreting Lorentz invariance to
be restricted to dynamical laws only hardly does the trick.

7 Appendix B: Objection to RoS Argument by Meta-Time

One of the points we believe we have established in this paper is that the eternal-
ist perspective does not require any meta-time or generally any 5th dimension to
be coherent; however, one might object that our R-value, R-relation language itself
begs the question against eternalism and refutes our repeated assertion that no eter-
nalist meta-time is necessary. The objection might go as follows: Suppose that one
is committed to simply a binary ontology of R-values such that an R-value of 1
represents “real” and an R-value of 0 represents “unreal”. The eternalist perspective
here seems straightforward (all R-values are 1, or, perhaps less likely, all R-values
are 0), but the presentist perspective is not so straightforward.At time t1, only events
at time t1 have an R-value of 1 while all other space-time events have an R-value
of 0. At time t0, only events at t0 have an R-value of 1 while all other space-time
events have an R-value of 0. Thus, if t1 is not the same as t0 (that is, as long as
space-time has a temporal dimension), R-values must change with time, meaning
that there must be some sort of extra dimension posited to account for this notion of
change. Thus, one might object that the only way for one to meaningfully capture
the presentist perspective using R-values is to assume some sort of meta-time, and
thus the eternalist is only right if one assumes meta-time, which is to give the eter-
nalist his conclusion from the start. Thus, the RoS argument seems to both beg the
question and assume meta-time.

Our response to this objection is to note that the objector has taken a fairly nar-
rowly view of R-values (though, to be fair, this naı̈ve view is essentially the one we
advocate in this paper for the sake of simplicity). There is no reason why R-values
cannot be tweaked to suit the presentists’ notion of reality. Let us allow a differ-
ent kind of R-value, then, one more in keeping with predicates such as Goodman’s
infamous “grue”. We now define a series of R-values that can take any value we
would ascribe to events occurring at a certain time from the beginning of time to the
end of time. Each R-value represents the predicate “is real at time x and is unreal
elsewhere” where “x” is the R-value of the event. Such an R-value scheme is static;
there is no meta-time required to account for changes in R-values because no matter
what time we perceive it to be, the R-value of every event will remain the same.
Thus, by re-characterizing R-values in terms of the time of various events, we can
avoid this objection to the RoS argument.33

33 One might wonder about how we would treat the perspectives of presentists who expect the
present to have a certain duration instead of being instantaneous. The answer would be to trans-
form the R-value into an R-vector, with the first entry representing the time at which the event
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Still, there remains a further issue: time alone is not enough to provide us with
proper R-values, especially not in the relativistic context we assume for the RoS
argument to go through. Since time is a frame-dependent quantity, it seems that, by
allowing grue-like R-values that are based on temporal coordinates, we are forced
to give up on the objectivity and frame-independence of R-values. What this shows,
however, is not that R-values are not objective but that time itself is not the proper
quantity to base an R-value on. Instead, the R-value used for the presentist ought to
be the proper time or the space-time interval from some fixed point. Such quantities
retain the essential character of our R-value time-dependence while still provid-
ing the objectivity we seek from an R-value. Thus, if the presentists’ R-values are
defined as the proper time at which a given event is real, then the R-value has
the character we expect and the RoS argument goes through without begging the
question or assuming meta-time.

One final remark ought to be made, however: why should we not stop by just
defining the presentists’ R-values in terms of time instead of proper time? We
lose objectivity in doing so but seem to better capture our intuitions about time
and the present. The answer, we believe, comes back to what the R-values are to
represent: reality and ontological status. It seems that, if anything ought to be frame-
independent, it ought to be the ontological status of an event. If events are capable
of having some frame-independent properties, such as a proper time coordinate, dis-
tance via the space-time interval, and the kind of event-definiteness and distinctness
we previously discussed, then it would seem ridiculous to say that the fundamen-
tal ontological status of the event, which ought to be its most crucial, fundamental,
essential property, is somehow less objective than these frame-independent proper-
ties. This disagreement may boil down to which intuitions are most important to
capture: intuitions about reality, or intuitions about the behavior of time. Given the
fact that human intuitions concerning time seem at best incomplete and at worst
wrong in many cases, we believe that it is reasonable to prefer capturing the for-
mer intuition to capturing the latter. As such, we believe that defining presentist
R-values in terms of proper time, as we suggest in this section, is the best way to
nuance R-values so as to reconcile them with presentism: not only does it allow the
RoS argument to follow as we’ve characterized it, it also reconciles our intuitions
about reality with presentism in the most reasonable way possible.

switches from “unreal” to “real” and the second entry representing the time at which the event
switches from “real” to “unreal” again. This vector scheme could account for even absurdly com-
plex presentist/possibilist/historicist positions that have events blinking into and out of existence
many, many times by simply characterizing each shift from real to unreal (and back again) in terms
of the time at which the shift occurs and characterizing the R-vector of the event in terms of these
times.
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8 Appendix C: A “God’s Eye” View of Space-Time
on Different Theories of Time

Fig. 3 Eternalist perspective
on space-time

Eternalism

Time

Y-space

X-space

Fig. 4 Presentist perspective
on space-time

Presentism
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Fig. 5 Possibilist perspective
on space-time
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X-space
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Time

Y-space

Point presentism

X-space

Fig. 6 Point presentist perspective on space-time. This perspective, idealized here as a single point
in space-time, is the most difficult to represent visually since it should have an infinitesimal size.
The single dot of the present is the only thing in space-time that exists on this view of space-time,
making it a much more limited and precise view of the present than the more general form of
presentism previously represented
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Minkowski Space-Time and Thermodynamics

Friedel Weinert

Abstract The paper discusses both geometric and axiomatic approaches to
Minkowski space-time and argues that different inferences to the nature of space-
time follow from them. Whilst the geometric approach leads to the traditional
block universe view, the axiomatic approaches have as a philosophical conse-
quence a dynamic view of space-time. Both approaches lead to opposite but equally
consistent views of four-dimensional space-time. It is a case of underdetermination.

1 Introduction: Geometric and Axiomatic Approaches

Ever since Minkowski published his four-dimensional representation of space-time,
the dominant view in physics and philosophy has been that time is a fourth dimen-
sion such that human perception of change and the passage of time are a mere
illusion, due to our particular slicing of space-time. But four-dimensional space-
time is a block universe. This conclusion takes the form of an inference from the
measurable and observable evidence. Traditionally the block universe was inferred
from the stipulation of relative simultaneity as a consequence of the Special the-
ory of relativity (STR) (Eddington, Einstein, Gödel). But newer defenses infer a
static block universe from the well-known relativistic effects: length contraction,
time dilation, the twin paradox. The argument states that such relativistic effects
would be impossible in a three-dimensional world. As they occur and are observed,
it is legitimate to infer (a) that the physical world is four-dimensional, and not
just a mathematical model, and (b) that this four-dimensional world is static and
timeless. (Lockwood 2005; Petkov 2005, Chap. 4) Yet it is by no means clear that
Minkowski himself was a believer in the block universe. In his 1908 Cologne lec-
ture on ‘Space and Time’ he speaks of a four-dimensional physics but concedes that
a ‘necessary’ time order can be established at every world point. The conception of
the block universe, however, focuses on Minkowski’s geometric approach, which
is based on his world postulate. But an alternative view has been in circulation
since the 1910s according to which the nature of space-time has to be based
on the behaviour of light. (Robb 1914; Cunningham 1915; Carathéodory 1924;

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
DOI 10.1007/978-3-642-13538-5 11, c� Springer-Verlag Berlin Heidelberg 2010
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Schlick 1917; Reichenbach 1924) These axiomatic approaches constitute a light
geometry, according to which the behaviour of signal propagation, under thermody-
namic aspects, forms histories of trajectories in space-time. It is the assertion of this
paper that they give rise to a different inference regarding the nature of space-time.
If we built our inferences to the nature of space-time on other aspects of the physical
world, which nevertheless may fall within the domain of the Minkowski space-time
conception – dissipation and energy flows – we arrive at a dynamic conception of
Minkowski space-time.

Note that this alternative view does not deny the four-dimensional reality of
space-time. It is true that, on the geometric approach, signals are represented by
their word lines in space-time and there is no need for dynamic aspects. On the other
hand, we cannot simply assume that the mathematical representation of space-time
is isomorphic to the physical nature of space-time and that we can infer the nature of
space-time from the geometric approach. The alternative approach envisaged here
makes use of thermodynamic aspects. If we accept the four-dimensionality of the
physical world, and then inquire whether it is ‘static’ or ‘dynamic’, it is clearly
important to consider both kinematic aspects of the physical world, as enshrined
in the equations of the STR, and dynamic aspects, related to questions of energy
flow, entropy and dissipation, since signal propagation in Minkowski space-time
is constrained by these aspects. This point about representation should justify a
consideration of space-time from an axiomatic approach.

The paper will explore the compatibility of Minkowski’s space-time representa-
tion of the Special theory of relativity with a dynamic conception of space-time
by investigating axiomatic approaches to the STR, as they were developed by
Robb (1914), Carathéodory (1924) and Reichenbach (1924). A central feature of
these accounts is to regard the propagation of optical signals as constituting his-
tories of space-time relations. As it turns out this propagation involves invariant
sequences between events, which become central for the understanding of time. It
will be argued that one root of a dynamic conception can be located in the thermody-
namic and entropic features of the propagation of signals in space-time. If we accept
that the geometry and nature of space-time have to be inferred from a range of mea-
surable and observable phenomena (cf. Huggett 2006; Petkov 2005), and that the
inference is legitimate on both the axiomatic and geometric approaches, the paper
concludes that the question of the ontological nature of space-time is at this stage a
case of underdetermination by the evidence.

2 Axiomatic Approaches to Space-Time

Let us now consider what effect a chosen representation has on our understanding of
space-time. Since Minkowski’s introduction of the conception of four-dimensional
space-time, a minority view has scraped a meagre existence in the shadows of the
majority view. The majority view is the Parmedian block universe, aptly expressed
in Einstein’s words: ‘From a “happening” in three-dimensional space, physics
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becomes (: : :) an “existence” in the four-dimensional “world”.’ (Einstein 1920,
122) Although Einstein’s early commitment to the block universe was inspired
by Minkowski’s world postulate, in his later years Einstein wavered in his sup-
port for the Parmedian view. He began to consider thermodynamic aspects of the
propagation of signals in space-time. This alternative view, which is notable for its
Heraclitean ancestry, had its predecessors in the axiomatic approaches adopted by
Robb (1914), Carathéodory (1924) and Reichenbach (1924). It avoids the binary
choice into which McTaggart’s metaphysical speculations seem to lure us: either we
accept a dynamicA-series or the static B-series, but in either case time is unreal. The
alternative view offers the conceptual possibility of a dynamic space-time, which is
nevertheless rooted in the B-series. This view is worth exploring because it allows
us to fully accept the consequences of the theory of relativity, without endorsing the
Parmedian view of the block universe.

But how is this schematic programme to be cashed in? What does it mean that
space-time trajectories have a history? To answer this question we do well to look at
some attempts to construct axiomatic accounts of space-time, which do not start
from Minkowski’s ‘absolute world postulate’; in Einstein’s words it is a ‘four-
dimensional continuum described by the “co-ordinates” x1, x2, x3, x4, (which)
was called “world” by Minkowki, who also termed a point-event a “world-point”.
(Einstein 1920, 122) Reichenbach, Robb and Carathéodory developed, apparently
independently of each other, such axiomatic accounts, which start from a basic
‘before-after’ relation between null-like related events. Although these events are
represented in geometric terms, they are crucially based on optical facts, like the
emission and absorption of photons. The propagation of these signals constitutes an
invariant conical order under the Lorentz transformations. The null-like and time-
like trajectories between space-time events form the Minkowski world lines of light
signals and material particles, respectively. The propagation of these signals con-
stitutes a history of space-time relations, which may include both kinematic and
dynamic aspects.1 It may be said that the axiomatic approaches lead to the view of
a ‘growing block universe’.

2.1 Robb’s Account

These axiomatic attempts reverse the usual tendency to ‘spatialize time’. Robb starts
with the thesis that ‘spacial relations’ may be analyzed in terms of the time relations
‘before’ and ‘after’ or, as he concludes, ‘that the theory of space is really a part of the
theory of time’. (Robb 1914, Conclusion) Essential for this conception is the notion
of conical order, which is analyzed in terms of the relations of ‘before’ and ‘after’
instants of time. An instant (an element of time) is the fundamental concept, rather

1 Huggett (2006, 47) defines a ‘relational state as a specification of the totality of relations, mass
and charges of bodies at a time.’ See also Penrose/Percival (1962, �2)
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than the space-time event. Furthermore the ‘before/after’ relation of two instants is
an asymmetrical relation. In this way Robb builds a system of geometry, in which we
encounter the familiar light cones of the Minkowski representation of space-time.
Robb reverses the Minkowski approach in terms of geometrical relations and starts
from physical facts, an approach, which is reflected in Einstein’s later reservations
about the block universe.

If a flash of light is sent out from a particle P at A1, arriving directly at particle Q at A2, then
the instant A2 lies in the ’-subset of instant A1, while the instant A1 lies in the “-subset
of A2. Such a system of geometry will ultimately assume a four-dimensional character or
any element of it is determined by four coordinates. (: : :) It appears that the theory of space
becomes absorbed in the theory of time. (Robb 1914, 8–9)

Here the ’-subset is the future light cone of instant A1 and the “-subset is the
past light cone of A2. (Fig. 1) After 21 postulates and over 100 theorems defin-
ing the light cone characteristics, Robb eventually defines the familiar conditions
of the space-time interval, ds. The most interesting aspect of Robb’s axiomatic sys-
tem is that it regards Minkowski’s contribution as ‘merely analytical’ and treats
the geometry as a ‘formal expression’ of optical facts, like the propagation of sig-
nals in space-time. Thus Robb unwittingly opens up the possibility of considering
kinematic space-time relations with respect to other physical aspects of space-time,
since his declaration that ‘a before-after relation of two instants is an asymmetrical
relation’ (Robb 1914, 5) will be based on thermodynamic aspects of electromagnetic
radiation. Robb’s intention is to clarify notions like the conventionality of simultane-
ity by avoiding attempts to define ‘instants of time at different places’. By declaring
that events are instantaneous which occur at the same instant, Robb anticipates the
notion of relative becoming and local temporality, which have recently beenmooted.

Fig. 1 ‘Corresponding to any
point in space, there is an
’-cone of the set having that
point as vertex, similarly
there is also a “-cone of the
set having the point as vertex.
If A1 be any point and ’1 the
corresponding ’-cone, then
any point A2 is after A1,
provided A1 ¤ A2 and A2
lies either on or inside the
cone ’1. (Robb 1914, 5–6)
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‘The present instant, properly speaking, does not extend beyond here.’ (Nature 107,
1921, 422) But in the end Robb is still puzzled about time:

Though space may be analyzable in terms of time relations, yet these remain mysterious;
events occur in time, yet any logical theory of time itself must imply the Unchangeable.
(Robb 1914, Conclusion)

2.2 Carathéodory

In 1916 Einstein encouraged Constantin Carathéodory to consider the problem of
closed world lines in the General theory. (Hentschel 1990, 352–354) 10 years later,
and without referring to Robb, Carathéodory (1924) started with the STR and took
a similar approach but with fewer axioms and postulates. Carathéodory aims at a
simplification of Einstein’s theory: it is to be based on temporal relations (earlier,
later, and simultaneous) but these temporal relations are based on the behaviour of
light signals. Carathéodory proceeds to define axioms of temporal succession and
of light propagation. These axioms provide the concept of a ‘light clock’, which
allows to measure time-like relations between events in space-time. These axioms
are followed by axioms of topological space, which are reminiscent of Robb’s
conical order and hence allow the introduction of coordinate systems. Finally, he
introduces Einstein’s principle of relativity. Thus topological spaces consist of light
cones, which are constituted by what Carathéodory calls ‘normal light propagation’.
As is to be expected Carathéodory defines equivalent topological spaces by the
use of normal light propagation, satisfying relativity and symmetry requirements.
Carathéodory, in fact, constructs what Reichenbach (1924) calls a ‘light geometry’,
whose axioms are based on empirical facts.

The propagation of light in (our topological space) < is to be called ‘normal’ if, amongst
all possible representations of the space < by three parameters, there exists at least one
coordinate system x, y, z, which satisfies the following condition:

If we interpret x, y, z as right-angled coordinates of a Euclidean space, then of two simul-
taneously emitted light signals, which run through the two closed light polygons and whose
end points coincide with the origin O of the coordinates x, y, z that signal is to arrive ear-
lier, which describes the shorter (in a Euclidean sense) polygon. If the two polygons are of
equal length, the signals are to arrive simultaneously.

This shows that in a space of normal light propagation there exists a natural measure for
both distances and angles, which depends solely on temporal measurements from the light
polygons. (Carathéodory 1924, Sects. 9 and 10; translated by the author)

As noted earlier, it is one of the advantages of these axiomatic approaches, based
as they are on ‘optical facts’, that they permit an easy transition from kinematic
to dynamic considerations. This is reflected in Carathéodory’s observation that
Liouville’s theorem also applies to the transformation of the topological space
with coordinates x, y, z, t to primed coordinates. Carathéodory expresses the
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non-tilting of light cones in Minkowski’s representation, which is a consequence
of the constancy of c in Minkowski space-time, in the statement:

If two media A and B move relative to each other with normal light propagation, then
every linear light ray of one medium will be transformed into a linear light ray of the other
medium. (Carathéodory 1924, Sect. 25; translated by the author)

Liouville’s theorem in classical mechanics states that a volume element along a
flowline conserves the classical distribution function f .r; v/drdv:

f .t C dt; r C dr; v C dv/ D f .t; r; v/ (1)

(Kittel and Kroemer 1980, 2nd edition, 408; Albert 2000, 73f) In other words, if we
consider trajectories in phase space, which include both position and momentum of
particles, then the equation of motion of such systems can be expressed in terms of
its Hamiltonian, H. H expresses the conservation of total energy of the system. Liou-
ville’s theorem then states that the volume of the phase space, which an ensemble
of trajectories occupies, remains constant over time. Translated into the language of
four-dimensional light cone structure, Liouville’s theorem shows that the volume of
the phase space regions is invariant over time even though the expansion of the tra-
jectories within this volume can start from different initial states. But an immediate
consequence of this theorem is that even though the volume is preserved the shape
of this phase space region is not preserved (see Fig. 2) and this implies a dynamic
evolution of the trajectories within this region. For two shapes cannot differ from
each other without an evolution of the trajectories. It also implies that a reversed
evolution of the trajectories will preserve the volume but not the shape and hence
that reversed trajectories need not be invariant with respect to the shape of the phase
space region.

The main purpose of these axiomatic approaches is to develop the STR as a
light geometry, whose axioms are based on empirical facts. It does not start with
an assumption of the existence of the four-dimensional Minkowski ‘world’ – which
is pseudo-Euclidean and in which the linear homogeneous functions x1, x2, x3, x4
permit a rotation to primed functions x0

1, x
0
2, x

0
3, x

0
4 by the transformation rules

of the Poincaré group. The axiomatic approaches start with ‘optical facts’, like
the propagation of light signals. But then it follows that they must be subject to

Fig. 2 Liouville’s Phase
volume invariance theorem.
Source: Stöckler (2000, 4th
edition, 206); cf.
Davies (1974);
Reichenbach (1956, 76);
Albert (2000, 71–72, 103) q
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.



Minkowski Space-Time and Thermodynamics 245

entropic constraints. According to the Robb-Carathéodory representation, the four-
dimensional world does not ‘exist’ but it ‘happens’ through the propagation of
time-like signals between successive events in space-time. These approaches there-
fore reverse Einstein’s famous step from a ‘happening’ in the three-dimensional
world to ‘existence’ in a four-dimensional world. (Einstein 1920, 122) As the world
lines propagate through space-time, they form a history of space-time relations in
a conical order. But does this really remove the puzzle about time, so forcefully
expressed in Robb’s concluding remarks? What did Minkowski mean when he con-
ceded that a ‘necessary’ time order can be established at every world point? What
does it mean that space-time trajectories have a history? In order to answer these
questions we must turn from purely kinematic to dynamic considerations. We have
two reasons for this transition. As Carathéodory’s application of Liouville’s theo-
rem to light cone structures shows, we can introduce the thermodynamic language
of phase space and speak of the flow of points in phase space. We need to investigate
the implications of this shift in perspective.

3 Towards Dynamics

An essential aspect of the geometric view of STR is that it only deals with kine-
matic relations. The axiomatic approaches remind us that energy considerations are
important in the STR and belong to a proper consideration of the four-dimensional
world.

3.1 Dynamic Aspects

For a consideration of dynamic aspects it is important to introduce some physical
grounding to the asymmetric kinematic relations as the axiomatic approaches of
Reichenbach, Robb and Carathéodory emphasize. The axiomatic approaches seek a
physical grounding to the asymmetric relations between space-time events in ‘opti-
cal facts’. For the question that needs to be addressed is: Even if the ‘before-after’
relation, which is central in the axiomatic approaches, constitutes an asymmetric
relation between space-time events, how does this linear order lead to a dynamic
view of space-time? Here we want to consider some entropic aspects, because light
propagation and signal propagation can be characterized in terms of energy flows
and dissipation, processes which are subject to such entropic constraints.

3.2 Provisos

Note that the argument is not to be confused with the usual thermodynamic argu-
ments for or against the arrow of time. Although Eddington held that the increase
in entropy established a global, cosmological direction of time, several objections
have been raised against the identification of entropic processes with the global
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arrow of time: (1) Popper (1956, 1957) pointed out that the arrow of time cannot
have a stochastic character, which it would ‘inherit’ from an association with the
second law of thermodynamics in its probabilistic interpretation. On Boltzmann’s
probabilistic interpretation of the 2nd law the increase in entropy is merely over-
whelmingly likely, and therefore would in principle allow a reversal of the arrow of
time. But even without invoking the law of entropy, Popper held that ‘it is absurd to
link entropy to the arrow of time because of the existence of thermodynamic fluctua-
tions.’ (Popper 1957) Such reversible behaviour has been observed in highly viscous
liquids (Physik Journal June 2008, 21–22) and can be ‘engineered’ through the
recovery of phase correlations in quantum mechanical which-way experiments. (2)
The application of the entropy concept to the whole universe is problematic because
the entropy concept is best defined for closed systems in thermodynamic equilib-
rium but the universe as a whole has no environment. (Uffink 2001; Drory 2008)
An entropy-free method of obtaining a temporal order is to define a global intrinsic
temporal orientability of space-time.

A relativistic space-time<M; g;r> is said to be temporally orientable if there exists a con-
tinuous nonvanishing vector field onM which is timelike with respect to g. (Earman 1974,
17; cf. Cf. Huggett 2006, 234)

The metaphorical arrow of time is then seen as an expression of the geometrical
time-asymmetry of the universe. (Aiello et al. 2008) (3) Alternative models for the
‘arrow of time’ on a global scale have been proposed, for instance the expansion of
the universe from the big bang. (Gold 1966; Earman 1974; Earman 2006)

It seems at first that the entropy-free approach is more satisfactory for a global
arrow of time but even a global arrow would have to be based on entropic consid-
erations, like for instance Penrose’s Weyl curvature hypothesis. Such concerns have
no impact on the interpretation of Minkowski space-time. In fact it shows that we
should clearly distinguish between the ‘passage’ and the ‘arrow’ of time. Space-
time observers may perceive a ‘passage’ of time, in the sense of a local direction of
temporal processes, even in ignorance of a global arrow of time. Concerns about the
global ‘arrow’ of time belong to questions of the topology of time. The physical pas-
sage of time is compatible with different topologies, for instance linear or circular
conceptions of time. Such questions do not address the argument of the block the-
orist who infers the block universe from the geometric interpretation of space-time
phenomena. The definition of temporal orientability appeals to continuous time-like
vector fields but this does not address the question of time within Minkowski space-
time, which according to the axiomatic approach is based on the behaviour of clocks
and light signals, and, as we shall argue, the flow of energy. Although these aspects
do not involve the ‘global’ arrow of time, they are concerned with the passage of
time in Minkowksi space-time.

It is worth noting that in these discussions often implicit presuppositions about
the nature of space-time are at work, such as substantival or relational approaches.
For the geometric approach to Minkowski space-time implicitly favours a substan-
tival reading of space-time, whilst the axiomatic approaches, introduced above,
implicitly favour a relational understanding of space-time. The following consid-
erations will embrace a relational view of space-time, according to which space is



Minkowski Space-Time and Thermodynamics 247

the order of coexisting events in space-time and time is the order of the succession
of co-existing events. The notion of order is crucial in this context. The Leibnizian
view of order is of course pre-relativistic so that the ‘order of coexisting events’
presupposes absolute simultaneity but not Newtonian absolute space and the ‘order
of successive events’ presupposes a unique temporal axis for all observers but not
absolute time in the Newtonian sense. To speak of space-time relationism means
to subject the order of coexisting events to the condition of relative simultaneity
and the constancy of c and to speak of the order of successive events means to
confine this order to null-like and time-like relations between events in space-time.
The Leibnizian order becomes the conical order of events. This move to space-time
relationism is possible because, in spite of the notion of relative simultaneity, space-
time observers can agree on a number of invariant relationships between events in
space-time.

3.3 Inferences to the Nature Space-Time

The Leibnizian characterization of space and time in terms of the order of events
and the relations between them does not restrict us to a consideration of kinematic
relations and material bodies. It is a common misunderstanding that relationism
is limited to occupied space-time events. (Friedman 1983) A ‘liberalized relation-
ism’ admits a system of both actual and possible relative trajectories. (Teller 1991;
Weinert 2006) It is easy to see an alliance between the axiomatic accounts of four-
dimensional space-time and space-time relationism. The axiomatic accounts are
based on the fundamental ‘before-after’ relations between space-time events, whose
physical manifestation is the propagation of optical signals. Although the traditional
relationist speaks of the order of ‘events’, ‘processes’ or ‘material objects’ in the
physical universe, a contemporary relationist is not restricted to purely kinematic
relations to constitute physical time. The space-time relationist will consider both
kinematic and dynamic ‘processes’, which will help observers in inertial motion
with respect to each other to identify physical time. As the propagation of signals
constitutes the grounding of the ‘before-after’ relation in the axiomatic approaches,
it is appropriate to consider entropic aspects of this propagation. The exchange of
signals is clearly of great importance in Minkowski space-time, as is well illustrated
in the famous twin paradox. As one resolution of the twin paradox in Minkowski
space-time shows – it appeals to the relativistic Doppler effect and abstracts from
the short periods of acceleration and deceleration of the space-travelling twin – the
propagation of signals – their emission and reception – plays an important part in
a consideration of four-dimensional space-time. This feature becomes prominent in
the axiomatic approaches.

The question of the nature of space-time is a matter of admissible inferences,
which inertial observers in space-time would draw from their respective experi-
ences. An influential tradition, from Einstein and Gödel to the present day, has
inferred the block universe from themeasurable and observational relativistic effects.
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Such inertial observers, who are attached to reference frames, should also be aware
of the propagation of signals, since this is their way of communicating. Such
observers would not be far removed from the original concern of Einstein about
the coordination of distant clocks. If Reichenbach, Robb and Carathéodory were
inertial observers they would direct their attention to thermodynamic properties of
signal propagation, which could serve as their basis for inferences about space-time.
Whilst the geometric view infers the block universe from the relativity of simultane-
ity and more recently from other relativistic effects, the axiomatic view will consider
dynamic properties of signal propagation,which are considered as the physical basis
of the geometric relations. More importantly, as we shall argue below, it will focus
on certain invariant relationships between events in space-time, which are crucial
for the appreciation of physical time.

4 Irreversibility, Regularity and Invariance

In this section we shall consider which inferences about the nature of space-time
follow from a shift to dynamic aspects.

4.1 Reichenbach & Grünbaum

Reichenbach distinguished the topological question of time order (‘before-after’)
from the dynamic question of time direction. (Reichenbach 1956, 26) He claimed
that entropic considerations ‘will enable us to solve the problem of the direction
of time, a problem that cannot be solved in the framework of Einstein’s theory of
relativity, because it requires a transition from strictly causal relations to proba-
bilistic relations.’ (Reichenbach 1956, 25–26) Reichenbach turns to the statistical
interpretation of entropy:

The direction of physical processes, and with it the direction of time, is thus explained
as a statistical trend: the act of becoming is the transition from improbable to probable
configurations of molecules. (Reichenbach 1956, 55)

Further, Reichenbach points out (1956, 60) that the statistical form of the second
law defines a value of S for both equilibrium and non-equilibrium states. This
entropic approach has been criticized as ‘yielding the wrong result somewhere in
space-time’. (Earman 1974, 22) This objection is based on a geometric view of a
global temporal orientability of space-time. The entropic approach harbours some
interesting results from the point of view of the axiomatic method and space-time
relationism. In his later years Einstein himself grew more aware of dynamic aspects
of signal propagation in space-time when he objected to Gödel’s interpretation of
Minkowski space-time in terms of a block universe and the denial of the objective
passage of time. (Fig. 3)



Minkowski Space-Time and Thermodynamics 249

Fig. 3 Einstein’s
consideration of the (local)
direction of time in response
to Gödel’s idealistic
interpretation of the special
theory of relativity. A
time-like world line exists
between events A and B,
which lies within, not outside,
the light cone. A and B are
linked by an irreversible
signal. Einstein (1949, 687)

Einstein wrote: ‘What is essential is the fact that the sending of a signal is, in
the sense of thermodynamics, an irreversible process.’ (Quoted in Denbigh 1981,
40) The most interesting result, on Reichenbach’s entropic approach, is that it is
the majority of branch systems which show an increase in entropy. It is the sec-
tional nature of time direction, which is appealing to the space-time relationist. ‘The
direction in which most thermodynamic processes in isolated systems occur is the
direction of positive time.’ (Reichenbach 1956, 127; cf. Denbigh 1981, Chap. 6.3)
Grünbaum took up this suggestion but reduced it to de facto irreversibility.

For Grünbaum the direction of physical time is grounded in de facto irre-
versible processes. (Grünbaum 1967, 1955) Grünbaummakes an explicit distinction
between physical time and human perception of time. The anisotropy of physical
time is not to be confused with a ‘transient now’ or human perception of becoming
(‘river of time’). Grünbaum agrees with Reichenbach that the positive direction of
physical time is the direction of entropy increase in the majority of branch systems.
The emphasis on de facto irreversible processes means that they are contingent and
compatible with the time reversal symmetry of the basic mechanical laws. He thus
rejects Popper’s argument that ‘thermodynamic behaviour cannot constitute a basis
for the anisotropy of time.’ But he also distances himself from Reichenbach in 2
ways:

1. Grünbaum does not assume that entropy is defined for the whole universe. To be
fair to Reichenbach, he holds that the overall entropy of the universe can only be
inferred from the entropic behaviour of branch systems. ‘The universal increase
of entropy is reflected in the behaviour of branch systems, so to speak; and only
this reflection of the general trend in many individual manifestations is visible to
us and appears to us as the direction of time.’ (Reichenbach 1956, 131)
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2. Grünbaum does not assume parallelism of entropy increase in branch systems
and the universe. Thus Grünbaum is truly committed to the sectional nature of
the passage of time in local neighbourhoods. Space-time relationism does not
require that entropy increase occur in all physical systems. Grünbaum‘s notion
of de facto irreversibility has been characterized as weak T-invariance. This weak
T-invariance must satisfy the

requirement that its time inverse (although perhaps improbable) does not violate the laws
of the most elementary processes in terms of which it is understood. (Landsberg 1982, 8)

This take on things implies that the T-invariance of physical laws is compatible with
asymmetric solutions, if appropriate boundary conditions are taken into consider-
ation. (Price 1996, 88–89, 96; Denbigh 1981, Chap. 6.2) Under these conditions
T-invariance turns into weak T-invariance.

Whilst the entropic approach satisfies the space-time relationist’s need for an
empirical grounding of time in the behaviour of certain physical systems, in Reichen-
bach’s version it also suffers from some weaknesses. For instance, Reichenbach’s
characterization of branch systems as ‘systems that branch off from a comprehen-
sive system and remain isolated from then on for some time’ (Reichenbach 1956,
118) is relatively ill defined and neglects that no subsystem is ever totally iso-
lated from the more comprehensive system. Reichenbach claims that the entropic
approach can solve the problem of time. This claim has several important aspects,
which should be carefully distinguished: (a) It indicates dynamic and regular fea-
tures of signal propagation in Minkowski space-time. Reichenbach points out that
the entropic approach confirms common sense in its intuition that ‘time flows’ and
that ‘becoming occurs’. (Reichenbach 1956, 17)

The concept of becoming acquires a meaning in physics: The present, which separates the
future from the past, is the moment when that which was undetermined becomes deter-
mined, and ‘becoming’ means the same as ‘becoming determined.’ (Reichenbach 1956,
269; cf. Torretti 2007)

But Reichenbach has a tendency to define the entropic behaviour of space ensembles
(ensembles in branch system) as the direction of time. But such an identification
falls foul of the famous reversibility objections to the classic conception of the 2nd
law. It is therefore advisable, in line with Reichenbach’s point about the sectional
nature of time direction, to consider certain physical processes as indicators of an
objective physical passage of time. (b) For this approach to have any chance of
succeeding it must be recognized that entropic relations are frame-invariant in the
STR (Einstein 1907). This aspect is particularly important because many physical
parameters become frame-dependent in the STR and could not serve as a basis for
the identification of physical time beyond proper time. (c) Once we appreciate the
importance of invariance for the measurable passage of time, we realize, as we shall
discuss, that there are other invariant relationships between space-time events, which
could serve as candidates for the identification of objective physical time.

The emphasis on the sectional nature of time direction in the work of Reichen-
bach and Grünbaum seems to survive in latter-day attempts to save a notion of
‘relational becoming’ (Dorato 2006), which regards proper time – time along a
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world line or local temporality – as the only legitimate notion of time in the STR.
(See Dieks 1988; Harrington 2008; Stein 1991) These approaches retain the wel-
come separation of the notion of becoming from the ‘presentism/eternalism debate’
(Dorato 2006, Sect. 1) but they also neglect the importance of invariant relation-
ships. Even the idea of local time – clock time along a world line as real – prevents
us from noticing the invariant features across reference frames. As the axiomatic
approach implies, such invariant relationships are essential for a proper apprecia-
tion of the notion of time. For it is not sufficient to register regular pulses in one
reference frame, regular pulses must be invariant across reference frames in iner-
tial motion with respect to each other for the notion of physical time to make sense
across different reference frames. It is therefore important to consider these aspects
of invariance.

4.2 Time & Invariance

For a reader of the relevant literature, inspired by space-time relationism, it is sur-
prising to find many authors affirming the reality of a static block universe in the
same breath as the asymmetric propagation of electromagnetic signals in space-
time. (Davies 1974; Lockwood 2005; Petkov 2005) It seems a puzzle that, on the one
hand, no time passes in Minkowski representations of null-like related events but, on
the other hand, space-time travellers communicate by the propagation of light sig-
nals. (Shallis 1983, 62) But this puzzle disappears when we realize that these aspects
are matters of representation in the geometric and axiomatic approaches respec-
tively. Any association of the arrow of time with entropic processes is regarded with
a considerable amount of suspicion, not just for the reasons cited above, but also
because it is one of the scandals of modern physics that there is still no consen-
sus on the precise meaning of the 2nd law of thermodynamics. (See Duncan and
Semura 2007; Leff 2007; Aiello et al. 2008) On the other hand, both the axiomatic
approaches and relationism about time require a physical grounding, where this
physical grounding is a matter of appropriate choice. As Saunders points out, a
question that is even more important than objective becoming is whether change
is real. (Saunders 1996, 20–21) This depends on an appropriate physical ground-
ing and entropy seems to be a favourite candidate. (See Wald 2006; Davies 1974)
But for the ‘passage’ of time in Minkowski space-time even regular change must
have invariant aspects. In other words a symmetry transformation between inertial
frames in Minkowski space-time must leave invariant features. For a dynamic view
of Minkowki space-time, invariance is an important aspect of the temporal relations
between events.

We can distinguish several invariant relationships in Minkowski space-time:

� Traditional replies to the block view have relied on the invariance of c and the
space-time interval ds. The invariance of c means that light cones in Minkowski
space-time do not tilt, a fact, which Carathéodory related to Liouville’s theo-
rem. The invariance of ds means that observers will disagree about the spatial
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and temporal lengths between events in space-time from their respective refer-
ence frames, but that the space-time interval, which captures the famous union of
space and time, which Minkowski announced in 1908, remains invariant for all
time-like related observers.

� Simulations of the molecular dynamics of relativistic gases have shown that the
temperature of a moving body does not depend on its state of motion. It is pos-
sible to define a relativistic temperature from statistical data (and to construct
a thermometer), which respective observers in Minkowski space-time could in
principle use to determine time across their respective frames. Bodies appear
neither hotter nor cooler if a relativistic temperature T D �

kBˇj
��1

is adopted
[where kB is the Boltzmann constant and ˇj is a numerical distribution param-

eter, which in these experiments took the value ˇj D 0:702
�
m1c

2
��1

]. The
experimenters concluded that ‘the temperature of classical gaseous systems can
be defined and measured in a Lorentz invariant way.’ (See Cubero et al. 2007) In
principle it would be possible to read time off these thermostats but in practice it
is inconvenient and other methods are preferable.

� But signal propagation offers other possibilities of determining the passage of
physical time in Minkowski space-time. Signal propagation is a thermodynamic
and therefore anisotropic process both for inertial and accelerating observers
in flat and curved space-time. (Petkov 2005) It turns out that entropy and the
spreading of energy states are also relativistically invariant. (Einstein 1907;
Pauli 1981, Sect. 46–9)What follows from this invariance is that the convergence
and divergence of signals is frame-independent, in local neighbourhoods.

The central point in these invariance aspects is that the direction of the energy
flow runs in the same direction for all observers, who could possibly commu-
nicate through such means. So even though two observers do not agree on the
reading of their respective clocks they will agree on the divergence of their sig-
nals from their point of origin. They therefore have a physical grounding for their
time measurements.

(: : :) with the energy flow pointing to the same direction all over the spacetime, we can
legitimately say that ¢ > 0 [¢ is entropy production per unit volume] corresponds to a
dissipative decaying process evolving from non-equilibrium to equilibrium as e�� t and
¢ < 0 corresponds to an antidissipative growing process evolving from equilibrium to non-
equilibrium as e�t . The two processes, which in principle are only conventionally different,
turn out to be substantially different due to the future-directed energy flow that locally
expresses the global time-asymmetry of the universe. (Aiello et al. 2008, 287)

As the quote suggests, it is helpful to introduce a ‘spreading metaphor’ to capture
the essence of the second law. According to this metaphor the entropy symbol, S , is
a shorthand for spreading of energy, which includes spatial spreading of energy and
temporal spreading over energy states. This entails a picture of dynamic equilib-
rium in terms of continual shifts from one microstate to another. (Leff 2007, 1748)
In order to quantify the spreading metaphor, a spreading function = is introduced,
which is a function of a system’s energy E, its volume V and particle number N.
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Connecting the spreading function to entropy S , Leff writes:

For a constant-volume heating process that proceeds along a given = curve, dE D ıQ is
the (inexact) heat differential. Equation (22) - .@==@E/V;N D 1=T - implies that d= D
dE=T D ıQ=T , in analogy with the Clausius entropy form dS D ıQ=T . Thus, with
the temperature definition (22), the spreading function = shares the important mathematical
property d= D ıQ=T with entropy S. (Leff 2007, 1763–1764)

With these considerations in mind we can return to our earlier observation that his-
tories in space-time must include both kinematic and dynamic considerations. We
considered (a) that apart from the time reversal invariance of the dynamic laws, there
are energy flows, pointing in the same direction in local neighbourhoods in space-
time and (b) that these energy flows are associated with the statistical version of the
2nd law, which expresses both regularity and weak T-invariance.

Prior to Einstein, all approaches to time agreed that time was a universal param-
eter, irrespective of the question of whether it only existed in the mind or in the
physical world and irrespective of the question whether it existed in the absence
or the presence of physical events. The notions of absolute and relational time,
whatever their differences, nevertheless express the requirement for regularity and
invariance in physical systems. While in pre-relativistic notions of time regularity
and invariance were frame-independent notions, it is important to note that the STR
calls for different combinations of regularity and invariance.

Proper time is regular for respective observers, attached to inertial frames, but
it is not invariant across different coordinate systems. Hence the STR allows only
for certain invariant regularities. The importance of STR, under the present per-
spective, resides in its distinction between frame-dependent and frame-independent
parameters. The invariant relationships between space-time events therefore acquire
considerable importance for a dynamic view of Minkowski space-time. It is these
regular and invariant relationships, which are based on specific physical processes,
which give rise to an objective passage of physical time.

5 Conclusion

The early block theorists held that two observers in Minkowski space-time could
not establish the ‘march of time’ because of the problem of the relativity of simul-
taneity. Later block theorists held that the well-known relativistic effects establish
the reality of the four-dimension space-time, in which the passage of time reduces
to a mere human illusion. But clearly if the two observers agree on certain regular
and invariant temporal directions of physical events, even only locally, they may
conclude that physical time passes and generally that the four-dimensional world
evolves into their local future. The identification of these time directions is not
based on a global definition of time-orientability of relativistic space-times or the
slicing of four-dimensional space-time by conscious observers. It is based on asym-
metric physical processes, like the energy flow and propagation of signals from the
source into the future light cones of observers. From the observable dissipation of
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signals and entropic invariance the observers will infer that the four-dimensional
world is dynamic. Such observers will be inclined towards the axiomatic method
and construct a space-time representation on the basis of ‘optical’ facts.

The fact that the axiomatic method implies a different view of space-time –
dynamic rather than static – shows that a more inclusive consideration of the history
of space-time relations leads to an opposite but equally consistent view of four-
dimensional space-time. In fact from the axiomatic point of view the block theorist’s
inference to a static universe from the relativity of simultaneity and time dilation
appears to be premature. The space-time facts of the STR seem to be compatible
with two incompatible interpretations of space-time. It is a clear case of underde-
termination. If this suggestion is correct, the majority view can no longer claim
that the passage of time is a human illusion and the only possible inference from
the experimental evidence. From a purely geometric point of view of space-time, the
inference seems reasonable but not from the axiomatic, relationist point of view. The
latter is based on the view that temporal relations between events (in space-time) are
grounded in the order of succession of events. Whilst Leibniz remained unspecific
about the precise physical relations, which could serve as a basis of physical time,
the axiomatic approach suggests that purely kinematic relations, based on time-
reversal mechanical laws, are insufficient to establish physical time in Minkowski
space-time. A space-time relationist will find the axiomatic method more amenable
for it suggests that certain thermodynamic processes, like signal propagation, are
both invariant and regular. They allow the space-time relationist to infer a dynamic
view of four-dimensional space-time.

The following scenario presents itself: if the observers in Minkowski space-time
concentrate on the flow of energy and the propagation of signals they will infer that
‘local’ time has a uniform direction and that space-time is dynamic. The relationist
view entitles them to select such energy flows as examples of the invariant order
of succession of events in space-time. They will disagree with the block theorists
who derive their view from purely geometric and kinematic relations, like null-like
related events. For the geometric approach light signals are timeless but for the
axiomatic view they propagate.

Both the block theorist and the space-time relationist can only make inferences
from measurable or observable phenomena to the nature of space-time. Are there
ways to solve this underdetermination? The opponents would have to show that
some relativistic effects are better indicators of the nature of space-time than oth-
ers. The other strategy is patience: it is possible that some future measurable effect
will be able to resolve the stalemate between the block theorist and the space-time
relationist. For instance, Saunders (1996) holds that physics can decide between
metaphysical views. The writer’s own view is that it is unreasonable to suspect that
science can be a judge in matters metaphysical. However, it is altogether reasonable
to expect that some future observation will show that one metaphysical view is more
compatible with the results of relativity than its opponent.
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Birkhäuser
Huggett, N. (2006): ‘The Regularity Account of Relational Spacetime.’ Mind 115, 41–73
Kittel, Ch., H. Kroemer (1980, 2nd edition): Thermal Physics. New York: W. H. Freeman &

Company
Landsberg, P. T. (1982): ‘Introduction’, in P. T. Landsberg ed.: The Enigma of Time. Bristol: Adam

Hilger
Leff, H. S. (2007): ‘Entropy, Its Language and Interpretation’. Foundations of Physics 37, 1744–

1766
Lockwood, M. (2005): The Labyrinth of Time. Oxford: OUP
Minkowski, H. (1907): ‘Das Relativitätsprinzip’. Annalen der Physik 1915
Pauli, W. (1981): Theory of Relativity. New York: Dover
Penrose, O., I.C. Percival (1962): ‘The Direction of Time’. Proc. Phys. Soc. 79, 605–616



256 F. Weinert

Petkov, V. (2005): Relativity and the Nature of Spacetime. Berlin: Springer
Popper, K. (1956): ‘The Arrow of Time.’ Nature 177, 538; Nature, 18, 382
Popper, K. (1957): ‘The Arrow of Time.’ Nature 19, 1297
Popper, K. (1965): ‘Time’s Arrow and Entropy.’ Nature 207, 233–234
Price, H. (1996): Time’s Arrow and Archimedes’ Point. Oxford: OUP
Reichenbach, H. (1924/1969): Axiomatization of the Theory of Relativity. Berkeley/Los Angeles:

University of California Press
Reichenbach, H. (1956): The Direction of Time. Berkeley: University of California Press
Robb, A. A. (1914): A Theory of Space and Time. Cambridge: Cambridge UP
Saunders, S. (1996): ‘Time, Quantum Mechanics and Tense’. Synthese 107, 19–53
Schlick, M. (1917): ‘Raum und Zeit in der gegenwärtigen Physik.’ Die Naturwissenschaft 5, 162–

67, 177–186
Shallis, M. (1983): On Time. New York: Schocken Books
Stein, H. (1968): ‘On Einstein-Minkowski Space-Time.’ Journal of Philosophy 65, 5–23
Stein, H. (1991): ‘On Relativity Theory and the Openness of the Future.’ Philosophy of Science

58, 147–167
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No Presentism in Quantum Gravity

Christian Wüthrich

Abstract This essay offers a reaction to the recent resurgence of presentism in the
philosophy of time. What is of particular interest in this renaissance is that a number
of recent arguments supporting presentism are crafted in an untypically naturalistic
vein, breathing new life into a metaphysics of time with a bad track record of co-
habitation with modern physics. Against this trend, the present essay argues that the
pressure on presentism exerted by special relativity and its core lesson of Lorentz
symmetry cannot easily be shirked. A categorization of presentist responses to this
pressure is offered. As a case in point, I analyze a recent argument by Monton (Pre-
sentism and quantum gravity, 263–280, 2006) presenting a case for the compatibility
of presentism with quantum gravity. Monton claims that this compatibility arises
because there are quantum theories of gravity that use fixed foliations of spacetime
and that such fixed foliations provide a natural home for a metaphysically robust
notion of the present. A careful analysis leaves Monton’s argument wanting. In sum,
the prospects of presentism to be alleviated from the stress applied by fundamental
physics are faint.

1 Introduction

Presentism is the position in the philosophy of time that maintains that nothing
exists that is not present. In other words, only present events and objects exist, but
no past or future events or objects do. Furthermore, it usually assumes that there is
a succession of presents, i.e. a moving Now. Although logically independent from
the thesis that defines the position, most presentists thus take change, or becoming,
to be a fundamental aspect of reality. Bradley Monton (2006, 264) has appropri-
ately dubbed the package of presentism-cum-becoming “Heraclitean presentism”.
In logical space, as he rightly notes, there could also be a presentist metaphysics
which holds that the spatially extended sum total of existence is completely static in
that fundamentally, it does not involve change at all. Such a “Parmenidean” version

V. Petkov (ed.), Space, Time, and Spacetime, Fundamental Theories of Physics 167,
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of presentism, however, has rarely, if ever, been entertained.1 What is of relevance
to my present purposes is simply the core thesis of presentism according to which
only present events and objects exist, and not whether this core is adorned with
Heraclitean or Parmenidean plumes.2

There are a number of metaphysical objections against presentism in the liter-
ature, and they shall not be surveyed here. Moreover, some authors have denied
that it presents the only, or even best, way to account for our intuitions about
the phenomenology of temporality–traditionally considered the strong suit of pre-
sentism. But a much more powerful, and potentially devastating, challenge arises
frommodern physics: Einstein’s special relativity (SR) provides strong, and perhaps
conclusive, reason to view space and time not as two separable and quite distinct ani-
mals, but much rather as entangled aspects of the same underlying four-dimensional
manifold that fuses the two into a “spacetime”. It was Hermann Minkowski’s
great achievement to recognize the inseparability of space and time resulting from
Einstein’s theory when he solemnly declared at the Assembly of German Natu-
ral Scientists and Physicians in Cologne in September 1908: “The views of space
and time which I wish to lay before you have sprung from the soil of experimen-
tal physics, and therein lies their strength. They are radical. Henceforth space by
itself, and time by itself, are doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent reality.” Minkowski was also
the first to correctly describe the geometrical properties of this fused “space-time”
structure that today we call Minkowski spacetime. Section 2 explicates how SR and
its attendant Minkowski spacetime exert significant pressure on presentist positions
and thus revisits the issue of compatibility of SR and presentism.

Although SR does not apodictically rule out presentism, it constrains it in a way
that renders whatever presentism survives the relativistic revolution a metaphysi-
cally rather unattractive cripple. One might have expected that this would do it.
But presentism dies hard, very hard. In fact, after a period of relative tranquility, it
enjoys something of a renaissance in the philosophy of time. What is striking about
this renaissance is that many of the hold-out (or born-again) presentists attempt
to support their position by arguments of the kind that have traditionally been the
weapon of choice for many of their opponents: arguments drawing on results from
the physical sciences. Section 3 analyzes in some detail a particularly interesting
case recently offered by Monton (op. cit.). His proposal is important in that it
promises to breathe new, scientifically sophisticated life into the otherwise moribund

1 Barbour (1999) can be read as offering a Parmenidean presentist view. Of course, there is lots
more logical space available, e.g. containing a presentist position which subscribes to a moving
Now without there being any change whatever. Furthermore, the basic presentist claim can be read
as obtaining by necessity or merely contingently, which opens logical space for necessitarian and
Humean brands of presentism. All these further varieties and distinctions, however, do not affect
the present argument. I shall thus ignore them here.
2 I understand that there is real worry about whether the debate between presentism and eternalism
is well-formed and metaphysically substantive, cf. Callender (2000), Dorato (2006), and Savitt
(2006a). As I argue in an unpublished essay, however, I believe that these worries can ultimately
be dispelled. I wish to thank Steve Savitt for taking me to task on this issue.
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idea of presentism. Section 4 then investigates the prospects of presentism in the
so-called constant-mean-curvature (CMC) foliation approach to quantizing grav-
ity, which Monton finds particularly amenable to his presentist inclinations. It will
illustrate the many ways in which the CMC approach fails to vindicate presentism,
despite its initial allure to the presentist. SR, while strictly speaking false of the
actual world, at least in an unqualified sense, imposes an important constraint on
feasible physical theories, or at least on all physically acceptable interactions. In
this sense, it can also be considered a “second-order theory”. This section, it should
be warned, will be somewhat technical due to the nature of the material covered in
it. Finally, Sect. 5 offers some conclusions.

2 Minkowski Spacetime and the Pressure from Special
Relativity

The eternalist considers the four-dimensional “block universe” with all of spacetime
and everything it contains to make up the sum total of existence. By contrast, the
presentist maintains that the sum total of existence can be understood as consisting
of a three-dimensional manifold of spatially distinct but temporally equally present,
and thus simultaneous, events or objects. Presentism thus seems to require an objec-
tive “foliation” of Minkowski’s spacetime into hyperspaces of three-dimensional
“space” ordered by a one-dimensional “time” parameter.3 In that it claims a differ-
ent ontological status for those things present from those non-present, it (usually)
presupposes that the distinction between the present and the non-present can be
drawn in a principled, objective way. In other words, it requires a metaphysically
robust, objectively valid concept of a spatially extended present.4 Alas, SR provides
a strong reason to believe that that can’t be had.5

3 A foliation slices up the four-dimensional spacetime into space and time via an equivalence rela-
tion interpreted as “simultaneity”. A binary relationRxy is an equivalence relation on a set S iff it
is reflexive (for all x 2 S;Rxx), symmetrical (for all x; y 2 S , if Rxy, then Ryx), and transitive
(for all x; y; z 2 S , ifRxy and Ryz, then Rxz). Space at a time is then given by the corresponding
three-dimensional “folium” and time is the one-dimensional linearly ordered quotient set induced
by the equivalence relation, “lining up” the moments of simultaneity.
4 At least standardly; Harrington (2008) has defended a “point present”, a radically solipsistic
version of presentism according to which not only temporally present events exist, but also only
spatially present ones. For the point presentist, not even all of my present brain exists. Harrington’s
position evades the objection raised in this section–but at what price!
5 While this paper focuses on presentism, a possibilist metaphysics defending a growing block or
branching tree structure faces analogous challenges from SR. For instance, McCall (2000) main-
tains the reality of the past and the present, with the future as a branching set of four-dimensional
alternatives. The “present” is the first branch surface, which is defined as a maximal set of pairwise
spatially separated events. In order to uphold Lorentz invariance, the branch attrition along these
surfaces is relativized to inertial frames. In this sense, McCall’s view is the possibilist analogue of
Fine’s presentism, presented below.
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In pre-relativistic physics, the notion of simultaneity of spatially distant events
was unproblematic. In SR, however, it turned out that the requisite four-dimensional
spacetime had a radically different structure: whether or not two spatially distant
events are simultaneous was no longer an objectively and universally determinable
fact of the matter. Two inertial observers at some relative velocity with respect to
one another do not agree whether two events are simultaneous or not. The rela-
tion of simultaneity is thus relativized to reference frames. In a technical language,
this means that there is no preferred foliation of spacetime into slices of three-
dimensional spaces representing classes of simultaneous events. If we define “the
present” as consisting of all those events which occur simultaneous with the point
in spacetime representing the here and now, then the relativity of simultaneity seems
to imply that the presentist is committed to relativize existence analogously: if we
are two inertial observers moving at some relative speed, we take different distant
events to be real!

Let’s back up a little and have a closer look at how (classical and relativis-
tic) physics conceives of time. Classical Newtonian mechanics does not postulate
a Now, but is blatantly compatible with a metaphysically robust and objectively
valid concept of a spatially extended present. In fact, a (non-relativistic) time-
reparametrization-invariant theory, i.e. a theory in which the action remains invariant
under redefinitions of time t 0 D f .t/, generally allows for the possibility of an
objective spatially extended present, and even for temporal flux or becoming. In
such a theory, two situations differing only in their parametrizations of time are
really descriptions of one and the same physical situation. Consequently, time does
not exist as an objectively measurable independent degree of freedom; more pre-
cisely, time is not a magnitude with an objectively privileged metric. In a theory like
this, however, there exists an objective total ordering of events in time.6

Special-relativistic theories admit only a partial temporal ordering of events. The
loss of absolute simultaneity leads to a loss of comparability: with an interpretation
of the binary ordering relation as “being earlier than or simultaneous to”–it is a tem-
poral ordering that we are seeking after all–, pairs of spacelike related events do
not stand in this relation. There is simply no frame-independent fact of the matter
as to whether event a is earlier than event b or the other way around for two space-
like related events a and b. In general-relativistic theories, where the topology of
a spacetime may fail to even permit a non-unique foliation of spacetime into space
and time, the possibility of causal loops entails that the temporal ordering is in gen-
eral not even weakly asymmetric, i.e. there no longer is a partial temporal order of
events. In fact, there is no global time deserving this title in general relativity (GR),
a fact that finds a particularly vivid expression in the so-called “problem of time”
arising in the Hamiltonian formulation of GR. Sic transit gloria temporis.

6 A total order on a set S is given by a binary relationR that is reflexive (Raa for all a in S), weakly
antisymmetrical (for all a; b 2 S;Rab and Rba entails a D b), transitive (for all a; b; c 2 S;Rab

and Rbc entails Rac), and comparable (for any a; b 2 S , either Rab or Rba). A partial order
on a set is a binary relation with the first three properties, but not the last one. Thus, in a partially
ordered set, there exist pairs of elements in the set which do not exemplify the relation.
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Let’s see what all of this implies for the prospects of presentism. Suppose one
upholds the following basic commitments:

Naturalism: Our metaphysical positions must be compatible with physics, at least
to the extent to which the latter is taken to be true of the world.

SR-Realism: Special relativity (SR) is taken to be (approximately) true of the
world.

Presentism: There exists an objective spatially extended present and only events or
objects in this present exist.

Of course, Presentism implicitly asserts that it is a coherent, non-trivial, substantive
metaphysical position. Naturalism and SR-Realism jointly imply

Compatibilism: Whatever metaphysical view of the world we advance must be
compatible with the fact that SR is (approximately) true.

My purpose here is not to defend any of these theses but only to ask whether a com-
mitment to Compatibilism is consistent with maintaining Presentism. It is, as we
shall see. The question, however, is whether Compatibilism leaves the presentist
with an interesting position at all. The lesson gleaned from an argument indepen-
dently advanced by Wim Rietdijk (1966) and Hilary Putnam (1967) suggests that it
does not. Since their argument is well known, let me only briefly remind the reader
how it essentially goes.7

The Rietdijk-Putnam argument assumes that the task is to figure out which of
the spatially distant events in the four-dimensional spacetime are co-present with
the here-now. To identify the objective, spatially extended present strikes me as an
unavoidable task if presentism is characterized as I did above. Next, introduce an
equivalence relation R interpreted as “being simultaneous with”. Then, use R to
construct the spatially extended present, starting out from the here-now. The prob-
lem essentially is, as mentioned above, that in SR simultaneity relations become
frame-relative. This was the content of the relativity of simultaneity. If in Fig. 1, e
designates the here-now, then the event denoted by a is simultaneous to e as far
as the primed frame is concerned, but in the future of e according to the unprimed
frame. In other words, in the primed frame,Rae, but in the unprimed frame, :Rae.
Thus, there is no objective fact of the matter which spatially distant events are co-
present with the here-now. It gets worse. Since simultaneity is a transitive relation,
one would expect that what is co-present with a spatially distant event co-present
with the here-now is also co-present with the here-now. Consider the situation as
shown in Fig. 2. In the unprimed frame, e0 is certainly simultaneous with e and
because e represents the here-now, e0 is also present (and thus exists). However, in
the primed frame b is certainly simultaneous with e0 and because e0 is present, b is
also present (and thus exists). Moving from one frame of reference to another in the
course of the argument ought to be acceptable if simultaneity were objective, i.e.
frame-independent. Of course in SR, it isn’t. But that’s the point. Consequently, a

7 For a more basic and detailed rendering, see Savitt (2006b).
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Fig. 1 The Rietdijk-Putnam
argument illustrated
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presentist is committed to the existence of event b which is in the future of e with
respect to all frames of reference. But this is surely a reductio of the position.

Presentists have responded in a variety of ways to the pressure exerted by the
Rietdijk-Putnam argument and I shall not list them in any detail, but just highlight
the basic strategic options. Here are some incompatibilist strategies, i.e. responses
rejecting Compatibilism in one form or other. First, a presentist could deny Nat-
uralism. Such denial could take different forms. One could, as does Jonathan
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Lowe,8 claim that SR is not a theory about time but about something else instead.
Alternatively, one could retort by accepting that SR speaks to the geometry of space-
time but reject that this has any ontological import, as does Dean Zimmerman
(2008).9 Second, a presentist might reject SR-Realism, simply asserting that SR
is not approximately true of the world. This could occur simply on a priori grounds,
an option I will not comment on. In fact, the remainder of this essay after this sec-
tion will be dedicated to explore a posteriori exit strategies denying SR-Realism.
Relevantly, Monton (op. cit.) can be read as a representative of this strategy, as will
become clear below. Also, considerations from quantum mechanics can be invoked
in an attempt to establish that SR is false or incomplete insofar as it lacks an abso-
lute, privileged frame of reference. This response comes in different flavours: (a)
(non-relativistic) collapse dynamics require a preferred frame in which the collapse
occurs; (b) Bohmian interpretations are incompatible with SR; and (c) invoke Bell’s
theorem to argue that some tenets of SR must be given up. I concur with Craig
Callender (2008) that these strategies don’t succeed, but will not elaborate here.

What are the basic compatibilist responses at the presentist’s disposal? First, the
set-up of the Rietdijk-Putnam argument could be rejected as doing violence to a
genuinely presentist metaphysics. What is more or less tacitly presupposed in the
argument, it could be insisted, viz. that there is a four-dimensional manifold of
spacetime events such as Minkowski spacetime of which it is then our task to deter-
mine which of these events are “determinate” as of the here-now or are objectively
present, ought to be discarded by the presentist. While I think that it is still a per-
fectly justifiable task to ask of the presentist to describe the sum total of existence, to
somehow tell a story as to how her position can be reconciled with SR, the Rietdijk-
Putnam argument certainly still has force against an ersatzist version of presentism,
which, as I have argued elsewhere (unpublished), we are forced into in order to save
presentism from the threat of trivialization. On the other hand, a presentist might
simply bite the bullet and consequently relativize existence, an option chosen by
Kit Fine (2005; particularly Sect. 10, pp. 298–307): since what is present is rela-
tive to an inertial frame, what exists becomes fragmented in that it depends on the
choice of frame. There is an intermediate strategy, somewhere between accepting
the full consequences of the argument and rejecting the way it sets up the pre-
sentist commitments: define the objectively existing present purely in terms of the

8 In a paper entitled “Experience of change and change of experience”, delivered at the University
of Geneva on 19 December 2008.
9 Zimmerman, together with a number of present-day presentists, is hard to classify as either com-
patibilist or incompatibilist as he accepts SR, but not in the role a naturalist usually would. He
thinks that SR leaves room for an additional relation of simultaneity not to be found in physics.
This relation would only clash with physics if the latter were committed to a principle prohibiting
extra relations of this sort, but such a principle, he thinks, would not be warranted. Of course, this
relation would still effectively foliate spacetime. Such a foliation could either be observed, or it
couldn’t. If the former, Compatibilism would be denied; if the latter, we run into similar problems
as the defense championed by Tooley and Craig, which is essentially of that type and shall be
discussed below. I thank Jonathan Cohen for having reminded me of this connection.
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Lorentz-invariant structure available in Minkowski spacetime. The solipsistic ver-
sion mentioned earlier (in footnote 4) and defended by James Harrington (2008)
trivially makes only use of the Lorentz-invariant structure, viz. a single spacetime
point as representing the spatiotemporal location of the sum total of existence. But
does this capture the true spirit of presentism? It can be doubted, as neither exis-
tence nor “becoming” remain universal on this proposal. Fine (2005, 304) puts
it succinctly: presentists tend to be impressed by the distinction between space
and time which they take to be metaphysically deep in that they think that there
exists an objective “now”, although there does not exist an equally objective “here”.
Of course, this intuition is lost in solipsistic presentism. Accordingly, it violates
Presentism as I defined it above.

An alternative way of make exclusive use of the Lorentz-invariant structure has
been proposed by Howard Stein (1991) and could be termed past-light cone pre-
sentism. The main idea is to identify the spatially extended present as the set of
events on the past light cone of the here-now. Yes, you haven’t misread: the idea
is to define the present as the set of events on the past light cone. This proposal
is Lorentz-invariant and can be motivated by an appreciation of epistemic accessi-
bility, as causal signals reaching us now emanate from the events on the past light
cone and thus appear to us as being co-present. While on the solipsistic version, the
simultaneity relation remains, trivially, an equivalence relation, it is no longer sym-
metrical and transitive in past-light cone presentism. Symmetry, but not transitivity,
can be restored by extending existence to events on the future light cone. But in what
sense would this still be the present? Points on Andromeda some four million years
apart in time, but at no distance in space according to some joint frame of reference
for a generic observer on earth and one on Andromeda, would both be co-present
with the here-now.

A final compatibilist strategy that ought to be mentioned is to accept that SR
offers a perfectly empirically adequate theory, but to insist that absolute simultaneity
still exists. It is just that we cannot possibly detect the privileged frame of reference
which determines the present. In other words, absolute simultaneity is not empir-
ically accessible. This strategy is, arguably, compatibilist only in letter, but not in
spirit. Its motivations may be metaphysical or physical. A variant of the former is
found in Michael Tooley (1997), one of the latter in neo-Lorentzian interpretations
of SR, such as the one attempted by William Craig (2001).10 In both cases, the
metaphysics fully relies on postulated extra-structure that can’t even in principle be
observed. The extra-structure needed is not motivated by more than specific meta-
physical agendas or a refusnik attitude toward SR. It violates Ockham’s razor so
crassly that the move cannot be justified by putting some post-verificationist philos-
ophy of science on one’s flag. An argument to the effect that since it is only because

10 Craig also seems to think that SR is a kinematic theory that only underwrites electrodynamics,
and not all or even most of physics. This is simply false. Physicists are working hard to make sure
that all theories are Lorentz-invariant. If they fail in doing so, it is generally accepted that their
theory faces a major problem.
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of some ill-advised verificationist commitment that SR prohibits a privileged frame,
and since we know that verificationism is false, we can infer that there is absolute
simultaneity, does obviously not succeed. But note that even if we permitted the
stipulation of this unobservable extra-structure, such as a simultaneity relation, it
appears that it cannot do the work asked of it. If one’s goal is to produce a meta-
physics that vindicates our pre-theoretical (non-)ascriptions of simultaneity, then
a postulated simultaneity relation will not help such vindication so long as it is
epistemically inaccessible. And if it is epistemically accessible, Compatibilism is
violated even in letter.

In sum, the prospects of compatibilist strategies appear bleak. Those of incom-
patibilist responses hardly seem brighter, at least not for those of us who accept
Naturalism–except if we came to offer a strong a posteriori argument as to why SR
does not approximately hold of the actual world. There is plenty of physics that such
an argument could turn on. It could be that Lorentz symmetry only holds approx-
imately and at large scales, e.g. if the underlying spacetime structure is discrete.
Depending on how approximately it would hold, this may still lead to a compati-
bilist strategy. It could be that if gravity is turned on, or if we take quantum effects
into considerations, or both, it will be seen that SR is invalid. To discuss, or even
list, all the physics that such an argument could make use of is the task for another
day. It is an interesting task that will lead the investigator into a thick, and almost
impenetrable, forest of foundational issues in fundamental physics. Today, I will
confine myself to an analysis of the suggestion in this vein recently made byMonton
(op. cit.).

3 Monton’s Incompatibilist Defence of Presentism

Monton sums up the Rietdijk-Putnam argument as follows (op. cit., 264):

(1) “Presentism is incompatible with [special] relativity [. . . ]”
(2) SR “is our most fundamental theory of physics.”
(3) “Presentism is incompatible with our most fundamental theory of physics (from

(1) to (2)).”
(4) “Presentism is false (from (3)).”

While Monton recognizes that the step from (3) to (4) is non-trivial, he finds it
preferable if the presentist wouldn’t have to rely on blocking that step. In other
words, at least for the sake of the present argument, he accepts Naturalism. Con-
sequently, rejecting the argument will require denying either one of the first two
premises or the inference from them to (3). But this inference is obviously valid.
Offering an incompatibilist stance, Monton accepts premise (1). Remains premise
(2): Monton finds it “relatively uncontroversial” that thesis (2) is false, i.e. that SR
is not our most fundamental theory of physics. There is certainly a sense in which
he is right: once gravity is taken into account, SR must be replaced by GR which



266 C. Wüthrich

is arguably more fundamental; GR is incompatible with quantum physics and both
must be superceded by a quantum theory of gravity, which in turn may ultimately be
supplanted by a “theory of everything”. Thus, (2) is false. Of course, (3) could still
be true, viz. exactly in those cases where it turns out that the final fundamental the-
ory of physics is still incompatible with presentism, perhaps for reasons unrelated
to the relativity of simultaneity. But, injects Monton, there are quantum theories
of gravity which are compatible with presentism. What he has in mind here are
approaches in so-called fixed-foliation quantum gravity (QG), such as QG relying
on foliations of spacetime into hypersurfaces of constant mean (extrinsic) curva-
ture or “CMC” for short. From the existence of such theories in QG, he infers
that “(3) is false, and presentism is unrefuted” (ibid., 265). This inference is of
course only valid if it is the case that one of those quantum theories of gravity com-
patible with presentism is in fact the most fundamental theory of physics. I will
overlook, at least for now, this overly excited inferential step, but we will have to
revisit it.

Monton’s argument can be thought of as consisting of two steps: first, SR is
marginalized as an irrelevant, and false, theory; second, the CMC approach to QG
is then presented to add credence to the claim that fundamental physics is hospitable
to presentism. The remainder of this section discusses the first part of the argument,
the next section analyzes the second part.

Let me give three preliminary comments. First, I find it rather curious that Mon-
ton formulates the argument in terms of which theories are fundamental. Whether
or not a theory–any theory–with which presentism’s compatibility is tested is funda-
mental or not seems entirely beside the point. What matters is truth. Incompatibility
with a theory which is true of the actual world seems a sufficient condition to rule
out a metaphysical proposal. Presumably, fundamentality entails truth; no theory
could reasonably be considered fundamental if it were not true. But of course fun-
damentality is not necessary for truth. There are many theories about higher-level
phenomena, and presumably some of them are true without being fundamental. But
that’s the crux: by denying that SR is fundamental, Monton means to imply that
it is false. Since incompatibility with a false theory is not problematic, presentism
would be saved. In general, however, non-fundamentality does not entail falsehood.
The situation at stake is more subtle, as it turns out. Strictly speaking, and if no qual-
ifications about its domain of applicability are added, SR is a false theory: it is not
in toto true of the actual world. However, it is still believed to impose a very rigid
constraint on any candidate fundamental theory. Just exactly what this constraint is
will ultimately be decisive in adjudicating whether presentism is compatible with
the best physical theories true of our actual world. I will return to this below.

In a sense, it’s even worse than this. Arguably, fundamentality imposes a partial
ordering on theories. But this means that there may fail to be a fact of the matter as
to which one of two particular theories is more fundamental. Furthermore, funda-
mentality may not be well-defined or philosophically justifiable as an important, or
relevant, criterion. Thus, fundamentality appears to be a requirement which may be
inapplicable in, as well as irrelevant to, the case at hand.
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Second, let me illustrate the dialectical landscape as I see it. We have seen
above that Monton’s argument can only offer respite for presentism if it cannot
only claim that SR is not a fundamental theory, but if it can also be made credible
that presentism has good chances of being compatible with our most fundamental
theory of physics, and that (3) is thus false. But in order to establish that, Mon-
ton must navigate between the Scylla of triviality and the Charybdis of falsehood.
On the one hand, his argument could be interpreted as primarily expressing general
scepticism about the current state of physics. Since we don’t have the physics in the
ideal limit of scientific enquiry, would be the thought, a presentist can maintain hope
that she will ultimately be vindicated. But such a hope would be pious indeed. Thus,
if the intended conclusion is simply that in principle it could be that presentism
will eventually be compatible with fundamental physics, then it is disappointingly
trivial.

On the other hand, Monton’s argument may be read as offering a crystal ball
from which the future of QG can be gleaned. Here, the idea would be to reach a
prediction that, at least with reasonable probability, the final theory will be hos-
pitable to presentism. But such a prediction would be audacious indeed. In fact, if
the claim is that it is reasonably likely that presentism will eventually be compatible
with fundamental physics, then the argument is unacceptably false.

It might be protested that I am striking Monton with an unfair dilemma. I am not:
I don’t claim that his conlusions are either trivial or false. What I am saying, how-
ever, is that he must strike a fine balance in order to end up with a substantive and
true conclusion. What I will attempt to show in much of the remainder of this essay
is that the room to manoeuvre between said Scylla and Charybdis is uncomfortably
tight.

Third, Monton treats the classical and the corresponding quantum version of a
theory curiously disanalogous. Such a disparity may sometimes be justified, but
arguably not here. Let me explain. Monton seems to think that choosing a particu-
lar (CMC) foliation is inadmissible at the classical level, but entirely unproblematic
once we go to the quantum theory. He asserts that presentism is incompatible with
SR and GR because Minkowski and general-relativistic “spacetimes do not have
a foliation into spacelike hypersurfaces as part of their structure.” (ibid., 267) Such
foliation, he admits, can sometimes be picked out, but “the foliation is not part of the
spacetime structure as given, and thus imposing such a foliation amounts to chang-
ing the theory.” (ibid., 268) It is somewhat mysterious why he has such qualms
about changing the theory, particularly since at the end of his essay, he has no hes-
itation to proclaim that a committed presentist ought to demand that since string
theory and loop quantum gravity do not account for presentist intuitions, they ought
to be modified accordingly. Furthermore, as will become clear in Sect. 4, almost
all of the work on the CMC approach has been done at the classical, not at the
quantum, level. For canonical approaches, the classical and the quantum levels are
not interpretationally independent: canonical quantization necessitates an interpre-
tation of the classical theory to be quantized which will then be carried over into the
corresponding quantum theory. Thus, for the fixed-foliation approach to QG that
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Monton advocates, a CMC interpretation of the classical theory is presupposed and
the disparity assumed by Monton seems ill-justified.

Leaving the preliminaries, Monton starts out stating this argumentative goal:

ŒBecause special and general relativity are not our most fundamental theories of physics�,
the compatibility of presentism with special and general relativity is prima facie irrelevant
to the issue of presentism5 . I will argue that this prima facie appearance is in fact correct.
(ibid., 267)

Footnote 5 takes no prisoners: against Mark Hinchliff who asserted that SR is “one
of our best-confirmed scientific theories of the nature of time” (1996, 131), Monton
declares that

[t]his claim is false: the special theory is a decisively refuted theory of the nature of time.
Special relativity is incompatible with such phenomena as the gravitational redshift and
gravitational lensing, phenomena that provide evidence for general relativity. (ibid.)

As Monton acknowledges, scientists do not reject all old ideas in a scientific
revolution. Thus, one might require that the incompatibility of presentism with
SR be carried over to any legitimate candidate fundamental theory. However, he
quickly dismisses this answer on the basis that since there are many potentially
viable approaches to QG, some of which frustrate the demanded incompatibility,
there are no compelling grounds on which a presentist must concede an eventual
incompatibility.

Because of the lack of data to back up the claim that a good theory is incompatible with
presentism,

Monton concludes that

all the literature on the issue of whether presentism is compatible with [. . . ] relativity is
[. . . ] irrelevant to the issue of whether presentism is true. (ibid., 269)

While it is certainly true that there is no empirical data directly suggesting an incom-
patibility with presentism, this conclusion can’t be had that easily. The Principle
of Relativity, i.e. the demand that the physics is the same in all inertial frames, is
encoded in a theory as the Lorentz covariance of its dynamical equations, which
means that there can’t be any dynamical phenomena that would allow us to pick a
privileged frame and thus an absolute simultaneity. In SR, this dynamical symmetry
is carried over into the spacetime structure, leading to the geometry of Minkowski
spacetime, which of course is invariant under Lorentz transformations. In GR, the
Principle of Equivalence ascertains that at each point of spacetime, the space-
time structure exhibits the same symmetry. Quantum field theory (QFT) assumes
the Minkowski spacetime as Lorentz-invariant background structure, and QFT on
curved spacetime makes the same symmetry assumption for each point of the
(curved) spacetime background. In fact, most physicists would agree that dynam-
ical equations ought to be Lorentz-covariant and that the background spacetime at
least of semi-classical theories must have the relevant symmetry at least in some
local sense.
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The fixed-foliation quantum theories of gravity to be discussed in the next sec-
tion violate the Principle of Relativity in that they require a preferred frame of
reference.11 There is to date, of course, no empirical indication whatsoever that such
a preferred frame of reference exists. In fact, Lorentz (or, more precisely, Poincaré)
symmetry is fantastically well confirmed.12 Thus, to require that Lorentz symme-
try be valid is well justified. Now, this in itself does not entail an incompatibility
of presentism with empirical data. As we have seen in Sect. 2, there are perfectly
Lorentz-invariant ways of formulating a presentist position, although there is con-
siderable doubt whether they succeed in fully capturing the spirit of presentism.
Be this as it may, the fact that Lorentz symmetry is so well confirmed puts serious
pressure on any approach that requires a preferred reference frame.13

Let me frame this in more general terms. SR can be thought of as a “first-order
theory”, i.e. a theory which makes claims about the world and as such can be true or
false of the actual world. As it completely ignores gravity, a strong case can be made
that it is, in fact, false. However, it might also be regarded as a “second-order the-
ory”, i.e. a theory that places certain constraints on other theories. More specifically,
it requires that all possible physical interactions be governed by Lorentz-covariant
dynamics. Second-order theories that provide constraints in the form of necessary
conditions may be considered true if they correctly rule out false first-order theories
and false in that they incorrectly rule out true first-order theories.

In sum, I submit that Monton is grossly underestimating the argumentative work
that would be necessary to brush SR to the side. Thus, he has failed, in my view,
to sufficiently establish the first part of his argument, viz. to marginalize SR as
an irrelevant and false theory. It turns out that in exactly those aspects which are
relevant to a presentist, SR is too pertinacious to be so easily blown away by the
simple need of a quantum theory of gravity. Let us turn to the second step of the
argument.

11 Monton agrees: “the proponent of fixed foliation quantum gravity will agree that there is a pre-
ferred frame of reference, and can admit that [. . . ] the theory makes sense only in one reference
frame.” (ibid., 271)
12 For an authoritative review of experimental tests of Lorentz symmetry, cf. Will (2005a, b); for
a recent review on phenomenological indications that Lorentz symmetry may be broken at the
Planck scale, cf. Amelino-Camelia (2008).
13 Monton addresses remarks by Gordon Belot and John Earman (2001) that could be framed as
an objection to his view. They argue that fixed-foliation approaches to QG have few adherents
because “[t]o forsake the conventional reading of general covariance as ruling out the existence of
preferred co-ordinate systems is to abandon one of the central tenets of modern physics” (241).
Monton disagrees vehemently: He flatly denies that fixed-foliation approaches require a preferred
coordinate system. He bases this denial on Kretschmann’s objection to general covariance as a
physically contentful constraint on theories. While it is perhaps true that fixed-foliation theories
can all be formulated in a generally covariant manner, the objection becomes impotent if general
covariance is interpreted in the correct, substantive way, i.e. as a gauge symmetry of GR. Although
the particular formulation chosen by Belot and Earman may be unfortunate, their point essentially
stands: fixed-foliation theories break the symmetry for which we have excellent reason to believe
that every viable theory must respect it.
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4 The CMC Foliation Approach: A New Home
for Presentism?

The constant mean curvature (CMC) foliation approach is a fixed-foliation theory as
discussed in the previous section.14 In fact–and this ends up undermining Monton’s
case–, it is not really an approach to QG in its own right, but merely a technique
that is explored on the road to QG. It starts out, like other canonical approaches to
gravity, from a formulation of GR as a Hamiltonian system with constraints, dealing
with spacetimes of topology˙�R–in itself a limitation. The canonical variables are
the 3-metric induced on the spacelike hypersurface ˙ , which describes the geom-
etry of ˙ , and its extrinsic curvature, which specifies the embedding of ˙ in the
four-dimensional manifold. The content of Einstein’s field equations–the dynami-
cal equations of the standard formulation of GR–is re-expressed in the constraint
equations. These constraints define a subspace of the phase space � , the so-called
constraint surface N� . In the CMC approach, only the subset �� � N� defined by the
condition that the mean (i.e., the trace) of the extrinsic curvature is constant is con-
sidered. This mean (extrinsic) curvature is denoted by � . A spacelike hypersurface
˙ has constant mean curvature just in case � is constant across ˙ . Why does this
condition deserve to be called a “time gauge”, indicating that the spacetime is foli-
ated into sets of “simultaneous” events? It just so turns out that a reasonably large
open subset of the space of models of GR consist of spacetimes admitting a unique
foliation into hypersurfaces parametrized by constant mean curvature. If a general-
relativistic spacetime is sliceable into hypersurfaces of constant mean curvature–call
these spacetimes CMC-sliceable–, then � varies monotonically within a constant
mean curvature foliation.

Starting out from the subset �� � N� of CMC-sliceable spacetimes, a particular
foliation is chosen for every model in that subset: the CMC foliation. This move sig-
nificantly reduces the technical difficulty of solving the constraint equations in that
it effectively eliminates three of the four usual constraint equations, and three of the
four functions to be solved for. Essentially, reducing N� to �� amounts to fixing the
gauge, hence “time gauge”. The only gauge freedom left are reparametrizations of � .
Thus, general covariance is broken down to time-reparametrization invariance,
which effectively brings the situation back to a time-reparametrization-invariant
theory as characterized early in Sect. 2. Also, this step simplifies the remaining
constraint equation to an equation linear in the momentum conjugate to � . Given
a particular �-parametrization then, one can construct a Hamiltonian. The resulting
time-dependent Hamiltonian H.�/ effectively measures the spatial volume of the
universe. More precisely, it provides a measure for the volume of the Cauchy sur-
face of mean extrinsic curvature � . Thus, as Beig (1994, 77) concludes, by selecting

14 This section is inevitably more technical than the rest of this essay, although an effort is made to
provide a self-contained characterization of the approach. For more extensive and rigorous presen-
tations of the approach, consult Beig (1994, 74–77), Fischer and Moncrief (1997), Isenberg (1995),
and Rendall (1996). Cf. also Belot and Earman (2001, particularly 239f).
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a distinguished parametrization, a time-dependent Hamiltonian system with the
Hamiltonian given by the volume function can be constructed to mimic a cousin
of GR. Once the classical Hamiltonian theory is in place, then, an attempt can be
made at cooking it up into a quantum theory using the canonical recipe. It turns
out that a canonical quantization of such a Hamiltonian system can successfully be
completed for the .2 C 1/-dimensional cousin of GR, but not for the much more
pertinent .3C 1/-dimensional case of full GR.

The CMC approach has additional serious limitations, both at the classical and
the quantum level. First, it is well-understood only for the vacuum case and for spa-
tially closed spacetimes, i.e. for spacetimes with manifolds such that ˙ is compact
and without boundary. There are good reasons to believe that the actual universe
exemplifies neither of these properties. Second, not all globally hyperbolic, spa-
tially closed vacuum spacetimes admit a foliation into hypersurfaces of constant
mean curvature.15 Apart from the limitations noted above, this means that the
CMC approach cannot deal with some general-relativistic spacetimes, even if we
restrict those to be globally hyperbolic. There is no consensus as to how severe the
restriction to globally hyperbolic spacetimes is. On the one hand, there are impor-
tant classes of non-globally hyperbolic spacetimes.16 On the other hand, important
approaches to QG such as loop quantum gravity are confined to the same class
of spacetimes. Also, the initial value problem can only meaningfully be addressed
in the context of globally hyperbolic spacetimes. I will leave this question aside
and instead turn to a brief discussion of the reach of the spacetimes amenable to a
CMC-slicing.

Such a discussion starts out from the conformal reformulation of the standard
constraint equations of Hamiltonian GR as proposed and developed by André Lich-
nerowicz and Yvonne Choquet-Bruhat and James York (1980). The conformal
method has proved to be a potent means to approach the Cauchy problem and has
important applications in numerical GR. The question that is being asked is not
which part of a given spacetime can be covered by a CMC foliation. Rather, the
idea is to simultaneously construct or recover a full four-dimensional spacetime as
the solution of a Cauchy problem as well as to obtain a CMC foliation of it, using the
mean curvature � to parametrize the foliation and thus to provide a global time func-
tion. Naturally, this approach cannot hope to result in anything other than globally
hyperbolic spacetimes.

The approach starts out from initial data on a spacelike hypersurface ˙ , the
induced metric �ab on ˙ and a symmetric tensor field �ab , which is trace-free
(�ab�ab D 0) and divergence-free (	ra�ab D 0 where 	r is the covariant deriva-
tive compatible with �ab) with respect to �ab . The tensor field �ab is the second
fundamental form on ˙ . Roughly, � corresponds to the spatial components of the
metric and � to their time derivatives. To these, the scalar field � is added. The triple
.�ab; �

ab ; �/ on ˙ , usually called the conformal data, then acts as initial data for

15 Cf. Bartnik (1988) and Rendall (1996).
16 Cf. Smeenk and Wüthrich (2010) for more on non-globally hyperbolic spacetimes.
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the Hamiltonian equivalent of Einstein’s field equations. This is to be understood
in the sense that the usual initial data for the standard Hamiltonian field decompo-
sition into induced 3-metrics and extrinsic curvature satisfy the standard constraint
equations if and only if the conformal data satisfy the corresponding conformal
constraint equations. These equations, which I am not going to reproduce here, con-
stitute a coupled quasilinear elliptic system of partial differential equations that do
not afford a solution for all choices of conformal data (and hence not for the corre-
sponding standard situation). These equations pose formidable technical obstacles
and do consequently not surrender to general solution. The reason why the CMC
approach is pursued is because, as mentioned above, assuming that � is constant–
which is exactly what CMC does–offers a significant technical simplification at this
point: It eliminates three of the four conformal constraint equations, as well as three
of the four unknown functions to be solved for. The remaining constraint equa-
tion, often termed Lichnerowicz equation, although still not solved in the general
case, permits the proving of theorems pertaining to the existence and uniqueness of
solutions.

An important problem that arises in this context, the so-called Yamabe problem,
is the issue of conformally rescaling a metric to obtain a metric of constant scalar
curvature. It turns out that there is a solution to this problem for metrics on spatially
compact manifolds. This is what the following theorem establishes (Isenberg 1995,
2252):

Theorem 1 (Yamabe). Let �ab be a C1 Riemannian metric on a closed three-
dimensional manifold ˙ . Then there exists a C1 positive-definite function � on ˙
such that the scalar curvature of the metric �4�ab is constant.

Yamabe’s Theorem can be shown to imply, together with some propositions that
require little extra work (ibid., 2253), that the set of all C1 Riemannian metrics on
˙ can be partitioned into three Yamabe classes: Since each of these metrics will
be conformal to a metric with constant scalar curvature 1; 0 or �1, they fall exactly
into one of the corresponding Yamabe classes denoted YC.˙/;Y0.˙/ or Y�.˙/,
respectively. For each �ab , its Yamabe class is thus a conformal invariant. It turns
out that for some closed manifolds ˙ , YC.˙/ and Y0.˙/ are both empty, while
Y�.˙/ is never empty. Furthermore, Y0.˙/ can only be empty if YC.˙/ is also
empty, but the converse is not true.

James Isenberg (1995) systematically investigates for which sets of conformal
data .�ab ; �ab ; �/ the Lichnerowicz equation can be solved and thus be mapped to
a solution of the standard constraint equations, and for which sets it can’t. As he
shows, the solvability depends on three criteria. First, it depends on which Yamabe
class �ab belongs to. Second, it relies on whether �2 D �ab�

ab is identically zero
on ˙ or not. Finally, it matters whether the constant � is zero or not. These crite-
ria are all conformal invariants. Of the resulting twelve classes of conformal data,
six map to solutions of the Lichnerowicz equation and six don’t. More precisely,
Isenberg (1995, 2259) shows the following theorem:

Theorem 2 (Isenberg). Let �ab be a (sufficiently smooth) Riemannian metric on
˙ , �ab a symmetric tensor field on ˙ which is trace-free and divergence-free with
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respect to �ab , and � a constant. Then the following table indicates for which
conformal data .�ab ; �ab ; �/ the Lichnerowicz equation does (“Yes”) or does not
(“No”) admit a solution:

(�2 � 0; � D 0) (�2 � 0; � ¤ 0) (�2 6� 0; � D 0) (�2 6� 0; � ¤ 0)

�ab 2 YC No No Yes Yes

�ab 2 Y0 Yes No No Yes

�ab 2 Y� No Yes No Yes

For conformal data in the class .�ab 2 Y0; �2 	 0; � D 0/, the solution is non-
unique; for all others the solution is unique if it exists.

For any given closed three-manifold ˙ , Isenberg’s Theorem offers a “complete
function space parametrization” (ibid.) of the set of CMC solutions of the standard
constraints. In fact, the set of CMC solutions of the standard constraints stand in a
one-to-one correspondence with what is essentially the direct sum of the six classes
of conformal data as given in the table in Theorem 2 (ibid.).17

Before we press on to more pertinent matters, let me note the fact that for confor-
mal data of the class .�ab 2 Y0; �2 	 0; � D 0) (i.e., in case the metric is conformal
to another one with vanishing scalar curvature everywhere on ˙ , the square of the
tensor field essentially giving its temporal derivative is identically zero on ˙ , and
the constant mean extrinsic curvature vanishes on˙), we are confrontedwith a kind
of indeterminism. Given conformal data of this category on ˙ , there exist multiple
solutions to the dynamical equations. In other words, for this class of field values
on ˙ , the initial state of the physical system does not, in tandem with the dynam-
ical equations, uniquely determine the state of the physical system for all times.
The construction of the conformal method does not yield a unique four-dimensional
spacetime. It is appropriate to speak of indeterminism since ˙ can be considered
a time slice on which the system’s state is specified by the conformal data. From
the fact that for a given folium with its constant mean curvature and initial data the
dynamical development, and thus the construction of the full spacetime, is some-
times non-unique, it does not follow, as Earman (2008, 148) seems to suggest,18

that for a given four-dimensional spacetime, its global foliation into hypersurfaces
of constant mean curvature is sometimes non-unique, if it exists. The reason for this
is that the different solutions will not correspond to different foliations of the same
spacetime, but rather to different spacetimes altogether. Conversely, this in itself

17 “Essentially” because the space of conformal data must be quotiented out by the action of the
group of conformal transformations, as well as by the action of the spatial diffeomorphism group
in order for the correspondence to be one-to-one.
18 When he writes that “[t]ypically such a foliation is unique when it exists, but existence is guaran-
teed only for a limited class of solutions to Einstein’s field equations, a class that does not exhaust
solutions with causally nice features” (emphasis added). While I agree with every other part of
the statement, I take issue with the first clause’s suggestion that there may be cases where such
foliation is not unique, for which I see no warrant in the literature.
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does not imply that CMC-slicings will be unique for a given spacetime, where they
exist.

Be this as it may, the main problem of the CMC approach is, already at the
classical level, that only a limited, although arguably important, class of spacetime
models of GR comply in that they are CMC-sliceable. Unfortunately, as mentioned
above, this class does not even exhaust the globally hyperbolic spacetimes of GR.
Furthermore, also as stated above, it is only tractable for spatially closed vacuum
spacetimes. But there is an additional difficulty, as pointed out by Isham (1991,
200): time-dependent Hamiltonians, as we find them here, have odd consequences.
First, they are typically interpreted to mean, at least at the quantum level, that energy
can enter or leave the quantum system, i.e., that the system is not closed. But this
is odd indeed, as the system at stake is supposed to be the entire universe. Second,
as Isham continues, for systems with time-dependent Hamiltonians one cannot get
the Wheeler-DeWitt equation for the reduced system from the relevant Schrödinger
equation, which shows the inequivalence of different canonical approaches to QG.
This may not ultimately amount to a strike against the CMC approach, but its
advocate must find a way to accommodate this inequivalence.

One might dissent to using the CMC approach for presentist purposes with an
analogue to Kurt Gödel’s (1949, 562) objection to James Jeans’s proposal to rest
a robust notion of absolute time on the cosmological time of highly symmetrical
spacetimes whose foliation into space and time sensitively depends on these sym-
metries. As Gödel insisted, whether or not absolute time existed should not depend
on contingent matters of fact concerning the distribution of matter and energy in
the actual universe. Similarly, a potential resuscitation of presentism by the CMC
approach fails, the objection goes, on the grounds that the CMC foliation also
depends on the same kinds of contingent facts. In defense of the CMC-inspired
presentist, it should be noted, however, that the Gödel move is significantly weaker
here than it was in the original case. The reason for this disanalogy is that CMC-
sliceable spacetimes form, to repeat, open subsets in the space of solutions–unlike
the highly symmetrical spacetimes relied on by Jeans. It is true that moving around
the matter and energy content of the universe will in general deform the CMC foli-
ation, but this will often not change the fact that there is a CMC foliation for the
spacetime at stake.

Let us, for the sake of Monton’s argument, ignore these limitations of the CMC
approach and ask whether it would, if borne out, vindicate presentism, as Mon-
ton asserts. No, it would not; or at least not as easily as Monton seems to think.
Apart from those limitations of the CMC approach already listed, it is far from clear
whether the CMC approach can be exploited to underwrite a presentist metaphysics.
In particular, it is far from obvious how the mean extrinsic curvature � relates to
physical time, despite the fact that it can be used as a global time parameter. What
the presentist needs is an account of how � gives raise to not just physical time, but
a time that underwrites our presentist intuitions. The fact that the folia are Cauchy
surfaces might help the presentist here, as this will permit to establish a direct con-
nection to the initial value problem and issues of determinism, which, if anything,
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seem to be directly linked to the role of physical time.19 In the absence of such an
account, a presentist such as Monton may rightly claim that the CMC approach, to
the extent to which it is to be taken seriously as a fundamental, or at least true, phys-
ical theory, relieves the pressure that presentism has felt since the advent of SR. He
has not yet, however, produced a positive argument in favour of presentism. For this,
an account relating the CMC approach to our allegedly presentist phenomenology
is essential.

Finally, lest the presentist gets overly enamoured of the CMC approach, it ought
to be noted that no one takes it seriously as a physically plausible full theory of
classical or quantum gravity. The real interest in the approach is fueled by the fact
that it so significantly simplifies the systems of constraint equations that the Hamil-
tonian approach to GR is usually confronted with. Thus, the sole reason the CMC
ansatz is explored is because it offers a technically tractable toy theory of canonical
gravity.20 Overall, it is incapable of accommodating the full plethora of gravitational
phenomena that a theory of gravity is expected to address. Finally, as a reminder, the
irony that published work in the CMC approach has almost exclusively dealt with
the classical level while Monton was really concerned with a fundamental quantum
theory of gravity should not be lost on the reader.

5 Conclusion

Since there are no complete quantum theories of gravity available at present–
let alone “theories of everything”–, the question of whether presentism is ulti-
mately compatible with fundamental physics remains open. The most promising
approaches to QG to date, string theory and loop quantum gravity, offer no respite
for presentism. As far as I understand it, string theory is a fully Lorentz-invariant
theory. Similarly, loop quantum gravity does not permit the introduction of preferred
frames of reference and thus does not contain the resources to support a privileged
foliation. As a matter of fact, there is a foreboding sense in which time evaporates
completely as a fundamental physical magnitude in loop quantum gravity. Presum-
ably, such physics could not underwrite Monton’s project of reading a presentist
metaphysics of time into the fundamental physics.21 Even on its own limited terms,
I have argued that those approaches to QG that rely on fixed-foliations such as the
CMC proposal are not as hospitable to presentism as Monton seems to think.

19 Although the potential non-uniqueness of CMC foliations would surely undermine such a
connection if borne out.
20 Cf. also Belot and Earman (2001, 241).
21 Monton (op. cit., 277) thinks that the presentist can evade the problem of time by simply main-
taining that the position does not speak to fundamental reality, but only to time. Thus, if time is
emergent rather than fundamental, presentism would be true as long as the emergent time fits the
presentist metaphysics. While I acknowledge this possibility, it doesn’t offer an appealing option
to the presentist.
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Let me conclude with Callender (2000) who warns against permitting presentism
(or, more generally, any tensed theory of time) to “push us away from the tradi-
tional understanding of relativity” (S596), a role to be reserved for developments in
physics. Monton shrugs this charge off by explaining that no non-traditional inter-
pretation of relativity is required, since the presentist can simply deny that SR or
GR are true theories just because they are incompatible with presentism. One man’s
modus ponens is truly another man’s modus tollens. But if a re-interpretation of rel-
ativity against the backdrop of presentism is not warranted by evidence or argument,
then the whole-sale rejection of it will hardly be more acceptable! Monton seems to
think that, at least as viewed from a point of view of a committed presentist, since
presentism is true, science should not, for its own good, turn out to be incompat-
ible with it. Since alternative approaches to QG are incompatible with becoming,
and since the existence of becoming is a philosophical, not a scientific, issue for the
presentist, “we should expect the correct theory of quantum gravity to be a fixed
foliation theory” (op. cit., 274). But that’s exactly the point: if we base the scientific
decision among competing theories on metaphysical predilections, we better have
good reasons to do so. A failure to appreciate this would mislead us into abandoning
Naturalism, or anyway naturalism.22

In this vein, Callender continues by asking, quite pertinently in my view, “if
science cannot find the ‘becoming frame’, what extra-scientific reason is there for
positing it?” (S597) Monton (op. cit., 272) replies to this charge by insisting that he
can’t discern a reason why the presentist ought to be committed to the antecedent.
The grounds for denying the antecedent of Callender’s conditional statement, Mon-
ton believes, can be found in that the CMC foliation approach yields what can be
interpreted as the becoming frame. To be sure, we would need some sort of account
of how exactly the CMC foliation of a spacetime underwrites “becoming” for that
move to be successful. Monton recognizes that he cannot offer any positive account
from our experiences to the necessity of the becoming frame, or of how the becom-
ing frame is coupled to a CMC foliation, but he defends himself by retorting that
“just because we do not have a good argument for the presentist doctrine. . . does
not mean that the doctrine is false” (ibid., 273n). True, but in the absence of such
argument, there is little or no reason to take the CMC foliation approach seriously
as a full-fledged physical theory potent enough to supplant GR. As we have seen,
this approach is highly limited in its applicability, remains almost exclusively at
the classical level, and does not offer a viable road to a resuscitation of presentism.
More seriously still, if what I said above is true, then we do have reason to accept
the antecedent of Callender’s pronouncement.

If we accept the antecedent, however, then the presentist must give sound argu-
ments that are sufficiently forceful to overturn time-honoured Lorentz invariance as
a constraint on a future theory of QG. That does not seem to be forthcoming. On
balance, I submit, the prospects of presentism look rather dim.

22 Monton recognizes this possibility when he offers an alternative move: the presentist could
decide to give up scientific, but not metaphysical, realism.
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Part III
The Impact of Minkowski’s Ideas Beyond

the Philosophy of Space and Time



Space-Time, Phenomenology, and the Picture
Theory of Language

Hans Herlof Grelland

Abstract To estimate Minkowski’s introduction of space-time in relativity, the case
is made for the view that abstract language and mathematics carries meaning not
only by its connections with observation but as pictures of facts. This view is con-
trasted to the more traditional intuitionism of Hume, Mach, and Husserl. Einstein’s
attempt at a conceptual reconstruction of space and time as well as Husserl’s
analysis of the loss of meaning in science through increasing abstraction is ana-
lysed. Wittgenstein’s picture theory of language is used to explain how meaning is
conveyed by abstract expressions, with the Minkowski space as a case.

Hermann Minkowski predicted in his famous 1908 statement that “space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality”. But for many philosophers
and scientists, reality means what we experience, and what we experience is plainly
space by itself and time by itself. In this article I will make the case for Minkowski’s
statement through a philosophical analysis of language, including the language of
mathematics, and relate it to the views of empiricism and phenomenology.

I will do this by distinguishing two views of physics, or, to be more precise,
two views on how meaning is constituted in a physical theory, intuitionism and lin-
guism. As a science whose validity is completely dependent on observation and
experiment, physics is linked to the experience of human beings. Every observation
must, even with the extensive application of technology in modern science, even-
tually be lead back to human perception. But physics also depends on our ability
to make abstractions, on language and mathematics. And an abstract language or a
transparent mathematical structure may clarify matters that are not so easily seen on
a level closer to experience. Here we can identify an epistemological duality which
is worth a closer study.

Physics, which is created by human consciousness through the acts of perception
and symbolic abstraction, cannot be isolated from the structure and function of the
human mind, which gives meaning to the physical theories. Here we find the rele-
vance of phenomenology, but, I will argue, a phenomenology which goes beyond
Husserls one-sided emphasise on “the thing itself”, as it is supposed to appear in the
act of perception. But let me start by going further back in the history of philosophy.
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Modern science is closely related to the empiricist tradition of philosophy, which
has its roots back to Aristotle through thinkers like Roger Bacon, Thomas Aquinas,
and Francis Bacon. Aquinas is known for his Peripatetic Axiom that “Nothing is
in the intellect that was not first in the senses”. However, the beginning of modern
philosophical empiricism is usually associated with John Locke, who was a friend
of Isaac Newton and Robert Boyle, and who, after comparing himself with these
great scientists, presented himself as an “under-labourer in clearing the ground a lit-
tle, and removing some rubbish that lies in the way of knowledge.” (This may also
be stated as the aim of the present article.) In addition to his emphasis on experi-
ence, it is interesting to observe the importance Locke attaches to language, and he
reserves a substantial part of Essay Concerning Humane Knowledge (4th edition,
1700. Locke 2003) to questions relating precisely to this topic. An even stronger
emphasis on language is put forth by the lesser known French empiricist Etienne
de Condillac (Essay on the Origin of Human Knowledge, 1746. Condillac 2001),
who was a great admirer of Locke. However, after the age of Condillac, interest in
language seems to fade away in the philosophy of physics, becoming more or less
a neglected subject in later empiricist philosophy and in the philosophy of science
until the “linguistic turn” at the end of the twentieth century. A representative of
this development and the most influential successor of Locke is David Hume, who
inspired both Kant, Husserl, and – which is of particular interest in our context –
Einstein. In some sense also Edmund Husserl’s phenomenology may be said to be
a developed and extended form of empiricism merged by the rationalist tradition
of Descartes. Another development of empiricism is the sensualism or positivism
of Ernst Mach, who we also know was of importance to Einstein in his attempt to
rethink time and space upon formulating his theory of relativity.

Let us first consider one aspect of Husserl: Through his phenomenology, includ-
ing the idea of intentionality as the constituting feature of consciousness and his
analysis of consciousness in terms of conscious acts like perception, imagination,
the signitive act, etc., he laid a philosophical foundation for the study of science.
However, in addition to being a phenomenologist, Husserl was also an intuitionist.
By “intuitionism” in physics, I imply the meaning-theoretical position that meaning
of abstract symbols is provided by the concrete experiences to which it is related,
be it observations made in a laboratory with the aid of sophisticated instruments,
or experiences of ordinary life. The word “intuition” in this context is the English
(and also the French) rendering of the German Anschauung. While traces of intu-
itionism can be found in Husserl’s early works, it is taken to the forefront in his
later work The Crisis of European Sciences and Transcendental Phenomenology
(Husserl 1970) and in the small but famous Appendix VI to this work, The Origin
of Geometry (Derrida/Husserl 1989). Here Husserl claims to be observing a loss
of meaning in science through its historical development as a consequence of an
increasing degree of abstraction. According to Husserl, this development was initi-
ated by Galilei, who was inspired by the geometry of the ancient Greeks. I want to
distinguish between Husserl’s phenomenology and his intuitionism, claiming that
the one does not implicate the other.
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To clarify my line of argument, I will briefly describe the two traditions or lines
of thought in the history of science which can be associated with intuitionism and
its counterpart linguism, respectively. Of these, I judge linguism to be the correct
approach, while intuitionism is an epistemological mistake, which unfortunately has
become more or less a part of the common view among scientists. The intuitionist
tradition may be associated with Hume, Mach, and the late Husserl, as well as the
early Einstein, and Niels Bohr. The linguist tradition is represented by, among oth-
ers, Heinrich Hertz, Ludwig Wittgenstein (in the Tractatus Logico-Philosophicus,
commonly referred to as Wittgenstein I. Wittgenstein 2001), and, as I will suggest,
Paul A.M. Dirac. In this tradition I would also like to include Locke, although with
certain reservations. What is not open to discussion is the basic dependence of sci-
ence on observation and experiment for its validation. Thus I would prefer to use
the term empiricism for both traditions mentioned, distinguishing them by the fur-
ther qualification intuitionistic empiricism and linguistic empiricism. It is the role
of observation beyond validation which can be viewed differently, in particular how
determining it is to the meaning-giving acts which transform a physical theory from
a structure of signs into a description or picture of reality.

In short, intuitionism assumes that the meaning of the concepts and equations
of physics is drawn exclusively from the sense perceptions and the related imagery
of the reality which they are supposed to represent. For instance, the equations of
hydrodynamics become meaningful through our experience and images of liquids
in everyday life or in scientific laboratories. The system of mathematical signs and
equations is looked upon as a “formalism”, a way of structuring, communicating,
and making numerical predictions from a set of observations or perceptions with
a pre-mathematical and pre-linguistic meaning. The imagery based on perception
is what animates the signs, giving them meaning and thus turning them into sym-
bols (sign C meaning). Epistemological priority is given to the physical intuition,
not the symbolic “formalisation”. According to this point of view, there is a danger
attached to the increasing abstraction of physics, as it moves the “formalism” further
away from intuition. This was an issue when the abstract formalism of analytical
mechanics by people like Lagrange and Hamilton replaced the original Newtonian
mechanics. An acute problem appears when the mathematical structure of the the-
ory may no longer be associated with any pictorial imagery, as in quantum theory,
not to mention abstract conceptions like string theory. This is the problem of “inter-
pretation” of those theories, a problem which is still hotly discussed. On the other
hand, the existence of a theory like quantum mechanics may in itself indicate that
the intuitionistic philosophy may be a blind alley.

Perhaps the strongest version of intuitionism is Mach’s sensualism, in which the
meaning of a scientific concept or symbol is nothing but the “sense impressions” it
describes or codifies. A modern representative of this view is Stephen W. Hawking:
“Any sound scientific theory, whether of time or of any other concept, should in
my opinion be based on the most workable philosophy of science: the positivist
approach . . . According to this way of thinking, a scientific theory is a mathematical
model that describes and codifies the observations we make.” (Hawking 1988, 31).
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A typical intuitionistic approach, inspired by Mach and Hume, is attempted by
Einstein in The Meaning of Relativity where he first tries to define the concept of
space in terms of perceptions. He states that “The natural sciences, and in particular,
the most fundamental of them, physics, deal with . . . sense perceptions” (Einstein
1974, 2). Thus, perception is not only a means to ensure that a physical theory is
correct; it is what physics is all about. From this starting point, Einstein attempts to
derive the concept of space from sense perceptions through the mediating notion of
a physical body: “The conception of physical bodies, in particular of rigid bodies,
is a relatively constant complex of such sense perceptions” (Einstein 1974, 2). The
idea of defining space in terms of extended bodies and their (spatial) relations comes
from Hume. Having given meaning to the notion of a rigid body, Einstein further
proceeds through defining a continuation of a body A as putting another body up to
it, and then he defines space (the space of body A, thus a space is always associated
with a body) as the set (“ensemble”) of all continuations ofA. Einstein is then able to
define length in terms of bodies acting as “measuring sticks”, and so on. The whole
theoretical development is based on the view that physics is about sense perceptions.
(There are good reasons to believe, however, that Einstein, like many physicists, is
not really consistent on this point, and that he in his scientific work more or less
forgets about strong sensualistic statements like these).

The sensualistic approach soon leads to difficulties. The treatment of the con-
cept of time in the text differs fundamentally from the concept of space. Although
Einstein’s intention is to define all the quantities in terms of sense impressions, this
turns out to be difficult in the case of time, which can only be observed indirectly
by a measuring instrument: the clock. Hence, Einstein’s exposure depends of the
notion of a clock. This move is obviously a break with the original simplicity of
his method. While a physical body can be considered as an elementary and simple
object, available for immediate perception, a clock is a complicated technological
construction, and two clocks may in fact be built on very different physical prin-
ciples. Even worse, how can one have any notion of a clock before the concept of
time is given meaning? Einstein’s solution in The Meaning of Relativity is simple:
he does not try. Instead, he disturbs the logical simplicity of his exposure even more
by ad hoc introducing another complicated physical phenomenon: light. Thus the
basic concepts of space and time are defined in terms of mechanical clocks and
electromagnetic light, thereby assuming both Newton’s mechanics (applied locally)
and Maxwell’s electrodynamics. This is a demonstration of some of the internal dif-
ficulties in the intuitionistic project as such. The project of trying to give meaning
to the abstract concepts and logical structures in physics in terms of “complexes of
sense impressions” does not work.

In the same spirit, Husserl worries about the loss of meaning in modern science.
This is a main subject in Crisis as well as in Origin. In Crisis, Husserl draws a
broad picture of the development of science since the renaissance. The “crisis” of
this science is the result of a gradual loss of meaning due to an increasing abstraction
and, supporting this, mathematisation, a development similar to what had happened
earlier in the particular science of geometry. Among the scientists who started this
development Husserl points to Galileo Galilei with his mathematisation program
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expressed in his tenet that “the universe is a book written in the language of mathe-
matics”. According to Husserl, Descartes tried to reintroduce the human subject in
European scientific thinking, but this attempt failed. According to Crisis, the aim
of phenomenology is to lead the way out of this historically persistent crisis, taking
its cue from Descartes’ original point of departure in order to place science on its
proper foundation.

This does not mean that Husserl the mathematician rejects mathematics as a tool
in science. He calls it the decisive accomplishment which makes predictions possi-
ble, thus “going beyond the sphere of immediately experiencing intuitions and the
possible experiential knowledge of the prescientific life-world.” (Husserl 1970, 43).

Here I want to make a brief remark on the notion of the “life-world”, which later
came to be so important to Heidegger. Husserl (and later, Heidegger) talk about the
“life-world” as being something simply given, independently of and prior to any
scientific knowledge, and fundamentally different from the abstract objects of sci-
ence – as if the world we experience does not have to be seen through the spectacles
of language, with its built-in idealisations and abstractions; and, as if this world is
something intersubjectively given, common to all inhabitants of the assumed human
society. Husserl and Heidegger seem to overlook the fact that although there is a
sharing of a language and tradition in a society, there is still the necessity for each
individual to learn and adapt this language and these traditional views, creating his
own interpretation of (and relation to) the world surrounding him. In this experi-
enced world there are no sharp division between what is intersubjectively given and
what is subject to individual interpretation and relation. Thus, paralleling my rejec-
tion of intuitionism, I also reject the notion of a “life-world” in the sense of Husserl
and Heidegger.While it is still meaningful, in a loose sense, to talk about an individ-
ual life-world, to a scientifically educated and intellectually integrated person this
life-world includes scientific knowledge in all its abstractions.

After accepting the accomplishments of mathematics, Husserl goes on to criticise
the scientists who, according to him, confused the mathematical formulae with their
“formula-meaning” with the “true being of nature itself” (Husserl 1970, 44). The
technical or instrumental approach implied by these formulae lead to a “superficial-
isation” and, eventually, to an emptying of the meaning-content of the theory itself.
“One operates with letters and with signs for connections and relations, according
to the rules of the game for arranging them together in a way essentially not differ-
ent from a game of cards or chess. Here the original thinking that genuinely gives
meaning to this technical process and truths to the correct results are excluded.”
(Husserl 1970, 46).

A brief comment on this point: even if I later will argue that the abstract mathe-
matical structure of a physical theory in itself contributes additional meaning of the
theory, I do not deny that it is possible to use the formulae of the theory instru-
mentally as a means for producing numbers and completely miss their physical
meaning. However, to Husserl this kind of instrumental activity is essential in highly
mathematised physics.

To sum up Husserl’s view in his own words: “But now we must note something
of the highest importance that occurred even as early as Galileo: the surreptitious
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substitution of the mathematically substructed world of idealities for the only real
world, the one that is actually given through perception, that is ever experienced and
experiencable – our everyday life-world. This substitution was promptly passed on
to his successors, the physicists of all the succeeding centuries.” (Husserl 1970, 49)
The mathematical idealities are substituted for the real world, which is our “every-
day life-world” – and which, supposedly do not consist of “idealities”. Husserl
seems to be completely unaware of the idealisation implied by the use of lan-
guage itself, and the implicit effect of language on our perception of the world
surrounding us.

Husserl’s judgement on Galileo himself, the originator of this development, is
that he, the discoverer of physics, is at once “a discovering and a concealing genius.”

This point of view is repeated again and again in Crisis, with small varia-
tions. The disease is loss of meaning through increased abstraction. The remedy
is phenomenology.

Since the overall development of European science since Galilei in many ways
parallels the earlier development of geometry, Husserl wrote The Origin of Geom-
etry as a separate article, which by the editor of his works has been appended to
Crisis.

In Origin, Husserl analyses the steps leading from ordinary human experience to
abstract, mathematical science by taking classical geometry as a case. One should
keep in mind that Husserl considers “physical” geometry, the science of spatial
relations in physical space, not modern, axiomatic geometry based on logical con-
structions from set theory. Thus, his case may be considered as one on physics.
Origin is written at a time when the general theory of relativity is well established,
but this is not mentioned by Husserl. In any case, his analysis is not specific to the
details of classical geometry, and he might as well have used curved space-time
as his case. Husserl seems to be motivated by the role played by geometry in the
science of Galilei.

The main problem addressed by Husserl is the establishment of objective, time-
less truths concerning “ideal objects” in geometry, like the circle or the straight
line. He imagines a development in five steps: (1) The immediate understanding by
the “pre-geometer” of spatial relations based on practical experience with spatial
objects. (2) The remembrance of such insight and the recognition of a problem at
hand as being the same as the one encountered on an earlier occasion. This implies
a certain degree of abstraction and idealisation by seeing the concrete event as
an instance of something repeatable and thus general, an idea or an ideal object
(ideale Gegenständlichkeit). (3) The establishment of intersubjective ideas through
language, by the geometer’s participation in a linguistic community. Thus, the idea
has to have a linguistic expression. (4) By repeated use of linguistic communication,
the geometric truth changes its appearance in the mind of the geometer. Instead of
being thought of as a repetition of the same, it will seem to be something belonging
to an objectively existing structure of ideas and truths: geometry. (5) The establish-
ment of timelessness (and thus eternal truths) by the invention of written notation.
Communication by speech is still something happening in time, while writing has a
more lasting appearance, confirming the appearance of geometric truths as timeless
and eternal.
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According to Husserl, this development is accompanied by a loss of the origi-
nal fullness of meaning which was present in the mind of the original pre-geometer
handling spatial problems. Husserl describes the development of science as a contin-
uous sedimentation of layers of abstraction, hiding the original meaning from later
scientists.

Perhaps surprising to some scientists, the poststructuralist Jacques Derrida seems
to be the one who identified the weak spot of Husserl’s analysis. Derrida’s comments
on Origin appear in his famous introduction to its French translation. Husserl, in
his emphasis on the immediate perception as the sole source of meaning, seems
to turn a blind eye to the interdependence between meaning and ideality. The flow
of sense impressions passing through human consciousness can hardly be ascribed
any meaning without any (in a literal sense) re-cognition, seeing a particular phe-
nomenon as the same as something we can think of, for instance an idea, or at least
as something that may be repeated in our mind and perhaps in reality, something that
may become, to the experiencing subject, an idea. If we then take the step (made in
fact by Husserl himself, and as pointed out by Derrida) of associating ideas with
words (or, more generally, with signs), we see that the word does more than express
an idea, and thus meaning. The word is a necessary condition for establishing an
idea. Earlier, already Locke had pointed out the necessity of words for “preserv-
ing essences” (i.e. ideas or ideal objects) and “giving them their lasting duration”
(Locke 2003, IV.V.10). Reminding ourselves that stability is essential to an idea, we
may conclude that ideas and language cannot be separated. In Husserl’s words, “. . .
ideal objects (Gegenständlichkeit) do exist objectively in the world, but only . . .
by virtue of sensible embodying repetitions (i.e. signs)”. (Derrida/Husserl 1989,
161). This is the meaning of Derrida’s statement that the word constitutes the ideal
object. Moreover, by “words” in this context we also mean mathematical formulae
and expressions as well as idealised drawings in geometry of objects such as lines
and circles.

After this brief analysis of some representatives of intuitionism, I now turn
to the other line of thought, which I have called linguism. It can be identified
with thinkers like Heinrich Herz, Ludwig Boltzmann, and Ludwig Wittgenstein,
Hermann Minkowski and Paul A. M. Dirac.

In his philosophically valuable introduction to The Principles of Mechanics Pre-
sented in a New Form (1891. Hertz 2003), Hertz refers to the mathematical models
of physics as “Bilder” (pictures, or images). He lists four conditions which must be
satisfied by such a mathematical “Bild”. The first one is that it must be logically
consistent or “permissible”. The second is that it must be empirically verified or
“correct”. The third criterion is the more interesting one for our analysis, stating
that out of two possible (logically consistent and empirically verified) models or
“Bilder”, one should choose the one which is most appropriate (“zweckmässig”)
“which includes in it more of the essential relation of the object (to be pictured)”.
How does one decide which is has the more essential relation? One has to choose
the one which is the most distinct or clear (“deutlich”). This is an “inner” quality of
the picture itself. The fourth criterion is that if one still has a choice between two
pictures, one should choose the simplest. This too is quality of the picture itself.
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The pictures are not just mappings of “sense impressions”. Rather, they are “models
produced by our mind and necessarily affected by the characteristics of its mode of
modelling them”.

Hertz compares the structure of the picture to a grammar, considering his own
presentation of mechanics as a systematic grammar, in contrast to e.g. a grammar
devised for the purpose of making a language easy to learn.

Even the limits of the picture (in Hertz’s case the limits of his model of classical
mechanics) is, according to Hertz, shown by the picture itself, which clarifies all
possible qualities and processes which belong to mechanics. (As an example of
such a limit, Hertz mentions that mechanics is too simple and narrow to account for
life processes).

Clarity and simplicity is often in physics simply called beauty. Thus, there are
deep epistemological reasons for seeking out the most beautiful form possible for
a theory. One of the advocates for the importance of beauty in theoretical physics
is Dirac, who, by the way also is the person who brought the Minkowski space
and quantum theory together in the Dirac equation when written in its manifestly
covariant form. Dirac’s own texts are themselves examples of beautiful expositions,
including his inventions in the mathematical notation. When the mathematician
John von Neumann introduced a new standard of mathematical rigour to quantum
mechanics in his book Mathematical Foundations of Quantum Mechanics, he still
admitted, in the Foreword, that the Dirac bra- and ket-notation was “scarcely to be
surpassed in brevity and elegance”. Today the Dirac notation is more widely used
than ever, and I think it illustrates the point that clarity and simplicity conveysmean-
ing. I believe that the reason for Dirac’s refusal to participate in the ongoing discus-
sion on the interpretation of quantum mechanics was his implicit attitude that the
theory explained itself better in a clear exposure rather than by being explained by
an additional “interpretation”. Thus Dirac obviously stands in the tradition of Hertz.

Hertz’s point of view was further developed by Ludwig Boltzmann into the lan-
guage of phase space or state space, showing all possible states and thus defining
the boundary of the set of possible processes in the object pictured by this space.
This has become a key concept for the development of general theories of physics,
and also for mathematical models in other fields. We can note that Dirac was the
one that introduced the concept of a state space in quantum mechanics.

There is a relation between Boltzmann’s thinking in terms of state space in
physics to Wittgenstein’s view of language in general in Tractatus. In this book,
after having made the initial statement that the world consists of facts, not of things,
Wittgenstein defines facts as state-of-affairs that are the case, defining “logical
space” (his more general version of Boltzmann’s state space) as consisting of all
possible “state-of-affairs”. In later works, Wittgenstein admitted that language is
more than just stating facts, and he invested the second part of his philosophical
career in the development of a more extensive notion of language. But as long as
we restrict ourselves to the declarative language of science, the restricted notion of
language in Tractatus is still applicable, in particular his picture theory of language
which, properly understood, clarifies many issues in modern, abstract, mathematical
physics.
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Mathematics is an extension of ordinary language, thus it is a language itself,
although self-insufficient. In a sentence or a mathematical equation (or a complete
scientific work), we find not only a collection of signs, but a collection which is
structured in a certain way, having a grammatical or logical structure. However,
according to Wittgenstein this structure, which carries meaning, is not itself explic-
itly stated in the sentence or equation; nonetheless, we can see it when we read
the sentence or equation. It is shown by itself. Through its words and symbols, and
through its logical and grammatical structure, the sentence or equation is a picture.
A picture of what? It is not (or rarely) a picture of something visual that can be
imagined, like a physical object. It is a picture of a fact.

Consider the following example: imagine two physical bodies,A andB . Imagine
that A is visibly bigger than B . The picture you imagine contains, however, neces-
sarily much more content than the simple fact that A is bigger than B , which is the
only specification I have given. To imagine two bodies, you have to give them a
shape (e.g. rectangular) and a colour (even if it is grey) and you even imagine them
at some specific distance from you. It is not possible to imagine the size difference
exclusively. But the imagined picture also conveys the fact that A is bigger than B .
However, the written sentence “A is bigger than B” is, according to Wittgenstein,
also a picture, but only of the fact. All properties of A and B irrelevant to this fact
are deleted from this picture, it has been cleaned up or, as we say, abstracted. In this
picture, A and B are represented (pictured) by their respective signs (‘A’ and ‘B’),
and there are signs symbolising the relation of one being bigger than the other, but
the picture would not function as such without the symbols being placed in a cer-
tain order. This order is necessary for the meaning, but it is not explicitly expressed
(stated), it must be seen by looking at the signs in their order, and in this way we can
see the fact. Out of everything we can see in a mental image (things, like A and B ,
and additional facts like “A is rectangular” or “B is grey”) in the sentence we have
abstracted a pure picture, showing only the fact that A is bigger than B and nothing
else about A and B .

I chose this example because the picture made by the sentence can be compared
to a visual image in my imagination. But many facts cannot be imagined visually, for
instance the statement that “Love does not last”. This written sentence is a picture
of a fact that cannot be pictured by a photographer or a painter, or in someone’s
imagination. Such facts are usually called abstract. Now you may doubt that the
sentence “Love does not last” is true. If it is not, the sentence still retains its meaning.
If the truth value is undecided, Wittgenstein calls it Sachverhalt (in English: state of
affairs). A state of affair that is the case is a fact. So, to be precise, “A is bigger than
B” and “Love does not last” are pictures of states of affairs.

But if a sentence, or a mathematical equation (or an extended text consisting of
possibly both) is a picture, we can take into account that pictures differ in quality.
Some pictures are more beautiful than others, some are clearer than others. The
same applies to language andmathematics. And nowwe come to an important point,
which is contrary to the assumptions of intuitionism: sometimes an abstract linguis-
tic or mathematical expression is clearer than one which is more concrete, i.e. one
closer to our visual (or perceptual) imagination. Thus sometimes abstraction does
not imply a loss of meaning, but rather a gain of meaning.
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From this point of view, where the presentation is assumed to be a picture of the
facts it represents, the form of the presentation itself becomes crucially important.
We can, as Hertz has reminded us, have a more or less clear picture and a more or
less simple picture, i.e. a more or less beautiful picture. A beautiful picture com-
municates the beauty of the physical world. Thus, there are deep epistemological
reasons for seeking out the most beautiful form possible for a theory.

One example of this is using the language and mathematics of the four-
dimensional Minkowski space-time as a replacement for a language based on
three-dimensional space and one-dimensional time. Although the Minkowski space
is further removed from the elementary perception of spatial events happening
in time, it conveys additional insight, and even more deeply, an insight which is
hidden and obscured in the more muddled language of space and time. It fulfils
Herts’ criteria of being the clearest and simplest mathematical language for relativ-
ity theory. This is the reason for letting space by itself and time by itself “fade away”
and giving place for a four-dimensional space-time conceptualisation as presented
by Minkowski in 1908.
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The Fate of Mathematical Place:
Objectivity and the Theory of Lived-Space
from Husserl to Casey

Edward Slowik

Abstract This essay explores continental/postmodern theories of place, or lived-
space, as regards the role of mathematics, objectivity, and the relativist dilemma
that afflicts the lived-space movement. By employing a geometric approach, such
as Minkowski pioneered, it is argued that the lived-space theorists can gain a better
insight into objectivity of spatial relationships.

1 Introduction

This essay explores space in contemporary continental philosophy and the philoso-
phy of the social sciences, a popular movement often dubbed the study of “place”, or
“lived-space”, due to its emphasis on the human experience of space, both personal
and social. Among analytic philosophers of science, it is not widely recognized that
there have been many contributions to the debate on the ontology and epistemology
of space from this diverse field, which includes: contemporary philosophers of place
(e.g., Edward Casey), prominent continental philosophers from the second half of
the twentieth century (e.g., Deleuze, Derrida), and many renowned phenomenolog-
ical investigations in the first half of the twentieth century (e.g., Husserl, Heidegger,
and Merleau-Ponty). Many of these studies have sanctioned, often inadvertently, a
form of relativism or social constructivism (Casey), or even metric conventional-
ism (Merleau-Ponty) as regards the ontology/epistemology of space. Accordingly,
this essay will explores these highly popular works in order to determine both the
general content of their claims and the overall philosophy of space either implicitly
or explicitly advanced in their philosophies. As will be demonstrated, the theories
of lived-space put forward by these philosophers, from the later Husserl to Casey,
bare a number of uncanny similarities with work in the analytic study of space and
spacetime, such as an emphasis on objectivity and an interest in structuralist forms
of explanation.

Much of the examination will focus, however, on the role of mathematics within
the lived-space approach to space, since a misunderstanding or mistrust of mathe-
matics, which can be traced in part to the influence of the early phenomenologists,
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has been a major factor in the relativist dilemma that afflicts the lived-space move-
ment (Sects. 2 and 3). By incorporating various geometrical concepts within the
analysis of place, it will be argued that the lived-space theorists can better grasp the
nature of objective spatial relationships–and, more importantly, that this appeal to
mathematical content need not be construed as undermining the basic tenants of the
lived-space approach (Sect. 4). In the final section, Deleuze’s unconventional foray
into differential geometry will serve as a means of demonstrating the inherent limita-
tions of the lived-space conception of mathematics. Overall, the geometric approach
to spacetime, as exemplified in Minkowski’s interpretation of Special Relativity, is
ideally suited to capture the objectivity of the spatial component of physical sys-
tems, unlike the contemporary lived-space school. Indeed, it will be argued that
Minkowski’s utilization of the group concept set the stage for the numerous philo-
sophical investigations that later explored the subjectivity-objectivity issue (and
which are based on these geometric techniques). Finally, it should be noted that
one of the additional goals of this examination is to open up a largely unexplored
field for researchers interested in the ontology and epistemology of space and space-
time, especially given the fact that this field, i.e., lived-space, has exhibited such a
broad and popular appeal among present-day philosophers.

2 The Place Theory and the Subjective/Objective Dichotomy

In the more practice-oriented disciplines and philosophical schools of the late-
twentieth century, considerable attention has been devoted to the concept of “place”,
or lived-space; which, put roughly, denotes the study of space (spatiality) as manifest
within a human, usually social, order or practice (as in, dwelling, abode, local). The
place theory of space relies on the insights gathered from a host of twentieth century
philosophers and philosophical movements traditionally categorized as continental:
for the philosophers, e.g., Husserl, Heidegger, Deleuze, and for the philosophi-
cal movements, e.g., phenomenology, environmental studies, literary theory, social
geography. In particular, many researchers of place attempt to shed light on the
relationship between our subjective, i.e., human, social, and practical experience of
space, and the epistemological/ontological notion of objectivity.

2.1 Radical Spatial Subjectivism

Nevertheless, these studies have largely failed to address two important, and some-
what obvious, interrelated problems associated with the objectivity of space:

Problem (1): Can a theory of place successfully counter any radically subjectivist
interpretationof theepistemologyandontologyof space?Asemployed in thiscontext,
a “radical spatial subjectivist” rejects any objective or invariant spatial structure,
and thus the geometric structure of space is entirely relative to different persons,
cultures, or practices–example: space is Euclidean relative to geometer A, and space
is non-Euclidean relative to geometer B, although both inhabit the same world.
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Problem (2): How does the subjective or social aspect of the experience of space
connect or interface with the underlying ontology of the physical world?

The relevance of space to the vexed subjective/objective problem assumes an
obvious importance in the lived-space field, moreover: a subjective space is “a space
that is tied to some feature of the creature’s own awareness or experience . . . –the
space of awareness within which it acts and with respect to which its actions are
oriented and located” (Malpas 1999, 50). Objective space, conversely, “is a grasp of
space that, while it requires a grasp of one’s own perspective and location, is a grasp
of space that is not centered on any particular such perspective or on any particu-
lar location . . . “ (66). Yet, apart from a few instances, such as Malpas’ forthright
analysis, most of the investigations of place do not address adequately the exact
structure or relationship between place and its objective and subjective components.
If, indeed, any trend can de detected in this field, it would seem that many authors
favor an interpretation of place that posits subjective space as primary,with objective
space being derived, or “stitched together”, from subjective experience. In a popular
text, Edward Casey seems to endorse this reduction, viewing the objective, infinite,
mathematical “space” of theModern era as derived from the earlier, human-centered
concept of bodily and social “place”: “In a dramatic reversal of previous priorities,
space is being reassimilated into place, . . . as a result of this reversal, spacing not
only eventuates in placing but is seen to require it to begin with” (Casey 1997, 340;
original emphasis); and, commenting on the social theorist Nancy, he proclaims,
“spaces comes from places, not the other way around” (341). Among other exam-
ples, one can cite various difficult passages in Tuan’s environmental study, where a
person’s experience “constructs a reality” (1977, 8), and Entrikin’s appeal to “narra-
tive” to connect the subjective and objective aspects of place (1991, 132–134), since
“narrative” has strong subjectivist overtones.

However, without some set of constraints on the acceptable methods of expli-
cating or constructing the global, objective structure of space (place) via the local,
subjective spaces, the inevitable and unfortunate outcome is a radically divergent
set of competing objective spatial structures. An obvious example is the spatial
beliefs common to ancient Middle-Eastern civilizations, who interpreted the world
as both flat and centered upon their home civilization–two “hypotheses” apparently
confirmed through simple bodily experience and common social practice. Conse-
quently, the subjectivist interpretation of space would seem to lack the conceptual
resources needed to defuse problem (1): Was the earth “really” flat for ancient
Middle-Eastern civilizations (e.g., the Genesis creation story in the Bible), but
“really” spherical for modern Western societies? It is tempting to claim that modern
science provides the “true” explanation of space; but, of course, modern science is
just another social practice or narrative.1

1 The place theorists might appeal to a deeper, non-metrical invariant to counter radical spatial sub-
jectivism, such as a topological invariant, or a common geometric axiom (defined set-theoretically
for all geometries). Yet, as will be explained, the lived-space school’s antipathy to mathematics
would almost certainly preclude this option. Throughout this essay, moreover, we will refer to
objectivity as a joint epistemological and ontological notion, since lived-space theorists tend to blur
the distinction between the two; see Rescher (1997), on the many forms of objectivity, including
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2.2 Internal and External Constraints

Some place theorists strive to avoid the impending conflict of spatial schemes by
means of constraints imposed either internally or externally to all potential subjec-
tivist theories: either by openly endorsing the “irreducibility” of the objective aspect
of spatial experience, or by acknowledging the intervention of an underlying phys-
ical space in the subjective act of spatial construction. One of the more notable
efforts to address issues related to our problem (1) appears in Malpas (1999), which
also draws upon both of the above methods for undermining a radical subjectivism.
First, Malpas persistently rejects the view that objective space can be derived “from
a mere concatenation of subjective spaces” (61; as does Campbell 1994, 5–37). By
claiming that the two are “correlative concepts” (Malpas 1999, 36), or have a “com-
plex interconnection” (70), the suggestion would seem to be that the irreducibly
objective facet of spatial experience sets up barriers, an internal constraint, concern-
ing different subjective formulations of space (i.e., the proposed objective-subjective
irreducibility prevents, say, the flat and spherical models of earth’s geometry from
being equally successful constructions). Yet, this strategy seems consonant with a
full-blown objectivism regarding space–and, of course, the intention was to develop
a theory that shuns a strong objectivism through the utilization of an irreducibly
subjective aspect of spatial experience. Since it is the objective aspect of space that,
returning to our example, rules out the flat-earth case, the subjective element would
appear to be idle. Moreover, this form of response does not explain how the interre-
lated objectivity-subjectivity of place prevents conflicting constructions of place.

Possibly in response to such worries, Malpas invokes an external constraint on
the subjective constructions of space by means of a supervenience relationship
between place and the underlying physical space: “In some sense place must ‘super-
vene’ upon physical space, and upon the physical world in general, such that the
structure of a particular place will reflect, in part, the structure of the physical region
in relation to which that place emerges” (34). Yet, since no further details are offered
on this quite mysterious form of supervenience, which must be an ontological rela-
tionship of some sort, this attempt to resolve problem (1) comes at the considerable
expense of inflaming problem (2): i.e., what does it mean to say that the subjective,
socially-oriented conception of place supervenes on physical space?

2.3 Physical Space and Merleau-Ponty’s Metric Conventionalism

Since few in the lived-space tradition address problems (1) and (2), it is possible that,
given the continental/postmodern leanings of this movement (see Sect. 3 below),

ontological. Furthermore, “subjective”, as used in this essay will refer to either a personal (“ego-
centric” in some texts) or social conception of space; i.e., as a non-objective conception. Finally,
references to “place”, or “lived-space”, theory and theorists signify the contemporary, largely con-
tinental or continental-influenced, approach to space (e.g., Casey, Malpas, Lefebvre, etc.), and not
the early phenomenologists.
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a radical spatial subjectivism is, in fact, acceptable to many place theorists. As a
means of undermining the primacy of objective space, a radical subjectivist might,
for instance, appeal to Quine’s “indeterminacy of translation” in order to claim that
each separate subjective space is incommensurable, i.e., not communicable, with
other subjective spaces. Most analytic philosophers of physics will no doubt find
this type of argument inadequate, since it turns on an uncritical acceptance of a
(controversial) theory of reference that may not hold in the more quantitative, math-
ematical domain of physics and, hence, physical geometry (as opposed to common
language). While the role of mathematics will be taken up in more detail below,
an interesting question does arise in the context of this hypothetical response to a
“spatial incommensurability”: Have the place theorists employed any philosophi-
cal arguments utilizing mathematical/physical evidence or premises in support of
radical spatial subjectivism?

In short, the answer is apparently negative, at least among the contemporary
advocates of the lived-space school. Merleau-Ponty, who foreshadows the place
theorists, did invoke a Poincaré-style metric conventionalist argument to undermine
the “reality” of physical geometry, if not its objectivity. Metric conventionalist argu-
ments attempt to reveal the underdetermination that plagues the ascription of spatial
geometry, in conjunction with the physical hypotheses, for any would-be geometer:
e.g., Poincaré’s disc-world (1905), where the measurements conducted by the hypo-
thetical inhabitants disclose a non-Euclidean metric structure. On Poincaré’s disc,
two theories are consistent with the evidence: (a) that the geometry is Euclidean
but “universal forces” distort the measuring apparatus, or (b), the geometry is non-
Euclidean and there are no such universal forces. Does this outcome support a
radical spatial subjectivism, as some place theorists might contend?–No, because
not all aspects of the choice between (a) and (b) are conventional. If one chooses
to preserve a flat space, then one must postulate forces that distort the measuring
instruments. Alternatively, if one accepts the non-Euclideanmeasurements, then one
must conclude that the space is curved. Given a strong form of spatial subjectivism,
however, any geometry, and any stipulation on spatial measuring instruments,
should apply equally: for instance, option (c), where the geometry is Euclidean
but no universal forces alter the measuring device.2 Consequently, option (c),
which is available to the radical spatial subjectivist, but not the metric convention-
alist, thereby demonstrates that the latter cannot serve as an argument to support
radical spatial subjectivism.

2 That is, since radical spatial subjectivism is based on a strong form of relativism (either to per-
sonal experience, society, practice, etc.), it follows that the physical assumptions implicit in the
construction and application of the measuring apparatus are also relative–if the spatial subjec-
tivist were to deny this, and claim instead that the measurement devices are somehow non-relative,
it would open up the spatial subjectivist to the charge of inconsistency. Moreover, as argued
by, among others, Einstein (1949), since our understanding of the physical constitution of these
measuring devices also relies on geometrical assumptions (via the force laws that govern their
behavior), the spatial subjectivist can always claim that these lower-level applications of geometry
are likewise subjective (relative), thus opening the way for option (c).
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Turning to Merleau-Ponty’s analysis, he comments: “‘Real’, i.e., perceived, tri-
angles, do not necessarily have, for all eternity, angles the sum of which equals
two right angles, if it is true that the space in which we live is no less amenable to
non-Euclidean than to Euclidean geometry” (1962, 391); and, in more detail:

It is impossible to relate this or that proposition concerning space to the structure of space,
and some other [proposition] to a physical influence. . . . The same physico-geometrical
ensemble is capable of covering both flat space and curved space. . . . If we take relativistic
science seriously, we must say that Riemannian space is not real, but objective to the extent
that it allows for Einstein: it allows for better integrating the results of modern physics than
does Euclidean space. We can thus speak of a closed space, such that in pursuing it we
return to the same place. The experimental verification is relative to it. If space is closed, it
is clear that there can be a double image of the same star, the whole difficulty being only
to identify them. . . . In this sense, the idea of closed space must not be considered . . .
as an overcoming of Kantian relativism, but on the contrary, as its accomplishment . . . .
(2003, 103)

Briefly,Merleau-Ponty’s estimate is misleading in that he seems to imply that any
geometry is straightforwardly consistent (“no less amenable”, 1962, 391) with the
totality of physical evidence. Rather, as described above, specific physical assump-
tions are required in order to render a particular geometry consistent with empirical
data, and these assumptions can be challenged in numerous ways: e.g., the pecu-
liar universal forces needed to retain Euclidean geometry may be inconsistent with
our best, well-confirmed physical theories. So, when all of the evidence is taken
into consideration, many alternative theories of “geometry plus physics” may be
excluded, such that only a handful, or just one, may be supported by the evidence.

Merleau-Ponty’s claim that, “the same physico-geometrical ensemble is capa-
ble of covering both flat space and curved space”, thus can only be maintained if
one takes a rather impoverished view of the criteria for constructing and evaluating
the “physico-geometrical ensemble”. His own example of a Riemannian (spherical)
space, where the experimental verification could be “a double image of the same
star”, practically makes this point: Is Merleau-Ponty suggesting that a flat space
interpretation of the same evidence would be as equally plausible and consistent as
the spherical depiction (since “the experimental verification is relative to it”)? One
can easily imagine evidence that would begin to unravel this assumption, such as
the simultaneous super-nova explosion of both stars (i.e., the same star), or simply
measuring the angles of a (very large) triangle, à la Gauss, in order to determine
if the interior angles match the Euclidean prediction. So, unless wildly ad hoc and
implausible physical hypotheses are invoked, the evidence hardly seems “relative”
to the particular geometry used in the theory.

Ironically, Merleau-Ponty relies on a similar tactic–namely, the constraints
imposed by the world/evidence–to dispel his own version of our problem (1), which
he describes as a potential solipsism that may ensue from a subjective-based con-
ception of space: “Since there are as many spaces as there are distinct spatial
experiences, . . . are we not imprisoning each type of subjectivity, and ultimately
each consciousness, in its own private life” (1962, 291–292)? Answer: invoke phys-
ical space as an external constraint, which, presumably, prevents spatial solipsism
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by connecting all of our separate spatial experiences to the same spatial world. He
states that, “I never wholly live in varieties of human space, but am always ultimately
rooted in a natural and non-human space” (293); and that “Human spaces present
themselves as built on the basis of natural space, . . .” (294). Merleau-Ponty is quick
to add, however, that “natural and primordial space is not geometrical space” (294),
which accords with his other claims, cited earlier, that the objectivity of Rieman-
nian space only “allows for better integrating the results of modern physics than
does Euclidean space”, and thereby does not overcome a “Kantian relativism”. In
essence, Merleau-Ponty’s own phenomenological theory appeals to physical space
in order to counter problem (1), radical spatial subjectivism–but this maneuver is no
different than the scientist who appeals to the physical evidence, in conjunctionwith
the consistency of our best physical theories, to counter the metric underdetermina-
tion brought about by a host of divergent “geometry plus physics” combinations.
Put differently, how can Merleau-Ponty be so sure that subjective spatial experience
is somehow constrained by the physical world, but that the determination of metric
properties (in conjunction with the best physics) is not? Indeed, if metric conven-
tionalism does hold true, such that the physical component is powerless to help (in
the manner advocated by Merleau-Ponty), then falling back on the physical world
cannot free a subjective spatial theory of the same underdetermination.

Finally, like Merleau-Ponty, some of the other phenomenological investigations
that inspired the contemporary lived-space movement may have employed physical
space as a form of external constraint. In Husserl’s theory, since the phenomenal
realm of the subject presupposes a physical body, a pre-existing “continuum of
places” is postulated for the body’s occupation (see Husserl 1981, 225). As for
Heidegger, the complexities of the relationship between Dasein (roughly, human
existence) and spatiality are enormous (see e.g., Vallega 2003, Malpas 2006), but a
similar dependence on a pre-given world may be in evidence: “space is . . . ‘in’ the
world in so far as space has been disclosed by that being-in-the-world which is con-
stitutive of Dasein . . .” (1962, 146). Overall, these early phenomenological theories
of the human and social construction of space–which are not modern lived-space
theories, by the way–run afoul of problem (2); namely, the manner by which the
underlying physical ontology interacts with, and thus constrains, subjective space
constructions.

3 The Place Theory and The Mathematization of Space

Unlike the early phenomenologists, contemporary exponents of the place theory sel-
dom appeal to either the underlying ontology or the objectivity of space to resolve
problems (1) and (2), likely due to the perception that it situates the human/social
element of space in a decidedly inferior and subordinate status with respect to the
more quantitative and mathematical, and thus less qualitative and subjective, aspects
of space and science. Ironically, the modern bias against the use of mathematics in
attempting to meet the relativist challenge can be traced, at least in part, to these
same early twentieth century phenomenologists, most notably, Heidegger and the
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later Husserl. Unlike recent treatments of place, which either ignore or quickly dis-
miss mathematics as relevant to the place theory, these early phenomenological
tracts openly discussed the relationship between mathematics, especially geome-
try, and their new conception of a subjective, lived-space (much like Merleau-Ponty
above). Husserl, in particular, will comprise a major part of the remainder of our
investigation, for the difficulties associated with Husserl’s theory of subjective space
in his later work are identical to the problems just described for the contemporary
practitioners of the lived-space theory, and hence Husserl’s more forthright analysis
of the interrelationship of objectivity and mathematics will serve as an ideal basis
for diagnosing the viability of contemporary place theory. As will be disclosed, one
of the more intriguing puzzles that emerges in the early phenomenological works
concerns the status of mathematics, especially geometry, in its seemingly unavoid-
able mediating role between, on the one hand, physical space, and on the other,
subjective lived-space.

3.1 Husserl and the Early Phenomenological Influence

Despite the presence of an a priori factor in spatial experience, which allows an
immediate grasp of general geometric truths (“essential seeing”), objective space
and geometry in Husserl’s middle period (e.g., Ideas I (1982)) are ultimately con-
structions based on subjective experience, much like the earlier theories put forward
by, among others, Helmholtz, Mach, Wundt, and Lotze.3 The geometry of our sub-
jective experience is Euclidean, furthermore, whether in a single intuited act of
spatial perception/imagination (as just described), or as one goes beyond these sin-
gle acts to construct the larger space that results from the accumulation of spatial
experience through bodilymotion (and spatial variations in imagination).4 In his late
period, a more subjectivist tone is supposedly struck in several of Husserl’s works
that cover space and geometry, foremost being, The Crisis in European Sciences
(1970), along with its associated appendices (“The Origin of Geometry”, in partic-
ular). These writings would prove a source of inspiration for the later place school,
for they bring to the forefront several concepts central to the contemporary approach

3 Husserl studied Lotze’s theories of space and geometry in his early years; see Mohanty (1995,
51). On empiricist theories of space and geometry, see Torretti (1978).
4 Husserl (1997) is his first extended treatment of these issues. It is also worth noting that Husserl’s
student, Oskar Becker, strived to remove the apparent contingency associated with the geometry of
Husserl’s theory. Influenced by Weyl’s work, Becker relies on a group-theoretic argument to prove
that our subjective experience of moving freely through space (via the Helmholtz-Lie theorem)
singles out Euclidean geometry as the only candidate for objective space. Weyl’s own theory also
employs a group-theoretic approach, but only preserves a Euclidean structure infinitesimally for
each point of the spacetime manifold, while repudiating a Euclidean global structure for physical
space (as mandated by the variably curved spacetime of General Relativity; see Mancosu and
Ryckman 2005, and Sect. 4). Finally, Becker’s own student, Elizabeth Ströker, would develop a
theory like Becker’s in her (1987) text, a work that is often cited approvingly by contemporary
place theorists.
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to place: principally, the “life-world”, and the “mathematization of nature”. The
life-world, as defined in the Crisis, is “the spatiotemporal world of things as we
experience them in our pre- and extra-scientific life” (1970, 138). The emerging
mathematization of the world, which takes the form of Euclidean geometry, cannot
capture the life-world in its entirety, however, for mathematical idealizations and
abstractions can only indirectly apply to the purely qualitative aspects of the life-
world (32–37). Nevertheless, Husserl does not question the objectivity of physical
geometry, for he repeatedly rejects any historicist, relativist conception that would
regard space and geometry as merely contingent constructs of a particular society:
“geometry, with all its truths, is valid with unconditioned generality for all men,
all times, all peoples, and not merely for all historically factual ones but all con-
ceivable ones” (377). In effect, Husserl grounds the unconditioned validity of all
geometric practices on an invariant human feature common to all individuals and
societies. This invariant feature, which we will explore further in Sect. 4, would
thereby preclude our problem (1), since it acts as a form of internal constraint on the
construction of geometric schemes.

Returning to the topic of Husserl’s impact on the later place theory, in particu-
lar, for the prospects of a mathematical conception of lived-space, it was probably
his methodology of “bracketing off” the objective sciences that would prove to be
most influential. The process of bracketing, also termed the epochNe in the Crisis, is
designed to isolate the objective sciences in order to ascertain the unique or princi-
ple characteristics of the life-world, which “must have their own ‘objectivity’, even
if it is in a manner different from our [objective] sciences . . .” (133). This theme,
that the proposed objective principles of the life-world may be “different” than the
developed sciences of the day, persists throughout the Crisis:

A certain idealizing accomplishment is what brings about the higher-level meaning-
formation and ontic validity of the mathematical and every other objective a priori on the
basis of the life-world a priori. . . . What is needed, then, . . . [is] a division among the
universal inquiries according to the way in which the “objective” a priori is grounded in the
“subjective-relative” a priori of the life-world . . . . (140)

By separating the different “a prioris” of the objective sciences and the life-world,
the implication is that mathematics and geometry must be, or should be, confined
to the objective a priori (via the epochNe) in order to ascertain the true nature of the
life-world. Not surprisingly, ensuing generations of place theorists would almost
certainly interpret Husserl’s late research as advocating a complete and total ban on
the use of mathematical techniques in their study of the “subjective-relative” sphere
of human spatial practices. In fact, with respect to space, Husserl is quite clear that
geometric content is not “internal” to the life-world: “Prescientifically, the world
is already a spatiotemporal world: to be sure, in regard to this spatiotemporality
there is no question of ideal mathematical points, of ‘pure’ straight lines or planes,
no question at all of mathematically infinitesimal continuity or of the ‘exactness’
belonging to the sense of the geometrical a priori” (139–140). In other words, the
life-world has its own kind of space, a space which is radically different from the
space utilized in mathematical physics, i.e., physical geometry.
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Finally, Heidegger’s Being and Time also expounds a subjectivist-based hypoth-
esis of space, yet his skeptical critique of the concept of objectivity arguably
influenced the place school in a more profound and radical fashion. Despite a gen-
eral similarity of content between Heidegger’s and Husserl’s theories–Heidegger’s
“Dasein” and the “Mathematical Projection of Nature” functioning somewhat anal-
ogously to Husserl’s life-world and mathematization of nature–the type of a priori
science of the life-world championed in Husserl’s later work would seem quite
incompatible with Heidegger’s finite, historical understanding of human experience.
In Being and Time, Heidegger refers to “the manifold questionableness of the phe-
nomenon of ‘validity’, which since Lotze has been fondly passed off as a not further
reducible ‘basic phenomenon”’, and he proceeds to outline various meanings of
“validity”: “as manner of being of the ideal, as objectivity, and as bindingness [for
all people]” (1927, 155–156). Therefore, any attempt to locate an invariant structure
underlying all human spatial practices would likely draw the Heideggerian charge
of invoking timeless “essences”; or, Husserl’s project errs by trying to explicate our
social engagements in the world, the “ready-to-hand”, by means of the “present-to-
hand”, which are the theoretical idealizations derived from those practices–but this
turns Heidegger’s philosophy exactly on its head, for the defining trait of Dasein is
its “being-in-the-world” (existence).5

3.2 Contemporary Social Trends

There are a number of themes in these major phenomenological tracts that, directly
or indirectly, shaped the course of the place theory’s approach to space and mathe-
matics: first and foremost is the primacy of subjective lived-space, which thus serves
as the basis for deriving objective geometric space; second, that subjective space is
essentially qualitative, and not quantitative, geometrical or mathematical; and third,
as a direct result of the rise of mathematical physics in the Early Modern period,
that objective geometrical space is Euclidean, infinite, and homogeneous.

To demonstrate the mathematical aversion that is prevalent among many place
theorists, one need only consult Casey’s influential history, The Fate of Place (1997),
which is representative of much contemporary work on the topic of lived-space.

“The ultimate reason for the apotheosis of space as sheerly extensional is that by the end
of the seventeenth century place has been disempowered, deprived of its own dynamism. .
. . The triumph of space over place is the triumph of space in its endless extensiveness, its
coordinated and dimensional spread-outness, over the intensive magnitude and qualitative
multiplicity of concrete places. . . . Space on the modernist conception ends by failing to
locate things or events in any sense other than that of pinpointing positions on a planiform
geometric or cartographic grid. Place, on the other hand, situates, and it does so richly and
diversely. It locates things in regions whose most complete expression is neither geometric
nor cartographic” (200–201).

5 In addition, see Friedman (2000, 13–23), for the development of Heidegger’s quite hostile
attitude towards modern mathematical logic and physics.
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Presumably, the motivation for this line of thought is derived from many sources,
but Husserl’s later work may have played a major role: prior to quoting from the
Crisis (where Husserl declares that in the life-world “we find nothing of geomet-
rical idealities, no geometrical space or mathematical time with all their shapes”;
1970, 50), Casey explains that “the organic body singled out by Husserl opens onto
the ‘primary world’ that is not amenable to direct mathematization” (223). Fur-
thermore, in Casey’s chronological survey, Husserl is one of the first philosophers
examined who supposedly favors a view, like Casey’s, concerning the (alleged)
non-mathematical essence of subjective place.

While these extracts help to corroborate the importance of Husserl, other pas-
sages make an explicit link with a Heideggerian brand of subjectivism, such that
mathematics, logic and language are relative, at least in part, to culture or practice
(i.e., place): “Treatments of logic and language”, he cautions, “are . . . place-blind,
as if speaking and thinking were wholly unaffected by the locality in which they
occur” (xii). He also hints at a theme common among many in the lived-space
movement, specifically, an attempt to link an objective, mathematical conception
of space with various forms of social and political totalitarianism or exploitation:
“Is it accidental that the obsession with space as something infinite and ubiquitous
coincided with the spread of Christianity, a religion with universalist aspirations”
(xii)? In Casey’s defense, some exponents of subjective space go much further, as in
the case of Henri Lefebvre, who categorizes “abstract” space, which is geometric,
with a “phallic” attribute that “symbolizes force, male fertility, masculine violence”
(1991, 287).

Leaving aside the gross implausibility of these last few allegations, what is
equally troubling in these texts is the woeful treatment of the historical development
of the concept of subjective space. Casey’s treatise, which claims to be a history of
place, discusses neither the rise of the empirical approach to geometry and space that
began with Helmholtz and Mach (among many others), nor the Lebensphilosophie
movement that drew encouragement from these nineteenth century mathematical
developments (with the Lebensphilosophie school serving as the starting point for
Heidegger). For many of the place theorists, there is a (postmodern/continental)
tendency to interpret modern, or post-Kantian, philosophy as having began with the
later Husserl and Heidegger, hence contributing to an impoverished conception of
the significance of mathematics in the evolution of the subjective space idea. That
a long “dry spell” came between the German Idealists and the phenomenologists is
evident in Casey’s book: “Starting with Kant and continuing in Husserl and White-
head and Merleau-Ponty, place is considered with regard to living organisms and,
in particular, the lived human body” (332)–which suggests that nothing of impor-
tance for the development of subjective spatial theories occurred between Kant and
Husserl!
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4 Towards a Mathematical Conception of Subjective Space

As outlined in Sects. 1 and 2, an interpretation of spatial objectivity that, in some
fashion, includes a subjective component might possibly provide a means of com-
bating the radical subjectivist dilemma, problem (1), while simultaneously uphold-
ing the subjective experience of the individual, culture, or practice. Despite being
largely ignored by contemporary place theorists, late nineteenth century mathemati-
cians actually developed many techniques that can be seen as offering just this kind
of strategy, and it is discussed in the philosophical writings of Eddington, Weyl,
and a host of others. These later philosophical explorations, moreover, were likely
spurred by Minkowski’s singular achievement in 1908.

4.1 Geometry and the Subjective

The lived-space theorists are fond of characterizing geometrical space as the flat,
lifeless plain of Euclidean geometry (as the above quotes by Casey indicate), but the
history of geometric theories and constructions undermines this simplistic assump-
tion. For our purposes, two of the most important innovations concern the analytic
method of geometric construction and the investigation of the intrinsic structure of
manifolds (differential geometry), which originated in the pioneeringwork of Gauss
and Riemann, in particular. A Euclidean understanding of geometrical objects, such
as “point” or “line”, was no longer necessary given the new analytic methods, since
algebraic equations are essentially neutral and uninterpreted as regards their geo-
metric meaning. The analytic approach allowed, in turn, the creation of differential
geometry, which could furnish a characterization of surfaces in terms of their intrin-
sic, as opposed to extrinsic, curvature (where “intrinsic” curvature is determined
from a perspective confined entirely to that surface, and “extrinsic” from outside).
In short, curvature could now be characterized intrinsically for each point on a sur-
face without requiring a larger, Euclidean space in which to embed the surface.
The intrinsic geometry of a surface can be regarded, roughly, as its geometry as
determined by geometers confined to that surface using (idealized mathematical)
measuring procedures (e.g., comparing vectors between neighboring points, etc.).
Consequently, by conceiving geometric structures from a local, surface-bound basis,
there is a tacit affinity between the intrinsic methodology of differential geometry
and the theory of lived-space.

A second point of comparison between the place theory and the geometric tech-
niques invented in the nineteenth century can be found in the latter’s utilization of
coordinate frames, the transformations rules that link these frames, and the invari-
ants preserved among these translations; a branch of differential geometry known
as tensor analysis (and which is intimately connected with the intrinsic geomet-
ric method just described). The kinship with the place theory’s idea of subjective
space is immediately apparent in tensor analysis, since this branch of mathematics
can be roughly characterized as the study of “what remains the same” (invariant)
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under different spatial perspectives (frames). On the Euclidean plane, distance is
an invariant feature, such that the distance between any two given points is mea-
sured to be the same regardless from which position, or coordinate point, one
measures it: if u D .x1; y1/ and v D .x2; y2/, then the distance between these
points is d.u; v/ D p

.x2 � x1/C .y2 � y1/, which will be an identical numeri-
cal value from all perspectives. The transformations on the plane (the space <2 of
ordered pairs of real numbers) that leave distance invariant includes all rotations,
U , and translations, a, such that: t.x/ D U.x/ C a, for the vector x D .x; y/.
This distance (metric) function can be generalized to incorporate different coordi-
nate systems and different geometries (Euclidean, Spherical non-Euclidean, etc.)
as given in the well-known formula for the line element, ds2 D gijdx

idxj (for
Riemannian and semi-Riemannian spaces). Overall, the group of allowable transfor-
mations on a space specify the type of geometry–consequently, the same space (say,
<2) can allow different groups of transformations, and thus different invariants, and
thus different geometries. That is, some perspectives in <2 will reveal an invariant
quantity that other frames will not uphold. Only a limited number of transforma-
tions among frames will preserve the invariants of Euclidean geometry (length and
angle), for example, whereas a wider class of transformationswill preserve the ratios
along parallel lines (affine geometry).6 Unlike the monotonous, uniform geometry
caricatured by the place theorists, the picture that differential geometry presents is
quite complex and varied, with a host of different geometrical structures and invari-
ants all residing in the very same space. More importantly, differential geometry
constructs these invariants from the subjective perspective of diverse coordinate
positions or frames (and the transformations among frames), thereby revealing an
indispensable, or non-reducible, contributing role for a subjective (i.e., perspecti-
val and non-global) component of space and geometry in securing the objective
invariants.

Finally, this methodology resolves both problems (1) and (2) in a more consis-
tent and plausible manner than the (non-mathematical) lived-space approach can
supply. The relativism of subjective space, problem (1), is resolved since many
subjective perspectives (frames) in a space are not incorporated within any particu-
lar group of transformations: that is, the long sought after “constraint” on possible
spatial constructions is a direct consequence of the type of transformation group
and its corresponding invariant, which thus accounts for the absence of incom-
mensurable geometries (i.e., it explains why there is only a determinate number
and order of interrelated, non-incommensurable geometries). Likewise, the fixed
interrelationship between the invariants of the geometry and the group of transfor-
mations also resolves our problem (2). The geometrical invariants are often regarded

6 More carefully, The Euclidean transformations are a subgroup of the affine transformations,
hence Euclidean geometry is a subgeometry of affine geometry (and both, in turn, are subgroups
and subgeometries of the larger projective transformations and projective geometry). Also, <2

is the vector space of ordered pairs of real numbers allowing addition and scalar multiplication.
Parts of this discussion are based on Brannan et al. (1999). See e.g., Nozick (2001) and Debs and
Redhead (2007), for similar approaches to objectivity and invariance.
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as representing the objective features of the underlying spatial ontology, although
these features can only be accessed through the subjective-bound group of transfor-
mations. In short, the groups of transformations among frames secure the needed
constraints, and constraints indicate, or correspond to, the world’s “real” structure.

In the realm of spacetime theories, Minkowski (1964 [1908]) offered one of the
first applications of these differential geometric techniques, providing a formula-
tion of Special Relativity that emphasized the invariance of the spacetime interval,
c2dt2�dx2 �dy2�d z2, under a group of transformations (often dubbed, Lorentz
transformations) required to preserve the laws of physics (i.e., the constancy of
the speed of light, c, and the independence of the laws of classical physics over the
choice of inertial system): “the existence of the invariance of natural laws for the
relevant group GC” (301). Put roughly, Minkowski was able encapsulate or encode
a specific domain of our experience of the material world, both actual and potential,
via a geometric method that relates the content of this experience (that is, it “saves
the phenomena” from multiple perspectives). His comments on the “pre-established
harmony between mathematics and physics” (312) can therefore be seen, in retro-
spect, as a milestone in the application of these geometrical techniques to model
actual phenomena. More importantly, Minkowski makes an explicit link between
the spacetime group invariant and “independent reality”, i.e., objectivity, in the
famous opening of his 1908 paper: “only a kind of union of the two [space and
time] will preserve an independent reality” (297). As a consequence, Minkowski’s
achievement, which is seldom examined from this perspective, can be viewed as a
foreshadowing the goals of the lived-space theory, since a group of transformations
naturally incorporates the objective and the subjective (as outlined above).

It is important to note that Minkowski himself never actually discussed the ram-
ifications of his spacetime group of transformations as regards the metaphysics of
the objectivity/subjectivity divide, but a host of others philosophers and physicists,
inspired by his work, soon would, most notably, the brand of neo-Kantian inspired
structuralism exhibited in the work of Weyl, Eddington, and Cassirer (albeit Weyl
was more directly inspired by Husserlian phenomenology; see Ryckman 2005, and
Sect. 5). With Minkowski’s achievement as a guide, and given the tensor calcu-
lus framework of General Relativity as well, it naturally led to a new appraisal of
the subjective/objective relationship, as the following comments by Weyl indicate:
“[The] objective world is of necessity relative [subjective]; it can be represented by
definite things (numbers or other symbols) only after a system of coordinates has
been arbitrarily carried over into the world” (1949, 116). This objective-subjective
interrelationship, moreover, “contains one of the most fundamental epistemological
insights which can be gleaned from science”, since “whoever desires the absolute
must take the subjectivity and egocentricity into the bargain” (116). In a similar
vein, Eddington emphasizes “the subjectivity of the universe described in physical
science” (1958, 85). It is worth quoting Eddington’s argument at length:

Relativity theory allows us to remove (if we wish) the subjective effects of : : : personal
characteristics of the observer; but it does not remove the subjective effects of generic
characteristics common to all “good” observers [the allowable transformations] . . . . [The
mathematician] has invented a transformation process which enables us to pass very quickly
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from one [possible] observer’s account to another’s. The knowledge is expressed in terms
of tensors which have a fixed system of interlocking assigned to them; so that when one
tensor is altered all the other tensors are altered, each in a determinate way. . . . A tensor
may be said to symbolize absolute knowledge; but that is because it stands for the subjective
knowledge of all possible subjects at once. (85–87)

Eddington, like the lived-space theorists, also cautions against envisaging the
universe from a subject-less, “view from nowhere”: “There does not seem to be
much difficulty in conceiving the universe as a three-dimensional structure viewed
from no particular position”, but he notes that “it is perhaps rather unfortunate that
it is, or seems to be, so easy to conceive; because the conception is liable to be
mischievous from the observational point of view” (86)–that is, it is mischievous as
judged from the new subjective-based physics that utilizes tensor calculus.

4.2 The Problem of Quantifying the Qualitative

The lived-space theorists may nevertheless reject any application of mathematics,
such as the one outlined above, on the grounds that the essentially qualitative nature
of subjective space–the “intensive magnitude and qualitative multiplicity of concrete
places”, quoting Casey–is just not amenable to mathematical analysis. Eddington’s
conclusion draws upon a distinction between the “personal versus the generic”
understanding of subjectivity, so it might be claimed that subjective space is really
the personal (which Eddington denies as relevant for the new physics). Unfortu-
nately, interpreting a practice-based (or praxis) theory of space as akin to personal
experience is quite problematic, for the manner by which space, as a social practice,
acquires this individual, “personal” trait is left unexplained–and, it may contradict
the very idea of a social practice, which must rise above the experience of individual
practitioners in some fashion. Put another way, the difficulty with associating these
non-quantitative, non-mathematical “intensive magnitudes” with subjective spatial
experience, either at the personal or social level, is that it fails to provide a rationale
for criticizing the mathematization of physical space–unless, of course, they hold
that physical space actually possesses irreducibly qualitative properties, like color
or pain, which is patently absurd.

Moreover, the foundational role that the purely qualitative magnitudes play for
many lived-space theorists inevitably yields anxieties over an impending radical
subjectivism. Husserl’s Crisis provides a clear example of this dilemma, for he
denies that the life-world a priori is geometrical (see Sect. 3.1) while simultaneously
rejecting an historicist, relativist interpretation of life-world schemes. He contends
that the relativism worry disappears “as soon as we consider that the life-world does
have, in all its relative features, a general structure”, such that “this general struc-
ture, to which everything that exists relatively is bound, is not itself relative” (139).
Finally, “as life-world the world has, even prior to science, the ‘same’ structure that
the objective sciences presuppose” and “are the same structures that they presuppose
as a priori structures and systematically unfold in a priori sciences”(139). In other



306 E. Slowik

words, there is an invariant structure that underlies both the life-world a priori and
the a priori of the objective sciences.

Deprived of mathematics, however, it is not exactly clear what Husserl has in
mind in declaring that the life-world and the objective sciences share the “same”
structure. Given the epochNe, mathematics has been bracketed away from the life-
world a priori, so the similarity of structure cannot be mathematical/geometrical
structure–yet, what “structure” remains? It is possible that Husserl has in mind a
basic similarity between the scientific a priori’s mathematical structures, on the one
hand, and the relational structure of the mental content associated with kinesthetic
awareness (of the life-world a priori), on the other; where “kinesthetic” refers to
the experience of one’s body in moving or resting, “each being an ‘I move’, ‘I do’
[etc.]” which “are bound together in a comprehensive unity” (106). Nevertheless,
a relational similarity of this sort would seem to warrant an analysis employing
some form of deeper mathematical structure (such as set theory, topology, or cat-
egory theory?), since one of the relata is, in fact, the mathematics of the natural
sciences. But, any non-life-world idealization, like set theory, is apparently ruled
out by the epochNe; that is, these more abstract structures are also idealizations ulti-
mately derived from the life-world (43–48), so there can be no more basic structure
that underlies both social practices and mathematics.7

Another tactic might be to simply assert that this similar structure is a meta-
physical primitive or unanalyzable notion, a maneuver that Heidegger may have
exploited in his later works.8 Alas, recourse to metaphysical expedients of this type
would seem incompatible with Husserl’s claims for the scientific status of the life-
world a priori, nor does a primitive metaphysical concept really explain how the
impending relativism has been averted. Moreover, a purely metaphysical means of
overcoming the radical subjectivism quandary leaves the relationship between the
subjective aspect of space and the underlying ontology a mystery, our problem (2).
Husserl’s Crisis, a notable precursor to the modern place theories, thus demonstrates
the inherent vulnerability of any position that seeks objective scientific status for a

7 It is not being claimed, here, that psychological/social factors, such as a language or conceptual
scheme, cannot provide a structural foundation from which mathematics emerges (see e.g., Lakoff
and Nunez 2001). Yet, these attempts to derive mathematics from human practices then run into
another version of problem (1), since it would appear that different human practices might then
generate conflicting mathematical schemes. Husserl’s long antipathy to “psychologism” was based
on this very concern.
8 In Joseph Kockelmans’ excellent survey, the relativism problem for Heidegger is discussed with
respect to the “aboriginal Event”, the Ereignes, which is “ontologically prior to Being as well as
to time, because it is that which grants to both what they properly are” (1992, 162–163; from
Zur Sache Des Denkens 1988). Given the Ereignes, “one understands, or perhaps more accurately
stated, experiences that the various epochs [different manifestations of Being’s history] are no
longer mysteries, but are the necessary consequence of the inherent finitude of an aboriginal Event
which presents the Open [the bestowing of past, present, future] and grants Being” (167). Yet, it
difficult to understand how Heidegger’s appeal to this sort of quasi-mystical insight can constitute a
serious resolution of the relativism problem. In fact, seeking divine revelation from Ereignis in this
manner would seem to be just another way of introducing the “God of the philosophers”, which is
a strategy that he thoroughly repudiates.
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subjective/practice oriented conception of space while simultaneously bracketing
away mathematical methods.

Part of what may be driving Husserl’s “bracketing away” of mathematics from
the life-world a priori can be labeled the “circularity argument”: since mathematics
is a by-product of human practices, thus mathematics cannot be used to explain its
own origin in human practices. Yet, this argument is fallacious, since the manner
by which mathematics came about does not provide any information on the domain
of mathematical application. Indeed, the fact that human practices can be given a
fairly sophisticated mathematical description serves as direct counter-example to
the circularity argument. Specifically, there is a long tradition of attempts to inte-
grate modern mathematical techniques with the psychological and social aspects of
space,9 such as the child psychologist Jean Piaget, who used many of the geomet-
rical structures explained above: e.g., topological, projective, and Euclidean (Piaget
1967). Later researchers have extended these geometrically-informed hypotheses
to the larger social realm as well (see Sack 1980, Hillier and Hanson 1984, to
name a few).10 For example, the spatial constructions of different cultures could
be tied to different geometrical invariants. Since these invariants, and their associ-
ated geometries, are nested within one another in a natural and determinate way,
the diversity of geometrical practices does not entail, therefore, problem (1). More-
over, since the geometric invariants are normally construed as providing a link to,
or a representation of, the underlying physical ontology– via the invariant relation-
ships among frames and their associated constraints on possible frames–problem
(2) is also resolved.11 In conclusion, the utilization of mathematical techniques and
concepts to capture the spatial (and temporal) aspects of experience might lead to

9 A notable declaration of the need for mathematical investigations in the social studies of space is
the following: “It is clear that environmental ‘objects’ and human ‘subjects’ are deeply entangled
with each other . . . . Nor is it the case that the object side of the urban system can be dealt with
mathematically and the subject side only qualitatively. The fact that the city is shaped by the human
cognitive subject does not lessen its mathematical content . . . . [T]he cognitive processes by which
the subject intervenes reflect mathematical laws. . . . The project for space syntax research must
now be to engage with the problematics of both the mathematical and humanistic paradigms in
the hope and expectation that by finding how each is present in the other we will progress towards
synthesis” (Hillier 2003, 19).
10 In one of Cassirer’s last works, he also advocates the expansion of these geometrical concepts to
other disciplines. Cassirer notes that psychologists are “not especially interested in mathematical
speculation”, and that mathematicians do “not care about psychological problems”; yet, he insists
that this “separation is of questionable value” (1979, 285). He continues: “Of course we cannot
mix up the two fields of investigation; we must make a sharp distinction between the mathematical
and psychological problem of space. But that ought not to prevent us from looking for a connecting
link between the two problems; and I think that the concept of a group [of transformations] may
be regarded as such a connecting link” (285).
11 A recent interpretation of Husserl’s philosophy of space/geometry, which also utilizes trans-
formation groups, is Tieszen (2005, Chap. 3), although the problematic issues pertaining to the
life-world (as argued above) would seem to pose an obstacle to his reconstruction of Husserl’s
later philosophy. See also, Carr (1977), on the complexities of Husserl’s life-world.
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new breakthroughs, as Minkowski successfully demonstrated long before the later
Husserl, Heidegger, or the modern lived-space movement.

5 A Concluding Case Study: Deleuze on Differential Geometry

The case presented thus far can be briefly summarized: by unfairly purging math-
ematical/geometrical concepts, the practice-oriented philosophers of place have
unwittingly deprived their theory of a useful means of answering both the rela-
tivism problem (1), as well as the problematic relationship between the subjective
experience of space and the underlying physical ontology, our problem (2).

Not all place theorists have ignored mathematics, however. Therefore, by way
of conclusion, we will examine what is probably the most famous (or infamous)
instance of the application of mathematics within the theory of lived-space. In A
Thousand Plateaus, Giles Deleuze and Felix Guattari invoke a plethora of modern
geometrical concepts in their exposition of “smooth” space and “striated” space,
which, more or less, corresponds to the qualitative and quantitative aspects of space,
respectively.12 On the whole, Deleuze and Guattari make some interesting claims
that are relevant to the potential utilization of mathematics within the place theory.
Smooth space, in various passages, is described as topological, non-metrical, local,
and “is therefore a vector, a direction and not a dimension or metric determina-
tion” (1987, 478); whereas striated space is characterized as metrical. Deleuze and
Guattari cite Riemann’s theory of manifolds as a model for viewing smooth space;
and, although their analysis is rather incongruous mathematically, one of the goals
seems to be a sketch of the relationship between the subjective, qualitative space
of the individual (smooth space) and a formal quantitative method of objectifying
that space (striated space, which they link with, not surprisingly, Euclidean space;
371). Their main contention is that smooth space, as the environs of the individ-
ual, need not be necessarily conceived as merely a part of a larger metrical, striated
space. They introduce Riemann’s theory to demonstrate that a point of the manifold
(smooth space) can be connected to an adjacent point in a number of ways, such
that a metrical connection need not be assumed, a process they call “accumulation”
(485): put in the modern mathematical parlance, while the infinitesimal neighbor-
hood (or tangent space) of each manifold point is Euclidean, a vector in this tangent
space can be compared with another vector in a separate tangent space in such a
way that their (locally defined) Euclidean properties are lost in the transfer. Conse-
quently, Deleuze and Guattari have relied upon the intrinsic approach to geometry

12 On Deleuze and Guattari on chaos theory, see Sokal and Bricmont (1998). While controversial in
their own right, these types of critiques of postmodern thought do shed light, at least tangentially,
on an apparent trend among some contemporary theorists of lived-space; namely, the appropri-
ation of mathematical and scientific terms or ideas, such that they are no longer used in their
strictly technical sense, but rather are exploited to present an array of different meanings or notions
(many possibly literary in origin). Furthermore, this essay cannot explore all of the discussions of
geometry in Deleuze’s work, but merely examines a notable instance.
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and its concept of a manifold (as outlined in Sect. 4) to correlate separate subjec-
tive spaces; albeit without really laying to rest the relativism issue addressed in
this essay, since the many possible connections among infinitesimal neighborhoods
raises problem (1) in a new guise.13

Finally, Deleuze and Guattari attribute to Riemann the (quite implausible) legacy
of “the beginning of a typology and topology of multiplicities”, i.e., an alterna-
tive method of conceiving quantities, broadly construed, which would ultimately
come to fruition in Henri Bergson’s qualitative concept of “duration” (“as a type
of multiplicity opposed to metric multiplicity or the multiplicity of magnitude”,
483). On these grounds, they conclude that “we consider Bergson to be of major
importance (much more so than Husserl, or even Meinong or Russell) in the devel-
opment of the theory of multiplicities” (483). Yet, in an ironic twist, the results in
differential geometry that Deleuze and Guattari refer to, on the multiple connections
among points on a manifold, are largely the product of Hermann Weyl–and Weyl’s
motivation in these mathematical investigations was, in part, to adapt Husserl’s
phenomenological work on subjective space perception to the new conception of
physical space that followed in the wake of the General Theory of Relativity. Each
point of the manifold, for Weyl, is linked to the infinitesimal Euclidean space of a
hypothetical observer, such that it guarantees the kinesthetic experience of the free
mobility (in three-dimensions) of objects in that infinitesimal neighborhood (via
the Helmholtz-Lie theorem). Each point of the manifold is, accordingly, a separate
Husserlian (subjective) space, as well as the remnant of Kant’s synthetic a priori
“form of intuition” of space. Yet, the mutual orientation of the Euclidean metrics
located at separate points may differ, and thus the overall space (manifold) may not
be Euclidean, a fact that can only be determined by experience (see Ryckman 2005,
Chaps. 5 and 6, and endnote 4). Deleuze and Guattari may have been unaware of this
bit of mathematical history, or of the direct relevance of Husserl’s philosophy for the
story. Yet, given their very peculiar efforts to proclaim Bergson’s importance for the
evolution of their quasi-mathematical concept of “multiplicity” (see 482–483), a
more sinister take on this entire discussion is that Deleuze and Guattari favor Berg-
son because he is a more faithful exponent of the Lebensphilosophie movement, as

13 That is, there is an underdetermination of the exact method of connecting the separate smooth
(tangent) spaces. Another problem is that a non-metrical connection, such as an affine connection
that preserves linearity but not length, does not guarantee a metrical connection, although the latter
does contain the former. Deleuze and Guattari might think, erroneously, that the two concepts are
necessarily and sufficiently conjoined, since they claim that “the two [non-metrical “accumula-
tion” and “Euclidean conjunction”] are linked and give each other impetus” (486). But, an affine
connection does not require a metrical connection at all. In trying to capture the alleged interdepen-
dence of smooth and striated spaces sought by Deleuze and Guattari, a better case from differential
geometry might be found in the distinction between tangent vectors (or contravariant vectors) and
1-forms (or covariant vectors), which are inter-defined and equally necessary for the mathematical
presentation (see e.g., Burke 1980, Chap. 2): the 1-forms, which provide the gradient for smooth
functions, are often given the pictorial representation of a contour map, and thus its role in “num-
bering” the tangent vectors would nicely fit the category of striated space, while the tangent vectors
obviously play the role of smooth space.



310 E. Slowik

opposed to the more objectivist, scientifically-oriented project of Husserl (with its
sharp repudiation of any relativism or historicism). If this interpretation is correct, it
would reveal a deeper tension within the lived-space approach as a whole, namely,
the continuing battle between its objectivist, scientifically inclined and subjectivist,
non-scientifically inclined contingents–and the outcome of this contest will largely
determine the role of mathematics for the practitioners of the theory of place. Inter-
estingly, in a recent collection of articles entitled, Deleuze and Space (Buchanan
and Lambert 2005), none of the mathematical themes in A Thousand Plateaus are
taken up, which would indicate that the prospects for an integration of mathemati-
cal methods within the place theory are, at least for the foreseeable future, not very
promising.
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