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Preface

This volume contains the papers selected for presentation at the 7th International
Conference on Rough Sets and Current Trends in Computing (RSCTC 2010)
held at the University of Warsaw, Poland, during June 28–30, 2010.

This was the seventh edition of the event that has established itself as the
main forum for exchange of ideas between researchers in various areas related to
rough sets. In 2010, the conference went back to its origins both in terms of its
location (the first RSCTC conference was held in Warsaw, Poland in 1998) and
in terms of topic coverage. The dates also mark the third anniversary of RSEISP
2007—a conference dedicated to the memory of Zdzis�law Pawlak.

RSCTC 2010 was to provide researchers and practitioners interested in emerg-
ing information technologies a forum to share innovative theories, methodologies,
and applications in rough sets and its extensions. In keeping with the spirit of
past rough set-based conferences, RSCTC 2010 aimed to explore synergies with
other closely related areas such as computational intelligence, knowledge discov-
ery from databases and data mining, non-conventional models of computation,
and Web mining. Major topics covered in these proceedings include: approximate
and uncertain reasoning, bioinformatics, data and text mining, dominance-based
rough set approaches, evolutionary computing, fuzzy set theory and applications,
logical and mathematical foundations of rough sets, perceptual systems as well
as applications of rough sets and its extensions in areas such as medicine, Web
intelligence and image processing. The papers included in the special and in-
dustrial sessions cover learning methods and mining of complex data, soft com-
puting applications to multimedia and telemedicine, knowledge representation
and exchange in multi-agent systems and emerging intelligent technologies in
the telecommunications industry.

There were 148 valid (out of 163 in total) submissions to RSCTC 2010.
Every paper was examined by at least two reviewers. Out of the papers initially
selected, some were approved subject to revision and then additionally evaluated.
Finally, 76 papers were accepted, giving an acceptance ratio of just over 51% for
the conference.

The Discovery Challenge was launched successfully this year, with support
and sponsorship from TunedIT (http://tunedit.org). The data-mining task con-
cerned feature selection for the analysis of DNA microarray data and classifica-
tion of patients for the purpose of medical diagnosis and treatment. We especially
wish to acknowledge the following Discovery Challenge organizers: Marcin Wo-
jnarski, Andrzej Janusz, Hung Son Nguyen and Jan Bazan. Our thanks to all
participants of the two tracks of the Discovery Challenge. The winners of the
challenge were awarded prizes.

We wish to thank all of the authors who contributed to this volume. We
are very grateful to the Chairs, advisory board members, Program Committee
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members, and other reviewers not listed in the conference committee for their
help in the acceptance process.

We are very grateful to the scientists who kindly agreed to give the keynote
lectures: Katia Sycara, Rakesh Agrawal, Sankar K. Pal and Roman S�lowiński.
We also wish to express our deep appreciation to special session and industrial
session organizers: Jerzy Stefanowski, Andrzej Czyżewski, Bożena Kostek, Do-
minik Ryżko, Henryk Rybiński and Piotr Gawrysiak.

Our thanks go to institutions that provided organizational support for RSCTC
2010 – Faculty of Mathematics, Informatics and Mechanics of the University of
Warsaw, Polish Mathematical Society (PTM) and Institute of Computer Science,
Faculty of Electronics and Information Technology of the Warsaw University of
Technology. We also greatly appreciate the co-operation, support, and sponsor-
ship of Springer, the International Rough Set Society and TunedIT.

The organizers wish to thank the Ministry of Science and Higher Education of
the Republic of Poland for the financial support, which significantly contributed
to the success of the conference.

We wish to thank several people whose hard work made the organization of
RSCTC 2010 possible. We are very grateful to Stefan Jackowski and Krystyna
Jaworska of PTM, as well as Marcin Kuzawiński – the author of the registration
system.

Finally, we wish to express our thanks to Alfred Hofmann, Anna Kramer,
Ingrid Beyer, and several anonymous technical editors of Springer for their sup-
port and co-operation during the preparation of this volume.

June 2010 Marcin Szczuka
Marzena Kryszkiewicz

Sheela Ramanna
Richard Jensen

Qinghua Hu
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Li-Shiang Tsay
Shusaku Tsumoto
Aida Vitória
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João Bártolo Gomes, Ernestina Menasalvas, and Pedro A.C. Sousa

Support Feature Machine for DNA Microarray Data . . . . . . . . . . . . . . . . . . 178
Tomasz Maszczyk and W�lodzis�law Duch



Table of Contents XI

Is It Important Which Rough-Set-Based Classifier Extraction and
Voting Criteria Are Applied Together? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
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Juan A. Gómez-Pulido, and Juan M. Sánchez-Pérez
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Table of Contents XV

Solution of the Inverse Heat Conduction Problem by Using the ABC
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Edyta Hetmaniok, Damian S�lota, and Adam Zielonka

Application of Fuzzy Wiener Models in Efficient MPC Algorithms . . . . . . 669
Piotr M. Marusak

Multicriteria Subjective Reputation Management Model . . . . . . . . . . . . . . 678
Micha�l Majdan and W�lodzimierz Ogryczak

Application of Fuzzy Preference Based Rough Set Model to Condition
Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Xiaomin Zhao, Ming J. Zuo, and Tejas Patel

Graph-Based Optimization Method for Information Diffusion and
Attack Durability in Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

Zbigniew Tarapata and Rafa�l Kasprzyk

Granularity and Granular Systems

Paraconsistent and Approximate Semantics for the OWL 2 Web
Ontology Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

Linh Anh Nguyen

Representation of Granularity for Non-Euclidian Relational Data by
Jaccard Coefficients and Binary Classifications . . . . . . . . . . . . . . . . . . . . . . . 721

Shoji Hirano and Shusaku Tsumoto

Information Systems in Modeling Interactive Computations on
Granules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

Andrzej Skowron and Piotr Wasilewski

Distributed Representations to Detect Higher Order Term Correlations
in Textual Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
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Summary

Large scale networked systems that include heterogeneous entities, e.g., humans
and computational entities are becoming increasingly prevalent. Prominent ap-
plications include the Internet, large scale disaster relief and network centric
warfare. In such systems, large heterogeneous coordinating entities exchange
uncertain information to obtain situation awareness. Uncertain and possibly
conflicting sensor data is shared across a peer-to-peer network. Not every team
member will have direct access to sensors and team members will be influenced
mostly by their neighbors in the network with whom they communicate directly.
In this talk I will present our work on the dynamics and emergent behaviors of
a large team sharing beliefs to reach conclusions about the world. Unlike past
work, the nodes in the networks we study are autonomous and actively fuse in-
formation they receive. Nodes can change their beliefs as they receive additional
information over time.

We find empirically that the dynamics of information propagation in such be-
lief sharing systems are characterized by information avalanches of belief changes
caused by a single additional sensor reading. The distribution of the size of these
avalanches dictates the speed and accuracy with which the team reaches con-
clusions. A key property of the system is that it exhibits qualitatively different
dynamics and system performance over different ranges of system parameters.
In one particular range, the system exhibits behavior known as scale-invariant
dynamics which we empirically find to correspond to dramatically more accurate
conclusions being reached by team members. Due to the fact that the ranges are
very sensitive to configuration details, the parameter ranges over which specific
system dynamics occur are extremely difficult to predict precisely. I will present
results on the emergent belief propagation dynamics in those systems, mathe-
matical characterization of the systems’ behavior and distributed algorithms for
adapting the network behaviors to steer the whole system to areas of optimized
performance.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, p. 1, 2010.
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Summary

Dominance-based Rough Set Approach (DRSA) has been proposed as an exten-
sion of the Pawlak’s concept of Rough Sets in order to deal with ordinal data [see
[2,3]]. Ordinal data are typically encountered in multi-attribute decision prob-
lems where a set of objects (also called actions, acts, solutions, etc.) evaluated by
a set of attributes (also called criteria, variables, features, etc.) raises one of the
following questions: (i) how to assign the objects to some ordered classes (ordinal
classification), (ii) how to choose the best subset of objects (optimization), or
(iii) how to rank the objects from the best to the worst (ranking). The answer to
everyone of these questions involves an aggregation of the multi-attribute evalu-
ation of objects, which takes into account a law relating the evaluation and the
classification, or optimization, or ranking decision. This law has to be discovered
from the data by inductive learning. In case of decision problems corresponding
to some physical phenomena, this law is a model of cause-effect relationships,
and in case of a human decision making, this law is a decision maker’s pref-
erence model. In DRSA, these models have the form of a set of “if..., then...”
decision rules. In case of multi-attribute classification the syntax of rules is: “if
evaluation of object a is better (or worse) than given values of some attributes,
then a belongs to at least (at most) given class”, and in case of multi-attribute
optimization or ranking: “if object a is preferred to object b in at least (at most)
given degrees with respect to some attributes, then a is preferred to b in at least
(at most) given degree”.

Since its conception, DRSA has been adapted to a large variety of decision
problems [10]. Moreover, it has been adapted to handle granular (fuzzy) infor-
mation [5], and incomplete information [1]. Stochastic version of DRSA has also
been characterized in [9].

In this presentation, we will concentrate on two recent applications of DRSA:
decision under uncertainty and time preference [6], and interactive robust multi-
objective optimization [4,7]. Moreover, we will give account of topological prop-
erties of DRSA [8], using the concept of a bitopological space.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 2–3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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based rough set model for ordinal classification. Information Sciences 178, 4019–
4037 (2008)
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Abstract. RSCTC’2010 Discovery Challenge was a special event of
Rough Sets and Current Trends in Computing conference. The chal-
lenge was organized in the form of an interactive on-line competition, at
TunedIT.org platform, in days between Dec 1, 2009 and Feb 28, 2010.
The task was related to feature selection in analysis of DNA microarray
data and classification of samples for the purpose of medical diagno-
sis or treatment. Prizes were awarded to the best solutions. This paper
describes organization of the competition and the winning solutions.

1 Introduction

In recent years, a lot of attention of researchers from many fields has been put
into investigation of DNA microarray data. This growing interest is largely moti-
vated by numerous practical applications of knowledge acquired from such data

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 4–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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in medical diagnostics, treatment planning, drugs development and many more.
When analyzing microarray data, researchers have to face the few-objects-many-
attributes problem, as the usual ratio between the number of examined genes
and the number of available samples exceeds 100. Many standard classification
algorithms have difficulties in handling such highly dimensional data and due to
low number of training samples tend to overfit. Moreover, usually only a small
subset of examined genes is relevant in the context of a given task. For these
reasons, feature extraction methods – in particular the ones based on rough-set
theory and reducts - are an inevitable part of any successful microarray data
classification algorithm. With RSCTC’2010 Discovery Challenge, the organizers
wanted to stimulate investigation in these important fields of research.

The challenge was organized in the form of an interactive on-line competition,
at TunedIT (http://tunedit.org) platform, in days between December 1, 2009
and February 28, 2010. The task was to design a machine-learning algorithm
that would classify patients for the purpose of medical diagnosis and treatment.
Patients were characterized by gene transcription data from DNA microarrays.
The data contained between 20,000 and 65,000 features, depending on the type
of microarrays used in a given experiment.

Organizing Committee of the challenge had four members: Marcin Wojnarski,
Andrzej Janusz, Hung Son Nguyen and Jan Bazan.

2 Organization of the Challenge

Challenge comprised two independent tracks, namely Basic and Advanced, dif-
fering in the form of solutions. In Basic Track, the participant had to submit
a text file with predicted decisions for test samples, which was later compared
with the ground truth decisions – a typical setup used in other data mining
challenges. In Advanced Track, the participant had to submit Java source code
of a classification algorithm. The code was compiled on server, the classifier was
trained on a subset of data and evaluated on another subset.

On one hand, Advanced Track was more challenging for participants than
Basic Track because there were restrictions on the way how the algorithm was
implemented – it must have been written in Java, according to API defined
by one of three data mining environments: Weka, Debellor or Rseslib. On the
other hand, every algorithm have been trained and tested a number of times
on the same datasets, using different splits into train/test parts which allowed
much more accurate evaluation of solutions. This is particularly important for
the problems like DNA microarray data analysis, where datasets are small and
evaluation with single train/test split is not fully objective.

Another advantage of Advanced track was the possibility to evaluate not only
the accuracy of decisions made by algorithms but also their time and memory
complexity. Limits were set for execution of the evaluation procedure, so if the
algorithm was too slow or required too much memory, the computation was
interrupted with an error. Moreover, after the end of the competition it was
possible to disclose the source codes of the solutions at TunedIT server, exactly
in the same form that underwent evaluation, to be used by all researchers as

http://tunedit.org
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a benchmark or starting point for new research. Other details of the challenge
setup can be found at http://tunedit.org/challenge/RSCTC-2010-A.

3 Datasets

Twelve microarray datasets from a wide range of medical domains were used
in the competition. All of them were acquired from a public microarray repos-
itory ArrayExpress1 (to find out more about the repository see [1]). All mi-
croarray experiment results in this repository are stored in MIAME standard
and their detailed description as well as previous usage is available on-line. The
datasets chosen for the basic track of the challenge are related to diverse re-
search problems: recognition of acute lymphoblastic leukemia genetic subtypes
(experiment accession number E-GEOD-13425), diagnostic of human gliomas
(accession number E-GEOD-4290), transcription profiling of human healthy and
diseased gingival tissues (accession number E-GEOD-10334), transcription pro-
filing of human heart samples with different failure reasons (accession number
E-GEOD-5406), recognition of genomic alterations that underlie brain cancer
(accession number E-GEOD-9635) and profiling of human systemic inflamma-
tory response syndrome (SIRS), sepsis, and septic shock spectrum (accession
number E-GEOD-13904). For the advanced track, selected datasets concerned
prediction of response to anthracycline/taxane chemotherapy (accession num-
ber E-GEOD-6861), diagnostic of human Burkitts lymphomas (accession num-
ber E-GEOD-4475), investigation of a role of chronic hepatitis C virus in the
pathogenesis of HCV-associated hepatocellular carcinoma (accession number E-
GEOD-14323), profiling of several murine genotypes on subjects stimulated with
purified Toll-like receptor agonists (accession number E-TABM-310), recogni-
tion of ovarian tumour genetic subtypes (accession number E-GEOD-9891) and
recognition of multiple human cancer types (accession number E-MTAB-37).

For the purpose of the competition only the processed versions of the datasets
were utilized and no additional microarray normalization was performed. Data
preparation was done in R System2 (see [2]). During preprocessing, decision
classes of samples were assigned based on the available “Sample and Data Rela-
tionship” files. Those decision classes, which were supported only by few samples,
were removed from data or they were merged with similar classes (e.g. some sub-
types of a specific medical condition could have been merged together to form a
decision class which is better-represented in data). Any additional information
about samples (such as gender, age, smoking habits) was disregarded.

Several precautions were taken to avoid identification of the datasets by con-
testants. For each decision set, sample and gene identifiers were removed. After
that, the samples as well as genes were randomly shuffled and a few samples were
taken out with some probability. Finally, gene expression values were divided by
the standard deviation of all expression levels in the corresponding sets and the
datasets, for which at least one gene fulfilled a criterion that its range was more
1 www.ebi.ac.uk/arrayexpress
2 http://www.R-project.org

http://tunedit.org/challenge/RSCTC-2010-A
http://www.R-project.org
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than 100 times greater than the distance between its first and the third quantile,
were logarithmically scaled using the formula:

x′ = sign(x) ∗ log(|x|+ 1)

Brief characteristics of the prepared datasets are given in Table 1.

Table 1. A brief summary of the microarray datasets used in the challenge

Accession number: no. samples no. genes no. classes
E-GEOD-13425 190 22276 5
E-GEOD-4290 180 54612 4
E-GEOD-10334 247 54674 2
E-GEOD-5406 210 22282 3
E-GEOD-9635 186 59003 5
E-GEOD-13904 227 54674 5
E-GEOD-6861 160 61358 2
E-GEOD-4475 221 22282 3
E-GEOD-14323 124 22276 4
E-TABM-310 216 45100 7
E-GEOD-9891 284 54620 3
E-MTAB-37 773 54674 10

In order to provide reasonable baseline scores for participants, three classic
features selection methods were combined with 1-Nearest-Neighbor algorithm
and used to perform a classification of the test samples from Basic track. The
first method was based on the relief algorithm (for more details see [3]). This
multivariate filter approach measures usefulness of attributes in k-NN classifica-
tion and can efficiently identify irrelevant features. The gene selection threshold
was estimated on the training data using the random probes technique with a
probability of selecting an individually irrelevant gene set to 0.05. The irrele-
vant genes were removed form data and the elimination process was repeated
until all the genes that left in a dataset were marked as relevant. The second
and the third method were utilizing univariate statistical tests (Pearson’s cor-
relation test and the t-test) to filter out unimportant genes (see [4]). For each
dataset, the number of selected genes was also estimated using random probes
but this time, a desired probability of choosing an irrelevant gene was tuned by
leave-one-out cross-validation on training examples. The results achieved by the
baseline methods were published on the leaderboard during the competition and
are summarized in Table 3.

4 Evaluation of Solutions

Solutions were evaluated using a total of 12 datasets from a variety of microar-
ray experiments, each one related to a different medical problem, with different
number of attributes and decision classes. Thus, participants had to design algo-
rithms which can be successfully applied to many problems of DNA microarrays
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analysis, not only to one. Evaluation was performed automatically on TunedIT
servers using TunedTester application. Every solution underwent two distinct
evaluations: preliminary and final. The results of preliminary evaluation were
published on the leaderboard (after they were calculated), while the final results
were disclosed after completion of the challenge. Only the final results were taken
into account when deciding the winners.

Each of the 12 datasets was assigned to one of the two tracks, thus solutions
on every track were evaluated using six datasets, different for each track. The
data used on Basic Track were divided into separate training and test sets and
were published on the challenge web page. The decisions for samples from the
test sets were kept secret and the task was to submit their predictions. On the
server, the solutions were compared with expected decisions and their quality
was calculated. To avoid bias in the final results caused by overfitting, half of
the predictions were used for calculation of the preliminary results, and another
half for the final results.

In Advanced Track, all datasets were kept secret, so participants could not
access them. Instead, participants could have used public data from Basic Track
to test their solutions before submission to the challenge. After submission, the
algorithms were evaluated on each dataset with Train+Test procedure applied a
number of times. Each Train+Test trial consisted of randomly splitting the data
into two equal disjoint parts, training and test subsets, training the algorithm
on the first part and testing it on the second. Quality measurements from all
trials on a given dataset were averaged. Randomization of data splits was the
same for every submitted solution so every algorithm was evaluated on the same
splits. The number of repetitions of Train+Test procedure on each dataset was
set to 5 for the preliminary evaluation and 20 for the final.

The datasets that were employed on Basic Track in the preliminary and the
final evaluation, included: E-GEOD-13425, E-GEOD-4290, E-GEOD-10334, E-
GEOD-5406, E-GEOD-9635 and E-GEOD-13904.

The preliminary evaluation on Advanced Track employed 5 datasets: E-GEOD-
4475, E-GEOD-14323, E-TABM-310, E-GEOD-9891 and a half of E-MTAB-37
(part A). The final evaluation on Advanced Track employed a total of 6 datasets:
4 datasets from preliminary evaluation, another half of E-MTAB-37 and a new
dataset, not used in preliminary evaluation: E-GEOD-6861, E-GEOD-4475, E-
GEOD-14323, E-TABM-310, E-GEOD-9891 and E-MTAB-37 (part B).

Datasets from medical domains usually have skewed class distributions, with
one dominant class represented by majority of samples and a few minority classes
represented by small number of objects. This was also the case in this challenge.
Typically, minority classes are more important than the dominant one and this
fact should be reflected by the quality measure used to assess the performance
of algorithms. For this reason, solutions were evaluated using balanced accuracy
quality measure. This is a modification of standard classification accuracy that
is insensitive to imbalanced frequencies of decision classes. It is calculated by
computing standard classification accuracies (acck) for every decision class and

http://tunedit.org/tunedtester
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then averaging the result over all classes (k = 1, 2, . . . ,K). In this way, every
class has the same contribution to the final result, no matter how frequent it is:

Sk = #{i : class(samplei) = k}
acck = #{i : prediction(samplei) = class(samplei) = k}/Sk

BalancedAcc = (acc1 + acc2 + . . . + accK)/K

In the case of 2-class problems with no adjustable decision threshold, balanced
accuracy is equivalent to Area Under the ROC Curve (AUC). Thus, it may be
viewed as a generalization of AUC to multi-class problems.

In the competition, the balanced accuracy of algorithms was calculated sepa-
rately for each dataset used on a given track and then the results were averaged.

In the evaluation of the Advanced Track, not only accuracy, but also time-and-
memory-efficiency of algorithms were considered. A time limit was set for the
whole evaluation: 5 hours in the preliminary tests and 20 hours in the final tests.
Therefore, a single Train+Test trial of the algorithm lasted, on average, no longer
than 60 minutes. The memory limit was set to 1,500 MB, both in preliminary
and final evaluation. Up to 450 MB was used by evaluation procedure to load a
dataset into memory, so 1 GB was left for the algorithms. Tests were performed
on a station with 1.9 GHz dual-core CPU, 32-bit Linux and 2 GB memory,
running Sun Java HotSpot Server 14.2 as a JVM.

5 Results

There were 226 participants registered to the challenge. The number of active
participants – the ones who submitted at least one solution – was 93 for Basic
Track and 29 for Advanced Track. If a participant made more than one submis-
sion, the last solution was considered as the final one. The first 3 winners on
each track, together with baseline results, are presented in Tables 2 and 3.

After the challenge, we calculated the results that would be obtained by an
ensemble made of a number of top solutions from Basic Track, through a simple
voting. These results are presented in Table 3. Combining 7 top solutions gave
significantly higher accuracy than that of the best individual algorithm. We also
constructed an ensemble of 54 solutions whose individual performances were
better than the best baseline and an ensemble of 92 solutions which achieved
higher rank than a “majority vote” classifier.

TunedIT awarded the first winners on both tracks with money prizes: 2,000
USD on Advanced track and 1,000 USD on Basic track. Additionally, conference
registration fees for two participants, one from each track, were covered.

All employed datasets and the source code of evaluation procedures are avail-
able at TunedIT Repository3 so new algorithms can be tested against challenge
data, using the same experimental setup. In this way, the challenge contributed
to creation of benchmark datasets that can be reused in the future by the whole
scientific community.

In the following sections, the winners briefly describe their approaches.
3 Links can be found at http://tunedit.org/challenge/RSCTC-2010-A

http://tunedit.org/challenge/RSCTC-2010-A
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Table 2. Final results of the Advanced Track

Rank Participant or Team Username Final Result

1

ChuanJiang Luo, Ze Chen, Feng Hu,

RoughBoy 0.75661
Guoyin Wang, Lihe Guan,

Inst of Computer Science and Technology,
Chongqing Univ of Posts & Telecomm, China

2

Huan Luo, Juan Gao, Feng Hu,

ChenZe 0.75180
Guoyin Wang, Yuanxia Shen,

Inst of Computer Science and Technology,
Chongqing Univ of Posts & Telecomm, China

3 wulala wulala 0.75168

Table 3. Final results of the Basic Track

Rank Participant or Team Username Final Result

1
Vladimir Nikulin, Dept. of Mathematics,

UniQ 0.73870University of Queensland, Australia

2
Matko Bošnjak, Dragan Gamberger,

RandomGuy 0.73485Rudjer Boskovic Institute, Croatia
3 Ryoji Yanashima, Keio University, Japan yanashi 0.73108
– Baseline relief-1NN – 0.65122
– Baseline corTest-1NN – 0.64087
– Baseline tTest-1NN – 0.63464
– Baseline: majority classifier – 0.28056
– Ensemble of top 7 final solutions – 0.7469
– Ensemble of top 54 final solutions – 0.7113
– Ensemble of top 92 final solutions – 0.6870

6 The Best Solution from Basic Track: Feature Selection
with Multi-class Wilcoxon Criterion Applied to
Classification of High-Dimensional Microarray Data

6.1 Initial Model and Evaluation Scheme

Initially, we decided to conduct some experiments with the Nearest Shrunken
Centroids (NSC) method as it is described in [5]. The NSC method may be
viewed as a sequence of two steps FS+Model, (i) feature selection (FS) and (ii)
classification. The FS step depends on a very important parameter Δ, which
should be selected specially for the particular dataset. As far as we were deal-
ing with the case of a small sample size, LOO (leave-one-out) was the most
appropriate evaluation scheme:

FS + LOO(Model). (1)

With this scheme, we can consider several parameter settings, and the system
will select the most appropriate setting depending on the LOO evaluations.



RSCTC’2010 Discovery Challenge 11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

WXN

FD

Fig. 1. Relation between WXN and FD scoring functions, where the most simplest
Set3 was used as a benchmark

6.2 Wilcoxon and Fisher Discriminant Criterions for Feature
Selection

Let us denote by Na a set of all samples/tissues within the class a. The follow-
ing criterion (named Wilcoxon) was used for the selection of the most relevant
features

WXN(feature) =
k−1∑
a=1

k∑
b=a+1

max(qab(feature), qba(feature)), (2)

where
qab(feature) =

∑
i∈Na

∑
j∈Nb

I(featurei − featurej ≤ 0),

where I is an indicator function.
In addition, we conducted some experiments with Fisher Discriminant crite-

rion:

FD(feature) =
k−1∑
a=1

k∑
b=a+1

|μa(feature)− μb(feature)|
sa(feature) + sb(feature)

, (3)

where μa(feature) and sa(feature) are mean and standard deviation of feature
within the class a. Note that both criterions WXN and FD were normalised to
the range [0, . . . , 1] .
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Figure 1 illustrates significant structural difference between the WXN and
FD criterions. We used an ensemble constructor as it is described in [6] to cre-
ate an ensemble (named ENS) of WXN and FD criterions, and gained some
improvement in application to Set1.

FS was conducted according to the rule:

ENS(feature) ≥ Δ > 0.

6.3 Classification Models

Very simple and fast classification (FS+FD). The following classification
rule may be viewed as a simplification of the NSC:

decision = argmin
a

p∑
feature=1

|feature(new.sample)− μa(feature)|
sa(feature)

, (4)

and may be used immediately after FS step. Note that LOO evaluation and
validation results, which we observed with (4), were better compared to the
NSC model. It is easy to see a close relation between (3) and (4). Consequently,
we use abbreviation FS+FD for the model (4).

Table 4. Statistical characteristics of the solution, which was produced using ENS+FD
method, where pS is the number of selected features; LOO values are given in terms
of the balanced accuracy; n1, n2, n3, n4, n5 are the numbers of decisions per class

N Δ pS LOO n1 n2 n3 n4 n5

1 0.876 171 0.9088 86 37 - - -
2 0.801 44 0.8273 43 54 7 - -
3 0.55 1542 0.9765 21 7 24 26 16
4 0.663 1031 0.5433 10 32 39 22 9
5 0.845 123 0.7432 17 22 29 21 -
6 0.731 679 0.7127 19 6 14 41 12

Validation experiments. During validation trials we conducted experiments
with several classification models, including our own (translated from C to
JAVA), CLOP (Matlab)4 and, also, models from the Weka package5.

In the case of the basic track the best validation result 0.76 was produced
with ENS+FD (Set 1), WXN+FD (Set 5), WXN+MLP(Weka) (Sets 2-4, 6),
where MLP stands for multilayer perceptron.

The top validation result 0.8089 for the advanced track was produced with
WXN+MLP(Weka), where we used fixed Δ = 0.67 for FS and

ops = {“− L”, “0.25”, “−N”, “1200”, “−H”, “11”, “−M”, “0.1”}
- settings for MLP(Weka).
4 http://clopinet.com/CLOP/
5 http://weka.sourceforge.net/doc/overview-tree.html
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Also, we can recommend to consider SVM(Weka) with the following setting

ops = {“− C”, “1”, “−R”, “1”, “−G”, “9”}.

Using above model we observed validation result 0.7947 in the advanced track.
In difference to simple and fast model described in Section 6.3, models

SVM(Weka) and MLP(Weka) are rather slow. As a consequence, and in or-
der to avoid “time-out” outcome, we did not use the most natural scheme (1)
for our final submission (advanced track). Our final JAR-file was prepared with
fixed Δ - that means, the power of FS was about the same for all test data sets.
However, based on our experiments with LOO-evaluations, we have noticed that
the performance of the model is a very sensitive to the selection of the parameter
Δ, see Table 4.

7 The Second Best Solution from Basic Track: Random
Forest Approach for Distributed and Unbalanced
Prediction Tasks

7.1 Introduction

Typical properties of microarray datasets are a large number of attributes, small
number of examples and usually unbalanced class distributions. Most impor-
tantly, relevant information in these datasets is distributed across many at-
tributes. As such, these datasets are a challenging prediction task.

Good prediction results for such datasets can be expected from systems able
to appropriately reduce the attribute space to some reasonable size but retain the
distributed information. Also, a classifier constructed from the reduced attribute
set should still be able to integrate a relatively large number of attributes into
a model. There is a significant danger of overfitting because the model must be
complex and the number of available training examples is small. In such situation
construction of many diverse classifiers and implementation of an appropriate
voting scheme seems as the only possible solution.

The Random Forest (RF) [7] approach for supervised inductive learning en-
ables a relatively simple and straightforward framework for building a set of
diverse classifiers. Some of its advantages are the ability to cope with extremely
large number of attributes even when there is a small number of instances, and
an option to balance datasets through user defined weights.

In the next Section we present some basic concepts of the RF approach,
describe its current parallel implementation prepared at the Rudjer Boskovic
Institute, and demonstrate RF attribute importance feature. In Sections 7.3 and
7.4 we describe details of our solution which concentrated mainly on the task of
reducing the size of the original attribute space, search for the optimal weights
of classes thus balancing class distribution, and an approach to refine RF results
by outlier detection and correction.
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7.2 Random Forest

Random Forest is a general purpose classification and regression meta-learning
algorithm which works by combining bagging [8] and random subspace method
[9] approaches in constructing an ensemble of random decision trees.

RF is computationally efficient as it is able to learn a forest faster than bagging
or boosting, it is capable of handling large datasets with thousands of categorical
and continuous attributes without deletion which is very suitable for microarray
analysis, and is also capable of balancing out class-wise error rates through a
user-defined set of weights used in the process of tree growing. Besides this, it is
capable of producing many useful data for result interpretation such as attribute
importance, a feature we used for our attribute selection process.

Attribute importance is calculated by comparing the misclassification rate
of the original vs. per-attribute randomly permuted data in the process of er-
ror estimation for the single tree. By subtracting the number of correct votes
for the attribute-permuted data from the number of correct votes of the orig-
inal data and averaging them over all trees in the forest, raw importance and
later, significance levels for the attributes are obtained. Attribute importance
is especially helpful when using data with a large number of attributes like
microarrays.

In this work we used a parallel implementation of the RF algorithm developed
by G. Topić and T. Šmuc at the Rudjer Boskovic Institute. This implementation
is written in Fortran 90 and the parallelization of the algorithm has been accom-
plished using MPI (Message Passing Interface). PARF is licensed under GNU
GPL 2.0 license. More information about the implementation, usage, help and
source code can be found on PARF’s homepage: http://www.parf.irb.hr/.

7.3 Finding Optimal Random Forest Parameters

The main problems of RF approach practical application for the RSCTC’2010
datasets has been confronted with are a) selection of the appropriate subset of
attributes and b) selection of appropriate weights for classes with small number
of examples in the training set. The problems have been solved with a series of
experiments performed with different levels of attribute reduction and different
weights for rare example classes. The optimal combination has been identified
by minimal out-of-bag error estimation [7] which has been remodeled to fit the
evaluation criteria of the balanced accuracy defined for the Challenge. All of the
experiments were executed with a number of trees in the forest equal to 1000 to
ensure stable prediction quality.

In order to implement a relatively systematic search through the space of all
possibly interesting combinations, a double nested loop has been implemented. In
the outer loop the threshold for attribute significance was varied from 0.1− 0.01
in steps of 0.01. With this parameter we have varied the size of the attribute
set entering the second RF learning phase. The actual numbers of the selected
attributes varied between datasets from as low as 7 to 603.

In the inner loop we had a parameter for class weight optimization. The
weights for all classes with high number of instances were set to 1 while for

http://www.parf.irb.hr/
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rare classes they have been preset inverse proportionally to the size of the class.
The latter have been multiplied by the parameter for weight class optimization
which varied from 1− 4 in increments of 0.2.

In the described setting a total of 160 experiments have been performed for
each dataset. Typically optimal attribute significance was in the range 0.06−0.09
with class weight parameter typically in the range 1.5− 3.1.

7.4 Outlier Detection from Integrated Training and Test Sets

The methodology described in the previous section enabled us to select optimal
RF parameters for each dataset. By using these parameters we have constructed
one final model for each dataset which we used to classify test set examples.
Afterwards, we additionally applied a methodology for outlier detection in order
to improve the solution.

For this task we have integrated each dataset with classified examples from its
corresponding test set. By their construction we have been able to test if there
are strong outliers in these large datasets and in cases when the outliers are from
test sets, try to correct them. For this task we have applied the saturation based
filtering methodology for explicit outlier detection described in [10].

The saturation based outlier detection methodology tries to estimate mini-
mal complexity of the hypothesis that is able to correctly classify all examples
in the available dataset. After that it tries to identify if there exist examples
by whose elimination this complexity could be significantly reduced. If one or
more such examples can be found, they are declared as potential outliers. The
methodology is appropriate for domains in which useful classification information
is concentrated in a small set of very important attributes. Having distributed
information in microarray datasets in this Challenge we had to use it with spe-
cial care. Additionally, the currently available version of the methodology can
handle only two-class domains. Because of these problems we have used it in a
semi-automatic mode, carefully evaluating each detected outlier and a potential
change of its originally determined class.

For each enlarged dataset with C classes we have constructed C different
concept learning (two-class) problems so that each class is once a positive class
and examples from all other classes are treated as negative class examples. In
this way one original multiclass example has once been a positive example and
C− 1 times a negative example. Outlier detection process has been repeated for
all concept learning tasks independently. Finally, we have searched for examples
coming from the test set that have been detected as potential outliers when they
have been among positive examples and exactly once when they have been in
some negative class. Only in such cases we accepted to change the original clas-
sification of the example. The new classification of the example corresponded
to the positive class of the concept learning task when the example has been
detected as a negative outlier. This methodology enabled correction of the clas-
sification for up to 3 examples per dataset.
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8 The Best Solution from Advanced Track: A Feature
Selection Algorithm Based on Cut Point Importance
and Dynamic Clustering6

In RSCTC’2010 Discovery Challenge, the DNA data arrays [11] with large num-
ber of features (attributes) and small number of records (objects) were provided.
Suppose |U | be the number of objects, and |C| be the number of features. Ac-
cording to the provided data, it is obvious that |C| � |U |. Therefore, it is urgent
to select smaller subset of features from the DNA data array. In this section, an
efficient solution for feature selection method, based on importance of cut points
and dynamic clustering, is introduced. It is combined with SVM.

Firstly, according to [12], the importance of cut points can be computed. Af-
ter that, the feature selection algorithm based on importance of cut points and
dynamic clustering will be presented as follows.

Algorithm 1. Feature Selection Algorithm Based on Cut Point Impor-
tance and Dynamic Clustering:

Input: Decision table S =< U,A = C ∪D,V, f > and feature number K.
Output: Selected feature set SelectFeature.
Step1: (Computing the importance of cut points on all features).

FOR i = 1 TO |C| DO
Computing the importance value of cut points on feature ci, acc-
ording to [12];
Normalization the importance value of cut points on feature ci.

END FOR
Step2: (Dynamic clustering)(Due the limitation of page size, we can

not present the complex algorithm in detail)
FOR each ci(1 ≤ i ≤ |C|) DO
Step2.1: Sorting cut points.
Step2.2: Connecting the importance value of all cut points. It can be

found that there will be only a summit on the curve of the
importance value of cut points. According to the summit,
dividing the cut points into two parts: Left and Right.

Step2.3: Dynamic clustering the importance of cut points. Then, the
importance of cut points in Left or Right can be dynamic
clustered respectively.

Step2.4: Suppose the clustered classifications on feature ci be ki.
END FOR

6 This work is supported by the National Natural Science Foundation of China
(NSFC) under grant No.60573068 and No.60773113, Natural Science Foundation
of Chongqing under grant No.2008BA2017 and No.2008BA2041, and Science &
Technology Research Program of Chongqing Education Commission under grant
No.KJ090512.
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Step3: Sort k1, k2, ..., k|C| by increasing order. Suppose the order result be
cr1 , cr2 , ..., cr|c| ;
SelectFeature ={cr1, cr2 , ..., crk}.

Step4: RETURN SelectFeature.

Secondly, a good library for Support Vector Machines is adopted. The con-
figuration of LIBSVM [13] is introduced (see Table 5). In Table 5, the changed
parameters are showed. Besides, the rest parameters are default by LIBSVM.

During experiments, parameter K was set to 5000. Performance of the pre-
sented “Feature Selection + SVM” method were tested on the DNA datasets of
RSCTC’2010 Discovery Challenge. The final experimental results for Advanced
Track was 0.75661.

Table 5. The parameter configuration of LIBSVM

Configuration Parameter Description Configuration Value

svm type set type of SVM C-SVC

kernel type set type of kernel function LINEAR

gamma set gamma in kernel function 1/num features

cost
set the parameter C of C-SVC,

100
epsilon-SVR, and nu-SVR

9 The Second Best Solution from Advanced Track:
A Feature Selection Algorithm Based on Attribute
Relevance7

When analyzing microarray data [11], we have to face the few-objects-many-
attributes problem. However, there exists dependence between condition at-
tributes and decision attribute, and only a small subset of attributes is relevant
in the context of a given task. In this section, an effective feature extraction
method, the feature selection algorithm based on attribute relevance, is intro-
duced. Furthermore, combining with the proposed algorithm, the LIBSVM [13] is
adopted to solve the given task in RSCTC’2010 Discovery Challenge’ Advanced
Track. According to [14], the ratio of condition attribute’s between-groups to
within-groups sum of squares can represent the relevance between condition at-
tribute and decision attribute. We modified the ratio expression and proposed a
new expression to represent attribute relevance.
7 This work is supported by the National Natural Science Foundation of China

(NSFC) under grant No.60573068 and No.60773113, Natural Science Foundation
of Chongqing under grant No.2008BA2017 and No.2008BA2041, and Science &
Technology Research Program of Chongqing Education Commission under grant
No.KJ090512.
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Firstly,feature selection algorithm based on attribute relevance can be de-
scribed as following in detail.

Algorithm 2. Feature Selection Algorithm Based on Attribute
Relevance:

Input: Decision table S =< U,A = C ∪D,V, f > and feature number K.
Output: Selected feature set SelectFeature.
Step1: (Sorting objects,according to the value of decision attribute d.)
Step2: (Compute the relevance of condition attributes and decision attribute)

FOR each ci(1 ≤ i ≤ |C|) DO
Step2.1: Compute the standard deviation SDi on attribute d. where

SDi =

√
|U|∑
j

(xji−x.i)2

|U|−1

Step2.2: Suppose |U/{d}| object sets U1, U2, ..., U |U/{d}|. Compute the
standard deviation in each object set.
FOR each object set Uk(1 ≤ k ≤ |U/{d}|) DO

SDk
i =

√√√√ |Uk|∑
j

(xji−xki)2∗I(yj=k)

|Uk|−1 , were xki =

√√√√ |Uk|∑
j

xji∗I(yj=k)

|Uk|

and I(yj = k) =
{

1, yj = k.
0, yj �= k.

Step2.3: Compute the relevance of condition attributes and decision

attribute: Ri =

|U/{d}|∑
k

SDk
i

SDi

END FOR
Step3: Sort R1, R2, · · · , R|C| by increasing order. Suppose the order result

be cr1 , cr2 , ..., cr|c| ;
SelectFeature ={cr1, cr2 , ..., crk}.

Step4: RETURN SelectFeature.

Secondly, a good library for Support Vector Machines is adopted. The con-
figuration of LIBSVM [13] is introduced (see Table 5). In Table 5, the changed
parameters are showed. Besides, the rest parameters are default by LIBSVM.

During experiments, parameter K was set to 5000. Performance of the pre-
sented “Feature Selection + SVM” method were tested on the DNA datasets of
RSCTC’2010 Discovery Challenge. The final experimental results for Advanced
Track was 0.75180.

Acknowledgements

The research has been supported by grants N N516 077837 and N N516 368334
from Ministry of Science and Higher Education of the Republic of Poland.



RSCTC’2010 Discovery Challenge 19

References

1. Parkinson, H.E., et al.: Arrayexpress update - from an archive of functional
genomics experiments to the atlas of gene expression. Nucleic Acids Re-
search 37(Database issue), 868–872 (2009)

2. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008)

3. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: ML92: Pro-
ceedings of the ninth international workshop on Machine learning, pp. 249–256.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

5. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple can-
cer types by shrunken centroids of gene expression. Proceedings of the National
Academy of Sciences USA 99(10), 6567–6572 (2002)

6. Nikulin, V., McLachlan, G.J.: Classification of imbalanced marketing data with
balanced random sets. In: JMLR: Workshop and Conference Proceedings, vol. 7,
pp. 89–100 (2009)

7. Breiman, L.: Random forests. Machine Learning, 5–32 (2001)
8. Breiman, L.: Bagging predictors. Machine Learning, 123–140 (1996)
9. Ho, T.K.: The random subspace method for constructing decision forests. IEEE

Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)
10. Gamberger, D., Lavrac, N.: Conditions for occam’s razor applicability and noise

elimination. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224,
pp. 108–123. Springer, Heidelberg (1997)

11. Wikipedia: Dna microarray – wikipedia, the free encyclopedia (2010),
http://en.wikipedia.org/w/index.php?title=DNA_microarray

12. Nguyen, H.: Approximate boolean reasoning: Foundations and applications in data
mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS,
vol. 4100, pp. 334–506. Springer, Heidelberg (2006)

13. Chang, C., Lin, C.: Libsvm – a library for support vector machines. [EB/OL],
http://www.csie.ntu.edu.tw/~cjlin/libsvm (2008-11-17/2010-01-3)

14. Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for
the classification of tumors using gene expression data. Journal of the American
Statistical Association 97, 77–87 (2002)

http://en.wikipedia.org/w/index.php?title=DNA_microarray
http://www.csie.ntu.edu.tw/~cjlin/libsvm


TunedIT.org: System for Automated Evaluation
of Algorithms in Repeatable Experiments

Marcin Wojnarski1,2, Sebastian Stawicki2, and Piotr Wojnarowski1,2

1 TunedIT Solutions
Zwirki i Wigury 93 lok. 3049, 02-089 Warszawa, Poland

2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
Banacha 2, 02-097 Warszawa, Poland

Abstract. In this paper we present TunedIT system which facilitates
evaluation and comparison of machine-learning algorithms. TunedIT
is composed of three complementary and interconnected components:
TunedTester, Repository and Knowledge Base.

TunedTester is a stand-alone Java application that runs automated
tests (experiments) of algorithms. Repository is a database of algorithms,
datasets and evaluation procedures used by TunedTester for setting up
a test. Knowledge Base is a database of test results. Repository and
Knowledge Base are accessible through TunedIT website. TunedIT is
open and free for use by any researcher. Every registered user can upload
new resources to Repository, run experiments with TunedTester, send
results to Knowledge Base and browse all collected results, generated
either by himself or by others.

As a special functionality, built upon the framework of automated
tests, TunedIT provides a platform for organization of on-line interac-
tive competitions for machine-learning problems. This functionality may
be used, for instance, by teachers to launch contests for their students
instead of traditional assignment tasks; or by organizers of machine-
learning and data-mining conferences to launch competitions for the sci-
entific community, in association with the conference.

1 Introduction

Almost every paper published in the field of machine learning contains experi-
mental section, which presents empirical analysis, evaluation and comparison of
described algorithms. We investigated 81 regular research papers published in
Volume 9/2008 of Journal of Machine Learning Research, excluding articles as-
signed to special topics or to the Machine Learning Open Source Software track,
as well as responses to other papers. We observed that as much as 75 (93%)
of the papers contained experimental section. Experimental results constitute
ultimate proof of strengths of described methods, so even a slight improvement
in the methodology of conducting experiments would be beneficial to the whole
community of machine learning researchers and facilitate design of even better
algorithms.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 20–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Currently used experimental methodology has serious weaknesses. The biggest
one is that experiments performed by the author of a new algorithm and de-
scribed in a research article cannot be reproduced by other researchers. On
paper, the author should provide full details of the algorithm and experimental
procedure, sufficient to repeat the experiment. In practice:

– Providing all the details would make the article unreadable and substantially
longer, so the description is rarely complete. For example, if experiments
involve decision models with adaptively optimized parameters, like weights
of neural networks, it is rarely described in detail how the parameters are
initialized at the beginning of the training process.

– The author himself may be unaware of some important details, for example
implementation bugs.

– Reimplementation of the algorithm by another researcher could take weeks
of work and thus is not feasible, even if theoretically possible.

– Even if the author made implementation of the algorithm publicly available,
significant effort must be put into learning how to use the implementation.

– Recreation of experimental setup may be difficult, even when all necessary
elements of the experiment – data sets, implementations of algorithms etc.
– are available.

– There is high risk of human mistakes. They are very hard to detect, because
usually the outcomes of experiments are just numbers, only slightly different
between each other. Many types of mistakes are very hard to notice.

To address these problems we designed and implemented TunedIT system
(http://tunedit.org) – an integrated platform for automated evaluation of ma-
chine learning algorithms. Thanks to automation, TunedIT enables researchers
to design and execute experiments that are fully repeatable and generate repro-
ducible results. This system is presented in the following sections.

Previous attempts to address the aforementioned problems include: Delve soft-
ware environment for evaluation of learning algorithms in valid experiments [4,3];
Experiment Databases for Machine Learning1 (ExpDB) for collecting and shar-
ing experimental results [1]; Machine Learning Open Source Software2 (MLOSS)
website for sharing implementations [5]; UCI Machine Learning Repository3

for collecting and sharing datasets [2]; Computational Intelligence and Machine
Learning (CIML) Community Portal4 [7].

2 TunedIT System

TunedIT system combines three interrelated components (Fig. 1):

1. TunedTester : a Java application for automated evaluation of algorithms ac-
cording to test specification provided by the user.

1 http://expdb.cs.kuleuven.be/
2 http://mloss.org/
3 http://www.ics.uci.edu/∼mlearn/
4 http://www.cimlcommunity.org/
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2. Repository: a database of machine learning resources. These include algo-
rithms, datasets and evaluation procedures, which can be used by
TunedTester to set up and execute experiments.

3. Knowledge Base (KB): a database of test results. On user’s request,
TunedTester may send results of tests to TunedIT. Here, results submitted
by different researchers are merged into rich and comprehensive Knowledge
Base that can be easily browsed for accurate and thorough information on
specific algorithms or datasets.

Fig. 1. Main components of TunedIT system and their interactions. Repository :
a database of machine learning resources. Knowledge Base: a database of test results.
TunedTester : an automated testing application. TunedTester takes a test specification
from the user, downloads resources from Repository needed to set up the test, executes
the test and sends the result together with the test specification to Knowledge Base.
Additionally, upon each modification of the contents of Repository, such as deletion
of a resource, the contents of Knowledge Base is synchronized accordingly, so that the
results collected in Knowledge Base are always consistent with the current contents of
Repository.

Repository and Knowledge Base reside on a server and can be accessed through
TunedIT website at the following URL: http://tunedit.org. All registered users
can upload resources to Repository, browse results collected in Knowledge Base
and submit new results generated by TunedTester. Registration is open to ev-
eryone. TunedTester runs on a client computer, which typically is the user’s lo-
cal machine, and communicates with Repository and Knowledge Base through
Internet.
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2.1 Repository

Repository is a database of files – resources – related to machine learning and
data mining. In particular, these include datasets, code of algorithms and evalu-
ation procedures. Repository is located on TunedIT server and is accessible for
all registered users – they can view and download resources, as well as upload
new ones. The role of Repository in TunedIT is three-fold:

– It serves as a collection of algorithms, datasets and evaluation procedures
that can be downloaded by TunedTester and used in tests.

– It provides space where users can share ML and DM resources with each
other.

– It constitutes a context and point of reference for interpretation of results
generated by TunedTester and logged in Knowledge Base. For instance, when
the user is browsing KB and viewing results for a given test specification, he
can easily navigate to corresponding resources in Repository and check their
contents, so as to validate research hypotheses or come up with new ones.
Thus, Repository is not only a convenient tool that facilitates execution of
tests and sharing of resources, but - most of all - secures interpretability of
results collected in Knowledge Base.

Repository has similar structure as a local file system. It contains a hierarchy
of folders, which in turn contain files - resources. Upon registration, every user
is assigned home folder in Repository’s root folder, with its name being the
same as the user’s login. The user has full access to his home folder, where he
can upload/delete files, create subfolders and manage access rights for resources.
All resources uploaded by users have unique names (access paths in Reposi-
tory) and can be used in TunedTester exactly in the same way as preexisting
resources.

Access rights. Every file or folder in Repository is either public or private. All
users can view and download public resources. Private files are visible only to the
owner, while to other users they appear like if they did not exist - they cannot
be viewed nor downloaded and their results do not show up at KB page. Private
folders cannot be viewed by other users, although subfolders and files contained
in them can be viewed by others, given that they are public themselves. In other
words, the property of being private does not propagate from a folder to files
and subfolders contained inside.

2.2 TunedTester

TunedTester (TT) is a Java application that enables fully automated evaluation
of algorithms, according to test specification provided by the user. Single run of
evaluation is called a test or experiment and corresponds to a triple of resources
from Repository:
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1. Algorithm is the subject of evaluation.
2. Dataset represents an instance of a data mining problem to be solved by

the algorithm.
3. Evaluation procedure (EP) is a Java class that implements all steps of

the experiment and, at the end, calculates a quality measure.

It is worth to note that the evaluation procedure is not hard-wired into
TunedTester but is a part of test configuration just like the algorithm and
dataset. Every user can implement new evaluation procedures to handle new
kinds of algorithms, data types, quality measures or data mining tasks. In this
way, TunedTester provides not only full automation of experiments, but also
high level of flexibility and extendability.

TunedTester runs locally on user’s computer. All resources that comprise the
test are automatically downloaded from Repository. If requested, TunedTester
can submit results of tests to Knowledge Base. They can be analysed later on
with convenient web interface of KB.

All TunedIT resources are either files, like UCI/iris.arff, or Java classes
contained in JAR files, like

Weka/weka-3.6.1.jar:weka.classifiers.lazy.IB1 .

Typically, datasets have a form of files, while evaluation procedures and algo-
rithms have a form of Java classes. For datasets and algorithms this is not a strict
rule, though. To be executable by TunedTester, evaluation procedure must be a
subclass of

org.tunedit.core.EvaluationProcedure

located in TunedIT/core.jar file in Repository. TunedIT/core.jar contains
also

ResourceLoader and StandardLoader

classes, which can be used by the evaluation procedure to communicate with
TunedTester environment and read the algorithm and dataset files. It is up
to the evaluation procedure how the contents of these files is interpreted: as
bytecode of Java classes, as a text file, as an ARFF, CSV or ZIP file etc. Thus,
different evaluation procedures may expect different file formats and not every
evaluation procedure must be compatible with a given algorithm or dataset. This
is natural, because usually the incompatibility of file formats is just a reflection
of more inherent incompatibility of resource types. There are many different
types of algorithms – for classification, regression, feature selection, clustering
etc. – and datasets – time series, images, graphs etc. – and each of them must be
evaluated differently anyway. Nonetheless, it is also possible that the evaluation
procedure supports several different formats at the same time.

Dataset file formats and algorithm APIs that are most commonly used in
TunedIT and are supported by standard evaluation procedures include:

– ARFF file format for data representation. This format was introduced by
Weka and became one of the most popular in machine learning community.
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– Debellor’s API defined by org.debellor.core.Cell class for implementa-
tion of algorithms.

– Weka’s API defined by weka.classifiers.Classifier class for implemen-
tation of algorithms.

– Rseslib’s API defined by rseslib.processing.classification.
Classifier interface for implementation of algorithms.

It is also possible for a dataset to be represented by a Java class, the class
exposing methods that return data samples when requested. This is a way to
overcome the problem of custom file formats. If a given dataset is stored in
atypical file format, one can put it into a JAR file as a Java resource and prepare a
wrapper class that reads the data and returns samples in common representation,
for example as instances of Debellor’s Sample class.

Users may implement evaluation procedures that support any other file for-
mats or algorithm APIs, not mentioned above. We also plan to extend this list
in the future, so that basic evaluation procedures created by us can handle other
formats and APIs.

More importantly, we would like to extend TunedTester with support for other
programming languages, not only Java. Although this task will be more labori-
ous, it is important for all the researchers who do not use Java for implementation
of their algorithms.

Test specification. Test specification is a formal description for TunedTester of
how the test should be set up. It is a combination of three identifiers – TunedIT
resource names – of TunedIT resources which represent an evaluation proce-
dure, an algorithm and a dataset that will be employed in the test:

Test specification = Evaluation procedure + Algorithm + Dataset

TunedIT resource name is a full access path to the resource in Repository, as it
appears on Repository page. It does not include leading slash “/”. For example,
the file containing Iris data and located in UCI folder5 has the following name:

UCI/iris.arff

Java classes contained in JARs are also treated as resources. TunedIT resource
name of a Java class is composed of the containing JAR’s name followed by
a colon “:” and full (with package) name of the class. For instance, Classi-
ficationTT70 class contained in TunedIT/base/ClassificationTT70.jar and
org.tunedit.base package has the following name:

TunedIT/base/ClassificationTT70.jar : org.tunedit.base.ClassificationTT70

Resource names are case-sensitive.
Many algorithms expose a number of parameters that can be set by the user

to control and modify algorithm’s behavior. Currently, test specification does not
5 See http://tunedit.org/repo/UCI/iris.arff
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include values of parameters, and thus it is expected that the algorithm will apply
default values. If the user wants to test an algorithm with non-default parameters
he should write a wrapper class which internally invokes the algorithm with
parameters set to some non-default values. The values must be hard-wired in
the wrapper class, so that the wrapper itself does not expose any parameters.
In the future we plan to add the ability to provide non-default parameter values
directly in test specification.

Although the test specification has simple structure, it can represent a broad
range of different tests. This is because the contents of the algorithm and dataset
is interpreted by evaluation procedure, which is pluggable itself. If some kind of
algorithm or dataset is not handled by existing evaluation procedures, a new pro-
cedure can be implemented for them. Thus, pluggability of evaluation procedures
gives the power to test any kinds of algorithms on any kinds of data, while keep-
ing the results interpretable thanks to simple and consistent test specifications.

Sandbox. Users of TunedTester may safely execute tests of any algorithms
present in Repository, even if the code cannot be fully trusted. TunedTester
exploits advanced features of Java Security Architecture to assure that the code
executed during tests do not perform any harmful operation, like deleting files
on disk or connecting through the network. Code downloaded from Repository
executes in a sandbox which blocks the code’s ability to interact with system
environment. This is achieved through the use of a dedicated Java class loader
and custom security policies. Similar mechanisms are used in web browsers to
protect the system from potentially malicious applets found on websites.

Local cache. Communication between TunedTester and TunedIT server is
efficient thanks to the cache directory which keeps local copies of resources from
Repository. When the resource is needed for the first time and must be down-
loaded from the server, its copy is saved in the cache. In subsequent tests, when
the resource is needed again, the copy is used instead. In this way, resources
are downloaded from Repository only once. TunedTester detects if the resource
has been updated in Repository and downloads the newest version in such case.
Also, any changes introduced to the local copies of resources are detected, so it
is not possible to run a test with corrupted or intentionally faked resources.

2.3 Knowledge Base

Knowledge Base (KB) is an open-access database containing test results from
TunedTester, built collaboratively by TunedIT users. It is located on TunedIT
server. Every user registered in TunedIT may submit results to KB by checking
the “Send results to Knowledge Base” option in TunedTester GUI. Thanks to
standardization and automation of tests, results submitted by different users are
all comparable and thus can be merged together in a single database. In this way,
TunedIT gives researchers an opportunity to build collectively an experiment
database of unprecedented size and scope. This is impossible to achieve using
previous approaches. For example, in the system by [1] only the administrators
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have full access to the database and can insert new results. As of January 2010,
KB contains over 150, 000 atomic results and 6, 700 aggregated results (see below
for the definition of atomic and aggregated results).

To guarantee that results in KB are always consistent with the contents of
Repository and that Repository can serve indeed as a context for interpreration
of the results, when a new version of resource is uploaded, KB gets automatically
cleaned out of all out-dated results related to the old version of the resource.
Thus, there is no way to insert results into KB that are inconsistent with the
contents of Repository.

Knowledge Base has a web interface that allows for easy querying and brows-
ing the database.

2.4 Nondeterminism of Test Results

It is very common for machine learning implementations to include nondeter-
ministic factors. For example:

– Evaluation procedures may split data randomly into training and test parts,
which yields different splits in every trial. This is the case with standard
procedures available in TunedIT: ClassificationTT70 and RegressionTT706.

– Algorithms for training of neural networks may perform random initializa-
tion of weights at the beginning of learning.

– Data samples may be generated randomly from a given probabilistic distri-
bution, resulting in a different dataset in each repetition of the experiment.

Consequently, experiments executed with TunedTester may also include nonde-
terministic factors and generate different outcomes on every run. For this reason,
instead of analysing single test outcomes, we need to analyse probabilistic dis-
tribution of results produced for a given test specification. To this end, TunedIT
introduces the notions of atomic result and aggregated result.

Definition 1 (Atomic result). Atomic result is the result of a single test ex-
ecuted by TunedTester for a given test specification.

Atomic result gives a snapshot of algorithm’s behavior in a single random sce-
nario of the experiment. It is possible to execute many tests for the same speci-
fication and log all their results in KB. Thus, there can be many atomic results
present in KB which correspond to the same specification.

Definition 2 (Aggregated result). Aggregated result is the aggregation of all
atomic results present in KB and corresponding to a given test specification.
Here, aggregation means a set of statistics: arithmetic mean, standard deviation
etc.

There can be only one aggregated result for a given specification. Aggregated
results are dynamically calculated at TunedIT server and presented on KB web

6 See http://tunedit.org/repo/TunedIT/base
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page7. Currently, users of TunedIT do not have direct access to atomic re-
sults stored in KB, but we plan to introduce this functionality in the future.
At the moment, users can only see atomic results of their own experiments, in
TunedTester, printed onto output console.

Presence of nondeterminism in experiments is highly desirable. If tests are
fully deterministic, they always produce the same outcome and thus the aggre-
gated result (mean) is the same as all atomic results, with standard deviation
equal to zero. With nondeterminism, experimental results give broader knowl-
edge about the tested algorithm – non-zero deviation measures how reliably
and repeatably the algorithm behaves – and more reliable estimation of its ex-
pected quality (mean of multiple atomic results which are different between each
other). Therefore, when implementing new algorithms, evaluation procedures or
data generators, it is worth to introduce nondeterminism, if only this does not
disturb essential functionality of the implementation. For instance, if an eval-
uation procedure splits the data into training and test subsets, it is better to
perform this split at random instead of picking every time the same samples,
e.g., with the first 70% of samples always falling into training subset.

2.5 Security Issues: Validity of Results

The user may assume that results generated by others and collected in KB are
valid, in a sense that if the user runs the same tests by himself he would obtain
the same expected results. In other words, results in KB can be trusted even if
their authors – unknown users of TunedIT – cannot be trusted. This is possible
thanks to numerous security measures built into Repository, TunedTester and
KB, which ensure that KB contents cannot be polluted neither by accidental
mistakes nor intentional fakery of any user. It is also worth to note that all
results from KB can be easily verified, because corresponding test specifications
are known and all involved resources are present in Repository, so reproducing
an experiment is a matter of launching TunedTester, typing the test specification
and pressing “Run...”.

3 Conclusions

In this paper, we presented TunedIT system, which enables automated evalua-
tion of machine-learning and data-mining algorithms; execution of repeatable ex-
periments; sharing of experimental results and resources – datasets, algorithms,
evaluation procedures – among researchers. The idea and design of such an inte-
grated system, which supports all important aspects of experimentations in com-
putational intelligence, is unique. TunedIT has already attracted researchers’
attention and after just 5 months of functioning has 400 registered users. We
hope that it will enjoy wide adoption in the scientific community and facilitate
communication between researchers, exchange of ideas and design of yet better
algorithms.
7 See http://tunedit.org/results
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Abstract. In this article, an evolutionary crisp clustering technique is
described that uses a new consensus multiobjective differential evolution.
The algorithm is therefore able to optimize two conflicting cluster validity
measures simultaneously and provides resultant Pareto optimal set of non-
dominated solutions. Thereafter the problem of choosing the best solution
from resultant Pareto optimal set is resolved by creation of consensus clus-
ters using voting procedure. The proposed method is used for analyzing
the categorical data where no such natural ordering can be found among
the elements in categorical domain. Hence no inherent distance measure,
like the Euclidean distance, would work to compute the distance between
two categorical objects. Index-coded encoding of the cluster medoids (cen-
tres) is used for this purpose. The effectiveness of the proposed technique
is provided for artificial and real life categorical data sets. Also statistical
significance test has been carried out to establish the statistical signifi-
cance of the clustering results. Matlab version of the software is available
at http://bio.icm.edu.pl/∼darman/CMODECC.

Keywords: Crisp clustering, differential evolution, multiobjective opti-
mization, Pareto optimal, statistical significance test.

1 Introduction

Clustering [1] is a useful unsupervised data mining technique which partitions
the input space into K regions depending on some similarity/dissimilarity met-
ric where the value of K may or may not be known a priori. K-means [1] is a
traditional partitional clustering algorithm which starts with K random cluster
centroids and the centroids are updated in successive iterations by computing
the numerical averages of the feature vectors in each cluster. The objective of
the K-means algorithm is to maximize the global compactness of the clusters.
K-means clustering algorithm cannot be applied for clustering categorical data
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sets, where there is no natural ordering among the elements of an attribute do-
main. Thus no inherent distance measures, such as Euclidean distance, can be
used to compute the distance between two feature vectors. Hence it is not feasi-
ble to compute the numerical average of a set of feature vectors. To handle such
categorical data sets, a variation of K-means algorithm, namely K-medoids clus-
tering has been proposed in [2]. In K-medoids algorithm, instead of computing
the mean of feature vectors, a representative feature vector (cluster medoid) is
selected for each cluster. A cluster medoid is defined as the most centrally lo-
cated element in that cluster, i.e., the point from which the distance of the other
points of the cluster is the minimum. K-medoids algorithm is also known as Par-
titioning Around Medoids (PAM) [2]. The major disadvantage of K-means and
K-medoids clustering algorithms is that these algorithms often tend to converge
to local optimum solutions.

In 1995 a new floating point encoded evolutionary algorithm for global op-
timization called Differential Evolution (DE) was proposed in [3] that uses a
special kind of differential operator. Recently DE has found a wide spread ap-
plication in different fields of engineering and science. Moreover, the K-means
and K-medoids clustering algorithms optimize a single objective function which
may not work equally well for different kinds of data sets. This fact motivated
us to model a new evolutionary crisp clustering algorithm using DE on the
multiobjective optimizations (MOO) framework, called consensus multiobjec-
tive differential evolution based crisp clustering (CMODECC), where search is
performed over a number of, often conflicting, objective functions. Unlike single
objective optimization, which yields a single best solution, in MOO, the final
solution set contains a number of Pareto optimal solutions. But the problem of
selecting the best solution among the Pareto optimal solutions is encountered
and resolved by creation of consensus clusters using voting procedure. The two
objective functions, the K-medoids error function [2] and the summation of sep-
aration among the cluster medoids, are optimized simultaneously where one has
to be minimized and other has to be maximized for getting the proper partitions.
The superiority of the proposed method over K-medoids, single objective version
of both differential evolution and genetic algorithm based crisp clustering has
been demonstrated on different synthetic and real life data sets. Also statistical
significance tests have been carried out in order to confirm that the superior
performance of the multiobjective clustering scheme is significant and has not
occurred by chance.

2 Crisp Clustering Algorithms

This section describes some clustering algorithms used for categorical data.

2.1 K-medoids Clustering

Partitioning around medoids (PAM), also called K-medoids clustering [2], is a
variation of K-means with the objective to minimize the within cluster variance
com(K).
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com(K) =
K∑

i=1

∑
x∈Ci

D(x,mi) (1)

Here mi is the medoid of cluster Ci and D(x,mi) denotes the distance between
the point x and mi. K denotes the number of clusters. com(K) provides the
resulting clustering of the data set X . The idea of PAM is to select K repre-
sentative points, or medoids, in X and assign the rest of the data points to the
cluster identified by the nearest medoid. Initial set of K medoids are selected
randomly. Subsequently, all the points in X are assigned to the nearest medoid.
In each iteration, a new medoid is determined for each cluster by finding the
data point with minimum total distance to all other points of the cluster. After
that, all the points in X are reassigned to their clusters in accordance with the
new set of medoids. The algorithm iterates until com(K) does not change any
more.

2.2 Genetic Algorithm based Crisp Clustering

In Genetic Algorithm based Crisp Clustering (GACC), the chromosomes are
represented as a vector of indices of the points which represent the medoids of
the partitions. Each index point in a chromosome implies that the correspond-
ing point is a cluster medoid [4]. If chromosome i encodes the medoids of K
clusters then its length l is K. For initializing a chromosome, the K medoids
are randomly selected index points from the data set while ensuring that they
are distinct. The fitness of a chromosome indicates the degree of goodness of
the solution it represents. For this purpose we used either com(K) or sep(K)
as a cluster validity measure. The objective is therefore to minimize for achiev-
ing optimal clustering. Given a chromosome, the medoids encoded in it are first
extracted. Let the chromosome encode K medoids, and let these be denoted
as z1, z2, . . . , zK . The corresponding fitness is computed either using Eqn. 1
or Eqn. 7. The medoids encoded in a chromosome are updated by new set of
medoids. Conventional proportional selection implemented by the roulette wheel
strategy is applied on the population of chromosomes. The standard single point
crossover is applied stochastically with probability μc. The cluster medoids are
considered to be indivisible, i.e., the crossover points can only lie in between two
clusters medoids. Each chromosome undergoes mutation with a fixed probability
μm. The mutation operation has been defined as following: for the string to be
mutated, a random element is chosen and it is replaced by a different index of
point in the range {1, 2, . . . , n} such that no element is duplicated in the chro-
mosome. The algorithm is terminated after it has executed a fixed number of
generations. The elitist model of GAs has been used, where the best string seen
so far is stored in a location within the population. The best string of the last
generation provides the solution to the clustering problem.

2.3 Differential Evolution based Crisp Clustering

Differential Evolution based Crisp Clustering (DECC) algorithm also uses the
same encoding policy as GACC to represent the chromosomes. The fitness of
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each vector is computed either using Eqn. 1 or Eqn. 7. Subsequently, the medoids
encoded in a vector are updated by set of new medoids. The process of mutation
is computed as following:

ϑk,l(t+ 1) = ϑm,l(t) + F (ϑr,l(t)− ϑp,l(t)) (2)

Here ϑm,l(t), ϑr,l(t) and ϑp,l(t) are randomly taken vectors from the current
population (indicated by t time stamp) with the l dimensions for the mutant
vector ϑk,l(t+ 1). F is the scaling factor usually ∈ [0, 1]. Note that if the index
value of ϑk,l(t+1) lies beyond the permissible range of {1, . . . , n} then it is scaled
using one of the following two operations

ϑk,l(t+ 1)− n (3)

and
ϑk,l(t+ 1) + n (4)

In order to increase the diversity of the perturbed parameter vectors, crossover
is introduced and computed as following:

Ujk,l(t+ 1) =

⎧⎪⎪⎨
⎪⎪⎩
ϑjk,l(t+ 1)

if randj(0, 1) ≤ CR or j = rand(i)
ϑjk,l(t)

if randj(0, 1) > CR and j �= rand(i)

(5)

In Eqn. (5), randj(0, 1) is the jth evaluation of a uniform random number gener-
ator with outcome ∈ [0, 1]. CR is the crossover constant ∈ [0, 1] which has to be
determined by the user. rand(i) is a randomly chosen index ∈ 1, 2, . . . , l which
ensures that Uk,l(t+1) gets at least one parameter from ϑk,l(t+1). To make the
population for the next generation, the trial vector Uk,l(t + 1) is compared to
the target vector ϑk,l(t) using the greedy criterion. If vector Uk,l(t+ 1) yields a
smaller fitness value than ϑk,l(t), then Uk,l(t+ 1) is set to ϑk,l(t); otherwise, the
old value ϑk,l(t) is retained. DECC algorithm is also terminated after execution
of fixed number of generations.

3 Proposed Consensus Multiobjective Differential
Evolution based Crisp Clustering

In this section, we describe the proposed Consensus Multiobjective Differential
Evolution based Crisp Clustering (CMODECC) technique in detail.

3.1 Vector Representation and Initial Population

The length of each vector is equal to the number of clusters K. Each element
of the vector has a value chosen randomly from the set 1, 2, . . ., n, where n is
the number of points. Hence a string is represented as a vector of indices of the
points in the data set. A vector is valid if no point index occurs more than once
in the chromosome. The population is initialized by generating P such random
strings, where P is the population size and it is fixed.
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1. Initialize the vectors of the population.
2. Evaluate com(K) and sep(K) values for each parent vectors.
Repeat

3. Mutation
4. Crossover
5. Evaluate com(K) and sep(K) values for each offspring vector.
6. Combine parent vectors with offspring vectors to create new population.
7. Perform Non-dominated sorting for assigning rank.
8. Select the vectors of the combined population based on non-dominated

lowest rank vectors of size same as population of the next generation.
Until (termination criteria are met)
9. Create consensus clusters from resultant Pareto optimal solutions using voting.

Fig. 1. CMODECC Algorithm

3.2 Computation of the Objectives

In this process, first the clusters are formed from a vector by taking the points
encoded in it as the medoid points and assigning other points in the data set to
their nearest medoids. After forming the clusters, new medoids for each cluster
are found by selecting the most centrally located point of each cluster and the
vector is updated with the indices of those medoids. Two objective functions
used in this article are the K-medoids error function [2] and the summation
of separations among the cluster medoids. The first objective function com(K)
is given in Eqn. 1. The second objective function is computed as following:
let C1, C2, . . . , CK be the medoids of the respective clusters and the objective
function sep(K) is defined as:

S(K) =
K−1∑
i=1

K∑
j>i

D(Ci, Cj) (6)

sep(K) =
1

S(K)
(7)

The first objective function com(K) is to be minimized to get compact clusters,
whereas the second objective function S(K) is to be maximized to get com-
pact and well separated clusters. As the problem is modeled as minimization of
objectives, we take the second objective as sep(K) = 1

S(K) .

3.3 Other Processes

After evaluating the fitness of all vectors, it goes through mutation (described
in Eqn. 2) to generate the new offspring and crossover (described in Eqn. 5) for
increasing the diversity of the mutant vector. Note that if the index values of
mutant vector lie beyond the permissible range of {1, . . . , n} then they are scaled
either using Eqn. 4 or Eqn. 3. The created offspring pool combined with its parent
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pool in the next step for performing the non-dominated sort [5]. Thereafter the
selection process has been performed basing on the lowest rank assigned by the
non-dominated sort as well as least crowding distance [5]. These processes are
executed for a fixed number of iterations and final nondominated front is used
for creation of consensus clusters using voting procedure. The different steps of
CMODECC are shown in Fig. 1.

4 Experimental Results

4.1 Synthetic and Real Life Data Sets

Cat 100 8 3 : This synthetic data set1 has a one-layer clustering structure with
8 attributes and 100 points. It has 3 clusters.
Cat 300 15 5 : This is a synthetic data set with 300 points and 15 attributes.
The data set has 5 clusters.
Congressional Votes: This data set contains 435 number of records. Each row
corresponds to one Congress man’s votes on 16 different issues (e.g., education
spending, crime etc.). A classification label of this real life data set2 is Republican
or Democrat which is provided with each data record.
Soybean : The Soybean data set contains 47 data points on diseases in soybeans
and it is also a real life data set. Each data point has 35 categorical attributes
and is classified as one of the four diseases, i.e., number of clusters in the data
set is 4.

4.2 Performance Metrics

Performance of the proposed method is evaluated by the measure of Adjusted
Rand Index (ARI) [6], DB-index [7] and Dunn’s index [8]. Note that, measur-
ing the DB and Dunn’s indices for categorical data, the medoid are taken into
consideration instate of mean.

4.3 Distance Measures

Distance between two categorical objects is computed as in [9]. Let two categor-
ical objects described by p categorical attributes are xi = [xi1, xi2, . . . , xip], and
xj = [xj1, xj2, . . . , xjp]. The distance measure between xi and xj , D(xi, xj), can
be defined by the total number of mismatches of the corresponding attribute
categories of the two objects. Formally,

D(xi, xj) =
p∑

k=1

δ(xik, xjk) (8)

where

δ(xik, xjk) =
{

0 if xik = xjk

1 if xik �= xjk
(9)

1 http://www.datgen.com
2 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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4.4 Input Parameters

The DE (both for single objective and multiobjective) and GA (for single ob-
jective) based algorithms are executed for 100 generations with fixed population
size = 50. The crossover probability and mutation factors (F ) for DE (both for
single objective and multiobjective) based algorithms are set to be 0.8 and 1,
respectively. The crossover and mutation probabilities for GA (for single objec-
tive) based algorithms are taken to be 0.8 and 0.3, respectively. The K-medoids
algorithm is executed till it converges to the final solution. Results reported in
the tables are the average values obtained over 20 runs of the algorithms.

Table 1. Average ARI values over 20 runs of different algorithms for four categorical
data sets

Algorithms Cat 100 8 3 Cat 300 15 5 Votes Soybean
CMODECC 0.8102 0.8273 0.9472 0.9901

DECC (com(K)) 0.7605 0.7508 0.9085 0.9793
DECC (sep(K)) 0.7872 0.7482 0.8702 0.9831
GACC (com(K)) 0.7425 0.7171 0.8653 0.9237
GACC (sep(K)) 0.7514 0.7002 0.8502 0.9302

K-medoids 0.6302 0.6482 0.7602 0.8302

4.5 Performance

Table1 and Table2 show the comparative results obtained for the four data
sets. It can be noted from the table that the proposed method consistently
outperforms the single objective as well as K-medoids algorithms in terms of the
ARI, DB-index and Dunn’s index score. It is also evident from the Table1 and
Table2, that individually neither the com(K) nor sep(K) objective optimization
is sufficient for proper clustering. For example, for Cat 300 15 5, the proposed
CMODECC technique achieves better average AIR score of 0.8273 while the
DECC (com(K)), DECC (sep(K)), GACC (com(K)), GACC (sep(K)) and K-
medoids provide values of 0.750, 0.7482, 0.7171, 0.7002 and 0.6482, respectively.
Moreover, in Table2, the DB and Dunn’s indices values are promising for this

Table 2. Average DB-index and Duun’s index values over 20 runs of different algo-
rithms for four categorical data sets

Algorithms Cat 100 8 3 Cat 300 15 5 Votes Soybean
DB Dunn DB Dunn DB Dunn DB Dunn

CMODECC 1.5551 1.8974 1.7247 2.0204 1.3621 1.7936 1.0488 1.4083
DECC (com(K)) 1.7305 1.7508 1.8082 1.8225 1.4803 1.6225 1.3046 1.2253
DECC (sep(K)) 1.6614 1.8052 1.8504 1.7536 1.5302 1.5603 1.2554 1.3077
GACC (com(K)) 1.9473 1.4284 2.0553 1.5004 1.7431 1.3883 1.5735 1.0405
GACC (sep(K)) 1.8052 1.5071 2.1702 1.4573 1.8225 1.3304 1.5004 1.1725

K-medoids 2.3362 1.0802 2.5082 1.2062 2.2081 0.9402 1.9792 0.8503
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Fig. 2. Boxplot of ARI values of different clustering algorithms for (a) Cat 100 8 3 (b)
Cat 300 15 5 (c) Votes (d) Soybean

data set. Similar results are also found for the other data sets. It is shown
graphically as boxplots in Fig. 2 that the results in terms of ARI scores produced
by several algorithms on the synthetic and real life data sets. However, the
solutions generated by the CMODECC method is better than that produced by
the other algorithms. The median values of ARI scores given by the proposed
technique is superior than that for all other algorithms.

4.6 Statistical Significance Test

In this article, a statistical significance test called t-test [10] has been car-
ried out at the 5% significance level, to establish that the better average ARI
scores provided by CMODECC is statistically significant and does not come by
chance.

Table 3 reports the results of the t-test for the four data sets. The null hypoth-
esis (The means of two groups are equal) are shown in the table. The alternative
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Table 3. The t-test results for four categorical data sets

Data Sets Test No. Null hypothesis t-test statistic P -value Accept/Reject
(H0 : μ1 = μ2)

1 μCMODECC = μDECC(com(K)) 21.0473 3.0370e-009 Reject
2 μCMODECC = μDECC(sep(K)) 18.6508 1.6796e-008 Reject

Cat 100 8 3 3 μCMODECC = μGACC(com(K)) 27.8760 4.7790e-012 Reject
4 μCMODECC = μGACC(sep(K)) 23.0043 2.6340e-010 Reject
5 μCMODECC = μK−medoids 30.9301 1.8915e-014 Reject
1 μCMODECC = μDECC(com(K)) 7.6713 3.0901e-005 Reject
2 μCMODECC = μDECC(sep(K)) 9.1419 6.3482e-006 Reject

Cat 300 15 5 3 μCMODECC = μGACC(com(K)) 9.3309 7.5111e-006 Reject
4 μCMODECC = μGACC(sep(K)) 10.6626 4.7580e-007 Reject
5 μCMODECC = μK−medoids 13.9226 2.1515e-009 Reject
1 μCMODECC = μDECC(com(K)) 16.4575 5.0292e-007 Reject
2 μCMODECC = μDECC(sep(K)) 21.3666 1.0649e-008 Reject

Votes 3 μCMODECC = μGACC(com(K)) 23.7970 5.9505e-009 Reject
4 μCMODECC = μGACC(sep(K)) 37.8128 3.1403e-011 Reject
5 μCMODECC = μK−medoids 71.0916 1.0898e-013 Reject
1 μCMODECC = μDECC(com(K)) 8.0625 8.3797e-005 Reject
2 μCMODECC = μDECC(sep(K)) 6.7442 2.4201e-005 Reject

Soybean 3 μCMODECC = μGACC(com(K)) 18.1986 5.0840e-008 Reject
4 μCMODECC = μGACC(sep(K)) 17.2767 1.2880e-008 Reject
5 μCMODECC = μK−medoids 22.9460 2.6939e-009 Reject

hypothesis is that the mean of the first group is larger than the mean of the
second group. For each test, the degree of freedom is M + N - 2, where M and
N are the sizes of two groups considered. Here M = N = 20. Hence the degree
of freedom is 38. Also the values of t-statistic and the probability (P -value) of
accepting the null hypothesis are shown in the table. It is clear from the table
that the P -values are much less than 0.05 (5% significance level) which are strong
evidences for rejecting the null hypothesis. This proves that the better average
ARI values produced by the CMODECC scheme is statistically significant and
has not come by chance.

5 Conclusion

Majority of the clustering algorithms designed for categorical data optimize a
single objective function, which may not be equally applicable for different kinds
of data sets. Moreover the differential evolution is used for crisp clustering of cat-
egorical data in a multiobjective optimization framework is a new contribution to
this field. Also the problem of selecting the best solution among non-dominated
Pareto optimal solutions is solved by the creation of consensus clusters using
voting technique. The proposed technique optimizes com(K) and sep(K) simul-
taneously. The superiority of the proposed scheme has been demonstrated on
a number of synthetic and real life data sets. Also statistical significance test
has been conducted to judge the statistical significance of the clustering solu-
tions produced by different algorithms. In this regard results have been shown
quantitatively and visually.
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Abstract. In numerous data clustering problems, the main priority re-
mains a constant demand on development of new improved algorithmic
schemes capable of robust and correct data handling. This requirement
has been recently boosted by emerging new technologies in data acquisi-
tion area. In image processing and image analysis procedures, the image
segmentation procedures have the most important impact on the image
analysis results.

In data analysis methods, in order to improve understanding and
description of data structures, many innovative approaches have been
introduced. Data analysis methods always strongly depend upon reveal-
ing inherent data structure. In the paper, a new algorithmic Rough
Entropy Framework - (REF, in short) has been applied in the probabilis-
tic setting. Crisp and Fuzzy RECA measures (Rough Entropy Clustering
Algorithm) introduced in [5] are extended into probability area. The
basic rough entropy notions, the procedure of rough (entropy) measure
calculations and examples of probabilistic approximations have been pre-
sented and supported by comparison to crisp and fuzzy rough entropy
measures. In this way, uncertainty measures have been combined with
probabilistic procedures in order to obtain better insight into data inter-
nal structure.

1 Introduction

Data clustering routines have emerged as most prominent and important data
analysis methods that are primarily applied in unsupervised learning and classi-
fication problems. Most often data clustering presents descriptive data grouping
that identifies homogenous groups of data objects on the basis of the feature
attributes assigned to clustered data objects. In this context, a cluster is con-
sidered as a collection of similar objects according to predefined criteria and
dissimilar to the objects belonging to other clusters.

Fuzzy sets perform data analysis on the assumption, that data objects may
belong in some degree not only to one concept or class but may partially partici-
pate in other classes. Rough set theory on the other hand assigns objects to class
lower and upper approximations on the base of complete certainty about object
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belongingness to the class – lower approximation, and on the determination of
the possible belongingness to the class – upper approximation. Probabilistic ap-
proaches have been introduced to rough set theory in several settings, including
decision-theoretic analysis, variable precision analysis, and information-theoretic
analysis. Most often, probabilistic methods are based on rough membership func-
tions and rough inclusion functions.

The presented research is based on combining the concept of rough sets and
entropy measure in the area of image segmentation in the introduced Rough
Entropy Framework. The rough entropy concept has been introduced in [7], [4]
and extended in [2], [3] and [5]. The REF platform deals with the data analysis
approaches incorporating the concept of rough entropy measures. The applica-
tion of the REF platform in image analysis routines is performed by means of
Rough Entropy Clustering Algorithm. The REF imposes the theoretical and
algorithmic structure. On the other hand, RECA schemes define how practically
data object assignment to cluster approximations is performed and subsequently
the way the approximation measures are calculated.

Probability rough measures are assessed relative to correlation degree with
standard segmentation quality measures and rough entropy measures. Proba-
bility rough measures are considered as a type of rough entropy measures. In
approaches based on probability rough measures all data points are assigned to
predefined number of centers. Each cluster center has lower and upper approx-
imations. Data points are assigned to lower and upper approximations of the
cluster on the basis of data points probability of belonging to the cluster center.

This paper is structured in the following way. In Section 2 the introductory
information about rough sets, rough sets extensions and rough measures has
been presented. In Section 3 RECA concepts and probabilistic RECA measures
have been described. Presentation and experimental material has been included
and discussed in Section 4 followed by concluding remarks.

2 Rough Set Data Models

2.1 Rough Set Theory Essentials

Information granules [10] are considered and interpreted as linked collections
of objects, for example data points, drawn together by the criteria of indistin-
guishability, similarity or functionality. Information granules and the ensuing
process of information granulation is a powerful medium of abstraction leading
to the emergence of high-level concepts. In this context, a granule most often
is defined as a closely coupled group or clump of objects such as for example,
pixels in image processing.

An information system is a pair (U,A) where U represents a non-empty finite
set called the universe and A a non-empty finite set of attributes. Let B ⊆ A
and X ⊆ U . Taking into account these two sets, it is possible to approximate the
set X making only the use of the information contained in B by the process of
construction of the lower and upper approximations of X and further to express
numerically the roughnessR(ASB, X) of a setX with respect to B by assignment
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R(ASB, X) = 1− card(LOW (ASB , X))
card(UPP (ASB , X))

. (1)

In this way, the value of the roughness of the set X equal 0 means that X is crisp
with respect to B, and conversely if R(ASB , X) > 0 then X is rough (i.e., X is
vague with respect to B). Detailed information on rough set theory is provided
in [9,10,12].

Some probabilistic rough set theory extensions are presented in [1], [13]. Vari-
able precision rough set model improves upon rough set theory by the change
of the subset operator definition. The Variable precision rough set (VPRS)
model has been designed to analysis and recognition of statistical data patterns
rather than functional trends. In the variable precision rough set setting, the
objects are allowed to be classified within an error not greater than a predefined
threshold. Other probabilistic extensions include decision-theoretic framework
and Bayesian rough set model.

2.2 Rough Entropy Clustering Framework - REF

Rough entropy framework in image segmentation has been primarily introduced
in [7] in the domains of image thresholding routines. In [7], rough set notions,
such as lower and upper approximations have been put into image threshold-
ing domain. The introduced rough entropy measure has been applied during
image thresholding to two objects: foreground and background object. This
type of thresholding has been extended into multilevel thresholding for one-
dimensional and two-dimensional domains. In the research [4] rough entropy
notion have been extended into multilevel granular rough entropy evolutionary
thresholding of 1D data in the form of 1D MRET algorithm. Additionally, in
[2] the authors extend this algorithm into 2D MRET thresholding routine of
2D image data. Further, rough entropy measures have been employed in im-
age data clustering setting in [3], [5] described as Rough Entropy Clustering
Algorithm.

3 Rough Entropy Measures

3.1 General REF and RECA Concepts

Rough entropy considered as a measure of quality for data clustering gives possi-
bility and theoretical background for development of robust clustering schemes.
These clustering algorithms incorporate rough set theory, fuzzy set theory and
entropy measure. Three basic rough properties that are applied in clustering
scheme include: selection of the threshold metrics (crisp, fuzzy, probabilistic) -
tm , the threshold type (thresholded or difference based) - tt - and the mea-
sure for lower and the upper approximations - ma - (crisp, fuzzy, probabilistic).
Data objects are assigned to lower and upper approximation on the base of the
following criteria:
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1. assignment performed on the basis of the distance to cluster centers within
given threshold value,

2. assignment performed on the basis of the difference of distances to the cluster
centers within given threshold value.

The combination of these three data structure properties makes possible the
design of distinct rough entropy measures and algorithms optimizing these mea-
sures. Rough entropy value should be maximized. The search for cluster centers
with optimal high rough entropy values is possible by coupling the evolutionary
algorithm as described in Algorithm 1. Selection of cluster centers makes possi-
ble to determine approximations for each cluster. Data objects are assigned to
approximations, each approximation is given a measure. Afterwards, the cluster
roughness and rough entropy are calculated as given in Algorithm 2.

Algorithm 1. General RECA Algorithm Flow

Data: Input Image, k – number of clusters, Size – number of
chromosomes in evolutionary population

Result: Optimal Cluster Centers

Create X population with Size random chromosomes (solutions) each
encoding k cluster centers
repeat

forall chromosomes of X do
Calculate their Rough Entropy

end
Create mating pool Y from parental X population
Apply selection, cross-over and mutation to Y population
Handle empty clusters
Replace X population with Y population

until termination criteria (most often predefined number of iterations) ;

Algorithm 2. Rough Entropy Calculation

Data: Rough Approximations
Result: R - Roghness, RE - Rough Entropy Value

for l = 1 to k (number of data clusters) do
if Upper(Cl) != 0 then R(Cl) = 1 - Lower(Cl) / Upper(Cl)

end
RE = 0
for l = 1 to k (number of data clusters) do

if R(Cl) != 0 then RE = RE - exp
2

· R(Cl) · log(R(Cl)) ;
(see Eq. 1)

end

3.2 Introduction to Probabilistic RECA Measures

Introduced probability rough measures are primarily based on the similar pattern
as in case of crisp and fuzzy RECA measures. The probability rough measures
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require selecting adequate probability measure. Data points closest to the given
cluster center relative to the selected threshold metrics (crisp, fuzzy, probabilis-
tic) are assigned to its lower and upper approximation. The upper approxima-
tions are calculated in the specific, dependant upon threshold type and measure
way presented in the subsequent paragraphs. Probability distributions in RECA
measures are required during measure calculations of probabilistic distance be-
tween data objects and cluster centers. Gauss distribution has been selected as
probabilistic distance metric for data point xi ∈ U to cluster center Cm calcu-
lated as follows

dpr(xi, Cm) = (2π)−d/2|Σm|−1/2exp

(
−1

2
(xi − μm)TΣ−1

m (xi − μm)
)

(2)

where |Σm| is the determinant of the covariance matrix Σm and the inverse
covariance matrix for the Cm cluster is denoted as Σ−1

m . Data dimensionality is
denoted as d. In this way, for standard color RGB images d = 3, for gray scale
images d = 1. Mean value for Gauss distribution of the cluster Cm has been
denoted as μm. The summary of the parameters for the probabilistic RECA
measures has been given in Table 1.

Table 1. Probabilistic - difference and threshold based measures and related algorithms
- RECA

Difference metric based measures
Algorithm Measure Threshold Condition
CPDRECA 1 pr |dpr(xi, Cm) − dpr(xi, Cl)| ≤ εpr

FPDRECA μCm pr |dpr(xi, Cm) − dpr(xi, Cl)| ≤ εpr

PPDRECA dpr(xi, Cm) pr |dpr(xi, Cm) − dpr(xi, Cl)| ≤ εpr

PCDRECA dpr(xi, Cm) crisp |d(xi, Cm) − d(xi, Cl)| ≤ εdist

PFDRECA dpr(xi, Cm) fuzzy |(μCm (xi) − μCl (xi)| ≤ εfuzz

Threshold metric based measures
Algorithm Measure Threshold Condition
CPTRECA 1 pr dpr(xi, Cm) ≥ εpr

FPTRECA μCm pr dpr(xi, Cm) ≥ εpr

PPTRECA dpr(xi, Cm) pr dpr(xi, Cm) ≥ εpr

PCTRECA dpr(xi, Cm) crisp d(xi, Cm) ≤ εdist

PFTRECA dpr(xi, Cm) fuzzy μCm (xi) ≥ εfuzz

Fuzzy membership value μCl(xi) ∈ [0, 1] for the data point xi ∈ U in cluster
Cl is given as

μCl(xi) =
d(xi, Cl)−2/(μ−1)∑k

j=1 d(xi, Cj)−2/(μ−1)
(3)

where a real number μ > 1 represents fuzzifier value and d(xi, Cl) denotes dis-
tance between data object xi and cluster (center) Cl.
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3.3 Probabilistic RECA

(Cr, Fz, Pr)(Pr)(D) RECA
Crisp, Fuzzy, Pr – Pr probabilistic threshold, difference metric - (Cr, Fz, Pr)

PDRECA algorithms. Rough measure general calculation routine has been given
in Algorithms 2, 3. For each data object xi, distance to the closest cluster Cl

is denoted as dpr(xi, Cl) - the measures of the lower (denoted as Lower) and
upper (denoted as Upper) approximations for this cluster are increased by the
PM value (as described in Algorithms 5, 4 and 3). Additionally, the measures of
the upper approximations of the clusters Cm that satisfy the condition

|dpr(xi, Cm)− dpr(xi, Cl)| ≤ εpr (4)

are increased by the PM value. Calculation of probabilistic distances requires
prior all data object assignment to the closest clusters and determination of the
clusters mean values and covariance matrices.

Algorithm 3. RECA Approximations

Data: Image, Cluster Centers, M ∈ {Cr, Fz, Pr}, S ∈ {Difference,
Threshold}

Result: RECA Approximations

Prepare data structures
Assign data points to the clusters
foreach Cluster Cm do

Calculate mean value μm and covariance matrix Σm

end
foreach Data object xi do

Determine the closest cluster Cl for xi

Determine the measure PM(xi, Cl, M)
Increment Lower(Cl) and Upper(Cl) by PM
Determine the measure UA(xi, S, M)

end

Algorithm 4. PM-Measure

Data: M ∈ {Cr, Fz, Pr}, xi, Cm

Result: PM(xi, Cm, M)
if M = Cr then return PM = 1.0;
else if M = Fz then return PM = μCm (xi) (see Eq. 3) ;
else return PM = dpr(xi, Cm) (see Eq. 2) ;

(Cr, Fz, Pr)(Pr)(T) RECA
Crisp, Fuzzy, Pr – Pr probabilistic threshold, threshold metric - (Cr, Fz Pr)

PTRECA algorithms. Rough measure general calculation follows steps outlined
in Algorithm 3. For each data point xi, distance to the closest cluster Cl is
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Algorithm 5. UA-Measure

Data: M ∈ {Cr, Fz, Pr}, S ∈ {Difference, Threshold}, xi, Cl

Result: Upper Approximation Measure

if S = Threshold then
foreach Cluster Cm �= Cl with dM (xi, Cm) ≥M εM do

if (dM=Cr(xi, Cm) ≤ εM=Cr) OR (dM=F z,Pr(xi, Cm) ≥ εM=F z,Pr ) then
Determine the measure PM(xi, Cm, M)
Increment Upper(Cm) by PM

end

end
else
foreach Cluster Cm �= Cl with |dM (xi, Cm) − dM (xi, Cl)| ≤ εM do

Determine the measure PM(xi, Cm, M)
Increment Upper(Cm) by PM

end

denoted as dpr(xi, Cl) - the measures of the lower and upper approximations for
this cluster are increased by the PM value (as described in Algorithm 4).

dpr(xi, Cm) ≥ εpr (5)

are increased by the PM value. Similar to the Pr Difference RECA, the determi-
nation of the clusters mean values and covariance matrices is required for proper
probabilistic distance calculations.

(Pr)(Cr, Fz)(D, T) RECA
In this algorithm type, the operations performed are analogous to the ones

described in two previous subsections. The only difference consists in approx-
imation measure that is probabilistic and threshold metric that is crisp and
fuzzy. Conditions in Algorithm 5 should be accommodated for crisp and fuzzy
thresholds.

4 Experimental Setup and Results

Image data - in the subsequent material, the image 27059 from Berkeley image
database [6] has been selected for experiments. The original color RGB image
as given in Figure 1 (a) have been preprocessed and 2D data for bands R and
B have been obtained. In Figure 1 (b) and 1 (c) data points in 2D attribute
domain R-B are displayed as single gray points.
Cluster centers - for the presentation purposes, 7 cluster centers have been
created as shown in Figure 1 (b) and 1 (c) and displayed in distinct colors.
Data points assignment and border of data points that are the closest to the
given clusters depends heavily on the metric. In Figure 1 (b) cluster borders and
cluster assignment (it means data points belonging to the nearest cluster center)
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have been given in case of crisp or fuzzy metric. In Figure 1 (c) cluster borders
and cluster assignment have been given in case of probabilistic metric.
RECA parameters. In the experimental material, introduced probabilistic
RECA measures have been compared to crisp and fuzzy RECA measures. In the
subsequent material, the following parameters have been selected for the calcu-
lated RECA measures. Crisp threshold εdist = 15, fuzzy threshold εfuzz = 0.2,
probabilistic threshold for PTRECA - εpr = 5E-11 and probabilistic difference
threshold for PDRECA εpr = 5E-4.

In order to make the presented concepts more understandable, in Figure 2
three types of boundary regions have been displayed: (a) crisp boundary, (b)
fuzzy boundary and (c) probabilistic boundary.

a b c

Fig. 1. Berkeley dataset image: (a) 27059, (b) image 27059, R-B bands: crisp and
fuzzy data object assignment, (c) image 27059, R-B bands: probabilistic data object
assignement

In the experiments, the image 27059 R-B bands have been segmented by
means of k -means algorithm with selected number of clusters k = 7. Afterwards,
six solutions have been presented for experimental tests. For each k -means solu-
tion with ID 1 - 6, adequate RECA measures have been presented in Table 2. In
addition to rough entropy measures (their values should be maximized), Dunn

a b c

Fig. 2. Berkeley 27059 dataset image, R-B bands: (a) crisp boundary regions, (b) fuzzy
boundary regions, (c) probabilistic boundary regions
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Table 2. Three standard indices: Dunn, Davies-Bouldin and β-index compared to
rough entropy crisp, fuzzy and probabilistic RECA measures for the experimental 27059
R-B image

Population
ALG 1 2 3 4 5 6
Dunn 0.71 0.94 0.94 0.97 0.91 0.50
DB 8.41 8.42 8.20 8.10 8.40 8.10
β-index 12.86 13.60 13.48 13.11 12.08 10.83
CrPrT RECA 2.47 2.58 2.57 2.57 2.49 2.64
FzPrT RECA 0.86 0.89 0.85 0.85 0.88 0.93
PrPrT RECA 1.43 1.81 1.70 1.66 1.41 1.70
CrPrD RECA 2.05 2.09 2.12 2.13 2.15 2.05
FzPrD RECA 0.31 0.39 0.34 0.33 0.31 0.41
PrPrD RECA 0.03 0.05 0.03 0.05 0.04 0.02
CrFzT RECA 1.22 1.20 1.89 1.18 1.19 1.16
FzFzT RECA 1.11 1.25 1.18 1.14 1.12 1.16
PrFzT RECA 0.87 1.07 0.99 0.95 0.87 0.97
CrFzD RECA 0.84 0.82 0.82 0.82 0.85 0.88
FzPrD RECA 0.79 0.84 0.79 0.79 0.81 0.87
PrFzD RECA 0.20 0.15 0.16 0.17 0.20 0.15
CrCrT RECA 2.30 2.55 2.25 2.35 2.50 2.33
FzCrT RECA 1.16 1.22 1.05 1.11 1.28 1.00
PrCrT RECA 1.34 1.54 1.28 1.26 1.35 1.35
CrCrD RECA 2.38 2.63 2.48 2.44 2.37 2.37
FzCrD RECA 1.31 1.46 1.35 1.33 1.32 1.32
PrCrD RECA 1.00 1.22 1.08 1.02 0.99 1.06

index and β-index values are displayed (also should be maximized) and Davies-
Bouldin index (their values should be minimized). High correlation between stan-
dard and crisp, fuzzy and probabilistic rough measures is easily seen.

5 Conclusions and Future Research

In the study, a probabilistic extension of the crisp and fuzzy rough (entropy)
measures have been introduced and presented. Probabilistic rough entropy mea-
sures are capturing and revealing data structure properties that seems to be
complementary to crisp and fuzzy rough measures. High correlation between
standard measures on one hand and between different types of RECA measures
on the other hand supports and confirms their suitability in the area of data
analysis. Combination of crisp, fuzzy and probabilistic rough entropy measures
seems to be promising emerging area of image segmentation and analysis.
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Abstract. Average-link (AL) is a distance based hierarchical clustering method,
which is not sensitive to the noisy patterns. However, like all hierarchical cluster-
ing methods AL also needs to scan the dataset many times. AL has time and space
complexity of O(n2), where n is the size of the dataset. These prohibit the use
of AL for large datasets. In this paper, we have proposed a distance based hierar-
chical clustering method termed l-AL which speeds up the classical AL method
in any metric (vector or non-vector) space. In this scheme, first leaders clustering
method is applied to the dataset to derive a set of leaders and subsequently AL
clustering is applied to the leaders. To speed-up the leaders clustering method,
reduction in distance computations is also proposed in this paper. Experimental
results confirm that the l-AL method is considerably faster than the classical AL
method yet keeping clustering results at par with the classical AL method.

Keywords: distance based clustering, leaders clustering, average-link, large
datasets.

1 Introduction

Clustering technique is required in numerous fields of engineering namely Data Mining,
Pattern Recognition, Statistical Data Analysis, Bio-informatics, etc. [1,2]. Given a set
of data points (called patterns), clustering involves grouping these patterns into different
disjoint subsets termed as clusters based on some similarity measures. In other words,
patterns in a cluster are more similar to each other than patterns in other clusters.

The clustering methods are mainly divided into two categories viz., partitional clus-
tering and hierarchical clustering, based on the way they produce the results. Partitional
clustering methods create a single clustering (flat clustering) of the dataset. Partitional
clustering can be classified into two classes based on the criteria used viz., distance
based and density based. Distance based methods optimize a global criteria based on
the distance between the patterns. k-means, CLARA, CLARANS are examples of dis-
tance based clustering method. Density based methods optimize local criteria based on
density information of the patterns. DBSCAN, DenClue are some well known density
based clustering methods.

Hierarchical clustering methods create a sequence of nested clusterings of the dataset.
Like partitional clustering, hierarchical clustering methods can also be classified in two
classes viz., density based (e.g., OPTICS [3], Chameleon) and distance based (e.g.,
single-link (SL) [4], complete-link (CL) [5], average-link (AL) [6]).

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 50–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The above three distance based hierarchical clustering methods namely SL, CL and
AL differ in the “distance measure” between a pair of clusters. In SL (CL), distance
between a pair of clustersC1 andC2 (say), is the distance between two closest (farthest)
patterns one from C1 and the other from C2. In other words, only a pair of patterns
decide the distance and it is independent of number of patterns present in the clusters.
Therefore, SL and CL clustering methods are sensitive to outliers or noisy patterns. To
minimize the effect of noisy patterns, inter-cluster distance in AL technique is computed
using all patterns present in both clusters.

For some applications like network intrusion detection system (NIDS) proportion
of the data points is unequal (i.e., number of the data points of abnormal/attack type
is very less compared to normal data points). These low proportional data points (ab-
normal/attack data points) look like outliers in the feature space. These abnormal data
points are likely to get merged with the clusters of normal data points in SL and CL
methods as they are sensitive to the noisy (outlier) points. However, AL method works
well even in the presence of noisy (outlier) data points. So, AL clustering method is
more suitable for these type of applications.

AL needs to scan the dataset many times and has time and space complexity of
O(n2). These prohibit use of AL for large datasets. In this paper, we have proposed a
distance based hierarchical clustering method termed leader-average-link (l-AL) which
speeds up the classical AL method. l-AL method is suitable for any metric space.

In the proposed scheme, we have used leaders clustering method to derive a set of
leaders of the dataset. Later, AL is used to cluster the leaders. The final clustering is
obtained by just replacing the leaders by their corresponding followers. l-AL has lower
time complexity because AL is used only on the leaders which are much smaller in
number compared to the dataset. Further, technique is proposed to reduce the number
of distance computations in leaders clustering method.

The contributions of our paper are:

– Technique has been proposed to reduce the number of distance calculations re-
quired in leaders clustering. Triangle inequality property of metric space has been
used for this reduction.

– A distance based hierarchical clustering method termed l-AL is proposed which
speeds up the classical AL method and scans the dataset once. l-AL uses the accel-
erated leader clustering technique to generate the leaders.

– l-AL does not use any vector space properties1. It utilizes only the distance infor-
mation between the data points. Therefore, l-AL method is suitable for vector as
well as non-vector metric space.

Rest of the paper is organized as follows. Section 2 describes a summary of related
works. Section 3 describes the brief background of the proposed clustering method.
Section 4 describes the proposed l-AL method and also a relationship between the AL
method and the l-AL method is formally established. Experimental results and conclu-
sion are discussed in Section 5 and Section 6, respectively.

1 Vector addition and scalar multiplication.
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2 Related Work

In this section, a brief review of related works is reported for distance based hierarchical
clustering methods.

T. Zhang et al. in [7] introduced a clustering method called BIRCH for large datasets.
The core concept of BIRCH is Clustering Feature (CF). The CF utilizes the vector
space (Euclidean space) properties to store the summary of k data points {−→Xi}i=1..k.

The CF is defined as CF = (k,
∑k

i=1
−→
Xi,
∑k

i=1
−→
Xi

2
). One can easily compute average

intra-cluster and inter-cluster distances from the CF values. However, in many appli-
cations, datasets are from non-vector metric space. Therefore, BIRCH method is not
suitable for those applications.

Dash et al. in [8] proposed a fast hierarchical clustering method based on the partially
overlapping partitioning (POP). First, dataset is partitioned into a number of overlap-
ping cells and these are progressively merged into a numbers of clusters. Next, tradi-
tional hierarchical agglomerative clustering (centroid based) method is applied.

Nanni et al. in [9] exploited the triangle inequality property of the distance metric to
speed-up the hierarchical clustering methods (SL and CL).

Recently, Koga et al. [10] proposed a fast approximation algorithm for SL method.
Unlike classical SL method it quickly finds close clusters in linear time using a proba-
bilistic approach.

These methods successfully speedup the traditional clustering methods. However,
these methods are not suitable either for large datasets (entire dataset in main mem-
ory of machine) or categorical datasets (non-vector space). The proposed l-AL method
speeds up the exiting AL clustering method but needs to store only leaders in the main
memory of the machine (as AL is applied only on the leaders) and uses only the distance
information. So, for large datasets l-AL method is more suitable instead of classical AL.

3 Background of the Proposed Method

As already discussed, the proposed l-AL builds on two clustering methods viz., leaders
clustering and average-link clustering method; they are discussed in this section.

Leaders clustering method. Leaders clustering method [1] is a distance based single
scan partitional clustering method. Recently, leaders clustering method has been used
in preclustering phase of many data mining applications [11,12]. For a given threshold
distance τ , it produces a set of leaders L incrementally. For each pattern x, if there is
a leader l ∈ L such that ||x − l|| <= τ , then x is assigned to the cluster represented
by l; otherwise, x becomes a new leader. The time complexity of the leaders clustering
is O(mn), where m = |L|. The space complexity is O(m), if only leaders are stored;
otherwise O(n). However, it can only find convex shaped clusters.

Average-link clustering method. Average-link [6,13] is a distance based agglomera-
tive hierarchical clustering method. In average-link, distance between two clusters C1
and C2 is the average of distances between all pairs in C1 × C2. That is,
Distance(Ci, Cj) = 1

|Ci|∗|Cj|
∑

xi∈Ci

∑
xj∈Cj

||xi − xj ||
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Algorithm 1. AL(D,h)
Place each pattern x ∈ D in a separate cluster. This is the initial clustering π1 =
{C1, C2, .. . . . , Cn} of D. Compute the inter-cluster distance matrix and set i = 1.
while There is a pair of clusters Cx, Cy ∈ πi such that Distance(Cx, Cy) ≤ h do

Select two closest clusters Cl and Cm and merge into a single new cluster C = Cl ∪ Cm.
Next clustering is πi+1 = πi ∪ {C} \ {Cl, Cm}; i = i + 1
Update the distances from C to all other clusters in the current clustering πi.

end while
Output all clustering π1, π2, . . . , πp.

The average-link method with inter-cluster distance (h) is depicted in Algorithm 1.
The AL method is not sensitive to noisy patterns. The time and space complexity of the
AL method are O(n2) [6,13]. It scans the dataset many times. Therefore, AL method
is not suitable for large datasets.

4 Proposed Clustering Method

To overcome the deficiencies of the AL method, we propose a clustering method termed
as l-AL, which is the combination of leaders and average-link. In this section, we first
discuss the technique to speed up the leaders clustering followed by the proposed l-AL
scheme.

4.1 Accelerating Leader Clustering Method

We use triangle inequality property to reduce the number of distance computations of
the leaders clustering method. We term this approach as Accelerated leader. In recent
years, triangle inequality property of the metric space has been used to reduce the dis-
tance computations in the clustering methods [14,15]. The triangle inequality property
can be stated as follows.

∀a, b, c ∈ D, d(a, b) ≤ d(b, c) + d(a, c) (1)

where D is the set of data points, d is a distance function over the metric space M =
(D, d). Let l1, l2 be the two leaders and x be an arbitrary pattern of the dataset. Form
equation ( 1),

d(x, l2) ≥ |d(l1, l2)− d(x, l1)| (2)

From equation( 2) it may be noted that a lower bound on the distance between leader
l2 and pattern x (termed as dlower(x, l2) ) can be obtained from d(l1, x) and d(l1, l2)
without calculating the exact distance between l2 and x.

Accelerated leader works as follows. It computes a distance matrix for leaders. This
distance matrix can be generated hand-in-hand during the generation of leaders (without
any extra distance computation). Therefore, one can easily estimate dlower(x, l2) only
by computing distance d(l1, x).

Let τ be the leader’s threshold. Let L = {l1, l2, . . . , lk} be the set of leaders gener-
ated at an instant and all be marked as “unprocessed” leaders. The scheme starts with
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calculating the distance between a new pattern x and leader lf (where lf is the earli-
est generated leader among the set of “unprocessed” leaders). If d(x, lf ) ≤ τ , then x
becomes the follower of leader lf . If d(x, lf ) > τ , we can avoid the distance compu-
tations from all leaders li ∈ L − {lf} where estimated lower bound dlower(x, li) > τ.
Leaders li, lf are marked as “processed” (pruned) leaders. If all leaders are pruned then
x becomes a new leader and added to L. If all leaders are not marked as “processed”,
we repeat same procedure of calculating distance between x with next unprocessed
leader lu ∈ L if d(x, lu) < d(x, lf ). If no (unprocessed) lu ∈ L is found such that
d(x, lu) > d(x, lf ), then there cannot be a leader lj such that d(x, lj) ≤ τ ; so x be-
comes a new leader and added to L. The whole procedure of Accelerated leaders is
depicted in Algorithm 2.

Algorithm 2. Accelerated leader(D, τ )
1: L ← {l1}; { Let l1 ∈ D be the first scanned pattern}
2: for each x ∈ D \ l1 do
3: S ← L; MIN = ∞;
4: while (x does not become a follower and S is not empty) do
5: Pick a leader li and delete from S. //* li is earliest generated leader among the leaders

in S *//
6: if d(x, li) ≤ τ then
7: x becomes a follower of li; break;
8: else if d(x, li) < MIN then
9: MIN = d(x, li);

10: for each leader lk ∈ S(lk �= li) do
11: if dlower(x, lk) > τ then
12: delete lk from set S.
13: end if
14: end for
15: end if
16: end while
17: if (x not be follower of any exsisting leaders in L) then
18: x becomes new leader and added to L.
19: end if
20: end for
21: Output L� = {(l, followers(l)) | l ∈ L}.

4.2 Leader-Average-Link(l-AL) Method

In this sub-section, we discuss the proposed l-AL scheme. The l-AL method works as
follows. First, a set of leaders (L) is obtained applying the Accelerated leaders clus-
tering method to the dataset (as discussed in previous subsection). Next, these leaders
are clustered using classical AL method with minimum inter-cluster distance h. Finally,
each leader is replaced by its followers set to produce the final sequence of clustering.
The l-AL method is depicted in Algorithm 3. The time and space complexity of the
proposed method are analyzed as follows.
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Algorithm 3. l-AL(D, τ, h)
Apply Accelerated leader(D, τ ) as given in Algorithm 2. Let the set of leaders be L.
Apply AL(L, h) as given in Algorithm 1. Let output be πL

1 , πL
2 , . . . , πL

k { A sequence of
clustering of leaderset}
Each leader in clustering πL

i is replaced by its followers set. This gives a sequence of clus-
tering of the dataset (say πD

1 , πD
2 , . . . , πD

k ).
Output πD

1 , πD
2 , . . . , πD

k .

1. The step of obtaining set of all leaders L takes time of O(mn), where m is the size
of the leader set. The space complexity is O(m). It scans the dataset once.

2. The time complexity of the AL(L, h) is O(m2). The space complexity is O(m2).

The overall running time of l-AL is O(mn +m2) = O(mn). Experimentally, we also
show that l-AL is considerably faster than that of the classical AL method, since AL
works with the whole dataset, whereas the l-AL works with set of leaders . The space
complexity of the l-AL method is O(m2).

Relationship between AL and l-AL methods. As discussed in previous sub-section
l-AL generates clustering of dataset at a computational cost significantly lower than
classical AL. It may be noted that l-AL may overestimate or underestimate the dis-
tance between a pair of clusters with compared to the classical AL method (termed
as distance error). This may lead to deviation in clustering results obtained by l-AL
compared to AL. In this subsection a theoretical upper bound of the distance error is
established.

Let l1, l2 ∈ L be two leaders obtained using the threshold τ . Let F (l1) ⊆ D be the
set of followers of leader l1 including l1. Similarly, F (l2) is the set of followers of l2.

Lemma 1. If the leaders threshold is τ , then l-AL may introduce an error of average
value Er(l1, l2) < 2τ , while measuring the distance between a pair of leaders (l1, l2).

Proof: Let ||l1 − l2|| = T > 2τ. We have three cases.

1. We assume that all followers of l1 are more than T distance away from the fol-
lowers of l2, except the leaders themselves. (This case is illustrated in Fig. 1(a)).
Formally, ||xi − xj || > T where xi ∈ F (l1) \ {l1} and xj ∈ F (l2) \ {l2}. There-
fore, distance between a pair of followers (xi, xj) can be at most T + 2τ. So, for
all followers (of this case) l-AL underestimates the distance and approximates to T
(as ||l1 − l2|| = T ). Therefore, error incurred by a pair of such followers is at most
2τ. The average errorEr(l1, l2) introduced by the l-AL method for a pair of leader
can be computed as follows.
Er(l1, l2) = (m1−1)(m2−1)2τ+(m1−1)τ+(m2−1)τ

m1m2
≤ m1m2∗2τ

m1m2
= 2τ

where m1 = |F (l1)| and m2 = |F (l2)|.
The first term of the numerator in above equation appears due to errors introduced
by the followers of l1 (m1−1 in number) and l2 (m2−1 in number). Second (third)
term captures errors introduced by l2(l1) and followers of l1(l2).
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Fig. 1. (a) l-AL underestimates the distance (b) l-AL overestimates the distance

2. We assume that ||xi−xj || < T such that xi ∈ F (l1)\ {l1} and xj ∈ F (l2)\ {l2} ,
distance between xi, xj cannot be less than T − 2τ. Similar to case 1 we obtain the
average error Er(l1, l2) < 2τ. (Fig. 1(b)). Here, l-AL overestimates the distance.

3. If distance between any pair of followers is ||xi − xj || = (T − 2τ, T + 2τ), the
average error is less than 2τ.

From all three cases, we obtain that average error Er(l1, l2) is less than 2τ �
The distance error computation between two leaders can easily be extended for a pair
of clusters, as follows.

Theorem 1. If the leaders threshold is τ , then l-AL may introduce an average error
Er(C1, C2) < 2τ in measuring the distance between a pair of clusters (C1, C2) .

Proof: From Lemma 1, we know that average error between a pair of leadersEr(l1, l2)<
2τ. Let the upper bound on the average error Er(l1, l2) be 2τ − ε, where 0 < ε << τ .
Then the average error between a pair of clusters (C1, C2) is as follows.

Er(C1, C2) = (2τ−ε)∗ml
1ml

2
ml

1ml
2

= 2τ − ε < 2τ,

where ml
1 and ml

2 are the numbers of leaders of the clusters C1 and C2, respectively. �
For large datasets, numbers of leaders are considerably less compared to the size of the
data. Number of followers per leader are considerably large. As a result, there is high
probability that followers of leader are distributed evenly. This leads to error in distance
computation between leaders by l-AL method is marginal, which is also reflected in our
experimental results. So, Corollary 1 can be deduced.

Corollary 1. If the followers of leaders are distributed uniformly, the average distance
error for those leaders is 0. �

5 Experimental Results

In this section, we discuss the experimental evaluation of our proposed clustering method.
We conducted the experiments with synthetic and real world datasets (Table 1) (UCI
Repository) after removing the class labels. We implemented leaders clustering and Ac-
celerated leader using C language and executed on Intel Xeon Processor (3.6GHz) with
8GB RAM IBM Workstation. These two methods are tested with Circle and Shuttle
datasets. The detailed results are shown in Table 2 and Fig 2. Proposed Accelerated
leader performs significantly less computations compared to that of classical leaders
method (Table 2). For example with the Circle dataset and τ = 0.1, Accelerated leader
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Table 1. Datasets Used

Dataset # Pattern # Features
Circle (Synthetic) 28000 2

Gaussian(Synthetic) 4078 2
Pendigits 7494 16

Letter 20000 16
Shuttle 58000 9

Table 2. Performance of Accelerated leaders for
Circle dataset

Threshold Method # Computations
(τ) (in Million)
0.1 Leaders 90.13

Accelerated leader 28.66
0.2 Leaders 20.03

Accelerated leader 2.37
0.3 Leaders 11.33

Accelerated leader 0.96
0.4 Leaders 5.97

Accelerated leader 0.49
0.5 Leaders 3.85

Accelerated leader 0.35
0.6 Leaders 2.81

Accelerated leader 0.30

computes 60 millions less distance calculations to achieve same results as that of the
classical leaders method (Table 2). To show the performance of the proposed leaders
clustering speeding-up technique with variable dataset size, experiments are conducted
on Shuttle dataset with leaders threshold τ = 0.001. This is reported in Fig 2. It may
be noted that with increase of the dataset size, number of distance calculations reduces
significantly compared to classical leaders.

Performance of l-AL method. To show the performance of the l-AL method, we imple-
mented AL and l-AL methods using C language and executed on Intel Xeon Processor
(3.6GHz) with 8GB RAM IBM Workstation. We computed the Rand Index (RI)( [16])
between the final clustering results of the l-AL and the AL method. We conducted ex-
periments with synthetic (Gaussian) (Fig. 3) as well as real world large datasets. De-
tailed results are provided in Table 3, Table 4 and Table 5. Gaussian is a 2 dimen-
sional data with four clusters. Three clusters are drawn from the normal distribution
with means ((0 0)T , (0 8)T , (7 7)T ) and covarience matrix I2 (Identity Matrix of size
2.) Fourth cluster is drawn from a uniform random distribution (Fig. 3). For this dataset,
leaders thresholds τ were chosen as 0.25, 0.50. The clustering results of the proposed l-
AL method are same as the classical AL method with cut-off distances (h) 5.0, 7.0, 8.0
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Table 3. Results for Gaussian Dataset

Threshold Cut-off Method Time Rand Index
(τ ) (h) (Sec.) (RI)
0.25 4.0 l-AL 0.04 0.999

4.0 AL 14.96 –
4.5 l-AL 0.04 0.999
4.5 AL 14.96 —-
5.0 l-AL 0.04 1.000
5.0 AL 14.96 —

0.50 6.5 l-AL 0.01 0.870
6.5 AL 14.96 —
7.0 l-AL 0.01 1.000
7.0 AL 14.96 —
8.0 l-AL 0.01 1.000
8.0 AL 14.96 —

and results are very close to AL method for the cut-off distances (h) 4.0, 4.5, 6.5 (Ta-
ble 3). The execution time of the proposed method is less than 0.3% of AL method.
To show the effectiveness of the proposed method in the real world large datasets,
we experimented with Pendigits, Letter and Shuttle datasets (Table 1). For Pendigits
dataset, clustering results of l-AL method is very close (RI = 0.899, 0.897, 0.911,
0.904, 0.935, 0.933, 0.913, 0.909) to that of the classical AL method with different
τ (30, 40) and different h (145, 150, 155, 160) (Table 4). The l-AL consumes less than
0.5% of CPU time compared to the AL method.

For Letter dataset, with τ = 4 and different cut-off distances (h = 10, 12, 15) l-
AL method produces clustering results (RI = 0.811, 0.835, 0.977) close to that of the
classical AL method (Table 5). However, l-AL is more than 400 times faster than that of
the classical AL method. For Shuttle dataset, we executed AL and l-AL methods and
results are reported in Table 5. It is noted that clustering results (RI = 0.999, 1.000)
are at par or same with the AL method at τ = 0.001 and h = 0.8, 0.9, 1.0, 1.2.

Table 4. Results for Pendigits data

Dataset Threshold Cut-off Method Time Rand Index
(τ ) (h) (Sec.) (RI)

Pendigits 30 145 l-AL 1.13 0.899
145 AL 201.55 –
150 l-AL 1.13 0.897
150 AL 201.55 —-
155 l-AL 1.13 0.911
155 AL 201.55 —
160 l-AL 1.13 0.904
160 AL 201.55 —

40 145 l-AL 0.31 0.935
145 AL 201.55 —
150 l-AL 0.31 0.933
150 AL 201.55 —
155 l-AL 0.31 0.913
155 AL 201.55 —
160 l-AL 0.31 0.909
160 AL 201.55 —

Table 5. Results for Large Real Datasets

Dataset Threshold Cut-off Method Time Rand Index
(τ ) (h) (Sec.) (RI)

Letter 4 10 l-AL 3.28 0.811
10 AL 1464.10 —
12 l-AL 3.28 0.835
12 AL 1464.10 —
15 l-AL 3.28 0.977
15 AL 1464.10 —

Shuttle 0.001 0.8 l-AL 55.55 0.999
0.8 AL 7140.54 —
0.9 l-AL 55.55 0.999
0.9 AL 7140.54 —
1.0 l-AL 55.55 0.999
1.0 AL 7140.54 —
1.2 l-AL 55.55 1.000
1.2 AL 7140.54 —
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6 Conclusions

In this paper, we proposed a clustering method l-AL for the large dataset in any metric
space. We first apply leaders clustering to derive a set of prototypes of the dataset and
subsequently AL method is applied. A technique to reduce the number of distance com-
putations in the leaders method is also proposed. The clustering results produced by the
l-AL method are at par with that of the AL method. The l-AL method takes significantly
less time compared to that of the AL method. Like AL, l-AL is immune to clustering of
data with noise. As l-AL is faster, it can be used in application like network intrusion
detection system where data size is very large and spurious patterns are very less.
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Abstract. Grouping data into meaningful clusters is an important data mining 
task. DBSCAN is recognized as a high quality density-based algorithm for 
clustering data. It enables both the determination of clusters of any shape and 
the identification of noise in data. The most time-consuming operation in 
DBSCAN is the calculation of a neighborhood for each data point. In order to 
speed up this operation in DBSCAN, the neighborhood calculation is expected 
to be supported by spatial access methods. DBSCAN, nevertheless, is not 
efficient in the case of high dimensional data. In this paper, we propose a new 
efficient TI-DBSCAN algorithm and its variant TI-DBSCAN-REF that apply 
the same clustering methodology as DBSCAN. Unlike DBSCAN, TI-DBSCAN 
and TI-DBSCAN-REF do not use spatial indices; instead they use the triangle 
inequality property to quickly reduce the neighborhood search space. The 
experimental results prove that the new algorithms are up to three orders of 
magnitude faster than DBSCAN, and efficiently cluster both low and high 
dimensional data. 

1   Introduction 

Grouping data into meaningful clusters is an important data mining task. The quality 
of clustering depends on a used algorithm. The DBSCAN algorithm (Density-Based 
Spatial Clustering of Applications with Noise) [3] is recognized as a high quality 
scalable algorithm for clustering low dimensional data. The most time-consuming 
operation in DBSCAN is the calculation of a neighborhood for each data point. In 
order to speed up this operation in DBSCAN, it is expected to be supported by spatial 
access methods such as R*-tree [1] (R-tree [4]). DBSCAN, nevertheless, is not able to 
cluster high dimensional data efficiently. A method for improving the performance of 
DBSCAN based on early removal of core points has been offered in [6]. There, the 
carried out experiments showed that using the proposed method speeded up 
DBSCAN’s performance by 50%. 

In this paper, we propose a new efficient TI-DBSCAN algorithm and its variant 
TI-DBSCAN-REF that apply the same clustering methodology as DBSCAN. Unlike 
DBSCAN, TI-DBSCAN and TI-DBSCAN-REF do not use spatial indices; instead 
they use the triangle inequality property to quickly reduce the neighborhood search 
space. To the best of our knowledge, our proposal is the first one that relates to a 
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density-based clustering; the other trials of using the triangle inequality in clustering 
were related to k-means algorithm [2][7] and hierarchical algorithms following the 
results presented in [7].  

The paper has the following layout. Section 2 recalls the notion of a cluster and 
noise according to [3]. In Section 3, we a offer theoretical basis of our approach to 
optimizing DBSCAN-like clustering. In Section 4, we propose the TI-DBSCAN 
algorithm and its modification TI-DBSCAN-REF. Section 5 reports the performance 
of TI-DBSCAN, TI-DBSCAN-REF as well as the performance of DBSCAN. Section 
6 concludes the obtained results. 

2   Basic Notions 

In the context of the DBSCAN algorithm [3], a cluster is an area of high density. Data 
points in a low density area constitute noise. A point in space is considered a member 
of a cluster if there is a sufficient number of points within a given distance. In the 
sequel, the distance between two points p and q will be denoted by distance(p,q). 
Please, note that one may use a variety of distance metrics. Depending on an 
application, one metric may be more suitable than the other. In particular, if Euclidean 
distance is used, a neighborhood of a point has a spherical shape; when Manhattan 
distance is used, the shape is rectangular. For simplicity of the presentation, in our 
examples we will refer to Euclidean distance, although our approach is suitable for 
any distance metric. Below, we recall definitions of a density based cluster and related 
notions after [3]. 

Eps-neighborhood of a point p (denoted by NEps(p)) is defined as the set of points q 
in dataset D that are distant from p by no more than Eps; that is, NEps(p) = 
{q∈D | distance(p,q) ≤ Eps}.  

A point p is defined as a core point if its Eps-neighborhood contains at least 
MinPts points; that is, if |NEps(p)| ≥ MinPts.  

A point p is defined as directly density-reachable from a point q with respect to 
Eps and MinPts if p ∈ NEps(q) and q is a core point. 
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Fig. 1. Density-reachability of points (MinPts = 6) 

 

Fig. 2. Sample result of clustering 
with DBSCAN 
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A point p is defined as density-reachable from a point q with respect to Eps and 
MinPts if there is a sequence of points p1, …, pn such that p1 = q, pn = p and pi+1 is 
directly density-reachable from pi, i = 1..n-1. 

Example 1. Let MinPts = 6. Point r in Figure 1 has 6 neighbors (including itself) in its 
neighborhood NEps(r), so it is a core point. Point p has 2 neighbors in NEps(p), so it is 
not a core point. Point p, however, belongs to NEps(r), so it is directly density-
reachable from r. To the contrary r is not directly density-reachable from p despite r 
belongs to NEps(p). Point p in Figure 1 is density-reachable from point o, since there is 
a point (e.g. point r) such that p is directly density-reachable from it and it is directly 
density-reachable from o. Please note that p, which is density-reachable from core 
point o, is not a core point.                                                                                              

A point p is defined as a border point if it is not a core point, but is density-reachable 
from some core point. Hence, a point is a border one if it is not a core point, but 
belongs to the Eps-neighborhood of some core point. 

Let C(o) determine all points in D that are density-reachable from point o. Clearly, 
if o is not a core point, then C(o) is empty. In Figure 1, points p and q are density-
reachable from core point o. Hence, p and q belong to C(o). 

A cluster1 is defined as a non-empty set of all points in D that are density-reachable 
from a core point. Hence, each C(p) is a cluster provided p is a core point. 
Interestingly, if p and q are core points belonging to the same cluster, then C(p) = 
C(q); that is, both points determine the same cluster [3]. Thus, a core point p belongs 
to exactly one cluster, namely to C(p). We note, however, that a border point may 
belong to more than one cluster. 

Noise is defined as the set of all points in D that do not belong to any cluster; that 
is, the set of all points in D that are not density-reachable from any core point. Hence, 
each point that is neither a core point, nor border one, constitutes noise. 

Fig. 2 presents the results of clustering with DBSCAN for a sample dataset. 

3   Using the Triangle Inequality for Efficient Determination of 
Eps-Neighborhoods 

Let us start with recalling the triangle inequality property: 

Property 1. (Triangle inequality property). For any three points p, q, r: 

distance(p,r) ≤ distance(p,q) + distance(q,r) 

Property 2 presents its equivalent form, which is more suitable for further 
considerations. 

Property 2. (Triangle inequality property). For any three points p, q, r: 

distance(p,q) ≥ distance(p,r) − distance(q,r). 
 

                                                           
1 This definition differs from the original one provided in [3]. However, it is equivalent to the 

original one by Lemma 1 in [3], and is more suitable for our presentation. 
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Lemma 1. Let D be a set of points. For any two points p, q in D and any point r: 

distance(p,r) − distance(q,r) > Eps  ⇒ q∉NEps(p) ∧ p∉NEps(q). 

Proof. Let distance(p,r) − distance(q,r) > Eps (*). By Property 2, distance(p,q) ≥ 
distance(p,r) − distance(q,r) (**). By (*) and (**), distance(p,q) > Eps, and 
distance(q,p) = distance(p,q). Hence, q∉NEps(p) and p∉NEps(q).                                    

By Lemma 1, if we know that the difference of distances of two points p and q to 
some point r is greater than Eps, we are able to conclude that q∉NEps(p) without 
calculating the actual distance between p and q. Theorem 1 is our proposal of 
effective determination of points that do not belong to Eps-neighborhood of a given 
point p. 

Theorem 1. Let r be any point and D be a set of points ordered in a non-decreasing 
way with respect to their distances to r. Let p be any point in D, qf be a point 
following point p in D such that distance(qf,r) − distance(p,r) > Eps, and qb be a point 
preceding point p in D such that distance(p,r) − distance(qb,r) > Eps. Then: 
a) qf and all points following qf in D do not belong to NEps(p). 
b) qb and all points preceding qb in D do not belong to NEps(p). 

Proof. Let r be any point and D be a set of points ordered in a non-decreasing way 
with respect to their distances to r.  
a) Let p be any point in D, qf be a point following point p in D such that 
distance(qf,r) − distance(p,r) > Eps (*), and s be either point qf or any point following 
qf in D. Then distance(s,r) ≥ distance(qf,r) (**). By (*) and (**), distance(s,r) − 
distance(p,r) > Eps. Thus, by Lemma 1, s∉NEps(p). 
b) The proof is analogous to the proof of Theorem 1a).                                                 

Corollary 1. Let r be any point and D be a set of points ordered in a non-decreasing 
way with respect to their distances to r. Let p be any point in D, qf be the first point 
following point p in D such that distance(qf,r) − distance(p,r) > Eps, and qb be the first 
point preceding point p in D such that distance(p,r) − distance(qb,r) > Eps. Then, only 
the points that follow qb in D and precede qf in D have a chance to belong to NEps(p), 
and p certainly belongs to NEps(p). 

Example 2. Let r be a point (0,0). Figure 3 shows sample set D of two dimensional 
points. Table 1 illustrates the same set D ordered in a non-decreasing way with 
respect to the distance of its points to point r. Let us consider the determination of the 
Eps-neighborhood of point p = F, where Eps = 0.5, by means of Corollary 1. We note 
that distance(F,r) = 3.2, the first point qf following point F in D such that distance(qf,r) 
− distance(F,r) > Eps is point C (distance(C,r) − distance(F,r) = 4.5 – 3.2 = 1.3 > Eps), 
and the first point qb preceding point p in D such that distance(F,r) − distance(qb,r) > 
Eps is G (distance(F,r) − distance(G,r) = 3.2 – 2.4 = 0.8 > Eps). By Corollary 1, only 
the points that follow G and precede C in D (here, points F and H) may belong to 
NEps(F). Clearly, F∈NEps(F). Hence, H is the only point for which it is necessary to 
calculate its actual distance to F in order to determine NEps(F) properly.                       

In the sequel, a point r to which the distances of all points in D have been determined 
will be called a reference point. 
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Fig. 3. Set of points D 

Table. 1. Ordered set of points D from Fig. 3 
with their distance to reference point r(0,0) 

Q X Y distance(q,r) 
K 0,9 0,0 0,9 
L 1,0 1,5 1,8 
G 0,0 2,4 2,4 
H 2,4 2,0 3,1 
F 1,1 3,0 3,2 
C 2,8 3,5 4,5 
A 4,2 4,0 5,8 
B 5,9 3,9 7,1  

4   New Algorithms: TI-DBSCAN and TI-DBSCAN-REF 

In this section, we propose a new clustering algorithm called TI-DBSCAN and its 
version TI-DBSCAN-REF. The result of clustering of core points and identifying of 
noise by our algorithms is the same as the one produced by the DBSCAN 
algorithm [3]. The border points may be assigned to different clusters2. In our 
algorithms we use Corollary 1 for efficient determination of the Eps-neighborhoods of 
points. In addition, we adopt the solution from [6] that consists in removing a point 
from the analyzed set D as soon as it is found to be a core point. Here, we remove 
each analyzed point, even if it not a core point. Let us start with the description of 
TI-DBSCAN. 

 
Notation for TI-DBSCAN 

• D – the set of points that is subject to clustering; 
• Eps – the radius of the point neighborhood;  
• MinPts – the required minimal number of points MinPts within Eps-neighborhood; 
• r – a reference point assumed to be fixed, e.g. to the point with all coordinates equal to 0 or 

minimal values in the domains of all coordinates; 
• fields of any point p in D: 

o p.ClusterId  –  label of a cluster to which p belongs; initially assigned the 
UNCLASSIFIED label; 

o p.dist – the distance of point p to reference point r; 
o p.NeighborsNo – the number of neighbors of p already found; initially assigned 1 to 

indicate that a point itself belongs to its own Eps-neighborhood; 
o Border – the information about neighbors of p that turned out non-core points for 

which it is not clear temporary if they are noise ones or border ones; initially assigned 
an empty set; 

• D’ – the result of clustering of D (initially an empty set); 

 

                                                           
2 Although a border point may belong to many clusters, DBSCAN assigns it arbitrarily only to 

one of them, so does TI-DBSCAN. It is easy to modify the algorithms so that border points 
are assigned to all including clusters. 
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TI-DBSCAN takes as an input a set of points D, a radius Eps and a threshold 
MinPts. Its output, i.e. clustered points, shall be stored in D’. A reference point r is 
assumed to be fixed, e.g. to the point with all coordinates equal to 0 or minimal values 
in the domains of all coordinates. With each point p in D, there are associated the 
following fields: ClusterId, dist, NeighborsNo, and Border. 

TI-DBSCAN starts with the initialization of D’ and the fields of all points in D. 
Then it sorts all points in D in a non-decreasing way w.r.t. their distance to reference 
point r. Next it generates a label for the first cluster to be found. Then it scans point 
after point in D. For each scanned point p, the TI-ExpandCluster function (described 
later) is called. If p is a core point, then the function assigns the current cluster’s label 
to all points in C(p), moves them from D to D’, and TI-DBSCAN generates a next 
label for a new cluster to be created. Otherwise, point p is assigned label NOISE and 
is moved from D to D’. After all points in D are scanned, each point is assigned either 
to a respective cluster identified by ClusterId or is identified as noise. 

 
Algorithm TI-DBSCAN(set of points D, Eps, MinPts); 
/* assert: r denotes a reference point */ 
D’ = empty set of points; 
for each point p in set D do 
    p.ClusterId = UNCLASSIFIED; 

    p.dist = Distance(p,r); p.NeighborsNo = 1; p.Border = ∅ 
endfor 
sort all points in D non-decreasingly w.r.t. field dist; 
ClusterId = label of first cluster; 
for each point p in the ordered set D starting from 
    the first point until last point in D do 
     if TI-ExpandCluster(D, D’, p, ClusterId, Eps, MinPts) then 
         ClusterId = NextId(ClusterId) 
     endif 
endfor 
return D’                  // D’ is a clustered set of points 

 
The TI-ExpandCluster function starts with calling TI-Neighborhood function 

(decribed later) to determine Eps-neighborhood of a given point p in, possibly 
reduced, set D (more precisely, TI-Neighborhood determines NEps(p)\{p} in D) and 
stores it in the seeds variable. Clearly, NEps(p) determined in a reduced set D will not 
contain the neighboring points that were already moved from D to D’. In order to 
determine the real size of NEps(p) in the original, non-reduced D, the auxiliary 
NeighborsNo field of point p is used. Whenever, a point p is moved from D to D’, the 
NeighborsNo field of each of its neighboring points in D is incremented. As a result, 
the sum of the size of NEps(p) found in the reduced D and p.NeighborsNo equals the 
size of NEps(p) in the original, non-reduced set D. 

If p is found not to be a core point, it is temporary labeled as a noise point, 
NeighborsNo field of each of its neighboring points in D is incremented, the 
information about p is added to the Border field of each of its neighboring points in D, 
p itself is moved from D to D’, and the function reports failure of expanding a cluster. 

Otherwise, the examined point is a core point and all points that are density-
reachable from it will constitute a cluster. First, all points in the Eps-neighborhood of 
the analyzed point are assigned a label (ClId) of the currently built cluster and their 
NeighborsNo fields are incremented. Next all non-core points indicated by the 
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p.Border, which were stored in D’, are found to be border points, and are assigned 
cluster label ClId, p.Border is cleared, and p is moved from D to D’. Now, each core 
point in seeds further extends the seeds collection with the points in its Eps-
neighborhood that are still unclassified. After processing a seed point, it is deleted 
from seeds. The function ends when all points found as cluster seeds are processed.  

Note that TI-ExpandCluster calculates Eps-neighborhood for each point only once. 
 

function TI-ExpandCluster(var D, var D’, point p, ClId, Eps, MinPts) 
/* assert: D is ordered in a non-decreasing way w.r.t.  */ 
/* distances of points in D from the reference point r. */ 
/* assert: TI-Neighborhood does not return p.           */ 
seeds = TI-Neighborhood(D, p, Eps); 
p.NeighborsNo = p.NeighborsNo + |seeds|;           // including p itself 
if p.NeighborsNo < MinPts then    // p is either noise or a border point 
    p.ClusterId = NOISE; 
    for each point q in seeds do 
        append p to q.Border; q.NeighborsNo = q.NeighborsNo + 1 
    endfor 

    p.Border = ∅; move p from D to D’;     // D’ stores analyzed points 
    return FALSE 
else 
    p.ClusterId = ClId; 
    for each point q in seeds do 
        q.ClusterId = ClId; q.NeighborsNo = q.NeighborsNo + 1 
    endfor 
    for each point q in p.Border do 
        D’.q.ClusterId = ClId;    //assign cluster id to q in D’ 
    endfor 

    p.Border = ∅; move p from D to D’;     // D’ stores analyzed points 
    while |seeds| > 0 do 
        curPoint = first point in seeds; 
        curSeeds = TI-Neighborhood(D, curPoint, Eps); 
        curPoint.NeighborsNo = curPoint.NeighborsNo + |curSeeds|; 
        if curPoint.NeighborsNo < MinPts then //curPoint is border point 
            for each point q in curSeeds do 
                q.NeighborsNo = q.NeighborsNo + 1 
            endfor 
        else                                 // curPoint is a core point 
            for each point q in curSeeds do 
                q.NeighborsNo = q.NeighborsNo + 1 
                if q.ClusterId = UNCLASSIFIED then 
                    q.ClusterId = ClId; 
                    move q from curSeeds to seeds 
                else 
                    delete q from curSeeds 
                endif 
            endfor 
            for each point q in curPoint.Border do 
                 D’.q.ClusterId = ClId;   //assign cluster id to q in D’ 
            endfor 
        endif 

        curPoint.Border = ∅; move curPoint from D to D’; 
        delete curPoint from seeds 
    endwhile 
    return TRUE 
endif 
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The TI-Neighborhood function takes the ordered point set D, point p in D, and Eps 
as input parameters. It returns NEps(p)\{p} as the set theoretical union of the point sets 
found by the TI-Backward-Neighborhood function and the TI-Forward-Neighborhood 
function. TI-Backward-Neighborhood examines points preceding currently analyzed 
point p, for which Eps-neighborhood is to be determined. The function applies 
Lemma 1 to identify first point, say qb, preceding p in D such that distance(p,r) - 
distance(qb,r) > Eps. All points preceding point qb in D are not checked at all, since 
they are guaranteed not to belong to NEps(p) (by Theorem 1). The points that precede 
p and, at the same time, follow qb in D have a chance to belong to NEps(p). For these 
points, it is necessary to calculate their actual distance to p (When using the Euclidean 
distance metric, the functions may apply the square of Distance and the square of Eps 
for efficiency reasons). The TI-Backward-Neighborhood function returns all points 
preceding p in D with the distance to p not exceeding Eps. The TI-Forward-
Neighborhood function is analogous to TI-Backward-Neighborhood. Unlike TI-
Backward-Neighborhood, TI-Forward-Neighborhood examines points following 
currently analyzed point p, for which Eps-neighborhood is to be determined. The TI-
Forward-Neighborhood function returns all points following p in D with the distance 
to p not exceeding Eps. 

 
function TI-Neighborhood(D, point p, Eps) 

return TI-Backward-Neighborhood(D, p, Eps) ∪  
       TI-Forward-Neighborhood(D, p, Eps) 

 
function TI-Backward-Neighborhood(D, point p, Eps) 
/* assert: D is ordered non-decreasingly w.r.t. dist */ 
seeds = {}; 
backwardThreshold = p.dist - Eps; 
for each point q in the ordered set D starting from 
    the point immediately preceding point p until  
    the first point in D do 
    if q.dist < backwardThreshold then       // p.dist – q.dist > Eps? 
        break; 
    endif 
    if Distance(q, p) ≤ Eps then append q to seeds endif 
endfor 
return seeds 

 
function TI-Forward-Neighborhood(D, point p, Eps) 
/* assert: D is ordered non-decreasingly w.r.t. dist */ 
seeds = {}; 
forwardThreshold = Eps + p.dist; 
for each point q in the ordered set D starting from 
    the point immediately following point p until 
    the last point in D do 
    if q.dist > forwardThreshold then        // q.dist – p.dist > Eps? 
        break; 
    endif 
    if Distance(q, p) ≤ Eps then append q to seeds endif 
endfor 
return seeds 

 



68 M. Kryszkiewicz and P. Lasek 

 

Except for TI-DBSCAN, we have also implemented its variant TI-DBSCAN-REF 
[5] that uses many reference points instead of one for estimating the distance among 
pairs of points. Additional reference points are used only when the basic reference 
point according to which the points in D are sorted is not sufficient to estimate if 
a given point q belongs to Eps-neighborhood of another point p. The estimation of the 
distance between q and p by means of an additional reference point is based on 
Lemma 1. The actual distance between the two points q and p is calculated only when 
all reference points are not sufficient to estimate if q ∈ NEps(p). 

5   Performance Evaluation 

In this section, we report the results of our experimental evaluation of TI-DBSCAN 
and TI-DBSCAN-REF as well as the original DBSCAN with R-Tree as an index. The 
number of reference points used by TI-DBSCAN-REF was set to the number of 
dimensions of a clustered dataset. In the experiments, we used a number of datasets 
(and/or their subsamples) of different cardinality and dimensionality. In particular, we 
used widely known datasets such as: birch [9], SEQUOIA 2000 [8], covtype [7] and 
kddcup 98 [10] as well as datasets generated automatically (random) or manually. 

 
Table 2. Datasets used in experiments and run times (in milliseconds) of examined algorithms. 
Notation: dim. – number of point’s dimensions, card. – number of points in a dataset, sort. – 
time of sorting of points, ind. – time of building of an index, clust. – clustering. 
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The run times of clustering with TI-DBSCAN, TI-DBSCAN-REF, and DBSCAN 
using R-Tree as an index are presented in Table 2. As follows from Table 2, 
TI-DBSCAN and TI-DBSCAN-REF are more efficient than DBSCAN even up to 600 
times. TI-DBSCAN-REF tends to be faster than TI-DBSCAN for large high 
dimensional datasets. For small low dimensional datasets, TI-DBSCAN tends to be 
faster than TI-DBSCAN-REF. 

6   Conclusions 

In the paper, we have proposed two versions of our new algorithm: TI-DBSCAN and 
TI-DBSCAN-REF that produce the same results as DBSCAN, but use the triangle 
inequality to speed up the clustering process. TI-DBSCAN uses only one reference 
point, while TI-DBSCAN-REF uses many reference points. As follows from the 
experiments, both versions of our algorithm are much more efficient than the original 
DBSCAN algorithm, which is supported by a spatial index. Unlike DBSCAN, 
TI-DBSCAN and TI-DBSCAN-REF enable efficient clustering of high-dimensional 
data. The usage of many reference points is particularly useful in the case of large 
high dimensional datasets. 
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Abstract. Experiments and results regarding vehicle type classification
are presented. Three classes of vehicles are recognized: sedans, vans and
trucks. The system uses a non-calibrated traffic camera, therefore no di-
rect vehicle dimensions are used. Various vehicle descriptors are tested,
including those based on vehicle mask only and those based on vehicle
images. The latter ones employ Speeded Up Robust Features (SURF) and
gradient images convolved with Gabor filters. Vehicle type is recognized
with various classifiers: artificial neural network, K-nearest neighbors al-
gorithm, decision tree and random forest.

Keywords: vehicle type classification, SURF, Gabor filter, artificial neu-
ral network, K-nearest neighbors, decision tree, random forest.

1 Introduction

Vehicle type classification is a necessary component of every advanced road traffic
monitoring system. Car monitoring is necessary also in parking lots, e. g. in a
proximity of malls, sport stadiums, etc. Vehicle type information forms a very
useful input for traffic density estimation and prediction. It can also be used
for automatic detection of dangerous or prohibited events involving a particular
group of vehicles (i. e. a truck overtaking another vehicle). Knowing the type of
a vehicle is also helpful in systems of automatic toll collection on highways.

Classical, non-image based solutions designed to detect the type of a vehicle
are based on counting the number of axles of vehicles via inductive loops or
other types of sensors installed in the road surface or in its immediate vicinity.
The disadvantage of such solutions, however, is their high cost (both installation
and maintenance), little flexibility (there is no practical possibility of moving
the detector to another position) and low effectiveness in case of high traffic.
Therefore, non-invasive methods of vehicle detection by image analysis using
video cameras are becoming more popular. They allow for easy installation, do
not destroy the road surface and may classify vehicles from a large distance.

Video-based vehicle type classification systems presented in the literature usu-
ally follow the same basic scheme. First, all moving vehicles are detected and
tracked in a video stream acquired from a camera in order to obtain their exact
locations. On this basis, certain vehicle image parameters are calculated. They
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include various statistical parameters describing vehicle mask shape [1] or vehicle
image itself [2,3].

Feature vectors are fed to the decision-making system. The classification is
based on a set of defined rules [4,5] or is performed by comparing a feature vector
with a database of samples. For this purpose, various distance-based methods
(e.g. K-Nearest Neighbors algorithm) are used the most often [1,6]. Alternatively,
artificial neural networks are employed [7].

Vehicle type classification may be based also on three-dimensional models of
vehicles. During recognition, models are fit to the current vehicle image using
various constraints. Best-fitting model is chosen as a result of classification [8,9].

Vehicle classification method may require a calibrated camera setup. Camera
calibration involves estimation of a number of parameters related to the cam-
era location and its field of view [10,11]. The measurement of these parameters
is prone to errors but in the same time improves final results of vehicle clas-
sification. On the other hand, any change in the camera configuration requires
recalibration. Calibration data is used to transform image acquired from a cam-
era prior to feature extraction or to alter features after extraction.

Methods of vehicle classification that do not require camera calibration are
much more convenient in terms of installation and usage but require employing
more advanced algorithms.

This paper presents experiments regarding vehicle type classification with dif-
ferent image features and different classifiers with a non-calibrated camera setup.
Section 2 presents the method for vehicle image acquisition from a road traffic
camera. Section 3 describes image features used in experiments. Classifiers em-
ployed for vehicle type recognition are presented in Section 4. Section 5 discusses
a method for selecting feature vectors constituting training and validation sets.
Section 6 contains description of experiments carried out and their results. The
last section concludes the paper.

2 Vehicle Image Acquisition

Video frames for the vehicle classification are captured by a traffic camera (Fig.
1). Its field of view is not calibrated i.e. it is not possible to determine real and
absolute vehicle dimensions in this way. In order to classify vehicle type, vehicle
images needs to be extracted from a video stream. In the first step, all moving
objects (e.g. vehicles) are detected in every video frame acquired from a cam-
era. The algorithm based on background modeling method utilizing Gaussian
Mixtures is used for this purpose. It proved to be effective in previous experi-
ments [12,13]. The results of background modeling are processed by detecting
and removing shadow pixels (basing on the color and luminance of pixels) and by
performing morphological operations on the detected objects in order to remove
small areas and to fill holes inside objects.

Next, movements of the detected objects (blobs) are tracked in successive
image frames using a method based on Kalman filters. Kalman filters allow pre-
dicting object position in the current frame. Comparing results of background
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subtraction with predicted vehicle positions it is possible to correlate each object
with its blob (including partial occlusions), so the movement of each object is
tracked continuously [13,14]. All extracted images of every vehicle present in the
analyzed video are used for vehicle type classification.

Fig. 1. Sample frame captured by a traffic camera used in experiments (left) and
moving vehicle masks (right)

3 Vehicle Image Descriptors

Numerous vehicle image descriptors have been implemented for vehicle type
classification. They may be divided into two groups. The first group includes
feature based on vehicle mask only. They form mask feature set that contains:

– mask aspect ratio (the height of the mask bounding box divided by the width
of the mask bounding box)

– eccentricity of the ellipse fitted to the mask
– extent, defined as the proportion of the mask bounding box area to the mask

area
– solidity, defined as the proportion of the mask convex hull area to the mask

area
– proportion of the square of the mask perimeter to the mask area 24 raw,

central and normalized moments of the mask up to the third order (without
trivial ones)

– a set of seven Hu invariant moments of the mask [15]; the moments are
invariant under translation, changes in scale and rotation

Because the field of view of a camera is not calibrated and no homography image
transformation is performed, vehicle image size and dimensions change during
its presence in a video stream. Therefore, no feature containing direct, absolute
values regarding vehicle size or dimensions are used. However vehicle size is an
important factor in vehicle classification (e.g. trucks are larger than cars). Thus
vehicle dimensions are included implicitly in statistical moments.
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The second group of vehicle descriptors is based on image content. Because
there is no correlation between vehicle type and its color, only luminance images
are used. All image pixels outside of a vehicle mask are ignored. Three sets
of vehicle image descriptors are computed; two of them are based on SURF
(Speeded Up Robust Features) and the last set is derived from gradient images
using Gabor filters.

Speed Up Robust Features (SURF) [16] is a scale- and rotation-invariant
local image descriptor around a selected interest point. Its main advantages are
repeatability, distinctiveness, and robustness as well as short computation time.
Interest points (their location and sizes) may be chosen automatically using
Fast-Hessian detector that is based on the determinant of the Hessian matrix
[16]:

H (x, σ) =
[
Lxx (x, σ) Lxy (x, σ)
Lxy (x, σ) Lyy (x, σ)

]
(1)

where L (x, σ) are convolutions of the Gaussian second order derivatives with an
image in point x at scale σ.

SURF descriptors ale calculated in the square regions centered around each
interest point. The region is divided into 4×4 equal subregions. In each subregion,
the Haar wavelet responses in horizontal dx and vertical dy directions (in relation
to the interest point orientation) are calculated. Sums and absolute sums of
wavelet responses form a four-element feature vector v for each subregion [16]:

v4 =
(∑

dx,
∑
dy,
∑ |dx|,

∑ |dy |
)

(2)

This results in a vector of length 64 that describes each interest point vicinity
(SURF 64). The wavelet responses are invariant to illumination offset. Invari-
ance to contrast is achieved by turning the descriptor into a unit vector. An
alternative version of SURF descriptor is also used. A feature vector for each
4× 4 subregion contains 8 elements as each sum and absolute sum is calculated
separately depending on the sign of the wavelet response [16]:

v8 =
( ∑

dk<0
dk,
∑

dk≥0
dk,
∑

dk<0
|dk|,

∑
dk≥0

|dk|) , where k denotes x or y (3)

This result in a SURF descriptor vector containing 128 elements for each interest
point (SURF-128).

The first set of vehicle image descriptors is based on SURF-64. Interest points
are selected automatically using Fast-Hessian interest point detector. For each in-
terest point, SURF-64 vectors are calculated. A number of interest points found
vary a lot and can exceed 100. Therefore it is reduced by clustering interest
points with k -means algorithm [17]. This algorithm aims to partition n obser-
vation vectors into k sets (k < n) in order to minimize within-cluster dispersion
(defined as a sum of squared Euclidean distances of observation vectors from the
cluster center). Interest points are divided into eight sets based on their location
in the vehicle image only and the mean vector of all SURF-64 descriptors for
interest points from the same cluster is derived. The mean vector is augmented
with the cluster center (vehicle image coordinates x and y normalized by the
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vehicle mask height). All vectors are sorted according to the location of cluster
centers. Final vehicle feature vector based on SURF-64 descriptors surf-8-kmeans
contains (64 + 2)× 8 = 528 elements.

The second set of vehicle image features is based on SURF-128 descriptors.
They are obtained for four interest points that are set manually in the centers
of four rectangular, non-overlapping areas the vehicle image is divided into;
the areas are located symmetrically around a center of gravity of the vehicle
mask. The size of each interest point is equal to the height or width of the area,
depending on which value is greater. Final vehicle feature vector surf-4 based
on SURF-128 descriptors contains 128× 4 = 512 elements.

The last set of vehicle image descriptors is based on filtering a gradient image
with a bank of Gabor filters. Image gradients are calculated in vertical and
horizontal directions independently using Sobel operator with an aperture size
equal to 3. The final gradient image is obtained by adding squared vertical and
horizontal gradients. Images are scaled to the fixed resolution 100× 80 pixels.

Gabor filter kernels are similar to the 2D receptive field profiles of the mam-
malian cortical simple cells. Therefore they reveal desirable characteristics of
spatial locality and orientation selectivity [18]. In the spatial domain, a 2D Ga-
bor filter is a Gaussian kernel function modulated by a sinusoidal plane wave,
according to the equation [19]:

gλ,Θ,ϕ,σ,γ (x, y) = exp
(
−x

′2 + γ2y′2

2σ2

)
· cos
(

2π
x′

λ
+ ϕ

)
(4)

x′ = x cosΘ + y sinΘ, y′ = −x sinΘ + y cosΘ (5)

where λ denotes the wavelength of the cosine factor, Θ represents the orientation
of the normal to the parallel stripes of a Gabor function, ϕ is the phase offset,
σ is the sigma of the Gaussian envelope and γ is the spatial aspect ratio that
specifies the ellipticity of the support of the Gabor function. In the experiments
γ = 1 and σ = 0.56λ. The size gx × gy of a Gabor filter is set according to the
equation:

gx = 2 ·max
(
|s · σ cosΘ| ,

∣∣∣∣s · σγ sinΘ
∣∣∣∣
)

+ 1 (6)

gy = 2 ·max
(
|s · σ sinΘ| ,

∣∣∣∣s · σγ cosΘ
∣∣∣∣
)

+ 1 (7)

where s = 3 determines a kernel size.
A bank of eight Gabor filters based on two different wavelengths λ (2.5 and

4) and four different orientations Θ (0◦, 45◦, 90◦ and 135◦) is used. A scaled
gradient image I is convolved with each Gabor filter g with two variants of
phase offset ϕ, according to the equation:

IG =
√

(gϕ=0 ∗ I)2 +
(
gϕ=π/2 ∗ I

)2 (8)

This results in eight filtered vehicle images. For each image, seven Hu invariant
moments are derived [15]. Final vehicle feature vector gabor contains 7× 8 = 56
elements.
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4 Classifiers

For the purpose of vehicle type recognition, four different classifiers have been
examined: K Nearest Neighbors algorithm (KNN), Artificial Neural Network
(ANN), Decision Tree (DT) and Random Forest (RF). All classifiers are trained
with selected feature vectors and validated with a different set of vectors
(Section 5).

KNN algorithm is the most simple of all classifiers used. It stores all training
samples and predicts the response for a new feature vector by analyzing a certain
number (K ) of the nearest neighbors of the vector in the training set using
Euclidean distance measure. In the experiments K = 2.

A feed-forward ANN with one hidden layer is used in experiments. The num-
ber of ANN inputs iANN corresponds with the number of vehicle features. The
number of outputs oANN is equal to the number of vehicle types recognized. An
expected output consists of a maximum value on one output and minimal values
on other outputs. Therefore a vehicle type corresponding with the maximum
output value is returned as the classification result. The number of neurons in
the hidden layer hANN is set according to the equation:

hANN =
√
iANN · (oANN − 1) (9)

ANN is trained with a resilient backpropagation algorithm (RPROP). Sigmoid
activation functions are used in all neurons. Due to the stochastic nature of ANN
weights initialization, ANN is trained and validated five times and the average
results are returned.

Decision Tree [20] is a model of computation in which an algorithm is con-
sidered to be a sequence of branching operations based on comparisons of some
quantities.

Random Forest [21] is the last classifier used in experiments. RF is an en-
semble classifier that consists of many decision trees. An input feature vector is
classified with every tree and the final class label is decided based on individ-
ual classification results. Due to the stochastic nature of RF, it is trained and
validated five times and the average results are returned.

5 Selection of Training and Validation Feature Vectors

In the result of moving vehicle detection and tracking (Section 2), every vehicle
is represented by many images acquired during its presence in a camera field
of view. Only vehicle images without occlusions are used in experiments; im-
age validity is determined automatically based on moving object tracking data.
Additionally all vehicles with mask bounding box area less than 2000 pixels
are discarded due to low amount of details. All remaining images are used to
calculate image descriptors and form feature vectors.

Training and validation vectors are selected in two stages. First, vehicles are
divided into these two groups. Next, images are chosen for each vehicle. Each
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vehicle is represented by T vehicles in the training set. Number of vehicles T is
determined with an equation:

T = 0.5 ·min
i

(Ni) (10)

whereNi denotes number of vehicles of type i. All remaining vehicles are assigned
to the validation set. Therefore, numbers of vehicles of each type in a validation
set are different. Vehicles are divided randomly between validation and training
set.

Images for every vehicle are selected according to the same scheme for training
and validation sets, separately. Each vehicle type is represented by the same
amount of images chosen randomly from images of all vehicles of the type in the
training or validation set. Number of images is equal to the size of the smallest
image group. Therefore validation and training sets contain, independently, the
same amount of images for every vehicle type.

6 Experiments and Results

For the purpose of experiments, a 30-minute video recording from a traffic cam-
era (Fig. 1) has been selected. All moving vehicle images have been automatically
extracted using vehicle detection and tracking algorithms (Section 2), validated
and hand-labeled with an appropriate vehicle class. Classifiers were evaluated
independently for vehicles from the lower and upper lane.

Three vehicle types are classified: sedans (include all small and medium cars),
vans (include minibuses) and trucks (includes various medium and large one, also
with semi-trailers). Sample vehicle images are presented in Fig 2. The database
for the upper lane contains images of 525 different vehicles (367 sedans, 80 vans
and 78 trucks) and the lower lane database contains 685 vehicles (569 sedans,
74 vans and 42 trucks). Total number of images is equal 48624 which means
that each vehicle is represented by 40 images on average. All image processing
operations and classifiers have been implemented in C++ with OpenCV library.

Table 1 presents results of vehicle type recognition using different feature sets
and various classifiers. Every vehicle image is classified independently. It may be
noticed, that shape descriptors alone provide high accuracy, but similar (or better
in some cases) results may be achieved using image descriptors. In all cases, surf-4
descriptors perform better than surf-8-kmeans. The final feature vector consists
of mask, surf-4 and gabor parameters; surf-8-kmeans set is omitted because of
its correlation with surf-4 and to reduce final vector dimensionality.

In majority of cases, ANN and RF classifiers perform better than the KNN
and DT. Thus only the former ones are used in further experiments.

Each vehicle is represented by many images in the training and validation
sets. Therefore results of classifications of images of the same vehicle can be
aggregated in order to increase total effectiveness. The final class assigned to a
vehicle is equal to the most frequently labeled class for all images of the vehicle;
if there is a draw, the classification fails.
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Fig. 2. Sample vehicle images from lower (left) and upper (right) lane for each vehicle
type: first row - sedans, second row - vans, third row - trucks; images from the lower;
vehicle images are rescaled individually to the same vertical size

Table 1. Summary results of vehicle type classification effectiveness by different feature
sets and different classifiers

Feature set Classifiers
Upper lane Lower lane

ANN KNN DT RF ANN KNN DT RF
mask 83.2% 80.6% 76.8% 82.1% 78.9% 81.1% 72.7% 78.8%
surf-4 84.4% 79.7% 70.0% 84.9% 82.0% 74.0% 61.1% 84.1%
surf-8-kmeans 74.3% 57.4% 63.4% 80.1% 74.8% 54.6% 60.3% 76.2%
gabor 81.7% 76.6% 70.6% 76.7% 73.7% 68.4% 64.0% 64.9%

Tables 2 and 3 present detailed results of vehicle classification for the lower
and upper lane, accordingly. It is seen that aggregation of individual image clas-
sification results improves recognition rate by approx. 5 percent point. ANN and
RF classifiers achieved similar results (within 2 percent points). Classification
effectiveness of vehicles on the upper lane is 5 to 10 percent point better than for
the lower lane. This behavior is probably caused by the fact that vehicles on the
lower lane are located closer to the camera, therefore their physical dimensions
and pose vary more during their presence in a camera field of view.

Table 2. Detailed results of vehicle type classification for the lower lane

Vehicle type Without result aggregation With result aggregation
No.
of vehicle
images

Classification
effectiveness

No.
of vehicles

Classification
effectiveness

ANN RF ANN RF
sedan 474 90.4% 90.3% 344 85.4% 88.0%
van 474 68.9% 70.3% 53 79.6% 82.6%
truck 474 90.2% 85.3% 21 96.2% 87.6%
all types 1422 83.1% 81.9% 418 85.2% 87.3%
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Table 3. Detailed results of vehicle type classification for the upper lane

Vehicle type Without result aggregation With result aggregation
No.
of vehicle
images

Classification
effectiveness

No.
of vehicles

Classification
effectiveness

ANN RF ANN RF
sedan 2272 96.3% 92.0% 315 97.4% 95.0%
van 2272 78.8% 87.4% 41 94.4% 95.1%
truck 2272 89.3% 90.0% 39 84.6% 82.6%
all types 6816 88.1% 89.8% 395 95.8% 93.8%

7 Conclusions

Vehicle type classification is a highly complex task because of large variety of
vehicles belonging to each class. Nevertheless, the system presented in the pa-
per can classify up to 95% of vehicles correctly. Experiments presented in the
paper prove that feature vector consisting of vehicle mask statistical parameters
and image features based on SURF and Gabor filters is sufficiently universal to
characterize vehicles with different pose, size and resolution. The best results
are achieved with classifiers based on Artificial Neural Networks and Random
Trees.

The search for optimal feature vector content for vehicle classification will con-
tinue. Other image descriptors will be examined in order to increase effectiveness
of classification in a non-calibrated traffic camera system.
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Abstract. Results of experiments regarding lip gesture recognition with
an artificial neural network are discussed. The neural network module
forms the core element of a multimodal human-computer interface called
LipMouse. This solution allows a user to work on a computer using lip
movements and gestures. A user face is detected in a video stream from
a standard web camera using a cascade of boosted classifiers working
with Haar-like features. Lip region extraction is based on a lip shape
approximation calculated by the means of lip image segmentation using
fuzzy clustering. ANN is fed with a feature vector describing lip region
appearance. The descriptors used include a luminance histogram, statis-
tical moments and co-occurrence matrices statistical parameters. ANN
is able to recognize with a good accuracy three lip gestures: mouth open-
ing, sticking out the tongue and forming puckered lips.

Keywords: human-computer interface, image processing, lip gestures,
artificial neural network, Haar classifiers.

1 Introduction

Human-computer interfaces are designed to make working with a computer as
natural, intuitive and effective [1,2]. Traditional interfaces, like keyboard and
mouse, cannot be used by everyone (i.e. people with impaired hand movements)
or in every situations (i.e. harsh environment conditions). Therefore there is
an increasing need for development of new interfaces that would facilitate our
everyday coexistence with machines.

One of the main areas of applications of new human-computer interfaces is
to enable people with permanent or temporal disabilities to use computers in
an efficient way. There are two main types of such solutions [3]. The first group
utilizes devices mounted directly on the user’s body. Applications in the second
group are contactless and they use remote sensors only, therefore they are much
more comfortable for a user. Amongst contactless solutions, vision-based human-
computer interfaces are the most promising ones. They utilize cameras and image
processing algorithms to detect signs and gestures made by a user and execute
configured actions. The most common vision-based application employ eye and
hand tracking [4,5].

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 80–89, 2010.
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Intelligent decision systems are especially useful in the field of recognition
of user gestures in a video stream [6,7]. They are able to solve complicated
dependencies between input variables that are impossible to define manually
and therefore make efficient gesture recognition possible. Furthermore, a decision
system may be trained for a particular user or specific environmental conditions
that would further improve the results. Training data can be acquired during
short, initial calibration.

This paper presents a vision-based human-computer interface called LipMouse.
It tracks user’s lip movements and detects lip gestures using an artificial neural
network. (ANN). This interface is described shortly in Section 2. Section 3 con-
tains details regarding lip gesture recognition, including feature vector composi-
tion and ANN design. Results of experiments are presented in section 4. Section
5 concludes the paper.

2 Human-Computer Interface Description

LipMouse is the name of the patent-pending, contactless, human-computer inter-
face that allows a user to work on a computer using lip movements and gestures.
LipMouse is an application running on a standard PC computer. It requires
only one hardware component: a display-mounted, standard web camera that
captures images of the user face. The main task of the LipMouse is to detect
and analyze images of user’s mouth region in a video stream acquired from a
web-camera. All movements of mouth (head) are converted to movements of the
screen cursor. Various parameters regarding threshold, speed and acceleration of
the cursor movement may be set according to user preferences. LipMouse detects
three mouth gestures: opening the mouth, sticking out the tongue and forming
puckered lips (as for kissing). Each gesture may be associated with an action,
which may be freely chosen by a user. Possible actions include clicking or double-
clicking various mouse buttons and moving mouse wheel – both horizontally and
vertically.

Before a user starts working with LipMouse, a short calibration lasting about
30 seconds needs to be executed. During the calibration, the user is asked to
perform some head movement and gestures according to the instructions seen
on the screen. The purpose of the calibration is to tune LipMouse to detect
gestures made by the user in the current lighting conditions.

The target users for the tool are people who, for any reason, cannot or do not
want to use traditional input devices. Therefore LipMouse is a solution enabling
severely disabled and paralyzed people to use a computer and communicate with
the surrounding world. No user adaptation, such as placing marks on the face,
is required in order to successfully work with LipMouse.

Fig. 1 presents a scheme of the algorithm used in LipMouse. First, a user’s
face is detected in every image frame captured by a web camera. A cascade of
boosted classifiers working with Haar-like features is used for this purpose [8,9].
Further stages of the algorithm are restricted to the ROI containing the user’s
face. Then, mouth region is localized in the lower part of the face ROI and its
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shift from the reference mouth position is calculated. This shift is directly used
to move a screen cursor; the greater the shift is, the faster the cursor moves in
a given direction. The reference mouth position may be altered at any time on
user request. Simultaneously, a small region (blob) placed on user lips is found
in the mouth region. This blob is used as a starting condition for an iterative
method for lip shape extraction. Lip shape and lip region image features are
used by an intelligent decision system utilizing an artificial neural network to
classify gestures made by a user.

Fig. 1. Scheme of the LipMouse human-computer interface algorithm

3 Lip Gesture Recognition

It turned out during initial experiments that due to a large anatomical variety
of faces and lips and hard to predict lighting conditions, defining strict, deter-
ministic rules for lip gesture classification do not provide satisfactory results.
Therefore a soft computing algorithm employing an artificial neural network
(ANN) is used for lip gesture recognition. A feature vector for the ANN contains
parameters describing image region containing lips only. Therefore the region
needs to be found first.

3.1 Lip Region Extraction

In order to facilitate lip gesture recognition by ANN, an algorithm for deter-
mining region of the image containing lips only must be very precise and has
to be robust against head movements in the vertical and horizontal directions.
In order to locate lips, a series of face image transformations is performed [10].
They include converting a color spaces into CIE LUV space [11] and with DHT
(Discrete Hartley Transform) [12], morphological closing and opening, spatial
filtering and binary thresholding. In the result, one or more blobs placed on im-
age lips are obtained. They are used as a starting point for an iterative process
that approximates lip shape with an ellipse using fuzzy clustering [11]. In the
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method, a dissimilarity measure that integrates the color dissimilarity and the
spatial distance in terms of an elliptic shape function is used. Because of the
presence of the elliptic shape function, the measure is able to differentiate the
pixels having similar color information but located in different regions. Fig. 2
shows optimal results of lip shape approximation with an ellipse for all types of
gestures recognized by ANN.

Fig. 2. Sample results of mouth region (red rectangle) and lip shape detection (green
ellipse) for the lack of the lip gesture (a) and for three gestures recognized: opening
the mouth (b), forming puckered lips (c) and sticking out the tongue (d)

Three different variants of lip region extracting are available. In the first vari-
ant (V1), the lip region is based directly on the ellipse approximating the lip
shape and is constituted by the rectangle containing the ellipse. It means that
the lip region size is not constant and the region moves and tilts according to
the results of lip shape approximation. In the second variant (V2), horizontal,
constant-size square is used as the lip region. Its center is always anchored at
the center of the ellipse and the length of its sides is fixed and determined at
the beginning of the calibration process by the width of the ellipse. In the third
variant (V3), influence of the ellipse on the lip region extracting is minimal. The
lip region is formed by the square which size and position is fixed and determined
at the beginning of the calibration phase. The center of the square is located
at the center of the ellipse, and the length of sides is equal to the half of the
width of the whole mouth region. The third variant is especially useful when the
algorithm of lip shape approximation fails.

3.2 Lip Image Features

All lip image features used for lip gesture recognition can be divided into 7
groups. The first one, denoted as G1, is used only when the first variant V1 of lip
region extracting is chosen and it contains three parameters: the width and the
height of the ellipse approximating the lip shape and the angular eccentricity of
the ellipse.

The second group of parameters G2 is formed by the normalized, 20-point
luminance histogram of the lip region.

The third group G3 contains Hu sets of invariant image moments [13,14]. The
moments are invariant under translation, changes in scale and rotation. Four sets
of Hu moments are calculated based on four equal-sized, non overlapping lumi-
nance images the lip region is divided into. Each Hu set contains 7 parameters
giving total number of 28 features in the third group.
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The last three groups of parameters are based on co-occurrence matrices. A
co-occurrence matrix, also referred to as a co-occurrence distribution, is defined
over an image to be the distribution of co-occurring values at a given offset [15].
It is commonly used as a texture description. A set of co-occurrence matrices is
calculated for three lip image representations: the luminance L and chrominance
U of the CIE LUV color space and the first vertical derivative of the luminance
image calculated with a Sobel operator [16]. Each set contains 8 normalized,
symmetrical, 25 × 25 co-occurrence matrices (four possible directions: 0◦, 45◦,
90◦, 135◦ and two distances: 1 and 2). Five statistical parameters are calculated
for every co-occurrence matrix: contrast, energy, mean, standard deviation and
correlation [15]. This brings total number of 120 parameters (3 image representa-
tions × 8 co-occurrence matrices × 5 parameters) based on co-occurrence matrix
in the ANN feature vector. Statistical parameters of co-occurrence matrices for
each of the three image representations form the last three groups of parameters:
G5 – luminance L, G6 – chrominance U , G7 – luminance vertical derivative.

3.3 Artificial Neural Network Description

A feed-forward ANN with one hidden layer is used to detect lip gestures. Each
image frame is classified independently. The number of ANN inputs corresponds
to the number of lip image features and is equal 168 or 171, depending on the
chosen variant of lip region extraction. There are 4 outputs from ANN, each
one is related with one type of gestures recognized by ANN. Three of them
are: opening the mouth, sticking out the tongue and forming puckered lips. A
natural, neutral facial expression is the fourth gesture and means that no real
lip gesture is present. Based on initial experiments, number of neurons in the
hidden layer was set to 8 (see experiments in section 5). It is the minimum
number of neurons sufficient for good effectiveness of lip gesture recognition.
Sigmoid activation functions are used in all neurons.

A type of the gesture is determined by the maximum value of the ANN out-
puts. However, in the HCI application it is crucial to minimize false-positive rate
of detection of all three, real gestures in order to prevent execution of actions
not meant by a user. False-negative rate is less important – if a gesture is not
recognized in some frame, it will be recognized in succeeding frames when a user
moves his head a little or change face expression.

In order to minimize number of false-positives, post processing of ANN output
vector o is performed in order to determine reliability of classification. In the first
step, ANN output values are scaled from [-1, 1] range to [0, 1] range with the
formula:

o′ (i) = 0.5 · o (i) + 0.5 for i ∈ {0 1 2 3
}

(1)

Next, output values are converted according to the equation:

o′′ (i) =
o′ (i)

3∑
i=0

o′ (i)
·max

i
(o′ (i)) (2)
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If the maximum value of o′′ vector is greater or equal to the threshold T , a
gesture connected with the maximum output value is returned as the recognized
gesture; otherwise, the neutral gesture is returned which means that no real
gesture is detected. This method assures that if the neural network output is
not firm, no gesture is detected in order to minimize false-positives ratio. It can
be noticed that T = 0 turns off ANN output post-processing.

ANN is trained with a resilient backpropagation algorithm (RPROP). Train-
ing data are acquired during calibration phase which is required at the beginning
of every session employing LipMouse. The calibration consists of 4 stages. During
each stage, a user is asked to move his head left, right, up and down while making
one of the four gestures: neutral one in the stage 1, mouth opening in the stage
2, sticking out the tongue in the stage 3 and forming puckered lips in the stage
4. Each stage lasts 4 second, with 2 second break between stages when a user is
asked to change the lip gesture. During each stage, 60 frames containing gesture
images are gathered (video rate is 15 fps). Feature vectors obtained from these
frames form training vectors (80% of all vectors) and validation vectors (every
fifth vector). This means that total 192 feature vectors (48 for every gesture) are
used for ANN training and 48 vectors are used to validate ANN after training
(12 for every gesture). Five neural networks are trained based on the same data
and the one with the smallest error rate of validation vector classification (with
post-processing threshold T = 0.5) is used for lip gesture recognition.

Lip gesture is classified for each video frame independently. In the human-
computer interface application, the results are time-averaged in order to elim-
inate single detection errors. The gesture that has been detected prevalently
during past n milliseconds is reported as final result of classification. This intro-
duces a short delay in gesture change detection but in the same time significantly
reduce classification errors that are possible during gesture transients (e.g. the
transition from no gesture to sticking out the tongue might result in forming
puckered lips gesture detection). The default averaging time frame duration n is
equal to 350 ms.

4 Experiments and Results

For the purpose of lip gesture recognition experiments, face recordings of 102
persons were collected (Fig. 3). Each person was asked to carry out typical cal-
ibration procedure twice. The first iteration was used to train ANN and the
second iteration was used to obtain the effectiveness of lip gesture classification.
All face images gathered during the second iteration were used for testing, there-
fore the testing set of vectors contained 25% more elements than the training set
of vectors (20% of vectors gathered during the first iteration is used for instant
ANN validation). Each image frame is classified independently.

In the initial experiments, the proper number of neurons in the hidden layer
of ANN has been chosen. Table 1 shows results of lip gesture classification for
four, eight and sixteen neurons in the hidden layer. Because the effectiveness of
neutral gesture recognition is crucial in HCI applications, an ANN with h = 4
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Fig. 3. Sample frames from test recordings

neurons in the hidden layer is rejected in the first place. Results of ANNs with
h = 8 and h = 16 are similar. Eventually, the ANN with eight neurons has been
chosen as an optimal one because of the training phase duration; training of five
ANNs lasts less than 2 seconds on a computer equipped with 2 GHZ CPU and
therefore is almost transparent to the HCI application user while the training
period for ANN h = 16 is unacceptably long.

Table 1. Results of lip gesture classification for different number of neurons in ANN
hidden layer h (ANN post-processing is turned off and the optimal variant of lip gesture
extraction is used for every test recording)

Number of
neurons in the
ANN hidden
layer h

Effectiveness of lip gesture classification [%]
Neutral
gesture

Mouth
opening

Forming
puckered
lips

Sticking
out the
tongue

All
gestures

4 89.2 95.3 89.9 90.1 91.1
8 92.6 95.3 90.4 91.3 92.4
16 92.3 94.8 92.9 91.1 92.8

In order to determine the proper content of a feature vector, experiments
with different combination of parameter groups have been conducted (Table 2).
It may be noticed that each parameter group separately provides a high lip ges-
ture detection accuracy, however combination of all parameters allows achieving
results better by approx. 10 percent points. Although other parameter combi-
nations provide better results for some test recordings or lip region extracting
variants, the combination of all parameters is chosen as the final composition of
the feature vector, because of its universality and good results in all conditions.

Table 3 presents a summary of lip gestures recognition for different lip region
extracting variants. It is seen that the best results were achieved for the third
variant V3 that relies at least on the results of lip shape approximation with an
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Table 2. Results of lip gesture classification for different groups of parameters (Section
3.2) in the feature vector (ANN post-processing is turned off and the optimal variant
of lip gesture extraction is used for every test recording)

Group of image
features

Effectiveness of lip gesture classification [%]
Neutral
gesture

Mouth
opening

Forming
puckered
lips

Sticking
out the
tongue

All
gestures

G1 88.3 67.9 83.2 71.2 77.7
G2 80.0 91.7 77.0 82.0 82.7
G3 81.8 81.1 69.7 72.1 76.2
G4 82.0 92.9 85.3 83.0 85.8
G5 81.6 85.0 80.0 82.5 82.3
G6 82.9 86.2 84.2 85.8 84.8
All parameters 92.9 95.4 92.5 94.1 93.7

ellipse. This means that although the ellipse usually fits the real lip shape, its
inter-frame variances, especially during head movements, might interfere with
the ANN classification effectiveness. It was discovered that V3 variant provides
the best results for 82% of test recordings. Other variants were optimal (V1 for
14% and V2 for 4% of test recordings) for those recordings where the lip shape
is approximated perfectly with an ellipse in all movie frames. This allows to
conclude that V2 variant is not needed; in case of any problems with lip shape
approximations V3 wins, in other cases V1 variant is usually sufficient.

Detailed results of lip gesture classification are shown in Table 4. Increasing
ANN post-processing threshold T improves effectiveness of neutral gesture recog-
nition and worsens results of other three gestures classification. It is assumed that
an optimal value of the T threshold is 0.5 which provides a compromise between
the effectiveness and the false-positive ratio of real gesture recognition.

Achieved results of lip gesture classification are satisfactory. Total effective-
ness of recognition over 90% means that on average three recognition errors
appear every two seconds of algorithm working. Furthermore, due to ANN out-
put post-processing, the majority of the errors emerge when the neutral gesture
is recognized instead of other three gestures. These errors do not pose much

Table 3. Summary results of lip gesture recognition for different lip region extracting
variants (ANN post-processing is turned off)

Lip region
extracting
variant

Effectiveness of lip gesture classification [%]
Neutral
gesture

Mouth
opening

Forming
puckered
lips

Sticking
out the
tongue

All
gestures

V1 86.1 85.3 85.4 84.8 85.4
V2 80.2 83.0 75.0 78.8 79.3
V3 91.3 95.3 92.0 94.1 93.2



88 P. Dalka and A. Czyżewski

Table 4. Results of lip gesture classification for different ANN post-processing thresh-
old T values (optimal variant of lip gesture extraction is used for every test recording)

Gesture Image T = 0 T = 0.25 T = 0.5 T = 0.75
frames Errors /

Accuracy[%]
Errors /
Accuracy[%]

Errors /
Accuracy[%]

Errors /
Accuracy[%]

Neutral
(no gesture)

6120 436 92.9 380 93.8 310 94.9 236 96.1

Mouth
opening

6120 282 95.4 321 94.8 463 92.4 659 89.2

Forming
puckered lips

6120 462 92.5 504 91.8 723 88.2 1004 83.6

Sticking out
the tongue

6120 362 94.1 419 93.2 530 91.3 883 85.6

All gestures 24480 1542 93.7 1624 93.4 2026 91.7 2782 88.6

inconvenience to a user and may be attenuated further by the means of simple
time-averaging of lip gesture detection results.

5 Conclusions

Development of new HCI solutions and improving existing ones is necessary to
facilitate our everyday interactions with computers.

A practical implementation of an artificial neural network in the field of vision-
based gesture recognition was presented in the paper. ANN enabled classifying
lip gestured made by various people, in different lighting conditions. Results of
experiments carried out show that the effectiveness of the algorithm is sufficient
for comfortable and efficient usage of a computer by anyone who does not want
or cannot use traditional keyboard and mouse.

Future work will be focused on feature vector content optimization and on
finding new lip region descriptors in order to increase the number of lip gestures
recognized.
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Abstract. A fuzzy logic inference system was created, based on the
analysis of animated motion features. The objective of the system is to
facilitate the creation of high quality animation by analyzing personal-
ized styles contained in numerous animations. Sequences portraying a
virtual character acting with a differentiating personalized style (natural
or exaggerated) and various levels of fluidity were prepared and sub-
jectively evaluated. Knowledge gathered in subjective evaluation tests
was processed utilizing variable precision rough set (VPRS) approach
for defining non-ambiguous inverse relation between subjective features
of the result animation and objective parameters of the animated motion.
Once the mapping is known then the user can define own requirements
on animation, and the input motion is processed accordingly to produce
the desired result. The paper focuses on employing variable precision
rough set methodology for selection of representative parameter values.

Keywords: variable precision rough set, subjective features processing,
computer animation.

1 Introduction

Currently two major techniques for animation production are used. Animated
motion can be obtained utilizing motion capture technology [1]. The result an-
imation is realistic and natural, but this technology is expensive, requires ex-
perienced actors, motion data are hard to edit and practically cannot provide
an exaggerated, cartoon motion. Another method is keyframe animation [2]. In
this method the representation of animation data is intuitive, clear, and easy
to edit. Moreover, the method doesn’t require expensive hardware, the motion
can be either natural or exaggerated, but that technique is very time-consuming
and the result greatly depends on animator skills. To facilitate the creation and
development of high quality animated motion we proposed new improvement
to keyframe animation: fuzzy processing that considers subjective requirements
for the action’s style and fluidity. The method is outlined in Sec. 2. The engi-
neered fuzzy logic inference system utilizes knowledge obtained from subjective
evaluation tests. In Sec. 3 processing of test results for defining the mapping
between subjective parameters and objective features of motion are described,
then results are discussed and some conclusions are provided.
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2 Animation Processing Method

In our work it is assumed that any animation can be segmented into parts con-
taining first a still pose then one or more transitions and then the second still
pose (Fig. 1). Each animation segment is parameterized and processed separately
utilizing the described methodology. Typically animation containing those dis-
cernable segments is called pose-to-pose animation.

Fig. 1. Animation segmentation. Changes in time of one animation parameter (location
of moving hand) are shown. Segment 1 contains one transition, segment 2 contains six
transitions. Boundaries of segments are determined by poses being held in time (pose
1, 2, and 8).

For pose-to-pose animation traditional animation rules created by animators
of Walt Disney Studio [3] suggest to place the anticipation phase before the
starting pose, preparing the viewer for the action. Anticipation is often repre-
sented as a slight motion in a direction opposite to the following main action.
Then, after the ending pose the other phase should be inserted, called overshoot,
reflecting the way the character stops his motion. Decisions on amplitudes and
lengths of these phases come from experience, and it is the animator’s task to
portray the character personality and the animation style by these phases. To
help the animator in calculation of these parameters the ANIMATOR system
was proposed and created. It was observed and described in literature [4], that
fast motion with large amplitude should be preceded by a large anticipation ef-
fect; fast and long motion should be preceded by a long anticipation. Therefore
we assumed that some proportionality occurs between motion speed, amplitude
and length, i.e. respectively parameters Vm, Am, tm, and anticipation amplitude
and length, i.e. parameters Aa, ta1. The proportionality between the motion and
additional phases, can be represented as:

Aa = VmAmalpha and ta = Vmtmbeta (1)

where (alpha, beta) are proportionality coefficients being analyzed in our work.
During initial subjective evaluation tests relations (1) were employed for

1 Overshoot phase is processed utilizing the same methodology. For clarity this part
is omitted.
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generation of animations. Discrete values of coefficients were used: alpha =
{0.3, 0.4,. . ., 1.2, 1.3}, and beta = {1, 3, 5, 7}2. Animations were then rated for
style = {natural,medium, exaggerated}, fluidity = {abrupt,medium, fluid},
and quality = {1, 2, 3, 4, 5}. Animations of a simple character were presented on
the computer screen, alongside the rating graphical interface (Fig. 2). A condi-
tion was made that each animation must be rated at least by one viewer. Some
tendencies were discovered, e.g. style increases with the increase of alpha coef-
ficient value, and fluidity increases with the increase of beta coefficient value.
Moreover changing style does not cause quality changes, and strong positive
correlation exists between fluidity and quality. These observations are reflected
in values of particular correlations (Table 1).

Table 1. Correlations between (alpha, beta) coefficients and (style, fluidity) ratings
in the subjective test

beta beta beta alpha alpha alpha style style fluidity
−style −fluidity −quality −style −fluidity −quality −fluidity −quality −quality

R -0.14 0.86 0.81 0.82 0.16 0.09 -0.21 -0.27 0.94

Fig. 2. (a) The animated character utilized in motion evaluation tests; (b) graphical
user interface dedicated to e subjective tests

Overall subjective quality rated in a test is averaged giving a mean opinion
score value (MOS) for a single animation, represented as a pair of (alpha, beta)
values. Results of MOS per each animation are presented in Table 2.

It is clear that the relation between (fluidity, style) motion attributes and
(alpha, beta) coefficients can be defined based on these results. For utilizing the
above observations in the ANIMATOR system the mapping between subjective
requirements (fluidity, style) and animation parameters (alpha, beta) should be
determined. Once the mapping is discovered, then the system can process any
animation described with (Vm, Am, tm), and based on (fluidity, style) require-
ments given by the user can calculate (alpha, beta). This finally results in (Aa, ta)
parameters of motion phases that must be added to the animation. The process-
ing methodology of the evaluation test results is described in Sec. 3.
2 It was first verified which ranges of values return subjectively acceptable motions,

and then how large changes (discretization steps) return significant changes of ani-
mation features. Results are 〈0.3; 1.3〉 with step 0.1 for alpha and 〈1; 7〉 with step 2
for beta.
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Table 2. Preferences of test participants, MOS Q for animations described with pairs
of coefficients (alpha, beta)

alfa
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

1 3.21 3.16 2.68 2.91 2.92 3.3 2.8 3.11 3.08 3.06 3.07
beta 3 3.22 3.19 3.2 3.14 2.92 3.41 2.41 3.42 3.23 3.04 3.28

5 3.7 4.03 3.8 3.5 3.69 3.8 3.82 3.35 3.41 3.47 3.53
7 4.17 4.04 3.92 3.7 3.8 4.1 3.9 3.5 3.5 3.85 3.69

3 Application of VPRS to Subjective Results Processing

In our work rough sets are employed for processing of ambiguous results of sub-
jective evaluation tests. In the test inconsistent decisions are made for animations
described with the attributes analyzed. The aim of processing the subjective
evaluation results is to select representative values of parameters (alpha, beta)
for each combination of subjective features (fluidity, style). Non-ambiguous in-
verse relation has to be found, for given decisions pointing at values of attributes.
Therefore we have to choose from all objects only one candidate that was the
most frequently rated as having particular decisions (fluidity, style).

For further discussion let us assume that we deal with two decision sys-
tems: the objects in both decision systems are animations described with at-
tributes: (alpha, beta), and the first decision is the rating of fluidity, and the
second one is the rating of the animation style. Each time the animation is as-
signed (fluidity, style) ratings during the subjective test, then it is added to
the decisions systems with those decision values. Because generally the view-
ers’ answers are not consistent, then a single animation can appear repeat-
edly in decision systems, each time with different decisions, and relation R :
(alpha, beta) → (fluidity, style) is not objective. Therefore non-ambiguous se-
lection of representative objects (alpha, beta) for required (fluidity, style) rat-
ings is made by means of rough sets, namely calculation of lower approxima-
tion of sets of animations that yield required results in the subjective eval-
uation test. Frequency of ratings is analyzed by means of rough sets. Three
ratings are available for attributes: fluidity = {abrupt,medium, fluid} and
style = {natural,medium, exaggerated}. Therefore in fluidity and style do-
mains three rough sets are analyzed, each having its accuracy of approximation,
being the result of consistent or inconsistent ratings. The accuracy of the approx-
imation of set X (e.g. style = medium) with objects described with attributes
B = (alpha, beta) is defined as [5]:

αB(X) =
|BX |
|BX | (2)

where:
BX = {x|[x]B ⊆ X} and BX = {x|[x]B ∩X �= ∅} (3)
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αB(X) describes effectiveness of the approximation by comparing number of
objects in the lower approximation to the number of objects of the higher ap-
proximation. If the approximation is exact then αB(X) = 1. If BX is empty, the
rough set is non-deterministic and αB(X) = 0. B-indiscernible objects noted as
[x]B , are all instances of a single animation x described with particular attributes
B. Therefore the accuracy of the approximation accounts to the number of an-
imations obtaining consistent decisions, compared to the number of all objects,
that were at least once rated as belonging to the set X (e.g. were given the rating
medium for style). Changing the precision of approximation with parameter π
[6], requires redefining the lower and upper approximations (3) to:

BπX = {x|μX
B (x) ≥ π} and BπX = {x|μX

B (x) > 1− π} (4)

where:
μX

B : U → [0; 1] and μX
B (x) =

|[x]B ∩X |
|[x]B | (5)

μX
B (x) can be interpreted as a measurement of intersection of [x]B and X . For

example if 3 of 4 B-indiscernible objects in a set [x]B (animations similar by
means of attributes B) are rated as X , then μX

B (x) = 3
4 = 0.75. If π = 1 then

the set is classically rough. Lower π leads to assigning more objects to the lower
approximation. In the example above, if π = 0.75 then x is in the BπX , if π = 1
then x is only in BπX , and BπX is empty. Another interpretation may be that
if an object was rated with regard to the particular decision X in more than π
cases (e.g. more than 0.75 cases), then it belongs to the lower approximation of
X . In the following sections we will refer to it as ”frequency” of ratings.

In our application, if no animations are in the lower approximation of analyzed
set X , then the precision is gradually lowered until BπX will contain at least one
animation. Eventually any combination of decisions (fluidity, style) will have
at least one representative x described by B = {alpha, beta}. If there are more
equivalent candidates, then an additional criterion in considered - the value of
MOS of overall quality Q, to choose the best between them. Moreover, values of
π should be at the level for which any object is representative for no more than
one rough set. It is fulfilled when lower approximations of all sets are disjoint
(Fig. 3).

Particular rating frequencies for animations made with all combinations of
(alpha, beta) are presented in Tables 3. Value 0.0 means no particular answer (e.g.
style=natural) was given for an animation with the corresponding (alpha, beta);
1.0 means that all participants’ answers have been the same (e.g. style =
natural) for animations with the corresponding (alpha, beta). Bold numbers
mark answers more frequent than 0.5.

It was shown that the rating frequency is connected to the precision of the
rough set, and provides decision if the object is in the lower approximation of a
set X or not. For classical rough sets with precisions πstyle = 1 and πfluidity = 1
accuracies of approximations equal:

αB(style natural) = αB(style exaggerated) = αB(style medium) = 0
αB(fluidity fluid) = αB(fluidity abrupt) = αB(fluidity medium) = 0 (6)
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Fig. 3. Graphical illustration of defining precisions of set approximation utilizing the
rough set methodology. We decrease the precision aiming at disjoint lower approxi-
mations of all sets, and no intersection with the higher approximation of any other
set.

Table 3. Frequency of ratings style = natural, style = medium and style =
exaggerated

Natural
alpha

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

beta 1 0.69 0.43 0.23 0.27 0.22 0.23 0.21 0.16 0.18 0.15 0.19
3 0.69 0.45 0.31 0.42 0.36 0.39 0.23 0.30 0.25 0.23 0.23
5 0.54 0.63 0.32 0.31 0.29 0.36 0.25 0.38 0.34 0.30 0.29
7 0.56 0.71 0.37 0.30 0.28 0.33 0.25 0.22 0.27 0.29 0.29

Medium
alpha

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

beta 1 0.21 0.36 0.53 0.21 0.19 0.19 0.22 0.27 0.20 0.21 0.21
3 0.26 0.16 0.23 0.09 0.11 0.06 0.18 0.16 0.13 0.12 0.12
5 0.35 0.14 0.17 0.14 0.13 0.08 0.06 0.14 0.13 0.13 0.07
7 0.29 0.12 0.15 0.21 0.06 0.06 0.16 0.21 0.18 0.17 0.13

Exaggerated
alpha

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

beta 1 0.10 0.21 0.24 0.52 0.59 0.58 0.57 0.57 0.62 0.64 0.60
3 0.05 0.38 0.46 0.48 0.53 0.54 0.60 0.55 0.62 0.65 0.65
5 0.11 0.22 0.51 0.55 0.58 0.56 0.69 0.48 0.53 0.57 0.64
7 0.15 0.17 0.48 0.49 0.66 0.61 0.59 0.57 0.55 0.54 0.58

because the lower approximations of the rough sets are empty. For lowered pre-
cisions of rough sets: πstyle = 0, 57 and πfluidity = 0, 53 accuracies are:

αB(style natural) = 0, 5
αB(style exaggerated) = 0, 457
αB(style medium) = 0
αB(fluidity fluid) = 1
αB(fluidity abrupt) = 1
αB(fluidity medium) = 0, 714

(7)



96 P. Szczuko

Rough sets obtained with parameters πstyle and πfluidity given above are taken
as a global approximations, and as the starting point for calculation of local so-
lutions, i.e. subsets of objects representing particular grades of (style, f luidity).
Result memberships of objects to the lower approximation and boundary regions
for all analyzed sets are presented in Fig. 45.

Fig. 4. Membership of objects described with particular (alpha, beta) assigned to the
rough set of a given fluidity rating. Light gray areas - objects of the lower approxima-
tion; dark gray - objects of the boundary region; white areas - the complement of the
set, i.e. objects outside the rough set.

Fig. 5. Membership of objects described with particular (alpha, beta) assigned to the
rough set of a given style degree

Once relations of (alpha, beta) with each subjective (fluidity, style) features
are known, the combined relation must be defined. It is performed by finding
an object being simultaneously a representative for both features. The object
is positioned in non-empty intersections of lower approximations of style and
fluidity sets. The algorithm and the graphical representation of the method
developed are presented in Fig. 6.

Utilizing presented methodology for all possible combination of requirements
(fluidity, style) solutions represented as pairs of (alpha, beta) are found (Table
4). Finally this knowledge is employed to enhance animated sequences. The an-
imation described with (Vm, Am, tm) is processed by ANIMATOR system, and
based on (fluidity, style) requirements given by the user the (alpha, beta) are
calculated (Table 4. This finally results in amplitudes Aa and lengths ta of ad-
ditional phases of motion (1) that are intended to be introduced into animation,
changing its subjective quality. Mappings obtained are modeled employing fuzzy
logic processing [7][8]. Support points for interpolation surfaces are placed in all
values present in Table 4, i.e. triangle fuzzy membership functions are created
for alpha and beta, each having the core point (range of membership value 1) at
given values, and 3 triangle functions for fluidity levels and style levels (Fig. 7).
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Fig. 6. Pseudocode and the graphical representation of the algorithm searching for
non-empty intersections of lower approximations of style and fluidity sets, utilizing
variable precision. On the left side the intersection of the lower approximation is empty,
therefore precisions are gradually decreased to the levels that result in broadening of
the lower approximation (arrows on the right side), and finally non-empty intersection
is found.

Table 4. Result mapping between required fluidity and style of animations and alpha
and beta

alpha fluidity beta fluidity
abrupt medium fluid abrupt medium fluid

style natural 0.7 0.5 0.3 style natural 3 5 7
medium 0.9 0.7 0.5 medium 1 5 5

exaggerated 1.3 1.1 0.9 exaggerated 3 5 7

Fig. 7. Membership functions for: (a) alpha, (b) beta, (c) style, (d) fluidity
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Utilizing fuzzy modeling instead of simple rules presented in Table 4, gives an
important possibility to use continuous input values (any degree of fluidity and
style), and then output values could be interpolated accordingly. Moreover fuzzy
processing and knowledge representation as fuzzy rules are simple and intuitive,
and susceptible for editing by hand (if needed by the user) [8].

4 Results

Created animation assisting ANIMATOR system was tested utilizing simple
animations of 5 actions meant for processing with different requirements. Result
animations were evaluated by a group of viewers. Obtained results are presented
in Fig. 8. Style variations do not influence perceived quality of motion, and
the processed animations are always rated higher than original, therefore the
ANIMATOR system can be successfully utilized for creation of the high quality
animation of virtual characters, featuring different styles of motion.

Fig. 8. Ratings of result animation quality: unprocessed and processed animations
of five actions: (a) processed animations have significantly higher quality; (b) style
variations do not influence quality

The meaning of the result action is generally unchanged, while its quality and
style are improved. The method can be used for rapid animation development,
and for avatar animation, where predefined animations can be used, but with
varying style and fluidity, best matching the avatar’s personality [9].

5 Conclusions

The method for processing ambiguous data by utilization of the variable precision
rough set was proposed. It was employed for the creation of mapping between two
decisions and attributes of objects best representing particular classes: animated
motion characterized by subjective ratings of style and fluidity. In future work
more decisions can be used simultaneously, for example age and gender of the
animated character. Also the list of animation attributes can be extended to
other than pose-to-pose approach, eventually leading to the higher accuracy of
set approximations, and result quality.
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Abstract. The current work describes a phoneme matching algorithm based on 
rough set concepts. The objective of this type of algorithms is focused on the 
localization of the phonemic content of a specific spoken occurrence. Accord-
ing to the proposed algorithm, a number of rough sets containing the multiple 
expected phonemic instances in a sequence are created, each defined by a set of 
short term frames of the voice signal. The properties of the corresponding in-
formation system are derived from a features set calculated from the speech 
signal upon initiation. Given the above, an iterative procedure is applied by up-
dating the phoneme instances versus the optimization of the accuracy metric. 
The main advantage of this algorithm is the absence of a training phase allow-
ing for wider speaker adaptability and independency. The current paper focuses 
on the feasibility of the task as this work is still in early research stage.  

Keywords: phoneme alignment, phoneme matching, phoneme segmentation, 
rough sets, audio features, phonemic sequence. 

1   Introduction 

Speech recognition (SR) is an active research field whereas significant research has 
been conducted over the last decades. Nowadays, computer technology continuous 
evolution in combination with the availability of broadly-used signal processing soft-
ware tools made possible the implementation of efficient SR algorithms, with remark-
able accuracy and speed. We may distinguish a broad area of application that are 
related to SR, including but not limited to human-machine interaction, adaptive 
speech to text, lip-sync application, phoneme to viseme conversion for realistic digital 
characters speech emulation, audio and audiovisual content management and summa-
rization, and others [1], [2]. Among SR- sub-fields we may point out speech and voic-
ing detection-segmentation, phoneme recognition and matching, the latter one being 
also the main topic of the current work. 
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A specific category of applications in the field of speech processing which re-
sponds to the matching of an expected with a spoken content is referred to as speech 
alignment. The primary targeting of this kind of applications is focused on the match-
ing of the fundamental speech units described as phonemes. The task of the so called 
Phoneme Alignment (PhA) (referred to also as segmentation or matching), is the 
proper positioning of a sequence of phonemes in relation to a corresponding continu-
ous speech signal. The outcome of this procedure is particularly useful in a variety of 
applications such as ASR and text-to-speech applications [3] as well as health-related 
treatment of speech [4], [5], [6]. The majority of the proposed approaches are based 
on Hidden Markov Modeling (HMM) [7], [8], [9] whereas a few implementations 
involving Support Vector Machine (SVM) based discriminative learning [10] and 
hybrid approaches (HMM- SVM) [11] have also been proposed. 

Rough set, introduced by Pawlak in 1982 [12], is an alternative Knowledge Dis-
covery and Data mining (KDD) approach, that has been utilized in many scientific 
fields. Among them methodologies for speech processing [13], speech recognition 
[14], recognition of isolated words [15] and singing voice recognition [16] have been 
proposed during the last years. Among the RS advantages, the unsupervised training 
capability is very important in SR /PhA applications, considering that a representative 
ground-truth training set is rather difficult to be obtained, incorporating all the poten-
tially encountered conditions (i.e. background noise variations, speaker differentia-
tion, multi-language large vocabulary, etc). 

In the current paper, a theoretical analysis towards a speaker-independent PhA im-
plementation based on rough-set (RS) theory is presented. The primary objectives of 
this approach is the absence of a training phase, in contrast to the proposed 
HMM/SVM methods, as well as the automated adaptability in personalized speech 
patterns. 

1.1   Problem Definition 

As already mentioned, there are various conditions / parameters that have to be con-
sidered during phoneme recognition (vocabulary size, speaker dependence, SNR 
conditions, read / spontaneous speech, language-specific characteristics and multi-
lingual aspects, etc) [17], [18]. The primary concern of the current work is to develop 
an accurate RS-based phoneme matching system to be used in real-world studio re-
cording condition (with acceptable SNR), both for spontaneous and read speech (i.e. 
news casting, presentation speeches, radio production, etc). In addition, the main 
focus of the implemented system is to support Greek language phoneme recognition, 
taking advantage of the available phonetic-sequence information that has been ex-
tracted via text processing [2]. It is obvious that the text-acquired phonetic informa-
tion provides only an expectation of the real phonemes-sequence. In fact, certain 
difficulties arise due to the different speech tempo of the involved speakers, the po-
tential phoneme miss-articulation, the appearance of different-length pauses in real 
world conversation, and others [18]. Hence, the goal of the proposed RS-based mod-
ule is to estimate the missing phonetic-timing, aligning the textual phonetic informa-
tion with the corresponding sound signal.  

The advantage of the proposed approach is due to the fact that no training data is 
required. In fact, it is quite demanding to prepare phoneme-tagged audio sequences in 
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order to train / validate an expert Greek-phoneme matching algorithm. Instead of that, 
proper windowed-audio extracted-features can easily form an attributes-table to facili-
tate RS-based phoneme alignment, given the predefined phonetic sequence that is 
extracted from the text processing module. Based on the above analysis, the proposed 
architecture involves: a) text-processing phonetic information extraction, b) audio 
pre-processing (i.e. windowing and salient feature extraction and quantization), c) 
objects-attributes-table formation and RS reasoning, d) iterative phoneme range adap-
tation until the termination criterion is met. Additionally, the proposed framework 
considers single-speaker audio sequences are processed. In real world dialogue appli-
cation and conversation systems this can be faced employing speaker-related audio 
segmentation prior to PhA [19]. 

The PhA task can in fact be formulated using the following definition. If P is the 
set containing the phonemes of a given language and X is a set of short term frame 
features (STF) of the signal then: 
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Notations x  and p  characterize the STF and phonemic sequences which via the PhAf  

produce a sequence of markers t  indicating the start point of each phoneme, with N  
the phonemic and M  the STF sequence lengths respectively. Obviously, each  
expected phoneme i in the sequence is implied in the discrete short term time region 

[ ]1, 1i it t + −  [10]. 

The definition of the estimator function PhAf  which in fact indicates the actual 

alignment is not trivial due to the variations of the phonetically identical patterns 
among different speakers. Moreover, speech disorders as well as environmental 
factors (such as presence of noise) may render the above task more difficult to  
accomplish [18]. Based on these observations, a local version of the estimator able 
to establish relativity constrains among the different versions of the same phoneme 
in the utterance under investigation could eliminate some of the deteriorating  
factors. 

Before continuing further, a formulation must be set in order to treat the above de-
fined sequences as sets. Each sequence can be considered that it contains ordered 
instances of a certain class of objects. Thus two set views of a sequence are defined 
along with respective operators which for the case of sequence p are: 
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In pursue of this goal, the following can be defined according to (2): 
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In brief, the sets iX  contain the SFT instances occurring in the region of appearance 

of each expected phoneme instance i  in the sequence and iT  the respective STF dis-

crete timing indexes which can be mapped to a range in the original signal. It is obvi-
ous that the accuracy of the mapping is depended on the length and overlapping of the 
processing window used for the calculation of the STFs. Moreover, the mapping func-
tion [ ]iXΤ is defined as a transformation of the SFT instance set iX  to the respective 

timing index set iT , which has a rather straightforward implementation since each 

instance in sequence x is considered unique. 
On the other hand, the sets jP  contain all the instances of the phoneme class j  ap-

pearing in the sequence. Therefore the set jR  contains all the STF instances that are 

assigned to the phoneme class j . According to the above formalization an alignment 

quality criterion can the degree of separation among the jR  classes which is obvi-

ously affected by the selection of t . 

2   The PHAROS Algorithm 

In this section are provided details about the analysis procedure in the Phoneme 
Alignment using ROugh-Set (PHAROS) algorithm. The analysis is performed con-
sidering each STF of the signal as an object with a predefined number of discrete 
properties. This fact has severe impact in the feature extraction procedure which was 
especially designed to fit the needs of the current task. These considerations are dis-
cussed in perspective of the requirements of rough set analysis, which is used for the 
subsequent optimization of jR . 

2.1   Feature Extraction 

Given the properties of the alignment task as well as the rough sets theory, the input 
features set must contain an expected sequence of phonemes as well as a number of 
discrete valued properties. 
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In order to increase applicability the phonemic sequence is derived from a text in-
put which is automatically converted to SAMPA transcription via an improved ver-
sion of the rule-based converter described in [2]. The properties set was selected to be 
based on the Mel-frequency cepstrum coefficients (MFCC). To deal with their  
continuous nature it is needed to create a derived properties set by means of quantiza-
tion. In fact, we are seeking for a transform from the original STF space X  to a dis-
crete properties space q  according to the following relation 

 ( ) ( ) [ ]1 2 1 1, ,... , , , ,... , , 1, ,C i x C x i ix x x x x X x q q q q q q q K q= ∈ ∈ → = ∈ ∈ ∈  (4) 

In an effort to describe the properties of the quantization, the linear range quantization 
is not the best choice due to the acute non-linear behavior of speech [15]. Addition-
ally, the fact that the proposed algorithm is designed to operate locally (not performed 
versus a globally trained system), does not pose any constrains regarding global nor-
malization. Consequently, the quantization procedure of each coefficient was based 
on the equal range entropy criterion in order to focus the descriptive accuracy on the 
appropriate value ranges. Since the values of each coefficient are known throughout 
the input, this criterion is expressed by the following properties: 
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In short, this criterion is met if the feature set ix  of M  coefficient values ijx  is split 

in K incompatible sets ( )i kx  of equal cardinality and incompatible [max, min] ranges, 

which define the quantization thresholds. This provides a quantization region distribu-
tion of equal range probability 1 K  for the random variable ix  in the context of the 

specific signal input.  
Therefore, the STF sequence was defined to be the MFCCs and the system proper-

ties were provided according to the above quantization procedure. The values 4K =  
and 8MFCCC =  were proved to be an acceptable choice. 

2.2   Rough-Set Analysis 

The formulation of the rough set analysis was based on the definition of an informa-
tion system (IS) having M objects (STFs) with MFCCC  properties (quantized MFCC 

coefficients) each represented by K discrete values. 
On the above mentioned IS, N ′  is the number of the phoneme classes appeared in 

the sequence. Since, in any given occurrence, only a certain number of phoneme 
classes appear, it is obvious that N P′ ≤ . This fact leads us to the conclusion that 

only the phoneme classes appearing in the sequence will be iterated for instances. 
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Fig. 1. Information system of the phoneme alignment algorithm. The per phoneme class jR , 

per phoneme instance iX  and universal x  sets of STF instances are shown. The properties set 

[ ]{ }1,i MFCCq q i C= ∈  has a value assignment for each member of x . 
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Therefore, the jR  sets can be considered in the context of the objects x having the 

properties set q . Since, jR x⊃  we can define the accuracy of each jR  in the ap-

proximation space ( ),A x q=  as: 
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where ( )jA R  is the lower and ( )jA R  the upper approximation of jR  in ( ),A x q=  

[20]. By interpretation of the result, this value is inversely representing a quantity of 
resemblance of the STFs included in a certain phoneme class with the ones excluded 
from it. In other words, this metric indicates the need to include certain STFs in a 
phonemic class, resulting to the change of a STF set region of iX . 

In terms of local investigation, conclusions can be drawn by local processing of 

{ }iX  partitions. For each member of each jP , local phoneme instances iX  can be 

processed separately in a subset of x  considering a local approximation space 

( ),A x q′ ′=  consisting of the members of ,iX i k=  neighbors. Using (3) for a 

neighborhood of kX  the following equations apply: 
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In this case, a phoneme instance is compared to its neighbors for resemblance. The 
upper approximation ( )kA X′ , provides an indication of the STFs that should be  

included in the set kX  (or claimed from its neighbors) according to its internal equiva-

lent classes structure. The final update decision must comply with the sequential nature 
of the STFs contained in iX  by omitting sequential gaps, as shown in Fig. 2. 

 

 

Fig. 2. Local estimation of range change based on the ( )kA X′ , iterated for each member of 

each jP  

Finally, the properties that optimally represent each phoneme class can be inferred 
using the jR  reducts set. More specifically the following apply: 
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where ( )RED jR  is the reducts set of jR  over the approximation space A , ( )q jR ′  the 

equivalence classes set of jR  (same by definition for every reduct in A ), iA′  the 

approximation space omitting the properties iq′ , 
iq qγ ′−  the dependency measure of 

attribute set iq′ on the iq q′− , ( )i iA r′  the lower approximation of the equivalence 

class ir  on the approximation space iA′  and x the set of all STFs.  

This provides a descriptive quality metric of the reducts set versus the remaining of 

properties of the original attribute set. In fact, the attribute set j rq q′=  over ( )RED jR  

with minimal 
rq qγ ′−  is selected as the more appropriate to identify jR  in the approxima-

tion space A . The combination of appropriate iX  and jq  result in the minimization of 

the intersection among jR  which is the requirement posed by (3) as phoneme alignment 

sanity criterion. Therefore, (8) can be considered as form of objective function. 

j kR X′ = 1kX +  1kX −  

( )kA X′  

x′  

new kX  
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2.3   Iterative Algorithm 

Using the above mentioned theory, an iterative procedure is proposed in order to 
minimize jγ  of a given ( ),x p  alignment task. The following optimization procedure 

is inspired by the alternating optimization (AO), primarily performed on fuzzy clus-
tering [21]. The analogy between fuzzy clustering can be summarized by the fact that 
an input sequence ( ,x p ) needs to be categorized in a certain amount of prototypes 

( jR , jq ) according to a distance metric (δ ). The latter can be derived according to 

(6) and the local neighborhood as defined by (7), using the following equations: 
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Table 1. The modified AO procedure applied in PHAROS  

Let data sequences ,x p  be given.  

Let each phoneme class be uniquely identified by ( ),j jR q  

Quantize the features set x  according to (5) 
Define jP  and M ′  from the phonemic sequence 

Initialize ( )0 , 0, ju q qδ = =  and ,i jX R  such as 1iX M=  

Choose a precision for termination ε  
 
REPEAT 

Increase u  by 1 

Determine ( )( ){ }1 ( 1)u u
j q j ja a R q q− −= =  

FOR each j  in ascending order of { }ja  

Determine ( )u
iX and ( )u

jR  according to implications of (7) for fixed ( )1u
jq −  

NEXT 
FOR each j  

 Determine ( )u
jq  according to implications of (8) and (9) 

NEXT 
FOR each i  

 Determine ( )u
iδ  according to implications of (10) 

NEXT 

UNTIL ( ) ( )1u uδ δ ε− − ≤  
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This calculation is performed locally as due to the sequential nature of speech we are 
only interested in local instance discrimination as well as for complexity reduction 
reasons. The negative logarithm is used in order for δ  to obtain distance-like 
monotonicity attributes. Therefore, the derivation of the optimization modification is 
relatively straightforward and is described in Table 1. 

The final phonemic alignment is provided according to (1) by the inferred from the 
final iX  STF index values iT , which in turn refer to actual signal timing ranges ac-

cording to the following: 

 
( ) [ ]{ } [ ]{ } [ ]{ }( )

{ } { } { }( )
1 2

1 2

, max ,max ,...,max

max ,max ,...,max

PhA M

M

f x p t X X X

t T T T

→ = Τ Τ Τ ⇒

=
 (11) 

3   Results and Discussion 

The current paper was focused on the theoretical substantiation of the PHAROS algo-
rithm. It should be noted that the above methodology is still in early research stage. 
Although analytical tests are not yet available, the preliminary development conclu-
sions show that this approach is able provide valuable results. Moreover, for the sake 
of simplicity, certain aspects of PHAROS such as the phoneme transition states man-
agement and the features quantization error provision are not covered in the present 
work.  

It is obvious that the above methodology can be easily extended on speech of dif-
ferent languages by merely modifying the corresponding text-processing phoneme-
extraction system functionality. Thus, the proposed strategy can be applied to general 
phoneme recognition / alignment under various conditions. Potential advantage of the 
current methodology is the easy deployment for audio phoneme tagging that could be 
utilized as ground truth for supervised training and performance evaluation of alterna-
tive fully automated (not-text assisted) phoneme recognition algorithms. 
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Abstract. The paper presents how rule-based processing can be applied
to automatically evaluate the motor state of Parkinson’s Disease pa-
tients. Automatic monitoring of patients by using biometric sensors can
provide assessment of the Parkinson’s Disease symptoms. All data on PD
patients’ state are compared to historical data stored in the database and
then a rule-based decision is applied to assess the overall illness state.
The training procedure based on doctors’ questionnaires is presented.
These data constitute the input of several rule-based classifiers. It has
been proved that the rough-set-based algorithm can be very suitable for
automatic assessment of the PD patient’s stability/worsening state.

Keywords: Rough sets, Rule-based processing, Parkinson’s Disease, de-
cision systems, automatic assessment of the patient’s motor state.

1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disease which belongs
to the group of conditions called movement disorders. In advanced stages this
disease is related to the symptoms such as motor disability, dyskinesias, freezing,
falls and on-off states which disable normal patients’ lives. Since most of these
symptoms are related to movements or fluctuations of normal movements they
can be objectively measured. One of the ways of measuring the patient’s motor
activity is to use accelerometers similarly to other applications in the health do-
main [1], [2], [3], [4], [5]. This possibility can solve one of the important problems
of neurogenerative illnesses – the lack of objective measuring methods in the ex-
amination and monitoring of PD patients. This is especially important because
the number of PD disease patients is continuously increasing and the number of
specialists is still insufficient. Moreover, in most cases, the patients are elderly
people who are not able to frequently visit doctors in their clinics. A continuous
monitoring of a PD patient by using biometric sensors (i.e. accelerometers) can
solve these problems. The PERFORM (A soPhisticatEd multi-paRametric sys-
tem FOR the continuous effective assessment and Monitoring of motor status
in Parkinson’s disease (PD) and other neurodegenerative diseases progression
and optimizing patients’ quality of life) is the FP7 European project aimed at
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automatic assessment of the PD symptoms [6], [7]. The objective of this project
is to build a Personal Health System which enables a continuous patient’s mon-
itoring in home. In this solution symptoms of the disease can be automatically
analyzed and results of the analysis can be sent to doctors. Additionally, some
intelligent processing methods can analyze the changes in the symptoms and
assess the overall progression of the disease in the Unified Parkinson Disease
Rating Scale (UPDRS).

In the paper the application of rough sets and other selected rule-based de-
cision systems in this domain is presented. The algorithms are trained with
the use of patient’s historical data which are assessed by medical doctors. The
training examples are processed by algorithms and sets of rules are generated.
Results obtained for all the algorithms examined are compared and conclusions
are derived.

2 Methodology

The PERFORM system uses accelerometers that are attached to the body of
a patient, as presented in Fig. 1. Signals from the accelerometers (3 axes, 6
accelerometers) are processed and automatically analyzed in order to calculate
UPDRS descriptions. These descriptions are integer numbers: {0, 1, 2, 3, 4}where
0 is related to the lack of a given PD symptom and 4 is related to its most severe
state. A detailed description of these UPDRS rates is presented in literature
related to PD patients’ assessment [7], [8]. The UPDRS ratings that can be
automatically calculated in the PERFORM are listed in Table 1.

In the next step, these UPDRS scores are analyzed by the learning algorithm
which can support doctors in their decisions. This additional processing can be
particularly important in the case when a medical doctor is monitoring many
patients at the same time. He can be notified in the case of the worsening of the
state of one of the patients. Moreover, this support seems especially important
when a doctor who is not specialist in the neurology is treating a PD patient.

Fig. 1. Placement of the accelerometer sensors on the patient’s body [9]
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Table 1. UPDRS symptoms in PERFORM

UPDRS Description

UPDRS13 Falling (unrelated to freezing)
UPDRS14 Freezing when walking
UPDRS20RH,LH,RL,LL Tremor at rest calculated separately for both hands and legs
UPDRS21RH,LH Action or postural tremor of right and left hand
UPDRS23RH,LH Finger tapping test calculated for right and left hand
UPDRS24RH,LH Movement test calculated for right and left hand
UPDRS25RH,LH Alternating movement test calculated for right and left hand
UPDRS28 Posture test
UPDRS29 Gait
UPDRS31 Body Bradykinesia and Hypokinesia
UPDRS32 Duration of Dyskinesias
UPDRS33 Disability of Dyskinesias
UPDRS39 On/Off Proportion

The evaluation of the stability/worsening of a PD patient’s state is based on
processing current and historical UPDRS values of symptoms with the use of
a learning algorithm. In order to perform training of these algorithms a doctor’s
decision is needed to contain the knowledge how to translate changes of the UP-
DRS scores into worsening/stability assessment. The scheme of the methodology
used is presented in Fig. 2. The training of the system is performed utilizing PD
subjects’ historical UPDRS data. These patients are examined by the doctors
and current UPDRS results are acquired. Current and historical UPDRS data
are then assessed by the doctors who evaluate the PD progress in each of cases.
As a result a set of rules is generated. These rules are then used in the PER-
FORM system, where current UPDRS symptoms (automatically assessed) can
be compared with historical ones stored in the PERFORM database. As a re-
sult an automatic assessment on worsening/stability can be generated for the
monitored PD subject. This type of a decision system mimics the way of the

Fig. 2. General scheme of the automatic assessment of the worsening of PD disease
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doctors’ thinking while assessing the progress of a Parkinson Disease by repeat-
edly performing the UPDRS test.

2.1 Algorithms

The presented problem can be described as a search for an optimal function pro-
jecting the set of input attributes into a decision. Input attributes A (composed
of differences in UPDRS rates for all the symptoms) along with the decision
attribute d (experts’ evaluations) are given for the training (Eq. 1). U in Eq. 1
is the Universe – possible values of the difference in UPDRS, its domain are
integer values {−4,−3,−2,−1, 0, 1, 2, 3, 4}. These values are positive if the value
of a given UPDRS rate increased, negative if its value decreased.

A = (U, A ∪ {d}) (1)

This set of attributes is processed by the algorithms presented below.
There exist several methods of automatic decision systems in medical ap-

plications that are presented in the literature ([10], [11]). In the automatic
assessment of the PD state worsening/stability the following algorithms are
compared: Rough Sets (RS) [12], [13], [14], Rough Sets with rules generaliza-
tion algorithms (RS-g), Repeated Incremental Pruning method (RIPPER) [15],
Nearest Neighbour algorithm (NN) [16], PART Decision List with two sets of co-
efficients (PART) [17] and Ripple Down Rule method (RDR) [18], [19]. Since the
algorithms mentioned here are widely utilized in data mining fields, only their
usefulness in the context of data gathered and rules generated will be shortly
discussed.

The usefulness of the rough sets in this application needs to be stressed since
this technique is widely used in data mining [12], [13], [20], [21]. Moreover, in the
case of the automatic assessment of the stability of a PD patient, this approach
seems very appropriate because of the inconsistent character of the training data
[14], [19] (doctors may assess a given medical case differently). However, initially
the number of rules generated on the basis of the training objects is very high
therefore the expert knowledge enclosed in them can be difficult to interpret. This
drawback can be minimized if discretization methods are introduced in rough
sets. These methods cause that training objects are automatically gathered with
regard to the values of the attributes. As a result the domain of each attribute
is divided by using the minimal set of cut points. In the global discretization
methods the Universe U is divided equally for each of attributes, in the local
discretization the Universe is divided independently for each of attributes. As
a result a number of attributes is diminished and the cut-points are calculated.
This information is used for the formation of decision rules.

Rules obtained in the processing cover all training data. This capacity has a
very significant drawback – a loss of generalization capacities (similarly as the
over training in case of neural networks [22]). To avoid this problem algorithms
of generalization are introduced in this study. The strength of the generalization
is controlled by a coefficient g which is number from (0 ≤ g ≤ 1). This coefficient
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determines how aggressive the procedure should be. The coefficient equals 1.0
means that the generalization must preserve the precision level of the original
rules. For coefficients closer to zero, generalization may cause rules to lose pre-
cision for the sake of greater generalization capabilities [8]. The rough set using
this type of processing will be denoted as RS-g classifier to distinguish between
rough sets without additional generalization post processing (RS classifier).

As the PERFORM system needs to process huge amount of noisy data it is
crucial to investigate algorithms that can compute them in a relatively short
time. The Repeated Incremental Pruning to Produce Error Reduction (RIPER)
is chosen to be examined as it is often dedicated for such tasks [15]. The RIPPER
algorithm has a capability of dealing with missing data, which may be essential
in case of UPDRS patients’ diagnosing. It also computes quickly large amount of
noisy data and usually produces small error rate. Still if there are contradictory
data in the training set the RIPPER fails to produce classification.

The Nearest Neighbor with Non-Nested Generalization (NNge) algorithm us-
ing a lazy learning method (k-nearest-neighbor) was chosen from a wide range of
WEKA system methods. Also this is the only solution examined that produces
generalization schemes – non-nested hyperrectangle. The main disadvantage of
this algorithm is however that to produce a hyperractangle all features from the
set must be used. This results with a very high number of rules, which are hard
to be validated by doctors.

The PART decision list (PART) was chosen to be examined as a method
known for its high efficiency. It is also a method which deals with the problem of
over pruning the rule set, as it does not execute the rule set simplification. The
PART algorithm has been proved to give high classification efficiency together
with a great flexibility and satisfying computation speed. Still using separate-
and-conquer principle does not guarantee an ability to execute many rules at
the same time, therefore no contradictory data can be classified. In cases of
the UPDRS classification where often even slight change in one attribute can
cause significant change in a diagnosis, thus this method is not very suitable for
doctors.

The Ripple Down Rule classifier (RDR) represents an expert system (also in
medical domain [20]), thus it is crucial that its structure is regularly validated
by an independent expert. Such approach allows updating knowledge and may
result in a high accuracy of classification. The RDR system is a high quality
method to store big amount of knowledge. It is also immune to missing values
or missing classes. However it fails when multiple outputs must be given. This
method also requires data preprocessing – raw data must be divided into sets of
certain ranges – no raw data processing can be performed.

3 Knowledge Building and Rule Generation

In order to obtain the medical knowledge historical UPDRS data of 47 patients
(24 males and 23 females, the average age of the patients was 68.2 y.) from St.
Adalbert Hospital in Gdansk, Poland were used. The average illness time was
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Fig. 3. The scheme of the module comparing two UPDRS scores

9 years with the standard deviation of 5 years. Time periods for the historical
UPDRS examination as compared to current examination were 8 months in
average with the variance of 7 months. The patients have been assessed by 4
doctors experienced in the UPDRS.

Since for some of these patients an additional historical examination has been
available, overall 71 pairs of UPDRS evaluations between ‘current UPDRS’ and
‘historical UPDRS’ have been used. These pairs of the UPDRS vectors (con-
taining only 21 items that are monitored in the PERFORM) were presented to
four medical doctors and each of them assessed the stability/worsening state of
the patient by using of following decision scale: “0” – no worsening, “1” – slight
worsening, “2” – severe worsening (Fig. 3). Definitions of “slight” and “severe”
have been discussed with the doctors and related to the alert level that should
be raised in the PERFORM. Slight worsening is related to a low priority alert
(warning in the system), severe worsening is when a high priority alert (alarm)
should be risen. In this way each of these UPDRS pairs has been assigned to
three output classes: 0, 1, 2, therefore the obtained data could be used directly
to train decision systems. The doctors were also instructed not only to sum up
the UPDRS points but to consider the importance of each of the symptoms in
the assessment of an alert. In this sense rules acquired by the intelligent system
reflect the importance of each of UPDRS inputs in the overall evaluation.

3.1 Rule Generation

As mentioned before, pairs of UPDRS (current and historical) have been assessed
by 4 experts, therefore the training set consisted of 284 training objects. All
samples were divided into training and testing sets and classifiers based on rules
extracted for the training set have been used. The testing set was used to verify
generalization qualities of these classifiers. The training and testing sets were
firstly divided in proportion 50 : 50, 142 training objects contained in each set.

Examples of rules calculated by the rough set algorithm are presented below:
If (ΔUPDRS13 < 1) & (−1 < ΔUPDRS14 < 2) & (ΔUPDRS23RH < 1) &

(ΔUPDRS29 < 1) ⇒ (output = {1− ‘warning’}).
If (ΔUPDRS20LH > 2) & (ΔUPDRS23RH > 3)⇒ (output = {2−‘alarm’}).

The rule antecedent prepositions are the changes in UPDRS ratings for a given
symptom. This rule gives the doctor information which UPDRS values have
been used along with critical differences in the UPDRS values. In this context
rules can be directly interpreted by a doctor. The experiments have been carried
out in the RSES environment for rough sets [8] and in WEKA tool for other
methods [23].
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Table 2. Results of classification on training and testing data

training data testing data
[%] RS RS-g RIPPER NN PART1 RDR RS RS-g RIPPER NN PART1 RDR

case 1: 80 74 73 78 77 74 54 62 52 54 51 51
case 2: 89 80 82 86 86 82 73 77 63 72 71 70
case 3: 88 92 89 89 89 91 75 77 82 80 71 72

The algorithms utilized generated the following number of rules, i.e. RS –
240 rules, RS-g – 180 rules, PART – 17 rules, RDR – 13 rules, NN – 34 rules,
RIPPER – 5 rules. The efficiency of each classifier was tested first on training set
and then using testing data. In the first case the ability to cover the training data
efficiently has been investigated, in the second case the generalization qualities
of the classifiers have been tested. The efficiency of the classification has been
calculated using a confusion matrix, i.e. presenting separately the recognition
results for each of the recognized categories. Three types of the efficiency of the
classification has been defined for the analysis: case 1: when the efficiency is
calculated for distinguishing between all 3 classes: {0, 1, 2}, case 2: when
the efficiency is calculated in relation to discrimination of a high priority alert
{{0}∪{1}, {2}} and case 3: in relation to recognition of the patient’s stability
{{0}, {1}∪{2}}. The results for the classification of training and testing data
for these three cases are presented in Table 2.

Since the training data are inconsistent or even conflicting (it is a subjective
evaluation performed by doctors), the accuracy of 100% cannot be achieved.
The maximum accuracy that can be achieved by this system in this case is
related to the coverage of the training examples (accuracy of recognition of the
training data). The analysis of the results presented in Table 2 can lead to the
following observations:

1. The best accuracies for the training set are: 80% for the case 1; 89% for
the case 2; and 92% for the case 3. In all cases the best accuracy has been
achieved by the RS classifier. It proves that rough sets have the best coverage
of training data in the group of presented classifiers.

2. The RS classifier with generalization algorithms obtains a better accuracy
on the testing data and a worse accuracy on the testing data as compared
to the RS classifier without generalization implemented.

3. The accuracy achieved for the testing data (not used in the training) is 62%
in the first case, 77% in the second case, and 84% in the third case. In cases 1
and 2 the best results are achieved for the RS-g classifier. Only in case 3 slightly
better results have been achieved by RIPPER and NN algorithms.

4. The remaining algorithms (RIPPER, NN, PART, RDR) show in most cases
significantly worse results as compared to RS-g.

5. The set of rules for the PART consists of only 17 rules, their analysis can be
easier for doctors but the classifier is performing well only for the training
data with low generalization capacities. This excludes this classifier from the
application in the presented system.
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Fig. 4. Recognition accuracy on testing data for different values of generalization co-
efficient

The observations presented justify the choice of rough sets with the general-
ization algorithm (RS-g) for the application in the medical system which auto-
matically assesses a progression of the Parkinson Disease patient’s state. Since
this algorithm proved itself to be the best for such tasks, its settings have been
further analyzed. The optimal value of the generalization coefficient has been
selected on the basis of the detailed examination of the accuracy for various pa-
rameter values. It was changed from values 0.1 to 1 and the accuracy has been
calculated in each case. The results are presented in Fig. 4.

4 Data Processing

The set of rules generated by the rough set algorithm has been directly used
in the PERFORM. The algorithm compares the current UPDRS value with a
closest value in the past by calculating differences of the UPDRS values (Fig. 5).
If rule k is activated with a given output o = {0, 1, 2} and is covered with so

k

training examples (strength) than the overall output dout value based on all
activated rules can be defined as follows:

dout =

K∑
k=1

(
s0k · 1 + s1k · 2 + s2k · 3

)
K∑

k=1
(s0k + s1k + s2k)

− 1 (2)

where K is the total number of the rules activated, dout is the output decision
given as float number (0,1).

The final decision is based on the following principles:
out = “no warning” if dout ⊂ (0, 2/3);
out = “low priority alert” if dout ⊂ 〈2/3, 4/3);
out = “high priority alert” if dout ⊂ 〈4/3, 2).
If the comparison doesn’t trigger off any alert, the UPDRS vectors generated

in the past are compared with the current UPDRS value till an alert is found
or till the dayLimit value is reached (Fig. 5). This procedure is used separately
for a low and high priority alerts. As resulted from the processing presented the
doctors are given the alert along with information regarding UPRDRS symptom
for which the alert has been generated.
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Fig. 5. Generation of alerts in PERFORM

5 Conclusions

The results presented show that an automatic system assessing the progression of
the PD patient’s state can be implemented. The accelerometers attached to the
patient’s body can record motor symptoms of the illness. These symptoms can
be automatically transformed to the UPDRS values. The aim of the paper was to
present the evaluation and functioning of a decision system assessing the overall
stability/worsening of the patients. Its functioning is based on analyzing changes
of these UPDRS symptoms with the use of a rule-based system. Comparison of
several rule-based systems has been performed in this study and it has been
proved that rough sets are very suitable for this application. Rough sets with
generalization achieved the highest recognition results within a group of classifier
analyzed. The accuracy achieved by this classifier on a testing set seems not very
high, but the corresponding confusion matrix has been calculated with classifiers
trained on inconsistent subjective data.

The presented solution can directly be used in the PERFORM system for
monitoring PD patients and in the clinics as a tool to help the doctors with the
diagnosis of the overall state of the PD patient.
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Abstract. A large amount of digital video data is stored in local or network vis-
ual retrieval systems. The new technology advances in multimedia information 
processing as well as in network transmission have made video data publicly 
and relatively easy available. Users need the adequate tools to locate their de-
sired video or video segments quickly and efficiently, for example in Internet 
video collections, TV shows archives, video-on-demand systems, personal 
video archives offered by many public Internet services, etc. Detection of 
scenes in TV videos is difficult because the diversity of effects used in video 
editing puts up a barrier to construct an appropriate model. The framework of 
automatic recognition and classification of scenes reporting the sport events in a 
given discipline in TV sports news have been proposed. Experimental results 
show good performance of the proposed scheme on detecting scenes on a given 
sport discipline in TV sports news. In the tests a special software called AVI – 
the Automatic Video Indexer has been used to detect shots and then scenes in 
tested TV news videos. 

Keywords: digital video segmentation, scene detection, scene classification, 
content-based video indexing, sport videos, TV sport news. 

1   Introduction 

New technology advances in visual retrieval systems allow the storage of a large 
amount of digital video data. Video data have become publicly and relatively easy 
available. However, without appropriate indexing and retrieval methods all these 
video data are hardly usable. Textual retrieval approaches are not efficient solutions in 
this case because users want to query not only technical data of videos such as length, 
format, type of compression, etc., but also the content of video clips. Manual indexing 
is unfeasible for large video collections. But the content-based automatic indexing 
and retrieval of video data are still processes difficult to be effectively performed. The 
content is very subjective to be characterized completely. It is usually concerned 
about main objects, second plan, background, domain, context, etc. This is one of the 
main reasons why the problem of content-based access is still largely unsolved. A 
user analyzing TV news would like to ask for specific events or the most attractive 
highlights presented in the news sequence. It is necessary to develop a method to 
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organize, index, browse, and retrieve video archives in view of semantic level. There-
fore, we are looking for effective tools to identify the video segments with a specific 
content, for example news on weather, sports, science, finances, technology, world 
travel, national economy, or entertainment news. On the other hand we would also 
want to detect and to remove commercial in TV news program. Content-based index-
ing of videos has become a research topic of increasing importance, difficult but at the 
same time fascinating, theoretical, scientific problem as well as practical task. 

Digital video is hierarchically structured [1-3]. Video is composed of acts, episodes 
(sequences), scenes, shots, and finally of single frames. The most general unit is an 
act. So, a film is composed of one or more acts. Then, acts include one or more se-
quences, sequences comprise one or more scenes, and finally, scenes are built out of 
camera shots. A shot is a basic unit. A shot is usually defined as a continuous video 
acquisition with the same camera, so, it is a sequence of interrelated consecutive 
frames recorded contiguously and representing a continuous action in time or space. 
The length of shots affects a film. Shots with a longer duration make a scene seem 
more slower paced whereas shots with a shorter duration can make a scene seem 
dynamic and faster paced. The average shot length of a film is generally several sec-
onds or more. The length of shots in TV sports news will be one of the crucial criteria 
in our experiments presented later. 

The paper is organized as follows. The next section describes the main related 
works in the area of automatic scene detection and selection in sport videos. More-
over, some recent related research works are cited. The temporal segmentation proc-
ess leading to the partition of a given video into a set of meaningful and individually 
manageable segments will be discussed in third section. This process is relatively well 
managed. The ASD module, i.e. the Automatic Shot Detection module of the Auto-
matic Video Indexer [4] performs this task with adequate efficiency. The forth section 
presents a automatic detection of the sequence of shots making a scene. In the fifth 
section the experimental results for the classification of scenes in the tested TV sports 
news videos are reported. The tests performed using the ASA module – Automatic 
Shot Analyzer will show that it is possible to detect the soccer news in the sequence 
of TV sport news. The final conclusions and the future research work areas are dis-
cussed in the last 6th section. 

2   Related Works 

There are many recent investigations towards automatic recognition of a content of a 
video clip [5], many of the detection methods have been tested on sport videos. In the 
field of an automatic video processing research, a sport videos summarization has 
become a popular application because of its popularity to users and its simplicity due 
to repeated patterns. Also due to their huge commercial appeal sports videos represent 
an important application area for video automatic indexing and retrieval. 

In [6] a two-level framework has been proposed to automatically detect goals in 
soccer video using audio/visual keywords. The first level extracts low-level features 
such as motion, colour, texture, pitch, etc. to detect video segments boundaries and 
label segments as audio and visual keywords. Then, two Hidden Markov Models have 
been used to model the exciting break portions with and without goal event,  
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respectively. The proposed approach has been applied to the detection of goal event in 
six half matches of soccer videos (270 minutes, 14 goals) from FIFA 2002 and UEFA 
2002 and achieve 90% precision and 100% recall, respectively. 

Another approach and another kind of analyses of sports news were implemented 
in a system [7] that performs automatic annotation of soccer videos. That approach 
has resulted in detecting principal highlights, and recognizing identity of players 
based on face detection, and on the analysis of contextual information such as jersey’s 
numbers and superimposed text captions. 

Furthermore, many experiments have been also performed on sports news  
classification and many approaches and schemes have been proposed. One of the first 
scene classification algorithm has been based on a DCT (Discrete Cosine Transforma-
tion) components extracted from the whole image and used it as the classification 
features [8]. An other technique described in [9] relies upon the concept of "cues" 
which attach semantic meaning to low-level features computed on the video. A cue 
detector was defined as a supervised specifically trained classifier. Examples of cue 
detectors included: grass, swimming pool lanes, ocean, or audio elements like referee 
whistle, crowd cheer. It has been also shown [10] that the weighting of individual 
classifier according to their estimated performance gives better results in automatic 
classifications. In [11] a unified framework for semantic shot classification in sports 
videos has been defined. The proposed scheme makes use of domain knowledge of 
specific sport to perform a top-down video shot classification, including identification 
of video shots classes for each sport. The method has been tested over 3 types of 
sports videos: tennis, basketball, and soccer. The results ranging from 80~95% have 
been achieved. In a new research work [12] it has been demonstrated that combining 
the tiny images and tiny videos datasets improves categorization precision in a wider 
range of categories. 

There are also many promising experiments in which the specific features of sport 
courts are used to classify sport events in videos [13-15]. 

Other experiments have been carried out for example with baseball videos [16], 
with tennis videos [17], as well as with other sports. 

3   Video Indexing Process 

The process of automatic analysis and video indexing is composed of several stages. 
Generally, temporal segmentation is the first step of a video indexing. Such an ap-
proach is applied in our special software AVI - Automatic Video Indexer [4].  

Automatic video file segmentation in the AVI includes five important steps 
(Fig. 1). The first step is a temporal segmentation process leading to the shot bound-
ary detection. The second step is the key frame extraction, the best for depicting the 
content of corresponding shot or scene. And the third step is an analysis of the content 
in the shots detected in the video during the temporal segmentation. The detection of 
studio shots will lead in the fourth step to shot clustering, and in consequence scene 
segmentation. Finally, the content of a scene is recognized after shot content identifi-
cation and shot clustering processes. 
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Fig. 1. Indexing scheme in the Automatic Video Indexer AVI 

4   Temporal Segmentation Process 

As it was already stated a video clip is structured into a strict hierarchy and is com-
posed of different structural units: acts, episodes (sequences), scenes, and finally, 
camera shots. Depending on the style of video editing shots in a scene are content 
related but can be temporally separated and/or even spatially disconnected. 

A shot change occurs when a video acquisition is done with another camera. The 
cut is the simplest and the most frequent way to perform a change between two shots, 
and at the same time cuts are probably the easiest shot changes to be detected. Cut 
takes place when the last frame of the first video sequence is directly followed by the 
first frame of the second video sequence. But mainly due to the application of digital 
movie editing software shot changes become more and more complex and more and 
more attractive for movie audience. 

The other basic shot changes are fades and dissolves. A dissolve is a transition 
where all the images inserted between the two video sequences contain pixels whose 
values are computed as linear combination of the final frame of the first video se-
quence and the initial frame of the second video sequence. Cross dissolve describes 
the cross fading of two scenes. Over a certain period of time (usually several frames 
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or several seconds) the images of two scenes overlay, and then the current scene dis-
solves into a new one. 

Cross dissolve in digital environment – contrarily to analogue systems – is rela-
tively easily realized. Dissolve can be modelled as luminance value operations. It is 
performed according to the following mathematical formula 

21 )1( YYY αα −+= . (1) 

The luminance Y of the pixels of dissolved image is the sum of the luminance values 
Y1 and Y2 of the adequate pixels of two frames from two mixed shots. The parameter 
α decreases from one to zero. The number of its values determines the number of 
frames (duration) for a given dissolve effect [4].  

Fades are special cases of dissolve effects, where a black frame most frequently re-
places the last frame of the first shot (fade in) or the first frame of the second shot 
(fade out). Whereas, a wipe effect is obtained by progressively replacing the old im-
age by the new one, using a spatial basis. 

Many tests, experimental works have been undertaken, many papers have been 
written on temporal segmentation processes. The efficacy of many methods have been 
evaluated and it can be said that we can state we can effectively detect shots in digital 
videos. Also our specially designed software the Automatic Video Indexer [4] have 
achieved sufficient level of quality and reliability (Tab. 1) to be applied in practice for 
further research investigations. A more detailed description of the segmentation 
methods applied in the Automatic Video Indexer as well as a more detailed presenta-
tion of testing results will be found in [4]. 

The Automatic Video Indexer has been used to perform a temporal segmentation 
and to detect shots in tested movies. Then, the detected shots have been clustered. 

 

Table 1. The best results of recall R and the best results of precision P of temporal segmenta-
tion methods received (but not necessarily simultaneously) for several categories of video when 
testing the effectiveness of the Automatic Video Indexer 

Pixel pair 
differences 

Likelihood 
ratio method 

Histogram 
differences 

Twin 
threshold 

comparison 

Results 
with the best 
recall and the 
best precision R P R P R P R P 

TV Talk-
Show 

1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.89 

Documentary 
Video 

0.87 1.00 0.98 1.00 0.89 1.00 1.00 0.86 

Animal 
Video 

0.88 1.00 1.00 0.89 0.96 1.00 1.00 0.76 

Adventure 
Video 

1.00 0.80 1.00 0.76 0.92 1.00 0.97 0.75 

POP Music 
Video 

0.95 1.00 0.85 0.90 0.65 1.00 0.88 0.85 
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5   Automatic Scene Detection 

TV sports news program has a specific structure. The analyses of TV sports news 
broadcasted in the first national Polish TV channel show that the program has its 
individual standard structure. It is composed of several highlights which are intro-
duced and commented by anchorperson or numerical results presented in tables. 
These shots will be called as studio shots. Shots that belong to the same scene are 
visually similar and they are also located closely along the time axis. Two different 
classes are identified: studio shots and news report shots. A single scene is formed by 
all successive news report shots until the next studio shot. 

If a scene is a set of shots it would be interesting to find which frame from which 
shot of a scene is the best for a classification of a whole scene [18], in our experi-
ments which frame is the most adequate for a sport discipline identification. 333 shots 
detected in the tested ten TV sports news videos belong to 26 scenes which are com-
posed of minimum two shots and, furthermore, there are 76 single shot scenes. There 
are 21 scenes which have at least five shots (Tab. 3). These 21 scenes were analyzed. 

The usefulness evaluation of the frames taken from the first, middle, and finally the 
last shot of a scene has been evaluated. A certainty reflects the tester conviction of  a 
sport discipline identification. The results obtained are presented in the Table 2. 

The tests have indicated that the most adequate frame is not the frame from the be-
ginning of the shot, what is frequently practiced, but rather from the middle part or 
from the end of a shot. Further investigations lead us to the conclusion that if the 
automatic process of the identification of a sport discipline is based on a single, still 
frame, such a frame should be chosen from the middle part of the first shot in a scene. 

The next important observation of studio shots is that such a kind of shots signifi-
cantly differs from other shots. First of all, the commentary from the TV studio as well 
as the presentation of sport scores in the form of different kinds of tables last much 
 

 

Table 2. Usefulness of the frames from different time positions in the shots detected in ten TV 
sports news for the classification of sport video shots 

Time position of the key 
frame in a shot 

10% 50% 90% 
 

Sport 
discipline 

Number 
of shots 

Average 
certainty 
[0-10] 

Certainty level [0-10] 
1. Alpinism 2 5.00 5.00 5.00 5.00 
2. Basketball 24 5.64 5.75 5.42 5.75 
3. Closing credits 4 5.83 5.00 7.50 5.00 
4. Car racing 24 3.61 2.33 3.96 4.54 
5. Commentary/Studio 63 5.34 5.40 5.56 5.08 
6. Golf 5 5.07 5.60 5.60 4.00 
7. Opening credits 4 7.00 2.50 9.75 8.75 
8. Preview 35 4.58 3.31 5.23 5.20 
9. Ranking table 7 9.10 7.57 10.00 9.71 

10. Ski jumping 11 6.24 5.82 6.45 6.45 
11. Soccer 143 5.28 5.18 5.34 5.34 
12. Speedway 11 5.64 5.64 5.64 5.64 

 Arithmetic averages: 5.29 4.93 6.29 5.87 
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Table 3. Average length of a shot for a given sport discipline in the training set of TV sports 
news programs 

Category/Discipline Average shot length [in frames] 

Soccer 91 
Golf 125 
Speed way 145 
Cross-country skiing 189 
Basketball 239 
Commentary/Studio 413 
Table 438 

 
longer than other shots. The analyses of the length of shots in TV sports news presented 
in the Table 3 show that studio shots last twice longer than any other and that the soccer 
shots are generally the shortest ones. In most cases all shots between two studio or table 
shots are from the same semantic video scene. A scene is detected as a series of shots 
separated by these two kinds of relatively easily detected shots: studio and table. 

6   TV Sports News Categorization 

The collections of 20 TV sports news programs have been used in the tests. These 
videos were broadcasted on different days in the first national Polish TV channel and 
after the digitisation process they constructed TV sports news database in the DV 
format (720 x 576 pixels, full colour) for training and evaluation. Seven videos have 
been used as a training set, the next 13 have been used in an automatic content scene 
analysis leading to the scene categorization, i.e. to the recognition of a sport category 
(discipline). The training set has also been used to choose the most representative still 
frames for a given sport discipline. 

Content analysis of shots is performed by three algorithms. In the first step the 
longest shots are selected as the most probable studio or table shots and are treated as 
scene boundaries. Then, the well-known technique of measuring the distance of histo-
grams of pattern frames set and the key-frames, that is the most representatives 
frames indicated by the strategy described in the previous section has been applied. 

Histograms are commonly used to classify images in content-based image retrieval 
systems. Two images are compared by measuring the distance or similarity of their 
histograms. Various distance/similarity measures are applicable to compare two his-
tograms [19, 20]. The standard distance D of quantized colour histograms H of two 
images IA and IB has been applied in the AVI experiment and measured as follows: 
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where n is the number of colours in the colour space. 
To improve the results obtained using the histogram distance measure in the next 

step of shot content analysis a colour coherence vector has been measured. 
A colour coherence vector measure [19] improves global histogram matching and 

takes into account spatial information in colour images. Colour coherence vector 
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indicates if pixels belong to a large region of similar colour. Each pixel is classified as 
either coherent or incoherent to a given colour. If every pixel in the set has at least 
one pixel of the same colour among its eight closest neighbours, such a set is called a 
maximal set. The size of a maximal set must exceed a given threshold, then a whole 
region is classified as coherent. The total number α of coherent and the total number β 
of incoherent pixels are computed for each colour of n colours in a discretized set of 
colours. The colour coherence vector VC  of an image is defined as: 

)],(),...,,(),,[( 2211 nnCV βαβαβα= . (3) 

Two colour coherence vectors of two images A and B can be compared according to 
the following distance formula: 
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These three techniques have been used during the content analysis of TV sports news 
classification process. 

The techniques used during the content analysis enable us to receive very promis-
ing results for soccer scene retrieving, presented in Table 5, of standard measures of 
recall (from 0.51 to 1) and precision (from 0.60 to 0.82). 
 

Table 4. The example of analysis of a video reflecting the structure of a video as well as the 
performance of the Automatic Video Indexer 

Shot position 
in video 

Shot length 
[in frames] 

Sport 
discipline 

Discipline 
identified 

Correctness 

1 126 opening credits - no 
2 3 soccer soccer yes 
3 72 soccer soccer yes 
4 76 studio studio yes 
5 121 basketball studio no 
6 74 speed way studio no 
7 675 studio studio yes 
8 33 soccer soccer yes 
9 78 soccer soccer yes 

10 35 soccer soccer yes 
11 78 soccer soccer yes 
12 387 soccer soccer yes 
13 93 soccer soccer yes 
14 10 soccer soccer yes 
15 29 soccer soccer yes 
16 65 soccer soccer yes 
17 76 soccer soccer yes 
18 92 soccer soccer yes 
19 299 soccer soccer yes 
20 1128 studio studio yes 
21 25 basketball soccer no 
22 73 basketball soccer no 
23 23 basketball studio no 
24 5 basketball studio no 
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Table 4. (Continued) 

Shot position 
in video 

Shot length 
[in frames] 

Sport 
discipline 

Discipline 
identified 

Correctness 

25 19 basketball soccer no 
26 45 basketball soccer no 
27 44 basketball soccer no 
28 67 basketball - no 
29 61 basketball soccer no 
30 2502 studio studio yes 
31 151 speed way soccer no 
32 236 speed way studio no 
33 86 speed way soccer no 
34 35 speed way table no 
35 57 speed way - no 
36 50 speed way studio no 
37 243 speed way studio no 
38 234 speed way studio no 
39 198 speed way soccer no 
40 1057 studio studio yes 

 

Table 5. The extreme recall values and precision for two videos of the automatic content-based 
recognition of soccer scenes 

Discipline Recall Precision 

Video 1   
Commentary/studio 1 0.38 
Soccer 1 0.60 

Video 2   
Commentary/studio 1 0.26 
Soccer 0.51 0.82 

 

 

7   Final Conclusion and Further Studies 

The framework of a sport classification of TV sport news broadcasted from the first 
Polish national TV channel has been proposed. Furthermore, a special software the 
Automatic Video Indexing has been designed and implemented. The main tasks of the 
AVI software are: temporal segmentation of videos, key-frames selection, shot analy-
sis and clustering, soccer shot retrieving. The first results are satisfactory. 

In further research the pattern frames for other sport disciplines will be selected. 
Then, the most frequent number of shots in a scene for a given sport discipline and 
specific structures of scenes for a given sport discipline will be analyzed. Finally, new 
computing techniques are being developed leading to new functions provided to im-
plement in the Automatic Video Indexer. We want to extend its functionality by in-
troducing an automatic extraction of video features and objects like faces, lines, texts, 
etc., as well as to extend its application to other kinds of TV shows. 
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Abstract. Blending is a well-established technique, commonly used to
increase performance of predictive models. Its effectiveness has been con-
firmed in practice as most of the latest international data-mining contest
winners were using some kind of a committee of classifiers to produce
their final entry. This paper is a technical report presenting a method
of using a genetic algorithm to optimize an ensemble of multiple clas-
sification or regression models. An implementation of this method in
R, called Genetic Meta-Blender, was tested during the Australian Data
Mining 2009 Analytic Challenge competition and it was awarded with
the Grand Champion prize for achieving the best overall result. In the
report, the purpose of the challenge is described and details of the win-
ning approach are given. The results of Genetic Meta-Blender are also
discussed and compared to several baseline scores.

1 Introduction

An ensemble can be defined as a set of separately trained classifiers whose pre-
dictions are combined in order to achieve better accuracy ([1]). Many researchers
have investigated the problem of constructing successful ensembles ([1], [2], [3]).

Numerous experiments on real-life datasets confirmed that the most accurate
ensembles are characterized by diversity and high performance of individual clas-
sifiers. The most commonly used methods of constructing such sets of predictive
models are bagging1 and boosting ([2], [4], [5]). In both of these methods a single
learning algorithm is used to create multiple classifiers. In the classical bagging
algorithm, the training dataset is resampled multiple times and the models are
trained on each of the bootstrap samples. Tested instances are then assessed by
each of the models and the final prediction is made by voting or by averaging the
output of individual predictors. In the boosting approach, an ensemble is built
incrementally. In each step of the algorithm, a new classifier is constructed and
new weights are assigned to training instances so that the examples misclassified
by previous classifier become more important in the next step. The resulting
model aggregates individual models based on their predictive power.

The desired diversification of models in the ensemble can be also achieved
by including different learning algorithms, using different parameter settings or
1 Bootstrap aggregating.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 130–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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features selection techniques ([3], [6]). This approach can be used in combination
with bagging and boosting and it was proved to be successful in practice ([6], [7]).

Another factor that influences the effectiveness of classifier committees is a
voting strategy or an aggregation function, which may be seen as methods of
combining decisions of individual models in the ensemble. Many voting and
aggregation methods were investigated in the literature ([8]). The most popular
methods include majority voting and weighted voting, in which the weights are
usually dependent on accuracies of the base predictors. A major drawback of such
approaches is that they do not take into account correlation between decisions
of aggregated models.

The Genetic Meta-Blender (GMB) presented in this paper is an algorithm
for computing weights of models in the ensemble which is not based on the
performance of individuals. Instead, it uses the notion of genetic programming
([9]) to find the global optimum of a given scoring function (which could be,
for example, an area under the ROC curve). This approach was used during
the Australian Data Mining 2009 Analytic Challenge competition to construct
successful second level ensembles2 In the next section the challenge is described
and in the later parts of this paper the way in which the GMB was utilized is
discussed.

2 AusDM 2009 Analytic Challenge

Australian Data Mining 2009 Analytic Challenge was a special event of the
AusDM 2009 Conference that took place on 1–4 December 2009 in Melbourne,
Australia. The challenge was related to the problem of ensembling and it was
divided into two tasks. Three datasets were made available for both tasks, each
consisting of a different number of expert models that made predictions of movie
ratings from the Netflix database. The models were provided by The Ensemble
and BellKor’s Pragmatic Chaos – the two teams that placed first and second in
the Netflix competition ([10]).

For the first set of tables the task was to minimize the root mean squared error
of made predictions and for the second set the task was to maximize the AUC
score3 The datasets from the first task (later on called RMSE) were labeled with
the actual movie ratings – integers from the set {1000, 2000, 3000, 4000, 5000}.
In the second task (later on called AUC), the data tables were labeled with
binary decision attributes whose meaning was slightly different for each table.
In both tasks the available datasets had three sizes. The small datasets contained
30000 movie ratings described by 200 expert models. Results achieved on those
datasets were posted on a leaderboard which was publicly available during the
competition and they were not taken into account in the final ranking. The
medium and the large datasets had 40000 and 100000 movie ratings respectively
and were described by 250 and 1151 predictors. All the datasets were divided
2 Ensembles of ensembles.
3 The quality measure used in this task was a Gini coefficient which can be computed

as Gini = 2 ∗ ‖AUC − 0.5‖.
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Fig. 1. Performance of individual models from large RMSE and AUC tasks. The red
horizontal line marks the best models from the sets. The blue line indicates the results
of the ensemble made by averaging all 1151 predictors and the green line points out
the scores achieved by averaging the best 10 models. The gray dotted lines correspond
to scores of random ensembles and the light blue line is their empirical median.

into a training and a test sets in proportion of 50%/50% ratings each. The true
label values were available only for the ratings from the training sets.

Figure 1 shows distributions of scores achieved by individual models from the
large data tables of the RMSE and AUC tasks. They were computed on the
training sets. It is interesting to notice that only 5 models from the RMSE task
(≈ 0.4%) and 10 models from the AUC task (≈ 0.9%) performed better than
the ensemble made by simply averaging all the available models (the blue lines
on the plots). Additionally, on average4, only 17 models from the RMSE task
(≈ 1.5%) and 36 models from the AUC task (≈ 3.1%) were superior to a random
ensamble which was constructed by averaging 10 randomly chosen predictors. In
comparison to the scores achieved by the ensembles made of the best 10 models
from each task (the green lines), the median scores of the random ensembles (the
light blue lines) were lower only by ≈ 1.05% and ≈ 1.64%, respectively.
The question arises: what is the best way of combining models in the ensemble?

3 Genetic Meta-Blender – A General Idea

The main idea of the Genetic Meta-Blender is simple: instead of averaging or
assigning weights based on performances of individual predictors, GMB utilizes
the genetic algorithm to optimize proportions between models in the final blend.
This optimization is done by searching for a set of weights, which is an approx-
imation of a global maximum of a predefined scoring function. The selection of
4 A median from 1000 experiments is taken.
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the proper scoring function should be dictated by the quality measure which
will be used to evaluate the performance of the final ensemble. For example, if
the task is to minimize the root mean squared error of the predictions then the
following scoring function should be maximized:

Score(w1, . . . , wk) = −
n∑

i=1

(
trueV alues(i) −

∑k
j=1 wj ∗ predV alues(i)j∑k

j=1 wj

)2
(1)

In this function, trueV alues(i) is a true target value of the i-th training example
and predV alues

(i)
j is a predicted target value of the i-th training example made

by the j-th model in the ensemble.
To learn the optimal set of weights of models it is necessary to prepare a suf-

ficient number of training data. In order to avoid overfitting, it is recommended
to compute predictions of all learning algorithms which are being utilized for the
whole training data using the cross-validation technique. Additionally, models
which were constructed for each cross-validation fold can also make predictions
for the test data. Those predictions may be combined in the final ensemble to
make it even less vulnerable to overfit. An exemplary scheme of the GMB method
is given in Appendix.

4 GMB in Practice

In this section the approach which were used in the AusDM 2009 Analytic Chal-
lenge is discussed. As it was described in Section 2, the data in this competition
consisted of predictions made by numerous models. This fact made a good op-
portunity to verify how well a multi-level ensemble combined with the GMB
optimization method will perform.

In the challenge, the assessment of samples from the score data sets was con-
ducted in two steps. First, for each training set, a wide range of predictive mod-
els was constructed. The GMB scheme showed in Appendix was implemented in
the R System ([11]). For the AUC task, popular classification models available
in standard R libraries were tried: linear and logistic regression models (library
stats), neural networks (library nnet), recursive partitioning trees (library rpart),
k-NN (library class), the random forest (library randomForest) and the gener-
alized boosting models (library gbm). The linear, logistic and neural network
models were additionally averaged over multiple runs on different attribute sub-
sets. The neural networks had one hidden layer which contained 1 to 5 neurons.
The recursive partitioning trees were bagged and a few values of the complexity
parameter were tried. The k-NN algorithm was used as a scoring model, several
k values between 50 and 150 were used. The generalized boosting models were
fitted with the bernoulli, gaussian and the adaboost loss functions.

For the RMSE task, due to lack of time for experiments with the parameters
settings, only linear regression models and simple neural networks were used.

Each model’s prediction values for samples from the training sets were ac-
quired by the cross-validation test and used in the second step as an input for
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Fig. 2. Results of the GMB compared to the straight average of models from which
it was constructed and several others baseline scores provided by the organizers of
AusDM 2009 Analytic Challenge.
∗A straight average ensemble of the models which were optimized by the GMB.

the blending algorithm. The genetic algorithm, which was implemented in R
for the purpose of the challenge, used different scoring functions for each of the
tasks. It tried to directly maximize the AUC or minimize the RMSE by assign-
ing significance levels (weights) to models in the ensemble. The population was
coded as a list of vectors of weights. In the experiments, the population size was
set to 500. The total number of models included for the GA optimization in the
final submission was dependent on the size of the datasets and the task. It was
limited to 20 for the small and medium AUC data, to 25 for the large AUC data
and to 10 for all sizes RMSE data. The restriction on number of models was in-
troduced to avoid over-fitting. Some other precautions, such as a restriction on
the granularity of the weights of the models were also taken. The algorithm was
stopped when the averaged quality of the population members did not change
significantly in 5 consecutive generations.



Combining Multiple Predictors Using Genetic Algorithms 135

Figure 2 shows the final results of the presented method. The scores achieved
by the GMB on the medium and large datasets are compared to several baseline
results provided by the organizers after completion of the challenge. Beside the
average of all experts, the best expert and the average of top 10 experts, the
performance of 3 other meta-models are given. The light blue and dark blue bars
indicate the scores of two approaches which recently were particularly popular
(e.g. during the Netflix competition). The first one employs a linear regression
model (or logistic regression for the AUC task) as a meta-learning algorithm
which combines decisions of experts in the ensemble. The second one is similar,
in a sense that it also utilizes the linear or logistic regression models but in
this method, those predictors are additionally bagged to create a second-level
ensemble. The third of the compared baseline approaches, denoted by the green
bars in the figure, is a straight average of the meta-models which went into
the optimization by the GMB. Those scores were included to verify how much
prediction accuracy is gained by the usage of the GMB optimization method.

More details about the AusDM 2009 Analytic Challenge, tables with the
scores of all competitors and brief descriptions of the leading methods can be
found at the web site with the results of the challenge5.

5 Conclusions

The main scope of this paper was the Genetic Meta-Blender – a method of
optimizing an ensemble of multiple predictive models using a genetic algorithm.
The general idea of this meta-model, as well as its results from Australian Data-
Mining 2009 Analytic Challenge was presented. The datasets and the tasks of
this competition was also briefly described.

The results showed in Figure 2 confirm usefulness of the GMB. The GA
optimization led to a better score of the final solution than the straight average
in 3 out of 4 datasets. The differences between the optimized and the averaged
models are generally less significant for the RMSE task, which is perhaps due
to lower diversification of the utilized predictors. It is also noticeable that the
multi-level ensembles greatly outperformed the single-level ones. For example,
the bagged version of the logistic regression ensemble (the dark blue bars on the
charts from the AUC tasks) achieved ≈ 3.0% better score on the large AUC data
than the model without bagging. Finally, the standard statistical or machine-
learning models proved to be very effective as meta-learning algorithms which
can be used to combine predictions in the ensemble.

Acknowledgements. The author would like to thank Micha�l Grotowski for
proofreading this paper. This research was partially supported by the grants
N N516 368334 and N N516 077837 from Ministry of Science and Higher Edu-
cation of the Republic of Poland.

5 http://www.tiberius.biz/ausdm09/results.html
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Appendix

A computation scheme of the GMB ensemble optimization:

Input:
A set of k learning algorithms (LA);
A training set (TrSet);
A test set (TeSet);
A number of cross-validation folds (n);

Output:
A vector of the final predictions for samples from TeSet (finalPreds);

Begin

Divide the a training set TrSet into n disjoint subsets;

for i = 1 to n do
Train k models with the learning algorithms from LA using all but
i-th subsets;
With each model, predict target values for the samples from i-th
subset;
With each model, predict target values for the samples from TeSet;

end

For each of k models, average or decide by the majority voting its final
predictions for samples from TeSet, creating a set of predictions
PredSet = {predV ealuesi : i = 1, . . . , k};
Use predictions for the samples from TrSet as an input for a genetic
algorithm and compute the values of approximately optimal weights
{w1, . . . , wk};
Combine prediction vectors from the set PredSet using the formula:

finalPreds =
∑k

i=1 wi ∗ predV ealuesi∑k
i=1 wi

End
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Abstract. Argument based learning allows experts to express their do-
main, local knowledge about the circumstances of making classification
decisions for some learning examples. In this paper we have incorporated
this idea in rule induction as a generalization of the MODLEM algorithm.
To adjust the algorithm to the redefined task, a new measure for evaluat-
ing rule conditions and a new classification strategy with rules had to be
introduced. Experimental studies showed that using arguments improved
classification accuracy and structure of rules. Moreover the proper argu-
mentation improved recognition of the minority class in imbalanced data
without essential decreasing recognition of the majority classes.

Keywords: rule induction, argument-based learning, MODLEM algo-
rithm, learning from imbalanced data.

1 Introduction

Discovering rules from examples is one of the main tasks in machine learning,
data mining and also in rough set theory. Up to now several algorithms have been
proposed to induce rules – for review see, e.g., [2,10]. However, new researches
on improving rule induction are still undertaken. One of the directions include
incorporating domain knowledge into the learning process. It should direct the
learning process to provide the rules more consistent with experts’ expectations,
leading to better classification abilities and possibly reducing the complexity of
learning. For a review of different approaches see, e.g., [5].

This kind of additional knowledge is usually formulated globally with respect
to the whole domain of the problem. However, it can be difficult for experts to
express it. Therefore, recently another paradigm has been introduced as argu-
ment based machine learning (briefly denoted as ABML) [6,8]. According to it
some difficult learning examples can be additionally annotated by the expert’s
explanations called arguments, i.e. an expert gives descriptions of reasons for
assigning the example to the given class. This approach uses ”local” expert’s
knowledge which concerns specific situations and is valid for limited, chosen
examples rather than for the whole domain [6]. This idea has been originally
introduced by Bratko et al. and implemented for rule induction as an extension

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 138–147, 2010.
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of a CN2 algorithm [6]. Moreover, they applied it to problems of justification of
cases in law, loan policy and medical treatment, see e.g. [7].

Despite their promising results, we found that there are still some aspects
which could be inspected in more detail. The main aim of our paper is to adopt
the ABML paradigm into another rule induction schema than CN2. We decided
to choose the MODLEM algorithm [9], which is more suited to deal with nu-
merical and imperfect data. Although our generalization, called ABMODLEM,
is inspired by the paper [8], we have to consider new methodological aspects.
First of all, it is necessary to introduce another measure for evaluating candi-
date elementary conditions to be added to a rule, which allows us to obtain more
general rules, in particular ones covering argumented examples. Secondly, while
classifying new objects with rules, a new classification strategy is required which
takes into account that rules induced from argumented examples are usually
supported by fewer examples than non-argumented rules.

Another contribution of this paper is studying the influence of argumentation
on the recognition of particular classes. This aspect has not been considered in
[6,8], however our preliminary experiments showed that it is particularly inter-
esting for imbalanced data. We want to provide a more precise experimental
study to find out if ABML can be useful for problems where the recognition of
minority classes is particularly important.

All above problems will be experimentally evaluated on three data sets coming
from UCI repository. We carry out a comparative study of the argument based
ABMODLEM vs. basic version of the MODLEM algorithm.

2 Basic Concepts of Argument Explanations

Following ideas of Bratko and Mozina on ABML [6,8], we assume that the domain
expert’s explanations for some of the learning examples are given in a form of
arguments for and against the decision (called positive and negative arguments,
respectively).

An argumented example AE is denoted as a triple (Attributes, Decision, Argu-
ments), where Attributes and Decision are defined using standard attribute-value
pairs, and Arguments is a set of positive and negative explanations in the fol-
lowing form: Positive argument is defined as Decision because of Reasons and
Negative argument is defined as Decision despite Reasons. Reasons are expressed
as conjunctions of attribute-value expressions ri which take a form similar to el-
ementary conditions used in the syntax of a rule. An example of this notation is
further given together with the illustrative example of ABML.

The rule R covering argumented examples should have its condition part
consistent with the argumentation. Thus, following [8], the new definition of
AB-covering (argument-based covering) is: rule R AB-covers an argumented
example AE if: (1) all the conditions in R are true for the description of AE, (2)
a condition part of R is consistent with at least one positive argument of AE,
and (3) it is not consistent with any of the negative arguments of AE, where
consistency means that the condition part of R contains elementary expressions
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ri from reasons or being their generalized forms. To illustrate it let us consider
a simple example of admission decisions for three patients. Their description is
given below:

patient temperature stomach
ache

blood test
result

blood
pressure

admitted

Johns high no bad normal yes
Biggle normal no bad v.high yes
Perkins high yes good normal no

If one wants to discover a rule explaining a decision on admitting a patient
to a hospital, a typical rule induction algorithm will produce the following rule:
if (stomach ache = no) then (admitted = yes), which covers all the positive
examples of this decision although this rule contradicts common sense.

A physician asked to explain why patient Johns was admitted to hospital
could explain it as: (giving a positive argument) ”patient Johns was admitted to
hospital because his body temperature = high”. He could also explain the decision
by giving a negative argument: ”Patient Johns was admitted to a hospital despite
stomach ache = no”. Notice that this argumentation is ”local” – the physician
claims that Johns was admitted to hospital because of temperature, but he does
not claim that all patients with high temperature are automatically admitted
(as is the case of Mr.Perkins). This argumented example is formally denoted as:

AE = (Attributes = {Johns, high, no, bad, normal}, Decision = yes,
Arguments = {Decision = yes because temperature = high,

Decision = yes despite stomach ache = no})
Including the argumentation in the rule induction process will shift the induc-

tion process towards a desired direction: now the rule built around patient Johns
will neglect the attribute stomach ache (to prevent consistency with the negative
argument), and include the attribute temperature (to preserve consistency with
the positive argument). An algorithm using this argumentation would therefore
induce a rule if (temperature = high) and (blood test results = bad) then (admit-
ted = yes), which is consistent with common sense and the expert’s knowledge.

3 Description of ABMODLEM Algorithm

3.1 Construction of the Algorithm

The ABML paradigm will be incorporated inside MODLEM algorithm [9]. It is
a sequential covering algorithm that induces a minimal set of unordered rules.
It iteratively searches for the best rule for a given class, removes all covered
positive examples from the learning set and continues the procedure until all the
examples from that class are covered. The process is repeated for each decision
class. A construction of a single rule starts from finding the best condition, and
continues by adding new conditions until a stopping criterion is met. The specific
property of MODLEM consists in direct processing numerical values of attributes
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(without pre-discretization) and missing values. It can also be adopted to handle
inconsistent or noisy examples either by rule pruning or rough approximations.
Details of MODLEM can be found in [9,10,11].

Procedure ABMODLEMForOneClass (Examples ES,
Class T)

1.Let RULE_LIST be an empty list.
2.Let AES be the set of examples

that have arguments.
3.Evaluate arguments (as if they were rules)

and sort examples according to the
evaluation of their best argument.

4.while AES is not empty do
5. Let AE1 be the first example in AES.
6. Let BEST_RULE be

ABFindBestRule(ES,AE1,T).
7. Add BEST_RULE to RULELIST.
8. Remove from AES examples

AB-covered by BEST_RULE.
9.end while

10.for all RULE in RULE_LIST do
11. Remove from ES examples covered by RULE.
12.end for

13. Add rules obtained with
MODLEMForOneClass(ES,T) to RULE_LIST.

Procedure 1. ABMODLEMForOneClass

Procedure ABFindBestRule (Not_covered_ex ES,
Argumented_Example AE,
Attributes Attr)

1.LET BEST_RULE be an empty rule.
2.foreach Positive_argument Arg for AE
3. Let RULE be a set of reasons of Arg.
4. Let S be a set of objects in ES

covered by RULE

5. while (S contains negative examples)
6. Let BEST_CONDITION be an empty

elementary condition
7. foreach attribute A in Attr
8. Let NEW_CONDITION be

ABFindBestCondition(A,S,AE,RULE)
9. if (NEW_CONDITION is better then

BEST_CONDITION)
10. BEST_CONDITION = NEW_CONDITION
11. end foreach
12. Add BEST_CONDITION to RULE
13. Update S
14. end while
15. Remove unnecessary conditions from RULE
16. if (RULE is better than BEST_RULE)
17. BEST_RULE = RULE
18.end foreach

Procedure 2. ABFindBestRule

A general framework of our generalized algorithm (called ABMODLEM) is
inspired by some solutions from ABCN2 algorithm [8]. The main schema of
ABMODLEM is given in Procedure 1. In the first phase, the algorithm induces
rules that AB-cover the argumented examples, and preferably other examples - to
build as general rules as possible. To achieve it, argumented examples are sorted
with respect to evaluation measures (calculated for conjunction reasons) so that
the algorithm started from constructing rules that have a chance to cover many
positive examples. After generating argumented rules, if there are still some
remaining examples not covered by those rules, the remaining set of rules is
found by standard MODLEM procedure. Our technique for constructing condi-
tion parts of rules is definitely different to ABCN2. To find the best rule that AB-
covers an argumented example (Procedure ABFindBestRule(ES,AE1,T) listed in
Procedure 2.), one rule is built from each positive argument (to assure coherence
with at least one positive argument given for the example). All reasons of the
argument are added as elementary conditions to a condition part of the rule
and if the stopping criterion is not met (e.g. the rule still covers some nega-
tive examples from other classes), additional conditions are added iteratively by
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ABFindBestCondition(a,S,AE,RULE). Then, the induced rule created for the
example AE is added to the rule set.

Procedure ABFindBestCondition(a,S,AE,RULE) finds the best condition by
comparing candidate conditions for each attribute, assuring the coherence with
arguments. For nominal attributes, as the rule must cover the argumented exam-
ple, the condition must take the form attribute = value, where values comes from
reasons of the argumented example. If adding this condition to the rule will be
consistent with any negative arguments for the analysed example, this condition
is skipped. For numeric attributes conditions are in form of X > xi, X < xi,
X ≥ xi or X ≤ xi. For a particular xi, the direction of the condition is chosen
so that the condition covered the argumented example. To choose xi, candidate
thresholds are built between values present for the attribute in the learning set
(which discriminate examples from different classes). For each threshold, a tem-
porary condition is built and added to the rule. If it does not violate any negative
arguments, new candidate rule is evaluated using an evaluation measure and the
best condition is chosen.

3.2 Rule Evaluation Measure

In the original formulation of MODLEM candidates for the condition part of
the rule are evaluated either by class entropy (calculated for the set of covered
examples) or Laplace Accuracy - for details see [11]. Although these measures
worked well for many problems, our experiments with ABMODLEM showed
that rules induced from arguments were not able to generalize over too many
other examples. After consideration of various rule evaluation measures (see a
review [2]), we decided to choose a Weighted Information Gain defined (after
[1]) as

WIG =
|S+

1 |
|S+| ∗ (log2p(+|S1)− log2p(+|S))

where S denotes a set of learning examples covered by the current condition part
of a rule, S1 is the set of examples covered by the condition rule extended with
the evaluated condition; |S+| (and |S+

1 |) is a number of positive examples in S
(and S1); p(+|S) and p(+|S1) are rule accuracies for examples in S and S1, re-
spectively. This measure favors candidates that cover many positive examples as
well as lead to more accurate rules. According to [2] such a category of measures
is inspired by Quinlan’s proposal from FOIL algorithm.

3.3 Classification Strategy for ABML

While classifying a new object, conflicts of ambiguous matching of the object’s
description to many rules may occur. Strategies solving them are usually based
on voting rules in the conflict set where rule evaluation measures such as sup-
port or accuracy are taken into account. For instance, a set of rules induced
by MODLEM was often used with Strength Method introduced by Grzymala in
[3], where all matched rules vote for a given class according to their strength
– support being the number of covered learning examples from the given class
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(for other strategies see [10]). The voting strategies may lower the role of ar-
gumented rules in classifying new objects as they may be supported by fewer
examples (because they are usually built for difficult examples, see discussion
in the following section) and could be overvoted by stronger and more general
non-argumented rules. However, such rules should receive more attention as they
were partly supervised by experts.

Bratko et al tried to solve this problem by choosing a single rule according to a
new quality measure, which was estimated by their own methods of extreme value
correction [8]. However, calculating its parameters is time consuming. Therefore,
we looked for simpler methods that would still have a good intuitive meaning.
Staying rather with basic support measures, we noticed similar problems in
adopting rule classifiers to deal with imbalanced data, where strength of rules
from the minority class was additionally amplified [4]. This leads us to proposing
the Average Strengths Method, which aims to balance the influence of argumented
and non-argumented rules while classifying new objects. In this method, the
strength of each argumented rule is multiplied by a factor MA defined as:

MA =
avgr ∈RnMR(r)
avgr ∈RargMR(r)

where Rarg stands for argumented rules and Rn for non-argumented rules,
MR(r) is a strength of rule r being a number of covered learning examples.

4 Identification of Examples for Argumentation

A separate, but crucial problem, is an identification of examples which should
be argumented, as it influences the final set of rules. For problems described
with a relatively small number of examples, an expert could know them all
and determine the necessary examples manually. However, for larger problems
or carrying out experiments with many data sets, an automatic selection of
examples is necessary. Following some inspiration from earlier machine learning
studies on active learning we can assume that focusing on examples difficult
or uncertain for standard classifiers may be more promising than taking into
account easy examples.

Bratko [8] sketched an idea of an iterative approach based on most frequently
misclassified examples in the cross validation procedure. Each step includes iden-
tification of only one example misclassified by the rule classifier and the argu-
mentation for this example is used to induce new set of rules. The procedure is
repeated until a given stopping criterion is met. However, it is computationally
costly, and requires time-consuming cooperation with an expert. We claim that
a one-phase solution is neccessary.

We decided to choose a set of examples which were the most frequently mis-
classified in repeated several times 10-fold cross validation. However, our pre-
liminary experiments showed that for some difficult data sets, still too many
examples ranked with the same number of errors were identified. In this case we
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decided to co-operate with the expert on selecting a smaller number of exam-
ples. For data sets further considered experimentally we established that staying
with a small percentage of the data size was sufficient and increasing it did
not bring substantial improvements with respect to the classification abilities.
While choosing examples for argumentation we also control the distribution of
examples among classes (see section 6 for more details).

5 Experiments

The main aim of the experiments is to compare the argumented rule induction
algorithm ABMODLEM against its basic, non-argumented origin MODLEM1.
We want to evaluate how much the argumentation and other modifications (as
changing evaluation measure, classification strategies) could influence the struc-
ture of the rule set (number of rules, average length of the condition parts) as
well as classification abilities. An additional aim of our study is to examine the
effect of argumentation on recognition of classes for imbalanced data. In imbal-
anced data one of the classes (called a minority class) contains a much smaller
number of examples than the remaining classes.

Table 1. Characteristics of argumented data sets

Data set No. of
examples

Argumented
examples (%)

Attributes
(Numeric)

Minority
class in %

Domain

Zoo 100 6 (6%) 17(1) 4 type of animal
G.Credit 1000 21 (2%) 20(7) 30 admission of credit
Cars 1728 33 (2%) 6(2) 4 car evaluation

For the experiments, data has to be accompanied by the expert’s argumenta-
tion. Bratko et al. in their papers [7] co-operated with real experts in problems
from law or medicine. Unfortunately, neither these data sets nor their ABCN2
implementation (including their rule evaluation measure and classification strat-
egy) are publicly available. Thus, we decided to choose data sets from the UCI
repository which come from ”intuitive” domains for which we were able to pro-
vide the argumentation on our own. The following data sets were chosen: ZOO
– describing species of animals with descriptive attributes, German Credit –
representing bank credit policy and Cars – evaluation of the quality of cars.
Moreover, all these data sets contain numerical attributes (for which MOD-
LEM or ABMODLEM is well suited) and are characterized by class imbalance.
Their characteristics are given in Table 1. To identify examples for argumenta-
tion we used a technique described in section 4. Our argumentation was based
on common or encyclopaedic knowledge. However, for some difficult examples
we additionally induced rules by various algorithms and analysed the syntax of
condition parts for the strongest and accurate patterns covering these examples.
1 Both algorithms were implemented in Java using WEKA framework.
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Table 2. Comparison of MODLEM versus ABMODLEM algorithms

Data set Algorithm Classification
strategy

Evaluation
measure

No. of
rules

No. of
conditions

Accuracy

ZOO
MODLEM Strength Entropy 14 1,31 89,3
ABMODLEM Strength WIG 9 2,19 95,8
ABMODLEM AS Entropy 9 2,19 97,0
ABMODLEM AS WIG 9 2,19 97,0

Cars
MODLEM Strength Entropy 148 4,72 90,6
ABMODLEM Strength WIG 149 4,74 91,5
ABMODLEM AS Entropy 152 4,74 94,8
ABMODLEM AS WIG 149 4,74 95,0

Credit
MODLEM Strength Entropy 172 4,09 71,4
ABMODLEM Strength WIG 123 3,91 74,6,1
ABMODLEM AS Entropy 178 4,06 73,8
ABMODLEM AS WIG 123 3,91 75,6

We compared the performance of the standard MODLEM versus ABMOD-
LEM with respect to: average rule length, average number of rules in a set and
total classification accuracy (see Table 2). We also present in this table results
of running algorithm with different rule evaluation measures and classification
strategies. Entropy denotes the class entropy used in the original formulation of
MODLEM, while WIG is a new measure described in section 3.1. Then, Strength
denotes the Grzymala classification strategy, and AS stands for our new Average
Strengths Method – see section 3.3. All evaluations were carried by 10-fold-cross-
validation. Argumentation for a given example was used only if the example
belonged to a training set. We shift the discussion of these results to the next
section, saying only that including argumentation always improved the results.

Table 3. Classification accuracies in classes (%)

ZOO
algorithm mammal bird reptile (M) fish amph. (M) insect inv.
MODLEM 100,0 100,0 0 100,0 25,0 98,0 80,0
ABMODLEM 100,0 100,0 60,0 100,0 75,0 100,0 100,0

Cars
algorithm unacc acc vgood (M) good (M)
MODLEM 100,0 79,0 35,0 56,0
ABMODLEM 99,0 95,0 50,0 65,0

Credit
algorithm bad (M) good
MODLEM 32,0 90,0
ABMODLEM 38,0 92,0
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The last experiments concerned the recognition of particular classes for each
data set, where the best configuration of ABMODLEM was compared with
MODLEM (see Table 3). As data sets are imbalanced, the minority classes
are denoted with (M) – however for two data sets two small classes have quite
similar cardinalities, so we marked them both.

6 Discussion and Final Remarks

Let us discuss the experimental results. First of all, taking into consideration the
argumentation of examples (ABMODLEM), it always led to an improvement of
the overall classification accuracy (see the last column of Table 2). Moreover,
one can see that ABMODLEM generated a slightly smaller set of rules (except
Cars data). We can also say, that the number of argumented examples is not
very high, comparing to the size of the data set (less than 10%) - although we
did not carry out too many additional experiments on changing this number.

Then, the new measure for evaluating candidates for condition parts of rules
(Weighted Information Gain WIG in ABMODLEM) was more useful than class
entropy (previously used in non-argumented MODLEM).

Furthermore, the new proposed AS classification strategy always improved
the overall classification accuracy compared to the standard strategy where more
specific argumented rules could be outvoted by more general non argumented
rules being in the same conflict set. We should mention that we also tested
yet another classification strategy, which was based on arbitrarily choosing the
strongest argumented rule from the conflict set. However, it always decreased
the classification accuracy compared to the two above-mentioned strategies, so
due to the paper size we have skipped its presentation.

Finally, analysing results from Table 3 we can see that the argumentation
influenced the classification in particular classes. For instance, in ZOO data the
recognition of the ”reptile” minority class increased from 0% to 96%; in Cars for
”very good” class that improvement was 15%; and 6% for the ”bad credits” class
in German Credit. On the one hand, we should add that this could be because
arguments were often created just for difficult, misclassified examples that were
coming from minority classes in the original set. On the other hand, the observed
improvement in the minority classes did not decrease too much recognition of the
majority classes (no decrease for ZOO and Credit, a small percentage only for
Cars). We should mention that in one additional experiment for German Credit
data with changing argumentation we also noticed that choosing arguments only
from the minority class worked worse than also argumenting a few majority class
examples. In conclusion, the proper argumentation for chosen examples may be
seen as a valid method for improving classifier learning from imbalanced data,
which according to our best knowledge was not studied before.

We could not directly compare our approach against Bratko et al. ABNC2 as
it was not available. However, we carried out an additional comparative study
of the best variant of ABMODLEM vs. non-argumented RIPPER rule induc-
tion and C4.8 tree algorithm (WEKA implementations). For ABMODLEM the
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overall accuracy was still better (from 2 to 12% improvement for RIPPER and
from 4 to 15% for C4.8, depending on the data) and it worked even better for
imbalanced classes (improvement by up to 75%).

Although our research on the generalization of rule induction was inspired by
earlier works of Bratko et al., we claim that our experimental results extend the
knowledge of usefulness of the ABML paradigm. Moreover, we have proposed
new methodological elements improving the construction of rule classifiers and
the handling of class imbalance.

Last but not least, the proper choice examples for expert’s argumentation is
a crucial issue. Although we identified them as the most frequently misclassified
examples in repeated cross-validation and it worked well in our experiments, we
are not completely satisfied as for two data sets (cars and german credit) we
still received too many examples with the same number of errors and had to
post-process them. So, it is still an open problem and other methods of selecting
examples should be studied. In our on-going research we are currently examining
another approach for estimating uncertainty of the classification decision for
critical examples. Finally, when the class imbalance is important, this approach
should in some way control the distribution of selected examples among classes.
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Abstract. In the paper we present a new framework for improving clas-
sifiers learned from imbalanced data. This framework integrates the SPI-
DER method for selective data pre-processing with the Ivotes ensemble.
The goal of such integration is to obtain improved balance between the
sensitivity and specificity for the minority class in comparison to a sin-
gle classifier combined with SPIDER, and to keep overall accuracy on a
similar level. The IIvotes framework was evaluated in a series of experi-
ments, in which we tested its performance with two types of component
classifiers (tree- and rule-based). The results show that IIvotes improves
evaluation measures. They demonstrated advantages of the abstaining
mechanism (i.e., refraining from predictions by component classifiers) in
IIvotes rule ensembles.

1 Introduction

Learning classifiers from imbalanced data has received a growing research inter-
est in the last decade. In such data, one of the classes (further called a minority
class) contains significantly smaller number of objects than the remaining major-
ity classes. The imbalanced class distribution causes difficulties for the majority
of learning algorithms because they are biased toward the majority classes and
objects from the minority class are frequently misclassified, what is not accept-
able in many practical applications.

Several methods have been proposed to deal with learning from imbalanced
data (see [5,6] for reviews). These methods can be categorized in two groups. The
first group includes classifier-independent methods that rely on transforming the
original data to change the distribution of classes, e.g., by re-sampling. The other
group involves modifications of either learning or classification strategies.

In this paper, we focus on re-sampling techniques. The two well known meth-
ods are SMOTE for selective over-sampling of the minority class [3], and NCR
for removing objects from the majority classes [8]. Stefanowski and Wilk also
proposed a new method to selective pre-processing combining filtering and over-
sampling of imbalanced data (called SPIDER) [11]. Experiments showed that it
was competitive to SMOTE and NCR [12]. Unfortunately, for some data sets
the improvement of the sensitivity for the minority class was associated with
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too large decrease of specificity for this class (it translated into worse recogni-
tion of objects from the majority classes). It affects SPIDER and other methods
included in the experiment. In our opinion it is an undesirable property as in
many problems it is equally important to improve sensitivity of a classifier in-
duced from imbalanced data and to keep its specificity and overall accuracy at
an acceptable level (i.e., both measures should not deteriorate too much compar-
ing to a classifier induced from data without pre-processing). We claim that in
general there is a kind of trade off between these measures and too large drop of
specificity or accuracy may not be accepted. Thus, our goal is to modify SPIDER
in a way that would improve this trade-off.

To achieve it we direct out attention to adaptive ensemble classifiers which
iteratively construct a set of component classifiers. Such classifiers optimize the
overall accuracy, by iteratively learning objects which were difficult to classify
in previous iterations. However, as these objects are sampled from the original
learning set which is predominated by the majority classes, even misclassified
objects may be still biased toward these classes. Our proposition to overcome this
problem is using the SPIDER method to transform each sample in succeeding
iterations. It should increase the importance of the minority class objects in
learning each component classifier. As an ensemble we decided to consider the
Ivotes approach introduced by Breiman in [2], as it is already based on a kind
of focused sampling of learning objects. Moreover, we have already successfully
applied this ensemble with the MODLEM rule induction algorithm [9,10] and we
think its classification strategy could be biased toward the minority class with
so-called abstaining [1].

A similar idea of using adaptive ensembles was followed in the SMOTEBoost
algorithm [4], where the basic SMOTE method was successfully integrated with
changing weights of objects inside the AdaBoost procedure. Results reported
in the related literature show that Ivotes gives similar classification results as
boosting, therefore we hope that our solution will also work efficiently.

The main aim of this paper is to present the new framework for dealing with
imbalanced data based on incorporating SPIDER into the Ivotes ensemble. We
evaluate its performance experimentally on several imbalanced data sets and
we compare it to the performance of single classifiers combined with SPIDER.
We consider tree-based and rule-based classifiers induced by the C4.5 and the
MODLEM algorithms respectively, as according to previous studies they are
sensitive to the class imbalance [11,12].

2 Related Works

We discuss only these re-sampling methods that are most related to our study.
For reviews of other approaches see [5,6]. Kubat and Matwin in their paper on
one-side sampling claimed that characteristics of mutual positions of objects is
a source of difficulty [7]. They focus attention on noisy objects located inside
the minority class and borderline objects. Such objects from the majority classes
are removed while keeping the minority class unchanged. The NCR method
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introduced in [8], which uses the Edited Nearest Neighbor Rule (ENNR) and
removes these objects from the majority classes that are misclassified by its k
nearest neighbors. The best representative of focused over-sampling is SMOTE
that over-samples the minority class by creating new synthetic objects in the
k-nearest neighborhood [3].

However, some properties of these methods are questionable. NCR or one-
side-sampling may remove too many objects from the majority classes. As a
result improved sensitivity is associated with deteriorated specificity. Random
introduction of synthetic objects by SMOTE may be questionable or difficult to
justify in some domains. Moreover, SMOTE may blindly ”over-generalize” the
minority class area without checking positions of the nearest objects from the
majority classes, thus increasing overlapping between classes.

Following this criticism Stefanowski and Wilk introduced SPIDER – a new
method for selective pre-procesing [11]. It combines removing these objects from
the majority classes that may result in misclassification of objects from the mi-
nority class, with local over-sampling of these objects from the minority class
that are ”overwhelmed”by surrounding objects from the majority classes. On the
one hand, such filtering is less greedy than the one employed by NCR, and on
the other hand, over-sampling is more focused that this used by SMOTE. SPI-
DER offers three filtering options that impact modification of the minority class
and result in changes of increasing degree and scope: weak amplification, weak
amplification and relabeling, and strong amplification. More detailed description
is given in Section 3.

Finally, let us note that various re-sampling techniques were integrated with
ensembles. The reader is referred to a review in [6] that besides SMOTEBoost de-
scribes such approaches as DataBoost-IM or special cost-sensitive modifications
of AdaBoost.

3 Proposed Framework

Our framework combines selective pre-processing (SPIDER) with an adaptive
ensemble of classifiers. We decided to use Ivotes [2] as the ensemble due to rea-
sons given in Section 1. Briefly speaking Ivotes similarly to boosting sequentially
adds a new classifier to the current ensemble by analysing its classification per-
formance and partly adapting to objects that are difficult to learn in succeeding
iterations. However, unlike boosting it uses different mechanism for focusing
learning on these objects (importance sampling) and another final aggregation
rule which comes from bagging. We propose to incorporate SPIDER inside this
ensemble to obtain a classifier more focused on minority class. However, due to
the construction of the ensemble and its general controlling criterion (accuracy)
we still expect that it should sufficiently balance the sensitivity and specificity
for the minority class.

The resulting Imbalanced Ivotes (shortly called IIvotes) algorithm is presented
in Figure 1. In each iteration, IIvotes creates a new training set from LS by
importance sampling. The rationale for the importance sampling is that the
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new training set will contain about equal numbers of incorrectly and correctly
classified objects. In this sampling an object is randomly selected with all objects
having the same probability of being selected. Then it is classified by an out-of-
bag classifier (i.e., ensemble composed of all classifiers which were not learned on
the object). If the object is misclassified then it is selected into the new training
set Si. Otherwise, it is sampled into Si with probability e(i)

1−e(i) , where e(i) is
a generalization error. Sampling is repeated until n objects are selected. Each
Si is processed by SPIDER. In each iteration, e(i) is estimated by out-of-bag
classifier. IIvotes iterates until e(i) stops decreasing.

Algorithm 1. IIvotes
Input : LS – learning set; TS – testing set; n – size of learning data set; LA –

learning algorithm; cmin – the minority class; k – the number of
nearest neighbors; opt – pre-processing option of SPIDER

Output: C∗ final classifier

Learning phase
while e(i) < e(i − 1) do

Si := importance sample of size n from LS
Si := SPIDER (Si, cmin, k, opt) {selective pre-processing of Si}
Ci := LA (Si) {construct a base classifier}
e(i) := estimate generalization error by out-of-bag classifier
i := i + 1

Classification phase
foreach x ∈ TS do

C∗(x) = arg maxX

∑T
i=1(Ci(x) = X) {the class with maximum number of

votes is chosen as a final label for x}

The SPIDER is presented in Figure 2. In the pseudo-code we use the following
auxiliary functions (in all these functions we employ the heterogeneous value
distance metric (HVDM) [8] to identify the nearest neighbors of a given object):

– correct(S, x, k) – classifies object x using its k-nearest neighbors in set S
and returns true or false for correct and incorrect classification respectively.

– flagged(S, c, f) – identifies and returns a subset of objects from set S that
belong to class c that are flagged as f .

– knn(S, x, k, c, f) – identifies and returns these objects among the k-nearest
neighbors of x in set S that belong to class c and are flagged as f .

– amplify(S, x, k, c, f) – amplifies object x by creating its |knn(S, x, k, c,
f)| copies and adding it to set S (where |.| denotes the cardinality of a set).

SPIDER consists of two main phases – identification and pre-processing. In the
first phase it identifies the ”local” characteristics of objects following the the
idea of ENNR [8], flags them appropriately, and marks questionable objects
from cmaj for possible removal. In the second phase , depending on the pre-
processing option SPIDER amplifies selected objects from cmin, relabels selected
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Algorithm 2. SPIDER
Input : DS – data set; cmin – the minority class; k – the number of nearest

neighbors; opt – pre-processing option (weak = weak amplification,
relabel = weak amplification and relabeling, strong = strong
amplification)

Output: pre-processed DS

cmaj := an artificial class combining all the majority classes in DS

Identification phase
foreach x ∈ DS do

if correct(DS, x, k) then flag x as safe
else flag x as noisy

RS := flagged(DS, cmaj , noisy)

Pre-processing phase
if opt = weak ∨ opt = relabel then

foreach x ∈ flagged(DS, cmin, noisy) do amplify(DS, x, k, cmaj , safe)
if opt = relabel then

foreach x ∈ flagged(DS, cmin, noisy) do
foreach y ∈ knn(DS, x, k, cmaj, noisy) do

change classification of y to cmin

RS := RS \{y}
else // opt = strong

foreach x ∈ flagged(DS, cmin, safe) do amplify(DS, x, k, cmaj , safe)
foreach x ∈ flagged(DS, cmin, noisy) do

if correct(DS, x, k + 2) then amplify(DS, x, k, cmaj , safe)
else amplify(DS, x, k + 2, cmaj , safe)

DS := DS \ RS

questionable objects from cmaj (i.e., their class is changed to cmin), and finally
removes remaining questionable objects from cmaj from a resulting data set.
Much more thorough description of the method is provided in [11,12].

Let us remark that Ivotes ensembles proved to improve their performance in
terms of predictive accuracy with component classifiers that are able to abstain,
i. e., they do not classify objects when they are not sufficiently certain [1]. We are
interested in checking whether abstaining could also help in classifying objects
from the minority class. According to our previous experience [1], abstaining can
be implemented by changing classification strategies inside rule ensembles (by
refraining from prediction, when the new object is not precisely covered by rules
in the component classifiers).

4 Experiments

The main aim of our experiments was to evaluate the ability of the new IIvotes
framework to balance the recognition of minority and majority classes. Thus,
we compared the performance of IIvotes with three pre-processing options for
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SPIDER (weak, relabel and strong – see Figure 2) to the performance of single
classifiers combined with the same SPIDER pre-processing. Moreover, for com-
prehensive comparison we introduced the following baseline classifiers (further
denoted as base) – Ivotes ensembles for IIvotes ensembles and single classifiers
without any pre-processing for single classifiers with SPIDER.

We constructed all classifiers with two learning algorithms – C4.5 (J48 from
WEKA) for decision trees and MODLEM for decision rules (MODLEM is de-
scribed in [9,10] and applied together with Grzymala’s LERS strategy for classi-
fying new objects [?]). Both algorithms were run without prunning to get more
precise description of the minority class. SPIDER was used with k = 3 neighbors
and the size of sample n in IIvotes was set to 50% based on our experience from
previous experiments. In case of rule ensembles, besides the basic construction,
we additionally tested a version with abstaining of component classifiers [1]. All
algorithms were implemented in Java using WEKA.

Table 1. Characteristics of data sets

Data set Objects Attributes Minority class Imbalance ratio

abdominal-pain 723 13 positive 27.94%
balance-scale 625 4 B 7.84%
breast-cancer 286 9 recurrence events 29.72%
bupa 345 6 sick 42.03%
car 1728 6 good 3.99%
cleveland 303 13 positive 11.55%
cmc 1473 9 long-term 22.61%
ecoli 336 7 imU 10.42%
german 666 20 bad 31.38%
haberman 306 3 died 26.47%
hepatitis 155 19 die 20.65%
pima 768 8 positive 34.90%
transfusion 748 4 yes 23.80%

The experiments were carried out on 13 data sets listed in Table 1. They
either came from the UCI repository1 or from our medical case studies (abdom-
inal pain). We selected data sets that were characterized by varying degrees of
imbalance and that were used in other related works.

All experiments were run with a stratified 10-fold cross-validation repeated
five times. Besides recording average values of sensitivity, specificity and overall
accuracy we also used G-mean – geometric mean of sensitivity and specificity
– to evaluate the balance between these two measures [7]. Although AUC mea-
sure could also be used, we stay with G-mean as it sufficiently characterizes
deterministic (non-threshold) classifiers and it has been used in many studies on
learning from imbalanced data. G-mean for tree- and rule-based classifiers are

1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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presented in Table 2 and 3. Moreover, in Table 4 we show G-mean for IIvotes
rule ensembles with abstaining.

Table 2. G-mean for tree-based classifiers

Single C4.5 Ivotes / IIvotes + C4.5
Data set

Base Weak Relabel Strong Base Weak Relabel Strong

abdominal-pain
balance-scale
breast-cancer
bupa
car
cleveland
cmc
ecoli
german
haberman
hepatits
pima
transfusion

0.7812 0.7859 0.7807 0.7919
0.0249 0.2648 0.3646 0.2562
0.5308 0.5487 0.5824 0.5602
0.6065 0.6032 0.5628 0.6037
0.8803 0.9261 0.8603 0.9111
0.3431 0.4531 0.5052 0.4079
0.5533 0.6378 0.6175 0.6310
0.6924 0.7728 0.7788 0.7852
0.5828 0.6114 0.6113 0.6086
0.5375 0.6089 0.6083 0.6118
0.5386 0.5971 0.6518 0.5534
0.6949 0.6978 0.7046 0.6986
0.5992 0.6276 0.6317 0.6252

0.8052 0.8216 0.8239 0.8157
0.0881 0.4584 0.3827 0.5232
0.5467 0.6068 0.5868 0.5683
0.6635 0.6804 0.7019 0.6612
0.8093 0.9149 0.8945 0.9171
0.2759 0.4411 0.3914 0.4896
0.5813 0.6620 0.6439 0.6547
0.7443 0.8383 0.8122 0.8462
0.5947 0.6738 0.6615 0.6662
0.4750 0.6256 0.6085 0.6167
0.7115 0.7642 0.7466 0.7422
0.7255 0.7401 0.7340 0.7343
0.5181 0.6492 0.6523 0.6309

Table 3. G-means for rule-based classifiers (rule ensembles without abstaining)

Data set
Single MODLEM Ivotes / IIvotes + MODLEM

Base Weak Relabel Strong Base Weak Relabel Strong

abdominal-pain 0.7731 0.7968 0.7914 0.7946 0.7933 0.8321 0.8183 0.8278
balance-scale 0.0000 0.1913 0.1613 0.1722 0.0634 0.1125 0.0729 0.1454
breast-cancer 0.5008 0.5612 0.5104 0.5687 0.4748 0.5571 0.5462 0.5837
bupa 0.6502 0.5969 0.6725 0.5989 0.6703 0.6800 0.7002 0.6920
car 0.8978 0.9547 0.9404 0.9489 0.9021 0.9722 0.9638 0.9779
cleveland 0.3292 0.4360 0.3738 0.4673 0.1063 0.3307 0.2364 0.3628
cmc 0.5171 0.6320 0.5770 0.6218 0.5304 0.6660 0.6029 0.6575
ecoli 0.6502 0.7736 0.6655 0.7763 0.6140 0.7879 0.7233 0.7969
german 0.5499 0.6147 0.5719 0.6337 0.5133 0.6272 0.5838 0.6382
haberman 0.4588 0.5382 0.4790 0.5702 0.4345 0.5403 0.4807 0.5570
hepatits 0.6140 0.6861 0.6082 0.6482 0.6142 0.6637 0.6702 0.6817
pima 0.6576 0.7190 0.6832 0.7148 0.6510 0.7356 0.6944 0.7271
transfusion 0.5128 0.6153 0.5422 0.6103 0.4848 0.6100 0.5693 0.6239

For pairwise comparison of classifiers over all data sets we used the Wilcoxon
Signed Ranks Test (confidence α = 0.05). Considering the results of GM for
tree-based classifiers (see Table 2) all single classifiers with any SPIDER pre-
processing and all IIvotes ensembles were always significantly better than their
baseline versions. Also all IIvotes ensembles were significantly better than single
classifiers with a corresponding SPIDER option. Moreover, the IIvotes ensembles
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Table 4. G mean for rule ensembles with abstaining

Data set
Ivotes / IIvotes + MODLEM

Base Weak Relabel Strong

abdominal-pain 0.7995 0.8345 0.8284 0.8400
balance-scale 0.0625 0.1637 0.0878 0.2470
breast-cancer 0.5203 0.5776 0.5716 0.5886
bupa 0.7045 0.7058 0.7124 0.6933
car 0.9426 0.9743 0.9780 0.9834
cleveland 0.2361 0.4028 0.3232 0.4420
cmc 0.5630 0.6684 0.6353 0.6709
ecoli 0.7098 0.8077 0.7706 0.8245
german 0.6055 0.6852 0.6512 0.6885
haberman 0.4944 0.5704 0.5044 0.5625
hepatits 0.6759 0.7047 0.7005 0.7240
pima 0.7049 0.7507 0.7306 0.7430
transfusion 0.5331 0.6212 0.5851 0.6324

Table 5. Overall accuracy [%] for tree-based classifiers

Data set Single C4.5 Ivotes / IIvotes + C4.5
Base Weak Relabel Strong Base Weak Relabel Strong

abdominal-pain 82.84 77.45 76.87 77.92 85.20 81.77 83.21 81.30
balance-scale 78.65 73.34 72.99 73.81 84.67 80.83 80.64 79.07
breast-cancer 65.40 59.12 59.89 58.91 66.71 63.36 62.87 56.78
bupa 65.56 60.18 56.84 60.20 69.39 67.42 69.86 65.28
car 93.99 95.04 94.20 94.78 92.89 92.91 93.02 92.88
cleveland 82.25 81.52 80.98 81.86 85.08 83.83 83.70 83.70
cmc 49.25 49.27 46.58 48.46 51.57 50.69 50.98 49.45
ecoli 91.91 90.55 89.23 91.50 92.80 91.90 92.68 91.19
german 66.00 65.44 63.33 65.50 71.05 71.86 73.06 70.54
haberman 70.08 61.26 59.87 60.88 92.06 90.00 90.65 90.56
hepatits 78.47 75.93 76.16 73.74 72.55 66.67 67.39 62.88
pima 73.96 69.42 69.63 69.66 84.39 83.10 83.10 82.84
transfusion 77.75 66.15 65.61 60.85 75.65 74.14 74.24 73.23

with the weak and strong options were always superior to any single classifier
with any SPIDER option. After comparing pairs of Iivotes ensembles we were
not able to reject the null hypothesis on equal performance for the weak and
strong options, however, both of them were better than relabel.

We obtained similar results of the Wilcoxon test for rule ensembles with ab-
staining (see Table 4 and the left part of Table 3), although the superiority of
the IIvotes ensemble with relabel over the single classifier with the same SPIDER
option is slightly smaller (p = 0.03 while previously it was close to 0.01). Fur-
thermore, the IIvotes ensembles with the strong option was nearly significant bet-
ter than the IIvotes ensemble with the weak option (p = 0.054). Considering the
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results for the non-abstaining ensembles (Table 3), the Wilcoxon test revealed that
the IIvotes ensembles weak and strong option were significantly better than the
single classifiers with the same pre-processing option, however, the advantage was
smaller than for the variant with abstaining.

While analysing the sensitivity measure alone we noticed that SPIDER com-
bined with single classifiers is still better than IIvotes for many data sets (due to
page limits we cannot show more tables with detailed results). Finally, consid-
ering the overall accuracy results of Wilcoxon test show that IIvotes integrated
with SPIDER is always better than its single classifier version (see Table 5 for
trees, results for rules are analogous).

5 Final Remarks

In this paper we proposed a new framework that integrates the SPIDER method
for selective data pre-processing into the Ivotes ensemble. This integration aims
at obtaining a better trade-off between sensitivity and specificity for the minority
class than SPIDER combined with a single classifier.

Experimental results showed that the proposed IIvotes framework led to sig-
nificantly better values of G-mean than single classifier combined with SPIDER.
Despite improving the sensitivity of the minority, a satisfactory value of speci-
ficity is preserved, what was not achieved by SPIDER alone and other related
re-sampling techniques (previous experiments [12] showed that also NCR and
to some extent SMOTE suffered from decreasing specificity). However, an inte-
gration with single classifiers could be still attractive if one wants to improve
sensitivity only without caring about other measures.

After comparing possible pre-processing options of the IIvotes framework we
can say that weak and strong amplification (particularly the latter) are more
efficient than relabel. Moreover, IIvotes was successful in keeping the overall ac-
curacy at an acceptable level, comparable to baseline classifiers. Let us notice
that using the standard version of Ivotes ensemble was not successful – G-mean
did not differ significantly from values reported for single classifiers. We expect
that even using a re-sampling filter to transform the whole data before construct-
ing the ensemble is also a worse solution than integrating it inside the ensemble
– see the discussion in [4].

Abstaining turned out to be a useful extension of rule ensembles as it improved
their performance with respect to all considered measures. Let us remind that
component classifiers in the IIvotes ensemble use unordered rule sets and the
LERS classification strategy, where the conflict caused by matching a classified
object to multiple rules is solved by voting with rule support. This strategy is
biased toward rules from the majority classes as they are stronger and more gen-
eral than rules from the minority class. This is the reason why objects from the
minority class are more likely to be misclassified. Thus, refraining from making
wrong predictions in some classifiers gives a chance to other component classi-
fiers (that are more expertized for the new object) to have greater influence on
the final outcome of the rule ensemble.
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Our future research in processing imbalance data with rule-based ensemble
classifier covers two topics. The first one is studying the impact of changing
the control criterion in the ensemble from general error (or accuracy) toward
measures typical for imbalanced data. The second one is exploitation of other
classification strategies which could improve the role of rules for the minority
class and combining them with SPIDER.

References
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Abstract. In this paper we studied re-sampling methods for learning
classifiers from imbalanced data. We carried out a series of experiments
on artificial data sets to explore the impact of noisy and borderline exam-
ples from the minority class on the classifier performance. Results showed
that if data was sufficiently disturbed by these factors, then the focused
re-sampling methods – NCR and our SPIDER2 – strongly outperformed
the oversampling methods. They were also better for real-life data, where
PCA visualizations suggested possible existence of noisy examples and
large overlapping ares between classes.

1 Introduction

In some real-life problems, the distribution of examples in classes is highly im-
balanced, which means that one of the classes (further called a minority class)
includes much smaller number of examples than the other majority classes [1,3].
Class imbalance constitutes a difficulty for most learning algorithms, which as-
sume even class distribution and are biased toward learning and recognition of
the majority classes. As a result, minority examples tend to be misclassified.

This problem has been intensively researched in the last decade and several
methods have been proposed (see [1,3] for a review). They are usually divided
into solutions on the data level and the algorithmic level. Solutions on the data
level are classifier-independent and consist in transforming an original data dis-
tribution to change the balance between classes, e.g., by re-sampling techniques.
Solutions on the algorithmic level involve modification of either learning or clas-
sification strategies. Some researchers also generalize ensembles or transform the
imbalance problem to cost sensitive learning [3].

In this paper we are interested in focused re-sampling techniques, which mod-
ify the class distribution taking into account local characteristics of examples.
Inspired by [6] we distinguish between safe, borderline and noisy examples. Bor-
derline examples are located in the area surrounding class boundaries, where
the minority and majority classes overlap. Safe examples are placed in relatively
homogeneous areas with respect to the class label. Finally, by noisy examples we
understand individuals from one class occurring in safe areas of the other class.
We claim that the distribution of borderline and noisy examples causes difficul-
ties for learning algorithms, thus we focus our interest on careful processing of
these examples.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 158–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Learning from Imbalanced Data in Presence of Noisy 159

Our study is related to earlier works of Stefanowski and Wilk on selective
pre-processing with the SPIDER (Selective Preprocessing of Imbalanced Data)
method [8,9]. This method employs the Edited Nearest Neighbor Rule (ENNR)
to identify the local characteristic of examples, and then it combines removing
the majority class objects that may result in misclassifying objects from the
minority class with local over-sampling of these objects from the minority class
that are “overwhelmed” by surrounding objects from the majority classes. Ex-
periments showed that this method improved the recognition of the minority
class and was competitive to the most related approaches SMOTE and NCR [9].
The observed improvements varied over different imbalanced data sets, therefore,
in this study we have decided to explore conditions, where the SPIDER method
could be more efficient than simpler re-sampling methods. To achieve this goal
we have planned controlled experiments with special artificial data sets.

According to related works many experiments were conducted on real-life data
sets (e.g., coming from UCI). The most well known studies with artificial data are
the works of Japkowicz [4,5], who showed that simple class imbalance ratio was
not the main difficulty. The degradation of performance was also related to other
factors, mainly to small disjuncts, i.e., the minority class being decomposed into
many sub-clusters with very few examples. Other researchers also explored the
effect of overlapping between imbalanced classes – more recent experiments on
artificial data with different degrees of overlapping also showed that overlapping
was more important than the overall imbalance ratio [2].

Following these motivations we prepare our artificial data sets to analyze the
influence of the presence and frequency of the noisy and borderline examples. We
also plan to explore the effect of the decomposition of this class into smaller sub-
clusters and the role of changing decision boundary between classes from linear
to non-linear shapes. The main aim of our study is to examine which of these
factors were critical for the performance of the methods dealing with imbalanced
data. In the experiments we compare the performance of the SPIDER method
and the most related focused re-sampling NCR method with the oversampling
methods suitable to handle class decomposition [5] and the basic versions of tree-
or rule-based classifiers.

2 Focused Re-sampling Methods

Here we discuss only these re-sampling methods that are used in our experiments.
The simplest oversampling randomly replicates examples from the minority class
until the balance with cardinality of the majority classes is obtained. Japkowicz
proposed an advanced oversampling method (cluster oversampling) that takes
into account not only between-class imbalance but also within-class imbalance,
where classes are additionally decomposed into smaller sub-clusters [5]. First,
random oversampling is applied to individual clusters of the majority classes
so that all the sub-clusters are of the same size. Then, minority class clusters
are processed in the same way until class distribution becomes balanced. This
approach was successfully verified in experiments with decomposed classes [5]. In
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[6] one side sampling was proposed, where noisy and borderline examples from
the majority class are removed and the minority class remains unchanged. A
similar idea was employed in the NCR (Neighborhood Cleaning Rule) method
[7]. NCR applies ENNR to identify and remove noisy and borderline examples
from the majority classes. NCR demonstrates a few undesirable properties (e.g.,
improvement of sensitivity at the cost of specificity) and their critical analysis
has become a starting point for the family of the SPIDER methods. Following [6],
they rely on the local characteristics of examples discovered by analyzing their
k-nearest neighbors. SPIDER2 is presented in Alg. 1. To simplify the notation
we do not distinguish between noisy and borderline examples and refer to them
simply as not-safe.

Algorithm 1. SPIDER2
Input : DS – data set; cmin – the minority class; k – the number of nearest

neighbors; relabel – relabeling option (yes, no); ampl – amplification
option (no, weak, strong)

Output: preprocessed DS
1 cmaj := an artificial class combining all classes except cmin

2 foreach x ∈ class(DS, cmaj) do
3 if correct(DS, x, k) then flag x as safe
4 else flag x as not-safe

5 RS := flagged(DS, cmaj , not-safe)
6 if relabel then
7 foreach y ∈ RS do
8 change classification of y to cmin

9 SR := SR \ {y}
10 else DS := DS \ RS
11 foreach x ∈ class(DS, cmin) do
12 if correct(DS, x, k) then flag x as safe
13 else flag x as not-safe

14 if ampl = weak then
15 foreach x ∈ flagged(DS, cmin, not-safe) do amplify(DS, x, k)
16 else if ampl = strong then
17 foreach x ∈ flagged(DS, cmin, not-safe) do
18 if correct(DS, x, k + 2) then amplify(DS, x, k)
19 else amplify(DS, x, k + 2)

In the pseudo-code we use the following auxiliary functions: correct(S, x, k)
– classifies example x using its k-nearest neighbors in set S and returns true or
false for correct and incorrect classification respectively; class(S, c) – returns a
subset of examples from S that belong to class c; flagged(S, c, f) – returns a
subset of examples from S that belong to class c and are flagged as f ; knn(S, x,
k, c) – identifies and returns these examples among the k-nearest neighbors of x
in S that belong to class c; amplify(S, x, k) – amplifies example x by creating
its n-copies and adding them to S. n is calculated as |knn(DS, x, k, cmaj)| –
|knn(DS, x, k, cmin)| + 1. In these functions we employ the heterogeneous value
distance metric (HVDM) [7] to identify the nearest neighbors of a given example.
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SPIDER2 consists of two phases corresponding to pre-processing of cmaj and
cmin respectively. In the first phase (lines 2–10) it identifies the characteristics
of examples from cmaj , and depending on the relabel option it either removes or
relabels noisy examples from cmaj (i.e., changes their classification to cmin). In
the second phase (lines 11–19) it identifies the characteristic of examples from
cmin considering changes introduced in the first phase. Then, noisy examples
from cmin are amplified (by replicating them) according to the ampl option.
This two-phase structure is a major difference from the first SPIDER version [8],
which first identified the nature of examples and then simultaneously processed
cmaj and cmin. As we noticed in [9] such processing could result in too extensive
modifications in some regions of cmaj and deteriorated specifity – this drawback
has been addressed in SPIDER2. Minor differences include the scope of relabeling
noisy examples from cmaj and the degree of amplifying noisy examples from cmin.

3 Experiments with Artificial Data Sets

3.1 Preparation of Data Sets

Following the discussion in Section 1 on the factors influencing the performance
of classifiers learned from imbalanced data, we decided to prepare artificial data
sets in order to control these factors. We focused on binary classification problems
(the minority vs. the majority class) with examples randomly and uniformly
distributed in the two-dimensional space (both attributes were real-valued).

We considered three different shapes of the minority class: subclus, clover and
paw, all surrounded uniformly by the majority class. In subclus, examples from
the minority class are located inside rectangles following related works on small
disjuncts [4]. Clover represents a more difficult, non-linear setting, where the
minority class resembles a flower with elliptic petals (Fig. 1 shows clover with
5 petals). Finally, in paw the minority class is decomposed into 3 elliptic sub-
regions of varying cardinalities, where two subregions are located close to each
other, and the remaining smaller sub-region is separated (see Fig. 2). Such a
shape should better represent real-life data than clover. Moreover, both clover
and paw should be more difficult to learn than simple circles that were considered
in some related works.

We generated multiple data sets with different numbers of examples (ranging
from 200 to 1200) and imbalance ratios (from 1:3 to 1:9). Additionally, following
Japkowicz’s research on small disjuncts [4], we considered a series of the subclus
and clover shapes with the number of sub-regions ranging from 1 to 5, and from
2 to 5 respectively. In a preliminary experiment we used tree- and rule-based
classifiers on these data sets. Due to the space limit, we are not able to present
the complete results. Let us only comment that they are consistent with the
observations reported in [5] – increasing the number of sub-regions combined
with decreasing the size of a data set degraded the performance of a classifier.

According to the results of the preliminary experiment we finally selected a
group of data sets with 800 examples, the imbalance ratio of 1:7, and 5 sub-
regions for the subclus and clover shapes. All these sets presented a significant
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Fig. 1. Clover data set Fig. 2. Paw data set

challenge for a stand-alone classifier. We also observed similar behavior for data
sets with 600 examples, but due to space limit we did not describe these data
sets in the paper.

3.2 Disturbing Borders of the Minority-Class Subregions

In the first series of experiments we studied the impact of disturbing the borders
of sub-regions in the minority class. We simulated it by increasing the ratio of
borderline examples from the minority class subregions. We changed this ratio
(further called the disturbance ratio) from 0 to 70%. The width of the borderline
overlapping areas was comparable to the width of the sub-regions. We employed
rule- and tree-based classifiers induced with the MODLEM and C4.5 algorithms,
as they had been used in earlier studies [9] and had shown to be sensitive to the
class imbalance. Both algorithms were run without prunning to get more precise
description of the minority class.

The constructed classifiers were combined with the following pre-processing
methods: random oversampling (RO), cluster oversampling (CO), NCR and SPI-
DER2 (SP2). Cluster oversampling was limited to the minority class, and our
method was used with relabeling and strong amplification (relabel = yes, ampl
= strong – see Section 2 for details) as such combination performed best in our
earlier studies. For baseline results (Base), we ran both classifiers without any
pre-processing. As evaluation measures we used sensitivity and specificity for
the minority class, their geometric mean (G-mean), and the overall accuracy.
We chose G-mean over AUC because it was more intuitive and suited to deter-
ministic rule- and tree-based classifiers. All measures were estimated by 10-fold
cross validation repeated 5 times.

Table 1 presents sensitivity recorded for data sets of different shapes (sub-
clus, clover and paw) and different degrees of disturbance (0, 30, 50 and 70%).
Increasing this degree strongly deteriorated the performance of both baseline
classifiers. Pre-processing always improved performance in comparison to Base.
RO and CO performed comparably on all data sets, and on non-disturbed data
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Table 1. Sensitivity for artificial data sets with varying degree of the disturbance ratio

Data set MODLEM C4.5
Base RO CO NCR SP2 Base RO CO NCR SP2

subclus-0 0.8820 0.8820 0.9040 0.8640 0.8800 0.9540 0.9500 0.9500 0.9460 0.9640
subclus-30 0.5600 0.5520 0.5500 0.5540 0.5540 0.4500 0.6840 0.6720 0.7160 0.7720
subclus-50 0.3400 0.3580 0.3960 0.5300 0.4360 0.1740 0.6160 0.6000 0.7020 0.7700
subclus-70 0.1980 0.2380 0.2600 0.4300 0.3900 0.0000 0.6380 0.7000 0.5700 0.8300
clover-0 0.5720 0.5740 0.6060 0.6380 0.6560 0.4280 0.8340 0.8700 0.4300 0.4860
clover-30 0.4300 0.4300 0.4520 0.5700 0.5000 0.1260 0.7180 0.7060 0.5820 0.7260
clover-50 0.2860 0.3420 0.3380 0.5420 0.4040 0.0540 0.6560 0.6960 0.4460 0.7700
clover-70 0.2100 0.2520 0.2740 0.5100 0.3700 0.0080 0.6340 0.6320 0.5460 0.8140
paw-0 0.8320 0.8460 0.8560 0.8640 0.8180 0.5200 0.9140 0.9000 0.4900 0.5960
paw-30 0.6100 0.6260 0.6180 0.6660 0.6440 0.2640 0.7920 0.7960 0.8540 0.8680
paw-50 0.4560 0.5000 0.4980 0.6260 0.5500 0.1840 0.7480 0.7200 0.8040 0.8320
paw-70 0.2880 0.3700 0.3600 0.5900 0.4740 0.0060 0.7120 0.6800 0.7460 0.8780

sets they often over-performed NCR and SP2. On more difficult sets (distur-
bance = 50–70%) neighbor-based methods (NCR and SP2) were better than
oversampling. Finally, MODLEM worked better with NCR, while C4.5 with
SP2, especially on more difficult data sets.

In terms of specificity, Base performed best as expected. As previously, RO
and CO were comparable and they were the second ones. Moreover, the rela-
tionship between NCR and SP2 was dependent on the induction algorithm –
NCR performed better than SP2 when combined with C4.5, and for MODLEM
SP2 won over NCR. However, considering G-mean (see Table 2), NCR and SP2
were better than oversampling methods. Finally, linear rectangle shapes (sub-
clus) were easier to learn than non-linear ones (clover or paw). We are aware
that tree- and rule-based classifiers are known to be sensitive to non-linear de-
cision boundaries, and in future research we plan to study other classifiers (e.g.,
support vector machines) as well.

3.3 Impact of Different Types of Testing Examples

In the second series of experiments we concentrated on the impact of noisy
examples from the minority class, located outside the borderline area, on the
performance of a classifier. To achieve this, we introduced new noisy examples
(single and pairs) and denoted them with C. Similarly to the first series of
experiments we used data sets of three shapes (subclus, clover and paw), 800
examples and the imbalance ratio of 1:7. We also employed rule- and tree-based
classifiers combined with the same pre-processing methods. However, we changed
the 10-fold cross validation to the train-test verification in order to ensure that
learning and testing sets had similar distributions of the C noise. In each training
set 30% of the minority class examples were safe examples located inside sub-
regions, 50% were located in the borderline area (we denote them with B), and
the remaining 20% constituted the C noise.
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Table 2. G-mean for artificial data sets with varying degree of the disturbance ratio

Data set MODLEM C4.5
Base RO CO NCR SP2 Base RO CO NCR SP2

subclus-0 0.9373 0.9376 0.9481 0.9252 0.9294 0.9738 0.9715 0.9715 0.9613 0.9716
subclus-30 0.7327 0.7241 0.7242 0.7016 0.7152 0.6524 0.7933 0.7847 0.7845 0.8144
subclus-50 0.5598 0.5648 0.6020 0.6664 0.6204 0.3518 0.7198 0.7113 0.7534 0.7747
subclus-70 0.4076 0.4424 0.4691 0.5957 0.5784 0.0000 0.7083 0.7374 0.6720 0.7838
clover-0 0.7392 0.7416 0.7607 0.7780 0.7908 0.6381 0.8697 0.8872 0.6367 0.6750
clover-30 0.6361 0.6366 0.6512 0.7221 0.6765 0.2566 0.7875 0.7652 0.6758 0.7686
clover-50 0.5066 0.5540 0.5491 0.6956 0.6013 0.1102 0.7453 0.7570 0.6184 0.7772
clover-70 0.4178 0.4658 0.4898 0.6583 0.5668 0.0211 0.7140 0.7027 0.6244 0.7665
paw-0 0.9041 0.9126 0.9182 0.9184 0.8918 0.6744 0.9318 0.9326 0.6599 0.7330
paw-30 0.7634 0.7762 0.7701 0.7852 0.7780 0.3286 0.8374 0.8334 0.8527 0.8337
paw-50 0.6587 0.6863 0.6865 0.7517 0.7120 0.3162 0.8013 0.7858 0.8200 0.8075
paw-70 0.5084 0.5818 0.5691 0.7182 0.6506 0.0152 0.7618 0.7472 0.7824 0.8204

For each training set we prepared 4 testing sets containing the following types
of examples from the minority class: only safe examples, only B examples, only C
examples, and B and C examples combined together (BC). Results are presented
in Table 3. They clearly show that for the “difficult” noise (C or BC) SP2 and in
most cases NCR were superior to RO, CO and Base. SP2 was also comparable
to RO and CO in case of safe and (sometimes) B examples.

4 Experiments on Real-Life Data Sets

The goal of the third series of experiments was to discover the differences between
those real-life data sets where NRC and SPIDER2 were superior to oversampling,
and those, for which there was no such advantage. Moreover, we wanted to relate
these differences to the factors explored in the previous experiments (see Section
3.1 and 3.2).

Experiments in this series were conducted on imbalanced data sets that we
had used in our previous study [9]. They came either from the UCI repository or

Table 3. Sensitivity for artificial data sets with different types of testing examples

Data set MODLEM C4.5
Base RO CO NCR SP2 Base RO CO NCR SP2

subcl-safe 0.5800 0.5800 0.6200 0.7800 0.6400 0.3200 0.8400 0.8600 0.9800 1.0000
subcl-B 0.8400 0.8400 0.8400 0.8600 0.8400 0.0000 0.8200 0.8400 0.3600 0.9200
subcl-C 0.1200 0.1000 0.1600 0.2400 0.2600 0.0000 0.5400 0.0000 0.0000 0.5200
subcl-BC 0.4800 0.4700 0.5000 0.5500 0.5500 0.0000 0.6800 0.4200 0.1800 0.7200
clover-safe 0.3000 0.3800 0.4400 0.7000 0.6000 0.0200 0.9600 0.9200 0.0400 0.9800
clover-B 0.8400 0.8200 0.8200 0.8400 0.8600 0.0400 0.9400 0.9200 0.0400 0.9400
clover-C 0.1400 0.0800 0.1400 0.2400 0.3600 0.0000 0.3000 0.0200 0.0000 0.4000
clover-BC 0.4900 0.4500 0.4800 0.5400 0.6100 0.0200 0.6200 0.4700 0.0200 0.6700
paw-safe 0.8400 0.9200 0.8400 0.8400 0.8000 0.4200 0.9000 0.9600 0.7400 1.0000
paw-B 0.8800 0.8800 0.8600 0.8800 0.9000 0.1400 0.9000 0.9000 0.4000 0.9200
paw-C 0.1600 0.1400 0.1200 0.2600 0.1600 0.0400 0.2000 0.0000 0.0000 0.3400
paw-BC 0.5200 0.5100 0.4900 0.5700 0.5300 0.0900 0.5500 0.4500 0.2000 0.6300
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Table 4. Sensitivity for real data sets

Data set MODLEM C4.5
Base RO NCR SP1 SP2 Base RO NCR SP1 SP2

Acl 0.8050 0.8050 0.9000 0.8250 0.8350 0.8550 0.8400 0.9200 0.8500 0.8450
Breast can. 0.3186 0.3430 0.6381 0.5386 0.5983 0.3867 0.4683 0.6478 0.5308 0.5611
Bupa 0.5199 0.5931 0.8734 0.8047 0.8580 0.4910 0.5720 0.7549 0.6995 0.7487
Cleveland 0.0850 0.1717 0.3433 0.2350 0.2300 0.2367 0.2383 0.3983 0.3017 0.3067
Ecoli 0.4000 0.5400 0.6833 0.6367 0.6217 0.5800 0.5567 0.7583 0.6900 0.7100
Haberman 0.2397 0.2961 0.6258 0.4828 0.5431 0.4103 0.6069 0.6081 0.6600 0.6775
Hepatitis 0.3833 0.4017 0.4550 0.4367 0.4867 0.4317 0.5583 0.6217 0.4750 0.5633
New thyr. 0.8117 0.8733 0.8417 0.8650 0.8867 0.9217 0.9217 0.8733 0.9133 0.8917
Pima 0.4853 0.5206 0.7933 0.7377 0.8188 0.6013 0.6512 0.7678 0.7146 0.7655

from our medical case studies (acl). As in the previous two series of experiments,
we used C4.5 and MODLEM without prunning to induce classifiers and com-
bined them we the pre-processing methods listed in Section 3.2. We only had to
exclude cluster oversampling due to difficulties with defining the proper number
of sub-clusters in the minority class. Moreover, for comprehensive comparison
we included the first version of SPIDER with strong amplification (SP1). Eval-
uation measures were estimated in 10-fold cross validation repeated 5 times and
the results for sensitivity are given in Table 4.

We used the Wilcoxon Signed Ranks Test (with confidence α = 0.05) for pair-
wise comparison of pre-processing methods over all data sets. For MODLEM,
all the pre-processing methods outperformed Base. The same conclusion applied
to C4.5 with the exception of RO. Moreover, SP2 outperformed SP1, and differ-
ences between NCR and SP2 were not significant according to the test. Although
NCR demonstrated slightly better sensitivity, its specificity (not reported here)
was lower than for SP2.

When examining the performance of pre-processing methods on individual
data sets we found some (e.g. new thyroid) for which all methods were compa-
rable. Moreover, for data sets like acl, the advantage of SP2 or NCR over RO
and CO was smaller than for the others, e.g., breast cancer, bupa or pima. We
wanted to explore the characteristic of these sets by visualizing the distributions
of the minority and majority classes in the two-dimensional space. Since all data
sets included more than two attributes, we used the PCA method to identify two
most important principal components for visualization. We are aware that such
analysis may have yielded approximate results (for some data sets more than
two components may have been important), nevertheless it led to interesting
observations that are reported below.

On the one hand, the minority and majority classes in acl and new thyroid
were easily separable (see Fig. 3 for new thyroid), thus even high imbalance ratio
was not a serious problem and oversampling methods (RO, CO) were compara-
ble to focused re-sampling (SP2, NCR). On the other hand, the distributions of
classes in data sets where NCR or SP2 outperformed RO and CO, e.g., haberman,
bupa or pima, were definitely more complicated (see Fig. 4 for haberman). Ex-
amples from the minority and majority classes were shuffled, there was no clear
class boundary, the overlapping area was very large and there were many noisy
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Fig. 3. New thyroid data set Fig. 4. Haberman data set

examples. This may explain the superior performance of focused re-sampling,
as both employed methods (NCR and SPIDER2) were meant to deal with such
conditions.

5 Conclusions and Final Remarks

We have presented an experimental study on the impact of critical factors on
re-sampling methods dealing with imbalanced data. The first series of experi-
ments show that the degradation in performance of a classifier is strongly af-
fected by the number of borderline examples. If the overlapping area is large
enough (in comparison to the area of the minority sub-clusters), and at least
30% of examples from the minority class are located in this area (i.e., are bor-
derline examples), then focused re-sampling methods (NCR, SPIDER2) strongly
outperform random and cluster oversampling with respect to sensitivity and G-
mean. Moreover, the performance gain increases with the number of borderline
examples. On the contrary, if the number of borderline examples is small, then
oversampling methods sufficiently improve the recognition of the minority class.

The second series of experiments reveals the superiority of SPIDER2 and in
most cases NCR in handling noisy examples located inside the majority class
(also accompanied with borderline ones). Such result has been in a way expected,
as both methods were introduced to handle such situations. The experiments also
demonstrate that oversampling is comparable to SPIDER2 and better than NCR
in classifying safe examples from the minority class.

The last series of experiments on real-life imbalanced data sets also provides
interesting observations on their nature. We think that PCA-based visualizations
of the data sets, on which NCR and both SPIDER methods performed best,
are similar to visualizations of artificial data sets with multiple noisy examples
and large overlapping ares. In the data sets, where all pre-processing methods
worked comparatively, the minority and majority classes are easily separable
and the number of “disturbances” is very limited. Thus, we can hypothesize
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that difficulties with real-life data are associated with distributions and shapes
of classes, their decomposition, overlapping and noise, however, this should be
investigated closer in future research.

Although other authors [4,2] have already claimed that class imbalance is not
a problem in itself, but the degradation of classification performance is related
to other factors related to data distributions (e.g., small disjuncts), we hope that
our experimental results expand the body of knowledge on the critical role of
borderline and noisy examples.
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Abstract. The problem of recurring concepts in data stream classifi-
cation is a special case of concept drift where concepts may reappear.
Although several methods have been proposed that are able to learn
in the presence of concept drift, few consider concept recurrence and
integration of context. In this work, we extend existing drift detection
methods to deal with this problem by exploiting context information as-
sociated with learned decision models in situations where concepts reap-
pear. The preliminary experimental results demonstrate the effectiveness
of the proposed approach for data stream classification problems with re-
curring concepts.

Keywords: Data Stream Mining, Concept Drift, Recurring Concepts,
Context-awareness, Ubiquitous Knowledge Discovery.

1 Introduction and Motivation

Learning from data streams where the data distributions and target concepts
change over time is a challenging problem[9] in stream mining. In real world
stream classification problems, however, it is common for previously seen con-
cepts to reappear[11]. This represents a particular case of concept drift[9], known
as recurrent concepts[11,5,1,12].

A weather prediction model usually changes according to the seasons. The
same happens with product recommendations where customer interests change
over time due to fashion, economy or other hidden context [11,3]. Several methods
have been proposed to detect and adapt to concept drift[2], but even though
concept recurrence is very common in real world problems, these methods do
not consider recurrence. The usual approach is to use a forgetting mechanism
and learn a new decision model when drift is detected. One possible solution
to exploit recurrence is to store learned models that represent previously seen
concepts, thus avoiding the need to relearn a concept when it reappears[1,12].
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The method presented in this paper extends existing drift detection meth-
ods by associating context information with learned decision models to improve
the adaptation of the learning process to drift, under the assumption that re-
curring concepts are related with context. This method is part of a data stream
classification process able to handle concept drift with recurrence. The main con-
tribution lies in exploiting context information associated with decision models
in the mechanism to store and retrieve past models when drift is observed. This
approach enhances the adaptation to drift when concept recurrence is present in
the data stream and the underlying concepts are related with observable context
information.

The proposed method is integrated in a data stream learning process frame-
work that is divided into two levels: a base learner level, where the model repre-
senting the current concept is learned; and a meta-learning level where drift is
detected. When drift occurs the meta-learning level is responsible for: a) store
the current model and its associated context; b) from previously stored models
select the most adequate for the current data and observable context.

This paper is organized as follows. Section 2 describes the related work. The
proposed solution is found in section 3, with its assumptions and requirements,
as well as a detailed description of its components. In section 4 the experimental
results obtained from our prototype are presented and discussed. Finally we
provide some concluding remarks and outline future research work in section 5.

2 Related Work

A review of literature related to the problem of concept drift can be found in[9],
where the problem is defined and several approaches to handle it are discussed.
However, most of these approaches discard old information and the possibility
for concept recurrence is not even considered. We focus our review on works that
address recurrence of concepts. These works approach concept drift in one of the
following ways:

– using a window of records or a decay function, old records are forgotten and
the decision model is updated from the most recent data as it appears in the
window. Some approaches are able to handle recurrence by storing models
learned from fixed chunks of records and building an ensemble classifier
with them[5,7,10]. When the concept changes, the weights of the models
are adjusted to maximize the performance of the ensemble according to the
current concept.

– using a drift detection method[2], which signals when drift occurs. When it
does, the old model is discarded and a new one begins to be learned so it
can represent the new concept. More sophisticated approaches that exploit
concept recurrence[1,12] employ some strategy to store learned models.

Both approaches address the issue of concept drift by ensuring that the classifi-
cation model used at time α represents the concept observed at that time, thus
obtaining high classification accuracy for the underlying concept in the stream.
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Related with recurrent concepts in[7], an ensemble method is proposed where
in the case that no classifier in the ensemble performs better than the error
threshold, a classifier for the new concept is learned and stored in a global
set. The classifiers with better performance on the current data are part of the
ensemble for labeling new examples. Similarly in[5] an ensemble is used but
incremental clustering was exploited to maintain information about historical
concepts. The proposed framework captures batches of examples from the stream
into conceptual vectors. Conceptual vectors are clustered incrementally by their
distance and for each cluster a new classifier is learned and then becomes part of
the ensemble. Another method for reusing historical concepts is proposed in[12].
Its major contribution consists in using a proactive approach, which means to
reuse a concept from the history of concepts that is treated like a Markov chain,
to select the most probable concept according to a given transition matrix. In
[1] the focus lies in the selection of previously learned models. Referees are used
to choose the most appropriate model from history. Whenever drift is detected
the classifier and its referee are stored in a pool for further use. The model is
re-used when the percentage of votes of its referee exceeds some given threshold,
otherwise a new classifier is learned.

In [3] an off-line, meta-learning approach to deal with concept drift using
context is presented. The approach uses an existing batch learner and a process
called contextual clustering to identify stable hidden contexts and the associated
context specific stable concepts. The approach is applicable to the extraction of
context reflected in time and spatial attributes.

3 Proposed Learning Process

This work proposes a mechanism that associates context information to learned
decision models in order to improve the learning process on a data stream mining
classification scenario. The requirements of this learning process are:

– i) adapt the current learning model to concept drift[9].
– ii) recognize and use past models from previously seen concepts when they

reappear[9].
– iii) use contextual information to improve adaptation to drift[3].

The proposed mechanism stores the learned models and context information
together. This information is later used when a concept reappears. We integrate
the proposed mechanism in a two-level framework with: a) base learner level
where an incremental algorithm learns a concept, in the form of a classification
model; b) meta-learning level where detection and adaptation to concept drift
is performed and the context-aware mechanism is used. We assume that context
information is available and that the target concepts are related to context.

The most similar approaches with the one proposed in this work are the ones
presented in [12,1]. Both use drift detection and store past models in order to
adapt to concept drift and recurrence. However, as reviewed in section 2 the dif-
ference lies in the mechanism used to store and select past models. Our context-
aware approach of exploiting the context resembles and shares the motivation
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with the one presented in[3] where the method infers the periods where hidden
context is stable from available context features, which are described as contex-
tual clusters. The main differences are that we present an on-line method which
uses context spaces[6] to model context and we don’t require the partition of the
dataset into batches because our concepts are of arbitrary size as determined by
the drift detection method. Instead we use the relation between stable concepts
and context to improve the adaptation to drift when these concepts recur.

3.1 Challenges

The main challenges of the proposed approach are related to decision model
storage and retrieval. In this work, the models are stored in a model repository
with a reference to the associated context as described in subsection 3.2. This
represents the context observed in the records used to learn that model, as
illustrated in figure 3.3. For retrieval, the repository is searched for a model that
represents the current data and with context similar to the currently occurring
one. The exact metrics used for this comparison are described in subsection 3.4.

3.2 Context Management

We base our context modeling on the Context Spaces model [6]. The Context
Spaces model represents contextual information in a multidimensional Euclidean
space. A context state C is defined as a tuple of N attribute-values, C = (av

1 ,
..., av

n), where av
n represents the value of attribute an. A context space defines

the regions of acceptable values for these attributes. An occurring context is
defined as a sub-space in this multidimensional space, most often as a point in
this space. In this work we use numerical context attributes and the similarity
between contexts is measured by the Euclidean distance.

When setting up a particular application one must define the context features
and the similarity thresholds used to compare contexts. For example, tempo-
ral and spatial features in ubiquitous applications. In different scenarios other
similarity measures can be explored.

3.3 Learning Process Framework

Figure 3.3 represents the learning process framework that integrates the pro-
posed mechanism. In what follows we describe its components.

Base Learner. In the base learning task, we used Naive Bayes algorithm. We
choose Naive Bayes because it is a well known incremental classifier algorithm
which can deal with different types of attributes and is easy to implement as
it only requires updating its probability tables. This is also an advantage when
storing the model for later use. We should note that any incremental classifier
can be used in this task.
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Fig. 1. Data Stream Learning Process Framework

Meta Learning. In the meta-learning level a drift detection mechanism is used,
which monitors the performance of the learning algorithm and triggers an event
when drift occurs. The proposed context-aware mechanism to handle concept
recurrence is part of the meta-learning level.

Drift Detection method. When the records distribution is stationary the
classifier error-rate decreases as the number of training records grows. This as-
sumption is shared by most approaches dealing with drift[9], as it is a natural
property in real world problems where periods of stable concepts are observed
followed by changes leading to a new period of stability with a different target
concept. Proposed in[2] is a method for drift detection which uses this assump-
tion to find drift events.

The Drift Detection Method[2], stores the probability of misclassifying pi =
(F /i) and the standard deviation si =

√
pi(1− pi)/i, where i is the number

of trials and F is the number of false predictions. These values are updated
incrementally. Two levels are defined, a warning level and a drift level, which are
reached according to some condition based on pi and si and constants that define
the minimum values of pi and si. Note that it is possible to observe an increase
in the error-rate reaching the warning level, followed by a decrease, which can
be considered to correspond to a false alarm.

Context Manager. In accordance with the description in section 3.2, we as-
sume all the context related pre-processing is performed by this component.

Model Repository. The model repository is the structure that stores learned
models and associated context description.
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3.4 Learning Algorithm

The proposed learning process with drift detection that integrates our mecha-
nism is outlined below:

1. process the incoming records from the data stream using an incremental
learning algorithm (base learner) to obtain a decision model capable of rep-
resenting the underlying concept.

2. the drift detection method[2] monitors the error-rate of the learning algo-
rithm.

3. when the error-rate goes up the drift detection method signals one of the
following events:
– warning level - store the incoming records into a warning window and

prepare a new learner that processes incoming records while the warning
level is signaled.

– drift level - store the current model and its associated context into the
model repository; use the model repository to find a past model with a
context similar to the current one that performs well with the new data
records (i.e. represents the current concept). Reuse the model from the
repository as a base learner to continue the learning process as in point
1. If no model is found use the learner that was initiated during warning
level as base learner.

– false alarm (normal level after warning) - the warning window is
cleared and the learner used during the warning period is discarded. The
learning process continues as in point 1, which is also the normal level
in terms of drift detection.

Note that if the warning level is maintained for a number of records greater than
a specified threshold and context change is observed (i.e. a significant distance
between the context in the new learner and the past one), the drift level case is
executed.

The algorithm depicted in 1 describes the pseudo-code in which our mecha-
nism is integrated with the learning process.

The function getModel is the one in charge of model retrieval. Its main ob-
jective is to find the model that better represents the underlying concept and
has context similar to the current context. This implies that the stored model
achieves high accuracy with this underlying concept. Our approach searches the
model repository and calculates the error of the past models with the current
data, using the records available in the WarningWindow. If the number of records
is lower than a specified threshold, the newLearner is returned (and will be used
as baseLearner). Since we are unable to estimate the performance of past mod-
els, the same also happens when no model is found (i.e. the repository is empty
or the performance of the stored models is too low).

3.5 Mechanism Metrics

The error prediction of the past models is calculated by the mean square error (as
proposed in [10] to obtain the weight of the classifier in an ensemble approach)
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Algorithm 1. Data Stream Learning Process
Require: Data stream DS, ModelRepository MR
1: repeat
2: Get next record DSi from DS;
3: prediction = baseLearner.classify(DSi);
4: DriftDetection.update(prediction);
5: switch DriftDetection.level
6: case Normal
7: baseLearner.train(DSi);
8: case Warning
9: WarningWindow.add(DSi);

10: newLearner.train(DSi);
11: case FalseAlarm
12: WarningWindow.clear();
13: newLearner.delete();
14: case Drift
15: MR.store(baseLearner, baseLearner.context);
16: baseLearner=MR.getModel(newLearner,newLearner.context,WarningWindow);
17: end switch
18: until END OF STREAM

of classifier Ci, using the WarningWindow Wn of n records in the form of (x, c),
where c is the true class label for that record. The error of Ci on record (x, c) is
1 - f i

c(x), where f i
c(x) is the probability given by Ci that x is an instance of class

c. For cost-sensitive applications a benefit matrix can be used as is proposed in
[10]. We only use as candidate models Ci that have an error below a certain
threshold. The MSIi can be expressed by:

MSEi =
1
|Wn|

∑
(x,c)∈Wn

(1 − f i
c(x))

2

One important aspect of the approach is to minimize the similarity between the
occurring context and the context observed in stored models, as this indicates
that we are observing a similar context. This is achieved by means of the function
Dis(Contexti,OContext), where Contexti is the context associated with Ci and
OContext is the current context. The distance used is the Euclidean distance,
as discussed in section 3.2. Thus the selection criterion resulting from the two
metrics is the utility function:

u(MSEi, Dis(Contexti, OContext))

To maximize this utility value, both metrics should be minimal. Weights are
assigned to the context and learner components of the utility function. The model
with the highest utility value is selected, and the weight between the model and
context is increased in the repository, signaling that it was used successfully as a
recurrent model for that context. Although resource-awareness is not the focus
of this work, this strategy can be exploited to delete past models that are not
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reused as a way to decrease the memory consumption of the approach. If no
model in the repository reaches the utility threshold value, the newLearner is
returned instead of a past concept.

4 Experimental Results

The implementation of the proposed learning process was developed in Java,
using the MOA[4] environment as a test-bed. The evaluation features and the
SingleClassifierDrift class that implements the drift detection method of[2], pro-
vided a starting point to implement the specific components of our approach.
The experiments were run on an Intel Core 2 Duo 2.10 GHz CPU with 2 GB of
RAM.

As dataset the SEA Concepts[8] were used with MOA[4] as stream genera-
tor. SEA Concepts is a benchmark data stream that uses different functions to
simulate concept drift, allowing control over the target concepts and its recur-
rence in our experiment. The experiment used 250000 records and changed the
underlying concept every 15000 records. The test was repeated with a 10% noise
value, which means that the class value is wrong in 10% of the records, test-
ing how sensitive is the approach to noise in data. The context feature season
{winter, spring, summer, autumn} was generated independently as a context
stream where the season is associated with the target concept function with
probability 0.9. For example, if target concept is function 1, context variable
season will be winter with probability 0.9 with the remaining values belong-
ing to one of the other possible seasons as noise. We assigned 100 records as
the threshold of the warningWindow. The weights 0.8 and 0.2 were assigned to
the classifier accuracy and context distance, respectively as values in the utility
function described in section 3.

4.1 Results

We compared the approach proposed in this paper with the SingleClassifierDrift
implemented in MOA[4] in terms of accuracy. SingleClassifierDrift detects drift
using the drift detection method[2]. When drift occurs, it learns a new model
and completely forgets the old one. As we can see in Figure 2 our approach leads
to better results than SingleClassifierDrift when recovering from concept drift,
in both experiments. In general, our approach adapted to drift faster and the
models selected by the context-aware mechanism were able to represent the tar-
get concepts as can be seen by the accuracy obtained. The SingleClassifierDrift
approach always has to relearn the underlying concept from scratch after drift is
detected. However, in some situations for example at record 19500 in the dataset
with 10% noise, the selected model seems to represent the target concept at first
but the SingleClassifierDrift approach is able to achieve better results. In this
case the fast adaptation of our greedy approach led to the selection of a weaker
model. A more conservative approach could be used by increasing the number of
records in the warningWindow. It is also noticeable that the proposed approach
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Fig. 2. Comparison of accuracy with Proposed approach(Context) vs SingleClassifier-
Drift(Single) using the SEA concepts dataset. Black vertical lines show when drift
occurs.

achieves a more stable accuracy over time, because it recovers much faster from
drift than the approach without stored models. This is more significant when
using the dataset with 10% noise, where the proposed approach obtained 2046
more correct predictions compared to 802 in the dataset without noise. The us-
age of context as part of our mechanism enables us to exploit the associations
between recurrent concepts and context as a way to track concept recurrence
and achieve better results in situations where this association exists.

5 Conclusions and Future Work

In this work, we have proposed a method for the problem of data stream classifi-
cation with concept recurrence that associates context information with learned
models, improving adaptation to drift. The main contribution of this work lies
in the mechanism that associates context with stored models to track recur-
rence when drift occurs. A description of the requirements, assumptions, and
components of the solution is presented.

We also present preliminary results with the artificial benchmark data set
SEA Concepts. The results are promising for situations where concepts reoccur
periodically and are associated with context.
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As future work we plan to further explore the proposed method, using differ-
ent storage and retrieval mechanisms for past models, a resource-aware approach
for applications where storage costs are severely limited, methods to predict the
context information associated with the data stream records, as well as testing
the current approach in real world problems. Furthermore, the preliminary ex-
perimental results seem to indicate that reusing previously stored models can
lead to gains proportional to the effort required to learn a model from scratch.
It would be interesting to study such gains on these harder learning problems.
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Abstract. Support Feature Machines (SFM) define useful features derived from
similarity to support vectors (kernel transformations), global projections (linear
or perceptron-style) and localized projections. Explicit construction of extended
feature spaces enables control over selection of features, complexity control and
allows final analysis by any classification method. Additionally projections of
high-dimensional data may be used to estimate and display confidence of predic-
tions. This approach has been applied to the DNA microarray data.

Keywords: Features generation, dimensionality reduction, learning, support fea-
ture machines, support vector machines.

1 Introduction

Data mining packages such as Weka [1], Rapid Miner [2], or KNIME [3] offer enor-
mous number of modules for pre-processing, optimization, training, classification, clus-
tering, visualization and post-processing. For example, combining all modules available
in Rapid Miner 3.4 over 5 billion data models may be created. Comparison of all these
models on a single dataset would be impossible and will anyway manifest results of
“oversearching”, with some models producing good results on a given dataset by pure
chance [4]: contrary to the common opinion generalization of learning systems (includ-
ing decision trees and neural networks) trained using global optimization methods (such
as evolutionary algorithms) is frequently worse than results obtained from the greedy,
best-first methods (such as the gradient methods). Meta-learning, or creating on demand
optimal adaptive system suitable for a given problem is an answer to this crises of abun-
dance [5,6]. Different approaches to meta-learning have been proposed [7], based either
on recommendations of particular learning methods depending on some data character-
istics (landmarking approach), combining many data models together [8], or defining
frameworks that allow for systematic creation of data models of growing complexity.
In particular, a framework based on evaluation of similarity [5], that includes many
variants of the nearest neighbor methods, neural networks and kernel methods [9], has
proved to be very powerful in practical applications. Within such framework methods
that have a proper bias for particular problem may be found.

Each data model Mi is defined in some hypotheses space H that includes all func-
tions that this model may learn. Combination of diverse classifiers p(C|x,Mi) that
predict probabilities or provide binary indicators for each class C, may improve re-
sults. Mixture of experts [8], and in particular the boosted mixtures of experts [10],

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 178–186, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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assign large weights to classifiers (called experts) that improve performance around
localized areas of the input space where most models fail. Committees of competent
models [11,12] have weights wi(x)p(C|x,Mi) that explicitly depend on the input vec-
tors x, decreasing the influence of classifiers that have not been competent, or had
low confidence in their predictions in some regions of the input space. Stacking classi-
fiers is another technique that trains to predict errors that the current set of classifiers
makes [13].

Committees and mixture of experts are based on component models optimized for
the whole training data. All these methods decrease comprehensibility of solutions and
are not the most efficient way of summarizing the data. Recently we became interested
in ensembles of simple models at finer granulation, defining classifiers based on single
feature and provide data models that are competent only for relatively small subsets
of all samples. The most common Gaussian kernel Support Vector Machine (SVM)
[9] selects a subset of training vectors xi close to the decision border (called "support
vectors") and calculates k(x,xi) = exp(−β∑ |xi − x|2), with fixed dispersion β.
The final discriminant function is constructed as a linear combination of such kernels,
creating in fact a weighted nearest neighbor solution. Other similarity estimation based
on specific kernels (similarity functions) may help to increase flexibility of decision
borders, decreasing the number of kernels need for accurate classification.

Each support vector used in a kernel may provide a useful feature, but this type of
solution is optimal only for data with particular distributions, and will not work well
for example on parity data [14] or other problems with complex logical structure [15].
For some highly-non-separable problems localized linear projections may easily solve
the problem [16]. Adding new types of features extends the hypothesis space. Useful
features may be created by random linear projections [17], or principal components
derived from data, or projection pursuit algorithms based on Quality of Projected Clus-
ters (QPC) indices [18]. Non-linear combinations of input features provided by neural
network nodes may also be used.

Creation of appropriate feature space facilitates finding optimal solutions, and thus is
worthwhile exploring not only at the level of combination of classifiers, but in the first
place to learn from other models what interesting features they have discovered. They
may come in form of prototypes, linear combinations, or fragments of branches in de-
cision trees, forming useful “knowledge granules” in data, as it is done in our Universal
Learning Machines [19]. The final model – linear discrimination, Naive Bayes, nearest
neighbor or a decision tree – is secondary, if appropriate space has been set up.

In the next section SFM algorithm as used here is introduced, and in section 3 tested
on several microarray data. Brief discussion of further research directions concludes
this paper.

2 Support Feature Machine Algorithm

Support Vector Machines [20,9] used as classifiers are based on linear discrimination,
with maximization of classification margin that ensures good generalization and allows
for control of complexity. Problems that require non-linear decision borders may be
linearized by projecting the data into high-dimensional feature space. According to the
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Cover theorem [21] such mapping increases the probability of making the data sep-
arable, "flattening" decision borders. Kernel methods implicitly provide new features
zi(x) = k(x,xi) constructed around support vectors xi, selected from the training
close to the decision borders. The number of these features is equal to the number of
training vectors n. The ability to solve classification problem using only the kernel ma-
trix Kij = k(xi,xj) has some advantages, as instead of the original input space xi one
works in the space of kernel features zi(x) ,called further “the kernel space”.

The number of input features N may be smaller or greater than n. If N � n the
number of the kernel features is usually unnecessarily large – think of the simple case
of two Gaussian distributions that are optimally solved by forming a projection con-
necting their means, instead of a large number of support vectors with Gaussian kernels
close to the decision border. Adding such linear projections to the list of features, and
performing feature selection may in such situation remove most kernel features as ir-
relevant. In the reverse situation, when n � N (as is the case for the microarray data),
instead of a projection into high-dimensional space SVM reduces the number of fea-
tures to no more than n. Also in this case other types of features may be useful. In
particular original input features may be kept in the enhanced feature space (SVM does
not use them), or various projections may be added. This should guarantee that simplest
solutions to easy problems are not overlooked (SVM will miss them, even if a single
binary feature is sufficient).

Support Feature Machines used here generalize SVM approach by explicitly building
enhanced space that includes kernel features zi(x) = k(x,xi) together with any other
features that may provide useful information. This approach has several advantages
comparing to standard SVM:

1. With explicit representation of features interpretation of discriminant function is as
simple as in any linear discrimination method.

2. Kernel-based SVM is equivalent to linear SVM in the explicitly constructed kernel
space, therefore enhancing this space should lead to improvement of results.

3. Kernels with various parameters may be used, including various degrees of local-
ization, and the resulting discriminant may select global features, combining them
with local features that handle exceptions (SVM algorithms are usually formulated
using single kernel, with a few exceptions [22]).

4. Complexity of SVM is O(n2) due to the need of generating kernel matrix; SFM
may select smaller number of kernel features at O(n) cost from those vectors that
project on overlapping regions in linear projections.

5. Many feature selection methods may be used to estimate usefulness of new features
that define support feature space.

6. Many algorithms may be used in the support feature space to generate the final
solution.

Although one can use various methods to solve classification problem in the space cre-
ated by support features, linear SVM approach is used here for several reasons. First,
there are many excellent and well-tested SVM implementations available. Second, lin-
ear SVM includes regularization term, ensuring large margin solution. For microarray
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data other linear techniques designed for small sample problems may be more appropri-
ate [23] and will be tried in future. We shall consider other machine learning algorithms
in future SFM versions.

In this paper only basic version of this approach is implemented (see Algorithm
1) using linear discrimination to obtain final decision function. SFM algorithm starts
from standardization of the whole data, followed by feature selection, based here on the
Relief algorithm [24], leaving only features with positive weights. Such reduced, but
still high dimensional data, is used to generate two types of new features.

First type of features is made by projections on m = Nc(Nc − 1)/2 directions
obtained by connecting pairs of centers wij = ci − cj , where ci is the mean of all
vectors that belong to the Ci, i = 1...Nc class. In high dimensional space such features
ri(x) = wi · x help a lot, as can be seen in Fig. 1, where smoothed histograms of data
projected on such directions are shown. Fisher discriminant analysis may provide even
better directions here, but this is the least expensive solution, always worth adding to
the pool of new features.

The second type are features based on similarity to the training vectors, or kernel
features. While many types of kernels may be mixed together, including the same types
of kernels with different parameters, in the initial implementation only Gaussian kernels
with fixed dispersion β are taken for each training vector ti(x) = exp(−β∑ |xi−x|2).
Various ways of selecting suitable training vectors may be considered, but for small
sample data all of them may be taken into account. QPC algorithm [18] has been used
on this feature space, generating additional orthogonal directions that are useful for
visualization and as new features. The number of QPC features has been arbitrarily
set to 5, although optimizing this parameter in crossvalidation should give better final
result.

Algorithm 1. Algorithm
Require: Fix the Gaussian dispersion β and the number of QPC features NQ.

1: Standardize dataset.
2: Normalize the length of each vector to 1.
3: Perform Relief feature ranking, select only those with positive weights RWi > 0.
4: Calculate class centers ci, i = 1...Nc, create m directions wij = ci − vcj , i > j.
5: Project all vectors on these directions rij(x) = wij · x (features rij).
6: Create kernel features ti(x) = exp(−β

∑ |xi − x|2).
7: Create NQ QPC directions wi in the kernel space, adding QPC features si(x) = wi · x.
8: Build linear model on the new feature space.
9: Classify test data mapped into the new feature space.

In essence SFM algorithm requires construction of new features, followed by a sim-
ple linear model (linear SVM has been used here) or any other learning model. More
attention is paid to generation of features than to the sophisticated optimization al-
gorithms or new classification methods. Although several parameters may be used to
control the process of feature creation and selection they are either fixed or set in an
automatic way. Solutions are given in form of linear discriminant function and thus are
easy to understand. New features created in this way are based on those transformations
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of inputs that have been found interesting for some task, and thus have meaningful in-
terpretation (see Fig. 1, 2. The importance of generating new features has already been
stressed in our earlier papers, but they have been based either on random projections
[17], extracted from several types of algorithms such as decision trees or the nearest-
neighbor methods [19], or provided by classification algorithms [25]. Systematic cre-
ation of support feature spaces as described in this paper seems to be an unexplored
approach with great potential.

3 Illustrative Examples

The usefulness of SFM approach has been tested on several DNA microarray datasets
and compared with SVM and SSV[26] results. These high-dimensional datasets have
been used in the Discovery Challenge at the 7-th International Conference on Rough
Sets and Current Trends in Computing (RSCTC 2010), Warsaw, Poland (28-30 June,
2010). A summary of these datasets is presented in Tab. 1.

Table 1. Summary of used datasets

Title #Features #Samples Class distribution
Data 1 54675 123 88–35
Data 2 22283 105 40–58–7
Data 3 22277 95 23–5–27–20–20
Data 4 54675 113 11–31–51–10–10
Data 5 54613 89 16–10–43–20
Data 6 59004 92 11–7–14–53–7

Because the number of samples in some classes is very small, in the k-fold cross-
validation tests performed for evaluation of SFM performance, k is equal at least to the
number of vectors in the smallest class (from 5-10), and at most 10. Average results
are collected in Table 2, with accuracy, balanced accuracy (accuracy for each class) and
standard deviation given for each dataset. Additionally values of parameters determined
in internal crossvalidation are given. Number of features after the relief selection is still
very large and it is clear that more conservative selection could be used; these features
are used only to generate a small number of r, t and s-type of features. Number of
new features NF includes 5 QPC and Nc(Nc − 1)/2 directions connecting centers, so
together with the kernel feature the support feature space has at most 129 dimensions.

Optimal dispersion of kernel features is in most cases quite large, up to 28, creating
very smooth, partially almost linear decision border in the kernel space. These results
show by no means the limits of SFM algorithm, as fixed parameters have been used in
all tests, more features could be generated using random projections, alternative ker-
nels, more QPC directions, and other linear discrimination algorithms or other machine
learning algorithms should be tested to generate final decision functions. Unfortunately
exploration of all these possibilities is quite time consuming and software to perform
all necessary comparisons in an automatic way is under development.
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Table 2. Accuracies (ACC) and balanced accuracies (BACC) for each used dataset. Also for
SFM optimal parameter β is noted, number of features after relief selection (FAS), number of
new features (NF), and number of folds used in crossvalidation tests.

Dataset Info SVM SSV SFM
FAS NF CV ACC BACC ACC BACC ACC BACC β

Data 1 51259 117 10 93.5±6.3 90.5±9.7 74.0±13.0 71.0±17.0 91.5±9.3 89.9±11.5 23

Data 2 14880 98 7 60.9±10.5 54.2±18.3 56.2±8.4 35.4±6.3 67.8±15.5 67.1±14.3 28

Data 3 15628 91 5 75.8±7.9 65.9±6.1 74.7±4.4 66.6±4.3 96.0±5.4 89.3±8.9 23

Data 4 7529 116 10 38.1±9.9 28.9±8.9 38.8±12.2 19.8±8.1 54.1±15.8 41.5±13.1 2−4

Data 5 31472 91 10 60.4±18.4 55.1±21.7 59.4±12.3 49.0±21.3 68.6±7.9 64.9±9.6 23

Data 6 47307 88 7 61.9±8.5 46.4±13.4 57.5±2.6 24.1±8.2 79.4±17.2 53.1±15.5 20

The microarray data in particular require small sample methods with appropriate
smoothing. This is not the best domain to evaluate learning algorithms, as drawing
conclusions from balanced accuracy on data with a few such samples per class in a
space of such huge dimension without any domain knowledge is impossible. However,
this is quite challenging data and therefore a comparison of SFM with SVM results is
interesting.

4 Discussion and New Directions

Support Feature Machine algorithm introduced in this paper is focused on generation
of new features, rather than improvement of optimization and classification algorithms.
It may be regarded as an example of mixture of experts, where each expert is a simple
model based on projection on some specific direction (random, or connecting clusters),
localization of projected clusters (QPC), optimized directions (for example by Fisher
discriminant analysis), or kernel methods based on similarity to reference vectors. Ob-
viously there is a lot of room for improvement. For some data kernel-based features are
most important, for other projections and restricted projections discover more interest-
ing aspects. Recently more sophisticated ways of creating new features have also been
introduced [19,25], deriving new features from various data models. For example, com-
bination of several features with appropriate thresholds obtained from decision trees,
create interesting semi-local features.

Instead of simple linear combination competent committee may be introduced. Cal-
culating probability p(Ci|x;M) of assigning x vector to class Ci by the final model
M , given probabilities for each feature P (Ci|x;Mj) (as shown in Fig. 1), coefficients
of linear combination are determined from the least-mean square solution of:

p(Ci|x;M) =
m∑

j=1

∑
m

WijF (xj)P (Ci|xj) (1)

where the incompetence factors F (xj) are estimated from histograms P (Ci|xj). These
factors simply modify probabilities F (x;Mj)P (Ci|xj) that are used to set up models
in the enhanced feature space. This approach requires only minimal change in the whole
algorithm. After renormalization p(Ci|x;M)/

∑
j P (Cj |x;M) gives final probability
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Fig. 1. Histograms for 5 classes (Dataset 3), two QPC projections on lines connecting centers of
these classes
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Fig. 2. Scatterogram showing distribution of training and test vectors in QPC directions derived
from kernel features, taken from one of the 10-fold crossvalidation folds

of classification. In contrast to AdaBoost and similar procedures [13] explicit informa-
tion about regions of incompetence, or quality of classifier based on single new feature
in different feature space areas, is used. Many other variants of basic SFM algorithm
reported here are possible. It is worth noting that kernel-based SVM is equivalent to
the use of kernel features combined with linear SVM. Mixing different kernels and
different types of features creates much better enhanced features space then a single-
kernel solution. For example, complex data may require decision borders of different
complexity, and it is rather straightforward to introduce multiresolution in the presented
algorithm, for example using different dispersion β for every ti, while in the standard
SVM approach this is difficult to achieve.
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Abstract. We propose a framework for experimental verification whether me-
chanisms of voting among rough-set-based classifiers and criteria for extracting
those classifiers from data should follow analogous mathematical principles. Mo-
reover, we show that some of types of criteria perform better for high-quality data
while the others are useful rather for low-quality data. The framework is based on
the principles of approximate attribute reduction and probabilistic extensions of
rough-set-based approach to data analysis. The framework is not supposed to pro-
duce the best-ever classification results, unless it is extended by some additional
parameters known from the literature. Instead, our major goal is to illustrate in a
possibly simplistic way that it is worth unifying mathematical background for the
stages of learning and applying rough-set-based classifiers.

1 Introduction

Construction of classifiers is an important application of machine learning. In order to
combine accuracy with clarity, people often use symbolic machine learning techniques,
such as collections of decision rules or trees. From this perspective the algorithms de-
veloped within the framework of rough sets [1,6] can be regarded as symbolic machine
learning methods. Rough-set-based classifiers usually comprise of collections of deci-
sion rules learnt in an offline fashion. Rules can be extracted explicitly [3,9], in analogy
to popular machine learning rule-based approaches, or implicitly, in the process of at-
tribute subset selection based on the concept of a decision reduct [10,13]. In this paper,
we follow the latter scenario. We call it reduct-based classification.

A reduct-based classifier is built and used as follows: 1) find several decision reducts
by following some simple optimization criteria; 2) for each object to be classified, derive
from reducts the decision rules that match its values and, if multiple rules apply, use
some simple voting methods. The rules do not even need to be explicitly stored, as they
can be computed directly from the training data for each reduct and each new object.
The only truly computationally expensive task is to find a good ensemble of reducts that
do not contain redundant attributes and yield decision rules of good quality.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 187–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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A reduct-based classifier comprises of two layers: the higher one is a set of reduct-
decision pairs interpreted as approximate functional dependencies (or conditional inde-
pendencies); the lower one corresponds to parameters deciding how to derive and vote
among rules. In our previous research, we focused on that higher layer. For example,
we studied relationship between a degree of attribute overlap among reducts in an en-
semble and its efficiency in classification and knowledge representation. The main goal
of this paper, which is verification whether the reduct construction criteria and the rule
voting parameters should be based on analogous principles, refers clearly to the lower
out of the above layers. Surely, once the experimental verification framework is created,
we can use it to analyze other aspects of reduct-based classification as well.

The paper is organized as follows: Section 2 recalls examples of rough-set-based
attribute subset selection, rule generation and voting methods. All examples are already
quite well-known in the literature, although gathering them within a unified framework
required a thorough study that might be regarded as one of main paper’s contributions.
The reported methods are based on machine learning and probabilistic interpretations
of the rough set methodology [2,16]. In some aspects, e.g., with regards to the voting
policies, they are far behind the state of the art [5,12]. On the other hand, equations (1)
and (2), as well as Table 1 should clearly illustrate what we want to achieve.

Section 3 summarizes parameters taken into account in our experiments. It includes
a number of footnotes with comments how our framework can be extended in future.
In Section 4, we experimentally prove that the voting methods should indeed go in
pair with the attribute selection criteria. We also show that original rough set princi-
ples yield quite surprisingly good classifiers, if applied within the framework of appro-
ximate attribute reduction [7,8]. On the other hand, the same experiments conducted
on benchmark data with artificially decreased quality suggest that classifiers based on
probabilistic extensions of rough sets may be more reliable. In general, most of our re-
sults should be obvious to a reader with machine learning background. However, they
enable to look at reduct-based classifiers from yet uninvestigated perspective.

2 Reducts, Rules, Voting

Let us start by recalling three functions labeling attribute subsets with degrees of de-
termining a decision attribute. Formally, we should introduce them as γ(B) [6], M(B)
[7], and R(B) [11], for a decision table A = (U,A∪ {d}) and subsets B ⊆ A. We will
refer to their usage as reduction types POS, M and R. In the following, we operate
with decision classes X ∈ U/{d} and indiscernibility classes E ∈ U/B1. Probabilities
P (·), P (·, ·) and P (·|·) are derived directly from the training data.

γ(B) = |POS(B)|/|U | =∑E∈U/B:P (XM
E |E)=1 P (E) // reduction POS

M(B) =
∑

E∈U/B P (XM
E , E) // reduction M

R(B) =
∑

E∈U/B P (E|XR
E )− 1 // reduction R

(1)

1 By U/{d} and U/B we denote the sets of equivalence classes induced by d and B. In rough
sets, they are referred as indiscernibility classes [6]. Although in this paper we deal only with
a simplified framework, one needs to remember that for, e.g., numeric or ordinal attributes
equivalence classes need to be replaced by some better adjusted constructs [2,4].
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Table 1. Six options of weighting decisions by rules, corresponding to voting types PLAIN ,
CONF and COV ER, and weighting types SINGLE and SUPPORT . E denotes the support
of a rule’s premise. X∗

E denotes XM
E or XR

E depending on decision type. In case of reduction
type POS, the weight is assigned to a given X∗

E only if P (X∗
E|E) = 1.

SINGLE SUPPORT

PLAIN 1 P (E)
CONF P (X∗

E|E) P (X∗
E , E)

COV ER P (X∗
E |E)/P (X∗

E) P (E|X∗
E)

wherein decision classes

XM
E = argmaxX∈U/{d} P (X |E) // decision DIRECT
XR

E = argmaxX∈U/{d} P (E|X) // decision RELATIV E
(2)

can be interpreted according to the mechanism of assigning a rule supported by E ∈
U/B with a decision class that it should point at. We refer to equations (2) as decision
types – DIRECT , which means pointing at decision that is the most frequent within
E, as well as RELATIV E, which points at decision that is the most frequent within
E relative to the prior probability of that decision (cf. [16]).

All functions (1) are monotonic with respect to inclusion, i.e., for C ⊆ B, we have
γ(C) ≤ γ(B), M(C) ≤M(B), R(C) ≤ R(B) [7,11]. It is important when designing
the attribute reduction criteria and algorithms (cf. [2,15]). In our experiments, we search
for (F, ε)-reducts, where F may mean γ (POS), M or R, and ε ∈ [0, 1) decides how
much of quality of determining d we agree to lose when operating with smaller subsets
B ⊆ A (thus, shorter rules), according to the following constraint:

F (B) ≥ (1− ε)F (A) // Approximate Attribute Reduction Criterion (3)

Surely, there are many attribute reduction heuristics (cf. [4,15]). An advantage of the
following one is that it yields multiple reducts. It is based on random generation of
permutations of attributes. Each permutation τ is used as an input into so called (F, ε)-
REDORD algorithm, which tries to remove τ -consecutive attributes with no loss of
inequality (3). Such obtained (F, ε)-reducts can be sorted with respect to some simple
optimization criteria in order to select those that should be taken into the ensemble. In
[8,14], one can find references to a more sophisticated order-based genetic algorithms
(o-GA) that encode permutations of attributes as chromosomes. However, according
to experiments reported in [10,13], letting the (F, ε)-REDORD algorithm work with
totally randomly chosen permutations provides satisfactory results as well.

Once the (F, ε)-reduct ensemble is established, it remains to specify the weights that
rules should give to their decisions when voting about new objects. Table 1 illustrates
parameters that we take into account with this respect. There are three voting types:
with 1 (PLAIN ), with rule’s confidence (CONF ), and rule’s confidence divided by
decision’s prior probability (COV ER)2. We can also strengthen the rule’s vote using
its premise’s support (weighting type SUPPORT ) or not (SINGLE).

2 In case of (POS, ε)-reducts we vote only using the rules with confidence equal to 1.
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Table 2. All parameters used in our experiments. Reduction type and ε ∈ [0, 1) influence the
way of computing reducts. Incompleteness corresponds to preparation of test data sets. The other
parameters decide how the rules induced from reducts are applied to classify new objects.

Parameter Parameter’s Values
Reduction {POS, M, R}

Approximation ε ∈ [0, 1)
Decision {DIRECT, RELATIV E}
Voting {PLAIN,CONF, COV ER}

Weighting {SINGLE, SUPPORT}
Matching {STRICT, FLEXIBLE}

Incompleteness {0, 1, 3, 5, 7, 9, 10, 20, 30} (%)

3 Experimental Framework

We analyzed seven data sets taken from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/): Optical Recognition of Digits (optdigits), Pen-Based
Recognition of Digits (pendigits), Letter Image Recognition (letter), StatLog version
of DNA-splices (dna) and data sets related to the Monk’s Problems (monks-1, monks-2,
monks-3). All these data sets are by design split onto the training and testing samples.
The experiments were performed according to the following procedure:

1. Generate randomly k permutations τ over the set of conditional attributes3

2. For each τ , ε ∈ [0, 1) and F ∈ {POS,M,R}, apply (F, ε)-REDORD [8,14]
3. Choose n (F, ε)-reducts that are best according to simple optimization criteria4

4. For each given incompleteness level, remove randomly chosen attribute values
5. For each object to be classified, use each of reducts to derive rules that match it5

6. For each combination of parameter settings, compute accuracy over the test data6

Table 2 summarizes parameters used in experiments. Matching types are described in
Section 4. Before this, it is important to explain why we consider incompleteness levels.
In our previous research [13], we studied correlation between data quality and optimal
settings of ε ∈ [0, 1). In [13], evaluation of data quality was simple – given the task of
MRI segmentation, the quality was related to the MRI slice thickness and the resulting
inaccuracy of attribute values. Here, if we wanted to simulate the same for each of
considered benchmark sets, we would have to carefully follow their semantics in order
to introduce inaccuracies appropriately. Instead, we suggest that removing values from
the test samples is perhaps a naïve but still valid way of lowering data quality. Surely,
this is just a simulation, incomparable to dealing with truly incomplete data [3,9].

3 In our experiments we use k = 1, 000.
4 We choose n = 10 reducts B ⊆ A that minimize |B| (first criterion) and |U/B| (second

criterion); this means, we minimize number of rules induced by reducts) [1,14]. One can also
choose reducts that are reached by the highest number of permutations [8].

5 More sophisticated rough-set-based methods involve filtering out rules with low support
[1,14]. We omit this option for simplicity. On the other hand, let us note that in case of POS-
based approach we implicitly filter out rules with confidence below 1. Let us also emphasize
one more time that rule generation needs to be adjusted to the attribute types [2,4].

6 For each combination, the experiment was repeated 10 times and the results were averaged.
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4 Experimental Results

The procedure described in Section 3 leads towards a kind of results’ repository that
is useful for verifying various hypotheses. The idea is to analyze particular parame-
ters shown in Table 2 by letting the remaining ones maximize the classifiers’ accuracy.
For example, Fig. 1 shows the maximum accuracies that can be obtained for particular
settings of reduction type and ε ∈ [0, 1), and by varying decision, voting and weighting
types. In this case, the comparison is drawn only for original test sets, i.e., with 0% of
incompleteness. Hence, we ignore matching type that controls how to handle partially
incomplete test cases (see further below).

Fig. 1 shows an interesting trend, which was first observed while studying classifi-
cation of gene expression data in [10]. It turns out that for ε = 0, which is the case
of the original rough-set-based attribute reduction framework, more sophisticated func-
tions, such as M or R, lead to more efficient reducts/rules than POS. However, POS
catches up for higher approximation thresholds. Actually, the ability of POS to max-
imize accuracy with respect to ε ∈ [0, 1) is usually higher than in case of its M - and
R-based equivalents7. Given simplicity of (POS, ε)-based classification, this is quite a
surprising result that requires further study.

The second part of our experiment relates to the thesis that the mechanism of in-
ducing approximate reducts and rules from data should have the same mathematical
background as the mechanism of using these rules in voting about new objects. Fig. 2
shows the maximum accuracies (with respect to other parameters) of classifiers based
on (M, ε)-reducts and on different voting types. From mathematical point of view it
is clear that PLAIN -voting does not match M -based reduction. Function M involves
careful analysis of the confidence values P (X∗

E |E) weighted by P (E). Experimental
results prove that ignoring the values of P (X∗

E |E) and voting simply with 1 or P (E)
is not a good idea in case of M -based attribute reduction.

Fig. 3 goes back to the comparison of reduction types, now also involving the level
of data quality modeled by introducing incompleteness into the test data. The goal is
to check whether varying data quality may influence the trends observed in Fig. 1.
The results show that an advantage of M -/R-based reduction over POS tends to grow
together with incompleteness levels. Although our method of simulating lower-quality
data may be regarded as oversimplified, it still shows that M -/R-based classifiers have
better chances to provide good accuracies in real-life applications.

The results illustrated by Fig. 3 were obtained using so called STRICT matching
type, which means that a given test object can be classified by a decision rule based on
a reduct B ⊆ A only if it does not miss any of the values on attributes in B. Clearly,
it is not the only way of dealing with such cases. Fig. 4 shows an alternative matching
type, referred as FLEXIBLE, wherein, whenever there are misses at some C ⊆ B,
we generate the decision rule based on the set B \ C. This latter option is significantly
better. However, its computational complexity is prohibitive for large data sets. Further
research is needed with this respect, taking into account both machine learning and
rough-set-based methods developed for incomplete data [3,9].

7 When looking at the figures, remember that our main goal in this paper is not reporting exact
percentages of classification accuracy, but rather illustrating some comparative trends.
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Fig. 1. Classification accuracies obtained for three reduction types: POS (light-grey-solid), M
(black-dotted) and R (dark-grey-dashed). X-axis corresponds to approximation threshold ε ∈
[0, 1) (which increases from left to right). Y -axis corresponds to the maximum accuracy out of
all classifiers constructed based on POS/M /R and ε. POS is more frequently better than M /R
for higher settings of ε. Also, POS usually leads to the best or at least comparable maximum
and average scores over the whole range of ε.
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Fig. 2. Classification accuracies obtained for three voting types: PLAIN (light-grey-solid),
CONF (black-dotted) and COV ER (dark-grey-dashed). X-axis means the same as in Fig.
1. However, reduction type is now fixed to M . Thus, Y -axis corresponds to the maximum accu-
racy out of all classifiers based on M , ε ∈ [0, 1) and PLAIN /CONF /COV ER. One can see
that CONF and COV ER are never worse and usually quite better than PLAIN , when applied
together with reduction type M .
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Fig. 3. The pies correspond to various combinations of the settings of ε ∈ [0, 1) (X-axis; ε
increases from the left to the right) and incompleteness (Y -axis; 0% at the bottom toward 30% at
the top – see Table 2). The pie area represents distribution of classifiers with best accuracy that
are based on particular reduction types: POS (white), M (black), R (grey). It shows that POS
usually stops being competitive when comparing to M /R at higher incompleteness levels.
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Fig. 4. Classification accuracies obtained for two matching types: STRICT (light-grey) and
FLEXIBLE (black). X-axis means the same as in Fig. 1. Y-axis corresponds to maximum
accuracy scores, like in Fig. 1, but now maximized also with respect to reduction types. Maximum
scores are computed for each of considered incompleteness levels (reported in Table 2) and then
averaged. We can see that FLEXIBLE is better than STRICT , although the difference fades
away when ε ∈ [0, 1) increases.
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5 Conclusions

We introduced a framework for experimental analysis of so called reduct-based classi-
fiers that origin from the theory of rough sets. The goal was to verify hypotheses taken
from our previous research, e.g., whether it is truly important to use analogous ma-
thematical principles at the phases of classifier construction and voting. Although our
framework reflects the state of the art in the areas of rough-set-based and, more gene-
rally, symbolic machine learning classification in a highly simplified way, the described
experiments support our claims.
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Abstract. Co-training is an effective semi-supervised learning method
which uses unlabeled instances to improve prediction accuracy. In the co-
training process, a random sampling is used to gradually select unlabeled
instances to train classifiers. In this paper we explore whether other
sampling methods can improve co-training performance. A novel selective
sampling method, agreement-based sampling, is proposed. Experimental
results show that our new sampling method can improve co-training
significantly.

1 Introduction

In some real world applications, it is difficult or expensive to obtain enough
labeled data to train a strong classifier. At the same time, large quantities of
unlabeled data are often available. Semi-supervised learning uses both labeled
and unlabeled instances to build strong classifiers.

Some commonly used semi-supervised learning algorithms include generative
methods such as EM (Expectation Maximization) [1], graph-based methods [2],
and co-training [3]. Co-training [3] is one of the most widely used semi-supervised
learning method. It assumes that the data can be described as two disjoint views;
i.e. sets of features. In co-training, two classifiers are first trained on the initial
(small) labeled training set using the two separate views. During the algorithm
iterations, each classifier supplies the other one with a set of new positive and
negative examples. These examples are selected from a working pool which is
replenished by randomly sampling from the set of unlabeled instances. Blum
and Mitchell (1998) [3] showed that when the two views are independent and
each one is sufficient for learning, co-training can effectively build an efficient
model. However, in real world applications this assumption is seldom held. Some
previous research [4,5] showed that while co-training may still be effective in
the case of dependent data views, its performance is usually worse than using
independent and sufficient data views.

Active learning, similar to semi-supervised learning, uses both labeled and un-
labeled instances to build strong classifiers. Its difference with semi-supervised
learning is that in active learning a domain expert will assign labels to some
”most informative” unlabeled instances. Therefore, sampling the most informa-
tive unlabeled instances from a large unlabeled instance pool is the key issue for

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 197–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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active learning. Previous research shows that in active learning, random sam-
pling usually leads to poor performance. Significant research in active learning
has focused on designing new sampling strategies [6,7,8]. In the original co-
training algorithm, there is also a sampling process which samples some unla-
beled instances from a large pool to replenish a small working pool. The original
co-training algorithm [3] uses a simple random sampling which may result in
different unlabeled instances to be used in different co-training runs. Since in
active learning random sampling usually cannot achieve the best performance,
we would like to know if we can use other sampling strategies to obtain better
results in the case of co-training. To the best of our knowledge, no previous
work demonstrated that sampling is also an important factor that influences
co-training performance. In this paper, we propose a simple selective sampling
method to improve co-training. We performed experiments using this new sam-
pling method on several UCI datasets. The results for several datasets show that,
for the same view attributes, our new method can result in significantly more
accurate classifiers when compared with the original co-training.

2 Sampling in Co-training

The co-training algorithm is depicted in Figure 2. A small unlabeled set U ′ is first
randomly sampled from unlabeled dataset U . Then in the co-training process,
two classifiers h1 and h2 trained on two views V 1 and V 2 of the labeled dataset
L are used to label all unlabeled instances in U ′. Classifiers h1 and h2 each select
p positive and n negative most confidently predicted instances from U ′ and add
them to L. The unlabeled set U ′ is then replenished by random sampling from
U . This process is repeated many times until the co-training is finished.

Since random sampling usually does not achieve the best performance, we
explore whether another sampling method can improve the co-training perfor-
mance. We review some research on sampling in active learning because sam-
pling plays an important role in active learning. Tong and Koller [6] used a
sampling strategy by minimizing the version space to improve active learning
for support vector machines. Muslea and Minton [9] proposed an active sam-
pling method which is called co-testing. Similar to co-training, co-testing also
trains two classifiers on two views. The two view classifiers are used to clas-
sify all unlabeled instances. Some of the instances that theses classifiers dis-
agree the most on their label are then presented to domain experts for labeling.
This sample of expert labeled instances is then added to the labeled instance
set.

Intuitively, one may say that we can directly apply the sampling methods
used in active learning to the co-training process. Unfortunately, this approach
is infeasible. Co-training is actually a passive learning process. The sampling
process in active learning selects the most informative unlabeled instances to
be labeled by domain expert. Those most informative unlabeled instances are
usually least confidently predicted by the classifiers used in co-training. If those
unlabeled instances are sampled in co-training, they are very likely to be mis-
labeled by the view classifiers. This will degrade the co-training performance.
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Given:

– a learning problem with two views V 1 and V 2
– a learning algorithm
– the sets L and U of labeled and unlabeled examples
– the number k of iterations to be performed
– a working set U ′ with a given size u

Co-train(L, U, k, V1, V2, u, sample-func):

– let h1 and h2 be the classifiers learned from training data L using views V1 and
V2, respectively

– U ′ = sample-func(u) from U
– LOOP for k iterations

• select the most confidently predicted p + n instances by h1 from U ′

• select the most confidently predicted p + n instances by h2 from U ′

• add 2p + 2n instances to L
• remove 2p + 2n instances from U ′

• U ′ = sample-func(2p + 2n) from U
• let h1 and h2 be the two classifiers trained on two views from L

– combine the prediction of h1 and h2

random-sample(n):

– randomly select and extract n instances from U
– return selected n instances

sample-with-agreement(n):

– use h1 and h2 to classify all instances in U
– FOR each instance xi in U

• mean(xi) = (p1(xi) + p2(xi))/2
• Let the score function
• s(xi) = I(xi) + max{mean(xi), 1 − mean(xi)

– rank all instances of U according to score function values in decreasing order
– return the top ranked n instances

Co-training = Co-train(L, U, k, V1, V2, u, random-sample)
Co-training with agreement sampling = Co-train(L, U, k, V1, V2, u, sample-
with-agreement)

Fig. 1. Co-train and co-train-AS
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Therefore the sampling strategies adopted by active learning cannot be directly
applied in co-training. Consequently, we have to design a new sampling method
for co-training.

3 Agreement-Based Sampling for Co-training

We propose a novel sampling method to replace the random sampling used by
co-training. This new strategy is called agreement-based sampling. It is moti-
vated by the co-testing method proposed in [9]. Co-testing is an active learning
method which borrows the idea of co-training. Co-testing also uses redundant
views to expand the labeled dataset to build strong learning models. The major
difference between co-testing and co-training is that co-testing uses two classi-
fiers to sample unlabeled instances to be labeled by the domain experts, while
co-training randomly samples some unlabeled instances and uses the two view
classifiers to assign labels to them. Results presented in [9] showed that co-testing
benefits from the sampling method it uses. This motivated us to use a better
sampling method for co-training.

Co-testing first trains the view classifiers on the two views of the labeled
dataset. It then uses the two view classifiers to classify all unlabeled instances.
The unlabeled instances that the two view classifiers disagree the most on their
classification are then sampled. In our method we also use two view classifiers to
sample from unlabeled instances. We first use the two view classifiers to classify
all unlabeled instances. But we always sample unlabeled instances from U that
the two view classifiers agree the most on their classification. These are used to
replenish U ′. We use a ranking function to rank all the unlabeled instances ac-
cording to the predictions of the two view classifiers. The ranking score function
for an unlabeled instance xi is defined as

s = I(xi) +max{(p1((xi) + p2(xi))/2, 1− (p1(xi) + p2(xi))/2} (1)

where

I(xi) =
{

1 if the two view classifiers assign the same label to xi

0 otherwise

p1(xi) and p2(xi) are predicted probabilities for the positive class by the two
view classifiers respectively.

Scores generated by formula 1 results in a rank where instances in the highest
positions are the ones that both view classifiers assign the same label, with high
confidence., to them. The first term I(xi) guarantees that the unlabeled instances
for which the two view classifiers produce the same labels are always ranked
higher than those given different labels. The term max{(p1(xi) + p2(xi))/2, 1−
(p1(xi) + p2(xi))/2} selects the larger one of the average predicted probabili-
ties for the positive and negative classes by the two view classifiers. Therefore
the instances with higher predicted confidence are given higher scores. Figure 2
shows the original co-training algorithm and co-training using agreement-based
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Fig. 2. Comparison of different sampling methods

sampling. Here we use Co-train-AS to refer to co-training using agreement-based
sampling.

To better understand different sampling methods, In Figure 2 we compare
random sampling, co-testing sampling and our new sampling method. For a
given labeled dataset, we assume two view classifiers h1 and h2 are trained on
views V 1 and V 2. The two view classifiers are then used to classify all unlabeled
instances. Figure 2(a) shows the distribution of the classified unlabeled instances.
Here the horizontal line V 1 represents the classification boundary of the view
classifier h1. Instances that lie above the line V 1 are classified as positive by
h1; while those that lie below this line are classified as negative. The vertical
line V 2 represents the classification boundary of the view classifier h2. Similarly,
instances to the left of the line V 2 are classified as positive by h2; otherwise
they are classified as negative. The confidence of classification for an instance is
proportional to its distance to the boundary. The farther an instance is from the
boundary, the higher is the confidence in its label.

In Figure 2(a) the instances which are in the upper left and lower right regions
are assigned the same labels by the two view classifiers. We use “+” and “-” to
represent the unlabeled instances that are classified as positive and negative by
both h1 and h2. The instances in the other two regions are those that the two
view classifiers disagree on their label. We use “.” to represent these instances.
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Figure 2(b) shows how random sampling method works. It randomly selects some
instances from all unlabeled instances. We use circles to represent the sampled
instances. Figure 2(c) shows the sampling method of co-testing. It clearly shows
that co-testing samples the instances that the two view classifiers label differently
and that are farthest to both classification boundaries. Figure 2(d) shows our
new sampling method where instances that both view classifiers label the same
and that are also farthest from the boundaries are selected.

4 Experiments

We chose 16 UCI datasets [10] to investigate the performance of using
agreement-based sampling for co-training.The characteristics of each dataset
along with the co-training setup used are shown in Table 1. The attributes of
all datasets are split into two sets and are used as two co-training views. This
is a practical approach for generating two views from a single attribute set. To
thoroughly explore the co-training performance on these views we would like
to experiment with all possible combinations of the views. Unfortunately, since
the number of pairs of views is exponential to the number of attributes, it is
impossible to enumerate all such pairs when the number of attributes is large.
In our experiments we randomly generate some pairs of views. For all datasets
except for balance-scale we randomly select at least 150 pairs of views to run
co-training. The last column of Table 1 represents the number of view pairs
used in our experiments and the total number of all possible view splits. The
balance-scale, primary-tumor, splice, soybean, segment, and vowel multi-class
datasets are converted to binary by grouping some classes as positive and the
rest as negative. The resulting balance-scale, splice, soybean, and segment binary
datasets are roughly balanced. In the case of the balance-scale dataset, “L” and
“B” classes are categorized as the positive class, and “R” class as the negative

Table 1. Datasets and co-training settings used in our experiments

Dataset Instances Attributes Class Dist. Co-training settings
|L| |U| |U ′| |test| p n V

anneal 898 39 1:3.2 12 612 50 224 1 3 150/238

balance-scale 625 5 1:1 8 411 50 156 1 1 15/15
breast-c 286 9 1:2.3 24 190 50 72 1 2 255/255
credit-a 690 16 1:1.3 23 497 50 170 1 1 400/215

colic 368 22 1:1.7 12 260 50 96 1 2 250/221

diabetes 768 9 1:1.7 12 564 60 192 1 2 255/255
hypothyroid 3772 30 1:12 39 2634 156 943 1 12 200/229

letter 20000 17 1:1 10 14492 500 5000 1 1 150/216

primary-tumor 339 18 1:3.2 16 188 50 85 1 3 200/217

segment 2310 20 1:1.3 10 1620 100 580 1 1 150/219

sick 3772 30 1:15 48 2805 288 919 1 15 200/229

soybean 683 36 1:1 8 504 50 171 1 1 200/235

splice 3190 60 1:1 12 2328 50 800 1 1 100/259

vehicle 846 19 1:3 12 562 60 212 1 3 200/218

vote 435 17 1:1.6 26 300 50 109 1 2 200/216

vowel 990 14 1:4.5 20 647 75 248 1 4 200/213
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Table 2. Classification error rates for co-train and co-train-AS

Naive Bayes Decision Tree
Dataset cotrain cotrain-AS cotrain cotrain-AS
anneal 12.2±3.3 11.5±3.6 12.5±2.9 11.9±2.9
balance-scale 20.6±3.6 20.7±3.5 42.1±4.2 41.6±4.5
breast-c 34.1±2.7 31.4±2.8 ◦ 36.7±2.5 33.2±2.8 ◦
credit-a 16.0±2.1 13.2±2.1 ◦ 22.6±3.1 21.9±3.1
colic 31.1±3.1 27.7±3.4 ◦ 33.5±3.7 33.1±3.1
diabetes 25.3±2.4 28.4±2.4 • 27.0±3.2 28.5±3.6 •
hypothyroid 22.6±3.0 21.7±3.2 ◦ 21.6±3.0 19.1±3.2 ◦
letter 25.5±3.2 25.9±3.3 23.8±3.0 23.9±2.8
primary-tumor 41.5±4.4 41.5±4.8 44.3±4.2 43.9±4.3
segment 12.9±3.2 13.1±3.5 15.2±3.4 14.4±3.0
sick 11.6±2.5 11.7±2.5 12.8±1.1 12.5±1.2
soybean 20.7±3.5 18.5±3.1 ◦ 17.6±3.5 15.4±3.2 ◦
splice 12.7±3.9 11.0±4.1 ◦ 13.8±4.1 13.3±4.2
vehicle 33.8±3.1 34.5±3.5 37.1±3.3 37.2±3.2
vote 12.2±3.0 11.3±2.8 13.8±3.0 14.1±2.7
vowel 24.1±2.9 23.9±3.3 24.0±3.0 21.4±2.8 ◦
◦: significantly better than original co-training.
•: significantly worse than original co-training.

class. All of the primary-tumor dataset classes except “lung” are categorized as
negative. “EI” and “IE” classes of the splice dataset are categorized as posi-
tive, and class “N” as negative. The first 9 classes of the soybean dataset are
categorized as the positive class and the remaining 10 classes as negative. The
first 3 classes of the segment dataset, are relabeled as the positive class and the
remaining 4 as the negative class. Finally, the first 2 classes of the vowel dataset
are categorized as the positive class and the remaining 9 classes as the negative
class.

Our experiments compared the performance of the the original co-training
and the new agreement-based sampling method (cotrain-AS) . We used Naive
Bayes and J48 decision tree learning algorithms. In the case of Naive Bayes
learning, numeric attributes of all datasets are discretized by using the ten-
bin unsupervised discretization method of Weka [11]. We ran each method on
each dataset 10 times. In each run we split the whole dataset into 5 equal-
sized non-overlapping subsets. We repeatedly used each subset as the testing
set. The remaining four subsets formed a randomly selected labeled set L and
unlabeled set U. We then ran the original and the new co-training algorithm
using this setup and measured the performance of the generated classifiers on
the independent testing set.

Semi-supervised learning can be viewed from two perspectives. First, it is
used to build a strong model from labeled and unlabeled instances. Second,
it is used to expand the original limited labeled dataset. In many real world
applications, the choice of the required model is constrained. For instance one
may need an explainable model which eliminates the use of black box algo-
rithms such as SVMs. We call this classifier a modeling classifier. The ques-
tion then is, How can we use an unlabeled dataset to train the desired modeling
classifier? The obvious answer is to somehow obtain the label of these unla-
beled instances and then train the modeling classifier using this larger dataset.
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We believe co-training, viewed as a method to automatically expand an ini-
tial small labeled set, could be a cost effective answer to this question. Conse-
quently, the quality of the resulting expanded labeled set is of particular interest
to us.

We train a modeling classifier at the end of the co-training process and eval-
uate its performance on the test split mentioned above. The modeling classifier
is trained on all attributes of the expanded labeled set. For the experiments re-
ported in this paper we have chosen the same learning algorithm for the view
classifiers and the modeling classifier, but this is not a necessary condition.
Table 2 shows the average error rates of the modeling classifiers for different
datasets.

We performed a paired t-test with 95% confidence level on the error rates
to show whether one model is significantly different then the other. Our results
show that when using naive Bayes, cotrain-AS is significantly better than original
co-training in 7 out of 16 cases. This indicates that cotrain-AS can indeed make
improvements over the original co-training. Table 2 shows that for only one
dataset, diabetes, the original co-training is significantly better than cotrain-AS.
The detailed experimental results on diabetes show that the two view classifiers
perform quite differently in many view splits. In many cases they give totally
different labels to unlabeled instances. Therefore a method that only samples
the instances that are assigned the same label by both view classifiers becomes
less reliable and may result in degradation of performance.

In the case of decision tree learning, Table 2 shows that cotrain-AS is sig-
nificantly better than original co-training in 4 out of 16 datasets. These results
indicate that our new method can be more beneficial when using naive Bayes
versus J48 decision tree learning.

5 Discussion

In this section we investigate why agreement-based sampling method can im-
prove the performance of co-training. As shown in Section 3, agreement-based
sampling selects the unlabeled instances that the two view classifiers agree the
most about their label. When two view classifiers are sufficient and independent,
the sampled instances are more reliably labeled. Thus selecting those instances
that the two view classifiers agree on their label is less likely to introduce errors
in expanded labeled dataset. On the other hand, co-testing sampling method
selects instances that the two view classifiers disagree the most on their labels.
This means that one of the view classifiers assigns the wrong label to the in-
stance, which may lead to labeling errors in the expended labeled dataset. One
approach to investigate the reason why our new sampling method works is to
explore the labeling errors.

In a deployed application, we can not calculate the labeling error rates as the
real labels of unlabeled instances are not known. But since the datasets used
in our experiments are labeled, it is possible for us to calculate the labeling
error rates. We calculated the labeling error rate of the original co-training and
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Table 3. Correlation coefficient for classification errors and labeling errors

Dataset naive Bayes Decision tree
anneal 0.889 0.855
balance-scale 0.904 0.861
breast-c 0.878 0.899
credit-a 0.846 0.903
colic 0.887 0.899
diabetes 0.854 0.697
hypothyroid 0.890 0.824
letter 0.718 0.701
primary-tumor 0.881 0.902
segment 0.908 0.625
sick 0.914 0.847
soybean 0.617 0.728
splice 0.893 0.866
vehicle 0.702 0.871
vote 0.872 0.853
vowel 0.911 0.891

cotrain-AS in the experiments discussed in Section 4. Due to space limitation,
the detailed labeling error rates are omitted. Instead we present the correlation
between the classification errors and labeling errors.

As mentioned earlier, for each view split of a given dataset we run the two
co-training methods A1 and A2; i.e. original co-training and cotraining-AS, 10*5
times. This results in 50 pairs of expanded labeled sets and the corresponding
50 pairs of modeling classifiers. For each expanded labeled set and modeling
classifier we can calculate the labeling error and the testing error. At this point
there are 50 pairs of labeling errors and 50 pairs of testing errors representing
the one to one performance comparison of the methods A1 and A2 for each
view split. We then run two separate t-tests to compare the significance of the
difference in labeling errors and the significance of the difference in testing errors
of A1 and A2. We use the value 1 to show that A2 is significantly better than
A1 for a given performance measure and 0, otherwise. Consequently, for each
split we know if A2 had a significantly better labeling error compared to A1 and
similarly if it had a significantly better testing (or classification) error. We can
obtain an array of the above value pairs for each dataset. The size of this array
is equivalent to the number of splits generated for the dataset. We then calculate
the correlation between the pairs in the array by using spearman’s footrule ρ 1.
This shows the correlation between the labeling performance comparison of the
cotrain-AS versus the original co-training.and the corresponding classification
performance comparison for each dataset. As the results in Table 3. show, for all
datasets and learning algorithms the spearman correlation is greater than 0.6.
For most datasets the correlation is much higher.

These results indicate that in the case of our experiments there is a strong cor-
relation between better modeling predictions and better labeling performance.
The better classification error rates obtained by cotrain-AS is due to its smaller
labeling error rates.

1 For two given lists of a1, a2, · · · , an and b1, b2, · · · , bn, if ai, bi is 0 or 1, the spearman’s
footrule ρ = 1 −∑n

i=1(ai − bi)2/n.
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6 Conclusions and Future Work

In this paper we propose a novel agreement-based sampling method to improve
the performance of two-view co-training algorithm. The basic idea of this sam-
pling method is to select unlabeled instances that the two view classifiers agree
the most on their label. The criteria used in this sampling method is opposite to
that of co-testing. Our experiments show that this new sampling method can in-
deed make a significant performance improvements over the original co-training.
Finally we empirically explored why agreement-based sampling method works
better. For our future work, we intend to apply the new sampling method to
other semi-supervised learning methods such as co-EM.
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Abstract. Clinical Decision Support Systems embed data-driven de-
cision models designed to represent clinical acumen of an experienced
physician. We argue that eliminating physicians’ diagnostic biases from
data improves the overall quality of concepts, which we represent as de-
cision rules. Experiments conducted on prospectively collected clinical
data show that analyzing this filtered data produces rules with better
coverage, certainty and confirmation. Cross-validation testing shows im-
provement in classification performance.

1 Introduction

The functionality of clinical decision support systems (CDSS) relies on their
embedded decision models that represent knowledge acquired from either data
or domain experts. Data-driven models are created to acquire knowledge by
deriving relationships between data features and decision outcome. In medical
domains, while the data describes patients with a clinical condition, the decision
indicates a diagnostic outcome. These diagnostic decisions are normally tran-
scribed from patient charts and are verified for correctness, e.g. by a follow-up.
Traditionally, a verified outcome forms the gold standard (GS) used in the anal-
ysis of the decision models. In this paper, we assume a data-driven approach but
argue that the reliance in the analysis on the GS may skew the resulting relation-
ships. Our goal is to show that the use of cases, where the experienced physician
(EP) makes correct diagnoses according to the verified patient outcome (GS),
results in better decision models. To acquire unbiased clinical knowledge, we
argue that it is essential to eliminate records where EP decisions do not match
GS prior to constructing a decision model from data.

In clinical domains, patient records represent instances of a relationship, be-
tween attribute values, describing the status of patients’ health and diagnostic
decisions made by the physician. Several studies establish that EP makes good
clinical decisions, particularly when dealing with critical cases. However, EPs
often err in favor of caution and tend to over-diagnose patients who are rela-
tively healthy. Therefore, their decisions are characterized by high sensitivity
and lower specificity. From a decision making perspective, low specificity if not
controlled introduces noise in the data. This can be evident by discrepancies
between decisions made by EP and those established by the GS.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 207–216, 2010.
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Our approach in identifying unbiased clinical knowledge in the data represents
a departure from the established common practice where relationships are sought
between patient attribute values and class labels (diagnoses) derived from the
GS. These decision models are constructed from data collected by EPs but the
diagnostic outcome is established from the GS. This practice is skewed because
resulting models represent knowledge distorted by erroneous characteristics as-
sociated with the EP’s decision models. As a remedy, we propose to eliminate
EPs’ biases from the data. Cases for which GS and EP decisions match consti-
tute “correct decisions”, are particularly valuable, and provide “sound” clinical
knowledge. Classical methods construct their decision models from all available
records regardless of the correctness of their EP decisions. We argue that such
model construction may introduce bias in discovered knowledge, and we propose
to focus the analysis on cases with correct EP decisions only.

This paper aims to demonstrate the value of these “correct” cases in the
context of knowledge acquisition from patient data. We apply our analysis to two
clinical domains, the diagnosis of pediatric abdominal pain (AP) and pediatric
asthma exacerbation (AE). To this extend, our experiment shows that filtering
the data, based on the match between EP decisions and the GS, produces crisp
knowledge. Naturally, we must clarify what form of knowledge we extract, and
how we measure its quality. To represent knowledge, we exploit concepts of rough
set theory that represent it by a set of minimal decision rules [9,8]. We apply
the MODLEM algorithm [11,12] to generate these decision rules. For evaluation,
we employ several metrics to assess the quality of rules based on their structure
and their performance on data. They include; the number of generated decision
rules, length, coverage, certainty, and confirmation and are reviewed in [4].

The paper is organized as follows. Section 2 discusses clinical domains used
for our experiments, and section 3 describes basic principles behind rough sets,
the MODLEM algorithm used for rule generation, and rule evaluation metrics.
Experimental design and results are discussed in section 4, and conclusions can
be found in section 5.

2 The Role of EP’s Expertise

Clinical decision-making is a complex process influenced by a verity of uncertain
factors and should include the integration of clinical expertise [5]. Information
technology solutions have been commonly considered as decision support mech-
anisms to provide clinicians with appropriate information while making clini-
cal decisions. Such solutions include Clinical Decision Support Systems (CDSS)
which have increasingly captured the attention of the medical community in
recent years. A CDSS is defined as “any program designed to help healthcare
professionals make clinical decisions” [7]. CDSS provide information in three
widely accepted categories including; information management, focusing atten-
tion on specific health events, and patient-specific recommendations. The latter
helps physicians make two types of decisions. The first is diagnostic where the
focus is set on the patients underlying health condition, and the second type
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deals with patient management with regards to what treatment plan is most
appropriate for the patient. Despite the varying techniques for extracting expert
knowledge, patient-specific CDSS decision models almost always reflect clinician
expertise with the embedding of the knowledge of the ‘best practice’. Obviously,
the knowledge of an EP is vast. It has been documented that a physician is
considered an expert after 10 years of training [10] who is able to summarize
information and to develop a complex network of knowledge [1].

The focus of our research is to enhance and to support the process of acquiring
expert knowledge from patient-specific data, we are able to capture it by filter-
ing the data according to the EP’s correct practice. Such knowledge can be used
in the construction of decision models ready for integration into CDSS. To this
extent, we wish to exploit decisions made by the EPs which reflect their clinical
acumen. When comparing their decisions to the verified patient outcomes, the
GS, physician’s diagnostic biases become clear. Investigating the circumstances
of these biases is a difficult task as they can be caused by multitude of factors
including differing expertise of physicians [5]. To account for the diagnostic bi-
ases, we propose to rely only on correct EP decisions, and therefore we consider
data for those patients where EP decisions match the GS.

AE data was collected as a part of a study conducted at the Children Hospital
of Eastern Ontario (CHEO), and it includes patients who visited the hospital
emergency department (ED) experiencing asthma exacerbation. In the ED, a
patient is repeatedly evaluated by multiple clinicians at variable time intervals.
This information is documented and collected prospectively for each patient.
The resulting patient records contain information about history, nursing, physi-
cian triage assessment, and reassessment information collected approximately
2 hours after triage. Records in the AE data set are assigned to one of two
outcome classes: mild or other severity of exacerbation. The verified severity of
exacerbation is used as a GS. The dynamic nature of asthma exacerbation and
the collection of assessments over time would lend itself naturally to a temporal
representation for analysis of data. However, inconsistencies in data recording
meant it was not possible to incorporate a temporal aspect into the analysis.

The AP data is also collected in the ED of CHEO and includes patients
who have serious conditions, mostly appendicitis, who require surgery. However,
most records describe benign causes. Before a cause can be found, symptoms
often resolve without complications so that a definitive diagnosis is not possible
during the ED visit. Therefore, choosing the correct triage plan is an important
proxy [2] and we use it as a class label. This triage plan may involve discharg-
ing the patient, continuing observation, or asking for a specialty consultations.
In our AP data, these outcomes are transformed into binary values indicating
whether a patient requires specialist consultation. As with the AE data, a GS
was established from verified patient outcomes.

3 Generating and Assessing Decision Rules

Based on the mathematical model of rough set theory [9], we generate a mini-
mal set of decision rules using the MODLEM algorithm described in [13]. These
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Table 1. The contingency table of a decision rule “ifX then Y ”

Y Y
X a b r1

X c d r2

c1 c2

decision rules represent knowledge extracted from data, and we assess their qual-
ity using several measures presented in [4] and discussed later in this section.
Our objective is to show that analysis conducted on cases where EP decisions
are correct result in better rules, and therefore higher quality knowledge, than
those performed on data with the GS being the class label.

Rough set analysis rely on an information table which contains data points
(examples) described by a finite set of attributes. Such table becomes a decision
table when we are able to identify a set of condition attributes C and relate them
to a set of decisions D. From a decision table, we can induce decision rules of the
form “if · · ·, then · · ·”. We now describe an intuitive illustration appropriate for
our domains which appears in [4]. Given a data sample describing patients and
their diseases, the set of signs and symptoms S = {s1, · · · , sn} contains their
condition attributes and a set of diseases D = {d1, · · · , dm} as their decision
attributes. A decision rule has the form “if symptoms si, sj , · · · , sw appear, then
there is disease dv” with si, sj , · · · , sw ∈ S and dv ∈ D.

The MODLEM algorithm [13] is designed to induce such decision rules based
on the idea of sequential covering to generate a minimal set of decision rules for
every decision concept. A decision concept may be the decision class or a rough
approximation of the decision class in the presence of inconsistent examples.
The objective of this minimal set of decision rules is to cover all the positive
examples in the positive class without covering any negative examples. A benefit
of using MODLEM lies in its ability to process numerical attributes without
discretization. In addition, this algorithm has been shown to produce effective
and efficient single classification models [12]. The process of generating the set
of minimal decision rules is iterative. For every decision class, the MODLEM
algorithm repeatedly builds decision rules to cover examples in that class, then,
it removes examples covered by this rule from the data. This process continues
until all examples in the class are covered, and the “best” rules are selected
according to a chosen criterion, e.g. class entropy. For more detailed description
of the MODLEM algorithm, we refer to [13].

Comparing the characteristics and performance of decision rules has long been
a subject of research. In this paper, we utilize several classical rule evaluation
measures including the rule confirmation measure, all of which, are reviewed
in details in [4]. We also illustrate calculations and present interpretations of
metrics used in our experiments. For simplicity, let “if X then Y ” be a decision
rule where X is a subset of conditions and Y is a decision class. Applying this
decision rule to data produces entries that populate the contingency Table 1.
Essentially, this table depicts counts of examples that are covered by all possible
combinations of either side of the decision rule. In the data, while there are a
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examples that satisfy the set of conditions X whose decision is Y , examples that
fail conditions X and their decision is Y 1 are depicted by d. Similarly, b is the
number of examples that meet conditions X but their decision is Y , and finally,
c is the count of examples that fail conditions X but their decision is Y . While
c1 and c2 represent the column summations, r1 and r2 are the row summations.
Their interpretations are simple; the column summations show the number of
examples whose decision class is Y or Y respectively, and the row summations
indicate the number of examples that satisfy X or X also respectively.

Rule evaluation measures are well established and fall into two main cate-
gories; the first involves assessing the structure of the rule, and the second relates
to their performance. While the former is based primarily on the length of the
rule, the latter includes rule coverage, certainty, and confirmation. These mea-
sures are discussed in [4], and we compute their values for each rule by counting
entries in Table 1, then, we substitute their values in equations 1, 2, and 3.

coverage(X,Y ) =
a

c1
(1)

certainty(X,Y ) =
a

r1
(2)

confirmation(X,Y ) =
ad− bc

ad+ bc+ 2ac
(3)

While higher coverage values depict the strength of the rule, a high value of rule
certainty indicates higher confidence. In addition, several measures have been
proposed to asses rule confirmation. However, we use the f() measure presented
in [4], which quantifies the degree to which the observed evidence supports for,
or against, a given hypothesis. The findings in [4] show its effectiveness.

To assess the quality of knowledge extracted from data in the form of decision
rules, we first consider characteristics describing this set. Such characteristics
include the number of decision rules, the number of conditions, and the average
length of a rule with the associated standard deviation. Such characteristics
reflect the complexity of the concept in the sense that, while complex concepts
may have more rules, these rules tend to be longer because they include more
conditions. This is consistent with simpler, more effective rules having fewer
conditions, thus they are shorter in length and there are fewer of them. From
a performance assessment perspective, concepts which are described by fewer
rules, show greater coverage, produce higher levels of certainty, and have better
confirmation are considered of better quality.

4 Experimental Design and Results

The objective of our experiment is to demonstrate that the quality of knowledge,
acquired from clinical data, is improved by including only those patient cases
for which the EP makes correct decisions as indicated by the verified patient
1 X is ¬X, the complement of X.
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Table 2. Characteristics of the clinical data sets

GS Outcome EP Decisions

Data Examples Positives Negatives Ratio Positives Negatives

AEall 240 131 109 55% 136 72
AEcorr 140 90 50 64% 90 50

APall 457 48 409 11% 55 402
APcorr 422 34 388 8% 34 388

outcome, the GS. Furthermore, the experiment shows that the performance of
the associated classification model can also be improved using the proposed
filtering of patient records. We conduct our experiment in two phases. In the first
phase, the knowledge acquisition phase, we generate a minimal set of decision
rules and record their characteristics for analysis. The second phase uses 10-
fold cross-validation runs repeated 5 times to evaluate the performance of the
decision models after filtering the training data.

Data sets used in the experiment and their characteristics are listed in Ta-
ble 2. The subscript all for AP and AE indicates that all patient records are
analyzed (non-filtered). Similarly, the subscript corr indicates filtered data sets,
where class labels correspond to EP decisions that match GS after eliminating
mismatching records. Examining Table 2 reveals that while the class distribu-
tion of the AE data is almost balanced, it is not so for the AP data where the
ratio of positive examples is less than 11%. Therefore, we use an under-sampling
technique to balance it by randomly selecting, without replacement, an equal
number of examples in both classes to retain the complete set of positive exam-
ples. A data set after under-sampling is labeled APS. This set is processed in
two settings; the first consists of all examples that are randomly under-sampled
and is indicated by APSall. The second is denoted by APScorr and includes an
under-sample set of cases for which EP decision are correct, i.e. we under-sample
data resulting from EP-based filtering.

A pairwise comparison of the number of examples on the all rows to those
on the corr rows of Table 2, respectively, shows that EP makes more correct
decisions in the AP domain than in the AE. In both domains, however, EPs
over-diagnose patients as having a positive condition more often than indicated
by the GS. This is seen by comparing the number of positive EP decisions for
both all and corr rows in both domains.

4.1 Discussion

We begin discussion by considering characteristics recorded for each concept ex-
tracted from the data. A concept is represented by a set of decision rules for
which we show the number of conditions, the number of rules, and the average
rule length with its standard deviation for both and for individual classes. In
this order, these values are shown in the columns of Table 3. Examining these
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Table 3. Characteristics of resulting concepts

Both Classes + Class – Class

Data Cond. Rules Ave. Length Cond. Rules Ave. Length Cond. Rules Ave. Length

AEall 199 50 3.98 ±1.19 92 23 4.00 ±1.00 107 27 3.96 ±1.34
AEcorr 13 6 2.17 ±0.98 5 3 1.67 ±1.16 8 3 2.67 ±0.58

APall 163 38 4.29 ±1.51 99 21 4.71 ±1.65 64 17 3.77 ±1.15
APcorr 83 24 3.46 ±1.14 37 10 3.70 ±1.25 46 14 3.29 ±1.07

APSall 91 25 3.64 ±0.95 51 14 3.64 ±1.08 40 11 3.64 ±0.81
APScorr 19 8 2.38 ±0.52 9 4 2.25 ±0.50 10 4 2.50 ±0.58

characteristics on individual classes shows that the rules are almost evenly dis-
tributed on the positive and on the negative class. Individually, they have an
almost equal number of conditions, number of rules, and average rule length.

An important observation points to the fact that values recorded for data sets
with corr index are smaller than those recorded for the non-filtered data sets.
For all three data sets, AE, AP, and APS, the set of decision rules generated
form data containing correct EP decisions results in fewer conditions, fewer rules,
and shorter average rule length with a lower standard deviation. This observa-
tion remains consistent whether we consider the set of decision rules describing
both classes or individual classes. This suggests that using data with correct EP
decisions produces concepts with less complexity and possibly ones with higher
quality.

Results of evaluating the performance of these decision rules are shown in
Table 4. The pairwise comparison of average values for each performance mea-
sure reveals that they remain unchanged or increase when rules are generated
form data containing correct EP decisions. With such filtering, the average rule
coverage increases dramatically for the AE data. For the AP data, the use of
under-sampling allows the average rule coverage a higher increase than that ob-
tained without under-sampling. This is seen when we compare the difference
in average coverage values of APSall and APScorr against that for APall and
APcorr. This is attributed to the imbalanced class distribution of the AP data.

The average certainty on the AE domain achieves its maximum value of 1 and
remains unaffected by the elimination of cases with incorrect EP decisions, see
average certainty values for AEall and AEcorr. A similar statement can be made
for the average rule confirmation in the AE domain in the same table. On the
AP data and regardless of using under-sampling, the average rule certainty and
the average confirmation are both improved by our filtering, their average values
for APcorr and APScorr are increased over APall and APSall respectively. Such
results lead to the conclusion that generating decision rules using examples with
correct EP decisions enhances the coverage, the certainty and the confirmation
of the rules. However, the standard deviation increases for the rule coverage mea-
sure in both domains. This is not surprising because data with cases of correct
EP decisions are always smaller than their respective original sets, their sizes
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Table 4. Assessing the performance of resulting decision rules

Measure Data Both classes + Class – Class

Coverage AEall 0.055 ±0.044 0.062 ±0.052 0.048 ±0.036
AEcorr 0.534 ±0.311 0.507 ±0.362 0.560 ±0.330

APall 0.117 ±0.153 0.068 ±0.051 0.176 ±0.209
APcorr 0.158 ±0.204 0.176 ±0.130 0.145 ±0.248

APSall 0.137 ±0.132 0.131 ±0.128 0.145 ±0.143
APScorr 0.423 ±0.209 0.338 ±0.098 0.507 ±0.271

Certainty AEall 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000
AEcorr 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

APall 0.955 ±0.157 0.929 ±0.208 0.988 ±0.030
APcorr 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

APSall 0.969 ±0.104 0.964 ±0.134 0.974 ±0.053
APScorr 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Confirmation AEall 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000
AEcorr 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

APall 0.914 ±0.219 0.953 ±0.165 0.867 ±0.269
APcorr 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

APSall 0.937 ±0.210 0.928 ±0.270 0.949 ±0.104
APScorr 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Table 5. Classification performance of resulting decision rules

Data Sensitivity Specificity Accuracy Geometric Mean†

AEall 0.7024 ± 0.1510 0.5930 ± 0.1634 0.7158 ± 0.0865 0.6341 ± 0.1059
AEcorr 0.7908 ± 0.1268 0.5070 ± 0.1309 0.6825 ± 0.0803 0.6243 ± 0.1029

APall 0.4930 ± 0.2231 0.9640 ± 0.0264 0.9252 ± 0.0322 0.6619 ± 0.1952
APcorr 0.5877 ± 0.2236 0.9526 ± 0.0368 0.9305 ± 0.0310 0.7284 ± 0.1696

APSall 0.7913 ± 0.2246 0.7856 ± 0.0525 0.8127 ± 0.0406 0.7777 ± 0.1296
APScorr 0.7470 ± 0.2353 0.8560 ± 0.0642 0.8559 ± 0.0509 0.7909 ± 0.1396

† Entries are averaged over 5 runs of 10-fold cross validation.

are shown in Table 2, but the average values of rule certainty and confirmation
achieve their maximum of 1 with a standard deviation of 0. Clearly, our filtering
helps the model achieve high certainty and strong confirmation.

Our final results are given in Table 5, which shows the average sensitivities,
specificities, accuracies, and the geometric means2 of sensitivities and specifici-
ties resulting from testing the classification performance of the decision rules.
The testing method relies on the 10-fold cross-validation repeated 5 times for

2 The geometric mean measure is used for imbalanced class distributions [6].
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which the above averages are recorded. Results for AE data show a clear gain
in sensitivity with a loss in specificity, accuracy and geometric mean. Clearly,
examples with correct EP decisions set their focus on the positive class.

For the AP data, the classification performance improves in principle. Bal-
ancing the APall data by under-sampling, to produce APS data, improves the
classification performance with the exception of specificity (0.96 to 0.79). How-
ever, under-sampling the EP-filtered data, which produces the APScorr data,
recovers the specificity (0.79 to 0.86). Consequently, combining our filtering ap-
proach with sampling techniques must be done with care.

Given that the positive class represents an acute medical condition, the need
for a specialist consult for AP and the pronounced asthma exacerbation for AE,
the resulting sensitivity values show that our decision rules produce a reason-
able classification performance. The latter can be improved by conducting a
comprehensive experiment to select an appropriate data mining method.

5 Conclusions

Data-driven knowledge acquisition techniques used to extract knowledge describ-
ing EP decision making is a complex process which involves various factors. This
paper shows that capturing knowledge in the form of decision rules from exam-
ples of correct EP decisions results in a better description of knowledge. This
is exemplified by reduced complexity characterized with fewer, shorter rules.
The performance of these rules is also enhanced with better coverage, higher
certainty, and increased confirmation. With enhanced quality of knowledge, the
classification performance is shown to improve with increased sensitivity.
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Abstract. To emphasize gene interactions in the classification algorithms, a 
new representation is proposed, comprising gene-pairs and not single genes. 
Each pair is represented by L1 difference in the corresponding expression val-
ues. The novel representation is evaluated on benchmark datasets and is shown 
to often increase classification accuracy for genetic datasets. Exploiting the 
gene-pair representation and the Gene Ontology (GO), the semantic similarity 
of gene pairs can be incorporated to pre-select pairs with a high similarity 
value. The GO-based feature selection approach is compared to the plain data 
driven selection and is shown to often increase classification accuracy. 

1   Introduction 

Since the human genome has been sequenced in 2003 [13], biological research is 
becoming more interested in the genetic cause of diseases. Microbiologists try to find 
responsible genes for the disease under study by analyzing the expression values of 
genes. To extract useful information from the genetic experiments and to get a better 
understanding of the disease, usually a computational analysis is performed [22].  

In addition to the commonly used plain k-Nearest Neighbour (k-NN) algorithm, 
there are other more sophisticated approaches that use a distance function for classifi-
cation and are suitable for processing gene expression data. Recently, a growing body 
of work has addressed the problem of supervised or semi-supervised learning of cus-
tomized distance functions [12]. In particular, two different approaches, learning from 
equivalence constraints and the intrinsic Random Forest similarity have been recently 
introduced and shown to perform well in particular with image data [5,14,26]. Many 
characteristics of gene expression data are similar to those of image data. Both imag-
ing and genetic data usually have a big number of features where many of them are 
redundant, irrelevant and noisy. 

Another often used possibility to improve the analysis of genetic data is to exploit 
available external biological knowledge [27,16,21,7]. The Gene Ontology (GO) [3] is 
a valuable source of biological knowledge that can be incorporated into the process of 
classification or clustering of genetic data. In addition, the content of GO is  
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periodically refined and constantly growing, becoming a more complete and reliable 
source of knowledge. The number of entries in the GO, for example, has increased 
from 27,867 in 2009 to 30,716 in 2010, which is a more than 10% increase. 

In this paper, a novel data representation for learning from gene expression data is 
introduced, which is aimed at emphasizing gene-gene interactions in learning. With 
this representation, the data simply comprise differences in the expression values of 
gene pairs and not the expression values themselves. An important benefit of this 
representation, except the better sensitivity to gene interactions, is the opportunity to 
incorporate external knowledge in the form of semantic similarity. 

This paper is organized as follows. In Section 2 we review related work and the 
datasets used; in Section 3 we introduce the gene-pair representation and the applica-
tion of the semantic similarity for guiding feature selection. Section 4 presents our 
empirical study and Section 5 concludes the paper with a summary and directions for 
future work. 

2   Material 

2.1   Related Work 

Much work has been done in the area of machine learning over the last few decades 
and as bioinformatics is gaining more attention, different techniques are being devel-
oped and are applied to process genetic data [17]. In addition to the usually small 
sample of cases (conditions) making it difficult to extract statistically valid patterns 
from the data, the large amount of gene expression values clearly complicates the 
learning too. For that reason, a feature selection step is normally conducted before 
classification to determine useful discriminative genes and eliminate redundancy in 
the dataset. Feature selection has thus become under active study in bioinformatics 
and is currently one of the clear focuses in bioinformatics research [24].  

Based on the controlled vocabulary of the GO, two genes can be semantically as-
sociated and further a similarity can be calculated based on their annotations in the 
GO. For example, Sevilla et al. [25] have successfully applied semantic similarity 
which is well known in the field of lexical taxonomies, AI and psychology to the GO 
by calculating the information content of each term in the ontology based on several 
methods including those of Resnik [23], Jiang and Conrath [15] or Lin [18]. Sevilla et 
al. computed correlation coefficients to compare the physical inter-gene similarity 
with the GO semantic similarity. The experiments demonstrated a benefit for the 
similarity measure of Resnik [23], which resulted in higher correlations.  

Later Wang and Azuaje [28] have integrated the similarity information from the 
GO into the clustering of gene expression data. They have shown that this method not 
only ensures competitive results in terms of clustering accuracy, but also has the abil-
ity to detect new biological dependencies.  

Another approach to include the knowledge from the GO into machine learning is 
to use it for feature selection. Thus, Qi and Tang [21] have introduced a novel method 
to select genes not only by their individual discriminative power, but also by integrat-
ing the GO annotations. The algorithm corrects invalid information by ranking the 
genes based on their GO annotations and was shown to boost accuracy. Chen and 
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Tang [7] further investigated this idea, suggesting a novel approach to aggregate se-
mantic similarities and integrated it into traditional redundancy evaluation for feature 
selection. This resulted in higher or comparable classification accuracies with using 
less features compared to plain feature selection. The approach we introduce here is 
inspired by these attempts but is different in that the semantic similarity is applied 
directly to the corresponding gene pair in the novel gene-pair representation. 

2.2   Benchmark Datasets 

For evaluation, ten benchmark datasets have been used. The datasets are associated 
with different clinical problems and have been received from various sources. Colon 
[2], Embrional Tumours [20], Leukemia [8] and Lymphoma [1] datasets have been 
obtained from the Bioinformatics Research Group, Spain (http://www.upo.es/eps/ 
aguilar/datasets.html), Arcene [10] is available at the UCI repository [6], Lupus [4] 
from The Human-Computer Interaction Lab at the University of Maryland, USA, 
Breast Cancer [27] from the University of Minnesota and Lung Cancer [9] from the 
Division of Thoracic Surgery at Brigham and Women’s Hospital, USA. The Mesh 
dataset was generated from cardiac aortic valve images, see [14]. The last dataset, 
HeC Brain Tumours is obtained from the hospitals participating in the EU FP6 
Health-e-Child consortium, see www.health-e-child.org. The datasets are public and 
often used in research studies, except the last two which are not publicly available. 
All the datasets represent binary classification problems and are different in the num-
ber of features and cases, although one important commonality is that the number of 
features (from 2,000 in Colon to 10,000 in Arcene) significantly exceeds the number 
of cases (from 45 in Lymphoma to 72 in Leukemia, to 200 in Arcene). Moreover, 
many features are redundant, irrelevant and/or noisy, which is typical for biomedical 
and in particular for gene expression data. 

3   Methods 

3.1   The Gene-Pair Representation and Experimental Setting 

Genetic datasets similar to those considered in Section 2.3 normally contain gene 
expression values, where each feature is the expression of a single gene. In biology, 
however, the influence of a gene on a certain disease often depends not only on its 
own expression, but also on the expression of some other genes, interacting with it. 
Thus, at a certain disease, the higher expression of gene A might only be influencing 
the etiopathology if another gene B is over- or under-expressed, too. By training a 
classifier with microarray data with the usual single gene representation, these de-
pendencies are often neglected or are at least more difficult to grasp and thus require 
strong adaptive learners. To better consider these co-operations, the data can be trans-
formed into another representation. A normalization of each gene’s expression with 
respect to the other genes is needed. 

Another motivation for the new representation is the incorporation of the semantic 
similarity into classification. The GO provides similarity measures between two genes 
A and B while most learning algorithms when the usual representation is used, con-
sider differences between patients with the given gene expression values. The GO 
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provides information about gene-gene interactions and the classifiers normally use 
patient-patient relations for classification. There is no obvious way how to incorporate 
the semantic similarity between two genes to improve the classification of patients, 
when the plain representation is used. 

For these reasons, the original datasets can be transformed into a new representa-
tion with gene pairs instead of single genes. The simplest yet most robust solution 
also accepted by us here is to use L1 difference in the corresponding gene expression 
values. First, all possible pairs of single genes available in the dataset are generated. 
Training a classification model may not finish in a limited period of time if all the 
pairs are used. Moreover, most of these pairs will be useless for classification. There-
fore, feature selection has to be done to select the discriminative pairs in advance.  

Our preliminary experiments with this representation have demonstrated that the 
classifiers usually perform well already with 100 pair-features, if a proper feature 
selector is used. Selecting more gene pairs, in general, does not increase accuracy, and 
requires considerable time.  

Arcene and Mesh are non-genetic, but they contain enough features to get compa-
rable results and were used as non-genetic reference datasets. As the base for our 
experiments, reduced datasets have been used, containing not more than 200 single 
gene features (if necessary, pre-selection was conducted with GainRatio feature fil-
ter). The final number of gene pairs to select was set to 100 with 400 gene-pairs pre-
selected by ReliefF. CFS, Correlation-based Feature Selection for subset evaluation, 
together with the greedy stepwise search with forward inclusion available in Weka 
[11] was used for the final selection of 100 pairs from the set of 400. For datasets 
containing more than 90 cases, 30 iterations of 10-fold cross validation has always 
been used in our experiments here and further and leave-one-out cross validation for 
the others. Each representation was evaluated on all datasets with four classifiers, 
plain k-Nearest-Neighbour (kNN) classification, Random Forest (RF), kNN with 
learning from equivalence constraints (EC) and kNN with intrinsic Random Forest 
Similarity (iRF). To measure the robustness of the gene-pair representation to noise, 
the same tests have been conducted also with 10% and 20% of class noise. 

3.2   Integration of GO Semantic Similarity and Experimental Setting 

With the novel representation of features as the difference in the expression values of 
a pair of two genes, it becomes possible to incorporate the external biological knowl-
edge into classification. There are several reasons that motivate us to use semantic 
similarity to guide the classification. First, two genes that are known to interact (that 
is the genes whose semantic similarity is expected to be relatively high, annotations of 
which are closer to each other in the GO so that the genes are more functionally re-
lated), might be more useful for classification than two genes that are not associated 
with each other, because difference in their expression values can be more clinically 
significant than difference in the expression values of two genes which are not re-
lated. Second, the usually big number of features in gene expression data makes it 
difficult for common feature selection methods not to ignore some important features. 
The support by the semantic similarity might guide the selection process and help to 
consider important pairs that would otherwise be neglected.  
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A simple approach to use the semantic similarity to support classification is to pre-
select pair-features based on the corresponding GO similarity values such as GIC 
[19]; a certain number of pairs with the greater semantic similarities according to the 
GO are initially selected. In our experimental setting, first, 400 pairs with the greater 
GO similarities are selected, followed by the CFS feature selection to select the 100 
most discriminative gene-pairs out of 400. To identify the best matching semantic 
similarity calculation technique for genetic data, a set of similarity calculation meth-
ods have been tested.  

In a set of preliminary experiments with different semantic similarity measures (the 
results of these experiments are not included here due to the space restrictions), the 
GIC, Graph Information Content [19], semantic similarity was shown to demonstrate 
the highest correlation with the physical gene expression similarity for two genes and 
be the best guide for feature selection (in particular, the GIC values in the group of 
“best” most discriminative pairs was shown to be 71% higher than for all the pairs, 
while this increase was much lower or even absent for the other techniques). Thus, 
GIC was used in our experiments with the GO similarity. 

 4   Experimental Results 

4.1   Gene-Pair Representation 

The gene-pair representation was compared with the plain representation and evalu-
ated with four classifiers. The following configurations have been used for the  
experiments. 

• 400 preselected pairs by ReliefF. 
• 100 pairs selected by CFS and used for training the models. 
• Four classifiers as follows: 

RF: Random Forest with 25 trees. 
kNN: kNN with k = 7 and case weighting inversely proportional to distance. 
EC: kNN with learning from equivalence constraints with RF in difference space. 
iRF: kNN with intrinsic Random Forest similarity, 25 trees. 

It was shown that k=7 and case weighting inversely proportional to distance is the 
most robust parameter choice for kNN in our preliminary tests, which thus used in all 
nearest neighbour classifiers in our experiments. The experiments have been imple-
mented and conducted based on the Weka machine learning library in Java [11] and 
default parameter values were always used for classifiers and feature selectors unless 
otherwise stated here. 

Main experimental results are presented in Table 1, where the two rows of each 
dataset correspond to the original representation and the gene-pair representation, 
respectively. Each column includes results for one learning algorithm and the average 
over all four classifiers is presented in the last column. First, results for the genetic 
datasets and averages over them and then results for the non-genetic datasets and the 
averages are presented. 
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Table 1. Classification accuracies for the two representations 

Data Set RF kNN EC iRF Average 
74.11 81.22 75.56 72.44 75.83 

Breast Cancer  
73.11 78.56 77.00 72.44 75.28 

80.65 87.10 87.10 83.87 84.68 
Colon  87.10 83.87 90.32 88.71 87.40 

76.67 75.0 73.33 75.00 75.00 
Embrional Tumours  80.00 78.33 78.33 76.67 78.33 

92.65 86.76 92.65 92.65 91.18 
HeC Brain Tumours 94.12 94.12 92.65 95.59 94.12 

95.83 95.83 95.83 94.44 95.48 
Leukemia  97.22 97.22 97.22 97.22 97.22 

98.48 95.52 98.91 98.48 97.85 
Lung Cancer  98.12 98.79 98.85 97.94 98.43 

78.57 77.26 78.45 77.38 77.92 
Lupus  78.69 76.67 77.98 77.74 77.77 

95.56 100 88.89 93.33 94.45 
Lymphoma  95.56 100 97.78 95.56 97.23 

86.57 87.34 86.34 85.95 86.55 
Average Genetic  

87.99 88.45 88.77 87.73 88.22 
86.06 84.89 87.00 85.44 85.85 

Arcene  84.17 83.94 85.72 83.89 84.43 

92.06 87.30 88.89 90.48 89.68 
Mesh  85.71 85.71 76.19 84.13 82.96 

89.06 86.10 87.95 87.96 87.77 
Average Non-genetic  

84.94 84.83 80.96 84.01 83.70 

 

For six out of eight genetic datasets the novel representation outperforms the origi-
nal one (according to the average performance and most particular accuracies). Only 
for Breast and Lupus the original representation reached better results on average, but 
with less than 0.56% difference each. The gene-pair representation could increase the 
average accuracy over all classifiers and datasets by 1.67%. Moreover, all the four 
classifiers demonstrate a better average performance with the new representation, 
where distance learning from equivalence constraints appears to have the biggest 
accuracy increase. 

The experimental results show a clear benefit of the new representation, which is 
motivated by the fact that genes often depend on each other. To validate the assump-
tion that this is the main reason for its better performance, two similar non-genetic 
datasets have also been tested. Table 1 shows how the gene-pair representation may 
fail for non-genetic data. The results indicate that the benefit of the gene-pair repre-
sentation presumably relies on the interactions of genes indeed. 

From the results of our experiments with noisy data (these results are not included 
in this paper for the sake of brevity) it could be seen that the novel representation is 
unfortunately less robust to noise with respect to the original representation. For no 
noise the pairs outperform the single genes by 1.67% while with 10% class noise they 
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perform almost equal and with more noise the gene-pair representation performed 
worse. With the gene-pair representation it is easier to overfit noise; one thus needs to 
be cautious and take this into consideration when using it. 

The statistics of selected pairs show a tendency to select a big number of pairs 
where the same feature is included. In some cases this feature was highly ranked in 
the old representation as well. However some features being part of many pairs have 
not been ranked high for the plain representation. A deeper and more thorough analy-
sis of these statistics is a direction for future work. In addition, it is also important to 
note that selected gene pairs will not only be useful for learning algorithms but can 
also provide precious information about gene interactions having important influence 
on the disease under study. 

4.2   Incorporation of the GO Semantic Similarity 

For the experiments with the GO semantic similarity only six datasets could be used 
as it is necessary to have genetic data where the gene-names are known. As Leukemia 
includes only 38 features that can be matched to genes, this dataset has thus been 
excluded from the experiments. As the GO is not complete and some features could 
not be matched to genes in the GO, the datasets have thus been reduced in their num-
ber of features. Some discriminative features may have been deleted and therefore the 
accuracies reported for these experiments are not comparable with the results of the 
pair representation evaluation. 

In the main experiments, 400 pairs with the highest GIC semantic similarity have 
been pre-selected for each dataset followed by a CFS feature selection to reduce the 
number of pairs to 100. The combination with a feature subset selection method 
(CFS) is needed to eliminate redundant and irrelevant features. It must be noted that 
for some of highly semantically similar gene pairs expression values are also identical 
or strongly correlated without any deviations. This makes these pairs useless for clas-
sification and thus necessitates their removal. The tests have been performed under 
the same conditions as described in the previous section. The main results can be 
found in Table 2. 

 

Table 2. Accuracies with and without the guidance of the GO-based semantic similarity 

Dataset/ GIC RF kNN iRF Average 

Breast/ no GIC 69.00 70.22 68.00 69.07 
Breast/ GIC 74.22 73.56 72.33 73.37 
Colon/ no GIC 88.71 88.71 87.10 88.17 
Colon/ GIC 83.87 88.71 85.48 86.02 
Embr./ no GIC 75.00 73.33 73.33 73.89 
Embr./ GIC 81.67 81.67 78.33 80.56 
HeC/ no GIC 89.71 91.18 89.71 90.20 
HeC/ GIC 92.65 94.12 92.65 93.14 
Lupus/ no GIC 80.60 79.17 79.76 79.84 
Lupus/ GIC 78.21 79.05 78.10 78.45 
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As can be seen from Table 2, the GIC guidance often results in an increase in accu-
racy. The biggest increase was reached with the Embryonal Tumours dataset, 6.67%. 
This is the best accuracy ever reached in all experiments conducted for this study. The 
overall average accuracy with no GIC guidance is 80.23%. The GIC guidance im-
proves this number by 2.08% to 82.31%. It could be noted that for datasets where the 
average semantic similarity of selected pairs was much higher than for all the pairs, 
the GIC-based pre-selection could also improve accuracy. 

The bad performance for Lupus is not surprising as the gene-pair representation 
failed for this dataset too. One reason for this might be that for this dataset gene inter-
actions are not so important or not reflected well in the data. Another clearly affecting 
factor here is the fact that for many genes which might be discriminative information 
is still absent in the GO and they were thus excluded from the experiments (both for 
Lupus and Colon a relatively bigger number of genes are not yet included in the GO). 

5   Conclusions 

A new representation for genetic datasets has been proposed, which emphasizes inter-
action between genes. The new representation was shown to increase accuracy on 
genetic data by 1.67%. The assumption that this increase is caused by the reflection of 
gene-gene interactions could be validated by testing the gene-pair representation on 
non-genetic datasets where worse results were obtained. The gene-pair representation 
increased the accuracy for six out of eight genetic datasets. There is a clear tendency, 
although validating the statistical significance of this finding is rather difficult (all 
known tests for significance are insensitive to small samples). Beside the increase in 
accuracy and the possibility of the incorporation of semantic similarity, the new rep-
resentation may lead to the discovery of new important domain knowledge. 

GO-based feature selection was shown to perform well in combination with a 
common data-driven feature selection method (CFS) and the use of GIC similarity 
and could improve the classification accuracy by 2.08% over the tested datasets in 
comparison with the use of the plain feature selection only. More thoroughly  
analyzing dependencies between the data driven feature importance measure and the 
semantic similarity of the pairs can provide a better understanding of how to better 
use the GO similarity for feature selection. A histogram of dependencies between the 
semantic similarity of the pairs for Colon and the GainRatio feature merit of the gene-
pairs is shown in Figure 1. The pairs are divided into 100 bins based on their semantic 
similarity values, where each bin contains the same number of pairs. The histogram 
shows that the first groups, the groups with the highest semantic similarity, are ranked 
low on average (this trend holds true for all datasets, at least for all those included in 
our study). Notice that the low value is an average value over the GainRatio of the 
pairs included in the bin. There are also gene-pairs of high importance within the first 
bins. As expected, the gene pairs with low semantic similarity values are clearly  
useless for classification. To better analyze these trends and to use the knowledge that 
can be derived from these correlations for better feature selection is a promising  
direction for future work. 
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Fig. 1. Average GainRatio for gene-pair sets with different semantic similarity for Colon data  
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Abstract. In the paper, several notions of rough satisfiability of formu-
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1 Introduction

A wise judgement of satisfiability under imperfect information is a useful faculty
an intelligent system can possess. Such a system would judge in a reasonable,
flexible way, e.g. about satisfiability of conditions for application of rules and
execution of actions and about satisfiability of specifications when constructing
complex objects.

Descriptor languages for Pawlak information systems are taken as specifica-
tion languages whose formulas are judged under satisfiability by objects in rough
approximation spaces. Let a non-empty, finite set of objects U , information about
elements of U in terms of attribute values, and – possibly – a domain knowledge
be given. U can be viewed as merely a sample of the actual universe. The avail-
able information and knowledge are by necessity imperfect. A learning system
S is supposed to discover – with help of an expert – how to judge satisfiability
of formulas of a descriptor language L by objects of the universe. Briefly speak-
ing, S’s goal is to learn a suitable concept of satisfiability of formulas of L by
objects. The extent of an expert’s help may vary from the case where S is given
some number of examples of satisfiability judgement only to the case where S is
provided with a nearly ‘ready-to-use’ satisfiability notion.

We consider several rough satisfiability notions two of which are new, whereas
the rest was described in [4,5]. Each of the notions may be proposed to S which,
in turn, should discover (e.g., by inductive learning) parameter values, an ap-
proximation space, and the language which the best fit a considered judgemental
situation. A general discussion of satisfibility judgement is out of the scope of
this article, and we rather aim at finding one or more schemata defining rough
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satisfiability if there are any. It seems that fuzzy set theory is a framework suit-
able for this purpose. By re-interpreting rough satisfiability concepts in fuzzy set
terms we hope to shed a new light on the problem of satisfiability of formulas in
approximation spaces.

Fuzzy sets, viewed as a bunch of theories, is one of the main mathematical
approaches to model vagueness and uncertainty. In the fuzzy set framework,
vague concepts (e.g., ‘tall man’, ‘nice weather’, ‘safe driving’), commonly used
by humans, are represented by fuzzy sets. The idea of a fuzzy set, introduced by
Zadeh [29], gave rise to a research field intensively exploited both by theoreticians
and practitioners. At first glance, the fuzzy and rough set approaches seemed
to be competitors. As turned out they rather complement each other. Note that
combination of fuzzy sets with rough sets resulted in two hybrid approaches:
rough-fuzzy sets and fuzzy-rough sets (see, e.g., [3,12,13]).

The rest of the article is organized as follows. In Sect. 2, approximation spaces
are overviewed in a nutshell. A Pawlak information system and a descriptor
language for it are recalled in Sect. 3. The main section is Sect. 4 where we
present several rough satisfiability models, partly known from the author’s earlier
works, and we give them a fuzzy interpretation. The results are summarized in
Sect. 5.

2 Approximation Spaces

Consider U �= ∅ whose elements and subsets are referred to as objects and
concepts, respectively. U is covered by clumps of objects drawn together on
the basis of similarity. After Zadeh [30] these clusters are called information
granules (infogranules for short). Indistinguishability of objects is treated as a
limit case of similarity. Equivalence relations serve as mathematical models of
indistinguishability, whereas reflexive relations are used to model similarity.

An approximation space provides a frame and tools for approximation of
concepts. Since its origin [15], approximation spaces have been generalized in
several ways, so nowadays it is an umbrella term for a number of structures
within which one can approximate concepts [23,24,25,28,32]. In our approach,
an approximation space is a structure of the form M = (U, �, κ) where U is
as earlier, � is a reflexive relation on U referred to as a similarity relation, and
κ is a weak quasi-rough inclusion function (q-RIF) upon U , i.e., a mapping
κ : (℘U)2 �→ [0, 1] fulfilling rif0 and rif2:

rif0(κ) def⇔ ∀X,Y ⊆ U.(X ⊆ Y ⇒ κ(X,Y ) = 1),

rif2(κ) def⇔ ∀X,Y, Z ⊆ U.(Y ⊆ Z ⇒ κ(X,Y ) ≤ κ(X,Z)).

2.1 Elementary Infogranules

With reading ‘(u, u′) ∈ �’ as ‘u is similar to u′’, the counter-image of {u} given
by �, �←{u}, consists of all objects similar to u. Such counter-images are viewed
as elementary infogranules here.
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By a granulation mapping we mean any mapping assigning infogranules to
objects. Among them are uncertainty mappings introduced by Skowron and
Stepaniuk [23]. An example of such a mapping is Γ : U �→ ℘U such that Γu def=
�←{u}.

2.2 Approximation Operators

There are many possibilities for concept approximation. In line with the clas-
sical Pawlak approach [15,17], the lower and upper P-approximation operators
lowP , uppP : ℘U �→ ℘U may be given by

lowPX
def= {u ∈ U | Γu ⊆ X} & uppPX

def= {u ∈ U | Γu ∩X �= ∅}. (1)

A concept X is said to be P-exact if uppPX = lowPX ; otherwise, X is P-
rough. In Skowron and Stepaniuk’s framework [23], the lower and upper S-
approximation operators lowS , uppS : ℘U �→ ℘U are defined by

lowSX
def= {u ∈ U | κ(Γu,X) = 1} & uppSX

def= {u ∈ U | κ(Γu,X) > 0}. (2)

Here is X called S-exact if uppSX = lowSX ; otherwise, X is S-rough. In general,
P- and S-approximation operators are different1. Let t ∈ [0, 1]. The t-positive and
t-negative region operators post, negt : ℘U �→ ℘U may be defined as follows2:

postX
def= {u ∈ U | κ(Γu,X) ≥ t} & negtX

def= {u ∈ U | κ(Γu,X) ≤ t}. (3)

Note that3 lowSX = pos1X and uppSX = U − neg0X .

2.3 Rough Inclusion

When dealing with a granulated universe of objects, the usual set-theoretical in-
clusion may not suffice. Therefore graded inclusions of which rough inclusion is a
prominent representative are of use [6,7,19,26,27]. Rough mereology by Polkowski
and Skowron [21], extending Leśniewski’s mereology, may be viewed as a formal
theory of rough inclusion. Realizations of rough inclusion are rough inclusion
functions (RIFs for short). A RIF upon U is mapping κ : (℘U)2 �→ [0, 1] such
that rif1(κ) and rif∗2(κ) hold4 where

rif1(κ) def⇔ ∀X,Y ⊆ U.(κ(X,Y ) = 1 ⇔ X ⊆ Y ),

rif∗2(κ) def⇔ ∀X,Y, Z ⊆ U.(κ(Y, Z) = 1 ⇒ κ(X,Y ) ≤ κ(X,Z)).
1 The lower approximation operators are equal if κ is a RIF which means that rif−1

0 (κ)
holds where rif−1

0 (κ) def⇔ ∀X, Y ⊆ U.(κ(X, Y ) = 1 ⇒ X ⊆ Y ). A sufficient condi-
tion for the upper approximation operators to be equal is that rif5(κ) holds where
rif5(κ) def⇔ ∀X, Y ⊆ U.(X �= ∅ ⇒ (κ(X, Y ) = 0 ⇔ X ∩ Y = ∅)).

2 They are generalized variants of the early Ziarko operations [31].
3 We have that negtX = pos1−t(U − X) if rif6(κ) holds where rif6(κ) def⇔ ∀X, Y ⊆

U.(X �= ∅ ⇒ κ(X, Y ) + κ(X, U − Y ) = 1).
4 The latter postulate may be replaced by rif2.
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Mappings κ£ (the standard RIF whose idea goes back to Jan �Lukasiewicz),
κ1, and κ2 (the latter mentioned in [2]) as below are examples of different, yet
mutually definable RIFs [6]. Assume for a while that U is finite.

κ£(X,Y ) def=

{
#(X∩Y )

#X if X �= ∅,
1 otherwise,

κ1(X,Y ) def=
{ #Y

#(X∪Y ) if X ∪ Y �= ∅,
1 otherwise,

κ2(X,Y ) def=
#((U −X) ∪ Y )

#U
. (4)

As turned out, functions which do not fully satisfy postulates for RIFs, e.g.
weak q-RIFs can also prove useful in measuring the degree of inclusion. For any
t ∈ [0, 1]2, by πi(t) we denote the i-th element of t (i = 1, 2). Given a RIF κ :
(℘U)2 �→ [0, 1] and t ∈ [0, 1]2 where π1(t) < π2(t), a mapping κt : (℘U)2 �→ [0, 1]
defined below is a weak q-RIF (but not a RIF) [26]5:

κt(X,Y ) def=

⎧⎨
⎩

0 if κ(X,Y ) ≤ π1(t),
κ(X,Y )−π1(t)
π2(t)−π1(t)

if π1(t) < κ(X,Y ) < π2(t),
1 if κ(X,Y ) ≥ π2(t).

(5)

3 Descriptor Languages for Pawlak Information Systems

Assume that U is finite and its objects are only known by descriptions in terms
of attribute values. Objects, attributes, and attribute values are denoted by u,
a, and v, with sub/superscripts whenever needed. Each attribute a is viewed as
a mapping from U into Va ∪ {∗} where Va is a set of values of a and ∗ is to
symbolize the lack of information about attribute values (for the treatment of
missing values see, e.g., [8,9,11]). Let A denote a non-empty set of attributes and
V =
⋃

a∈A Va. It is assumed for practical reasons that #U ≥ 2 and each of A’s
distinguishes at least two objects. Pairs of the form IS = (U,A) are called Pawlak
information systems (infosystems for short) [14,17]. Since object descriptions can
be indistinguishable from one another, or similar in some respect, the universe
U is perceived as covered by infogranules. Every infosystem IS as above gives
rise to a family of approximation spaces with the same universe U .

A number of properties of objects and concepts of U can be expressed by
formulas of the descriptor language LIS

6 whose primitives are symbols denoting
attributes and their values and propositional connectives ∧,∨,¬. Pairs of the
form (a, v), where v ∈ Va, are called descriptors being the atomic formulas here.
Formulas, obtained as usual, are denoted by α, β with sub/superscripts if needed,
and their set is denoted by FOR.
5 More about weak q-RIFs and their stronger versions can be found in [7].
6 Descriptor languages originally proposed by Pawlak were both specification and

query languages.
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The well-known notion of crisp satisfiability is a starting point to define rough
satisfiability. The crisp satisfiability relation, |=c, is defined as follows, for any
descriptor (a, v), α, β ∈ FOR, and u ∈ U :

u |=c (a, v) ⇔ a(u) = v,

u |=c α ∧ β ⇔ u |=c α & u |=c β,

u |=c α ∨ β ⇔ u |=c α or u |=c β,

u |=c ¬α⇔ u �|=c α. (6)

By the crisp extension of α we mean the infogranule of objects crisply satisfying
α, i.e., Satc(α) def= {u ∈ U | u |=c α}. Hence, Satc(a, v) = {u ∈ U | a(u) = v},
Satc(α∧β) = Satc(α)∩Satc(β), Satc(α∨β) = Satc(α)∪Satc(β), and Satc(¬α) =
U − Satc(α).

4 Rough Satisfiability: A Fuzzy Perspective

Given an approximation space M = (U, �, κ), based on IS = (U,A), and the
descriptor language LIS. EveryX ⊆ U is uniquely represented by its membership
function μX : U �→ {0, 1} such that for any u ∈ U , μX(u) = 1 if and only if
u ∈ X . Fuzzy sets [29] are obtained by allowing any reals from [0, 1] as values
of membership functions. Let X be a fuzzy set with a membership function
μX : U �→ [0, 1] and t ∈ [0, 1]. Sets

Xt
def= {u ∈ U | μX(u) ≥ t} & X>

t
def= {u ∈ U | μX(u) > t} (7)

are called the t-cut and the strong t-cut of X , respectively. The 1-cut and the
strong 0-cut of X (i.e., X1 and X>

0 ) are referred to as the core and the support
of X , respectively [10]. Among generalizations of fuzzy sets are L-fuzzy sets with
membership values in the universe of some lattice. The notions of the t-cut and
the strong t-cut are adapted accordingly.

There are infinitely many possibilities of defining operations of fuzzy inter-
section, union, and complementation. There is an aggreement upon that in-
tersections and unions should be computed by means of triangular norms and
co-norms, respectively. Every associative, commutative, and monotone mapping
f : [0, 1]2 �→ [0, 1] such that for any x ∈ [0, 1], f(1, x) = x (resp., f(0, x) = x) is
called a triangular norm (co-norm). The intersection of fuzzy sets X,Y upon U
induced by a triangular norm f , X ∩f Y , and the union of X,Y induced by a
triangular co-norm g, X ∪g Y , are defined by

μX∩fY (u) def= f(μX(u), μY (u)) & μX∪gY (u) def= g(μX(u), μY (u)). (8)

The standard fuzzy intersections and unions are induced by the functions of
minimum and maximum, respectively [10]. A complement of X can be obtained
according to the formula

μ−fX(u) def= f(μX(u)) (9)



232 A. Gomolińska

where f : [0, 1] �→ [0, 1], a complementation function, is co-monotone, f(0) = 1,
and f(1) = 0. The complement of X obtained for f(x) = 1−x is called standard
[10] and denoted by −stX .

When information is imperfect, satisfiability of formulas may be viewed as a
vague concept with unsharp boundaries. In particular, an extension of α, Sat(α),
may be seen as a fuzzy set whose membership function assigns to every u ∈ U ,
a degree of satisfiability of α by u. In such an approach, we need a method
to compute membership values for objects of U in extensions of descriptors
first. Next, a triangular norm f , a triangular co-norm g, and a complementation
function h should be chosen suitably7. Finally, the induced fuzzy semantics for
compound formulas can be derived, generalizing the crisp semantics:

μSat(α∧β)(u) def= f(μSat(α)(u), μSat(β)(u)),

μSat(α∨β)(u) def= g(μSat(α)(u), μSat(β)(u)),

μSat(¬α)(u) def= h(μSat(α)(u)). (10)

Notice that despite its mathematical attractiveness, the approach may cause
practical problems because such important factors as membership functions of
extensions of descriptors, a triangular norm, and a fuzzy complementation func-
tion have to be discovered here.

Rough satisfiability I. In this case, rough satisfiability is modelled as a family
of relations {|=t}t∈[0,1] where |=t, a relation of satisfiability to a degree t, is
defined as follows [4,5], for any α ∈ FOR and u ∈ U :

u |=t α
def⇔ κ(Γu, Satc(α)) ≥ t. (11)

Thus, u satisfies α to a degree t, u |=t α, if and only if the infogranule of objects
similar to u is included to a degree at least t in the infogranule of all objects
satisfying α crisply8. The corresponding t-extension of α is given by

Satt(α) def= {u ∈ U | u |=t α}. (12)

Observe that Satt(α) = post(Satc(α)) meaning that the t-extension of α is the
t-positive region of the crisp extension of α.

From the fuzzy point of view, the vague notion of extension of α may be
formalized as a fuzzy set upon U denoted by Satb(α) whose membership function
is defined by

μSatb(α)(u) def= κ(Γu, Satc(α)). (13)

Thus, the t-extension of α is the t-cut of Satb(α)9.

7 For instance, g can be defined as dual to f .
8 A similar idea can be found in [20].
9 The right-hand side of (13) defines the degree of rough membership of u in Satc(α)

[18].



A Fuzzy View on Rough Satisfiability 233

Rough satisfiability II. The first model can be enhanced by considering the
family {|=+

t }t∈[0,1] where |=+
t

def= |=t ∩ |=c [5]. The t-extension of α, Sat+t (α), is
defined by

Sat+t (α) def= {u ∈ U | u |=+
t α}, (14)

so Sat+t (α) = post(Satc(α)) ∩ Satc(α). Let Sat+(α) denote the fuzzy extension
of α where

μSat+(α)(u) def= min{μSatb(α)(u), μSatc(α)(u)}. (15)

In view of our remarks on fuzzy intersection, one can see that Sat+(α) is the
intersection of Satb(α) and Satc(α) induced by the minimum function. Moreover,
the t-extension of α is the t-cut of Sat+(α) if t > 0.

Rough satisfiability III. The first two approaches take into account ‘positive
examples’ only. Now, ‘negative examples’ come into play, too. The pair L =
([0, 1]2,�), where � is the coordinate-wise ordering on [0, 1]2, is a lattice with
(0, 0), (1, 1) as the zero and the unit elements. Rough satisfiability is modelled
as {|=np

t }t∈[0,1]2 where

u |=np
t α

def⇔ κ(Γu, Satc(¬α)) ≤ π1(t) & κ(Γu, Satc(α)) ≥ π2(t), (16)

i.e., u satisfies α to a degree t if and only if the infogranule of objects similar to u
is included to a degree not greater than π1(t) in the infogranule of objects crisply
satisfying ¬α and to a degree at least π2(t) in the infogranule of objects crisply
satisfying α [5]. The t-extension of α, Satnp

t (α), is defined along the standard
lines by

Satnp
t (α) def= {u ∈ U | u |=np

t α}, (17)

which results in Satnp
t (α) = negπ1(t)(U − Satc(α)) ∩ posπ2(t)(Satc(α))10.

Let Satnp(α) denote the L-fuzzy extension of α where

μSatnp(α)(u) def= (μ−stSatb(¬α)(u), μSatb(α)(u)). (18)

Since κ(Γu, Satc(¬α)) ≤ π1(t) if and only if μ−stSatb(¬α)(u) ≥ 1 − π1(t), the
t-extension of α is the (1− π1(t), π2(t))-cut of Satnp(α)11.

Rough satisfiability IV. In this approach, rough satisfiability is modelled as
a relation |=P such that

u |=P α
def⇔ Γu ∩ Satc(α) �= ∅. (19)

The P-extension of α, SatP (α), defined along the standard lines by

SatP (α) def= {u ∈ U | u |=P α}, (20)
10 When rif6(κ) holds as in the case κ = κ£, the equality will be simplified to Satnp

t (α) =
post0

(Satc(α)) where t0 = max{1 − π1(t), π2(t)}.
11 It is also the intersection of the (1 − π1(t))-cut of −stSatb(¬α) and the π2(t)-cut of

Satb(α).
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is the upper P-approximation of the crisp extension of α [5]12. The P-extension
of α is the support of every fuzzy set X upon U whose membership function
satisfies

μX(u) = 0 ⇔ Γu ∩ Satc(α) = ∅. (21)

Rough satisfiability V. In this case, rough satisfiability is modelled as a
relation |=S such that

u |=S α
def⇔ κ(Γu, Satc(α)) > 0. (22)

The S-extension of α, SatS(α), is defined by

SatS(α) def= {u ∈ U | u |=S α}, (23)

so it is the upper S-approximation of the crisp extension of α. Notice that the
S-extension of α is just the support of Satb(α).

Rough satisfiability VI. In the last approach presented here, rough satisfia-
bility is modelled as {|=gW

t }t∈[0,1]2 where

u |=gW
t α

def⇔ κ(posπ1(t)(Γu), Satc(α)) ≥ π2(t), (24)

i.e., u satisfies α to a degree t if and only if the π1(t)-positive region of the
infogranule of objects similar to u is included to a degree at least π2(t) in the
crisp extension of α13. The t-extension of α, SatgWt (α), is defined by

SatgWt (α) def= {u ∈ U | u |=gW
t α}. (25)

For any t′ ∈ [0, 1], let Sat(α; post′) be a fuzzy set such that

μSat(α;post′ )(u) def= κ(post′(Γu), Satc(α)). (26)

Thus, the t-extension of α is the π2(t)-cut of Sat(α; posπ1(t))
14.

5 Conclusions

We described six, in general different models of rough satisfiability. Models I–IV
(without their fuzzy interpretation) were presented in [4,5], the last two are new.
In each case except for the fourth one, a corresponding (L-)fuzzy extension of a
formula was defined. The rough extension was either the support of the fuzzy
extension an in cases IV and V or a family of cuts of the (L-)fuzzy extension.

12 Notice a close relationship with Pawlak’s notion of rough truth [1,16].
13 In [5] we studied a special case, proposed by Wolski in a private communication,

where π2(t) = 1. There, u satisfied α to a degree t if and only if post(Γu) ⊆ Satc(α).
14 In the ‘Wolski’ case, the t-extension of α is the core of Sat(α; posπ1(t)).
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Except for case III where L-fuzzy sets are employed, the cases discussed are
instances of the following approach. Let G1 : U �→ ℘U , G2 : FOR �→ ℘U be
granulation mappings and κ be a weak q-RIF. A fuzzy extension of α, Sat(α),
is given by μSat(α)(u) def= κ(G1(u), G2(α)). A rough extension is defined as the
support or a family of cuts of Sat(α). This scheme can cover a large number of
cases but more general schemata can also be proposed.

Although the definitions of rough satisfiability apply both to descriptors and
to compound formulas, one may also use them in the case of descriptors only,
searching for suitable triangular norms and conorms, and complementation func-
tions to define satisfiability of compound formulas.

The questions what rough satisfiability is and how to define it are still open,
yet a step forward has been made by capturing several cases uniformly, taking
fuzzy set theory as a background.
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A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 35–55.
Springer, Heidelberg (2008)
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Abstract. In the paper we consider a topological approximation space (U, τ )
(induced by a given information system I) as a discrete dynamical system; that
is, we are concerned with a finite approximation space U whose topology τ is
induced by a function f : U → U . Our aim is to characterise these type of ap-
proximation spaces by means of orbits which represent the evolution of points
of U with respect to the process f . Apart from topological considerations we
also provide some algebraic characterisation of orbits. Due to the finiteness con-
dition imposed by I, any point a ∈ U is eventually cyclic. In consequence, as
we demonstrate, orbits are algebraically close to rough sets, e.g. they induce a
Łukasiewicz algebra of order two, where the lower approximation operator may
be interpreted as the action of retriving a cycle from a given orbit and the upper
approximation operator may be interpreted as the action of making a given orbit
cyclic.

1 Introduction

Rough set theory (RST), introduced by Pawlak in the early 80’s [9,10], has been a
hugely successful field of research. Not only there has been found a number of fields
of application but also the mathematical foundations of rough sets have been described
from the standpoint of diverse branches of mathematics. However, new areas of appli-
cation of RST appear continuously and in turn new mathematical approaches to rough
sets are needed. Among these areas of application one can find the task of discovering
process from data or discovering and approximating interactions between (or among)
objects. These tasks require a new formulation of RST which would take into account
some sort of dynamics.

Our first contribution to this topic is a translation of RST into the theory of discrete
dynamical systems; these systems has been already investigated in the context of com-
puter science in [3,5]. As is well-known, a complete information system I induces a
topological approximation space (U, τ) whose topology is in turn induced by the in-
discernability relation E of I. In the case of an incomplete system, the corresponding
topology τ is produced by means of the specialisation preorder of I. Assume that there
is a process defined on U which is represented as a function f : U → U and that
attributes from I reflects some essential properties of f . To be more precise, we as-
sume that topology τ on U reflects f in the sense that τ is induced by f ; these type
of topologies are called functional. Since topologies in the scope of our interest come
from information systems, we are actually interested in finite functional topologies.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 237–246, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Of course, a finite functional topology is a topology and one could apply all well-
known results concerning rough sets and topology. However, our aim is to focus on
the process f . Therefore we are interested in the evolution of points rather than points
alone; furthermore, we would also like to view this evolution from a granular perspec-
tive which underlies RST. To this end, some new concepts are induced: e.g. a granular
orbit. Starting with granular orbits of fixed length one can build a De Morgan Lattice
which can be augmented by the lower and upper approximation operators in order to
form a Łukasiewicz algebra. In this case, lattice operations are interpreted as kinds of
interactions between objects whereas the lower approximation operator may be inter-
preted as the action of retriving a cycle from a given orbit and the upper approximation
operator may be interpreted as the action of making a given orbit cyclic.

2 Rough Sets: Point Set Topology

In this section we introduce basic concepts from rough set theory (RST) [9,10,11] and
interpret them in terms of topological spaces. Since the main aim of the paper is to
relate RST with dynamical systems we also recall how an information system can be
represented by means of continuous real functions.

Definition 1 (Information System). A quadruple I = (U,Att, V al, i) is called an
information system, where:

– U is a non–empty finite set of objects;
– A is a non–empty finite set of attributes;
– V =

⋃
A∈Att V alA, where V alA is the value–domain of the attribute A, and

V alA ∩ V alB = ∅, for all A,B ∈ Att;
– i : U × Att → V al is an information function, such that for all A ∈ Att and
a ∈ U it holds that i(a,A) ∈ V alA.

If i is a total function, i.e. i(a,A) is defined for all a ∈ U and A ∈ Att, then the
information system I is called complete; otherwise, it is called incomplete.

In other words, in an incomplete information system some attributes are affected by
missing values.

An information system I can be augmented by an information ordering �i – which
has obvious affinities with a specialisation preorder (in topology) [1,6] or an information
quantum relation (in RST) [7,8] – defined as:

a �i b iff i(a,A) = U implies i(b, A) = U, (1)

for all attributes A from I, such that i(a,A) is defined and equals U .

Proposition 1. For a complete information system I = (U,Att, V al, i), its informa-
tion order �i is an equivalence relation.

Customarily, for a complete information system the relation �i is called an indiscern-
ability relation and it is often written as IND(Att); the partition induced by the relation
IND(Att) is denoted by U/IND(Att), and [a]IND(Att) denotes the equivalence class
of IND(Att) defined by a ∈ U . The simple generalisation of (U, IND(Att)) is given
by the concept of an approximation space:
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Definition 2 (Approximation Space). The pair (U,E), where U is a non-empty set
and E is an equivalence relation on U , is called an approximation space. A subset
A ⊆ U is called definable if A =

⋃B for some B ⊆ U/E, where U/E is the family of
equivalence classes of E.

Definition 3 (Approximation Operators). Let (U,E) be an approximation space. For
every conceptA ⊆ U , itsE-lower andE-upper approximations, are defined as follows,
respectively:

A = {a ∈ U : [a]E ⊆ A},
A = {a ∈ U : [a]E ∩A �= ∅}.

The main idea of RST is to approximate any set A by means of two definable sets: A
and A. The lower approximation A consists of objects which necessarily belong to A,
whereas the upper approximationA consists of objects which possibly belong to A.

LetP(U) denote the powerset ofU . By the usual abuse of language and notation, the
operator : P(U) → P(U) sending A to A will be called the lower approximation
operator, whereas the operator : P(U) → P(U) sending A to A will be called the
upper approximation operator.

An approximation space (U,E) may be converted into a topological space (U, τE)
called an approximation topological space [12]. Customarily, Int and Cl will denote a
topological interior and closure operators, respectively.

Definition 4 (Approximation Topological Space). A topological space (U, τE) where
U/E, the family of all equivalence classes of E, is the minimal basis of τE and Int is
given by

Int(A) =
⋃
{[a]E ∈ U/E : a ∈ U&[a]E ⊆ A}

is called an approximation topological space.

Proposition 2. For an information system I = (U,Att, V al, i) its information order
�i is a preorder, i.e. a reflexive and transitive relation.

As is well-known, there is a one-to-one correspondence between preorders and Alexan-
droff topologies. This correspondence was proved by Naturman [6] and later Arenas
made an important contribution to this topic [1].

For a topological space (U, τ) one can convert the relation of set inclusion on τ into
a preorder� defined on elements of U , which is called the specialisation preorder:

a � b iff Cl({a}) ⊆ Cl({b}).
For an arbitrary preordered set (U,�) there is always a topology τ whose specialisation
preorder is � and there are many of them in general.

Definition 5 (Specialisation Topology). Let U = (U,�) be a preordered set. A spe-
cialisation topology on U is a topology τ with a specialisation preorder � such that
every automorphism of U is a homeomorphism of (U, τ).

Definition 6 (Alexandroff Space). A topological space (U, τ) whose topology τ is
closed under arbitrary intersections and arbitrary unions is called an Alexandroff
space.
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The Alexandroff topology is actually the largest specialisation topology induced by �;
furthermore, Alexandroff spaces and preordered sets regarded as categories are dually
isomorphic and we may identify them.

Proposition 3 (Correspondence). There exists a one-to-one correspondence between
Alexandroff topologies on a set U and preorders on U .

In the case of Alexandroff spaces, each a ∈ U has the smallest neighbourhood defined
as follows:

∇(a) =
⋂
{A ∈ τ : a ∈ A}.

Furthermore, the following sets

∇′(a) = {b ∈ U : a � b},

for all a ∈ U , form a subbasis. One can also prove that ∇(a) = ∇′(a), for any a.
In what follows for a preordered set (U,�) we shall denote the corresponding Alexan-

droff topological space by (U, τ).
Of course for an information system I = (U,Att, V al, i), the corresponding ap-

proximation topological space has an Alexandroff topology.

Proposition 4. Let be given an information system I = (U,Att, V al, i) equipped with
its information order �i. Then (U, τ�i) is an Alexandroff topological space.

Alexandroff spaces induced by information systems may be also characterised by means
of continuous real functions.

Definition 7. (U, τ) is a completely regular space if and only if, given any closed set F
and any point a that does not belong to F , there is a continuous function f from U to
the real line R such that f(a) = 0 and f(b) = 1 for every b in F .

Corollary 1. Let I = (U,Att, V al, i) a complete information system equipped with
its information order �i. Then (U, τ�i) is a completely regular Alexandroff topological
space.

Thus complete information systems can be linked with continuous real functions. In the
next section we shall be interested in processes on U rather than real functions, that is
we shall be interested in functions from U to U .

3 Rough Sets: Discrete Dynamical Systems

In this section we introduce basic concepts from the theory of dynamical systems and
apply them to rough set theoretic structures. Since we start with the concept of an infor-
mation system, our interest is restricted to discrete dynamical systems. These systems
has been already investigated in the context of computer science in [3,5].

Definition 8 (Discrete Dynamical System). A discrete dynamical system is a pair
(U, f) where U is a set and f : U → U is simply a function from U into itself.
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The standard definition of a discrete dynamical system assumes that the set U is sup-
plied with a metric or topology (e.g. [4]). In this paper we are interested in the topology
which is induced by f . Therefore, we do not assume any prior topology or metric de-
fined on U ; sometimes systems of this type are called set theoretic discrete dynamical
systems.

Definition 9. Let U be a set and f : U → U . Define f0 = idU and for all k ≥ 1 define
fk = f ◦ fk−1.

A key concept in the study of discrete dynamical systems is the orbit of a point.

Definition 10 (Orbit). Let f : U → U . The f -orbit of a ∈ U , often called the f -
trajectory of a, is defined as a sequence:

(f0(a), f1(a), f2(a), f3(a), . . .)

The usual interpretation of orbit is that iterations of fn(a) describe the evolution of a
in discrete time n. Of course, any orbitOf (a) can be converted into a set Osf (a):

Osf (a) = {b ∈ U : b = fn(a), for some n} (2)

for all a ∈ U .

Definition 11 (Periodic Point). Let f : U → U and a ∈ U . The f -orbit of a is cyclic
if fn(a) = a, for some n ≥ 1. We also say that a is a cyclic point (or a periodic point)
for f .

Definition 12 (Eventually Periodic Point). Let f : U → U and a ∈ U . The f -orbit
of a is eventually cyclic if fn(a) = fm(a) for some n,m with n �= m. In this case we
also say that a is an eventually cyclic point (or an eventually periodic point) for f .

Definition 13. Let U be a set and f : U → U a function. Define:

τf = {A ⊆ U : f(A) ⊆ A}.

It is easy to observe that these sets form a topology [3,5]:

Proposition 5. Let (U, f) be a discrete dynamical system, then (U, τf ) is an Alexan-
droff topological space.

Of course not every Alexandroff topology may be obtained in this way.

Definition 14 (Functional Topology). Let (U, σ) be a topological space. Then we say
that the topology σ is a functional topology if there is a map f : U → U such that
σ = τf .

Of course it may happen that two different functions f and g induce the same topology
τf = τg . However, as it was observed by Monks [5], if every f -cyclic point a is a fixed
point then from τf = τg it follows that f = g. Furthermore, many concepts such as
specialisation preorder can be redefined by means of f -orbits.
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Proposition 6. Let (U, τf ) be a functional topological space. Then ≤ defined by

a ≤ b iff b ∈ Osf (a),

for all a, b ∈ U , is the specialisation preorder of (U, τf ).

Corollary 2. Let (U, τf ) be a functional topological space. Then Osf (a) is the mini-
mal open neighbourhood of a ∈ U .

Corollary 3. Let (U, τf ) be a functional topological space. Then the set {Osf (a) : a ∈
U} forms a minimal basis of τf .

In what follows, we would like to focus our attention on information systems which
describe some process on a set U .

Definition 15 (Functional Informaltion System). Let I = (U,Att, V al, i) be an in-
formation system and let �i denote its information order. Then I is called functional
if the corresponding topological space (U, τ�i) is functional. If τf = τ�i for some
f : U → U then we say that the information system I = (U,Att, V al, i) describes the
process f .

On the basis of Corollary 2, it easy to observe that:

Corollary 4. Let I = (U,Att, V al, i) be a functional information system describing a
process f . Then

A = {a ∈ U : Osf (a) ⊆ A},
A = {a ∈ U : Osf (a) ∩A �= ∅},

for all a ∈ U .

Corollary 5. Let I = (U,Att, V al, i) be a functional information system describing a
process f . Then every a ∈ U is an eventually cyclic point for f .

In other words, for a functional information system I = (U,Att, V al, i) and a ∈ U ,
we can representOf (a) as a finite sequence:

(f0(a), f1(a), f2(a), f3(a), . . . , fm(a)) (3)

where m is the smallest number for which there exists n < m such that fn(a) =
fm(a). In this case m will be called the length of Of (a).

In order to emphasise differences among already introduced types of information
systems we shall introduce Euclidean-like relations:

Definition 16 (Euclidean Relations). Let U be a set and R a binary relation on U .

1. R is called an Euclidean relation if aRb and aRc then bRc,
2. R is called an almost Euclidean relation if aRb and aRc then bRc or cRb,

for all a, b, c ∈ U .

Proposition 7. Let I = (U,Att, V al, i) be an information system, then:

1. if I is functional then �i is almost Euclidean,
2. if I is complete then �i (= IND(Att)) is Euclidean.
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Corollary 6. Let I = (U,Att, V al, i) be a functional information system (for a pro-
cess f ), then �i is Euclidean on all f -periodic points.

By the very definition �i is a reflexive and transitive relation (see also Proposition
6). Now suppose that a �i b for two periodic points a, b ∈ U . By definition of the
specialisation preorder, it means that b ∈ Osf (a). But given that b is periodic, it follows
thatOsf (b) = Osf (a). Thus, for periodic points �i is also symmetric. In consequence,
�i is an equivalence relation, which in turn (as is well-known) is a relation that is
Euclidean and reflexive.

Corollary 7. Let I = (U,Att, V al, i) be a complete information system, then I is a
functional system (for some f ) and all points of U are f -periodic.

Assume a complete information system I = (U,Att, V al, i); let IND(Att) denote its
indiscernability relation. With each equivalence class [a]IND(Att) we can associate a
permutation s[a] : [a]IND(Att) → [a]IND(Att).

Corollary 8. Let I = (U,Att, V al, i) be a complete information system. Then the
space (U, τIND(Att)) is a functional topological space induced by f : U → U defined
by:

f(b) = s[a](b) iff b ∈ [a]IND(Att), for all b ∈ U.

Thus complete information systems are in actual fact systems describing some permu-
tations of U (preserving the membership to a given equivalence class), and in this sense,
they are less interesting than functional information systems.

4 Granular Approach to Dynamical Systems

For a functional information system I = (U,Att, V al, i) and a ∈ U , Of (a) represents
the smallest information granule containing a. That is, whenever we have any piece of
information about a it applies also to any b ∈ Osf (a). So let us replace any a ∈ U with
Osf (a) in Eq. 3.

Definition 17 (Granular Orbit). Let I = (U,Att, V al, i) be a functional information
system (for some f ). A granular orbit GOf (a) of a is defined as a sequence:

(Osf (f0(a)),Osf (f1(a)),Osf (f2(a)), . . . ,Osf (fm(a)))

Since every point of a ∈ U is eventually f -cyclic we can easily prove what follows:

Proposition 8. Let I = (U,Att, V al, i) be a functional information system (for some
f ) and a ∈ U . Then for all f -periodic points b, c ∈ GOf (a) it holds that Osf (b) =
Osf (c).

Thus, for all a ∈ U the set Osf (fm(a)) is repeated at list once in GOf (a). It allows
one to easily change the length of GOf (a) by adding more copies of Osf (fm(a)). So,
given a functional information system I = (U,Att, V al, i), one can take the maximal
length ml = max{m : m is a length of GOf (a), a ∈ U} and set all other GOf (b) to
this length.
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Let I = (U,Att, V al, i) be a functional information system (for some f ), and let
ml be the maximal length. As said above, we set the length of GOf (a) to ml, for all
a ∈ U . Now for two orbits of the same length

GOf (a) = (Osf (f0(a)),Osf (f1(a)),Osf (f2(a)), . . . ,Osf (fml(a))

GOf (b) = (Osf (f0(b)),Osf (f1(b)),Osf (f2(b)), . . . ,Osf (fml(b))

one can introduce an order ⊆:

GOf (a) ⊆ GOf (b) iff Osf (f0(a)) ⊆ Osf (f0(b)).

Let I = (U,Att, V al, i) be a functional information system (for some f ), let GO(I)
denote the set of all f -robits of some fixed lengthml. Of course, (GO(I),⊆) is a poset.
As said earlier GO(I) is also a basis of some topology τf ; now we extend the granular
approach on τf by means of lattice-theoretic operations induced by ⊆:

¬GOf (a) = (U \ Osf (f0(a)), U \ Osf (f1(a)), . . . , U \ Osf (fml(a)))

GOf (a)∧ GOf (b) = (Osf (f0(a)) ∩Osf (f0(b)), . . . ,Osf (fml(a)) ∩Osf (fml(b)))

GOf (a)∨ GOf (b) = (Osf (f0(a)) ∪Osf (f0(b)), . . . ,Osf (fml(a)) ∪Osf (fml(b)))

Now, a natural question arises: what kind of structure one can obtain when one close
GO(I) under ¬, ∧, and ∨? Let denote this closure by GO(I)lattice . Our intended
interpretation of the lattice operations is given by some sorts of interactions between
objects a, b ∈ U ; as a result of these interactions the process f may be changed, what
is expressed in terms of a new orbit which is not an original f -orbit.

Example 1. Let a, b ∈ U be two objects such thatOsf (f0(a))∩Osf (f0(b)) �= ∅. Then
GOf (a) ∧ GOf (b) is an f -orbit. If GOf (a) ⊆ GOf (b) then also GOf (a) ∨ GOf (b) is
an f -orbit.

Example 2. Let a, b ∈ U be two objects such that Osf (f0(a)) ∩ Osf (f0(b)) = ∅.
Then both GOf (a) ∧ GOf (b) and GOf (a) ∨ GOf (b) are not f -orbits.

Thus, some interactions between elements change the process f and some do not.

Definition 18 (De Morgan Algebra). A a structure (U,∨,∧, 0, 1,¬) is called a De
Morgan algebra if (U,∨,∧, 0, 1) is a bounded distributive lattice, and¬ is a De Morgan
involution:

¬(a ∧ b) = ¬a ∨ ¬b, ¬(a ∨ b) = ¬a ∧ ¬b, ¬¬a = a.

Proposition 9. Let I = (U,Att, V al, i) be a functional information system (for some
f ). Then (GO(I)lattice ,∨,∧, 1, 0), where

1 = (U,U, . . . , U) and 0 = (∅, ∅, . . . , ∅),
is De Morgan algebra.

This algebra can be enriched to a structure which provides a representation for the lower
and upper approximation operators.
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Definition 19 (Łukasiewicz Algebra). A Łukasiewicz algebra of order n is a structure
(U,∨,∧, 0, 1,¬, σ0 . . . , σn−1) such that (U,∨,∧, 0, 1,¬) is a De Morgan algebra, and

1. σi is a lattice homomorphism:

σi(x ∨ y) = σi(x) ∨ σi(y) and σi(x ∧ y) = σi(x) ∧ σi(y),

2. σi(x) ∨ ¬(σi(x)) = 1 and σi(x) ∧ ¬(σi(x)) = 0,
3. σi(σj(x)) = σj(x) for 0 ≤ j ≤ n− 1,
4. σi(¬x) = ¬(σn−i(x)),
5. σi(x) ∧ σj(x) = σi(x) for i ≤ j ≤ n− 1,
6. x ∨ σn−1(x) = σn−1(x) and x ∧ σ0(x) = σ0(x),
7. y ∧ (x ∨ ¬(σi(x)) ∨ σi+1(y)) = y for i �= n− 1.

These axioms are not independent; please consult e.g. [2] for more information about
this class of algebras.

Proposition 10. Let I = (U,Att, V al, i) be a functional information system (for some
f ) and (GO(I)lattice ,∨,∧, 1, 0) its De Morgan algebra. Define:

U(GOf (a)) = (Osf (f0(a)),Osf (f0(a)), . . . ,Osf (f0(a))),

L(GOf (a)) = (Osf (fml(a)),Osf (fml(a)), . . . ,Osf (fml(a))).

Then (GO(I)lattice,∨,∧, 1, 0, L, U) is a Łukasiewicz algebra of order 2.

In other words, the lower approximation operator L retrieves from GOf (a)) its cycle,
whereas the upper approximation operator U makes the orbit GOf (a)) periodic.

5 Summary

In the paper we have described basic concepts of rough set theory in terms of dynam-
ical systems. Our attention has been focused on functional information system which
describe some process represented by a function f . Each complete information system
is functional, but not otherwise. We have described the differences between these sys-
tems in terms of Euclidean relations. The last part of the paper is devoted to granular
view of orbits. It turned out that starting from orbits one could obtain quite rich lattice
structures such like a De Morgan Algebra or Łukasiewicz algebra of order two.
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Abstract. We propose a generalization of Pawlak’s rough set model for
the multi-agent situation, where information from an agent can be pre-
ferred over that of another agent of the system while deciding member-
ship of objects. Notions of lower/upper approximations are given which
depend on the knowledge base of the sources as well as on the position of
the sources in the hierarchy giving the preference of sources. Some direct
consequences of the definitions are presented.

1 Introduction

Pawlak’s rough set model [6] is based on the simple structure of approximation
space, consisting of an equivalence relation R over a set U of objects. As we
know, the union of all equivalence classes [x]R with [x]R ⊆ X gives the lower
approximation of X , denoted as XR, while the union of all equivalence classes
having a non-empty intersection with X gives the upper approximation of X ,
denoted as XR. The set BR(X) := XR \XR denotes the boundary of X . The
elements of the setsXR, (XR)c andBR(X) are respectively the positive, negative
and boundary elements of X .

With time, this simple model has seen many generalizations due to demands
from different practical situations. The variable precision rough set model [11],
the rough set model based on covering [7], neighborhood system [4] and tolerance
relation [9], the Bayesian rough set model [10], the fuzzy rough set model [1] are
a few instances of generalizations of Pawlak’s rough set model. We deal with an
extension to handle the multi-agent situation.

Multi-agent extensions of rough sets came into the picture at the very begin-
ning of the development of the theory. It was present in Or�lowska and Pawlak’s
work in [5], where each agent was assigned an equivalence relation representing
an agent’s knowledge base. Thus a generalized notion of Pawlak’s approxima-
tion space was considered, consisting of a number of equivalence relations over
the same domain. Later, Rauszer [8] continued the above study of multi-agent
� The author is presently a visiting scholar at the ILLC, Universitiet van Amsterdam.

An EMECW grant financed by the European Commission supports the visit.
�� The research was supported by grant NN516 368334 from the Ministry of Science

and Higher Education of the Republic of Poland.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 247–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



248 Md.A. Khan and M. Banerjee

scenario. In addition to the knowledge base of each agent, Rauszer also consid-
ered the (strong) distributed knowledge base of the group of agents. Two objects
are distinguishable with respect to the strong distributed knowledge base of a
group of agents if and only if any of the agents from the group can distinguish
them. The work in [5] and [8] does not address the issue of counterparts of the
standard rough set concepts such as approximations of sets, definability of sets,
membership functions in the multi-agent case. This issue was raised in [2,3],
although the more general term ‘source’ is used instead of ‘agent’, and these
notions are defined in the multiple-source context. The interest of the present
work lies in the situation where a source may be preferred over another source
of the system in deciding membership of an object. For instance, we could make
the assumption that a source will always prefer herself (i.e. her knowledge base)
over the other sources of the system. Thus with this assumption, if we find that
x ∈ XR1

∩BR2(X) and y ∈ XR2
∩BR1(X), R1, R2 being the knowledge bases

of sources 1 and 2 respectively, then source 1 will put more possibility on x
to be an element of X than y. Observe that in the above conclusion, not only
the knowledge base of the sources but also the preference of source 1 is playing
a role. We propose a rough set model where a preference order on the set of
sources will also be considered. Moreover, we shall define notions of lower/upper
approximations which depend on the knowledge base of the sources as well as
on the position of the sources in the hierarchy giving the preference of sources.

The remainder of this article is organized as follows. In Section 2, we present
thenotion of a ‘multiple-source approximation systemwith preference’ (MSASP ),
which is a generalization ofPawlak’s approximation space aswell as of themultiple-
source approximation system proposed in [2]. In section 3, we investigate the no-
tions of approximations in MSASP . Section 3.1 continues this investigation and
defines notions of approximations which involve the distributed knowledge base of
the group of sources. In section 4, we consider the situation where MSASP has a
number of preference lists representing the view of the sources of the system. Sec-
tion 5 concludes the article.

2 Multiple-Source Approximation Systems with
Preference

We recall the following basic definitions.

Definition 1 ([2]). A multiple-source approximation system (MSAS) is a tu-
ple (U, {Ri}i∈N), where N is an initial segment of the set of positive integers,
and each Ri, i ∈ N, is an equivalence relation on the non-empty set U of objects.

N represents the set of sources, and is called the cardinality of the MSAS.
Moreover, for each i ∈ N , Ri represents the knowledge base of the source i.

The following notions of lower/upper approximations were introduced in [2].
We give them in the context of a set of sources. Let F := (U, {Ri}i∈N ) be a
MSAS and X ⊆ U . The strong lower approximation Xs(P ), weak lower approxi-
mation Xw(P ), strong upper approximation Xs(P ), and weak upper approximation
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Xw(P ) of X with respect to a non-empty P ⊆ N , respectively, are defined as
follows.

Definition 2 ([2])

Xs(P ) :=
⋂

i∈PXRi ; Xw(P ) :=
⋃

i∈PXRi .
Xs(P ) :=

⋂
i∈PXRi ; Xw(P ) :=

⋃
i∈PXRi .

We omit the occurrence of MSAS in the notation for strong/weak approxima-
tions to make the notation simple. The following relationship is obtained.
(*) Xs(P ) ⊆ Xw(P ) ⊆ X ⊆ Xs(P ) ⊆ Xw(P ).
So, depending on the possibility of an object to be an element of a set X with
respect to information provided by a group P of sources, the domain is di-
vided into five disjoint sets, viz. Xs(P ), Xw(P ) \ Xs(P ), Bs(P )(X) := Xs(P ) \
Xw(P ), Xw(P ) \Xs(P ), and (Xw(P ))c. We term the elements of these regions as
certain positive, possible positive, certain boundary, possible negative and certain
negative element of X for the group P of sources respectively.

It is to be noted that the notions of lower/upper approximations given in Def-
inition 2 are based on the assumption that each source is equally preferred. But,
as mentioned in the Introduction, one may require to incorporate a preference
ordering on the set of sources in some practical situations. Thus, we extend the
notion of MSAS to define the following.

Definition 3. A MSAS with preference (MSASP ) is the tuple
F := (U, {Ri}i∈N , {Qi}i∈N), where

– (U, {Ri}i∈N ) is a MSAS,
– Qi is a subset of N satisfying the following:

P1 Q1 �= ∅,
P2 Qi = ∅ implies Qj = ∅ for all j > i,
P3 Qi ∩Qj = ∅ for i �= j.

The collection {Qi}i∈N will be called the preference list of the sources. The
MSASP and the preference list will be called strict if it satisfies the additional
condition,

P4 |Qi| ≤ 1 for all i ∈ N .

The preference list {Qi}i∈N signifies that the sources belonging to Qi are pre-
ferred over the sources belonging toQj, j > i. Moreover, all the sources belonging
to the same Qi are equally preferred. Depending on applications, one may wish
to put different conditions on the preference list. In this article, we will consider
the above two types of lists.

Observe that we have not asked for the condition
⋃

i∈N Qi = N . So, there may
be sources in the system which do not find a place in the list. One may give two
interpretations for this. It could be the case that one does not want to take some
of the sources of system into consideration at all – say, due to the possibility of
a serious error in their knowledge bases. Another interpretation could be that
we may not have enough information to grade some of the sources.
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It is natural to say that a source will not be preferred over herself – (P3)
corresponds to this condition. In general, a MSASP keeps the possibility open
where two sources are equally preferred. Condition (P4) rules out this situation
to give a strict MSASP .

3 Notions of Approximation in MSASP

Let us consider an MSASP F := (U, {Ri}i∈N , {Qi}i∈N), a subset X of the
domain U and an object x ∈ U . Suppose we want to decide whether the object
x is an element of the set X or not. If x falls outside the certain boundary region
of the group Q1 consisting of most preferred sources, then we will be able to take
some decision here. Otherwise, we may like to use the knowledge base of other
sources. In that case, instead of using the knowledge base of all the sources of
the system, one may like to use only the knowledge base of sources in Q2, the
set of the second most preferred sources. If the object does not fall in the certain
boundary region of X with respect to the group Q2, then we will be able to take
some decision. Otherwise, we may like to move to next preferred sources, i.e. to
the sources of Q3 and repeat the process. But as we descend in the hierarchy
of sources given by preference list, faith on the decision will also keep reducing.
This observation motivates us to give the following notions of approximations.
Let F := (U, {Ri}i∈N , {Qi}i∈N ) be a MSASP and X ⊆ U . Recall that for non-
empty P ⊆ N , Bs(P )(X) denotes the set Xs(P ) \ Xw(P ) consisting of certain
boundary elements of X for P .

Definition 4. The strong and weak lower approximations of X of level n, 1 ≤
n ≤ |N |, denoted as Ls(X,n) and Lw(X,n) respectively, are defined as follows.

– Ls(X, 1) := Xs(Q1), Lw(X, 1) := Xw(Q1).

For n > 1

– Ls(X,n) :=
{⋂n−1

i=1 Bs(Qi)(X) ∩Xs(Qn) if Qn �= ∅
∅ otherwise.

– Lw(X,n) :=
{⋂n−1

i=1 Bs(Qi)(X) ∩Xw(Qn) if Qn �= ∅
∅ otherwise.

The notions of strong and weak upper approximation of X of level n, denoted as
Us(X,n) and Uw(X,n) respectively, are defined as follows.

– Uw(X, 1) := Xw(Q1), Us(X, 1) := Xs(Q1).

For n > 1

– Uw(X,n) :=
{⋃n−1

i=1 (Bs(Qi)(X))c ∪Xw(Qn) if Qn �= ∅
U otherwise.

– Us(X,n) :=
{⋃n−1

i=1 (Bs(Qi)(X))c ∪Xs(Qn) if Qn �= ∅
U otherwise.
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If x /∈ Uw(X,n), x is negative element of X for some source belonging to Qn,
but the presence of

⋃n−1
i=1 (Bs(Qi)(X))c in the definition of Uw(X,n) guarantees

that x is boundary element of X for each source belonging to
⋃n−1

i=1 Qi.
We know that notions of approximations can be viewed as functions from the

power set 2U of set U of objects to 2U . Given a MSASP (U, {Ri}i∈N , {Qi}i∈N),
the strong lower approximation of level n, 1 ≤ n ≤ |N |, is a function which maps
X(⊆ U) to Ls(X,n). Consider a map f : 2U → 2U and the following properties.

1. f(X) ⊆ X .
2. f(X ∩ Y ) ⊆ f(X) ∩ f(Y ).
3. f(X ∩ Y ) ⊇ f(X) ∩ f(Y ).
4. f(X) ∪ f(Y ) ⊆ f(X ∪ Y ).
5. For X ⊆ Y , f(X) ⊆ f(Y ).
6. f(U) = U .
7. f(f(X)) = f(X).

It is well-known that Pawlak’s lower approximation satisfies all the above prop-
erties. As shown in [2], notions of strong and weak lower approximations given
by Definition 2 satisfy 1-6 and 1,2,4-7 respectively. The generalized notions
of strong/weak lower approximations given by Definition 4 are not very well-
behaved with respect to these properties. In fact, the strong and weak lower
approximations of level n, n > 1, satisfy only 1,3 and 1 respectively. The follow-
ing proposition lists a few more properties of these approximations.

Proposition 1. 1. Ls(X,n) ⊆ Lw(X,n) ⊆ X ⊆ Us(X,n) ⊆ Uw(X,n).
2. Ls(Xc, n) = (Uw(X,n))c.
3. Lw(Xc, n) = (Us(X,n))c.
4. Ls(X,n) ∩ Lr(X,m) = ∅ for m �= n, r ∈ {s, w}.
5. Us(X,n) ∩ U r(X,m) = ∅ for m �= n, r ∈ {s, w}.
6. If |Qn| = 1, then Ls(X,n) = Lw(X,n) and Us(X,n) = Uw(X,n).

The proof is a direct consequence of the definitions. Items 2 and 3 show that Us

and Uw are the duals of Lw and Ls respectively.
Given a MSASP F := (U, {Ri}i∈N , {Qi}i∈N ) and X ⊆ U , depending on the

possibility of being an element of X , we name the elements of U following the
nomenclature used for MSAS.

Definition 5. Let 1 ≤ n ≤ |N |. x ∈ U is said to be a

certain positive element of X of level n, if x ∈ Ls(X,n),
possible positive element of X of level n, if x ∈ Lw(X,n) \ Ls(X,n),
certain negative element of X of level n, if x ∈ (Uw(X,n))c,
possible negative element of X of level n, if x ∈ Uw(X,n) \ Us(X,n),

Elements of Ls(X, 1) and Lw(X,n) \Ls(X,n) have respectively the highest and
second highest possibility of being an element of X . Similarly, the elements of
(Uw(X, 1))c and x ∈ Uw(X,n) \ Us(X,n) have, respectively, the highest and
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second highest possibility of not being an element of X . If x ∈ ⋂n
i=1 Bs(Qi)(X),

then we move to the n+ 1 level and again check if x is certain/possible positive
or negative element of X of level n + 1. As noted earlier, faith on the decision
reduces as we move to the next level. For instance, if x is a possible positive
element of X of level n and y is even a certain positive element of X of level
n + 1, we will consider x to have a greater possibility to be an element of X
compared to y. Similarly, if x is a possible negative element of X of level n and
y is a certain negative element of X of level n + 1, we will take x to have a
greater possibility to not be an element of X compared to y. Observe that if
Qn = ∅, there will be no certain/possible positive or negative element of level
n. So, while descending the preference list, once we reach an empty Qn, no
more elements can be decided to be positive or negative. Thus given a MSASP

F := (U, {Ri}i∈N , {Qi}i∈N ) such that Qn �= ∅ and Qn+1 = ∅, on the basis of
being an element of X ⊆ U , the universe is divided into 4n+1 disjoint regions –
the regions of being certain/possible positive and negative element of X of level
m, 1 ≤ m ≤ n, and the undecidable region

⋂n
i=1 Bs(Qi)(X) of the MSASP F.

However, if F is strict, there are no possible positive or negative elements of X
of level m, 1 ≤ m ≤ n, and thus in that case, the universe would be divided into
2n+ 1 disjoint regions.

Example 1. Let us consider the MSASP F := (U, {RP}P⊆N , {Qi}i∈N ), where

– N := {1, 2, 3} and U := {O1, O2, . . . , O5},
– U |R1 := {{O1, O2}, {O4}, {O3}, {O5}},
– U |R2 := {{O1, O4}, {O2, O3}, {O5}},
– U |R3 := {{O2}, {O1, O4}, {O3, O5}},
– Q1 := {3}, Q2 := {1, 2} and Qi := ∅ for i > 2.

Let X := {O2, O3, O4} of the domain U . Then, we obtain

– XR1
= {O3, O4}, XR2

= {O2, O3}, XR3
= {O2} and

– XR1 = {O1, O2, O3, O4}, XR2 = {O1, O2, O3, O4}, XR3 = U.

Therefore, the approximations given in Definition 4 are as follows.

– Ls(X, 1) = Lw(X, 1) = {O2},
– Us(X, 1) = Uw(X, 1) = U ,
– Ls(X, 2) = {O3}, Lw(X, 2) = {O3, O4},
– Us(X, 2) = Uw(X, 2) = {O1, O2, O3, O4}.

Thus the information provided by F results in the following division of the do-
main. O2 is a certain positive element of X of level 1. O3, O4 are respectively
certain and possible positive elements of X of level 1 and O5 is a certain negative
element of X of level 2. O1 belongs to the undecidable region of the MSASP .

Remark 1. As mentioned in Section 1, in the notion of MSAS, there is a hidden
assumption that no source is preferred over another, i.e. each source is equally
preferred. Thus one can represent the MSAS : = (U, {Ri}i∈N ) as the MSASP

(U, {Ri}i∈N , {Qi}i∈N ), where Q1 = N and Qi = ∅ for i > 1. In that case,
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Ls(X, 1) = Xs(N), Lw(X, 1) = Xw(N),

Us(X, 1) = Xs(N), Uw(X, 1) = Xw(N).

So when a MSASP is of cardinality one, i.e. consists of a single relation, the
notions of lower and upper approximations of level 1 given in Definition 4 just
reduce to Pawlak’s lower and upper approximations with respect to the relation
of the MSAS. Also note that the division of the domain of a MSAS on the
basis of possibility of being an element of a set X given in Section 2 is obtained
as a special case of the division of the domain of a MSASP given above with
n = 1. Moreover, the notions of certain/possible positive and negative elements
of a set given in Definition 2 are obtained as a special case of Definition 5.

3.1 Notion of Approximations Involving Distributed Knowledge
Base

Suppose we are given a MSASP and it is the case that an object falls in the
certain boundary of a set X for the group Q1 of highest preferred sources. One
option now is that we will use the knowledge base of other sources of the system
following the method given in Section 3. But in that approach, the knowledge
base of the most preferred sources is not used once we cross level one. This is
indeed the case due to condition (P3), of Definition 3. One may like to have
notions of approximations such that even when we cross level one, decision will
still depend on the knowledge base of the most preferred sources. Such an ap-
proximation can be given using the distributed knowledge base of the sources
[8]. The following definition proposes some notions of approximations involving
the distributed knowledge base of a group of sources.
Let F := (U, {Ri}i∈N , {Qi}i∈N ) be a MSASP . Let us recall that for P ⊆ N ,
RP :=

⋂
i∈P Ri denotes the distributed knowledge base of the group P of sources.

Definition 6. Let X ⊆ U and 1 ≤ n ≤ |N |. We define the lower approximation
Li and upper approximation U i, i = 1, 2, 3 of X of level n as follows.

– Li(X, 1) = XRQ1
, U i(X, 1) = XRQ1

, i = 1, 2, 3.

For n > 1

– L1(X,n) :=
⋂n−1

i=1 BRQi
(X) ∩XRQn

.
U1(X,n) :=

⋃n−1
i=1 (BRQi

(X))c ∪XRQn .
– L2(X,n) :=

⋂n−1
i=1 BRQ1∪Qi (X) ∩XRQ1∪Qn

.

U2(X,n) :=
⋃n−1

i=1 (BRQ1∪Qi (X))c ∪XRQ1∪Qn .
– L3(X,n) := BR⋃n−1

i=1 Qi

(X) ∩XR⋃n
i=1 Qi

.

U3(X,n) := (BR⋃n−1
i=1 Qi

(X))c ∪XR⋃n
i=1 Qi

.

Approximations L3, U3 are based on the idea that given an object x and a
set X , we check if x is a positive or negative element of X with respect to
the distributed knowledge base RQ1 . If it is in the boundary region, then we
consider the distributed knowledge base of the group Q1 ∪Q2 consisting of first
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and second most preferred sources. We continue in this way and we stop our
search once x falls in the decidable region. Then we put the weightage to the
decision depending on how much we had to descend in the preference list to make
the decision. Similarly one can interpret the other two types of approximations.

Observe that in the case of a strict MSASP , L1, U1 coincide with Lr and U r

respectively, r ∈ {w, s}. Also note that in the case of MSAS F := (U, {Ri}i∈N)
viewed as a MSASP , we obtain Li(X, 1) = XRN , U

i(X, 1) = XRN , Li(X,n) =
∅, U i(X,n) = U , for n > 1, i ∈ {1, 2, 3}.

The following proposition lists a few properties of these approximations.

Proposition 2.

1. Let i, j ∈ {1, 2, 3} such that i < j. Then for each n1, n2, 1 ≤ n1, n2 ≤ |N |,
there exists m1,m2 with mk ≤ nk, k = 1, 2 such that Li(X,n1) ⊆ Lj(X,m1)
and U j(X,m2) ⊆ U j(X,m1).

2. Lk(X,n) ⊆ X ⊆ Uk(X,n), k ∈ {1, 2, 3}.
3. For m �= n, Lk(X,n) ∩ Lk(X,m) = ∅ and Uk(X,n) ∩ Uk(X,m) = ∅.

Given an MSASP with Qn �= ∅ and Qn+1 = ∅ and a subset X of the domain, on
the basis of possibility to be an element of X , each of the approximations given
by Definition 6 divides the domain into 2n+1 disjoint regions, namely Li(X,m),
(U i(X,m))c, 1 ≤ m ≤ n and undecidable region

⋂n
k=1B

i
k(X), i = 1, 2, 3, where

B1
k(X) := BRQk

(X), B2
k(X) := BRQ1∪Qk (X) and B3

k(X) := BR∪k
j
Qj

(X).

4 MSASP with Preference Lists Representing the View
of Sources

The preference list in the definition of MSASP could also be interpreted as the
view of a particular source. In fact, this interpretation also leads to the general-
ization of MSASP to a structure where we have preference lists corresponding
to each source of the system.

Definition 7. A (strict) MSASP with source preference (MSASSP ) is the tu-
ple F := (U, {Ri}i∈N , {Qj

i}j,i∈N), where for each j ∈ N , (U, {Ri}i∈N , {Qj
i}i∈N)

is a (strict) MSASP and Qj
1 := {j}.

For a fixed j ∈ N , {Qj
i}i∈N gives the preference list of the source j. Thus

the condition Qj
1 := {j} signifies that each source prefers herself over all other

sources of the system. The notions of approximations given so far can be defined
in MSASSP corresponding to each source of the system by using the preference
list of the source. We add a subscript j to the notations of approximations to
express that the approximation is with respect to the preference list of j.

Consider a strict MSASSP (U, {Ri}i∈N , {Qj
i}j,i∈N ) and a source j. Let us see

how the agent j makes a decision regarding the elements of a set X using approx-
imations L2

j and U2
j . Given an object x, if j fails to decide whether the object

is an element of the set or not by using her own knowledge base, then she starts
combining her knowledge base with the other sources of the system descending
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her preference list. She stops her search when she gets a source combining her
knowledge base with whom she is able to decide regarding the membership of
the object. Depending on the position of the source in her preference list, she
assigns weightage to her decision.

We end the article with the following example.
Example 2. Consider the MSAS of Example 1 with the sources’ preference lists:
Source-1: Q1

1 := {1}, Q1
2 := {2}, Q1

3 := {3};
Source-2: Q2

1 := {2}, Q2
2 := {1}, Q2

3 := {3};
Source-3: Q3

1 := {3}, Q3
2 := {2}, Q3

3 := {1}.

LetX :={O2, O3, O4}. As we are considering strictMSASSP , we haveLs
j(X,n)=

Lw
j (X,n) and Us

j (X,n) = Uw
j (X,n). One can verify that:

Ls
1(X, 1) = {O3, O4}, Ls

1(X, 2) = {O2}, Ls
1(X, 3) = ∅,

Us
1 (X, 1) = {O1, O2, O3, O4}, Us

1 (X, 2) = Us
1 (X, 3) = U ,

Ls
2(X, 1) = {O2, O3}, Ls

2(X, 2) = {O4}, Ls
2(X, 3) = ∅,

Us
2 (X, 1) = {O1, O2, O3, O4}, Us

2 (X, 2) = Us
2 (X, 3) = U .

Thus source 1 considersO5 andO3, O4 to be certain negative and certain positive
elements of X of level 1. O2 is a certain positive element of level 2 for source 1.
Although source 2 also considers O5 to be a certain negative element of X of
level 1, it considers O4 and O2, O3 to be certain positive elements of X of level
2 and 1 respectively. O1 is an undecidable element for both the sources 1 and 2.

Next suppose source 3 wants to decide membership of elements with respect
to X . As XR3

= {O2} and XR3 = U , she concludes that O2 is a positive element
of X , but she is unable to make any decision about the other objects. At this
point, she may like to use one of the approximations defined in this article.
For instance, suppose, she has decided to use approximations L2

3, U
2
3 . So, she

combines her knowledge base with that of the source 2 as she prefers source 2
over source 1. Since L3

3(X, 2) = {O3}, U3
3 (X, 2) = {O1, O2, O3, O4}, she is able

to decide that O3 and O5 are respectively positive and negative elements of X .
But, as she had to use the knowledge base of second preferred source 2, she puts
less possibility on O3 to be an element of X compared to O2. Moreover, she is
still not able to make any decision about the objects O1 and O4. So, she will now
have to use the knowledge base of source 1. There it is found that O4 ∈ L3

3(X, 3)
and O1 /∈ U(X, 3) and so she concludes that O4 and O1 are respectively positive
and negative elements. She puts the weightage on the decision accordingly.

5 Conclusion

In order to capture the situation where information from a source may be pre-
ferred over that of another source of the system for deciding membership of
objects, the notion of multiple-source approximation system (MSAS) is ex-
tended to define the multiple-source approximation system with preference
(MSASP ). Notions of lower/upper approximations are proposed which depend
on the knowledge base of the sources as well as on the positions of the sources in
the hierarchy giving the preference of sources. It is observed that the notions of
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weak/strong lower and upper approximations defined on MSAS are obtained as
a special case of these. It may be noted that the logic LMSAS for MSAS pro-
posed in [2] can be extended to obtain a logic with semantics based on MSASP

and MSASSP , where one can express the notions of approximations defined
here. But this issue is outside the scope of the current article.

Our investigation is restricted to the suitable notions of approximations for
MSASP . One needs to investigate other standard rough set concepts such as
definability of sets, membership functions. In this direction, one could think of
generalizing the notions for MSAS already studied in [2,3].

As mentioned in Section 1, there are many generalizations of Pawlak’s rough
set model. In the line of the current work, one may define multiple-source ex-
tensions based on these generalizations. We note that Pawlak’s rough set model
rules out contradictory knowledge base of the sources in the sense that a source
considers an object to be a positive element of a set, but another source in the
system considers the object to be a negative element of the same set. However,
some generalized rough set models, such as covering and neighborhood based
ones, would admit such a situation. This could be handled, for instance, by
providing a strict preference list of the sources.
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Abstract. A classification of the different dynamics which can arise in
rough sets is given, starting from three different standpoints: information
tables, approximation spaces and coverings. Dynamics is intended in two
broad meanings: evolution in time and originated from different sources.
Existing works on this topic are then categorized accordingly.

1 Introduction

It is a matter of fact that knowledge evolves in time (synchronic dynamics)
and changes from a point of view to another (diachronic dynamics). Thus, even
rough-set techniques are influenced by dynamics. Indeed, since the very begin-
ning, attempts to deal with this issue have been carried out [8]. Then, during
years there have been few works on these topics (for instance [13,14]). Recently,
several authors try to deal with dynamics and multi source (or multi agent) in
rough sets and they work in different directions: defining new approximations,
new methods to update rules or giving a logical approach. Beyond a direct use
of these new techniques, another chance of dynamics is to split a given problem
in sub-problems and solve them in parallel, a major challenge for rough sets
applicability. As we can read already in 1995: ”It is our belief that only through
the use of parallel processing will major progress and achievements be possible
in real-world application of this data” [14]. Nowadays, we can assist to some
works also in this direction [4].

The aim of the present paper is to classify and characterize different kinds
of dynamic and point out the way in which they can be analysed. This can
clarify the dynamics already under investigation and also highlight new forms of
dynamics. Once made clear our framework, the known results about dynamics
will be interpreted under this standpoint.

2 A Classification of Dynamics

The main distinction concerns the simultaneity or not of the events under inves-
tigation. These two branches are called by Pagliani [9] synchronic and diachronic
dynamics. In the first case we are in presence of a multi-source situation: at a
fixed moment in time we have different sources of information. These variety
can depend mainly on two factors: different agents (humans or bots) which have

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 257–266, 2010.
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some knowledge on the same concept or different sources of information. For
example: two stockbrokers with different predictions, different web-sites about
weather forecasts, etc.

In the case of diachronic dynamics, it is supposed that changes occur in time.
These changes can regard different factors: new objects enter into the system
under investigation (or also, existing objects that exit the system), new facts
are taken into account, unknown facts that become known. Of course, several of
these changes can appear simultaneously, for instance going from time t to time
t+ 1, it may happen that n new objects enter the system and m new facts are
considered. However, in this case, we can split the two events in two separate
steps: from time t to t+ 1

2 , n new objects enter the system and from time t+ 1
2

to time t+ 1, m new facts happen.
We note that also diachronic and synchronic changes can be mixed, that is

we can have different sources of information which can evolve during time.

Fig. 1. A representation of synchronic and diachronic dynamics

In figure 1, these kinds of evolution are schematized. Starting at time t and
source S1 we can move in two directions: horizontal to have synchronous dy-
namics and vertical to have asynchronous one. The dashed lines show a dynamic
where at time t and t+1 we have two sources of information and at time t+2 a
third source is added.

In generalized rough sets theory we have different ways to represent knowl-
edge. Information Tables are the first developed and most used one and they rep-
resent the available knowledge in terms of attributes assumed by objects. Then,
we can have Approximation Spaces, where the knowledge is available in terms
of relations among objects. Finally, under the granular computing paradigm,
knowledge may be represented in terms of granules generating a covering of the
universe. We now analyse these three directions and classify the dynamics they
give rise to, with respect to both synchronic and diachronic behaviour. In case
of time evolution we point out the cases where there is an increase (decrease) of
knowledge with respect to some fixed point of view.

2.1 Dynamic in Information Tables

Information Tables (or Information System) [10] are at the basis of rough sets.
They have been defined to represent knowledge about objects in terms of ob-
servables (attributes). We deal with incomplete information tables, where some
value can be missing.
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Definition 1. A (possibly incomplete) Information Table is a structure K(X) =
〈X, A, val, F 〉 where:

– the universe X is a non empty set of objects;
– A is a non empty set of attributes;
– val is the set of all possible values that can be observed for all attributes;
– F (called the information map) is a mapping F : X × A→ val ∪ {∗} which

associates to any pair object x ∈ X and attribute a ∈ A, the value F (x, a) ∈
val assumed by a for the object x. If F (x, a) = ∗ it means that this particular
value is unknown.

Let us note that we do not deal with different semantics of incomplete informa-
tion tables, but simply take into account that for some reason a value can be
missing, i.e., F (x, a) = ∗.

In case of synchronic dynamics we assume that each source of information
or agent is represented by a different information table. Thus, when comparing
them we can have different degree of accordance, which we call compatibility
among information tables.

Definition 2. A set of information tables Ki is said to be:

– fully compatible if all the Ki are defined on the same set of objects, attributes
and values, i.e., only the function Fi depends on the specific information
table: Ki = 〈X,Att(X), val(X), Fi〉;

– value compatible if the set of attributes and values is the same for all Ki:
Ki = 〈Xi, Att(X), val(X), Fi〉;

– attribute compatible if the attributes are the same for all Ki:
Ki = 〈Xi, Att(X), vali(X), Fi〉;

– object compatible if the objects are the same for all Ki:
Ki = 〈X,Atti(X), vali(X), Fi〉.

Clearly, fully compatibility is equal to object plus value compatibility.
If we consider an information system evolving in time, it may change in terms

of objects, attributes, values or information map. We want to characterize the
situation where the knowledge increases as time passes. So, the information
systems at time t and t + 1 must share some form of compatibility and either
new objects enter the system or unknown values become known or new attributes
be added. These different ways to increase the knowledge are formalized in the
following way.

Definition 3. Let K(t1)(X) = 〈X1, Att(X1), val(X1), F1〉 and K(t2)(X) =
〈X2, Att2(X2), val2(X2), F2〉, with t1, t2 ∈ R, t1 ≤ t2 be two information ta-
bles. We will say that there is a monotonic increase of information from time t1
to time t2

– wrt values iff K(t1) and K(t2) are fully compatible and F1(x, a) �= ∗ implies
F2(x, a) = F1(x, a).
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– wrt attributes iff K(t1) and K(t2) are object compatible (i..e, X1 = X2)
and Att1(X1) ⊆ Att2(X2), val1(X1) ⊆ val2(X2) and ∀a ∈ Att1(X1), ∀x ∈
X1, F2(x, a) = F1(x, a).

– wrt objects iff K(t1) and K(t2) are value compatible, X1 ⊆ X2 and ∀x ∈ X1,
F2(x, a) = F1(x, a).

In all the three cases we can also define a decrease of knowledge when the reverse
ordering holds.

Example 1. In Table 1 we can see a monotone increase of information wrt values
from time t0 to time t1. Indeed, the only difference between time t0 and time
t1 are the values F(Down-Town,f3) and F(Furniture, f4) which from missing
become defined.

Table 1. Flats incomplete information systems

Observer at time t0
Flat Price Down-Town Furniture
f1 high yes *
f2 high yes no
f3 * * no
f4 * * *

Observer at time t1
Flat Price Down-Town Furniture
f1 high yes *
f2 high yes no
f3 * yes no
f4 * * yes

Observer at time t2
Flat Price Rooms Down-Town Furniture
f1 high 2 yes *
f2 high * yes no
f3 * 2 yes no
f4 * 1 * yes

On the other hand, from time t1 to time t2 we have a monotone increase of
knowledge with respect to attributes, since the new attribute ”Rooms” is added
while the others do not change.

2.2 Dynamics in Approximation Spaces

Starting from an information table we usually define a binary relation on objects,
which can be an equivalence, tolerance or also a more general relation, which
is used to cluster objects in granules and define approximations. A different
approach is to start directly from available relations, that is from a so called
Approximation Space.

Definition 4. An Approximation Space is a pair A = (X,R) with X a set of
objects and R a binary relation on X.

In this case, we have two sources of information which can vary: the set of
objects X and the relation R. Thus, we can derive two notions of compatibility
in approximation spaces with respect to synchronic dynamics.
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Definition 5. A set of approximation spaces Ai is said to be:

– object compatible if the objects are the same for all Ai: Ai = 〈X,Ri〉.
– relation compatible if the relations are defined in the same way on all com-

mon objects, i.e., let Y =
⋂
Xi, then for all x, y ∈ Y , Ri(x, y) iff Rj(x, y).

In case of time evolution the increase of knowledge is defined as follows.

Definition 6. Given two approximation spaces A(t1) =(X1, R1),A(t2) =(X2, R2)
with t1, t2 ∈ R, t1 ≤ t2, we have an increase of knowledge in approximation
spaces

– wrt objects if X1 ⊆ X2 and A(t1) and A(t2) are relation compatible;
– wrt relations if A(t1) and A(t2) are object compatible and R1 ⊆ R2.

That is, either we add new objects and new relations involving them without
affecting the existing ones or we add new relations among the existing objects.

Example 2. Let us consider an approximation space at time t0 represented by
X0 = {a, b, c, d}, R0 = {(i, i), (b, c), (a, d)}, where i stands for any object, i.e., the
relation is reflexive. Then, at time t1 we have an increase of knowledge with re-
spect to objects if the approximation space is updated as X1 ={a, b, c, d, e}, R1 =
{(i, i), (b, c), (a, d), (d, e)}. That is, we added object e and the relations involv-
ing it. At time t2 we have a monotone increase of knowledge with respect to
relations if, for instance, the approximation space is X2 = {a, b, c, d, e}, R2 =
{(i, i), (b, c), (a, d), (d, e), (b, d), (c, e)}. That is, objects are the same but new re-
lations between b and d and between c and e are added.

2.3 Dynamics in Coverings

Finally, as said before, the binary relation definable in information systems or
intrinsic in approximation spaces can be used to cluster objects. Thus, we can
think to start our analysis directly on granules of objects which form a covering
of the universe.

Definition 7. Let X be a non empty set, a covering C(X) of X is a collection
of sets Ci ⊆ P(X) such that

⋃
Ci = X.

Also in this case, when considering knowledge coming from different sources, we
can define two notions of compatibility.

Definition 8. A collection of coverings Ci(Xi) is said to be:

– object compatible if the objects are the same for all Ci: Ci(X)
– granule compatible if for all common objects Y =

⋂
Xi, it happens that for

all x, y ∈ Y , if x, y belong to the same set Cj for one covering Ci(Xi), then
x, y belong to the same set in all coverings.

Object compatibility is trivial, granules compatibility means that the objects
common to all sources are classified in the same way.
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In order to deal with increase of knowledge with respect to granularity, we
need a notion of ordering among coverings. This is not so trivial, since different
equivalent definitions of partition orderings, differ when generalized to coverings
(see [1] for an overview). So, we assume to have a notion of ordering (or quasi-
ordering) available, let call it �, and define monotonicity with respect to this
order as follows.

Definition 9. Given two coverings C(t1)(X1),C(t2)(X2) with t1, t2 ∈ R, t1 ≤ t2,
we have an increase of knowledge in coverings

– wrt objects if X1 ⊆ X2 and C(t1) and C(t2) are granule compatible;
– wrt granules if C(t1) and C(t2) are object compatible and C(t1)(X) � C(t2)(X).

Example 3. Consider the universe X = {a, b, c, d} and the covering {{a, d},
{b, c}}. At a following time a new object e can enter the system and the new
covering is {{a, d}, {c, d}, {d, e}, {e}}. That is we have an increase of knowledge
in coverings wrt objects. Then, if the system is updated such that the new cover-
ing is {{a, d}, {b, c, d}, {c, e}, {d, e}, {e}} we have an increase of knowledge with
respect to granules if the following quasi ordering is considered:

C1(X) � C2(X) iff ∀Ci ∈ C1(X) ∃Dj ∈ C2(X) such that Ci ⊆ Dj

2.4 Dependencies among the Three Approaches

Of course, information tables, approximation spaces and coverings are not inde-
pendent tools. We want now to see how these dependencies reflect on dynamics.

Given an information table and a set of attributes D ⊆ A, two objects x, y ∈
X are called indiscernible with respect to D, and we write xIDy, iff ∀a ∈ D,
F (a, x) = F (a, y). It can be easily verified that ID is an equivalence relation and
so it partitions the universe X in disjoint classes (granules) ED(x) defined as
ED(x) := {y ∈ X : xIDy}. Thus, for any set of attributes D, the pair 〈X, ID〉 is
an approximation space. About the relationship of compatibility in information
tables and approximation spaces, we can trivially see that

– two information tables are object compatible iff the corresponding approxi-
mation spaces are object compatible.

Moreover, there is no correspondence between other notions of compatibility.
Indeed, suppose for instance that two information tables generate two relation
compatible approximation spaces. Nothing assures that the attributes do not
change from one information table to another, nor the values, nor the infor-
mation map. Vice versa, fully (value, attribute) compatibility can result in non
compatible relations since Fi changes.

About the time evolution, we can say that

– there is a monotone increase of information wrt objects in an information
table iff there is also in the induced approximation space.
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Of course, this approach can be generalized by defining on objects a general (i.e.,
not necessarily equivalence) binary relation.

Now, given an approximation space (X,R), we can define the successor and
predecessor neighborhood [15] of an element x respectively as Ns(x) := {y|xRy}
and Np(x) := {y|yRx}. Under the (sufficient) condition that R is reflexive, the
collection of all neighborhood is a covering of X . About the relationship between
compatibility in approximation spaces and in covering we can say that

– object compatibility in approximation spaces induces object compatibility
in coverings;

– relation compatibility in approximation spaces induces granule compatibility
in coverings.

Similarly, when considering diachronic dynamics we have that

– an increase of knowledge wrt objects in approximation spaces induces an
increase of knowledge wrt objects in coverings;

Since the increase of knowledge wrt to granules depends on a given ordering,
it is not so immediate to give a general result. However, looking at example 3,
it can be obtained by the approximation spaces in example 2 using the succes-
sor neighborhood. Thus, in this case, an increase of knowledge wrt relations in
approximation spaces induces an increase of knowledge wrt granules in coverings.

3 Analysis of Dynamics

The most important instruments of rough sets are (lower and upper) approxi-
mations, reducts and rules. Thus, it is fundamental to understand how they are
involved in dynamics. That is, how to put together approximations and rules
coming from different sources, how the quality of a rule evolves in time, and so
on. Another important and widely studied aspect is how to represent and ma-
nipulate knowledge from a formal-logical standpoint. Also this has to be (and in
effect it is) investigated in dynamic environments.

As a consequence we can envisage four main streamlines to investigate:

1. Lower and upper approximations. Of course this aspect involves also bound-
ary and exterior region;

2. Reducts and rules;
3. Quality indexes, both of approximations and rules;
4. Formal logic, that is how to represent and manipulate dynamics form a

formal language point of view.

Clearly, the analysis varies according to the kind of dynamics (synchronic or
diachronic) we are dealing with. In asynchronous dynamics, the main issue to
face is how these topics change in time. So, questions which can arise are: are the
new approximations closer to the set to approximate than the old ones? Are the
reducts simpler than the older ones? Do the new rules perform better or not?
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In synchronous dynamics, we have to deal with how the ”opinion” of the
different agents can be put together. This can lead to the definition of new kind
of constructs (as was done for approximations in [6]) which account for the fact
that different agents can partially agree, completely agree or do not agree at
all. Just to give an example, let us think to three information tables (for the
sake of simplicity, fully compatible) producing each three rules with the same
antecedent. Now, it can happen that the three rules return the same decision
(totally agree), only two are equal (partially agree) or they return three different
results (totally disagree). Finally, in case of quality-indexes analysis, some overall
measures (such as computing the average) should be defined.

3.1 Survey of Known Results

The dynamic topic in rough sets has been touched in several paper, more or less
explicitly. Here we relate them to our framework and in the following table a
summary of this classification is outlined.

Approximations Rules Indexes Logic
Synchronic [13][6] [12][11] [13][6]

[12][11]
Diachronic [3] [14][2] [7] [8]

[5] [5]

In time order and to the best of our knowledge, the first work about dynamics
in rough sets is [8]. Here, by dynamic information system is intended a collection
of fully compatible information systems where the information map depends on a
parameter t interpreted as time and thus leading to an asynchronous dynamics.
The logic DIL is introduced as the ”linguistic counterpart” of these information
systems. Clearly, if we interpret the parameter t as an agent, we can have a multi-
source information system. Indeed, following this line [13] studies the ways of
interaction of different agents whose knowledge is given by different partitions.
In particular, the notion of ”weak common knowledge” defines a new partition
which is object and granule compatible with the existing starting ones. Properties
of approximations in new partitions with respect to the existing one are studied
and a multi-modal logic is introduced to model different agents. Also [6] tackles
this problem and defines multiple-source approximation systems based on the
same set of objects but on different equivalence relations and introduces a formal
logic to model them. This approximation system can be viewed as a collection
of object compatible approximation spaces where all the relations are equivalence
ones. In order to take into account the different relations, two lower and two
upper approximations are considered, which result from the intersection or union
of the approximations of the relations taken separately. Some results about these
approximations are proved. Further a definition of Knowledge representation
system is given which corresponds to a collection of object compatible information
systems.

Finally, on the synchronic side, we have [12] which is not properly intended
for dynamics but can be interpreted in this sense. Indeed, the authors consider
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one complete information system and use different subsets of attributes to gen-
erate different partitions of the universe. Thus, we can see this approach as a
collection of object compatible information systems which have some common
attributes with identical values on all objects. A new kind of approximation is
introduced where instead of the and of single attributes, or is considered. Also
”approximate reduct” is defined as the smallest collection of attributes which
preserves the approximations in all the information systems. A similar study is
done in [11] wrt incomplete information systems and tolerance relations.

When considering the diachronic dynamics we can see that [14] and [2] studied
in different situations how to update rules during time. In [14] one new object
is added to an information system and the rules are updated. This situation can
be viewed as two value-compatible information tables with a monotone increase
of information wrt objects. Also in [2] we have a monotone increase of infor-
mation wrt objects since a new object is added to the system. However here an
incremental induction of rules is proposed in the Dominance-based Rough Set
Approach (DRSA) with missing values.

Time evolution and rules are also treated in [5] where a monotonic decrease
of knowledge wrt values is studied: at each time step, some values are considered
as missing (here, with three different semantics) and the resulting rules are then
tested for performance. The result is that the rules obtained in the case of less
information (more missing values) have better performances.

Evolution of indexes in time are also analyzed in [7] where a monotonic in-
crease and decrease of knowledge wrt objects in information tables is considered.
The coverage and accuracy measure of the rules at time t are then updated with
the new event occured at time t+ 1.

Finally, in [3] we studied the evolution of approximations in tolerance and
preclusive rough sets in presence of a monotonic increase of information wrt
values and wrt attributes in information tables. The result is that approximations
become better when acquiring new knowledge.

4 Conclusion

A classification of dynamics has been presented both in the synchronic and
diachronic case. Three directions have been followed as starting point of the
analysis: information tables, approximation systems and coverings. Since these
approaches are not independent, their relationship has been analyzed. Finally,
the existing works on dynamics have been classified according to our framework.
This survey is not exhaustive since for lack of space it does not give the details
for all the three starting points (information tables, approximation spaces and
coverings) nor it pretends to suggest which approach is better than others (note
also that often the approaches are not comparable since they solve different
problems). Nevertheless, the recent studies [6], [11,12], [7] seem promising in the
three different aspects of logic, rules and indexes. Further, we can see that some
problems have not been investigated yet. For instance, if one compares all the
classifications of section 2 with the existing works it can be seen that there are
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no works which start directly from a covering (which is not a partition as in [13]).
Finally, we note that even if the two dynamics (synchronic and diachronic) are
often studied separately, it seems that the results of one field can be translated
into the other.
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Abstract. A set of subsets of a set may be seen as granules that al-
low arbitrary subsets to be approximated in terms of these granules. In
the simplest case of rough set theory, the set of granules is required to
partition the underlying set, but granulations based on relations more
general than equivalence relations are well-known within rough set the-
ory. The operations of dilation and erosion from mathematical morphol-
ogy, together with their converse forms, can be used to organize different
techniques of granular approximation for subsets of a set with respect to
an arbitrary relation. The extension of this approach to granulations of
sets with structure is examined here for the case of hypergraphs. A novel
notion of relation on a hypergraph is presented, and the application of
these relations to a theory of granularity for hypergraphs is discussed.

1 Introduction

The theory of rough sets [Paw82, PS07] provides, in its most basic form, a way
of approximating arbitrary subsets of a fixed universal set U in terms of the
equivalence classes of an equivalence relation on U . These equivalence classes
can be thought of as granules which represent a coarser, or less detailed, view of
U in which we cannot detect individual elements – all we can see are the gran-
ules. This initial starting point of the theory has been extended, [SS96, Lin98],
to more general relations on U , including the case of an arbitrary binary rela-
tion [Yao98, Zhu07]. For a relation R on U , the granules are the neighbourhoods,
that is subsets of the form R(x) = {y ∈ U | x R y}. More generally still, a bi-
nary relation between two sets can be used, and the numerous links that this
reveals between rough sets and other topics including formal concept analysis,
Chu spaces, modal logic, and formal topology are discussed in detail by Pagliani
and Chakraborty [PC08] in their monograph on rough set theory. The general
importance of granularity in information processing has been discussed by nu-
merous authors including [Zad97, Yao01].

Rough set theory represents a substantial body of knowledge which encom-
passes both practical techniques for data analysis and theoretical results in logic
and algebra. As its name indicates, the fundamental concern of the theory is with
sets, that is with collections of entities having no additional structure. However,
granularity presents significant challenges in other contexts, and the focus in
� Supported by EPSRC (EP/F036019/1) and Ordnance Survey project Ontological

Granularity for Dynamic Geo-Networks.
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this paper is on the case that we do not merely have a set of entities where we
need to approximate subsets, but where we have a graph (or more generally a
hypergraph) and we need to give approximate descriptions of subgraphs. We can
regard this as an extension of rough set theory since a set is just a special kind
of graph in which there are only nodes (or vertices) and no edges (or arcs). For a
simple example we can consider a graph as modelling a railway network and we
can imagine a process of granulation in which we take a less-detailed view of the
network. The need for such a granulation might arise from incomplete knowledge
of some event affecting the network, such as an accident or a terrorist incident.
It might also arise from the particular needs of users: a passenger requires a view
of the network which is different from that of an engineer working to maintain
part of the system. Hypergraphs generalize graphs by allowing edges that may
be incident with arbitrary sets of edges rather than with just one or two edges.
In giving a granular view of a railway network we might need to indicate that
it is possible to travel between any two stations in some set without specifying
exactly what station-to-station links exist. This kind of scenario is one reason
why it is appropriate to consider hypergraphs and not just graphs.

In order to understand what rough hypergraph theory might be, this paper
considers how a relation on a hypergraph can be used to define approxima-
tion operators which generalize the operators defined for a relation on a set
by Yao [Yao98]. It turns out that the approximation operators defined by Yao
can be related to well-known constructions in mathematical morphology, and
this can be used as a way of generalizing the operators to ones on hypergraphs.
Mathematical morphology [Ser82] originated in image processing but the most
basic aspects of the body of techniques it provides (erosions, dilations, open-
ings and closings) can all be presented [BHR07] in terms of binary relations.
Although connections between rough sets and mathematical morphology have
studied [Blo00, Ste07], there appears to be potential for this topic to contribute
further to a general understanding of granularity.

It is not immediately clear what we should mean by a relation on a hy-
pergraph. One possibility would be two separate relations, one for edges and
one for nodes, subject to some compatibility condition. The disadvantage of
adopting this approach is that we find such relations do not correspond to
the sup-preserving operations on the lattice of sub-hypergraphs. This is sig-
nificant, because the well-known fact that relations on a set, U , are equivalent
to sup-preserving operations on the powerset PU is an essential ingredient in
mathematical morphology. If we are to take advantage of the way mathemat-
ical morphology provides operations for granular approximation, we need the
appropriate definition of hypergraph relations.

Section 2 describes how existing rough set approximation operators can be
described using morphological operators. Hypergraphs are introduced formally
in Section 3, where it emerges that the hypergraph relations we need must allow
edges to be related to nodes as well as to edges, and dually nodes may be related
to edges as well as to nodes. The main technical challenge solved by the paper
concerns the converse of a hypergraph relation. Although our relations can be
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modelled as sets of arrows, simply reversing the direction of the arrows fails to
give a valid relation. Section 4 shows how to construct the converse and shows
that it performs the same role with respect to sub-hypergraphs as the converse
of a usual relation does with respect to subsets. Limitations of space mean that
proofs have been omitted, but it is hoped that that the inclusion of examples
of the approximation operators obtained in Section 5 will allow the reader to
appreciate the main features of the ideas introduced. Conclusions and further
work appear in Section 6.

2 Approximation Operators

The purpose of this section is to recall the six approximation operators described
in [Yao98] and to relate them to operators from mathematical morphology. This
will be used later as the means of seeing how to generalize these operators when
we have a relation on a hypergraph rather than a relation on a set.

Suppose we have a set U and a subset A ⊆ U . To give a granular, or less
detailed, description of A is to describe A not in terms of the elements it contains,
but in terms of certain subsets of U called granules. These granules can be
thought of as arising from some notion of indistinguishability on the elements of
U . From this viewpoint, a granule clumps together elements of U that are not
distinguished from each other. Granules often arise from a binary relation on U .

Definition 1. Let R be a relation on U , then the granules (with respect to R)
are the subsets R(x) = {y ∈ U | x R y} where x ∈ U .

When there are no restrictions on R, an element of U may belong to many
granules or none. Given a relation R, each subset A ⊆ U can be described in
terms of the granules. These arise from two ways in which a set of elements gives
rise to a set of granules, and two ways in which a set of granules gives rise to
a set of elements. From a set of elements A ⊆ U we can take the granules that
intersect A, or the granules that are subsets of A. From a set of granules G we
can take the elements where at least one of their granules is present in G, or
we can take the elements all of whose granules lie in G. These possibilities yield
four approximations to A, and I use the notation for these used in [Yao98]. If
the relation R is not clear from the context, we can write apr ′

R
(A) etc.

apr ′(A) = {x ∈ U | ∃y ∈ U(x ∈ R(y) ∧R(y) ⊆ A)}
apr ′′(A) = {x ∈ U | ∀y ∈ U(x ∈ R(y)⇒ R(y) ⊆ A)}
apr ′(A) = {x ∈ U | ∀y ∈ U(x ∈ R(y)⇒ R(y) ∩A �= ∅)}
apr ′′(A) = {x ∈ U | ∃y ∈ U(x ∈ R(y) ∧R(y) ∩A �= ∅)}

In addition to these four operators, there are two further ones [Yao98, p246]:

apr (A) = {x ∈ U | ∀y ∈ U(y ∈ R(x)⇒ y ∈ A)},
apr (A) = {x ∈ U | ∃y ∈ U(y ∈ R(x) ∧ y ∈ A)}.
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These six operators can be represented in terms of dilations and erosions as
used in mathematical morphology. The relation R : U → U has an associated
function, known as a dilation, ⊕R : PU →PU defined by A⊕R = {x ∈ U |
∃y ∈ U(y R x ∧ y ∈ A)}. The dilation is a sup-preserving a mapping between
complete lattices, so has a right adjoint R � : PU → PU which can be
described by R�A = {x ∈ U | ∀y ∈ U(x R y ⇒ y ∈ A)}.

It is necessary here to assume some knowledge of adjunctions on posets (or
Galois connections), but details can be found in [Tay99]. The notation f � g will
be used when f is left adjoint to g, and the idea [Tay99, p152], of viewing � as an
arrow (with the horizontal dash as the shaft of the arrow, and the vertical dash
as the head of the arrow) proceeding from the left adjoint to the right adjoint is

also adopted. This leads to diagrams of the form
>⊥

<
and various rotated

forms in Section 4 below.
Although writing dilations on the right and erosions on the left is contrary to

established practice in mathematical morphology, it is adopted here since if we
have a second relation S then using ; to denote composition in the ‘diagrammatic’
order (R ; S)�A = R� (S �A) and A⊕ (R ;S) = (A⊕R)⊕ S. The relation R
has a converse R−1 and dilation and erosion by R−1 yield operations (note the
sides on which these act) R ⊕−1 : PU → PU and �−1 R : PU →PU .

The following result is stated without proof, as it follows by routine techniques.
The approximations apr ′ and apr ′′ are particularly well-known in mathematical
morphology as the opening and as the closing by the converse.

Theorem 1. For any relation R on U and any A ⊆ U ,

apr(A) = R�A, apr(A) = R ⊕−1 A,

apr′(A) = (R�A)⊕R, apr′(A) = (R ⊕−1 A)�−1 R,

apr′′(A) = (R�A)�−1 R, apr′′(A) = (R ⊕−1 A)⊕R.

3 Relations on Hypergraphs

A hypergraph [Ber89] is a generalization of the concept of undirected graph in
which an edge (or rather a ‘hyperedge’) may be incident with more than two
nodes. As with graphs there are many variants of the basic idea. In the present
work hypergraphs are permitted to have two distinct hyperedges incident with
the same set of nodes, and hyperedges incident with an empty set of nodes are
also allowed. Formally, a hypergraph consists of two sets E (the hyperedges) and
N (the nodes) together with an arbitrary function from E to the powerset PN .

A hypergraph may be drawn as in Figure 1 with each hyperedge as a closed
curve containing the nodes with which it is incident. The example includes a
hyperedge, f , incident with no nodes, and a node, z, to which no hyperedges
are incident. The hyperedge e is incident with exactly one node, a situation that
would correspond to a loop on the node y in an ordinary graph.
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a

b c

d

e

f

s t

u v x

w y

z

Fig. 1. Example of a hypergraph with hyperedges {a, b, c, d, e, f} and nodes
{s, t, u, v, w, x, y, z}

The idea of a hypergraph as having two disjoint sets of hyperedges and nodes
is useful, but it turns out to be not the most appropriate for our purposes. Instead
we need a definition based on the approach to graphs found in [BMSW06] and
used in [Ste07]. This means we have a single set of elements comprising both
edges and nodes and a relation associating nodes to themselves and edges to
their incident edges.

Definition 2. A hypergraph (H,ϕ) is a set H together with a relation ϕ :
H → H such that for all x, y, z ∈ H if x ϕ y then y ϕ z if and only if y = z.

Figure 2 shows the same hypergraph as in Figure 1 visualized as a binary relation.

a

b c

d

e
f

s t

u v

x
w y

z

Fig. 2. The hypergraph in Figure 1 as a binary relation

Moving to consider relations on hypergraphs, we start with the definition of
sub-hypergraph, which is essentially the requirement that whenever a hyperedge
is present then all nodes with which it is incident are present too.

Definition 3. A sub-hypergraph of (H,ϕ) is a subset K ⊆ H such that K ⊕
ϕ ⊆ K.

It may be checked that the sub-hypergraphs form a complete lattice which is a
sub-lattice of the powerset PH . This lattice of sub-hypergraphs will be denoted
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Lϕ. The inclusion of Lϕ in PH has both left and right adjoints constructed
as in the following definition.

Definition 4. Let A ⊆ H, then we define the two ways to make A into a hy-
pergraph ↑A =

⋂{K ∈ Lϕ | A ⊆ K} and ↓A =
⋃{K ∈ L ϕ | K ⊆ A}.

Given a hypergraph (H,ϕ), let Iϕ be the relation IH ∪ ϕ on the set H , where
IH denotes the identity relation on the set H .

Definition 5. A hypergraph relation on (H,ϕ) is a relation R on the set H
for which R = Iϕ ;R ; Iϕ.

These relations play the same role with respect to the lattice Lϕ as the ordinary
relations on the set H do with respect to the lattice PH .

Theorem 2. The hypergraph relations on (H,ϕ) form a quantale [Ros90] under
composition of relations (with unit Iϕ) which is isomorphic to the quantale of
sup-preserving mappings on L ϕ.

An example of a hypergraph relation is shown in figure 3. In this example the
hypergraph is actually a graph. The relation is shown by the dashed lines.

x

y

za

b c

x

y

za

b c

Graph G with edges {a, b, c} Relation R on G. R = {(a, a), (a, x),
and nodes {x, y, z}. (a, z), (b, x), (c, a), (c, x), (c, z), (x, x), (y, x)}

Fig. 3. A Relation on a graph with three nodes and three edges

4 Converse for Hypergraph Relations

When R is a hypergraph relation, R−1 (the converse in the usual sense) need
not be a hypergraph relation. Converse relations appear in the the approxima-
tion operators described in Theorem 1 and the notion of equivalence relation
depends on symmetry and thus on the converse. To generalize these concepts to
hypergraph relations requires that we can construct converses.

First recall one way of characterizing the converse of a relation on a set.
Consider the set relation R as sup-preserving mapping R : PH → PH with
right adjoint Σ. The converse can be obtained by defining R−1(A) = −(Σ(−A))
where − is the set-theoretic complement. This situation is summarised in the
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diagram on the left of Figure 4. In the diagram the powerset PH is distinguished
from from its opposite, (PH)op which has the same elements but with the
reversed partial order. The mapping (R−1)op has the identical effect on elements
as R−1 but the distinction is important for the adjoints.

To generalize the notion of converse to hypergraph relations we replace the com-
plement operation in PH by the corresponding construction for L ϕ. The lattice
Lϕ is not in general complemented, but there are two weaker operations.

Definition 6. Let K ∈ L ϕ. Then the pseudocomplement ¬K and the dual
pseudocomplement

¬
K are given by ¬K = ↓(−K) and

¬
K = ↑(−K).

The complement operation − provides an isomorphism between PH and its
opposite. The pseudocomplement and its dual are not in general isomorphisms,
but they do satisfy the weaker property of being adjoint to their opposites. That
is, for ¬,¬ : L ϕ→ (L ϕ)op, we have ¬ � ¬op and

¬op � ¬.
We now come to the definition of the converse of a hypergraph relation. For

a relation R the notation Rc is used since R will also have a distinct converse,
i.e. R−1, as a relation on the set H .

Definition 7. Let R be a hypergraph relation on (H,ϕ) and δ : L ϕ → Lϕ
its corresponding dilation. Then the converse of R is the hypergraph relation Rc

corresponding to δc : Lϕ→ Lϕ where δc(K) =
¬
ε¬(K) and δ � ε.

The situation is summarised in the diagram on the right of Figure 4. The next
theorem gives a practical means of computing converses as the composition Iϕ ;
R−1 ; Iϕ is more easily calculated than the expression given in Definition 7.

PH

R
>⊥

<
Σ

PH

(PH)op

−

∨

∼= −op

∧

(Σ−1)op
>⊥

<
(R−1)op

(PH)op

−op

∧

∼= −

∨

The set case

L ϕ

δ
>⊥

<
ε

L ϕ

(L ϕ)op

¬op

∧

� ¬

∨ (ε−1)op
>⊥

<
(δ−1)op

(L ϕ)op

¬op

∧

� ¬

∨

The hypergraph case

Fig. 4. Converse via complementation and adjoints

Theorem 3. For any hypergraph relation R with associated dilation δ : Lϕ→
Lϕ the converse dilation satisfies δcK = Iϕ(R−1K) for every subgraph K, and
the hypergraph relation representing δc is Iϕ ; R−1 ; Iϕ.
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5 Examples

The six approximation operators for subsets summarized in section 2 above
can now be generalized to operators on sub-hypergraphs by interpreting the
descriptions in Theorem 1 using dilations and erosions on the lattice Lϕ in
place of the powerset lattice, and the construction of Theorem 3 for the converse.
Examples of these approximations are given in Figures 5, 6, and 7.

x

y

z

b

x

y
apr(A) apr ′(A) apr ′′(A)

x

y

za

b c

x

y

za

b c

x za

apr(A) apr ′(A) apr ′′(A)

Fig. 5. Approximations of the subgraph A = {b, c, x, y, z} of G using relation R from
Figure 3

x

t z

y

w c

a b

v

u

d

x

t z

y

w c

a b

v

u

d

Hypergraph K with Relation R = {(a, a), (a, t), (a, v),
edges {a, b, c, d} and (a, u), (b, b), (b, v), (b, w), (b, x), (c, c),

nodes {t, u, v, w, x, y, z} (c, x), (c, y), (c, z), (d, d), (d, z)}

Fig. 6. Second example of a hypergraph relation
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x

t z

y

wv

u

d z d

apr(A) apr ′(A) apr ′′(A)

x

z

y

c

d z

y

d

x

z

y

c

d

apr(A) apr ′(A) apr ′′(A)

Fig. 7. Approximations of the subgraph A = {d, z} under the relation R from Figure 6

6 Conclusions and Further Work

This paper has presented a novel approach to granularity for hypergraphs using a
view of mathematical morphology as a theory of granularity in order to generalize
six approximation operators from sets to hypergraphs. To define these operators
on hypergraphs it was necessary to establish appropriate definitions for relations
on hypergraphs and for the converse of a relation on a hypergraph. The definition
of hypergraph relation has been justified by its equivalence to the notion of sup-
preserving mapping on the lattice of sub-hypergraphs. The principal technical
achievement in the paper has been the description of the converse of a hypergraph
relation.

This work provides a starting point from which it should be possible to de-
velop a full account of rough graphs and hypergraphs which generalizes the
existing theory of rough sets. While the six kinds of approximation can all be
applied to hypergraphs now that we have established appropriate generaliza-
tions of converse dilations and erosions, the properties of these constructions are
not necessarily the same as in the set case. The study of these constructions
thus presents one direction for further work. Other areas include extending the
analysis using a relation on a single hypergraph to relations between distinct
hypergraphs, and an investigation of an analogue of equivalence relations on
hypergraphs. This latter issue is not straightforward as the notion of symmetry
for hypergraph relations appears to have very weak properties related to the
properties of the converse operation – in general (Rc)c �= R unlike the familiar
(R−1)−1 = R.
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Abstract. This paper introduces a perceptual tolerance intersection of
sets as an example of near set operations. Such operations are motivated
by the need to consider similarities between digital images viewed as dis-
joint sets of points. The proposed approach is in keeping with work by
E.C. Zeeman on tolerance spaces and visual perception and J.H. Poincaré
on sets of similar sensations used to define representative (aka tolerance)
spaces such as visual, tactile and motile spaces. Perceptual tolerance
intersection of sets is a direct consequence of recent work on near sets and
a solution to the problem of how one goes about discovering
affinities between digital images. The main contribution of this article
is a description-based approach to assessing the resemblances between
digital images.

Keywords: description, near sets, perceptual granules, set operations,
similarity, tolerance.

1 Introduction

This paper introduces a perceptual tolerance intersection of sets as an example of
near set operations useful in the study of similarities between digital images. The
proposed set operations considered in the context of tolerance spaces is directly
related to work on sets of similar objects, starting with J.H. Poincaré [10] and
E.C. Zeeman [14], followed by more recent studies of similarity and tolerance
relations [9,12,7,6,13,8]. In general, sets are considered near each other in the
case where the sets contain objects with descriptions that are similar.

The paper is divided into two parts. In the first part, general facts about tol-
erance relations are presented together with Zeeman’s indistinguishability of sets
relation (section 2) and a tolerance intersection of sets operation is introduced
and investigated (section 3). In the second part, perceptual tolerance relations
and perceptual tolerance intersection of sets operation are discussed (section 4).
The paper ends by proposing a postulate on similarity measures between images
which are based on perceptual tolerance relations.
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2 Tolerance Relations

A relation τ ⊆ O × O is a tolerance on a set O (shortly: tolerance, if O is
understood) iff τ is reflexive and symmetric1. Then a pair 〈O, τ〉 is a tolerance
space. We denote the family of all tolerances on a set O by Tol(O). Transitive
tolerances are equivalence relations, i.e. Eq(O) ⊆ Tol(O) , where Eq(O) denotes
the family of all equivalences on O. An image of a set X ⊆ O by a relation τ on
O we denote by τ(X) (i.e. τ(X) := {y ∈ O : there is x ∈ X, (x, y) ∈ τ}) with
a simplifying convention where τ({x}) = τ(x). A tolerance image operator τ( )
has some useful properties presented by the following lemma:

Lemma 1. Let 〈O, τ〉 be a tolerance space. The following conditions hold for
arbitrary X,Y ⊆ O:

(1) X ⊆ τ(X), (Extensivity)
(2) X ⊆ Y ⇒ τ(X) ⊆ τ(Y ), (Monotonicity)
(3) X ⊆ Y ⇒ X ⊆ τ(Y ),
(4) τ(X) =

⋃
x∈X τ(x).

Every tolerance generates some specific coverings of a space. Two of them are
mainly used. A set A ⊆ O is a τ-preclass (or briefly preclass when τ is under-
stood) if and only if for any x, y ∈ A, (x, y) ∈ τ . The family of all preclasses
of a tolerance space is naturally ordered by set inclusion and preclasses that
are maximal with respect to a set inclusion are called τ-classes or just classes,
when τ is understood. The family of all classes of the space 〈O, τ〉 is particularly
interesting and is denoted by Hτ (O). The family Hτ (O) is a covering of O. How-
ever, the elements of Hτ (O) do not have to be mutually disjoint. The elements
of Hτ (O) are mutually disjoint when a given tolerance τ is transitive, i.e., τ is
an equivalence relation. Hence, the notion of a family of tolerance classes is a
natural generalization of the partition of a space.

A tolerance space 〈O, τ〉 determines, as any relation, another family of sets,
namely the family of images of elements of the space via a given tolerance rela-
tion: {τ(x) : x ∈ O}. Clearly, since τ is reflexive, the family {τ(x) : x ∈ O} is a
covering of a space O but it does not have to be a partition of O (analogously
with the family Hτ (O), it is a partition of O when τ is transitive). However,
families consisting of images of elements via tolerance relations are not natural
generalizations of partitions of a space, since, for every intransitive tolerance τ
on O, there is x ∈ O and there are a, b ∈ τ(x) such that (a, b) �∈ τ . Thus one can
see that images of elements with respect to a given tolerance relation are not
in general tolerance classes. This holds only in the case of transitive tolerance
relations, i.e. in the case of equivalence relations.

Often an image of an element x, τ(x), is called a neighbourhood of x while x
itself is called the centre of τ(x). Toward the end of this section, it will become
1 In universal algebra or lattice theory reflexive and symmetric relations compatible

with operations from a given algebra are called tolerances, i.e. they are generaliza-
tions of congruence relations (see e.g. [2]). We refer to such relations as algebraic
tolerances or algebraic tolerance relations.
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apparent that there is some reason underlying this convention. One should also
note that a neighbourhood τ(x) of the element x is uniquely determined by
its centre, while an element x can belong to more than one tolerance class.
There is also another difference between tolerance neighbourhoods and classes
that is interesting from a mathematical point of view. Families of tolerance
images of elements exist for any set, finite or infinite, but this does not hold
in the case of tolerance classes. If a set is finite, then, by its finiteness, every
tolerance preclass is contained in some class and, in the case of an infinite set,
that condition is equivalent to the Axiom of Choice in set theory [13] (in the
case of algebraic tolerances on semilattices it was shown in [2] that the Axiom of
Choice is equivalent to the existence of a single tolerance class). So, in general,
tolerance neighbourhoods and tolerance classes are different entities.

E.C. Zeeman pointed out [14] that any tolerance relation determines in a
natural way another tolerance on the subsets of the space.

Definition 1. [14] Let 〈O, τ〉 be a tolerance space. A relation ∼τ on P(O) is
defined as follows:

X ∼τ Y ⇔ X ⊆ τ(Y ) and Y ⊆ τ(X)

X is said to be indistinguishable from Y . We refer to the relation ∼τ as Zeeman’s
tolerance or Zeeman’s indistinguishability of sets.

If a tolerance τ is treated as a formal model of similarity, then the basic intuitive
interpretation given to a relation ∼τ is that sets standing in this relation are
indistinguishable with respect to a tolerance τ , as containing only mutually
similar elements.

Corollary 1. Let 〈O, τ〉 be a tolerance space. If τ is transitive, so τ ∈ Eq(O),
then:

X ∼τ Y ⇔ τ(X) = τ(Y ),

i.e. Zeeman’s indistinguishability of sets is Z. Pawlak’s upper rough equality of
sets from rough set theory [3,4].

Proof. Equation τ(X) = τ(Y ) together with extensivity of the operator τ( )
directly implies X ∼τ Y so it is enough to prove implication ⇒. Let τ ∈ Eq(O),
so 〈O, τ〉 is an approximation space while τ( ) is an upper approximation opera-
tor [3,4]. Let X ∼τ Y , so X ⊆ τ(Y ) and by monotonicity τ(X) ⊆ τ(τ(Y )) thus
τ(X) ⊆ τ(Y ) by τ(Y ) = τ(τ(Y )), one of the properties of an upper approxima-
tion operator [3,4]. Analogically for τ(Y ) ⊆ τ(X), therefore, τ(X) = τ(Y ).

After the manner of E.C. Zeeman [14], every pseudometric space in a quite
natural way determines tolerance relations with respect to some positive real
threshold as shown by Example 1.

Example 1. Let 〈O, p〉 be pseudometric space and let ε ∈ (0,+∞). A relation
τp,ε is defined for x, y ∈ O in the following way:

(x, y) ∈ τp,ε ⇐⇒ p(x, y) < ε,

is a tolerance relation on O. Such relations we call distance tolerance relations.
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One can show that

Proposition 1. Let τp,ε be a distance tolerance relation determined by a pseu-
dometric space 〈O, p〉. Then, for any x ∈ U ,

τp,ε(x) = Bp(x, ε),

i.e., a τp,ε neighbourhood of x is just an open ball in the pseudometric space
〈O, p〉 with the centre x and radius ε, Bp(x, ε) := {y ∈ X : p(x, y) ≤ ε}.
Proposition 1 justifies referring to an image of the element x by any tolerance τ
(not necessarily a distance tolerance) as a neighbourhood with a centre x, since
in topology a named neighbourhood of x denotes an open ball or, as in [1], an
open set containing element x.

3 Tolerance Intersection of Sets

Assuming that tolerance is a formal model of similarity, then, for any two subsets
(possibly disjoint) of a tolerance space, one can ask whether the subsets contain
some mutually similar elements. This motivates introducing an operation on
subsets of tolerance spaces.

Definition 2. Let 〈O, τ〉 be a tolerance space. A tolerance intersection of sets
is denoted by �τ and defined for X,Y ⊆ O as follows:

X �τ Y := (X ∩ τ(Y )) ∪ (Y ∩ τ(X)).

Let us note that disjoint sets can have a non-empty tolerance intersection as it
is shown by the following example:

Example 2. Let 〈O, τ〉 denote a tolerance space, where O = {a1, a2, b1, b2, c, d}
and τ := ΔO ∪ {(a1, b2), (b2, a1), (a2, b1), (b1, a2), (a1, c), (c, a1), (b1, d), (d, b1)}.
Let also A := {a1, a2}, B := {b1, b2}, where ΔO denotes the diagonal of a set O,
i.e. ΔO := {(x, x) : x ∈ O}. Then, by straightforward calculations, the following
equations hold:

τ(A) = {a1, a2, b1, b2, c}, τ(B) = {a1, a2, b1, b2, d}.

Thus A ⊆ τ(B) and B ⊆ τ(A). Therefore A ∼τ B and A �τ B = {a1, a2, b1, b2}
but A ∩B = ∅.
Example 2 shows also that disjoint sets can be indistinguishable in Zeeman’s
sense. Of course, indistinguishability of disjoint sets is not equivalent to having
a non-empty tolerance intersection and one can easily find a counterexample to
such claim on the basis of Example 2. Let us compare tolerance intersection of
sets to ordinary intersection and union of sets.

Proposition 2. Let 〈O, τ〉 be a tolerance space and let X,Y ⊆ O. Then the
following conditions hold:
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1. X ∩ Y ⊆ X �τ Y ,
2. X �τ Y ⊆ X ∪ Y .

Proof (1) From definition and extensivity, Y ⊆ τ(Y ), we get X ∩Y ⊆ X ∩ τ(Y )
so X ∩ Y ⊆ (X ∩ τ(Y )) ∪ (Y ∩ τ(X)) = X �τ Y . Thus X ∩ Y ⊆ X �τ Y .
(2) Since X ∩ τ(Y ) ⊆ X ∪ Y and Y ∩ τ(X) ⊆ X ∪ Y , thus (X ∩ τ(Y )) ∪ (Y ∩
τ(X)) ⊆ X ∪ Y and by definition X �τ Y ⊆ X ∪ Y .

Lemma 2. Let 〈O, τ〉 be a tolerance space and let X,Y ⊆ O. Then

X �τ Y ⊆ τ(X) ∩ τ(Y ).

Considering whether a tolerance intersection of sets coincides with the ordinary
intersection or union of sets, X �τ Y = X ∩ Y , X �τ Y = X ∪ Y , respectively,
leads to a number of interesting observations given in Prop. 3.

Proposition 3. Let 〈O, τ〉 be a tolerance space and let X,Y ⊆ O. If X �τ Y =
X ∩ Y , then the following conditions hold:

1. X ∩ τ(Y ) = X ∩ Y ,
2. Y ∩ τ(X) = X ∩ Y ,
3. X ∩ τ(Y ) = Y ∩ τ(X).

Proof. Let X �τ Y = X ∩ Y , so X ∩ τ(Y ) ⊆ X ∩Y , always X ∩ Y ⊆ X ∩ τ(Y ),
thus X ∩ τ(Y ) = X ∩ Y . Analogously Y ∩ τ(X) = X ∩ Y . 1 and 2 implies 3.

Proposition 4. Let 〈O, τ〉 be a tolerance space and let X,Y ⊆ O. Then the
following condition hold:

If X = τ(X) and Y = τ(Y ), then X �τ Y = X ∩ Y ,

i.e., on the family of sets closed w.r.t. the operator τ( ) (Pawlak’s definable sets
in rough set theory [3,4], when τ is transitive) a tolerance intersection of sets
coincides with ordinary intersection of sets.

Proposition 5. Let 〈O, τ〉 be a tolerance space and let X,Y ⊆ O. Then the
following conditions are equivalent:

1. X �τ Y = X ∪ Y ,
2. X ∼τ Y .

i.e. only on the families of mutually indistinguishable sets in Zeeman’s sense
(maximal preclasses of the tolerance ∼τ ) a tolerance intersection of sets coincides
with the union of sets.

Proof. (⇒). If X �τ Y = X ∪Y , then by lemma 2 we get X �τ Y ⊆ τ(X)∩τ(Y ).
Thus we get that X ∪ Y ⊆ τ(X) ∩ τ(Y ). Thus X ⊆ τ(Y ) and Y ⊆ τ(X), so
X ∼τ Y .
(⇐) Let X ∼τ Y , so X ⊆ τ(Y ) and Y ⊆ τ(X). X ⊆ τ(Y ) implies X ⊆ X∩τ(Y )
and so X ⊆ X �τ Y . Analogically for Y ⊆ X �τ Y . Thus X ∪ Y ⊆ X �τ Y . By
proposition 2 we get X �τ Y ⊆ X ∪ Y . Therefore X �τ Y = X ∪ Y .
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Prop. 6 presents some basic properties of the tolerance intersection operation.

Proposition 6. Let 〈O, τ〉 be a tolerance space and let X,Y ⊆ O. Then the
following conditions hold:

1. X �τ Y = Y �τ X,
2. (X ∩ Y ) �τ (X ∩ Z) ⊆ X ∩ (Y �τ Z),
3. X ∪ (Y �τ Z) ⊆ (X ∪ Y ) �τ (X ∪ Z).

Proof. (1) From the definition and commutativity of the union of sets.
(2) By monotonicity τ(X∩Z) ⊆ τ(Z). So (X∩Y )∩ τ(X∩Z) ⊆ (X∩Y )∩ τ(Z) =
X ∩ (Y ∩ τ(Z)). Analogically for (X ∩Z)∩ τ(X ∩ Y ) ⊆ X ∩ (Z ∩ τ(Y )). Thus
(X∩Y )∩ τ(X∩Z), (X∩Z)∩ τ(X∩Y ) ⊆ (X∩(Y ∩ τ(Z)))∪(X∩(Z∩ τ(Y ))) =
X ∩ ((Y ∩ τ(Z)) ∪ (Z ∩ τ(Y ))) and so ((X ∩ Y ) ∩ τ(X ∩ Z)) ∪ ((X ∩ Z) ∩
τ(X ∩ Y )) ⊆ X ∩ ((Y ∩ τ(Z)) ∪ (Z ∩ τ(Y ))). Therefore by the definition of a
perceptual intersection one can show that (X ∩ Y ) �τ (X ∩ Z) ⊆ X ∩ (Y �τ Z).
(3) By monotonicity τ(Z) ⊆ τ(X ∪ Z) and so Y ∩ τ(Z) ⊆ τ(X ∪ Z). By
extensivity X ⊆ τ(X ∪ Z), thus X ∪ (Y ∩ τ(Z)) ⊆ τ(X ∪Z). It also holds that
X ∪ (Y ∩ τ(Z)) ⊆ X ∪ Y . Therefore X ∪ (Y ∩ τ(Z)) ⊆ (X ∪ Y ) ∩ τ(X ∪ Z).
Analogically one can show that X ∪ (Z ∩ τ(Y )) ⊆ (X ∪ Z) ∩ τ(X ∪ Y ). Thus
[X∪(Y ∩ τ(Z))]∪[X∪(Z∩ τ(Y ))] ⊆ [(X∪Y )∩ τ(X∪Z)]∪[(X∪Z)∩ τ(X∪Y )]
soX∪[(Y ∩ τ(Z))∪(Z∩ τ(Y ))] ⊆ [(X∪Y )∩ τ(X∪Z)]∪[(X∪Z)∩ τ(X∪Y )]. and
X∪[(Y ∩ τ(Z))∪(Z∩ τ(Y ))] ⊆ (X∪Y )∩[τ(X∪Z)∪ τ(X∪Y )] by distributivity
of set theoretical operations. Therefore by definition of a perceptual intersection
it follows that X ∪ (Y �τ Z) ⊆ (X ∪ Y ) �τ (X ∪ Z).

Now, keeping in mind the similarity interpretation of tolerance relations, we
can introduce a tolerance intersection measure for finite subsets of a tolerance
space. The family of all finite subsetets of a set O is denoted by Pfin(O).

Definition 3. Let 〈O, τ〉 be a tolerance space and let X,Y ∈ Pfin(O) and at
least one of them is non-empty. A tolerance intersection measure is denoted by
piτ and defined as follows:

piτ (X,Y) :=
|X �τ Y|
|X ∪Y| .

Theorem 1. Let 〈O, τ〉 be a tolerance space and let X,Y ∈ Pfin(O) and X �= ∅
or Y �= ∅. Then the following conditions are equivalent:

1. X ∼τ Y ,
2. X �τ Y = X ∪ Y ,
3. piτ (X,Y) = 1.

Proof. Because of Proposition 5 and the fact that implication 2 ⇒ 3 follows
directly for definition it is enough to show 3 ⇒ 2. Let piτ (X,Y) = 1, thus
|X �τ Y | = |X ∪ Y |. Since X �τ Y ⊆ X ∪ Y , then by finiteness of sets X and Y
it follows that X �τ Y = X ∪ Y .

In the light of Theorem 1, we see that a tolerance intersection measure is a
measure of tolerance distinguishability of sets in Zeeman’s sense.
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4 Near Sets and Perceptual Tolerance Intersection

Perceptual systems in near set theory [5,6,8] reflect Poincaré’s idea of perception.
A perceptual system is a pair 〈O,F〉, where O is a non-empty set of perceptual
objects and F is a non-empty set of real valued functions defined on O, i.e., F :=
{φ | φ : O → R}, where φ is called a probe function. Perceptual objects spring
directly from the perception of physical objects derived from sets of sensations
in Poincaré’s view of the physical continuum [11]. A probe function φ ∈ F is
viewed as a representation of a feature in the description of sets of sensations.
So, for example, a digital image Im can be seen as a set of perceptual objects,
i.e., Im ⊆ O, where every perceptual object is described with vectors of probe
function values.

A family of probe functions F can be infinite2. In applications such as image
analysis, from a possibly infinite family of probe functions, we always select a
finite number of probe functions, B ⊆ F and |B| < ℵ0, in order to describe
perceptual objects (usually pixels or pixel windows in digital images). Thus,
every perceptual object x ∈ O can be described by a vector φB(x) of real values
of probe functions in a space Rn i.e.

φB(x) = (φ1(x), φ2(x), . . . , φn(x)),

where B := {φ1, . . . , φn} for B ⊆ F.

4.1 Perceptual Tolerance Relations

With object descriptions, one can compare objects with respect to various metric
or pseudometric distances defined on Rn. More generally, one can introduce on
the set O different topologies based on topologies determined on the space Rn

(note that such topologies are not necessarily induced from Rn). For example,
consider a natural topology on Rn determined by Euclidean distance, denoted
here by d. Using d one can define the distance measure on O in the following
way:

pB(x, y) := d(φB(x),φB(y)) =

√√√√ n∑
i=1

(φi(x) − φi(y))2,

where B ⊆ F and B := {φ1, . . . , φn}. Notice that d is a metric on Rn but
pB is not necessarily a metric on O, since it is possible that there are x, y ∈ O
such that pB(x, y) = 0 but x �= y, i.e., two different perceptual objects can
have exactly the same description over a family of probe functions. Moreover,
similarly to the case of the transitivity of distance tolerances, the condition
pB(x, y) = 0 ⇔ x = y is neither implied nor excluded by the definition of pB .

2 From a digital image analysis perspective, the potential for a countable number of
probe functions has a sound interpretation, i.e., the number of image probe functions
is finite but unbounded, since new probe functions can be created over an indefinitely
long timespan and added to the set of existing probes.
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When the set O only consists of objects with mutually different descriptions, the
function pB is a metric on O.

From Example 1, for a perceptual system and some pseudometric one can
define for a real threshold ε ∈ (0,+∞) a distance tolerance relation

Definition 4. Let 〈O,F〉 be a perceptual system, 〈O, pB 〉 be a pseudometric space
where B := {φi(x)}n

i=1 ⊆ F. A relation ∼=B,ε is defined for any x, y ∈ O as
follows:

(x, y) ∈ ∼=B,ε :⇔ pB(x, y) < ε.

A relation ∼=B,ε is a distance tolerance relation and we call it perceptual tolerance
relation.
∼=B,ε reflects Poincaré’s idea, i.e., sensations are similar if their descriptions are
close enough in a space Rn. Note that a relation ∼=B,ε depends not only on a
choice of a threshold but also on the choice of a family of probe function. For
the same threshold and for two different families of probe functions one can get
two distinct perceptual tolerance relations. As a direct consequence of Prop. 1,
one can infer:

Corollary 2. Let 〈O,F〉 be a perceptual system, 〈O, pB 〉 be a pseudometric space
where B := {φi(x)}n

i=1 ⊆ F. Then for any x ∈ O holds that
∼=B,ε (x) = BpB (x, ε),

i.e., a ∼=B,ε neighbourhood of x is just an open ball in the pseudometric space
〈O, pB 〉 with centre x and radius ε, where a centre x can be identified with an
equivalence class x/θpB

, where (x, y) ∈ θpB :⇔ pB(x, y) for x, y ∈ O.

This corresponds to Poincaré’s idea that sensations are identified with particu-
lar sets of sensations that are very similar. It can also be observed that when
sensations x, y ∈ O are close enough, they become indistinguishable. In a near
set approach, the indistinguishability of sensations results from sensations that
have the same descriptions over a selected family of probe functions B ⊆ F, i.e.,
the pseudometric distance pB between x and y is equal to 0. From a near set
perspective, in the light of corollary 2 it can be also observed that similarity
between perceptual objects depends on three independent factors: a choice of a
finite family of probe functions as a basis of object descriptions, a choice of a
pseudometric distance function for a set of perceptual objects and a choice of
a positive real threshold. Since probe functions represent results of perception
(interaction of sensors with the environment), then the selected family of probe
functions corresponds to a frame of sensors. The selected positive real threshold
can represent a sensitivity of perceptual machinery interacting with the environ-
ment. Corollary 2 reflects also the fact that a process of perception (interaction
of sensors with the environment) results in the first granularization, perceptual
granularization of the set of sensations. Mathematically it is represented by a
pseudometric space 〈O, pB 〉 derived from a perceptual system 〈O,F〉 on the basis
of a finite family B ⊆ F, where the set of perceptual objects O is divided by the
equivalence relation θpB into classes consisting of objects indistinguishable w.r.t.
sensitivity of sensors interacting with the environment.
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4.2 Perceptual Intersection of Sets and Perceptual Similarity
Measures

On the basis of perceptual tolerance relations we can introduce perceptual in-
tersection of sets being a particular form of tolerance intersections of sets.

Definition 5. Let 〈O,F〉 be a perceptual system and let 〈O,∼=B,ε〉 be a perceptual
tolerance space where B ⊆ F and ε ∈ (0,+∞). A perceptual intersection of sets
based on 〈O,∼=B,ε〉 (or shortly perceptual intersection of sets when a perceptual
tolerance space is understood) is denoted by �B,ε and defined for X,Y ⊆ O as
follows:

X �B,ε Y := (X∩ ∼=B,ε (Y )) ∪ (Y ∩ ∼=B,ε (X)).

That �B,ε perceptually originated from of tolerance intersection can be seen in
its similarity nature. Sets Im1, Im2 ⊆ O, where 〈O,F〉 is a perceptual system,
can be digital images. The perceptual intersection of Im1 and Im2 consists of
those perceptual objects belonging to Im1 or Im2 which have similar ’cousins’
in the other image. On the basis of perceptual intersection of sets, we can now
introduce a perceptual intersection measure of the similarity of sets.

Definition 6. Let 〈O,F〉 be a perceptual system and let 〈O,∼=B,ε〉 be a perceptual
tolerance space where B ⊆ F and ε ∈ (0,+∞). A perceptual intersection measure
is denoted by p�B,ε and defined for any X,Y ∈ Pfin(O), where X �= ∅ or Y �= ∅.

p�B,ε(X,Y) :=
|X �B,ε Y|
|X ∪Y| .

Since a perceptual intersection measure is a particular form of a tolerance
intersection measure, so Theorem 1 also applies to it. Additionally, one can
note that when a tolerance τ is a perceptual tolerance and sets X and Y are
images in some perceptual system, then Zeeman’s tolerance ∼τ becomes a per-
ceptual indistinguishability of images. Thus a perceptual intersection measure is
a measure of perceptual indistinguishability being a kind of similarity measures
between images. To conclude the paper, taking into account a direct connection
of a perceptual intersection measure to a perceptual form of the Zeeman’s toler-
ance we formulate a postulate on similarity measures between images which are
based on perceptual tolerance relations:

Postulate
Every similarity measure μρ derived from a perceptual system 〈O,F〉 on the basis
of some perceptual tolerance relation ρ should fulfill the following condition for
X,Y ⊆ O:

μρ(X,Y ) = 1 if and only if X ∼ρ Y .

5 Conclusion

In this paper, tolerance intersection of sets and a tolerance intersection measure
together with their perceptual forms derived from perceptual tolerances and
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perceptual systems have been introduced . The properties of the proposed set
operations and measures and their connections to Zeeman’s indistinguishability
of sets together with their perceptual applications and implications to similarity
measurement in solving the digital image correspondence problem are also given.
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Approximation Operators

Murat Diker

Hacettepe University, Department of Mathematics,
06800 Beytepe Ankara, Turkey
mdiker@hacettepe.edu.tr

Abstract. In this paper, we define a category R-APR whose objects
are sets and morphisms are the pairs of rough set approximation opera-
tors. We show that R-APR is isomorphic to a full subcategory of the cat-
egory cdrTex whose objects are complemented textures and morphisms
are complemented direlations. Therefore, cdrTex may be regarded as
an abstract model for the study of rough set theory. On the other hand,
dagger symmetric monoidal categories play a central role in the abstract
quantum mechanics. Here, we show that R-APR and cdrTex are also
dagger symmetric monoidal categories.

Keywords: Approximation operator, dagger category, direlation, rough
set, symmetric monoidal category, textural rough set, texture space.

1 Introduction

Category theoretical approaches to rough set theory are initiated by Banerjee
and Chakraborty in [2]. They defined a category ROUGH using approximations
with respect to given partitions. A category CG of granulations is proposed in [3]
and in fact, ROUGH is a subcategory of CG . Partially ordered monads provide
an alternative perspective for rough set theory [9,10,11]. Further, I-rough sets
are presented by Iwinski [13] and the category RSC of I-rough sets is introduced
and topos properties are studied in [12]. Here, we present a categorical discus-
sion on rough set theory using approximation operators as morphisms. In [8], a
new direction in generalizing rough sets is presented and a formulation of rough
set operators based on texture is given. Some important categories of textures
have been studied in [6]. For instance, dfTex is a ground category whose objects
are textures and morphisms are difunctions which plays an important role in
the theory of texture spaces. Difunctions between textures are also direlations
and it must be noted that the direlations can be regarded as a generalization
of ordinary relations and rough set approximation operators between sets. Here,
we report that the complemented textures and complemented direlations form
a category which is denoted by cdrTex. In view of this fact, sets and rough set
approximation operators also form a category denoted by R-APR. This cate-
gory is isomorphic to the category Rel of sets and relations. Actually, cdrTex
may be one of the suitable abstract models for rough set theory since R-APR
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is a full subcategory of cdrTex. On the other hand, dagger symmetric monoidal
categories play a central role in the abstract quantum mechanics [1,15]. Here, we
prove that R-APR and cdrTex are also dagger symmetric monoidal categories.

2 Basic Concepts

A texturing on a universe U is a point separating, complete, completely dis-
tributive lattice U of subsets of U with respect to inclusion which contains U, ∅
and, for which arbitrary meet coincides with intersection and finite joins coincide
with union. Then the pair (U,U) is called a texture space, or simply a texture [5].
A mapping cU : U → U is called a complementation on (U,U) if it satisfies the
conditions cU (cU (A)) = A for all A ∈ U and A ⊆ B in U implies cU (B) ⊆ cU (A).
Then the triple (U,U , cU ) is said to be a complemented texture space. For u ∈ U ,
the p-sets and q-sets are defined by Pu =

⋂{A ∈ U | u ∈ A} and Qu =
∨{A ∈

U | u /∈ A}.
Example 1. [6] (i) The pair (U,P(U)) is a texture space where P(U) is the power
set of U . It is called a discrete texture. For u ∈ U we have Pu = {u} and Qu =
U \ {u} and cU : P(U) → P(U) is the ordinary complementation on (U,P(U))
defined by cU (A) = U \A for all A ∈ P(U).
(ii) Let U = {a, b, c}. Then U = {∅, {a}, {a, b}, U} is a texture on U . Clearly,
Pa = {a}, Pb = {a, b}, Pc = U and Qa = ∅, Qb = {a}, Qc = {a, b}. Fur-
ther, the mapping cU : U → U defined by cU (∅) = U, cU (U) = ∅, cU ({a}) =
{a, b}, cU ({a, b}) = {a} is a complementation on (U,U).
(iii) The family U = {(0, r] | r ∈ [0, 1]} is a texture on U = (0, 1] which is
called the Hutton texture. Here, for r ∈ [0, 1], we have Pr = Qr = (0, r] and the
complementation cU : U → U is defined by ∀r ∈ (0, 1], cU (0, r] = (0, 1− r].

Now let us recall some basic concepts on direlations from [6]. Let (U,U), (V,V)
be texture spaces and let us consider the product texture P(U)⊗V of the texture
spaces (U,P(U)) and (V,V) and denote the p-sets and q-sets by P (u,v) andQ(u,v),
respectively. Then
(i) r ∈ P(U)⊗ V is called a relation from (U,U) to (V,V) if it satisfies

R1 r �⊆ Q(u,v), Pu′ �⊆ Qu =⇒ r �⊆ Q(u′,v).

R2 r �⊆ Q(u,v) =⇒ ∃u′ ∈ U such that Pu �⊆ Qu′ and r �⊆ Q(u′,v).
(ii) R ∈ P(U)⊗ V is called a corelation from (U,U) to (V,V) if it satisfies

CR1 P (u,v) �⊆ R,Pu �⊆ Qu′ =⇒ P (u′,v) �⊆ R.

CR2 P (u,v) �⊆ R =⇒ ∃u′ ∈ U such that Pu′ �⊆ Qu and P (u′,v) �⊆ R. A pair
(r,R), where r is a relation and R a corelation from (U,U) to (V,V) is called a
direlation from (U,U) to (V,V). The identity direlation (i, I) on (U,U) is defined
by i =

∨{P (u,u) | u ∈ U} and I =
⋂{Q(u,u) | u ∈ U �} where U � = {u | U �⊆ Qu}.

Further, the inverses of r and R are defined by

r← =
⋂
{Q(v,u) | r �⊆ Q(u,v)} and R← =

∨
{P (v,u) | P (u,v) �⊆ R},
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respectively where r← is a corelation and R← is a relation. Further, the direlation
(r,R)← = (R←, r←) from (U,U) to (V,V) is called the inverse of the direlation
(r,R). The B-presections with respect to relation and corelation are given as
r←B =

∨{Pu | ∀v, r �⊆ Q(u,v) ⇒ Pv ⊆ B}, and
R←B =

⋂{Qu | ∀v, P (u,v) �⊆ R⇒ B ⊆ Qv}
for all B ∈ V , respectively. Now let (U,U), (V,V), (W,W) be texture spaces. For
any relation p from (U,U) to (V,V) and for any relation q from (V,V) to (W,W)
their composition q ◦ p from (U,U) to (W,W) is defined by

q ◦ p =
∨
{P (u,w) | ∃ v ∈ V with p �⊆ Q(u,v) and q �⊆ Q(v,w)}

and any co-relation P from (U,U) to (V,V) and for any co-relationQ from (U,U)
to (V,V) their composition Q ◦ P from (U,U) to (V,V) defined by

Q ◦ P =
⋂
{Q(u,w) | ∃v ∈ V with P (u,v) �⊆ P and P (v,w) �⊆ Q}.

Let cU and cV be the complementations on (U,U) and (V,V), respectively. The
complement r′ of the relation r is the corelation

r′ =
⋂
{Q(u,v) | ∃w, z with r �⊆ Q(w,z), cU (Qu) �⊆ Qw and Pz �⊆ cV (Pv)}.

The complement R′ of the corelation R is the relation

R′ =
∨
{P (u,v) | ∃w, z with P (w,z) �⊆ R,Pw �⊆ cU (Pu) and cV (Qv) �⊆ Qz}.

The complement (r,R)′ of the direlation (r,R) is the direlation (r,R)′ = (R′, r′).
A direlation (r,R) is called complemented if r = R′ and R = r′. For the basic
concepts and results which are not explained in this paper on textures and
direlations, we refer to [6, 8].

3 The Category of Approximation Operators

Recall that if (r,R) is a complemented direlation on a complemented texture
(U,U , cU ), then the system (U ,∩,∨, cU , r←, R←) is a textural rough set algebra
[8]. For any A ∈ U , the pair (r←A,R←A) is called a textural rough set. Recall
that if U = P(U), then R = (U×U)\r and so using the presections of direlations,
we obtain

apr
r
A = r←A = U \ r−1(U \A) and aprrA = R←X = r−1(A)

for all A ∈ P(U) where R = (U × U) \ r. The above argument can be also
extended to the rough set models on two universes [7,16]. Indeed, if (r,R) is a
complemented direlation from (U,U , cU ) to (V,V , cV ), then by Lemma 2.20 (2)
in [6], for all B ∈ V we may write that

cUR
←B = r←cV (B) and cUr

←B = R←cV (B).

Hence, R← and r← are dual operators. The proof of the following result is similar
to the proof of Theorem 5.7 in [8] and it is omitted.
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Theorem 2. Let L and H be dual operators from (V,V , cV ) to (U,U , cU ). If L
satisfies the properties

(L1) L(V ) = U and (L2) L(
⋂
j∈J

Aj) =
⋂
j∈J

L(Aj),

then there exists a complemented direlation (r,R) from (U,U) to (V,V) such that
L(A) = r←A and H(A) = R←A for all A ∈ V.

Now let U=P(U) and V=P(V ). Then the system (P(U),P(V ),∩,∪, apr
r
, aprr)

will be a rough set model on two universes in the sense of Yao. It is easy to check
that

apr
r
Y = R←Y = U \ r−1(V \ Y ) and aprrY = r←Y = r−1(Y )

for any Y ⊆ V .

Lemma 3. Let U, V,W and Z be universal sets and let r ⊆ U × V, q ⊆ V ×W
and p ⊆W × Z. Then we have the following statements:
(i) ∀C ⊆W , apr

q◦r
(C) = apr

r
(apr

q
(C)) and aprq◦r(C) = aprr(aprq(C))

(ii) For some universe U , let ΔU = {(u, u) | u ∈ U} ⊆ U × U . Then

∀A ⊆ U, aprr◦ΔU
(A) = aprr(A) and ∀B ⊆ V, apr

ΔV ◦r
(B) = apr

r
(B).

(iii) ∀D ⊆ Z, apr
p◦(q◦r)

(D) = apr
(p◦q)◦r

(D) and aprp◦(q◦r)(D) = apr(p◦q)◦r(D).

Proof.

(i) apr
q◦r

(C) = U \ ((q ◦ r)−1(W \ C)) = U \ (r−1(q−1(W \ C))

= U \ (aprr(aprq(W \ C))) = apr
r
(V \ (aprq(W \ C)))

= apr
r
(apr

q
(C)), and

aprq◦r(C) = (q ◦ r)−1(C) = r−1(q−1(C)) = r−1(aprq(C)) = aprr(aprq(C)).
(ii) It is immediate since r ◦ΔU = ΔV ◦ r = r.
(iii)

apr
p◦(q◦r)

(D) = apr
q◦r

(apr
p
(D)) = apr

r
(apr

q
(apr

p
(D)))

= apr
r
(apr

p◦q
(D)) = apr

(p◦q)◦r
(D)

and
aprp◦(q◦r)(D) = aprq◦r(aprp(D)) = aprr(aprq(aprp(D))

= aprr(aprp◦q(D)) = apr(p◦q)◦r(D).

Corollary 4. (i) The composition of the pair of rough set approximation oper-
ators defined by

(apr
q
, aprq) ◦ (apr

r
, appr) = (apr

q◦r
, aprq◦r)

is associative.
(ii) (apr

r
, appr)◦ (app

ΔU
, appΔU

)=(app
ΔV

, appΔV
)◦ (apr

r
, appr)=(apr

r
, appr).
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Proof. (i) By Lemma 3 (iii), we have

(apr
p
, aprp) ◦ ((apr

q
, aprq) ◦ (apr

r
, aprr)) = (apr

p
, aprp) ◦ (apr

q◦r
, aprq◦r)

=(apr
p◦(q◦r)

, aprp◦(q◦r))=(apr
(p◦q)◦r

, apr(p◦q)◦r)=(apr
p◦q

, aprp◦q)◦(aprr
, aprr)

= ((apr
p
, aprp) ◦ (apr

q
, aprq)) ◦ (apr

r
, aprr).

(ii) It is immediate by Lemma 3 (ii).

Corollary 5. The pairs of rough set approximation operators between sets form
a category which is denoted by R-APR.

Theorem 6. The contravariant functor T: Rel→ R-APR defined by

T(U) = U and T(r) = (apr
r
, aprr)

for all sets U, V and r ⊆ U × V is an isomorphism.

Proof. For any object (U,U), the pair idU = (apr
ΔU

, aprΔU
) is an identity mor-

phism in the category of R-APR and T(ΔU ) = (apr
ΔU

, aprΔU
). Further, T(q ◦

r) = T(r)◦T(q) and so indeed T is a functor. Let U and V be any two sets, and r, q
be direlations from U to V where r �= q. Suppose that (u, v) ∈ r and (u, v) �∈ q
for some (u, v) ∈ U × V . Then we have u ∈ r−1({v}) = aprr({v}) and u �∈
q−1({v}) = aprq({v}) and this gives (apr

r
, aprr) �= (apr

q
, aprq). Conversely,

if (apr
r
, aprr) �= (apr

q
, aprq), then we have apr

r
(B) �= apr

q
(B) or aprr(B) �=

aprq(B) for some B ⊆ V . With no loss of generality, if aprr(B) �= aprq(B), then
r−1(B) �= q−1(B) and so clearly, r �= q. Therefore, the functor F is bijective on
hom-sets. Clearly, it is also bijective on objects. ()

4 The Category of Textures and Direlations

By Proposition 2.14 in [6], direlations are closed under compositions and the
composition is associative. For any texture (U,U), we have the identity direlation
(iU , IU ) on (U,U). If (r,R) is a direlation from (U,U) to (V,V), then

(iV , IV ) ◦ (r,R) = (r,R) and (r,R) ◦ (iU , IU ) = (r,R).

Now we may give:

Theorem 7. Texture spaces and direlations form a category which is denoted
by drTex.

Let (U,U , cU ) and (V,V , cV ) be complemented textures, and (r,R) a comple-
mented direlation from (U,U) to (V,V). If (q,Q) is a complemented direlation
from (V,V , cV )) to (Z,Z, cZ), then by Proposition 2.21 (3) in [6], the composition
of (r,R) and (q,Q) is also complemented, that is

(q ◦ r)′ = q′ ◦ r′ = Q ◦R and (Q ◦R)′ = Q′ ◦R′ = q ◦ r.
Since the identity direlation (iU , IU ) is also complemented, then we have the
following result:
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Theorem 8. Complemented texture spaces and complemented direlations form
a category which is denoted by cdrTex.

Theorem 9
(i) The functor R : R-APR→ cdrTex defined by

R(U) = (U,P(U)), R(apr
r
, aprr) = (R←, r←)

for every morphism (apr
r
, aprr) : U → V in R-APR where

R← = ((U × V ) \ r)−1 and r← = r−1

is a full embedding.
(ii) The functor D : Rel→ cdrTex defined by

D(U) = (U,P(U)), D(r) = (r,R)

for every morphism r : U → V in Rel where R = (U×V )\r is a full embedding.

Proof. The functors R and D are injective on objects and hom-sets. Further,
if (r,R) is a complemented direlation from (U,P(U)) to (V,P(V )), then r is a
relation from U to V . Further, (apr

r
, aprr) is a pair of rough set approximation

operators from V to U . ()

5 Dagger Symmetric Monoidal Categories

Dagger symmetric monoidal categories play a central role in the abstract quan-
tum mechanics [1,15]. The primary examples are the categories Rel of relations
and sets, and FdHilb of finite dimensional Hilbert spaces and linear mappings.
Since Rel and R-APR are isomorphic categories, then R-APR is also a dagger
symmetric monoidal category. In this section, we show that the category cdrTex
is also a dagger symmetric monoidal category.

Definition 10. (i) A dagger category [15] is a category C together with an in-
volutive, identity on objects, contravariant functor † : C→ C. In other words,
every morphism f : A → B in C corresponds to a morphism f † : B → A such
that for all f : A→ B and g : B → C the following conditions hold:

id†A = idA : A→ A, (g ◦ f)† = f † ◦ g† : C → A, and f †† = f : A→ A.

(ii) A symmetric monoidal category [14] is a category C together with a bifunctor
⊗, a distinguish object I, and natural isomorphisms αA,B,C : (A ⊗ B) ⊗ C →
A ⊗ (B ⊗ C), λA : A → I ⊗ A, σA,B : A ⊗ B → B ⊗ A subject to standart
coherence conditions.
(iii) A dagger symmetric monoidal category [15] is a symmetric monoidal cate-
gory C with a dagger structure preserving the symmetric monoidal structure:

For all f : A→ B and g : C → D, (f ⊗ g)† = f † ⊗ g† : B ⊗D → A⊗ C,
α†

A,B,C = α−1
A,B,C : A⊗ (B ⊗ C) → (A⊗B)⊗ C, λ† = λ−1 : I ⊗A→ A,

σ†
A,B = σ−1

A,B : B ⊗A→ A⊗B.
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Theorem 11. The categories drTex and cdrTex are dagger categories.

Proof. First let us determine the dagger structure on drTex. Note that
† : drTex→ drTex is a functor defined by

†(U,U) = (U,U) and †(r,R) = (r,R)←

for all (U,U) ∈ObdrTex and (r,R) ∈MordrTex. Further, we have

(i) ∀(U,U), (iU , IU )← = (iU , IU ),

(ii) ((q,Q) ◦ (r,R))← = (r,R)← ◦ (q,Q)←, and

(iii) (((r,R)←)← = (r,R).

Therefore, drTex is a dagger category. On the other hand, if (r,R) is comple-
mented, then (r,R)← = (R←, r←) is also complemented. Indeed, by Proposition
2.21 in [6],

(R←)′ = (R′)← = r← and (r←)′ = (r′)← = R←.

As a result, the category cdrTex is also a dagger category. ()

Corollary 12. The diagram

Rel R−APR

cdrTex cdrTex

T

D R

†

commutes.

Proof. Let r : U → V be a morphism in Rel. If we take R = (U × V ) \ r, then

(† ◦D)(r) = †(D(r)) = †(r,R) = (r,R)← = (R←, r←)
= R(apr

r
, aprr) = R(T(r)) = (R ◦ T)(r). ()

The proofs of Lemmas 13 and 15, and Proposition 14 can be easily given using
textural arguments.

Lemma 13. (i) Let ψ be a textural isomorphism from (U,U) to (V,V). Then
the direlation (rψ , Rψ) from (U,U) to (V,V) defined by

rψ =
∨
{P (u,v) | Pψ(u) �⊆ Qv} and Rψ =

⋂
{Q(u,v) | Pv �⊆ Qψ(u)}

is an isomorphism in drTex.

(ii) Let cU and cV are complementations on the textures (U,U) and (V,V), re-
spectively. If ψ is a complemented textural isomorphism, then (rψ , Rψ) is also
complemented.
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Proposition 14. (i) Let (U,U), (V,V) and (W,W) be texture spaces. Then

((U × V )×W, (U ⊗ V)⊗W) ∼= (U × (V ×W ), U ⊗ (V ⊗W)).

(ii) Take the texture (E, E) where E = {e} and E = {{e}, ∅}. Then for any
texture (U,U) we have

(U × E, U ⊗ E) ∼= (U,U) and (E × U, E ⊗ U) ∼= (U,U).

(iii) (U × V, U ⊗ V) ∼= (V × U, V ⊗ U).

Let (r,R) be a direlation from (U,U , cU ) to (V,V , cV ) and (q,Q) be a direlation
from (W,W , cW ) to (Z,Z, cZ). Then the direlation

(r × q, R×Q) : (U ×W, U ⊗W)→ (V × Z, V ⊗ Z)

is defined by
r × q =

∨{P (u,w),(v,z)) | r �⊆ Q(u,v) and q �⊆ Q(w,z)}, and

R×Q =
∨{Q(u,w),(v,z)) | P (u,v) �⊆ R and Q(w,z) �⊆ Q} [4].

Lemma 15. We have the following equalities :
(i) (r × q)′ = r′ × q′ and (R×Q)′ = R′ ×Q′.

(ii) (r × q)← = r← × q← and (R×Q)← = R← ×Q←.

Corollary 16. If (r,R) and (q,Q) are complemented direlations, then

(r × q,R×Q)

is also a complemented direlation.

Corollary 17. The mapping ⊗ : cdrTex × cdrTex −→ cdrTex defined by

⊗((U,U), (V,V)) = (U × V, U ⊗ V) and ⊗ ((r,R), (q,Q)) = (r × q,R×Q),

is a functor.

Corollary 18. (i) For the functors

F,B : cdrTex × cdrTex × cdrTex→ cdrTex

defined by

F((U,U), (V,V), (W,W)) = (U × (V ×W ), U ⊗ (V ⊗W)),

F((p, P ), (q,Q), (r,R)) = (p× (q × r), P × (Q×R))

and
B((U,U), (V,V), (W,W)) = ((U × V )×W, (U ⊗ V)⊗W),

B((p, P ), (q,Q), (r,R)) = ((p× q)× r, (P ×Q)×R),
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respecively, there exists a natural transformation α : F → B with the component

α(U ,V,W) : ((U × V )×W, (U ⊗ V)⊗W) ∼= (U × (V ×W ), U ⊗ (V ⊗W))

which is a natural isomorphism.
(ii) Take the functors R,D : cdrTex→ cdrTex defined by
R((U,U)) = (U × E, U ⊗ E) D((U,U)) = (E × U, E ⊗ U)
R((r,R)) = (r × iE , R × IE), and D((r,R)) = (iE × r, IE ×R).

Then there exist the natural transformations λ : R → IcdrTex and ρ : D →
IcdrTex such that for all (U,U), the components

λ(U,U) : (U × E, U ⊗ E) ∼= (U,U) and ρ(U,U) : (E × U, E ⊗ U) ∼= (U,U).

are natural isomorphisms.
(ii) Consider the functors S,U : cdrTex × cdrTex→ cdrTex defined by
S((U,U), (V,V)) = (U ×V, U ⊗V) U((U,U), (V,V)) = (V ×U, V ⊗U)
S((r,R), (q,Q)) = (r × q, R×Q), and U((r,R), (q,Q)) = (q × r, Q×R).

Then there exist a natural transformation σ : S→ U such that for all (U,U), the
component σ(U ,V) : (U × V, U ⊗ V) ∼= (V × U,V ⊗ U) is a natural isomorphism.

Proof. It is immediate by Proposition 14. ()
Lemma 19. Mac Lane’s associativity and unit coherence conditions hold [14]:

(i) The following pentagonal diagram commutes:

((U ⊗ V)⊗W)⊗Z (U ⊗ (V ⊗W))⊗Z U ⊗ ((V ⊗W)⊗Z)

(U ⊗ V)⊗(W ⊗Z) (U ⊗ (V ⊗ (W ⊗Z))

α(U,V,W)⊗Z

α(U⊗V,W,Z)

α(U,V⊗W,Z)

U ⊗ α(V,W,Z)

α(U,V,W⊗Z))

(ii) The following diagram is commutative.

(U ⊗ E)⊗ V U ⊗ (E ⊗ V)

U ⊗ V

α(U,E,V)

ρU ⊗ V

U ⊗ λV

Proof. Immediade.

Corollary 20. The category cdrTex is a dagger symmetric monoidal category.
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Abstract. We discuss some important issues for applications that are
related to generalizations of the 1994 approximation space definition [11].
In particular, we present examples of rough set based strategies for ex-
tension of approximation spaces from samples of objects onto the whole
universe of objects. This makes it possible to present methods for in-
ducing approximations of concepts or classifications analogously to the
approaches for inducing classifiers known in machine learning or data
mining.
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1 Introduction

A rough set, first described by Z. Pawlak, is a pair of sets which give the lower
and the upper approximation of the original set. In the standard version of
rough set theory an approximation space is based on indiscernibility equivalence
relation. Approximation spaces belong to the broad spectrum of basic subjects
investigated in rough set theory (see, e.g., [1,9,11,12,15,14,16,17]). Over the years
different aspects of approximation spaces were investigated and many general-
izations of the approach based on indiscernibility equivalence relation [7] were
proposed. In this paper, we discuss some aspects of generalizations of approxi-
mation spaces investigated in [11,12,16] that are important from an application
point of view, e.g., in searching for approximation of complex concepts (see,
e.g., [1]).

2 Attributes, Signatures of Objects and Two Semantics

In [7] any attribute a is defined as a function from the universe of objects U into
the set of attribute values Va. However, in applications we expect that the value
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of attribute should be also defined for objects from extensions of U , i.e., for new
objects which can be perceived in the future1. The universe U is only a sample
of possible objects. This requires some modification of the basic definitions of
attribute and signatures of objects.

We assume that for any attribute a under consideration there is given a rela-
tional structure Ra. Together with the simple structure (Va,=) [7], some other
relational structures Ra with the carrier Va for a ∈ A and a signature τ are
considered. We also assume that with any attribute a is identified a set of some
generic formulas {αi}i∈J (where J is a set of indexes) interpreted over Ra as
a subsets of Va, i.e., ‖αi‖Ra = {v ∈ Va : Ra, v |= αi}. Moreover, it is assumed
that the set {‖αi‖Ra}i∈J is a partition of Va. Perception of an object u by a
given attribute a is represented by selection of a formula αi and a value v ∈ Va

such that v ∈ ‖αi‖Ra . Using an intuitive interpretation one can say that such a
pair (αi, v) is selected from {αi}i∈J and Va, respectively, as the result of sensory
measurement. We assume that for a given set of attributes A and any object u
the signature of u relative to A is given by InfA(u) = {(a, αa

u, v) : a ∈ A}, where
(αa

u, v) is the result of sensory measurement by a on u.
Let us observe that a triple (a, αa

u, v) can be encoded by the atomic formula
a = v with interpretation

‖a = v‖U∗ = {u ∈ U∗ : (a, αa
u, v) ∈ Infa(u) for some αa

u}.
One can also consider a soft version of the attribute definition. In this case, we
assume that the semantics of the family {αi}i∈J is given by fuzzy membership
functions for αi and the set of these functions define a fuzzy partition.

We construct granular formulas from atomic formulas corresponding to the
considered attributes. In the consequence, the satisfiability of such formulas is
defined if the satisfiability of atomic formulas is given as the result of sensor
measurement. Hence, one can consider for any constructed formula α over atomic
formulas its semantics ‖α‖U ⊆ U over U as well as the semantics ‖α‖∗U ⊆ U∗

over U∗, where U ⊆ U∗. The difference between these two cases is the following.
In the case of U , one can compute ‖α‖U ⊆ U but in the case ‖α‖U∗ ⊆ U∗, we
only know that this set is well defined. However, we can compute the satisfiability
of α for objects u ∈ U∗ \ U only after the relevant sensory measurements on u
are performed resulting in selection of the satisfied atomic formulas for a given
object. It is worthwhile mentioning that one can use some methods for estimation
of relationships among semantics of formulas over U∗ using the relationships
among semantics of these formulas over U . For example, one can apply statistical
methods. This step is crucial in considerations on extensions of approximation
spaces relevant for inducing classifiers from data (see, e.g., [1,14]).

3 Uncertainty Function

In [11,12,16] the uncertainty function defines for every object u, a set of objects
described similarly to x. The set I(u) is called the neighborhood of u.
1 Objects from U are treated as labels of real perceived objects.
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In this paper, we propose uncertainty functions of the form I : U∗ −→ Pω(U∗),
where Pω(U∗) =

⋃
i≥1 P

i(U∗), P 1(U∗) = P (U∗) and P i+1(U∗) = P (P i(U∗)))
for i ≥ 1. The values of uncertainty functions are called granular neighborhoods.
These granular neighborhoods are defined by the so called granular formulas.
The values of such uncertainty functions are not necessarily from P (U∗) but
from Pω(U∗). In the following sections, we will present more details on granular
neighborhoods and granular formulas. Figure 1 presents an illustrative example
of the uncertainty function with values in P 2(U∗) rather than in P (U∗).

 

*21
U

ca =∧=

 

 

X 
U* 

 

U 

x
 

*201
U

cba =∧=∧=

*01
U

ba =∧=

Fig. 1. Uncertainty function I : U∗ → P 2(U∗). The neighborhood of x ∈ U∗ \ U ,
where InfA(x) = {(a, 1), (b, 0), (c, 2)}, does not contain training cases from U . The
generalizations of this neighborhood have non empty intersections with U .

If X ∈ Pω(U∗) and U ⊆ U∗ then by X � U we denote the set defined as follows
(i) if X ∈ P (U∗) then X � U = X ∩ U and (ii) for any i ≥ 1 if X ∈ P i+1(U∗)
then X � U = {Y � U : Y ∈ X}.

4 Rough Inclusion Function

The second component of any approximation space is the rough inclusion func-
tion [12], [16].

One can consider general constraints which the rough inclusion functions
should satisfy. In this section, we present only some examples of rough inclu-
sion functions.
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The rough inclusion function ν : P (U)× P (U) → [0, 1] defines the degree of
inclusion of X in Y , where X,Y ⊆ U.2

In the simplest case the standard rough inclusion function can be defined by
(see, e.g., [12], [7]):

νSRI (X,Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅. (1)

Some illustrative example is given in Table 1.

Table 1. Illustration of Standard Rough Inclusion Function

X Y νSRI (X, Y )
{x1, x3, x7, x8} {x2, x4, x5, x6, x9} 0
{x1, x3, x7, x8} {x1, x2, x4, x5, x6, x9} 0.25
{x1, x3, x7, x8} {x1, x2, x3, x7, x8} 1

It is important to note that an inclusion measure expressed in terms of the con-
fidence measure, widely used in data mining, was considered by �Lukasiewicz [4]
long time ago in studies on assigning fractional truth values to logical formulas.

The rough inclusion function was generalized in rough mereology [10]. For
definition of inclusion function for more general granules, e.g., partitions of ob-
jects one can use measure based on positive region [7], entropy or rough entropy
[6,5]. Inclusion measures for more general granules were also investigated [13,2].
However, more work in this direction should be done, especially on inclusion of
granules with complex structures, in particular for granular neighborhoods.

5 Approximation Spaces

In this section we present a generalization of definition of approximation space
from [11,12,16]).

Definition 1. An approximation space over a set of attributes A is a system

AS = (U,L, I, ν, LOW,UPP ) ,

where

– U is a sample of objects with known signatures relative to a given set of
attributes A,

– L is a language of granular formulas defined over atomic formulas corre-
sponding to generic formulas from signatures (see Section 3),

2 We assume that U is finite.
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– I : U∗ → Pω (U∗) is an uncertainty function, where U∗ ⊇ U and the set U∗

is such that for any object u ∈ U∗ the signature InfA(u) of u relative to A
can be obtained (as the result of sensory measurements on u); we assume
that the granular neighborhood I(u) is computable from InfA(u), i.e., I(u)
is defined by a granular formula α selected from L3.

– ν : Pω (U∗)× Pω (U∗)→ [0, 1] is a rough inclusion function,
– LOW and UPP are the lower approximation operation and the upper ap-

proximation operation, respectively, defined on elements from Pω(U∗) with
values in Pω(U∗) such that
1. ν(LOW (AS,X), UPP (AS,X)) = 1 for any X ∈ Pω(U∗),
2. LOW (AS,X) � U is included in X � U to a degree at least deg, i.e.,

ν(LOW (AS,X) � U,X � U)) ≥ deg for any X ∈ Pω(U∗),
3. X � U is included in UPP (AS,X) � U to a degree at least deg, i.e.,

ν(X � U,UPP (AS,X) � U) ≥ deg for any X ∈ Pω(U∗),
where deg is a given threshold from the interval [0, 1].

5.1 Approximations and Decision Rules

In this section we discuss generation of approximations on extensions of samples
of objects.

In the example we illustrate how the approximations of sets can be estimated
using only partial information about these sets. Moreover, the example intro-
duces uncertainty functions with values in P 2(U) and rough inclusion functions
defined for sets from P 2(U).

Let us assume DT = (U,A∪{d}) be a decision table, where U = {x1, . . . , x9}
is a set of objects and A = {a, b, c} is a set of condition attributes (see Table 2).

Table 2. Decision table over the set of objects U

a b c d

x1 1 1 0 1
x2 0 2 0 1
x3 1 0 1 0
x4 0 2 0 1
x5 0 1 0 1
x6 0 0 0 0
x7 1 0 2 0
x8 1 2 1 0
x9 0 0 1 0

There are two decision reducts: {a, b} and {b, c}. We obtain the set Rule set =
{r1, . . . , r12} of minimal (reduct based) [7] decision rules.
3 For example, the granule α = {{α1, α2}, {α3, α4}}, where αi ∈ L for i =

1, . . . , 4, defines the set {{‖α1‖U∗ , ‖α2‖U∗}, {‖α3‖U∗ , ‖α4‖U∗}} and α � U =
{{‖α1‖U , ‖α2‖U}, {‖α3‖U , ‖α4‖U}}.
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From x1 we obtain two rules:
r1 : if a = 1 and b = 1 then d = 1, r2 : if b = 1 and c = 0 then d = 1.
From x2 and x4 we obtain two rules:
r3 : if a = 0 and b = 2 then d = 1, r4 : if b = 2 and c = 0 then d = 1.
From x5 we obtain one new rule:
r5 : if a = 0 and b = 1 then d = 1.
From x3 we obtain two rules:
r6 : if a = 1 and b = 0 then d = 0, r7 : if b = 0 and c = 1 then d = 0.
From x6 we obtain two rules:
r8 : if a = 0 and b = 0 then d = 0, r9 : if b = 0 and c = 0 then d = 0.
From x7 we obtain one new rule:
r10 : if b = 0 and c = 2 then d = 0.
From x6 we obtain two rules:
r11 : if a = 1 and b = 2 then d = 0, r12 : if b = 2 and c = 1 then d = 0.
Let U∗ = U ∪ {x10, x11, x12, x13, x14} (see Table 3).

Table 3. Decision table over the set of objects U∗ − U

a b c d dclass

x10 0 2 1 1 1 from r3 or 0 from r12

x11 1 2 0 0 1 from r4 or 0 from r11

x12 1 2 0 0 1 from r4 or 0 from r11

x13 0 1 2 1 1 from r5

x14 1 1 2 1 1 from r1

Let h : [0, 1]→ {0, 1/2, 1} be a function defined by

h(t) =

⎧⎨
⎩

1 if t > 1/2
1/2 if t = 1/2
0 if t < 1/2.

(2)

Below we present an example of the uncertainty and rough inclusion functions:

I(x) = {‖lh(r)‖U∗ : x ∈ ‖lh(r)‖U∗ and r ∈ Rule set}, (3)

where x ∈ U∗ and lh(r) denotes the formula on the left hand side of the rule r,
and

νU (X,Z) =

{
h( card({Y ∈X:Y ∩U⊆Z})

card({Y ∈X:Y ∩U⊆Z})+card({Y ∈X:Y ∩U⊆U∗\Z}) ) if X �= ∅
0 if X = ∅, (4)

where X ⊆ P (U∗) and Z ⊆ U∗.
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The defined uncertainty and rough inclusion functions can now be used to de-
fine the lower approximation LOW (AS∗, Z), the upper approximation
UPP (AS∗, Z), and the boundary region BN(AS∗, Z) of Z ⊆ P (U∗) by:

LOW (AS∗, Z) = {x ∈ U∗ : νU (I(x), Z) = 1}, (5)

and
UPP (AS∗, Z) = {x ∈ U∗ : νU (I(x), Z) > 0}, (6)

BN(AS∗, Z) = UPP (AS∗, Z) \ LOW (AS∗, Z). (7)

In the example, we classify objects from U∗ to the lower approximation of Z if
majority of rules matching this object are voting for Z and to the upper approx-
imation of Z if at least half of the rules matching x are voting for Z. Certainly,
one can follow many other voting schemes developed in machine learning or by
introducing less crisp conditions in the boundary region definition. The defined
approximations can be treated as estimations of the exact approximations of
subsets of U∗ because they are induced on the basis of samples of such sets
restricted to U only. One can use the standard quality measures developed in
machine learning to calculate the quality of such approximations assuming that
after estimation of approximations full information about membership for ele-
ments of the approximated subsets of U∗ is uncovered analogously to the testing
sets in machine learning.

Let C∗
1 = {x ∈ U∗ : d(x) = 1} = {x1, x2, x4, x5, x10, x13, x14}. We obtain the

set U∗ \ C∗
1 = C∗

0 = {x3, x6, x7, x8, x9, x11, x12}. The uncertainty function and
rough inclusion are presented in Table 4.

Table 4. Uncertainty function and rough inclusion over the set of objects U∗

I(·) νU (I(·), C∗
1 )

x1 {{x1, x14}, {x1, x5}} h(2/2) = 1
x2 {{x2, x4, x10}, {x2, x4, x11, x12}} h(2/2) = 1
x3 {{x3, x7}, {x3, x9}} h(0/2) = 0
x4 {{x2, x4, x10}, {x2, x4, x11, x12}} h(2/2) = 1
x5 {{x5, x13}, {x1, x5}} h(2/2) = 1
x6 {{x6, x9}, {x6}} h(0/2) = 0
x7 {{x3, x7}, {x7}} h(0/2) = 0
x8 {{x8, x11, x12}, {x8, x10}} h(0/2) = 0
x9 {{x6, x9}, {x3, x9}} h(0/2) = 0
x10 {{x2, x4, x10}, {x8, x10}} h(1/2) = 1/2
x11 {{x8, x11, x12}, {x2, x4, x11, x12}} h(1/2) = 1/2
x12 {{x8, x11, x12}, {x2, x4, x11, x12}} h(1/2) = 1/2
x13 {{x5, x13}} h(1/1) = 1
x14 {{x1, x14}} h(1/1) = 1

Thus, in our example from Table 4 we obtain

LOW (AS∗, C∗
1 ) = {x ∈ U∗ : νU (I(x), C∗

1 ) = 1} = {x1, x2, x4, x5, x13, x14}, (8)



304 A. Skowron and J. Stepaniuk

UPP (AS∗, C∗
1 ) = {x ∈ U∗ : νU (I(x), C∗

1 ) > 0} =

{x1, x2, x4, x5, x10, x11, x12, x13, x14}, (9)

BN(AS∗, C∗
1 ) = UPP (AS∗, C∗

1 ) \ LOW (AS∗, C∗
1 ) = {x10, x11, x12}. (10)

5.2 Approximations and Nearest Neighbors Classifiers

In this section, we present a method for construction of rough based classifiers
based on the k-nearest neighbors idea. The k-nearest neighbors algorithm (k-
NN , where k is a positive integer) is a method for classifying objects based
on closest training examples in the attribute space. An object is classified by a
majority vote of its neighbors, with the object being assigned to the decision
class most common amongst its k nearest neighbors. If k = 1, then the object is
simply assigned to the decision class of its nearest neighbor.

Let DT = (U,A ∪ {d}) be a decision table and let DT ∗ = (U∗, A∗ ∪ {d∗}) be
an extension of DT . We define NNk : U∗ → P (INF (A)) by
NNk(x) = a set of k elements of INF (A) with minimal distances to InfA(x)
The Hamming distance δH

A (u, v) between two strings u, v ∈ ∏a∈A Va of length
card(A) is the number of positions at which the corresponding symbols are
different. In our example we use a distance δA :

∏
a∈A Va ×

∏
a∈A Va → [0, 1]

defined by δA(u, v) = δHA (u,v)
card(A) (the Hamming distance value divided by the total

number of condition attributes).
The description of x1 is InfA(x1) = (1, 1, 0) ∈ INF (A) 4 (see Table 2) and the

description of x14 is InfA(x14) = (1, 1, 2) ∈ INF (A) (see Table 3). Because each
object is described by 3 condition attributes, we say that the Hamming distance
between InfA(x1) = (1, 1, 0) and InfA(x14) = (1, 1, 2) is 1 and the Hamming
distance divided by the total number of attributes δA((1, 1, 0), (1, 1, 2)) = 1

3 . We
define

INNk(x) = {‖
∧

InfA(y)‖U∗ : y ∈ U∗ and InfA(y) ∈ NNk(x)}5, (11)

νNNk (X,Y ) =
card({⋃(Z ∩ U) : Z ∈ X&Z ∩ U ⊆ Y ∩ U})

card(U)
, (12)

Let Jε : U∗ → P ({d(x) : x ∈ U}) for 0 < ε << 1 be defined by

Jε(x) = {i : ¬∃j �= i(νNNk

(
INNk(x), C

∗
j

)
> νNNk (INNk(x), C

∗
i ) + ε)}, (13)

and

νε
NNk (INNk(x), C

∗
i ) =

⎧⎨
⎩

1 if Jε(x) = {i}
1
2 if i ∈ Jε(x) & card(Jε(x)) > 1
0 if {i} � Jε(x)

(14)

4 We write InfA(x1) = (1, 1, 0) ∈ INF (A) instead of InfA(x1) = {(a, 1), (b, 1), (c, 0)}.
5 ‖∧ InfA(y)‖U∗ denotes the set of all objects from U∗ satisfying the conjuntion of

all descriptors a = a(y) for a ∈ A.
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The defined uncertainty INNk and rough inclusion νε
NNk

functions can now be
used to define the lower approximation LOW (AS∗, C∗

i ), the upper approxima-
tion UPP (AS∗, C∗

i ), and the boundary region BN(AS∗, C∗
i ) of C∗

i ⊆ U∗ by:

LOW (AS∗, C∗
i ) = {x ∈ U∗ : νε

NNk
(INNk(x), C

∗
i ) = 1}, (15)

UPP (AS∗, C∗
i ) = {x ∈ U∗ : νε

NNk(INNk(x), C
∗
i ) > 0}, (16)

BN(AS∗, C∗
i ) = UPP (AS∗, C∗

i ) \ LOW (AS∗, C∗
i ). (17)

Let k = 2 and ε = 0.1, in our example we obtain the results presented in
Table 5. The neighbors are taken from the set U of objects for which the correct
classification is known. In the classification phase, a new object is classified by
assigning the decision class which is most frequent among the 2 training objects
nearest to that new object. In the case of more than two nearest objects we
choose randomly two.

Table 5. Uncertainty function INN2 and rough inclusion ν0.1
NN2 over the set of objects

U∗ \ U = {x10, . . . , x14}

NN2(·) INN2(·) νNN2(INN2(·), C∗
1 )

x10 {(0, 2, 0), (1, 2, 1)} {{x2, x4}, {x8}, {x10}} 2/9
x11 {(1, 1, 0), (0, 2, 0)} {{x1}, {x2, x4}, {x11, x12}} 3/9
x12 {(1, 1, 0), (0, 2, 0)} {{x1}, {x2, x4}, {x11, x12}} 3/9
x13 {(0, 1, 0), (1, 1, 0)} {{x5}, {x1}} 2/9
x14 {(1, 1, 0), (1, 0, 2)} {{x1}, {x7}} 1/9

νNN2(INN2(·), C∗
0 ) J0.1(·) ν0.1

NN2(INN2(·), C∗
1 )

x10 1/9 {1} 1
x11 0 {1} 1
x12 0 {1} 1
x13 0 {1} 1
x14 1/9 {0, 1} 1/2

Thus, in our example from Table 5 we obtain

LOW (AS∗, C∗
1 ) = {x ∈ U∗ : ν0.1

NN2
(INN2(x), C

∗
1 ) = 1} =

{x1, x2, x4, x5, x10, x11, x12, x13}, (18)

UPP (AS∗, C∗
1 ) = {x ∈ U∗ : ν0.1

NN2
(INN2(x), C

∗
1 ) > 0} =

{x1, x2, x4, x5, x10, x11, x12, x13, x14}, (19)

BN(AS∗, C∗
1 ) = UPP (AS∗, C∗

1 ) \ LOW (AS∗, C∗
1 ) = {x14}. (20)

6 Conclusions

We discussed a generalization of approximation spaces based on granular formu-
las and neighborhoods. Efficient searching strategies for relevant approximation
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spaces are crucial for application (e.g., in searching for approximation of complex
concepts).
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Abstract. The paper is devoted to the formalization of two elementary
but important problems within rough set theory. We mean searching for
the minimal requirements of the well-known rough operators – the lower
and the upper approximations in an abstract approximation space to
retain their natural properties. We also discuss pros and cons of the de-
velopment of the computer-checked repository for rough set theory based
on the comparison of certain rough approximation operators proposed by
Anna Gomolińska.

1 Introduction

Rough set theory stemmed as an emerging trend reflecting the need for getting
knowledge when the information is imprecise, incomplete or just too complex to
obtain in the real time valuable answer for agent’s query.

Although the situation of the missing data is clear and present in mathemat-
ical practice, it is not so easy to understand what the rough reasoning is when
it comes to the process of theorem proving. Still, the theory itself has a strong
mathematical flavour and hence is a field where available math-assistants can be
successfully used to obtain some new results and to verify a bunch of solutions
of older ones. However, if we tend to model a larger collection of mathematical
papers, the challenge gets even bigger. Multiplicity of notations, different levels
of obviousness – all that becomes a real problem, especially when we look at the
theory from a broader perspective, merging views of different authors.

The formalization is a term with a broad meaning which denoted rewriting
the text in a specific manner, usually in a rigorous (i.e. strictly controlled by
certain rules), although sometimes cryptic language. Obviously the notion itself
is rather old, originated definitely from pre-computer era, and in the early years
formalization was to ensure the correctness of the approach. Together with the
evolution of the tools, the new paradigm was established: computers can poten-
tially serve as a kind of the oracle to check if the text is correct. But as of now we
do not know about any (other than ours) translation into leading proof-assistants
(see [15] for comprehensive list). Hence adjective “formal” occurs rather in the
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context of rough sets mostly in the sense of formal concept analysis, but of
course some papers of this kind are available, e.g. [1]. Computer-driven encoding
draws the attention of researchers of both mathematics and computer science,
and if the complexity of the tools will be too high, only software engineers will
be attracted and all the usefulness for an ordinary mathematician will be lost.

Our paper is organized as follows: in the next section we touch the issue of
minimal assumptions under which elementary properties can be proved, and ex-
plain some basic elements of type theory within Mizar language. Third section
contains the solution of the problem of approximation spaces based on rela-
tions, treated formally, while the fourth draws the perspective of the automatic
improvement of proofs. Section 5 shows how various approaches can be success-
fully merged, and in the remaining sections we describe how the repository itself
can benefit just from our development and draw some final remarks.

2 The Quest for Minimal Requirements

The Mizar system (designed by Andrzej Trybulec in 1973) consists of a lan-
guage for writing formalized mathematical definitions and proofs, the software
for checking correctness of proofs written in this language, and the database. The
Mizar Mathematical Library (MML for short) is considered one of the largest
repositories of computer verified mathematical knowledge in the world. The basic
item in the MML, called Mizar article, reflects roughly a structure of an ordinary
paper, being considered at two main layers – the declarative one, where defini-
tions and theorems are stated, and the other one – proofs. Naturally, although
the latter is the larger part, the earlier needs some additional care – the submis-
sion will be accepted for inclusion into the MML if the approach is correct and
the topic isn’t already present there.

Some of the problems formalized can be solved by certain algorithm, others
can be just calculated – for computer algebra systems (CAS) it is not that hard.
Although basically being not CAS, the Mizar system has already some automatic
mechanisms implemented – e.g. arithmetic on complex numbers etc. As for now,
more automation for an ordinary user is not easily accessible – via requirements
library directive one can obtain nice results, but is has to be implemented in
the sources of the systems (although direct results can be browsed in the file
containing the formalization).

The beginnings of the project of encoding rough sets into MML were described
in [5] and the results can be browsed from the homepage of the Mizar system
[10] under the identifier ROUGHS_1. The classical rough set theory was based on
equivalence relations, but the extensive research was done on arbitrary binary
relation-based rough sets. This work is twofold: on the one hand starting from
relations’ properties such as reflexivity, symmetry or transitivity which led to
studies on properties of approximation operators; on the other hand classical
properties of these operators are identified (normality, extension, monotonicity
or idempotency), to obtain specific attributes of binary relations.
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3 Rough Tolerance and Approximation Operators

First theorem provers were based on a pure predicate calculus [14], nowadays
type information is also important and it is also the case of typed language of
the Mizar system. There are three main constructors of types in Mizar:

– modes – their existence has to be proven, here a good example is the most
general type set. Other examples of such types are Rough_Set; among struc-
tural modes – e.g. Approximation_Space;

– functors – should be proven both the existence and its uniqueness; used to
obtain e.g. the upper and the lower approximation operators;

– attributes – although no correctness conditions are needed, to use this, one
should register the so-called existential registration of the cluster (which is
just a collection of attributes). Here we can give rough or exact (crisp) as
examples.

Some statistics of the usage of various constructors and symbols is contained
in Table 1. As we can conclude from it, functors and attributes are defined
most often in the Mizar library (also in our development we can find some);
structures play a role of the framework for the theory, and in fact to formalize
RST as described in this paper we need only one.

Table 1. Occurrences of symbols and constructors in the MML

Type Symbols % Constructors %
attributes 1388 20.3 2428 19.0
functors 3725 54.5 7717 60.6
modes 759 11.1 1103 8.6

predicates 639 9.3 1090 8.5
structures 122 1.8 123 1.0

Total 6831 100.0 12740 100.0

3.1 Type Refinement

Hierarchy of types can be realized threefold:

1. by defining an object with its type, based on the “widening” relation with
set being the widest:
Function of X,Y −→ PartFunc of X,Y −→ Relation of X,Y
−→ Subset of [:X,Y:] −→ Element of bool [:X,Y:] −→ set

2. by adjectives:
reflexive transitive antisymmetric RelStr (poset) −→
−→ reflexive transitive RelStr (preorder) −→ reflexive RelStr
−→ RelStr (relational structure)
Adjectives are processed to enable automatic deriving of type information
(so called “registrations of clusters”).
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3. by polymorphic structure type expansion – this will be described in Sect. 5.

Pioneering works in rough set theory (RST for short) were stated in unified
framework of equivalence relations and partitions. Later on, some of the assump-
tions were dropped, and as of now many theorems of the theory are formulated in
the form of “if the operator A1 satisfies the property P1, then the corresponding
approximation space satisfies P2.”

In Mizar pseudo-code this can be expressed as follows:

definition let A1 be with_property_P1 <variable_type>;

cluster Space (A1) -> with_property_P2;

coherence;

end;

This gives the advantage of automatic adding to the object Space (A1) under-
lying properties if the type of an argument is sufficiently narrow. We formulated
basic theorems of the theory under the assumption of binary relations to be tol-
erances, but it soon appeared that it was too restrictive. However the adjective
below still plays a crucial role in our work.

definition

let P be RelStr;

attr P is with_tolerance means

:: ROUGHS_1:def 3

the InternalRel of P is Tolerance of the carrier of P;

end;

3.2 Zhu’s vs. Mizar Notation

When encoding Zhu’s paper [17] into Mizar, we noticed that too complex nota-
tion decreased the readability of the text. It is useful to have explicitly stated
arguments without browsing virtually any occurrence of the variable, but we
can make them locally fixed, similarly as we reserve variables in programming
languages. Especially in examples Zhu [17] writes L(R)(X) to underline that
the lower approximation is taken with respect to an arbitrary binary relation R.
Our straightforward approach fails when we come to considering two different
indiscernibility relations on the same space – then we have to apply merging
operator on these spaces. Luckily we know that two different binary relations on
the universe generate different approximation operators. To show how close is the
Mizar language to the mathematical jargon, we give here well-known definition
of the lower approximation X
 of a rough set in the approximation space.

definition let A be non empty RelStr;

let X be Subset of A;

func LAp X -> Subset of A equals

:: ROUGHS_1:def 4

{ x where x is Element of A : Class (the InternalRel of A, x) c= X };

end;
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Observe that Class is just another name for the image of a relation (as a result
of a revision, originally the class of abstraction of an equivalence relation) and we
don’t need any additional assumptions bounding relational structure A. It allows
us to write in the arbitrary but fixed space A the set LAp X without mentioning
R as an indiscernibility relation.

3.3 The Proofs

Zhu deals with the basic types of relations, such as serial, mediate (dense) and
alliance ones. Our aim was to formulate and prove all the facts from [17].

As the example of the machine translation let us quote here the property
(9LH) – called by Zhu appropriateness. The proof of Proposition 2 (9LH) can
be written in Mizar formalism as follows:

theorem Th9LH:

for R being non empty serial RelStr, X being Subset of R holds

LAp X c= UAp X

proof

let R be non empty serial RelStr, X be Subset of R;

let y be set;

assume y in LAp X; then

y in { x where x is Element of R :

Class (the InternalRel of R, x) c= X } by ROUGHS_1:def 4; then

consider z being Element of R such that

A1: z = y & Class (the InternalRel of R, z) c= X;

Class (the InternalRel of R, z) meets X by XBOOLE_1:69,A1; then

z in {x where x is Element of R :

Class (the InternalRel of R, x) meets X};

hence thesis by A1,ROUGHS_1:def 5;

end;

The keywords as let, assume and consider change the thesis and form the
skeleton of the proof; the latter introduces a new local constant, the remaining
are self-explanatory. Serial relations were not available in the MML, we defined
them for arbitrary relations, and then for relational structures.

definition let R be non empty RelStr;

redefine attr R is serial means

for x being Element of R holds ex y being Element of R st x <= y;

compatibility;

end;

As it soon appeared, it is useful to have not only concrete application of the ap-
proximation (i.e. a language function), but also approximations as mathematical
functions.

definition let R be non empty RelStr;

func LAp R -> Function of bool the carrier of R, bool the carrier of R

means
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for X being Subset of R holds it.X = LAp X;

end;

The dot symbol “.” is an application of a function; bool A denotes powerset of
the set A. Taking into account a definition of co-normality as L
(U) = U, we
can write (and prove, but we omit the proof here for obvious reasons):

definition let R be serial non empty RelStr;

cluster LAp R -> co-normal;

coherence;

end;

The advantage of the latter registration is that after this appropriate adjective
is added to the functor LAp R and this worked rather smoothly; more painful
was the construction of an abstract space based on the properties of a function.

theorem

for A being non empty set,

L being Function of bool A, bool A st

L.A = A & L.{} = {} &

for X, Y being Subset of A holds L.(X /\ Y) = L.X /\ L.Y holds

ex R being non empty serial RelStr st the carrier of R = A & L = LAp R;

4 The Formalization Issues

The Mizar system is freely available for download in precompiled form, together
with the bunch of programs. We enumerate here some of them discovering and
suggesting possible improvements on the source:

– relprem – detects unnecessary premises (both after by and linking previous
sentence after then);

– chklab – checks which labels are not used and may be deleted;
– inacc – marks inaccessible parts of the text;
– trivdemo – nesting of the proof can be removed – the proof can be straight-

forward.

In such a way, unused assumptions are marked and are easy to remove, as well
as unnecessary (unused and not exportable to the database) blocks of the text.
This helps to keep automatically the level of generality.

Also the communication back and forth between various formal systems is
noteworthy [14] (although this work is in an early stage), including translation
into the natural language. The latter has some didactic value, enabling people
who are not acquainted with the syntax understanding of the formalized facts.
Because the construction of the environment in which the researcher can prove
something non-trivial is not that elementary, and based on the opinions of the
people writing to the Mizar Forum mailing list and asking the Mizar User Service,
it is the most time-consuming part of the work, we used especially developed
environments for students’ training.
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The so-called MML Query is up and running to enhance formalization work
by better searching, not only classically, via textual grep, but giving the set of
needed constructors and asking which theorems use them all (e.g. querying for
theorems which use LAp and set-theoretic inclusion).

Usual activities when using computer proof-assistants are defining notions
(definition block) and formulating and proving theorems (with theorem key-
word). We can also build certain models with properties verified by computer
which is pretty close to the contemporary use of the rough set theory – but
although the construction of reasonably big models is possible in Mizar, such
investments can be one-shot – the reusability of such object within the Mizar
Mathematical Library can be small. Note however that in the MML we already
have e.g. electric circuit modelling (CIRCUIT or GATE series) or Random Access
Turing Machines model (SCM, AMI series), so having a collection of computer-
verified examples or software enabling easy construction of such objects would
be very useful.

5 Rough Approximation Mappings Revealed

In this section we characterize formally various operators of rough approximation
as compared in [3]. The generalized approximation space is taken into account
as a triple A = 〈U, I, κ〉, where U is a non-empty universe, I : U �→ ℘(U) is an
uncertainty mapping, and κ : ℘(U) × ℘(U) �→ [0, 1] is a rough inclusion func-
tion. Gomolińska lists the“rationality”postulates (a1)–(a6) which approximation
mappings should possess. Then she enumerates ten mappings (fi, i = 1, . . . , 9)
and proves their properties.

In fact, under relatively weak condition (1) from [3] (∀u∈U u ∈ I(u)), the
function I generates a covering of the universe U , and it soon turns out that
using topological notions we can go further. The role of the uncertainty mapping
I may be played by a binary relation on U , but any mapping I satisfying (1)
generates a reflexive relation ρ ⊆ U × U such that for every u,w ∈ U

(w, u) ∈ ρ iff w ∈ I(u).

Then we obtain ρ as indiscernibility relation. Conversely, any reflexive relation
ρ ⊆ U×U generates an uncertainty mapping I : U �→ ℘(U), satisfying (1), where

I(u) = ρ←({u}) and τ(u) = ρ→({u}).
Remembering in the MML we defined the tolerance approximation space as

the pair 〈U,R〉, we had in mind two solutions available not to duplicate all the
formal apparatus from scratch:

1. to extend already existing tolerance space structure via uncertainty map-
pings I and τ and to obtain explicit operators as mathematical functions;

2. to use existing type machinery and expressive power of the Mizar language
and to define both maps as language functors, retaining original structure of
a space.
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The first part of the alternative is realized as the ordinary concatenation of
structures as tuples, we obtain 〈U,R, I, τ〉, formally:

definition

struct (RelStr) InfoStruct (#

carrier -> set,

InternalRel -> Relation of the carrier,

UncertaintyMap -> Function of the carrier, bool the carrier,

TauMap -> Function of [:bool the carrier, bool the carrier:],

[. 0,1 .] #);

end;

As usual, to obtain semantics of this object, we can restrict the universe of
discourse by introducing attributes for natural definitions of τ and I, where the
latter is as follows (we changed an actual definition a little, not to use additional
symbols):

definition let R be non empty InfoStruct;

attr R is with_uncertainty means

for u, w being Element of R holds

[u,w] in the InternalRel of R iff u in (the UncertaintyMap of R).w;

end;

Hence we can use the type with_uncertainty with_tolerance non empty
InfoStruct to have a tolerance approximation space with I uncertainty map-
ping as built-in object and this is what we eventually decided for. Otherwise, I
mapping would be defined as

definition let R be non empty reflexive RelStr;

func UncMap -> Function of R, bool the carrier of R means

for u being Element of R holds

it.u = CoIm (the InternalRel of R, u);

correctness;

end;

where CoIm stands for counterimage of relation applied to a singleton of an
element u. Then proving properties of maps fi’s defined by Gomolińska either
follow her suggestions or filling the gaps in the proof by ourselves was just a
typical exercise (with difficulty level varied), done partly by the students.

6 Side-Effects for the MML Repository

The important limitation which we should have in mind when developing basics
of RST is that the Mizar system has fixed both logic and set theory. While
classical first-order logic with some constructions of the second order (like the
scheme of induction as a most used example) is a part of the implementation,
the axioms of the Tarski-Grothendieck set theory, can be potentially modified
by ordinary user. Essentially though a few other logics are formalized, and hence
can be chosen as a language describing rough sets.
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6.1 Actual Gains

The current policy of the Mizar Mathematical Library is that all duplications
are to be removed. For example, a few articles sent to the repository for review
obtained a negative grade, hence they were rejected due to the fact that the
topic was already formalized.1

The level of generalization. Although the submission to the MML (a Mizar
article) is copyrighted and frozen – and in such form it is translated into nat-
ural language, the repository as a whole is subject to modifications, called
revisions. In such a manner, instead of a collection of papers gradually ex-
tending the topic (in case of RST – defining approximation spaces based on
equivalence relations, tolerances, etc.), we can have one library item under
various assumptions.

Copyright issues. In case of unchanged items it is not the problem, but if
someone else does the generalization, the issues of authorship of the material
are questionable. As a rule, first authorship rule is claimed. In the reality
of Wikipedia and the world evolving fast, we can track changes to obtain
parameters of the revision.

The searching. The smaller database is, the faster we can find the appropriate
object – basically we have no duplications of notions for approximations,
tolerances etc.

Coherence. Formal writing forces the author to use existing notions without
any variants (although redefinitions after proving equivalence with the orig-
inal are permitted); otherwise software will complain.

Didactic issues. Via XML exchange format (with possible plain HTML click-
able output) any occurrence of the notion is linked directly to its definition
– it proved its usefulness during exercises taken on our students.

Bright example of the mentioned case is the solution of Robbins’ problem about
the alternative axiomatization of Boolean algebras, rather cryptic in its original
form discovered by EQP/Otter software, but after machine suggestions pro-
posed by Dahn [2] and his δ notation and making lemmas of a more general
interest it was more understandable and less painful to the eye.

7 Final Remarks

Our research can be understood as a step towards a kind of computer-supported
reverse mathematics (asking which axioms are required to prove theorems), fol-
lowing [7], [13], [8], although we stop earlier than the founder of the program,
Harvey Friedman proposed – not somewhere close to the second-order arith-
metic, but on elementary properties of relations in pure set theory. So it turns
out in our case that we are looking for minimal requirements needed to obtain
the desired properties of the object. Using machine proof-assistants extends pos-
sibilities of the reasoning, however much more progress should be made to attract
1 This policy was widely criticized, also by the reviewers of this paper.
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potential collaborators. As a rule, the Mizar checker is independent of the set
theory, however some constructions are significant restrictions. E.g. one cannot
prove freely within the Mizar Mathematical Library that the Axiom of Choice is
equivalent to the Tichonov Theorem. As the topology induced by a reflexive and
transitive binary relation is an Alexandrov topology, and the topology and con-
tinuous lattice theory are areas very well developed in the MML, we hope that
in the nearest future the exhaustive study of the conditions of indiscernibility re-
lations in terms of coverings [12] to retain usual properties of the approximation
operators will be completed.
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Abstract. Communicative approximations, as used in language, are
equivalence relations that partition a continuum, as opposed to obser-
vational approximations on the continuum. While the latter can be ad-
dressed using tolerance interval approximations on interval algebra, new
constructs are necessary for considering the former, including the notion
of a “rough interval”, which is the indiscernibility region for an event
described in language, and “rough points” for quantities and moments.
We develop the set of qualitative relations for points and intervals in
this “communicative approximation space”, and relate them to existing
relations in exact and tolerance-interval formalisms. We also discuss the
nature of the resulting algebra.

1 Tolerances for Points and Intervals

When telling someone the time, saying “quarter past nine” has an implicit tol-
erance of about fifteen minutes, whereas the answer “9:24” would indicate a
resolution of about a minute. Communication about quantities are defined on
a shared conventional space, which constitutes a tesselation on the real number
line. In this paper, we attempt to develop the first steps toward a theory that for-
mulates these questions in terms of an indistinguishability relation [11], defining
a tolerance approximation space common to participants in the discourse.

We take the communicative approximation space to be a set of cultural conven-
tions that define a hierarchy of tesselations on a continuum. The two statements
above reflect differing tolerances, defined on different discrete tesselations (gran-
ularities). The granularity adopted in a speech act reflects the measurement error
or task requirement, and typically adopts the closest tesselation available in the
shared communicative approximation space.

The communicative approximation space C then gives a discourse grid that
is available at a number of scales, defined by equivalence classes (e.g. of one

� The research was supported by grant NN516 368334 from the Ministry of Science
and Higher Education of the Republic of Poland.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 317–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



318 M. Banerjee et al.

minute, five minutes, quarter hour, etc.). Similar questions of scale also inform
communicative models for other continua such as space or measures.

The uncertainty resulting from measurement error ±η is defined on a toler-
ance approximation space T defined on a continuum, whereas the uncertainty
reflected in communication, say ε, is defined on a discrete set of scales defined
in the communicative approximation space C. The ε-tesselation is a partition of
the space via a series of ticks or grid points. These partitions or intervals then
represent equivalence classes underlying the utterance. In honest communica-
tion, given a hierarchy of tesselations, ε will be chosen so as to be less precise
than ±η, in order to avoid a false impression of greater precision. Thus, we may
assume that ε ≥ |η|. The greatest flexibility (worst case) arises when ±η = ε,
and this is what we shall be assuming in the rest of this paper.

1.1 Measurement Tolerance vs. Communication Succinctness

The mapping from quantitative measures to common conceptual measures in-
volves a step-discretization which has been the subject of considerable work in
measure theory [5,15], mereotopology [2,16] and interval analysis [17,1]. At the
same time, there is a rich tradition on information granulation in rough set the-
ory [9,12]. Pawlak’s premise [11] was that knowledge is based on the ability to
classify objects, and by object one could mean ‘anything we can think of’ – real
things, states, abstract concepts, processes, moments of time, etc. The original
mathematical formulation of this assumption was manifested in the notion of an
“approximation space”: the domain of discourse, together with an equivalence
relation on it.

R+, the set of non-negative real numbers, partitioned by half-open intervals
[i,i+1), i=0,1,2,..., is an approximation space that is relevant to our work. One
may remark that, in [9], Pawlak defines “internal” and “external measures” of
any open interval (0,r) based on this partition, giving rise to a “measurement
system”. Later, in [8], this “inexactness” of measurement is further discussed,
and contrasted with the theory of measurement of [14].

Our approach is related to interval algebra and qualitative reasoning [1]; how-
ever these operate with exact intervals and ignore tolerances. In this work, we
develop the idea of interval tolerances [7] and map these onto communicative
space discretization. We restrict ourselves to intervals, defined with two end-
points, with a single uncertainty ε. The next sections introduce the notion
of a “rough interval” defined in terms of lower and upper approximations on
the ε-tesselation. The end points of these rough intervals are indiscernibility
regions which we call “rough points” by analogy to the continuum situation,
though these are not rough sets except in a degenerate sense, since the lower
approximation is empty. This extends the rough set [10] characterization for
moments. Qualitative relations for rough points and intervals are defined, and
compared with existing relations in the tolerance interval framework. A prelim-
inary study is made of the relational algebraic structures that result from these
constructs.



Communicative Approximations as Rough Sets 319

2 Rough Point

We consider a discretization of the continuum R by a (granularity) measure ε
(∈ R+). A real quantity ζ is taken as a ‘reference point’. The communicative
approximation space C is then a partition on R with the half-open intervals
[ζ + kε, ζ + (k + 1)ε), k being any integer. The points ζ + kε are called grid
points (or ‘ticks’), and the collection of grid points is called the grid space.
Each grid interval is equivalent to an ε measure in R. We notice that C is an
approximation space that is a generalization of the one considered by Pawlak in
[9] (cf. Section 1.1).

Note 1. For simplicity, we denote the k-th grid point, viz. ζ + kε, as k, and the
communicative approximation space C is taken to be the continuum R with this
simplified representation of the discretization.

Observation 1. The grid space is isomorphic to the set of integers, Z.

Example 1. A discretization of R with ε = 0.5, ζ = 1.2, would map a real line
with grid points at 0.2, 0.7, 1.2, 1.7, 2.2, . . . . The communicative space then has
the interval [0.2,0.7) as “-2”, [0.7,1.2) as “-1”, [1.2, 1.7) as “0” etc.

Now, given an exact x, one can locate the interval [xs, xf ) of R in which x lies
(xs, xf are the ‘start’, ‘end’ of the interval). Thus xs = ζ + εx̄s, xf = ζ + εx̄f ,
where x̄s ≡ ,x−ζ

ε -, and x̄f ≡ ,x−ζ
ε + 1-. [x̄s, x̄f ) is the corresponding interval in

C. Note that x̄f = x̄s + 1.
In the above example, the real number x = 0.9 would lie in the interval [−1, 0)
or, equivalently, in the interval [0.7, 1.2) of R.

Definition 1. A rough point is any interval [k, k + 1) in C.

We observe that [k, k+1) is a representation in C of all such real points x in [x̄s,
x̄f ), and we denote it as x̃. In other words, x̃ is the denotation for the unique
equivalence class in C of x ∈ [k, k+1). The quotient set R/ε is thus the collection
of all rough points.

��
�
ζ

R

�
x

�
xs

�
xf

��
�
0

C

x̃

[x̄s, x̄f︸ ︷︷ ︸)�
x̄s

�
x̄f

For any rough point x̃ in C, x̃+ 1ε and x̃− 1ε are defined respectively as:

x̃+ 1ε ≡ [x̄s + 1, x̄f + 1),

and
x̃− 1ε ≡ [x̄s − 1, x̄f − 1).

The rough points x̃ + 1ε and x̃ − 1ε are said to be contiguous to x̃. Quite
similarly, x̃+ 2ε, x̃+ 3ε, etc. are defined.
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2.1 Rough Point-Rough Point Relations

Three binary relations.η,≺η,0η may be defined on the tolerance approximation
space T with a tolerance measure η (∈ R+) [7]. Let x, y ∈ R.

(P1) Identity Axiom (.η) :
x .η y ⇔ (|x− y| < η)

(P2) Lesser Inequality Axiom (≺η) :
x ≺η y ⇔ (x ≤ y − η)

(P3) Greater Inequality Axiom (0η) :
x 0η y ⇔ (x ≥ y + η)

In contrast, we observe the following five relations on the set of rough points
defined in the communicative approximation space C with a granularity measure
ε. Let ã ≡ [ ās, āf ) and b̃ ≡ [ b̄s, b̄f ) be two rough points.

1. Before Axiom (<ε) :
ã <ε b̃⇔ (āf < b̄s) (ã before b̃)

�� C︷︸︸︷b̃︸︷︷︸̃
a

2. Before Equality Axiom (=<ε) :
ã =<ε b̃⇔ (āf = b̄s) (ã equalsBefore b̃)

�� C︷︸︸︷b̃︸︷︷︸̃
a

3. Exact Equality Axiom (=eε) :
ã =eε b̃⇔ (ās = b̄s) (ã equalsExact b̃)

The relations After Equality, and After, are defined in a dual manner.

Observation 2. Let ã = [ās, āf ) and b̃ = [b̄s, b̄f) be two rough points.

1. If ã <ε b̃, there is an integer k > 1 such that b̃ = ã+kε. If ã =<ε b̃, b̃ = ã+1ε,
i.e. ã, b̃ are contiguous.

2. ã <ε b̃ if and only if there is a rough point c̃ such that ã <ε c̃ and c̃ <ε b̃, or
ã =<ε c̃ and c̃ =<ε b̃, or ã <ε c̃ and c̃ =<ε b̃, or ã =<ε c̃ and c̃ <ε b̃.

3. The equalsExact relation is an equivalence relation on the set of rough points.
It is, in fact, a congruence relation with respect to the equalsBefore and
equalsAfter relations: ã =eε b̃ and b̃Rc̃ imply ãRc̃, where R is =<ε or =>ε.

4. The before and after relations are transitive.
5. The relations in the pairs (before, after), and (equalsBefore, equalsAfter) are

converses of each other: ã <ε b̃⇔ b̃ >ε ã; ã =<ε b̃⇔ b̃ =>ε ã.
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Remark 1. The correspondence between the set of all pairs of rough points and
the set of all Rough Point-Rough Point relations defines a function.

Note 2. We shall drop the ε subscript in all our notations to make them more
readable, but they would be assumed to be valid in some communicative ap-
proximation space C with a granularity ε.

Mapping Point-Point Relations in C and T. As stated earlier, we consider
a tolerance approximation space T with tolerance measure η = ε. The transition
from point-point relations in T to those in C, and vice-versa is given by the
following propositions. We drop the subscript ε in the notation of the T-relations.

Proposition 1. T to C: For x, y ∈ R, the T-relations defined between them
through (P1)− (P3) are ≺, ., and 0. Then the possible C-relations between the
corresponding rough points x̃, ỹ are given in the table on the left.

T-Relation C-Relation
(a) ≺ <, =<

(b) . =<, =e, =>

(c) 0 =>, >

C-Relation T-Relation
(a) < ≺
(b) =< ., ≺
(c) =e .
(d) => ., 0
(e) > 0

Proposition 2. C to T: Let x̃, ỹ be rough points. The possible T-relations
between any two real points x ∈ x̃, y ∈ ỹ are given in the table on the right.

3 Rough Interval

Definition 2. A rough interval is the union of any finite number of contigu-
ous rough points x̃1, x̃2, ..., x̃k.

A rough point, in particular, is also a rough interval. Further, considering the
rough interval x̃1 ∪ x̃2 ∪ ...∪ x̃k, one observes that for any x ∈ x̃1, y ∈ x̃k, x̃1 =
x̃, x̃2 = x̃ + 1, ..., x̃k = ỹ. In the terminology of rough set theory, for all such
x, y, the intervals X ≡ [x, y] are therefore roughly equal. They share the same
upper approximation, which is the rough interval in question, and the same lower
approximation (empty for k = 1, 2, and x̃2 ∪ x̃3 ∪ ... ∪ ˜xk−1 for (k ≥ 3)).

We denote the rough interval x̃1 ∪ x̃2 ∪ ... ∪ x̃k as X̃ – corresponding to any
real interval X ≡ [x, y] with x, y as above. Another denotation used would be
[x̃, ỹ], to indicate the ‘starting rough point’ and ‘end rough point’ of the rough
interval.

�� C︸︷︷︸̃
x

︸︷︷︸̃
y

�
0

��
x X̃ = [x̃, ỹ]

��
y
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Any real interval X is thus a rough set in the communicative approximation
space C, and X̃ is its upper approximation. A rough interval, on the other hand,
is a definable/exact set in C. The lower approximation X of X in C is the rough
interval [x̃+ 1, ỹ− 1]. It would also be termed the interior of the rough interval
X̃ . If x̃, ỹ are contiguous or equal, X is empty.

In the degenerate case x = y, i.e. when X = {x}, X̃ is just the rough point
x̃. Generally, if x < y, we can have any of the three possibilities (i) x̃ < ỹ, (ii)
x̃ =< ỹ, or (iii) x̃ =e ỹ. As noted in Observation 2, in case (i), ỹ = x̃ + k, for
some integer k and so X̃ = x̃∪ x̃+1∪ x̃+2∪ ...∪ x̃+k. In case (ii), X̃ = x̃∪ x̃+1.
(iii) gives X̃ = x̃ again.

Remark 2. Having said this, we observe that most discussions on interval alge-
bras in tolerance spaces assume that |I| � η for any real interval I, and tolerance
measure η. For realistic discourse on a rough interval x̃1 ∪ x̃2 ∪ ...∪ x̃k, we would
expect that k � 1. Minimally, for a non-empty interior, we consider intervals
with at least four contiguous rough points, i.e. we assume x̃1 + 1 < x̃k.

3.1 Rough Point-Rough Interval Relations

Given a point x in R, and a real interval I, we have the following binary relations
between x and I in the tolerance approximation space T with a tolerance η:

(PI1) x− I ⇔ x < i1 − η
(PI2) x b I ⇔ x . i1 ⇔ |i1 − x| < η
(PI3) x i I ⇔ x ∈ (i1 + η, i2 − η)
(PI4) x f I ⇔ x . i2 ⇔ |i2 − x| < η
(PI5) x+ I ⇔ x > i2 + η

In C, a rough point x̃ and a rough interval Ĩ ≡ [̃i1, ĩ2] have nine possible
relations:

1. x̃ before Ĩ (<): (x̃ < Ĩ)⇔ (x̃ < ĩ1)
2. x̃ startsBefore Ĩ (s<): (x̃ s< Ĩ) ⇔ (x̃ =< ĩ1)
3. x̃ startsExact Ĩ (se): (x̃ se Ĩ) ⇔ (x̃ =e ĩ1)
4. x̃ startsAfter Ĩ (s>): (x̃ s> Ĩ) ⇔ (x̃ => ĩ1)
5. x̃ interior Ĩ (in): (x̃ in Ĩ) ⇔ (̃i1 < x̃ < ĩ2)

It may be remarked that the interior relation exists if and only if the interior
of the rough interval has at least three contiguous rough points.

6. x̃ finishesBefore Ĩ (f<): (x̃ f< Ĩ) ⇔ (x̃ =< ĩ2)
7. x̃ finishesExact Ĩ (fe): (x̃ fe Ĩ) ⇔ (x̃ =e ĩ2)
8. x̃ finishesAfter Ĩ (f>): (x̃ f> Ĩ) ⇔ (x̃ => ĩ2)
9. x̃ after Ĩ (>): (x̃ > Ĩ)⇔ (x̃ > ĩ2)

Mapping Point-Interval Relations in C and T. As in Section 2.1, we assume
that the tolerance approximation space T has the tolerance measure η = ε.
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Proposition 3. T to C: Consider a real point x, a real interval I ≡ [i1,i2], and
the corresponding rough point x̃ and rough interval Ĩ. The possible C-relations
between x̃ and Ĩ are given as follows.

T-Relation C-Relation
(a) − (x < i1 - ε) <, s<

(b) b (|i1 − x| < ε) s<, se, s>

(c) i (x ∈ (i1 + ε, i2 − ε)) s>, in, f<

(d) f (|i2 − x| < ε) f<, fe, f>

(e) + (x > i2 + ε) f>, >

Proposition 4. C to T: Let x̃ be a rough point and Ĩ ≡ [ĩ1, ĩ2] a rough interval
corresponding to any real interval I. The C to T mappings are unique, except
for C-Relations s< and f>, for which the T-Relations are {−, b} and {f , +}
respectively.

4 Relations between Rough Intervals

Relations between two rough intervals Ã (≡ [ã1, ã2]) and B̃ (≡ [b̃1, b̃2]) are defined
by the relations that the starting rough point ã1 and the end rough point ã2 of Ã
have with the rough interval B̃. Any such relation shall be represented by a pair
(R1, R2), provided ã1R1B̃, and ã2R2B̃, where R1, R2 denote any of the relations
defined in Section 3.1.
For example: Ã (<, f<) B̃ ⇔ (ã1 < B̃) and (ã2 f< B̃).

Remark 3. Due to the non-empty interior constraint, (ã1 + 1ε < ã2) ∧ (b̃1 +
1ε < b̃2), some Rough Interval-Rough Interval Relations are not acceptable,
e.g. (Ã(s>, <)B̃) is not acceptable as ã2 < B̃ and ã1 < ã2 ⇒ ã1 < B̃ which
contradicts Ã s> B̃.

So, we have the following possible relations between two rough intervals Ã and
B̃ – given in the Table 1.

Observation 3. Inclusion: Considering ordinary set inclusion, we have
1. Ã ⊂ B̃ ⇔ Ã (=e<,=><,=>e, se, s>, cb, f<, fe) B̃, and
2. Ã ⊆ B̃ ⇔ Ã (=e<,=ee,=><,=>e, se, s>, cb, f<, fe) B̃.

One may define containment (⊃/⊇) dually.

4.1 Mapping Interval-Interval Relations from Toleranced Real
Model

Proposition 5. Interval-interval relations are written concatenated from the
point-interval relations: thus the notation A bf B indicates that interval A be-
gins (b) and finishes (f) at the same points as B, i.e., the intervals A and B are
equal. There are 13 relations between two real intervals in the Toleranced Real
Model [7]. The Rough Set Model relations for corresponding rough intervals are
given below for seven relations (the other six are inverses of cases a-f).
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Table 1. Relations between two rough intervals Ã[ã1, ã2] and B̃[̃b1, b̃2]; 19
(including inverses) of the 33 relations are shown; the others are fin-
ishedBy{After,Exact,Before}, contains, starts{Before,Exact,After} which have inverses
in finishes{After,Exact,Before}, containedBy, startedBy{Before,Exact,After} respec-
tively. (Yes, do let us know if you can suggest some more readable names!)

Ã Relation B̃ Definition B̃ Relation Ã
Ã before B̃ (<) (Ã < B̃) ⇔ (ã2 < B̃) B̃ after Ã
Ã meetsBefore B̃(m<) (Ã m< B̃)⇔ (ã2 s< B̃) B̃ metByBefore Ã
Ã meetsExact B̃(me) (Ã me B̃)⇔ (ã2 se B̃) B̃ metByExact Ã
Ã meetsAfter B̃ (m>) (Ã m>B̃) ⇔ (ã2 s>B̃) B̃ metByAfter Ã
Ã overlaps B̃ (o) (Ã o B̃)⇔ ((ã1 < B̃) ∧(ã2 i B̃)) B̃ overlappedBy Ã
Ã equalsBeforeBefore B̃ (=<<) (Ã =<< B̃)⇔ ((ã1 s< B̃) ∧(ã2 f< B̃)) B̃ equalsAfterAfter Ã
Ã equalsBeforeExact B̃(=<e) (Ã =<e B̃)⇔ ((ã1 s< B̃) ∧(ã2 fe B̃)) B̃ equalsAfterExact Ã
Ã equalsBeforeAfter B̃ (=<>) (Ã =<> B̃)⇔ ((ã1 s< B̃) ∧(ã2 f> B̃)) B̃ equalsAfterBefore Ã
Ã equalsExactBefore B̃ (=e<) (Ã =e< B̃)⇔ ((ã1 se B̃) ∧(ã2 f< B̃)) B̃ equalsExactAfter Ã
Ã equalsExactExact B̃(=ee): (Ã =ee B̃)⇔ ((ã1 se B̃) ∧ (ã2 fe B̃)) B̃ equalsExactExact Ã

Tolerance Model Relation Rough Set Model Relations
(a) −− (before) <, m<

(b) −b (meets) m<, me, m>

(c) −i (overlaps) m>, o, fb>, s<, =<<

(d) −f (finishedBy) fb>, fbe, fb<, =<<, =<e, =<>

(e) −f −+ (contains) fb<, c, =<>, sb>
(f) −f bi (starts) s<, se, s>, =<<, =e<, =><

(g) −f bf (equals) any one of all 9 equalities (=<<, =<e, etc.)

From Rough Set Model to Toleranced Real Model. Two rough intervals
can have 33 Rough Set Model relations among them. The corresponding relations
in Toleranced Real Model for the corresponding real points and real intervals
can be determined as in the earlier cases, but are omitted here.

5 Algebraic Aspects: A Preliminary Study

Rough sets have been extensively studied from the algebraic viewpoint (cf. [3]).
In particular, a study in the context of relation algebras [6] may be found, for
instance, in the work of Düntsch [4] where, following Tarski, a generalized notion
of a ‘rough relation algebra’ is defined. Our interest here is slightly different. It
is well-known that points and intervals on the rationals or reals constitute basic
examples of relation algebras. We investigate the relational algebraic structure
obtained from the rough points defined here.

Let us consider the communicative space C and the field R(C) of binary
relations over R/ε (the collection of all rough points in C), i.e.

R(C) ≡ (P(R/ε× R/ε),∪,c , ∅,R/ε× R/ε,� , ; , 1′),
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where P represents the power set, � is the converse operation, ; the composition
operation and 1′ the identity relation.

Now let us look at the set of five relations between rough points on C (cf.
Section 2.1), X0 ≡ {<,=<,=e,=>, >}, and the subalgebra S(X0) of R(C) gen-
erated by X0. As noted in Observation 2(5), < is > �, and =< is =>

�. In the
following proposition, we mention some results of composition of the relations
in X0. For any relation R, let R ;n R denote R;R; . . . ;R (n times).

Proposition 6

1. <;n+1< ⊂ <;n< ⊂ . . . ⊂ <;< ⊂ <.
2. <;n < = <; (=<;2n−1 =<).
3. =<;n =< ⊂ <.

However, =<;n =< is not comparable with =<;m =<, where m �= n.

Using Observation 1, we see that the set of relations obtained by the composition
and converse operations on elements of X0 is isomorphic to the set Z of integers.
Moreover, from Proposition 6 we conclude that the subalgebra S(X0) is infinite.
Further, closure with respect to ∪, ∩, and complementation (to make a Boolean
algebra) gives that S(X0) is isomorphic to the Boolean algebra of all finite and
co-finite subsets of Z. Thus, S(X0) is isomorphic to a subalgebra of the complex
algebra [6] (P(Z),∪,c ,� , ; , 1′) of the group (Z,+, 0).1

6 Conclusion

In this paper we present an approach for mapping quantities in a communicative
approximation space where indistinguishability relations are modeled through
rough intervals. In this work, we assume that intervals exhibit similar tolerances
at both end points; where this does not hold, one needs to construct a formalism
for asymmetric relations. The rough interval formalism introduced here is aimed
merely at capturing the communication tolerances where explicit quantities are
mentioned, how such tolerances are to be identified remains a complex question
in pragmatics, and is beyond the scope of the present work.

A preliminary study of the relational algebraic aspects of the constructs de-
fined here, has been reported in this article. Much more needs to be investigated,
for instance, structures that are formed by rough intervals. In any case, it is clear
that we shall obtain an infinite relation algebra for rough intervals as well.

Finally, we have assumed that the communicative tolerance ε is about the
same as the observation tolerance ±τ . However, sometimes these two may be
quite disparate – e.g. we may read that the time is “9:23.43”, but we may not use
such an accuracy in reporting it if we know that the listener has no use for such
precision. Thus, situations with asymmetric observational and communicational
tolerance also deserve further analysis, which has not been attempted here.

1 Discussions with Robin Hirsch and Ian Hodkinson helped in relating our algebra to
the group relation algebra over Z.
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Another important aspect is that of making transitive inferences between com-
municatively specified events. There is a large literature on complexity classes
associated with transitive inference; for interval algebras defined on the real line,
subalgebras involving contiguous relations are usually found to be tractable,
whereas the full algebras are generally NP-hard [13]. We suspect this may also
be the case for transitivity here, but this requires formal verification.
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Abstract. There is a natural generalization of an indiscernibility relation used
in rough set theory, where rather than partitioning the universe of discourse into
indiscernibility classes, one can consider a covering of the universe by similarity-
based neighborhoods with lower and upper approximations of relations defined
via the neighborhoods. When taking this step, there is a need to tune approx-
imate reasoning to the desired accuracy. We provide a framework for analyzing
self-adaptive knowledge structures. We focus on studying the interaction between
inputs and output concepts in approximate reasoning. The problems we address
are:

– given similarity relations modeling approximate concepts, what are similar-
ity relations for the output concepts that guarantee correctness of reasoning?

– assuming that output similarity relations lead to concepts which are not ac-
curate enough, how can one tune input similarities?

1 Introduction

There is a natural generalization of relational databases where one uses intuitions from
rough set theory [13] and rather than storing and querying crisp relations, one stores and
queries rough relations consisting of an upper and lower approximation of the implicit
crisp relation whose definition one tries to approximate [3,8]. There is also a natural
generalization of an indiscernibility relation used in rough set theory, where rather than
partitioning the universe of discourse U into indiscernibility classes, one can consider
a covering of U by similarity-based neighborhoods (see, e.g., [5,11,14,15,16]) with
lower and upper approximations of relations defined via the neighborhoods. To mark the
difference, we will use the terms approximate relations and approximate databases in-
stead of rough relations and rough databases. Approximate databases have been shown
to be quite versatile in many application areas requiring the use of approximate knowl-
edge structures [4,5].
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In [4] a framework for the specification, construction and management of approx-
imate knowledge structures for intelligent artifacts has been proposed. The structures
used there are called approximation transducers and approximation trees and the un-
derlying framework is based on a generalization of deductive database technology. It
is assumed that certain primitive concepts have been acquired, e.g., through a learning
process where approximations of concepts are induced from the data. It is important to
emphasize that the induced concepts are fluid in the sense that additional learning may
modify the concept. Assuming these primitive concepts as given one then uses them
as the ur-elements in knowledge representation structures. One can view this idea as
webs of imprecise knowledge, gradually incremented with additional approximate and
sometimes crisp facts and knowledge. Approximate definitions of concepts appear to
be the rule rather than the exception.

Specifically, webs of approximate knowledge, as proposed in [4], are constructed
from primitive concepts together with approximation transducers providing an approx-
imate definition of one or more output concepts in terms of a set of input concepts and
consist of three components:

– an input consisting of one or more approximate concepts, some of which might be
primitive

– an output consisting of one or more new and possibly more abstract concepts de-
fined partly in terms of the input concepts

– a local logical theory specifying constraints or dependencies between the input con-
cepts and the output concepts. The theory may also refer to other concepts not ex-
pressed in the input.

The local logical theory specifies dependencies or constraints an expert for the applica-
tion domain would be able to specify. Generally the form of the constraints would be
in terms of some necessary and some sufficient conditions for the output concept. The
local theory is viewed as a set of crisp logical constraints specified in the language of
first-order logic. During the generation of the approximate concept output by the trans-
ducer, the crisp relations mentioned in the local theory are substituted with the actual
approximate definitions of the input. Either lower or upper approximations of the input
concepts may be used in the substitution. The resulting output specifies the output con-
cept in terms of newly generated lower and upper approximations. It may then be used
as input to other transducers creating approximation trees. The resulting tree represents
a web of approximate knowledge capturing intricate and complex dependencies among
an agent’s conceptual vocabulary.

When taking this step, there is a need to ensure a form of stability or correctness
of approximate reasoning. In the current paper we focus on studying the interaction
between approximate concepts constituting reasoning inputs and outputs. The problems
we address are:

– given similarity relations modeling approximate concepts, what are similarity rela-
tions for the output concepts that guarantee correctness of reasoning?

– assuming that output similarity relations lead to concepts which are not accurate
enough, how can one tune input similarities?
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The paper is structured as follows. Section 2 recalls necessary preliminaries. In Sec-
tion 3 we discuss and motivate our definition of correctness of approximate reasoning.
Section 4 illustrates the use of the general technique on first-order formulas and natural
definitions of their approximations. In Section 5 we discuss how the proposed method-
ology can be used in tuning approximate knowledge structures. Finally, Section 6 con-
cludes the paper.

2 Preliminaries

Let U be a set and σ ⊆ U ×U a binary relation, further called a similarity relation. For
any set A ⊆ U , the lower approximation of A w.r.t. σ, denoted by Aσ+ and the upper
approximation of A w.r.t. σ, denoted by Aσ⊕ are defined as follows:

Aσ+
def= {x | ∀y[σ(x, y) → A(y)]} (1)

Aσ⊕
def= {x | ∃y[σ(x, y) ∧A(y)]}. (2)

We will use second-order quantifier elimination, in particular the technique of [7] as
well as techniques for analyzing correspondences between similarities and approxima-
tions developed in [9].

As a basis for doing quantifier elimination, we will use the following lemma of Ack-

ermann [1] (see also, e.g., [7,10]), where Ψ
[
P (α) ← [Φ]xα

]
means that every occur-

rence of P in Ψ is to be replaced by Φ where the actual arguments α of P , replaces the
variables of x in Φ (and the bound variables are renamed if necessary).

Lemma 1. Let P be a predicate variable and let Φ and Ψ(P ) be first–order formulas
such that Φ contains no occurrences of P . Then:

– if Ψ(P ) is positive w.r.t. P then

∃P{∀x [P (x̄)→ Φ(x̄, ȳ)] ∧ Ψ(P )
} ≡ Ψ

[
P (α) ← [Φ]x

α

]
– if Ψ(P ) is negative w.r.t. P then

∃P{∀x [Φ(x̄, ȳ)→ P (x̄)] ∧ Ψ(P )
} ≡ Ψ

[
P (α) ← [Φ]x

α

]
. �

3 Correctness of Approximate Reasoning

In the reminder of the paper we mainly focus on sets. Of course, relations are sets
of tuples, so are covered, too. Observe also that there is a natural correspondence
between sets and formulas. Namely, a formula defines a set of tuples satisfying the
formula. We shall sometimes use both sets and formulas, where it does not lead to a
misunderstanding.

Let sets A,B, . . . , C and similarity relations σA, σB , . . . , σC be given. Assume we
define a new set R = ΓR(A,B, . . . , C) (see Figure 1). Since the sets A,B, . . . , C
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R = ΓR(A, B, . . . , C)

�������� ����

����

. . .
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A B C

R

Fig. 1. A schema of defining approximate set R on the basis of approximations of input sets
A, B, . . . , Ak

are only given by their approximations Ã =
〈
Aσ+

A
, Aσ⊕

A

〉
, B̃ =

〈
Bσ+

B
, Bσ⊕

B

〉
, . . . ,

C̃ =
〈
Cσ+

C
, Cσ⊕

C

〉
, R is also only approximated, so we consider:

Γ̃R(Ã, B̃, . . . , C̃) def=
〈
Γ̃+

R (Ã, B̃, . . . , C̃), Γ̃⊕
R (Ã, B̃, . . . , C̃)

〉
, (3)

where the first coordinate, Γ̃+
R (Ã, B̃, . . . , C̃), serves as the lower approximation of R

and the second coordinate, Γ̃⊕
R (Ã, B̃, . . . , C̃), serves as the upper approximation of R.

Example 1. Assume we defineR to be the disjunctionA∨B. Then ΓR(A,B)
def≡ A∨B

and for some σA, σB , we have that Ã =
〈
Aσ+

A
, Aσ⊕

A

〉
and B̃ =

〈
Bσ+

B
, Bσ⊕

B

〉
. An

exemplary Γ̃R can be given by Γ̃R(Ã, B̃) def=
〈
Aσ+

A
∨Bσ+

B
, Aσ⊕

A
∨Bσ⊕

B

〉
. �

Remark 1. Note that, for clarity of presentation, we deal with sets of objects of the same
type. For example, ifA is the set of red objects andB is the set of large objects, then σA

is not the similarity on colors but on objects w.r.t. colors. Similarly, σB is a similarity of

objects w.r.t. their size. Therefore, for example σR, where R
def= A ∨ B, is a similarity

on objects w.r.t. both color and size. �

The question is how well is the crisp set R approximated and whether the method
expressed by (3) is correct. We then have the following definition.

Definition 1. LetσA, σB, . . . , σC , σ be given similarity relations. We say that the method
expressed by (3) is correct w.r.t. σA, σB, . . . , σC , σ provided that for all A,B, . . . , C,

Γ̃+
R (Ã, B̃, . . . , C̃) ⊆ Rσ+ (4)

Rσ⊕ ⊆ Γ̃⊕
R (Ã, B̃, . . . , C̃). (5)

i.e., the computed lower approximation of R is included in the actual lower approx-
imation of R and the computed upper approximation of R includes the actual upper
approximation of R. �
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Since R = ΓR(A,B, . . . , C), inclusions (4) and (5) are equivalent to:

Γ̃+
R (Ã, B̃, . . . , C̃) ⊆ ΓR(A,B, . . . , C)σ+ (6)

ΓR(A,B, . . . , C)σ⊕ ⊆ Γ̃⊕
R (Ã, B̃, . . . , C̃). (7)

4 Correctness of Computing First-Order Formulas

4.1 The Case of Negation

We define R as the negation of A, so Γ¬(A) def= ¬A. Let us consider the method of
computing negation given by:

Γ̃¬(Ã) def=
〈
−Aσ⊕

A
,−Aσ+

A

〉
. (8)

According to Definition 1, the method expressed by (8) is correct provided that the
following conditions hold:

∀A[−Aσ⊕
A
⊆ (¬A)σ+

]
(9)

∀A[(¬A)σ⊕ ⊆ −Aσ+
A

]
. (10)

We have the following theorem.

Theorem 1. Each of the formulas (9) and (10) is equivalent to

∀x∀y[σ(x, y) → σA(x, y)]. (11)

Proof. Consider first formula (9). By (1) and (2), it is equivalent to

∀A∀x[¬∃y[σA(x, y) ∧A(y)] → ∀z[σ(x, z)→ ¬A(z)]
]
,

i.e., to ¬∃x∃A[∀y[A(y) → ¬σA(x, y)] ∧ ∃z[σ(x, z) ∧ A(z)]
]
. Lemma 1 is now ap-

plicable and results in its equivalent ¬∃x∃z[σ(x, z) ∧ ¬σA(x, z)
]
, clearly equivalent

to (11).
The proof for (10) is analogous. �

Note that any σ satisfying (11) guarantees that the method of computing negation ex-
pressed by (8) is correct w.r.t. σA, σ.

The maximal σ satisfying (11) is the one modeling the worst accuracy, given σA.

Such σ is given by σ(x, y)
def≡ σA(x, y). As a consequence, one also obtains that the

method expressed by (8) is not correct for any σ not included in σA.

4.2 The Case of Disjunction

We define R as the disjunction A ∨ B, so Γ∨(A,B) def= A ∨ B. Let us consider the
method of computing disjunction, given by:

Γ̃∨(Ã, B̃) def=
〈
Aσ+

A
∪Bσ+

B
, Aσ⊕

A
∪Bσ⊕

B

〉
. (12)



332 P. Doherty and A. Szałas

According to Definition 1, the method expressed by (12) is correct provided that the
following conditions hold:

∀A∀B[(Aσ+
A
∪Bσ+

B
) ⊆ (A ∨B)σ+

]
(13)

∀A∀B[(A ∨B)σ⊕ ⊆ (Aσ⊕
A
∪Bσ⊕

B
)
]
. (14)

We have the following theorem.

Theorem 2. Each of the formulas (13) and (14) is equivalent to

∀x∀y[σ(x, y) → (σA(x, y) ∧ σB(x, y)
)
]. (15)

Proof. Consider formula (13). By (1), it is equivalent to

∀A∀B∀x[∀y[σA(x, y) → A(y)] ∨ ∀y[σB(x, y)→ B(y)] →
∀z[σ(x, z)→ (A(z) ∨B(z))]

]
,

i.e., to

¬∃x∃A∃B[∀y[σA(x, y) → A(y)] ∨ ∀y[σB(x, y) → B(y)]∧
∃z[σ(x, z) ∧ ¬A(z) ∧ ¬B(z)]

]
and further to

¬∃z∃x∃A∃B[∀y[σA(x, y)→ A(y)] ∨ ∀y[σB(x, y) → B(y)]∧
σ(x, z) ∧ ∀u[A(u)→ u �= z] ∧ ∀u[B(u)→ u �= z]

]
.

Two successive applications of Lemma 1 result now in

¬∃z∃x[∀y[σA(x, y) → y �= z] ∨ ∀y[σB(x, y) → y �= z] ∧ σ(x, z)
]
,

which is equivalent to ¬∃z∃x[(¬σA(x, z) ∨ ¬σB(x, z)) ∧ σ(x, z)], i.e., to (15).
The proof for (14) is analogous. �

The maximal σ satisfying (15), modeling the worst accuracy, is given by

σ(x, y)
def≡ σA(x, y) ∧ σB(x, y). (16)

As a consequence, one obtains that the method expressed by (15) is not correct for any
σ not included in σA ∧ σB .

4.3 The Case of Conjunction

We define R as the conjunction A ∧ B, so Γ∧(A,B) def= A ∧ B. Let us consider the
method of computing disjunction, given by:

Γ̃∧(Ã1, Ã2)
def=
〈
Aσ+

A
∩Bσ+

B
, Aσ⊕

A
∩Bσ⊕

B

〉
. (17)

According to Definition 1, the method expressed by (17) is correct provided that the
following conditions hold:

∀A∀B[(Aσ+
A
∩Bσ+

B
) ⊆ (A ∧B)σ+

]
(18)

∀A∀B[(A ∧B)σ⊕ ⊆ (Aσ⊕
A
∩Bσ⊕

B
)
]
. (19)

The following theorem can be proved similarly to Theorem 2.

Theorem 3. Each of the formulas (18) and (19) is equivalent to (15). �

The maximal σ that guarantees correctness of (17) is then also given by (16).
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4.4 The Case of Existential Quantification

We define R as the existential quantification ∃x[A(x, ȳ)], where ȳ is the tuple of all
free variables in A(x, ȳ) except for x. Therefore, given a universe U , Γ∃x(A(x, ȳ)) is
defined as the set of tuples of arity the same as ȳ, for which there is w ∈ U such that
A(w, ū) is satisfied in a given interpretation.

Let us consider the method of computing existential quantification given by:

Γ̃∃(Ã) def=
〈
∃x[A(x, ȳ)σ+

A

]
, ∃x[A(x, ȳ)σ⊕

A

]〉
. (20)

According to Definition 1, the method expressed by (20) is correct provided that the
following conditions hold:

∀A∀ȳ[∃x[A(x, ȳ)σ+
A

] ⊆ (∃x[A(x, ȳ)])σ+

]
(21)

∀A∀ȳ[(∃x[A(x, ȳ)])σ⊕ ⊆ ∃x[A(x, ȳ)σ⊕
A

]]
. (22)

Let z̄ = 〈z1, . . . , zk〉 be a tuple of variables and x be a variable. Then xz̄ stands for the

concatenation of x and z̄, i.e., xz̄
def= 〈x, z1, . . . , zk〉.

We have the following theorem.

Theorem 4. Formula (21) is equivalent to (23) and formula (22) is equivalent to (24):

∀ȳ∀z̄[σ(ȳ, z̄)→ ∀x∃u[σA(xȳ, uz̄)]
]

(23)

∀ȳ∀z̄[σ(ȳ, z̄)→ ∀x∃u[σA(uȳ, xz̄)]
]
. (24)

Proof. Let us prove the equivalence of (21) and (23).
Formula (21) is equivalent to ∀A∀ȳ[∃x[A(x, ȳ)σ+

A

]→ (∃x[A(x, ȳ)])σ+

]
, i.e., to

¬∃A∃x∃ȳ[A(x, ȳ)σ+
A
∧ ¬(∃x[A(x, ȳ)])σ+

]
.

By (1), this formula is equivalent to

¬∃A∃x∃ȳ[∀x′ȳ′[σA(xȳ, x′ȳ′) → A(x′, ȳ′)] ∧ ¬∀z̄[σ(ȳ, z̄)→ ∃u[A(u, z̄)]]
]
.

Applying Ackermann’s lemma (Lemma 1), we obtain the equivalent formula

¬∃x∃ȳ[¬∀z̄[σ(ȳ, z̄)→ ∃u[σA(xȳ, uz̄)]
]
.

i.e., ∀ȳ∀z̄[σ(ȳ, z̄) → ∀x∃u[σA(xȳ, uz̄)]
]
, which is exactly the required formula (23).

The proof of equivalence of (22) and (24) is analogous. �

The maximal σ satisfying (23) and (24) is then given by

σ(ȳ, z̄)
def≡ ∀x∃u[σA(xȳ, uz̄)] ∧ ∀x∃u[σA(uȳ, xz̄)]. (25)

4.5 The Case of Universal Quantification

We define R as the universal quantification ∀x[A(x, ȳ)], where ȳ is the tuple of all free
variables in A(x, ȳ) except for x. Therefore, given a universe U , Γ∃(∀x[A(x, ȳ)]) is
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defined as the set of tuples of arity the same as ȳ, for which A(w, ū) is satisfied in
a given interpretation for all w ∈ U .

Let us consider the method of computing existential quantification given by:

Γ̃∀(Ã1)
def=
〈
∀x[A(x, ȳ)σ+

A

]
, ∀x[A(x, ȳ)σ⊕

A

]〉
. (26)

According to Definition 1, the method expressed by (26) is correct provided that the
following conditions hold:

∀A∀ȳ[∀x[A(x, ȳ)σ+
A

] ⊆ (∀x[A(x, ȳ)])σ+

]
(27)

∀A∀ȳ[(∀x[A(x, ȳ)])σ⊕ ⊆ ∀x[A(x, ȳ)σ⊕
A

]]
. (28)

The following theorem can be proved by applying the technique used in the proof of
Theorem 4.

Theorem 5.Formula (27) is equivalent to (24) and formula (28) is equivalent to (23).�

The maximal σ is then given by (25).

Remark 2. In general, the result of quantifier elimination may not be as simple as in
Theorems 1–5. In such cases, the maximal similarity relation can be computed using
a suitable form of circumscription. In fact, second-order quantifier elimination is often
successful in such cases (see [7] and for more advanced techniques, e.g., [10,6]). �

5 Tuning Input Relations

Observe that the results of the previous section give us a tool for tuning the accuracy of
input relations to the required accuracy of the result. Namely, if the worst-case similarity
relation is not satisfactory, one has to improve similarities on inputs. Sometimes this
requires to tune sensors or to install better ones.

The following example illustrates this point.

Example 2. Let us define dangerous situations based on temperature readings and the
robot’s distance to the heat source:

D(s)
def≡ S(s) ∧ ∃t[H(s, t)], (29)

whereD(s) states that situation s is dangerous,S(s) states that in situation s the robot’s
distance to the heat source is small and H(s, t) states that temperature t is considered
high in situation s. The intended meaning of (29) is that a situation is dangerous if the
robot’s distance to the heat source is small and there is a reading of temperature which
is considered high.

Here the resulting σ is the similarity on situations, σS which is a similarity on sit-
uations w.r.t. the robot’s distance to the heat source and σH is the similarity on pairs
consisting of situations and temperature measurements. According to Theorems 3 and 4,

∀y∀z[σ(y, z)→ (σS(y, z) ∧ ∀x∃u[σH(xy, uz)] ∧ ∀x∃u[σH(uy, xz)]
)
].
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By formula (25), the worst-case σ is given by the conjunction

σS(y, z) ∧ ∀x∃u[σH(xy, uz)] ∧ ∀x∃u[σH(uy, xz)]. (30)

Assume now that, for example, σ(s, s′) holds for situations s and s′ such that s is
considered dangerous and s′ is considered not dangerous. In such a case one would
not make them similarly dangerous, so one has to exclude the pair 〈s, s′〉 from the
conjunction (30), which can only be done by shrinking σS or σH . Assuming that these
similarities are based on the accuracy of measurements, this can only be done by tuning
or replacing one of respective sensors (or or both of them). �

6 Conclusions

In the paper we have proposed a notion of correctness of approximate reasoning based
on logical formalisms. To formally verify correctness of investigated techniques we
used second-order quantifier elimination. In fact, all calculations used in the paper can
automatically be carried out using the DLS algorithm of [7]. The use of second-order
logic makes the proposed method rather general and widely applicable.

Many calculations can also be automated by using the algorithm SQEMA [2] by
noticing that approximations may be expressed as modalities.

References

1. Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik.
Mathematische Annalen 110, 390–413 (1935)

2. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and completeness in
modal logic: I. The core algorithm SQEMA. Logical Methods in Computer Science 2(1-5),
1–26 (2006)

3. Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closed-
world reasoning in rough knowledge databases. In: Pal, et al [12]

4. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Approximation transducers and trees:
A technique for combining rough and crisp knowledge. In: Pal, et al [12]

5. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Tech-
niques. A Rough Set Approach. Studies in Fuziness and Soft Computing, vol. 202. Springer,
Heidelberg (2006)

6. Doherty, P., Łukaszewicz, W., Szałas, A.: A reduction result for circumscribed semi-Horn
formulas. Fundamenta Informaticae 28(3-4), 261–271 (1996)

7. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of
Automated Reasoning 18(3), 297–336 (1997)

8. Doherty, P., Magnusson, M., Szałas, A.: Approximate databases: A support tool for approx-
imate reasoning. Journal of Applied Non-Classical Logics 16(1-2), 87–118 (2006); Special
issue on Implementation of logics

9. Doherty, P., Szałas, A.: On the correspondence between approximations and similarity. In:
Tsumoto, S., Slowinski, R., Komorowski, J., Grzymala-Busse, J.W. (eds.) RSCTC 2004.
LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)

10. Gabbay, D.M., Schmidt, R., Szałas, A.: Second-Order Quantifier Elimination. In: Founda-
tions, Computational Aspects and Applications. Studies in Logic, vol. 12. College Publica-
tions (2008)



336 P. Doherty and A. Szałas

11. Liau, C.-J.: An overview of rough set semantics for modal and quantifier logics. Int. Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 8(1), 93–118 (2000)

12. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neuro Computing: Techniques for Com-
puting with Words. Springer, Heidelberg (2003)

13. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic
Publishers, Dordrecht (1991)

14. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27,
245–253 (1996)
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Abstract. Unit operations are some special functions on sets. The con-
cept of the unit operation originates from researches of U.Wybraniec-
Skardowska. The paper is concerned with the general properties of such
functions. The isomorphism between binary relations and unit operations
is proved. Algebraic structures of families of unit operations correspond-
ing to certain classes of binary relations are considered. Unit operations
are useful in Pawlak’s Rough Set Theory. It is shown that unit opera-
tions are upper approximations in approximation space. We prove, that
in the approximation space (U,R) generated by a reflexive relation R the
corresponding unit operation is the least definable approximation if and
only if the relation R is transitive.

Keywords: unit operations, approximation space, upper approxima-
tions, binary relation.

1 Introduction

The basic notion of rough set theory proposed by Pawlak [12,13] is an approxi-
mation space. Originally an approximation space is a pair consisting of a set U
of objects (called universe) and an equivalence relation on U . This equivalence
relation generates a partition of the universe. Equivalence classes of considered
relation may be treated as elementary granules of information. By granule of
information we mean a clump of objects which are drawn towards an object
(Lin [10]). To characterize subsets of the universe two operations are considered
in the rough set theory: a lower approximation and an upper approximation.

The theory of rough sets based on an equivalence relation is not useful in
some applications (e.g.. in an analysis of incomplete information tables (Ste-
fanowski, Tsioukàs [15], Słowiński [14], Grzymała-Busse [5,6])). Therefore many
generalizations of the notion of approximation space were created. We mention
two directions of generalization of approximation space. Firstly, approximation
space may be considered as a pair consisting of a universe U and a covering
of U , i.e. a family of non-empty subsets of U whose union is U (Bonikowski,
Bryniarski, Wybraniec-Skardowska [1], Bonikowski [2], Liu, Sai [11]). On the
other hand, one can consider any binary relation on U (Yao [18], Słowiński [14],
Grzymała-Busse, Rząsa [7], Zhu [20,21]).

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 337–346, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



338 Z. Bonikowski

In this paper by approximation space we mean a pair consisting of a universe U
and a binary relation R on U . We show, that in this case we can use special map-
pings in the power set of U called unit operation. The concept of the unit opera-
tion originates from researches of U.Wybraniec-Skardowska. Unit operations are
upper approximations in approximation space. There are many approximation
mappings (Gomolińska [3,4], Grzymała-Busse, Rząsa [7], Wybraniec-Skardowska
[16]). These approximations are defined using elementary granules generated by
the relation R. Approximations, which values are definable, are very important,
especially in data mining. A set is definable if it is a union of elementary granules
of information. Unit operations may be treated as "standard" approximations
for all relations. Moreover, under special conditions, there are the best upper
approximations.

The paper is organized as follows. In Section 2 a notion of unit operation and
connection between unit operations and binary relations are presented. In the
next section we consider algebraic properties of unit operations. In Section 4 we
recall notions of an approximation space and approximation mappings. Next we
investigate some properties of unit operations treated as upper approximations
due to binary relations, which correspond to the above operations. Section 5
contains a brief summary.

2 Unit Operations

Let U be a non-empty set. The family of all subsets of U will be denoted by
P (U).

Definition 1. A function f :P (U)→ P (U) is called a unit operation if

f(X) =
⋃

x∈X

f ({x}) for any X ⊆ U. (1)

Let us recall some definitions of properties of functions (see e.g. Jónsson, Tarski
[8]).

Definition 2. A function f :P (U)→ P (U) is called:

(a) normal if f(∅) = ∅,
(b) monotonic if X ⊆ Y implies f(X) ⊆ f(Y ) for any X,Y ⊆ U ,
(c) additive if f(X ∪ Y ) = f(X) ∪ f(Y ) for any X,Y ⊆ U ,
(d) completely additive if f

(⋃
t∈T Xt

)
=
⋃

t∈T f (Xt).

It is easy to prove ([17]), that:

Proposition 1. Every unit operation is normal, monotonic, additive and com-
pletely additive function.

Proposition 2. Let f :P (U) → P (U) be a function. The function f is a unit
operation if and only if the function f is normal and completely additive.
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Definition 3. Let f :P (U)→ P (U) be a function. By Rf we denote the relation:

Rf = {(x, y) ∈ U × U : y ∈ f({x})}. (2)

Definition 4. Let R ⊆ U×U be a binary relation. An image relation determined
by R (R-image relation) is a function −→R :P (U)→ P (U) such that:

−→
R (X) = {y ∈ U : ∃x ∈ X.(x, y) ∈ R}. (3)

In particular, for every x ∈ U :
−→
R ({x}) = {y ∈ U : (x, y) ∈ R}. (4)

R-image relations of singletons of U are the same as well known from liter-
ature neighborhoods (Lin [10], Yao [19]), similarity classes (Słowiński [14]) or
R-successors (Grzymała, Rząsa [7]).

Lemma 1. Let R ⊆ U ×U be a binary relation. The R-image relation is a unit
operation.

Lemma 2. Let R,S ⊆ U × U be binary relations. If −→R = −→S then R = S.

Lemma 3. Let f :P (U)→ P (U) be a unit operation. The Rf -image relation is
equal to f .

Lemma 4. Let f :P (U) → P (U) be a function. If there exists a relation R ⊆
U × U such that −→R = f , then the function f is a unit operation.

Let R denote the family of all binary relations and F denote the family of all
unit operations.

Theorem 1. The families R and F are bijective.

Proof. Let g:R→ F be defined for any R ∈ R as follows:

g(R) = −→
R . (5)

By Lemma 1, g is well defined. Let us recall that a function is a bijection if it
is one-to-one (injection) and onto (surjection). From Lemma 2 it follows that g
is an injective mapping. Lemma 3 shows that g is a surjection. Therefore the
function g is a bijection. ()
Corollary 1. If |U | = n, then |F| = 2n2

.

Proof. Let U be an n-element set. Hence there are 2n2
subsets of U × U . By

Theorem 1, there are 2n2
different unit operations, too. ()

According to types of binary relation we may consider different types of unit
operations. In particular, unit operation corresponding to reflexive (symmetric,
antisymmetric, transitive, tolerance, equivalence) relation will be called reflexive
(symmetric, antisymmetric, transitive, tolerance, equivalence) unit operation.
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Proposition 3. Let f be a unit operation.
(a) f is reflexive iff x ∈ f({x}) for any x ∈ U ,
(b) f is symmetric iff y ∈ f({x} ⇐⇒ x ∈ f({y}) for any x, y ∈ U ,
(c) f is antisymmetric iff y ∈ f({x} ∧ x ∈ f({y})⇒ x = y for any x, y ∈ U ,
(d) f is transitive iff f(f({x})) ⊆ f({x}) for any x ∈ U .

Proof. The proof is easy, so we will prove illustrative only (d).
(⇒) Assume f be transitive. Hence the relation Rf is transitive. Let x ∈ X

and z ∈ f(f({x})). By Lemma 3, z ∈ −→Rf (f({x})). By (3), there is w ∈ f({x})
such that (w, z) ∈ Rf . Because f({x}) = −→

Rf ({x}), then (x,w) ∈ Rf . Rf is
transitive, which gives (x, z) ∈ R. Hence z ∈ −→Rf ({x}) = f({x}).

(⇐) Let f(f({x})) ⊆ f({x}) for any x ∈ U , x, y, z ∈ U , (x, y) ∈ Rf and
(y, z) ∈ Rf . Hence y ∈ −→Rf ({x}) and z ∈ −→Rf ({y}). Because y ∈ −→Rf ({x}) =
f({x}), then f({y}) ⊆ f(f({x})) by monoticity of unit operations. Since z ∈−→
Rf ({y}) = f({y}), we conclude by assumption, that z ∈ f({x}). Hence (x, z) ∈
Rf . The relation Rf is then transitive, so f is transitive. ()

3 Algebraic Structures of Unit Operations

Let us define some operations in the family of unit operations.

Definition 5. Let f and g be unit operations, X be a subset of U.
(a) (f ⊕ g)(X) = f(X) ∪ g(X)
(b) (f ⊗ g)(X) =

⋃
x∈X(f({x}) ∩ g({x}))

(c) (�f)(X) =
⋃

x∈X(−f({x}))
Let us observe, that:

(f ⊕ g)({x}) = f({x}) ∪ g({x}) (6)
(f ⊗ g)({x}) = f({x}) ∩ g({x}) (7)

(�f)({x}) = −f({x}) (8)

Proposition 4. Let f and g be unit operations.
(a) f ⊕ g is a unit operation.
(b) f ⊗ g is a unit operation.
(c) �f is a unit operation.

Proof. Let f and g be unit operations and X ⊆ U .

(f ⊕ g)(X)
Def. 5

= f(X) ∪ g(X)
(1)
=
⋃

x∈X

f({x}) ∪
⋃

x∈X

g({x})

=
⋃

x∈X

(f({x}) ∪ g({x}) (6)
=
⋃

x∈X

(f ⊕ g)({x}).

(f ⊗ g)(X)
Def. 5

=
⋃

x∈X

(f({x}) ∩ g({x})) (7)
=
⋃

x∈X

(f ⊗ g)({x}).

(�f)(X)
Def. 5

=
⋃

x∈X

(−f({x})) (8)
=
⋃

x∈X

((�f)({x})). ()
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Let us denote by f0 and f1 the following special unit operations:

f0(X) = ∅, for anyX ⊆ U. (9)

f1(X) =
{∅, for X = ∅,
U, for any non-empty X ⊆ U .

(10)

Theorem 2. The families 〈R,∪,∩,−, ∅, U×U〉 and 〈F ,⊕,⊗,�, f0, f1〉 are iso-
morphic.

Proof. Let g:R → F be defined by (5). From Theorem 1 it follows that G is a
bijection. It remains to prove that g preserves operations.

Assume R and S are binary relations and X ⊆ U . First we will show, that
g(R ∪ S) = g(R)⊕ g(S).

g(R ∪ S)(X)
(5)
= −−−→
R ∪ S(X)

(3)
= {y ∈ U : ∃x ∈ X.(x, y) ∈ R ∪ S)}

= {y ∈ U : ∃x ∈ X.((x, y) ∈ R ∨ (x, y) ∈ S)}
= {y ∈ U : ∃x ∈ X.((x, y) ∈ R or ∃x ∈ X.(x, y) ∈ S)}
= {y ∈ U : ∃x ∈ X.(x, y) ∈ R} ∪ {y ∈ U : ∃x ∈ X.(x, y) ∈ R}
(3)
= −→

R (X) ∪−→S (X) = (g(R)⊕ g(S))(X)

Now assume z ∈ X and z ∈ g(R ∩ S)(X) = −−−→
R ∩ S(X). By (3), there exists

x ∈ X such that (x, z) ∈ R ∩ S. Hence (x, z) ∈ R and (x, z) ∈ S. By (3),
z ∈ −→R ({x}) ∩ −→S ({x}). Thus:

z∈
⋃

x∈X

(−→
R ({x}) ∩ −→S ({x})

)
=
⋃

x∈X

(g(R)({x}) ∩ g(S)({x})) = (g(R)⊗g(S))(X).

Similar considerations apply to inverse inclusion. Therefore g(R ∩ S) = g(R)⊗
g(S).

The proof of g(−R) = �g(R) is similar.
Let us observe furthermore that

g(∅)(X) = {y ∈ U : ∃x ∈ X.(x, y) ∈ ∅} = ∅ for any X ⊆ U,

g(U × U)(X) = {y ∈ U : ∃x ∈ X.(x, y) ∈ U × U} =
{∅, for X = ∅,
U, for ∅ �= X ⊆ U .

It is easily seen that g(∅) = f0 and g(U × U) = f1. ()
Corollary 2. The algebra 〈F ,⊕,⊗,�, f0, f1〉 of unit operations is a Boolean
algebra.

Proof. The family 〈R,∪,∩,−, ∅, U×U〉 of all binary relations with standard set-
theoretical operations is a Boolean algebra. By Theorem 2, the family of unit
operations is a Boolean algebra, too. ()
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Proposition 5. The algebra 〈Fr,⊕,⊗, f0, f1〉 of reflexive unit operations is a
distributive lattice with zero and unit.

Proposition 6. The algebra 〈Fs,⊕,⊗, f0, f1〉 of symmetric unit operations is
a distributive lattice with zero and unit.

Proposition 7. The algebra 〈Ft,⊗, f1〉 of transitive unit operations is a com-
mutative monoid.

In the proofs of the above propositions it is sufficient to show that the algebra of
reflexive relations and the algebra of symmetric relations are distributive lattices
with zero and unit, and algebra of transitive relations is a commutative monoid.
The proofs are standard.

4 Approximation Space

Definition 6. Let U be a finite, non-empty set called a universe and R be a
binary relation on U . The ordered pair A = (U,R) is called an approximation
space.

Some special types of relations were extensively analyzed. These are: tolerance
relations (Kryszkiewicz [9]) and similarity relations (Słowiński [14]). Moreover
several papers have been published, in which there are not any assumptions
about the relation R (Grzymała, Rząsa [7], Zhu [20,21]).

In an approximation space we can represent any subset X ⊆ U by a pair
of sets, called the lower and upper approximation. Approximations are usually
defined using granules of information. In the case of an approximation space
generated by a binary relation, granules are classes of this relation (in this paper
R-image relations of singletons of U).

Very important property of subsets of U is a property of definability.

Definition 7. Let X ⊆ U . X is called definable if X is a union of granules of
information, i.e. there is a set Z ⊆ U such that (X =

⋃
z∈Z

−→
R ({z}).

We accept (with slight modification) postulates for approximation mappings
formulated by [3]. Let mapping fl:P (U)→ P (U) denotes a lower approximation
and mapping fu:P (U)→ P (U) denotes an upper approximation. Then:

(L1) ∀X ⊆ U. fl(X) ⊆ X .
(L2) ∀X ⊆ U ∀x ∈ fl(x)∃z ∈ X. x ∈ R(z) ⊆ X .
(L3) For each X ⊆ U , fl(X) is definable.
(L4) For each definable X ⊆ U , f l(X) = X .
(U1) ∀X ⊆ U. X ⊆ fu(X).
(U2) ∀X ⊆ U ∀x ∈ fu(X)∃z ∈ U. x ∈ R(z) ∧R(z) ∩X �= ∅.
(U3) For each X ⊆ U , fu(X) is definable.
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The most questionable postulates it seem postulates of definability of approx-
imations (L3 and U3). There are many definitions of approximation mappings
that are not definable (see e.g. [3,7]). However, not definable approximations are
not interesting from practical point of view (for example in data mining [7]).

Let us observe, that a unit operation is one of the upper approximations con-
sidered in the above mentioned papers of Wybraniec-Skardowska, Gomolińska,
Słowiński.

Lemma 5. Let f be a unit operation.
X ⊆ f(X) for any X ⊆ U if and only the relation Rf is reflexive.

Proof. The proof is straightforward. ()
Corollary 3. f(X) is definable for any unit operation f and X ⊆ U .

By a definable lower (upper) approximation we will understand a lower (upper)
approximation satisfying postulates (L1)–(L4) (resp. (U1)–(U3)).

A lower approximation is a unit operation only if a relation R is the diagonal
relation (R = {(x, x):x ∈ U}). We may define a lower approximation for example
as a dual to an image relation. In the case R is an equivalence relation, thus
defined lower approximation is definable, but in general it may not be a definable
approximation.

Corollary 4. If R is a reflexive relation, then the R-image relation −→
R is a

definable upper approximation.

In the family of all mappings F = {f :P (U) → P (U)} we define the following
relation: f ≤ g iff ∀X ⊆ U. f(X) ⊆ g(X). The relation ≤ is a partial order
relation, so we may ask for the existence of the least (the greatest, minimal,
maximal) mapping.

Theorem 3. Let R be a reflexive relation on U . Then the R-image relation −→R is
the least definable upper approximation if and only if the relation R is transitive.

Proof. Let R be a reflexive relation.
(⇒) Assume R-image relation −→R is the least definable upper approximation. Let
(x, y) ∈ R and (y, w) ∈ R. Hence y ∈ −→R ({x}) and w ∈ −→R ({y}). Let W = {x, y}.
By (1), −→R (W ) = −→

R ({x}) ∪ −→R ({y}). By reflexivity of R, we have x ∈ −→R ({x}).
Hence W = {x, y} ⊆ −→R ({x}). Since −→R (W ) is the least definable set containing
W , then −→R (W ) ⊆ −→R ({x}). Thus w ∈ −→R ({x}). Hence (x,w) ∈ R.
(⇐) Let X ⊆ U . Of course, X ⊆ −→

R (X) =
⋃

x∈X

−→
R ({x}) by Lemma 5 and

the assumption of reflexivity. We show that −→R (X) is the least definable set
containing X . Assume Z ⊆ U is a definable set such that X ⊆ Z. It is sufficient
to show that −→R (X) ⊆ Z. Let z ∈ −→R (X). Hence there exists x ∈ X such that z ∈−→
R ({x}) (i.e (x, z) ∈ R). Since x ∈ X , then x ∈ Z. By Definition 7, there exists
t ∈ Y such that x ∈ −→R ({t}) (i.e. (t, x) ∈ R). By the assumption of transitivity,
it follows from this that (t, z) ∈ R (i.e. z ∈ −→R ({t}) ⊆ Z). ()
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Example 1. Let us consider an incomplete information table (U,A), where U is a
non-empty set of objects and A is a non-empty set of attributes. Every attribute
a ∈ A is a function c:U → Va ∪ {∗}, where Va is a domain of a set of possible
values and "*" is a special symbol. It means an unknown value. We assume,
that unknown values of attributes do not allow any comparison (Stefanowski,
Tsoukiàs [15]). Stefanowski and Tsoukiàs introduce a similarity relation S as
follows:

S(x, y) ⇐⇒ ∀c ∈ A. (c(x) �= ∗)⇒ (c(x) = c(y)).

The relation S is reflexive, transitive and not symmetric. The upper approxima-
tion defined in [15] is a S-image relation and, by Theorem 3, is the best definable
upper approximation. ()

Let us notice, that if R is not transitive, then the least definable upper approx-
imation (if exists) is not a unit operation.

Example 2. Let U = {1, 2, 3} and R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3)}.
The relation R is reflexive.

Let f :P (U) → P (U) be a mapping such that f({1, 2}) = {1, 2} and f(X) =−→
R (X) for X �= {1, 2}.

The mapping f is the least definable upper approximation, but it is not a unit
operation. ()

Example 3. Let U = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 4),
(3, 1), (3, 3), (4, 2), (4, 4)}. The relation R is reflexive and symmetric.

Let X = {1, 2}. The only definable sets containing X are: −→R ({1, 2}) =
{1, 2, 3, 4}, −→R ({1}) = {1, 2, 3} and −→R ({2}) = {1, 2, 4}.

In approximation space (U,R) does not exist the least definable upper ap-
proximation. ()

The above example shows that sometimes it may be impossible to find the least
definable upper approximation. This is not a good fact. However, in practise
we do not need to approximate all subsets. In decision systems we have several
concepts (sets of objects pre-classified by an expert) and we are interested in
approximation only these sets. In this case may be helpful to consider unit op-
eration and corresponding binary relation. It is possible to find conditions under
which there exist the least definable sets containing these concepts. These con-
ditions are based on the binary relation and the least definable sets are defined
using corresponding unit operation.

We can also consider a family of binary relations instead of one relation.

Proposition 8. Let {Ri}i∈I be a family of reflexive and transitive relations on
U . The unit operation ⊗i∈I

−→
Ri is the least definable upper approximation in the

approximation space (U,
⋂

i∈I Ri).

Proof. It follows easily from Theorem 3 and Proposition 7. ()
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5 Summary

In this paper we considered unit operations. Some algebraic properties of them
are given. We have shown that every unit operation correspond with some binary
relation. Next we proved, that if a relation in approximation space is transitive,
then there exists the least definable upper approximation and it equals the image
relation. It remains an open question, how to define upper approximations in the
case of non-transitive relation to be the least definable upper approximations.
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Abstract. The nearest neighbor classification is a simple and effective
technique for pattern recognition. The performance of this technique
is known to be sensitive to the distance function used in classifying a
test instance. In this paper, we propose a technique to learn sample
weights via maximizing classification consistency. Experimental analysis
shows that the distance trained in this way enlarges the classification
consistency on several datasets and has a strong ability to tolerate noise.
Moreover, the proposed approach has better performance than nearest
neighbor classification and several state-of-the-art methods.

1 Introduction

The Nearest-Neighbor rule is among the most popular and successful pattern
classification techniques. The NN classifier can be represented by the following
simple rule: the label of an unknown pattern is identified by choosing the class
of the nearest stored training instance [2].

The performance of 1-NN classification is influenced by several factors, in-
cluding the distance metric used to find the NN of a query pattern, the curse
of dimension and so on. There have been consistent efforts devoted to improv-
ing the performance of 1-NN classification. In the last few years, many methods
have been developed to locally adapt the distance metric [7,8,9,10] or prototype
editing. In [4], a locally adaptive distance measure was used based on assign-
ing a weight to each training instance. In [6], a prototype weighting algorithms
was derived by approximately maximizing the Leaving-One-Out classification
error of the given training set. In [5], a method for learning a Mahalanobis dis-
tance metric from training samples by semidefinite programming was introduced.
These methods have been proved to be efficient on some real-world datasets.

Similar to [4], the weighted metric we use in this paper is based on assigning a
weight to each instance in the training set. The technique we propose can learn a
sample weight vector via maximizing classification consistency, which is defined
as the average memberships to the fuzzy lower approximations in fuzzy rough
sets. Lower approximations are introduced in rough sets and considered as the
subset of samples which can be grouped into one of the decision classes without
doubt [1,11,12,15] . Then, fuzzy lower approximations are proposed to deal with
numerical or fuzzy features. In this paper, classification consistency is defined

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 347–355, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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as the average memberships to the fuzzy lower approximations and reflects the
percentage of fuzzy consistent objects over the whole universe. In classification
learning, one naturally expects to get a highly consistent classification. However,
there are usually some inconsistent samples due to the existence of noisy or
insufficient information. As to the inconsistent samples, we can expect to get a
highly consistent classification via maximizing fuzzy lower approximation.

In this work, a sample weighted matrix is learned to maximize classifica-
tion consistency. The proposed method, Sample Weight Learning via Maximiz-
ing classification consistency (SWL-MCC), assigns different weights to different
samples according to their positions in the feature spaces. SWL-MCC can en-
large the classification consistency by assigning greater weights to the boundary
samples. Besides, we also show that the proposed technique has a strong ability
to tolerate noisy samples, whose memberships to their lower approximation are
relatively small. Experimental analysis shows that the metric trained with SWL-
MCC enlarges the classification consistency on several benchmark data sets, and
the proposed approach has better performance than the nearest neighbor rule
and A-NN [4].

The rest of the paper is organized as follows. Section 2 introduces the basic
concept of classification consistency. In Section 3, a sample weighted distance
learning algorithm is proposed via maximizing classification consistency. Sec-
tion 4 presents experimental results on some artificial and real-world data sets.
Finally, conclusions are given in Section 5.

2 Classification Consistency

Given a nonempty and finite set U of objects, R is a fuzzy equivalence relation
on U . For ∀x ∈ U , we associate a fuzzy equivalence class [x]R with x. The mem-
bership function of y to is defined as [x]R(y) = R(x, y),∀y ∈ U . The family of
fuzzy equivalence classes forms a set of fuzzy elemental granules for approximat-
ing arbitrary subset of the universe. Given a fuzzy subset X ∈ F (U) , the lower
approximation and upper approximation of X with respect to R were defined as

RmaxX(x) = inf
y∈U

max(1 −R(x, y), X(y)), RminX(x) = sup
y∈U

min(R(x, y), X(y))

Given a T−equivalence relation and a residual implication θ induced with T ,
the fuzzy lower and fuzzy upper approximations of fuzzy subset X were defined
as

RθX(x) = inf
y∈U

θ(R(x, y), X(y)), RTX(x) = sup
y∈U

T (R(x, y), X(y)).

In this context, the membership of a sample to its fuzzy lower approximation
is the minimal distance to other classes. In fact, fuzzy approximation is a fuzzy
set and the memberships reflect the consistence degree of classification. Hence,
we can define classification consistency as the average memberships to the fuzzy
lower approximations.
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Definition 1. Let X ⊆ U is a fuzzy subset, the cardinality of X is defined as
|X | =∑x∈U X(x) , where X(x)is the membership of x to X.

Definition 2. Given a classification learning problem, k is T−equivalence re-
lation on U computed with kernel function k(x, y) in the feature space B ⊆ A.
U is divided into {d1, d2, · · · , dN} with the decision attribute. The fuzzy positive
regions of D in term of B are defined as

POSB(D) =
N∪

i=1
kdi, (1)

where N is the number of classes.

Definition 3. Given a classification learning problem, k is T−equivalence re-
lation on U computed with Gaussian function k(x, y) in feature space B ⊆ A.
U is divided into d1, d2, · · · , dN with the decision attribute. The classification
consistency of D on B is defined as

CB(D) =
| N∪
i=1

kdi|
|U | . (2)

As kSdi(x) = inf
y/∈di

(1− k(x, y)), we get that | N∪
i=1

kdi| =
n∑

i=1

N∑
j

kdj(xi). Further-

more, we also know that kdj(xi) = 0 if xi /∈ dj . Therefore | N∪
i=1

kdi| =
n∑

i=1
kd(xi) =

n∑
i=1

inf
xi∈d,y/∈d

(1− k(xi, y)) , where is the class label d of xi.

In essence, classification consistency is the average distance of each sample
to other classes or the inter-class distance in kernel space. One expects the dis-
tance is large enough to discriminate different classes. Maximizing classification
consistency means maximizing the inter-class distance.

3 Sample Weight Learning

Faced with the inconsistent samples, we can expect to get a highly consistent
classification via maximizing fuzzy lower approximation.

Assumed Gaussian function k = exp(− ||x−y||2
σ )is used to compute the fuzzy

similarity relation between samples, and then we approximate the decision sub-
sets with the fuzzy granules induced by k. The classification consistency can be
defined as:

CB(D) =
1
n

n∑
i=1

1− exp

(
−‖xi −NM(xi)‖2

σ

)
(3)

where NM(xi), called nearest miss in [3]denotes the nearest sample of xi in
classes different from xi.
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Usually, the weights of different samples are set as a uniform value, that is,
wj = 1. However, it is well known that the importance of candidate samples
varies according to their position in the sample space. Thus an algorithm is
developed to optimize the weight vector W =< w1, w2, · · · , wj , · · · , wn >. The
optimization objective function is

CB
w(D) =

1
n

n∑
i=1

1− exp

{
−w(NM(xi))

2‖x−NM(xi)‖2
σ

}
(4)

Similar to [6], we can use gradient descent to maximize classification consis-
tency. The maximization of CB

w(D) by gradient descent consists in an iterative
procedure which updates the weights w(i) by a small amount, in the negative
direction of the gradient of CB

w(D):

w(i) = w(i)− η
∂CB

w(D)
∂w(i)

(5)

The update equation is:

w(i) = w(i) + η
∑
x∈s

{
2× ‖x−NM(x)‖2 × w(NM(x))×
exp
[
−w(NM(x))2 × ‖x−NM(x)‖2/δ

]} /δ
Given a set of training samples, we can iteratively search the weight with the
following procedure.

{Sample weight learning via maximizing classification consistency
(SWL-MCC)}

Procedure {Initialize}
w =< 1, 1, ..., 1 >,CC = 0, CC1 = 1, ε > 0.001
∀x∈U , computeNM(x) and NH(x), δ= 1

n

∑
x∈U

(‖x−NM(x)‖−‖x−NH(x)‖)
While |CC1 − CC| > ε

CC1 = CC
For i = 1, 2, · · · , n,

w(NM(x)) = w(NM(x))+{
2× ‖x−NM(x)‖2 × w(NM(x))×
exp [−w(NM(x)) × ‖x−NM(x)‖]2/δ)

}
/δ

EndFor
Compute the classification consistency after samples are weighted

EndWhile
EndProcedure
The values of η are referred to as learning rates or learning step factors. It

can be a constant for all samples or may vary on different samples or in each
step. In this context, η is set as a positive value 0.1. The Parameter σ used
in the Gaussian function which is related to the computation of classification
consistency, may affect the learning performance of the proposed technique. The
membership of fuzzy lower approximation may arrive at its maximal value 1 and
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its minimal value 0 if a very little positive constant and a very great positive
constant are assigned to respectively. Therefore, it is difficult to be optimized.
Thus, σ should be set as an appropriate value.

kSdi(x) = inf
y/∈di

(
1− exp(−||x− y||2/σ)

)
ifσ →∞, kSdi(x) → 0, i = 1, 2,..., n, CB(D) =

|
N
∪
i=1

kdi|
|U| → 0

ifσ → 0, kSdi(x) → 1, i = 1, 2,..., n, CB(D) =
|
N
∪
i=1

kdi|
|U| → 1

As a matter of fact, classification consistency can be understood as the average
distance of samples to the nearest samples from other classes. If we expect that
classification consistency can vary in an appropriate interval for any task by
setting the value of parameter σ, the value of σ should be set according to the
average distance of samples to the nearest samples from other classes, that is,
σ = 1

n

∑
x∈U

||x−NM(x)||.
Essentially, SWL-MCC mainly assigns greater weights to the boundary sam-

ples whose membership to its lower approximation is very small and does not
change weights of non-boundary samples. In fact, the smaller the membership
to its lower approximation is, the closer a sample is to the classification bound-
ary, and the positive gradientsΔ(w(NM(x))) of more heterogeneous samples are
added to the weight of this sample. Meanwhile, the proposed algorithm performs
quite well in the presence of noisy samples. In Fig.1, there is a noisy sample O
in the center and it is the nearest miss of the samples A, B, C and D, who would
be misclassified when all the samples get equal importance. When we operate
SWL-MCC on this data, the weight of the sample A would be greatly enlarged
because the positive gradients of the samples A, B, C and D are added to w(O).
The small circle and large circle denotes the distance between the sample A and
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Fig. 1. A toy example with noisy samples
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its nearest miss before and after samples are weighted. We can find that the
membership of the sample A to its lower approximation increases significantly
and can be correctly classified after samples are weighted. Hence, SWL-MCC can
automatically indentify the noisy samples and assign greater weights to them.

The computational complexity of SWL-MCC is O(n2m), where m is the num-
ber of features and n is the size of the sample U .

4 Experimental Analysis

In this section, the capability of the sample-weighted technique has been empiri-
cally assessed through experiments on two artificial datasets and some real-world
datasets.

4.1 Synthetic Dataset

We generate two sets of 26 sample points satisfying Gaussian distribution in a 2-
dimensional real space, as shown in Fig. 2. It contains only two output classes in
order to make the graphing and visualization easier. The weights of the twenty-
six samples are obtained with the proposed technique operated on the synthetic
dataset and labeled in Fig.2. In addition, the samples A, B · · · I, whose weights
are greater than one are listed in Tab.1. Meanwhile, we calculate the membership
to its lower approximation as to each instance with samples treated as equal, and

Table 1. Memberships and weights of samples whose weights are greater than 1

samples A B C D E F G H I
memberships 0.006 0.006 0.016 0.016 0.0981 0.251 0.266 0.337 0.337
weights 4.211 5.047 2.549 4.151 4.000 4.976 4.243 5.433 1.082

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

 

 

I1.082

1

1 1

F4.976

A4.211

G4.243

H5.433

B5.047
D4.151
C2.549

1

1 1

1

1 1

1

1

1

1

1

1

1

1
E4.000

Fig. 2. A toy example of binary classification task
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sort the samples in ascending order of the membership. We find that the first nine
of the twenty-five samples are the samples A, B · · · I. As we know, as to the sample,
the membership to its lower approximation can be understood as the distance be-
tween and its nearest miss . Hence, we can conclude that the proposed technique
can assign greater weights to the samples on or close to the boundary, whose mem-
berships to their fuzzy approximation is very small, and do not change the weights
of the non-boundary samples. By assigning different weights to different samples
according to the position of the samples in the feature space, the fuzzy lower ap-
proximation and classification consistency can be greatly enlarged. As shown in
Fig.2, the fuzzy lower approximation of the sample E before and after samples are
weighted are denoted by the blue circle and red circle respectively. It is obvious
that the sample E, whose membership to its lower approximation is enlarged, can
be correctly classified after samples are weighted.

4.2 Effect of Noise

The aim of this experiment is to evaluate the performance of the proposed meth-
ods in the presence of noise. This is done by randomly changing the class labels
of the instances in the training set to an incorrect value (with equal probability
for each of the incorrect classes) at different levels, which represents the per-
centage of the changed instances. We test the ability of SWL-MCC to tolerate
the noise on a dataset WPBC (198 samples and 34 features) at different noise
levels. From Table2 we can see that the classification consistency of SWL-MCC
is much higher than the original nearest neighbor classifier and A-1-NN at all
levels. The classification consistency is improved by 6.5% and 4.2% compared to
1-NN and A-1-NN respectively. Overall, the proposed technique via maximizing
classification accuracy has a strong ability to tolerate the noise.

Table 2. Classification consistency of SWL-MCC compared with other methods on
the noisy dataset

Noise level 1-NN SWL-MCC A-1-NN
3% 70.8±8.5 76.3±6.5 71.8±12.3
5% 70.3±7.7 75.3±4.6 71.7±8.8
7% 70.2±6.3 75.2±1.8 72.2±7.8
9% 63.2±7.4 70.0±5.3 65.3±7.9
11% 59.1±12.4 69.2±5.6 64.2±10.6
Average 66.7 73.2 69.0

4.3 Real World Problems

We gathered twelve datasets from UCI machine learning repository [16]. The
classification consistency before and after samples are weighted is listed in Ta-
ble 3 (CC and WCC denotes classification consistency and weighted classifi-
cation consistency respectively; S/F/C denotes the numbers of the samples,
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Table 3. Variance of classification consistency and classification accuracy of SWL-
MCC compared to other methods

Data S/F/C CC WCC 1-NN SWL-MCC A-1-NN
WPBC 198/33/2 0.5591 0.8118 70.6±6.8 75.3±5.9 72.7±10.3
german 1000/21/2 0.5855 0.7602 68.8±3.2 71.1±3.7 71.3±2.8
Crx 690/16/2 0.4300 0.7200 79.1±11.6 83.3±15.9 80.7±11.7
heart 270/13/2 0.5388 0.8284 76.6±9.4 81.5±5.5 77.0±5.5
hepatitis 155/19/2 0.6001 0.8152 82.5±7.6 86.0±8.0 83.2±9.4
hors 368/22/2 0.6069 0.7980 87.2±4.2 90.4±4.4 88.1±3.1
iono 351/34/2 0.4911 0.6220 86.4±4.9 90.5±5.6 90.1±4.1
WDBC 569/30/2 0.4959 0.6392 95.4±3.3 97.4±2.2 96.5±2.5
Breast 84/9217/5 0.6082 0.6543 77.0±18.3 85.0±14.2 82.0+13.3
derm 366/35/6 0.5614 0.6201 96.1±5.7 97.9±2.9 96.3±0.5
iris 150/5/3 0.4928 0.5840 96.0±5.6 97.3±4.6 96.0±5.6
Gene5 72/7130/3 0.6135 0.6495 78.9±17.2 82.9±15.0 87.1±14.8
Average / / / 82.8 86.6 85.0

features and classes respectively). From Table 3, we can see that the classifi-
cation consistency of all data sets has been greatly enlarged after samples are
weighted.

In order to evaluate the performance of the proposed technique on the clas-
sification, we compare the SWL-MCC to original nearest neighbor classifier and
A-1-NN on the thirteen datasets, as shown in Table 3 We can see that average
classification accuracy of SWL-MCC is higher than 1-NN and A-1-NN by 3.8%
and 1.6% respectively and the proposed technique outperforms the other two
methods on almost all the datasets.

5 Conclusion

The performance of the nearest neighbor (NN) classification depends signifi-
cantly on the distance functions used to compute similarity between examples.
In this paper, we propose a technique that can assign different weights to each
instance via maximizing the classification consistency. By automatically inden-
tifying the noisy samples and assigning greater weights to the noisy samples, the
proposed technique is insensitive to noise. In comparison with 1-NN and A-1-
NN, we show that SWL-MCC achieves better accuracy results. We also show
that SWL-MCC performs quite well in the presence of noisy data.
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Rough Set-Based Incremental Learning
Approach to Face Recognition

Xuguang Chen and Wojciech Ziarko

Department of Computer Science University of Regina
Regina, SK, S4S 0A2, Canada

Abstract. The article reports our implementation of a rough set-based
incremental learning algorithm involving the application of the hierarchy
of probabilistic decision tables to face recognition. The implementation,
the related theoretical background such as the basics of the variable
precision rough set theory, the algorithm, the classifier structure and
experiments with balanced and imbalanced data sets are presented.

1 Introduction

Face recognition has received wide attention from researchers applying diverse
methodologies to this problem. Face recognition methods can be classified into
holistic matching methods and feature-based matching methods [4][12]. They
however share a common limitation: when constructing a face recognition system,
it is often hard to account for all variations of face photos of each participant.
Face of the same person can change greatly depending on expression, illumination
conditions, or presence or absence of make-up [5]. Therefore, it is desirable to
construct a recognition system that could improve its performance continuously
by learning additional information via process of incremental learning from the
newly added training objects (facial photos). Incremental mode of learning would
be particularly advantageous since it involves gradual modification of the learned
data structure [10].

Rough set theory was proposed by Pawlak [1] and extended, among others,
by Ziarko [2]. It can be used to determine the most appropriate attributes for a
given information system [1]. The theory has been applied to many areas, includ-
ing face recognition. In [7], a face representation and rough set-based recognition
methodology, called soft-cut and probabilistic distance-based classifier (soft-cut
classifier for short), are described. In this paper, we discuss how the extended
rough set-based approach can be applied to incremental learning of hierarchi-
cal structures of probabilistic decision tables in the context of face recognition
application.

The article is organized as follows. In Section 2, the development of a hierarchy
of learnt decision tables, based on accumulated training data (pictures of faces),
involving variable precision rough set theory [2] and the incremental learning
algorithm methodology are presented. Section 3 describes how to apply soft-
cut classifier approach [7] to incremental learning [10]. Section 4 presents the
experimental results, and a brief summary is included in Section 5.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 356–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Adaptive Decision Table-Based Approach

The rough set theory was introduced by Pawlak [1], and the variable precision
model (VPRSM) of rough sets broadens its the basic ideas. In the VPRSM, two
model precision-control parameters are used, denoted as the lower limit l, and
the upper limit u [2], respectively, such that 0 ≤ l < P (X) < u ≤ 1. P (X) is a
prior probability of the target set X .

Let E denote an elementary set of an approximation space on the universe
U [1] and let P (X |E) denote a conditional probability of the set X occurrence
given that the set E occurred. In the VPRSM, the negative region is defined
as NEGl(X) = ∪{E ⊆ U : P (X |E) ≤ l}. Objects are classified into the neg-
ative region of the set X if the probability of the membership in the set X is
significantly lower, as expressed by the lower limit l, than the prior probability
P (X). The positive region is defined as POSu(X) = ∪{E ⊆ U : P (X |E) ≥ u}.
Objects are classified into the positive region of the set X if the probability of
the membership in the set X is significantly higher, as expressed by the upper
limit u, than the prior probability P (X). The objects that are not classified
into either the positive region nor the negative region are classified into the
boundary region of the decision category X . The boundary region is defined as
BNDl,u(X) = ∪{E ⊆ U : l < P (X |E) < u}.

The probabilistic decision tables and their hierarchies extend the notion of
decision table acquired from data as introduced by Pawlak [1]. The probabilistic
decision table approximately represents the stochastic relation between condi-
tion and decision attributes via a set of uniform size probabilistic rules. That is,
the probabilistic decision table is a mapping that assigns each vector of condition
attribute values, corresponding to an elementary set E, to its unique designation
of one of VPRSM approximation regions POSu(X), NEGl(X) or BNDl,u(X),
along with associated elementary set E probabilities P (E) and conditional prob-
abilities P (X |E). They can be conveniently represented in a tabular form.

In the VPRSM, the boundary region BNDl,u(X) is a definable subset of the
universe U , which can be precisely specified by its elementary sets. The basic idea
behind the hierarchies of probabilistic decision table construction is to treat the
boundary region as an independent sub-universe of the universe U . Such a sub-
universe can have its local collection of condition attributes to form a new approxi-
mation sub-space, from which a ”child” decision table can be derived [4]. By
repeating the step of parent-child decision table formation recursively, until either
the boundary region is eliminated or some other attribute-based termination cri-
teria are satisfied, a hierarchy of probabilistic decision table can be constructed [3].

For the purpose of classifier evaluation, an inter-attribute probabilistic depen-
dency measure, called the λ − dependency was adopted in our experiments [8].
The λ − dependency is defined as the normalized expected degree of deviation
of the conditional probability of the target set X , P (X |E), from its prior prob-

ability P (X), that is λ(X |C) =
∑
E∈U/C P (E)|P (X|E)−P (X∩U)|

2P (X)(1−P (X)) , where U/C is a
collection of elementary sets induced by the set of condition attributes C and
2P (X)(1− P (X)) is a normalization factor.
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2.1 Hierarchy Adaptation Strategies

The generated hierarchy of decision tables is a subject of growth and adaptive
modification with the arrival of new training objects. In [3], an incremental
algorithm satisfying the properties specified in [6] was proposed. Its basic ideas,
as as summarized below, have been adopted in our classifier system.

Given a new image Inew , it is said to be inconsistent if Inew can match the
pattern of condition attributes values of an elementary set belonging to the
positive region but cannot match the value of the decision attribute. Otherwise,
Inew is consistent. For the j-th layer of the hierarchy of decision tables DTj

having n elementary sets, its universe will be denoted by Uj ; the POS, BND,
and NEG regions on layer j will be denoted as POSj , BNDj, and NEGj ;
the λ − dependency of the partition of the universe U hierarchy is λtotal; the
elementary set i on the level j is denoted by Eij , where i=1...n. Depending
on the approximation region of the j-th layer of the hierarchy decision tables a
new case Inew would fall, the following adaptation strategies are applied when
adjusting the hierarchy structure and recomputing λtotal:

1. if Inew ∈ Eij ⊂ BNDj ⊂ DTj , then |Eij | = |Eij |+ 1, |Uj| = |Uj |+ 1;
2. if a consistent Inew ∈ Eij ⊂ POSj ⊂ DTj, then |Eij | = |Eij | + 1, |Uj| =
|Uj |+ 1;

3. if an inconsistent Inew ∈ Eij ⊂ POSj ⊂ DTj , then Eij = Eij ∪ Inew and
BNDj = BNDj ∪ Eij ; Uj+1 = Uj ∪ Eij and then recursively apply the
adaptation rules starting from the layer DTj+1 followed by re-computation
of all affected subordinate layers;

4. if Inew /∈ Eij , where i=1...n, then create a new elementary set E(n+1)j =
{Inew} ⊂ POSj , |Uj| = |Uj |+ 1, DTj = DTj ∪ E(n+1)j .

The next section details how these adaptation strategies are used to control the
growth of the decision table hierarchies.

3 Soft-Cut Classifier and Incremental Learning

Before constructing probabilistic decision tables of the hierarchy, photos in the
training set need to be pre-processed for feature acquisition. The details of this
step are described in [7]. In our method, due to its simplicity and small compu-
tation costs, resulting from the sparsity of the transform matrices and the small
number of significant wavelet coefficients [11], we first transform each photo Ii
by Haar-wavelet transformation and represent each Ii by a small group of m
selected Haar-wavelet coefficients from a particular part of a certain level of the
Haar-wavelet transformation, denoted as xi

Haar,m. All of N photos in the train-
ing set form an N ×m pattern matrix X, which are then processed by principal
component analysis (PCA). The result is that each photo is represented by an
r -dimensional (r ≤ n) PCA feature patterns xi

pca,r. After that, each xi
pca,r is

firstly transformed by a sigmoid function and then discretized from real-valued
into binary-valued. More details of this step are provided in [7].
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To avoid elementary sets with spurious attributes, if one or more features of
the feature vector xi

pca,r could not be discretized due to its too close proximity to
the selected cut point, the photo was automatically classified into BNDl,u(X).
Such a photo was then considered again when working on the BNDl,u(X) to
build the classification of the next layer of decision table in the hierarchy. After
the discretization was completed, only those photos, the selected principal com-
ponents of which have been completely discretized, were retained. The retained
photos were represented by a p×Q pattern matrix denoted as Xdiscr, where Q
is the number of photos with p discretized attributes.

After Xdiscr was formed, it was evaluated by using λ-dependency measure in a
hill-climbing fashion to find the most adequate combination of attributes (columns
of the matrix) for the recognition task on each layer of the hierarchy. The selected
attributes were represented by the matrix Xsimp used to construct the decision
table for the current layer in the hierarchy according to the steps below:

1. Select the first column of Xsimp from Xdiscr.
First, we define the local λ-dependency restricted to a specific level of the
hierarchy: λloc(X |C) =

∑
E∈U/C P (E)|P (X|E)−P (X∩BNDl,u(X))|

2P (X∩BNDl,u(X))(1−P (X∩BNDl,u(X))) .
The local λ-dependency is used to select the column from Xdiscr that gener-
ates the highest value of λloc. The selected first column is then moved from
Xdiscr to Xsimp. The matrix Xdiscr becomes a (p− 1)×Q pattern matrix.

2. Select the remaining columns from Xdiscr. Each time, one column of
Xdiscr and all of columns of Xsimp are combined to construct a trial deci-
sion table of the current layer. Its λloc is computed. The column of Xdiscr

generating the highest λloc is then permanently moved from Xdiscr to Xsimp.
3. Set the maximum number of k columns in Xsimp.

We heuristically select k=6 as the threshold value: once a Xsimp having k
columns is reached, we immediately stop. Based on our experiments, a Xsimp

having k=2 or k=3 columns is sufficient to generate an appropriate decision
table.

Following selection of proper columns of Xsimp, the probabilistic decision table
was constructed for the given layer of the decision table hierarchy. The photos
were classified into elementary sets that were assigned to rough approximation
regions POSu(X), NEGl(X), or BNDl,u(X) based on the region definitions.
Starting from the top decision table, the above process was recursively repeated
for photos classified into the boundary area to build next layers of probabilistic
decision tables until all photos were classified into either POSu(X) orNEGl(X),
or all of Haar-wavelet coefficients have been utilized. The end-result was a hier-
archy of probabilistic decision tables. With photos of N persons, we would build
N initial hierarchies. For each hierarchy, photos from one specific person would
correspond to the recognition target, the set X .

3.1 Incremental Update of Probabilistic Decision Tables

When a new case (a photo) Inew becomes available, it is added to the training set,
and the corresponding hierarchies of probabilistic decision tables are updated.
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Before being added to the training set, the new case Inew must be pre-processed
in the same way as other photos already in the training set. That is, it is to be
transformed by the Haar-wavelet transformation and then some of its wavelets
coefficients are selected for further processing. The wavelet coefficients must be
selected in the same way as from the photos in the training set. For example,
when building the first decision table that has four condition attributes in a
hierarchy, if the four selected coefficients are from the vertical part of level 2
Haar-wavelet transformation and their indexes are No.1, No.3, No.4, and No.6,
Inew must also be represented by the coefficients having the same indexes and
from the same area of Haar-wavelet transform.

Next, these selected wavelet coefficients of Inew are transformed by PCA,
using features such as average image, eigenvectors etc. that are generated when
processing the photos for the training set to build the initial hierarchies. Finally,
these selected PCA-based features of the new photo are subject to transformation
via the same sigmoid function as applied to the photos in the initial training set.

To associate a new photo with an elementary set, starting with the top decision
table in the hierarchy, Euclidean distance EDisi between the new photo Inew

and each elementary set Ei of the first decision table of the hierarchy is calculated
based on the formula (the details are provided in [7]): EDisi = ‖Inew − Ei‖,
where Inew is represented by the selected PCA-based features as described in
the previous section, and Ei is represented by the vector of its binary condition
attribute values. The minimum value of the distance among all elementary sets
is denoted as EDismin. We require that EDismin be less than a pre-defined
threshold value τ , the value of which can be identified heuristically. The threshold
value is introduced to prevent classification of ”distant” new case into an existing
elementary set. That is, if EDisi = EDismin < τ , for the elementary set Ei,
then Inew is classified into the elementary set Ei. If EDismin ≥ τ , Inew will
be discretized by crisp cut function into a binary attribute-value vector to form
a new elementary set. In this case, for each PCA-based feature xpca

i , its value
is compared to arithmetic average Ci of that selected PCA-based feature of
all photos in the initial training set. If xpca

i > Ci, then 1 is assigned as the
corresponding attribute value; otherwise 0 is assigned.

After classifying the new photo into an appropriate elementary set, or creating
a new elementary set to contain the new photo on the top level of the hierarchy,
we need to recursively modify the subordinate levels of hierarchy of the decision
tables to propagate the change, if the introduction of the new case affects the
boundary area on the given level. For that purpose, the adaptation strategies
listed in previous section were employed, while taking into consideration the
following factors:

1. The condition attribute values of the new photo Inew and the condition
attribute values of the elementary set Ek absorbing the new photo;

2. The region of an elementary set is located in;
3. The λ-dependency of the hierarchy after the decision tables of the hierarchy

have been modified.



Rough Set-Based Incremental Learning Approach to Face Recognition 361

Factor 1 and factor 2 are primarily used to determine how to modify each lower
layer of the decision table in the hierarchy, starting from the top table. For
example, if the condition attribute values of Inew is the same as the condition
attribute values of the elementary set Ek located in the positive area of the top
decision table of the hierarchy, then Inew is consistent and the second strategy
is applied. The change propagation is terminated. The cardinality of Ek and the
cardinality of the universe should be modified before recalculating λ-dependency
of the hierarchy. Similarly, if the condition attribute values of Inew is not the
same as the condition attribute values of the elementary set Ek located in the
positive area of the first decision table of the hierarchy, then Inew is inconsistent
and in this case the third strategy is applied, resulting in the creation of a new
elementary set and termination of change propagation.

In practical applications, the hierarchy of decision tables is usually learned
from photos in the initial training set. That is to say, for the photos in the the
initial training set, the condition attributes of each decision table are deemed to
be the most appropriate features, as selected by λ-dependency-based criterion.
After a new photo was added, it is possible that some of the condition attributes
of some of the decision tables in the hierarchy would cease to be the most appro-
priate features. Therefore, after the hierarchy has been updated, we still need to
evaluate the attribute structure of the updated hierarchy by the λ-dependency
criterion [3] to ensure that its structure is still stable.

If the value of the new λ-dependency λnew is much lower than that of before
adding the new photo, it indicates that the attribute structure of the hierarchy
is no longer appropriate, and we have to completely re-generate the hierarchy.
The re-generation can be accomplished by employing all of the steps described
earlier, with the training set expanded by the newly added photos. On the other
hand, if the value of λnew is not much lower than the initial value, we can keep
the updated hierarchy and update it again when another new photo is available.
The steps described above can be continued until no new photos are available
for the purpose of training.

3.2 Recognition Process

Once the process of incremental learning is finished, the hierarchy can be tested
by the method called probabilistic distance-based classification method [7]. With
this method, each test photo Itest is first pre-processed by Haar-wavelet transfor-
mation and PCA. Then, starting from the top decision table of the first hierarchy
(corresponding to the first recognition target X), we evaluate the distance be-
tween each elementary set and Itest, to match Itest with the nearest elementary
set Emin, subject to a pre-defined threshold value τ limitation.

The outcome of the matching process is either the conditional probability
P (X |Emin), if the test case was matched by the elementary set Emin, or the
prior probability P (X) of the decision category X, if no matching elementary
set was identified on any level of the decision table hierarchy. The matching is
repeated for each hierarchy of decision tables, that is for each recognition target
X, producing a ranking of probability values for different recognition targets.
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The highest ranked recognition target is then selected as the recognition result
of the classifier.

4 Experimental Results

In this Section, some recognition learning experiments are described. Photos were
collected from 16 students and staff (8 men and 8 women, 96 photos/per person)
in the Science Faculty, University of Regina [7]. These photos were taken at three
office type locations with different facial expressions (neutral, smile, anger, and
scream). The background of the photos was always plain and white with similar
but uncontrolled lighting. The purpose was to observe how the hierarchy of
decision tables would vary during the process of incremental learning, to evaluate
the performance of the soft-cut classifier with balanced and unbalanced datasets,
and to identify the impact of the factors such as facial expression, gender ratio,
and number of participants in the training set on the recognition accuracy.

4.1 Experiments with Balanced Data Sets

According to [9], we define a training set as balanced if the number of photos of
each participant is the same; the total number of photos of the male participants
and the female participants is the same; and the number of photos with different
facial expressions is the same. Based on the number of participants in the data
sets, experiments described in this section can be classified into two categories:
4-person sets and sets having photos of more than 4 participants.

There were 784 4-person experimental data sets constructed initially, and then
each experimental set was divided into a training set (24 photos/per person), an
add-on set (24 photos/per person), and a test set (24 photos/per person). Each
time, 4 initial hierarchies were built based on one training set, and then when
updating them, photos of four different people were selected randomly, one by
one from the add-on set and gradually were added to the training set in the
process of incremental learning. Each selected photo was first pre-processed ac-
cording to the steps described in Section 3 and then classified into an appropriate
elementary set based on its derived attribute values. After that, the hierarchy of
decision tables was adapted, as described before.

After all of photos in the add-on set have been utilized, the photos in test
set were used to test the updated hierarchies with probabilistic distance-based
classification method. The number of photos correctly classified and the accuracy
rate were recorded. Once all 784 sets were utilized, the results were averaged.
The average accuracy rate of the initial series of recognition experiments was
about 93.31%.

The experiments were repeated twice. In the second series of experiments, the
participants of each experimental set have not been changed, but the photos of
each participant were used for different purposes. For example, a photo initially
used for training purpose was selected to test the hierarchy or used in the add-
on set. The average recognition accuracy rate in these two experiment cycles
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was about 93.15% and 94.93%. The total accuracy of all experiments was about
93.8%.

During the process of incremental learning, we observed that the hierarchy
was totally re-generated once a certain number of new photos randomly selected
from different people was added. This fact underlines the importance of the
appropriate selection of cut points and attributes in the process of classifier
construction, because some of the condition attributes of some of the decision
tables in the hierarchy would turn out not be the most appropriate features after
new photos were added. Moreover, we also observed that the number of randomly
selected photos causing total regeneration was not constant in practice: it can
be a few or many photos. In the example shown in Figure 1, the regeneration
points are clearly visible as the discontinuity points of the curve representing
the variation of the λ-dependency of the hierarchy in the process of incremental
learning. Once a random photo was added, the λ-dependency of the updated
hierarchy always changed: either slightly increased or decreased. After a certain
number of additions, the λ-dependency would deteriorate. Such a deterioration
would cause total regeneration of the hierarchy. The value of the λ-dependency
of the regenerated hierarchy would become relatively higher than that of the
λ-dependency before total regeneration.

Fig. 1. Variation of Lambda Dependency

Experiments with data sets having more than 4-person were similar to the
experiments with 4-person data sets. The average accuracy rate with 6-person
data sets was about 88.63%, with 8-person sets was 83.96%, and with 10-person
sets was 82.46%.

4.2 Experiments with Unbalanced Data Sets

When experimenting with unbalanced data sets, the procedural steps of these
experiments are almost the same as described earlier. The experimental sets had
photos from 6 or 8 participants. In order to identify the impact of facial ex-
pression on the accuracy rate, two groups of experimental sets were constructed.
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They consisted of photos with neutral expression for the initial training set, with
a smile for the test set, and with either angry or screaming expression for the
add-on set. Similarly, in order to identify the impact of gender ratio on the accu-
racy rate, two groups of experimental sets were constructed, which consisted of
photos with various facial expressions but unbalanced gender ratio. The results
are summarized in Tables 1 and 2.

Table 1. Results with Data Sets with Specific Facial Expression

Initial Add-on Test Average
Group Train Set Set Set Participants Accuracy(%)

1 Neutral Angry Smile 6 92.41
2 Neutral Scream Smile 6 92.41
3 Neutral Angry Smile 8 91.04
4 Neutral Scream Smile 8 87.47

Table 2. Results with Data Sets with Unbalanced Gender Ratio

Gender Ratio 2M4F 4M2F 2M6F 6M2F

Accuracy(%) 88.13 84.84 76.41 76.99

Based on the results, we can summarize the performance of the soft-cut clas-
sifier when used in the mode of incremental learning as follows:

1. when experimental sets are balanced, the number of participants seems to
be inversely proportional to the accuracy rate;

2. when experimental sets only have specific facial expressions, the accuracy
would improve;

3. unlike the number of participants in the training set or the choice of facial
expression, the unbalanced gender ratio in the training set has no apparent
impact on the accuracy.

Therefore, we can conclude that during the incremental learning, the number
of participants in the training set is the important factor affecting the accuracy
rate, whereas the facial expression and the gender ratio do not appear to have a
great impact on the accuracy rate. It seems that the performance of the soft-cut
classifier would improve if the training set only had photos of a few, for example
four, participants, no matter whether that training set is balanced or not.

5 Final Remarks

In this paper, we discussed the application of a new, variable precision rough
set-based method called soft-cut and probabilistic distance-based classifier to
the process of incremental learning for the purpose of face recognition. The
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theoretical background, the application procedure, and some experiments were
presented. We observed that during the process of incremental learning, when
a photo was added, the λ-dependency of the updated hierarchy did not change
consistently: it either slightly increased or decreased. Adding some more photos
was eventually causing a significant drop in the value of λ-dependency, forcing
the total regeneration of the hierarchy of decision tables. The testing by new
photos revealed that the performance of the soft-cut classifier would deteriorate
when the number of participants in the training set increased.
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Abstract. In this paper, we propose a new approach of classification
based on rough sets denoted Dynamic Belief Rough Set Classifier (D-
BRSC) which is able to learn decision rules from uncertain data. The
uncertainty appears only in decision attributes and is handled by the
Transferable Belief Model (TBM), one interpretation of the belief func-
tion theory. The feature selection step of the construction procedure of
our new technique of classification is based on the calculation of dy-
namic reduct. The reduction of uncertain and noisy decision table us-
ing dynamic approach which extracts more relevant and stable features
yields more significant decision rules for the classification of the unseen
objects. To prove that, we carry experimentations on real databases us-
ing the classification accuracy criterion. We also compare the results of
D-BRSC with those obtained from Static Belief Rough Set Classifier (S-
BRSC).

Keywords: rough sets, belief function theory, uncertainty, dynamic
reduct, classification.

1 Introduction

The rough set theory proposed by Pawlak [6] constitutes a sound basis for data
mining. It offers solutions to the problem of discretization, decision rule gener-
ation and solves the problem of attribute selection. For the latter, one of the
ideas was to consider as relevant features those in reduct of the information sys-
tem [5,6,8]. In fact, a reduct is a minimal set of attributes that preserves the
ability to perform classifications as the whole attribute set does. Another issue
in real world applications is the uncertain, imprecise or incomplete data. This
kind of uncertainty exists in real-world applications like in marketing, finance,
management and medicine. For example, some condition or decision attribute
values in a client’s database, used by the bank to plan a loan policy, are par-
tially uncertain. Nevertheless, finding reducts from uncertain and noisy data
leads to results which are unstable and sensitive to the sample data. Using dy-
namic reducts [1] allows getting better performance in very large datasets. In
fact, rules induced by means of dynamic reducts are more appropriate to classify
new objects, since these reducts are more stable and appear more frequently
in sub-decision systems created by random samples of a given decision system.
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For these reasons, we have previously developed an approach of feature selection
based on rough set theory namely dynamic reduct [12] computed from uncertain
data. In our context, the uncertainty appears only in decision attributes and is
represented through the Transferable Belief Model (TBM), one interpretation of
the belief function theory. In fact, this theory is considered as a useful model to
represent quantified beliefs because it allows experts express partial beliefs in a
much more flexible way than probability functions do. The belief function the-
ory [7] is very applied in real world applications related to decision making and
classification.

Due to the advantages of our dynamic feature selection approach [12], we pro-
pose in this paper a new approach of classification based on rough sets denoted
Dynamic Belief Rough Set Classifier (D-BRSC) which is able to generate more
stable decision rules from uncertain data which are better to classify unseen
cases. The uncertainty exists only in decision attributes and is handled by the
TBM. The feature selection step of the construction procedure of our new tech-
nique of classification is based on the calculation of dynamic reduct proposed
originally in [12]. To evaluate our D-BRSC, we will carry experimentations on
real databases using the classification accuracy criterion. Besides, we will com-
pare the results with those obtained from Static Belief Rough Set Classifier
(S-BRSC) [13].

This paper is organized as follows: Section 2 provides an overview of the
rough set theory. Section 3 introduces the belief function theory as understood
in the TBM. In Section 4, we propose under the belief function framework a new
approach of classification called Dynamic Belief Rough Set Classifier (D-BSRC)
based on dynamic approach of feature selection which is induced from uncertain
data. Finally, we report results of experiments on real databases relative to our
new approach Dynamic Belief Rough Set Classifier (D-BRSC) comparing with
Static Belief Rough Set Classifier (S-BRSC) from [13].

2 Rough Sets

In this Section, we recall some basic notions related to information systems and
rough sets [6]. An information system is a pair A = (U, C), where U is a non-
empty, finite set called the universe and C is a non-empty, finite set of attributes.
We also consider a special case of information systems called decision tables. A
decision table is an information system of the form A = (U, C ∪ {d}), where d /∈
C is a distinguished attribute called decision. In this paper, the notation ci(oj)
is used to represent the value of a condition attribute ci ∈ C for oj ∈ U .

For every set of attributes B ⊆ C, an equivalence relation denoted by INDB

and called the B-indiscernibility relation, is defined by

INDB = U/B = {[oj ]B|oj ∈ U} (1)

Where
[oj ]B = {oi|∀c ∈ B c(oi) = c(oj)} (2)
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Let B ⊆ C and X ⊆ U . We can approximate X by constructing the B − lower
and B − upper approximations of X , denoted B

¯
(X) and B̄(X), respectively,

where
B
¯
(X) = {oj |[oj ]B ⊆ X} and B̄(X) = {oj |[oj ]B ∩X �= ∅} (3)

2.1 Reduct and Core

A subset B ⊆ C is a reduct of C with respect to d, iff B is minimal and:

PosB({d}) = PosC({d}) (4)

Where PosC({d}), called a positive region of the partition U/{d} with respect
to C.

PosC({d}) =
⋃

X∈U/{d}
C
¯
(X) (5)

The core is the most important subset of attributes, it is included in every reduct.

Core(A, d) =
⋂

RED(A, d) (6)

Where RED(A, d) is the set of all reducts of A relative to d.

2.2 Dynamic Reduct

If A = (U, C ∪ {d}) is a decision table, then any system B = (U ′, C ∪ {d}) such
that U ′ ⊆ U is called a subtable of A. Let F be a family of subtables of A [1].

DR(A, F ) = RED(A, d) ∩
⋂

B∈F

RED(B, d) (7)

Any element of DR(A, F ) is called an F -dynamic reduct of A. From the def-
inition of dynamic reducts, it follows that a relative reduct of A is dynamic if
it is also a reduct of all subtables from a given family F. This notation can be
sometimes too restrictive, so we apply a more general notion of dynamic reduct.
They are called (F, ε)-dynamic reducts, where 0 ≤ ε ≤ 1. The set DRε(A, F )
of all (F, ε)-dynamic reducts is defined by:

DRε(A, F ) =
{
R ∈ RED(A, d) :

|{B ∈ F : R ∈ RED(B, d)}|
|F | ≥ 1− ε

}
(8)

3 Belief Function Theory

The belief function theory is proposed by Shafer [7] as a useful tool to represent
uncertain knowledge. Here, we introduce only some basic notations related to
the TBM [9], one interpretation of the belief function theory. Let Θ, frame of
discernment, be a finite set of exhaustive elements to a given problem. All the
subsets of Θ belong to the power set of Θ, denoted by 2Θ. The bba (basic belief
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assignment) is a function representing the impact of a piece of evidence on the
subsets of the frame of discernment Θ and is defined as follows:

m : 2Θ → [0, 1]

∑
E⊆Θ

m(E) = 1 (9)

Where m(E), named a basic belief mass (bbm), shows the part of belief exactly
committed to the element E. The bba’s induced from distinct pieces of evidence
are combined by the rule of combination [9].

(m1 ∩©m2)(E) =
∑

F,G⊆Θ:F∩G=E

m1(F )×m2(G) (10)

4 Dynamic Belief Rough Set Classifier (D-BRSC)

In this Section, we propose a new approach of classification called Dynamic Belief
Rough Set Classifier (D-BRSC) based on dynamic approach of feature selection.
This classifier is built from uncertain data under the belief function framework.
The uncertainty appears only in decision attribute and is handled by the TBM.
Before describing the main steps of the construction procedure of D-BRSC espe-
cially the feature selection, we need at first to present the modified basic concepts
of rough sets under uncertainty [11] such as decision table, tolerance relation,
set approximation, positive region, reduct and core.

4.1 Basic Concepts of Rough Sets under Uncertainty

Uncertain decision table Our uncertain decision system is given by A =
(U,C ∪ {ud}), where U = {oj : 1 ≤ j ≤ n} is characterized by a set of certain
condition attributes C={c1, c2,...,ck}, and an uncertain decision attribute ud.
We represent the uncertainty of each object oj by a bba mj expressing beliefs on
decisions defined on the frame of discernment Θ={ud1, ud2,...,uds} describing
the possible values of ud. These bba’s are given by an expert.

Example: Let us use Table 1 to describe our uncertain decision table. It contains
eight objects, three certain condition attributes C={Hair, Eyes, Height} and
an uncertain decision attribute ud with two possible values {ud1, ud2} repre-
senting Θ. For the object o3, 0.7 of beliefs are exactly committed to the decision
ud1, whereas 0.3 of beliefs is assigned to the whole of frame of discernment Θ (ig-
norance). With bba, we can represent the certain case, like for the objects o2, o5
and o7. The decision rules induced from the uncertain decision table are denoted
belief decision rules where the decision is represented by a bba: If Hair = Blond
and Eyes = Brown and Height = Short Then m3({ud1}) = 0.7 m3(Θ) = 0.3.
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Table 1. Uncertain decision table

U Hair Eyes Height ud
o1 Dark Brown Short m1({ud2}) = 0.5 m1(Θ) = 0.5
o2 Blond Blue Middle m2({ud2}) = 1
o3 Blond Brown Short m3({ud1}) = 0.7 m3(Θ) = 0.3
o4 Blond Brown Tall m4({ud1}) = 0.95 m4({ud2}) = 0.05
o5 Dark Brown Short m5({ud2}) = 1
o6 Blond Blue Middle m6({ud2}) = 0.95 m6(Θ) = 0.05
o7 Dark Brown Tall m7({ud1}) = 1
o8 Dark Brown Middle m8({ud1}) = 0.975 m8(Θ) = 0.025

Tolerance relation. The indiscernibility relation for the decision attribute
U/{ud} is not the same as in the certain case. The decision value is repre-
sented by a bba. In our case, it will be denoted tolerance relation. So, we need
to assign each object to the right tolerance class. The idea is to use the distance
between the two bba’s mj and a certain bba m (such that m({udi}) = 1). Many
distance measures between two bba’s were developed. Some of them are based
on pignistic transformation [3,14]. This kind of distances may lose information
given by the initial bba’s. However, the distance measures developed in [2,4] are
directly defined on bba’s. In our case, we choose the distance measure proposed
in [2] which satisfies more properties such as non-negativity, non-degeneracy and
symmetry. For every udi, we define a tolerance class as follows:

Xi = {oj |dist(m,mj) < 1− threshold} (11)

Besides, we define a tolerance relation as follows:

IND{ud} = U/{ud} = {Xi|udi ∈ Θ} (12)

Where dist is a distance measure between two bba’s.

dist(m1,m2) =

√
1
2
(‖ m→

1 ‖2 + ‖ m→
2 ‖2 −2 < m→

1 ,m
→
2 >) (13)

Where < m→
1 ,m

→
2 > is the scalar product defined by:

< m→
1 ,m→

2 >=
|2Θ|∑
i=1

|2Θ|∑
j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj | (14)

with Ai, Aj ∈ 2Θ for i, j = 1, 2, · · · , |2Θ|. ‖ m→
1 ‖2 is then the square norm ofm→

1 .

Remark: It should be noted here that we replace the term equivalence class from
the certain decision attribute case by tolerance class for the uncertain decision
attribute, because the resulting classes may overlap.

Example: Let us continue with the same example to compute the tolerance
classes based on the uncertain decision attribute U/{ud}. For the uncertain
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decision value ud1: (if we take threshold equal to 0.1, we btain these results)
dist(m({ud1}) = 1,m1) = 0.67 (using eq. 13) < 0.9
dist(m({ud1}) = 1,m3) = 0.34 < 0.9
dist(m({ud1}) = 1,m4) = 0.0735 < 0.9
dist(m({ud1}) = 1,m7) = 0 < 0.9
dist(m({ud1}) = 1,m8) = 0.065 < 0.9
So, X1 ={o1, o3, o4, o7, o8}
The same for the uncertain decision value ud2.
So, X2 ={ o1, o2, o3, o5, o6}
U/{ud}={{o1, o3, o4, o7, o8}, {o1, o2, o3, o5, o6 }}

Set approximation. In the uncertain context, the two subsets lower and upper
approximations are redefined using two steps:

1. We combine the bba’s for each equivalence class from U/C using the operator
mean which is more suitable than the rule of combination in eq. 10 which
is proposed especially to combine different beliefs on decision for one object
and not different bba’s for different objects.

2. We compute the new lower and upper approximations for each tolerance
class Xi from U/{ud} based on uncertain decision attribute udi as follows:

C
¯
Xi = {oj |[oj ]C ∩Xi �= ∅ and dist(m,m[oj]C ) ≤ threshold} (15)

C̄Xi = {oj |[oj ]C ∩Xi �= ∅} (16)

We find in the new lower approximation all equivalence classes from U/C
included in Xi where the distance between the combined bba m[oj ]C and the
certain bba m (such that m({udi}) = 1) is less than a threshold. However,
the upper approximation is computed in the same manner as in the certain
case.

Example: We continue with the same example to compute the new lower and
upper approximations. After the first step, we obtain the combined bba for
each equivalence class from U/C using operator mean. Table 2 represents the
combined bba for the equivalence classes {o1, o5} and {o2, o6}. Next, we compute
the lower and upper approximations for each tolerance class U/{ud}. We will
use threshold = 0.1. For the uncertain decision value ud1, let X1 ={o1, o3, o4,
o7, o8}. The subsets {o3}, {o4}, {o7} and {o8} are included to X1. We should
check the distance between their bba and the certain bba m({ud1}) = 1.
dist(m({ud1}) = 1,m3) = 0.34> 0.1
dist(m({ud1}) = 1,m4) = 0.0735< 0.1
dist(m({ud1}) = 1,m7) = 0 < 0.1
dist(m({ud1}) = 1,m8) = 0.065 < 0.1
C
¯
(X1)={o4, o7, o8} and C̄(X1)={o1, o3, o4, o5, o7, o8}

The same for uncertain decision value ud2, let X2 ={ o1, o2, o3, o5, o6}
C
¯
(X2)={o2, o6} and C̄(X2)={o1, o2, o3, o5, o6}
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Table 2. The combined bba for the subsets {o1, o5} and {o2, o6}

Object m({ud1}) m({ud2}) m(Θ)
o1 0 0.5 0.5
o5 0 1 0

m1,5 0 0.75 0.25
o2 0 1 0
o6 0 0.95 0.05

m2,6 0 0.975 0.025

Positive region. With the new lower approximation, we can redefine the pos-
itive region:

UPosC({ud}) =
⋃

Xi∈U/{ud}
C
¯
Xi (17)

Example: Let us continue with the same example, to compute the positive
region of A. UPosC({ud})={o2, o4, o6, o7, o8}.

Reduct and core. Using the new formalism of positive region, we can redefine
the reduct of A as a minimal set of attributes B ⊆ C such that:

UPosB({ud}) = UPosC({ud}) (18)

UCore(A, ud) =
⋂

URED(A, ud) (19)

Where URED(A, ud) is the set of all reducts of A relative to ud.

Example: Using our example, we find that UPos{Hair, Height}({ud})=
UPos{Eyes, Height}({ud})= UPosC({ud}). So, we have two possible reducts
{Hair, Height} and {Eyes, Height}. The attribute Height is the relative core.

4.2 The Construction Procedure of the D-BRSC

1. Feature selection: It is the more important step which consists of remov-
ing the superfluous condition attributes that are not in reduct. This leaves
us with a minimal set of attributes that preserve the ability to perform same
classification as the original set of attributes. However, our decision table
shown in subsection 4.1 is characterized by a high level of uncertain and
noisy data. One of the issues with such a data is that the resulting reducts
are not stable, and are sensitive to sampling. The belief decision rules gen-
erated are not suitable for classification. The solution to this problem is to
redefine the concept of dynamic reduct in the new context as we have done
in [12]. The rules calculated by means of dynamic reducts are better pre-
disposed to classify unseen objects, because they are the most frequently
appearing reducts in sub-decision systems created by random samples of a
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given decision system. According to the uncertain context, we can redefine
the concept of dynamic reduct as follows:

UDR(A, F ) = URED(A, ud) ∩
⋂

B∈F

URED(B, ud) (20)

Where F be a family of subtables of A. This notation can be sometimes too
restrictive so we apply a more general notion of dynamic reduct. They are
called (F, ε)-dynamic reducts, where 1 ≥ ε ≥ 0. The set UDRε(A, F ) of all
(F, ε)-dynamic reducts is defined by: UDRε(A, F ) ={

R ∈ URED(A, ud) :
|{B ∈ F : R ∈ URED(B, ud)}|

|F | ≥ 1− ε

}
(21)

2. Eliminate the redundant objects: After removing the superfluous con-
dition attributes, we find redundant objects. They may not have the same
bba on decision attribute. So, we use their combined bba’s using the operator
mean.

3. Eliminate the superfluous condition attribute values: In this step,
we compute the reduct value for each belief decision rule Rj of the form:
If C(oj) then mj . For all B ⊂ C, let X = {ok | B(oj) = B(ok)} If
Max(dist(mj ,mk)) ≤ threshold then B is a reduct value of Rj .
Remark: In the case of uncertainty, the threshold gives more flexibility to
the calculation of tolerance class, set approximations and reduct value. It is
fixed by the user and it should be the same value to be coherent.

5 Experimentations

In our experiments, we have performed several tests on real databases obtained
from the U.C.I. repository1 to evaluate D-BRSC. A brief description of these
databases is presented in Table 3. These databases are artificially modified in
order to include uncertainty in decision attribute. We take different degrees of
uncertainty (Low, Middle and High) based on increasing values of probabilities
P used to transform the actual decision value di of each object oj to a bba
mj({di}) = 1−P andmj(Θ) = P . A larger P gives a larger degree of uncertainty.

– Low degree of uncertainty: we take 0 < P ≤ 0.3
– Middle degree of uncertainty: we take 0.3 < P ≤ 0.6
– High degree of uncertainty: we take 0.6 < P ≤ 1

The relevant criterion used to evaluate the performance of D-BRSC is the classifi-
cation accuracy (PCC2) of the generated belief decision rules. To further evaluate
the new classifier, we will compare the experimental results relative to D-BRSC
with those obtained from Static Belief Rough Set Classifier (S-BRSC) proposed
originally in [13].
1 http://www.ics.uci.edu/ mlearn/MLRepository.html
2 Percent of Correct Classification.
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Table 3. Description of databases

Database #instances #attributes #decision values
W. Breast Cancer 690 8 2

Balance Scale 625 4 3

C. Voting records 497 16 2

Zoo 101 17 7

Nursery 12960 8 3

Solar Flares 1389 10 2

Lung Cancer 32 56 3

Hyes-Roth 160 5 3

Car Evaluation 1728 6 4

Lymphography 148 18 4

Spect Heart 267 22 2

Tic-Tac-Toe Endgame 958 9 2

From Table 4, we can conclude that reducing uncertain and noisy database
using dynamic feature selection approach is more suitable for classification of the
unseen cases than the static approach. It is true for all chosen databases and for
all degrees of uncertainty. For example, the PCC for Car Evaluation database
under high degree of uncertainty is 84.17% with dynamic reduct and 72.77%
with static reduct. We further note that the PCC slightly increases when the
uncertainty decreases for the both approaches.

Table 4. Experimentation results relative to D-BRSC and S-BRSC

D-BRSC S-BRSC

Database PCC (%) PCC (%)

Low Middle High Low Middle High

W. Breast Cancer 86.87 86.58 86.18 83.41 83.39 82.17

Balance Scale 83.46 83.21 83.03 77.3 77.83 77.76

C. Voting records 98.94 98.76 98.52 97.91 97.76 97.71

Zoo 96.52 96.47 95.87 90.22 90.41 90.37

Nursery 96.68 96.21 96.07 94.34 94.13 94.11

Solar Flares 88.67 88.61 88.56 85.72 85.61 85.46

Lung Cancer 75.77 75.50 75.33 66.43 66.08 66.08

Hyes-Roth 97.96 97.15 96.75 83.66 83.31 82.14

Car Evaluation 84.46 84.01 84.17 73.39 73.22 72.77

Lymphography 83.24 83.03 82.67 79.25 78.97 78.94

Spect Heart 85.34 85.28 85.07 83.54 83.21 82.17

Tic-Tac-Toe Endgame 86.26 86.21 86.18 83.93 83.72 83.47

6 Conclusion and Future Work

In this paper, we have proposed a new approach of classification called Dynamic
Belief Rough Set Classifier (D-BRSC) based on rough sets induced from uncer-
tain data under the belief function framework. This technique of classification
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is based on dynamic approach for feature selection. We have done experimenta-
tions on real databases to evaluate our proposed classifier based on classification
accuracy criterion. To further evaluate our approach, we compare the results
with those obtained from Static Belief Rough Set Classifier (S-BRSC). Accord-
ing to the experimentation results, we find that generating belief decision rules
based on dynamic approach of feature selection is more suitable for classification
process than static one.
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Abstract. Non-deterministic Information Systems (NISs) are well
known as systems for handling information incompleteness in data. In
our previous work, we have proposed NIS-Apriori algorithm aimed at
extraction of decision rules from NISs. NIS-Apriori employs the mini-
mum and the maximum supports for each descriptor, and it effectively
calculates the criterion values for defining rules. In this paper, we focus
on Lipski’s Incomplete Information Databases (IIDs), which han-
dle non-deterministic information by means of the sets of values and
intervals. We clarify how to understand decision rules in IIDs and ap-
propriately adapt our NIS-Apriori algorithm to generate them. Rule
generation in IIDs turns out to be more flexible than in NISs.

Keywords: Lipski’s incomplete information databases, Rule generation,
Apriori algorithm, External and internal interpretations, Rough sets.

1 Introduction

In our previous research, we focused on rule generation in Non-deterministic
Information Systems (NISs)[12]. In contrast to Deterministic Information
Systems (DISs)[11,15], NISs were proposed by Pawlak [11] and Orłowska [10]
in order to better handle information incompleteness in data. Incompleteness
can be here understood as related to null values, unknown values, missing val-
ues, but also to partially defined values represented by the subsets of possible
values. Since the emergence of incomplete information research and applications
[4,7,8,10], NISs have been playing an important role, both with regards to their
mathematical foundations and algorithmic frameworks.
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Fig. 1. A NIS and 24 derived DISs. The number of derived DISs is finite. However,
it usually increases in the exponential order.

In this paper, we consider rule generation in Incomplete Information Data-
bases (IIDs) proposed by Lipski [8,9]. IIDs are more flexible than NISs. This is
because definition of attribute values in IIDs is more general than in NISs. We
adapt our previous results related to Rough Non-deterministic Informa- tion
Analysis (RNIA) [12,13,14] in NISs in order to address the problem of rule
generation in IIDs. The obtained methodology can be treated as a step towards
more general rule-based data analysis, where both data values and descriptors
take various forms of incompleteness, vagueness or non-determinism.

The paper is organized as follows: Section 2 recalls data representation and
rule generation in DISs and NISs. Sections 3, 4 and 5 introduce the same for
IIDs. Section 6 presents open challenges. Section 7 concludes the paper.

2 Rule Generation in DISs and NISs

We omit formal definitions of DISs and NISs. Instead, we show an example
in Fig. 1. We identify a DIS with a standard table. In a NIS, each attribute
value is a set. If the value is a singleton, there is no incompleteness. Otherwise,
we interpret it as a set of possible values, i.e., we assume that it includes the
actual value but we do not know which of them is the actual one.

A rule (more correctly, a candidate for a rule) is an implication τ in the form
of Condition_part ⇒ Decision_part. We employ support(τ) and accuracy(τ)
to express the rule’s appropriateness as follows [1,11] (see also Fig. 2.):

Specification of the rule generation task in a DIS
For threshold values α and β (0 < α, β ≤ 1), find each implication τ satisfying
support(τ) ≥ α and accuracy(τ) ≥ β.

The Apriori algorithm proposed to search for such rules by Agrawal in [1] is
now one of the most representative methods in data mining [2].

In both DISs and NISs, the same τ may be generated by different tuples.
We use notation τx to express that τ is generated by an object x. Let DD(τx)
denote a set of derived DISs such that τx holds.
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Fig. 2. A pair (support,accuracy) corresponding to the implication τ

Fig. 3. A distribution of pairs (support,accuracy) for τx. There exists ψmin ∈ DD(τx)
which makes both support(τx) and accuracy(τx) the minimum. There exists ψmax ∈
DD(τx) which makes both support(τx) and accuracy(τx) the maximum. We denote
such quantities as minsupp, minacc, maxsupp and maxacc, respectively.

Example 1. In Fig. 1, τ : [Color, red] ⇒ [Size,m] occurs for all objects. We have
|DD(τ1)| = 4, |DD(τ2)| = 12, |DD(τ3)| = 12. In DD(τ1), there is a derived
DIS such that support(τ1) = 1 and accuracy(τ1) = 1. In another derived DIS,
support(τ1) = 1/3 and accuracy(τ1) = 1/2 hold.

Specification of the rule generation task in a NIS
(The lower system) Find each implication τ such that there exists an object
x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in each ψ ∈ DD(τx).
(The upper system) Find each implication τ such that there exists an object
x such that support(τx) ≥ α and accuracy(τx) ≥ β hold in some ψ ∈ DD(τx).

Both above systems depend on |DD(τx)|. In [14], we proved simplifying results
illustrated by Fig. 3. We also showed how to effectively compute support(τx)
and accuracy(τx) for ψmin and ψmax independently from |DD(τx)|.

Equivalent specification of the rule generation task in a NIS
(The lower system) Find each implication τ such that there exists an object
x such that minsupp(τx) ≥ α and minacc(τx) ≥ β (see Fig. 3).
(The upper system) Find each implication τ such that there exists an object
x such that maxsupp(τx) ≥ α and maxacc(τx) ≥ β (see Fig. 3).
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Table 1. An example of Lipski’s Incomplete Information Database (IID).

OB Age Dept# Hireyear Sal

x1 [60, 70] {1, · · · , 5} {70, · · · , 75} {10000}
x2 [52, 56] {2} {72, · · · , 76} (0, 20000]
x3 {30} {3} {70, 71} (0,∞)
x4 (0,∞) {2, 3} {70, · · · , 74} {22000}
x5 {32} {4} {75} (0,∞)

In [13,14], we extended rule generation ontoNISs and implemented a software
tool called NIS-Apriori. NIS-Apriori does not depend upon the number of
derived DISs. We are now working on its SQL-based version called SQL-NIS-
Apriori [16]. We also continue discussions on various challenges in front of Data
Mining and Data Warehousing that are related to complex, inexact data types
[6]. The following sections are one of the next steps along this path.

3 Lipski’s Incomplete Information Databases

Now, we advance from NISs to IIDs. In NISs, each attribute value is given as
a subset of a domain. In IIDs, in case of ordered sets, we also handle intervals.
Lipski coped with mathematical foundations of the question answering systems
in IIDs and proposed some software solutions in [8,9].

Table 1 is an example of IID cited from [8]. For Age whose domain is (0,∞),
information about two persons x3 and x5 is definite. Information on three persons
x1, x2 and x4 is indefinite. For each of these cases, information is given as an
interval. For Dept#, each attribute value is not an interval but a subset of a set
of all department numbers. In Table 1, attributes Age and Sal require intervals
and attributes Dept# and Hireyear require sets. We call each of the former an
interval-attribute, and each of the latter – a set-attribute.

For simplicity, we restrict in this paper only to one type of interval-attributes,
namely the attributes with numeric values. Of course, there are also other cases
where we can define intervals, e.g., the sets of words with lexicographic order.

Definition 1. (A revised definition of [8]) An Incomplete Information Data-
base (IID) is a quadruplet (OB,AT, {V ALA|A ∈ AT }, {gA|A ∈ AT }). OB
and AT are finite sets of objects and attributes. gA is defined as follows:

(1) If A ∈ AT is a set-attribute, V ALA is a finite set and gA is a mapping from
OB to P (V ALA) (a power set of V ALA).

(2) If A ∈ AT is an interval-attribute, V ALA is a set of numerical values with a
standard order < and gA is a mapping from OB to {[l, u), (l, u], (l, u)| l, u ∈
V ALA, l < u} ∪ {[l, u]| l, u ∈ V ALA, l ≤ u}.

For an interval-attribute A ∈ AT and an object x ∈ OB, we denote by gA(x) =
(u− l) the length of interval gA(x).
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Table 2. A complete extension ψ of IID from Table 1. Here, γAge = 2, γSal = 1000.
A complete extension takes the same role for IID as a derived DIS for NIS. For
complete extensions of an IID, we can imagine a chart analogous to Fig. 1.

OB Age Dept# Hireyear Sal

x1 [63, 65] {1} {71} {10000}
x2 [54, 56] {2} {76} [19000, 20000]
x3 {30} {3} {71} [13000, 14000]
x4 [50, 52] {3} {71} {22000}
x5 {32} {4} {75} [14000, 15000]

Each gA(x) is either a set or an interval, and it is interpreted as that the actual
value is in the set or the interval. In case of intervals, there may be uncountable
number of sub-intervals. For example, there are uncountably many sub-intervals
for (0, 1) = {x ∈ R (a set of real numbers)| 0 < x < 1}.
Definition 2. For an interval attribute A ∈ AT , let us fix a threshold value
γA > 0. We say that an interval is definite, if its length is not higher than γA.
Otherwise, we say that it is indefinite. We call γA a resolution of V ALA.

Definition 3. (A revised definition of [8]) Let us consider an IID = (OB,AT,
{V ALA|A ∈ AT }, {gA|A ∈ AT }) and a set ATR ⊆ AT . Consider ψ in the
form of (OB,ATR, {V ALA|A ∈ ATR}, {hA|A ∈ ATR}). If ψ satisfies (1) or
(2) for each A ∈ ATR and x ∈ OB, we say that it is an extension of IID:

(1) For a set-attribute A: hA(x) �= ∅ and hA(x) ⊆ gA(x);
(2) For an interval-attribute A: hA(x) ≥ γA and hA(x) ⊆ gA(x).

If hA(x) is either a singleton or a definite interval for each A ∈ ATR and
x ∈ OB, we say that ψ is a complete extension of IID.

4 The External and Internal Modes in IIDs

Lipski originally proposed two interpretations: the external and the internal
interpretation [8]. The external interpretation does not allow for expressing
information incompleteness in descriptors. The internal interpretation allows it.
We illustrate it in Fig. 4.

We define two modes depending upon the usage of descriptors. In the external
mode, we employ descriptors of the following form:
(EXT 1) [A, val] (val ∈ V ALA) for a set-attribute;
(EXT 2) [A, [l, u]] ((u− l) = γA) for an interval-attribute with resolution γA.
In the internal mode, we employ descriptors of the following form:
(INT 1) [A,SET ] (SET ⊆ V ALA) for a set-attribute;
(INT 2) [A, [l, u]] (γA ≤ (u− l)) for an interval-attribute with resolution γA.



Rule Generation in Lipski’s Incomplete Information Databases 381

Fig. 4. In the external mode, one handles complete information and complete exten-
sions Ψ1, ..., Ψn. In the internal mode, one handles incomplete information and all ex-
tensions. In our rough non-deterministic information analysis (RNIA), we have coped
with the analogy of external mode. We do not handle the internal mode yet.

As for descriptors of the interval-attributes, the selection of intervals is a very
important issue. We discuss this problem in the subsequent section. Here, we
assume that the descriptors are given. From now on, we employ the notation
DESCAttribute for expressing descriptors. The problem is to obtain appropriate
implications in the form of ∧iDESCi ⇒ DESCDEC .

5 Rule Generation in the External Mode

As mentioned before, a complete extension ψ is analogous to a derived DIS.
Basing on this analogy, we can reconsider support and accuracy in IIDs.

5.1 Support and Accuracy of Implications in the External Mode

Definition 4. Let us consider a complete extension ψ of an IID. We define the
satisfiability of descriptors in ψ as follows:

(1) For a set-attribute A ∈ AT , an object x in ψ satisfies the descriptor
[A, val], if hA(x) = {val}.

(2) For an interval-attribute A ∈ AT , an object x in ψ satisfies the descriptor
[A, [l, u]], if hA(x) ⊆ [l, u].

Definition 5. Let us consider a complete extension ψ of an IID and an impli-
cation τ : ∧iDESCi ⇒ DESCDEC . Let us define the following:

(1) OBJψ(CON) = {x ∈ OB|x in ψ satisfies each descriptor DESCi};
(2) OBJψ(CON,DEC) = {x ∈ OB|x in ψ satisfies each descriptor in τ}.
If OBJψ(CON,DEC) �= ∅, we say τ is definable in ψ. Then we define:

(3) supportψ(τ) = |OBJψ(CON,DEC)|/|OB|;
(4) accuracyψ(τ) = |OBJψ(CON,DEC)|/|OBJψ(CON)|.
If τ is not definable, we do not define (3) and (4).



382 H. Sakai, M. Nakata, and D. Ślȩzak

Example 2. For Table 1, consider γAge = 2 and γSal = 1000. Consider complete
extension ψ in Table 2. Consider τ : [Age, [30, 32]] ⇒ [Sal, [13000, 14000]]. We
have OBJψ({Age}) = {x3, x5} and OBJψ({Age}, {Sal}) = {x3}. According
to Definition 5, we have supportψ(τ) = 1/5 and accuracyψ(τ) = 1/2. Further,
consider τ ′ : [Age, [50, 52]] ⇒ [Sal, [20000, 21000]]. We have OBJψ({Age}) =
{x4} and OBJψ({Age}, {Sal}) = ∅. Thus, τ ′ is not definable in ψ.

Now, we are ready to formulate the task of rule generation in the external mode.
Please note how it depends on the resolution settings.

Specification of the rule generation task in the external mode
For α, β (0 < α, β ≤ 1) and fixed resolutions γA of interval-attributes A ∈ AT :
(The lower system) Find each implication τ such that support(τ) ≥ α and
accuracy(τ) ≥ β hold in each complete extension ψ, where τ is definable.
(The upper system) Find each implication τ such that support(τ) ≥ α and
accuracy(τ) ≥ β hold in a complete extension ψ, where τ is definable.

Although in the above specification support(τ) could be taken into account also
for extensions where τ is not definable, namely as support(τ) = 0, we do not do
it because it might lead to ignoring potentially meaningful implications.

Example 3. For Table 1, let us fix γAge = 40, γSal = 12000, α = 0.3 and β = 0.5.
Then, gAge(x4), gSal(x2), gSal(x3), gSal(x5) are indefinite intervals. Let us con-
sider τ : [Age, [30, 70]] ⇒ [Sal, [10000, 22000]]. In this case, {x1, x2, x3, x5} ⊆
OBJψ({Age}) for each ψ, and x4 ∈ OBJψ′({Age}) for some ψ′. Given that
OBJψ({Age}, {Sal}) = {x1, x2} for each ψ, we have support(τ) ≥ 2/5 > 0.3
and accuracy(τ) ≥ 2/4 ≥ 0.5. (If x4 satisfies [Age, [30, 70]], then we have
accuracy(τ) = 0.6.) Therefore, τ is a rule in the lower system. The lower system
defines certain rules, and τ expresses certain information in Table 1.

5.2 External Apriori Algorithm

Algorithm 1 on the next page is analogous to NIS-Apriori. It works properly
thanks to similar observations as those reported in Section 2 for NISs.

Definition 6. Consider IID. We define sets inf and sup for each descriptor:

(1) For a set-attribute A ∈ AT and a descriptor [A, val],
inf([A, val]) = {x ∈ OB| gA(x) = {val}},
sup([A, val]) = {x ∈ OB| val ∈ gA(x)}.

(2) For an interval-attribute A ∈ AT with a resolution γA and [A, [l, u]],
inf([A, [l, u]]) = {x ∈ OB| gA(x) ⊆ [l, u]},
sup([A, [l, u]]) = {x ∈ OB| [l, u] ⊆ gA(x)}.

(3) For a conjunction of descriptors ∧iDESCi,
inf(∧iDESCi) = ∩iinf(DESCi),
sup(∧iDESCi) = ∩isup(DESCi).
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Algorithm 1. External Apriori Algorithm for Lower System

Input : An IID, a decision attribute DEC, threshold values α and β, as well
as resolutions γA and descriptors [A, [lk, uk]] for all interval-attributes.

Output: All rules defined by the lower system.

for (each_attribute A ∈ AT ) do
Generate inf([A, val]) and sup([A, val])
or inf([A, [lk, uk]]) and sup([A, [lk, uk]]);

end

Generate set CANDIDATE(1) with elements DESC satisfying (A) or (B):

(A) |inf(DESC)| ≥ NUM ; // where NUM = �α · |OB|�
(B) |inf(DESC)| = (NUM − 1) and (sup(DESC) − inf(DESC)) �= ∅;

Generate set CANDIDATE(2) according to the following procedures:

(Proc 2-1) For every DESC and DESCDEC in CANDIDATE(1)
generate conjunction of descriptors DESC ∧ DESCDEC;

(Proc 2-2) For each generated conjunction, examine (A) and (B);
If either (A) or (B) holds and minacc(τ ) ≥ β

display an implication τ as a rule;
If either (A) or (B) holds and minacc(τ ) < β

add this descriptor to CANDIDATE(2);

Assign 2 to n;

while CANDIDATE(n) �= ∅ do
Generate CANDIDATE(n + 1) according to the following procedures:

(Proc 3-1) For each matching pair in CANDIDATE(n)
generate the corresponding longer conjunction;

(Proc 3-2) Examine the same procedure as (Proc 2-2);
Assign n + 1 to n;

end

Due to Definition 6, it is possible to define two sets inf and sup over a set
OB, and it is possible to apply NIS-Apriori algorithm. We can similarly define
the algorithm for the upper system. These algorithms do not depend upon the
number of complete extensions. We can calculate rules defined in the external
mode even if there are uncountably many complete extensions.

6 Open Challenges: Internal Mode and Descriptors

In the internal mode, we employ descriptors [A,SET ] (SET ⊆ V ALA) for a set-
attribute and [A, [l, u]] (γA ≤ (u− l)) for an interval-attribute. We can consider
the rule generation problem as follows:
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Specification of the rule generation task in the internal mode
(The lower system) Find each implication τ such that support(τ) ≥ α and
accuracy(τ) ≥ β hold in each extension ψ, where τ is definable.
(The upper system) Find each implication τ such that support(τ) ≥ α and
accuracy(τ) ≥ β hold in an extension ψ, where τ is definable.

The external mode is defined only by complete extensions. On the other hand,
the internal mode is defined by a much wider class of extensions, wherein the
complete ones are just special cases. Investigation of the rule generation problems
in the internal mode is one of our nearest future research items.

Another challenge is a selection of descriptors. In NISs, all attributes are
finite set-attributes. Therefore, we employ finite descriptors [A, val]. In IIDs,
we can similarly define finite descriptors for set-attributes. However, we need to
introduce some additional assumptions for interval-attributes. For example:

(Assumption) There is a set of disjoint intervals [li, ui] satisfying ∪i[li, ui] =
V ALA. Furthermore, any interval [ls, ut] is defined by ∪t

i=s[li, ui]. We call each
[li, ui] an atomic interval.

The idea of atomic intervals looks like analogous to discretization of numerical
data [3,4,5]. On the other hand, we would like to tend towards models that are
more general than basic discretization. Appropriate selection of descriptors for
interval-attributes is one more item on our future research roadmap.

7 Concluding Remarks

In this paper, we proposed how to formulate and solve the rule generation prob-
lem for Lipski’s Incomplete Information Databases. We attempted to clarify all
necessary details for both the external and the internal interpretations intro-
duced in [8], although it is obvious that the internal interpretation requires far
more study. In this way, we extended our previous research on Non-deterministic
Information Systems towards a more general framework for dealing with infor-
mation incompleteness in data.

One should remember that this is just a preliminary report. In particular, we
need to keep working on the challenges outlined in Section 6. We need to proceed
with experimental verification of the proposed algorithms. We also need to in-
vestigate how to extend our framework further towards more complex attribute
types, for which the sets of values and intervals may be yet insufficient.
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Abstract. Randomisation is a method to test the statistical significance
of a symbolic rule; it is, however, very expensive. In this paper we present
a sequential randomisation test which in most cases greatly reduces the
number of steps needed for a conclusion.

1 Introduction

One problem of rule based data analysis is that the validity of a rule may be
given, while its (statistical) significance is not. For example, if rules are based
on a few observations only, the granularity of the system is too high, and the
rule may be due to chance; in other words, a rule may be true, but useless. The
significance problem does not seem to have received due attention in the rough
set community.

In order to test the significance of rules, one can use randomisation methods
[3] to compute the conditional probability of the rule, assuming that the null
hypothesis

“Objects are randomly assigned to decision classes”

is true. These procedures seem to be particularly suitable to non-invasive tech-
niques of data mining such as rough set data analysis, since randomisation tests
do not assume that the available data is a representative sample. This assump-
tion is a general problem of statistical data mining techniques; the reason for
this is the huge state complexity of the space of possible rules, even when there
is only a small number of features. However, a drawback of randomisation is its
costliness, and it is of great value to have a less expensive procedure which has
few model assumptions, and still gives us a reliable significance test.

In [2] we have developed two procedures, both based on randomisation tech-
niques, which evaluate the significance of prediction rules obtained in rough set
dependency analysis. In the present paper, we show how Wald’s sequential prob-
ability ratio randomisation test [5] can be applied which is cheap and reliably
determines the statistical significance of a rough set rule system.
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Natural Sciences and Engineering Research Council of Canada. Günther Gediga is
also adjunct professor in the Department of Computer Science, Brock University.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 386–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Fast Randomisation Test for Rule Significance 387

2 Rule Systems

We use the terminology of rough set data analysis [4], and briefly explain the
basic concepts.

An information system is a tuple I = 〈U,Ω, Va〉a∈Ω, where

1. U is a finite set of objects.
2. Ω is a finite set of mappings a : U → Va. Each a ∈ Ω is called an attribute

or feature.

If x ∈ U and Q ⊆ ∅, we denote by Q(x) the feature vector of x determined
by the attributes in Q. Each non-empty subset Q of Ω induces an equivalence
relation θQ on U by

x ≡θQ y iff a(x) = a(y) for all a ∈ Q,

i.e.

x ≡θQ y iff Q(x) = Q(y).

Objects which are in the same equivalence class cannot be distinguished with
the knowledge of Q.

Equivalence relations θQ, θP are used to obtain rules in the following way: Let
Q→ P be the relation

〈X,Y 〉 ∈ Q→ P iff X is a class of θQ, Y is a class of θP , and X ∩ Y �= ∅.

A pair 〈X,Y 〉 ∈ Q → P is called a Q,P – rule (or just a rule, if Q and P are
understood) and usually written as X → Y . By some abuse of language we shall
also call Q→ P a rule when there is no danger of confusion.

Each equivalence class X of θQ corresponds to a vector X of Q-features,
and analogously for P . Thus, if the class X of θQ intersects exactly the classes
Y1, . . . , Yn of θP , then we obtain the rule

If Q(y) = X, then P (y) = Y1 or . . . or P (y) = Yn.(2.1)

A class X of θQ is called P – deterministic, if n = 1 in (2.1), i.e. if there is
exactly one class Y of P which intersects, and thus contains, X . We define the
quality of an approximation of a an attribute set Q with respect to an attribute
set P by

γ(Q→ P ) =
|⋃{X : X is a P–deterministic class of θQ}|

|U | .(2.2)

The statistic γ(Q→ P ) measures the relative frequency of correctly P – classified
objects with the data provided by Q.
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3 Randomisation

Suppose that ∅ �= Q,P ⊆ Ω, and that we want to evaluate the statistical signifi-
cance of the rule Q→ P . Let Σ be the set of all permutations of U , and σ ∈ Σ.
We define new attribute functions aσ by

aσ(x) def=

{
a(σ(x)), if a ∈ Q,
a(x), otherwise.

The resulting information system Iσ permutes the Q–columns according to σ,
while leaving the P–columns constant; we let Qσ be the result of the permu-
tation in the Q–columns, and γ(Qσ → P ) be the approximation quality of the
prediction of P by Qσ in Iσ.

The value

p(γ(Q→ P )|H0) :=
|{γ(Qσ → P ) ≥ γ(Q→ P ) : σ ∈ Σ}|

|U |!(3.1)

now measures the significance of the observed approximation quality. If p(γ(Q→
P )|H0) is low, traditionally below 5%, then the rule Q→ P is deemed significant,
and the (statistical) hypothesis “Q→ P is due to chance” can be rejected.

A simulation study done in [2] indicates that the randomisation procedure
has a reasonable power if the rule structure of the attributes is known.

Since there are |U |! permutations of U , we see from equation (3.1) that the
computational cost of obtaining the significance is feasible only for small values of
|U |. A fairly simple tool to shorten the processing time of the randomisation test
is the adaptation of a sequential testing scheme to the given situation. Because
this sequential testing scheme can be used as a general tool in randomisation
analysis, we present the approach in a more general way.

Suppose that θ is a statistic with realizations θi, and a fixed realization θc.
We can think of θc as γ(Q→ P ) and θi as γ(Qσ → P ). Recall that the statistic
θ is called α – significant, if the true value p(θ ≥ θc|H0) is smaller than α.
Traditionally, α = 0.05, and in this case, one speaks just of significance.

An evaluation of the hypothesis θ ≥ θc given the hypothesis H0 can be done
by using a sample of size n from the θ distribution, and counting the number k
of θi for which θi ≥ θc. The evaluation of p(θ ≥ θc|H0) can now be done by the
estimator p̂n(θ ≥ θc|H0) = k

n , and the comparison p̂n(θ ≥ θc|H0) < α will be
performed to test the significance of the statistic. For this to work we have to
assume that the simulation is asymptotically correct, i.e. that

lim
n→∞

p̂n(θ ≥ θc|H0) = p(θ ≥ θc|H0).(3.2)

In order to find a quicker evaluation scheme of the significance, it should be
noted that the results of the simulation k out of n can be described by a binomial
distribution with parameter p(θ ≥ θc|H0). The fit of the approximation of p̂n(θ ≥
θc|H0) can be determined by the confidence interval of the binomial distribution.
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In order to control the fit of the approximation more explicitly, we introduce
another procedure within our significance testing scheme. Let

Hb : p(θ ≥ θc|H0)) ∈ [0, α)(3.3)
Ha : p(θ ≥ θc|H0)) ∈ [α, 1](3.4)

be another pair of statistical hypotheses, which are strongly connected to the
original ones: If Hb holds, we can conclude that the test is α–significant, if Ha

holds, we conclude that it is not.
Because we want to do a finite approximation of the test procedure, we need to

control the precision of the approximation; to this end, we define two additional
error components:

1. r = probability that Ha is true, but Hb is the outcome of the ap-
proximative test.

2. s = probability that Hb is true, but Ha is the outcome of the ap-
proximative test.

The pair (r, s) is called the precision of the approximative test. To result in a
good approximation, the values r, s should be small (e.g. r = s = 0.05); at any
rate, we assume that r+ s � 1, so that s

1−r � 1−s
r , which will be needed below.

Using the Wald-procedure [5], we define the likelihood ratio

LQ(n) =
supp∈[0,α) p

k(1− p)n−k

supp∈[α,1] p
k(1 − p)n−k

,(3.5)

and we obtain the following approximative sequential testing scheme:

1. If
LQ(n) �

s

1− r
,

then Ha is true with probability at most s.
2. If

LQ(n) �
1− s

r
,

then Hb is true with probability at most r.
3. Otherwise

s

1− r
≤ LQ(n) ≤ 1− s

r
,

and no decision with precision (r, s) is possible. In this case, the simulation
must continue.

With this procedure, which is implemented in our rough set engine Grobian1

[1], the computational effort for the significance test can be greatly reduced in
most cases.
1 http://www.cosc.brocku.ca/~duentsch/grobian/grobian.html

http://www.cosc.brocku.ca/~duentsch/grobian/grobian.html
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4 Simulation Studies

In order to validate the procedure we conducted a small scale simulation study.
We check 6 different situations:

Situation n description granules / decision classes γ
1 8 granules 11112233 0.500

d-classes 11223344
2 8 granules 11223344 1.000

d-classes 11223344
3 8 granules 12345566 1.000

d-classes 11223344
4 8 granules 12345677 1.000

d-classes 11223344
5 8 granules 12345678 1.000

d-classes 11223344
6 30 granules 111111111122222222222222223333 0.467

d-classes 111111111122222222222222334444

In situation 1 there is a moderate approximation quality using granules which
consists of more than 1 observation. In situations 2 to 5 the approximation
quality is perfect (γ = 1), but the size of the granules gets smaller from situation
2 (maximum size of the granules) to situation 5 (minimum size of the granules.
Situation 6 shows a moderate approximation quality, but a larger sample size
and granules which are larger than those in situation 1 to 5.

If we apply the sequential randomisation test (SRT) to these situations, we ob-
serve the following results (based upon 1000 simulations, α = r = s = 0.05, and
10,000 as the maximum number of randomisations within the SRT procedure):

Situation γ p expected number of randomisations
1 0.500 0.034 572
2 1.000 0.014 176
3 1.000 0.033 556
4 1.000 0.233 39
5 1.000 0.999 11
6 0.467 0.008 121

First of all, the situations 4 and 5 show no significant results, although γ = 1.
This is due to fact the all granules are extremely small and this high approxi-
mation quality will be observed by random as well. The second observation is
that the expected number of randomisations grows when p approaches α. An
inspection of the decision rule of the SRT procedure shows us that this needs
to be the case. Note that the maximum number of 10,000 randomisations is not
needed at all in this situation – in contrast to simple randomisation tests, in
which the precision of the test is based on the number of the simulations.

Whereas these simulations demonstrate the usefulness of the procedure when
there is a substantial γ-value, it needs to be demonstrated that the procedure is
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statistical valid as well. The SRT procedure should only be used, if the repro-
duced α value, given the ”no dependence” assumption, is not greater than the
nominal α. The test would be optimal if the reproduced α equals the nominal α.
In order to check this for the SRT, we start with the same situation, but permute
the values of the decision attribute before using the SRT. Obviously, we result in
a random prediction situation. In this setting we count the number of decisions
of the SRT against the ”no dependence” assumption. The relative number of
these decisions can be used as an estimator for the reproduced α value.

Situation Expected γ Reproduced α Expected number
(given α = 0.05) of randomisations

1 0.070 0.024 23
2 0.140 0.008 18
3 0.576 0.032 180
4 0.798 0.001 16
5 1.000 0.000 11
6 0.070 0.040 253

The result shows that using the SRT procedure will not exceed the nominal α -
the test seems to be valid. The higher the granularity of the granules, the higher is
the expected value of γ (given no dependency) and the lower is the reproduced
α of the SRT. Situation 6 demonstrates that the nominal α-value should be
achieved when the granules consists of a reasonable number of observations.
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Abstract. We propose an ensemble method that solves ordinal classifi-
cation problem with monotonicity constraints. The classification data is
structured using the Variable Consistency Dominance-based Rough Set
Approach (VC-DRSA). The method employs a variable consistency bag-
ging scheme to produce bootstrap samples that privilege objects (i.e.,
classification examples) with relatively high values of consistency mea-
sures used in VC-DRSA. In result, one obtains an ensemble of rule clas-
sifiers learned on bootstrap samples. Due to diversification of bootstrap
samples controlled by consistency measures, the ensemble of classifiers
gets more accurate, which has been acknowledged by a computational
experiment on benchmark data.

1 Introduction

The paper concerns construction of rule classifiers for ordinal classification prob-
lems with monotonicity constraints. We propose an ensemble classification method
that is based on a generalization of the bagging scheme, called variable consistency
bagging (VC-bagging) [5]. In VC-bagging, the sampling of objects is controlled by
so-called consistency measures that are also used in Variable-Consistency
Dominance-based Rough Set Approach (VC-DRSA) [3]. VC-DRSA is, in turn,
a generalization of the Dominance-based Rough Set Approach (DRSA) proposed
by Greco, Matarazzo and Słowiński [11,14] for ordinal classification with mono-
tonicity constraints. In ordinal classification, objects are described by attributes
with ordered value sets; such attributes are called criteria.

Ordinal classification with monotonicity constraints means that classes are or-
dered and there exists a monotonic relationship between evaluation of an object
on a criterion and its assignment to a class, such that if object a has evaluations
on all considered criteria not worse than object b (i.e., a dominates b), then a is
expected to be assigned to a class not worse than that of b. The last principle is
called dominance principle. Objects violating the dominance principle are called
inconsistent.
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DRSA builds lower and upper approximations of unions of ordered classes
using granules which are dominance cones in the space of considered criteria.
In result, DRSA is structuring the ordinal classification data (classification ex-
amples). Lower approximations are used to induce certain decision rules. The
lower approximations are composed of consistent objects only, which appears to
be too restrictive in practical applications. Because real data concerning ordi-
nal classification with monotonicity constraints are often strongly inconsistent,
the lower approximations get easily empty, which prevents inducing certain deci-
sion rules from these approximations. Therefore, different versions of dominance-
based lower approximations relaxed by probabilistic conditions were proposed
(see [3] for review). In this paper, we rely on the version of VC-DRSA charac-
terized in [3]. It makes use of so-called object consistency measures to quantify
the evidence for membership of an object to a union of ordered classes. These
measures permit to control the degree of consistency of objects admitted to the
probabilistic lower approximations. These approximations provide positive ex-
amples for induction of decision rules which are basic components of a classifier.

In this paper, we propose to construct an ensemble composed of rule classifiers
induced on bootstrap samples of objects (classification examples) controlled by
consistency measures and structured using VC-DRSA. This approach extends
the bagging scheme proposed by Breiman [7]. Let us remark that in the standard
bagging, several classifiers, called component or base classifiers, are induced using
the same learning algorithm over different distributions of input objects, which
are bootstrap samples obtained by uniform sampling with replacement. Bagging
has been extended in a number of ways in attempt to improve its the predictive
accuracy. These extensions focused mainly on increasing diversity of component
classifiers. Random forest [8], which is using attribute subset randomized decision
tree component classifiers, is a well known example. Other extensions of bagging
take advantage of random selection of attributes. In some cases, the random
selection of attributes was combined with standard bootstrap sampling (see [13]).

The motivation of VC-bagging is also to increase diversity of component clas-
sifiers by changing the sampling phase. We take, however, into account the postu-
late saying that base classifiers used in bagging are expected to have sufficiently
high predictive accuracy apart from being diversified [8]. Our hypothesis is that
this requirement can be satisfied by privileging consistent objects when gener-
ating bootstrap samples. In our opinion, the inconsistent objects may lead to
overfitting of the base classifies which decreases their classification accuracy.

Following our hypothesis, we change the standard bootstrap sampling, where
each object is sampled with the same probability, into more focused sampling,
where consistent objects are more likely to be selected than inconsistent ones. To
identify consistent objects we use the same consistency measures as those used
to define probabilistic lower approximations in VC-DRSA [5]. The supporting
intuition is that decreasing a chance for selecting inconsistent objects should lead
to constructing more accurate and more diversified base classifiers in the bagging
scheme. In addition to [5], we also consider consistency of objects with respect to
description of objects by a random subset of attributes (criteria), instead of the
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whole set only. We considered this extension in [4], but as it was also the case in
[5], only for non-ordinal classification problems. In consequence, the consistency
will be measured in the dominance cones constructed on random subsets of the
set of attributes. The motivation of this extension of VC-bagging is twofold.
First, it introduces another level of randomization into method, which should
lead to more diversified samples. Second, when consistent objects are identified
on subsets of attributes, the intuition of sampling is the same as in the case of
the whole set of attributes, but then it is expressed with respect to objects that
can become basis for construction of classification patterns, e.g., decision rules.

Remark finally, that our bootstrap sampling controlled by consistency mea-
sures takes place in a pre-processing phase, before learning, similarly to data
structuring by VC-DRSA, which takes place before induction of rules from prob-
abilistic lower approximations. Moreover, in the way typical for bagging, consis-
tency of objects is calculated independently for each of bootstrap samples.

The paper is organized as follows. In the next section, we recall basic ele-
ments of VC-DRSA. Then in the two following sections, we present the bagging
scheme and its variable consistency extension (VC-bagging). In the following
section the computational experiment is reported, and the last section groups
conclusions.

2 Basic Elements of VC-DRSA

Ordinal data being structured by the Dominance-based Rough Set Approach
(DRSA) [11,14] concern a finite universe U of objects described by a finite set of
attributes A with ordered value sets. It has the form of a decision table, where
rows correspond to objects from U and columns to attributes from A. Attributes
with preference-ordered value sets are called criteria, while attributes whose
value sets are not preference-ordered are called regular attributes. Moreover, A
is divided into disjoint sets of condition attributes C and decision attributes D.

The value set of attribute q ∈ C ∪D is denoted by Vq, and VP =
|P |∏
q=1

Vq is called

P -evaluation space, P ⊆ C. For simplicity, we assume that D is a singleton
D = {d}, and values of d are ordered class labels coded by integers from 1 to n.

When among condition attributes from C there is at least one criterion, and
there exists a monotonic relationship between evaluation of objects on criteria
and their values (class labels) on the decision attribute, then the classification
problem falls into the category of ordinal classification with monotonicity con-
straints. In order to make a meaningful representation of classification decisions,
one has to consider the dominance relation in the evaluation space. For each ob-
ject y ∈ U , two dominance cones are defined with respect to (w.r.t.) P ⊆ C. The
P -positive dominance cone D+

P (y) is composed of objects that for each qi ∈ P are
not worse than y. The P -negative dominance cone D−

P (y) is composed of objects
that for each qi ∈ P are not better than y. The decision attribute makes a par-
tition of objects from U into ordered decision classes X1, X2, . . . , Xn, such that
if i < j, then class Xi is considered to be worse than Xj . The dominance-based
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approximations concern unions of decision classes: upward unionsX≥
i =
⋃

t≥i Xt,
where i = 2, . . . , n, and downward unions X≤

i =
⋃

t≤iXt, where i = 1, . . . , n− 1.
In order to simplify notation, we will use symbol X to denote a set of objects

belonging to union of classes X≥
i or X≤

i , unless it would lead to misunderstand-
ing. Moreover, we will use EP (y) to denote any dominance cone D+

P (y) orD−
P (y),

y ∈ U . If X and EP (y) are used in the same equation, then for X representing
X≥

i (resp. X≤
i ), EP (y) stands for dominance cone D+

P (y) (resp. D−
P (y)).

Variable-consistency (probabilistic) rough set approaches aim to extend lower
approximation of set X by inclusion of objects with sufficient evidence for mem-
bership to X . This evidence can be quantified by object consistency measures.
In [3], we distinguished gain-type and cost-type object consistency measures.

Let us give a generic definition of probabilistic P -lower approximation of set
X . For P ⊆ C,X ⊆ U, y ∈ U , given a gain-type (resp. cost-type) object consis-
tency measure ΘP

X(y) and a gain-threshold (resp. cost-threshold) θX , the P -lower
approximation of set X is defined as:

P θX (X) = {y ∈ X : ΘP
X(y) ∝ θX}, (1)

where ∝ denotes ≥ in case of a gain-type object consistency measure and a gain-
threshold, or ≤ for a cost-type object consistency measure and a cost-threshold.
In the above definition, θX ∈ [0, AX ] is a technical parameter influencing the
degree of consistency of objects belonging to lower approximation of X .

In [3], we also introduced and motivated four monotonicity properties required
from object consistency measures used in definition (1); they were denoted by
(m1), (m2), (m3), and (m4). The object consistency measure that we consider
in this paper is a cost-type measure εPX(y). For P ⊆ C,X,¬X ⊆ U , it is defined
as:

εPX(y) =
|EP (y) ∩ ¬X |

|¬X | . (2)

As proved in [3], this measure has properties (m1), (m2) and (m4).
The probabilistic lower approximations of unions of decision classes are ba-

sis for induction of a set of decision rules. VC-DomLEM [6] algorithm can be
applied to this end. It induces sets of probabilistic rules that preserve mono-
tonicity constraints in a degree expressed by the same consistency measure as
the one used to identify sufficiently consistent objects for the probabilistic lower
approximations.

Once the set of rules has been constructed, it can be used to classify ob-
jects. Classification methods are used at this stage to solve situations when the
classified object is covered by multiple rules that suggest assignment to different
unions of classes. In the standard DRSA classification method, an object covered
by a set of rules is assigned to a class (or a set of contiguous classes) resulting
from intersection of unions of decision classes suggested by the rules. The new
classification method proposed for DRSA and VC-DRSA in [2], is based on a
notion of score coefficient associated with a set of rules covering an object and
with classes suggested by these rules for the considered object. The score coeffi-
cient reflects relevance between rules and a particular class to which they assign
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the object. A vector of values of score coefficients calculated for an object with
respect to each class can be interpreted as a distribution of relevance between
rules covering the object and the classes.

3 Bagging Scheme

Bagging was introduced by Breiman [7]. Its idea is quite simple. Bagging com-
bines base classifiers generated by the same learning algorithm from different
bootstrap samples of the input training set. The outputs of these classifiers are
aggregated by an equal weight voting to make a final classification decision.

The diversity results from using different training samples. Each bootstrap
sample is obtained by sampling objects uniformly with replacement. Each sample
contains n ≤ |U | objects, however, some objects do not appear in it, while others
may appear more than once. The same probability 1/n of being sampled is
assigned to each object. The probability of an object being selected at least once
is 1 − (1 − 1/n)n. For a large n, this is about 1 − 1/e. Each bootstrap sample
contains, on the average, 63.2% unique objects from the training set [7]. Bagging
has one parameter m, which is the number of repetitions.

Bagging is a learning framework in which almost any learning algorithm can
be used. Many experimental results show a significant improvement of the classi-
fication accuracy, in particular, using decision tree classifiers and rule classifiers.
However, the choice of a base classifier is not indifferent. According to Breiman
[7], what makes a base classifier suitable is its unstability, i.e., small changes in
the training set causing major changes in the classifier.

4 Variable Consistency Bagging for Ordinal Classification
with Monotonicity Constraints

The goal of variable consistency bagging (VC-bagging) is to increase predictive
accuracy of bagged classifiers by using additional information about inconsis-
tency of objects. The resulting bagged classifiers are trained on bootstrap sam-
ples slightly shifted towards more consistent objects [4,5].

The VC-bagging learning algorithm presented as Algorithm 1 is almost the
same as the standard bagging scheme. The difference lies in consistency sam-
pling, which is a modified procedure of bootstrap sampling on random subsets
of attributes P of specified size p = |P |, line 3. This procedure is using consis-
tency of object calculated on random subsets of attributes to construct more
consistent bootstrap samples. The cardinality p of random subsets of attributes
P ⊆ C is limited by the size of the set of condition attributes (criteria) describ-
ing objects. This parameter controls the size of patterns that are identified by
the consistency measures in the sampling procedure. It is worth noting that,
random subsets of attributes are used only to calculate consistency of objects.
Objects with complete description are drawn into bootstrap samples and then
used during learning of component classifiers.
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Algorithm 1. VC-bagging scheme for ordinal classification with monotonic-
ity constraints
Input : LS training set; TS testing set; OMCLA learning algorithm that

constructs ordinal classifiers preserving monotonicity constraints;
ΘP consistency measure;
p number of attributes used in consistency sampling;
m number of bootstrap samples;

Output: C∗ final classifier

1 Learning phase;
2 for i := 1 to m do
3 Si := bootstrap sample of objects, which are drawn by consistency

sampling from LS with measure ΘP calculated on randomly selected
set of attributes P, such that |P | = p {sample objects with
replacement according to measure ΘP } ;

4 Ci := OMCLA (Si) {generate a base classifier} ;

5 Classification phase;
6 foreach y in TS do
7 C∗(y) := combination of the responses of Ci(y), where i = 1, . . . , m

{the suggestion of the classifier for object y is a combination of suggestions of
component classifiers Ci} ;

To apply VC-bagging to ordinal classification with monotonicity constraints,
the algorithm that constructs component classifiers needs to be an ordinal one
that preserves monotonicity constraints. Moreover, this requirement also applies
to the consistency measures used in bootstrap consistency sampling. It is thus
possible to use measures defined in VC-DRSA. Consistency measures are used
to tune the probability of object y being drawn to a bootstrap sample, e.g.,
by calculating a product of ΘP

X(y) and 1/|U |. The cost-type object consistency
measures need to be transformed to gain-type (it can be done by subtracting
the value of consistency measure from the highest value that it can take).

In the sampling, objects that are inconsistent on the selected random subset
P have decreased probability of being sampled. Objects that are more consistent
(i.e., have higher value of a consistency measure) are more likely to appear in the
bootstrap sample. Different object consistency measures may result in different
probability of inconsistent object y being sampled. The consistency measures
that have property (m1), i.e., that are monotonic with respect to the set of
attributes, when are applied in consistency sampling on subsets of attributes P ,
they allow to identify consistent patterns of at least size p , such that |P | = p. The
object consistency measures that do not have property (m1) allow to identify
consistent patterns of exactly size p.

The responses of component classifiers are combined in line 7 of the algorithm.
When all responses indicate single class, in case of non-ordinal classification
problem, majority voting is the method of combining responses in an ensemble
[7]. This may be attributed to the fact that mode is the measure of central
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tendency for non-ordinal nominal scale. Thus, majority voting minimizes the
number of misclassifications. On the other hand, in case of ordinal classification
problem, median of responses is the natural choice. This may be attributed to
the fact that median is the measure of central tendency for ordinal scales. Median
does not depend on a distance between class labels, so the scale of the decision
attribute does not matter, only the order is taken into account. It minimizes the
difference of ranks of the class to which the classified object belong and to which
it is classified. Moreover, the responses indicating a set of contiguous classes (as
it may be in case of the standard DRSA classifier), may be weighted according
to the cardinality of the set of contiguous classes. Weighted median of responses
is applied to combine such responses.

5 Experiments and Discussion

The first goal of the experiment was to check the predictive accuracy of the
VC-bagging in ordinal classification with monotonicity constraints. To this end,
we measured mean absolute error (MAE) on fourteen ordinal data sets listed in
Table 1. We considered single monotonic VC-DomLEM1 with the standard and
the new classification methods. Results of these classifiers are used as a baseline
for comparison of VC-DomLEM with the standard DRSA classification method
used in bagging and in VC-bagging on random subsets of attributes with 50%
cardinality. The cardinality of the random subset of attributes was chosen ac-
cording to the results of our previous experiments with this type of ensembles [4].
We used ε measure in this type of ensemble because it has preferable properties
and it is the same measure that is used by VC-DomLEM component classifiers.
The choice of the standard DRSA classification method in the ensembles was
made due to computational complexity of the new classification method. More-
over, we used for comparison two ordinal classifiers that preserve monotonicity
constraints: Ordinal Learning Model (OLM) [1] and Ordinal Stochastic Domi-
nance Learner (OSDL) [9]. The predictive accuracy was estimated by stratified
10-fold cross-validation, which was repeated several times. The results are shown
in Table 2. The table contains values of MAE together with their standard devia-
tions. Moreover, for each data set, we calculated a rank of the result of a classifier
when compared to the other classifiers. The rank is presented in brackets (the
smaller the rank, the better). Last row of the table shows the average rank ob-
tained by a given classifier. The second aim of the experiment was to identify
differences in bootstrap samples created by standard bagging and VC-bagging.
These differences should (at least to some extent) transform to the differences of
the component classifiers constructed by the two versions of bagging. The results
of comparison of the bootstrap samples are presented in Table 3.

We applied Friedman test to globally compare performance of six differ-
ent classifiers on multiple data sets [10]. The null-hypothesis in this test was
that all compared classifiers perform equally well. We analyzed the ranks from
Table 2. The p-value in Friedman test performed for this comparison was lower
1 see http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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Table 1. Characteristics of data sets

Id Data set Objects Attributes Classes
1 balance 625 4 3
2 breast-c 286 8 2
3 breast-w 699 9 2
4 car 1296 6 4
5 cpu 209 6 4
6 bank-g 1411 16 2
7 fame 1328 10 5
8 denbosch 119 8 2
9 ERA 1000 4 9
10 ESL 488 4 9
11 housing 506 13 4
12 LEV 1000 4 5
13 SWD 1000 10 4
14 windsor 546 10 4

Table 2. MAE resulting from repeated 10-fold cross validation

Data set VC-DomLEM VC-DomLEM bagging VC-bagging OLM OSDL
std. class. new. class. std. class. std. class.

balance 0.1621 (1.5) 0.1621 (1.5) 0.2011 (4) 0.1973 (3) 0.6384 (5) 0.7003 (6)
+
−0.001996 +

−0.001996 +
−0.003771 +

−0.01433 +
−0.01713 +

−0.004588

breast-c 0.2331 (1.5) 0.2331 (1.5) 0.2448 (3) 0.2459 (4) 0.324 (6) 0.3065 (5)
+
−0.003297 +

−0.003297 +
−0.008565 +

−0.008722 +
−0.01835 +

−0.001648

breast-w 0.03815 (4) 0.03720 (3) 0.03577 (2) 0.03243 (1) 0.1764 (6) 0.04149 (5)
+
−0.0006744 +

−0.002023 +
−0.001168 +

−0.001349 +
−0.00552 +

−0.001168

car 0.04090 (4) 0.03421 (1) 0.03652 (2) 0.03832 (3) 0.09156 (6) 0.04141 (5)
+
−0.00126 +

−0.0007275 +
−0.0007275 +

−0.002623 +
−0.005358 +

−0.0009624

cpu 0.1037 (4) 0.08293 (2) 0.08453 (3) 0.07656 (1) 0.3461 (6) 0.3158 (5)
+
−0.01846 +

−0.01479 +
−0.005968 +

−0.003907 +
−0.02744 +

−0.01034

bank-g 0.05481 (4) 0.04536 (3) 0.04489 (2) 0.04158 (1) 0.05528 (5) 0.1545 (6)
+
−0.001456 +

−0.001531 +
−0.001205 +

−0.001205 +
−0.001736 +

−0

fame 0.3803 (4) 0.3406 (3) 0.3230 (2) 0.32 (1) 1.577 (5) 1.592 (6)
+
−0.001627 +

−0.001878 +
−0.006419 +

−0.007993 +
−0.03791 +

−0.007555

denbosch 0.1261 (3) 0.1232 (2) 0.1289 (4) 0.1092 (1) 0.2633 (6) 0.1541 (5)
+
−0.006861 +

−0.01048 +
−0.01048 +

−0.006861 +
−0.02206 +

−0.003961

ERA 1.386 (5.5) 1.386 (5.5) 1.263 (1) 1.271 (2) 1.321 (4) 1.280 (3)
+
−0.003682 +

−0.003682 +
−0.004497 +

−0.002625 +
−0.01027 +

−0.00704

ESL 0.4447 (5) 0.3702 (4) 0.3477 (3) 0.3374 (1) 0.474 (6) 0.3422 (2)
+
−0.01045 +

−0.01352 +
−0.006762 +

−0.004211 +
−0.01114 +

−0.005019

housing 0.3564 (4) 0.3235 (3) 0.2984 (2) 0.2793 (1) 0.3867 (5) 1.078 (6)
+
−0.008887 +

−0.01133 +
−0.002795 +

−0.00796 +
−0.01050 +

−0.00796

LEV 0.4877 (5) 0.4813 (4) 0.4353 (3) 0.409 (2) 0.615 (6) 0.4033 (1)
+
−0.004497 +

−0.004028 +
−0.001700 +

−0.003742 +
−0.0099 +

−0.003091

SWD 0.462 (5) 0.454 (4) 0.443 (3) 0.4297 (1) 0.5707 (6) 0.433 (2)
+
−0.003742 +

−0.004320 +
−0.003742 +

−0.002867 +
−0.007717 +

−0.002160

windsor 0.5354 (5) 0.5024 (1) 0.5299 (4) 0.5043 (2) 0.5757 (6) 0.5153 (3)
+
−0.008236 +

−0.006226 +
−0.006743 +

−0.006044 +
−0.006044 +

−0.006044
average rank 3.96 2.75 2.71 1.71 5.57 4.29

than 0.0001. This result and observed differences in average ranks between the
compared classifiers allow us to conclude that there is a significant difference
between compared classifiers. Moreover, we checked significance of difference in
predictive accuracy for each pair of classifiers. We applied to this end Wilcoxon
test with null-hypothesis that the medians of results on all data sets of the two
compared classifiers are equal. We observed significant difference (p-values lower
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Table 3. Consistency and similarity of bootstrap samples created by standard bagging
and by VC-bagging with ε calculated on subsets of attributes with 50% cardinality

bagging VC-bagging
Id % inconsistent similarity all similarity inconsistent % inconsistent similarity all similarity inconsistent
1 100 0.7507 0.7507 100 0.4428 0.4426
2 93.05 0.7564 0.7561 91.76 0.7531 0.7506
3 15.93 0.7519 0.7492 9.77 0.7527 0.5808
4 67.01 0.7512 0.7508 56.29 0.7231 0.6489
5 55.17 0.7534 0.7541 53.49 0.7554 0.7429
6 6.38 0.7521 0.7492 3.34 0.7512 0.5472
7 59.47 0.7499 0.7502 57.99 0.7499 0.7422
8 39.6 0.7525 0.7573 3.76 0.7314 0.1431
9 100 0.7514 0.7514 100 0.7385 0.7387
10 99.25 0.7526 0.7526 99.05 0.7462 0.7463
11 33.23 0.7542 0.7554 14.76 0.7207 0.4745
12 100 0.7514 0.7514 100 0.6530 0.6532
13 99.89 0.7514 0.7514 99.87 0.7407 0.7409
14 92.53 0.7508 0.7507 89.58 0.7358 0.7295

than 0.05) between VC-bagging and any other classifier. These results allow us
to state that VC-bagging with monotonic VC-DomLEM obtains the best results
among compared classifiers. To our best knowledge, these results are also com-
parable to the results obtained by statistical ensembles of classifiers that solve
ordinal classification with monotonicity constraints found in the literature [12].

Finally, we checked the similarity and consistency of bootstrap samples drawn
by standard bagging and VC-bagging. The purpose of this analysis is to show
differences between sampling used in the two versions of bagging. The average
percentages of inconsistent objects in Table 3, indicate that samples used by VC-
bagging are more consistent than those drawn in standard bagging. Similarity of
bootstrap samples created by standard bagging is always close to 0.75, regardless
of whether it is calculated for all objects or for inconsistent ones. We consider this
result as a base line for our comparison. We can see that similarity measured for
objects drawn in bootstrap samples created by VC-bagging is usually lower than
in case of standard bagging. Moreover, for most of the data sets, similarity of
inconsistent objects is even lower. These results are concordant with our analysis
of consistency and similarity of bootstrap samples created by bagging and VC-
bagging on non-ordinal data sets [4].

6 Conclusions

The main contribution of this paper is application of variable consistency bagging
(VC-bagging) to ordinal classification problem with monotonicity constraints.
The component classifiers in such bagging ensemble are composed of decision rules
induced from bootstrap samples of objects structured using the Variable-
Consistency Dominance-based Rough Set Approach (VC-DRSA). In VC-bagging,
the generation of bootstrap samples is controlled by consistency measures which
privilege objects being more consistent with respect to the dominance principle.
The results of experiments indicate that VC-bagging improved the predictive
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accuracy, i.e., reduced MAE, of rule classifiers induced from data structured by
VC-DRSA. Comparison of consistency and similarity between samples drawn in
VC-bagging and standard bagging shows that our proposal allows to construct
bootstrap samples which are more consistent and more diversified, particularly
with respect to inconsistent objects.
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Abstract. We consider learning abilities of classifiers learned from data
structured by rough set approaches into lower approximations of consid-
ered sets of objects. We introduce two measures, λ and δ, that estimate
attainable predictive accuracy of rough-set-based classifiers. To check
the usefulness of the estimates for various types of classifiers, we perform
a computational experiment on fourteen data sets. In the experiment,
we use two versions of the rough-set-based rule classifier, called VC-
DomLEM, and few other well known classifiers. The results show that
both introduced measures are useful for an a priori identification of data
sets that are hard to learn by all classifiers.

1 Introduction

Rough set analysis of data is a step preceding the learning of a classifier. It
checks the data for possible inconsistencies by calculation of lower approxima-
tions of considered sets of objects. Due to this type of data structuring, one
may restrict a priori the set of objects on which the classifier is learned to a
subset of sufficiently consistent objects belonging to lower approximations. This
restriction is motivated by a postulate for learning from consistent data, so that
the knowledge gained from this learning is relatively certain.

The original Rough Set Approach proposed by Pawlak [9] deals with classifi-
cation data which are not considered to be ordered. The basic relation defining
elementary granules of knowledge is an indiscernibility relation, and the sets
approximated using these granules are decision classes. This is why we call the
original approach Indiscernibility-based Rough Set Approach (IRSA). Ordinal
classification with monotonicity constraints requires, however, another basic re-
lation in order to handle the ordered domains of attributes and a monotonic rela-
tionship between evaluations of objects on the attributes and the assignment of
these objects to ordered decision classes. Greco, Matarazzo and Słowiński [8,10]
proposed to this end a dominance relation. In their approach, called Dominance-
based Rough Set Approach (DRSA), the elementary granules of knowledge are
dominance cones, and the sets approximated using these granules are upward
and downward unions of ordered decision classes.

In this paper, we evaluate accuracy of prediction of various classifiers. To this
end, we use two predictive accuracy measures. The first one is the percentage of
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correctly classified objects (PCC). The second one is the mean absolute difference
between index of the class to which an object is assigned by a classifier and index
of the class to which the object belongs. This measure, called mean absolute error
(MAE), makes sense when the classes are ordered.

The interesting question is how to determine if the actual predictive accuracy
obtained by a given classifier on a given data set is satisfactory. Obviously,
one may compare this actual predictive accuracy with those of other classifiers.
However, such an approach allows only for relative performance evaluation. It
does not show if the classifier has learned from given data as much as it could
have learned in the best case. We claim that the actual predictive accuracy of a
classifier on a particular data set depends on at least three factors. First, on the
complexity of the data (i.e., how large is the number of attributes and classes).
Second, on the number of available training objects. Third, on the amount of
inconsistencies observed in the data. In the rough set approaches, construction
of a classifier is preceded by data structuring aiming at restricting the sets of
objects on which the classifier is learned to lower approximations of these sets,
composed of sufficiently consistent objects. This implies that the classifier will
learn classification patterns on sufficiently consistent objects only, and we do not
expect that it will classify correctly inconsistent objects.

In this paper, we concentrate on the estimation of the attainable predictive
accuracy of a rough-set-based classifier. This estimation is performed before
learning, taking into account inconsistencies detected in the data. Thus, it con-
siders only the third factor, from those that have impact on the actual predictive
accuracy. We propose two measures for this estimation. The first one, called λ,
estimates attainable PCC of a classifier. The second one, called δ, estimates at-
tainable MAE of a classifier. Obviously, measure δ can be applied only when
decision classes are ordered, i.e., in DRSA. Our motivation for introducing the
two measures is twofold. First, we observed that in the context of DRSA, the
well-known γ measure, called quality of (approximation of) classification [8,10],
is not well suited to the estimation of attainable PCC. It can be said that γ
is a pessimistic estimate. In case of (highly) inconsistent data sets, value of γ
tends to be relatively low (or even zero) and does not correlate with the PCC
obtained by a learned classifier (see [7]). Second, we want to estimate attainable
predictive accuracy of a classifier assigning objects to ordered decision classes.
In such a case, it is important to minimize the difference between the true deci-
sion class of an object and the decision class it is assigned to. Even though the
proposed measures are designed with concern for rough set classifiers, they can
be also useful for classifiers that do not benefit from data structuring by rough
set approaches. The inconsistencies in the data, even if they are not detected
before learning, may affect the actual predictive accuracy of such classifiers.

We analyze the dependency between values of measures λ and δ calculated on
the whole data sets, and average values of the corresponding predictive
accuracy measures obtained by various classifiers in k-fold cross-validation exper-
iments. The proposed measures are designed to be optimistic estimates of the at-
tainable predictive accuracy of a classifier that is learned on lower approximations
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of considered sets of objects. Actual predictive accuracy of such a classifier is sup-
posed not to exceed the value of λ and δ, unless it uses some “tricks”, like, for ex-
ample, default assignment of unclassified objects to majority decision class. On
the other hand, actual predictive accuracy worse than values of λ and δ indicate
a weakness of the classifier and/or high complexity of the considered data set.

The concept of learnability considered in this paper concerns predictive ac-
curacy that may be attained by a rough-set-based classifier. It is different from
learnability of decision tables introduced by Ziarko [11], which addresses the ef-
fective ability to converge to a stable state in a process of incremental learning.

This paper is organized as follows. In Section 2, we remind basic definitions
of rough set approaches. In Section 3, we introduce measures which can be used
to estimate attainable predictive accuracy of a classifier learned in a rough set
framework. Section 4 contains results of a computational experiment in which we
compared different classifiers and showed how actual predictive accuracy of these
classifiers relates to the values of estimation measures introduced in Section 3.
Section 5 concludes the paper.

2 Basic Definitions of Rough Set Approaches

In the rough set approaches [8,9,10], data is presented as a decision table, where
rows correspond to objects from universe U and columns correspond to attributes
from a finite set A. Attributes with preference-ordered value sets are called cri-
teria, while attributes without preference-ordered value sets are called regular
attributes. Moreover, set A is divided into disjoint sets of condition attributes
C and decision attributes D. The value set of attribute q ∈ C ∪ D is denoted

by Vq, and VP =
|P |∏
q=1

Vq is called P -evaluation space, where P ⊆ C. For sim-

plicity, we assume that D = {d}, and that values of d are class labels. Decision
attribute d makes a partition of set U into a finite number of n disjoint sets of
objects, called decision classes. We denote this partition by X = {X1, . . . , Xn}.
Decision about classification of object y ∈ U to set Xi depends on its class la-
bel known from the decision table and on its relation with other objects from
the table. In Indiscernibility-based Rough Set Approach (IRSA), the considered
relation is the indiscernibility relation in the evaluation space [9]. Consideration
of this relation is meaningful when set of attributes A is composed of regular
attributes only. Indiscernibility relation makes a partition of universe U into
disjoint blocks of objects that have the same description and are considered in-
discernible. Such blocks are called granules. Moreover, IP (y) denotes a set of
objects indiscernible with object y using set of attributes P ⊆ C. It is called a
granule of P -indiscernible objects.

When among condition attributes from C there is at least one criterion, deci-
sion attribute d has preference-ordered value set, and there exists a monotonic
relationship between evaluation of objects on criteria and their values (class la-
bels) on the decision attribute, then, in order to make a meaningful representa-
tion of classification decisions, one has to consider the dominance relation in the
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evaluation space. It has been proposed in [8,10] and the resulting approach was
called Dominance-based Rough Set Approach (DRSA). For each object y ∈ U ,
two dominance cones are defined with respect to (w.r.t.) P ⊆ C. The P -positive
dominance cone D+

P (y) is composed of objects that for each qi ∈ P are not worse
than y. The P -negative dominance cone D−

P (y) is composed of objects that for
each qi ∈ P are not better than y.

While in IRSA, decision classes Xi ⊆ U , i = 1, . . . , n, are not ordered, in
DRSA, they are ordered, such that if i < j, then class Xi is considered to be
worse than Xj . In IRSA, approximations concerns decision classesXi. In order to
handle preference orders, and monotonic relationship between evaluations on cri-
teria and assignment to decision classes, approximations made in DRSA concern
the following unions of decision classes : upward unions X≥

i =
⋃

t≥iXt, where
i = 2, 3, . . . , n, and downward unions X≤

i =
⋃

t≤iXt, where i = 1, 2, . . . , n− 1.
In order to simplify notation, we will use (unless it would lead to misunder-

standing) symbol X to denote a set of objects belonging to class Xi, in the
context of IRSA, or to union of classes X≥

i , X≤
i , in the context of DRSA. More-

over, we will use symbol EP (y) to denote any granule IP (y), D+
P (y) or D−

P (y),
y ∈ U . If X and EP (y) are used in the same equation, then for X representing
class Xi, EP (y) denotes granule IP (y) and for X representing union of ordered
classes X≥

i (resp. X≤
i ), EP (y) stands for dominance cone D+

P (y) (resp. D−
P (y)).

In IRSA and DRSA, the P -lower approximation of set X , for P ⊆ C, X ⊆ U ,
y ∈ U , is defined as:

P (X) = {y ∈ X : EP (y) ⊆ X}. (1)

This definition of the lower approximation appears to be too restrictive in prac-
tical applications. In consequence, lower approximations of sets are often empty,
preventing generalization of data in terms of relative certainty. Therefore, various
probabilistic rough set approaches were proposed which extend the lower approx-
imation of set X by inclusion of objects with sufficient evidence for membership
to X (see [4] for review). Probabilistic rough set approaches employing indis-
cernibility relation are called Variable Consistency Indiscernibility-based Rough
Set Approaches (VC-IRSA), while probabilistic rough set approaches employ-
ing dominance relation are called Variable Consistency Dominance-based Rough
Set Approaches (VC-DRSA). The evidence for membership to set X can be
quantified by different object consistency measures (see [4] for review).

In VC-IRSA and VC-DRSA, probabilistic P -lower approximation of set X ,
for P ⊆ C, X ⊆ U , y ∈ U , given a gain-type (resp. cost-type) object consistency
measure ΘP

X(y) and a gain-threshold (resp. cost-threshold) θX , is defined as:

P θX (X) = {y ∈ X : ΘP
X(y) ∝ θX}, (2)

where ∝ denotes ≥ in case of a gain-type object consistency measure and a gain-
threshold, or ≤ for a cost-type object consistency measure and a cost-threshold.
In the above definition, θX ∈ [0, AX ] is a technical parameter influencing the
degree of consistency of objects belonging to the lower approximation of X .
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Let us observe that the probabilistic P -lower approximation of set X defined
according to (2) is a superset of the P -lower approximation defined according
to (1). Moreover, given any object consistency measure ΘP

X(y), for the most
restrictive value of threshold θX , P θX (X) is the same as P (X). Therefore, in the
following, we will use more general notation of VC-IRSA and VC-DRSA, having
in mind that introduced definitions are also applicable in IRSA and DRSA.

Let us remind definitions of positive, negative and boundary regions of X in
the evaluation space ([3]). First, let us note that each set X has its complement
¬X = U −X . The P -positive region of X , for P ⊆ C, X ⊆ U , is defined as:

POSθX
P (X) =

⋃
y∈PθX (X)

EP (y), (3)

where θX comes from (2). One can observe that POSθX
P (X) extends P θX (X)

by inclusion of some “inevitable” inconsistent objects. Moreover, in case of IRSA
and DRSA, POSθX

P (X) boils down to P θX (X). Basing on definition (3), we can
define P -negative and P -boundary regions of the approximated sets:

NEGθX
P (X) = POSθX

P (¬X)− POSθX
P (X), (4)

BNDθX
P (X) = U − POSθX

P (X)−NEGθX
P (X). (5)

3 Estimation of Attainable Predictive Accuracy

In this section, we introduce two measures that estimate attainable predictive
accuracy of a classifier learned on (probabilistic) P -lower approximations of con-
sidered sets of objects (i.e., classes in IRSA or unions of ordered classes in DRSA).

In (VC-)IRSA, a classifier learned on P -lower approximations may correctly
assign object y ∈ Xi to class Xi if y belongs to the P -positive region of Xi.
Measure λ that estimates the ratio of objects in the data table that may be
learned by the classifier is defined as:

λθX
P (X ) =

⋃n
i=1

∣∣Xi ∩ POSθXi
P (Xi)

∣∣
|U | , (6)

where P ⊆ C, θX = {θX1 , . . . , θXn}.
Since in the context of (VC-)IRSA, Xi ∩ POSθXi

P (Xi) = P θXi (Xi), one can
observe that in this context measure λ boils down to the quality of approximation
of classification X by set of attributes P [8,10], denoted by γθX

P (X ).
In (VC-)DRSA, a classifier learned on P -lower approximations may correctly

assign object y ∈ Xi to class Xi if y ∈ POS
θ
X

≥
i

P (X≥
i ) or y ∈ POS

θ
X

≤
i

P (X≤
i ).

Measure λ that estimates the ratio of objects in the data table that may be
learned by the classifier is defined as:
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λθX
P (X ) =

∣∣X1 ∩ POS
θ
X

≤
1

P (X≤
1 )
∣∣

|U | + (7)

+
⋃n−1

i=2

∣∣Xi ∩ (POS
θ
X

≥
i

P (X≥
i ) ∪ POS

θ
X

≤
i

P (X≤
i ))
∣∣

|U | +

∣∣Xn ∩ POS
θ
X

≥
n

P (X≥
n )
∣∣

|U | ,

where P ⊆ C, θX = {θ
X≤

1
, . . . , θ

X≤
n−1

, θ
X≥

2
, . . . , θ

X≥
n
}.

Let us observe that X1 ∩ POS
θ
X

≤
1

P (X≤
1 ) may be written as P

θ
X

≤
1 (X≤

1 ), Xn ∩
POS

θ
X

≥
n

P (X≥
n ) may be written as P

θ
X

≥
n (X≥

n ), and Xi ∩ POS
θ
X

≥
i

P (X≥
i ) may be

simplified as Xi∩P
θ
X

≥
i (X≥

i ). Moreover, in (VC-)DRSA measure λ does not boil
down to γθX

P (X ). It can be also shown that λθX
P (X ) ≥ γθX

P (X ). In fact, γθX
P (X )

treats inconsistencies in the data very restrictively – each object y ∈ Xi that
does not belong to P

θ
X

≥
i (X≥

i ) or does not belong to P
θ
X

≤
i (X≤

i ) decreases the
value of this measure. On the other hand, measure λθX

P (X ) decreases if object

y ∈ Xi belongs neither to P
θ
X

≥
i (X≥

i ) nor to P
θ
X

≤
i (X≤

i ).
In (VC-)DRSA, a classifier learned on P -lower approximations may assign

object y ∈ Xi to class Xk if y belongs to the P -positive region of X≥
k or X≤

k .
Measure δ that estimates the average minimal absolute difference between index
of the class to which an object may be assigned and index of the class to which
the object belongs, for i : yj ∈ Xi, is defined as:

δθX
P (X ) =

1
|U |

|U|∑
j=1

min
k : yj∈POS

θ
X

≥
k

P (X≥
k )∨ yj∈POS

θ
X

≤
k

P (X≤
k )

|i− k|, (8)

where P ⊆ C, θX = {θ
X≤

1
, . . . , θ

X≤
n−1

, θ
X≥

2
, . . . , θ

X≥
n
}.

4 Results of the Computational Experiment

We considered rough-set-based classifier called VC-DomLEM1 [5] in two vari-
ants: monotonic (i.e., with consistency measure ε [4]) and non-monotonic (i.e.,
with consistency measure μ′ [3]). Moreover, we used ordinal classifiers that pre-
serve monotonicity constraints: Ordinal Learning Model (OLM) [2] and Ordinal
Stochastic Dominance Learner (OSDL) [6]. We also used well known non-ordinal
classifiers: Naive Bayes, SVM with linear kernel, RIPPER, and C4.5.

The aim of the experiment was to compare actual predictive accuracy of con-
sidered classifiers with the proposed estimates of attainable predictive accuracy
calculated before learning. We measured the percentage of correctly classified
objects (PCC) and mean absolute error (MAE) on fourteen ordinal data sets
listed in Table 1. Data sets: ERA, ESL, LEV and SWD were taken from [1].
Other data sets come from the UCI repository2 and other public repositories.
1 See http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
2 See http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Table 1. Characteristics of data sets

Data set #Objects #Attributes #Classes
balance 625 4 3
bank-g 1411 16 2
breast-c 286 8 2
breast-w 699 9 2
car 1296 6 4
cpu 209 6 4
denbosch 119 8 2
ERA 1000 4 9
ESL 488 4 9
fame 1328 10 5
housing 506 13 4
LEV 1000 4 5
SWD 1000 10 4
windsor 546 10 4

In Table 2, we show the values of: quality of classification γ, measure λ (7),
and measure δ (8), calculated on the whole data sets. For each measure, we
present values for the most restrictive VC-DRSA consistency thresholds (i.e.,
for θ∗

X = ε∗X = 0, θ∗
X = μ

′∗
X = 1), and values calculated for the VC-DRSA

consistency thresholds εX , μ′
X used during learning of VC-DomLEM classifiers.

All these values can be compared to PCC and MAE achieved by the classifiers.

Table 2. Values of γ, λ, and δ measures for θ∗
X = ε∗X = 0, θ∗

X = μ
′∗
X = 1, as well as

for εX and μ′
X used to obtain VC-DomLEM results shown in Tables 3 & 4

Data set γ
θ∗
X

C (X ) λ
θ∗
X

C (X ) δ
θ∗
X

C (X ) εX γεX
C (X ) λεX

C (X ) δεX
C (X ) μ′

X γ
μ′
X

C (X ) λ
μ′
X

C (X ) δ
μ′
X

C (X )
balance 100 100 0 0.01 100 100 0 0.99 100 100 0
bank-g 98.02 98.02 0.0198 0.001 98.87 98.87 0.0113 0.99 98.72 98.72 0.0128
breast-c 23.78 23.78 0.7622 0.45 98.6 98.6 0.014 0.55 90.21 90.21 0.0979
breast-w 97.57 97.57 0.0243 0.001 97.57 97.57 0.0243 0.95 100 100 0
car 97.22 98.61 0.0162 0.01 99.46 99.46 0.0054 0.85 100 100 0
cpu 100 100 0 0.001 100 100 0 0.99 100 100 0
denbosch 89.92 89.92 0.1008 0.05 99.16 99.16 0.0084 0.9 100 100 0
ERA 0 11.3 2.826 0.025 11.3 80.8 0.28 0.75 23.9 87.3 0.129
ESL 18.24 85.04 0.1578 0.025 62.09 100 0 0.95 77.46 98.98 0.0102
fame 89.38 98.27 0.0211 0.001 90.21 99.17 0.0113 0.6 100 100 0
housing 100 100 0 0.01 100 100 0 0.99 100 100 0
LEV 0.7 41.2 0.801 0.025 54 97.7 0.023 0.9 44.6 88.7 0.113
SWD 1.8 48.7 0.68 0.15 96.5 100 0 0.85 53.9 80.4 0.196
windsor 34.8 69.6 0.4066 0.05 87.55 97.44 0.0256 0.9 71.98 80.04 0.1996

The values of λ and δ in Table 2 show the attainable predictive accuracy of
a rough-set-based classifier. Thus, they also show the consistency of analyzed
data sets. The values of γ are always lower than the values of λ. Basing on val-
ues of λ and δ, we can identify three fully consistent data sets: balance, cpu,
and housing. Then, we can distinguish four data sets that have high consis-
tency: breast-w, car, bank-g, and fame. Also not bad in terms of consistency
are: denbosch and ESL. Data sets: breast-c, ERA, LEV, SWD, and windsor are
highly inconsistent. We can also observe that application of VC-DRSA led to
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considerable improvement of both measures for inconsistent data sets. Thus, VC-
DRSA allowed to include fair amount of inconsistent objects into extended lower
approximations.

The actual predictive accuracy was calculated by stratified 10-fold cross-
validation repeated several times. The results are shown in Tables 3 & 4. Both
tables contain values of the actual predictive accuracy and their standard devi-
ations. For each data set, the best value of the actual predictive accuracy, and
values included in the standard deviation of the best one, are marked in bold.
Actual predictive accuracies obtained by VC-DomLEM are at least comparable
to those of other classifiers (which is concordant with the results from [5]).

Table 3. Percentage of correctly classified objects (PCC)

Data set λ
θ∗
X

C (X ) monotonic non-monotonic Naive SVM RIPPER C4.5 OLM OSDL
VC-DomLEM VC-DomLEM Bayes

balance 100 86.61 86.93 90.56 87.47 81.5 78.45 61.28 57.81
+
−0.5891 +

−0.3771 +
−0.1306 +

−0.1508 +
−0.5439 +

−0.7195 +
−1.287 +

−0.3288

bank-g 98.02 95.46 95.13 88.54 87.2 95.11 94.85 94.47 84.55
+
−0.1531 +

−0.0884 +
−1.371 +

−0.1205 +
−0.352 +

−0.5251 +
−0.1736 +

−0

breast-c 23.78 76.69 75.64 74.36 67.83 70.4 75.76 67.6 69.35
+
−0.3297 +

−0.7185 +
−0.5943 +

−1.244 +
−1.154 +

−0.3297 +
−1.835 +

−0.1648

breast-w 97.57 96.28 95.42 96.04 96.76 95.52 94.47 82.36 95.85
+
−0.2023 +

−0.3504 +
−0.06744 +

−0.06744 +
−0.4721 +

−0.751 +
−0.552 +

−0.1168

car 98.61 97.15 97.1 84.72 92.18 84.41 89.84 91.72 96.53
+
−0.063 +

−0.1311 +
−0.1667 +

−0.2025 +
−1.309 +

−0.1819 +
−0.4425 +

−0.063

cpu 100 91.7 90.75 83.41 56.62 84.69 88.52 68.58 72.41
+
−1.479 +

−1.579 +
−0.9832 +

−1.579 +
−1.409 +

−1.409 +
−2.772 +

−1.479

denbosch 89.92 87.68 87.11 87.11 78.71 82.63 83.47 73.67 84.6
+
−1.048 +

−1.428 +
−1.428 +

−0.3961 +
−2.598 +

−1.048 +
−2.206 +

−0.3961

ERA 11.30 26.9 22.17 25.03 24.27 20 27.83 23.97 24.7
+
−0.3742 +

−0.1247 +
−0.2494 +

−0.2494 +
−0.4243 +

−0.4028 +
−0.4643 +

−0.8165

ESL 85.04 66.73 62.43 67.49 62.7 61.61 66.33 55.46 68.3
+
−1.256 +

−1.139 +
−0.3483 +

−0.6693 +
−1.555 +

−0.6966 +
−0.7545 +

−0.3483

fame 98.27 67.55 67.1 56.22 67.1 63.55 64.33 27.43 22.04
+
−0.4642 +

−0.4032 +
−0.2328 +

−0.2217 +
−0.5635 +

−0.5844 +
−0.7179 +

−0.128

housing 100 72 71.61 59.03 69.24 67.59 68.12 67.65 27.14
+
−0.6521 +

−0.09316 +
−0.3727 +

−0.4061 +
−0.9815 +

−1.037 +
−0.796 +

−0.3359

LEV 41.20 55.63 52.73 56.17 58.87 60.83 60.73 45.43 63.03
+
−0.3771 +

−0.1700 +
−0.3399 +

−0.3091 +
−0.6128 +

−1.271 +
−0.8179 +

−0.2625

SWD 48.70 56.43 52.8 56.57 58.23 57.63 57.1 47.83 58.6
+
−0.4643 +

−0.4320 +
−0.4784 +

−0.2055 +
−0.66 +

−0.4320 +
−0.411 +

−0.4243

windsor 69.60 54.58 53.05 53.6 51.83 44.08 47.99 49.15 55.37
+
−0.7913 +

−1.349 +
−0.2284 +

−1.813 +
−0.8236 +

−2.888 +
−0.7527 +

−0.3763

We compared the values from Tables 3 and 4 to the values of λ and δ presented
in Table 2. We included the most restrictive values of the respective measures
from Table 2 in Tables 3 and 4 to facilitate the comparison. Remember that
PCC and MAE were calculated by averaged 10-fold cross validation, while λ
and δ were calculated on the whole data sets. Nevertheless, we can observe that
thresholds λεX

C (X ), λμ′
X

C (X ), δεX
C (X ), and δ

μ′
X

C (X ) were never reached during
learning. This is not surprising since they are defined as limit values of what
can be achieved in learning. On the other hand, the values of γεX

C (X ) and/or
γ

μ′
X

C (X ) were exceeded for data sets: ERA, ESL, and LEV.
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Table 4. Mean absolute error (MAE)

Data set δ
θ∗
X

C (X ) monotonic non-monotonic Naive SVM RIPPER C4.5 OLM OSDL
VC-DomLEM VC-DomLEM Bayes

balance 0 0.1621 0.1659 0.1104 0.1723 0.2917 0.3088 0.6384 0.7003
+
−0.001996 +

−0.002719 +
−0.002613 +

−0.003017 +
−0.01088 +

−0.02174 +
−0.01713 +

−0.004588

bank-g 0.0198 0.04536 0.04867 0.1146 0.1280 0.0489 0.0515 0.05528 0.1545
+
−0.001531 +

−0.000884 +
−0.01371 +

−0.001205 +
−0.00352 +

−0.005251 +
−0.001736 +

−0

breast-c 0.7622 0.2331 0.2436 0.2564 0.3217 0.2960 0.2424 0.324 0.3065
+
−0.003297 +

−0.007185 +
−0.005943 +

−0.01244 +
−0.01154 +

−0.003297 +
−0.01835 +

−0.001648

breast-w 0.0243 0.03720 0.04578 0.03958 0.03243 0.04483 0.05532 0.1764 0.04149
+
−0.002023 +

−0.003504 +
−0.0006744 +

−0.0006744 +
−0.004721 +

−0.00751 +
−0.00552 +

−0.001168

car 0.0162 0.03421 0.03524 0.1757 0.08668 0.2029 0.1168 0.09156 0.04141
+
−0.0007275 +

−0.0009624 +
−0.002025 +

−0.002025 +
−0.01302 +

−0.003108 +
−0.005358 +

−0.0009624

cpu 0 0.08293 0.0925 0.1707 0.4386 0.1611 0.1196 0.3461 0.3158
+
−0.01479 +

−0.01579 +
−0.009832 +

−0.01579 +
−0.01372 +

−0.01790 +
−0.02744 +

−0.01034

denbosch 0.1008 0.1232 0.1289 0.1289 0.2129 0.1737 0.1653 0.2633 0.1541
+
−0.01048 +

−0.01428 +
−0.01428 +

−0.003961 +
−0.02598 +

−0.01048 +
−0.02206 +

−0.003961

ERA 2.826 1.307 1.364 1.325 1.318 1.681 1.326 1.321 1.280
+
−0.002055 +

−0.006018 +
−0.003771 +

−0.007257 +
−0.01558 +

−0.006018 +
−0.01027 +

−0.00704

ESL 0.1578 0.3702 0.4146 0.3456 0.4262 0.4296 0.3736 0.474 0.3422
+
−0.01352 +

−0.005112 +
−0.003864 +

−0.01004 +
−0.01608 +

−0.01089 +
−0.01114 +

−0.005019

fame 0.0211 0.3406 0.3469 0.4829 0.3406 0.3991 0.3863 1.577 1.592
+
−0.001878 +

−0.004 +
−0.002906 +

−0.001775 +
−0.003195 +

−0.005253 +
−0.03791 +

−0.007555

housing 0 0.3235 0.3083 0.5033 0.3551 0.3676 0.3676 0.3867 1.078
+
−0.01133 +

−0.00559 +
−0.006521 +

−0.005187 +
−0.007395 +

−0.01556 +
−0.01050 +

−0.00796

LEV 0.801 0.4813 0.5187 0.475 0.4457 0.4277 0.426 0.615 0.4033
+
−0.004028 +

−0.002867 +
−0.004320 +

−0.003399 +
−0.00838 +

−0.01476 +
−0.0099 +

−0.003091

SWD 0.68 0.454 0.4857 0.475 0.4503 0.452 0.4603 0.5707 0.433
+
−0.004320 +

−0.005249 +
−0.004320 +

−0.002867 +
−0.006481 +

−0.004497 +
−0.007717 +

−0.002160

windsor 0.4066 0.5024 0.5201 0.5488 0.5891 0.6825 0.652 0.5757 0.5153
+
−0.006226 +

−0.003956 +
−0.005662 +

−0.02101 +
−0.03332 +

−0.03721 +
−0.006044 +

−0.006044

The nine data sets that were distinguished by λθ∗
X

C (X ) and δθ∗
X

C (X ) as at least
not bad in terms of consistency, and thus, easier to learn, are also those on
which classifiers showed good actual predictive accuracy. Exception to this rule
are data sets: ESL, fame, and housing. This may be caused by the fact that these
data sets are described by many attributes and/or classes. It is thus visible that
measures λ and δ allowed to distinguish the data sets which are just hard to learn
(ESL, fame, and housing) from those which are inconsistent and hard to learn
(breast-c, ERA, LEV, SWD, windsor). It can be also seen that for the highly
inconsistent data sets: breast-c, ERA, LEV and SWD, all classifiers performed
better than the values of λθ∗

X

C (X ) and δ
θ∗
X

C (X ). The only exception is PCC of
OLM for data set SWD. This indicates that the classifiers were able to overcome
the inconsistencies present in the highly inconsistent data sets.

5 Conclusions

We have introduced two measures, λ and δ, that estimate attainable predic-
tive accuracy of classifiers learned in indiscernibility-based and dominance-based
rough set approaches. We have shown that λ is a better estimate than the well
known quality of classification γ. Values of λ and δ were compared to actual
predictive accuracies calculated in a computational experiment on fourteen data
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sets. The results show that both introduced measures are useful for an a pri-
ori identification of data sets that are hard to learn by all classifiers. Moreover,
they can be used to identify the data sets that are consistent and just hard
to learn.
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Abstract. In the paper, we consider the notions of exact and approxi-
mate decision reducts for binary decision tables. We present upper bounds
on minimum cardinality of exact and approximate reducts depending on
the number of rows (objects) in the decision table. We show that the bound
for exact reducts is unimprovable in the general case, and the bound for
approximate reducts is almost unimprovable in the general case.

Keywords: Exact reduct, approximate reduct, upper bound on mini-
mum cardinality.

1 Introduction

The paper is devoted to the consideration of upper bounds on minimum car-
dinality of exact and approximate reducts for binary decision tables. There are
different variants of the notion of reduct [6]. We study here decision reducts.
One of the main problems of rough set theory is to find reduct with minimum
cardinality [4,5,8]. Simple upper bounds on minimum cardinality of reducts can
help us to decrease the search range.

For exact reducts we have the following upper bound on minimum cardinality:

R(T ) ≤ N(T )− 1,

where R(T ) is the minimum cardinality of a reduct for the decision table T and
N(T ) is the number of rows (objects) in the table T . In the paper we show
that this well known bound (we don’t know who is the author of this bound) is
unimprovable in the general case.

Exact reducts can be overfitted, i.e., depend essentially on the noise or ad-
justed too much to the existing examples. So last years various kinds of approx-
imate reducts were studied intensively in rough set theory [1,2,3,7,9,10,11]. In
this paper, we consider one more definition of an approximate reduct based on
an uncertainty measure P (T ) of decision table T , which is equal to the number
of unordered pairs of rows with different decisions in T .

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 412–417, 2010.
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Let α be a real number such that 0 ≤ α < 1. A subset of the set of attributes
divides the table T into subtables T ′ in each of which the considered attributes
have constant values. This subset is called an α-reduct for the table T if P (T ′) ≤
αP (T ) for each subtable T ′, and we can’t remove any attribute from the subset
without loss of this property. In the paper we prove that

Rα(T ) ≤ (1− α)N(T ) + 1,

where Rα(T ) is the minimum cardinality of α-reduct for the table T . We show
that this bound is almost unimprovable in the general case.

The paper consists of five sections. In Sect. 2, notions of binary decision table,
exact test and reduct are considered, and an upper bound on the minimum
cardinality of exact reduct is presented. In Sect. 3, notions of approximate test
and reduct are discussed, and an upper bound on the minimum cardinality
of approximate reduct is proved. In Sect. 4, the quality of upper bounds on
minimum cardinality of exact and approximate reducts is studied. Section 5
contains short conclusions.

2 Exact Tests and Reducts

In this section, the notions of binary decision table, exact test (superreduct)
and exact reduct are described, and an upper bound on minimum cardinality of
exact reduct is presented.

A binary decision table T is a rectangular table which elements belong to the
set {0, 1}. Columns of this table are labeled with names of attributes f1, ..., fn.
Rows of the table are pairwise different, and each row is labeled with a natural
number (a decision). A test for T is a subset of columns (attributes) such that
at the intersection with these columns any two rows with different decisions are
different. A reduct for T is a test for T for which each proper subset is not a
test. It is clear that each test has a reduct as a subset. We denote by R(T ) the
minimum cardinality of a reduct for T , and by N(T ) we denote the number of
rows in the table T .

Let fi1 , . . . , fim ∈ {f1, . . . , fn} and δ1, . . . , δm ∈ {0, 1}. We denote by

T (fi1 , δ1) . . . (fim , δm)

a subtable of T that contains only rows of T , which at the intersection with
columns fi1 , . . . , fim have numbers δ1, . . . , δm respectively.

Theorem 1. Let T be a binary decision table. Then

R(T ) ≤ N(T )− 1.

Proof. We prove this inequality by induction on N(T ). If N(T ) = 1 then, evi-
dently, R(T ) = 0, since there are no pairs of rows with different decisions.

Let m ≥ 1 and for any decision table T with N(T ) ≤ m the inequality
R(T ) ≤ N(T )− 1 holds. Let T be a decision table with N(T ) = m+ 1. We now
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prove that R(T ) ≤ m. Since T has at least two rows and rows of T are pairwise
different, there exists a column fi of T , which has both 0 and 1.

Let us consider subtables T (fi, 0) and T (fi, 1). It is clear that each of these
subtables has at most m rows. Using inductive hypothesis we obtain that for δ =
0, 1 there exists a test Bδ for the table T (fi, δ) such that |Bδ| ≤ N(T (fi, δ))− 1.
We denote B = {fi} ∪ B0 ∪ B1. It is clear that B is a test for the table T and
|B| ≤ 1 +N(T (fi, 0))− 1 +N(T (fi, 1))− 1.

Since N(T ) = N(T (fi, 0)) +N(T (fi, 1)), we have |B| ≤ N(T )− 1. Therefore
R(T ) ≤ N(T )− 1. ()

3 Approximate Tests and Reducts

In this section, notions of approximate test and approximate reduct are de-
scribed, and an upper bound on minimum cardinality of approximate reduct is
presented.

Let T be a binary decision table. We denote by P (T ) the number of unordered
pairs of rows of T with different decisions. We will say that T is a degenerate
table if T doesn’t have rows or all rows of T are labeled with the same decision.
It is clear that T is degenerate if and only if P (T ) = 0.

Let α be a real number such that 0 ≤ α < 1. An α-test for the table T is a
subset of columns {fi1 , ..., fim} of T such that for any numbers δ1, ..., δm ∈ {0, 1}
the inequality P (T (fi1 , δ1)...(fim , δm)) ≤ αP (T ) holds. Empty set is an α-test
for T if and only if T is a degenerate table. An α-reduct for the table T is an
α-test T for which each proper subset is not an α-test.

We denote by Rα(T ) the minimum cardinality of an α-test for the table T .
It is clear that each α-test has an α-reduct as a subset. Therefore Rα(T ) is the
minimum cardinality of an α-reduct. It is clear also that the set of tests for the
table T coincides with the set of 0-tests for T . Therefore R0(T ) = R(T ). Let
α, β be real numbers such that 0 ≤ α ≤ β < 1. One can show that each α-test
for T is also a β-test for T . Thus, Rα(T ) ≥ Rβ(T ).

Theorem 2. Let T be a binary decision table and α be a real number such that
0 ≤ α < 1. Then

Rα(T ) ≤ (1− α)N(T ) + 1.

Proof. We will prove the considered inequality by induction on N(T ). If N(T ) =
1 then Rα(T ) = 0 and the considered inequality holds. Let for a natural m ≥ 1
for any decision table T with N(T ) ≤ m and for any real β, 0 ≤ β < 1, the
inequality Rβ(T ) ≤ (1− β)N(T ) + 1 holds.

Let T be a decision table with N(T ) = m + 1 and α be a real number,
0 ≤ α < 1. If T is a degenerate table then Rα(T ) = 0, and the considered
inequality holds. Let us assume now that there exist two rows in T , which are
labeled with different decisions. Let these rows be different in a column fi of the
table T . We denote T0 = T (fi, 0), T1 = T (fi, 1), N = N(T ), N0 = N(T0) and
N1 = N(T1). It is clear that 1 ≤ N0 ≤ m and 1 ≤ N1 ≤ m. We consider three
cases.
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1. Let P (T0) ≤ αP (T ) and P (T1) ≤ αP (T ). In this case {fi} is an α-test for
the table T , and

Rα(T ) ≤ 1 ≤ (1− α)N(T ) + 1.

2. Let P (T0) ≤ αP (T ) and P (T1) > αP (T ) (the case P (T1) ≤ αP (T ) and
P (T0) > αP (T ) can be considered in the same way). We denote β1 = αP (T )

P (T1) .
It is clear that 0 ≤ β1 < 1. Using inductive hypothesis we conclude that
there exists a β1-test B1 for the table T1 such that |B1| ≤ (1−β1)N(T1)+1.
It is not difficult to show that B1 ∪ {fi} is an α-test for the table T .
Let us prove that β1 ≥ α N

N1
. To this end, we will show that N

N1
≤ P (T )

P (T1) . It is
clear that P (T ) = P (T0)+P (T1)+P (T0, T1) where P (T0, T1) is the number
of pairs of rows (r′, r′′) with different decisions such that r′ is from T0 and r′′

is from T1. Thus, N
N1

= N1
N1

+ N0
N1

= 1 + N0
N1

and P (T )
P (T1)

= 1 + P (T0)
P (T1) + P (T0,T1)

P (T1) .

We will show that N0
N1

≤ P (T0,T1)
P (T1) . Let r1, ...rN0 be all rows from T0. For

i = 1, ..., N0 we denote by Pi the number of pairs of rows (ri, r′′) with

different decisions, such that r′′ is from T1. Then P (T0,T1)
P (T1) =

∑N0
i=1 Pi

P (T1) .
Let us show that Pi

P (T1)
≥ 1

N1
for any i ∈ {1, ..., N0}. We consider rows of

the table T1. Let b be the number of rows which have the same decision as
ri. Let a be the number of rows which have other decisions. Then Pi = a,
P (T1) ≤ ab+ a(a−1)

2 and N1 = a+ b. Since P (T1) > αP (T ), we have T1 is a
non-degenerate table. Therefore, N1 ≥ 2 and a ≥ 1. So, Pi

P (T1) ≥ a

ab+ a(a−1)
2

=
1

b+ a−1
2
≥ 1

b+a . Thus, P (T0,T1)
P (T1) ≥ N0

N1
, P (T )

P (T1)
≥ N

N1
, and β1 = αP (T )

P (T1) ≥ αN
N1

.
Therefore,

|B1 ∪ {f1}| ≤ (1− β1)N1 + 2 ≤
(

1− αN

N1

)
N1 + 2

= N1 − αN + 2 ≤ N − αN + 1 = N(1− α) + 1.

We used here evident inequality N1 + 1 ≤ N .
3. Let P (T0) > αP (T ) and P (T1) > αP (T ). We denote β0 = αP (T )

P (T0) and

β1 = αP (T )
P (T1)

. It is clear that 0 < β0 < 1 and 0 < β1 < 1. Using inductive
hypothesis we obtain that there exists a β0-test B0 for the table T0 such that
|B0| ≤ (1 − β0)N0 + 1. Also, there exists a β1-test B1 for the table T1 such
that |B1| ≤ (1 − β1)N1 + 1. It is not difficult to show that B0 ∪ B1 ∪ {fi}
is an α-test for the table T . As for the case 2, one can prove that β0 ≥ αN

N0

and β1 ≥ αN
N1

. Therefore,

|B0 ∪B1 ∪ {fi}| ≤
(

1− αN

N0

)
N0 + 1 +

(
1− αN

N1

)
N1 + 1 + 1

= N0 − αN +N1 − αN + 3 = N − αN + 1 + 2− αN

= (1 − α)N + 1 + 2− αN.

Let αN ≥ 2. Then we have Rα(T ) ≤ (1− α)N + 1.
Let now αN < 2. Using Theorem 1 we have Rα(T ) ≤ R0(T ) ≤ N − 1 ≤
N − 1 + 2− αN = (1− α)N + 1. ()
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4 Quality of Bounds

In this section, we show that the bound from Theorem 1 is unimprovable in
the general case, and the bound from Theorem 2 is almost unimprovable in the
general case.

Let n be a natural number. We consider a decision table Tn which contains
n columns labeled with conditional attributes f1, . . . , fn and n + 1 rows. For
i = 1, . . . , n, the i-th row has 1 at the intersection with the column fi. All other
positions in the row are filled by 0. This row is labeled with the decision 1. The
last (n+1)-th row is filled by 0 only and is labeled with the decision 2. One can
show that P (Tn) = n = N(Tn)− 1.

Let α be a real number such that 0 ≤ α < 1, and {fi1 , . . . , fim} be a subset
of the set of attributes. It is clear that P (Tn(fi1 , 0) . . . (fim , 0)) = n − m =
P (Tn)−m. If {fi1 , . . . , fim} is an α-test for Tn then

P (Tn)−m ≤ αP (Tn) = P (Tn)− (1− α)P (Tn)

and

m ≥ (1− α)P (Tn) = (1 − α)(N(Tn)− 1) = (1− α)N(Tn) + α− 1.

Therefore
Rα(Tn) ≥ (1− α)N(Tn) + α− 1. (1)

Let α = 0. By (1),

R(Tn) = R0(Tn) ≥ N(Tn)− 1.

From Theorem 1 it follows that

R(Tn) ≤ N(Tn)− 1.

Thus the bound from Theorem 1 is unimprovable in the general case.
From Theorem 2 it follows that

Rα(Tn) ≤ (1− α)N(Tn) + 1.

The difference between lower (1) and upper (from Theorem 2) bounds is at most
2. Hence the bound from Theorem 2 is almost unimprovable in the general case.

5 Conclusions

In the paper, upper bounds on minimum cardinality of exact and approximate
reducts are considered. We showed that the bound for exact reducts is unim-
provable, and the bound for approximate reducts is almost unimprovable in the
general case.
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11. Wróblewski, J.: Ensembles of classifiers based on approximate reducts. Fundamenta
Informaticae 47, 351–360 (2001)



An Extension of Rough Set Approximation to
Flow Graph Based Data Analysis

Doungrat Chitcharoen and Puntip Pattaraintakorn

School of Mathematics, Faculty of Science,
King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand 10520

s0067111@kmitl.ac.th, kppuntip@kmitl.ac.th

Abstract. This paper concerns some aspects of mathematical flow graph
based data analysis. In particular, taking a flow graph view on rough sets’
categories and measures leads to a new methodology of inductively reason-
ing form data. This perspective shows interesting relationships and prop-
erties among rough set, flow graphs and inverse flow graphs. A possible
car dealer application is outlined and discussed. Evidently, our new cat-
egories and measures assist and alleviate some limitations in flow graphs
to discover new patterns and explanations.

Keywords: Flow graphs, rough sets and decision rules.

1 Introduction

A mathematical flow graph, invented by Pawlak in 2002, is an extension of rough
set theory [9]. A flow graph represents the information flow from the given data
set [10,11,12,13,14]. The branches of a flow graph can be constructed as decision
rules, with every decision rule, there are three associated coefficients: strength,
certainty and coverage [14]. These coefficients satisfy Bayes’ theorem. Inference in
flow graphs has polynomial time and flow conservation comes with probabilistic
conditional independencies in the problem domain [1]. Flow graphs have led to
many interesting applications and extensions such as preference analysis [11],
decision tree [13], survival analysis [7], association rule [3], data mining [14],
search engines [2], fuzzy set [4,6], entropy measures [8] and granular computing
[5]. More studies involving rough sets are discussed and provided in [15].

Flow distribution in flow graphs can be exploited for approximation and rea-
soning. Based on flow graph contexts, we define fundamental definitions for rough
sets: four categories of vagueness, accuracy of approximation, roughness of ap-
proximation and dependency degree. In addition, we state formulas to conve-
niently compute these measures for inverse flow graphs. To illustrate, a possible
car dealer preference analysis is provided to support our propositions. New cat-
egories and measures assist and alleviate some limitations in flow graphs to
discover new patterns and explanations.

This paper is organized as follows. In Section 2, we present the basic concepts
of rough sets. In Section 3, we recall preliminary definitions of flow graphs. In
Section 4, we present a new bridge between rough sets and flow graphs with an
example throughout, followed by a conclusion in the last section.
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2 Rough Set Theory

The following rough sets preliminary is taken from [9]. Rough sets are based on
an information system. Formally, it is a pair S = (U, A), where U is a nonempty
finite set of objects called the universe and A is a nonempty finite set of attributes
such that a: U → Va for every a ∈ A. The set Va is called the domain of a.

If we partition an information system into two disjoint classes of attributes,
called condition and decision attributes, then the information system will be
called a decision system, denoted by S = (U, C, D), where C ∩ D = ∅. Any
subset B of A determines a binary relation I(B) on U called an indiscernibility
relation. It is defined as (x, y) ∈ I(B) if and only if a(x) = a(y) for every
a ∈ A, where a(x) denotes the attribute value of element x. Equivalence classes
of the relation I(B) are referred to as B-elementary sets or B-elementary granules
denote by B(X), i.e., B(X) describes X in the terms of attribute values from B
[11]. Below, we recall key feature definitions of approximations in rough sets.

Definition 1. [15] Let S = (U, A) be an information system. For X ⊆ U , B ⊆
A. The B-lower approximations, B-upper approximations and B-boundary region
of X are defined as B(X) =

⋃
x∈U {B(X)| B(X) ⊆ X}, B(X) =

⋃
x∈U {B(X)|

B(X) ∩ X �= ∅} and BNB(X) = B(X) − B(X), respectively.

If the boundary region of X is the empty set (i.e., BNB(x) = ∅), then X is crisp.
On the contrary, if BNB(X) �= ∅, then X is rough. In what follows we recall four
basic classes of rough sets, i.e., four categories of vagueness.

Definition 2. [15] Let S = (U, A) be an information system. For X ⊆ U ,
B ⊆ A, the four categories of vagueness are defined as

- B(X) �= ∅ and B(X) �= U iff X is roughly B-definable,
- B(X) = ∅ and B(X) �= U iff X is internally B-indefinable,
- B(X) �= ∅ and B(X) = U iff X is externally B-definable,
- B(X) = ∅ and B(X) = U iff X is totally B-indefinable.

Approximation of a rough set can be characterized numerically by some mea-
surements as follows.

Definition 3. [15] Let S = (U, A) be an information system. For X ⊆ U ,
B ⊆ A, the accuracy of approximation, αB(X), and roughness of approxima-
tion, γB(X), are defined respectively as αB(X) = card(B(X))

card(B(X))
and γB(X) =

1 − αB(X) = 1 − card(B(X))
card(B(X))

, where card(X) denotes the cardinality of X.

Let us observe that, 0 ≤ αB(X) ≤ 1. If αB(X) = 1, then X is crisp with respect
to B and otherwise, if αB(X) < 1, then X is rough with respect to B.

Definition 4. Let S = (U, A) be an information system and F = {X1, X2, . . . ,
Xn} be a partition of the universe U . For B ⊆ A, F depends on B to a degree
kB(F ) =

∑n
i=1 card(B(Xi))

card(U) .

Definitions 2 − 4 will be stated in the context of flow graphs in Section 4.
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3 Flow Graphs

In this section, we recall some concepts of flow graphs which were introduced by
Pawlak in [10,11,12,13,14].

A flow graph is a directed, acyclic, finite graph G = (N , B, ϕ), where N is a set
of nodes, B ⊆ N × N is a set of directed branches, ϕ: B → R+ is a flow function
and R+ is the set of non-negative real numbers. If (x, y) ∈ B then x is an input
of node y denoted by I(y) and y is an output of node x denoted by O(x). The
input and output of a flow graph G are defined by I(G) = {x ∈ N | I(x) = ∅} and
O(G) = {x ∈ N | O(x) = ∅}. These inputs and outputs of G are called external
nodes of G whereas other nodes are called internal nodes of G. If (x, y) ∈ B then
we call (x, y) a throughflow from x to y. We will assume in what follows that
ϕ(x, y) �= 0 for every (x, y) ∈ B. With every node x of a flow graph G, we have
its associated inflow and outflow respectively as: ϕ+(x) =

∑
y∈I(x) ϕ(y, x) and

ϕ−(x)=
∑

y∈O(x) ϕ(x, y). Similarly, an inflow and an outflow for the flow graph
G are defined as: ϕ+(G) =

∑
x∈I(G) ϕ−(x) and ϕ−(G) =

∑
x∈O(G) ϕ+(x). We

assume that for any internal node x, ϕ−(x) = ϕ+(x) = ϕ(x), where ϕ(x) is a
throughflow of node x. Similarly then, ϕ−(G) = ϕ+(G) = ϕ(G) is a throughflow
of graph G. As discussed by Pawlak [11], the above equations can be considered
as flow conservation equations (or pairwise consistent [1]).

Normalized Flow Graphs, Paths and Connections

In order to demonstrate interesting relationships between flow graphs and other
disciplines (e.g., statistics), we come to the normalized version of flow graphs.

A normalized flow graph is a directed, acyclic, finite graph G = (N , B, σ), where
N is a set of nodes, B ⊆ N ×N is a set of directed branches and σ: B → [0, 1] is a
normalized flow function of (x, y). The strength of (x, y) is σ(x, y) = ϕ(x,y)

ϕ(G) . With
every node x of a flow graph G, the associated normalized inflow and outflow are
defined as: σ+(x) = ϕ+(x)

ϕ(G) =
∑

y∈I(x) σ(y, x), σ−(x) = ϕ−(x)
ϕ(G) =

∑
y∈O(x) σ(x, y).

For any internal node x, it holds that σ+(x) = σ−(x) = σ(x), where σ(x) is a
normalized throughflow of x. Similarly, normalized inflow and outflow for the flow
graph G are defined as: σ+(G) = ϕ+(G)

ϕ(G) =
∑

x∈I(G) σ−(x), σ−(G) = ϕ−(G)
ϕ(G) =∑

x∈O(x) σ+(x). It also holds that σ+(G) = σ−(G) = σ(G) = 1. With every
branch (x, y) of a flow graph G, the certainty and the coverage of (x, y) are defined
respectively as: cer(x, y) = σ(x,y)

σ(x) , cov(x, y) = σ(x,y)
σ(y) , where σ(x), σ(y) �= 0.

Properties of these coefficients were studied by Pawlak in [10,11,12,13,14].
Next, if we focus on sequence of nodes in a flow graph, we can find them

by using the concept of a directed simple path. A (directed) path from x to y
(x �= y) in G, denoted by [x . . . y], is a sequence of nodes x1, . . . , xn such that
x1 = x and xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. The cer-
tainty, coverage and strength of the path [x1 . . . xn] are defined respectively as:
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cer[x1 . . . xn] =
∏n−1

i=1 cer(xi, xi+1), cov[x1 . . . xn] =
∏n−1

i=1 cov(xi, xi+1), σ[x . . . y]
= σ(x)cer[x...y] = σ(y)cov[x . . . y].

The set of all paths from x to y (x �= y) in G, denoted by 〈x, y〉, is a con-
nection of G determined by nodes x and y. For every connection 〈x, y〉, the
associated certainty, coverage and strength of the connection 〈x, y〉 are defined
as: cer 〈x, y〉 =

∑
[x...y]∈〈x,y〉 cer[x . . . y], cov 〈x, y〉 =

∑
[x...y]∈〈x,y〉 cov[x . . . y],

σ 〈x, y〉 =
∑

[x...y]∈〈x,y〉 σ[x . . . y] = σ(x)cer 〈x, y〉 = σ(y)cov 〈x, y〉. If [x. . .y] is
a path such that x and y are the input and output of G, then [x. . .y] will be
referred to as a complete path. The set of complete paths from x to y will be
called a complete connection from x to y in G.

If we substitute every complete connection 〈x, y〉 in G, where x and y are an
input and an output of a graph G with a single branch (x, y) such that σ(x, y) =
σ 〈x, y〉, cer(x, y) = cer 〈x, y〉 and cov(x, y) = cov 〈x, y〉 then we have a new flow
graph G′ with the property: σ(G) = σ(G′). G′ is called a combined flow graph.

Starting from a flow graph, if we invert the direction of all branches in G,
then the resulting graph G−1 will be called the inverted graph of G (or the
inverse flow graph of G) [14]. Essentially, three coefficients of an inverse flow
graph can be computed from its flow graph as follows: σG−1(y, x) = σG(x, y),
cerG−1(y, x) = covG(x, y) and covG−1(y, x) = cerG(x, y).

4 Rough Set Approximations and Flow Graphs

In this section, we provide a bridge between flow graphs and rough approxima-
tion. From standard definitions of approximations made by rough sets, we give
these definitions in the context of flow graphs below.

Suppose we are given a normalized flow graph G = (A, B, σ), where A =
{Al1 , Al2 , . . . , Aln} is a set of attributes1, B is a set of directed branches and σ is
a normalized flow function. A set of nodes in a flow graph G corresponding to Ali

is referred to as a layer i. For A = C ∪D, we have that every layer corresponding
to C will be called a condition layer whereas every layer corresponding to D will
be called a decision layer. If an attribute Ali contains nli values, we say that it
contains nli nodes.

We now consider how to approximate an attribute value Y ∈ Ali+1 from

attribute values of Ali where Ali =
{
X1, X2, . . . , Xnli

}
, to indicate lower ap-

proximation, upper approximation and boundary region of Y . In Definition 5,
we recall Pawlak’s definitions of lower approximation, upper approximation and
boundary region for flow graphs.

Definition 5. [11] Let G = (A, B, σ) be a normalized flow graph, Ali ={X1, X2,

. . . , Xnli

}
, 1 ≤ i ≤ k − 1, be an attribute in layer i and Y be a node in Ali+1 .

For any branch (Xj , Y ), j ∈ {1, . . . , nli}, of the flow graph G, the union of all
inputs Xj of Y is the upper approximation of Y (denoted Ali(Y )), the union
of all inputs Xj of Y , such that cer(Xj , Y ) = 1, is the lower approximation

1 In what follows, we regard N as A for simplicity.
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of Y (denoted Ali(Y )). Moreover, the union of all inputs Xj of Y , such that
cer(Xj , Y ) < 1, is the boundary region of Y (denoted AliNAli

(Y )).

In Definition 6, we state four categories of rough sets mentioned in Definition 2
in terms of flow graph.

Definition 6. Let G = (A, B, σ) be a flow graph, Ali =
{
X1, X2, . . . , Xnli

}
,

1 ≤ i ≤ k − 1, be an attribute in layer i and Y be a node in Ali+1 . For any
branch (Xj , Y ), j ∈ {1, . . . , nli}, of G, we define four categories of vagueness as

- ∃Xj [cer(Xj , Y ) = 1] and ∃Xj [Xj /∈ I(Y )] iff Y is roughly Ali-definable,
- ∀Xj [cer(Xj , Y ) �= 1] and ∃Xj [Xj /∈ I(Y )] iff Y is internally Ali-indefinable,
- ∃Xj [cer(Xj , Y ) = 1] and ∀Xj [Xj ∈ I(Y )] iff Y is externally Ali-definable,
- ∀Xj [cer(Xj , Y ) �= 1] and ∀Xj [Xj ∈ I(Y )] iff Y is totally Ali-indefinable.

From the definition we obtain the following interpretation:

- if Y is roughly Ali-definable, this means that we are able to decide for some
elements of U whether they belong to Y or −Y 2, using Ali ,

- if Y is internally Ali-indefinable, this means that we are able to decide
whether some elements of U belong to −Y , but we are unable to decide
for any element of U , whether it belongs to Y or not, using Ali ,

- if Y is externally Ali-indefinable, this means that we are able to decide for
some elements of U whether they belong to Y , but we are unable to decide,
for any element of U whether it belongs to −Y or not, using Ali ,

- if Y is totally Ali-indefinable, we are unable to decide for any element of U
whether it belongs to Y or −Y , using Ali .

Property 1. Let G = (A, B, σ) be a flow graph, Ali =
{
X1, X2, . . . , Xnli

}
,

2 ≤ i ≤ k, be an attribute in layer i and W be a node in Ali−1 . For any branch
(Xj , W ), j ∈ {1, . . . , nli} in the inverse flow graph of G, the union of all output
Xj of W in flow graph G is the upper approximation of W , the union of all
outputs Xj of W in a flow graph G, such that cov(W, Xj) = 1, is the lower
approximation of W . Moreover, the union of all outputs Xi of W , such that
cov(W, Xj) < 1, is the boundary region of Y .

Proof. It can be proved in a straightforward way according to definition and
property of inverse flow graph and Definition 5. ��

Example. Suppose we are given the flow graph for the preference analy-
sis problem depicted in Fig. 1, that describes four disjoint models of cars X
= {X1, X2, X3, X4}. They are sold to four disjoint groups of customers Z =
{Z1, Z2, Z3, Z4} through three dealers Y = {Y1, Y2, Y3}.

By Definition 5, when we consider customer Z1: the lower approximation of
Z1 is an empty set, the upper approximation of Z1 is Y1 ∪ Y2 and the boundary
2 Where −Y = U − Y .
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region Z1 is Y1 ∪ Y2. Hence, by Definition 6, we conclude that Z1 is internally
Y -indefinable. In Fig. 1 (only limited information is available), by using the set
of dealers (Y ) to approximate the customer group Z1 together with the flow
distribution visualized in layers two and three, our results can be summarized
as the following.

- Since no branch connects Y3 and Z1, there is no customer Z1 buys a car from
dealer Y3. As a result if dealer Y3 plans to run new promotional campaigns,
they do not need to pay attention to customer group Z1 in these campaigns.

- If a customer buys a car through dealer Y1 or Y2, then we cannot conclude
whether this is a customer in group Z1 or not. Thus, if dealers Y1 and Y2
plan to run promotional campaigns, then they should, at least, target at
customer group Z1 in their campaigns.

Fig. 1. A normalized flow graph

Similarly, we can approximate all attribute values (node) in the inverse flow
graph of G by using Property 1.

However, the flow graph perspective on rough sets’ categories in Definition
6 do not provide approximations quantitively. Hence, in Definitions 7 and 8,
we define two measures for flow graphs, the accuracy of approximation and the
roughness of approximation.

Definition 7. Let G = (A, B, σ) be a flow graph, Ali =
{
X1, X2, . . . , Xnli

}
,

1 ≤ i ≤ k − 1, be an attribute in layer i and Y be a node in Ali+1 . For any
branch (Xj , Y ), j ∈ {1, . . . , nli}, of G, the accuracy of approximation, αAli

(Y ),

is defined as: αAli
(Y ) =

card(Ali
(Y ))

card(Ali
(Y ))

.

We can use the accuracy of approximation to specify the quality of an approxi-
mation. Obviously, 0 ≤ αB(X) ≤ 1. If αAli

(Y ) = 1, then Y is crisp with respect
to Ali , and otherwise, if αAli

(Y ) < 1, then Y is rough with respect to Ali .
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Definition 8. Let G = (A, B, σ) be a flow graph, Ali =
{
X1, X2, . . . , Xnli

}
,

1 ≤ i ≤ k − 1, be an attribute in layer i and Y be a node in Ali+1 . For any
branch (Xi, Y ), i ∈ {1, . . . , nli}, of G, the roughness of approximation, γAli

(Y ),

is defined as: γAli
(Y ) = 1 − αAli

(Y ) =
card(Ali

(Y ))−card(Ali
(Y ))

card(Ali
(Y ))

.

Property 2. Let G = (A, B, σ) be a flow graph, Ali=
{
X1, X2, . . . , Xnli

}
, 1 ≤

i ≤ k − 1, be an attribute in layer i and Y be a node in Ali+1 . For any branch
(Xj , Y ), j ∈ {1, . . . , nli}, of G, we have

(1) αAli
(Y ) =

∑
cer(Xj ,Y )=1 σ(Xj)∑

Xj∈I(Y ) σ(Xj) and (2) γAli
(Y ) =

∑
cer(Xj ,Y )<1 σ(Xj)∑

Xj∈I(Y ) σ(Xi)
.

Proof. (1) From Definition 5, we have card(Ali(Y )) =
∑

cer(Xj ,Y )=1 card(Xj)
and card(Ali (Y )) =

∑
Xj∈I(Y ) card(Xi). Since card(Xj)=ϕ(Xj) = σ(Xj)ϕ(G) =

σ(Xj)ϕ(U) and by Definition 7, then αB(Y ) =
∑

cer(Xj ,Y )=1 σ(Xj)∑
Xj∈I(Y ) σ(Xj) .

(2) It can be proved similarly to (1). ��

Let us briefly comment on Property 2(1) that the greater the boundary of Y ,
the lower is the accuracy. If αAli

(Y ) = 1, the boundary region of Y is empty.

Property 3. Let G = (A, B, σ) be a flow graph, Ali =
{
X1, X2, . . . , Xnli

}
,

2 ≤ i ≤ k, be an attribute in layer i and W be a node in Ali−1 . For any branch
(Xj , W ), j ∈

{
1, . . . , nlj

}
in the inverse flow graph of G, we have

(1) αAlj
(W ) =

∑
cov(W,Xj )=1 σ(Xj)∑

Xj∈O(W ) σ(Xj) and (2) γAlj
(W ) =

∑
cov(W,Xj )<1 σ(Xj)∑

Xj∈O(W ) σ(Xj) .

Proof. (1) From Property 1, we have card(Alj (W ))=
∑

cov(Xj ,W )=1card(Xj) and

card(Alj (Y )) =
∑

Xj∈O(W ) card(Xj). Since card(Xj) = ϕ(Xj) = σ(Xj)ϕ(G) =

σ(Xj)ϕ(U) and by Definition 7, then αAlj
(W ) =

∑
cer(Xj ,W )=1 σ(Xj)∑

Xj∈O(W ) σ(Xj) .

(2) It can be proved similarly to (1). ��

Example (Cont.) Consider the branches between dealer and customer group
in Fig. 1. We can read from our flow graph that 24% of all customers buy cars
through dealer Y3 (σ(Y3) = 0.24) and all of them are in customer group Z3
(cer(Y3, Z4) = 1). There is only one branch (Y3, Z4) with cer(Y3, Z4) = 13.
Thus, by Property 2(1), we have αY (Z1) = αY (Z2) =αY (Z3) = 0 and αY (Z4)

=
∑

cer(Yi,Z4)=1 σ(Yi)∑
Yi∈I(Z4) σ(Yi)

= σ(Y3)
σ(Y1)+σ(Y2)+σ(Y3) = 0.24.

These results imply that we should not make decisions involving customer
groups Z1, Z2 and Z3 solely by using dealers due to high imprecision. Neverthe-
less, we can partly check that it will be customer group Z4 with low accuracy by

3 By employing the approach presented in our previous study [3], we can extract some
interesting association rules. If the model of car X2 (or X4) is bought through dealer
Y3 then the customer group is Z4 with support 0.12 and confidence 1.
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using dealers. Similarly, if we consider the roughness of approximation between
dealer and customer group, then by Property 2(2), we have γY (Z1) = γY (Z2)
=γY (Z3) = 1 and γY (Z4) = 0.76. We can draw a conclusion in a similar manner
as we did for the roughness measure.

Please note that we can calculate the accuracy and the roughness of approxi-
mation between attributes in the inverse flow graph by using Property 3. Another
important topic in data analysis is dependency between attributes. We introduce
dependency degree between any two attributes in Definition 9.

Definition 9. Let G = (A, B, σ) be a flow graph, Ali=
{

X1, X2, . . . , Xnli

}
and

Ali+1=
{
Y1, Y2, . . . , Ynli+1

}
, 1 ≤ i ≤ k, be any two adjacent layers. Ali+1 depends

on Ali to a degree kAli
(Ali+1) =

∑nli+1
l=1 card(Ali

(Yl))

card(U) .

If kAli
(Ali+1) = 1, we say that Ali+1 depends totally on Ali , and if kAli

(Ali+1)
< 1, we say that Ali+1 depends partially in a degree kAli

(Ali+1) on Ali . It is
worth pointing out that our dependency measure is different to the one given
by Pawlak [14]. The former gives dependency degree between two adjacent at-
tributes (layers) while the latter gives dependency degree between two nodes
connected by directed branch.

Property 4. Let G = (A, B, σ) be a flow graph, Ali=
{
X1, X2, . . . , Xnli

}
and

Ali+1={X1, X2, . . . , Xnli+1

}
, 1 ≤ i ≤ k, be any two adjacent layers. Ali+1

depends on Ali to a degree kAli
(Ali+1) =

∑
cer(Xi,Xj)=1 σ(Xi).

Proof. From Definition 5,
∑nli+1

j=1 card(Ali (Xj))=
∑nli+1

j=1
∑

cer(Xi,Yj)=1card(Xi).
Since Xn ∩ Xm = ∅, 1 ≤ n �= m ≤ nli , then Ali(Xn) ∩ Ali(Xm) = ∅. Thus∑n

j=1 card(Ali (Xj)) =
∑

cer(Xi,Yj)=1 card(Xi). Since ϕ(Xi) = σ(Xi)ϕ(G) =
σ(Xi)ϕ(U) and by Definition 9, we can write γB(D) =

∑
cer(Xi,Xj)=1 σ(Xi). ��

Property 5. Let G = (A, B, σ) be a flow graph, Alj =
{
X1, X2, . . . , Xnlj

}
and

Alj−1= {X1, X2, . . . , Xnlj−1

}
, 1 ≤ j ≤ k + 1, be any two adjacent layers in

the inverse flow graph of G. Alj−1 depends on Alj to a degree kAlj
(Alj−1 ) =∑

cov(Xi,Xj)=1 σ(Xi).

Proof. It can be proved similarly as Property 4 ��

Example (Cont.) Consider model of car and dealer in the flow graph G in
Fig. 1. By Property 4, dealer depends on model of car to a degree γX(Y ) =∑

cer(Xi,Yj)=1 σ(Xi) = σ(X3) = 0.17. On the other hand, if we consider customer
and dealer in the inverse flow graph of G, then by Property 5, we obtain that
dealer depends on customer group to a degree γZ(Y ) =

∑
cov(Yi,Zj)=1 σ(Zi) =

σ(Z3) = 0.21. These results give a conclusion that dealers depend on customer
groups more than models of cars.
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Fig. 2. A combined flow graph

In what follows, we aim to approximate a specific attribute value by some
attribute values such that they are not in adjacent layers. We can use the concept
of a connection to do this. More specifically, if we aim to approximate an attribute
value in an output layer by attribute values in an input layer, then we will use
the concept of complete connection.

Example (Cont.) For model of car and customer group in Fig. 1, we give a
combined flow graph in Fig. 2. By Definition 5, for Z4, the lower approximation
of Z4 is an empty set, the upper approximation and the boundary region of Z4
are X1 ∪ X2 ∪ X3 ∪ X4. Hence, by Definition 6, Z4 is totally X-indefinable.

By Property 2, we have the accuracy and the roughness approximation of
customer Z4 by model of car as: αX(Z4) = 0 and γX(Z4) = 1. Additionally,
we can use Property 4 to compute the dependency between model of car and
customer group, and the result is 0. From these results due to the imprecision
and dependency, we should not make decisions involving customer group Z4 by
using only model of car. As before, we can approximate and measure them for
the inverse flow graph in the same way. Comparing the obtained accuracy and
roughness measures, we can draw a conclusion that from this population dealer
is a better indicator for analyzing customer group Z4 than model of car.

5 Conclusion

In this paper, we introduce definitions and properties of rough set approxima-
tions, accuracy and roughness of approximation which are defined in terms of a
flow graph. They can be useful when the initial data is in the form of flow graph
and contains some limitations. We illustrate a car dealer preference analysis to
support our propositions.
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Tsumoto, S., S�lowiński, R., Komorowski, J., Grzyma�la-Busse, J.W. (eds.) RSCTC
2004. LNCS (LNAI), vol. 3066, pp. 691–698. Springer, Heidelberg (2004)

3. Chitcharone, D., Pattaraintakorn, P.: Knowledge Discovery by Rough Sets Math-
ematical Flow Graphs and its Extension. In: Proceedings of the IASTED Interna-
tional Conference on Artificial Intelligence and Applications, Innsbruck, Austria,
pp. 340–345 (2008)

4. Chitcharone, D., Pattaraintakorn, P.: Towards Theories of Fuzzy Set and Rough Set
to Flow Graphs. In: The 2008 IEEE World Congress on Computational Intelligence,
pp. 1675–1682. IEEE Press, Hong Kong (2008)

5. Liu, H., Sun, J., Zhang, H.: Interpretation of Extended Pawlak Flow Graphs Using
Granular Computing. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough
Sets VIII. LNCS, vol. 5084, pp. 93–115. Springer, Heidelberg (2008)

6. Matusiewicz, Z., Pancerz, K.: Rough Set Flow Graphs and Max −∗ Fuzzy Relation
Equations in State Prediction Problems. In: Chan, C.-C., Grzymala-Busse, J.W.,
Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 359–368. Springer,
Heidelberg (2008)

7. Pattaraintakorn, P., Cercone, N., Naruedomkul, K.: Rule Learning: Ordinal Predic-
tion Based on Rough Set and Soft-Computing. Appl. Math. Lett. 19(12), 1300–1307
(2006)

8. Pattaraintakorn, P.: Entropy Measures of Flow Graphs with Applications to De-
cision Trees. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G.
(eds.) RSKT 2009. LNCS, vol. 5589, pp. 618–625. Springer, Heidelberg (2009)

9. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

10. Pawlak, Z.: Rough Sets, Decision Algorithms and Bayes’ Theorem. European J. of
Oper. Res. 136, 181–189 (2002)

11. Pawlak, Z.: Rough Set and Flow Graphs. In: Śl ↪ezak, D., Wang, G., Szczuka, M.S.,
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Abstract. ARES System was a data analysis tool supporting Rough Set theory. 
It has been expanded to cover other approaches like Emerging Patterns and 
Support Vector Machine. A special feature of ARES System is ability to iden-
tify exceptional objects within information systems by using credibility coeffi-
cients. The credibility coefficient is a measure, which attempts to weigh up a 
degree of typicality of each object in respect to the rest of information system. 
The paper presents an idea of credibility coefficients based on SVM approach. 
The new coefficients are compared with the others ones available in the ARES 
System. 

Keywords: credibility coefficients, information system, classification, outliers, 
SVM. 

1   Introduction 

Credibility of data is a necessary condition to have confidence to results or drawn 
conclusions. In data analysis a credibility of data has to be taken into consideration to 
identify outliers - the data with uncertain reliability. The outliers can be removed from 
the data set, corrected or left untouched. Recognition of the doubtful data can be done 
only if the domain of data is known and understood. To identify outliers automatically 
each object has to get its credibility coefficient in the context of the whole informa-
tion system [1] [2]. In general no interpretation of data is possible. It is assumed that 
the majority of data set is correct and only a minor part of it can be suspected to be 
improper. This approach to credibility analysis is universal and can be applied to any 
information system regardless of its domain.  

The main purpose of defining the credibility coefficients is to find out exceptions 
to rules because very often they can be more interesting than the rules themselves. For 
instance, in medicine it would be invaluable to automatically detect such cases, where 
a treatment gives results beyond the expected sphere defined by some rules. Then po-
tentially the most difficult and interesting cases are identified and extracted from 
maybe overwhelming set of routine ones. 

Credibility coefficients are a part of capabilities of ARES System [2], which is a 
common platform for different data analysis approaches. Its initial functionality was 
based on Rough Set (RS) theory [3], then it has been expanded by Emerging Patterns 
(EP) approach [4] and Support Vector Machine (SVM) methodology [5] [6] [7].  
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In the next section an overview of ARES System is sketched. A section describing 
concept of credibility coefficients is followed by three proposals of credibility coeffi-
cients based on SVM. Then some practical results are outlined and finally conclusions 
complete the paper. 

2   ARES System 

The system has been designed to give an interactive access to process of data analysis 
involving different approaches. Hierarchically organized items in a directory browser 
enable observing and/or comparing different phases of data analysis.  

ARES System processes information systems or decision tables with single deci-
sion attribute. Editing functionalities enable cutting off information system by remov-
ing objects (rows) and/or attributes (columns). There are available capabilities of data 
discretization by a number of methods. 

The initial version of ARES System [1] comprised modules for performing the fol-
lowing tasks from Rough Set domain such as discovering approximations of decision 
classes, determining discernibility matrices, finding relative reducts, discovering fre-
quents sets and mining decision rules. The domain of Rough Set theory in ARES Sys-
tem has been supplemented by module for discovering discriminant of information 
system by algorithms LEM1, LEM2 and AQ [8].  

ARES System has incorporated the KTDA system [9] based on Emerging Patterns 
(EP) approach. Two different algorithms of discovering EPs are supported– using 
maximal frequent itemsets proposed in [4] or using decision tree. The former one re-
flects the classical approach and requires stating minimal growth rate and minimal sup-
port in the target class, while the latter one uses Fisher’s Exact Test used to discover 
only such EPs which are statistically significant. EPs enable data classification for 
which CAEP (Classification by Aggregating Emerging Patterns) algorithm is applied. 

Support Vector Machines is yet another methodology being integrated to ARES 
System to evaluate credibility coefficients, which are presented in detail in the chap-
ters following a general description of credibility analysis approach. 

3   Credibility Coefficients 

Credibility coefficients define relative measures of credibility of all objects from in-
formation system. The domain of credibility coefficients is interval [0; 1], but their 
values assessed by different methods are incomparable. Credibility coefficients 
should be used to introduce a ranking of objects from information system.  

A number of methods of evaluation of credibility coefficients are available [1] [2], 
but they can produce distinctive results. It is difficult to draw a common conclusion 
from applying several credibility approaches because their aggregations have no 
meaning (like an average value for set of physical values with various units of meas-
ure). Still there are a lot of questions regarding meaning, applications and efficiency 
of credibility coefficients.  

In general the credibility analysis should find out typical schemas of data and de-
pendencies between them or statistical relations appearing for analyzed data set  
(information system). To automatically identify a particular object as an outlier, its  
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inferior regularity in respect to other objects should be exposed. So we try to identify 
a non-typicality, presuming that if an object is less typical, so it does not precisely 
conform to knowledge discovered in the data set. The object not supporting relations 
observed frequently enough should receive lower evaluation of typicality.  

Currently in ARES System a number of algorithms for calculations of credibility 
coefficients have been implemented. Heuristics of the algorithms were based on the 
following concepts: 

 

• Approximation of Rough Set classes, 
• Statistics of attribute values, 
• Hybrid one combining the previous two, 
• Frequent Sets, 
• Extracted Rules (Rough Set approach), 
• Voting Classifier (CAEP - for Emerging Patterns), 
• Support Vector Machines. 

Some experiments with credibility coefficients presented their ability to identify  
corrupted data “injected” into original data sets; however it is difficult to prove supe-
riority of particular approaches over others. The effectiveness of different credibility 
coefficients vary depending on their applications (e.g. identifying falsified data, in-
crementing measures of quality indicators or discovering new and/or “better” rules by 
removing the most improper data) and the benchmarks (information systems). 

Credibility coefficients based on SVM methodology can be evaluated with support 
of the following algorithms:  

 

• C-SVM (classification), 
• ν-SVM (classification), 
• ε-SVR (regression), 
• ν-SVR (regression), 
• SVM clustering algorithm.  
 

A kernel function for the SVM algorithms can be chosen out of four: linear, polyno-
mial, RBF (Radial Basis Function) and sigmoidal. For algorithm C-SVM with RBF 
used as kernel function there is an option to automatically adjust the parameters by 
performing series of tests with cross validations. 

4   Credibility Coefficients Based of SVC 

We proposed credibility coefficient, which is based on Support Vector Classifier. The 
following formula  

d
T
dd bf += xwx)(  (1) 

denotes function evaluating adherence of object x to category d, where  
d∈Vdec is a value of decision attribute from its domain Vdec, 
x∈Rp  is an object from information system with p attributes, 
w∈Rp is normal vector to p-dimensional hyperplane, 
bd∈R 
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We have a sequence of classification tasks performed for each category d. Formula 
(1) is a general case and its dual form using Lagrange function is used for calculation 
of credibility coefficients. 

To obtain the required range of credibility coefficients ([0; 1]), we apply the fol-
lowing algorithm. In the first step we calculate a domination vector according to the 
formula 

),(),()( kiScorediScoreipk −=  (2) 

where pk(i) is k-th element of domination vector for object i∈I, Score (i, d) is the 
measure of adherence to category d (the object belongs to this category) and Score (i, 
k) is the measure of adherence to category k≠d (the domination vector has its dimen-
sion smaller by 1 than number of all categories). 

Then we calculate an auxiliary coefficient using elements of domination vector 
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This coefficient is positive if the measure of adherence is greatest for the category, to 
which objects belongs and the value is equal to minimal domination over any other 
category. The coefficient is equal to 0 if there is another category in which measure of 
adherence is the same as for its own category. The negative value means that there is 
at least one category, in which the measure of adherence is greater than for its own 
category. Each such category affects the value of this auxiliary coefficient. Finally the 
values of these auxiliary coefficients are mapped into predefined range ([0; 1]) of all 
credibility coefficients. It is done by applying the formula 
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where tmax and tmin are maximum and minimum of auxiliary coefficients, respectively. 
This way of evaluating credibility coefficients has an important drawback. The 

values of credibility coefficients for objects, which have intuitively high evaluation of 
adherence to the given category, may vary significantly, because they are strongly 
correlated with distance to the hyperplane wTx + b = 0. For a two-dimensional case, a 
single point with significantly greater distance from the separating line could signifi-
cantly lower the values of credibility coefficients of other points properly classified, 
but lying closer to the line. 

To avoid this problem we decided to use algorithms evaluating probability of ad-
herence to a particular category. They are based, as previously presented method on 
values of fd(x) from formula (1), but their interpretation is different.  

To assess probability of adherence of an object to a particular category firstly we 
consider probability of adherence (of the object) to one out of two categories. 
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denotes probability for object i ϵ I (information system) to adhere to category dm, tak-
ing into account only categories dm and dn. This probability may be assessed by  
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where fmn denotes hyperplane separating objects from categories dm and dn, x is vector 
of attributes of object i∈I. 

After Platt modification [10] introducing coefficients A and B we have 
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To adjust values of coefficients A and B, we are looking for a solution with the great-
est likelihood by minimization of approximation error for all objects i∈I. To achieve 
it a new variable is introduced: 
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where yi denotes category of object i: 1 is set for category dm and -1 is set for category 
dn. In a similar manner, to simplify denotation, by pi = pmn(i) we represent probability 
estimated by the algorithm. Finally values of A and B are calculated by minimizing 
measure of Kullback-Leibler distance describing differences in probability distribu-
tions – required one and estimated by the algorithm (t and p) 
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When values of A and B are set and all values of pmn(i) are calculated it is possible to 
calculate probability of adherence of object i∈I to category dm [11]. The following re-
lationship resulting from Bayes theorem is used for it. 
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To keep equity (10) (or to be as close as possible) the optimizing task (11) is solved. 
The algorithm is implemented in library libsvm [12]. Of course, values of credibil-

ity coefficients are dependent on parameters of Support Vector Classifier and in  
particular on chosen kernel function and its parameters. 

5   Credibility Coefficients Based of SVR 

The next version of credibility coefficient is based on Support Vector Regression. 
Regression function f(x) estimates value of decision y of object i with accuracy to er-
ror z  

iii zfy += )(x  (12) 

where zi are independent random variables with the same probability distribution. 
This distribution is dependent on values of error functions ξi and ξ*

i, defined as 
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where εi is the error margin. 
In [13] a model of the probability distribution exploiting Laplace distribution with 

probability density p(z) was proposed 
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where σ is a scale parameter evaluated with values of error functions 
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where i∈{1, …, l} denotes a number (index) of successive object from the information 
system. Knowing the real category yi and value of regression function f(xi) it is possi-
ble to set zi = yi - f(xi). The object without error should have credibility equal to 1 and 
for greater absolute value of z the credibility coefficient is smaller. 
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Similarly to values of credibility coefficients based on Support Vector Classifier the 
calculated values are correlated to kernel functions and its parameters. 

In an example presenting Support Vector Regression approach (Table 1) there were 
generated 12 objects with conditional attribute x and decision attribute y. Algorithm ν-
SVR (with kernel function RBF, ν = 0.5) was used to convey credibility analysis and 
as a result σ was set to 0.0656. 
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Table 1. Credibility coefficients based on SVR 

i x y f(x) z cred(i) 
1 0.036 0.182 0.228 -0.046 49.6 % 
2 0.080 0.274 0.276 -0.002 97.0 % 
3 0.110 0.484 0.304 0.180 6.4 % 
4 0.172 0.352 0.346 0.006 91.2 % 
5 0.268 0.248 0.379 -0.131 13.6 % 
6 0.308 0.376 0.384 -0.008 88.5 % 
7 0.448 0.386 0.384 0.002 97.0 % 
8 0.576 0.394 0.399 -0.005 92.7 % 
9 0.676 0.458 0.449 0.009 87.2 % 

10 0.792 0.562 0.568 -0.006 91.3 % 
11 0.874 0.702 0.695 0.007 89.9 % 
12 0.938 0.864 0.858 0.006 91.2 % 

6   Credibility Coefficients Based on Clustering 

The last method of credibility analysis based on SVM methodology employs algo-
rithm of clustering. So far there is no probability approach to assess exactness of clus-
tering and this is the main difference between this approach and the previous two. 
Clustering algorithm returns only binary information, whether a particular objects be-
longs to a cluster or not. Credibility coefficients have to be evaluated for all objects 
without any prior knowledge about them and this assumption excludes any training of 
the algorithm on a subset of the credible data, which is quite typical for the clustering.  

We propose to perform N attempts of clustering with different parameters and 
credibility coefficient for object i can be worked out as 

N
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where clustn(i) denotes the result of clustering in n-th attempt (the result is 1 if the ob-
ject belongs to the cluster or 0 otherwise).  
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The other approach takes M attempts of clustering with the same for a subset of ob-
jects with proportion (M-1)/M of all objects, and each object is clustered M-1 times. 
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In general all three proposed methods of evaluation of credibility coefficients produce 
similar results – the values of credibility coefficients are different, but all methods 
identify the same objects as the least credible. 

7   Experiment 

The experiment was carried out for classic data set iris, containing descriptions of 150 
iris blossoms with 4 conditional attributes (sepallength sepalwidth, petallength, pet-
alwidth) and belonging to 3 categories (setosa, versicolor, virginica) [14]. In the first 
phase the data set was enlarged by 6 new improper objects (2 for each category) with 
attribute values significantly different than original objects. Then next 15 randomly 
chosen original objects had their original category replaced by another one and were 
added again to the data set. And for such prepared data different credibility coeffi-
cients were calculated. In the second phase all attributes of objects from information 
system were discretized (to get approximately 20 discrete values for domain of each 
attribute) and then processed as in the phase one. The following credibility coeffi-
cients were evaluated: 

 

• credRS – based on rough set class approximation, 
• credFS – based on frequent sets (with parameter: “Minimal Support” = 10%), 
• credRB – based on decision rules (with parameters: “Minimal Support” = 5%, 

“Minimal Confidence” = 10%), 
• credEP – based on emerging patterns applying decision tree (with parameters: 

“Split Significance Level” = 10%, “EP Significance Level” = 5%), 
• credSVC – based on classifier C-SVC (with kernel function RBF with parame-

ters set automatically), 
• credSVR – based on regression analysis ε-SVC (with kernel function RBF, 

C = 10, ε = 0.1, γ = 0), 
• credSVMC – based on SVM clustering (with kernel function RBF, C = 10, 

ν = 0.05, γ = 0). 
 

The results of the experiment is presented in Table 2 and Table 4, where average val-
ues of credibility coefficients were grouped for original objects (correct ones – group 
M1), improper objects (these produced artificially before calculations – group M0) and 
for all objects (group M10). Table 2 and Table 4 present the results for original and 
discretized values of objects’ attributes, respectively. 

The values of credibility coefficients should have a meaningful interpretation. A 
threshold should be somehow set to interpret data as sufficiently credible or improper. 
This arbitrary decision may be based on a purpose of credibility analysis. We may be 
interested in identifying a predefined number or a predefined ratio of the worst cases. 
 

Table 2. Average values of credibility coefficients for the extended set iris 

 credRS credFS credRB credEP credSVC credSVR credSVMC 

M1 94 % 94 % 90 % 81 % 81 % 62 % 97 % 

M0 54 % 86 % 61 % 30 % 27 % 17 % 76 % 

M10 89 % 93 % 87 % 75 % 75 % 57 % 94 % 
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We may try to identify all doubtful cases (maybe with a small margin of proper ones). 
Anyway for the experiment the thresholds were defined as a half of the average value 
of credibility coefficient in group M10. This value was necessary to evaluate coeffi-
cients of classification quality like accuracy (Acc.) and precision (Prec.) from confu-
sion matrices. These values and other indicators of classification quality like Somer’s 
D statistic and area under curve (Auc) for ROC (Receiver Operating Characteristics) 
curve for credibility analysis results from Table 2 are presented in Table 3. 

Table 3. Coefficients of classification quality for the extended set iris 

 RS FS RB EP2 SVC SVR SVMC 

Acc. 88 % 88 % 89 % 93 % 96 % 86 % 88 % 

Prec. 88 % 88 % 92 % 95 % 96 % 96 % 90 % 

Somer’s D 0.679 0.202 0.442 0.796 0.886 0.762 0.205 

Auc 0.839 0.601 0.721 0.898 0.943 0.881 0.602 

Table 4. Average values of credibility coefficients for the discretized extended set iris  

 credRS credFS credRB credEP credSVC credSVR credSVMC 

M1 94 % 77 % 89 % 83 % 77 % 81 % 31 % 

M0 54 % 55 % 51 % 22 % 25 % 33 % 66 % 

M10 89 % 74 % 84 % 75 % 71 % 75 % 35 % 

Table 5. Coefficients of classification quality for the discretized extended set iris 

 RS FS RB EP2 SVC SVR SVMC 

Acc. 89 % 89 % 89 % 95 % 96 % 94 % 31 % 

Prec. 96 % 89 % 93 % 97 % 97 % 95 % 77 % 

Somer’s D 0.685 0.712 0.546 0.959 0.818 0.695 0.360 

Auc 0.842 0.856 0.773 0.979 0.909 0.848 0.680 

Discretization of data set iris improved discriminating capabilities of credibility 
coefficients based on frequent sets. The results of algorithms based on SVM became 
slightly worse except the method based on SVM clustering, which anyway yielded in-
ferior results in both phases compared to other SVM counterparts.  

8   Conclusions 

The paper presents concepts of credibility coefficients based on SVM algorithms. 
They were implemented in ARES System completing the other ones based on the 
Rough Set theory and Emerging Patterns. 

Credibility coefficients based on SVM were applied to specially prepared informa-
tion system along with some other credibility coefficients. Their usefulness was  
assessed by some quality indicators. The new credibility coefficients appeared to be 
very effective in comparison to the others, maybe with exception of the algorithm 
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based on SVM clustering. In some situations only credibility coefficients based on 
SVC and SVR were able to produce reasonable results – e.g. for a small number of 
objects with continuous attributes. In particular credibility coefficients employing 
C-SVM algorithm with automatic parameter settings presented itself as the best one. 
This approach can be dominating in a universal usage. There is anyway a price for it. 
Processing of automatic parameter settings is many times longer than execution of the 
SVM algorithm. The values have to be chosen from a predefined domain and the con-
stant step of scanning the domain may be not precise. These drawbacks set our sights 
to further research. A model of adaptive determining values of the parameters along 
with a progress of evaluation of the coefficients seems to be very interesting and 
promising. The other field requiring some more effort is methodology based on SVM 
clustering where the results were obviously worse than other SVM approaches. Still 
the concept has to be verified in further research and practical experiments. 
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Abstract. The paper describes an algorithm that constructs approxi-
mate decision trees (α-decision trees), which are optimal relatively to one
of the following complexity measures: depth, total path length or num-
ber of nodes. The algorithm uses dynamic programming and extends
methods described in [4] to constructing approximate decision trees. Ad-
justable approximation rate allows controlling algorithm complexity. The
algorithm is applied to build optimal α-decision trees for two data sets
from UCI Machine Learning Repository [1].

Keywords: Decision tree, dynamic programming, algorithm complexity.

1 Introduction

Decision trees are widely used for representing knowledge and as algorithms
in test theory [3], rough set theory [7,8], machine learning and data mining [2].
These applications pay attention to model complexity to make it understandable
and to prevent model overfitting to training data. There are several complexity
measures: depth and total path length of decision tree nominally characterize
work time, while number of nodes characterizes space required to store the model.
For many applications several complexity measures are relevant. For example,
successful model interpretation requires number of nodes to be limited and the
major cases to be described by a reasonably short path in the tree.

For many cases the problem of building optimal decision tree is known to be
NP-hard. However, there are special types for problems for which there exists a
polynomial algorithm. In [4] an algorithm is presented that finds a set of optimal
decision trees and allows for sequential optimization relatively to different com-
plexity measures. The algorithm uses dynamic programming methods in order
to be computationally effective. The paper [4] provides necessary conditions for
the number of induced subproblems to be limited by a polynomial on decision
table size that guarantees polynomial complexity of the algorithm.
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In this paper, we study possibilities of applying a similar algorithm to an
arbitrary problem. The exact solution cannot be found except for small decision
tables as the number of subproblems grows exponentially. The results of [5] imply
that under reasonable assumptions there are no good approximate algorithms
of polynomial complexity for exact decision trees. To overcome these limitations
we introduce an uncertainty measure that is the number of unordered pairs of
rows with different decisions in the table. Then we consider α-decision trees
that do not solve the problem exactly but localize each row in a subtable with
uncertainty at most α. The parameter α controls computational complexity and
makes the algorithm applicable to solving complex problems.

The rest of the paper is organized as follows. Section 2 gives notions of decision
table and irredundant α-decision tree. Section 3 gives a way of representing a
set of trees in a form of directed acyclic graph. Section 4 introduces notion
of complexity measure and describes a procedure of finding α-decision trees
that are optimal relatively to different complexity measures. Section 5 contains
experimental results that show dependence of algorithm complexity on α.

2 Basic Notions

Consider a decision table T depicted in Figure 1.

f1 . . . fm d

δ11 . . . δ1m c1

. . . . . .
δN1 . . . δNm cN

Fig. 1. Decision table

Here f1, . . . , fm are names of columns (conditional attributes); c1, . . . , cN are
nonnegative integers which can be interpreted as decisions (values of the decision
attribute d); δij are nonnegative integers which are interpreted as values of con-
ditional attributes (we assume that the rows (δ11, . . . , δ1m), . . . , (δN1, . . . , δNm)
are pairwise different). Let fi1 , . . . , fit ∈ {f1, . . . , fm} and a1, . . . , at be nonneg-
ative integers. Denote by T (fi1 , a1) . . . (fit , at) the subtable of the table T , which
consists of such and only such rows of T that on the intersection with columns
fi1 , . . . , fit have numbers a1, . . . , at respectively. Such nonempty tables (includ-
ing the table T ) will be called separable subtables of the table T . For a subtable
Θ of the table T we will denote by R(Θ) the number of unordered pairs of rows
that are labeled with different decisions. Later we will interpret the value R(Θ)
as uncertainty of the table Θ.

Let Θ be a nonempty subtable of T . A minimum decision value which is
attached to the maximum number of rows in Θ will be called the most common
decision for Θ.

A decision tree Γ over the table T is a finite directed tree with root in which
each terminal node is labeled with a decision. Each nonterminal node is labeled
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with a conditional attribute, and for each nonterminal node the outgoing edges
are labeled with pairwise different nonnegative integers.

Let v be an arbitrary node of the considered decision tree Γ . Let us define
a subtable T (v) of the table T . If v is the root then T (v) = T . Let v be not
the root, and in the path from the root to v, nodes be labeled with attributes
fi1 , . . . , fit , and edges be labeled with numbers a1, . . . , at respectively. Then
T (v) = T (fi1 , a1), . . . , (fit , at).

Let α be a nonnegative real number. We will say that Γ is an α-decision tree
for T if for each row r of the table T there exists a terminal node v of the tree
such that r belongs to T (v), v is labeled with the most common decision for
T (v) and R(T (v)) ≤ α.

Denote by E(T ) the set of attributes (columns of the table T ), each of which
contains different numbers. For fi ∈ E(T ) let E(T, fi) be the set of numbers
from the column fi.

Among α-decision trees for the table T we distinguish irredundant α-decision
trees. Let v be a node of an irredundant α-decision tree Γ . If R(T (v)) ≤ α
then v is a terminal node labeled with the most common decision for T (v). Let
R(T (v)) > α. Then the node v is labeled with an attribute fi ∈ E(T (v)). If
E(T (v), fi) = {a1, . . . , at} then t edges leave node v, and these edges are labeled
with a1, . . . , at respectively. We denote by Dα(T ) the set of all irredundant α-
decision trees for the table T .

3 Representation of the Set of Irredundant α-Decision
Trees

Consider an algorithm for construction of a graph Δα(T ), which represents in
some sense the set Dα(T ). Nodes of this graph are some separable subtables of
the table T . During each step we process one node and mark it with symbol *.
We start with the graph that consists of one node T and finish when all nodes
of the graph are processed.

Let the algorithm have already performed p steps. Let us describe the step
(p + 1). If all nodes are processed then the work of the algorithm is finished,
and the resulted graph is Δα(T ). Otherwise, choose a node (table) Θ that has
not been processed yet. Let b be the most common decision for Θ. If R(Θ) ≤ α,
label the considered node with b, mark it with symbol * and proceed to the step
(p + 2). Let R(Θ) > α. For each fi ∈ E(Θ) draw a bundle of edges from the
node Θ. Let E(Θ, fi) = {a1, . . . , at}. Then draw t edges from Θ and label these
edges with pairs (fi, a1), . . . , (fi, at) respectively. These edges enter to nodes
Θ(fi, a1), . . . , Θ(fi, at). If some of nodes Θ(fi, a1), . . . , Θ(fi, at) do not present
in the graph then add these nodes to the graph. Mark the node Θ with symbol
* and proceed to the step (p+ 2).

Now for each node of the graph Δα(T ) we describe the set of α-decision trees
corresponding to it. It is clear that Δα(T ) is a directed acyclic graph. A node of
such graph will be called terminal if there are no edges leaving this node. We will
move from terminal nodes, which are labeled with numbers, to the node T . Let Θ
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Fig. 3. Aggregated α-decision tree

be a node, which is labeled with a number b. Then the only trivial α-decision tree
depicted in Figure 2 corresponds to the considered node. Let Θ be a node (table),
for which R(Θ) > α. Let fi ∈ E(Θ) and E(Θ, fi) = {a1, . . . , at}. Let Γ1, . . . , Γt

be α-decision trees from sets corresponding to the nodes Θ(fi, a1), . . . , Θ(fi, at).
Then the α-decision tree depicted in Figure 3 belongs to the set of α-decision
trees, which corresponds to the node Θ. All such α-decision trees belong to the
considered set. This set does not contain any other α-decision trees.

The following proposition shows that the graph Δα(T ) represents all irredun-
dant α-decision trees for the table T .

Proposition 1. Let T be a decision table and Θ a node in the graph Δα(T ).
Then the set of α-decision trees corresponding to Θ coincides with the set Dα(Θ)
of all irredundant α-decision trees for the table Θ.

4 Selecting Optimal α-Decision Trees

In this section, we introduce some notions and give the procedure of finding a
set of optimal α-decision trees.

4.1 Proper Subgraphs of Graph Δα(T )

Let us introduce the notion of proper subgraph of the graph Δα(T ). For each
node of the graph Δα(T ), which is not terminal, we can remove any but not all
bundles that leave the node. Further we remove all nodes such that there are
no directed paths to the considered node from the node T . Denote the obtained
subgraph by G. Such subgraphs will be called proper subgraphs of the graph
Δα(T ). It is clear that all terminal nodes of G are terminal nodes of the graph
Δα(T ). As it was described earlier, we can associate a set of α-decision trees to
each node Θ of G. It is clear that all these α-decision trees belong to the set
Dα(Θ). We denote this set of α-decision trees by Dα,G(Θ).
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4.2 Complexity Measures

We will consider complexity measures which are given in the following way:
values of considered complexity measure ψ, which are nonnegative numbers, are
defined by induction on pairs (T, Γ ), where T is a decision table and Γ is an
α-decision tree for T . Let Γ be an α-decision tree represented in Figure 2. Then
ψ(T, Γ ) = ψ0 where ψ0 is a nonnegative number. Let Γ be an α-decision tree
depicted in Figure 3. Then

ψ(T, Γ ) = F (N(T ), ψ(T (fi, a1), Γ1), . . . , ψ(T (fi, at), Γt)).

Here N(T ) is the number of rows in the table T , and F (n, ψ1, ψ2, . . .) is an
operator which transforms the considered tuple of nonnegative numbers into a
nonnegative number. Note that the number of variables ψ1, ψ2, . . . is not bounded
from above.

The considered complexity measure will be called monotone if for any natural
i, t, 1 ≤ i ≤ t − 1, and any nonnegative numbers a, c1, . . . , ct, d1, . . . , dt the
inequality F (a, c1, . . . , ct) ≥ max{c1, . . . , ct} holds, the equality F (a, c1, . . . , ci,
ci+1, . . . , ct)=F (a, c1, . . . , ci+1, ci, . . . , ct) holds, the inequality F (a, c1, . . . , ct−1)
≤ F (a, c1, . . . , ct) holds if t ≥ 2, and from inequalities c1 ≤ d1, . . . , ct ≤ dt the
inequality F (a, c1, . . . , ct) ≤ F (a, d1, . . . , dt) follows.

The considered complexity measure will be called strongly monotone if it is
monotone and for any natural t and any nonnegative numbers a, c1, . . . , ct, d1,
. . . , dt from inequalities a > 0, c1 ≤ d1, . . . , ct ≤ dt and inequality ci < di, which
is true for some i ∈ {1, . . . , t}, the inequality F (a, c1, . . . , ct) < F (a, d1, . . . , dt)
follows.

Now we take a closer view of some complexity measures.
Number of nodes: ψ(T, Γ ) is the number of nodes in α-decision tree Γ . For

this complexity measure ψ0 = 1 and F (n, ψ1, ψ2, . . . , ψt) = 1 +
∑t

i=1 ψi. This
measure is strongly monotone.

Depth: ψ(T, Γ ) is the maximal length of a path from the root to a terminal
node of Γ . For this complexity measure ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) =
1 + max{ψ1, . . . , ψt}. This measure is monotone.

Total path length: for an arbitrary row δ̄ of the table T we denote by l(δ̄) the
length of the path from the root to a terminal node of Γ which accepts δ̄. Then
ψ(T, Γ ) =

∑
δ̄ l(δ̄), where we take the sum on all rows δ̄ of the table T . For

this complexity measure ψ0 = 0 and F (n, ψ1, ψ2, . . . , ψt) = n +
∑t

i=1 ψi. This
measure is strongly monotone.

Note that the average depth of Γ is equal to the total path length divided by
N(T ).

Proposition 2. Let T be an α-decision table and ψ a monotone complexity
measure. Then there exists an irredundant α-decision tree for T that is optimal
relatively to complexity measure ψ among all α-decision trees for T .
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4.3 Procedure of Optimization

Let G be a proper subgraph of the graphΔα(T ), and ψ be a complexity measure.
Below we describe a procedure, which transforms the graph G into a proper
subgraph Gψ of G. We begin from terminal nodes and move to the node T . We
attach a number to each node, and possible remove some bundles of edges, which
start in the considered node. We attach the number ψ0 to each terminal node.
Consider a node Θ, which is not terminal, and a bundle of edges, which starts in
this node. Let edges be labeled with pairs (fi, a1), . . . , (fi, at), and edges enter to
nodes Θ(fi, a1), . . . , Θ(fi, at), to which numbers ψ1, . . . , ψt are attached already.
Then we attach to the considered bundle the number F (N(Θ), ψ1, . . . , ψt).

Among numbers attached to bundles starting in Θ we choose the minimal
number p and attach it to the node Θ. We remove all bundles starting in Θ
to which numbers are attached that are greater than p. When all nodes will be
treated we obtain a graph. We remove from this graph all nodes such that there
is no a directed path from the node T to the considered node. Denote this graph
by Gψ . As it was done previously for any node Θ of Gψ we denote by Dα,Gψ(Θ)
the set of α-decision trees associated with Θ.

Let T be a decision table and ψ a monotone complexity measure. Let G
be a proper subgraph of Δα(T ) and Θ an arbitrary node in G. We will de-
note by Dopt

α,ψ,G(Θ) the subset of Dα,G(Θ) containing all α-decision trees having
minimal complexity relatively to ψ, i.e. Dopt

α,ψ,G = {Γ̂ ∈ Dα,G(Θ), ψ(Θ, Γ̂ ) =
minΓ∈Dα,G(Θ) ψ(Θ,Γ )}.

The following theorems describe important properties of the set Dα,Gψ(Θ) for
the cases of monotone and strongly monotone complexity measure ψ.

Theorem 1. Let T be a decision table and ψ a monotone complexity measure.
Let G be a proper subgraph of Δα(T ) and Θ an arbitrary node in the graph G.
Then Dα,Gψ(Θ) ⊆ Dopt

α,ψ,G(Θ).

Theorem 2. Let T be a decision table and ψ a strongly monotone complexity
measure. Let G be a proper subgraph of Δα(T ) and Θ be an arbitrary node in
the graph G. Then Dα,Gψ(Θ) = Dopt

α,ψ,G(Θ).

5 Managing Algorithm Complexity

The main obstacle for designing efficient algorithm based on the graph opti-
mization procedure is large computational complexity. In [4] a class of restricted
information systems was considered. A restricted information system describes
an infinite family of decision tables for which algorithm complexity is bounded
from above by a polynomial on the table description length. In general case, the
number of separable subtables grows exponentially, that makes the procedure of
building and optimizing graph computationally intractable. However complexity
can be managed by increasing parameter α. We did not have theoretical esti-
mates for dependence of the number of subtables on α, but experiments show it
drops rather quickly.
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To illustrate the dependence we took two data sets from UCI Machine Learn-
ing Repository [1]. Training part of Poker Hand data table contains 25010 rows
and 10 columns (attributes). SPECT data set (both training and test part) con-
tains 216 rows after removing duplicating rows and 22 attributes. For both data
sets we chose several values of α and built α-decision trees optimal relatively to
depth, average depth and number of nodes. Tables 1 and 2 contain experimental
results for Poker Hand and SPECT data sets respectively. Each table contains
the following columns:

– sf : uncertainty scale factor (we assume α to be initial uncertainty of the
decision table scaled to this paramter);

– nodes : number of nonterminal nodes in the graph Δα(T );
– time: working time of algorithm that builds graph Δα(T ) in seconds;
– optimal and greedy: groups of parameters that describe characteristics of

optimal trees and trees built by a greedy algorithm [6];
– depth: minimal depth of α-decision tree;
– avg depth: minimal total path length in decision tree divided by N(T );
– # nodes : minimal number of nodes in α-decision tree.

The greedy algorithm is supposed to minimize depth of the tree so the results
of the considered and greedy algorithm matches for the depth except for several
cases. The difference in average depth (total path length) and in number of nodes
is expectable. A good point about the considered algorithm is that it builds

Table 1. Exeperimental results for Poker Hand data set

sf nodes time
optimal greedy

depth avg depth # nodes depth avg depth # nodes
0 1426236 177 5 4.08 18831 5 4.15 22989
10−8 1112633 124 5 3.99 15766 5 4.03 20071
10−7 293952 27 4 3.73 6658 4 3.82 15966
10−6 79279 7 3 3 2269 3 3 2381
10−5 15395 2 3 3 733 3 3 2381
10−4 4926 < 1 2 2 183 2 2 183
10−3 246 < 1 2 2 57 2 2 183
10−2 21 < 1 1 1 14 1 1 14
10−1 1 < 1 1 1 5 1 1 14

Table 2. Exeperimental results for SPECT data set

sf nodes time optimal greedy
depth avg depth # nodes depth avg depth # nodes

0 1089352 54 8 4.38 65 9 5.05 115
10−3 1010598 39 8 4.07 39 8 4.58 29
10−2 396159 13 5 3.16 19 5 3.36 21
10−1 8330 < 1 2 1.81 7 2 2 7
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a set of optimal trees and allows sequential optimization relative to different
complexity measures.

6 Conclusions

The paper is devoted to consideration of an algorithm for building optimal ap-
proximate decision trees. Possibilities of tradeoff between approximation rate
and complexity are illustrated by experiments with two data sets from UCI
ML Repository. Further studies will be connected with extension of this tool to
decision tables which contain continuous attributes.
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Abstract. Domain knowledge elicitation constitutes a crucial task in
designing effective machine learning algorithm, and is often indispens-
able in problem domains that display a high degree of internal com-
plexity such as knowledge discovery and data mining, the recognition
of structured objects, human behavior prediction, or multi-agent coop-
eration. We show how to facilitate this difficult and sometimes tedious
task with a hierarchical concept learning scheme, designed to cope with
the inherent vagueness and complexity of knowledge therein used. We
present how our approach, based on Rough Mereology and Approximate
Reasoning frameworks, correlate to other well established approaches to
machine learning.

1 Introduction

From a general point of view, a concept learning task is to distinguish ex-
emplars from non-exemplars of a given abstract concept using their available
feature information. The standard paradigm to this problem, usually known
as supervised learning, assumes that a certain amount of knowledge is avail-
able for the task in the form of a training set which contains training samples
ui = (ai, di), i = 1, . . . , n where ai denotes the available samples’ feature values,
and di ∈ {1,−1} marks whether ui is an exemplar of the concept being learned
or not. Within the rough set approach to artificial intelligence, concept learn-
ing is equivalent to the task of concept approximation using attribute values
provided by an information system [11].

Under a more technical point of view, the principal task of concept learning
is to reconstruct an investigated decision function f that associates input data
ui with their outputs di, by way of assuming a hypothesis about the function
f in the form of another function fh, selected from a known hypothesis space
H . Ideally, fh should return the same output values as f for the same inputs.
In practice, this is rarely attainable, and we try to approach that agreement in
output values as close as possible.

1.1 The Need to Divide and Conquer

Machine learning problems are good examples of inverse problems which, un-
fortunately, are generally ill-posed. That means the solution function f might

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 446–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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not exist, might not be unique, and most importantly, might not be stable –
an arbitrarily small deviations in data may cause large deviations in solutions.
The problem further aggravates in domains where sample data display highly
complex structural features, such as in optical character recognition, face recog-
nition, or image analysis. Mapping from inputs to outputs when dealing with
such complex objects is usually intractable, which necessitates the use of incre-
mental, step-by-step approaches. Instead of an all-out effort to search for the
target hypothesis, we attempt to attain consecutive, simpler, more manageable
subgoals that would gradually lead to the desired results.

It is therefore not surprising that many studies in the theory of learning
[20], [5] pointed out that certain aspects of machine learning algorithms can
be tackled with using classic methods from functional optimization and inverse
problem theory. For example, Tikhonov regularization, a standard technique
for ill-posed problems, can be profitably applied to supervised learning. The
minimized empirical error method, together with regularization, gave rise to the
Structural Risk Minimization (SRM) technique [20]. Both techniques can be
viewed as attempts to optimize the hypothesis search process by reducing the
dimensionality of the search spaces and the description length.

A similar trend to the incremental approach to learning can also be observed
in the Theory of Cognition, where knowledge chunking techniques are used in
cognitive architecture such as SOAR to optimize search spaces and elicit search
control knowledge of subgoals’ learning procedures [6]. Chunking can be viewed
as a mean to breakdown a complex learning task into more manageable and
reusable subtasks.

One central to this divide-and-conquer approach however is to determine how
to effectively and efficiently break down a given complex task into intermediate
subtasks. We shall show that the layered approximation methodology can help
in addressing this problem.

1.2 The Role of Domain Knowledge

A second important issue in machine learning the use of domain knowledge.
It is widely acknowledged that learning algorithms would perform better when
equipped with certain knowledge on the domain of interest. [2] Domain (or back-
ground) knowledge can serve as additional search control tools. Usually fast and
efficient greedy searches have limits in the patterns they can discover, while
complex and more elaborated, more exhaustive strategies typically display high
computational costs. The trade-off between the two groups might be greatly
refined with domain knowledge in order to steer the search process to more
promising areas more quickly or to fine tune the construction of components
patterns that would be difficult to find greedily.

Domain knowledge may help in setting certain a priori assumptions to the
learning process. In this case it is often referred to as learning bias and can
also greatly influence the design of learning algorithms. For instance, one might
confidently assume that humans write characters or numerals as a sequence of
strokes, and this prior knowledge might be decisive in building a learning model
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that will try to extract strokes from a character’s image and to classify the image
using so identified strokes. [2]. Another prior information, that character iden-
tities are generally invariant in regard to sample’s rotation or scaling, is vastly
beneficial to a character recognition system, e.g. in selecting distance functions
that are known to be invariant to such transformations. Once incorporated into
a learning system, this kind of domain knowledge usually remains unchanged.

Another, more dynamic form of domain knowledge comes from external do-
main (usually human) experts that would interact with a learning system and
provide it with their own evaluation of what the system is doing. It is worthy to
note that while humans sometimes may not be able to explicitly explain how they
perform certain tasks, they often find it easy to correct things that “went wrong”
on specific examples. Incorporating this knowledge into the learning process is
an effective way to improve its overall performance. This approach to learning
is commonly referred to as learning from instruction [9].

Domain knowledge of this type usually needs to be “assimilated”, i.e., con-
verted to such a form that can be readily used by the learning system. This is
mainly because the domain knowledge usually comes from human sources who
tend to reason in quasi-natural languages, usually rich in ambiguities, vagueness
and imprecision, while computing systems need to perform operations using
more precise and strictly defined languages. Moreover, the expert most typically
employs an ontology of concepts and relations that are completely foreign to the
learner system. The expert knowledge therefore needs to be made suitable for
execution in the target system. This process is sometimes referred to as oper-
ationalization, or knowledge refinement [9]. We will demonstrate that this task
can be dealt with effectively using the layered approximation methodology.

1.3 Vagueness of Concepts Being Learned

It is very often that a concept is not readily expressible in an universe of sam-
ples U and can only be approximated by description languages available to the
learner. Due to the limited expression power of these languages, we have to ac-
cept the vagueness and imprecision of the induced descriptions. Vagueness and
uncertainty also occur in the knowledge elicitation process from external hu-
man experts. The expert’s ontology and declarative languages are often based
on natural language constructs, where ambiguity and imprecision are abundant.

This issue can be addressed by a number of techniques in artificial intelligence
such as multi-valued logics, fuzzy sets, and most notably, by using rough set
theory, which provides an excellent theoretical framework, as well as effective
tools to deal with vagueness and uncertainty in reasoning about data.

In our hierarchical learning approach, we assume that the decomposition
scheme will be provided by an external human expert in an interactive pro-
cess. Knowledge acquired from human expert will serve as guidance to break the
original learning model A into simpler, more manageable sub-models Ai, orga-
nized in a lattice-like hierarchy. They would correspond to subsequent levels of
abstractions in the hierarchy of perception and reasoning of the human expert.
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Fig. 1. All-out vs. hierarchical learning

2 Knowledge Elicitation

The knowledge on training samples that comes from a expert obviously reflects
his perception about the samples. The language used to describe this knowledge
is a component of the expert’s ontology which is an integral part of his percep-
tion. In a broad view, an ontology consists of a vocabulary, a set of concepts
organized in some kind of structures, and a set of binding relations amongst
those concepts [3]. We assume that the expert’s ontology when reasoning about
complex structured samples will have the form of a multi-layered hierarchy, or
a lattice, of concepts. A concept on a higher level will be synthesized from its
children concepts and their binding relations. The reasoning thus proceeds from
the most primitive notions at the lowest levels and work bottom-up towards
more complex concepts at higher levels.

We assume an architecture that allows a learning system to consult a human
expert for advices on how to analyze a particular sample or a set of samples.
Typically this is done in an iterative process, with the system subsequently
incorporating knowledge elicited on samples that could not be properly classified
in previous attempts.

A foreign concept C is approximated by a domestic pattern (or a set of pat-
terns) p in term of a rough inclusion measureMatch(p, C) ∈ [0, 1]. Such measures
take root in the theory of rough mereology [15], and are designed to deal with
the notion of inclusion to a degree.

An example of such concept inclusion measures would be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}|



450 T.T. Nguyen

Fig. 2. Layered approximation in knowledge elicitation

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

We essentially seek to convert the expert’s knowledge into the domestic lan-
guage so that to generalize the expert’s reasoning to the largest possible number
of training samples. More refined versions of the inclusion measures can be ob-
tained by fine-tuning various pertaining coefficients. Adjustment of these coeffi-
cients based on feedback from actual data may help optimize the approximation
quality.

For an example, let us consider a handwritten digit recognition task.
When explaining his perception of a particular digit image sample, the expert

may employ concepts such as ‘Circle’, ‘Vertical Strokes’ or ‘West Open Belly’.
The expert will explain what he means when he says, e.g. ‘Circle’, by providing
a decision table (U, d) with reference samples, where d is the expert decision to
which degree he considers that ‘Circle’ appears in samples u∈U . The samples in
U may be provided by the expert, or may be picked up by him among samples
explicitly submitted by the system, e.g. those that had been misclassified in
previous attempts.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. A stroke at 85 degree to the horizontal in a sample image can
still be regarded as a vertical stroke, though obviously not a ‘pure’ one. Instead
of just answering in a ‘Y es/No’ fashion, the expert may express his degrees of
belief using such natural language terms as ‘Strong’, ‘Fair’, or ‘Weak’.

The expert’s feedback will come in the form of a decision table (See Table 1):
The translation process attempts to find domestic feature(s)/pattern(s) that

approximate these degrees of belief (see Table 2). Domestic patterns satisfy-
ing the defined quality requirement can be quickly found, taking into account
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Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

DPat Circle

u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair

that sample tables submitted to experts are usually not very large. Since this is
essentially a rather simple supervised learning task that involves feature selec-
tion, many strategies can be employed. In [14], genetic algorithms equipped with
greedy heuristics are reported successful for a similar problem. Neural networks
also prove suitable for effective implementation.

Similarly, we can approximate the expert’s perception on relations between
parts of a sample (see Table 3). The corresponding low-level features may be
expressed by, for instance, Sy < By, which tells whether the median center of
the stroke is placed closer to the upper edge of the image than the median center
of the belly. (see Table 4)

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

The expert’s perception ”A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’” is eventually approximated by a classifier in the form
of a rule:

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with appropriate topological features, and Sy < By concerns
the centers of gravity of the two collections.

For more detailed descriptions on successful implementations of the layered
concept approximation scheme, see [11] or [13]

3 Layered Approximation and Other Learning Techniques

In this section, we discuss the common aspects and motivations of the Lay-
ered Approximation method and other better known techniques in supervised
learning.
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3.1 Statistical Learning and Structural Risk Minimization

As mentioned in 1, the general outset of a supervised learning task very often
results in an ill-posed problem. In particular, as stated in [20], the problem of
estimating the desired class density function f from a large set F of possible can-
didate solutions for an supervised learning task is ill-posed. One way to alleviate
this problem is to employ the so-called Structural Risk Minimization (SRM)
technique. The technique, in short, is based on a theorem on the risk bounds,
which essentially states that

R(α) ≤ Remp(α) + CI(α)

which means the risk functional R(α), expressing how far we are from the desired
solution for a parameter α from a general parameter set S, is bounded by the
sum of the empirical risk Remp(α) and a confidence interval CI(α) containing
the Vapnik-Chervonenkiss dimension of the function space S.

Instead of optimizing α over an arbitrary set of possible parameters S, we
use the bounds to find a set S∗ for which the risk bound is minimal, and then
perform the search for the solution α∗ within S∗. For more details, see [20].

The SRM technique essentially seeks to optimize the complexity of the hy-
pothesis space using statistical results and methods that can be traced back to
regularization theory and the minimal description length principle.

The hierarchical learning approach, which reduces the complexity of the orig-
inal learning problem by decomposing it into simpler ones, tries to optimize the
corresponding search spaces on subsequent levels of the learning hierarchy, and
is similar in function to the SRM technique, with the distinction that the break-
down scheme is provided by an external human expert, and the learning process
is incremental instead of a straightforward regularization-based optimization.

Fig. 3. SRM vs. Layered Approximation



Layered Approximation Approach to Knowledge Elicitation 453

Fig. 4. Boosting vs. Layered Approximation

3.2 Boosting Algorithms

Boosting [4] is a meta learning algorithm that aims to improve the perfor-
mance of a classifier by its iterative training on the same training set with
adjusted weights on the successfully learned samples and the confusing ones.
The main idea is to steer the classifier toward the difficult, hard-to-learn sam-
ples at the expense of the successfully learned ones. The boosting method is
theoretically proved to yield strong classifier even for weak starting classifier
[4]. Boosting also makes excellent platform to incorporate prior and domain
knowledge [16].

The boosting learning scheme parallels the layered approximation method
most notably in the incremental, iterative scheme that steer the attention of
the classifier toward difficult, hard-to-learn cases. The difference is layered ap-
proximation relies on an external expert in hard case detection and treatment,
whereas boosting employs fixed weight adjustment algorithms.

3.3 Learning from Instruction

The layered approximation process, in many aspects, takes after the Learning
from Instruction paradigm, where a learning system acquires new information
and skills from an external instructor[9]. They share many common issues, such
as the knowledge operationalization or the search space optimization problems.
However, most Learning from Instruction existing methods employ declarative
implementation tools such as logic programming, whereas layered approxima-
tion prefers direct procedural supervised learning at subsequent approximation
levels.
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4 Conclusion

We describe the fundamentals of the layered approximation approach to the task
of eliciting domain knowledge from a human expert in machine learning. The
designated objective was attained through a hierarchical, step-by-step concept
assimilation and approximation process. We show that this approach, based on
rough mereology and approximate reasoning, is closely related and complemen-
tary to flagship methods in the theory of learning. A reference to successful
implementation of the described methods is also provided.
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Abstract. Mobile agents are small programs that can transport their
code, data and execution context from one machine to another and be
capable of continuing execution in the new environment. This technology
has a lot of advantages and promising applications, unfortunately there
is a noticeable absence of deployed solutions. There are few reasons of
this situation but one of the most important is the lack of tools that can
be used for the configuration management of mobile agents. This pro-
cess focuses on the monitoring and controlling configuration items and
is essential for other processes like incident management or availability
management. In this paper a new, flexible and universal solution for the
configuration management of mobile agents is proposed. This solution
is based on well known and widely used management standard - SNMP
(Simple Network Management Protocol).

Keywords: Configuration management, Mobile agent, Mobile agent sys-
tem, Multiagent systems, SNMP .

1 Introduction

The Internet is the most popular and widespread medium in the whole history
of the humanity. Year by year many new solutions that take advantage of it are
proposed, among them mobile agents (MA). Mobile agents are small programs
that can migrate from one environment to another. They are autonomous, can
communicate and cooperate with each other and learn. This technology has a
lot of advantages and many examples of promising applications [6], [12], [18]
can be found in the literature. Unfortunately there are not many examples of
deployed systems that are based on mobile agents. There are a few reasons
of this situation but one of the most important is the lack of tools that can
support the configuration management of mobile agents. Although there are
many publications [2], [3], [8], [9] on managing information infrastructure with
MA, the problem how to manage mobile agents is neglected.

The configuration management is a very wide term. According to [5] it is
identification, monitoring and reporting the state of chosen elements during the
life of a system. Configuration management provides the basic information about

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 456–465, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Configuration Management of Mobile Agents Based on SNMP 457

how the system works. Without this information other management processes
cannot function properly. For example the availability management needs the
detailed configuration of the hardware/software used in the company in order
to predict how the failure of the particular element affects others. One of the
most popular technology supporting this process is SNMP (Simple Network
Management Protocol).

In this paper a new, flexible and universal solution for the configuration man-
agement of mobile agents is proposed. In comparison to other solutions it takes
advantages of well known management standard - SNMP and can be used with
different mobile agent systems. This solution is designed in such a way that,
if necessary, a support for other management technologies can be easily imple-
mented. In order to evaluate the described solution the partial implementation
of it was developed and put under the strict functional and efficiency tests.

At the beginning of this paper, in the section 2, mobile agents are described.
Then the process of the configuration management of mobile agents is charac-
terised in the section 3. The SNMP is briefly discussed in the section 4. In the
section 5 existing solutions are described. The description of the proposed solu-
tion can be found in the section 6. Finally the implementation is described in
section 7 and the experiments in the section 8. The last section 9 contains the
summary.

2 Mobile Agents

Mobile agents are special kind of software agents. According to [19] a software
agent is a component ”which is capable of acting exactingly in order to accom-
plish tasks on behalf of its user” and it should have at least two features from the
set of three: being autonomous, being able to communicate and cooperate with
other agents and learn. Mobile agents have all these features. They can work
without control of a human (autonomy), send messages to each other (ability to
communicate) and change behaviour based on the observation of the environ-
ment (ability to learn). Except this set of features mobile agents have one more
- mobility.

Mobility should be understood as ability to stop execution on the machine
A and move code, data and execution context to the machine B and there con-
tinue processing. What is important the target machine does not have to know
anything about a migrating agent, especially about the code of the agent. The
software that allows mobile agents to migrate is known as MAS (Mobile agent
system). The host is a computer that has this kind of software installed. The
running sample of MAS software is in turn known as instance of MAS . The term
mobile agent system has one more meaning. It can be also understood as a set
of hosts with running instances of MAS software.

At present the majority of MAS is written in Java. As a result the migration
of execution context (content of registers, stack, etc.) is not possible because
programmers do not have access to this information in the Java Virtual Machine.
Some examples of mobile agent systems are: SeMoA [20], Jade [10] or Aglets [1].
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Thanks to the mobility MA can perform calculation near the data storage.
Local calculations are usually faster because there is no need to transfer data
through the network. Moreover mobile agents have access to the newest data
and thanks to it better and more suitable decisions can be taken. The local
calculations have also this advantage that data are more secure because they
do not leave local environment. It is true that MA can be intercepted during
migration but usually they do not carry a lot of data so it is not so dangerous.
The another advantage of local calculations is lower network load because data
are not sent through the network. Mobile agents are generally small programs
so they should not affect the bandwidth.

MA are also very flexible. It is always possible to create a new type of mobile
agent and to use it in already working system. The actualisation process of
existing types of agents is also easy. Simplifying, everything that should be done
is the replacement of agents’ code in the repository. It is also worth mentioning
that MA can improve system immunity to networks failures. If the MA is well
designed, it will be able to wait on some host until network communication is
restored.

As it was mentioned majority of MAS is created in Java. Thanks to it and to
the popularity of this technology MA can work in heterogeneous environments
that can consist of personal computers, PDA’s, machines with Windows or Linux
operating system installed.

3 Configuration Management of Mobile Agents

The process of the configuration management of mobile agents is similar to man-
agement processes in the other technologies. Every process of the configuration
management focuses on configuration elements (CE). It can be a hardware ele-
ment like router, switch, personal computer, etc. or software like some kind of
application or database engine. In the context of MAS every instance of MAS
or every MA is a configuration element. Configuration of a CE is simply a de-
scription of its state and properties (configuration parameters). The description
of a mobile agent can contain information about its life cycle, its location or
parameters specific for the particular agent type. The life cycle describes all
possible states of mobile agents (active, waiting, migrating, etc.) and transitions
between these states. The process of the configuration management of mobile
agents consists of three sub-processes:

– Configuration management of individual mobile agents. This sub-
process focuses on the individual mobile agents and their configuration. For
example, a mobile agent designed for performing some kind of distributed
calculations can use parameter defining the set of hosts, on which the cal-
culations can be performed. When the administrator notices that it takes
too much time to finish the calculations, he or she can extent the set of the
machines available for the calculations.
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– Configuration management of hosts. This sub-process focuses on the
environment in which mobile agents are working. Some examples of parame-
ters important for this activity are: amount of resources available to agents,
number of agents that can be working in the system at the same time or types
of agents that are allowed to visit individual hosts. For instance, consider
the situation in which some hosts in the network have efficiency problems.
The administrator of the system can limit amount of resources available to
agents on these hosts to check if the problem is caused by them. At the same
time MA can continue their tasks.

– Information collection. This sub-process is responsible for collecting in-
formation about mobile agents activity: number of working mobile agents,
amount of used resources or history of hosts visited by the particular MA.
This sub-process is essential for the diagnosis of the state of the system. For
example information collection is necessary to check if some MA uses too
much of the resources and should me preempted.

4 SNMP

SNMP (Simple Network Management Protocol) is a standard that describes how
to manage software and hardware connected to some network. Although SNMP
is an old technology (first version of SNMP was proposed in 1988), it is still
widely used. For example it is possible to manage Windows operating system,
Oracle databases or CISCO products with it.

Network management system based on SNMP consists of a few kinds of ele-
ments. Management station is a computer with proper software installed that is
responsible for monitoring and changing the configuration of routers, databases,
instances of MAS or individual mobile agents. To achieve this goal a management
station communicates with SNMP agents in protocol defined by the standard.
SNMP agents are programs that understand this protocol and can communicate
with configuration elements. In the context of mobile agents SNMP agent can
be the part of the mobile agent system provided as one of the services.

SNMP also defines SMI (Structure of Management Information) notation
which is used to describe the configuration of CE . Once the description is cre-
ated it can be shared by many manufacturers. This description, known as the
MIB (Management Information Base), is only the declaration of configuration
parameters (MIB objects) and should not be mistaken with the real values of
configuration parameters (with instances of MIB objects). The instances of MIB
objects can be stored in many ways for example in the relational database.

The more detailed description of SNMP is beyond the scope of this paper and
can be found in the publication [17].

5 Related Works

In this section previous works on the topic of the configuration management of
mobile agents are described. Some tools integrated into mobile agent systems
are also mentioned.



460 M. Komorowski

The Jade [10] mobile agent system allows monitoring of the activity of mobile
agents, messages sent and received by them and many other parameters. Unfor-
tunately these tools are specific for Jade and cannot be used with other systems.
The Aglets [1] provides user only with very basic tools as possibility to stop or
remove MA from the system. Voyager Edge [21] does not have any tools of this
kind. The SeMoA [20] has the application for monitoring geographic location of
agents but it is more a gadget that a useful tool.

The authors of [14] propose a new life cycle model of mobile agents and used it
in a monitoring system. The solution seems to be interesting however it focuses
on only one aspect of the configuration management of mobile agents - infor-
mation collection. In [4] authors propose solution that allows finding instance of
MAS for particular MA based on available resources. Unfortunately at the same
time they introduced completely new way of describing configuration of MAS
instead of choosing SNMP or other standard. The authors of [13] proposed a
new mobile agent system JAMES than can be managed with SNMP but they
did not prepare their solution for integration with other systems. Similar idea
can be found in [15].

To summarise existing solutions are not satisfactory. They are specific for
particular mobile agent systems, they do not use universal technologies and
cannot be integrated with many MAS .

6 Mobile Agents Configuration Management System

6.1 Requirements

In this subsection based on the prior analysis of the existing solutions, require-
ments for a new tool are formulated. Later the term MACMS (Mobile Agents
Configuration Management System) will be used.

Systems based on MA can change very dynamically and it is always possible to
create a new type of MA that will be described by a different set of configuration
options. In consequence MACMS must be flexible and allow administrators to
add, modify or remove configuration parameters easily.

MACMS should be also universal enough to be used in many different types
of MAS . Of course some modification of existing mobile agent systems can be
necessary in order to be integrated with MACMS . If this requirement is fulfilled,
it will be possible to manage many kinds of mobile agents with one tool at the
same time.

Finally, MACMS should be based on widely known and accepted technology
e.g. like SNMP , so that the solution would be easier to integrate with existing
configuration management systems. However it is possible that in future chosen
technology will be replaced by another so the MACMS must be easily modified
and extended.

6.2 Architecture

The central part of the system is called the core of MACMS . It has a few func-
tions. Firstly, it is responsible for communication with MAS and mobile agents.
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The communication can be implemented in many different ways depending on
the situation. If the code of MAS is available and can be modified the core can
be integrated into MAS as one of the services. Otherwise the core can work
as the separate process but in this case a IPC (Inter process communication)
mechanism must be used. Both approaches have advantages and disadvantages.
The first one seems to be easier but on the another hand the crash in the core
of MACMS can affect the mobile agent system.

The core is also responsible for storing and retrieving values of configuration
parameters in/from the data store. The access to the data store (a relational data
base, a XML file, a flat file) is synchronised in order to preserve the consistency
of the data.

The next important function is managing the definitions of configuration pa-
rameters. These definitions are read every time the system is initialised. The
definitions can be created, removed or changed on the request from the admin-
istrative application. This application provides administrator with easy to use
graphical user interface. Thanks to it administrator can easily and quickly cus-
tomise definitions of configuration parameters used by many instances of MAS .

Finally the core of MACMS provides services known as access points or in-
terfaces that are used to monitor the configuration parameters and change them
accordingly. The SNMP interface use the SNMP protocol to communicate with
the external environment.

Another example of the access point is the one that uses HTTP protocol.
This interface allows only for reading values of configuration parameters but
everything that is necessary to make the query is a web browser. Depending on
future requirements many other access points can be easily implemented.

Thanks to the proper design every part of the MACMS can be replaced by
other implementation without much effort. Firstly, every function of the system is
accessible through well an defined interface. Secondly, concrete implementation
of these interfaces are produced in one central place known as a factory. For
example in order to replace the storage for values of configuration parameters
new implementation of IDataStoreProvider interface should be provided and the
factory DataStoreProvidersFactory should be adapted accordingly. It is always
possible to switch between different implementations of the same interface by
modifying configuration file.

7 Implementation

In order to evaluate the proposed solution a partial implementation of it was
developed. In comparison to the full implementation it is not possible to manage
configuration of the hosts, monitoring information are not collected and support
for SNMP is limited (the table data structure and some protocol commands
are not supported). The implementation uses Aglets [1] mobile agent system.
This MAS was created in IBM laboratories but at present it is an open source
project. Thanks to it, it was possible to integrate the core of MACMS into system
physically as one of the MAS service. Prior to the integration the code of Aglets
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was reviewed and warnings or uses of the deprecated API were removed. The
compilation of the system was also migrated from Java 1.4 to Java 6.

In order to provide backward compatibility for existing mobile agents, during
the integration the old Aglets API remained unchanged. Especially the old base
class for all mobile agents (Aglet) was not modified but the new base class
(CMSAglet) was prepared for those who want to use functionality of MACMS .

The JAgentX [11] technology was used in order to provide SNMP support.
It is n Java implementation of the AgentX (Agent Extensibility) protocol that
is described in RFC 2741. AgentX is an extension of SNMP that allows to dy-
namically change (add/remove/modify) sets of parameters supported by SNMP
agents. It was necessary to use one of SNMP extensions because in the basic
version SNMP is generally a static solution - the range of parameters (MIB ob-
jects) handled by SNMP agent is fixed. JAgentX was chosen because it is the
newest product.

As a storage for values of configuration parameters the relational data base
was chosen. The implementation uses the HSQLDB data base [7].

8 Experiments

The implementation was validated against a set of test cases. Every test case con-
sists of dozens of steps and descriptions of the expected results. Some examples
of test scenarios are:

1. Reading the value of a configuration parameter with the SNMP interface.
2. Modification of a configuration parameter by mobile agents.
3. Creation of a new configuration parameter by the administrator of the

system.

The functional tests were conducted in the environment consisted of three hosts:
two personal computers and one laptop. The personal computers were communi-
cating via the cable while the laptop were using the wireless connection. Mobile
agents used in the tests were migrating between hosts, modifying configuration
parameters like: number of visits on the host or number of creations and reading
parameters to know how to behave, for instance the text of message for the user.
At the same time the management station was communicating with the SNMP
interface to monitor the state of system and to change the behaviour of agents.
As the management station, the professional network monitoring software [16]
was used. The HTTP interface was also tested.

After functional tests had been successfully finished the efficiency tests of the
solution were conducted on the machine with AMD Athlon 64 3500+ processor
and 1 GB of RAM memory. Firstly, it was checked how much time it takes
to read or write a configuration parameter depending on the number of mobile
agents requesting the access to the parameter at the same time. It was difficult to
synchronise the activity of hundreds of mobile agents so the following approach
was used. The single test consisted of many attempts of every individual agent to
read or write the parameter. On the beginning of every attempt the result of the
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Fig. 1. The average access time depends on the number of mobile agents

System.currentTimeMillis method was saved. Then on the end of the operation
the difference between current and saved time was calculated. These results were
finally used to calculate the average access time. What is worth mentioning the
configuration of every test was also read from the MACMS .

The result of the test are shown on the Figure 1. The access time can exceed
even a few seconds. It should be also noticed that if a mobile agent needs to read
or write a few parameters one by one the total time of the operation can reach
dozens of seconds or even more. It is unacceptable in majority of applications.
However, the author estimates that the number of MA working at the same
time on any host should not be greater than dozen or so. In these conditions the
access time is minor and can be neglected.

In the second test it was measured how the number of configuration parame-
ters handled by the MACMS affects the start time of the instance of the MAS .
This test was also based on the use of the System.currentTimeMillis method.
The results are shown on the Figure 2. As it can be observed, the average start
time increased considerably with the number of configuration parameters. It is
not good, however, usually the instance of the MAS is not restarted very often,
because the administrative tasks like the deployment of a new type of MA can
be performed without system restart. After more detailed analysis of the logs it
was also discovered that majority of the start time falls to the initialisation of
the SNMP access point. It is a tip which component of the system should be
optimised in the future.
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Fig. 2. The average start time depends on the number of parameters

To summarise the developed solution can affect negatively the efficiency of
the mobile agent system but under normal conditions insignificantly and the
work of mobile agents should not be disturbed. The normal conditions can be
characterised as the situation in which there is no need to restart instances of
the MAS , mobile agents are handling requests properly as they come and there
are no network failures.

9 Summary

In this paper the problem of the configuration management of mobile agents was
analysed and the new tool supporting this process was described. The proposed
solution can be integrated with many different MAS and it is based on the
SNMP but other technologies can be also used. The partial implementation of
the propounded tool was developed and tested.

Nonetheless the problem of the management of the MA is not closed. Firstly,
the security mechanism for controlling which agents can read/modify particular
configuration parameters should be proposed. Secondly, the methodology de-
scribing how to manage the configuration of the MA is necessary. Among others
the basic set of configuration parameters, the definition of MIB for mobile agents
should be proposed. These parameters should be universal enough to be shared
by many types of mobile agents and many different mobile agent systems.
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Last but not the least, the data mining of the results of the monitoring seems
to be very important matter. The analysis of the collected data can be helpful
in detection of failures of mobile agents or efficiency problems.
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Abstract. An adaptive immune-inspired multiagent system (AIBMAS)
is proposed. The intelligence behind such system is based on the idio-
typic immune network. Tunable activation Threshold (TAT) proposes
that agents adapt their activation thresholds. Immune algorithm based
on the immune network theory and memory mechanism is derived.

1 Introduction

The biological immune system inspires the immunity-based multiagent system
(IBMAS) which can be an information framework of intra-agent processing and
interagent information flows. From engineering viewpoints, concepts of immune
systems are more important in its applications rather than biological explana-
tions. This paradigm, namely artificial immune system (AIS), inspires researches
of multiagent system as well.

Multiagent systems (MAS) have some features in common with AIS and pro-
vide scope for applying immune system methodologies. The main goal of the
human immune system is to protect the internal components of the human body
by eliminating the foreign elements such as the fungi, virus and bacteria. These
processes include recognition, learning, communication, adaption, memory and
control. MAS are based on behavior management of several independent agents.
AIS may be applied to MAS to attain the computational intelligence of agents.
It is suggested that some action generator be applied to MAS. According to
Ishida [1], genetic coding for an agent could be used in a similar manner to
that of genetic algorithm (GA), or other method in evolutionary computation
(EC). However, a major challenge for AIS is to explain how each system adjusts
responses to the environment when some antigens are recognized.

The AIS has been developed according to negative selection algorithm and
clonal selection algorithm which are based on the classical self-nonself (SNS)
theory; nonselfs are entities which are not part of human organisms [2]. Im-
mune algorithm may basically apply to any system where the environment is
unpredictable.

An adaptive system can be realized in immunity-based system by providing
agents with further autonomy of reproduction with mutation. The term ”agent”
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roughly corresponds to the immune cells such as B-cells and T-cells with auton-
omy and cooperation. The agent equipped with some special sensor and actuator
will carry out actions corresponding to some special signals. We focus on tak-
ing theoretical immune property such as the tunable activation threshold (TAT)
model [3] to the agent’s considerations. TAT asserts that the responsiveness of
individual lymphocyte to antigens and other signals can be tuned and updated.
Controllability of MAS can be reached via tuning parameters of agent-based TAT
model. This theory proposes that lymphocytes adapt their activation thresholds
based on recent interactions with their environment [3][4][5].

Jerne [6] proposed the immune network theory by investigation immune
systems as complex adaptive systems. Many researches have been proceeded
according to this theory [7]. In this approach, immune network must first self-
organize itself so that it will not respond to the self. This is the concept of
self-maintenance. On the other hand, the immune system has indeed a short-
term memory in the sense that it can respond more efficiently and rapidly to an
antigen in the second invasion.

The purpose of this paper is to develop an adaptive immunity-based multi-
agent system (AIBMAS). The immune algorithm is inspired by AISIMAN [8]
with enhanced memory mechanism and tunable activation threshold. The ar-
rangement of this paper is as follows. In section 2, knowledge related to the
AIBMAS is introduced. In section 3, AIBMAS architecture and corresponding
immune algorithm are discussed; some control strategies for AIBMAS dynamics
are proposed. In section 4, AIBMAS model evaluations are given.

2 Background

2.1 Immune Systems and Immune-Based Systems

The immune system consists of the antibodies and lymphocytes, which include
T-cells and B-cells. The human immune system uses a large number of highly
specific B- and T-cells to recognize antigens. Only B-cells secrete antibodies.
Clonal selection theory explains the details of antibody secretion specific to an
antigen where T-cells help regulating. The binding between antigen and specific
lymphocytes trigger proliferation from immature lymphocytes to mature one
and the secretion of antibodies. The immune system must interact not only with
the nonself from the outer world, but also the self from the internal world.

An immunity-based system (IMBS) involves a self-maintenance system. Ac-
cording to [1], IMBS has the following three properties:

1. a self-maintenance system with monitoring both the nonself and the self
2. a distributed system with autonomous components capable of mutual eval-

uation
3. an adaptive system with diversity and selection.
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2.2 Immunity-Based Multiagent Systems (IBMAS) with
Adaptiveness

Agent is an entity that has the ability of consciousness, solving problem, self-
learning and adapting to the environment. To have the agents learn, we may
utilize the immune system whose response attributes of specificity, diversity,
memory and self/non-self recognition are needed. Adaptiveness is a challenge
and also an important feature for multiagent system to interact with the envi-
ronment. Three major stages for IBMAS inspired by the clonal selection theory
are diversity generation, self-maintenance and memory of nonself. The last two
properties define the adaptiveness of the IBMAS. These steps are carried out by
agents distributed over the MAS.

Diversity Generation. (Continuous) diversity generation leads to the ”adap-
tation” of IBMAS. Diverse agents with distinct specificity of the receptor
and the effector are generated by way of mutations.

Self-Maintenance. Agents are adjusted to be insensitive to known patterns
(self) during the developmental phase. Negative selection theory is a central
of this phase.

Memory of Nonself. Agents are adjusted to be more sensitive to unknown
patterns (nonself) during the working phase.

2.3 Immune Network Theory

According to immune network theory, the interaction between various species of
antibodies plays an important role in immune regulation; moreover, the immune
system is composed of a superposition of a number of smaller network systems.

Idiotypic Immune Network. Many idiotypic immune network models focus
on the interactions between antibodies and antigens. Jerne [6] proposed the
idiotypic network theory in which cells co-stimulate each other in a way that
mimics the presence of the antigen. .

An epitope of antigen Ag is recognized by the antibody molecule Ab1 and by
the receptor molecule on the lymphocyte of LU1 (Fig. 1). The antibody Ab1 and
the receptor of LU1 have the idiotope which is recognized by antibody Ab2 and
the receptor on the lymphocyte of LU2. On the other hand, the antibody Ab1
and the receptor on the lymphocyte of LU1 also recognize idiotopes on antibody
Abn. Abn constitutes an internal image of the antigen Ag. Network is formed by
interactions between lymphocyte interactions. The epitope of antibody molecule
is called idiotope

2.4 Activation Threshold

A lymphocytes can adjust its antigen response to the ”context” in which the anti-
gen is encountered. According to [3][4][5], context represents the physiological
milieu and various quantitative and qualitative aspects of antigen presentations.
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Fig. 1. Schematic diagram of the idiotypic network

Activation is a threshold phenomenon and the threshold is tuned by the stimu-
latory experience of the cell. It is believed that such adaptiveness of lymphocyte
activation is characterized by specificity and memory [9].

While designing adaptive IBMAS, agents should be activated to respond to
some foreign agents, called nonself agents (NAG). Such activation behavior is
dynamic, namely, the activation threshold for each agent should be updated
according to current and past events. Excitation index (of an agent) is defined
by some time-dependent, weighted average of this agent’s past excitation levels.
Upon each excitation event, the agent undergoes a perturbation defined as the
difference between the current excitation level and the excitation index. This
index is the activity level which represents a cumulative interagent memory of
the recent excitation events experienced by the agent. The concept of excitability
implies that the existence of the short-term agent memory. Excitation index
minus some constant is equal to the activation threshold.

2.5 Immune Memory and Learning Mechanism

Immune memory is one of the hallmarks of the immune system. One popular
model is called the long-lived memory cell theory [10]. Some lymphocytes, both
B- and T-cells, that have a close match to an antigenic source differentiate into
’memory cells’. These memory cells are then highly responsive to the original
antigen. This theory assumes that memory cells live a very long time, thus
preserving immunity for many years.
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On the other hand, long-lived memory cell theory cannot explain the equilib-
rium states of immune systems while there is no antigen. In particular B-cells
can perform suppression and activation functions without antigens. Idiotypic
network theory describes this phenomenon [11]; moreover, it also explains the
effective short-term memory of B-cells by generating internal images of detected
antigens. Accordingly, immune memory leads to the learning mechanism of im-
mune systems. Once the foreign antigen is removed, the immune system will
restore some information of such antigen by this internal image mechanism. The
effect of immune memory can contribute to the second immune response.

3 Adaptive Multiagent-Based Framework Inspired by
Immune Network

Sathyanath and Sahin [8] proposed an artificial immune system based intelli-
gent multiagent model (AISIMAM). Some disadvantages of AISIMAM model
is related to its adaptiveness. In this section, we establish an adaptive IBMAS
(AIBMAS) majorally characterized by immune network described in the previ-
ous section. Tolerance and memory are two major processes of adaptiveness to
the self and nonself, respectively. Now we define the adaptiveness of an IBMAS.

Definition 1. A multiagent system is adaptive, if it satisfies the property of
self-maintenance and memory.

3.1 AIBMAS Model

There is a set of agents, called lymphocyte agents (LA), in the initial stage of
AIBMAS model. An agent which is not a LA is called a foreign agent; there are
two types of foreign agents, namely, self agent (SAG) and nonself agent (NAG).
LAs’ missions are to detect any susceptible NAG (Fig. 2).

3.2 Dynamical Behaviors of AIBMAS

So far, AIBMAS is very similar to AISIMAM in MAS architecture. However,
the adaptiveness of the latter needs to be improved. This goal can be reached by
deploying ABTAT mechanism , CBR memory mechanism and immune algorithm
based on idiotypic network within AIBMAS.

Agent-based Tunable Activation Threshold (ABTAT). AIBMAS im-
proves the adaptiveness of AISIMAM by adopting several immune mechanisms.
The first improvement is the activation threshold of agents. We propose that
an adaptive agent can distinguish a ”perturbation” from continuous stimulation
and readjust its level of activation. One major assumption is that the activation
threshold is not fixed for a given agent while subject to dynamic environment.
The activation, which is defined as level of excitation (plus some constant), is dy-
namic. Such agent-based ”tunable” activation threshold model (ABTAT) would
allow agents to participate in its definition based one their own experiences.
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Fig. 2. Architecture of AIBMAS based on Idiotypic Network

Case-Based Reasoning on Dynamic Memory. Case-based reasoning (CBR)
can be considered in parallel with the AIBMAS; particularly, it can fit Jerne’s
network paradigm (see Fig. 4.5. of [1]). Repertoire of LAs connected by idiotypic
network is exactly a case knowledge database. The memory is dynamic since each
antigenic activation will generate an internal image to some LAs according to
idiotypic network.

3.3 Immune Algorithm in AIBMAS

Now the AIBMAS is functioning according some immune algorithm, which satis-
fies the adaptiveness of MAS. There are four phases for this AIBMAS algorithm,
namely, initial phase, self-tolerance establishment, activation process and learn-
ing & memory.

Parameter Definitions. We define the Lymphocyte agent by LAi, where i =
1, 2, . . . , N . For each LAi, there exists an n−dimensional information vectorBi =
[b1, b2, . . . bn]. A foreign agent FAj , there exists an m−dimenisonal information
vector Aj = [a1, a2, . . . am]. Define Tai the (SNS) activation threshold of LAi.

Functionalities of Immune Algorithm Phases

1. Initial Phase. Initialize all parameters of immune algorithm.
2. Self-Tolerance Establishment. For foreign agent, which is regarded as self

agent (SAG) by LA according to some identifier. This identifier is connected
to CBR database, or by associative memory mechanism of multiagent sys-
tems.
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Fig. 3. Immune Algorithm for an agent-based Framework

3. Activation Phase. New actions are generated for SAGs; choose mature ac-
tions, then activate them.

4. Self Maintenance. SAG is cloned with mature actions, then added to the
family of LA.

4. Learning and Memory. For foreign agent which is regarded as an NAG,
the related information is transmitted to CBR.

Now we describe the immune algorithm in more details.

Initial Phase. The main operation in the initial phase is the diversity genera-
tion. For each LAi, define LAi

nbd as its sensory neighborhood.

– For each FAj in LAi
nbd, calculate Mij = f(Bi, Aj), where Bi is the message

string of LAi, and Aj is the message string of FAj . The matching function
f is defined as follows. f(Bi, Aj) = 0, if FAj is not in the LAi

nbd, otherwise,
equal to 1.

– If Mij = 1, then the information about the FAj is transmitted to the other
LAs according to the idiotypic immune network mechanism.

Assume that FAj ∈ LAi
nbd, where j = 1, 2, . . . , e.

Phase of Self-Tolerance Establishment. Identify these FAj detected by
LAi in initial phase using the identifier function iden defined as follows.

Ij = iden(FAj) (1)

If d(Bi, Aj) > Kmatch, then FAi is regarded as a NAG; otherwise, a SAG. d is
the Euclidean distance, and Kmatch is the activation threshold of LAi.
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Activation Phase. For an NAG, using action generation function ActGen to
generate possible k new actions according to identifier Ij as follows.

U j
l = ActGen(Ij), l = 1, 2, . . .k. (2)

Find the affinity for all possible vectors U j
i by the affinity function

Af j
l = affin(U j

l ), l = 1, 2, . . .k. (3)

Choose mature actions whose affinity is greater than the (action) threshold value
Ta. The mature action set Y is thus defined as follows.

Y = {U j
l |Af j

l > Ta}, l = 1, 2, . . .p. (4)

Rearrange the index l in necessary. The activation of the mature actions within
the time tb (called binding time) is given by

U j
i = g(Y, tb) ∗ [u(t) − u(t− tb)] (5)

u is the unit step function. If there is an activation, g = 0, otherwise, g �= 0. Ta

can be tuned so that p = 1, this is the case for the best action.

Self-Maintenance. If FAj is a SAG and U j
i �= 0, it is cloned with mature action

set Y to generate q number of this SAG, say Sz, where z = N+1, N+2, . . . , N+q.
Define LAz = Sz.

Learning and Memory of Nonself

Learning. If FAj is an NAG, then its information vector Aj is sent to the CBR
database. This database will update the record of FAj according to (SNS)
activation threshold Kmat by the following equation:

Kmat(t+ 1) = kmat(t) + αE(t)(E(t) − kmat(t)), t = 1, 2, . . . , tb (6)

where E is the excitation level of LAi, and tb is the binding time between
LAi and FAj .

Memory. LAi will generate an internal image of FAj restored at other LAr.
The information vector of LAr is updated by adding Aj .

3.4 Controllability of AIBMAS

One purpose of controlling the LA’s activation threshold (equivalently excitation
level) is to avoid the abnormal behaviors such as false negative. We notice the
effect of parameter α of (6) with lower value producing an excitation index curve
that tunes at a lower rate. This parameter determines how quickly the excitation
index tunes, the smaller it is, the smaller the increment to the excitation index
and the slower it tunes to the value of the excitation. α is therefore controlling
the memory effect of the activation threshold; the lower the α value the longer
term memory of past excitations.
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4 Model Evaluations

In this section, we evaluate the AIBMAS by comparing it with AISIMAM. For
Table 1, advantages of AIBMAS are listed with respect to AISIMAM.

Table 1. Comparisons between Immunity-based Multiagent Systems

Algorithm AIBMAS AISIMAM

Diversity Generation Yes Yes
Self Tolerance Yes No
Learning Yes No
SNS Act. Threshold Yes Yes
Self Maintenance Yes Yes
Short-term Memory Yes Yes
Long-term Memory Yes No

These two algorithms deploy functionalities such as diversity generation and
short-term memory (of NAGs). However, AIBMAS equips with long-term mem-
ory mechanism by generating internal image restored in LAs. AISIMAM depends
on memory cells, which are short-lived, to restore antigenic information.

Table 2 is a comparison of functionalities between AIBMAS and AISIMAM.

Table 2. Functionalities of Immunity-based Multiagent Systems

Algorithm AIBMAS AISIMAM

Self-Tolerance Action generator Action generator
Memory internal image, TAT memory cells
behavior management action generators action generator
Network Type P2P P2P
Agents proliferation number small large

According to this table, AIBMAS proliferate fewer SAGs than AISIMAM.
From agent management viewpoint, the former has advantage over the latter.

5 Conclusions

We propose an adaptive immunity-based multiagent system (AIBMAS). The in-
telligence behind such system is based on the learning and memory mechanism of
immune network systems. Lymphocyte agents detect foreign agents and decide
whether they are SAGs or NGAs according to the immune algorithm. The lat-
ter can generate dynamic activation threshold according to agent environment.
One challenge is the information transferring mechanism by idiotypic immune
network. Another interesting issue is the associativity of the agent learning and
memory provided by idiotypic immune network. Whether an agent can perform
associative memory is worth of future research.
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Abstract. The paper describes how Distributed Default Logic (DDL) can be 
used as a formalism for context-aware computing in a Multi-Agent System. It is 
shown that the original notation does not require any changes. The DDL reason-
ing engine has been adapted to handle situations like unavailability of sensors. 
New semantics of Distributed Default Rules in the application to reasoning with 
context information is also described. 

Keywords: multi-agent systems, default logic, context-aware computing. 

1    Introduction 

With the rapidly growing number of computing devices and mobility of their users, 
the importance of context-aware computing is growing very fast. We want various 
services to be available any time and in any place we visit. This poses formidable 
challenges on the software that needs to adapt to the changing context of the user. 

Context awareness as a term has originated from ubiquitous computing, which was 
sought to deal with linking changes in the environment with computer systems, which 
are otherwise static. The term context can be defined as any information that can be 
used to characterize the situation of an entity. An entity is a person, place, or object 
that is considered relevant to the interaction between a user and an application, in-
cluding the user and applications themselves [6]. 

We use context all the time when taking daily decisions. Let us take an everyday 
example of choosing the right clothing before going out of home. We can use simple 
commonsense rules like “If it is summer and no indications of bad weather, we can 
wear a t-shirt”. The rule will work fine in most locations we visit. To be able to apply 
it we need sensors, which will give us additional context information to trace any 
exceptional situations, which should prohibit us from going out unprepared. There are 
several potential context sources – thermometer, barometer, our eyes, internet weather 
service, tv weather forecast or even coin tossing. Depending on our experience some 
of them might be preferred over others, while depending on our location only a  
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limited number of them might be available at a particular time. In this paper we will 
show how to perform such reasoning in a Multi-Agent System. 

Multi-Agent Systems are especially well suited to model distributed, ubiquitous 
environments with high need for adaptability driven by context-awareness. By intro-
ducing a concept of intelligent, autonomous and proactive agents, the system is able 
act flexibly and effectively. Autonomy of its parts allows for differentiation of com-
putation based on different context values. Proactiveness, on the other hand, can be 
used to find new context sources and monitor the ones that are already available. 

DDL is an extension of Default Logic as defined by Reiter [8], designed especially 
to support distributed reasoning in a Multi-Agent System [9]. Its main feature is em-
bedding of environmental information into rules, to speed up the reasoning process. 
The rules contain links to other agents, who possess relevant information. The distrib-
uted algorithm answers queries by computing a preferred extension of the global 
theory. We show how this formalism can be used for reasoning about context. 

2    Previous work 

There are several approaches to context-aware computing in a distributed environ-
ment. Lots of effort has been done towards definition of context. Apart from the defi-
nition mentioned in the Introduction, others can be found [11], [12]. 

It has been argued that for efficient implementation of context-aware computing, a 
middleware software is needed [7]. In this paper we will not consider how context is 
measured and delivered to the agents. Rather, we concentrate on application of a 
dedicated formalism, which allows for efficient computation of context information. 

In [3] a context-based agent architecture has been proposed. An ontology-based 
representation for context elements is introduced. Since the system has been designed 
for handheld devices, an external context reasoning layer is introduced. Chen [4] 
proposes a broker-centric agent architecture called Context Broker Architecture 
(COBRA) in order to reduce the cost of building context-aware systems. 

Default Logic or its variations has already been used in MAS. Apart from our ear-
lier work other approaches can be found in [10], [2]. The first approach proposes 
social default theories. It can be used for representing various social attitudes of 
agents, including cooperative planning and negotiations. The second paper describes 
how default reasoning agents can be applied with reasoning by case capabilities. 

3    Distributed Default Logic (DDL) 

This chapter presents definitions related to the Distributed Default Logic, which was 
designed to facilitate distributed commonsense reasoning in a Multi-Agent System. 

3.1    Definitions 

We will start with brief reminder of Reiter's original approach. A default theory Δ is 
described as a pair (D, W), where D represents a set of default rules while W is a set 
first-order formulas.  
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Definition 1: A default rule d is a rule of the form 

 

where α(x), β1(x), ..., β2(x), βm(x) are all classical logical formulae. α(x) is called 
prerequisite - p(d); β1(x), ..., βm(x) is justification - j(d) and ω(x) is consequent - c(d). 
If p(d) is known and j(d) is consistent with W then c(d) may be inferred. 

Definition 2: Let Δ = (D, W) be a default theory. For any set of formulae S, let Γ(S) 
be the smallest set satisfying the following conditions: 

(i) W ⊆ Γ(S) 

(ii) Th(Γ(S)) = Γ (S) 

(iii) If (α : M β1, ..., βn/ω) ∈ D, α ∈ Γ (S) and ┐β1, ..., ┐βn ∉ S, then ω ∈  Γ(S) 

A set Ext is an extension of default theory Δ iff Γ(Ext) = Ext. 
Now we are ready to present DDL. 

Definition 3: A Multi-Agent System (MAS) is a collection of agents operating in the 
same environment.: 

MAS = {A1, A2, ..., An} 

Definition 4: Extended default template T is the rule of the form 

)(

)(,...,)(:)( 1
1

x

xxx Lm
m

L

ω
ββα

 

where Lk ⊆ MAS and α, β and ω have the same meaning as in standard defaults. 
The reason for indexing justifications is to allow agents to keep information about 

agents as metadata within the rules, which can help them to justify their assumptions. 
When applying the rule, only single agent per justification will be chosen, which leads 
to creation of extended default rule. This process, called materialization, will lead to 
no more then one agent signature attached to each of the justifications. 

Definition 5: Extended default rule is a following rule 
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)(,...,)(:)( 1
1

x

xxx lm
m

l

ω
ββα

 

where lk ∈ Lk and α, β and ω have the same meaning as in standard default rules. 

Definition 6: We say that an extended rule r is a materialization of T iff  

(i) p(r) = p(T) 

(ii) c(r) = c(T) 

)(

)(),...,(|)( 1

x

xxx m

ω
ββα
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(iii) ∀βm
 Lm (x) ∈ j(T) ∃ βm

lm (x) ∈ j(r) : lm ∈ Lm 

where p(r), c(r), j(r) are prerequisite, consequence and justification of the rule r re-
spectively. 

We can now define the Distributed Default Theory in the following way 

Definition 7: Distributed Default Theory (DDT) is a set {Δ1, Δ2, ... Δn}, where index n 
enumerates nodes of the system and Δi = (Di, Wi) is a default theory stored at node i ∈ 
<1, n>. Each of the sets Di contains Extended Default Templates. 

By Distributed Default Logic (DDL) we will understand the Distributed Default 
Theory together with the process for Distributed Default Reasoning (DDR). 

The rule described in the Introduction, can be written in DDL in the form of the fol-
lowing distributed default template: 

summer :¬cold termometer ,internet , tv ¬raininternet ,tv , barometer ¬wind internet ,tv , eyes

wear t shirt  

If we have no internet or tv, the materialization of the above template in the form of 
DDR will look like this: 

summer :¬cold termometer ¬rain barometer ¬wind eyes

wear t shirt .  

3.2    Reasoning with DDT 

In DDT only one extension of the given theory is generated. This is done by prioritiz-
ing defaults based on a confidence function. For each agent the following confidence 
function will be maintained 

Cn: MAS → [0;1] 

with additional restriction that for i-th agent, Ai ∈ MAS 

Ci (Ai) = 1 

In the case of sensors, an accuracy measure can be used to estimate how reliable a 
particular source of context is. 

Definition 8: Priority Pd of DDR d = α : β1
A1, ..., βn

 An  / γ is 

Pd = ∏i = 1...n C(Ai) 

The confidence function is just one of the properties of other entities that can be main-
tained by an agent. Depending on the purpose of the system we can measure time of 
response, price etc. We will define the following property matrix which, together with 
the confidence function, will provide a guidance for choosing the other agents (sen-
sors) for cooperation. 



480 D. Ryżko and H. Rybiński 

 

Definition 9: For n agents with m properties we define a property matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nmmm

n

n

vvv

vvv

vvv

,2,1,

,22,21,2

,12,11,1

...

............

...

...

 

where vi,j is a value of property i for agent j. Therefore, each column represents one 
agent, while each row refers to a single property. 

We might as well have included the confidence function as one of the properties in 
the property matrix. However as it is shown in the paper, this property is so distinct in 
the way it is used and calculated that we decided to keep it separately to underline its 
significance. 

Agent properties can be used to exclude some of the agents from the list in DDT, 
based on some additional constraints (e.g. cost, time etc.). 

We will now partly follow the terminology introduced by [1] for partitioning of 
FOL and propositional theories as well as by [5] who introduced stratified default 
theories. 

Let A be a Distributed Default Theory divided into n partitions 

A = ∪i=1..n Ai 

{Ai}n≤i will be called a partitioning of default theory A. By L(Ai) we will denote the 
signature of a partition (the set of non-logical symbols). ∠(Ai) will be the set of for-
mulae built with L(Ai) called the language of  Ai. 

Each of the partitions will contain a portion of global default theory 

(D, W) =  ∪i=1..n (Di, Wi) 

Each partitioning can be represented by a labeled and directed graph G = (V, E, l), 
which we will call the intersection graph. In this graph, each node corresponds to the 
individual partition Ai, so V={1..n}. Two nodes i, j are linked by the oriented edge 
leading from i to j if  

∃ di∈Di, dj∈Dj, p∈∠(D,W) : p ∈ c(di) ∧ p ∈ p(dj) 

or 

∃ dj∈Dj, p∈∠(D,W) : p ∈ Wi ∧ p ∈ p(dj) 

The edges are labeled with the set of symbols that the associated partitions Ai and Aj 
share (l(i, j) = L(Ai) ∩ L(Aj)). l(i, j) will be called communication language between 
partitions Ai and Aj. 

Definition 10. The intersection graph G satisfying the following conditions will be 
called well-ordered iff: 
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(iv) G is a tree  

(v) There exists such a numbering of nodes, that all edges lead from a lower to a 
higher value of this numbering 

(vi) all references leading from justification of default templates lead to a node 
with a higher number 

(vii) there are no conflicts such that there are two nodes with the same symbols in 
conclusions of their rules 

The numbering (ii) of a well-ordered intersection graph is called well-ordered num-
bering. 

In [9] we show that a DDT with well-ordered intersection graph is stratified ac-
cording to well-ordered numbering and that a distributed reasoning algorithm can 
generate extension efficiently processing one strata at a time. 

4    Context-Aware Reasoning with DDL 

DDL with little modifications can be easily adapted for context-aware computing. 
Firs of all we need to give context semantics to the DDR. We want agents to be able 
to reference both internal and external sources of context. Therefore, we will use 
agent references stored in DDT as references to different sensors. This does not re-
quire any changes to the DDL. A sensor possessed by a reasoning entity can be mod-
eled as an additional simple agent with knowledge base limited to the current sensor 
reading. 

What we need to add are means for reasoning in case of unavailability of some of 
the sensors. DDL initially assumes all entities can participate in the reasoning process. 
In real life it is often the case that we cannot access some sensor reading. Sometimes 
we have to manage without our preferred source of context. The problem is that con-
text-aware computing requires by definition high efficiency. In case of a missing 
agent (sensor) we cannot afford to recalculate all the rule priorities and start all over 
the  reasoning process. 

Therefore we propose the following approach. If a sensor is missing, the next 
preferred sensor which can provide the same information is used. If the needed 
context value cannot be accessed at all, the next preferred rule is applied. Such 
approach is semi-optimal according to the calculated confidence measures, but it is 
fast and is in line with our commonsense behavior. In the case of our dressing  
example, if we cannot get a thermometer reading we will try to find out the  
temperature in some other way. Usually, only after we use all available source of 
information and fail, we will try to apply some other knowledge for choosing  
the right clothing. 

The reasoning process must take all of the above into account. Below a modified 
version of distributed default reasoning algorithm is presented: 
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Algorithm 1: Generate extension 
Input: (Dn, Wn) 
Output: Ext (Dn, Wn) 
Begin 
  DR = Materialize (Dn) //generate rules from templates 
  Loop//main loop 
   Rules = DR 
   Loop//rule loop 
    If (Rules empty) 
      Exit rule loop 
    End if 
    R = GetRule (Rules) //Get rule with highest priority                     
                        //and remove from Rules 
    If (p(R) in Wn and j(R) is consistent with Wn) 
      For (J from j(R)) loop //justification loop 
     //send query to the agent referenced in  
justification 
        Do 
          agent = get_next_agent(j(R)) 
          If (no more agents) exit rule loop 
          Send (agent, J) 
        While (not available agent) 
      End loop 
      If (no justifications inconsistent) 
        Add (conclusions, Wn) 
        Add (conclusions, Result) 
        Exit rule loop 
      End if 
    End if 
   End loop//end of rule loop 
   If (nothing new in Result) exit 
  End loop//end of main loop 
  Send (Result, parent agent) 
End 

5    Conclusions and Future Work 

We have shown how a DDL formalism initially designed for distributed, common-
sense reasoning in a multi-agent system, can be adapted for context-aware computing. 
References to other agents can be used to reference sensors and other context sources. 
In this way the context information is captured naturally within the formalism. 
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The reasoning algorithm has been slightly modified in order to take into account 
situation where some sensors become unavailable. This allows to continue the reason-
ing without the need of reorganizing the whole system, even if some communication 
problems between its components occur. 

The approach presented in the paper extends the original formalism without limit-
ing any of the capabilities it was designed to possess. It is possible to combine links to 
knowledge stored by other agents with the links to sensor information. This means, 
that within one distributed reasoning process context of different agents can be taken 
into account. 
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Abstract. In a multi-agent system the sought information can often be
found across various knowledge bases, which means that making early
assumptions can lead to hasty conclusions. In the paper we present a for-
malism for distributed default reasoning to be performed by a group of
agents that share knowledge in the form of a distributed default theory.
The formalism is based on default transformations, which can be used
to derive answers to queries in the form of defaults. Such new defaults
can then be treated as intermediate results in the reasoning process. It is
shown that passing messages containing transformed defaults is more in-
formative than strict statements and enables avoiding early conclusions.
Moreover, the extended reasoning features are embedded in the descrip-
tion logic framework.

Keywords: multi-agent system, default logic, description logic,
distributed reasoning, Distributed Description Logic.

1 Introduction

Many real world applications require knowledge, which is distributed and is
located aside of the entity assigned to solve the given problem. Such entities
must be able to cooperate in order to reach solutions of the problems presented
to them. This is actually the approach of multi-agent systems (in the sequel
MAS), which provide tools for modelling the situations by means of a set of
collaborating autonomous, intelligent and proactive agents. Examples of such
applications of MAS in the area of the energy markets are shown in [10].

Knowledge sharing in a distributed environment is essential. Recently, the
area of Agent-Mediated Knowledge Management has emerged, which considers
Knowledge Management in a multi-agent setting. A shift of interest can be ob-
served from traditional knowledge management to the cooperation of distributed
and often heterogeneous sources of knowledge [9].

In the Semantic Web knowledge is distributed throughout the Web and it can
only be seen as a network of agents, each having its own knowledge base and
reasoning facilities. The entities can have specialized knowledge, which can be
shared and reused by agents that need to collect remote information in order to
perform a reasoning task. Distributed reasoning in a peer-to-peer setting is shown
in [1], where a message passing algorithm is introduced to exchange knowledge
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between peers. Each peer runs an inference procedure on local knowledge to
answer queries from neighbouring peers. Here, in contrast to other approaches,
the global theory defined as a sum of all local knowledge is unknown.

In [15,14] a multi-agent system is proposed for knowledge sharing in an en-
vironment of agents equipped with default reasoning abilities. The Distributed
Default Logic framework (DDL) is composed of agents having their knowledge
in the form of default logic theories, and able to communicate with each other
in order to resolve the locally unknown facts.

In a distributed default logic system, exchanging information between agents
in the form of facts may cause loss of valuable information about the assumptions
made during the process of reasoning. Thus, we argue that it is beneficial to
enable the agents to exchange information in the form of defaults as these contain
additional information about default justifications. In the paper we present the
formalism of default transformations together with an algorithm for deriving
defaults as inference results from a default theory. We show that this approach
can be integrated with description logic in a multi-agent system.

2 Related Work

Logic is often used as the basis for knowledge representation in multi-agent
systems. In [11] Kowalski and Sadri describe an extension of logic programming
to provide rationality and reactiveness in the multi-agent setting.

In a distributed environment the knowledge is scattered among the agents.
The field of theory partitioning studies the methods of dividing a logical theory
in order to increase the efficiency of reasoning. Amir and McIlraith [2] introduce
forward and backward reasoning algorithms for a partitioned first-order logic
theory. Here, message passing is used to transfer knowledge between partitions.

Distributed reasoning with defaults has been introduced in [15,14]. The for-
malism named Distributed Default Logic extends Reiter’s Default Logic [12] by
defining a distributed default theory. The approach adopts the stratification of
default theories, which has been considered by Cholewinski [7].

Distributed reasoning is essential for the domain of the Semantic Web as
the knowledge is inherently distributed among many sources. The Semantic
Web bases its knowledge representation on Description Logics (DLs) [3]. On
the grounds of the DL formalisms several approaches to mapping distributed
knowledge bases have been investigated [6,8,5]. Our work extends the notions
of Distributed Description Logic by introducing defaults to the knowledge rep-
resentation formalism and to the inference procedure.

3 Basic Concepts

3.1 Default Logic

Default logic has been introduced by Reiter [12] as an approach to commonsense
reasoning. It can be used to deal with the inability to fully describe the world
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and to provide more concise representations of knowledge due to the form of
specifying exceptions to defaults. A default is in the form α:β

γ where α, β and γ
are well-formed formulae. α is the prerequisite, β is the justification and γ is
the consequent. The default can be applied and the consequent inferred if the
prerequisite can be proven and the justification is consistent with the current
knowledge. For a default d, let Pre(d), Jus(d) and Con(d) denote the formulae
occurring in the prerequisite, justification and consequent, respectively, of the
default d. We say that a default is closed if it contains no free variables.

Given a set W of first-order logic formulae creating a world description, and
a set D of defaults, we define a default theory as a pair Δ = 〈D,W 〉. The
default theory is closed if it contains only closed defaults.

The inferences of default logic are defined by means of extensions. Extensions
can be obtained by applying a non-deterministic iterative process to a default
theory. In each step a default is used to add the consequent to the resulting set
of formulae. An extension is defined by the fixed point of this process. Let E be
a set of closed formulae, and 〈D,W 〉 be a closed default theory. By Th(E) we
denote the deductive closure of a set of formulae E. Let E0 = W and

Ei+1 = Ei ∪
{
γ | α : β

γ
∈ D,α ∈ Th(Ei) and β �∈ Th(E)

}

Th(E) is an extension of 〈D,W 〉 iff Th(E) =
⋃∞

i=0 Th(Ei)
There can be many extensions of a default theory depending on the order the

defaults are applied. By ext(Δ) we denote the set of all extensions of the default
theory Δ.

Definition 1. [12] The set of generating defaults for an extension E of theory
Δ = 〈D,W 〉 is the set

GD(E,Δ) = {α : β/γ ∈ D|α ∈ Th(E) and ¬β �∈ Th(E)}

3.2 Embedding Defaults into Description Logics

Description logics (DLs) [3] are a family of knowledge representation formalisms.
Knowledge in DLs is represented by defining concepts from a selected domain,
which comprise a terminology, and using these concepts for classifying objects
and describing their properties.

A description logics knowledge base consists of only universal statements,
which do not allow exceptions. This allows the reasoning system to unambigu-
ously assign individuals to concepts. However, this method does not provide
means for commonsense reasoning, where some assumptions can eventually be
shown to be false. The application of the results achieved in default logic can
provide a method for commonsense reasoning without losing important features
of description logics. Reiter’s default logic uses first-order logic as the base lan-
guage and since description logics are decidable subclasses of FOL, they can be
extended with the notion of defaults using the original semantics. Baader and
Hollunder [4] show how defaults can be embedded into description logics.
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Definition 2. A default is in the form A:B
C where A, B and C are concept ex-

pressions. This default is equivalent to the default in which concepts are expressed
as unary predicates A(x):B(x)

C(x)

The default expresses that it can be inferred that x is an instance of the concept
C if x is an instance of A and it is consistent to assume that x is an instance
of B.

Embedding defaults in description logics is not as straightforward as it may
seem. The problem is with treatment of open defaults by Skolemization. A termi-
nological knowledge base with an even smaller set of constructors than OWL-DL
is undecidable, unless we consider only closed defaults. This means that defaults
can only be applied to named individuals which already exist in the knowledge
base.

A normal default in the form A:B
C can be seen as a weaker form of subsumption,

such that permits exceptions. The default A:�
B is also weaker than the axiom

A � B because it, being a rule, does not imply its contrapositive ¬B � ¬A.
Because of problems caused by Skolemization which are described in [4], re-

stricted semantics has to be applied. Defaults are only applied to explicitly ref-
erenced individuals forming a finite set of closed defaults.

4 Distributed Reasoning with Defaults

4.1 Motivation

One of the main reasoning tasks in description logics is subsumption checking.
The query of whether a concept B subsumes a concept A is stated in description
logic language as A � B, which corresponds to the statement A(x) → B(x) in
first-order logic. Such queries are useful when reasoning in a distributed envi-
ronment such as a multi-agent system. For instance, the distributed reasoning
algorithm presented in [16] exchanges such queries between the peers in a Dis-
tributed Description Logic system. In this setting the answer to a query can only
be true or false.

Taking into account the integration of defaults into distributed reasoning,
giving such a definite answer to a subsumption query does not always fully
express the knowledge contained in a remote knowledge base and can cause loss
of valuable information about the assumptions made during reasoning.

Example 1. Let us consider an example knowledge base which can be a part of
a distributed system.

d1 :
Bird : Flies

Flies
Stork � Bird Stork(SAM)
Goose � Bird Stork(TIM)
Penguin � Bird ¬Flies(TIM)
Penguin � ¬Flies Penguin(PAT)
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Let us consider the following queries to this knowledge base:

Case 1: Q1 : Flies(TIM) A1 : false

The answer to this query is false because there is a straightforward fact in the
knowledge base stating that TIM does not fly.

Case 2: Q2 : Flies(SAM) A2 : true

A positive answer is returned by applying the default.

Case 3: Q3 : Stork � Flies A3 : false

If this query is interpreted as “Do all storks fly?”, the answer should be nega-
tive, as TIM is an example of a stork that does not fly.

Case 4: Q4 : Goose � Flies A4 : undefined

For this case the answer cannot be unambiguously stated. On the one hand,
the knowledge base cannot provide a negative example of a goose that does not
fly, so a negative answer cannot be given. On the other hand the open world
assumption does not permit giving a positive answer because there may exist
geese that cannot fly. The default can only be applied in its closed form with a
concrete individual and cannot be applied without instantiating its variable.

From this example we can see that the answers to queries Q2−Q4 lose informa-
tion which exists in the form of the default. In a distributed system, where many
knowledge bases can contain the sought information, making early assumptions
can lead to too hasty conclusions. What could be expected in these cases are
answers with the following meanings:
A2′. It is assumed that SAM flies unless it is proved otherwise.
A3′. Typically, storks fly unless it is proved otherwise.
A4′. Typically, geese fly unless it is proved otherwise.
These statements can be expressed as the following defaults:

A2′ :
: Flies(SAM)
Flies(SAM)

A3′ :
Stork : Flies

Flies
A4′ :

Goose : Flies

Flies

These defaults, if provided as answers, give more information from the origi-
nal knowledge base than usual answers. The rules form a concise intermediate
result and can be triggered to achieve the final answer. In a distributed en-
vironment the triggering of these rules will occur on the side of the asking
agent. Its own knowledge gathered from other sources can be useful for providing
justifications for defaults or rejecting defaults based on provided exceptions to
defaults.

As shown in [13], combining defaults and implication, although semantically
correct, can lead to conclusions that are not intended. For example, the state-
ments Typically adults are married and 18-year-olds are adults leads to a default
Typically 18-year-olds are married. However, such situations can be solved by
adding additional defaults or adding justifications to existing ones.
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In a distributed environment the fact that only closed defaults have to be used
in order to reason is very limiting. This would imply that two agents sharing
knowledge have to have a common set of individuals and one agent would not
be able to ask another agent about a general relationship A(x) → B(x) without
instantiating the variable x.

In the next section we will discuss what transformations can be applied to
defaults while an agent prepares answers in the form of defaults.

4.2 Transforming Defaults

Exchanging knowledge between agents in an efficient way requires an agent to
answer a question as precisely as possible. When agent A asks agent B whether
it believes that formula φ is true, it expects a short answer whether φ is true or
not. However, when using defaults in the reasoning process the answering agent
might use defaults while finding the answer to a question. This leads to making
possibly wrong assumptions. Giving a strict answer of true or false would make
the asking agent interpret the answer as “Agent B believes that φ is true (false)”
while agent B only assumes that φ is true (false).

In order to deal with such situations the answer to an agent’s query should
also carry the information about assumptions made during the reasoning process.
In default logic, assumptions are expressed through the use of justifications in
defaults. By tracing the justifications of defaults that would be triggered when
trying to prove a formula, additional information can be collected and further
used in answers to queries. For a query in the form a→ b we will allow an answer
in the form a:b∧j

b , where j is the conjunction of justifications which have to be
verified in order to infer b.

Defaults in Reiter’s default logic are treated as inference rules on the same
level of reasoning as modus ponens or modus tollens. In the basic form the in-
ference methods do not permit creating new inference rules as the result of
reasoning. Example 1 shows that returning defaults as the result of reasoning
can be beneficial by making answers to queries more informative.

In order to be able to generate answers in the form of defaults, a mechanism is
needed to create new defaults based on the current knowledge base. Such rules
must have the property that when they are added to the default theory, the
theory does not change with respect to the results of reasoning. In other words,
the set of extensions of the default theory ext(Δ) must remain unchanged.

Definition 3. A default transformation t : Δ → D produces a new default
δ from a default theory Δ = 〈D,W 〉 and is denoted by Δ |∼ δ.

We define a set of transformations which have very useful features and will be
used in the process of default reasoning. A general form of a transformation is
〈Dt, ft〉 |∼ δ, where Dt ⊆ D, W |= ft, and δ is a new concluded default.
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Definition 4. Given well-formed formulae a, b, c, d, e, we define the following
transformations:

a). Prerequisite substitution:
〈
{a:b∧c

b }, d→ a
〉

|∼ d:b∧c
b

b). Consequent substitution:
〈
{a:b∧c

b }, b → e
〉

|∼ a:b∧c∧e
e

c). Justification reduction:
〈
{a:b∧c∧d

b }, d
〉

|∼ a:b∧c
b

d). Default transitivity:
〈
{a:b∧c

b , b:e∧f
e },�

〉
|∼ a:b∧c∧e∧f

b∧e

The set of transformations (a)–(d) will be called basic transformations. These
transformations can be further used in the communication process. Therem 1
shows the interesting property of these transformations.

Let us define the sequence of default transformations, denoted by |∼∗, as
follows. Let D0, . . . , Dn is a sequence such that D0 = D and Di = Di−1 ∪ {δi}
where δi is obtained by applying a basic transformation on 〈Di−1,W 〉. We write
〈D,W 〉 |∼∗ δ when 〈Dn,W 〉 |∼ δ.

Theorem 1. Given Δ = 〈D,W 〉 and Δ′ = 〈D′,W 〉 where ∀δ∈D′δ ∈ D∨D |∼∗ δ
we have ext(Δ) = ext(Δ′)

The theorem shows that using the defined basic transformations we can create
new defaults, which can be treated as valid rules for default reasoning. Moreover,
these newly formed defaults can be treated as intermediate results of inference.
For a full proof of the theorem see [17].

4.3 Reasoning with Default Transformations

In a multi-agent system the peers exchange knowledge by means of querying
each other and utilising the answers to reach conclusions. Following the inference
procedure for Distributed Description Logic proposed in [16], the query, which is
passed between ontologies is the subsumption query in the form A � B, which in
FOL is denoted as A(x) → B(x). Here, we will concentrate on this type of query
and we will denote it by writing ?A � B to distinguish it from a DL statement.

For a query ?A � B to a default theory Δ = 〈D,W 〉 we will presume there
are three possible answers:

– true if W |= A � B
– false if W �|= A � B,
– true by default if the default A : B�J

B can be generated using the default
transformations

The first two answers are strict and do not require further processing. The last
answer can be treated as a partial result and the final answer can be inferred
when the justifications are checked.
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Algorithm 1. query
Input: Theory Δ = 〈D, W 〉, Query ?A � B
begin

if W |= A � B then return true;1
E ← findExtensions(〈D, W 〉);2
result ← ∅;
foreach E ∈ E do3

if A � B is consistent with E then
D̄ ← findDefaults(GD(Δ, E), W , ?A � B);
result ← result ∪ D̄;

if result = ∅ then return false;
result’ ← ∅;
foreach δ ∈ result do4

δ′ ← reduceJustification(δ, W);
result’ ← result’ ∪ {δ′};

return result’;
end

Throughout the algorithm there are are references to a DL reasoning proce-
dure in the form W |= A � B. These steps can be treated as calls to an inference
procedure for Description Logics such as the tableau reasoning algorithm [3].

Algorithm 1 shows the main idea of answering a query such as proposed
above. Line 1 checks for a trivial answer based on the factual knowledge. If such
an answer cannot be given, the next step is to find all extensions of the default
theory (Line 2). This is done using an algorithm such as described in [4]. Iterating
over all extensions (Line 3), the procedure gathers defaults in the form A : B�J

B ,
possibly from different extensions. This is done by transforming the generating
defaults of each extension. Finally the resulting defaults are processed, applying
the reduce justifications transformation (Line 4).

The procedure of finding defaults that can be treated as intermediate an-
swers to the given query is expressed in Algorithm 2. This procedure applies
default transformations (a), (b) and (c) from Definition 4. Line 1 selects the
defaults that are qualified for applying the prerequisite substitution transforma-
tion. Then, each of the selected defaults is checked whether it can be returned
as the default answer to the given query (Line 2). If this is not the case, the
algorithm is executed recursively (Line 3) to find a sequence of defaults that
having applied additionally the default transitivity transformation will produce
an appropriate default form. Line 4 merges the sequenced defaults to generate
the final result.

Algorithm 3 shows the application of the justification reduction default trans-
formation. The default’s justifications are confronted with the known facts from
the knowledge base and if any of them proves to be true in W , then it is removed
from the default (Line 1).

In effect the query algorithm generates one of three possible answers, which
can be true, false or a set of defaults which are in the form A : B�J

B .
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Algorithm 2. findDefaults
Input: Defaults D̂, Facts W , Query ?A � B
begin

D0 ← {δ ∈ D̂ | W |= A � Pre(δ);1
result ← ∅;
foreach δ ∈ D0 do

if W |= Con(δ) � B then result ← result ∪ {δ};2
else

D̄ = findDefaults(D̂ \ {δ}, W ∪ {Con(δ)}, ?Con(δ) � B);3
foreach δ̄ ∈ D̄ do

δ’ ← Pre(δ) : Jus(δ) ∧ Jus(δ̄)
Con(δ̄)

;
4

result ← result ∪ {δ′};

return result;
end

Algorithm 3. reduceJustification
Input: Default δ, Facts W
begin

Assume Jus(δ) = β1 ∧ . . . ∧ βn;
J ← {βi | W �|= βi};1
β ← ∧

β∈J β

return Pre(δ) : β
Con(δ) ;

end

5 Conclusion

One of the main reasoning tasks in description logics is subsumption check-
ing, expressed as A � B. It has been previously shown that default logic can
be embedded into the description logic languages. Having default rules in the
knowledge base, it would be beneficial to achieve answers to subsumption queries
that would retain the information about the assumptions made during default
reasoning.

To address this problem, we have presented the formalism of default trans-
formations which can be used to derive answers to a default theory queries in
the form of defaults. The proposed transformations generate new defaults in a
default theory preserving the inferences that can be made unchanged. Such new
defaults can then be treated as intermediate results in the reasoning process.

Default transformations can have an application to answering queries in a
multi-agent system. Passing messages between agents in the form of defaults is
more informative than strict answers, as the assumptions made during reasoning
are not hidden from the querying agent, which in turn can itself validate the
justifications to perform the inference locally.



A Novel Approach to Default Reasoning for MAS 493

An algorithm based on Distributed Description Logic is being developed for
reasoning in a multi-agent environment. The results presented in this paper will
be used to provide the means of embedding defaults into distributed knowledge.
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Abstract. This paper describes a platform for testing automated ar-
gumentation strategies for agents. It is a continuation of the discussion
about the Arguing Agents Competition (AAC). The second version of
the AAC platform is introduced, including the architecture and the capa-
bilities of the platform, the currently available engine and an automated
strategy for the dialogue game.

The argumentation and some of the formalizations for the arguments
and dialogues are briefly presented.

1 Introduction

Since the begining of the logic and rhetoric, the ways to convince the other
participants of the dialogue were in much interest. So they are today. Com-
puter science introduction to argumentation theory provides benefits to both
non-technical theorists and software engineers. A computer simulation of human
dialogue (e.g. [15]) could be considered a meeting point, however, there are more
benefits for both parties. Traditional argumentation theory has gained software
tools that assist in argument analysis (notably diagramming tools [8,12]). Argu-
mentation turned out to be suitable for the modelling of the communication in
multi-agent systems, application domains include: legal disputes, business negoti-
ation, labor disputes, team formation, scientific inquiry, deliberative democracy,
ontology reconciliation, risk analysis, scheduling, and logistics.

The lack of a common facility for the evaluation of the performance of agents
using argumentation was one of the reasons for the commencement of Arguing
Agents Competition (AAC). This paper is an attempt to continue the discus-
sion on the AAC and, specifically, on suitability of the platform for testing of
automated argumentation strategies.

Paper is organized as follows. Section 2 briefly presents general argumentation
issues. Formal models of arguments are introduced in section 3 and formal models
of dialogue in section 4. AAC initative and the platform are presented in section
5. Section 6 contains a discussion of the argumentation strategy testing issues. A
dialogue game and an automated strategy, currently available for the platform,
are presented in section 7. The final section presents conclusions for the future
work on the platform.
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2 Arguments and Dialogues

The minimal definition of an argument [8] is that it consists of a set of sentences
(propositions) which is divided into a conlusion and premises, and an inference
method from the premises to the conclusion. Argumentation inference is based
on the content of statements and it is the main difference between the tradi-
tional approach based on the deductive logic. An argument may be supported
or attacked by other arguments as well as some critical questions may be raised.

Argumentation main tasks are: identification of arguments, analysis of their
structure, evaluation of their importance and invention of new relevant argu-
ments. Moreover, they are performed in order to satisfy needs of one or more
parties involved in a monologue or a dialogue. The needs may be limited to an
investigation of a statement or include communication and pragmatical aims
(e.g. to persuade, to reach an agreement).

Studies of good arguments lead recently to an identification of a number of
argumentation schemes. Argumentation schemes are abstract argument forms
commonly used by people in daily conversations as well as in more restricted situ-
ations (e.g. legal); [16] presents how argumentation schemes could be used within
formal dialogues. Commonly used schemes are: argument from expert opinion,
argument from cause to effect or ad hominem argument. For each scheme there
is an argument (some premises and a conclusion) and a set of critical questions
which should be typically posed.

Argumentation studies efforts were often focused on analysing bad arguments,
called fallacies. Many of them are recognized and named. Some of them are
presented in [13]. A particular feature of (informal) fallacies is that they are not
fixed argument constructions (as it would be the case for invalid arguments in
deductive reasoning). A notion of fallacy is based on giving (intentionally or not)
unfair arguments which spoil discussion — the same arguments may be valid or
not, depending on the context.

Argumentation may appear within a dialogue. This brings the importance
of proper interaction between engaged parties, treatment of an audience, basis
for the agreement (how it emerges from partial commitments) and reasons for
the disagreement. Studies of natural dialogues resulted in the identification of
a number of dialogue types and a commonly cited set (e.g. [8,10,13,7]) that in-
clude: information-seeking dialogues (participants exchange some information),
inquiry dialogues (participants generate some new knowledge), persuasion dia-
logues (participants resolve a conflict of opinions), negotiation dialogues (par-
ticipants search for a deal), deliberation dialogues (participants decide about a
course of actions) and eristic dialogues (participants fight verbally). This cate-
gorisation analyses the information the participants have at the begining of a
dialogue, their individual and shared goals for the dialogue. Among basic types,
persuasion dialogue is important because a conflict of opinions may arise within
any of the other types of dialogues.

During a dialogue, a mixture of its types may occure. Each transition is called
a dialectical shift. Subdialogues are called embedded dialogues. The reasons for
the occurence of dialectical shifts are miscellaneous, e.g. if during a persuasion
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dialogue there is a need for more information, an information-seeking or an
inquiry dialogue is launched.

The structure of a dialogue is specific depending on its type. In general, there
are three stages: an opening stage when participants determine rules for the
dialogue and messages, an argumentation stage and a closing stage when the
results are determined. More specific proposition for persuasion dialogue consists
of four stages: the confrontation stage, the opening stage, the argumentation
stage and the concluding stage; [7]. Moreover, the structure includes the number
of possible participants and their roles. For example, for a two person persuasion
dialogue common role names are: a proponent (a protagonist of an expressed
opinion) and an opponent (an antagonist of the opinion).

An organized course of a dialogue may be maintained when opinions of par-
ticipants are made explicit. These opinions are called commitments. As dialogue
progresses, participants have to take on commitments, respect them and respond
to the interlocutor’s objections. In some games, it is possible to withdraw from
a commitment. Commitments are not only created by participant’s own utter-
ances, but also by the responses to the interlocutor’s utterances.

3 Formalisations of Argument Models

Natural argumentation inspirations led to more formal approaches, suitable for
the computation, which, in turn, allowed the usage of the argumentation in com-
puter systems. A simple and widely used is Dung’s Argumentation Framework
[4]. An example of a more complicated model is The Carneades Argumentation
Framework [5].

Dung’s Argumentation Framework (also called abstract argument system) is
based on the notion of an argumentation framework which is a pair 〈A,R〉, where
A is a set of arguments and R is a binary relation over A called an attack rela-
tion (i.e. R ⊆ A × A). A natural interpretation of an argumentation framework
is an argument graph. “Abstrat” means that arguments are analysed neglect-
ing arg structure and the sense of attack relation (which could be based on the
syntax or also on the semantics of arguments). In addition, there is no guidance
on the construction arguments. While this argumentation framework is simple,
it turned out that this model is flexible enough to analyse “properties which
are independent of any specific aspect, and, as such, are relevant to any con-
text that can be captured by this very terse formalization of abstract argument
systems” (from [9]). The analysis is based on the studies of the acceptability
of arguments — what are the rules for the evaluation of an argument status?
The formal definition of such a method is called an argumentation semantics.
Argumentation semantics corresponds, in general, to two approaches: skeptical
and credulous acceptance of arguments. The choice of semantics come from the
modelled world or from the required number of accepted arguments. Paper [9]
provides a comprehensive review of the semantics identified in the literature.

The Carneades Argumentation Framework is much more sophisticated and
was developed especially for legal applications. The framework is based on the
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structured arguments (premises and conclusion are statements in an external
language; there are three types of premises: ordinary, presumptions and excep-
tions), explicit dialectical status of statements (undisputed, at issue, accepted or
rejected) and it includes the concept of proof standards (indicating the required
level of an argument’s justification). Thus it allows the burden of proof to be
allocated on the proponent or respondent, as appropriate.

4 Formalisations of Dialogue Models

Similarly to argumentation formalisms, some formal approaches have been un-
dertaken to specify course of dialogues. The aim of formalizations is to model
a selected dialogue but also to propose rules which makes a dialogue coherent.
Coherency of a dialogue means that every utterance furthers the goal of the dia-
logue. It is a game theoretic approach to argumentation where dialogues can be
seen as instances of some dialogue games. “Winning” such a game means that
a participant (a player), by making some moves (giving messages, speech acts),
has defended the initial point of view, persuaded an interlocutor, reached an ac-
ceptable deal, etc. One of the models proposed in the literature is the Prakken’s
model of dialogue, named the dialogue system [6,11]. It is a flexible framework
for the specification of dialogue games and there is a specialization for persuasion
dialogues.

A dialogue system is a mathematical formulation of necessary dialogue el-
ements. It consists of a topic language for the content and a communication
language defininig speech act types. A goal states the purpose for a dialogue.
There are at least two participants who have their roles. A dialogue takes place
within a context of a shared, fixed knowledge. There are three groups of rules: a
protocol which specifies allowed moves at each stage of a dialogue, in particular,
regulating turntaking and termination; effect rules which specifies the effects of
speech act on commitments of the participants; and outcome rules which define
the result of a given dialogue.

5 AAC: History and Software Architecture

AAC vision and considerations for the system architecture have been presented
to broader audience in [1,2]. The project draws experiences from Argumento
(“a computer game for abstract argumentation”, [3]). The first version of the
software was AAC version ’08 and this paper describes the second version, ’09.
The inspiration for the founders was Trading Agents Competition, TAC.

The AAC initiative goal is to develop a distributed on-line competition be-
tween heterogenous agents in which they can compete using various argument
and dialogue protocols, where the moves and the arguments can be evaluated
through a variety of argument computation engines. Those interested in the
competition should prepare automated agents that would argue with each other,
according to a dialogue game protocol chosen for a specific competition. There
should be a correlation between an agent’s abilities and the competition results,
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Fig. 1. Main components of the AAC system. Thick lines indicate components involved
in agents communication.

so that agent with the best strategy will “win”. An important aspect of the AAC
is to gather data for the analysis of games played.

Main components of the version ’09 of the AAC system are presented in the
figure 1. There is a central competition server which is responsible for matching
agents accordingly to a competition scenario, and for hosting ongoing dialogues.
New dialogue game engines may be easily added. Agents connect to the server
using its Web Services. During a dialogue there are two types of messages ex-
chenged: a speech act and a generic message. This two types allow imlementation
of many dialogue games.

Logically separated from the competition server is the monitoring part which
provides information presented by a web administration interface. The adminis-
tration interface allows the server and competitions to be configured (one may
register agents, upload argument sets, choose dialogue setup: dialogue game,
agents, their roles, argument set, topic, additional parameters). All the persis-
tent data is stored in the database, including the history of all played dialogues.
Server-side design makes it simple to prepare a virtual machine for an easy de-
ployment. The system is developed using the Java programming language but
agent developer is not obliged to follow this choice.

There is an agent implementation for the default dialogue game which contains
an automated strategy. The architecture of a client application is presented in the

Fig. 2. Client application architecture. An agent is monitored by the GUI. Thick lines
indicate exchengeable strategies. There is an automated strategy (“SmartAgent”).
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figure 2. A small library facilitates agent-server communication programming.
Agent implementation may be controlled by different strategies during dialogues
as well as it allows a user to take part in the dialogue. A client application has
a graphical interface and also contains a visualization module adapted to the
default dialogue game.

The mechanism which matches the agents for dialogues works in such a way
that when the agents declare their readiness to engage in a dialogue, it chooses
them according to the rules prepared for the competition. The rules may specify
that any agents can be matched for a dialogue, or just only some or all of them.

Dialogue games have specifications which contain enumerations of dialogue
roles for participating agents. It is possible to have dialogue games with more
than two participants and with repeating roles. In a complex case, there could be
some agents actively arguing and a number of other agents forming an audience.

6 AAC as a Flexible Platform for Argumentation
Research

The core AAC platform is an attempt to develop a flexible tool for argumentation
experiments. The requirement of the flexibility stems from the fact, that there
are various models proposed in the literature for both the arguments (topic
language) and the dialogue (communication language), therefore, we could also
expect multiple variations for actual applications.

The last paper considering the AAC was [2]. The present state (version ’09) of
the project shows some progress regarding the issues discussed there. The plat-
form may handle dialogue games with different number of participants and their
roles. What is important, the new dialogue game offers a possibility to use the
open world assumption. Moreover, the exploration request message introduces
a simple information-seeking subdialogue. The platform is structured in such a
way that another dialogue game engines may be easily inserted — it permits the
use of more complex argumentation frameworks.

There is still a number of open issues though. First is the question if the com-
parison of agent performance could be based on more factors than win-loss rules.
Second is the issue of measuring the time that a participant spends on “thinking”
and taking into account the capabilities of remote machines. The current solution
is still to consider all agents in an “open” category. Third is the adoption of the Ar-
gument Interchange Format (AIF) for storage and interchange of the arguments.
AIF was designed to support a range of differing argumentation frameworks [14].

The current platform design has decoupled the competition (the data gath-
ering) from the data analysis by recording all the messages exchanged between
agents and the server. The underlying agent-server communication is simple and
not bound to any dialogue game. The dialogue history is stored in the database
and a separate tool should be developed for the analysis. There is no direct
indication of how well an agent is performing. This approach allows different
comparison methods to be used: from simple victory counting, through compar-
ison of the performance of the same agents on the same argument set but with
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switched roles (inspired by bridge teams tournaments) to more sophisticated
processing.

7 Library of Dialogue Games and Argumentation
Strategies

The argumentation testing platform, in order to become convinient, should in-
clude a number of dialogue game engines as well as a number of automated
argumentation strategies for the comparison. The second version includes the
Open World Dung dialogue game and one automated strategy.

The Open World Dung dialogue game rules are the rules from Argumento with
some changes. In particular, the dialogue game has an option to use the open
world assumption. In that case, agents (participants) discover the argument set
assigned to the dialogue. Argumentation and dialogue rules are implemented as
separated engines.

Argumentation rules are based on the Dung’s Argumentation Framework. In
the beginning, all arguments are supposed to not be undermined. Argument
graph may not contain cycles. The argumentation proceeds by indicating argu-
ments not yet used. Each interlocutor has its own commitment set containing
chosen arguments. There is no possibility of withdrawal from the given argu-
ment. A valid choice can be made from arguments that do not attack nor get
attacked by any other that belong to the commitment set. Should there arise
an argument, the state of the arguments is changed to the undermined state
and the reevalutation process of previously stated arguments is initiated. Each
new argument has to change the evaluation of at least one of the already given
(Grice’s Maxim of Relation).

The set of initially known arguments is the set of all the arguments within
a fixed distance (a dialogue parameter) from the topic argument. A participant
may select an argument and discover a part of graph which is within a distance
from the argument. The distance is calculated over both directions of the at-
tack relation. If the argument is known to the participant but unknown to the
interlocutor, such a argument is unveiled together with its attack relations with
those arguments known by the intelocutor.

Dialogue rules are based on the Prakken’s dialogue system. An example of a
dialogue course is presented in the figure 3. A topic language is described by the
argumentation rules. Each dialogue has a topic which is one of the initially known
arguments. Communication language is formed by the following speech acts:
argument — a regular speech act exchanged by the participants; submission —
any of the participants may explicitely surrender; and abstention — having the
current dialogue state favorable, a participant may wait for the next move of the
interlocutor. Communication language has an extension, a request of exploration
of the argument graph. Interchanging of the request message is known only to a
sending participant and dialogue engine.

Dialogue purpose is to overcome the difference of opinions on a dialogue sub-
ject (the persuasive dialogue). The goal of each participant is to convince other
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Fig. 3. Client application: visualization of a dialogue. Rectangles distinguish different
types of nodes: dashed line for the agent’s arguments, dotted line for its explored
arguments and solid line for its interlocutor’s arguments.

interlocutors. There are two participants (while the platform allows more). One
has the role of a proponent and the other one the role of an opponent. At the
beginning of each dialogue the participants receive a common set of initially
known arguments. The set of arguments is the dialogue context.

Turn taking rules. The dialogue is begun by a topic argument on the behalf
of the proponent participant. A participant makes one move by turn and the
turn is switched to the interlocutor. The first move is made by the opponent.
A dialogue is terminated when: there are no permitted moves to be done for a
participant in his turn; a participant has made a submission; a participant has
made too many illegal moves (the number is a parameter).

Outcome rules. After a termination, the winner is the proponent if the topic
argument is not undermined and the opponent if the topic argument is under-
mined. The participant who made the submission is the loser. In any vague
situation, participant who loses first is the looser.

Automated argumentation strategy algorithm is a revison of the utility-based
algorithm presented in [3]. It is extended for the argument graph exploration.
The algorithm operates on the local copy of the argument graph used in the
dialogue. Every argument is marked whether as undermined or not.

The algorithm begins by checking if the agent is in a safe position and may wait
for the interlocutor’s move by sending the abstention speech act. Safe position
for the proponent takes place when the topic argument is not undermined and
conversely for the opponent.
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In the questionable position, possible arguments are computed: arguments
which are not yet used in the dialogue, do not attack any of the agent commit-
ments and attack at least one of the interlocutor’s commitments. If a possible
argument does not have attackers, it is immediately selected, otherwise an ar-
gument with the best utility is selected.

Utility is computed as follows. Utility equals to 1 is the best choice and 0
is the worst choice. For each possible argument, an argument tree is analysed.
An argument tree contains all possible argument chains (in inverse direction of
attack relation). Nodes on the odd levels represent arguments that the agent
may use and, on the even levels, the interlocutor. Only arguments which could
be used by each participant are taken into account. Utility for leaves of a tree is
equal to the reminder from a division of the depth by 2. Utility for nodes is the
sum of the utility of attacking arguments divided by their number.

If there are no possible arguments, the algorithm checks if there are promising
arguments to become exploration seeds. A seed is an argument around which
arguments will be revealed. The seed with maximal potential (at the border of
the known subgraph) is chosen and an exploration is requested. The agent waits
for the game engine response and then the algorithm is relaunched. If there are
no possible seeds, algorithm surrenders the agent.

8 Conclusions

This paper briefly presented the argumentation and some of the formalizations
for the arguments and dialogues, as well as the features of the second version
of the platform for testing automated argumentation strategies for agents. The
development of the platform has been commenced within the AAC initiative.

The improved testing system is more flexible and generic. It allows the use
of different dialogue game engines and the execution of a whole competition for
the agents. Such competition may test agents’ performance in many dialogues
with different argument sets and parameters. The system contains a dialogue
game engine and a default agent with a client application visualizing the agent
behaviour in a dialogue.

There is a necessity to elaborate more work in the future regarding this sub-
ject. A dialogue analysis tool is required. Dialogue courses are recorded in a
database and evaluation methods should be applied to verify agents’ perfor-
mance. More interesting work may concern the development of new dialogue
game engines which will make the platform become a more complete environ-
ment for testing argumentation strategies.
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Abstract. Many kinds of attributes are used for various areas of decision mak-
ing. Sometimes the attributes have complicated vector-types as in MPEG-7 vis-
ual descriptors that prevent us from attaching unequal importance to each de-
scriptor for the construction of content- or emotion-based image retrievals. In 
this paper, fuzzy similarity-based rough approximation is used for determining 
the relative importance of MPEG-7 visual descriptors for an emotion. In the 
methods, the relative importance is given to a descriptor itself rather than a 
component of the vector of a descriptor or a combined descriptor. Also we pro-
pose a method for building a classification system based on representative color 
images. The experimental result shows the proposed classification method is 
promising for the emotional classification or evaluation of color images.  

Keywords: Fuzzy similarity-based rough set; Fuzzy similarity-based classifica-
tion; Weight Decision of Attributes; Emotion classification of Images. 

1   Introduction 

Many kinds of attributes are used for various areas of decision making. Some are 
scalar-valued and others are vector-valued. Some have nominal values and others 
have ordinal values. Sometimes the attributes have complicated vector-types as in 
MPEG-7 visual descriptors. Every visual descriptor in MPEG-7 is represented as a 
vector with multiple components, and some descriptors such as DCD(Dominant Color 
Descriptor) do not have fixed dimension. [1][2] 

This high and varying dimensionality prevents us from utilizing a combined de-
scriptor and attaching unequal importance to each descriptor. The descriptor vectors 
cannot be simply concatenated to obtain a high dimensional descriptor, because they 
may have different dimensions. Even though one can combine huge and fixed dimen-
sional vectors of descriptors, it is difficult to analyze or interpret which descriptor is 
more important than the others, because it is the components of the combined vectors 
that are meaningful rather than a descriptor. 

Meanwhile, some MPEG-7 descriptors seem to be more important than others for 
the classification of images according to a specific emotion. In general, emotions are 
represented by pairs of adjective words with opposite meanings such as “warm-cool”, 
“heavy-light”, and “dynamic-static”. For example, color descriptors seem to be more 
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important for the classification of warm or cool images, because a red or yellow col-
ored image seems to be warmer than a blue colored one.  

In this paper, fuzzy similarity-based rough approximation is used for determining 
the relative importance of MPEG-7 visual descriptors for an emotion. Also, similar-
ity-based decision making is applied to emotion-based image classification. In the 
methods, more relative importance is given to a descriptor itself rather than a compo-
nent of the vector of a descriptor or a combined descriptor. The experimental result 
shows the proposed classification method is promising for the emotional classification 
or evaluation of color images.  

This paper is organized as follows. In section 2 the weight decision method based 
on fuzzy similarity-based rough set theory is reviewed with classification rules. In 
section 3 several components needed for emotional classification are described, in-
cluding the adjective image scales, MPEG-7 visual descriptors and the training algo-
rithms. The experimental results are shown and discussed in section 4 and the final 
conclusion is presented in section 5. 

2   Fuzzy Similarity-Based Weight Decision and Classification 

Classical rough set theory, proposed by Pawlak in 1982, is a mathematical tool to deal 
with inexact, uncertain or vague knowledge. It is based on upper and lower approxi-
mation defined on the indiscernibility relation.[3][4][5] Even though there have been 
numerous theoretical applications in many fields of artificial intelligence, classical 
rough set theory can only deal with discrete and symbolic attributes in a decision 
table[6]. This problem has been solved by the extended notion of similarity-based 
approximations.[4][5] The similarity relation expresses weaker forms of indiscernibil-
ity, which does not lead to equivalence relations. 

2.1   Approximation of Fuzzy Similarity-Based Rough Set 

Suppose }){,( dAUI ∪= is a decision table, where U (Universe) is a finite non-empty 

set of objects; }{dA ∪  is the union of a set of condition attributes A and a decision 

attribute d . For Aa ∈ ,
aVUf →: , where 

aV  is the value set of attribute a ; and f is 

an information function. This means that a decision attribute assigns a classification 
label given by a decision-maker to an object in the universe. The cardinality of the 
decision { }Ux for kxdkUd ∈== )(:)(  is called the rank of d  and is denoted by )(dr . 

We assume that the set 
dV  of values of the decision d  is equal to )}(,...,1{ dr . Let us 

observe that the decision d determines the partition { })(1,...,)( drA XXdCLASS =  of the 

universe U , where { }kxdUxX k =∈= )(:  for )(1 drk ≤≤ . Suppose the fuzzy simi-

larity relation is given by 
BR  for AB ⊆ , which can be written as:  

{ },),(:),( yxUUyxR
BRB μ×∈=  

where )( UUFRB ×∈ , ),( yx
BRμ is the membership degree of 

),( yx , ]1,0[),( ∈yx
BRμ . If 

BR  has following properties, then it is called a fuzzy 

similarity relation.  
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(1) Symmetry: ,,),,(),( Uyxxyyx
BB RR ∈∀= μμ  

(2) Reflexivity: Uxxx
BR ∈∀= ,1),(μ . 

Therefore, given a non-empty set of finite objects U  for any object Ux ∈ , we can 
define the similarity classes on fuzzy similarity relation 

BR  denoted as )(xRB
λ  under 

threshold λ . )(xRB
λ denotes the set of objects which are similar to object x  on the 

extent of λμ ≥),( yx
BR

:  

{ }.,),(:)( xyRxyUyxR BRB B

λλ λμ ≥∀∈=  

Let UX ⊆ , then the upper or lower approximation on AB ⊆  in terms of λ  based on 
the fuzzy similarity relation can be defined as: 

{ }
).()(

,)(:)(

xRXR

XxRXxXR

BXxB

BB

λλ

λλ

∈=

⊆∈=

U
 

2.2   Weight Decision of Attributes 

Using the notion of lower approximation, the )(xRB
λ -positive region of objects in 

set X is defined as )()( XRXPOS BRB

λ
λ = . Let { }ixdUxX i =∈= )(: . The set 

{ }( ) ( )
( )

U
dr

i
iBB XRdRPOS

1

,
=

= λλ  is called the λ
BR - positive region of parti-

tion{ })(,...,2,1: driX i = . The positive region is the union of the lower approximations 

of the decision classes, and includes only those objects which unambiguously belong 
to the corresponding decision classes.  

A relative reduct in a fuzzy similarity-based rough set model is defined by the 
minimal number of attributes that does not reduce the positive region of a partition, 
i.e. a subset AT ⊆  such that { }( ) { }( )dRPOSdRPOS TA ,, λλ = . Stepaniuk proposed aggrega-

tion methods to define a similarity relation for a combined set of condition  
attributes.[4]  In the paper we choose the minimum operator to aggregate the fuzzy 
similarity relations for a set of combined attributes. That is ( )),(min),( yxyx

bB R
Bb

R μμ
∈

= . 

In Stepaniuk’s paper, he also proposed two weighting schemes for an attribute accord-
ing to a fuzzy similarity relation, given as 

( ) { }( )( ) { } { }( )( )
( )Ucard

dRPOScarddRPOScard
adRSRC aAA

A

,,
},{,

λλ
λ −−

=  (1)

( ) { }( )( ) { }( )( )
{ }( )( )dRPOScard

dRPOScarddRPOScard
adRSGF

A

aAA
A ,

,,
},{, }{

λ

λλ
λ −−

=  (2)

Thus, in both cases the significance of an attribute reflects the degree of decrease of 
the positive region as a result of removing attribute a  from A . If AT ⊆  is a relative 
reduct then for Ta ∈ , ( ) 0},{, >adRSRC A

λ
 or ( ) 0},{, >adRSGF A

λ . Note that 

each ( )adRSRC A },{,λ  and ( )adRSGF A },{,λ  is a function of the threshold λ  and can be 
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treated as the relative importance of an attribute. An actual weight can be calculated 
by normalizing ( )adRSRC A },{,λ  or ( )adRSGF A },{,λ , that is  

      ( )
( )∑

=
a A

A
a adRSRC

adRSRC
w

},{,

},{,
λ

λ
λ   or  ( )

( )∑
=

a A

A
a adRSGF

adRSGF
w

},{,

},{,
λ

λ
λ . 

2.3   Fuzzy Similarity-Based Classification 

After the calculation of weights it is quite straightforward to perform classification. 

For a given object newx to be classified we can calculate the total weighted similarity 

between the unclassified image and the saved representation image. Then we can use 
a hard decision rule in which the given object is classified into the class that contains 
the maximally similar object. Also, we can classify an image into an ambiguous class 
if the maximal similarity is less than a given threshold. In other words, the image that 
is { } ThUyyxR newB ≤∈:),(max  can be assigned to “neutral” in the two-class emo-

tional classification. Therefore, there are two kinds of rules for hard classification, as 
follows. 

 Rule 1: Classify newx  as )()( xdxd new = ,  

   where { }UyyxRxxR newBnewB ∈= :),(max),(  

 Rule 2: Classify newx  as )()( xdxd new = ,  

   where { } ThUyyxRxxR newBnewB ≥∈= :),(max),(  

             Otherwise it belongs to neutral class. 
For the calculation of total weighted similarity, Stepaniuk also suggested several 
aggregation operators [4]. In the paper we choose the weighted average operator 
given as  

),(),( yxRwyxR newBa bbnewB ∑ ∈
= . 

3   MPEG-7 Visual Descriptors for Emotion Classification of Images 

For the emotional classification of images, we have to define several components. 
Those are the emotion space to categorize images, visual descriptors or attributes to 
be used for the classification, and the training/classification algorithms.  

3.1   Emotion Space 

In the paper we assumed the emotion space can be defined by three adjective pairs 
including “warm-cool”, “dynamic-static”, and “heavy-light”. Note that each one con-
sists of two adjectives of opposite meaning. Actually, numerous adjectives are used to 
represent a feeling evoked when someone sees a color image. Three pairs of adjec-
tives are selected based on the analysis of 13 pairs of adjectives, using PCA(Principal 
Component Analysis) for the data collected from psychological experiments[7]. Fig. 1 
shows the three-dimensional emotion space, where a color image is categorized ac-
cording to the feeling evoked when someone sees the image. 
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Fig. 1. 3-dimensional Emotion Space 

3.2   Visual Descriptors 

In order to categorize a color image depending on the emotion, it should be compared 
with respect to some descriptors or attributes. We propose to use MPEG-7 visual 
descriptors that were originally recommended for content-based image retrievals, 
because they are standardized and completely verified, and content-based image re-
trieval is closely related to our emotional classification scheme. The descriptors that 
we use in our method include 4 color-related ones: CLD(Color Layout Descriptor), 
SCD(Scalable Color Descriptor), CSD(Color Structure Descriptor) and 
DCD(Dominant Color Descriptor), and 2 texture-related ones: EHD(Edge Histogram 
Descriptor) and TBD(Texture Browsing Descriptor). 

CLD is a DCT(Discrete Cosine Transform)-based descriptor that represents the 
spatial distribution of colors in an image with a 12-dimensional vector. CSD ex-
presses the local color structure in an image with a structuring element. In the pro-
posed emotional classification method we use a 32-dimensional CSD. A DCD de-
scribes the representative color distributions and features in an image or a region of 
interest. Depending on the number of dominant colors, different images can have 
different dimensional DCDs. A SCD is a color histogram in HSV color space, which 
is encoded by a Haar transform. Its binary representation is scalable in terms of bin 
numbers and bit representation accuracy. In the proposed method, we chose 64 bins 
and 4 bits, which results in 64-dimensional vector representation. EHD describes the 
edge distribution with a histogram based on the local edge distribution in an image. 
Because there are 16 sub-images to be considered in an image and 5 directional edges 
for each sub-image, it is an 80-dimensional vector. TBD is a 5-dimensional vector 
that relates to the perceptual characterization of texture, in terms of regularity, direc-
tionality and coarseness. It is useful for coarse classification of textures.  

3.3   Training of the Classifier 

Algorithm 1 shows the procedure of our training scheme, in which classification data 
is captured in representative images for each pair of emotions, and the weights to 
represent the relative importance of the MPEG-7 descriptors to determine a specific 
emotion. In the first step of the training phase, a group of human subjects evaluate 
training samples of images and select 5 representative images for each emotion repre-
sented by an adjective. Then there were 10 representative images for a pair of  
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emotions represented by two adjectives of mutually opposite meaning. In general, 
the number of representative images depends on the emotion, but it should be more 
than one. Even though descriptors that are extracted from different images are dis-
similar, they can evoke the same emotion. Because human feelings evoked when we 
look at images are pretty complex, it is clear that the number should be more than 
one, even though we don’t know what constitutes a sufficient number of representa-
tive images. In our scheme we chose 5 images for each emotion, for the sake of 
convenience. 

In the analysis, the MPEG-7 visual descriptors mentioned above were extracted 
from the representative images, and the similarity with respect to each descriptor was 
calculated for each pair of images. Then a fuzzy similarity relation ),( yxR e

b
for each 

descriptor b and each pair of emotions e was constructed by normalizing the similari-
ties of pairs of images. A fuzzy similarity relation ),( yxRe

b
 can be defined as a matrix 

with a size of 10x10 for each pair of emotions and each descriptor, because there are 
10 representative images for a pair of emotional adjectives. After construction of 
those similarity relations, the weights of the MPEG-7 descriptors showing the relative 
importance can be determined using the methods in Section 2.  

Algorithm 1. Training Phase of Emotion Classifier 

 

3.4   Emotional Classification of Images 

After the training is completed, the representative images and the weight of the de-
scriptors are determined for each pair of emotions, as mentioned before. For an input 
image to be emotionally classified, the MPEG-7 visual descriptors are extracted and 
compared with those of the representative images, for each pair of emotions. Note that 
this comparison in terms of similarity measures of MPEG-7 descriptors is just a 
browsing process for content-based image retrieval.  

In the paper, we propose rule 2 (Section 2), because it provides more flexibility 
supporting the collection of undecided or ambiguous images in the classification 
method, and can be used to perform additional processing. For example, additional 
processing can include the fact that human subjects can choose representative images 
for specific emotions among the undecided ones and retraining can accommodate new 
ones for refining the classifier. After the classification process is complete, we can 
obtain a 3-diminsional vector of labeled emotions that can be located in the emotion 
space. Algorithm 2 shows the classification process proposed in the paper. 
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Algorithm 2. Classification Phase of Color Image 

 

4   Experimental Results and Discussion 

For the experiment, in order to evaluate the performance of the proposed emotional 
classification scheme we have constructed a small scale database of various kinds of 
color images including natural, sports, indoors, human body, interior and sculpture 
scenes. The 5 representative color images for each emotion, which was expressed 
with an adjective, have been selected from the database by graduate students. Then 
there are 10 representative color images for a pair of emotions represented by two 
adjectives of mutually opposite meaning. Because there are 3 pairs of emotions, as 
shown in Fig. 1, a total of 30 images have been used as representatives. Fig. 2 shows 
the representative color images depending on the emotions.  

 

(a) (b)

(c) (d)

(e) (f)  

Fig. 2. Sets of Representative Color Images for Emotions. (a)Static, (b)Dynamic, (c)Light, 
(d)Heavy, (e)Cool, (f) Warm. 

4.1   Weight Decision of Descriptors 

The MPEG-7 visual descriptors have been extracted from the set of 10 representative 
color images for a given pair of emotions. Then the similarities have been calculated 
for each pair of images with respect to a descriptor, which can be represented as a 
10x10 symmetric matrix, as shown in Fig. 3. Fig 3(a) and (b) show the similarity 
relations of representative images for a given pair of emotions “static-dynamic” with 
respect to EHD and CSD, respectively. In the figure, U represents the set of the im-
ages from 0 to 10, and d stands for the decision value of the emotion. Note that for 
each Ux ∈  
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The decision value of 0 and 1 means the emotion represented by “static” and “dy-
namic”, respectively. The shaded elements of the matrix denote components for 
which the similarity between a pair of objects is larger than a given threshold 
( λ =0.55). Note that { }( ) UdRPOS EHD =,55.0 , but { }( ) ∅=dRPOS CSD ,55.0  as seen in Fig. 3, 

which means that EHD is an important attribute and should be included in a relative 
reduct, but CSD is meaningless and can be removed from the classification process. 

From the analysis of the similarity relations for each emotion with respect to the 
MPEG-7 visual descriptors, we have obtained the weight of importance, as shown in 
Table 1. As we expect from the previous discussion, EHD is the most important at-
tribute to evaluate a color image in terms of the emotion “Static-Dynamic”. Also, the 
color descriptors are more important than the texture descriptors for emotional evalua-
tion in terms of “Cool-Warm”. 

 
U 1 2 3 4 5 6 7 8 9 10 d 

1 1 0.86 0.86 0.72 0.79 0.43 0.18 0.32 0.15 0.35 0 
2 0.86 1 0.93 0.71 0.74 0.34 0.14 0.27 0.12 0.25 0 
3 0.86 0.93 1 0.71 0.77 0.38 0.18 0.29 0.12 0.30 0 
4 0.72 0.71 0.71 1 0.69 0.54 0.32 0.45 0.29 0.44 0 
5 0.79 0.74 0.77 0.69 1 0.51 0.26 0.44 0.28 0.34 0 
6 0.43 0.34 0.38 0.54 0.51 1 0.48 0.57 0.49 0.56 1 
7 0.18 0.14 0.18 0.32 0.26 0.48 1 0.48 0.43 0.34 1 
8 0.32 0.27 0.29 0.45 0.44 0.57 0.48 1 0.52 0.33 1 
9 0.15 0.12 0.12 0.29 0.28 0.49 0.43 0.52 1 0.33 1 
10 0.35 0.25 0.30 0.44 0.34 0.56 0.34 0.33 0.33 1 1 

(a) 
U 1 2 3 4 5 6 7 8 9 10 d 

1 1 0.61 0.62 0.54 0.59 0.60 0.68 0.50 0.51 0.71 0 
2 0.61 1 0.80 0.71 0.78 0.51 0.61 0.62 0.65 0.69 0 
3 0.62 0.80 1 0.67 0.60 0.68 0.79 0.46 0.48 0.71 0 
4 0.54 0.71 0.67 1 0.62 0.43 0.50 0.55 0.43 0.57 0 
5 0.59 0.78 0.60 0.62 1 0.38 0.49 0.81 0.73 0.53 0 
6 0.60 0.51 0.68 0.43 0.38 1 0.72 0.28 0.22 0.75 1 
7 0.68 0.61 0.79 0.50 0.49 0.72 1 0.39 0.36 0.72 1 
8 0.50 0.62 0.46 0.55 0.81 0.28 0.39 1 0.67 0.40 1 
9 0.51 0.65 0.48 0.43 0.73 0.22 0.36 0.67 1 0.38 1 
10 0.71 0.69 0.71 0.57 0.53 0.75 0.72 0.40 0.38 1 1 

(b) 

Fig. 3. Similarity Relations of Representative Images for “dynamic-static” with respect to (a) 
EHD and (b) CSD 

Table 1. Resulting Weights of Importance with respect to Descriptors 

 CLD CSD DCD SCD EHD EHD TBD 
Static-Dynamic 0.11 0.00 0.26 0.05 0.53 0.53 0.05 

Light-Heavy 0.07 0.36 0.36 0.18 0.03 0.03 0.00 
Cool-Warm 0.30 0.14 0.14 0.30 0.09 0.09 0.03 
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4.2   Classification Results with Discussions 

The proposed method of emotional classification of color images is evaluated in terms 
of the degree of accordance of classification the results between the system and hu-
man subject. For the performance evaluation we have selected 60 color images from 
the small database including. Those various color images have been classified by the 
proposed method in terms of three pairs of emotions, and each classification result of 
an image has been presented to a human subject to see whether he or she agrees with 
the results.  

The user interface for emotional classification is shown in Fig. 4. A human subject 
can use it to express his or her opinion for the result of a decision made by the classi-
fication system. The different thresholds in classification rule 2 can be set through the 
lower-left window. The upper-middle widow shows the classification result of the 
color image presented in the upper-left window by the system. A human subject can 
express his or her opinion for the classification result of the system (either “valid” or 
“invalid”) through the right-most window. 

 

Fig. 4. User Interface for Performance Evaluation  

10 male and female graduate students were involved in the experiment, and Table 
2 shows the ratio of classification on average that agreed with the opinion of the hu-
man subjects. The number in parenthesis represents the standard deviation of the 
correct ratio. 

The classification in terms of the “light-heavy” adjective achieves the best agree-
ment with the opinion of the human subjects. But the classification in terms of the 
“static-dynamic” adjective achieves the worst agreement. This could be due to a psy-
chological artifact that “static-dynamic” is a more complicated concept than “light-
heavy”, because it relies more on human experience than visual information. In other 
words “light-heavy” can be perceived better than “static-dynamic” only by visual 
information.  We expect that more representative color images for “static-dynamic” 
will provide better results. 

Table 2. Evaluation Result: Degree of accordance(Standard Dev.) 

Static-Dynamic Light-Heavy Cool-Warm Total 
70.67%(6.45) 86.50%(2.85) 82.67%(4.35) 79.97%(7.37) 
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5   Conclusion 

Many kinds of attributes are used for various areas of decision making. Sometimes 
the attributes have complicated vector-types as in MPEG-7 visual descriptors that 
prevent us from utilizing a combined descriptor and attaching unequal importance to 
each descriptor for the construction of content- or emotion-based image retrieval. 

In this paper, fuzzy similarity-based rough approximation is used for determining 
the relative importance of MPEG-7 visual descriptors to determine an emotion. Also, 
a similarity-based decision is applied to emotion-based image classification. In the 
methods, more relative importance is given to a descriptor itself rather than a compo-
nent of the vector of a descriptor or a combined descriptor. Also, we propose a 
method for building a classification system based on representative color images. The 
experimental result shows the proposed classification method is promising for the 
emotional classification or evaluation of color images.  
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Abstract. Microblogging is a social media tool that allows users to write short 
text messages to public and private networks. This research focuses specifically 
on the microblogging on Facebook. The main purposes of this study are to in-
vestigate and compare what recommendation sources influence the intention to 
use microbloggings and to combine gender, daily internet hour usage and past 
use experience to infer the usage of microbloggings decision rules using a 
dominance-based rough-set approach (DRSA). Data for this study were  
collected from 382 users and potential users. The analysis is grounded in the 
taxonomy of induction-related activities using DRSA to infer the usage of mi-
crobloggings decision rules. Finally, the study of the nature of microblogging 
reflects essential practical and academic value. 

Keywords: Microblogging, Dominance-based Rough Set Approach (DRSA) 
Recommendation source, Adoption intention. 

1   Introduction 

Microblogging is a new communication channel with which people can share infor-
mation. Microblogging platforms, primarily on social network sites such as Twitter 
and Facebook, have become popular. The concept of a social network is that two of 
your friends would have a greater probability of knowing each other than would two 
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people chosen at random from the population [5]. Extensions of microblogging com-
munications include status updates from social networks such as Facebook, and mes-
sage-exchange services such as Twitter. User growth on Facebook, one of the biggest 
social networking sites in the world, is still expanding. Statistics from 
www.checkfacebook.com showed that Facebook’s international audience totaled 350 
million people at the beginning of 2010, including more than 5 million Taiwan users 
engaged in platform applications. A site that allows users to share daily updates 
through microblogging helps people to keep in touch [16], and businesses can in-
crease sales as well by improving communications to and collaborations with custom-
ers [2]. With the growth of users on the microblogging services, the biggest benefit of 
microblogging is its ability to generate platform revenues by means of advertisements 
[28] and other applications. Thus, how to stimulate the microblogging adoption inten-
tion becomes a critical issue to platform marketers.  

Even though microblogging offers conveniences and benefits, some people are 
concerned about the use of microblogging as another form of background check and 
that their privacy may be lost in cyberspace [27]. However, such concerns can be 
addressed by better and more accurate recommendations because people are influ-
enced by others’ recommendations when making decisions [17]. These recommenda-
tions can be classified as interpersonal sources, impersonal sources [1] and neutral 
sources [7]. Researchers have shed some light on the importance of recommendation 
sources in the context of product purchases [21], but little has been done on the rele-
vance of these recommendation sources in the context of microblogging usage. Thus, 
our primary goal in this study is to fill that gap by increasing our understanding of 
how the three primary categories of recommendation sources—interpersonal recom-
mendations (e.g., word-of-mouth recommendations), impersonal recommendations 
(e.g., advertising recommendations), and neutral recommendations (e.g., expert rec-
ommendations)—influence users intention to adopt microbloggings.  

The classical rough set theory (RST) was proposed by Pawlak [23] as an effective 
mathematical approach for discovering hidden deterministic rules. However, the main 
restriction for the use RST is that the domain of attributes is preference ordered. To 
help fill the gap, Greco et al. [12] proposed an extension of the rough set theory based 
on the dominance principle to incorporate the ordinal nature of the preference data 
into the classification problem—what is called dominance-based rough set approach 
(DRSA). It substitutes the indiscernibility relation used in the classical rough set ap-
proach with a dominance relation that is reflexive and transitive [15]. DRSA derives a 
set of decision rules from preference-ordered data [30], which are then used in a  
classifier [4].   

In addition, the DRSA approach was motivated by representing preference models 
for multiple criteria decision analysis (MCDA) problems, where preference orderings 
on domains of attributes are quite typical in exemplary based decision-making 
[18,19]. Therefore, another purpose of this study is to combine control variables  
(gender, daily internet hour usage, and past use experience), grounded in the taxon-
omy of induction-related activities using the DRSA, to infer the microblogging-
related decision rules.  
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2   Literature Review 

2.1   Microblogging 

Microblogging systems provide a lightweight, easy form of communication that en-
ables users to broadcast and share information about their current activities, thoughts, 
opinions and status. Compared to regular blogging, microblogging lowers the invest-
ment of the time and thought required to generate content and fulfills a need for a 
faster and more immediate mode of communication [17]. Microblogging, communi-
cation via short, real-time message broadcasts, is relatively a new communication 
channel for people to share information about their daily activities that they would not 
otherwise publish using other media (e.g., e-mail, phone, IM or weblogs). In a mi-
croblogging community, users can publish brief messages and tag them with key-
words. Others may subscribe to these messages based on who publishes them or what 
they are about [15]. Popular microblogging platforms such as Facebook have risen to 
prominence in recent years. 

2.2   Adoption Intention 

Adoption is a widely researched process that is often used to investigate the spread of 
information technology [10,25,26]. According to the literature on information tech-
nology adoption, adoption intention is an individual’s intention to use, acquire, or 
accept a technology innovation [26]. 

2.3   Recommendation Source 

Prior studies have suggested that peer communications (such as families, friends, and 
colleges) may be considered the most trustworthy type of recommendation source in 
making decisions [24]. In addition, advertising recommendations, such as recommen-
dations from site-sponsored advertisements, may be also regarded as a credibility cue 
[31]. Previous research has also demonstrated that the perceived level of expertise 
positively impacts acceptance of source recommendations [8]. These recommenda-
tions may be also considered a credibility cue when making decisions [31].  

3   Basic Concepts of the Dominance-Based Rough Set Approach 

3.1   Data Table 

DRSA uses an ordered information table where in each row represents an object, 
which is defined a respondent to our survey, and each column represents an attribute, 
including preference-ordered domain and regular (no preference-ordered domain) 
[14]. Thus, the entries of the table are attribute values. Formally, an information sys-
tem can be represented by the quadruple ( ), , , ,IS U Q V f=  where U is a finite and 

non-empty set of objects (universe), Q = 1 2{ , ,..., }ma a a  is a non-empty finite set of 

ordered or non-ordered attributes, aV  is the domain of attribute a, a Q aV V∈= U , and 
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:f U Q V× →  is a total information function such that ( ), af x a V∈  for every a Q∈   

and x U∈ . The set Q is usually divided into set C of ordered or non-ordered attrib-
utes and set D of decision attributes [12,13,29,30]. 

3.2   Approximation of the Dominance Relation 

According to Greco et al. [13], first, let af  be an outranking relation on U  with 

respect to criterion a Q∈ , such that ax yf  means “ x  is at least good as with 

respect to criterion a .” Suppose that af  is a complete preorder. Furthermore, let 

{ },tCl t T∈Cl= , { }1,2,...,T n= , be a set of decision classes of U  that each x U∈  

belongs to one and only one class tCl =Cl . Assume that, for all ,r s T∈   such that 

r sf , the elements of rCl  are preferred to the elements of sCl . Given the set of 

decision class Cl , it is possible to define upward and downward unions of classes, 
respectively,  

                                t s
s t

Cl Cl≥

≥
= U , t s

s t

Cl Cl≤

≤
= U , 1, 2,...,t n=                            (1) 

In dominance-based approaches, we say that x  dominates y  with respect to P C⊆  

if ax yf  for all .a P∈  Given P C⊆  and x U∈ , let { }( ) :pD x y U y x+ = ∈ f  rep-

resent a set of objects dominating x , called a P-dominating set, and 

{ }( ) :pD x y U x y− = ∈ f  represent a set of objects dominated by x , called a P-

dominated set. We can adopt ( )pD x+  and ( )pD x−  to approximate a collection of up-

ward and downward unions of decision classes.  

The P-lower approximation of ( )tP Cl≥  of the unions of class tCl≥ , { }2,3,...,t n∈ , 

with respect to P C⊆  contains all objects x  in the universe U , such that objects y  

that have at least the same evaluations for all the considered ordered attributes from 
P  also belong to class tCl  or better, as 

{ }( ) : ( )t P tP Cl x U D x Cl≥ + ≥= ∈ ⊆                                     (2) 

Similarly, the P-upper approximation of ( )tP Cl≥  is composed of all objects x  in the 

universe U , whose evaluations on the criteria from P  are not worse than the evalua-
tions of at least one object y  belonging to class tCl  or better, as  

{ }( ) : ( )t P tP Cl x U D x Cl≥ − ≥= ∈ ∩ ≠ ∅                                  (3) 

Analogously, the P-lower and P-upper approximations of ( )tP Cl≤  and ( )tP Cl≤ , re-

spectively, of the unions of class tCl≥ , { }2,3,...,t n∈ , with respect to P C⊆   are 

defined as 

{ }( ) : ( )t P tP Cl x U D x Cl≤ − ≤= ∈ ⊆                                       (4) 

{ }( ) : ( )t P tP Cl x U D x Cl≤ + ≤= ∈ ∩ ≠ ∅                                    (5) 



518 Y.-C. Chin et al. 

 

The P-boundaries (P-doubtable regions) of tCl≥  and tCl≤  are defined as   

( ) ( ) ( )P t t tBn Cl P Cl P Cl≥ ≥ ≥= −                                              (6) 

( ) ( ) ( )P t t tBn Cl P Cl P Cl≤ ≤ ≤= −                                              (7) 

with each set P U⊆  we can estimate the accuracy of approximation of tCl≥  and tCl≤  

using 
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and the ratio 
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3.3   Extraction of Decision Rules 

A decision rule can be expressed as a logical manner of the if (antecedent) then (con-
sequence) type of decision. The procedure of capturing decision rules from a set of 
initial data is known as induction [23]. According to [13,30], for a given upward un-

ion of classes, tCl≥ , the decision rules included under the hypothesis that all objects 

belonging to ( )tP Cl≥  are positive and the others are negative. There are two types of 

decision rules as follows: 
(1) D≥  decision rules (“at least” decision rules)  

If 
11( , ) af x a r≥  and 

22( , ) af x a r≥  and … ( , )
PP af x a r≥ , then tx Cl≥∈     

(2) D≤  decision rules (“at most” decision rules) 

If  
11( , ) af x a r≤  and 

22( , ) af x a r≤  and … ( , )
PP af x a r≤ , then tx Cl ≤∈   

4   An Empirical Example of Microblogging  

Microblogging appeals to a wide range of individuals for various purposes, such as 
finding new friends or connecting with the ones they have more effectively. In this 
section, we use the JAMM software [29] to generate decision rules. The results are 
used to understand the influence of recommendation sources on the intention to adopt 
microbloggings. 

4.1   Rules for the Intention to Adopt Microblogging 

In this study, the research subjects are users and potential users of Facebook. A total 
of 382 undergraduate and graduate students from a university in northern Taiwan 
participated in the survey. The participants were then asked to complete a  
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self-reported questionnaire containing study measures for their intentions to use  
microblogging sites such as Facebook. In addition, because daily internet hour usage, 
past use experience [32] and gender information [6] can also reflect the composition 
of the users, we also included the three variables as controls in this study. The per-
sonal attributes of the participants (gender, daily internet hour usage, and past use 
experience) and the attributes of the recommendation sources (WOM, advertising, 
and expert) were conducted. In addition, one decision attribute, the adoption intention, 
is also included to pre-process the data to construct the information table, which 
represents knowledge in a DRSA model. The attributes of recommendation sources 
were measured in three dimensions: WOM (friend or classmate reviews), advertising, 
and expert recommendations. The respondents were asked to choose the recommen-
dation source they would normally consult and to indicate the extent to which the 
source was perceived as an influence of recommendation on a 5-point Likert-type 
scale, with 1 = not very important, 3 = neutral, and 5 = very important. Furthermore, 
the participants were asked to evaluate their microblogging usage intentions. The 
survey also presented statements and participants were asked to indicate their level of 
agreement using multi-item scales, measured on a 5-point Likert-type scale where 1 = 
strongly disagree, 3 = neutral, and 5 = strongly agree. The domain values of these 
personal attributes and recommendation sources are shown in Table 1. 

Based on the decision rules extraction procedures of the DRSA, a large number of 
rules related to the intention to use microblogging can be generated. We classified our 
samples into two classes: “at least 4” (corresponds to having the intention to adopt 
microbloggings) and “at most 3” (corresponds to having no or little intention to adopt 
microbloggings). The accuracy of classification for the two decision classes was 99% 
and 98%, respectively, so most samples of the data were correctly classified.  

Table 1.  Attribute specification for adoption intention to use microbloggings analysis 

Attribute Name Attribute Values Preference 
Condition attributes   
Gender ( 1a ) 1: Male; 2: Female Non-ordered 

Daily internet hour usage ( 2a ) 1: <2 ; 2: 2-4; 3: >5  Non-ordered 

Past use experience ( 3a ) 1: Yes; 2: No Non-ordered 

Word-of-mouth  
recommendations ( 4a ) 

1: Not very important; 2: Not 
important; 3: Neutral; 4: Important; 5: 
Very important  

Ordered 

Advertising recommendations 
( 5a ) 

1: Not very important; 2: Not 
important; 3: Neutral; 4: Important; 5: 
Very important 

Ordered 

Expert recommendations ( 6a ) 
1: Not very important; 2: Not 
important; 3: Neutral; 4: Important; 5: 
Very important 

Ordered 

Decision attributes   

Adoption intention ( 1d ) 1: Very disagree; 2: Disagree; 3: 
Neutral; 4: Agree; 5: Very agree  

Ordered 
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Table 2. Rules on adoption intention of use microbloggings 

Rules Support Certainty Strength Coverage 
The person has intention to adopt microblogging ( 1 4d ≥ ) 

1 IF ( 4 4a ≥ ) ＆  ( 5 4a ≥ ) 

THEN (Having adoption 
intention to use microbloggings) 

241 1 0.63 0.97 

2 IF ( 4 4a ≥ ) ＆  ( 6 4a ≥ ) 

THEN (Having adoption 
intention to use microbloggings) 

240 1 0.63 0.97 

3 IF ( 1 1a = ) ＆ ( 5 4a ≥ ) THEN 

(Having adoption intention to 
use microbloggings) 

213 1 0.56 0.86 

4 IF ( 2 1a = ) ＆  ( 6 4a ≥ ) 

THEN (Having adoption 
intention to use microbloggings) 

211 1 0.55 0.85 

5 IF ( 2 1a = ) ＆  ( 4 4a ≥ ) 

THEN (Having adoption 
intention to use microbloggings) 

210 1 0.55 0.85 

6 IF ( 3 1a = ) ＆ ( 4 4a ≥ ) THEN 

(Having adoption intention to 
use microbloggings) 

209 1 0.55 0.84 

7 IF ( 3 1a = ) ＆ ( 5 4a ≥ ) THEN 

(Having adoption intention to 
use microbloggings) 

209 1 0.55 0.84 

8 IF ( 3 1a = ) ＆ ( 6 4a ≥ ) THEN 

(Having adoption intention to 
use microbloggings) 

209 1 0.55 0.84 

9 IF ( 1 1a = ) ＆ ( 2 1a = ) ＆

( 3 1a = ) THEN (Having  

adoption intention to use  
microbloggings) 

194 1 0.51 0.78 

The person has no or little intention to adopt microblogging ( 1 3d ≤ ) 

1 IF ( 1 2a = ) ＆ ( 5 3a ≤ ) THEN 

(No or little adoption intention 
to use microbloggings) 

121 1 0.32 0.90 

2 IF ( 2 2a = ) ＆  ( 4 3a ≤ ) ＆ 

( 6 3a ≤ ) THEN (No or little 

adoption intention to use 
microbloggings) 

110 1 0.29 0.82 

3 IF ( 2 2a = ) ＆  ( 5 3a ≤ ) ＆ 

( 6 3a ≤ ) THEN (No or little 

adoption intention to use 
microbloggings) 

108 1 0.28 0.81 
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Through DRSA analysis, we generated 12 rules, of which 9 rules apply to the “at 
least 4” class and 3 rules apply to the “at most 3” class, as illustrated in Table 2. The 
coefficients of certainty, strength, and coverage associated with each rule are also 
illustrated. Under the different decision rules, the rule set generates relative strength 
and coverage. The antecedents of the “at least 4” class of rules explain which attrib-
utes microblogging companies need to attract, and the “at most 3” class of rules tells 
the microblogging companies what attributes they should avoid. Therefore, as Table 2 
shows, some of the variables had a higher degree of dependence and may impact the 
intention to adopt microbloggings more than others. These results illustrate the differ-
ent degrees of importance of variables for effecting the adoption intention, which 
could help managers develop marketing strategies. 

4.2   Discussions and Managerial Implications 

This investigation examined how personal variables and recommendation sources 
influence the users’ intention to adopt microbloggings. In the “at least 4” class, the 
analytical results showed that users users who trust in recommendation source are 
more likely to adopt microbloggings and that WOM recommendations influenced the 
subjects’ intention to adopt microbloggings more than advertising recommendations 
and expert recommendations did. In addition, users who have more daily internet 
hours usage and who are more familiar than others with microbloggings rely on rec-
ommendation sources to adopt microbloggings. Finally, males who trust expert rec-
ommendations are more likely to adopt microbloggings. In the “at most 3” class, the 
anlaytical results showed that the intentions of females who have no confidence in 
expert recommendations to adopt microbloggings would decrease, as would those of 
users who have fewer daily internet hours use and users who doubt recommendation 
sources.    

The results of this study have implications for decision-makers. One implication is 
that marketers may use recommendation sources, especially WOM recommendations, 
to promote microbloggings usage. For instance, the platform providers can design 
recommendation activities where users who recommend microbloggings to others are 
rewarded. Especially in an online environment, our suggestion is consistent with Park 
et al. [22], who pointed out that marketers should consider providing user-generated 
information services and recommendations by previous users in the form of electronic 
word-of-mouth (eWOM). Another implication is that different types of recommenda-
tions can attract different types of users. There are differences in how recommenda-
tion sources impact the two genders, so the platform providers can apply different 
recommendation strategies, such as targeting mass media (e.g., a news report) to male 
users and alternative media (e.g., a discussion forum) to female users.  

5   Conclusions and Remarks 

DRSA has not been widely used in predicting microbloggings usage, especially in the 
context of social networks. This study uses DRSA to identify microbloggings deci-
sion rules that infer the antecedents of the intent to adopt microbloggings under the 
effects of different recommendation sources. Future research can extend this study to 
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apply the other data-mining approaches to extracting the attributes of the intention to 
adopt microbloggings. The study is limited in that actual behavior was not assessed, 
so the links between intention and actual behavior in this context remain unexamined. 
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Abstract. The paper describes the concept and the architecture of the
data warehouse and reporting modules dedicated to distributed fault in-
jection testbench. The purpose of this warehouse is to collect the data
from fault simulation experiments and support researchers in exploration
and analysis of these results. The data model of the warehouse, main
ETL processes, multidimensional structure of OLAP cube, and prede-
fined reports are discussed. Practical advantages of the presented system
are illustrated with some exemplary analyses of the experimental results
collected during dependability evaluation of the chemical reactor control
algorithm with software implemented fault injection approach.

Keywords: software implemented fault injection, dependability evalu-
ation, data warehouse, OLAP, data exploration.

1 Introduction

Fault injection techniques allow one to disturb the tested application with a pre-
defined fault (in accordance with the given fault model) and consequently analyse
the fault propagation, effectiveness of fault detection/tolerance techniques, and
check the application behavior [3,5,6]. The fault injection experiment consists
of tests - each of which is an execution of the application under tests (AUT)
disturbed by the randomly generated fault in respect of the given fault model
and distribution strategy. In typical software implemented approach (SWIFI)
the execution of the AUT is paused by the fault injection system at the given
time instant and the target resource (fault location related to the tested appli-
cation) is corrupted. After that, the execution of disturbed application resumes
and the fault injection system monitors its behavior to examine fault effects.

The possible fault space (in respect to the fault model, location, injection
time instant, etc.) is usually huge, so, it is impossible in practice to get 100%
fault coverage in an experiment. Numerous fault injection parameters have to be
randomised. Even in an experiments with quite low test coverage the obtained
dependability properties are representative [3,5]. Nevertheless, in practice the
number of tests to assure statistically representative results is high - usually
ranging from 1000 to even millions of tests. Moreover, higher test coverage helps
to discover the dependability weak points and other phenomena of the AUT. All
that makes the fault injection experiment a very time consuming and computing
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power demanding task. The volume of the collected data makes the manual mul-
tidimensional analysis or exploration practically impossible and it is reasonable
to handle these tasks with the data warehouse. This approach was already suc-
cessfully used in dependability evaluation experiments for the DBench project
[2,4]. However, our SWIFI tools are oriented mostly towards the evaluation of the
hardware-like fault sensitivity (e.g. single event upsets [9]) of software applica-
tions. So, different aspects have to be taken into account in the data warehouse:
specific to our tool capabilities and goals. In [10], our first data warehouse based
system (SOWES) for the analysis of fault effects in computer systems was re-
ported. Now we continue and extend this research with the new data warehouse
and (to a large extend) the reporting modules. The new system, FEARS (Fault
Effects Analysis and Reporting System) is based on SAS software and provides
generic, parametric and user friendly procedures to help in the analysis and ex-
ploration of complex simulation experiments results. FEARS proved to be very
effective in practical usage, a sample of which is presented in the paper.

The paper is organised as follows. The concept of the DInjector fault injection
system is presented in Sect. 2. Section 3 describes the architecture of the data
warehouse and prepared reports. Their practical usage example (the evaluation
of six versions of chemical reactor control application) is given in Sect. 4. The
directions of future research and conclusions are presented in Sect. 5.

2 DInjector Overview

To overcome the SWIFI efficiency bottleneck, our SWIFI tools (FITS for Win32
operating systems and LIN for Linux [6]) evolved from simple standalone sys-
tems to the complicated distributed system called DInjector ([3,7,8] and refer-
ences therein). It integrates several simulators (for different hardware/software
platforms) and admits to prepare experiments in heterogeneous environments.

DInjector’s architecture is depicted in Fig. 1. The system is available to many
users at the same time, so they can conduct their experiments simultaneously.
All the phases of experiment can be realised within any available computing
node of the farm with installed fault injection core (as a background workload).
Nodes are grouped into clusters managed by cluster coordinator (CCj). Many
clusters can be connected to the database. Each coordinator CCj checks the

Fig. 1. DInjector architecture
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registered jobs in database, creates and distributes the corresponding tasks for
the computer nodes, monitors their execution and collects the results. Cluster
coordinator has to handle many critical situations, like nodes restarts, primary
node workloads or connectivity problems. All these aspects are discussed in [7].

The system’s users provide applications to be tested (program code, input
data). The experiment is preceded with collecting the reference profile (saved in
golden run log - GRL) from non disturbed AUT execution. Then the user spec-
ifies experiment configuration, the number, localisation and classes of faults to
be injected, etc. [7,8]. All the above mentioned data are stored in the DInjector’s
database and are described in more detail in [10]. During a test the details of
injected faults are logged and the simulator monitors further AUT execution.
In particular, up to 10 machine instructions’ trace is saved as well as possible
exception occurrences and messages from AUT. At the end of the test, the fault
injector compares the results produced by the AUT during the test with those
found during the golden (referential) run. In general, DInjector distinguishes 5
classes of test results: COR - correct result, INC - incorrect result, SYS - fault
detected by the system, TMO - time-out, U - user messages (generated by the
program, if an error is detected). Additionally, more detailed qualification of test
results’ quality is also available.

Distribution of tests between all available computers resulted in almost lin-
ear speed-up of executed experiments [7] and, in consequence, the capability of
more exhaustive testing. However, the collected volume of information makes
the manual analysis ungovernable and it is impossible to analyse them without
specialised tools. Moreover, reports obtained directly from the DInjector’s trans-
action database would cause problems of system availability and performance.
The developed data warehouse and analytical system addresses these issues.

3 FEARS - Fault Effects Analysis and Reporting System

Fault Effects Analysis and Reporting System (FEARS) moved complicated an-
alytic queries and reporting from DInjector database to the data warehouse
(DWH). Splitting up the functionality of transaction database (MS SQL Server
2005 - DInjector) and data warehouse (SAS 9.1.3 [1]) admitted to accommo-
date and optimise both modules to their specific tasks. Another purpose of this
project was to build full automatic process of data analysis, so users can focus on
their tasks, not on technical aspects of data loading, processing and reporting.
Multidimensional structure of DWH can be directly used in reporting modules
reducing the time of reports preparation. Users working in the OLAP cubes
(thanks to the SAS Format) see the business model of the database instead of
the physical one. Module based construction of SAS software allows one to de-
compose applications on different computers, to balance the load and get better
performance of the whole system. SAS data processing servers and supporting
servers (IIS and Tomcat) may be installed on independent computers, remote to
clients’ software. Users’ daily work with FEARS can be done in a web browser,
while the programing and administration tools are standalone applications.
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FEARS stores data in relational database FEARS_DB. It is organised in
classical star schema (see Fig. 2), with one facts table (TESTS) containing main
data and measures with granulation of single test (see Sect. 2). It also contains
14 dimensions tables, describing test in different scopes. The model contains
EXPERIMENTS table (classification of carried out experiments), GRL_* ta-
bles (common data about GRLs for many experiments) and dictionary of pos-
sible injection locations (INJECTION_LOCATION table). Facts table TESTS
has references for all this tables. In turn tables EXCEPTION_*, INSTRUC-
TION_*, MESSAGES, VARS and MASKS are in one-to-one relationship with
table TESTS. They are dimensions joined with the facts table by foreign keys. As
the DInjector collects the trace of the test execution after the fault injection up
to 10 machine instructions, exceptions, and messages, the corresponding FEARS
tables (EXCEPTION_*, INSTRUCTION_*, and MESSAGES) are transposed
and denormalised (i.e. subsequent instructions in subsequent table columns).

Data warehouse contains also two data marts: first to optimise reports (de-
normalised table TESTS_GRL_VARS_INSTRMNEM_EXC) and the second
one with 37 calculations summarising every test (table VARS mentioned before).
The purpose of creating this calculation was to help end users to find phenom-
ena taking place during tests, but without manual calculations. From created
variables it is possible for instance to monitor changes of operation code in the
moments of fault injection, examine influence of thrown exceptions to application
work or control change of current instruction address.

Fig. 2. An overview of the data model
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ETL process importing the data to FEARS starts from parsing GRLs and
tests results into relational databases: DINJ_GRL and DINJ_TR. This stage
runs automatically as triggers on respective inserts into these databases. The
next stage of ETL process, filling FEARS_DB, runs on user’s request. User sim-
ply specifies the identifier of the experiment to be imported. It is also possible
to delete data of one experiment from DWH. Both processes are available from
SAS Stored Process Web Application. Three groups of data are loaded to the
DWH from DInjector’s database: programs info and experiments configuration,
data from parsing GRLs, and parsed data from strings with test results. Trans-
formation of the source tables into star schema takes place in temporary staging
area. After transforming, the data are moved into FEARS_DB and temporary
area is cleaned.

After loading experiment into the DWH, a user has to refresh the OLAP
cube named TESTS. This can be done in a web browser by running SAS stored
process. Prepared cube contains 44 measures, which can be explored in 17 di-
mensions. Reports from OLAP cube show the whole data in cube, which may be
explored on different levels and, as opposed to static reports from data tables,
allow users to modify reports during data analyses. Users can access cube by SAS
Web OLAP Viewer for Java web application. With this application they can not
only access the data in the cube, but can also create and save their own OLAP
reports (called explorations in SAS). OLAP reports can be presented as tables
or in graphical mode (as several customisable kinds of charts). In table mode
the user can drill down the data in selected hierarchies or focus on drill through
one snapshot. Additionally, it is possible to limit the data in the report by using
filters. Despite these, some ready-to-use explorations are prepared, which can be
used for the first look at the data (also fully customisable):

– TESTS TERM vs INJECTION_LOCATION and MASK - tests termination
modes for selected injection locations and fault masks.

– PROGRAMS VS INJECTION_LOCATIONS - programs info and quantity
or percent of tests with different fault locations;

– MNEMONICS PROPAGATION - analysis of instruction sequences;
– EXCEPTIONS PROPAGATION - analysis of thrown exceptions;

The prepared set of reports (based on queries from relational FEARS_DB
database) is stored on SAS server as SAS Stored Processes and available as
web application. If necessary, users can also explore data directly in tables (in
SAS Enterprise Guide tool) or use multidimensional reporting on cube. A set of
22 reports is prepared, grouped in 4 categories:

– GRL - overview of all GRLs for selected application;
– EXPERIMENTS - summary of experiments for selected application;
– TESTS SUMMARY - summary of tests for different versions of applications;
– TERM CORR - detail reports, showing executed tests in different configura-

tions, with possibility of selecting granulation level (program or experiment),
type of measure (quantity or percent) and parametric. It allows rough anal-
ysis of experiments in web interface, as the layout of variables, filters and
calculation method can be set-up by user.
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Provided reports show a wide substantial spectrum and deep level of analysis.
Examined matter (for example, the influence of fault mask and the position
of the corrupted bit for the test result) can be considered in different aspects
(with additional grouping categories, e.g. mask shift, instruction length, injection
location). Additionally, users can create their own variables’ combinations using
filters in TERM CORR report.

4 Experiments

The developed FEARS was used to investigate dependability properties of sev-
eral software applications. Results from the DInjector system were loaded to
the FEARS and finally, their analyses performed. This section summarises these
analyses as well as presents the advantages of such analytical system. In this
section an overview of the tested application is given. As several versions are
considered, their differences are described. Analyses conducted with FEARS are
presented and illustrated with some charts prepared and taken directly from the
predefined set of graphical reports of FEARS. It is worth to note that the FEARS
is not dedicated to this particular application and can support the analysis of
fault injection experiments of any application under tests.

The application under tests is a controller for the chemical reactor. Some
research of its dependability with the fault injection approach is already pre-
sented in [11]. The goal of the analysed controller is to control the chemical
process (in the reactor) using two manipulated variables (i.e. based on periodic
readings from two sensors). The application was prepared in 6 different versions
(with more sophisticated fault detection/tolerance mechanisms implemented in
subsequent versions 1-6). They were compiled with two Microsoft Visual C++
compilers (6.0 and 2005) giving a total number of 12 application versions. The
injected faults are single inversions of single bit at random bit position within
the target fault location (i.e. CPU registers and executed instructions’ codes -
in RAM and cache). The triggering moment distribution was random within the
execution time domain as well as in the applications’ code space. The number
of tests for different experiments varied from 1000 to more than 100 000.

The first aspect of the analysis is the validation of the triggering moments’
distribution policy. Reports proved that in the case of random-in-time policy, the
number of times the given instruction address was a fault triggering address was
correlated only with the percentage of instruction’s executions. On the contrary,
in the random-in-space policy, each application instruction becomes a trigger
with equal probability. Moreover, experiments with different number of trig-
gering moments (test coverage) proved our earlier research ([7,10]), that even
significantly low test coverage assures statistically valid results.

Report presented in Fig. 3 summarises experimental results. The differences
between subsequent versions as well as the impact of used compilers are clearly
stated. In versions 2, 3, and 4 the hardware exception handling is introduced
(more and more sophisticated but it works correctly only in VC++ 2005) and,
as a result, the significant decrease of system termination cases is observed (see
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Fig. 3. The summary of experimental results

Section 2). In the case of VC++ 6.0 the improvement is noticeable starting from
version 5, in which the pure software fault detectors are introduced (FPU vali-
dation in version 5 and acceptance assertion added in version 6). The iterative
execution of the control algorithm is a specific property. Naturally renewable re-
sources (e.g. CPU register states, instruction cache) show different susceptibility
to faults than those in which the injected fault remains to the end of the test
execution (current instruction). It is worth to note that for versions 4-6 in more
than 75% of the test cases presented here as incorrect ones the control algorithm
has detected an erroneous condition that could not be repaired. Such cases are
signalled to the user before the termination. Due to the complexity of judging
such resilience cases the analysis requires additional application specific report.

Another interesting property is the analysis of how the fault triggering mo-
ment impacts the fault sensitivity. This allows one to identify the weakest points
in the application. However, it is made at the machine code level, so the mapping
tools are needed to project instruction addresses into the source code level. It is
also worth to note that the same source code compiled with different compiler
or with just other compilation flag differs in fault sensitivity.

Figure 4 presents the impact of single-bit faults within the instruction code.
The corruption of the original instruction IA (I - mnemonic, A - operands) may
lead to change of the mnemonic ([I]) or operands([A]). The fault may also change
both parts ([I][A]) as well as change the whole instruction code length (and in
consequence cascading misinterpretation of the followed instructions codes). It
is worth to note, that incorrect result is the most probable for [I]A cases (see the
left graph in Fig. 4) if the instruction length wasn’t changed. In such cases the
exception occurrence is also the most probable. If the length of the instruction
changed, a very high probability of exception is observed (please note, that
the length changes only if [I] corruption takes place). FEARS allows one to
investigate the impact of the particular faulty bit positions (Fig. 5). Some bits
within the instruction codes are clearly more sensitive than others (e.g. the first
code byte defines the mnemonic or even also operands). The OLAP cube provides
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Fig. 4. Effects of changes in instruction code

also the whole insight into the sequence of executed instructions after the fault
was injected and into the distribution of corrupted instructions’ changes.

The analysis of mnemonic changes showed that some machine instructions
are more likely to provoke specific system exceptions (or incorrect results) than
others. Figure 6 presents the distribution of exceptions’ latency monitored up-to
10 machine instructions starting from the corrupted one (at the fault injection
time instant). The immediate exception is denoted as 1. On the other hand, the
-1 denotes tests in which the exception was not observed at all or the exception
occurred beyond the scope of 10 machine instructions (SYS termination). Note
that all bars on the chart sum up to 100% (the actual percentage of tests for given
fault location has to be tripled as the equal number of tests for all three presented
fault locations were made). Shorter fault latency in terms of detection gives
bigger chance for successful recovery, as the corruption within the application
and system context is probably lower than in the case of long latency or no

Fig. 5. The impact of the faulty bit positions within instruction code
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Fig. 6. System exceptions’ latency (in the number of machine instructions)

Fig. 7. The impact of exception latency on handling efficiency

detection at all. Longer latency may result in multiple corruptions in a wide
range of hard to identify resources. Additionally, the long-running applications
(e.g. control algorithms) may collect dormant faults and as a result they can
prevent proper error handling later on. Note that multiple bit fault model (e.g.
MBU effects) is ironically easier to detect and handle as it raises the probability
of early exception occurrence (shorter latency).

Another example of this is given by the results from fault injected into in-
struction counter register (EIP) presented in Fig. 7. If the corrupted address of
the instruction to be executed lies outside the application’s memory sections,
the access violation exception is raised immediately (latency=1). Simple excep-
tion handling can easily correct that in 100% of cases. If the erroneous address
fits within the application’s memory space, the observed latencies are longer and
then the EIP correction does not guarantee the successful processing completion.

5 Conclusion

The developed data warehouse facilitates handling results of simulation exper-
iments targeted at system dependability evaluation. It is supported with some
analytical tools. The practical usefulness of the proposed system has been verified
in the analyses of the real experimental data. The deep insight into abundance
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of details and a huge volume of experimental results from distributed fault in-
jection system discovered several interesting fault-sensitivity dependencies, pat-
terns, and properties. They would not be easy to find with the manual analyses.
The gained knowledge helps to improve the fault-robustness of the software ap-
plications by introducing dedicated software fault detection and tolerance mech-
anisms as it was presented in the subsequent versions of the exemplary controller
of the chemical reactor.

The positive experience with the FEARS encourages us to continue the sys-
tem development. Firstly, the enrichment with the data mining capabilities (e.g.
association rules, rough sets) will hopefully automate the phenomena discovery.
However, the preliminary research in this area showed that the analysed mat-
ter requires a high degree of the expert knowledge to discern the most valuable
results.

Acknowledgements. This work was supported by the Polish Ministry of Sci-
ence and Higher Education grant 4297/B/T02/2007/33.
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Abstract. The Location Management problem is an important issue of mobility 
management, which is responsible for determining the network configuration, 
with the major goal of minimizing the involved costs. One of the most common 
strategies of location management is the Reporting Cells (RC) scheme, which 
mainly considers the location update and the paging costs. In this paper we pro-
pose a Scatter Search (SS) based approach applied to the Reporting Cells as a 
cost optimizing solution, with the objective of achieving the best network con-
figuration defining a subset of cells as reporting cells and the others as non-
reporting cells. With this work we want to define the most adequate values of 
the SS parameters, when applied to the RC problem, using twelve test networks 
that represent 4 distinct groups divided by size. We also want to compare the 
performance of this SS based approach with a previous study based on Differ-
ential Evolution and also with other approaches presented in the literature. The 
results obtained are very interesting because they outperform those obtained 
with other approaches exposed in the literature. 

Keywords: Scatter Search, Cost Optimization, Location Management, Report-
ing Cells Problem, Mobile Networks. 

1   Introduction 

Nowadays, the increase of mobile networks’ users is an important fact that must be 
considered, because it also involves the growth of network dependent services and 
applications. Due to this, mobile communication networks [1] must maintain a good 
response, without losing quality or availability, supporting the increase of users and 
their respective applications. With the objective that mobile networks keep this qual-
ity and availability, it is necessary to consider the Location Management (LM) when 
the network infrastructures are designed. 

The location management problem corresponds to the definition of the network 
configuration with the objective of minimizing the cost involved, mainly those asso-
ciated to the user movements and respective tracing [2]. There exist a variety of 
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strategies of LM that are divided into two main groups: static and dynamic schemes 
[2], [3]. Static schemes, like the Reporting Cells (RC) strategy, are the most common 
ones in actual mobile networks, because they consider the same network behavior, for 
all the users.  

Finding an optimal set of reporting cells is an NP-complete problem. So, this paper 
presents a Scatter Search (SS) based approach applied to the reporting cells planning 
as a cost optimization problem. The major goal of the RC problem is to optimize the 
configuration planning of mobile networks, by means of reporting cells and no-
reporting cells, in a process of minimizing the involved costs. In Section 2 we expose 
the location management problem, the related costs and also the tuning to the report-
ing cells scheme. In section 3 we present a succinct description of SS algorithm. Sec-
tion 4 includes the implementation details. In section 5 we expose the experimental 
results and respective analysis. In section 6 we compare the performance of our ap-
proach with previous work and with approaches proposed by other authors. Finally, 
section 7 includes conclusions and future work. 

2   Location Management Problem 

In mobile networks, the LM is one of the major processes of mobility management, 
because it is responsible for enabling the network to find the most up to date location 
of each mobile terminal, allowing the users to receive or make calls, independently of 
their location and time of the day.  

Location update and location paging are the two main operations of LM over the 
mobile networks. The location update (LU) is used to report the current location, 
executed by mobile terminals when they change their location. The location paging 
(P) corresponds to the operation of determining the location of the mobile terminal, 
which is performed by the network when it needs to forward an incoming call to the 
user.  

The generic formula used to determine the LM cost and also considered in previ-
ous studies and experiments [4], [5], is: 

PLU NNCost +×= β . (1)

The cost of location updates is given by NLU, the cost of paging transactions is given 
by NP, and finally β is a ratio constant used in a location update relatively to a paging 
transaction in the network. Most of the time, mobile users move from one cell to an-
other, in the network, without performing a call. Due to this, the cost of a location 
update is generally considered to be 10 times greater than the cost of paging, so we 
have β=10 [6]. 

In the following subsection we will explain the Reporting Cells strategy and detail 
how the general formula of location management cost (1) can be readjusted. 

2.1   Reporting Cells Problem 

The Reporting Cells strategy, proposed by Bar-Noy and Kessler in [7], has the objec-
tive of minimizing the location management cost of tracing mobile users. It is charac-
terized by selecting and designating a subset of cells as reporting cells and setting the 



536 S.M. Almeida-Luz 

 

others as non-reporting cells (nRC). Considering Fig 1, we observe the configuration 
planning of a 4x4 network (see Fig.1.a) where RC are represented with value 1 and 
nRC are represented with value 0 (see Fig. 1b). The location update of a mobile user 
is performed only when its mobile terminal enters in a reporting cell. For routing an 
incoming call, the search is restricted to all the cells that compound the vicinity of the 
last known RC.  

We must take in consideration that, for each cell in the network, it is necessary to 
calculate the vicinity value, which corresponds to the maximum number of cells that 
the user might page when an incoming call occurs.  

The vicinity value of a RC corresponds to the number of nRCs that are reachable 
from this RC, without pass over other reporting cells, and considering the RC itself. 
Considering, as an example, the calculus of vicinity value for the cell number 9 in 
Fig. 1b, we need to count all the neighbor cells that are nRC, respectively cells 8, 13, 
14 and 15; and also the RC itself. With this calculus we obtain the vicinity value of 5 
for the RC number 9. 

The calculus of vicinity value, for a non-reporting cell, must consider the maxi-
mum vicinity value among the RCs from where this nRC can be achieved. This is, if 
the nRC belongs to the neighborhood of several RCs, the calculus must be performed 
for each of them and then select the highest vicinity value. For example, considering 
the cell number 2 in Fig. 1b, we observe that it belongs to the neighborhood of the 
RCs number 4, 5, 6 and 7, which have respectively the vicinity values of 6, 6, 5 and 5. 
In this process we must select the highest, so we must set the vicinity value of nRC 
number 2 as 6. 

Using the RC planning of Fig.1a and calculating the vicinity values, for all the 
cells, we obtain the final result shown in Fig. 1c. 

a) b) c) 

Fig. 1. a) Reporting Cells Network Planning; b) RC (1) and nRC(0); c) Vicinity values 

As we mentioned earlier, in the RC scheme the location updates only are per-
formed when a mobile user enters in a reporting cell, so the vicinity value of each cell 
must be considered. Due to this, the generic formula given by (1) must be readjusted 
and re-formulated as [4], [8]: 

∑∑
=

∈
×+×=

N

i
PSi LU iViNiNCost

0

)()()(β . (2)

Here we can see that NLU(i) is the total number of location updates for RC i, S  
indicates the subset of cells defined as RCs, NP(i) is the number of incoming calls 
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attributed for cell i, N is the total number of cells that compound the mobile network 
configuration and V(i) is the vicinity value calculated for cell i. In this work, we want 
to define what cells will be set as RCs, in each mobile network configuration, with the 
main goal of minimizing the LM costs.  

3   Scatter Search Algorithm 

In 1977, Glover [9] introduced Scatter Search (SS) as new evolutionary algorithm. 
The SS algorithm is characterized by 5 major components [10], [11]: Diversification 
Generation method, Improvement method, Reference Set Update method, Subset Gen-
eration method and Solution Combination method. Fig. 2 shows the outline of the SS 
algorithm (see [10], [11] for more details).  

 
SS Algorithm 
1: 
 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

Create Population with PSize different solutions. 
 Using Diversification Generation method and Improvement method.  
Define a RefSet = {x1,…,xb} with b/2 best solutions and b/2 most diverse solutions of P. 
Order the RefSet of solutions, applying their fitness function. 
Set NewSolution=TRUE. 
while (Exist (NewSolution))  

Make NewSolution=FALSE 
Create all different pairs of subsets using the Subset Generation method 
while(Exist (subsets not examined)) 
 Apply the Solution Combination method to the solutions of the subset 
 Improve each new solution x with the Improvement method  
 if (f(x) < f(xb) and (x ∉RefSet)  
  Set xb = x and order solutions of RefSet 
  Make NewSolution = TRUE 

Fig. 2. Outline of Scatter Search algorithm 

4   Implementation Details 

In this section we detail the decisions taken about implementation details of SS when 
applied to the RC scheme. We start presenting the test networks used, follow explain-
ing the fitness function used to evaluate the solutions accomplished and finally,  
expose the major considerations for the parameters definition. 

4.1   Test Networks 

With the objective of testing our approach, and comparing the results accomplished, 
we decided to use a set of twelve test networks, available in [12] as benchmark, which 
we also used in a previous work [4]. We have selected this set of networks because 
they are based on realistic data and patterns [8] and are divided by size in four  
different groups. 
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In Table 1 we expose, as an example, the test network 1, which represents a 4x4 
cells configuration. The first column includes the cell identification, the second col-
umn represents the number of location updates NLU and the third column corresponds 
to the number of incoming calls NP. 

Table 1. Test Network 1 – NLU and NP values 

Cell NLU NP Cell NLU NP Cell NLU NP 
0 452 484 6 816 438 12 529 470 
1 767 377 7 574 415 13 423 376 
2 360 284 8 647 366 14 1058 569 
3 548 518 9 989 435 15 434 361 
4 591 365 10 1105 510    
5 1451 1355 11 736 501    

4.2   Fitness Function and Parameters Definition 

The fitness function is responsible for evaluating each solution generated. In this 
work, our fitness function will be implemented according to the equation (2), pre-
sented in section 2.1. 

Considering the outline of the SS algorithm, shown in Fig. 2, we implemented the 
diversification generation method, which is applied to the generation of the initial 
population, considering the attribution of RC or nRC to each cell, with a probability 
of fifty percent. As the improvement method we decided to apply a local search, char-
acterized by switching a RC with one of their neighbors that are nRC. For the subset 
generation method we decided to use only subsets of size 2. Respectively to the com-
bination method we developed a crossover that could be applied to four crossover 
points taking into account a probability previously determined. 

Concluding, our implementation of SS considers four core parameters: initial 
population size PSize; reference set size RSSize; probability of combination (cross-
over) Cr; and finally, the number of iterations of local search nLS. Furthermore, we 
must consider that the reference set size is divided into two other parameters, which 
are respectively, the size of the quality solutions (nQrs) and the diversity solutions 
(nDrs). 

We have set the following initial values of parameters: PSize=100; RSSize=10; 
nQrs=5; nDrs=5; Cr=0.2; nLS=1, taking in consideration the suggestion of several 
authors [10], [11]. 

5   Experimental Results and Analysis 

In this section we expose the different experiments executed, over the twelve test 
networks, with the objective of studying in detail the use of SS algorithm, when ap-
plied to the Reporting Cells problem. 

After that, we will analyze the results achieved, determining the best SS configura-
tion and present the network configuration for the best solutions. 

Finally we want to compare the results obtained with our previous work, based  
on Differential Evolution (DE) algorithm, and also with those accomplished by  
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Alba et al. in [8], which use two approaches based on Hopfield Neural Network with 
Ball Dropping (HNN-BD) and Geometric Particle Swarm Optimization (GPSO). 

5.1   Experiments and Results 

In this study we have performed five main experiments, each one adjusted to the most 
important components of the SS algorithm. To assure the statistical relevance of the 
results achieved, we decided to perform 30 independent runs, for each experiment and 
every combination of parameters. In each experiment we set the values of each pa-
rameter as the initial one, referred in section 4.2 (if the respective experiment was not 
performed) or as the one determined in its respective experiment. 

The first point of the SS algorithm is generating an initial population with a defined 
number of distinct solutions (parameter PSize). Due to that, we started the experi-
ments with the goal of defining the ideal number of solutions, which will compose the 
initial population. We have tested PSize with the following number of solutions: 10, 
25, 50, 75, 100, 125, 150, 175 and 200. Analyzing the results we noticed that the 
lower costs, for the best and average fitness, were obtained with PSize=175, setting it 
for the following experiments. 

The next step was to define the size of the reference set (parameter RSSize), which 
must include the best solutions and also the most diverse solutions from these ones. 
Fixing PSize=175, we checked RSSize with the following size values: 2, 4, 6, 8, 10, 
12, 14, 16, 18 and 20. We observed that the statistical results were improving with the 
increase of the RSSize and, due of that, we decided to proceed for the next experi-
ments with RSSize=20. Moreover, we checked and noticed that improving the RSSize, 
with bigger values than 20, was not significant. 

After achieving the most adequate value for RSSize, it was necessary to determine 
its best division between quality solutions (nQrs) and most diverse solutions (nDrs). 
To accomplish this task, we tested all the possible combinations between nQrs and 
nDrs, knowing that their sum must be 20. Evaluating all the statistical results accom-
plished, we noticed that the division of RSSize between nQrs=16 and nDrs=6 was the 
one that performed better.  

The following experiment had the purpose of defining the crossover probability 
(Cr) to be applied in the solution combination method. To proceed with this experi-
ment, we used all the values of parameters already achieved, and follow testing all the 
next values for Cr: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Analyzing the best and 
the average fitness costs, we noticed that the most adequate was Cr=0.6. 

Finally, in the last experiment, the goal was determining the best number of local 
search iterations nLS, which could allow the best performance of the improvement 
method. To perform this experiment we checked the following configurations of nLS: 
1, 2, 3, 4 and 5. Observing the results achieved (see Table 2 for the best and average 
costs obtained of the twelve test networks), we concluded that nLS=4 should be 
elected, because it was the configuration that performs better for all the networks 
used. Furthermore, with nLS=5 the statistical results became worst so, because of this, 
we elected nLS=4 for the final configuration of SS values of parameters.  
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Table 2. Defining the best number of local search iterations (A – Average cost; B – Best cost) 

nLs TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8 TN9 TN10 TN11 TN12 
1-A 98535 97156 95038 174566 182368 174541 311735 289925 264705 389568 361119 376435 

1-B 98535 97156 95038 173701 182331 174519 307695 287149 264204 386688 358167 371990 

2-A 98535 97156 95038 174647 182331 174596 310910 287543 264688 388144 360333 375344 

2-B 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 358397 370868 

3-A 98535 97156 95038 174703 182331 174585 310573 287821 264589 387399 359586 373451 

3-B 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 358167 370868 

4-A 98535 97156 95038 174593 182331 174563 310411 287500 264506 387142 359079 373194 

4-B 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 357714 370868 

5-A 98535 97156 95038 174629 182331 174563 310769 287705 264439 387626 359106 372415 

5-B 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 358033 370868 

5.2   Analysis and Comparison of Results 

Experiments resulted in obtaining the best configuration for the SS parameters when 
applied to the reporting cells problem, i.e.: PSize=175, RSSize=20, which is divided in 
nQrs=14, nDrs=6; Cr=0.6 and nLS=4.  

With the objective of reinforcing the conclusions obtained over the results, we have 
performed a statistical analysis using the ANOVA test. For that, we have considered a 
confidence level of 95% (this is, a significance level of 5% or p-value under 0.05), 
which means that the differences are unlikely to have occurred by chance with a prob-
ability of 95%. We have concluded that the fitness differences have been found as 
significant in almost all the cases, when we use distinct values for each SS parameter. 

Table 3. Comparison of best LM costs for the twelve test networks 

 TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8 TN9 TN10 TN11 TN12 

SS 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 357714 370868 

DE 98535 97156 95038 173701 182331 174519 308401 287149 264204 386681 358167 371829 

HNN-
BD 

98535 97156 95038 173701 182331 174519 308929 287149 264204 386351 358167 370868 

GPSO 98535 97156 95038 173701 182331 174519 308401 287149 264204 385972 359191 370868 

 
Another goal of this study was to compare the results achieved by the SS approach 

with a previous study where we have used an approach based on DE algorithm [4]. 
That was the following task after obtaining the final results. With this comparison we 
concluded that SS shows the best performance, because it always obtains equal (for 
test networks 1 to 6, 8 and 9) or best results (using the test networks 7, 10, 11 and 12) 
than DE, as it is shown in Table 3.  

Finally, we also compared the results achieved by SS with those presented by Alba 
et al. in [8], using HNN-BD and GPSO. Once again, if we observe Table 3, we can 
conclude that our approach outperforms the results obtained by HNN-BD and GPSO 
for the test networks 7, 10 and 11; and it equals the lowest fitness costs for all the 
other ones.  
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In Fig. 3 we present the configuration for the best solutions for test networks 7, 10 
and 11, those where the SS approach surpassed all the other ones. 

a)  

b)  c) 

Fig. 3. a) Test Network 7; b) Test Network 10; c) Test Network 11 

6   Comparison with Results from Other Applied Algorithms 

Once we have finalized the comparison of results, using the set of twelve test net-
works, we decided to test the performance of our approach, considering the best SS 
configuration obtained, when applied to additional test networks, also used by other 
authors.  

Initially, we have selected 3 distinct test networks shown in [13], because they 
were also used in [4] and [8]. With these networks, which represent respectively 4x4, 
6x6 and 8x8 instances, we have the objective of comparing the results accomplished 
by SS, with those achieved by Genetic Algorithms (GA), Ant Colony algorithm (AC) 
and Tabu Search (TS). Again, we have confirmed the good performance of SS ap-
proach, because it always obtains equal or better fitness solutions (lower LM costs), 
as it is possible to analyze in Table 4. 



542 S.M. Almeida-Luz 

 

Table 4.  Comparison of best LM costs for the twelve test networks 

Test Network SS DE GA AC TS 

4x4 92833 92833 92833 92833 92833 

6x6 211278 211278 229556 211291 211278 

8x8 436269 436269 436283 436886 436283 

 
Furthermore, as a final test we selected two bigger networks (7x9 and 9x11 in-

stances) provided in [5] that use a combination of HNN (Hopfield Neural Network) 
and BDT (Ball Dropping Technique); and also used in [4], [14].  

Applying our approach to the 7x9 instance allowed us to surpass all the other ap-
proaches with those LM costs achieved. That is, with SS we obtained the fitness value 
of 120052, with 27 RCs, while with DE [4] the best solution represents a fitness of 
120904 with 28 RCs, and the HNN-BDT [5], [14] accomplished the fitness value of 
123474 with 27 RCs. 

Considering the 9x11 instance, the fitness value achieved is 242914 cost units, with 
44 RCs, which surpasses the lowest costs obtained by DE (243957 cost units, with 47 
RCs) and also by HNN-DT (243414 cost units, with 43 RCs). 

Finishing all of the additional experiments, it is possible to conclude that this SS 
based approach applied to the reporting cells problem, is very competitive, because it 
outperforms the results achieved using other artificial techniques.  

7   Conclusions and Future Work 

This paper focuses on Reporting Cells problem, presenting a SS based approach ap-
plied to it, with the objective of minimizing the location management costs. 

We have executed several experiments with the intention of achieving the best con-
figuration for the values of SS parameters. For this purpose we have selected twelve 
distinct test networks, and subsequently to a big number of runs, we set the most ade-
quate parameter values like: PSize=175, RSSize=20, divided in nQrs=14 and nDrs=6; 
Cr=0.6 and nLS=4. With the results obtained we concluded that our approach has a 
good performance, and can be effectively applied to the RC problem, since, compar-
ing with the results obtained by other authors, which use GSPO and HNN-BD, we 
achieve equal or even better fitness (i.e., location management costs).  

We also tested our approach with other artificial life techniques like genetic algo-
rithms (GA), ant colony algorithm (AC), tabu search (TS), differential evolution (DE) 
and a combination of hopfield neural network (HNN) and ball dropping technique 
(BDT); the results are very encouraging, because our approach always equals or out-
performs the results achieved by the other techniques.  

Respectively in future work we want to compare the results accomplished with the 
Reporting Cells strategy with the ones obtained with the Location Areas strategy (this 
is another well-known static scheme of location management). Performing that study, 
we desire to determine the most adequate strategy, because both consider the location 
update and paging costs of the location management.  
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Abstract. This work attempts to report the stylistic differences in blogging for
gender and age group variations using slang word co-occurrences. We have
mainly focused on co-occurrence of non dictionary words across bloggers of
different gender and age groups. For this analysis, we have focused on the feature
use of slang words to study the stylistic variations of bloggers across various age
groups and gender. We have modeled the co-occurrences of slang words used by
bloggers as graph based model where nodes are slang words and edges represent
the number of cooccurrences and studied the variations in predicting age groups
and gender. We have used demographically tagged blog corpus from ICWSM
Spinner dataset for these experiments and used Naive Bayes classifier with 10
fold cross validations. Preliminary results shows that the concurrence of of slang
words could be a better choice for predicting age and gender.

Keywords: Stylometrics, Demographic analysis, Slang / Out of vocabulary
words, Classification, Graph Clustering.

1 Introduction

Information Retrieval (IR) techniques are useful in stylistic classification and can
improve the results achieved through by identifying documents that matches a certain
demographic profile. The common demographic features like age and gender are
used for analyzing stylistic variations as the blogs generally contain these information
provided by the author. Writing style is a result of the subconscious habit of the humans
who use a number of available options to present the same thing. The writing style varies
with the evolution of the usage of the language in certain period, genre, situation or
individuals. Variations are of two types - variation within a norm which is grammatically
correct and deviation from the norm which is ungrammatical. The variations can be
described in linguistic as well as statistical terms[1]. Concept and themes[2] can be
determined from variations within the norm while the usage of non-dictionary words or
slang is an example of deviation from a norm.
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2 Related Work

Owing to paucity of insufficient annotated data, the research on the usage of language
pattern by different social groups was heavily constrained. The effective analysis with
learning bloggers’ age and gender from weblogs, based on usage of keywords, parts of
speech and other grammatical constructs, has been presented in [3,4,5,6]. Pennebaker,
et al. [7], Pennebaker and Stone [8] and Burger and Henderson, 2006 [4] reported
age linked variations. Linguistic styles based on gender (males and females) were
characterized by J. Holmes [9]. Expert used spoken language [1], Palander worked on
electronic communications[10], and S. Herring analyzed correspondence[11]. Patton
and F.Can analyzed four novels using six style markers which showed the best
separation for “most frequent words” and “sentence lengths” [12]. Also they analyzed
the change of writing style with time and demonstrated that there is a decrease in
average word length as the age of the news column increases[13]. Simkins reported no
difference between male and female writing style in formal contexts [14]. Koppel et al.
estimated author’s gender using the British National Corpus text [15]. By using function
words and part-of-speech, Koppel et al. reported 80% accuracy for classifying author’s
gender. Koppel et al. also stated that female authors tend to use pronoun with high
frequency, and male authors tend to use numeral and representation related numbers
with high frequency. Corney et al. estimated author’s gender from e-mail content [16].
In addition to function words and part-of-speech and n-grams [5,15], they used HTML
tags, the number of empty lines, average length of sentences for features for SVM [17].
Recently, results of stylistic differences in blogging for gender and age group variations
are reported based on two mutually independent features: use of slang words and the
variation in average length of sentences[18].

3 Dataset

A blog corpus1 is made available by ICWSM 2009[20] and the blogs in this corpus
did not have any tag for demographic information. However, it had the resource link
which had the URL of the blogger’s home page. In the above corpus, blogs from
blog.myspace.com had the maximum occurrence and had the demographic details of
the blogger in its home page. The home page of these URLs were crawled and processed
to retrieve gender, status (married, unmarried), age, zodiac sign, city, state and country
corresponding to each URL. With the available valid URL list, the downloaded data
from these URLs gives 342,514 files. The blogs in which the blogger’s age has been
reported as below 20 has been grouped in 10s age group, those in the age group of 20 to
29 as 20s, those in 30 to 39 as 30s and 40 and above has been put in 40s age group. The
distribution of these files over age and gender is given in Figure 1. The total number of
males and females are 159,729 and 182,785 respectively and for the experiments, we
considered only 95,245 blog posts in which 44,434 are males and 50,811 are females.
The blogs distributions across age groups with respect to gender is given in Table 1.

1 Provided by Spinn3r.com [19].
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Fig. 1. Number of files in age groups and gender

Table 1. Blogs distribution across Age Groups and Gender

10s 20s 30s 40s Total
Male 4,104 19,625 11,411 9,294 44,434

Female 6,142 25,323 10,551 8,795 50,811

4 Feature Selection

Finding good features is always a challenging task and such feature selection provides
accuracy improvements in classification. It is straight forward from IR perspectives
that the words with many occurrences collected from a corpora may not be a good
distinguishing feature. Still, an analysis of the words occurring many times in a subset
of a corpora can be the marker [21]. For example, reference to ‘attending school’ leads
to an instant ‘teenage’ classification. Features for stylistic variations are generally based
on character or morphological features or lexical features. In our experiments we used
cooccurrence of non-dictionary words as features. As per our literature survey, the usage
of slang words has not yet been explored well for the study of stylistic variation.

Fig. 2. Average Sentence length across
Age vs Gender[18]

Fig. 3. Non-dictionary words (per
1000 words) across age groups[18]

Koppel [15] used a list of 30 words (as a distinguishing factor) for learning age and
gender respectively. These words were detected to be having an extreme variation in



Learning Age and Gender Using Co-occurrence of Non-dictionary Words 547

usage across gender and age groups. Similarly, in [22], out-of-dictionary words were
augmented to increase the accuracy of results. For the purpose of learning age and
gender classifier, each document is represented as a numerical vector in which each
entry represent the normalized frequency of a corresponding word in the feature set.
Many Stylistic features were applied on formal writings and especially on classical
works of literature and results have been reported using average sentence length as a
feature. The analysis of blogs based on average sentence length variations is challenging
as blogs lack editorial and grammatical checks. The variation of average sentence length
on age and gender basis is given in Figure 2. Similarly Figure 3 shows the usage of
non-dictionary words per 1000 words across various age groups(refer to [18]).

As blogs are informal writing to express their opinions without any bounds,
blogosphere has slowly filled up with many non-dictionary words that are understandable
and commonly used by online community. We refer to some of them as slangs, smiley, out
of vocabulary words, chat abbreviations, etc. The named entities are also non-dictionary
words. There are words that are intentionally misspelled, repeated, extended or shortened
to have a different effect on the reader, express emotion or save the time of blogging. All
these words and even the frequency of use of such words are contributable features in
stylistics. For our experiments with non-dictionary words, Ispell2 [23] was run and the
frequency of all the non-dictionary words used by males and females for detecting gender
variation was obtained. From these, only those words were selected as feature which had
an occurrence of >10. This generated a list of 667 words.

Table 2. List of a few Content word frequency per 10000 words in age groups

WC
(
∑

WC in that age grp)x10000

Word 10s age 20s age 30s age
college 4.433 1.173 0.829
bored 2.399 1.892 0.789
boring 0.966 0.687 0.618
dumb 1.266 0.870 0.447

semester 1.333 0.813 0.263
apartment 0.599 1.205 0.487

beer 0.466 0.826 0.908
album 0.966 1.463 1.684

development 0.099 0.176 0.171
local 0.499 0.706 1.803
son 30.26 28.80 28.55

workers 0.099 0.233 0.394

5 Classification Algorithm and Tool

Clustering is commonly used to identify a pattern / structure in the bunch of unlabeled
data. In general, clustering organizes data into groups whose members are related in
some way and two or more data can be grouped into the same cluster if they are, in

2 http://www.gnu.org/software/ispell/ispell.html

http://www.gnu.org/software/ispell/ispell.html
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some way, falling close to each others’ context. Clustering has many useful applications
like finding a group of people with similar behavior, processing orders, grouping plants
and animals, grouping web blog data to find access to similar patterns. In this work,
we have attempted to identify the similar usage of slang words across different age
gender groups of bloggers using kernel-based multilevel clustering algorithm proposed
by Dhillon et al. [24] . This attempt first makes slang cluster vectors using unsupervised
out of words cooccurrences and then using them, supervised learning is performed for
learning age and gender of the bloggers.

Algorithm 1. Learning Age and Gender through Clustering Non Dictionary Words

Input: A set of n blogs D = {d1, d2, d3 · · · , dn};
A set of predefined category labels C: Age( = 10s, 20s, 30s)

(similarly for Gender [= male, female] also)

Procedure:
1: Extract the list of all out of vocabulary words from the blog descriptions
2: for each slang word fi in the list do
3: identify the existence of edges from fi to all slang words with nonzero positive weight.
4: Store the co-occurring information with its corresponding edge weight
5: end for
6: Use kernel-based multilevel graph clustering algorithm and perform clustering to generate

cluster IDs
7: For every cluster ID, generate slang cluster vectors using the list of out of vocabulary words
8: Augment the blog description with cluster ID mappings and generate the output data file in

Weka format.

9: Build classifier using this data file and record the classification accuracy

Output: The category label for bloggers’ Age (similarly for Gender)

Table 3. List of a few Content word frequency per 10000 words in gender

Male Occ
10000

Female Occ
10000

mom 4.543 7.844
software 0.131 0.051
nations 0.464 0.142

economic 0.159 0.079
shopping 0.304 0.845

cried 0.159 0.759
pink 0.256 0.497
cute 0.671 1.662

kisses 0.096 0.217
boyfriend 0.297 1.411
husband 0.297 1.765
hubby 0.034 0.359

Naive Bayes classifier for predicting the blogger’s age group or gender from the
stylistic features were trained using the WEKA toolkit [25]. During training, classifiers
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are created by the selection of a set of variables for each feature and classifier parameters
are tuned through 10 fold cross-validation. To evaluate the classifier, the given data is
split into training and test data and the trained classifier is used to predict the blogger’s
demographic profile on the test data [26].

Co-occurrence of non-dictionary words are exhibiting good cluster similarities in
the co-occurrence graph. Presently it is tested on the subset of blog data described in
section 3. The formed clusters reveals that the odd minded people use same style across
age and gender. The detailed results are in progress. Also inter - relationships with
Age and Gender variations are closely predictable with these graph based clustering
approach.

6 Conclusion and Future Work

It is clearly seen that Teenage bloggers use more out-of-dictionary words than the
adult bloggers. Furthermore, for bloggers of each gender, there is a clear distinction
between usage of a few slangs[18]. Based on these results, we analyzed and found
that generally in bloggers age, teenagers use smaller sentences compared to the adult
bloggers with slight variations. With the available data and the existing experiments, it
cannot be confirmed that the average sentence length increases or decreases with age.
The stylistic difference in usage of slang predicts the age and gender variation with
certain accuracy. Average sentence length itself is not a good feature to predict the
variation as there is a wide variation in sentence length in informal writing. However,
the feature of average sentence length can be augmented with slang to slightly increase
its prediction efficiency. Both these features when augmented with other features like
content words reported earlier, increases the prediction accuracy by a good amount.

The usage of slang can also be a good feature to predict the geographical location
or the ethnic group of the user due to the heavy usage of a particular out-of-dictionary
word or named entities at certain regions. A sufficiently huge corpus collected over a
decade will be useful to study the variation of sentence length of users with age and
variations in individuals language use over the course of their lives. This corpus can
also be used to study the evolution and death of the slang words with time.
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Abstract. The easily reconfigurable predictive controllers are supple-
mented with a mechanism of disturbance measurement utilization. It is
done in such a way that the main advantage of the controllers – their
simplicity – is maintained. The predictive controllers under considera-
tion are based on fuzzy Takagi–Sugeno (TS) models in which step re-
sponses are used as local models. These models are supplemented with
the parts describing the influence of disturbances on the outputs of the
control plant. Then, the controllers are formulated in such a way that
the control signals are easily generated. Efficiency and usefulness of the
predictive controllers utilizing disturbance measurement is demonstrated
in the example control system of a nonlinear control plant with delay.

Keywords: fuzzy systems, fuzzy control, predictive control, nonlinear
control, fault–tolerant control, Dynamic Matrix Control.

1 Introduction

The topic of the paper is the result of continuation of research concerning easily
reconfigurable fuzzy predictive controllers proposed in [6]. Unlike other types
of fuzzy predictive controllers, the discussed ones are formulated in such a way
that the control law can be easily obtained analytically. Necessity of solving
an optimization problem or calculating numerically a matrix inverse is avoided.
Thanks to easiness of reconfiguration, the discussed controllers can be success-
fully used, e.g. when modification of the control law is needed after actuator
fault [6].

In the paper, easily reconfigurable fuzzy predictive controllers are supple-
mented with the mechanism of taking the disturbance measurement into consid-
eration. This mechanism is important especially when a sensor fault occurs in
the control system. It is because in such a case one of the feedback loops is af-
fected by the failure and is in fact interrupted. In such a situation control quality
strongly depends on the quality of the model used for prediction. If the model
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is supplemented with information about influence of the disturbance (which can
be measured or estimated) on the process then the operation of the controller
based on such a model can be significantly improved.

In the next section the easy to reconfigure, analytical Fuzzy DMC (FDMC)
controllers utilizing disturbance measurement are formulated. The modification
does not complicate the controllers significantly. Moreover, calculation of the
control action is still very simple for SISO (Single Input Single Output) con-
trol plants as well as for plants with two inputs and two outputs. Sect. 3 con-
tains description of experiments performed in a control system of a nonlinear
control plant with significant delay. The obtained results illustrate well bene-
fits obtained thanks to the mechanism of disturbance measurement utilization
applied in the controllers under consideration. Last section contains a short
summary.

2 Efficient Fuzzy Analytical Predictive Controllers with
Disturbance Measurement

The predictive control algorithms, during control signal generation, predict fu-
ture behavior of the control plant many sampling instants ahead using a process
model [1,3,8,10]. The control signal is derived in such a way that the prediction
fulfills assumed criteria. In current research the following optimization problem
is to be solved at each iteration of the algorithm:

min
Δu

ny∑
j=1

p∑
i=1

κj ·
(
yj

k − yj
k+i|k

)2
+

nu∑
j=1

λj ·
(
Δuj

k|k

)2
, (1)

where yj
k is a set–point value for the jth output, κj ≥ 0 and λj ≥ 0 are weight-

ing coefficients for the predicted control errors of the jth output and for the
changes of the jth manipulated variable, respectively, p is the prediction hori-
zon, ny and nu denote number of output and manipulated variables, respectively,

Δu =
[
Δu1

k|k, . . . , Δu
nu
k|k

]T

is the vector of future changes of manipulated vari-

ables (obtained as a solution of the optimization problem), yj
k+i|k is a value of

the jth output for the (k + i)th sampling instant predicted at the kth sampling
instant using a control plant model.

The proposed fuzzy controllers are based on fuzzy models which have local
models in the form of step responses. Such a model is relatively easy to ob-
tain. It is sufficient to collect a few sets of step responses (near a few operating
points). Then, the membership functions can be chosen using expert knowledge
and tuned, if necessary, using, e.g. fuzzy neural network. The fuzzy model is
thus composed of the following rules which also contain model of influence of
disturbance on outputs of the plant:
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Rule f : (2)

if yjy
k is Bf,jy

1 and . . . and y
jy
k−n+1 is Bf,jy

n and

uju
k is Cf,ju

1 and . . . and uju
k−m+1 is Cf,ju

m

then ŷj,f
k =

nu∑
m=1

pd−1∑
n=1

aj,m,f
n ·Δum

k−n + aj,m,f
pd · um

k−pd

+
pz−1∑
n=1

bj,fn ·Δzk−n + bj,fpz · zk−pz ,

where yjy
k is the jyth output variable value at the kth sampling instant, uju

k is the
ju

th manipulated variable value at the kth sampling instant, zk is the disturbance
variable estimate at the kth sampling instant, Bf,jy

1 , . . . , B
f,jy
n , Cf,ju

1 , . . . , Cf,ju
m

are fuzzy sets, aj,m,f
n are coefficients of step responses in the f th local model

describing influence of the mth manipulated variable on the jth output, bj,fn

are coefficients of disturbance step response in the f th local model describing
influence of the disturbance on the jth output, pd, pz are equal to the number
of sampling instants after which the coefficients of the step responses can be
assumed as settled, jy = 1, . . . , ny, ju = 1, . . . , nu, f = 1, . . . , l, l is number of
rules.

The output value of the fuzzy model (2) is calculated at each iteration using
current values of process variables and fuzzy reasoning:

ŷj
k =

nu∑
m=1

(
pd−1∑
n=1

ãj,m
n ·Δum

k−n + ãj,m
pd · um

k−pd

)
+

pz−1∑
n=1

b̃jn·Δzk−n+b̃jpz ·zk−pz , (3)

where ãj,m
n =

∑l
f=1 w̃f · aj,m,f

n , b̃jn =
∑l

f=1 w̃f · bj,fn , w̃f are the normalized
weights calculated using fuzzy reasoning, see e.g. [7,9]. The obtained model may
be interpreted as the step response model which describes behavior of the control
plant near the current operating point.

The output value for the (k+ i)th sampling instant predicted at the kth sam-
pling instant is then calculated using the following formula:

ŷj
k+i|k =

nu∑
m=1

(
i∑

n=1

ãj,m
n ·Δum

k−n+i +
pd−1∑

n=i+1

ãj,m
n ·Δum

k−n+i + ãj,m
pd · um

k−pd+i

)

+
pz−1∑
n=1

b̃jn ·Δzk−n+i + b̃jpz · zk−pz+i + dj
k , (4)

where zk−n+i are estimates or measured values of the disturbance. If future
values of the disturbance cannot be estimated then it is reasonable to assume
that it does not change after the current instant (it is done so in the next part
of the paper); dj

k = yj
k − ŷj

k is the DMC–type disturbance model. It means that
it is assumed to be the same at each sampling instant in the prediction horizon.
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It should be however stressed that despite the disturbances are assumed to be
constant on the whole prediction horizon, their values will be updated in the
next sampling instant.

Assuming that the manipulated variable can change only once during the
prediction horizon, (4) can be transformed into the following form:

ŷj
k+i|k =

nu∑
m=1

(
pd−1∑

n=i+1

ãj,m
n ·Δum

k−n+i+ã
j,m
pd ·

pd+i−1∑
n=pd

Δum
k−n+i−

pd−1∑
n=1

ãj,m
n ·Δum

k−n

)

+ yj
k +

pz−1∑
n=i+1

b̃jn ·Δzk−n+i + b̃jpz ·
pz+i−1∑
n=pz

Δzk−n+i −
pz−1∑
n=1

b̃jn ·Δzk−n

+
nu∑

m=1

ãj,m
i ·Δum

k|k = ỹj
k+i|k +

nu∑
m=1

ãj,m
i ·Δum

k|k , (5)

where only the last component depends on future changes of manipulated vari-
ables Δum

k|k. Other components, grouped in ỹj
k+i|k, depend only on values of the

input signals from the past.
The prediction can be expressed in a vector–matrix form as:

y = ỹ + A ·Δu , (6)

where y =
[
y1, . . . ,yny

]T , yj =
[
yj

k+1|k, . . . , y
j
k+p|k

]
is a vector of predicted val-

ues of output variables, ỹ =
[
ỹ1, . . . , ỹny

]T

, ỹj =
[
ỹj

k+1|k, . . . , ỹ
j
k+p|k

]
is called

a free response of the plant because it contains future output values calculated
assuming that the control signal does not change in the prediction horizon. A is
the dynamic matrix composed of the step response coefficients:

A =

⎡
⎢⎢⎢⎣

A11 A12 . . . A1nu

A21 A22 . . . A2nu
...

...
. . .

...
Any1 Any2 . . . Anynu

⎤
⎥⎥⎥⎦ , (7)

where Ajm =
[
ãj,m
1 ãj,m

2 . . . ãj,m
p

]T
. Thus, the optimization problem (1) can be

written in the following form:

min
Δu

{
(y − ỹ − A ·Δu)T · κ · (y − ỹ − A ·Δu) +ΔuT · Λ ·Δu

}
, (8)

where y=
[
y1,. . .,yny

]T , yj =
[
yj

k,. . ., y
j
k

]
, κ=

[
κ1,. . .,κny

]
·I, κj = [κj, . . . , κj ],

λ = [λ1, . . . , λnu ] ·I are vectors and matrices of appropriate dimensions, I is the
identity matrix.

The performance function in the problem (8) depends quadratically on deci-
sion variables Δu. Thus, if the problem without constraints is considered, the
vector minimizing this performance function is given by the following formula:

Δu =
(
AT · κ · A + λ

)−1
· AT · κ · (y − ỹ) . (9)
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In the simplest case of a SISO plant, when ny = 1 and nu = 1, without loss of gen-
erality one can assume that κ = 1. Then, the change in the manipulated variable
can be obtained using the following simple and easy to calculate formula [6]:

Δuk|k =
∑p

i=1 ãi ·
(
yk − ỹk+i|k

)
∑p

i=1 (ãi)
2 + λ

. (10)

Most of MIMO (Multiple Input Multiple Output) control systems described in
the literature are systems designed for processes with two manipulated inputs
and two outputs. Let us now consider this case. Let

K = AT · κ · A + λ =
[
k11 k12
k21 k22

]
. (11)

Then, the values of manipulated variables can be calculated using the following
formula:[

Δu1
k|k

Δu2
k|k

]
=

1
k11 · k22 − k12 · k21

·
[
k22 −k12

−k21 k11

]
· AT · κ · (y − ỹ) ; (12)

more details one can find in [6].
Remark 1. Calculation of the control signal in two cases considered above is very
simple. It consists in making a number of basic arithmetic operations. Inclusion of
the disturbance measurement in the controllers does not influence the simplicity
of the approach significantly. It is because, the model the algorithm is based on
is extended appropriately and then only the free response is changed (contains
additional components dependent on the estimated disturbances).
Remark 2. For systems with more inputs and outputs the solution (9) can be
obtained using a numerical procedure to inverse the matrix K. In such a case,
however, one can take into consideration application of numerical predictive
control algorithms [4,5].
Remark 3. If one needs to take the control signal constraints into consideration
then a mechanism of control projection on constraint set can be applied. The
mechanism is simple and consists in application of the following rules of modifi-
cation of increments of manipulated variables:

• for changes of the manipulated variables:
— if Δuj

k|k < Δuj
min, then Δuj

k|k = Δuj
min,

— if Δuj
k|k > Δuj

max, then Δuj
k|k = Δuj

max;
• for values of the manipulated variables:

— if uj
k−1 +Δuj

k|k < uj
min, then Δuj

k|k = uj
min − uj

k−1,

— if uj
k−1 +Δuj

k|k > uj
max, then Δuj

k|k = uj
max − uj

k−1.

3 Simulation Experiments

The algorithms with disturbance measurement mechanism were tested in the
control system of a nonlinear plant with delay. The control plant is a distillation
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column and is described by the Hammerstein model (designed at the Institute of
Control and Computation Engineering jointly with specialists from the Institute
of Industrial Chemistry). It means that the linear dynamic block is preceded
by the nonlinear static block. Structure of the model is shown in Fig. 1. (More
information about Hammerstein models one can find, e.g. in [2].)

Fig. 1. Structure of the Hammerstein model of the distillation column; symbols are
detailed in the text

In the model, the output variable y is the impurity of the distillation product
(counted in ppm). The manipulated variable u is the reflux to product ratio (the
higher it is the purer product is obtained). The disturbance variable xf is feed
composition; z is the output of the static block and input of the linear dynamic
block.

The static characteristics of the plant are shown in Fig. 2. These characteristics
were modeled using a polynomial of the fifth order.

Fig. 2. Static characteristics of the distillation column

The transfer function describing the linear part of the model is as follows:

G(s) =
e−80s

150s+ 1
, (13)

where time constants are given in minutes.
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In order to design the FDMC controller, a Takagi–Sugeno model (2) was
obtained; a sampling time Ts = 40 min was assumed. The step responses were
collected near three operating points; the assumed membership functions are
shown in Fig. 3.

Fig. 3. Membership functions of the control plant model

The example results are shown in Fig. 4. The assumed values of parameters of
the FDMC controller are: prediction horizon p = 22 and λ = 2 · 107. Responses
to the change of the set–point value to y1 = 300 ppm and to y2 = 400 ppm can
be observed during the first 1000 minutes. The character of both responses is
the same. Thus, the nonlinear FDMC controller used during the test manifests
its advantages.

In the 1000th minute the disturbance variable xf changed from xf0 = 0.81
to xf1 = 0.82. In these conditions the mechanism of disturbance measurement
utilization was tested. It was assumed that the change of the disturbance is de-
tected during 40 minutes. It is a reasonable assumption because composition
measurement should be possible even in shorter time. After application of the
mechanism the output value changes much less (solid lines in Fig. 4) comparing
to the case when the mechanism was not used (dotted lines in Fig. 4). It can be
also noticed in the control signal that thanks to using the disturbance measure-
ment the controller reacts much earlier (80 minutes earlier) to the change of the
disturbance. It illustrates that the proposed mechanism is very useful especially
in the case of control plants with large delays.

There was also made another experiment (Fig. 5). The same change of the
disturbance was made as in the first experiment but also failure of the sensor
was simulated. It was assumed that the sensor brakes down in the 800th minute
and indicates all the time the same value. In such a case, change of the xf

disturbance is not compensated at all (dotted lines in Fig. 5). In the case, when
the mechanism of disturbance measurement utilization was applied (solid lines in
Fig. 5), the disturbance is compensated to a large extent. It is not compensated
completely because of modeling inaccuracy. It should be, however, noticed that
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Fig. 4. Responses of the control system with the FDMC controller to the changes
of the set–point value to y1 = 300 ppm and y2 = 400 ppm and to the change of the
disturbance xf in the 1000th minute; disturbance not measured (dotted lines), measured
with delay of 40 minutes (solid lines); right – output signal, left – control signal

the result is surprisingly good taking into account delay of the measurement and
that it was assumed that the sensor failure is undetected (no reconfiguration is
done).

Fig. 5. Responses of the control system with FDMC controller to the change of the
set–point value to y2 = 400 ppm and to the change of the disturbance xf in the 1000th

minute, after sensor failure; disturbance not measured (dotted lines), measured with
delay of 40 minutes (solid lines); right – output signal, left – control signal

4 Summary

The mechanism of disturbance measurement utilization added to the easily re-
configurable predictive controllers is discussed in the paper. The controllers were
modified in such a way that their simplicity is maintained. Thanks to the method
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of their formulation the control law is easily obtained at each iteration. Using an
example, it is shown that the discussed mechanism of disturbance measurement
utilization, though simple, can bring significant improvement of control perfor-
mance. The mechanism is of crucial importance when a sensor fault occurs in the
system. Then, at least one of the control loops is broken and quality of the model
becomes especially important. Thus it is advisable to use a nonlinear (e.g. fuzzy)
process model instead of a linear one and fully exploit all available information
about disturbances.
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Abstract. In this paper we have proposed a biometric-based authentication  
system based on rough set theory. The system employed signature for authenti-
cation purpose.  The major functional blocks of the proposed system are pre-
sented. Information is extracted as time functions of various dynamic properties 
of the signatures. We apply our methodology to global features extracted from a 
108-users database. Thirty-one features were identified and extracted from each 
signature.  Rough set approach has resulted in a reduced set of nine features that 
were found to capture the essential characteristics required for signature  
identification. Low error rates obtained in experiments illustrate the feasibility 
of using Rough Set as a promising technique for online signature identification 
systems. 

Keywords: Biometric, Rough Set, Online Signature Identification, Global Fea-
tures, Naïve Bayes. 

1   Introduction 

With the rapid progress in application areas such as enterprise wide network security 
infrastructures, government IDs, secure electronic banking and investing,  health and 
social services, the need for highly secure identification and personal verification 
technologies is becoming apparent[18]. 

Biometrics are automated methods of authenticating an individual’s identity based 
upon physical or behavioural characteristics. The aim of such systems is to 
differentiate between the characteristics and behaviours of each person and thus help 
to identify a person immediately [4].  Identification of physiological traits is based on 
the measurement of certain parts of the body; amongst other that are used as working 
tools are fingerprints, facial factions, iris, geometry of the hand, DNA or retina [19]. 
However, The behavioural identification include certain activities of the person such 
as, voice, handwriting, signature, walking gait and the manners of using mouse or 
keys a keyboard [15]. 
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The two most widely used approaches for signature identification are offline and 
online. In Offline signature recognition the presence of the user is not necessary as it 
compares the various characteristics of a pre-recorded signature image in order to 
reach to a correct decision.  On the other hand, online approach utilizes a number of 
parameters associated with the stylus and electronic writing pad for determining the 
authenticity of the signature [1],[3].  These parameters include speed, direction, 
pressure of the stylus, number order of the strokes, etc.   

Research on online signature-based biometric has been ongoing since 1977 due to 
the improvement carried out in acquisition techniques.  Yanikoglu and Kholmatov [16] 
have used the Dynamic Time Warping (DTW) to align signatures based on two local 
features (Δx and Δy). Afterward, three reference set is calculated with respect to that 
user’s training set. Next, Principle Component Analysis (PCA) is performed to decor-
relate the three distances and classify on this last measure. Nevertheless, there is still 
two main drawbacks of using DTW; namely heavy computational overhead and that 
the resampling process usually include the lost of important local details so that at the 
end forged signatures are closely matched with the genuine ones. Khan et al. [8] pro-
posed a new interesting stroke-based algorithm that splits velocity signal into various 
bands. Based on these bands, strokes are extracted which are smaller and simpler in 
nature. Training of the proposed system revealed that low- and high-velocity bands of 
the signal are unstable, whereas the medium-velocity band can be used for discrimina-
tion purposes. Euclidean distances of strokes extracted on the basis of medium-velocity 
band are used for verification purpose. The experiments conducted show improvement 
in discriminative capability of the proposed stroke-based system with an Equal Error 
Rate (ERR) of 2.39% with a database of 15000 signatures gathered from 25 signers, 
each signer was asked to contribute with 600 signatures. 

Nanni and Lumini [12] proposed an online signature verification system based on 
local information and on a one-class classifier; the Linear Programming Descriptor 
classifier (LPD). The information was extracted as time functions of various dynamic 
properties of the signatures, then the discrete 1-D wavelet transform (WT) was per-
formed on these features. The Discrete Cosine Transform (DCT) was used to reduce 
the approximation coefficients vector obtained by WT to a feature vector of a given 
dimension. The Linear Programming Descriptor classifier was trained using a little 
subset of the DCT coefficients. Smaneh and Mohsen [5] introduce a new method 
based on image registration, discrete wavelet transform and image fusion for identifi-
cation and verification of Persian signatures. 

Rough set theory, a relatively new mathematical theory which was introduced by 
Pawlak in early 1980s [14] [15]. It has quickly gained popularity in the field of artifi-
cial intelligence, robotics and uncertainty management. Its usefulness is apparent in 
handling knowledge. 

Rough Set theory is very useful, especially in handling imprecise data and extract-
ing relevant patterns from crude data for proper utilization of knowledge.  

In this paper we introduce a rough set as a new methodology in signature identifi-
cation system. Rough Set theory was used to improve the classification performance 
of signature identification systems as well as a dimensionality reduction technique to 
discover the most information rich feature from our data set. 
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This paper is organized as follows. Section 2 gives a brief introduction to rough 
sets. Section 3 discusses our proposed online signature authentication system in detail. 
Experimentation is covered in Section 4 including data preparation and its characteris-
tic, analysis, results and discussion of the results and finally, conclusions are provided 
in Section 5. 

2   Rough Sets: Basic Notation 

The original rough set theory was proposed by Pawlak [14] [15]. This theory is 
concerned with the analysis of deterministic data dependencies.   
 

Definition 1 (Information System). Information system is a tuple (U, A), where U 
consists of objects and A consists of features. Every a ∈  A corresponds to the func-

tion aVUa →:  where Va  is the value set of a. In the applications, we often distin-

guish between conditional features C and decision feature D, where C ∩ D =φ . In 

such cases, we define decision systems (U, C, D). 
 

Definition 2 (Lower and Upper Approximation). In rough sets theory, the approxima-
tion of sets is introduced to deal with inconsistency. A rough set approximates tradi-
tional sets using a pair of sets named the lower and upper approximation of the set.  
Given a set AB ⊆ , the lower and upper approximations of a set UY ⊆  are defined 
by, respectively, 

,][
][:
U

XBxx
BxYB

⊄

=  (1)

U
Φ≠∩

=
XBxx

BxYB
][:

][      (2)

The positive region of X is defined as: 

XCDPOS
DIndUXX

C U
/:

)(
∈

=  (3)

)(DPOSC  is the set of all objects in U that can be uniquely classified by elementary 

sets in the partition U/IndD by means of C [6]. The negative region NEGC(D) is  
defined by: 

XCUDNEG
IndoUXX

C U
/:

)(
∈

−=  (4)

is the set of all objects can be definitely ruled out as member of X. The boundary re-
gion is the difference between upper and lower approximations of a set X that consists 
of equivalence classes having one or more elements in common with X; it is given by 
the following formula: 

XBXBXBNDB −=)( . (5)
[ 
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Definition 3 (Degree of Dependency). Given a decision system, the degree of de-
pendency of D on C can be defined as: 

,/)(),( UDPOSDC C=γ  (6)

A reduct is a subset CR ⊆ such that  

),(),( DRDC γγ = . (7)

The reduct set is a minimal subset of attributes that preserves the degree of depend-
ency of decision attributes on full condition attributes. The intersection of all the  
relative reduct sets is called core. 

3   The Proposed Online Signature Authentication System 

In our proposed system, Topaz’s IdGem 1x5 is used for acquisition purpose, which is 
a non sensitive pressure tablet with a visual feedback with an LCD screen that gives 
the signer a natural feeling of signing on ordinary paper.  At each sample point, we 
obtain the (x,y) trajectories (x[n], y[n]), n = 1, . . . ,Ns, where Ns is the number of 
samples of the signature  of the signature trajectory along with the time stamp and 
number of pen-ups are all recorded. Figure 1 show the block diagram of our proposed 
online signature authentication system which comprises of three main phases. Follows 
will be introducing a detailed description of the model. 

Signature
Preprocessing

Feature
Extraction

Decision

Dynamic Global 
Feature

Min-Max 
Normalization 

Topaz IDGem 
LCD 1x5 
Authentec

Dimensionality Reduction Rule Genetation Matching

Rough Set Based Classification 

Discretization

 

Fig. 1. The overall framework of the proposed system 
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3.1   Preprocessing Phase 

Preprocessing operations may include normalization with respect to size, placement 
and orientation, re-sampling and smoothing of signature. Since the captured 
signatures typically have different dynamic ranges, we have adapted a simple 
approach to minimize this range with respect to the maximum and minimum values 
[11]. Min-max normalization is the simplest of the score normalization techniques. 
The normalization shifts the minimum and maximum scores to range between 0 and 
1, respectively, thus this normalization does not change the underlying distribution of 
the data except for a scaling factor. This is performed as shown in the following 
equation [10]: 

)min()max(

)min(
,

)min()max(

)min( '' yy

yy

xx

xx yx −
−=

−
−=  (8)

3.2   Feature Extraction Phase 

Our interest is to find the most reliable and suitable set of dynamic features to be used 
in our approach, so we decided to consider global features. Table 1 shows a list of 31 
global features that we have used in this paper. They represent a collection of some of 
the statistical features that have been widely used, studied, and reported in literature 
[2] [6] [9] [12] [13]. 

Table 1. Set of the 31 global features and their description 

Feature                      Description 
1. SNx Mean of all normalized coordinates in X direction 
2. SNy Mean of all normalized coordinates in Y direction  
3. Smax Number of times the pen was lifted over the entire signature. 
4. Svx Mean of velocity over all coordinates in X direction 
5. Svy Mean of velocity over all coordinates in Y direction 
6. Sax Mean of acceleration over all coordinates in X direction 
7. Say Mean of acceleration over all coordinates in Y direction 
8. SR Rhythm or the speed of pen tracing out the signature] 
9. RMSvx Root mean square of velocity in X direction 
10. RMSvy Root mean square of velocity in Y direction 
11. RMSax Root mean square of acceleration in X direction 
12. RMSay Root mean square of acceleration in Y direction 
13. MaxAx Maximum acceleration in X direction 
14. MaxAy Maximum acceleration in Y direction 
15. MaxVx Maximum velocity in X direction 
16. MaxVy Maximum velocity in Y direction 
17. R Correlation co-efficient 
18. Zvx Sign changes within velocity in X direction] 
19. Zvy Sign changes within velocity in Y direction 
20. Zax Sign changes within acceleration in X direction] 
21. Zay Sign changes within acceleration in Y direction] 
22. xAz Number of zeroes in acceleration in X direction 
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Table 1. (Continued) 

Feature                      Description 
23. yAz Number of zeroes in acceleration in Y direction 
24. Savxy Root mean square of (x,y) coordinates 
25. Npoints Number of x,y within signature 
26. Sdvx Standard deviation of velocity in X direction 
27. Sdvy Standard deviation of velocity in Y direction 
28. Sdax Standard deviation of acceleration in X direction 
29. Sday Standard deviation of acceleration in Y direction 
30. Dx Sum of changes between each consecutive points within X-coordinate 

(signature path horizontal length: total displacement in the X direction) 
31. Dy Sum of changes between each consecutive points within Y-coordinate 

(signature path vertical length: total displacement in the Y direction) 
 

3.3   Rough Set Based Classification Integrated Approach 

In this section, we will discuss in details the proposed rough set algorithm to analyze 
signature identification dataset. Our algorithm proposed here consists of set of stages. 
These stages leading towards the final goal of making identification through 
classification from information or decision system of the signature dataset. Rosetta 
rough set package [20] was used in the implementation of rough set techniques 
through all the experimental. The main steps of the rough set based classification 
integrated approach are provided below. 

 

 
Rough Set Based Classification Integrated Approach  

 
Input:          A database of 2160 signatures from 108 subjects signature. 
Output:        A confusion matrix represents the classification accuracy.   

1- Data Discretization:    Data discretiziation (or as in machine learning 
also referred to as discretization) is a procedure that takes a data set and  
converts all continuous attributes to categorical. In other words, it discretizes 
the continuous attributes.  We adopt the rough sets with Boolean reasoning 
(RSBR) algorithm proposed by Zhong et al. [17] for the discretiziation of 
continuous-valued attributes.  

2- Attribute Reduction:  The reduction technique used is the dynamic  
reduct.  The process of computing dynamic reduct can be seen as a  
combining normal reduct computation with re-sampling techniques [6]. 

3- Rule Generation:  The generated reducts are used to generate decision 
rules. The decision rule, at its left side, is a combination of values of  
attributes such that the set of (almost) all objects matching this combination 
have the decision value given at the rule’s rough side [14]. 

4- Classification:     The rule derived from reducts can be used to classify the 
data. The set of rules is referred to as a classifier and can be used to classify 
new and unseen data [16]. 
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4   Database and Experiments 

4.1   Database 

We started by building our own database to form the nucleus of a local database. It 
contains 2160 signatures gathered from108 different volunteer subjects. Among those 
subjects, 60 are females and two are left-handed. Each subject was asked to contribute 
20 signatures collected in two sessions that were held two to four weeks apart. Ten 
signatures were collected from each subject during each session. 

There were no constraints on how to sign, so the subjects signed in their most natu-
ral way; in an arbitrary orientation. Therefore there was a significant intra-class  
deformation and variation among signatures that belong to the same subject. 

4.2   Experiments 

Six experiments were conducted to evaluate the classifiers as well as the features. For 
all of the following experiments 65% split were used for training and the remaining 
35% for testing. 

The first four experiments were conducted using the 20 signatures from each sub-
ject for a total of 2160 signatures. 

• Experiment 1: In this experiment, all 31 features shown in Table 3 were 
used with the Naïve Bayes classifier. The correct classification rate achieved 
was 97.1%. 

• Experiment 2: One of the main objectives of this paper is to find the most 
effective set of dynamic features to be used in describing signatures.. Princi-
pal Component Analysis (PCA) [7] was used for feature reduction. Using the 
Naïve Bayes classifier with the 15 coefficients resulting from PCA resulted 
in 94% classification accuracy. 

• Experiment 3: In this experiment, the rough set approach was used to find 
the minimal reduct set of features. This has resulted in the following 9 fea-
ture numbers: {1,2,3,4,5,8,10,11,30} from Table 3.  They correspond to the 
following features: {SNx, SNy, sMax, SVx, SVy, SR, RMSVy, RMSAx, ,Dx 
}. Using this features set with the Naïve Bayes classifier resulted in classifi-
cation accuracy of 96.3.  The following Table 2 shows some statistics of the 
above minimal reduct set. 

Table 2. Statistics of minimal reduct set 

Feature Mean Standard Deviation Correlation 
1 0.52 0.077 0.174 

2 0.512 0.086 0.117 
4 4.176 2.67 0.088 
5 -0.0004 00.000327 -0.224 
6 0.000297 -0.00035 -0.095 
9 0.719 0.386 -0.008 
11 0.011 0.004 0.181 
12 0.002 0.001 -0.087 
30 2520.437 1621.87 0.044 
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• Experiment 4: In this experiment, the rough set classifier was used with the 
minimal reduct set containing the 9 features. The classification accuracy 
achieved was 98.5%. 

It was mentioned in section 4.1 that the signatures were collected over 2 sessions two 
to four weeks apart. In each session, 10 signatures were collected from each of the 
108 subjects. In the following 2 experiments we test each session separately. 

• Experiment 5:  Only the 10 signatures taken from each subject during the 
first signing session is considered. This results in a total of 1080 signatures. 
Using the Rough set classifier with minimal reduct set of 9 features resulted 
in 100% classification accuracy. 

• Experiment 6:  Only the 10 signatures taken from each subject during the 
second signing session is considered. This results in a total of 1080  
signatures. Using the Rough set classifier with minimal reduct set of 9  
features resulted in 99% classification accuracy. 

The difference in results between the two signing sessions as shown in Experi-
ments 5 and 6 was expected. The subjects themselves were less enthusiastic in 
completing the second signing session when they were approached few weeks 
later. This has resulted in higher intra-variations in the signatures than those of 
the first session. 

Table 3 shows the summary of the results of the six experiments carried 
above. It clearly demonstrates the suitability and superiority of using the pro-
posed Rough Set approach for both feature reduction and classification in online 
signature identification. 

Table 3. Summary of Results 

EXP# Total number 
of Signature 

Number of 
Signatures 
per subject 

Feature 
Reduction 
Technique 

Classifier Accuracy 

1 2160 20 No Naïve Bayes 97.1 
2 2160 20 PCA Naïve Bayes 94 
3 2160 20 Rough Naïve Bayes 96.3 
4 2160 20 Rough Rough 98.5 
5 1080 10 Rough Rough 100 
6 1080 10 Rough Rough 99 

5   Conclusion 

The research presented here has demonstrated the success of using the proposed 
Rough set approach in feature reduction and classification of online signatures. A 
local database of 2160 signatures from 108 subjects was built. Thirty-one global 
features were identified and extracted. Different feature reduction methods such as 
PCA and Rough sets were tested. This resulted in a minimal set of nine features.  
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Classification using Naïve Bayes and Rough set classifiers was performed. The 
reported results from several experiments confirmed the effectiveness of the proposed 
method. 
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Abstract. Eyewitness identification remains an important element in
judicial proceedings. It is very convincing, yet it is not very accurate. To
better understand eyewitness identification, we began by examining how
people understand similarity. This paper reports on analysis of study
that examined how people made similarity judgements amongst a vari-
ety of facial photographs: participants were presented with a randomly
ordered set of photos, with equal numbers of Caucasian (C) and First
Nations (F), which they sorted based on their individual assessment of
similarity. The number of piles made by the participants was not re-
stricted. After sorting was complete, each participant was then asked to
label each pile with a description of the pile’s contents. Following the
results of an earlier study, we hypothesize that individuals may be using
different strategies to assess similarity between photos. In this analysis,
we attempt to use the descriptive pile labels (in particular, related to lips
and ears) as a means to uncover differences in strategies for which a clas-
sifier can be built, using the rough set attribute reduction methodology.
In particular, we aim to identify those pairs of photographs that may be
the key for verifying an individual’s abilities and strategies when recog-
nizing faces. The paper describes the method for data processing that
enabled the comparisons based on labels. Continued success with the
same technique as previously reported to filter pairs before performing
the rough sets analysis, lends credibility to its use as a general method.
The rough set techniques enable the identification of the sets of photo-
graph pairs that are key to the divisions based on various strategies. This
may lead to a practical test for people’s abilities, as well as to inferring
what discriminations people use in face recognition.
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1 Introduction

Eyewitness identification holds a prominent role in many judicial settings, yet it
is generally not accurate. Verbal overshadowing [1] is an effect that can obscure
a witness’s recollection of face when he is asked to describe the face to create
a composite sketch. Alternatively, if the witness is asked to examine a large
collection of photos, her memory may become saturated and she may mistakenly
judge the current face similar to another she has examined (i.e., inaccurate source
monitoring) and not to the one she is trying to recall [2]. We hypothesize that
if the presentation of images can be personalized, the eyewitness may have to
deal with fewer images, minimizing both of the negative effects discussed. This
research takes more steps along that path.

This paper discusses an analysis of data from a sorting study, which avoided
verbalization completely while sorting. Each participant was asked to group a
stack of 356 photos according to perceived similarity. One half of the photos
(n = 178) depicted Caucasian males, taken in the southern United States of
America. The other half of the photos depicted First Nations males, taken at
different locales in the Canadian province of Saskatchewan. ‘First Nations’ is the
term which has replaced ‘Indian’ in most cases. In Saskatchewan, there are 72
First Nations 1 governments or bands. As a participant encountered a photo,
she could only place that photo and not disturb any existing piles. Indirectly,
each participant made 63,190 pairwise similarity judgements. Once sorting was
complete, each participant was asked to verbally label each pile according to
the similarity used to create that pile. In this paper, we examine whether the
occurrence of a label may be a good indicator of sorting performance.

We discuss the extension of previously published methods [3] by allowing the
classification of facial photograph sorting performance based on verbal descrip-
tions. The earlier work examined whether race (Caucasian/First Nations) had
any impact on facial photograph sorting performance, which is also of interest
because of the existence of a “cross-race” effect [4] which may make identifi-
cations of faces more difficult if those faces are not of the same race as the
viewer.

Furthermore, we present several more successful examples of the filtering tech-
nique used to substantially reduce the processing time and effort needed to build
a completely accurate classifier, if one exists.

Section 2 describes the method of making piles based on the presence or ab-
sence of a label. Section 3 describes the filtering technique developed to reduce
the number of photo pairs needed as input to the attribute reduction methodolo-
gy, and the results obtained for “ears/not-ears” and “lips/not-lips” label decision
classes. Section 4 shows how to combine results from the previous study with
those first reported here, to make a more complete test of participant perfor-
mance. Section 5 presents conclusions and avenues for future work.

1 source: http://fsin.com
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Table 1. Labels for facial parts, listed from the top of head downwards, followed
by general characteristic labels. Notice that many labels are used for every picture.
This analysis only looked at the presence or absence of a label, so “ears” and “lips”
were chosen (44%). We sought labels that were used for approximately 50% of the
photos, because we required an equal number for which the label was not used. In
this case, we randomly selected 157, of the 199, for which the labels were not used in
order to perform our analysis. For the parts that were identified in all photos, such as
“hair”, “eyes”, “head/face shape”, or “skin/complexion”, we might be able to use them to
distinguish photos (as in “big head” compared to “small head”), but we did not record
the data in this way.

Label Photos Percentage
hair 356 100
forehead 65 18
eyebrows 217 61
ears 157 44
nose 259 73
eyes 356 100
cheeks 25 7
lips 157 44
teeth 14 4
jaw/chin 318 89
neck 25 7
head/face shape 356 100
head/face size 125 35
skin/complexion 356 100
facial hair 243 68

2 Analysis of Verbal Descriptions

After sorting all 356 photos, all participants were asked to describe with a label
the similarity embodied in each pile that they had created. The label or labels
attached to each pile were then assigned to each photo with the pile. This process
was repeated for all 25 participants. Table 1 shows the unique occurrences of
various labels with photos.

The two labels occurring with approximately 50% of the photos (“ears” and
“lips”) were chosen for further analysis, following the procedure outlined in Hep-
ting et al. [3]:

1. choose N = 157 of the photos to which the label was not attached (from 199
possible). Therefore, the label and not-label sets each have 157 photos

2. for each participant, exclude from the pile data all 42 of the photos not in
the label/not-label sets

3. analyze the make-up of each pile, in terms of label (L) and not-label (NL)
photos (only these photos remain in the pile). Our null hypothesis (H0) is
that each pile comprises the same proportion of L and NL photos. Using
the CHITEST function in Microsoft Excel, we test the independence of the



Classification of Facial Photograph Sorting Performance 573

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 1. Each point reflects the mix of photos classified by a participant. A point in the
center of the triangle represents an equal mix of photos classified L (label), NL (not-
label), and U (undecided). This figure shows the distribution of participants based on
their classification of photos with respect to the “ears” label. Many points are located
between Vertex 1 and Vertex 2, representing approximately equal numbers of photos
classified as “ears” and “not-ears”. If a point is near Vertex 3, that participant classified
most of the photos as “Undecided”. For the “ears” label, we constructed 2 decision
classes, “uses-ears” and “uses-not-ears”, based on the percentage of “undecided” photos.
Participants with more than 60% “undecided” photos were put into “uses-not-ears”
decision class and the others were put into “uses-ears”.

observed ratio of L to NL (as a percentage) against an expected equal ratio
(50%:50%). If p (returned from CHITEST) < 0.05, we rejected H0 and either
classified the pile as L, if L >NL or as NL if NL > L. The pile was classified
as U (for undecided) if p ≥ 0.05 (and we could not reject H0). All pictures
in that pile were then labelled as L, NL, or U. The total number of photos
classified as L, NL, and U was expressed as a percentage (see Figure 1).

Figure 1 shows all participants plotted according to their percentages of photos
classified as L, NL, and U for the “ears” label. Vertex 3 represents undecided (U)
and points near this vertex represent participants who classified most photos as
U. A threshold of 60% was set for the percentage of U and two groups were
formed. We hypothesize that these groups correspond to different strategies for
facial recognition, which we have labelled as “uses-ears” (U < 60%, n = 15)
and “uses-not-ears” (U ≥ 60%, n = 10). In other words, we hypothesize that
“ears” is being used by former group but not by the latter. In the same way for
“lips”, a threshold of 60% was set for the percentage of U and two groups were
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formed. We hypothesize that these groups correspond to different strategies for
facial recognition, which we have labelled as “uses-lips” (U < 60%, n = 9) and
“uses-not-lips” (U ≥ 60%, n = 16). In other words, we hypothesize that “lips” is
being used by former group but not by the latter.

We seek to find a simple way to classify participants according to these groups,
which will allow for personalization of the eyewitness identification process. The
strategy (uses-ears or uses-not-ears, uses-lips or uses-not-lips) then becomes the
decision variable as we begin to apply the rough set attribute reduction method-
ology [5]. The objective is to reduce the number of pairs required as input to
discriminate between the two strategies, as the original number of pairs is im-
practical.

3 Pair Filtering

For each participant, a decision is made (directly or indirectly) about whether
a pair of photos is similar (same pile) or not (different piles). 63,190 pairs can
be formed from the 356 photos used in this study, which is a very large input
to the analysis stage. Thus, we have pursued a method to reduce the number
of input pairs to the analysis stage, based on the following hypothesis (also
discussed in Hepting et al. [3]): the pairs most useful in constructing reducts
and rules will be those which are rated most differently between the decision
classes, similar to the feature extraction/selection phase in knowledge discovery
and data mining.

We used the following method to test the hypothesis: we compute the total
distance for a pair within each decision class by normalizing the sum of all
participant ratings. If all participants in the same decision class rate the pair
as similar, the distance is 0. If all participants in the same decision class rate
the pair as different, the distance is 1. In general, the distance is computed as
the sum of similarity ratings (each one is either 0 or 1) divided by the number
of participants in the decision class. We first look at the minimum of these two
distances, d = min(D1, D2), in order to find a pair that is rated as very similar
by participants in one of the decision classes. If a pair is rated as very similar by
participants in both decision classes (both D1 and D2 are small), that pair will
not help to discriminate between the decision classes. Therefore, we also look
at the gap between the two distances, Δ = |D1 −D2|. The pairs which have a
small d and a large Δ are those which meet the criterion of being rated most
differently between the decision classes. Table 2 shows the collection of these
values for ears and lips. The row values indicate the minimum distance (d) and
the column values indicate the gap (Δ).

We used the Rough Set Exploration System (RSES) [6] to analyse the sets
indicated by this filtering. We proceed through each table in Table 2 row by row
from the top left to the bottom right, until a classifier with 100% accuracy and
100% coverage is found. Our procedure is outlined in the following:
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Table 2. The values in the table indicate the number of pairs selected by each combi-
nation of minimum distance (row) and gap (column). The set of pairs used for further
processing is indicated in bold. On the left, results of filtering for uses-ears/ uses-not-
ears. On the right, results of filtering for uses-lips / uses-not-lips. One pair of photos
from each set is illustrated Figure 2. The input to RSES (Rough Set Exploration Sys-
tem) [6] for uses-lips/uses-not-lips is shown in Table 3.

Gap (Δ)
d ≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5

≤ 0.1 2 9 31 59 108
≤ 0.2 2 22 77 250 398
≤ 0.3 2 22 159 498 1246
≤ 0.4 2 22 159 675 1883
≤ 0.5 2 22 159 675 2314

Gap (Δ)
d ≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5

≤ 0.1 0 0 0 2 2
≤ 0.2 0 3 14 16 46
≤ 0.3 0 3 24 78 179
≤ 0.4 0 3 24 166 762
≤ 0.5 0 3 24 166 1356

Fig. 2. On the left, one of the pairs of photos important in the classification of par-
ticipants according to uses-ears/uses-not-ears. On the right, one of the pairs of photos
important in the classification of participants according to uses-lips/uses-not-lips.

1. Split: Split input file (50/50): Each file in the analysis was split with 50% of
participants in a training set (data from 12 participants) and 50% of partic-
ipant’s data (data from 13 participants) in a testing set. The files comprised
objects each representing a pairwise comparison of facial photographs (0 if
similar, 1 if dissimilar). The decision class was the strategy (either uses-
ears/uses-not-ears (illustrated in Figure 1) or uses-lips/uses-not-lips).

2. Train: Calculate the reducts in training file using genetic algorithms in RSES.
The genetic algorithms procedure calculates the top N reducts possible for
a given analysis. For the purposes of our analysis, we chose N = 10 in order
to pick the top 10 reducts possible (if indeed 10 top reducts could be found).
Generate rules from these reducts.

3. Classify: Classify the 25 participants according to the generated rules, and
observe the accuracy and coverage of the classifier.

We conducted k-fold cross-validation [7], with k = 10. If a classifier with 100%
accuracy and 100% coverage is not found within 10 tries, it may still exist.
Choosing 13 of 25 participants for training leads to a possible

(25
13

)
= 5, 200, 300

combinations and classifiers.
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Table 3. 16 pairs selected as input to RSES (Rough Set Exploration System) for
classification based on uses-lips/uses-not-lips (d = 0.2, Δ = 0.6)

Photograph Pairs

object 19
69
a-
20
94
a

42
11
a-
58
93
a

26
60
a-
81
27
a

12
96
a-
28
11
a

37
22
a-
41
58
a

20
94
a-
66
82
a

05
8-
14
9

08
3-
11
7

17
16
a-
70
01
a

04
0-
10
8

10
32
a-
18
67
a

00
11
a-
74
53
a

12
96
a-
66
82
a

52
41
a-
81
64
a

00
79
a-
65
24
a

10
32
a-
88
31
a

class
O:1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0
O:2 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1
O:3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O:4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O:5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O:6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O:7 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
O:8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
O:9 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
O:10 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
O:11 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0
O:12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
O:13 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
O:14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O:15 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1
O:16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
O:17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
O:18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O:19 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
O:20 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
O:21 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
O:22 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0
O:23 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
O:24 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
O:25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4. The distribution of the 25 participants between groups identified by combi-
nations of strategies based on the apparent use of race, ears, and lips in their decision
making

Group Members
uses-not-race, uses-not-ears, uses-not-lips 4
uses-not-race, uses-not-ears, uses-lips 1
uses-not-race, uses-ears, uses-not-lips 2
uses-not-race, uses-ears, uses-lips 4

uses-race, uses-not-ears, uses-not-lips 4
uses-race, uses-not-ears, uses-lips 1
uses-race, uses-ears, uses-not-lips 6
uses-race, uses-ears, uses-lips 3
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Table 5. The values in the table indicate the number of pairs selected by each combi-
nation of minimum distance (row) and gap (column). The set of pairs used for further
processing is indicated in bold. On the left, results of filtering for uses-race,uses-ears,
uses-not-lips / not(uses-race,uses-ears, uses-not-lips). On the right, results of filtering
for race/not-race. The 7 pairs chosen for race here are different than those used in
Hepting et al. [3], but they were selected according to the method outlined here.

Gap (Δ)
Dist. ≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5
≤ 0.1 0 10 49 107 149
≤ 0.2 0 12 90 389 852
≤ 0.3 0 12 90 389 853
≤ 0.4 0 12 90 478 1486
≤ 0.5 0 12 90 478 1590

Gap (Δ)
Dist. ≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5
≤ 0.1 0 0 0 1 2
≤ 0.2 0 0 0 7 11
≤ 0.3 0 0 17 82 197
≤ 0.4 0 0 17 130 401
≤ 0.5 0 0 17 130 798

Table 6. Accuracy (A) and Coverage (C) for each classifier over 10 trials (with mean
and standard deviation following each). FA/FC indicates the number out of the 10
trials that had 100% accuracy and 100% coverage. This is followed by the pairs used
to classify according to each strategy. Photos ending in ‘a’ are Caucasian, others are
First Nations. None of the pairs is mixed. No pair repeats, though some individual
photos are included with more than 1 pair. 4 First Nations and 3 Caucasian photos are
used as input for the race strategy classification. For the ears strategy classification,
almost all are First Nations photos, whereas for the lips and the combined strategy
classifications, almost all the photos are Caucasian.

Race Ears Lips Combined
A(92.38, SD : 4.38) A(99.20, SD : 1.69) A(94.40, SD : 3.86) A(97.20, SD : 2.70)

C(99.60, 1.26) C(100, SD : 0) C(100, SD : 0) C(97.60, 7.59)
FA/FC: 1 FA/FC: 8 FA/FC: 3 FA/FC: 3
004-050 033-121 0011a-7453a 0576a-8530a
039-125 037-176 0079a-6524a 062-178
050-176 038-068 040-108 1338a-6553a

0662a-4919a 058-157 058-149 1513a-1859a
087-142 095-106 083-117 1907a-9929a

2325a-8650a 111-121 1032a-1867a 4099a-4459a
6281a-9265a 146-172 1032a-8831a 4099a-6553a

152-153 1296a-2811a 4488a-6553a
4833a-9948a 1296a-6682a 6838a-8922a

1716a-7001a 7297a-9860a
1969a-2094a
2094a-6682a
2660a-8127a
3722a-4158a
4211a-5893a
5241a-8164a
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4 Combination

We made groups based on strategies: uses-race/uses-not-race [3], uses-ears/uses-
not-ears, and uses-lips/uses-not-lips. We found that the largest of these groups
was uses-race, uses-ears, uses-not-lips. The distribution of the 25 participants
between groups is shown in Table 4. Table 5 shows the relationship between the
minimum distance and gap for this largest group in Table 4.

Table 6 presents a comparison of the classifiers discussed, based separately on
different strategies identified (uses-race/uses-not-race, uses-ears/users-not-ears,
and uses-lips/uses-not-lips) and on a combined strategy uses-race AND uses-ears
AND uses-not-lips/NOT(uses-race AND uses-ears AND uses-not-lips) as identi-
fied in Table 4. The uses-race/uses-not-race classifier has been recomputed from
the earlier paper [3], according to the algorithm described here. It is interesting
to note that the average accuracy seems to be related to the first non-zero entry
in the table of filtered pairs. Table 6 shows that in order of most to least accurate
(with the position of the first non-zero entry, from the top-left in Tables 2 and 5,
in parentheses), we have: ears (1), combined (2), lips (4), and race(4).

5 Conclusions and Future Work

Cross-race identification of faces is an important topic of ongoing research [8],
and our sorting study seeks to contribute to this body of work. We have focused
on the labelling of similarity judgements as a way to understand the way people
perceive structure in the stimuli set.

Through this effort, we have found succinct tests to classify people into differ-
ent strategy groups (ears/not-ears, lips/not-lips). Namely, we demonstrated that
rough sets can help in accuracy and clarity of the results. It is interesting that
the decision table for “ears” comprises almost exclusively First Nations pairs,
and the decision table for “lips” comprises almost exclusively Caucasian pairs.
Neither has any mixed pairs. Therefore, we hope that these results will help in
our efforts to better understand the cross-race effect [4].

This work lends support to our filtering technique as a broadly applicable
method. In general, all the classifiers have performed well, but the one based
on the “ears” label is clearly the best among them. We still need to understand
what strategy might be at work in these cases, but the accuracy of the classifier
indicates a clear difference between the decision classes. Although we have not
done any sort of exhaustive testing of all pairs to verify our selection criteria
for filtering, that we have been able to generate consistently accurate classifiers
from very small fractions of the total pairs is a very encouraging sign.

We have a test to classify participants. Further work will be devoted to vali-
dating it against the performance on eyewitness identification tasks, and to using
it to help clarify the strategies being employed by participants.
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Abstract. In this paper we investigate the problem of recognizing the
full set of instruments playing in a sound mix. Random mixes of 2-5
instruments (out of 14) were created and parameterized to obtain ex-
perimental data. Sound samples were taken from 3 audio data sets. For
classification purposes, we used a battery of one-instrument sensitive
random forest classifiers, and obtained quite good results.

1 Introduction

Automatic recognition of instruments playing in a given musical recording is
an interesting and ambitious problem, which has been studied intensively us-
ing various methods. In the past, our team has contributed several studies to
this area. In particular, we have developed a methodology for recognition of a
predominant sound in musical mixes [12,20]. In the current paper we are inter-
ested in much more difficult problem – identification of all instruments playing
in mixes generated using up to five instruments. We apply an extension of the
methodology developed for the earlier problem [12]. The outcomes of this results
can be applied in automatic labeling and content-based searching of audio data
(in order to find pieces with given instruments playing), as well as in aiding
automatic music transcription – notes identified through pitch tracking can be
then attributed to particular instruments, thus helping to extract the score [11].

Research on automatic identification of instruments in audio data was first
performed on isolated monophonic (monotimbral) sounds, with successful appli-
cation of k-nearest neighbors, artificial neural networks, rough-set based classi-
fiers [22], support vector machines (SVM – see e.g. [6,7]). Also, research was next
performed on polyphonic (polytimbral) data, when more than one instrument
were playing at the same time [5,10]. In this case, separation of these sounds
from the audio source can be attempted [5]. Interested reader can find results of
the research on polytimbral instrumental data in [2,9,14,19,20,23].

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 580–589, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Various scientists utilized different data sets: of different number of classes (in-
struments and/or articulation), different number of objects/sounds in each class,
and basically different feature sets, so the results are quite difficult to compare.
Still, the recognition of instruments in monophonic recordings can reach 100%
for a small number of classes, more than 90% if the instrument or articulation
family is identified, or about 70% or less for recognition of an instrument when
there are more classes to recognize. The identification of instruments in polytim-
bral mixes is usually lower, even below 50% for same-pitch sounds; more details
can be found in the paper describing our previous work [21]. Generally, recogni-
tion for monotimbral data is much easier, in particular for isolated sounds, than
for polytimbral data.

Random Forest (RF) is a classifier which comprises of a set of weak, weakly
correlated and non-biased classifiers – decision trees. It has been shown that
in many cases RF performs equally well or better than other methods on a
diverse set of problems [1]. In the previous study [12] we have shown that RF is
much better suited for recognition of the musical instruments than SVM which
is considered as the state-of-the-art method for machine learning applications.

2 Material and Methods

The audio data used in our research originate from 3 repositories, commonly ap-
plied in similar works: MUMS [16], the University of IOWA Musical Instrument
Samples [18], and RWC [4]. We chose the following instruments: B-flat clarinet,
cello, trumpet (C trumpet in MUMS), English horn, flute, French horn, marimba,
oboe, piano, tenor trombone, tubular bells, vibraphone, viola, and violin. Oc-
tave no. 4 (MIDI notation) of these instruments was used in our experiments (so
that the octave number was not discerning in classification). Thus, we limited
the amount of data to process, yet the experiments can be further expanded in
the future to full musical scale. We choose sustained articulation if possible, e.g.
vibrato for bowed strings. Isolated sounds of the instruments were then mixed to
create both training and testing data; we used mixes (as preparation to future
research on real recordings) to allow automatic labeling. The data were digitally
represented using 44.1 kHz sampling rate and 16-bit resolution, stereo; the left
channel was (arbitrarily) chosen for further works.

The music samples (mixes) were generated through the following procedure:

1. A number of instruments M in a sample is randomly chosen from 2-5 range.
2. For each instrument, a random representative sound file is selected – ran-

domly among different notes and recordings from 3 different databases.
3. M random numbers are drawn with uniform probability distribution and

normalized to have a sum of 1; those will become the weights of volumes of
instruments’ sounds in the mix.

4. All selected representative sound files are normalized to a globally common
RMS (Root Mean Square) level of the audio signal and mixed, with corre-
sponding weights. The resulting file is also normalized and converted to a
vector of descriptors stored along with the generated weights.
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In this way we obtained a database of mixes, represented by descriptors and an-
notated with the contribution of each instrument to the total sound varying be-
tween 0 and 1. Because we choose up to 5 out of 14 instruments, the average prob-
ability of including the instrument in the mix is equal to mean(2, 3, 4, 5)/14 =
0.25, and the distribution of weights has a high peak at 0. Therefore, we present
this distribution limited to (0, 1], as shown in Fig. 1.
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Fig. 1. Histogram of instrument weights that are greater than 0

2.1 Construction of the Descriptors

Since audio data (i.e. sequences of numbers representing quantized amplitude
of a waveform) are not well suited to use as input for RF classifiers, sound
parametrization was applied first to our audio data. There is no standard feature
set used in such research, still, MPEG-7 descriptors are often applied [8], as well
as other features describing time domain of sound, spectrum, time-frequency
features – based on Fourier or wavelet analysis etc. Other parameters that can be
applied include MFCC (Mel-Frequency Cepstral Coefficients), Multidimensional
Scaling analysis trajectories of various sound features, statistical properties of
spectrum etc., see e.g. [6].

The feature vector we used here is based on a parameterization applied in
our previous research [21]. However, relying upon feature importance measures
obtained through comparing RF classification on the original and randomized
feature values [12], we decided to limit the initial set of 219 features to only 54
on which the accuracy is kept. Our feature vector consists of [12]:

– MPEG-7 based descriptors [8]: AudioSpectrumSpread ; AudioSpectrumFlat-
ness for 25 out of 32 frequency bands; AudioSpectrumCentroid ; Harmonic-
SpectralCentroid, HarmonicSpectralSpread, HarmonicSpectralVariation,
HarmonicSpectralDeviation, LogAttackTime, TemporalCentroid ;
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– other features: Energy; MFCC – min, max, mean, distance (sum of dissim-
ilarity, i.e. absolute difference of values, of every pair of coordinates in the
vector), and standard deviation of MFCC vector; ZeroCrossingRate; RollOff ;
Flux ; FundamentalFrequency; r1, . . . , r11 - various ratios of harmonic partials
in spectrum: r1 – energy of the fundamental to the total energy of all har-
monics, r2: amplitude difference [dB] between 1st and 2nd partial, r3: ratio
of the sum of partials 3-4 to all harmonics, r4: partials 5-7 to all, r5: partials
8-10 to all, r6: remaining partials to all, r7: brightness – gravity center of
spectrum, r8, r9: contents of even/odd harmonics in spectrum.

Calculation of the parameters was performed using fast Fourier transform, with
120 ms analyzing frame and Hamming window (hop size 40 ms), which allows
analysis of the low-pitch sounds in the future (requiring long analysis frame be-
cause of long period), even for the lowest audible fundamental frequencies. Also,
experiments show that such a long analysis frame yields good results [3,10,21],
yet we realize that shorter frame could be used here [15,21].

Most of the features represent average value of frame-based attributes, cal-
culated for consecutive frames of a parameterized sound using sliding analysis
window as described above, moved through the entire sound file.

2.2 Random Forest Method

RF is an ensemble of classification trees, constructed using procedure minimizing
bias and correlations between individual trees. Each tree is built using different
N -element bootstrap sample of the training N -element set; the elements of the
sample are drawn with replacement from the original set, so roughly 1/3 of the
training data are not used in the bootstrap sample for any given tree.

Let us assume that objects are described by a vector of P attributes (features).
At each stage of tree building, i.e. for each node of any particular tree in RF, p
attributes out of all P attributes are randomly selected (p � P , often p =

√
P ).

The best split on these p attributes is used to split the data in the node. Each
tree is grown to the largest extent possible (no pruning). By repeating this
randomized procedure M times one obtains a collection of M trees – a random
forest. Classification of each object is made by simple voting of all trees.

2.3 Classification

The classification methods were modified in comparison with our previous study
[12]. Formerly, a single 14-class classifier was built using RF method. The de-
cision was simple – find the loudest instrument playing in the sample. In the
current study the task is more difficult. The sample may contain between 2
and 5 instruments and we want to identify all of them, employing the following
strategy.

We create a battery of 14 RF binary classifiers, each specialized in classifi-
cation of one instrument (vs. others); to train such a classifier we select 2000
samples in which its instrument weight is equal to 0 as negative training objects
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and 2000 samples in which its instrument weight is greater than w as positive
ones. We have created 6 classifier batteries by applying this procedure for w=0,
0.1, 0.2, 0.3, 0.4 and 0.5. The unused samples from the database formed the
test set (about 80,000 objects). When classifying a new object, each RF yielded
yes or no when recognizing or not the corresponding instrument. For each w,
the corresponding battery was tested. The result of a battery classification of a
sample was a vector of instruments for which the corresponding classifiers from
the battery yielded yes for this sample. In ideal case, only the classifiers trained
to recognize instruments which were present in the sample should yield yes, but
in reality only some classifiers will recognize instruments correctly; some will fail
to recognize the instrument when its indeed present in the sample, and some
will yield yes while the instrument is absent.

We performed experiments for the six sets as described above, in order to
find for which w the best classification is obtained. In this work we used R –
an environment for statistical computing [17]. The R package randomForest [13]
served as a RF implementation.

3 Results and Discussion

In our previous research, we conducted experiments aiming at the recognition
of the predominant sound of a single instrument, mixed with a background
composed of all other instruments’ sounds (with equal contributions) from the
data set. Various levels of background were tested, and the classification error in
the worst case (background at 50% level of the main sound) was equal to 10%.

In this research, our goal is to recognize more than one instrument in the
recording, even if it is much softer than the other sounds in the mix. The out-
comes of this research are presented in this section.

3.1 Classification Results

The recall as the function of the sound intensity for various classifiers is presented
in Fig. 2. Obtained results show that for a high intensity of instrument sound
(more than 50% of contribution to the total intensity) it is relatively easy to
recognize a given instrument. One can also observe that the sensitivity of the
classifier is a monotone function of the instrument weight in samples. Moreover,
adding training examples of low sound level (lowering w) increases the accuracy.
Also, we can see that the false positive rate decreases with increasing w. Finally,
it is easily seen that sensitivity of the classifiers is very low for mixes containing
sounds with intensity lower than w, whereas it is very similar for all classifiers
on the samples with high sound intensity (see bottom right panel of Fig. 2).
Detailed recall plots for classifiers developed for all instruments, using samples
containing all sound levels for each of our 14 instruments, are shown in Fig. 3.

The balance of the false positive (FP) rate and false negative (FN) rate, as
well as overall accuracy of classifiers for all instruments is shown in Table 1
(obtained for the full test-set, so the expected FP rate of a random classifier
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Fig. 2. Recall of binary classifiers trained with various w as a function of the weight
of a given instrument in the total mix. Top left: the average for the whole battery. Top
right: the most sensitive classifier (marimba). Bottom left: the least sensitive classifier
(flute). Bottom right: all classifiers for w = 0 (black) and w = 0.5 (gray). Recall for 0
represents false positive rate (misclassifications).

is 25%, as mentioned before). As we can see, FP rate decreases and FN rate
increases with increasing w. The highest accuracy was obtained for the classifier
trained on all samples with the sound intensity higher than 0.3 of the total.

We also checked the accuracy on the subsets of test samples in which the
target instrument weight is about 1/n, which corresponds to this instrument
playing in an equal n−tet, for n = 2 (duo), n = 3 (trio), n = 4 (quartet), and
n = 5 (quintet). The results are presented in Table 2. As expected, the identifi-
cation of sounds in duos is much easier than identification of instruments playing
in quintets. The other result is a very high difference in performance between
classifiers trained on the full set (w = 0) and those trained on the subset con-
taining high intensity sounds (w = 0.5). Generally, classification quality drops
significantly when classifier is used for recognition of sounds weaker than those
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Fig. 3. Recall of binary classifiers trained with w = 0 as a function of the weight of a
given instrument in the total mix. Top left: brass. Top right: woodwinds. Bottom left:
chordophones. Bottom right: idiophones.

used for its training. The best results are obtained for the classifier trained on
all possible combinations of sound intensities, i.e. w = 0. This classifier is able
to recognize correctly instruments playing in quintet in more than 75% of cases.
We can observe that the selection of the best classifier depends strongly on the
task at hand – whether we can afford high false negative or rather false positive
rate. For example, Kitahara et al. in [10] ascertain that high precision is more
important that high recall in case of the research they performed.

3.2 Instrument Similarity

Since the sounds used in mixes were randomly chosen, we expect that the re-
sults of instrument recognition would not be correlated, unless the correlation is
caused by misclassification due to e.g. similarity of sounds of particular instru-
ments. In Fig. 4 we may see the result of such analysis – instruments of similar
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Table 1. Classification results for the instruments in mixes: 1. B-flat clarinet, 2. cello,
3. trumpet, 4. English horn, 5. flute, 6. French horn, 7. marimba, 8. oboe, 9. piano, 10.
tenor trombone, 11. tubular bells, 12. vibraphone, 13. viola, and 14. violin

Instrument
1 2 3 4 5 6 7 8 9 10 11 12 13 14 all

w = 0
Accuracy [%] 77.0 83.7 79.6 81.3 80.8 74.1 85.4 76.9 84.7 76.0 78.7 76.3 78.7 80.8 79.6
FP rate [%] 15.9 11.4 14.8 12.0 11.9 18.3 12.6 16.8 9.3 16.5 17.3 21.3 15.9 14.2 14.9
FN rate [%] 7.1 4.9 5.6 6.8 7.3 7.6 2.0 6.3 6.0 7.5 3.9 2.4 5.4 5.1 5.6

w = 0.3
Accuracy [%] 82.4 86.8 83.0 83.3 84.4 77.4 86.7 80.9 85.4 79.9 82.8 81.5 82.4 83.9 82.9
FP rate [%] 5.6 4.9 6.3 4.9 4.6 11.0 5.8 7.8 4.4 8.2 7.3 11.0 8.4 7.3 7.0
FN rate [%] 12.0 8.3 10.7 11.7 10.9 11.6 7.5 11.3 10.2 11.8 10.0 7.5 9.1 8.8 10.1

w = 0.5
Accuracy [%] 80.4 84.9 81.7 81.0 83.6 78.4 81.8 79.8 82.8 79.2 80.7 80.6 81.7 82.3 81.3
FP rate [%] 2.7 2.0 1.9 1.8 1.4 4.5 2.4 2.9 1.2 3.6 1.9 3.9 3.4 2.5 2.6
FN rate [%] 16.9 13.1 16.5 17.2 15.0 17.1 15.8 17.2 16.0 17.2 17.4 15.5 14.9 15.2 16.1

timbre are close in this plot. Marimba, vibraphone, and piano constitute a group
in this figure. Indeed, these instruments sound similar, and their sounds have
similar temporal envelope: sharp attack, no sustained part, and long offset. Also,
violin, viola, and cello can be seen as a group in this graph; these instruments
represent a group of bowed strings. Tenor trombone is close to French horn –
these instruments represent brass group, so their timbre can also be considered
similar. Therefore, we can conclude about similarity between instrument sounds
on the basis of observations drawn from results of RF classification.

Table 2. Classification accuracy of recognition of target instruments playing with
sound intensity of the target instrument equal to 1/5, 1/4, 1/3, and 1/2 of the total,
i.e. quintet, quartet, trio, and duo respectively, for the classifiers for various w

w =
0 0.1 0.2 0.3 0.4 0.5

quintet 76.7% 73.1% 64.6% 44.3% 26.4% 13.8%
quartet 84.4% 82.4% 78.7% 60.6% 40.8% 23.5%

trio 90.7% 90.2% 88.8% 84.6% 66.5% 46.9%
duo 94.8% 94.8% 95.2% 95.3% 94.4% 83.9%

From musical point of view, some mistakes in classification can be also caused
by similarity of mixed instrument sounds to other instrument sounds – this is
often done in arrangement of instruments, since 2 or more instruments playing
together create a new sound, sometimes resembling other instrument. Therefore,
mixes can be easily misclassified for other instruments because they actually are
similar to them from timbral point of view.
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Fig. 4. 2D projection of instrument misclassification rate (i.e. of the 14×14 contingency
table). Nearby instruments are more often confused, so can be considered more similar.

4 Summary and Conclusions

In the current study we have applied the RF methodology for the analysis of
musical samples obtained by randomly mixing sounds of two up to five instru-
ments. The overall accuracy of sound recognition varies between 80% and 83%
in total and between 74% and 87% for individual instruments, depending on the
classifier and selection of the test set. The instrument most difficult to recognize
correctly was French horn, whereas marimba was easiest to recognize.

The best classification results were obtained for classifiers trained on the entire
data set. Apparently, assigning the decision ‘instrument present in recording’
even if the contribution to the total sound is small improves sensitivity of the
classifier more than degrades it.

The most sensitive classifiers (of highest recall) can be used with reasonable
accuracy to identify instruments playing in small randomly generated bands; the
performance on real recordings is to be tested in the future.
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ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 281–290. Springer, Heidelberg (2009)

13. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2(3),
18–22 (2002)

14. Little, D., Pardo, B.: Learning Musical Instruments from Mixtures of Audio with
Weak Labels. In: 9th ISMIR (2008)

15. Meng, A.: Temporal Feature Integration for Music Organisation. Ph.D. thesis,
Lyngby, Denmark (2006)

16. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)
17. R Development Core Team: R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna, Austria (2009)
18. The University of IOWA Electronic Music Studios: Musical Instrument Samples,

http://theremin.music.uiowa.edu/MIS.html
19. Viste, H., Evangelista, G.: Separation of Harmonic Instruments with Overlapping

Partials in Multi-Channel Mixtures. In: IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, WASPAA 2003, New Paltz, NY (2003)

20. Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Analysis of Recognition of a Mu-
sical Instrument in Sound Mixes Using Support Vector Machines. In: Nguyen, H.S.,
Huynh, V.-N. (eds.) SCKT 2008 Hanoi, Vietnam (PRICAI), pp. 110–121 (2008)

21. Wieczorkowska, A.A., Kubera, E.: Identification of a dominating instrument in
polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. J. Intell.
Inf. Syst. (2009), doi:10.1007/s10844-009-0098-3

22. Wieczorkowska, A.: Rough Sets as a Tool for Audio Signal Classification. In: Raś,
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Abstract. In this paper we present results of an experimental compar-
ison (in terms of an error rate) of rule sets induced by the LERS data
mining system with rule sets induced using the probabilistic rough clas-
sification (PRC). As follows from our experiments, the performance of
LERS (possible rules) is significantly better than the best rule sets in-
duced by PRC with any threshold (two-tailed test, 5% significance level).
Additionally, the LERS possible rule approach to rule induction is sig-
nificantly better than the LERS certain rule approach (two-tailed test,
5% significance level).

1 Introduction

In this paper we present results of an experimental comparison (in terms of an
error rate) of rule sets induced using standard rough set theory with rule sets
induced by probabilistic rough classification (PRC), a probabilistic extension of
Pawlak rough classification [1]. The standard rough set theory approach to rule
induction is exemplified by the LERS (Learning from Examples based on Rough
Sets) data mining system. In this approach, lower and upper approximations,
basic ideas of the standard rough set theory, are first computed. For any con-
cept C, concept approximations are later used for rule induction, e.g., by the
MLEM2 (Modified Learning from Examples Module, version 2) rule induction
algorithm. Rules induced from lower approximations are called certain [2] since
they certainly describe the concept C. On the other hand, rules induced from
upper approximations are called possible since they only possibly describe the
concept C. During classification of unseen cases, rule sets induced by MLEM2
are used by the LERS classification system with three parameters [3,4]. There
are other systems for rule induction based on rough set theory, see, e.g., [5].

Probabilistic rough set approximations are different from the standard rough
set approximations. Two additional parameters are necessary, usually denoted

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 590–599, 2010.
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by α and β, which are interpreted as the limits for probabilities, hence the cor-
responding approximations are called parameterized. The parameter α is larger
than the parameter β. For any elementary set [x] a conditional probability of
the concept C given [x] is computed [6]. The lower parameterized approxima-
tion is the union of all elementary sets [x] with the conditional probability larger
than α, while the upper parameterized approximation is the union of all elemen-
tary sets with the conditional probability greater than β. From these definitions,
it is obvious that the only difference between lower and upper parameterized
approximations is the choice of the threshold. The two thresholds can be calcu-
lated based on the minimization of the overall risk/loss of classification based
on the well-known Bayesian decision theory in the decision -theoretic rough set
(DTRS) model [7]. The can also be provided by experts as suggested in the
variable precision rough set (VPRS) model [8].

As follows from [9], an important feature of the probabilistic rough classifi-
cation rules is a pair of marginal and conditional probabilities associated with
any rule. There is no standard approach to rule induction in probabilistic rough
sets. In our experiments, for probabilistic rough classification, we simply used
the same rule sets that we used for testing MLEM2, by selecting rules with con-
ditional probabilities satisfying given PRC threshold. Additionally, in the PRC
(again, there is no standard approach to classification in probabilistic rough sets)
we used the LERS classification system with the partial matching factor set to
one since this factor is not only heuristic but it cannot be explained in terms of
probability theory.

2 Decision Tables

A decision table (information table) represents input data. An example of such a
table is presented in Table 1. Rows of the decision table represent cases, columns
(except Case column) represent attributes and a decision. The set of all cases is
denoted by U . The decision is denoted by d. The set of all attributes is denoted
by A. The value for a case x and an attribute a will be denoted by a(x). A block
of an attribute-value pair (a, v), where a ∈ A and v = a(x) for some x ∈ U ,
denoted by [(a, v)] is a set of all cases from U that for a have value v. The
set of all attribute values will be denoted by V . Note that Table 1 has 50% of
conflicting cases (since four cases: 5, 6, 7 and 8 are involved in conflicts).

3 Basic and Elementary Formulas

In the standard view of concepts, a concept is jointly defined by a pair of an
intension and an extension. The extension is a set of cases that are instances
of the concept, and the intension is a set of properties, or a formula of a logic
language, which defines the concept. One can therefore study concept formation
and rule induction based on a set-theoretic setting or a logic setting based on
extension and intension of concepts [10]. In the standard rough theory, one typ-
ically defines a pair of lower and upper approximations based on extensions. We
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Table 1. A decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no no no
2 normal no no no
3 normal yes no yes
4 normal no yes no
5 high yes yes yes
6 high yes yes no
7 high yes yes yes
8 high yes yes yes

will present a formulation based on intensions, which is more convenient for rule
induction.

A logic decision language may be defined recursively as follows [6]:

basic formula : (a, v), a ∈ A, v ∈ V,

formula : if f and g are formulas, so are f ∧ g and f ∨ g.

The two operations ∧ and ∨ are logic conjunction and disjunction. In a particular
decision table, the meanings of formulas are defined recursively as:

basic formula : ||(a, v)|| = {x ∈ U | a(x) = v} = [(a, v)],
formula : ||f ∧ g|| = ||f || ∩ ||g||, ||f ∨ g|| = ||f || ∪ ||g||.

A basic formula is also commonly expressed as an attribute-value pair (a, v); its
meaning ||(a, v)|| is called an attribute-value block [4].

With the introduction of a decision language, it is possible to formally and pre-
cisely represent concepts in a decision table. Let us first state a relation between
concepts based on the logic implication, which is known as a “more-specific-
than” relation [11]. Let f and g be formulas. The formula f is a specialization
of g and g is a generalization of f , written s → g, if any case that satisfies f
will satisfy g in any decision table with the same set of attributes of the same
domains. In other words, for any decision table m, we have ||f ||m ⊆ ||g||m. For
example, we have (a, v1) ∧ (b, v2) → (a, v1). For a particular decision table, the
logical implication always leads to the set inclusion of the extensions of concepts.
The reverse is not necessarily true. The inclusion of two sets only suggest that
the logic implication may hold between their corresponding logic formulas. In
this case, we use the symbol ⇒. In rule induction, a main issue to learn a re-
lation ⇒ based on extensions of concepts with respect to a particular decision
table.
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3.1 Global Approach

Let B be a subset of A. One may define an equivalence relation on U based on
the values of cases with respect to attributes in B. Two cases are equivalent or
discernible if and only if they have the same values on all attributes in B. In
terms of the logic language, one can form an elementary formula for a case in
U :

E(x) =
∧

a∈B

(a, a(x)).

The meaning of an elementary formula,

||E(x)|| = ||
∧

a∈B

(a, a(x))||

=
⋂

a∈B

||(a, a(x))||

= {y ∈ U | ∀a ∈ B a(x) = a(y)},

is the equivalence class containing x. The family {||E(x)|| | x ∈ U} is a partition
of the universe.

In rough set theory, equivalence classes ||E(x)||, called elementary sets, are
the building blocks of approximations of an arbitrary set representing a certain
concept. Let EB denote the set of all elementary formulas defined with respect
to a set of attribute B ⊆ A. For a decision class ||(d, u)||, (or [(d, u)]) where u
is a value of d, we form two sets of elementary formulas as a pair of lower and
upper approximations of [(d, u)]:

apr[(d, u)] = {e ∈ EB | ||e|| ⊆ ||(d, u)||},
apr[(d, u)] = {e ∈ EB | (||e|| ∩ ||(d, u)||) �= ∅}.

In forming the elementary formulas for rule induction, one needs first to search
for a minimal set of attributes with respect to a decision. Such a minimal set is
known as a reduct relative to the decision, or simply a relative reduct. Elemen-
tary formulas represent the most specific concept in a concept space. Even with
a reduct, a disadvantage with the formulation based on the elementary formulas
is that one may use two specific concepts in describing a decision class, or equiv-
alently, too small equivalence classes. A solution to this problem is condition
pruning in the derived rules [6].

3.2 Probabilistic Rough Classification

Probabilistic rough sets or rough classification [7,12] is a generalization of Pawlak
rough sets or rough classification [1]. One may use the conditional probability to
describe degree of overlap or inclusion [13] of an equivalence class and a decision
class:

Pr([(d, u)]|E(x)) =
card([(d, u)] ∩ E(x))

card(E(x))
,
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where card() denote the cardinality of a set. A pair of lower and upper param-
eterized approximations is defined by using a pair of thresholds:

apr[(d, u)] = ∪{e ∈ EA | Pr[(d, u)]|e) ≥ α},
apr[(d, u)] = ∪{e ∈ EA | Pr[(d, u)]|e) > β},

where α > β. As follows from the above two formulas, the only important dif-
ference between the lower and upper parameterized approximations is the value
of the parameters α and β. Hence, in our experiments, we do not distinguish
between α and β, calling them a probabilistic classification threshold. More de-
tailed discussion on the threshold can be found in references [7,8,12]. For ex-
ample, in addition to the requirement α > β, Ziarko [8] suggests the condition
α > Pr([(d, u)]) > β.

3.3 Local Approach

Instead of starting with the elementary formulas, the LERS family starts with
the basic formulas defined by an attribute-value pair [2,4,14,15]. Basic formulas
represent the most specific concepts without using the logic operator ∧.

Let CFA denote the set of all formulas formed by attributes from A with only
the logic operator ∧. With respect to a decision class [(d, u)], we can define the
following pair of lower and upper approximations:

apr′[(d, u)] = {s ∈ CFA | ||s|| ⊆ ||(d, u)||, ∀s ∈ CFA(s→ g implies ||s|| �⊆ ||(d, u)||)},
apr′[(d, u)] = apr′(d, u) ∪ {e ∈ CFA | (||e|| �⊆ ||(d, u)||, (||e|| ∩ ||(d, u)||) �= ∅}.

Although the new lower and upper approximations apr′ and apr′ are given by
different sets of formulas as apr and apr, their extensions are the same, namely,

||
∨

apr′[(d, u)]|| = ||
∨

apr[(d, u)]||,

||
∨

apr′[(d, u)]|| = ||
∨

apr[(d, u)]||.

4 MLEM2

For our experiments we used the MLEM2 algorithm that explores the search
space of attribute-value pairs. The input data set of the MLEM2 is a lower or
upper approximation of a concept. The LEM2 computes a local covering and
then converts it into a rule set [16,17,4,14].

MLEM2 processes numerical attributes differently than symbolic attributes.
For numerical attributes MLEM2 sorts all values of a numerical attribute. Then
it computes cutpoints as averages for any two consecutive values of the sorted
list. For each cutpoint q MLEM2 creates two blocks, the first block contains all
cases for which values of the numerical attribute are smaller than q, the second
block contains remaining cases, i.e., all cases for which values of the numerical
attribute are larger than q. The search space of MLEM2 is the set of all blocks
computed this way, together with blocks defined by symbolic attributes. Finally,
MLEM2 simplifies rules by merging intervals for numerical attributes.
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Table 2. Error rates, first part

Data set Percentage PRC threshold
of conflicting cases 0.2 0.3 0.4 0.5 0.6

Australian credit 24.35 18.72 18.75 18.62 18.46 18.95
Breast cancer (Slovenia) 4.69 34.58 33.75 34.33 34.75 34.69
Breast cancer (Wisconsin) 5.92 29.96 29.94 29.97 29.85 29.78
Echocardiogram 64.86 34.55 33.42 34.32 33.69 34.19
German credit 29.50 31.43 31.67 31.67 31.76 31.65
Image segmentation 40.95 38.74 38.92 40.09 33.28 35.09
Iris 44.00 11.88 11.75 11.42 11.95 40.95
Primary tumor 18.29 69.29 69.35 69.01 69.12 69.27
Postoperative patient 15.56 44.51 44.33 45.00 44.77 44.33
Wine recognition 38.20 9.92 9.70 9.80 10.43 10.26

5 LERS Classification System

Rule sets, induced from data sets, are used mostly to classify new, unseen cases.
A classification system used in LERS is a modification of the well-known bucket
brigade algorithm [18,19]. Some classification systems are based on a rule es-
timate of probability. Other classification systems use a decision list, in which
rules are ordered, the first rule that matches the case classifies it [5].

The decision to which concept a case belongs to is made on the basis of two
factors: strength and support. The strength is defined as the total number of
cases correctly classified by the rule during training. The second factor, support,
is defined as the sum strengths for matching rules indicating the same concept.
The concept C for which the support, i.e., the following expression∑

matching rules r describing C

Strength(r)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible, all

partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any
partially matching rule r, the additional factor, called Matching factor (r), is
computed. Matching factor (r) is defined as the ratio of the number of matched
attribute-value pairs of r with a case to the total number of attribute-value pairs
of r. In partial matching, the concept C for which the following expression is the
largest ∑

partially matching rules r describing C

Matching factor (r) ∗ Strength(r)
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Table 3. Error rates, second part

Data set PRC threshold LERS
0.7 0.8 0.9 1.0 certain possible

rules rules

Australian credit 19.00 19.65 23.04 71.54 21.20 17.76
Breast cancer (Slovenia) 34.20 35.19 40.10 47.17 29.12 28.45
Breast cancer (Wisconsin) 29.61 29.93 30.08 76.80 20.56 20.68
Echocardiogram 35.22 38.06 68.71 63.38 37.92 31.98
German credit 32.62 35.32 53.03 73.55 29.85 29.55
Image segmentation 40.36 42.04 61.50 63.39 49.47 31.50
Iris 40.88 44.44 47.24 43.44 25.68 24.79
Primary tumor 70.76 73.36 77.22 78.33 66.21 61.15
Postoperative patient 44.74 47.29 62.14 64.00 37.26 38.07
Wine recognition 11.06 11.25 27.95 61.66 32.35 8.88

For Table 1, rules in the LERS format (every rule is equipped with three
numbers: the total number of conditions, strength, and the total number of
training cases matching the left-hand side of the rule) [4] are:
certain rules, induced from the lower approximations:

1, 3, 3
(Headache, no) -> (Flu, no)
2, 1, 1
(Cough, no) & (Headache, yes) -> (Flu, yes)

and possible rules, induced from the upper approximations:
1, 2, 5
(Cough, yes) -> (Flu, no)
1, 3, 3
(Headache, no) -> (Flu, no)
1, 4, 5
(Headache, yes) -> (Flu, yes)
It is not difficult to see that this possible rule set well classifies every case

from Table 1 except case 6.
Rules induced by LERS may be easily converted into probabilistic rules de-

fined by PRC. Certain rules are associated with the conditional probability equal
to one. For possible rules, the corresponding conditional probability is deter-
mined as the ratio of the second number preceding the rule to the third number.
For the above possible rules, if the threshold = 0.3, all three rules survive. If the
threshold = 0.5, only the last two rules satisfy this new condition. Again, it is
not difficult to see that this new rule set, with only two rules, also well classifies
all cases from Table 1 except case 6.
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In our experiments, for a given PRC threshold, we created new PRC rule sets
with conditional probabilities smaller than or equal to the threshold by deleting
appropriate rules from the possible rule set.

There is no classification system recommended for the PRC. In our experi-
ments over PRC rule sets we used the LERS classification system without partial
matching. Our rationale is that the PRC is based on probabilities, while partial
matching is a heuristic idea that does not match probability theory.

6 Experiments

This paper presents the experiments conducted on ten typical data sets. All
these data sets are available on the UCI ML Repository. Four of these data
sets, Breast cancer (Slovenia), Breast cancer (Wisconsin), Primary tumor and
Postoperative patient, were in their original form. Remaining six data sets were
discretized using an agglomerative cluster analysis method of discretization [20].
During this process, the percentage of conflicting cases was set to lower levels
than 100%.

Table 4. Standard deviations, first part

Data set PRC threshold
0.2 0.3 0.4 0.5 0.6

Australian credit 0.67 0.69 0.63 0.81 0.80 0.72
Breast cancer (Slovenia) 1.44 2.13 2.05 2.12 2.04 1.98
Breast cancer (Wisconsin) 1.03 1.01 1.18 0.97 1.27 0.87
Echocardiogram 1.33 2.36 1.90 1.77 1.82 1.74
German credit 0.86 0.63 0.84 0.90 1.01 1.05
Image segmentation 1.67 1.58 1.56 1.73 2.25 1.38
Iris 1.56 1.50 1.34 1.64 0.76 1.43
Primary tumor 1.68 1.46 1.56 1.25 1.62 2.05
Postoperative patient 3.24 2.83 3.73 3.87 3.10 3.22
Wine recognition 1.15 0.91 1.12 1.46 1.23 1.19

Results of our experiments, based on ten-fold cross validation repeated 30
times, are presented in Tables 2–5. We evaluated the quality of these results us-
ing two tests, first the standard statistical test about the difference between two
means [21], and then the sign test [21] to the results of the first test. Using the
test about the difference between two means we conclude that for all values of the
PRC threshold level, all rule sets induced by PRC, except the Iris data set and
thresholds 0.2, 0.3, 0.4 and 0.5, the performance of the LERS (possible rules) is
significantly better than performance of the PRC (two-tailed test, 5% significance
level). Using the sign test to the results of the test about the difference between
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two means, we observe that the performance of the LERS (possible rules) is
better than the best possible rule set induced by the PRC with any threshold
(one-tailed test, 1% significance level).

Table 5. Standard deviations, second part

Data set PRC threshold LERS
0.8 0.9 1.0 certain possible

rules rules

Australian credit 1.07 1.02 2.03 1.08 0.81
Breast cancer (Slovenia) 1.67 2.02 1.69 1.67 1.47
Breast cancer (Wisconsin) 0.84 0.59 2.02 0.66 0.57
Echocardiogram 3.10 8.72 8.82 3.75 1.86
German credit 1.05 1.61 1.02 0.89 0.70
Image segmentation 1.48 1.34 0.77 1.32 1.26
Iris 2.27 2.45 0.54 0.45 0.98
Primary tumor 1.76 1.61 1.58 1.42 1.85
Postoperative patient 3.90 3.44 3.31 2.48 2.68
Wine recognition 1.14 1.73 2.80 1.26 1.09

The LERS possible rule approach to rule induction is either better than the
LERS certain rule approach or the difference is statistically insignificant (two-
tailed test about the difference between two means, 5% significance level). Again,
the sign test shows that the LERS possible rule approach is significantly better
than the LERS certain rule approach (one-tailed test, 1% significance level).

7 Conclusions

As follows form our experiments, the LERS approach to rule induction (using
the MLEM2 algorithm and possible rule sets) is significantly better than a simple
probabilistic rough classification. Only for one data set, the Iris data set, PRC
was in some cases (for thresholds between 0.2 and 0.5) better than MLEM2.
Additionally, for every data set there exists some optimal PRC threshold such
that the error rate is the smallest. For example, for the Australian credit data set
such threshold is 0.5. Finally, the LERS possible rule approach is significantly
better than the LERS certain rule approach.
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Abstract. When the indiscernibility relation, fundamental to Classical
Rough Set Approach, is substituted with dominance relation, it results
in Dominance-Based Rough Set Approach to data analysis. It enables
support not only for nominal classification tasks, but also when ordi-
nal properties on attribute values can be observed [1], making DRSA
methodology well suited for stylometric processing of texts. Stylometry
involves handling quantitative features of texts leading to characterisa-
tion of authors to the point of recognition of their individual writing
styles. As always, selection of attributes is crucial to classification accu-
racy, as is the construction of a decision algorithm. When minimal cover
gives unsatisfactory results, and all rules on examples algorithm returns
very high number of rules, usually constraints are imposed by selection
of some reduct and limiting the decision algorithm by including within it
only rules with certain support. However, reducts are typically numerous
and within them some of conditional attributes are used more often than
others, which is also true for conditions specified by decision rules. The
paper presents observations how the frequency of usage for features re-
flects on the performance of decision algorithms resulting from selection
of rules with conditional attributes exploited most and least often.

Keywords: DRSA, Decision Algorithm, Relative Reduct, Feature Se-
lection, Stylometry, Data Mining.

1 Introduction

Modern stylometry can be seen as a successor of the historical textual analysis
that was used to prove or disprove the authenticity of documents. Yet while the
latter had to rely on most striking features of texts such as specific language,
which is likely to be imitated, the former, with support of computational power of
computers, can exploit even most common elements and parts of speech. Since
used rather subconsciously, they are more reliable textual markers, conveying
individual writing styles. With aims at author characterisation, comparison and
attribution stylometry belongs with information retrieval domain [2],[3].

Constantly growing corpus of texts and changing linguistics cause stylometry
to require an informed selection of characteristic features, the problem that re-
mains unsolved within stylometry itself, rather being shifted to the processing
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phase. Techniques applied typically come either from statistics (e.g. PCA, LDA)
or artificial intelligence area (e.g. ANN, SVM). Rough set methodology, which
belongs with the latter group, possesses inherent mechanisms of establishing sig-
nificance of features describing the input data. This is obtained by determining
relative reducts - such subsets of conditional attributes that keep intact the clas-
sification properties of the decision table [4]. With help of relative reducts there
are constructed decision algorithms consisting of rules that specify conditions
which must be met for each decision to be applicable.

It is quite common that the number of reducts is high. Also, short decision
algorithms providing just minimal cover not necessarily give the best classifica-
tion accuracy, whereas generating all rules on examples can cause the length of
the decision algorithm to become of unmanageable proportions. Imposing some
constraints on it, while still keeping the highest recognition ratio possible, can be
obtained by careful choice of a reduct and discarding rules with support below
some set minimum. However, when there are no domain-based indicators as to
which features are more significant than others (stylometry does not point out
any particular descriptors), this selection of the reduct becomes problematic.

In analysis the relative reducts and conditions constructing rules for the deci-
sion algorithm reveal that some conditional attributes are exploited more often
than others. This observation leads to ordering of attributes accordingly to the
detected frequencies, one for reduct- and one for rule-based analysis. The paper
presents research on how this established ordering can next be used to reduce the
set of conditional attributes and found decision rules by removing those features
that are used most and least frequently and how it reflects on the performance
of DRSA-based classifier within the stylometric task of authorship attribution.

2 Stylometric Analysis

Stylometric analysis yields enough information on authors and their writing
styles that it is possible to characterise, compare and recognise them. Historically
the task of authorship attribution has always been considered of the primary
importance as it enables to answer questions on authencity of some documents
or settle doubts about authorship. In the past the analysis relied on human
observations of noticeable features of language, yet contemporary techniques
exploit even common parts of speech which, used rather subconsciously, are less
likely to be imitated and thus allow to recognise individual writing styles. The
origins of modern stylometry are usually dated to XIXth century and works of
Mendenhall who as the first proposed to use quantitative features of texts [5].

Textual descriptors enabling to settle the question of authorship form so-
called author invariant, however, there is no consensus as to which features
of a text constitute it [6]. Typically as markers for the analysis there are used
statistics such as usage frequency for words or letters (lexical features), structures
of sentences formed by punctuation marks (syntactic), organisation of text into
constructing elements such as headings or paragraphs (structural), or words of
certain meaning in the given context (content-specific). The choice of descriptors
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is one of crucial issues within the analysis while the other is a technique applied
to the task, with approaches either from statistical-oriented computations or the
artificial intelligence domain. Within the former group there are employed for
example Principal Component Analysis, or Markovian Models, while from the
latter area there are used Genetic Algorithms, Artificial Neural Networks [7], or
Rough Set Approach [8] that was employed in the presented research.

The frequencies of textual markers studied have continuous values, and the
classical rough set approach (CRSA) deals only with discrete data, thus either
there had to be applied some discretisation strategy by defining a discretisa-
tion factor, or modified indiscernibility relation applicable for continuous at-
tributes [9], or instead of using the classical methodology there could be employed
dominance-based rough set approach (DRSA), which integrates dominance re-
lation with rough approximation, used in multicriteria decision support [10,11].

3 DRSA-Based Data Mining

The first step in the rough set-based approach, proposed by Z. Pawlak [12], is
defining a decision table that contains the whole knowledge about the Universe.
Columns of the table are defined by conditional C and decision D attributes
while rows X specify values of these attributes for objects of the Universe.

While the indiscernibility principle of the classical rough set approach says
that if two objects x and y are indiscernible with respect to considered attributes
then they should be classified in the same way, that is to the same class, the
dominance or Pareto principle of the dominance-based rough set approach states
that if x is at least as good as y with respect to the attributes, then x should be
classified at least as good as y. That is why CRSA cannot deal with preference
order in the value sets of attributes and it supports classification only when
it is nominal, whereas DRSA has been proposed to deal with cases when the
value sets of attributes are ordered [10,13]. In classification problems condition
attributes are called criteria and with many of them the problem becomes that
of multicriteria classification or decision making [14].

It often happens that the set of decision attributes contains just a single
attribute D = {d}, partitioning the Universe into a finite number of classes Cl =
{Clt}, with t = 1, . . . , n. The classes are ordered and the increasing preference
is indicated by increasing indices. Due to this preference order present in the set
of classes Cl , the sets to be approximated are upward or downward unions of
classes, or dominance cones, respectively defined as

Cl≥t =
⋃
s≥t

Cls Cl≤t =
⋃
s≤t

Cls (1)

It is also quite common that neither all attributes nor all their values are nec-
essary for correct classification of all objects and within the rough set approach
there are included dedicated tools that enable to find, if they exist, such func-
tional dependencies between attributes that allow for decreasing their number
without any loss of classification properties of DT: relative reducts [15]. Each
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irreducible subset P ⊆ C such that preserves the quality of approximation with
the selected criteria (γP (Cl) = γC(Cl)) is called a reduct. A decision table can
have many reducts [16] and their intersection is called a core.

Approximations of dominance cones is the starting point for induction of
decision rules and a set of rules is complete when every object of the decision
table can be classified into one or more groups according to the rules, that is no
object remains unclassified. A set of rules is minimal when it is complete and
irredundant, that is exclusion of any rule makes the set incomplete.

The minimal set of rules does not guarantee the highest classification accuracy.
It includes only necessary rules created for training samples and they hardly can
cover all points of the multidimensional input space. Testing samples can so vary
from learning ones that there are no rules matching. That is why there are also
tried approaches generating all rules and then by some methodology an optimised
classifier can be built, comprising selection of rules, basing on support, assumed
weights, or even a fitness score can be calculated as in genetic algorithms basing
on observed frequency of application for testing examples.

4 Input Data

In experiments as the input data there were taken literary texts of two writers,
H. James and T. Hardy. Three sets of samples were constructed: learning ones
being the foundation for the decision table (Table 1) based on 30 parts taken
from 3 novels for a writer (180 samples), testing 1 based on 8 parts from 5 novels
(80 samples), and testing 2 based on 10 parts from 3 novels (60 samples). The
first testing set was used to find the constraints on required minimal support
for rules to be included within a decision algorithm, while the second testing set
was used for additional confirmation that algorithms with constraints imposed
upon rules perform with the same merit when applied to completely new data.

The samples were created by computing frequencies of usage for lexical and
syntactic textual markers - 25 conditional attributes: but, and, not, in, with, on,
at, of, this, as, that, what, from, by, for, to, if, a fullstop, a comma, a question
mark, an exclamation mark, a semicolon, a colon, a bracket, a hyphen. With
two authors, the decision attribute had two distinguished values ("hardy" as
lower and "james" higher). For all conditional attributes there was assumed an
arbitrary ordering of "cost" type (the lower, the classification to the higher class).

Results for classification with minimal cover and all rules on examples algo-
rithms are given in Table 2. Usually they come into three categories: correct
recognition, incorrect recognition, and with ambiguous decision when there were
several partial verdicts leading to conflicting classification or when there were
no rules matching. In this table as well as in all others included in the paper
results are presented for correct decisions only, disregarding these possibly cor-
rect if some voting of partial decisions was employed. This attitude shortens and
simplifies the classification procedure as no additional processing is needed.

It comes as no surprise that the number of rules in the minimal cover al-
gorithm (Table 3) is significantly outranked by the full algorithm. What is



604 U. Stańczyk

Table 1. Decision table

but and not in · · · : ( - author
1 0.0046 0.0355 0.0034 0.0209 0.0005 0 0.0157 hardy
2 0.0041 0.0304 0.0078 0.0165 0 0 0.0096 hardy
3 0.0053 0.0257 0.0037 0.0148 0.0002 0.0001 0.0284 hardy
4 0.0068 0.0292 0.0057 0.0108 0.0005 0 0.0171 hardy
...

177 0.0103 0.0173 0.0056 0.0137 0.0012 0 0.0427 james
178 0.01 0.0156 0.0031 0.0127 0.001 0 0.0538 james
179 0.008 0.0122 0.0046 0.0117 0.0012 0 0.0303 james
180 0.0073 0.0077 0.0028 0.0137 0.0017 0 0.0274 james

Table 2. Classification results for decision algorithms involving all attributes

Nr of rules Class. Class.
Supp. in short DA Test 1 Test 2

Minimal cover (61 rules) 4 19 45,00% 48,33%
All rules on examples (46191 rules) 40 90 70,00% 76,66%

troublesome, classification accuracy differs so much that in the former case is
totally unacceptable and useless, while in the latter not great but satisfactory.

In the past research [7] it was shown that relative reducts applied within clas-
sical rough set approach can be successfully used in reduction of characteristic
features for ANN-classifier while preserving its performance. The presented ap-
proach exploited ordering of attributes based on frequency of usage in reduct
construction. Similar attitude can be tried in building modified decision algo-
rithms by including only rules with attributes that occur most and least often.

There were 6664 relative reducts, yet the relative core turned out to be empty.
On the other hand the union of all reducts was equal to the whole initial set of
attributes, which was also true for conditions in the calculated rules, indicating
that no feature from these studied could be disregarded without further analysis.

5 Obtained Results of Feature Reduction

With total number of constructed decision rules several times higher than that of
relative reducts, frequency indicators of conditional attributes for both obviously
cannot possibly be numerically the same, what is of particular interest though,
the resulting ordering, specified in Table 4, is not the same, with the exception
of just two attributes: the most ("of") and the least ("but") frequently employed
ones, which in both cases respectively open and close the list.

Since neither stylometry nor rough set approach could precisely answer the
question which textual markers could be disregarded without undermining the
power of the classifier, several subsets were tried exploiting the ordering of fea-
tures presented. Removing some attribute meant discarding all rules from the
full algorithm that involved conditions on this attribute.



DRSA Decision Algorithm Analysis in Stylometric Processing 605

Table 3. Minimal cover algorithm with rules of support at least 4

Rule 1. (by>=0.006700) => hardy
Rule 2. (exclamation>=0.013600) => hardy
Rule 5. (not>=0.011400) & (from>=0.002300) => hardy
Rule 6. (of>=0.040900) => hardy
Rule 8. (bracket>=0.000500) & (exclamation>=0.006900) => hardy
Rule 9. (in>=0.021700) & (exclamation>=0.002000) => hardy
Rule 13. (not>=0.008900) & (in>=0.017200) => hardy
Rule 15. (from>=0.005000) & (fullstop>=0.059200) => hardy
Rule 19. (and>=0.033500) => hardy
Rule 21. (by>=0.004700) & (fullstop>=0.050300) & (of>=0.030300) => hardy
Rule 26. (from>=0.005900) => hardy
Rule 30. (and<=0.017200) => james
Rule 34. (by<=0.001300) => james
Rule 38. (and<=0.022600) & (fullstop<=0.046700) => james
Rule 39. (not<=0.003800) & (from<=0.002200) => james
Rule 43. (semicolon<=0.001900) => james
Rule 54. (and<=0.023900) & (for<=0.005600) => james
Rule 55. (not<=0.002900) & (of<=0.025200) => james
Rule 58. (of<=0.019700) & (not<=0.003900) => james

Table 4. Attribute occurrence indicators a) reduct-based, b) rule-based

a)
of 3478

M1 . 3190
M2 on 3083

, 2943
M3 not 2778

; 2740
M4 in 2726

by 2648
M5 this 2585
M6 at 2585

to 2497
M7 : 2384

! 2368
M8 and 2324

this 2585 L9
at 2585
to 2497 L8
: 2384
! 2368 L7

and 2324
from 2273 L6
with 2161
as 2108 L5
- 2035
? 1712 L4
for 1609
if 1584 L3

what 1415
( 1395 L2

that 1343
but 893 L1

b)
M1 of 13310
M2 on 12921

to 11838
M3 this 11426

, 11176
M4 . 11004

! 10639
M5 : 10326

not 10305
M6 in 10240

; 9797
M7 at 9082

with 8646
M8 as 8471
M9 by 8450

- 7996
M10 ( 7950

- 7996 L6
( 7950
if 7691 L5

from 7614
? 7468 L4
for 7449
what 6172 L3
that 6166
and 4172 L2
but 3927 L1

Those algorithms that kept only most frequently exploited attributes are la-
belled with "L" indicating that those least frequent were reduced, and those
that kept the least often used with disregarding the most often are labelled with
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"M". The classification results of obtained decision algorithms are given in Ta-
ble 5, with partial verdicts that would require voting not included in the numbers
listed. Further reduction was tried yet resulted in correct classification around
50% or even lower, hence details are not presented.

Analysis of these results brings conclusion that for reduct-based reduction
the acceptable recognition ratio can be kept till the number of attributes is
not less than 16 the most frequently used, or even as few as 13 for the least
often exploited. For rule-based attribute frequency analysis, maintaining the
power of the classifier requires either 19 most or just 10 the least frequent
features.

For all decision algorithms the classification for the first testing set is pre-
sented by listing the best results and indicating the minimal support that was
imposed upon the rules included to arrive at it. For additional confirmation
these short decision algorithms were also tested on the second testing set and
as specified it generally follows the trend, yet with some cases of significant
difference.

The classification accuracies for two testing sets plotted against the num-
ber of attributes kept and in relation to the number of rules in the shortened
decision algorithms are shown in Fig. 1 and Fig. 2 respectively, in each case
giving just the best result from all obtained for different versions of decision
algorithms.
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Fig. 1. Classification in relation to the number of attributes employed

Both the table with classification results specified and the graphs indicate
that selection of characteristic features can be successfully performed not only
by exploiting the concept of relative reducts themselves, but also basing on
frequency analysis for individual attributes employed in constructed reducts and
conditions for decision rules. The power of the classifier can be preserved when
reducing most frequently used features as well as those used seldom.
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Table 5. Classification results for reduced decision algorithms

Reduct-based analysis
Nr of rules Nr of Nr of rules Class. Class.

in DA attr. Supp. in short DA Test 1 Test 2
L1 42263 24 40 90 70,00% 76,67%
L2 30219 22 40 68 71,25% 75,00%
L3 21834 20 40 63 71,25% 75,00%
L4 15156 18 40 60 71,25% 75,00%
L5 9673 16 40 59 71,25% 75,00%
L6 6000 14 26 122 63,75% 70,00%
L7 3463 12 18 34 68,75% 56,67%
L8 1702 10 12 83 66,25% 71,67%
L9 978 8 12 75 66,25% 71,67%
M1 25386 23 40 83 70,00% 76,67%
M2 17500 22 40 81 70,00% 76,67%
M3 9356 20 40 69 63,75% 78,33%
M4 5282 18 34 80 65,00% 76,67%
M5 2560 16 20 100 71,25% 73,33%
M6 1955 15 16 135 73,75% 71,67%
M7 930 13 14 120 75,00% 73,33%
M8 329 11 4 89 61,25% 55,00%

Rule-based analysis
L1 42263 24 40 90 70,00% 76,67%
L2 38572 23 32 28 68,75% 81,67%
L3 28896 21 32 27 70,00% 83,33%
L4 19998 19 32 26 70,00% 81,67%
L5 12865 17 20 50 65,00% 55,00%
L6 8747 15 18 58 67,50% 58,33%
M1 32880 24 40 83 70,00% 76,67%
M2 23200 23 40 81 70,00% 76,67%
M3 12523 21 40 66 71,25% 75,00%
M4 7169 19 40 65 71,25% 75,00%
M5 3891 17 34 88 72,50% 71,67%
M6 1737 15 26 93 68,75% 75,00%
M7 1122 13 26 83 71,25% 75,00%
M8 673 11 26 74 71,25% 75,00%
M9 390 10 12 86 72,50% 66,67%
M10 246 8 12 70 66,25% 66,67%
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Fig. 2. Classification in relation to the number of decision rules

6 Conclusions

The paper presents the analysis of characteristic features for DRSA-classifier
applied within the stylometric task of authorship attribution. Computed relative
reducts and decision rules indicate ordering of attributes based on their usage
frequency in reducts and rules, and this observed ordering is then employed to
reduce the set of base features by leaving either the most or the least frequently
used attributes. In the resulting shortened decision algorithms there are included
only such rules that have no conditions on removed features. Performed tests
indicate that such frequency analysis can be successfully applied for feature
selection and can be considered as an alternative to selection of some relative
reduct in the absence of domain knowledge about the significance of individual
conditional attributes.

Acknowledgements. The software used to obtain frequencies for textual de-
scriptors was implemented by Mr. P. Cichoń in fulfilment of requirements for
M.Sc. thesis, submitted at the Faculty of Computer Science, the Silesian Uni-
versity of Technology, Gliwice, Poland in 2003.

4eMka Software used in search for reducts and decision rules is a system for
multicriteria decision support integrating dominance relation with rough approx-
imation [14,13]. The software is available at a website of Laboratory of Intelligent
Decision Support Systems, Institute of Computing Science, Poznan University
of Technology (http://www-idss.cs.put.poznan.pl/), Poland.
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Abstract. Automatic indexing of music instruments for multi-timbre sounds is 
challenging, especially when partials from different sources are overlapping 
with each other. Temporal features, which have been successfully applied in 
monophonic sound timbre identification, failed to isolate music instrument in 
multi-timbre objects, since the detection of the start and end position of each 
music segment unit is very difficult. Spectral features of MPEG7 and other 
popular features provide economic computation but contain limited information 
about timbre. Being compared to the spectral features, spectrum signature fea-
tures have less information loss; therefore may identify sound sources in multi-
timbre music objects with higher accuracy. However, the high dimensionality 
of spectrum signature feature set requires intensive computing and causes esti-
mation efficiency problem. To overcome these problems, the authors developed 
a new multi-resolution system with an iterative spectrum band matching device 
to provide fast and accurate recognition. 

Keywords: Blind Music Sound Sources Isolation, STFT (Short-Time Fourier 
Transform), Automatic Indexing, KNN, Spectral Features. 

1   Introduction 

The rapid advances in computer storage and network techniques brought the emer-
gency of huge multimedia repositories, where fast access to individual segment piece 
becomes more and more important in demands while manual indexing is a non-trivial 
work. Automatic indexing of music instruments in the same channel is one of the 
important subtasks.  

A piece of digital music recording in a raw format contains some header informa-
tion about the file and a huge sequence of sampling data of integers to represent the 
air fluctuations of sounds over time, where a typical sampling data rate is 44,100 per 
second for compact discs. 

Features, such as MPEG-7 descriptors and other popular features, which are suc-
cessfully applied in identifying music timbre in monophonic sounds, fail to isolate 
music source in multi-timbre or polyphonic objects, where multiple music instruments 
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are playing at the same time. More so, temporal features are difficult to be applied in 
multi-timbre or polyphonic objects, since the detection of the start and end position of 
each music segment unit is very difficult while the partials are overlapping with each 
other (so-called a Cocktail Party Problem [6]).  

Numerous methods for blind signal separation have been explored for a wide range 
of business domain spanning from finance to general biomedical signal processing. 
Filtering Techniques ([2], [3], [20]), ICA ([4], [7], [9]) and DUET [12] require differ-
ent sound sources to be stored separately in multiple channels; therefore they are not 
suitable in isolating blind music sources in the same channel of the recordings. Most 
often, Factorial Hidden Markov Models (HMM [16]) work well for sound sources 
separation, where fundamental frequency range is small and the variation is subtle. 
However, unfortunately, western orchestral musical instruments can produce a wide 
range of fundamental frequencies with dynamic variations. Spectral decomposition is 
used to efficiently decompose the spectrum into several independent subspaces [5] 
with smaller number of states for HMM. Commonly, Harmonic Sources Separation 
Algorithms have been used to estimate sound sources by detecting their harmonic 
peaks, decoding spectrum into several streams and re-synthesizing them separately. 
This type of methods relies on multi-pitch detection techniques and iterative Sinusoi-
dal Modeling (SM) [8]; therefore they are designed to deal with only harmonic 
sounds. For the purpose of interpolating the breaks in the sinusoidal component tra-
jectories, numerous mathematical models have been explored: linear models [21], 
non-linear models such as high degree interpolation polynomials with cubic spine 
approximation model [8], etc. However, it is very difficult to develop an accurate 
sinusoidal component model to describe the characteristics of musical sound patterns 
for all the western orchestral instruments. Kitahara et al. developed weights for fea-
tures to minimize the influence of sound overlaps [13], which also assumes perfect 
fundamental frequency detection. Spectral features have been explored in peer re-
search with traditional classifiers and proved a possible way to identify sound sources 
in multi-timbre music objects [11]. However, such features intuitively do not include 
sufficient information about sound wave behaviors along time. Also, when spectrum 
signatures are fed into classical classifiers, the order of frequency bins won’t be taken 
into consideration. Therefore, the estimation accuracies of the traditional classifiers 
with only spectral features are normally not desirable. To overcome the problem, the 
authors developed a spectrum band matching device based on multi-resolution itera-
tions to provide fast and accurate estimation based on an enlarged estimation range 
from the classifiers with relaxed confidence level for music instrument families. 

2   Blind Music Timbre Source Isolation System  

The authors developed a robust blind music sound source separation system with 
connection to a database of features extracted from a wide range of western music 
orchestral instruments, which consists of five major modules: a STFT converter with 
hamming window, a feature extraction engine, a K-Nearest-Neighbor classifier, an 
iterative sound band matching device, and an FFT subtraction mechanism for the 
estimated predominant sound source.  
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Fig. 1. System overview 

The STFT converter divides a digital audio object into a sequence of frames, ap-
plies STFT transform to the mixed sample data of digital music data from time do-
main to frequency domain with a hamming window sliding evenly over time, and 
outputs NFFT (next-larger power-of-two number of samples of digital sound data 
from sampling window) discrete points. 

The feature extraction engine calculates spectral features based on the spectrum  
information of the adjacent frames and stores them into a large music database used 
for training classifiers. In the next section, more details about those features will be 
presented. 

The K-Nearest-Neighbor classifier takes in the flat spectrum features, constructs 
models, and estimates timbre categorization in terms of a series of machine under-
standable schemes.  

An iterative sound band matching device is applied to further trim the bottom level 
of the tree models so that only the closely matched exemplary spectrum will remain, 
where each iteration rules out a certain amount of unlikely objects. 

The FFT subtraction device subtracts the detected sound source from the spectrum, 
computes the imaginary and real part of the FFT point by the power and phase  
information, performs IFFT (Inverse discrete Fourier Transform) for each frame, and 
outputs resultant remaining signals into a new audio data file.  

3   Feature Extraction 

The authors developed a large database with spectral features and temporal attributes 
including popular features in this research area, such as MPEG7 spectral descriptors 
and Mel frequency cepstral coefficients, as well as some new temporal features. 

Spectrum Centroid and Spread [1] The Audio Power Spectrum Centroid de-
scribes the center-of-gravity of a log-frequency power spectrum. Spectrum spread is 
defined as the Root Mean Square value of the deviation of the Log frequency power 
spectrum with respect to the gravity center in a frame. These two parameters eco-
nomically indicate the pre-dominant frequency range. 

Spectrum Flatness [1] describes the flatness property of the power spectrum 
within a frequency bin, which is ranged by edges. It is an array of aggregations in a 
set of frequency bands, where frequency band is defined by two adjacent cutting 
edges with a quarter octave resolution spanning eight octaves. 
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Spectrum Basis Functions [1] are used to reduce the dimensionality of a group of 
adjacent frames of the normalized spectrum envelope in a log-arithmetic scale with a 
quarter-octave resolution by projecting from the space of 32 dimensions of frequency 
bands into a space of 10 dimensions with compact salient statistical information based 
on singular value decomposition.  

Spectrum Projection Function [1] is computed by an inner product of the resul-
tant low dimensional spectrum vector from the spectrum basis functions and the nor-
malized spectrum envelope in a log-arithmetic scale. It is used to represent low-
dimensional features of a spectrum after projection against a reduced rank basis of 10. 

Predominant Harmonic Peaks [22] is an array of power spectrum coefficients of 
the local harmonic peaks in a normalized log-arithmetic scale based on the predomi-
nant fundamental frequency, where the first 28 of items are considered significant and 
therefore chosen as features in this research. 

Harmonic Spectral Centroid [1] is computed as the average over the sound seg-
ment duration in the quasi-steady state of the instantaneous harmonic spectral centroid 
within a frame. The instantaneous harmonic spectral centroid is computed as the am-
plitude in a linear scale weighted mean of the harmonic peak of the spectrum. 

Harmonic Spectral Spread [1] is computed as the average over the sound seg-
ment duration in the quasi-steady state of the instantaneous harmonic spectral spread 
within a frame. The instantaneous harmonic spectral spread is computed as the ampli-
tude weighted standard deviation of the harmonic peaks of the spectrum with respect 
to the instantaneous harmonic spectral centroid. 

Harmonic Spectral Variation [1] is defined as the mean value over the sound 
segment duration of the instantaneous harmonic spectral variation, which is calculated 
as the normalized correlation between the amplitude of the harmonic peaks of the 
current frame and the immediate previous frame. 

Harmonic Spectral Deviation [1] is computed as the average over the sound seg-
ment duration of the instantaneous Harmonic Spectral Deviation in each frame, which 
is computed as the spectral deviation of the log amplitude components from a global 
spectral envelope. 

Temporal Centroid [1] is calculated as the time average over the signal envelope. 
Zero crossing [17], [19] counts the number of times that the signal sample data 

changes signs in a frame. 
Roll-off is a measure of spectral shape, which is used to distinguish between 

voiced and unvoiced speech [14]. The roll-off is defined as the frequency below 
which a proportion (empirical value: 85%) of the accumulated magnitudes of the 
spectrum is concentrated. 

Flux is used to describe spectral rate of change [17]. It is computed by the total dif-
ference between the magnitude of FFT points in a frame and its successive frame. 

Mel frequency cepstral coefficients describe the spectrum according to the hu-
man perception system in the mel scale [15]. They are computed by grouping the 
STFT points of each frame into a set of 40 coefficients by a set of 40 weighting 
curves with logarithmic transform and a discrete cosine transform (DCT). The authors 
used the MFCC functions from the Julius software toolkit [1]. 
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4   Classification  

Numerous types of classifiers have been explored in timbre estimation by peer re-
searchers, while so far there is no classifier, which is supreme in identifying all types 
of timbres in polyphonic or multi-timbre sounds among peer types of classifiers [23]. 
In this research, to explore the recognition rate of popular peer spectral features, deci-
sion tree was applied; while for spectrum signature features, K-Nearest-Neighbor 
algorithm was chosen for its fair performance with high dimensional feature sets 
(over 9,600 dimensions), where each frequency bin was treated as a feature. In case 
that accumulated error in a high dimensional space may bias the final estimation of 
timbre, we relaxed the confidence level, so that a group of possible candidates were 
collected as the output of the KNN classifiers. Further, a multi-resolution comparison 
device was applied to rule out unlikely candidates. 

5   Multi-resolution Comparison  

Searching for the closest matched pattern through high resolution of over eight thou-
sands of FFT points by Euclidean distance may endanger the result by accumulated 
error as well as by the loss of order information along the frequency dimension. Actu-
ally, it is also opposite to the human visionary perception system. For example, when 
one recognizes a picture of the Eiffel Tower, does he or she checks from beam to 
beam assuming that beam is the atomic unit in the picture? No, on the contrary, most 
people would rather start from the outline shape, which is an abstract of details. In this 
research, authors started searching through vectors of aggregation of the frequency 
bins by an exponent order of resolution from low to high, where each round of com-
parison rules out a certain percentage of unlikely spectrum patterns as shown in the 
Figure 2. 

In each round, the spectrum signature V(α) is computed by the following formula: 
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where M is the total number of FFT points. To limit the total number of iterations, 
Table 1 is used to show what values of k are allowed for each α; in each round/ 
level k, 1 out of αk points is chosen; α is used to yield even distribution of each 
resolution. 
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Fig. 2. Comparisons are applied based on iterative aggregation in resolution from low to high 

Table 1. The relationship between α and k. Positive sign means the adoption of the combination 
of α and k values in our experiments. 

 k=1 k=2 k=3 k=4 k=5 
α=3 + + + + + 
α=4 + + + +  
α=5 + + +   

 
Given a dataset D with S records in total, where S >> M, the time complexity Cα’ 

of the spectrum signature matching strategy based on spectrum signature feature set 
can be represented by comparison cost, assuming that φ is the percentage of the total 
FFT that remains in the kth resolution level.  
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In a flat spectrum signature comparison system, the time complexity C is O(MS), 
while the comparison of C with Cα’ for each base level α is listed in the following 
table (φ=50% was chosen in this example for the sake of simplicity): 

Table 2. Percentagewise speed comparison between a new exponential multi-resolution spec-
trum signature matching device and a flat matching device 

 Cα’ C 
α=3 8.55  100 
α=4 12.11 100 
α=5 20.30  100 

 
Theoretically inferred by the above formula and data, the time complexity of spec-

trum signature matching strategy can be dramatically improved by the proposed 
multi-resolution spectrum matching system. 
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6   Experiments  

In this research, the STFT experiments used a sampling window size of 0.12 second 
and a hop size of 0.04 second on music recording segments at the sampling rate of 
44,100Hz, which is a typical value for compact disks. The training dataset contains 
121790 spectrum signatures for the frames in the stable state of 3323 musical segment 
objects, which are played in the fourth octave C and originated from the MUMS 
(McGill University Masters Samples), assuming that similar results may be generated 
from music objects in other pitches. In real multimedia database, the data size of spec-
trum signatures will be in billions or trillions, as the musical segment objects were 
sampled every one second in short music sounds, of which the duration varies from 
around one to three seconds. Each spectrum signature contained 8192 FFT points. 
The training dataset included 26 music instruments: electric guitar, bassoon, oboe, b-
flat clarinet, marimba, c trumpet, e-flat clarinet, tenor trombone, French horn, flute, 
viola, violin, English horn, vibraphone, accordion, electric bass, cello, tenor saxo-
phone, b-flat trumpet, bass flute, double bass, alto flute, piano, Bach trumpet, tuba, 
and bass clarinet. The testing dataset consisted of 52 music recording pieces synthe-
sized by Sound Forge sound editor [18], where each piece was played by two differ-
ent music instruments. 

The system was implemented in .NET C++ and MS SQLSERVER2005. The K 
Nearest Neighbor classifier package used in the experiments was from Microsoft 
SQLServer 2005.  K= 7 was chosen empirically. 

Two experiments were investigated to compare the efficiency and accuracy of the 
features for multi-timbre sounds: one was to check the accuracy of the popular peer 
features against the multi-resolution spectrum features; the other was to check the 
efficiency of multi-resolution spectrum signatures. In both experiments, accumulated 
confidence values were applied as votes for the top instrument candidates. In experi-
ment I, we focused on the recognition rate instead of efficiency, since the peer spectral 
features contained much less dimensions of information than spectrum signatures; 
therefore the corresponding recognition results were fast and of low rate. In experiment 
II, linked lists were used to store the band coefficients for each tie of the resolution. 

To compare the results with the traditional feature based classification strategy, 
five groups of spectral features (calculated for spectrum divided into 33 frequency 
bands) were extracted mainly from the MPEG-7 standard introduced in the previous 
section of Feature Extraction and fed into a set of decision tree classifiers for timbre 
estimation: 

Group1: Band Coefficients = {bn : 1 ≤ n ≤ 33} – coefficients for Spectrum Flatness 
bands. 

Group2: Projections = {pn: 1 ≤ n ≤  33} – Spectrum Projection dimensions. 
Group3: MFCC = {mn:  1 ≤ n ≤13} – Mel frequency cepstral coefficients. 
Group4: Harmonic Peaks = {hn:  1 ≤ n ≤ 28} – harmonic partials of the predomi-

nant sound source. 
Group5: Other Features include: 

• Temporal Centroid, 
• Log-arithmetic Spectral Centroid, 
• Log-arithmetic Spectral Spread, 
• Energy, 
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• Zero Crossings, 
• Spectral Centroid, 
• Spectral Spread, 
• RollOff, 
• Flux, 
• Sum of the Spectrum Flatness band coefficients, 
• Minimum, maximum, sum, distance, and standard deviation of the Spec-

trum Projection dimensions as well as of the Spectrum Basis dimensions, 
where distance represents a dissimilarity measure: distance of a matrix is 
calculated as the sum of absolute values of differences between each pair 
of elements on different rows and columns. Distance for a vector is calcu-
lated as the sum of dissimilarity (absolute difference of values) of every 
pair of coordinates in the vector. 

The performance of our algorithm was measured using recognition rate R, calculated 
as the percentage of the correct estimations over the existing ones in the multi-timbral 
sound pieces. 

Table 3. Music instrument recognition rate in experiment I 

Experiment description Recognition Rate (%) 
Spectral features + decision tree 48.65 
Flat spectrum features + KNN 82.43 

α-base resolution spectrum features + KNN 
(α=3, 4, 5) 

82.43 

 
Table 3 shows that the multi-resolution spectrum features system with KNN classi-

fiers had the same recognition rate as the flat one, which were both significantly better 
than the spectral features. 

Table 4. Music instrument recognition efficiency in experiment II 

Experiment description Recognition Time (second) 
Flat spectrum features + KNN 2560 

α-base resolution spectrum features + KNN (α=3) 511 
α-base resolution spectrum features + KNN (α=4) 524 
α-base resolution spectrum features + KNN (α=5) 550 

 
Table 4 shows that the multi-resolution spectrum features system significantly re-

duced the computing time to estimate the predominant music timbre in the music 
objects, which coincided the authors’ theoretical derivation. The smaller the base, the 
more the iterations for the FFT points, therefore the faster the estimation. As the total 
number of training objects in the multimedia database grows, the difference among 
recognition time of different resolutions shall be further increased. 
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7   Conclusion  

This research explored a new exponential multi-resolution spectrum signature match-
ing device with KNN classifiers for blind music sound source isolation of multi-
timbre musical objects. Temporal features were excluded in the experiments, since the 
detection of the start and end position of each multi-timbral music segment unit is 
very difficult and error prone. To compare the recognition rate, the authors developed 
two different training datasets: a spectral feature dataset and a spectrum signature 
feature dataset of multi-resolution. Traditional spectral features reduce data size for 
the limitation of input feature size of classic classifiers, but cause too much informa-
tion loss for accurate music instrument detection. On the other hand, flat spectrum 
data is of high dimension and contains much more information, but does not suit most 
classic classifiers expect KNN. The authors designed a new algorithm with multi-
resolution KNN and compared it with the peer spectral feature based algorithm. Over-
all, spectrum signature features were shown to provide significantly higher recogni-
tion rate for predominant music instrument than spectral features, as spectral features 
provided economic computation but contained not sufficient information for timbre 
recognition. Spectrum signature features with the multi-resolution matching device 
were proved same recognition rate as that with a flat matching device while the com-
puting efficiency of the former system was much better than the latter one. 

In the future, authors will explore the possibility to further improve the recognition 
rate of this exponential multi-resolution spectrum signature matching device with 
KNN classifiers by adding more carefully weighted new features, as the system can 
afford high dimensional dataset computing. On the other hand, feature selection algo-
rithm may be applied to optimize the classification performance. 
 
Acknowledgments. This work was supported by the National Science Foundation 
under grant IIS 0968647. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily  
reflect the views of the National Science Foundation. 

References 

1. Akinobu, L., et al.: Julius software toolkit, http://julius.sourceforge.jp/en/ 
2. Balan, R.V., Rosca, J.P., Rickard, S.T.: Robustness of parametric source demixing in 

echoic environments. In: Proc. Int. Conf. on Independent Component Analysis and Blind 
Source Separation (ICA), pp. 144–148 (2001) 

3. Brown, G.J., Cooke, M.P.: Computational auditory scene analysis. Computer Speech and 
Language 8, 297–336 (1994) 

4. Cardoso, J.F.: Blind source separation: statistical principles. Proceedings of the 
IEEE 9(10), 2009–2025 (1998) 

5. Casey, M.A., Westner, A.: Separation of mixed audio sources by independent subspace 
analysis. In: Proc. International Computer Music Conference (ICMC), pp. 154–161 (2000) 

6. Cherry, E.C.: Some Experiments on the Recognition of Speech, with One and with Two 
Ears. Journal of the Acoustical Society of America 24, 975–979 (1953) 

7. Davies, M.E.: Audio source separation. In: Mathematics in Signal Processing V. Oxford 
University Press, Oxford (2002) 



 Blind Music Timbre Source Isolation by Multi- resolution Comparison 619 

 

8. Dziubinski, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation Algorithm 
Effectiveness Employing Neural Networks. Journal of Intelligent Information Sys-
tems 24(2/3), 133–158 (2005) 

9. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & 
Sons, Chichester (2001) 

10. ISO/IEC JTC1/SC29/WG11, MPEG7 Overview (2002),  
  http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm 

11. Jiang, W., Wieczorkowska, A., Ras, Z.W.: Music Instrument Estimation in Polyphonic 
Sound Based on Short-Term Spectrum Match. In: Hassanien, A.-E., Abraham, A., de Car-
valho, A. (eds.) Data Mining: Theoretical Foundations and Applications. Studies in Com-
putational Intelligence. Springer, Heidelberg (2009) 

12. Jourjine, A.N., Rickard, S.T., Yilmaz, O.: Blind separation of disjoint orthogonal signals: 
Demixing N sources from 2 mixtures. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and 
Signal Processing (ICASSP), pp. V-2985–V-2988 (2000) 

13. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument Identification in 
Polyphonic Music: Feature Weighting to Minimize Influence of Sound Overlaps. 
EURASIP Journal on Advances in Signal Processing, Article ID 51979 (2007) 

14. Lindsay, A.T., Herre, J.: MPEG7 and MPEG7 Audio—An Overview. J. Audio Engineer-
ing Society 49, 589–594 (2001) 

15. Logan, B.: Mel Frequency Cepstral Coefficients for Music Modeling. In: Proceedings of 
1st Annual International Symposium on Music Information Retrieval (2000) 

16. Ozerov, A., Philippe, P., Gribonval, R., Bimbot, F.: One microphone singing voice separa-
tion using source adapted models. In: Proc. IEEE Workshop on Applications of Signal 
Processing to Audio and Acoustics (WASPAA), pp. 90–93 (2005) 

17. Scheirer, E., Slaney, M.: Construction and Evaluation of a Robust Multi-feature 
Speech/Music Discriminator. In: Proceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing (1997) 

18. Sonic Foundry: Sound Forge. Software (2003) 
19. Tzanetakis, G., Cook, P.: Musical Genre Classification of Audio Signals. IEEE Transac-

tions Speech and Audio Processing 10, 293–302 (2002) 
20. Vincent, E., Gribonval, R.: Construction d’estimateurs oracles pour la separation de 

sources. In: Proc. 20th GRETSI Symposium on Signal and Image Processing, pp. 1245–
1248 (2005) 

21. Virtanen, T., Klapuri, A.: Separation of Harmonic Sound Sources Using Sinusoidal Model-
ing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Istan-
bul, Turkey (2000) 

22. Zhang, X., Marasek, K., Ras, Z.W.: Maximum Likelihood Study for Sound Pattern Separa-
tion and Recognition. In: Proceedings of International Conference on Multimedia and 
Ubiquitous Engineering, Seoul, Korea, April 26-28, pp. 807–812 (2007) 

23. Zhang, X., Ras, Z.W.: Analysis of Sound Features for Music Timbre Recognition. In: Pro-
ceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engi-
neering, Seoul, Korea, April 26-28, pp. 3–8 (2007) (invited paper) 

 



Rough Sets for Solving Classification Problems
in Computational Neuroscience

Tomasz G. Smolinski and Astrid A. Prinz

Department of Biology, Emory University, Atlanta, GA 30322, USA
{tomasz.smolinski,astrid.prinz}@emory.edu

Abstract. Understanding cellular properties of neurons is central in
neuroscience. It is especially important in light of recent discoveries sug-
gesting that similar neural activity can be produced by cells with quite
disparate characteristics. Unfortunately, due to experimental constraints,
analyzing how the activity of neurons depends on cellular parameters is
difficult. Computational modeling of biological neurons allows for explo-
ration of many parameter combinations, without the necessity of a large
number of “wet” experiments. However, analysis and interpretation of
often very extensive databases of models can be hard. Thus there is a
need for efficient algorithms capable of mining such data. This article
proposes a rough sets-based approach to the problem of classifying func-
tional and non-functional neuronal models. In addition to presenting a
successful application of the theory of rough sets in the field of compu-
tational neuroscience, we are hoping to foster with this paper a greater
interest among the members of the rough sets community to explore the
plethora of important problems in that field.

1 Introduction

Computational modeling of biological neurons plays an essential role in today’s
neuroscience research [1]. It allows for exploration of many parameter combina-
tions and various types of neuronal activity, without requiring a prohibitively
large number of “wet” experiments. This is especially important in light of re-
cent discoveries suggesting that functional neuronal electrical activity can be
produced on the basis of widely varying cellular parameter combinations [8].

The pyloric network in crustaceans (e.g., lobster, crab) is one of the best-
characterized neural networks in biology and a popular subject for studies of
rhythmic activity in the central nervous system [10,18]. Rhythmic activity is
crucial for any living organism as it is responsible for such critical actions as
breathing, chewing, running, etc. The pyloric network consists of up to 14 neu-
rons of 6 distinct types. The AB (anterior burster) neuron is one of the three
neurons forming the pacemaker kernel which drives the rhythmic activity of the
pyloric neural network, which is responsible for filtering of food in the animal.
The AB neuron produces rhythmic bursts of electrical activity of a specific pro-
file, even when isolated from other cells in the network. Figure 1 presents an
example of bursting neural activity, along with an illustration of its attributes.

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 620–629, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. An example of bursting electrical activity of the AB neuron (generated by
a model). ISI stands for Inter-Spiking Interval (i.e., time between spikes in a burst)
and AHP stands for After-Hyperpolarization Potential (i.e., trough voltage between
bursts).

In a model, each part of the neuron (e.g., soma–the neuron’s cell body,
neurites–branched projections of a neuron that conduct the electrical stimulation
received from other cells, axon–the nerve fiber that conducts electrical impulses
away from the cell body, etc.) is represented by a compartment, or a collection
of compartments, each described by appropriate differential equations with a
set of parameters [1]. For example, the two-compartment model shown in Fig.
2 represents the AB neuron in the conductance parameter space [22], meaning
that the model is described by a set of parameters that represent the maximum
membrane conductances for different ions in the neuron. The first compartment
in the model represents the soma and the neurites (S/N), and the second com-
partment corresponds to the axon (A). The figure also shows the ionic currents
determined by the membrane conductances used in the model (arrows indicate
the directionality of the currents–inward vs. outward).

Fig. 2. A model of the AB (anterior burster) neuron of the pacemaker kernel in the
crustacean pyloric neural network. S/N: Soma/Neurite compartment. A: Axon com-
partment. Arrows indicate inward and outward ionic currents as marked by labels
(source: [22]).
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To investigate the differences between functional and non-functional models
of the AB cell, we created an extensive database of 21,600,000 of such mod-
els by systematically varying 12 parameters describing the model neurons (i.e.,
maximal conductances of membrane currents, as shown in Fig. 2) from a “hand-
tuned” AB model [22]. In this database, we identified those models that met all
the criteria matching the observed behavior of biological AB cells, as described
in the next section. The identified “good” models, as well as those which failed
the test of functionality, were then subject to a rough sets-based rule-mining
analysis in an attempt to explain the differences between the two groups via a
set of concise and understandable IF/THEN classification rules.

We have previously applied a similar approach to the analysis of another
neuron type, the PD (pyloric dilator) cell in the lobster pyloric network [19]. How-
ever, the former approach was based on the genetic algorithms-driven pseudo-
association rule mining (P-ARM) methodology [11] and was concerned with
generating IF/THEN rules profiling different types of neuronal activity (e.g.,
fast spiking vs. slow spiking), rather than differentiating between functional
and non-functional neurons. In addition, the P-ARM approach had one seri-
ous limitation stemming from the fact that the generated rules were based on
precise values of the parameter values (i.e., specific membrane conductances
expressed in μS, micro-Siemens), which not only decreases the generality and
applicability of the rules, but also makes them difficult to interpret biologi-
cally. The rough sets-based methodology proposed in this article overcomes this
weakness.

2 Simulations and Creation of the Model Database

Our computational exploration started with a “canonical” hand-tuned model of
AB, which, as reported previously, mimics the biological behavior well [22]. To
investigate the extent of the variations in the parameter values that the model
can withstand and still produce functional activity, we independently varied the
maximal conductances of membrane currents around their canonical values. To
reduce the computational time and the size of the output database, param-
eters were first varied one at a time to determine physiologically reasonable
value ranges and step sizes for each conductance separately. The “variation ma-
trix” of all the explored values for the parameters in the AB model is shown in
Fig. 3.

Each of the 21.6 million “candidate” model neurons was simulated and classi-
fied as functional if it produced biologically realistic activity under four scenar-
ios: spontaneous activity, spontaneous activity with neuromodulator deprivation
(i.e., removal of the influence of neurotransmitters descending from other parts
of the nervous system), activity with external current injections, and activity
with neuromodulator deprivation and current injections. Whether the activity
generated by the AB models was biologically realistic was judged based on exper-
iments performed on their biological counterparts in isolation from the rest of the
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Fig. 3. Explored parameter values for the AB neuron models, expressed as % deviation
from the hand-tuned values (the quantity on the gray background shows the number
of possible values for a given parameter)

pyloric network and under each of the four conditions [20]. There were 353,208
(1.6352% of the the entire database) models meeting all the above criteria.

Each model (i.e., a particular combination of the parameter values) was coded
in the database by integer numbers corresponding to the indices in the varia-
tion matrix (with 1 being the smallest possible index, and 3 always indicating
the canonical value, as shown in Fig. 3). A binary classification attribute was
also added to differentiate between functional and non-functional entries, thus
transforming our model database into a full-fledged decision table [6].

2.1 Database Sampling

To reduce the computational complexity of our analysis, we decided to first
test our approach on a sampled subset of the models. In our previous work, we
investigated the impact of the sample size on the distributions of the functional
and non-functional models, and determined that a 1% random sample adequately
preserves the characteristics of the original dataset [21]. In addition, to deal with
the problem of huge disproportion between the numbers of functional and non-
functional models, we chose the following sampling protocol: first, a random
1% sample of the “good” models was selected, and then 10 random samples
of the same size of the “bad” models were drawn, thus creating 10 datasets
with equal distributions of the two classes, which would be subject to further
analyses in parallel. This is based on a quite well known approach to balancing
class distributions, especially useful in artificial neural network training [7], with
existing applications in neuroscience [3].



624 T.G. Smolinski and A.A. Prinz

3 Rough Sets in Classifying Functional and
Non-functional Models

3.1 IF/THEN Rules and Uncertainty in the Data

One of the most natural ways to explain the differences between “good” and
“bad” models could be via classification rules of the form “IF some pattern
within the parameter space, THEN functional model” and “IF some other pat-
tern within the parameter space, THEN non-functional model”. The theory of
rough sets (RS) lends itself naturally to this kind of analysis, especially since it is
very well equipped to deal with imprecise and somewhat ambiguous data [15,9],
which is a “part of life” in neuroscience. Not only can similar functional activity
be produced by neurons with disparate cellular characteristics, but quite intri-
cate interactions and relationships between the neurons’ (and therefore models’)
parameters have been discovered [5,17]. What this means is that not only it
may be difficult to identify interesting and trustworthy IF/THEN rules in our
database, but also that they will most likely not be 100% accurate. In other
words, even if a particular rule adequately explains the functional behavior of a
subset of models, it may fail to elucidate the mechanisms governing a different
subset, due to some hidden interactions characterizing that subset. The theory
of rough sets by definition allows this kind of uncertainty in data, by the means
of approximation of concepts via the indiscernibility relation and the equivalence
classes determined upon it [6].

3.2 Discretization

As described earlier, the AB models in our database are represented by sequences
of integers (i.e., indices in the variation matrix), which correspond to percentages
of the hand-tuned, canonical values of the maximal membrane conductances.
This allows for a direct application of rough sets-based analysis, however, as
discussed above, generating classification rules based on precise values of the
specific membrane conductances makes for a difficult biological interpretation.

The task of discretization is to divide the domains of the attributes into a
small number of discrete intervals and is commonly used in data mining [12],
also in tandem with rough sets-based algorithms [13]. Discretization is usually
applied to continuous data, which makes the process of analysis of such data
simpler and more efficient. We propose to utilize the concept of discretization in
this work, despite of the integer domain of the original data, in order to increase
the biological meaningfullness of the discovered rules.

More specifically, we applied one of the simplest univariate discretization algo-
rithms, the Equal Frequency Binning algorithm, which divides a sorted variable
into k bins, where, given n instances, each bin contains m/k adjacent values [2].
We purposely set k=3 to generate bins, which we could, without a loss of too
much fidelity, refer to as “low,” “intermediate” (always close to the hand-tuned
value), and “high” conductance, independent of the actual value in μS.
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3.3 Reduction in the Number of Parameters

A “by-product” of classification rules-based analysis is the ability to identify
“important” attributes in a decision table. Obviously, if a given attribute is
utilized in a trustworthy rule, it must be important from the standpoint of the
underlying classification problem. However, the theory of rough sets provides a
more straightforward approach to the problem of selection of important features.
The idea is to keep only those attributes that preserve the original indiscernibility
relation and, consequently, the concept approximation. The rejected attributes
are redundant since their removal cannot worsen the classification. There are
usually several such subsets of attributes for a given decision table, and those
that are minimal (in the sense that if we remove any of the attributes from that
subset, the concept approximation accuracy will decrease) are called reducts [6].

Another very important concept related to the idea of reducts is the so-called
core of reducts [6]. In basic terms, it is the set of attributes that all the discovered
reducts have in common. In other words, it may be considered the smallest
possible subset of attributes in a decision table that are absolutely necessary for
the task of classifying objects in that table. Here, we extend the notion of the
core slightly and apply it not only to reducts discovered in one particular sample
of our database of models (generated as described in Sect. 2.1), but also across
the samples. That way, we try to ensure that the core subset of the attributes
(and thus the model parameters) is indeed important in the light of the problem
of classifying functional and non-functional models, independent of the samples.

Finding reducts is not an easy task, especially in large datasets, but there exist
many quite efficient algorithms that deal with this problem. In this project, we
utilized the following two algorithms: 1) the well-known simple greedy Johnson’s
algorithm [4], which computes a single reduct only, and 2) a genetic algorithms-
based implementation, which is capable of computing multiple reducts from a
single dataset [23].

Not only is the idea behind searching for reducts a straightforward way to
identify important attributes, but if reduction is applied prior to rule genera-
tion, it may also increase the clarity of discovered rules, as well as boost the
computational efficiency.

4 Experiments and Results

In all the experiments performed in this project, the Rosetta system [14] along
with the authors’ own implementations of rough sets and genetic algorithms
were employed.

As mentioned earlier, applying a reduction algorithm first may not only help
determine the attributes playing an important role in a given classification
problem, but significantly improve the efficiency of the rule-generating pro-
cess. Therefore, we utilized both the Johnson’s algorithm, as well as the ge-
netic algorithms-based reduction across all 10 samples as the first step in our
analyses. We obtained 30 reducts (20 unique ones) of the length of 10 to 11
attributes. The lack of a dramatic reduction in the number of attributes (from
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the 12 attributes/parameters in the original dataset) was not surprising, as all
the parameters in a conductance-based neuronal models play a role in gener-
ating the observable activity. Nevertheless, by analyzing the core of all those
reducts we could try to determine which of those parameters are the most im-
portant in our classification problem. Based on the reducts computed from all
10 samples, we can state that soma CaT , Kd, and Proc, are absolutely neces-
sary for differentiation between the functional and non-functional models (they
were included in all of the reducts), the soma CaS, NaP , KCa, A, and axon
Na currents are very important (utilized in over 90% of the reducts), while the
leak currents (both in the soma and the axon), soma h, as well as the axon
Kd current, seem to be the least important (they were used by 65%–85% of the
reducts).

In the next step, we performed discretization, as described in Sect. 3.2. Since
all the attributes were included in at least one reduct, and the Equal Frequency
Binning algorithm is univariate (meaning that discretization is performed for
each of the attributes independently of the others), we decided to discretize
all the parameter values. The “low,” “intermediate,” and “high” conductance
ranges were then used to generate a set of classification rules.

To produce a set of trustworthy rules, we employed the previously tested
methodology of genetic algorithms-driven pseudo-association rule mining [19].
However, this time, since the technique was applied to discretized data, the lim-
itation of too specific rules was dealt with. Furthermore, we only utilized those
attributes that had “participated” in at least 90% of the reducts, thus signif-
icantly reducing the computational cost of the rule generation algorithm. We
obtained 9 concise rules with support [s] of between 1% and 20%, and confi-
dence [c] of at least 75% in the data. The support is the number of records with
a given combination of values in the dataset, and the confidence is expressed
as the ratio of the number of the records having a particular combination of
values on the left-hand side of the rule and a given value of the classification
attribute, to the total number of records with the same set of particular values
on the left-hand side of the rule. In other words, the confidence expresses how
sure one can be that given a set of particular values, a particular outcome will
occur. Several examples of the discovered rules are shown below.

RULE 1 [s=7%, c=75%]
IF soma Kd is low AND axon Na is high, THEN functional model.

RULE 2 [s=13%, c=77%]
IF soma KCa is low AND axon Na is intermediate, THEN functional model.

RULE 3 [s=5%, c=82%]
IF soma CaT is intermediate AND axon Na is low, THEN non-functional model.

RULE 4 [s=20%, c=85%]
IF axon Na is low, THEN non-functional model.
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5 Discussion

The methodology of rough sets-based classification rule mining is a useful tool
for the analysis of neuronal models. It allows for an efficient exploration of the
relationships between the models’ parameters and their behavior. The resulting
concise and comprehensible rules provide very useful insights into the problem
of analysis of how the activity of neurons depends on their cellular parameters.
For instance, the four rules presented above describe an intuitive dependence of
the neural activity of the AB neuron on its axon’s sodium (Na) current. The
current is known to play a critical role in the process of spike generation, thus
it makes sense that its corresponding conductance must be at least intermediate
(i.e., close to the hand-tuned value), as in RULES 1 and 2, to produce proper
bursting. The RULES 3 and 4 demonstrate the opposite situation, in which in-
sufficient amounts of the sodium current would cause a model (or its biological
counterpart) to cease being functional. Furthermore, such rules can help un-
derstand relationships between the neuronal models’ parameters (and thus the
cellular properties of the real cells), which is a tremendously “hot topic” in to-
day’s neuroscience. For example, RULES 1 and 2 presents two examples in which
even though the delayed-rectifier current (Kd), or the calcium-dependant potas-
sium current (KCa) might be a little “unrepresented,” the functionality will still
be preserved, as long as the sodium current will “compensate” for the relative
decrease in the other currents. The understanding of these kinds of phenomena
is extremely important to neuroscientists.

In future work, we would like to explore other discretization and reduction
algorithms in order to further improve our methodology. We would also like
to apply it to other types of neurons, as well as small neural networks con-
sisting of 2–3 cells tied together via synaptic connections. That would allow
us to explore how the activity of neurons depends on their synaptic inputs,
as well.

As mentioned earlier, in addition to presenting this successful application
of a rough sets-based method in the area of computational neuroscience, we
are sincerely hoping that with this article we will be able to foster a greater
interest of the members of the rough sets (and granular computing, in general)
community in the fascinating and rich field of neuroscience. There is a whole
plethora of very important problems in that field that are in desperate need of
efficient data mining techniques.
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Abstract. We discuss various ideas how to implement execution of approximate
SQL statements within Infobright database engine. We first outline the engine’s
architecture, which is designed entirely to work with standard SQL. We then dis-
cuss several possible extensions towards approximate querying and point out at
some analogies with the principles of the theory of rough sets. Finally, we present
the results of experiments obtained at the prototype level, both with respect to the
speed of query execution and the accuracy of approximate answers.

Keywords: Analytic Database Engines, Approximate Querying, Rough Sets and
Granular Computing, Infobright Community and Enterprise Editions.

1 Introduction

Infobright Community Edition1 (ICE) and Infobright Enterprise Edition2 (IEE) enable
to run SQL statements against terabytes of data. Leveraging MySQL architecture3 pro-
vides the users with an easy start and rich database functionality. Internal mechanisms
based on data compression [24], columnar storage [12] and rough sets [15] provide
performance sufficient for the data warehousing applications, with neither specialized
hardware nor advanced tuning needed. The crucial aspect of ICE/IEE is partitioning
data onto packrows, each consisting of 64K of original rows. We automatically label
packrows with rough information about their values on data columns. We create new
information systems where objects correspond to packrows and attributes correspond
to various flavors of rough information. Database operations are efficiently supported
within such a new framework, with the actual data accessible whenever rough informa-
tion is not sufficient. Both ICE and IEE are based on a number of algorithms that apply
rough information to minimize and optimize the access to compressed data [23].

Like other database vendors, Infobright stands in front of a dilemma whether stan-
dard SQL is enough. For example, in such areas of applications as, e.g., Business Intel-
ligence4 and Web Analytics5, there is an ongoing debate whether the answers to SQL
statements have to be always exact. The same question occurs in the case of SQL-based

1 www.infobright.org
2 www.infobright.com
3 dev.mysql.com/doc/refman/6.0/en/storage-engines.html
4 en.wikipedia.org/wiki/Business_intelligence
5 en.wikipedia.org/wiki/Web_analytics

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 630–639, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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machine learning algorithms, which are often based on heuristics, randomness and in-
exactness anyway [14,22]. Motivation for SQL approximations may be related also to
such aspects as complexity of queries and data sources (occurring, e.g., at the edge of
databases and semi-structured data analysis [3,19]), dynamically changing data with a
limited access (occurring, e.g., for sensory data and data streams [6,7]), as well as huge
data sets for which there is a need to monitor convergence of query execution in time,
regardless of whether the final answers are to be exact or approximate [10,11].

We began to consider how to extend Infobright’s framework by approximate queries
in [20], pointing at some straightforward possibilities resulting from the architecture
based on rough sets and granular computing [17]. In this paper, we report further discus-
sion and experimental findings. Our main motivation is to provide faster performance at
the cost of reasonably minor errors in the query answers. One of the ideas is to limit the
percentage of packrows required to get accessed and to rely to a larger extent on rough
information, even if it does not guarantee fully exact answers.

The paper is organized as follows: In Section 2, we provide background for our
research. In Section 3, we outline the basics of Infobright. Both sections include some
hints how approximate queries can be introduced into Infobright’s architecture in the
future. In Section 4, we consider two alternative ideas. In Section 5, we report the
experimental results related to one of them. Section 6 concludes the paper.

2 Related Work

There are several categories of approximate SQL. We focus on those addressing fast
inexact queries over large data. Other motivations mentioned in Section 1 are beyond
the scope of this paper. The first category is based on estimating the actual answers
by executing queries against data samples [5,8]. Some online forum discussions6 show
that Infobright’s layer of rough information may be applied to efficient identification
of collections of packrows that form statistically representative samples. Sampling may
be useful also in case of standard SQL, e.g., for estimating cardinalities of intermediate
results during optimization of query execution plans. Although Infobright’s cardinal-
ity estimation is currently based entirely on rough information, we may extend it by
additional sampling in the future, for both standard and approximate queries.

The second category is based on data synopses [1,4], particularly on histograms [6,9].
Depending on user preferences, the system may build numerous synopses for various
subsets of columns and measures. Each query is appropriately translated and calculated
only on synopses instead of the whole data set. The answer obtained in such a way is
returned as approximation. Some of the problems with synopses are as follows: Which
(subsets of) columns/measures should they describe? How to estimate answers in case
several instances of synopses are applicable? How to quickly rebuild synopses in case
of changing data or user preferences? One may actually interpret Infobright’s rough in-
formation as a kind of data synopses, although it is designed specifically to avoid the
above-mentioned problems. It is also important to note that our ideas presented in Sec-
tion 4 assume the usage of both data synopses and the actual data, although the intensity
of data usage is highly decreased comparing to the exact mode of SQL execution.

6 www.infobright.org/Forums/viewthread/454/
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In [11], the authors propose a framework for time-constrained SQL, wherein a user
provides an upper bound for query processing time and acceptable nature of answers
(partial or approximate). Similar idea was presented earlier in [10]. One can imagine
an analogous framework designed for Infobright, wherein a query is executed starting
with rough information and then it is gradually refined by decompressing heuristically
selected pieces of data. The execution process can be then bounded by means of various
parameters, such as time, acceptable errors, or percentage of data accessed.

An interesting approach to approximate SQL is introduced in [13]. The authors rely
on α-Rough-Set-Theory [18], which is an extension of rough sets [15]. For example, for
the select * query, the approximated answer is not bigger or not smaller than the exact
one, dependent on whether lower or upper rough set approximations are in use. Also
some of our ideas described in the next sections can be interpreted in the language of
rough set approximations and their extensions, like those in [18] or e.g. [25]. In general,
the answers to approximate SQL statements can have different syntax. For example,
one can answer to a query with a description of the bounds with certainty that the actual
answer is somewhere inside. One can also use a standard syntax, additionally labeled
with an estimate of the answer’s error. While original rough set methodology intuitively
fits that former scenario, its generalizations can lead toward the latter one.

3 Infobright’s Architecture

Infobright is based on grouping rows into so called packrows. For each packrow, it
stores the values of each of columns separately, as so called data packs – the sets of 64K
values of a single column. Data packs are compressed and described with knowledge
nodes. Knowledge nodes form together the Infobright’s Knowledge Grid, also referred
as rough information, as in Section 1. Our interpretation of the concept of Knowledge
Grid is different than in, e.g., Semantic Web [3], although there are some analogies in a
way Infobright’s Knowledge Grid mediates between the query engine and the data. In-
fobright’s query optimizer implements estimation methods based on knowledge nodes
instead of standard indices. It is also able to simulate the steps of query execution and
approximate its final answer with no need to access data packs. One may regard it as
one of the ways towards fast approximate querying, as mentioned in Section 2.

In [23], we presented various examples of using internal interface with knowledge
nodes to speed up particular data operations. It is important to refer to those methods in
order to better understand further sections. For illustration, let us recall how Infobright
uses knowledge nodes to classify data packs into three categories:

– Relevant (R) data packs with all data elements relevant for further execution
– Irrelevant (I) data packs with no data elements relevant for further execution
– Suspect (S) data packs that cannot be R/I-classified based on available nodes

Inspiration to consider such three categories grew from rough sets [15], where data is
split onto positive, negative, and boundary regions with respect to their membership to
the analyzed concepts. One may say that we apply knowledge nodes to calculate rough
approximations of data needed for resolving queries at the exact level and to assist query
execution modules in accessing required data packs in an optimal way.
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Fig. 1. Illustration for Section 3.3: (a) Min/max nodes; (b,c,d) Query execution stages. RSI denote
Relevant, Suspect and Irrelevant data packs. E denotes a need of processing at the exact level.

The following case study was first introduced in [23]. Consider table T with 350,000
rows and columns A and B. We have six packrows: (A1,B1) corresponds to rows 1-
65,536, (A2,B2) – to rows 65,537-131,072, etc., until (A6,B6) corresponding to rows
327,681-350,000. Consider an example of knowledge nodes that are currently used
in both ICE and IEE: min/max nodes that contain the minimum and maximum val-
ues (interpreted specifically for different data types) for each separate data pack, as
displayed in Fig. 1a. For simplicity, assume there are no nulls in T and ignore all
other types of available knowledge nodes [20,21,23,24]. The query of interest is the
following:

SELECT MAX(A) FROM T WHERE B>15;

According to min/max node for column B, data packs B1, B2, B3, B6 are S, B4 is R, and
B5 is I (Fig. 1b). According to min/max node for column A, we obtain the following ap-
proximation: MAX(A) subject to B>15 is between 18 and 25. Thus, after re-classifying
data packs and their corresponding packrows, only (A1,B1) and (A3,B3) require further
investigation (Fig. 1c). The maximum in A1 is higher than in A3. Therefore, packrow
(A1,B1) is the first one to be processed at the exact level. Depending on the analysis of
its rows, (A3,B3) will become I or will require exact processing too (Fig. 1d).

Fig. 1 illustrates two important aspects of Infobright’s technology. Firstly, knowledge
nodes are used not only as a naïve technique for filtering data out – they are also ap-
plied to automatically decide in what order data should be analyzed. Secondly, one can
interpret our query execution as the approximation process. In the above example, the
first approximation was between 18 and 25, and the second one would be obtained after
decompressing packrow (A1,B1). As mentioned in Section 2, one can extend it towards
approximate query framework analogous to [10,11]. Although we do not proceed with
this idea in the next sections, it is one of our future research directions.
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4 Approximate Querying in Infobright

As already discussed, there are numerous ways of extending Infobright to let it deal
with approximate SQL. Some of them should be already visible to a careful reader. In
Subsections 4.1 and 4.2, we proceed with two more possibilities: modifying knowledge
nodes and modifying the way of using knowledge nodes, respectively. Such a variety of
methods – applicable both jointly and separately – shows that approximate queries can
be injected into Infobright’s technology whenever required in the future.

4.1 Inexact Knowledge Nodes

Consider an integer column and a data pack with minimum value 100 and maximum
value 500. Imagine, however, that 99% of values in this pack are between 200 and
250. An obvious temptation is to put 200 and 250 instead of 100 and 500 into the
corresponding min/max node. If we do it, the considered pack will be accessed less
frequently and the query answers will be roughly the same. If we do it for more data
packs, the average speed of queries will increase. Surely, it can be considered for other
types of knowledge nodes as well. However, there are some challenges.

First of all, one needs good heuristics that create such inexact knowledge nodes (ap-
plicable optionally, exchangeably with the original ones) that minimize the frequency of
decompressions but, in the same time, keep an average degree of error of query answers
within a reasonable range. In Section 1, we described Infobright’s approach by means
of new information systems where objects correspond to packrows and attributes corre-
spond to rough information. Thus, the task is to define such new attributes that provide
more compact knowledge representation, not fully consistent with the data.

It is also crucial to estimate errors occurring at the level of data packs and to propa-
gate them through the whole query execution process in order to provide the users with
the overall expected errors. This task gets obviously more complicated along a growing
complexity of analytical SQL statements and needs to be considered for all approximate
query methods. With this respect, although we do not address it in this paper, one can
refer query execution plans to, e.g., multi-layered approximation schemes developed
within the frameworks of rough and interval computing (cf. [17]).

One can build inexact min/max nodes using a simple technique based on histograms,
as illustrated by Fig. 2. An intermediate histogram is constructed for each new data
pack, during data load. A specific parameter is responsible for how big fraction of values
we can abandon when approximating min/max statistics, i.e., what percentage of local
outliers we can cut off from a data pack’s rough representation. The values are cut
off from both edges of histogram to enquire the shortest interval. One can employ a
straightforward greedy algorithm for choosing which edge should be cut off.

Although experimental results were quite interesting, it turns out that inexact know-
ledge nodes should be applied rather as a complementary technique, as they do not
provide enough of query execution speed-up just by themselves. On the other hand, it is
worth noting that in some applications query answers are actually more reliable when
outliers are removed (cf. [7]). Thus, if we treat the process of replacing min/max with
min*/max* values as a kind of metadata cleaning, we may think about a novel method
for producing more robust answers with no changes to the original data.
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Fig. 2. Histogram representing distribution of values in a numeric data pack. Heuristically derived
min*/max* values are stored in the corresponding inexact min/max node. For alpha-numeric val-
ues, the meaning of min* and max* can be reformulated. It is important to note that the presented
histogram is only an intermediate structure, not added to Infobright’s Knowledge Grid.

4.2 Randomized Classification

Consider a data pack for numeric column A. Imagine that its min and max values equal
to 0 and 100, respectively. Consider SQL statement with the clause WHERE A>1. Intu-
itively, the considered data pack (and its corresponding packrow) is almost relevant with
respect to the considered clause. Thus, one can think about approximate SQL based on
so called degrees of relevance of data packs with respect to constraints occurring during
query execution, such as SQL filters, groupings, subqueries, etc.

Degrees of relevance or, in short, rel-degrees need to be carefully defined for par-
ticular components of SQL. Their values should be derivable directly from knowledge
nodes, with no data access required. Given space limitations, let us focus in detail on
operators in the WHERE clauses. Table 1 presents two examples related to such opera-
tors. In general, we should expect that rel belongs to the unary interval. Moreover, for
I- and R-classified data packs, equalities rel = 0 and rel = 1 should hold.

There are several ways of employing rel-degrees in approximate SQL. One of them
is to rely entirely on knowledge nodes and rel-degrees using, e.g., fuzzy logic and
related fields [16,17]. One can also follow the idea behind so called variable precision
rough set model [25] and push some of almost irrelevant/relevant data packs into the
I/R categories. An obvious motivation to do it is to limit the amount of data packs
requiring decompression, which immediately results in faster query performance. This
method is simple to implement at a prototype level, as it keeps the ICE/IEE internals
and knowledge nodes unchanged. The only change is in R/S/I-classification.

Our framework looks as follows: We test various monotonic functions f : [0, 1] →
[0, 1] that re-scale rel-degrees. The following equalities should hold: f(0) = 0, f(1) =
1, f(0.5) = 0.5. One can compare the role of f with, e.g., modifications of fuzzy mem-
berships in [16]. We replace R/S/I with R*/S*/I*-classification, wherein R becomes R*,
I becomes I*, and each data pack that was initially S-classified has a chance to change
its status due to the following formula, wherein x ∈ [0, 0.5] is random:

S →
{

R* if rel > 0.5 and f(rel) ≥ x+ 0.5
I* if rel < 0.5 and f(rel) ≤ x

// otherwise S → S* (1)
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Table 1. Two examples of rel-degrees for operators IS NULL and BETWEEN occurring in
the WHERE clauses. The quantities #NullsInPack and #ObjectsInPack are stored in In-
fobright’s Knowledge Grid for each data pack. PackRange is an interval based directly on
min/max nodes. ConditionRange refers to SQL filter based on the BETWEEN operator.

operator degree of relevance rel ∈ [0, 1]
IS NULL #NullsInPack / #ObjectsInPack
BETWEEN |PackRange∩ ConditionRange| / |PackRange|

Only S*-classified packs will be decompressed during query execution. The ICE/IEE-
engine will omit I*-classified packs even if they contain some relevant values. It will
also use knowledge nodes for R*-classified packs as if they were fully relevant.

5 Experimental Framework

We examine the prototype implemented according to the guidelines in Subsection 4.2.
Given potential applications of approximate SQL, we focus on aggregate and top-
k queries [2]. We use data table fact_sales taken from our database benchmark
car_sales [21]. It contains 1 billion of rows. Its columns include: sales_person
(varchar), dealer_id (decimal), make_id (decimal), sales_commission (de-
cimal), and trans_date (date). Queries are tested with respect to the answers’ errors
and execution times, depending on the choice of formula for f : [0, 1] → [0, 1] applied
in (1). One of the considered query templates looked as follows:

SELECT aggregate_function FROM fact_sales WHERE
trans_date between ’2006-03-01’ AND ’2006-05-31’; (Q1)

The aggregate_function may take various forms, as illustrated by Fig. 3. It
shows that some of aggregates are easier to approximate than the others. Among the
easy ones, we can see min, max and count distinct, while the harder ones are
sum, avg and count. Another examined query was of type top-k:

SELECT sales_person, SUM(sales_commission) FROM fact_sales
WHERE trans_date BETWEEN ’2006-03-01’ AND ’2006-03-30’
AND sales_discount > 450 GROUP BY sales_person ORDER BY
SUM(sales_commission) DESC LIMIT 5; (Q2)

Here, we need to measure a distance between exact and approximate answers. We apply
Spearman rank coefficient subject to partial knowledge about the ordering. It does not
reflect errors of particular aggregate components – only their ranking. Let top(k) denote
the set of values in the exact answer. Let Rankexact(v) and Rankapprox(v) denote the
rank of value v in the exact and approximate answers. If v is not one of top-k-ranked
values, we put its rank as equal to k + 1. We used the following formula:

error(exact, approx) =
√∑

v∈top(k)(Rankexact(v) −Rankapprox(v))2 (2)
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Fig. 3. Queries Q1. X-axis corresponds to the considered functions f0, f1, ..., f10 that model
our willingness to gain speed at the cost of precision when applying formula (1). Function f0

yields original R/S/I-classification. Detailed definitions of fi are omitted due to space limitations.
Generally, one can see that S-classified data packs are more likely pushed to R*/I* for higher
i = 1, ..., 10. Each query was executed 10 times for each of fi. Y-axis reflects the average
approximate query answers (normalized in order to present them all together) and the average
percentages of S*-classified data packs (denoted as SUSPECTS) that require decompression.
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Fig. 4. Query Q2. The meaning of X-axis is the same as in Fig. 3, although here we used slightly
different functions f0, f1, ..., f10 (details omitted as before). At the left, Y-axis reflects the nor-
malized quantities of error defined by (2), averaged from 10 runs of the query, with the minimum
and maximum obtained errors additionally marked. At the right, we report the numbers of occur-
rences (in 10 runs) of the actual top-5 sales_person values in approximate answers.

In Fig. 4, we can see that approximate answers to top-k queries are very sensitive to
changes of functions f : [0, 1] → [0, 1]. It may be caused by the fact that the exact
aggregates computed for particular values of sales_person are close to each other,
so even slight changes of their approximations yield quite different outcomes.

Experiments show that our approach appears to provide a good starting point for
efficient SQL approximations. The achieved precision turns out satisfactory especially
for simple aggregations, where the obtained answers do not differ significantly even
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for functions f : [0, 1] → [0, 1] aiming at the highest speed-ups. On the other hand,
complex queries surely need better tuning of those functions’ parameters.

The method requires far more tests against real-life data sets and complex queries.
One should remember that it is just a basic prototype and that it can be further im-
proved in many ways, such as: 1) better analysis of distribution inside data packs
(performed online during load), 2) applying wider range of available definitions of rel-
degrees (adapted to data distributions), 3) developing a mechanism that better combines
rel-degrees of multiple clauses; 4) applying similar optimizations beyond the WHERE
clauses, etc. All these directions are on our future research roadmap.

6 Conclusion and Discussion

We proposed how to extend Infobright’s architecture to handle approximate SQL. The
need for such types of calculation arises in the database industry since the volumes of
data have become too large for exact processing with a reasonable speed.

Given Infobright’s specifics, one can address approximate querying at three levels:
query execution (as summarized in the end of Section 3), rough information (Sub-
section 4.1), and the usage of rough information to decide which (and in what way)
data packs should be processed during query execution (Subsection 4.2). Experimental
results show that the approach outlined in Subsection 4.2 is quite adequate and prospec-
tive, with an interesting underlying theoretical model that adapts probabilistic genera-
lizations of rough set principles [15,25] and extends them in a novel way by additional
randomization. On the other hand, we believe that the ICE/IEE-extensions towards ap-
proximate SQL should rely on integration of all three above-listed aspects.

Among the discussed challenges, the most important one seems to relate to mea-
suring and controlling the query answer errors. Appropriate mathematical models and
further experimental tuning are required for each of the proposed approaches, when
applied both separately and together. One can employ here various techniques, such as
statistical analysis [8] or, e.g., appropriate extensions of interval computing [17]. It is
also worth analyzing the convergence of approximations and the corresponding error
estimates during the query execution process [10,11]. The good news is that most of
those methods are quite naturally applicable within Infobright’s framework.
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Abstract. The tertiary structure of a protein molecule is the main factor which 
determines its function. All information required for a protein to be folded in its 
natural structure, is coded in its amino acid sequence. The way this sequence 
folds in the 3D space can be used for determining its function. With the tech-
nology innovations, the number of determined protein structures increases 
every day, so improving the efficiency of protein structure retrieval and classifi-
cation methods becomes an important research issue. In this paper, we propose 
a novel protein classifier. Our classifier considers the conformation of protein 
structure in the 3D space. Namely, our voxel based protein descriptor is used 
for representing the protein structures. Then, the Support Vector Machine 
method (SVM) is used for classifying protein structures. The results show that 
our classifier achieves 78.83% accuracy, while it is faster than other algorithms 
with comparable accuracy. 

Keywords: PDB, SCOP, protein classification, voxel descriptor, Support Vec-
tor Machine (SVM). 

1   Introduction 

Proteins are one of the most important molecules in the living organisms, since they 
play a vital functional role in living organisms. All information required for a protein 
to be folded in its natural structure is coded in its amino acid sequence. The way this 
sequence folds in the 3D space is very important, in order to understand the function 
of the protein molecule. The knowledge of the protein function is crucial in the deve-
lopment of new drugs, better crops, and development of synthetic biochemical. 

Since determining of the first protein structure of the myoglobin, up to now, the 
complexity and the variety of the protein structures has increased, as the number of the 
new determined macromolecules has. Therefore, a need for efficient methods for  
classification of proteins is obvious, which may result in a better understanding of 
protein structures, their functions, and the evolutionary procedures that led to their 
creation. Many classification schemes and databases, such as CATH [1], FSSP [2] and 
SCOP [3], have been developed in order to describe the similarity between proteins. 

The Structural Classification of Proteins (SCOP) database [3] describes the evolu-
tionary relationships between proteins. SCOP has been accepted as the most relevant 
and the most reliable classification dataset [4], due to the fact that it is based on visual 
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observations of the protein structures made by human experts. In SCOP, proteins are 
classified in hierarchical manner. The main levels of the SCOP hierarchy are Domain, 
Family, Superfamily, Fold, and Class. Due to its manual classification methods, the 
number of proteins released in PDB database which have not been classified by SCOP 
yet, drastically increases. So, the necessity of fast, accurate and automated algorithms 
for protein classifications is obvious.  

One way to determine protein similarity is to use sequence alignment algorithms 
like Needleman–Wunch [5], BLAST [6], PSI-BLAST [7] etc. Since these methods 
cannot recognize proteins with remote homology, we can use structure alignment 
methods such as CE [8], MAMMOTH [9] and DALI [10]. In general, these methods 
are accurate, but their speed of classification is always questioned. For example, CE 
takes 209 days [8] to classify 11.000 novel protein structures. Also, there are numer-
ous methods, like SCOPmap [11] and FastSCOP [12], which combine sequence and 
structure alignment of the proteins. 

Classification of protein structures can be done without applying alignment tech-
niques. Namely, proteins can be mapped in a feature space, and then some classifica-
tion method can be used. In [13], some local and global features are extracted from 
the distance matrix histograms. Classification is based on the E-predict algorithm 
[13]. In [14], some features of the protein sequence are extracted, and then proteins 
are classified by using Naive Bayes and boosted C4.5 decision trees. 

In this paper, we propose a novel protein classifier. Our voxel based descriptor [15] 
is used to represent the protein molecules in the feature space. After proper mapping 
of the protein structures in the feature space, the Support Vector Machine method 
(SVM) [16] is used to classify the protein structures. A part of the SCOP 1.73 data-
base was used in the evaluation of our classifier. 

The rest of the paper is organized as follows: our protein classifier is presented in 
section 2; section 3 presents some experimental results; while section 4 concludes the 
paper. 

2   Our Classifier 

In this paper, we propose an accurate and fast system that allows to the user to clas-
sify protein structures. The information about protein structure is stored in PDB files. 
The PDB files are stored in the Protein Data Bank (PDB) [17], which is the primary 
depository of experimentally determined protein structures. They contain information 
about primary, secondary and tertiary structure of proteins. We have used our voxel 
based descriptor [15] in order to map the protein structure in the feature space. Then, 
SVM classifier [16] is applied in order to classify each newly protein in correspond-
ing protein domain in the SCOP hierarchy. 

Our goal is to provide a system which provides structural classification of protein 
structures. The phases of our classification system are illustrated on Fig. 1. In the 
training phase, the information about the protein structure contained in PDB file is 
processed and the voxel based descriptor is extracted. After generation of the voxel 
descriptors of all training proteins, a SVM model for each SCOP domain is generated 
by the SVM method. In the testing phase, the user uploads the PDB file of the query 
protein. The information from the PDB file is processed and the voxel based descrip-
tor is extracted. Then, the protein is classified according to the SVM method. 
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Fig. 1. The training and testing phase of our SVM based classification system 

2.1   Voxel Based Descriptor 

We have used the voxel-based descriptor presented in [18] to extract the geometrical 
features of the protein structures. Voxel based descriptor is extracted in five phases. 
Since the exact 3D position of each atom and its radius are known, it may be re-
presented by a sphere. First, we perform triangulation in order to build a mesh model 
of the protein structure. The surface of each sphere is triangulated, thus forming the 
mesh model of the protein. Then, the centre of mass is calculated and the protein is 
translated, so the new centre of mass is at the origin. The distance dmax between the 
new origin and the most distant vertex is computed, and protein is scaled, so dmax=1. 
In this way, we provide translation and scale invariance. 

After triangulation, we perform voxelization. Voxelization transforms the continu-
ous 3D-space, into discrete 3D voxel space. The voxelization proceeds in two steps: 
discretization and sampling. Discretization divides the continuous 3D-space into vo-
xels. With sampling, depending on the positions of the polygons of the 3D-mesh mo-
del, to each voxel vabc, a value is attributed equal to the fraction of the total surface 
area S of the mesh which is inside the region µabc (1).  

{ }abc
abc

area I
v

S

μ ∩= , 0 ≤ a,b,c  ≤ N - 1. (1)

Each triangle Tj of the model is subdivided into pj
2 coincident triangles each of which 

has the surface area equal to  δ = Sj / pj
2,  where Sj is the area of Tj . If all vertices of 

the triangle Tj lie in the same cuboid region µabc, then we set pj = 1, otherwise we use 
(2) to determine the value of pj. 

min
j

j

S
p p

S

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎢ ⎥

 (2)

For each newly obtained triangle, the center of gravity G is computed, and the voxel 
µabc is determined. Finally, the attribute vabc is incremented by δ. The quality of ap-
proximation is set by pmin. According to [18], we have set pmin =32000.  
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The information contained in the voxel grid can be processed further to obtain both 
correlated information and more compact representation of the voxel attributes as a 
feature. We applied the 3D Discrete Fourier Transform (3D-DFT) to obtain a spectral 
domain feature vector, which provides rotation invariance of the descriptor. A 3D-
array of complex numbers F = [fabc] is transformed into another 3D-array by (3). 

1 1 1
' 2 ( / / / )

0 0 0

1 M N P
j ap M bq N cs P

abcpqs
a b c

f f e
MNP

π
− − −

− + +

= = =
= ∑ ∑∑  (3)

Since we apply the 3D-DFT to a voxel grid with real-valued attributes, we shift the 
indices so that (a; b; c) is translated into (a–M/2; b–N/2; c–P/2). Let M=N=P and we 
introduce the abbreviation (4). 

'
/2, /2, /2a M b N c P abcυ υ− − − ≡  (4)

We take the magnitudes of the low-frequency coefficients as components of the  
vector. Since the 3D-DFT input is a real-valued array, the symmetry is present among 
obtained coefficients, so the feature vector is formed from all non-symmetrical coeffi-
cients which satisfy 1 ≤ | p | + | q | + | s | ≤ k ≤ N/2. We form the feature vector by the 
scaled values of  f’pqs by dividing by |f’000|. This vector presents the geometrical fea-
tures of the protein structure. 

Additionally, some features of the primary and secondary structure of the protein 
molecule are considered, as in [19]. More specifically, concerning the primary struc-
ture, the ratios of the amino acids’ occurrences and hydrophobic amino acids ratio are 
calculated. Concerning the secondary structure, the ratios of the helix types’ occurren-
ces, the number of Helices, Sheets and Turns in the protein are also calculated. These 
features are incorporated in the previously extracted geometry descriptor, thus form-
ing better integrated descriptor. 

In this way, we transform the protein tertiary structures into N dimensional feature 
space. Then, classification process follows, where voxel based descriptors are used as 
representatives of protein structures. 

2.2   Support Vector Machine (SVM) Method 

The support vector machine is a binary classification method proposed by Vapnik and 
his colleagues at Bell laboratories [16], [20]. As a binary problem, it has to find the 
optimal hyperplane which separates the positive from negative examples, see Fig. 2. 
Examples are presented as data points: {xi,yi}, i=1,...,N , yi ϵ{-1, 1}, xi ϵ Rd. In our 
approach, x corresponds to the voxel descriptor of the i-th training protein. The points 
x which lie on the hyperplane satisfy w·x + b = 0, where w is normal to the  
hyperplane, |b|/||w|| is the distance from the hyperplane to the origin, and ||w|| is the 
Euclidean norm of w. The “margin” of a separating hyperplane is defined as a sum of 
the distances from the separating hyperplane to the closest positive and negative ex-
amples. Suppose that all the training examples satisfy the constraints (5), so they can 
be combined as an inequality (6). 
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The points which satisfy the equality (6) lie on the two hyperplanes H1 and H2. These 
hyperplanes are parallel and distinguish the positive from negative examples. So, the 
goal is to find a pair of hyperplanes which gives the maximum margin by minimizing 
||w||2, according to (5). The model will contain only examples that lie on the separat-
ing hyperplanes, named support vector machines. 

 

Fig. 2. A separable hyperplane for two dimensional feature space 

Nonnegative Lagrange multipliers αi are introduced for each example. In this way, 
primal Lagrangian gets the form (7). 

2

1 1

1
( * )

2

N N

P i i i i
i i

L y bα α
= =

= − + +∑ ∑w x w  (7)

Then, we have to minimize LP with respect to w, b, and maximize with respect to all 
αi at the same time. This is a convex quadratic programming problem, since the func-
tion is itself convex, and those points which satisfy the constraints form a convex set. 
This means that we can equivalently solve the following “dual” problem: maximize 
LP, subject to the constraints that the gradient of LP with respect to w and b vanish, 
and subject also to the constraints that the αi ≥ 0. This gives the conditions (8). Then, 
(8) is substituted into (7), which leads to (9). LP and LD show the Lagrangian which 
arise from the same objective function, but under different constraints. In this way, 
the problem can be solved by minimizing LP or by maximizing LD.  

, 0i i i i i
i i

y yα α= =∑ ∑w x  (8)
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L y yα α α= −∑ ∑ x x  (9)

This algorithm is not suitable for a non-separable data, since it will find no feasible 
solution. So, positive slack variables ei, i=1,…,N are introduced in (5), thus forming 
constraints (10). 
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* 1 , for 1
i i i

i
i i i
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≥ ∀

+ ≤ − + = −
x w

x w
 (10)

An extra cost for an error is assigned, so the objective function to be minimized will 
be ||w||2/2 + C(Σiei) instead ||w||2/2. The parameter C is defined by the user, where 
larger C corresponds to a higher penalty to the errors. 

In order to generalize the above method to be applicable for a non-separable prob-
lem, the data should be mapped into other feature space H, by using a mapping Ф, 
thus getting linearly separable problem. The training algorithm would only depend on 
the data through dot products in H. Now, if there were a kernel function K such that 
K(xi, xj) = Ф(xi) · Ф(xj), we would only need to use K in the training, and would never 
need to explicitly know what Ф is. One example for this function is Gaussian, given 
by (11), where σ is the standard deviation. 

2 2( , ) exp( / 2 )i j i jK σ= − −x x x x  (11)

In the test phase, the sign of (12) is computed, where si correspond to the support 
vectors. So, we can avoid computing Ф(x) explicitly, and use K(si, x) = Ф(si) · Ф(x). 

bKybyxf
N

i
iii

N

i
iii +=+= ∑∑

==

),()(Φ*)(Φ)(
11

xsxs αα  (12)

Although the SVM method is originally proposed as a binary classifier, there are 
many approaches that perform multi-class classification [21], but are computationally 
much more expensive than solving several binary problems. On the other hand, many 
approaches decompose the multi-class problem into several binary problems, thus 
leading to faster classifier.  

One possible approach is one-against-all (OvA), where N separate classifiers are 
constructed. On the other hand, one-against-one (OvO) approach can be used by 
building a separate classifier for each pair of classes, thus leading to N(N-1)/2 classi-
fiers. In this research, our dataset contains proteins from 150 classes, so we used OvA 
algorithm, thus leading to 150 classifiers, instead of 11175 classifiers in OvO case. 

3   Experimental Results 

We have implemented a system for protein classification based on the SVM method. 
Part of SCOP 1.73 database was used. Our standard of truth data contains 6979 ran-
domly selected protein chains from the 150 most populated protein SCOP domains. 
90% of the data set serves as training data and the other 10% serves as test data. 
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First, we examined the influence of standard deviation σ on the classification accu-
racy. In Table1, the classification accuracies are presented by using different values 
for σ. We tested the influence of σ on the classification accuracy on the training and 
test set.  

Table 1. The influence of the standard deviation σ on the classification accuracy 

Standard 
deviation (σ) 

Classification 
accuracy (%) 
on training set 

Classification 
accuracy (%) 
on test set 

Standard 
deviation (σ)

Classification 
accuracy (%) 
on training set

Classification 
accuracy (%) 
on test set 

1650 / 70.20 8000 98.48 78.01 
3000 99.98 74.76 8500 98.14 78.50 
4000 99.98 75.09 9000 97.69 77.69 
5000 99.98 76.06 10000 96.76 78.34 
6000 99.98 76.06 12000 94.67 78.18 
7000 99.44 77.04 15000 91.72 76.88 
7500 99.04 77.04 20000 76.68 75.73 

 
Analysis showed that for small value of σ, the training phase lasts longer, and leads 

to over-fitting of the classifier. So, for small value of σ, we achieve high classification 
accuracy by using the training data in the test phase. On the other hand, by decreasing 
the standard deviation, when the test set is used in the testing phase, the classification 
accuracy is getting worse (70.2% classification accuracy for σ=1650). By increasing 
σ, the classification accuracy on the training data decreases due to the inability of the 
classifier to suits to the data so well. On the other hand, for higher values of σ, the 
classification accuracy on test data increases. Table 2 present the experimental results 
of more detailed analysis of the influence of the standard deviation on the classifica-
tion accuracy on the test data. Further analysis can be performed in order to find the 
optimal value of the standard deviation.  

Table 2. The influence of the standard deviation σ on the classification accuracy on the test set 

Standard 
deviation (σ) 

Classification 
accuracy (%) 

Standard 
deviation (σ) 

Classification 
accuracy (%) 

Standard 
deviation (σ) 

Classification 
accuracy (%) 

1650 70.20 8500 78.50 103000 77.69 
3000 74.76 8550 78.34 104000 78.01 
4000 75.09 8600 78.34 105000 78.01 
5000 76.06 8750 77.85 106000 77.85 
6000 76.06 9000 77.69 107000 77.52 
7000 77.04 9100 78.18 108000 77.69 
7500 77.04 9200 78.18 109000 78.01 
8000 78.01 9300 78.01 110000 78.18 
8250 78.34 9400 78.01 120000 78.18 
8300 78.01 9500 78.34 150000 76.87 
8350 78.50 100000 78.34 200000 75.73 
8400 78.50 101000 77.85   
8450 78.50 102000 77.85   
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Further, we examined the influence of the penalty given to the errors c. The analy-
sis is performed for the best values of σ (according to Table 2). Experimental results 
presented in Table 3 show that the error penalty c has minor influence on the classifi-
cation accuracy. 

Table 3. The influence of the error penalty c on the classification accuracy for distinct values  
of σ 

c 10 25 35 40 45 50 55 60 75 100 

σ =8350 76.71 77.69 77.69 78.18 78.50 78.83 78.34 78.01 78.18 78.50 
σ =8400 76.71 77.36 77.85 78.34 78.66 78.66 78.50 78.01 78.18 78.50 
σ =8450 76.71 77.36 77.85 78.18 78.50 78.66 78.66 78.18 78.01 78.50 
σ =8500 76.55 77.36 77.85 78.18 78.34 78.66 78.66 78.34 78.34 78.50 

 
As it can be seen from Table 3, our approach achieves 78.83% classification accu-

racy for σ =8350 and c=50. The training phase lasts several minutes, while the test 
phase takes several seconds. Compared to other classification algorithms with compa-
rable accuracy, our approach has shown as much faster. 

4   Conclusion 

In this paper we proposed a novel approach for classifying protein tertiary structures 
based on the Support Vector Machine (SVM) method. Our voxel based descriptor was 
used as representatives of the protein structures in the feature space. After proper 
transformation of the protein structures into the feature space, a SVM classifier is 
used in order to build a separate SVM for each SCOP domain.  

A part of SCOP 1.73 database was used to evaluate the proposed classification ap-
proach. We investigated the influence of the standard deviation and the error penalty 
on the classification accuracy. The results showed that the error penalty has minor 
influence on the accuracy, while the standard deviation drastically affects the  
adequacy of the classifier, so leading to high influence on the classification accuracy. 
Further analysis can be made in order to find the optimal value of the standard  
deviation. Also, an automatic adjustment of the standard deviation can be made, thus 
leading to faster training. The proposed approach achieves 78.83% classification 
accuracy. Compared to other classification algorithms with comparable accuracy, our 
approach has shown as much faster. 

We have already investigated our protein ray based descriptor which has shown as 
an accurate, simple and fast way for representation of protein structures. Since the 
average precision of the voxel based descriptor is 77.8% and the average precision of 
the ray descriptor is 92.9%, we expect that similar SVM classifier based on the ray 
descriptor will achieve much higher precision. Also, due to the lower dimensionality 
of the ray descriptor, we expect that the ray based classifier will be faster than the 
proposed voxel based classifier. 
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Abstract. This paper describes a nonlinear Model Predictive Control
(MPC) algorithm based on neural models. Two neural models are used
on-line: from a dynamic model the free trajectory (the influence of the
past) is determined, the second neural network approximates the time-
varying feedback law. In consequence, the algorithm is characterised by
very low computational complexity because the control signal is cal-
culated explicitly, without any on-line optimisation. Moreover, unlike
other suboptimal MPC approaches, the necessity of model linearisation
and matrix inversion is eliminated. The presented algorithm is compared
with linearisation-based MPC and MPC with full nonlinear optimisation
in terms of accuracy and computational complexity.

Keywords: Process control, Model Predictive Control, neural networks,
optimisation, soft computing.

1 Introduction

Model Predictive Control (MPC) refers to a control strategy in which an explicit
model is used to predict future behavior of the process over some horizon and to
optimise the future control action [9,16]. Because the model is used for predic-
tion and optimisation, MPC algorithms, unlike any other control technique, can
take into account constraints imposed on process inputs (manipulated variables)
and outputs (controlled variables), which usually decide on quality, economic
efficiency and safety. Moreover, MPC can be efficiently used for multivariable
processes, with many inputs and outputs. As a result, MPC algorithms have
been successfully used for years in advanced industrial applications [15].

In the simplest case a linear model is used for prediction. Unfortunately, many
technological processes are in fact nonlinear. In such cases MPC based on a linear
model may be inefficient (slow) or inappropriate (unstable). That is why a wide
variety of nonlinear MPC approaches have been developed [4,11,16]. In particu-
lar, MPC algorithms based on neural models are recommended [6,7,8,12,16,17].
It is because neural models can be efficiently used on-line in MPC since they have
excellent approximation abilities, a limited number of parameters (when com-
pared to other model types) and simple structures. Furthermore, neural models

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 649–658, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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directly describe input-output relations of process variables, complicated sys-
tems of algebraic and differential equations do not have to be solved on-line as
it necessary in MPC based on fundamental models.

Usually, suboptimal nonlinear MPC algorithms are implemented in practice
[6,8,12,16,17]. The nonlinear model (e.g. neural) is linearised on-line. Thanks
to it, the control action is calculated at each iteration from an easy to solve
quadratic programming task. Recently, a few approaches have been proposed
to reduce the computational complexity of nonlinear MPC. An approximate
MPC technique can be used which replaces the whole algorithm, the neural
network directly calculates the control signal without any optimisation [1,2,14].
An alternative is to use an explicit piecewise linear state feedback approximator
which can be found off-line using multi-parametric nonlinear programming (mp-
NLP) [5]. The controller is realised by binary tree search, but complexity of trees
may be significant. A yet another approach is to use a neural network to solve
on-line the MPC optimisation problem [13].

In this paper a computationally efficient neural network approach to nonlinear
MPC is detailed. The control action is determined explicitly, without any on-
line optimisation. Hence, the algorithm can be used for very fast processes or
implemented on simple hardware. Two neural models are used on-line: from a
dynamic model the free trajectory (the influence of the past) is determined, the
second neural network approximates the time-varying feedback law. Unlike other
explicit MPC approaches [7], the necessity of model linearisation and matrix
inversion is eliminated.

2 Model Predictive Control Algorithms

In MPC algorithms [9,16] at each consecutive sampling instant k, k = 0, 1, 2, . . .,
a set of future control increments is calculated

�u(k) = [�u(k|k) �u(k + 1|k) . . . �u(k +Nu − 1|k)]T (1)

It is assumed that �u(k+ p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective of the algorithm is to minimise differences between the reference
trajectory yref(k+p|k) and predicted outputs values ŷ(k+p|k) over the prediction
horizon N ≥ Nu, i.e. for p = 1, . . . , N . The cost function is usually

J(k) =
N∑

p=1

(yref(k + p|k) − ŷ(k + p|k))2 +
Nu−1∑
p=0

λp(�u(k + p|k))2 (2)

where λp > 0 are weighting coefficients. Only the first element of the determined
sequence (1) is applied to the process, i.e. u(k) = �u(k|k) + u(k − 1). At the
next sampling instant, k + 1, the prediction is shifted one step forward and the
whole procedure is repeated.

Predictions ŷ(k+p|k) are calculated from a dynamic model of the process. For
this purpose different model structures can be used [16]. In particular, neural
models based on MLP and RBF networks are recommended [6,7,8].



Explicit Neural Network-Based Nonlinear Predictive Control 651

3 Explicit Neural Network-Based Nonlinear MPC

Let the dynamic process under consideration be described by the following
discrete-time Nonlinear Auto Regressive with eXternal input (NARX) model

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (3)

where f : RnA+nB−τ+1 → R is a nonlinear function which describes the model,
integers nA, nB, τ define the order of dynamics, τ ≤ nB. In computationally
efficient MPC approaches a linear approximation of the nonlinear model (3)

y(k) =
nB∑
l=τ

bl(k)u(k − l) −
nA∑
l=1

al(k)y(k − l) (4)

is used on-line for calculation of the future control policy (1). Coefficients al(k)
and bl(k) are calculated on-line [6,7,8,12,16,17].

3.1 Control Action Calculation

The MPC cost function (2) can be expressed in a compact form

J(k) =
∥∥yref(k) − ŷ(k)

∥∥2
+ ‖�u(k)‖2

Λ (5)

where

yref(k) =
[
yref(k + 1|k) . . . yref(k +N |k)

]T
(6)

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k +N |k)]T (7)

are vectors of length N , Λ = diag(λ0, . . . , λNu−1). Hence, the MPC optimisation
problem, the solution to which gives current and future control action (1), is

min
�u(k)

{
J(k) =

∥∥yref(k) − ŷ(k)
∥∥2

+ ‖�u(k)‖2
Λ

}
(8)

It can be shown [6] that if the linear approximation (4) of the original nonlinear
model (3) is used for prediction in MPC, the output prediction vector is

ŷ(k) = G(k)�u(k) + y0(k) (9)

The output prediction is expressed as the sum of a forced trajectory, which de-
pends only on the future (on future control moves �u(k)) and a free trajectory
y0(k) =

[
y0(k + 1|k) . . . y0(k +N |k)

]T, which depends only on the past. The
dynamic matrix G(k) of dimensionality N × Nu contains step-response coeffi-
cients of the linearised model (4). It is calculated on-line taking into account the
current state of the process [6,8,12,16,17].

Taking into account the suboptimal prediction equation (9), the MPC opti-
misation problem (8) becomes

min
�u(k)

{
J(k) =

∥∥yref(k) − G(k)�u(k) − y0(k)
∥∥2

+ ‖�u(k)‖2
Λ

}
(10)
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Since the minimised cost function J(k) is quadratic, the unique solution is ob-
tained by equating its first-order derivative

dJ(k)
d�u(k)

= −2GT(k)(yref(k) − G(k)�u(k) − y0(k)) + 2Λ�u(k) (11)

to a zeros vector of length Nu. Optimal control moves are

�u(k) = K(k)(yref(k) − y0(k)) (12)

where
K(k) = (GT(k)G(k) + Λ)−1GT(k) (13)

is a matrix of dimensionality Nu × N . As a result, one obtains a time-varying
feedback law (12) from the difference between reference and free trajectories.
The control law is time-varying because the gain matrix K(k) depends on the
dynamic matrix G(k), which is calculated at each sampling instant from the
local linearisation of the nonlinear model. It means that matrix inverse must be
calculated at each algorithm iteration on-line. For this purpose the LU (Low-
Upper) decomposition with partial pivoting of the matrix GT(k)G(k) + Λ can
be numerically efficiently used [7].

The explicit nonlinear MPC algorithm described in this paper is designed
with reducing the computational complexity in mind. Because at the current
sampling instant k only the first element of the vector �u(k) is actually used
for control, it is only calculated. Remaining Nu −1 elements are not determined.
From (12) one has

�u(k|k) = K1(k)(yref(k) − y0(k)) (14)

where K1(k) is the first row of the matrix K(k). In the explicit algorithm a
neural network calculates on-line an approximation of the vector K1(k) for the
current operating point. The structure of the algorithm is depicted in Fig. 1. At
each sampling instant k of the algorithm the following steps are repeated:

1. Calculate the nonlinear free trajectory y0(k) using the first neural network
(NN1) – a dynamic model of the process.

2. Calculate the approximation of the vector K1(k) using the second neural
network (NN2).

3. Find the current control increment �u(k|k) from (14).
4. The obtained solution is projected onto the admissible set of constraints.
5. Apply to the process the obtained solution.
6. Set k := k + 1, go to step 1.

In consequence, unlike other suboptimal MPC approaches [6,8,16],

– the nonlinear model is not linearised on-line,
– step-response coefficients of the linearised model and the dynamic matrix

G(k) are not calculated on-line,
– the inverse matrix (GT(k)G(k) + Λ)−1 is not calculated on-line.
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Fig. 1. The structure of the algorithm

Thanks to it, the algorithm can be used for very fast processes or implemented
on simple hardware. Two neural models are used on-line: from a dynamic model
the free trajectory is found, the second network approximates the vector K1(k).

In real-life control systems constraints always exist. Usually, they result from
actuators’ limitations. Another constraints may be necessary to guarantee ful-
filment of some technological requirements (e.g. temperature, pressure, purity).
Moreover, constraints may be necessary from safety reasons. The following con-
straints are imposed on magnitude and increment of the manipulated variable

umin ≤ u(k|k) ≤ umax, −�umax ≤ �u(k|k) ≤ �umax (15)

The calculated current control increment �u(k|k) determined from (14) is pro-
jected onto the admissible set of constraints. The projection procedure is

if �u(k|k) < −�umax �u(k|k) = −�umax

if �u(k|k) > �umax �u(k|k) = �umax

u(k|k) = �u(k|k) + u(k − 1)

if u(k|k) < umin u(k|k) = umin

if u(k|k) > umax u(k|k) = umax

u(k) = u(k|k)

(16)

3.2 Neural Models and Training

Both neural networks used in the implemented algorithm are MultiLayer Percep-
tron (MLP) networks with one hidden layer and linear outputs [3], but Radial
Basis Functions (RBF) networks can be also used. The first one (NN1) con-
stitutes a dynamic model of the process, it realises the function f in (3). The
nonlinear free trajectory y0(k + p|k) over the prediction horizon (p = 1, . . . , N)
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is calculated on-line recursively using this model. Because the free trajectory
describes only the influence of the past, during calculation no changes in the
control signal from the sampling instant k onwards are assumed [6,8,16].

For training a sufficiently rich data set must be recorded (e.g. responses to a
series of random input steps). When experiments on the real process are not pos-
sible, data must be generated from simulations of a fundamental (first-principles)
model. Available data set is divided into three sets: training, validation and test
sets. Next, neural models with different input arguments and with different num-
ber of hidden nodes are trained using the first set. The model is selected using
the second set. Finally, the third set is used to assess generalisation abilities of
the chosen model. The dynamic neural model can be trained in the one-step
ahead prediction configuration (the series-parallel model) or recurrently – in the
simulation configuration (the parallel model).

The second network (NN2) calculates on-line the approximation of the vector
K1(k) = [k1,1(k) . . . k1,N (k)]T for the current operating point of the process. A
straightforward choice is to define the current operating point by arguments of
the dynamic neural model (3) (realised by the first network), i.e. by the vec-
tor x(k) = [u(k − τ) . . . u(k − nB) y(k − 1) . . . y(k − nA)]T. Hence, the second
network realises the function g : RnA+nB−τ+1 → RN

K1(k) = g(x(k)) = g(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (17)

Having obtained the dynamic neural model, a linearisation-based MPC algo-
rithm [6,7,8,16] should be developed. Next, the algorithm is simulated for a ran-
domly changing reference trajectory. As a result data sets for the second network
training, verification and testing are recorded. Data sets consists of input and
output signals which define the operating point – inputs of the second network.
Additionally, time-varying elements of the vector K1(k) are desired outputs of
the model (targets). Unlike the dynamic model, the second network works as an
ordinary (steady-state) approximator. Hence, it is not trained recurrently.

Alternatively, data sets necessary for training the second neural network can
be generated without the necessity of simulating the MPC algorithm. The dy-
namic neural model is simulated open-loop (without any controller), as the ex-
citation signal the data set used for training the dynamic neural models is used.
During simulations the model is linearised and the vector K1(k) is calculated.

4 Simulation Results

The process under consideration is a polymerisation reaction taking place in a
jacketed continuous stirred tank reactor [10] depicted in Fig. 2. The
reaction is the free-radical polymerisation of methyl methacrylate with azo-bis-
isobutyronitrile as initiator and toluene as solvent. The output NAMW (Num-
ber Average Molecular Weight) is controlled by manipulating the inlet initiator
flow rate FI. Flow rate F of the monomer is assumed to be constant. Polymeri-
sation is a very important chemical process (production of plastic). The reactor
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Fig. 2. The polymerisation reactor control system structure

exhibits significantly nonlinear behaviour. It cannot be controlled efficiently by
classical MPC schemes based on constant linear models [6,8,10,16,17].

The fundamental model (a set of ordinary differential equations solved using
the Runge-Kutta RK45 method) is used as the real process during simulations.
It is simulated open-loop in order to obtain training, validation and test data
sets. Each set has 2000 samples. The sampling time is 1.8 min. The output signal
contains small measurement noise. The second-order dynamic model

y(k) = f(u(k − 2), y(k − 1), y(k − 2)) (18)

(i.e. nA = nB = τ = 2) is chosen. The first MLP neural network has 6 hid-
den nodes with the hyperbolic tangent transfer function. Because input and
output process variables have different orders of magnitude, they are scaled as
u = 100(FI − FI0), y = 0.0001(NAMW − NAMW0) where FI0 = 0.028328,
NAMW0 = 20000 correspond to the initial operating point. For training the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimisation algorithm is used. Fig.
3 depicts the test data set used for assessing accuracy of the dynamic neural
model and comparison of the process vs. the model for the first 500 samples. Ac-
curacy of the model is very high. For the training data set SSE = 5.559159 ·10−1,
for the validation data set SSE = 1.190907 · 100, for the test data set SSE =
1.039309 · 100 (SSE – the Sum of Squared Errors).

Next, a linearisation-based MPC algorithm with Nonlinear Prediction and
Linearisation (MPC-NPL) is developed [6,8,16]. For control action calculation
it uses a calculated on-line linear approximation of the dynamic neural model
and quadratic programming. The algorithm is simulated for a randomly chang-
ing reference trajectory (NAMW ref). Data sets for training the second neural
network, for verification and for testing are generated. Each data set has 2000
samples. Fig. 4 depicts the first 500 samples (for better presentation) of the test
data set used for assessing accuracy of the network.

The prediction horizon is N = 10. The second MLP neural network has 8
hidden nodes. The network has 3 inputs (the same as the first network) and 9
outputs, because the first element of the vector K1(k) is always 0, it is not cal-
culated. For training the BFGS optimisation algorithm is used. For the training
data set SSE = 1.006511 ·10−2, for the validation data set SSE = 1.311316 ·10−2,
for the test data set SSE = 1.097440 · 10−2.
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Fig. 3. Left : The whole test data set used for assessing accuracy of the dynamic neural
model (NN1); right : the process (solid line with dots) vs. the neural model (dashed line
with circles) for the first 500 samples of the test data set
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Fig. 4. The first 500 samples of the test data set used for assessing accuracy of the
neural approximator (NN2) of the vector K1(k)

In order to demonstrate accuracy and computational efficiency of the de-
scribed explicit approach, the following MPC algorithms are compared:

a) the explicit MPC algorithm,
b) the MPC-NPL algorithm with on-line model linearisation and quadratic pro-

gramming [8,6,16,17],
c) the MPC-NO algorithm with on-line nonlinear optimisation [8,16,17].

All three algorithms use the same dynamic neural model (NN1), the explicit
MPC algorithm also needs the second neural network (NN2).

Parameters of all MPC algorithms are N = 10, Nu = 3, λp = 0.2. The
manipulated variable is constrained: Fmin

I = 0.003, Fmax
I = 0.06, �Fmax

I =
0.005. Fig. 5 shows trajectories obtained in the MPC-NO algorithm and in the
explicit algorithm (results of the MPC-NPL algorithm are similar, they are not
depicted). Table 1 shows accuracy of algorithms in terms of the SSE index.
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Fig. 5. Simulation results: the MPC-NO algorithm with nonlinear optimisation (solid
line) and the explicit neural MPC algorithm (dashed line)

Table 1. Accuracy of compared algorithms, N = 10, Nu = 3

Algorithm SSE

Explicit MPC 2.211651 · 109

MPC-NPL with quadratic programming 2.211703 · 109

MPC-NO with nonlinear optimisation 2.210627 · 109

Table 2. The computational burden (in MFLOPS) of compared algorithms for different
control horizons (Nu = 2, 3, 5, 10), N = 10

Algorithm Nu = 2 Nu = 3 Nu = 5 Nu = 10

Explicit MPC 0.19 0.19 0.19 0.19
MPC-NPL with quadratic programming 0.28 0.40 0.81 3.20
MPC-NO with nonlinear optimisation 2.64 4.11 8.90 48.36

Accuracy of the linearisation-based MPC-NPL algorithm is practically the
same as that of the computationally demanding MPC-NO approach. Thanks
to using a neural approximator of the time-varying vector K1(k), the explicit
algorithm gives similar results, but model linearisation, calculation of the step-
response and quadratic programming are not performed on-line. Hence, it is
significantly less complicated than the MPC-NPL approach. Table 2 shows the
computational burden (MFLOPS) of algorithms for different control horizons.
The longer the horizon, the more evident computational efficiency of the explicit
algorithm (it is independent of the control horizon because K1(k) ∈ RN).

5 Conclusions

Computational efficiency of the presented explicit MPC algorithm is twofold:
quantitative and qualitative. Its computational burden is low. Furthermore, it
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does not need any on-line optimisation and model linearisation. It is also not
necessary to carry out a matrix decomposition task and solve a set of linear equa-
tions as it is necessary in existing explicit approaches [7]. Hence, the algorithm
can be used for fast processes (short sampling time). It is not necessary to use
sophisticated (and expensive) hardware necessary to implement the algorithm.

Acknowledgement. The work presented in this paper was supported by Polish
national budget funds for science for years 2009-2011.
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Abstract. In this paper, a numerical method of solving the inverse heat
conduction problem based on the respectively new tool for combinational
optimization, named the Artificial Bee Colony algorithm (ABC), is pre-
sented. In the first step, the direct heat conduction problem, associated
to the considered inverse heat conduction problem, is solved by using the
finite difference method. In the second step, the proper functional, based
on the least squares method, is minimized by using the ABC algorithm,
giving the solution of the considered problem. An example illustrating
the precision and effectiveness of the method is also shown. The proposed
approach is original and promising.

Keywords: Swarm Intelligence, Artificial Bee Colony algorithm, In-
verse Heat Conduction Problem, Finite Difference Method.

1 Introduction

Many problems in technology, engineering, economy and natural sciences bring
into solving optimization tasks, consisting in minimizing some functionals. There
is many tools for solving such problems, but in the last few years there appear
a new instrument for combinatorial optimization, called as the Artificial Bee
Colony Algorithm (ABC). ABC algorithm, next to the Ant Colony Optimiza-
tion algorithm (ACO), is a part of Swarm Intelligence (SI), which is a group of
algorithms of artificial intelligence, based on the collective behaviour of decen-
tralized, self-organized systems of objects. The idea was introduced by Gerardo
Beni and Jing Wang in 1989, in the context of cellular robotic systems [1] and
continued for example in [2].

Most of the present optimization algorithms need to fulfill a different num-
ber of assumptions about the properties of optimized function, its variables or
its domain. It causes, that the classical algorithms (like for example the finite
element method or the finite difference method) can be used only for solving
a special kind of optimized problem. Much more universal, about the kinds of
solved problems, are the algorithms motivated by the nature, like the genetic
algorithms or algorithms inspired by the behaviour of the insects, like ABC or
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ACO algorithms. The only assumption needed by those algorithms is the exis-
tence of the solution. If the solution of the optimized problem exists, it will be
found, with some given precision of course. It is worth to mention in this mo-
ment, that solution received by using those algorithms should be treated as the
best solution in the given moment. Running the algorithm one more time can
give different solution, even better. But it does not decrease the effectiveness of
those algorithms.

The Artificial Bee Colony algorithm was inspired by the technique of searching
for the nectar around the hive by the colony of bees. The first researcher, who
by observing the behaviour of bees, described how the bees, after discovering
the source of food far from the hive, can inform the other bees in the hive about
the position of the food, was Karl von Frisch from the University of Munich. It
is a very complicated strategy of communication, unique in the nature.

When the bee, called the scout, has localized a good source of food, it collects
a sample of the nectar and flies back to the hive for informing the other bees
about the available source of food. Soon after the scout returned to the hive,
a lot of bees leave the hive and fly in the direction of the discovered source of
nectar. The scouts stay in the hive for some time and inform the other bees
about the position of the food with the aid of the special waggle dance. After
that they leave the hive for searching a new source of food.

The waggle dance takes place in the special part of the hive near the exit
and it consists of the moving straight and returning to the starting point. When
the bee is moving straight, its body waggles and its wings vibrate very quickly.
The direction of the waggle dance, distance of the moving straight and deviation
of the bee’s body during the vibration inform about the location, distance and
the quality of the source of food. More detailed information about the natural
inspiration of the ABC algorithm can be found in [3,4].

Till now, the ABC algorithm has been applied for solving a different kind
of combinatorial and analytical problems, like for example the transportation
problem, reaction-diffusion problem, generalized assignment problem and others
[5,6,7,8]. In this paper we present the idea of using the ABC algorithm for solving
the inverse heat conduction problem, which means the heat conduction problem
without the complete mathematical description, consisting in the reconstruction
of the state function and some of the boundary conditions [9,10].

The bibliography sacrificed to the inverse heat conduction problem is much
more poor than the bibliography about the direct problems. Examples of the an-
alytical techniques for solving the direct and inverse problems concerning steady
and unsteady heat flow can be found in [9,10]. In [11] the authors determine
the heat flux with the aid of the momentary measurements of temperature, by
using the Green function, method of iterative regularization and Tichonov reg-
ularization. The other methods appeared for solving the inverse problems are
for example: the Monte Carlo method [12], the mollification method introduced
by Mourio and his co-workers [13], methods based on the vawelets theory [14]
and very popular in recent time genetic algorithms and neural network [15]. In
the current paper, we propose to use the ABC algorithm for minimizing some
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functional, being a crucial part of the presented method of solving the inverse
heat conduction problem. In [16] the authors have already applied for this pur-
pose the ACO algorithm.

2 Artificial Bee Colony Algorithm for Finding the Global
Minimum

In the proposed approach we use the following simplifications:

– We divide the bee colony into two parts: the bees-scouts, exploring the envi-
ronment and the bees-viewers, waiting in the hive for the information. The
numbers of scouts and viewers are equal.

– All of the bees-scouts, after the exploration of the discovered sources of
nectar, come back to the hive, give the information to the bees-viewers and
wait there for the next cycle. In the next cycle, they start the exploration
from the positions of sources discovered in the previous cycle.

– All of the bees start the exploration in the same time. According to the
scientific research, the real number of new bees, starting the exploration,
is proportional to the difference between the total number of bees and the
number of actually searching bees.

Let us consider the function F (x), defined in the domain D. We do not need
to make any assumptions about the function, neither its domain. Points of the
domain - vectors x - play the role of the sources of nectar. Value of the function
in the given point - number F (x) - designates the quality of the source x. Since
we are looking for the minimum, the smaller is the value F (x), the better is the
source x.

In the first part of the algorithm, the bees-scouts explore the domain and type
some number of the points - candidates for the sources of nectar. Every scout
make some control movements around the selected point, to check whether there
is any better source in the neighborhood. After that, the scouts return to the
hive and wait there for the next cycle.

In the second part of the algorithm, the bees-viewers select the sources, with
the given probabilities, among the sources discovered by the scouts in the first
part. The probability of the choice of the given source is the greater, the better
is the quality of that source. After that, the viewers explore the selected points,
by making some control movements around. The operation ends by choosing the
best point - the best source of nectar - in the current cycle.

We will proceed according the following algorithm.

Initialization of the algorithm.
1. Initial data:

SN - number of the explored sources of nectar (= number of the bees -
scouts, = number of the bees - viewers);
D - dimension of the source xi, i = 1, ..., SN ;
lim - number of ”corrections” of the source position xi;
MCN - maximal number of cycles.
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2. Initial population - random selection of the initial sources localization,
represented by the D− dimensional vectors xi, i = 1, ..., SN.

3. Calculation of the values F (xi), i = 1, ..., SN , for the initial population.
The main algorithm.
1. Modification of the sources localizations by the bees - scouts.

a) Every bee - scout modifies the position xi according to the formula:

vj
i = xj

i + φij(x
j
i − xj

k), j ∈ {1, ..., D},

where: k ∈ {1, ..., SN}, k �= i,
φij ∈ [−1, 1].

}
- randomly selected numbers.

b) If F (vi) ≤ F (xi), then the position vi replaces xi. Otherwise, the po-
sition xi stays unchanged.
Steps a) and b) are repeated lim times. We take: lim = SN ·D.

2. Calculation of the probabilities Pi for the positions xi selected in step 1.
We use the formula:

Pi =
fiti

SN∑
j=1

fitj

, i = 1, ..., SN,

where: fiti =
{ 1

1+F (xi)
if F (xi) ≥ 0,

1 + |F (xi)| if F (xi) < 0.
3. Every bee - viewer chooses one of the sources xi, i = 1, ..., SN, with

the probability Pi. Of course, one source can be chosen by a group of
bees.

4. Every bee - viewer explores the chosen source and modifies its position
according to the procedure described in step 1.

5. Selection of the xbest for the current cycle - the best source among
the sources determined by the bees - viewers. If the current xbest is
better that the one from the previous cycle, we accept it as the xbest for
the whole algorithm.

6. If in step 1, the bee - scout did not improve the position xi (xi did not
change), it leaves the source xi and moves to the new one, according to
the formula:

xj
i = xj

min + φij(xj
max − xj

min), j = 1, ..., D,

where: φij ∈ [0, 1].
Steps 1-6 are repeated MCN times.

3 Inverse Heat Conduction Problem

3.1 Formulation of the Problem

We consider the Fourier heat equation of the form:

1
a

∂u

∂t
(x, t) =

∂2u

∂x2 (x, t), x ∈ [0, 1], t ∈ [0, T ], (1)
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where a is the thermal diffusivity, and u, t and x refer to the temperature, time
and spatial location, with the following boundary condition of the first kind:

u(0, t) = ψ(t), t ∈ [0, T ] (2)

and the initial condition:

u(x, 0) = ϕ(x), x ∈ [0, 1]. (3)

Symbols ψ and ϕ denotes the functions belonging to the proper class of functions.
We also know the numbers uε

j , which are the values of the temperature, mea-
sured at one point x0, in m different moments of time τj , j = 1, ...,m. Since the
values uε

j = u(x0, τj) denote some results of measurement, they contain errors.
We assume, that the amplitude of noise is bounded by ε.

The unknown elements in such determined problem are the distribution of
temperature u(x, t) and the form of the boundary condition for the boundary
x = 1. We assume, that in our case the sought boundary condition is of the
second kind (the heat flux) and is described by the function q(t):

∂u

∂x
(1, t) = q(t), t ∈ [0, T ]. (4)

3.2 Method of Solution

Since the function q(t), describing the boundary condition (4), is unknown, we as-
sume its form as the linear combination of some given base functions νi(t):

q(t) ≈ q̃(t) =
k∑

i=0

biνi(t), (5)

where bi, i = 0, 1, ..., k, are some undetermined coefficients.
First part of the proposed method consists in solving the direct heat con-

duction problem, described by the equations (1)-(5), by using one of the well
known numerical methods. The received solution will depend on the unknown
coefficients bi, i = 0, 1, ..., k.

For solving the direct heat conduction problem we propose the implicit scheme
of the finite difference method, because it is always stable and convergent. Ac-
cording to this method, we discretize the problem by using the partition of the
domain [0, 1]×[0, T ] with a mesh Δ, of evenly placed points (xi, tj) with constant
step hx in space and constant step ht in time:

Δ =
{
(xi, tj) : xi = ihx, hx =

1
n
, i = 1, ..., n,

tj = jht, ht =
T

m
, j = 0, ...,m

}
. (6)

The points ũj
i = ũ(xi, tj), i = 1, ..., n, j = 0, ...,m, represent the numerical ap-

proximation of the sought values u(xi, tj) and they should satisfy the discretized
heat equation of the form:
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1
a

ũj+1
i − ũj

i

ht
=
ũj+1

i+1 − 2ũj+1
i + ũj+1

i−1

h2
x

. (7)

Equation (7), together with the given initial and boundary conditions, leads to
the system of linear equations. Solution of this system gives the set of points ũj

i ,
approximating the values of the requested function u(x, t) and depending on the
unknown coefficients bi, i = 0, 1, ..., k.

Second part of the method rests on determining the coefficients bi. For this
purpose we define the following functional:

P (b0, b1, ..., bk) =

√√√√ m∑
j=1

(
uε

j − ũ(x0, τj)
)2
, (8)

where uε
j are the measurement values and ũ(x0, τj) are the results received in the

first part of the method, as the solution of the direct heat conduction problem,
with some given values of coefficients b0, b1, ..., bk in (5), for the nodes (x0, τj),
j = 1, ...,m.

We want to determine such values of coefficients bi, for which the functional
(8) is minimal, which means, the reproduced state function ũ and boundary
condition function q̃ are the best adapted to the real data. For minimizing the
functional (8) we use the Artificial Bee Colony algorithm, introduced in section 2.
It is important to point, that to calculate the value of the minimized functional
means to solve the direct heat conduction problem for the given coefficients bi
(in the boundary condition function q̃) and to evaluate the value of functional (8).

4 Experimental Results and Discussion

The theoretical consideration, presented in the previous sections, will be now
illustrated with an example, in which a = 1, T = 1 and the functions describing
the boundary and initial conditions (2)-(3) are the following:

ψ(t) = exp(t), t ∈ [0, 1],
ϕ(x) = exp(x), x ∈ [0, 1].

We know the noised values uε
j of the temperature, measured with maximal noise

of 0%, 1%, 2% or 5%, at one point x0 = 0.7, for 100 different moments of time
τj = j/100, j = 1, ..., 100.

The direct heat conduction problem, occurring from equations (1)-(4) for
a given heat flux, is solved via the finite difference method. As a result, the
temperature distribution in the domain is obtained, constituting the reference
point uε

j for a comparison of results. From the distribution, temperatures uj ,
simulating the temperature measurements, are obtained.

Following the procedure, described in the section 3.2, first we need to assume
some form of unknown function (5), representing the boundary condition for the
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boundary x = 1. Let us assume, that we will search the function q̃ as the linear
combination of the base functions 1, exp(t) and exp(2t) :

q̃(t) = b0 + b1 exp(t) + b2 exp(2t), (9)

where b0, b1 and b2 are the undetermined coefficients. Under this assumption we
solve the direct heat conduction problem, by using the implicit scheme of the
finite difference method.

Since the measurement values are given in moments τj = j/100, j = 1, ..., 100,
it will be convenient to discretize the domain with the step exactly equal to 1/100
in time and in space. So we introduce the following mesh:

Δ =
{
(xi, tj) : xi =

i

100
, i = 1, ..., 100, tj =

j

100
, j = 0, ..., 100

}
.

The point x0, in which the measurement values are given, is placed now in the
node x70 = 70/100.

Every solution of the direct heat conduction problem, under assumption (9),
leads to the functional (8), taking now the form:

P (b0, b1, b2) =

√√√√ 100∑
j=1

(
uε

j − ũ
( 70

100
,
j

100

))2

, (10)

with the unknown parameters b0, b1 and b2 of the linear combination (9) as the
variables. The above functional is minimized with the aid of the ABC algorithm.

The values of algorithm initial data are as below:
SN = 25 - number of bees (= explored sources of nectar - it means vectors
(b0, b1, b2));
D = 3 - dimension of the source;
lim = SN ·D = 75 - number of ”corrections” of the source position;
MCN = 200 - maximal number of cycles.

After 30 runnings of the algorithm we received the following mean values of
the sought parameters, received for the maximal noise of the input data ε = 2%:

b0 = −0.04215642, b1 = 2.8325213, b2 = −0.0592602,

with the values of standard deviation equals to, respectively:

S0 = 0.0653689, S1 = 0.0813461, S2 = 0.0239036.

Thus, the requested function (9), describing the boundary condition of the second
kind for the boundary x = 1, has the form:

q̃(t) = −0.04215642+ 2.8325213 exp(t) − 0.0592602 exp(2t).

The exact solution of the considered problem, with unnoised data, gives the
function: u(x, t) = exp(x + t), which means, that the unknown function (4)
describing the boundary condition is of the form: q(t) = exp(1 + t).
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In Figure 1 the reconstructed boundary condition q̃(t) is compared with the
exact condition q(t). The relative error distribution of this reconstruction is also
displayed in this figure. The received results show, that function describing the
heat flux is reconstructed very well at the beginning of the considered period
of time. The reconstruction error slightly grows with the passing of time, which
can be explained with the fact, that the additional initial condition is given at
the initial moment of time.

Figure 2 shows the comparison between the values of the exact function,
describing the distribution of temperature for the moment t = 1 (u(x, 1)) and its
received approximated values, with the relative error distribution of the obtained
approximation. From the figure we see, that the distribution of temperature at
the end of the considered period of time is reconstructed with the error, which is
in the worst case two times smaller (about 1%) than the error of the input data
(2%). The reconstruction is better at the beginning of the considered region,
because the boundary condition is known for the boundary x = 0.
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Fig. 1. Boundary condition of the second kind for the boundary x = 1 (left figure: solid
line – exact condition, dashed line – reconstructed condition) and error distribution of
this reconstruction (right figure)
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Fig. 2. Distribution of the temperature u(x, t) for t = 1 (left figure: solid line – exact
solution, dashed line – approximated values) and error of this approximation (right
figure)

In Table 1 there are compiled the errors, received for different values of the
maximal noise of input data: 0%, 1%, 2% and 5%. We consider the absolute and
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relative errors of the reconstructed boundary condition q̃(t), calculated by using
the following formulas:

δq =

√∫ 1

0

(
q(t) − q̃(t)

)2
dt, Δq =

δq√∫ 1
0 q

2(t)dt
100%,

and the absolute and relative errors of the approximated values of the tempera-
ture ũj

i in all considered domain, defined by the formulas:

δu =

√√√√ 100∑
i=1

100∑
j=0

(
u(xi, tj) − ũj

i

)2
, Δu =

δu√
100∑
i=1

100∑
j=0

u(xi, tj)2
100%.

Table 1. Values of the error in reconstruction of the boundary condition q(t) and the
temperature distribution u(x, t)

ε = 0% ε = 1% ε = 2% ε = 5%

δq 0.010614 0.052549 0.061622 0.071905
Δq[%] 0.218471 1.081600 1.268350 1.480000
δu 0.000848 0.006597 0.010449 0.010203
Δu[%] 0.026537 0.206517 0.327056 0.322029

The table shows, that the errors are insignificantly getting bigger, if the as-
sumed input data noise is bigger, but they are always comparable with the
maximal noise of the input data. One can also notice, that the growth of the
result errors is slower than the growth of the input data error.

5 Conclusions

In this paper, a new and efficient method for solving the inverse heat conduc-
tion problem, based on the idea of Artificial Bee Colony algorithm, is proposed.
Presented example shows, that the solution received with the aid of this method
is noised with the error comparable with the error of the input data. This is
especially important while considering the fact, that the control point, with
the known measurement values of the unknown function u(x, t), was located in
1/3 distance of the boundary, where the boundary condition was reconstructed.
Besides, the error of the boundary condition reconstruction and approximation
of the temperature distribution values, received by using this method, grows
slower, than the noise of the input data. The additional advantages of the ap-
proach based on the ABC algorithm are also the simplicity of implementation
and respectively short time of working.
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We should also emphasize the fact, that in the proposed approach one needs to
use some method of solving the direct heat conduction problem, not necessarily
the finite difference method, used in this paper. The future work includes an
application of the proposed approach for the wider class of problems and by
using some alternative methods for solving the direct problems. The comparison
between the ABC algorithm, the Ant Colony Optimization, genetic and immune
algorithms, used in considered approach, is also planned for the future work.
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Press, pp. 205–206 (2009)



Application of Fuzzy Wiener Models in Efficient
MPC Algorithms

Piotr M. Marusak

Institute of Control and Computation Engineering, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00–665 Warszawa, Poland

P.Marusak@ia.pw.edu.pl

Abstract. Efficient Model Predictive Control (MPC) algorithms based
on fuzzy Wiener models are proposed in the paper. Thanks to the form
of the model the prediction of the control plant output can be easily
obtained. It is done in such a way that the MPC algorithm is formulated
as a numerically efficient quadratic optimization problem. Moreover, in-
version of the static process model, used in other approaches, is avoided.
Despite its relative simplicity the algorithm offers practically the same
performance as the MPC algorithm in which control signals are gener-
ated after solving a nonlinear optimization problem and outperforms the
MPC algorithm based on a linear model. The efficacy of the proposed ap-
proach is demonstrated in the control system of a nonlinear control plant.

Keywords: fuzzy systems, fuzzy control, predictive control, nonlinear
control, constrained control.

1 Introduction

Model predictive control (MPC) algorithms are widely used in practice. It is
because they offer very good control performance even for control plants which
are difficult to control using other algorithms [4,9,15,18]. The essential feature of
these algorithms is to use a control plant model to predict behavior of the control
system. Thanks to such an approach, the MPC algorithms are formulated in such
a way that constraints existing in the control system can be relatively easily taken
into consideration. Moreover, it is possible to use all information about control
system operation and on conditions in which it operates to improve prediction
and, as a result, operation of an MPC algorithm.

In standard MPC algorithms linear control plant models are used for pre-
diction. Then an algorithm can be formulated as an easy to solve, quadratic
optimization problem. Moreover, in the unconstrained case, a control law can be
easily obtained. Unfortunately, application of such an MPC algorithm to a non-
linear plant may bring unsatisfactory results or the results can be improved using
the algorithm based on a nonlinear model. This problem is especially important
if the control system should work in a wide range of set point values.

Direct application of a nonlinear process model to design the MPC algorithm
does not solve all issues. It is because it leads to formulation of the algorithm as
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a nonlinear, and in general, non–convex optimization problem. Such a problem is
hard to solve and computationally expensive. The approach which does not have
these drawbacks consists in obtaining a linear approximation of the nonlinear
model at each iteration of the algorithm. It can be done in an efficient way if a
control plant is described using a Wiener model.

The Wiener models are composed of a linear dynamic block preceding a non-
linear static block (Fig. 1) [7]. Such a structure of the model simplifies the
synthesis of the controllers based on Wiener models. Therefore, Wiener models
are often used to model control plants for control purposes; see e.g. [2,10,16].

Fig. 1. Structure of the Wiener model; u – input, y – output, v – input of the nonlinear
static block

The most popular method of application of Wiener models in the MPC al-
gorithms, in such a way that computationally efficient quadratic optimization
problem is solved at each iteration, is to use inverse of the static part of the
model; see e.g. [1,16]. On the contrary, in the method proposed in the paper the
calculation of the inverse of the static part of the model is avoided. Moreover, the
prediction can be performed in a straightforward way what does not influence
control performance in a negative way. It is demonstrated in the example control
system of a nonlinear plant fuzzy model of which was obtained heuristically.

In the next section the idea of the MPC algorithms is described. Next, the
MPC algorithms based on fuzzy Wiener models are proposed. Sect. 4 contains
presentation of results obtained in the control system of the nonlinear plant,
illustrating excellent performance offered by the proposed approach. The paper
is summarized in the last section.

2 MPC Algorithms – Basic Information

The Model Predictive Control (MPC), during control signal generation, pre-
dict future behavior of the control plant many sampling instants ahead using a
process model. The control signal is derived in such a way that the prediction
fulfills assumed criteria. These criteria are, usually, formulated as the following
optimization problem [4,9,15,18]:

min
Δu

{
JMPC =

p∑
i=1

(
yk − yk+i|k

)2 +
s−1∑
i=0

λ
(
Δuk+i|k

)2

}
(1)
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subject to:
Δumin ≤ Δu ≤ Δumax , (2)

umin ≤ u ≤ umax , (3)

ymin ≤ y ≤ ymax , (4)

where yk is a set–point value, yk+i|k is a value of the output for the (k + i)th

sampling instant, predicted at the kth sampling instant, Δuk+i|k are future
changes of the control signal, λ ≥ 0 is a tuning parameter, p and s denote
prediction and control horizons, respectively; Δu =

[
Δuk+1|k, . . . , Δuk+s−1|k

]
,

u =
[
uk+1|k, . . . , uk+s−1|k

]
, y =

[
yk+1|k, . . . , yk+p|k

]
; Δumin, Δumax, umin,

umax, ymin, ymax are vectors of lower and upper limits of changes and val-
ues of the control signal and of the values of the output signal, respectively. The
optimization problem (1–4) is solved at each iteration of the algorithm. Its solu-
tion is the optimal vector of changes of the control signal. From this vector, the
first element is applied to the control plant and then the optimization problem
is solved again in the next iteration of the MPC algorithm.

The predicted output variables yk+j|k are derived using a dynamic control
plant model. If this model is nonlinear then the optimization problem (1–4) is
nonlinear and, in general, non–convex and hard to solve. Examples of this kind
of algorithms utilizing fuzzy models one can find e.g. in [3,5] and those utilizing
Wiener models – e.g. in [2,10].

If the model used in the MPC algorithm is linear then the optimization prob-
lem (1–4) is a standard quadratic programming problem [4,9,15,18]. It is because
the superposition principle can be applied and the vector of predicted output
values y is given by the following formula:

y = ỹ + A ·Δu , (5)

where ỹ =
[
ỹk+1|k, . . . , ỹk+p|k

]
is a free response (contains future values of the

output signal calculated assuming that the control signal does not change in
the prediction horizon); A · Δu is the forced response (depends only on future
changes of the control signal (decision variables));

A =

⎡
⎢⎢⎢⎣
a1 0 . . . 0 0
a2 a1 . . . 0 0
...

...
. . .

...
...

ap ap−1 . . . ap−s+2 ap−s+1

⎤
⎥⎥⎥⎦ (6)

is the dynamic matrix composed of coefficients of the control plant step response
ai; see e.g. [4,9,15,18].

Let us introduce the vector y = [yk, . . . , yk] of length p. The performance
function from (1), after application of the prediction (5), can be rewritten in the
matrix–vector form:

JLMPC = (y − ỹ − A ·Δu)T · (y − ỹ − A ·Δu) +ΔuT · Λ ·Δu , (7)
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where Λ = λ · I is the s × s matrix. The performance function (7) depends
quadratically on decision variables Δu. Thus, the optimization problem is in
this case a quadratic one. Moreover, if the constraints need not be taken into
consideration, the vector minimizing this performance function is given by the
following formula:

Δu =
(
AT · A + Λ

)−1
· AT · (y − ỹ) . (8)

The advantages offered by the quadratic optimization led to design of MPC
algorithms based on linear approximations of the nonlinear process models ob-
tained at each iteration; see e.g. [8,18]. The algorithms of this type based on
fuzzy process models one can find e.g. in [11,12,13].

3 Efficient MPC Algorithms Based on Fuzzy Wiener
Models

The Wiener process model (Fig. 1) with fuzzy static block is considered. It is
assumed that the static part of the model is a fuzzy Takagi–Sugeno model which
consists of the following rules:

Rule j: if vk is Mj , then

yj
k = gj · vk + hj, (9)

where gj , hj are coefficients of the model, Mj are fuzzy sets, j = 1, . . . , l,
l is the number of fuzzy rules (local models).

The output of the static part of the model is described by the following for-
mula:

ŷk =
l∑

j=1

wj(vk) · yj
k , (10)

where ŷk is the output of the static block (and the output of the Wiener model),
vk is the input to the static block and the output of the dynamic block, wj(vk) are
weights obtained using fuzzy reasoning (see e.g. [14,17]). Therefore, the output
of the Wiener model can be described by:

ŷk = g̃k · vk + h̃k , (11)

where g̃k =
∑l

j=1 wj(vk) · gj, h̃k =
∑l

j=1 wj(vk) · hj It is assumed that the
dynamic part of the model is a difference equation (a model often used in linear
dynamic block of the Wiener models):

vk = b1 · vk−1 + . . . + bn · vk−n + c1 · uk−1 + . . . + cm · uk−m , (12)

where bj , cj are parameters of the linear model.
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Thus, the output of the Wiener model is given by the following formula:

ŷk = g̃k ·

⎛
⎝ n∑

j=1

bj · vk−j +
m∑

j=1

cj · uk−j

⎞
⎠ + h̃k , (13)

In the proposed approach the fuzzy (nonlinear) Wiener model is used to obtain
the free response of the plant. Thanks to the structure of the Wiener model it
can be obtained in a straightforward way.

The output of the linear part of the model in the (k + i)th sampling instant
calculated after assumption of constant control values (uk = uk+1 = . . . = uk+p)
is described by the following formula:

v̂k+i =
n∑

j=1

bj · v̂k−j+i +
i∑

j=1

cj · uk +
m∑

j=i+1

cj · uk−j+i , (14)

where v̂k+i are values of the internal signal of the model obtained after as-
sumption of constant control values. The free response is calculated taking into
consideration also the estimated disturbances and modeling errors:

dk = yk − ŷk . (15)

The final formula describing the elements of the free response is, thus, as follows:

ỹk+i|k = g̃k ·

⎛
⎝ n∑

j=1

bj · v̂k−j+i +
i∑

j=1

cj · uk +
m∑

j=i+1

cj · uk−j+i

⎞
⎠+ h̃k +dk , (16)

where dk is the DMC–type disturbance model, i.e. it is assumed the same on the
whole prediction horizon.

Next, the dynamic matrix, needed to predict the influence of the future control
changes should be derived. It can be done in a straightforward way. First, one
should obtain the step response coefficients of the dynamic part of the Wiener
model an (n = 1, . . . , pd; pd is the dynamics horizon equal to the number of
sampling instants after which the step response can be assumed as settled).
Then, the proper value of gain must be derived. It can be noticed that it can be
approximated by:

dy =

((∑l
j=1 wj(vk) · (gj · vk + hj)

)
−

(∑l
j=1 wj(vk−) · (gj · (vk−) + hj)

))
dv

,

(17)
where vk− = vk − dv, dv is a small number. Thus, at each iteration of the
algorithm the following linear approximation of the fuzzy Wiener model (13) is
used:

ŷk = dy ·
(

pd−1∑
n=1

an ·Δuk−n + apd · uk−pd

)
. (18)
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The dynamic matrix will be therefore described by the following formula:

Ak = dy ·

⎡
⎢⎢⎢⎣
a1 0 . . . 0 0
a2 a1 . . . 0 0
...

...
. . .

...
...

ap ap−1 . . . ap−s+2 ap−s+1

⎤
⎥⎥⎥⎦ . (19)

The free response (16) and the dynamic matrix (19) are used to obtain the
prediction:

y = ỹ + Ak ·Δu . (20)

After application of prediction (20) to the performance function from (1), one
obtains:

JFMPC = (y − ỹ − Ak ·Δu)T · (y − ỹ − Ak ·Δu) +ΔuT · Λ ·Δu . (21)

Thus, as in the case of the MPC algorithm based on a linear model, a quadratic
optimization problem is obtained.

4 Testing of the Proposed Approach

4.1 Control Plant – Description and Fuzzy Modeling

The control plant under consideration is a valve for control of fluid flow. It is
described by the following Wiener model [1,6]:

vk = 1.4138 · vk−1 − 0.6065 · vk−2 + 0.1044 · uk−1 + 0.0883 · uk−2 , (22)

yk =
0.3163 · vk√

0.1 + 0.9 · (vk)2
, (23)

where uk is the pneumatic control signal applied to the stem, vk is the stem
position (it is the output signal of the linear dynamic block and the input signal
of the nonlinear static block), yk is flow through the valve (it is the output of the
plant). The static part of the model was approximated using the fuzzy model. It
was done heuristically because the nonlinear function in the control plant model
(23) resembles the sigmoid function; see Fig. 2.

As a result of a few experiments the simple fuzzy model of the statics of the
control plant was obtained. It consists of two rules:

Rule 1: if vk is M1, then

y1
k+1 = −0.3289, (24)

Rule 2: if vk is M2, then
y2

k+1 = 0.3289. (25)

The assumed membership functions are shown in Fig. 3. Fuzzy approximation
of the static nonlinearity is presented as the dashed line in Fig. 2.
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Fig. 2. Static characteristic of the valve; solid line – original model, dashed line – fuzzy
approximation

Fig. 3. Membership functions in the fuzzy model of the static characteristic of the
valve

4.2 Simulation Experiments

The operation of the proposed MPC algorithm was compared with other ap-
proaches. Thus, three MPC algorithms were designed for the considered control
plant:

1. LMPC – with a linear model,
2. NMPC – with nonlinear optimization,
3. FMPC – with prediction based on fuzzy Wiener model.

Tuning parameters of all three algorithms were assumed the same and: prediction
horizon p = 30, control horizon s = 15, weighting coefficient λ = 4.
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Performance of control systems with LMPC, NMPC and FMPC algorithms
was compared. The example responses obtained after changes of the set–point
value from 0 to 0.3 at the beginning of the experiment and then back from 0.3 to
0 in the half of the experiment are shown in Fig. 4. The LMPC algorithm gives
the worst responses (dashed lines in Fig. 4). They are much slower than those
obtained using other MPC algorithms. The responses obtained in the control
systems with the FMPC (solid lines in Fig. 4) and NMPC algorithms (dotted
lines in Fig. 4) are very similar. However, in the FMPC algorithm the con-
trol signal is generated much faster as a solution of the quadratic programming
problem.

Fig. 4. Responses of the control systems to the changes of the set–point value to
y1 = 0.3 and y2 = 0; FMPC (solid lines), NMPC (dotted lines), LMPC (dashed lines);
dash–dotted line – set–point signal; right – output signal, left – control signal

5 Summary

The MPC algorithms proposed in the paper are based on fuzzy Wiener mod-
els. They use the nonlinear process model to derive the free response and its
linear approximation to derive the forced response. Thanks to the form of the
control plant model the prediction is easy to derive. The proposed algorithms
are formulated as the efficient linear–quadratic optimization problems but they
offer practically the same performance as the algorithms consisting in non-
linear optimization outperforming their counterparts based on linear process
models.

Acknowledgment. This work was supported by the Polish national budget
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Abstract. The most widely used reputation models assume uniform
users’ preference structure. In this paper a new reputation management
model is presented. It is focused on aggregation of community wide
reputation in situation when agents do not share the same preference
structure. The reputation is interpreted as vectors of attributes that rep-
resent several reputation evaluation criteria. Outcomes of the criteria are
transformed by the utility functions and assigned subjective probabilities
so that the subjective expected utility values can be obtained. Subjec-
tive expected utilities are further aggregated by the weighted ordered
weighted average (WOWA) operator. The expressive power of subjective
utilities concept along with the WOWA aggregation technique provides
the reputation management system with a capability to model various
preference structures. It is shown with an illustrative example.

1 Introduction

The problem of providing trust in virtual communities has drawn much attention
ever since the widespread development of Web 2.0 applications. The purpose of
trust and reputation systems is to strengthen the quality of markets and com-
munities by providing an incentive for good quality services, and by sanctioning
low quality services. One of key issues of any trust management system is how it
deals with reputation. Reputation is defined as all available information about
certain agent in a given community communicated by members of this com-
munity. An individual’s subjective trust can be derived from a combination of
received referrals and personal experience. There has been developed a number
of reputation management models [7]. However, there are still valid questions
that remain unanswered. Especially, if gathered reputation information can be
left for an agent to process it according to his individual preferences. This is
hard to accept, especially for human agents, due to the amount of reputation
information (outcomes) to be analyzed. Therefore, many models ignore agents’
subjective preference structures assuming that all participants of a network share
the same view on available evidence and enforcing unified reputation measures.

This paper aims to present a solution to the question on how to automatically
aggregate the reputation to support the decision of an agent while following its
preference attitude. The proposed model allows to look at agents trust in the
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point of multiple evaluation criteria. It maintains the original multiattribute
reputation outcome distributions for evaluation criteria and enables the trusting
agents to express their preference on the outcomes when estimating trust in other
agents. The model makes it possible for the agents to put importance weights
on the evaluation criteria. It combines the Weighted Ordered Weighted Average
(WOWA) operator with the concepts of subjective expected utility theory to
build the model that can be adjusted to the users’ preferential structures.

The idea of application of fuzzy aggregation operators to the problem of rep-
utation management has appeared in various works. For example, the Ordered
Weighted Average (OWA) [1] or the WOWA [2] usage were analyzed within
this context. However, both these approaches do not allow to take into account
individual agent preferences as the fuzzy aggregation operators are applied to
unified scalar reputation scores. Lee et al. [8] developed a fuzzy trust model
which takes into account both evaluations from multiple criteria and the rec-
ommendations from others in order to set the trust degrees on entities. In the
model, the entity’s preference degrees on the outcomes of the interactions are
expressed in fuzzy sets and the trust degrees are determined by aggregating
the satisfaction degrees with respect to evaluation criteria with Sugeno fuzzy
integral. The WOWA aggregation used in our model provides, however, much
simpler and more transparent agents preference modeling. Moreover, it opens a
possibility to incorporate into the reputation analysis the multicriteria decision
support techniques such as the Reference Point Method (RPM) [17]. The RPM
interactive analysis is navigated with the commonly accepted control parameters
expressing reference levels for the individual criteria and it can be based on the
WOWA aggregation of appropriate achievement measures [9,10].

2 Subjective Probability

There exist a number of probability interpretations [6], however the notion of
probability has basically dual understanding. The first concept of probability
is based on the observation of relative frequency of outcomes in the repeated
experiments. As the number of experiments increases the parameters of such
empirical distribution approach the real “objective” probability distribution of
the outcomes. Apart from the above “Bernoulli type” of probability the other,
equally old interpretation of probability states that the probability reflects beliefs
that certain outcome will obtain. This view of probability lead Ramsey [12] to
the concept of “subjective probability”, that was further formalized by de Finetti
[3]. The general assumption that allows to use agents’ subjective probabilities is
that they follow probability calculus rules.

2.1 Savage’s Subjective Expected Utility Theory

Savage [14] has proposed framework to deal with subjective probabilities and
utilities. Savage’s framework consists of the following elements:
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– states of the world as possible scenarios of the future with only one true
state;

– consequences entities, that have value to the decision maker;
– acts functions that associate consequences with states;
– events the subsets of state space.

Moreover, Savage has developed a set of 7 postulates that define the preference
structure:

1. The preference relation between acts is complete (each two acts are compa-
rable) and transitive.

2. The decision between acts is based only on the consequences in the states
when the consequences are distinct.

3. The ordering of consequences is state and act independent.
4. The decision maker assigns probabilities to events with no regard to the

consequences. Other words, the subjective probability of an event will not
change even if the payoff’s will change (preserving the ordering).

5. There exists at least one act that is preferred to some other act.
6. The state space is continuous. It is always possible to divide an event into

smaller sub events and adjust probabilities accordingly.
7. The act “better”, on each of the states of a certain event, then the other act

is strictly preferred.

The preference relation is defined by the first four axioms, last three play rather
technical role. Savage claims that the preference relation described by above
seven postulates is analogous to the problem of expected utility maximization,
when the utility function is defined on the set of consequences and the (subjec-
tive) probability measure is defined on the set of all events.

3 Multicriteria Trust Model Definition

Proposed reputation management model is based on the assumption of existence
of subjective expected utility and subjective probabilities especially. The process
of calculating reputation metric can be viewed as a process of calculating utili-
ties on two levels. The first level of computations is done with respect to a single
criterion. This involves deriving and applying utility function on the set of pos-
sible outcomes with subjective probabilities based on the reputation. The above
leads us to the formulation of expected utility of the outcomes as a satisfaction
level of the given criteria. The second level is the decision problem of selecting
the best option (most trustworthy) among a number of offers, each described by
a set of evaluation criteria. One can employ a variety of methods of multidimen-
sional analysis to solve this problem. Interactive methods, like the reference point
methods, can be used as well as the expected utility maximization approach can
be applied.
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3.1 Satisfaction Levels

Let us assume we have a set C of n possible criteria. For each criterion ci (i ∈
C) there is a set of possible outcomes Oi. Each of o ∈ Oi has a subjective
probability assigned that reflects users belief on certain value to occur in the
next interaction. There is a preference relation � on set Oi that follows usual
assumptions of transitivity and completeness. The expression o1 � o2 means
that the o1 is more desirable then o2 and o1 ∼ o2 means that o1 is equally
desirable as o2. If we consider the above model with respect to the language of
Savage’s framework then the state space can be regarded as a space of all possible
transaction results. Each possible result of the transaction can be assigned one
of the values from the set of consequences Oi. The assignment is done by the
selection of a given option (act). Each option is comparable with the others.
The ranking of options depends only on the ranking of possible transactions
results where either the probability or the outcome are different. The ranking
of outcomes is defined above and is independent of the transactions that yield
them. The probabilities are calculated based on the reputation reports. The
above defined preference structure on acts follow Savage’s axioms of rationality
of preference structure thus modeling it with the subjective expected utility is
justified.

Set Ri is the set of evaluations (reputation) that refer to the criterion ci
Set Ri

o is a set of evaluations with outcome o of the criterion ci The subjec-
tive probability of an outcome o corresponds to the available reputation and is
defined as:

sp(o) =
|Ri

o|
|Ri|

This is not the objective probability measure as the set of reputation valuations
is not a set of independent repetitive trials of some phenomenon. Instead it
reflects user’s attitude towards the possible outcome of the transaction, since in
the reputation system past interactions and reputation are the only source of
knowledge that influence user’s beliefs. Probabilities sp(o) are calculated for all
outcomes. If a given outcome has never occurred then the probability is assumed
as equal to 0.

The degree of preference relation between outcomes has to be incorporated
into the preference structure also. In order to reasonably model user’s preferences
we need to transform them into a common measurement scale that is going to
reflect the preferential order of outcomes as well as to measure the strength of
the relation. Let the measurement (utility) function be denoted by u. Utilities
are normalized to sum up to one. The utility function needs to be consistent with
the preference relation � on set the of outcomes O. The Subjective Expected
Utility of a particular criterion ci is finally calculated as

xi =
1

|Ri|
∑
o∈Oi

|Ri
o|u(o) (1)
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3.2 Reputation Score

In the reputation management model presented in this paper the reputation
scores are generated by aggregating subjective expected utilities of the criteria
using the WOWA operator. The standard Ordered Weighted Average (OWA)
operator [18] allows one to introduce preferential weights assigned to the ordered
values of the aggregated vector elements rather than particular elements of the
vector. Formal definition of the operator is as follows. Given vector of n values
xi for i = 1, . . . , n and preferential weights vector wi ≥ 0 for i = 1, . . . , n while∑n

i=1 wi = 1. The OWA operator is defined as:

n∑
i=1

wixσ(i)

where σ(i) is a permutation ordering vector x from the largest to the smallest
element:

xσ(1) ≥ xσ(2) ≥ xσ(3) ≥ . . . ≥ xσ(n).

The OWA operator allows one to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling various preferences from the optimistic to the pessimistic one. On the other
hand, the OWA does not allow one to allocate any importance weights to specific
criteria. Several attempts have been made to incorporate importance weighting
into the OWA operator. Finally, Torra [15] has incorporated importance weight-
ing into the OWA operator within the Weighted OWA (WOWA) aggregation.
The WOWA averaging is based on two weighting vectors:

– preferential weights vector w (wi ≥ 0,
∑

i wi = 1) associated with criteria
satisfaction level values ordered from the highest value to the lowest.

– importance weights vector p (pi ≥ 0,
∑

i pi = 1) associated with the aggre-
gated criteria.

Actually, the WOWA average is a particular case of Choquet integral using a
distorted probability as the measure [16].

Formal WOWA definition follows the OWA formula aggregating the values
ordered from the highest to the lowest one:

WOWA(x1, . . . , xn) =
n∑

i=1

ωixσ(i) (2)

while weights ω are constructed by cumulation of the preferential weights wσ(i)
and their decumulation according to the corresponding distribution of impor-
tance weights pσ(i), i.e.,

ωi = w∗(
∑
j≤i

pσ(j)) − w∗(
∑
j<i

pσ(j)) (3)

where function w∗ interpolates points (i/n,
∑

j≤i wj) and point (0, 0). When
preferential weights pi are equal, WOWA becomes the standard OWA operator
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with preferential weights wi. When preferential weights are equal, the WOWA
operator becomes the weighted average operator. The WOWA aggregation gen-
eralizes both the OWA and the weighted average.

Alternatively, the WOWA aggregation may be given by the formula [11]:

WOWA(x) =
n∑

k=1

wkn

∫ k/n

(k−1)/n

F
(−1)
x (ξ) dξ (4)

where F
(−1)
x is the stepwise function F

(−1)
x (ξ) = xσ(i) for αi−1 < ξ ≤ αi with

breakpoints αi =
∑

k≤i pτ(k) and α0 = 0. It can also be mathematically formal-

ized as the left-continuous inverse F
(−1)
x (ξ) = F

(−1)
x (1 − ξ) of the cumulative

distribution function

Fx(d) =
n∑

i=1

piδi(d) where δi(d) =
{

1 if xi ≤ d
0 otherwise

Note that n
∫ k/n

(k−1)/n F
(−1)
x (ξ) dξ represents the average within the k-th portion

of 1/n largest outcomes, the corresponding conditional mean. Hence, formula (4)
defines WOWA aggregations with preferential weights w as the corresponding
OWA aggregation but applied to the conditional means calculated according to
the importance weights p instead of the original outcomes.

In case of the reputation management model presented in this paper subjec-
tive expected utilities of the criteria are aggregated using the WOWA operator.
Having decided about the weighting vectors, following the WOWA formula (2)–
(3), weights ω are calculated and the final value of the WOWA aggregation is
derived. The calculated reputation score of each alternative agent is used to rank
them in decreasing order. The agent with the highest score should be the most
trusted one according to the user’s preference structure.1

The definition of weights w induces certain shape of function w∗ and thereby
allows us to model the user’s attitude towards given decision situation [11].
Increasing weights wi (convex function w∗) shows user’s diffident approach as
it amplifies the impact of low values while reducing the importance of higher
values. It requires all satisfaction levels be high enough to yield high aggregation
value. On the other hand, decreasing sequence of weights wi (concave function
w∗) is bound to the confident attitude since it amplifies higher values. It allows
any of the criteria be highly satisfied to yield a high aggregated value. The whole
range of w∗ shapes can be interpreted as a variety of users preference structures
what makes WOWA aggregation so well suited for this sort of applications.

4 Illustrative Example

Auction service data usually allows user to leave some kind of rating for the other
party of the transaction. Different rules may govern this process. Sometimes only
1 In general case the actual decision should not rely only on reputation. For example,

one should not neglect the impact of agents own experience with evaluated partners.
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buyer is entitled to leave comment, sometimes party’s comment is not revealed
until other agent leaves his own evaluation of the transaction. Ratings are usually
limited to the set of positive, neutral or negative evaluation accompanied by
the free hand opinion on what actually happened. Auction house eBay Inc.
has extended feedback system introducing a wider seller rating system. This
functionality allows buyers to asses sellers across four dimensions assigning values
of one to five to each of the following criteria [4]:
1. How accurate was the item description?
2. How satisfied were you with the seller’s communication?
3. How quickly did the seller ship the item?
4. How reasonable were the shipping and handling charges?

Let us further assume that the user (bidder) has to choose the most trustworthy
partner among 5 alternative auction users (sellers) who participated in a different
numbers of transactions. Namely:
– Alice - Very good performance at describing items but fails at communication

while maintaining average performance at shipment and handling charges.
Very heavy user took part in the greatest number of transactions

– Bob - Average performer at all criteria. Average user with regard to the
number of transactions performed.

– Carl - Outstanding communication and description but poor at any other
criteria. Average transactions number.

– David - No handling charges and quick shipment while poor description and
average communication skills. Average transactions number.

– Edward - Average at all dimensions but very low number of transactions
performed.

Let us assume that we have identified 4 criteria that govern the decision process
of auction house user and we are able to determine outcome domain of each
criterion.

Description how accurate was the item description?

1. poor (od
1) u(od

1) = 1
2. good (od

2) u(od
2) = 5

c1
od
1 od

2
Alice 1 100
Bob 25 25
Carl 2 28
David 28 3
Edward 2 2

Communication how satisfied were you with the seller’s communication?

1. poor (oc
1) u(oc

1) = 1
2. medium(oc

2) u(oc
2) = 2

3. good(oc
3) u(oc

3) = 3
4. very good (oc

4) u(oc
4) = 4

5. outstanding (oc
5) u(oc

5) = 5

c2
oc
1 o

c
2 o

c
3 o

c
4 o

c
5

Alice 40 20 15 2 1
Bob 5 8 8 7 7
Carl 0 0 0 20 10
David 6 14 9 1 0
Edward 1 2 1 1 1
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Shipment how much time took the delivery?

1. poor (os
1) u(os

1) = 1
2. medium(os

2) u(os
2) = 2

3. good (os
3) u(os

3) = 3
4. very good (os

4) u(os
4) = 4

c3
os
1 o

s
2 o

s
3 o

s
4

Alice 2 40 40 2
Bob 4 12 12 8
Carl 19 6 1 0
David 0 0 10 20
Edward 0 2 2 1

Handling how reasonable were the shipping and handling charges?

1. poor (oh
1 ) u(oh

1 ) = 1
2. medium (oh

2 ) u(oh
2 ) = 2

3. good (oh
3 ) u(oh

3 ) = 3
4. very good (oh

4 ) u(oh
4 ) = 4

5. outstanding (oh
5 ) u(oh

5 ) = 5

c4
oh
1 o

h
2 o

h
3 o

h
4 o

h
5

Alice 5 30 40 30 5
Bob 1 12 18 13 1
Carl 24 9 2 0 0
David 0 0 0 0 30
Edward 1 3 3 1 0

User specifies his preferences first by assigning utilities to the outcomes as it
was described above. The selection of utilities leads to the following subjective
expected utilities:

criterion: c1 c2 c3 c4
Alice 0.827 0.118 0.229 0.200
Bob 0.500 0.206 0.263 0.201
Carl 0.789 0.289 0.119 0.091
David 0.231 0.144 0.394 0.333
Edward 0.500 0.189 0.273 0.167

Consider various results based on the WOWA aggregation defined with by several
selections of the vector of preferential weights and importance weights.

OWA aggregation case. We suppose that user has no special preferences with
regard to the criteria in question. All of them are equally weighted. Since we
have only 4 criteria each element of the p is equal, so p = [0.25, 0.25, 0.25, 0.25].
User though has the preferences regarding achievements of the criteria. First, we
shall assume user has expressed diffident approach and requires small values to
contribute more to the result of aggregation. To achieve this the w vector should
be selected in a way that leads to the convex interpolation function w∗. In the
case considered w = [0.03, 0.05, 0.28, 0.65].

Weighted mean. We consider case when the reputation system user expresses his
indifference with respect to the satisfaction values of the criteria providing vector
w = [0.25, 0.25, 0.25, 0.25] and strong preference for the “description conformity”
criterion giving vector p = [0.67, 0.09, 0.04, 0.20].

General case. If we now consider the most general case we shall express both pref-
erences with respect to the criteria as well as for the achievement levels. Suppose
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the user expressed diffident approach but with the strong preference for the de-
scription component. Let us further assume he had provided following values for
the weighting vectors: p = [0.63, 0.19, 0.06, 0.13] and w = [0.06, 0.13, 0.19, 0.63].
Results of all three experiments are presented in the table below

Alice Bob Carl David Edward
owa 0.164 0.213 0.127 0.184 0,013
wm 0.611 0.403 0.593 0.25 0,051
general 0.339 0.29 0.349 0.196 0.017

The first case would lead to the selection of Bob while the weighted mean ag-
gregation would prefer Alice. The general WOWA aggregation case shows Carl
as the best choice.

5 Concluding Remarks

The role of the information system based on the presented approach is to retrieve
and process data according to the user’s preference structure and to provide
result as a single scalar rating. What is probably the most important users get
instant knowledge on trustfulness of the possible transaction partners while the
effort of retrieving and analyzing feedback is done by the system. When there
is no extended seller’s ratings much can be achieved by analyzing feedback text
to retrieve opinions on the selected criteria space. Recent developments in text
mining and natural language processing can be exploited in this area. Specifying
both utilities of certain outcomes of the criteria as well as two weight vectors (p
and w) may be confusing for the average user. There is still a lot of work to do
on how to retrieve user’s individual preferences and transform them into utilities
and WOWA weighting vectors [5,16].

The preferential weights definition can be simplified by allowing to introduce
scalable preferences with weights allocated to specific portion of the worst out-
comes independently from the number of criteria. Formula (4) allows us to define
such a generalized WOWA aggregation [11] where the preferential weights wk

are allocated to an arbitrarily defined grid of ordered outcomes defined by m (in-
dependent of n) quantile breakpoints β0 = 0 < β1 < . . . < βm−1 < βm = 1, i.e.
the aggregation defined with a piecewise linear function w∗

β interpolating points
(βk,

∑
i≤k wi) together with the point (0.0). Moreover, the WOWA aggregation

opens a possibility to incorporate into the reputation analysis the multicriteria
decision support techniques such as the Reference Point Method (RPM) [17].
The RPM interactive analysis is navigated with the commonly accepted control
parameters expressing reference levels for the individual criteria and it can be
based on the WOWA aggregation of appropriate achievement measures [9,10].
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Abstract. Parameters that vary monotonically with fault development are use-
ful in condition monitoring, but not easy to find especially for complex systems. 
A method using fuzzy preference based rough set model and principle compo-
nent analysis (PCA) is proposed to generate such an indicator. The fuzzy pref-
erence based rough set model is employed to evaluate the monotonic trends of 
features reflecting machinery conditions. PCA is used to condense the informa-
tive features and generate an indicator which can represent the development of 
machine health condition. The effectiveness of the proposed method is tested 
for damage level detection of an impeller in a slurry pump.  

Keywords: Fuzzy preference based rough set, PCA, Condition monitoring. 

1   Introduction 

Condition monitoring plays a key role in safe running of machinery. It is a major 
component of predictive maintenance, and is useful in maintenance scheduling or 
other actions to prevent major failures. During the condition monitoring process, a set 
of parameters that are observable and sensitive to the health of the machinery are 
monitored. Deviation from a reference value and/or trend of a parameter is detected to 
identify the development of a malfunction or fault.  

To assess the progression of faults, parameters that are most representative of the 
health condition are needed. Furthermore, the parameters or indicators that have 
monotonic trends reflecting the health condition are the most desirable. Yesilyurt and 
Ozturk [1] found that the average mean frequency of the scalograms yielded a consis-
tent trend which reflected the progression of tool wear in milling. Zhang et al [2] 
proposed a feature extraction method for bearing fault detection. The extracted feature 
had a monotonic decreasing trend as the dimension of fault increased. However, the 
parameters that vary monotonically with fault development are not easy to find espe-
cially for complex systems. Natke and Cempel [3] found that the singular values and 
singular vectors were informative parameters for fault detection and evaluation; but 
the relationship between singular vectors and physical faults was lacking. A criterion 
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is, therefore, needed to evaluation the monotonic relevance between indicators and the 
development of faults. 

Rough set has proved to be an effective tool for feature evaluation. Particularly, 
fuzzy rough set models have attracted significant attention as they perform well for 
numerical feature selection. However most of these models don’t consider the prefer-
ence relationship between features and decisions [4, 5]. To consider this aspect, Greco 
et al [6] introduced a dominance rough set model. Hu et al [7] presented a fuzzy rough 
set model based on fuzzy preference relations which could reflect the degree of pref-
erence quantitatively. Because of its ability to evaluate the preference degree, this 
model provided a helpful criterion for estimating the monotonic relevance between 
indicators and the development of faults in condition monitoring. 

The feature space, which may be reduced through feature selection, is usually mul-
tidimensional. Each feature in the feature space contains complementary information 
on machine conditions. To improve the separateness, clustering ability and robustness 
of the features in the feature space, feature fusion should be conducted. Principal 
component analysis (PCA) performs well in the area of feature fusion [8].  

In this paper, we propose a method that uses both fuzzy preference based rough set 
model and PCA. This proposed method is tested on tracking of impeller damage in a 
centrifugal pump.  

2   Fuzzy Preference Based Rough Sets 

2.1   Dominance Rough Sets  

Let IS=<U, A> be an information system, where U is a nonempty and finite set of 
samples {x1, x2, … xn}, and A is a set of features { a1, a2, … am} which characterize 
the samples. <U, A> is also called a decision table if A= C D∪  where C is the set of 
features which describe the samples’ characteristics, and D is the decision which 
classifies the samples’ labels.  

Given Uyx ∈∀ , , if y is not worse than x regarding AB ⊆  for Ba ∈∀  , the rela-

tion is denoted by xy B≥ . Similarly xy B≤ denotes the case that y is not better than x 

regarding AB ⊆  for Ba ∈∀ . Furthermore, the following sets are associated:  

};:{][ xyUyx BB ≥∈=≥                           (1) 

}:{][ xyUyx BB ≤∈=≤ .                   (2) 

The first set, ≥
Bx][ , consists of samples that are not worse than x with respect to fea-

ture subset B. The second set, ≤
Bx][ , consists of samples that are not better than x with 

respect to feature subset B.  
Assume that 1 2 ... pd d d≤ ≤ ≤ and let 

i j i jd d≥
≥= ∪ and 

i j i jd d≤
≤=∪ . The lower 

and upper approximations of these sets are given in [6] as follows: 

• upward approximation: { :[ ] }
id B iB x x d≥

≥ ≥ ≥= ⊆ and { :[ ] }id B iB x x d φ≥
≥ ≥ ≥= ≠∩ ; 

• downward approximation: { :[ ] }
id B iB x x d≤

≤ ≤ ≤= ⊆ and { :[ ] }id B iB x x d φ≤
≤ ≤ ≤= ≠∩ . 
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Upward approximations reflect the degree of monotonic relevance in the sense that 
when the feature of sample y is not worse than the feature of sample x, the decision 
of y should not be worse than the label of x. Downward approximations reflect the 
degree of monotonic relevance in the sense that when the feature of sample y is not 
better than the feature of sample x, the decision of y should not better than the label 
of x. 

2.2   Fuzzy Preference Based Rough Sets 

A fuzzy preference relation R is a fuzzy set on the product set U U× , which is charac-
terized by a membership function : [0,1]R U Uμ × → . If U is finite set, the fuzzy pref-

erence relation can also be represented by an n n×  matrix ( )ij n nr × , where ijr is inter-

preted as the preference degree of xi over xj. We use ijr =1/2 to indicate that there is no 

difference between xi and xj; ijr >1/2 to indicate that xi is preferred to xj; ijr =1 means 

xi is absolutely preferred to xj; and ijr <1/2 shows xj is preferred to xi.  

Assume that U={x1, x2, … xn}, a is a numerical feature which describes the sam-
ples in U, and the feature value of sample x is f(x, a). In [7], the upward and down-
ward fuzzy preference relations over U are computed by  

( ( , ) ( , ))

1

1 i jij k f x a f x ar
e

− −=
+

, and ( ( , ) ( , ))

1

1 i jij k f x a f x ar
e

−=
+

 

where k is a parameter to adjust the shape of the membership function. By employing 
membership functions, fuzzy preference relations not only reflect the fact that sample 
xi is greater (smaller) than xj, but also reflect how much xi is greater (smaller) than xj.  

With fuzzy preference relations R> and R< and preference decision label id ≥  and 

id ≤  given, the membership of sample x to the lower and upper approximations of id ≥  

and id ≤  are defined in [7] as 

• upward fuzzy lower approximation: 
( ) inf max{1 ( , ), ( )}

id x u U iR R x u d u≥
> > ≥

∉= −  

• upward fuzzy upper approximation: ( ) sup min{ ( , ), ( )}
i

d x u U i
R R x u d u≥

> > ≥

∈=  

• downward fuzzy lower approximation: 
( ) inf max{1 ( , ), ( )}

id x u U iR R x u d u≤
< < ≤

∉= −  

• downward fuzzy upper approximation: ( ) sup min{ ( , ), ( )}id x u U iR R x u d u≤
< < ≤

∈=  

Furthermore, given a decision table <U, C, D>, R> and R< are two fuzzy relations 
generated by B C⊆ . The decision value domain is D={d1, d2, … dp}. Assume d1 ≤  

≤ d2 ≤  … ≤ dp.  The fuzzy preference approximation quality (FPAQ) of D with re-
spect to B is then defined in [7] as 

• upward FPAQ: ( )
( )

| |
ii

d xi x d
B

ii

R
r D

d

≥
>

∈>
≥=

∑ ∑
∑
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• downward FPAQ ( )
( )

| |
ii

d xi x d
B

ii

R
r D

d

≤
<

∈<
≤=

∑ ∑
∑

 

• global FPAQ: ( ) ( )
( )

| | | |
i ii i

d x d xi x d i x d
B

i ii i

R R
r D

d d

≤ ≥
< >

∈ ∈
≤ ≥

+
=

+
∑ ∑ ∑ ∑

∑ ∑
 

where | |id ≥  and | |id ≤  are the numbers of samples with decisions dominating and 

dominated by di, respectively. Detailed descriptions are available in [7]. The fuzzy 
preference approximation quality reflects the capability of B to D, and thus can be 
used as a criterion to select features that have better monotonic relationship with  
decisions. 

3   A Feature Fusion Method 

As stated in Section 1, in condition monitoring, selecting indicators which monotoni-
cally vary with the development of faults is important. Depending on specific  
objectives, many features from the time-domain, the frequency-domain, and/or the 
time-frequency domain could be extracted with signal processing technology, which 
results in a high dimension of the feature space. However, not all the features contrib-
ute useful information especially in the sense of monotonicity. The fuzzy preference 
based rough set model can help to select candidate features which have greater mono-
tonic relationship with the fault development. Moreover, each of the candidate fea-
tures may contain complementary information on machinery condition. To make the 
final indicator more robust, feature fusion technology is needed to combine the infor-
mation of candidate features. PCA, as a popular and widely known feature fusion 
method, is hence applicable here. PCA transforms a number of possibly correlated 
variables into a smaller number of uncorrelated variables called principal components. 
The first principal component, as it accounts for the largest portion of the variability 
in the data, contains the most information for fault conditions and is thus can be used 
as the final single indicator.  

To generate a better indicator, a proper number of candidate features should be in-
cluded. A feature fusion method taking advantage of fuzzy preference based rough set 
and PCA is proposed and shown in Fig. 1. The procedure is stated as follows: 

(1): Extract features that contain information of the machine conditions.  
(2): Employ fuzzy preference approximation quality (FPAQ) to evaluate features. 
(3): Generate the candidate feature pool based on the values obtained in step (2). The 
first feature in the candidate feature pool has the highest value, the second one has the 
second highest value, and so forth. Set m=1; 
(4): Import the first m features to the indicator generation module, and apply PCA. 
The first principle component is used as a single indicator for the machine health 
condition.  
(5): Evaluate the performance of the indicator generated in step (4) using FPAQ. 
Output the indicator if the performance value doesn’t increase any more. Otherwise, 
set m=m+1, and go to step (4). 
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Fig. 1. Flow chart of the proposed feature fusion method 

4   Experiments and Results 

4.1   Experiment Data 

The proposed method is applied to the condition monitoring of an impeller in a cen-
trifugal pump. Impeller vane trailing edge damage, as one of the most prevalent 
types of impeller damages, is considered here. Two levels of trailing edge damage – 
slight and severe – were fabricated and tested. Six minutes of vibration data were 
collected by three tri-axial accelerometer sensors shown in Fig. 2 with a sampling 
rate of 5kHz.  

4.2   Feature Extraction 

For centrifugal pumps, pump frequency (1X) and its 2nd harmonic (2X), and vane pass-
ing frequency (5X since the impeller has 5 vanes) and its 2nd harmonic (10X) carry 
useful information on pump conditions [9], and thus are used in this paper. The features 
are listed in Table 1. Since accelerometer 3 is located on the bearing casing and is rela-
tive far from the impeller, to reduce computational burden, in this paper we consider 
signals measured by accelerometer 1 and accelerometer 2 only. For each vibration sig-
nal, 8 features are extracted from the original signal. The two accelerometers output 6 
vibration signals which make the number of features equal to 48. 

The geometry damage of the impeller will influence the flow field and may cause 
the impeller outlet recirculation to occur. We have also noticed that the conventional 
spectral analysis using Fourier Transform (FFT) treats the vibration signal as a real  
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Fig. 2. Locations of the three accelerometers 

Table 1. Extracted features 

Feature No. Feature name 
1 Amplitude at 1X (1 times the pump rotating frequency) 
2 Amplitude at 2X 
3 Amplitude at 5X (this is the vane passing frequency) 
4 Amplitude at 10X 
5 Root mean square (RMS) between (0~1X) 
6 RMS between (0~2X) 
7 RMS between (0~5X) 
8 RMS between (0~10X) 

 
quantity and hence the corresponding frequency spectrum might lose important in-
formation like directivity, i.e. forward and backward whirl of vibration motion. As a 
result, vibration directivity might also be affected. Full spectrum analysis overcomes 
the limitation of FFT by retaining the relative phase information between two meas-
ured orthogonal vibration signals [10]. This attribute makes the full spectrum one of 
the important diagnostic tools for rotating machine fault detection [11]. By full spec-
trum, forward whirl frequency component and backward whirl frequency component 
can be obtained. To enrich the feature pool, the features listed in Table 1 are also 
extracted from forward whirl frequency components and backward whirl frequency 
components separately. Each accelerometer has three orthogonal vibration signals (x, 
y, z), thus full spectrum can be conducted on the 3 signal combinations (i.e. xy plane, 
yz plane and xz plane). As a result, 6 signal combinations from two accelerometers 
generate 96 features.  

Therefore, totally 144 features are generated of which 48 are from FFT analysis 
and 96 are from full spectrum analysis.  

4.3   Feature Selection and Indicator Generation 

Feature selection aims to find candidate features that have monotonic trends with the 
damage levels. There are two monotonic trends, increasing and decreasing. Features 
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having better increasing (decreasing) trends with damage degree can be obtained by 
assigning the damage condition increasing (decreasing) numbers, e.g. 0 for  
undamaged, 1 (-1) for slight damaged), 2 (-2) for severe damage. The global fuzzy 
preference approximation quality (global FPAQ) is used to evaluate each feature’s 
performance. The evaluation is conducted for increasing trend and decreasing trend 
separately, and the maximum evaluation value of increasing trend and decreasing 
trend is used as the estimation of the contribution of a feature to the fault condition.  

Vibration data collected at 2400 revolutions per minute (RPM) is firstly used to il-
lustrate the proposed method. Fig. 3 shows the estimation values for all features. It is 
obvious that the values are different for different features. The feature with the high-
est evaluation value (i.e. the first feature in candidate features) is shown in Fig. 4. It 
can be seen that even with the highest estimation value, its monotonic trend is not 
satisfactory. There are overlaps between the slight damage and the severe damage. 
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Fig. 3. Feature estimation by global FPAQ 
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Fig. 4. The value of the 1st feature in the candidate feature pool versus damage levels  
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Using the proposed method, 25 features were finally selected to generate an indica-
tor. Fig. 5 shows the indicator versus the damage level, in which a clearly monotonic 
trend is observed. Comparison of Fig. 4 and Fig. 5, it can be shown that PCA effec-
tively combine the information contained in all selected features, and therefore the 
indicator outperforms individual features. 
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Fig. 5. Indicator Versus damage levels (with proposed method) 

4.4   Results and Discussion  

To check the contribution of global FPAQ, PCA was applied directly to all the 144 
features. The result was shown in Fig. 6, from which it can be seen that the monotonic 
trend is now lost and the samples from the no damage set and the severe damage set 
are mixed. This can be explained as follows. As shown in Fig. 3, different features 
have different global FPAQ values. Those features whose global FPAQ are small give 
poor or even negative contribution to the indicator generation, which will result in an 
indicator without a monotonic trend. 
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Fig. 6. Indicator generated without global FPAQ 
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According to the algorithm of PCA, it is also known that the indicator in Fig. 5 is 
actually a linear weighted sum of the 25 features. The weights can be obtained from 
the data collected at the 2400 RPM. To test the robustness and generalization ability 
of this indicator, the same 25 features are collected under 2200 RPM and 2000 RPM. 
The new values of this indicator are computed by summing up the weighted 25 fea-
tures. The results are shown in Fig. 7, from which we can observe that the indicator 
monotonically varies with damage level and can classify different damage levels 
clearly, especially for the 2000 RPM. This shows the robustness of the proposed 
method. 
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Fig. 7. Indicator Versus damage level (a-2000 RPM, b-2200 RPM) 

5   Conclusion 

Fuzzy preference based rough set model is useful in condition monitoring. The pro-
posed method utilizes global FPAQ as a criterion to evaluate the performance of fea-
tures, and uses PCA to combine the information contained in selected features.  Ex-
periment results show the effectiveness of this method. It can generate an indicator 
which monotonically represents the damage levels. 

Acknowledgments. This research was supported by Syncrude Canada Ltd. and the 
Natural Sciences and Engineering Research Council of Canada (NSERC). 

References 

[1] Yesilyurt, I., Ozturk, H.: Tool condition monitoring in milling using vibration analysis. 
International Journal of Production Research 45(4), 1013–1028 (2007) 

[2] Zhang, B., Georgoulas, G., Orchard, M., Saxena, A., Brown, D., Vachtsevanos, G.,  
Liang, S.: Rolling Element Bearing Feature Extraction and Anomaly Detection Based on 
Vibration Monitoring. In: 16th Mediterranean Conference on Control and Automation, 
Ajaccio, France, June 25 -27, pp. 1792–1797 (2008) 



 Application of Fuzzy Preference Based Rough Set Model to Condition Monitoring 697 

 

[3] Natke, H., Cempel, C.: The symptom observation matrix for monitoring and diagnostics. 
Journal of Sound and Vibration 248(4), 597–620 (2001) 

[4] Hu, Q., Yu, D., Xie, Z.: Information-preserving hybrid data reduction based on fuzzy-
rough techniques. Pattern Recognition Letters 27(5), 414–423 (2006) 

[5] Shen, Q., Jensen, R.: Selecting informative features with fuzzy-rough sets and its appli-
cation for complex systems monitoring. Pattern Recognition 37(7), 1351–1363 (2004) 

[6] Greco, S., Inuiguchi, M., Slowinsk, R.: Dominance-based rough set approach using pos-
sibility and necessity measure. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. 
(eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 85–92. Springer, Heidelberg (2002) 

[7] Hu, Q., Yu, D., Guo, M.: Fuzzy preference based rough sets. Information Sci-
ences 180(10), 2003–2022 (2010) 

[8] Turhan-Sayan, G.: Real time electromagnetic target classification using a novel feature 
extraction technique with PCA-based fusion. IEEE Transactions on Antennas and 
Propagation 53(2), 766–776 (2005) 

[9] Volk, M.W.: Pump Characteristics and Applications, 2nd edn. Taylor & Francis Group, 
Boca Raton (2005) 

[10] Goldman, P., Muszynska, A.: Application of full spectrum to rotating machinery diag-
nostics. In: Orbit First Quarter, pp. 17–21 (1999) 

[11] Patel, T., Darpe, A.: Vibration response of misaligned rotors. Journal of Sound and  
Vibration 325, 609–628 (2009) 

 
 



 

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 698–709, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Graph-Based Optimization Method for Information 
Diffusion and Attack Durability in Networks 

Zbigniew Tarapata and Rafał Kasprzyk 

Military University of Technology, Cybernetics Faculty, 
Gen. S. Kaliskiego Str. 2, 00-908 Warsaw, Poland 

{zbigniew.tarapata,rafal.kasprzyk}@wat.edu.pl 

Abstract. In this paper we present a graph-based optimization method for 
information diffusion and attack durability in networks using properties of 
Complex Networks. We show why and how Complex Networks with Scale 
Free and Small World features can help optimize the topology of networks or 
indicate weak or strong elements of the network. We define some efficiency 
measures of information diffusion and attack durability in networks. Using 
these measures we formulate multicriteria optimization problem to choose the 
best network. We show a practical example of using the method based on an 
analysis of a few social networks. 

Keywords: complex networks, information diffusion, multicriteria graph 
optimization, networks attack durability. 

1   Introduction 

Identifying and measuring properties of any network is a first step towards 
understanding their topology, structure and dynamics. The next step is to develop a 
mathematical model, which typically takes a form of an algorithm for generating 
networks with the same statistical properties. Apparently, networks derived from real 
data (most often spontaneously growing) have a large number of nodes, “six degree of 
separation” characteristic, power law degree distributions, hubs occurring, tendency 
to form clusters and many other interesting features. These kinds of networks are 
known as Complex Networks [12]. Two very interesting models capture these 
features, which have been introduced recently [17]. A Small World network [11], 
[15], [18] is a type of network, in which most nodes are not neighbours of one 
another, but most of them can be reached from any other with a small number of 
steps. The Scale Free feature [2], [3] pertains to a network, in which most of nodes 
have relatively small amount of links, but there are some that have a huge amount of 
neighbours. The Scale Free and Small World networks, while being fault tolerant, are 
still very prone to acts of terrorism.  

Most of the systems that surround us can be seen as a large scale infrastructure 
network intended to deliver resources, information or commands to every element of 
their components. The measures of networks centrality are of particular interest, 
because they help optimize the network topology from an efficiency and durability 
point of view. Based on defined centrality measures, we propose a new method to 
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discover the critical elements of networks. It is likely that the identification and 
protection of the critical elements of a given network should be the first concern in 
order to reduce the consequence of faults or attacks. On the other hand, the critical 
elements of hostile networks are the main target to hit in order to disrupt hostile forces 
and to reduce their capability to optimal decision making. 

2   Models and Methods for Complex Networks Analysis 

2.1   Definition and Notation for Network Modelling 

Formally, a graph is a vector G=<V,E,P> where: V is a set of vertices, E is a set of 
edges, and P is an incidence relationship, i.e. P ⊂V × E × V. The degree ki of a vertex 
vi is the number of edges originating from or ending in vertex vi. The shortest path dij 
from vi to vj is the shortest sequence of alternating vertices and edges, starting in 
vertex vi and ending in vertex vj. The length of a path is defined as the number of links 
in it. Networks very often are represented in practice by a matrix called the adjacency 
matrix A, which in the simplest case is an n x n symmetric matrix, where n is the 
number of vertices in the network, n = |V|. The element of adjacency matrix Aij=1, if 
there is an edge between vertices i and j, and 0. 

In some cases the use of the graph does not provide a complete description of the 
real-world systems under investigation. For instance, if networks are represented as a 
simple graph, we only know whether systems are connected (data are exchanged 
between them), but we cannot model the kind/strength of that connection [16]. For 
now, however, we will only use the formal graph definition. 

2.2   Standard Centrality Measures 

Centrality measures address the question “Who (what) is most important or who 
(what) is the central person (node) in given network?” No single measure of centre is 
suited for all application. 

We considered the five most important centrality measures [5], [9], [14]. 
Normalization into the range [0, 1] is used here to make the centrality of different 
vertices comparable, and also independent of the size of the network.  

• Degree centrality 

The degree centrality measure gives the highest score of influence to the vertex with 
the largest number of direct neighbours. This agrees with the intuitive way to estimate 
someone’s influence from the size of his immediate environment: ∑ . The 
degree centrality is traditionally defined analogically to the degree of a vertex, 
normalized with the maximum number of neighbours that this vertex could have. 
Thus, in a network of n vertices, the degree centrality of vertex vi, is defined as: 

                             (1) 
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• Radius centrality 

If we need to find influential nodes in an area modeled by a network it is quite natural 
to use the radius centrality measures, which chooses the vertex using the pessimist’s 
criterion. The vertex with the smallest length value of longest of the shortest paths is 
the most centrally located node [9]. So, if we need to find the most influential node 
for the most remote nodes it is quite natural and easy to use this measure. The radius 
centrality of vertex vi, can be defined as: 

                    (2) 

• Closeness centrality 

This notion of centrality focuses on the idea of communication between different 
vertices. The vertex, which is ‘closer’ to all vertices, gets the highest score. In effect, 
this measure indicates, which one of two vertices needs fewer steps in order to 
communicate with some other vertex [14]. Because this measure is defined as 
‘closeness’, the inverse of the mean distance from a vertex to all others is used: 

  
∑ ∑          (3) 

• Betweenness (load) centrality  

This measure assumes that the greater number of paths, in which a vertex participates, 
the higher the importance of this vertex is for the network. Informally, betweenness 
centrality of a vertex can be defined as the percent of shortest paths connecting any 
two vertices that pass through that vertex [8]. If  is the set of all shortest paths 
between vertices vl and vk passing through vertex vi and  is the set of all shortest 
paths between vertices vl and vk then: 

  
∑

         (4) 

This definition of centrality explores the ability of a vertex to be ‘irreplaceable’ in the 
communication of two random vertices. 

• Eigenvector centrality 

Where degree centrality gives a simple count of the number of connections that a 
vertex has, eigenvector centrality acknowledges that not all connections are equal [5]. 
In general, connections to vertices, which are themselves influential, will grant a 
vertex more influence than connections to less important vertexes. If we denote the 
centrality of vertex vi by ei, then we can allow for this effect by making ei proportional 
to the average of the centralities of the vi’s network neighbors: 

  ∑     
          (5) 
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So we have 0 and the  value can be calculated using det 0. 
Hence, we see that  is an eigenvector and  – an eigenvalue of the adjacency matrix. 
Assuming that we wish the centralities to be non-negative, it can be shown that  
must be the largest eigenvalue1 of the adjacency matrix and  the corresponding 
eigenvector. 

3   Optimization Method for Information Diffusion and Attack 
Durability 

3.1   Efficiency Measures of Information Diffusion 

We were interested in the speed at which information originating from the central 
node diffuses through the rest of the network and then we investigated the speed of 
information diffusion in the opposite direction (from boundary to centre). 

We assume that information is released in a chosen node (centre or boundary) and 
that it diffuses through the rest of the network in discrete steps. In the first step, the 
chosen node dispatches information to all of its neighbours, and in each next step each 
of the nodes that received information in the previous step dispatches it further on to 
all of its neighbours. It is also assumed that the time to traverse each of the links 
equals only one step, that there are no information losses, and that all links are of 
sufficient capacity to diffuse information further without any distortion. 

Let EID(G, k) be the function describing the percentages of nodes from G, which 
received information after the k-th step, k N∈ . We can define two of the following 
measures of information diffusion efficiency: 

 

{ }*( , ) min : ( , )k G x k N EID G k x= ∈ ≥           (6) 

( )* * * *( ) ( ), min ( , )
G

G x k G x x k G x
∈

∈ ⇒ =
G

G           (7) 
 

The first measure (6) describes the minimal step number, for which percentages of 
nodes from G, that received information is equal to x or greater than x. The smaller 
the value of this measure the better. 
The second measure (7) describes such a graph from set G of graphs, for which 
k*(G*(x),x) is minimal. 

3.2   Network Durability Measures 

To evaluate how well a G network is connected before and after the removal of a set 
of nodes we use the global connection efficiency (GCE) [7]. We assume that the 
connection efficiency between vertex vi  and vj is inversely proportional to the shortest 
distance: 
 

                  (8) 

 

                                                           
1 We consider only undirected graphs so adjacency matrix is always symmetric and computing 

eigenvalues in this way is numerically stable.  
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When there is no path in graph G between vertex vi and vj we have  
dij=+∞ and consequently connection efficiency is equal zero.  
The global connection efficiency is defined as the average connection efficiency over 
all pairs of nodes: 

 

  ∑                 (9) 
 

Unlike the average path length, the global connection efficiency is a well-defined 
quantity as well as in the case of non-connected graphs.  

Let ( , )G y rs−  describe graph G after the removal of y∈N nodes using rs RS∈
removal strategy, RS={rd, bc, cc, dc, ec, rc}. Elements of RS describe that such a 
node is removed from the graph, which has the greatest value of the following 
characteristics (rd – random node): bc - betweenness centrality, cc – closeness 
centrality,  dc – degrees centrality, ec - eigenvector centrality, rc - radius centrality. 
Network durability measure is represented by the function:  
 

( ) ( )
, ,

( ( , ))coef

GCE G
GCE G y rs

GCE G y rs−=         (10) 

 

The greater the value of the function (10) the smaller network durability (the greater 
susceptibility to attacks). 

3.3   Multicriteria Approach to Information Diffusion and Attack Durability 

Let 1 2{ , ,..., }MSG G G G=  set of graphs be given. Moreover, we have given

]0 0,100x ∈ , y0∈N and 0rs RS∈ . The problem is to find such a graph Go from SG 

that is the most durable and prone to information diffusion. We define this problem as 
multicriteria optimization problem (MDID) in space SG with relation RD: 

( ), , DMDID SG F R=                      (11) 

where :F SG N N R→ × × ,  

( ) ( ) ( )( )* *
0 0 0 0 0 0( , ), ( , ), , , ,coefF G k G x k G y rs x GCE G y rs−=         (12) 

and 

( )
( ) ( )( )

( ) ( )( )

* *
0 0

* *
0 0 0 0 0 0

0 0 0 0

( , ) :  ( , ) ( , )

                               ( , ), ( , ),

                              , , , ,

D

coef coef

Y Z SG SG k Y x k Z x

R k Y y rs x k Z y rs x

GCE Y y rs GCE Z y rs

− −

⎧ ⎫∈ × ≤ ∧
⎪ ⎪⎪ ⎪= ≤ ∧⎨ ⎬
⎪ ⎪

≤⎪ ⎪⎩ ⎭     

(13) 

 

Let us note that *
0( , )k G x describes efficiency of information diffusion in a static 

situation (before a network attack) and ( )*
0 0 0( , ),k G y rs x− describes efficiency of 

information diffusion in a dynamic situation (after a network attack). 
There are many methods for solving the problem (11). One of the methods, which 

can be applied, is the trade-off method (one objective is selected by the user and the 
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other ones are considered as constraints with respect to individual minima). For 
example we could find such a Go  that: 

 

( ) ( )
( )

*
0 0 0 0

0 0 *
0 0 0 0

, , : ( , ) ,
, , min

( , ), ,

coefo
coef

GCE G y rs k G x k
GCE G y rs

k G y rs x k G−

⎧ ⎫≤⎪ ⎪= ⎨ ⎬
≤ ∈⎪ ⎪⎩ ⎭G

       (14) 

 

or 
 

 
( )

( )
*

0 0 0 0*
0 *

0 0 0 0

( , ) : , , ,
( , ) min

( , ), ,

coefo
k G x GCE G y rs GCE

k G x
k G y rs x k G−

⎧ ⎫≤⎪ ⎪= ⎨ ⎬
≤ ∈⎪ ⎪⎩ ⎭G
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where k0 and GCE0 are given threshold values. 
We can also use other methods for solving MDID: hierarchical optimization (the 

idea is to formulate a sequence of scalar optimization problems with respect to the 
individual objective functions subject to bounds on previously computed optimal 
values), method of distance functions in Lp-norm ( 1p ≥ ), weighted sum of 

objectives. 

4   An Experimental Analysis of the Complex Network 

4.1   Efficiency of Information Diffusion 

To compare networks of different structure type we have to chose such networks 
which have the same general properties: number of nodes equals 62 and the average 
degree of nodes equals 4.9. We use three networks: Krebs’ network TN [10], [13] 
with Scale Free and Small World feature, random and hierarchical graphs (see 
Fig.1a). 

The dynamic of information diffusion is represented in Fig. 1 (centre node with the 
highest value of betweenness centrality measure was chosen). Percentages of nodes 
that received information in specified time steps is contained in Table 1. 

The information diffusion through Krebs’ networks TN is referred to the Small 
World feature, meaning that it does not take many steps to get from one node to 
another. Together with secrecy of the given network (only 8% of all possible 
connections in the network really exist), this feature significantly improves 
operational quickness of terrorist network activities. In one moment the network may 
activate suddenly, so that an observer is really left with the impression of terrorists 
“gathering from nowhere and disappearing after action”. 

Taking into account efficiency measures of information diffusion defined in 
section 3.1 we obtain (see Table 1): *

1( ,100) 4k G = , *
2( ,100) 5k G = ,  
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*
3( ,100) 4,k G =  hence { }*

1 3(100) ,G G G∈ . In Fig.2 we present the dynamic of 

information diffusion ( *( , )k G x ) in these three graphs. From this figure results that 

information diffuses much faster in the G1 graph.  
In Table 2 we present the fraction of EID(G, k) nodes that received information for 

each k-th time-step after removal of the node with the highest degree of centrality 
measure in G  from centre to boundary (periphery). From this table results that the 
ability to diffuse information in the networks significantly deteriorates in comparison 
with the state before node removal (compare Table 1 with Table 2). This is especially 
visible in the hierarchical network. 

 

 
 

(a)  
(b) 

 
(c) 

Fig. 1. Information diffusion from the centre to the boundary in: (a) Scale Free & Small World 
network TN (G1); (b) random graph (G2); (c) hierarchical graph (G3). 

Table 1. Fraction of EID(G, k) nodes that received information for each k-th time-step. 
Information diffusion from centre to boundary (periphery) 

Type of graph (G) k=1 k=2 k=3 k=4 k=5 
Scale Free & Small 

World (G1) 
2% 37% 94% 100% 100% 

Random (G2) 2% 18% 66% 97% 100% 
Hierarchical (G3) 2% 8% 34% 100% 100% 

 
 
 



 Graph

 

Fig. 2. Graphs of function k

network TN (G1≡G1); (b) rand

Table 2. Fraction of EID(G, 
node removal with the highest
boundary (periphery) 

Type of the graph (G) k=
Scale Free & Small 

World (G1) 
2%

Random (G2) 2%
Hierarchical (G3) 2%

4.2   Network Durability 

Resistance of the network 
network’s survival [1], [4]
destruction: (1) the informa
network, as a decision bod
organization, loses the abili
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Free feature shows that this
node. This is not surprising
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flexibility construction of t
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The average degree of no
interesting. The degree of 
degree. It is easy to show, th

This property characteri
particular plan or interventi
a longer time are better c
significant for network func

The average radius centr
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Random attack of Com
networks remain connecte
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*( , )k G x  for data from Table 1: (a) Scale Free & Small Wo

dom graph (G2≡G2); (c) hierarchical graph (G3≡G3) 

k) nodes that received information for each k-th time-step a
t degree centrality measure. Information diffusion from centr

=1 k=2 k=3 k=4 k=5 k=6 k=7

% 28% 56% 74% 88% 97% 97%

% 18% 59% 95% 100% 100% 100%
% 8% 26% 26% 26% 26% 26%

to any losses of their members is most importance fo
], [7]. There are at least three indicators of a networ
ation flow through the network is seriously reduced; (2) 
dy, can no longer reach consensus; (3) the network, as
ity to effectively perform its task. 
ample network (Krebs’ network TN, Fig.1a) with the Sc
s network is exceptionally resilient to the loss of a rand
g, if we remember that most of the nodes in a Scale F
egree. Another surprising finding is that Scale Free netwo

hen their central node is removed through redundancy 
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simulation results, see Fig.4) being attacked (destroyed or isolated). However, a 
clever attack (targeted attack) aimed at central nodes will disintegrate the network 
rapidly. So, if we know the network topology we can use centrality measures to 
identify most important nodes and then protect only those with the highest score to 
assure network functionality.  

Fig. 4 shows the percentages of nodes that must be attacked using two attack 
strategies to reduce GCE by a factor of ten (we assumed that it would disintegrate the 
network as an entirety). 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. Krebs’ network after removal: (a) the first central node; (b) the second central node; (c) 
the third central node 

 

 

Fig. 4. The effect of two attack strategies for different Scale Free networks (by the power of 
their node degree distribution) 
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Table 3. The global connection efficiency before (GCE(G)) and after ( ( )(1, )GCE G− � ) removal 

of a single node using three removal strategies: rd, dc and bc 

Type of graph 
(G) 

( )GCE G ( )(1, )GCE G rd−  ( )(1, )GCE G dc−  ( )(1, )GCE G bc−  

Scale Free & 
Small World (G1) 

0.1631 0.1614 0.1273 0.1566 

Random (G2) 0.2176 0.2143 0.1959 0.1966 
Hierarchical (G3) 0.0546 0.0555 0.0481 0.0481 

 
Taking into account the function values in Table 3 and Table 4 we can observe that 

the worst case is an attack on the node with the highest degree centrality value in the 
G1 network. The most attack-resistant network is a random one (G2) but the 
information diffusion in this network is rather slower than in G1. 

Table 4. Network durability measure after removal of a single node using three removal 
strategies: rd, dc and bc 

Type of graph 
(G) 

( ),1,coefGCE G rd  ( ),1,coefGCE G dc ( ),1,coefGCE G bc  

Scale Free & 
Small World (G1) 

1.0105 1.2812 1.0415 

Random (G2) 1.0154 1.1108 1.1068 
Hierarchical (G3) 0.9838 1.1351 1.1351 

 

4.3   Multicriteria Network Choice 

Taking into account MDID problem described in section 3.3 we can define and solve 
the problem of a two-criterion network selection. Let 0 90x = ,  y0=1 and 0rs dc= . 

From Fig.2 we obtain: *
1( ,90) 3,k G =  

* *
2 3( ,90) ( ,90) 4.k G k G= =  From Table 2 we 

have: *
1( (1, ),90) 6,k G dc− =  

*
2( (1, ),90) 4,k G dc− = *

3( (1, ),90) .k G dc− = +∞  

From Table 4 we obtain: ( )1,1, 1.2812coefGCE G dc = , ( )2 ,1, 1.1108coefGCE G dc = , 

( )3,1, 1.1351coefGCE G dc = . Let k0=6, and GCE0=1.3. 

Solving problem (14) we obtain the best network Go≡G2 taking into account all 
criteria. Solving problem (15) we obtain the best network Go≡G1 taking into account 
all criteria. Solving problem (16) we obtain the best network Go≡G2 taking into 
account all criteria. 

5   Summary 

In this paper we show why and how Complex Networks with the Scale Free and 
Small World feature can help optimize the topology of communication networks. The 
first term – Scale Free feature – is a good protection against random attacks (it is hard 
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to hit a central node). The second term – Small World feature – can dramatically 
affect communication among network nodes. Thus both concepts and underlying 
theories are highly pertaining to the presenting idea subject and objectives. 

Our models and methods of networks analysis have been used in the criminal 
justice domain to analyze large datasets of criminal groups in order to facilitate crime 
investigation. However, link analysis still faces many challenging problems, such as 
information overload, high search complexity, and heavy reliance on domain 
knowledge. Another problem is to take into account not only the structure of the 
network, but also a quantitative description (weights) of links [16]. 
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Abstract. We introduce a number of paraconsistent semantics, including three-
valued and four-valued semantics, for the description logic SROIQ, which is
the logical foundation of OWL 2. We then study the relationship between the
semantics and paraconsistent reasoning in SROIQ w.r.t. some of them through
a translation into the traditional semantics. We also present a formalization of
rough concepts in SROIQ.

1 Introduction

The Web Ontology Language (OWL) is a family of knowledge representation languages
for authoring ontologies. It is considered one of the fundamental technologies under-
pinning the Semantic Web, and has attracted both academic and commercial interest.
OWL has a formal semantics based on description logics (DLs) [1], which are for-
malisms concentrated around concepts (classes of individuals) and roles (binary rela-
tions between individuals), and aim to specify concepts and concept hierarchies and to
reason about them. DLs belong to the most frequently used knowledge representation
formalisms and provide a logical basis to a variety of well known paradigms, including
frame-based systems, semantic networks and semantic web ontologies and reasoners.
The extension OWL 2 of OWL, based on the DL SROIQ [4], became a W3C recom-
mendation in October 2009.

Some of the main problems of knowledge representation and reasoning involve
vagueness, uncertainty, and/or inconsistency. There are a number of approaches for
dealing with vagueness and/or uncertainty, for example, by using fuzzy logic, rough
set theory, or probabilistic logic. See [5] for references to some works on extensions of
DLs using these approaches. A way to deal with inconsistency is to follow the area of
paraconsistent reasoning. There is a rich literature on paraconsistent logics (see, e.g.,
[2,3] and references there).

Rough set theory was introduced by Pawlak in 1982 [13,14] as a new mathematical
approach to vagueness. It has many interesting applications and has been studied and
extended by a lot of researchers (see, e.g., [17,16,15]). In rough set theory, given a
similarity relation on a universe, a subset of the universe is described by a pair of subsets
of the universe called the lower and upper approximations. In [18,6] Schlobach et al.
showed how to extend DLs with rough concepts. In [5] Jiang et al. gave some details
about the rough version of the DL ALC . In general, a traditional DL can be used to

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 710–720, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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express and reason about rough concepts if similarity relations are used as roles and the
properties of the similarity relations are expressible and used as axioms of the logic.

A number of researchers have extended DLs with paraconsistent semantics and para-
consistent reasoning methods [9,19,12,8,7,21,11]. The work [12] studies a constructive
version of the basic DL ALC. The remaining works except [11] are based on the well-
known Belnap’s four-valued logic. Truth values in this logic represent truth (�), falsity
(�), the lack of knowledge (�) and inconsistency (�). However, there are serious problems
with using Belnap’s logic for Semantic Web (see [20,11]). In [11] together with Szałas
we gave a three-valued paraconsistent semantics for the DL SHIQ, which is related to
the DL SHOIN used for OWL 1.1.

Both rough concepts and paraconsistent reasoning are related to approximation.
Rough concepts deal with concept approximation, while paraconsistent reasoning is a
kind of approximate reasoning. We can combine them to deal with both vagueness and
inconsistency. In this paper, we study rough concepts and paraconsistent reasoning in
the DL SROIQ. As rough concepts can be expressed in SROIQ in the usual way, we
just briefly formalize them. We concentrate on defining a number of different paracon-
sistent semantics for SROIQ, studying the relationship between them, and paracon-
sistent reasoning in SROIQ w.r.t. some of such semantics through a translation into
the traditional semantics. Our paraconsistent semantics for SROIQ are characterized
by four parameters for:

– using two-, three-, or four-valued semantics for concept names
– using two-, three-, or four-valued semantics for role names
– interpreting concepts of the form ∀R.C or ∃R.C (two ways)
– using weak, moderate, or strong semantics for terminological axioms.

Note that, with respect to DLs, three-valued semantics has been studied earlier only for
SHIQ [11]. Also note that, studying four-valued semantics for DLs, Ma and Hitzler [7]
did not consider all features of SROIQ. For example, they did not consider concepts
of the form ∃R.Self and individual assertions of the form ¬S(a, b).

Due to the lack of space, examples and proofs of our results are presented only in the
long version [10] of the current paper.

2 The Description Logic SROIQ
In this section we recall notations and semantics of the DL SROIQ [4]. Assume that
our language uses a finite set C of concept names, a subset N ⊆ C of nominals, a
finite set R of role names including the universal role U , and a finite set I of individual

names. Let R− def= {r− | r ∈ R \ {U}} be the set of inverse roles. A role is any
member of R ∪ R−. We use letters like R and S for roles.

An interpretation I = 〈ΔI , ·I〉 consists of a non-empty setΔI , called the domain of
I, and a function ·I , called the interpretation function of I, which maps every concept
name A to a subset AI of ΔI , where AI is a singleton set if A ∈ N, and maps every
role name r to a binary relation rI on ΔI , with UI = ΔI × ΔI , and maps every
individual name a to an element aI ∈ ΔI . Inverse roles are interpreted as usual, i.e.,

for r ∈ R, we define (r−)I def= (rI)−1 = {〈x, y〉 | 〈y, x〉 ∈ rI}.
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A role inclusion axiom is an expression of the form R1 ◦ . . . ◦ Rk � S. A role
assertion is an expression of the form Ref(R), Irr(R), Sym(R), Tra(R), or Dis(R,S),
where R,S �= U . Given an interpretation I, define that I |= R1 ◦ . . . ◦ Rk � S
if RI

1 ◦ . . . ◦ RI
k ⊆ SI , where ◦ stands for composition, and that: I |= Ref(R) if

RI is reflexive; I |= Irr(R) if RI is irreflexive; I |= Sym(R) if RI is symmetric;
I |= Tra(R) if RI is transitive; I |= Dis(R,S) if RI and SI are disjoint. By a role
axiom we mean either a role inclusion axiom or a role assertion. We say that a role
axiom ϕ is valid in I and I validates ϕ if I |= ϕ.

An RBox is a set R = Rh ∪ Ra, where Rh is a finite set of role inclusion axioms
and Ra is a finite set of role assertions. It is required that Rh is regular and Ra is
simple. In particular, Ra is simple if all roles R, S appearing in role assertions of the
form Irr(R) or Dis(R,S) are simple roles w.r.t. Rh. These notions (of regularity and
simplicity) will not be exploited in this paper and we refer the reader to [4] for their
definitions. An interpretation I is a model of an RBox R, denoted by I |= R, if it
validates all role axioms of R.

The set of concepts is the smallest set such that: all concept names (including nom-
inals) and �, ⊥ are concepts; if C, D are concepts, R is a role, S is a simple role, and
n is a non-negative integer, then ¬C, C �D, C �D, ∀R.C, ∃R.C, ∃S.Self, ≥nS.C,
and ≤nS.C are also concepts. We use letters like A, B to denote concept names, and
letters like C, D to denote concepts.

Given an interpretation I, the interpretation function ·I is extended to complex con-
cepts as follows, where #Γ stands for the number of elements in the set Γ :

�I def= ΔI ⊥I def= ∅ (¬C)I def= ΔI \ CI

(C �D)I def= CI ∩DI (C �D)I def= CI ∪DI

(∀R.C)I def=
{
x ∈ ΔI | ∀y

[
〈x, y〉 ∈ RI implies y ∈ CI]}

(∃R.C)I def=
{
x ∈ ΔI | ∃y

[
〈x, y〉 ∈ RI and y ∈ CI]}

(∃S.Self)I def=
{
x ∈ ΔI | 〈x, x〉 ∈ SI}

(≥ nS.C)I def=
{
x ∈ ΔI | #{y | 〈x, y〉 ∈ SI and y ∈ CI} ≥ n

}
(≤ nS.C)I def=

{
x ∈ ΔI | #{y | 〈x, y〉 ∈ SI and y ∈ CI} ≤ n

}
.

A terminological axiom, also called a general concept inclusion (GCI), is an expression
of the form C � D. A TBox is a finite set of terminological axioms. An interpretation
I validates an axiom C � D, denoted by I |= C � D, if CI ⊆ DI . We say that I is a
model of a TBox T , denoted by I |= T , if it validates all axioms of T .

We use letters like a and b to denote individual names. An individual assertion is an
expression of the form a

.=�= b, C(a), R(a, b), or ¬S(a, b), where S is a simple role and
R,S �= U . Given an interpretation I, define that: I |= a

.=�= b if aI �= bI ; I |= C(a)
if aI ∈ CI ; I |= R(a, b) if 〈aI , bI〉 ∈ RI ; and I |= ¬S(a, b) if 〈aI , bI〉 /∈ SI .
We say that I satisfies an individual assertion ϕ if I |= ϕ. An ABox is a finite set of
individual assertions. An interpretation I is a model of an ABox A, denoted by I |= A,
if it satisfies all assertions of A.

A knowledge base is a tuple 〈R, T ,A〉, where R is an RBox, T is a TBox, and A is
an ABox. An interpretation I is a model of a knowledge base 〈R, T ,A〉 if it is a model
of all R, T , and A. A knowledge base is satisfiable if it has a model.
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A (conjunctive) query is an expression of the form ϕ1 ∧ . . .∧ϕk, where each ϕi is an
individual assertion. An interpretation I satisfies a query ϕ = ϕ1 ∧ . . .∧ϕk, denoted by
I |= ϕ, if I |= ϕi for all 1 ≤ i ≤ k. A query ϕ is a logical consequence of 〈R, T ,A〉,
denoted by 〈R, T ,A〉 |= ϕ, if every model of 〈R, T ,A〉 satisfies ϕ.

3 Rough Concepts in Description Logic

Let I be an interpretation and R be a role standing for a similarity predicate. For x ∈
ΔI , the neighborhood of x w.r.t. R is the set of elements similar to x specified by

nR(x) def= {y ∈ ΔI | 〈x, y〉 ∈ RI}. The lower and upper approximations of a concept
C w.r.t. R, denoted respectively by C R and CR, are interpreted in I as follows:

(C R)I def= {x ∈ ΔI | nR(x) ⊆ CI} (CR)I def= {x ∈ ΔI | nR(x) ∩ CI �= ∅}
Intuitively, if the similarity predicate R reflects the perception ability of an agent then

– x ∈ (C R)I means that all objects indiscernible from x are in CI

– x ∈ (CR)I means that there are objects indiscernible from x which are in CI .

The pair 〈C R, CR〉 is usually called the rough concept of C w.r.t. the similarity predi-
cate R. The following proposition is well known [18,5].

Proposition 3.1. Let I be an interpretation, C be a concept, and R be a role. Then
(C R)I = (∀R.C)I and (CR)I = (∃R.C)I . That is, ∀R.C and ∃R.C are the lower
and upper approximations of C w.r.t. R, respectively. �

One can adopt different restrictions on a similarity predicate R. It is expected that the
lower approximation is a subset of the upper approximation. That is, for every inter-
pretation I and every concept C, we should have that (C R)I ⊆ (CR)I , or equiva-
lently, (∀R.C)I ⊆ (∃R.C)I . The latter condition corresponds to seriality of RI (i.e.
∀x∈ΔI ∃y∈ΔI RI(x, y)), which can be formalized by the global assumption ∃R.�.
Thus, we have the following proposition, which is clear from the view of the corre-
sponding theory of modal logics.

Proposition 3.2. Let I be an interpretation. Then (C R)I ⊆ (CR)I holds for every
concept C iff I validates the terminological axiom � � ∃R.�. �

In most applications, one can assume that similarity relations are reflexive and symmet-
ric. Reflexivity of a similarity predicateR is expressed in SROIQ by the role assertion
Ref(R). Symmetry of a similarity predicateR can be expressed in SROIQ by the role
assertion Sym(R) or the role inclusion axiom R− � R. Transitivity is not always as-
sumed for similarity relations. If one decides to adopt it for a similarity predicate R,
then it can be expressed in SROIQ by the role assertion Tra(R) or the role inclusion
axiom R ◦ R � R. In particular, in SROIQ, to express that a similarity predicate R
stands for an equivalence relation we can use the three role assertions Ref(R), Sym(R),
and Tra(R). See [10] for an example illustrating rough concepts in DLs.
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4 Paraconsistent Semantics for SROIQ
Recall that, using the traditional semantics, every query is a logical consequence of
an inconsistent knowledge base. A knowledge base may be inconsistent, for example,
when it contains both individual assertionsA(a) and ¬A(a) for someA ∈ C and a ∈ I.
Paraconsistent reasoning is inconsistency-tolerant and aims to derive (only) meaningful
logical consequences even when the knowledge base is inconsistent. Following the rec-
ommendation of W3C for OWL, we use the traditional syntax of DLs and only change
its semantics to cover paraconsistency. The general approach is to define a semantics s
such that, given a knowledge base KB , the set Conss(KB) of logical consequences of
KB w.r.t. semantics s is a subset of the set Cons(KB) of logical consequences of KB
w.r.t. the traditional semantics, with the property that Conss(KB) contains mainly only
“meaningful” logical consequences of KB and Conss(KB) approximates Cons(KB)
as much as possible.

In this paper, we introduce a number of paraconsistent semantics for the DL
SROIQ. Each of them, let’s say s, is characterized by four parameters, denoted by
sC, sR, s∀∃, sGCI, with the following intuitive meanings:

– sC specifies the number of possible truth values (2, 3, or 4) of assertions of the form
x ∈ AI , where A is a concept name not being a nominal and I is an interpretation.
In the case sC = 2, the truth values are � (true) and � (false). In the case sC = 3,
the third truth value is � (inconsistent). In the case sC = 4, the additional truth
value is � (unknown). When sC = 3, one can identify inconsistency with the lack of
knowledge, and the third value � can be read either as inconsistent or as unknown.

– sR specifies the number of possible truth values (2, 3, or 4) of assertions of the form
〈x, y〉 ∈ rI , where r is a role name different from the universal role U and I is an
interpretation. The truth values are as in the case of sC.

– s∀∃ specifies one of the two semantics studied by Straccia [19] for concepts of the
form ∀R.C or ∃R.C, which are denoted in this paper by + and +−.

– sGCI specifies one of the three semantics w (weak), m (moderate), s (strong) for
general concept inclusions.

We identify s with the tuple 〈sC, sR, s∀∃, sGCI〉. The set S of considered paraconsistent
semantics is thus {2, 3, 4} × {2, 3, 4} × {+,+−} × {w,m, s}.

For s ∈ S, an s-interpretation I = 〈ΔI , ·I〉 is similar to a traditional interpretation
except that the interpretation function maps every concept name A to a pair AI =
〈AI

+, A
I
−〉 of subsets of ΔI and maps every role name r to a pair rI = 〈rI+, rI−〉 of

binary relations on ΔI such that:

– if sC = 2 then AI
+ = ΔI \AI

−
– if sC = 3 then AI

+ ∪AI
− = ΔI

– if sR = 2 then rI+ = (ΔI ×ΔI) \ rI−
– if sR = 3 then rI+ ∪ rI− = ΔI ×ΔI

– if A is a nominal then AI
+ is a singleton set and AI

− = ΔI \AI
+

– UI
+ = ΔI ×ΔI and UI

− = ∅.

The intuition behind AI = 〈AI
+, A

I
−〉 is that AI

+ gathers positive evidence about A,
while AI

− gathers negative evidence about A. Thus, AI can be treated as the function
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from ΔI to {�, �, �, �} such that AI(x) is: � if x ∈ AI
+ and x /∈ AI

−; � if x ∈ AI
− and

x /∈ AI
+; � if x ∈ AI

+ and x ∈ AI
−; � if x /∈ AI

+ and x /∈ AI
−. Informally, AI(x) can

be thought of as the truth value of x ∈ AI . Note that AI(x) ∈ {�, �} if sC = 2 or A is a
nominal, and AI(x) ∈ {�, �, �} if sC = 3. The intuition behind rI = 〈rI+, rI−〉 is similar,
and under which rI(x, y) ∈ {�, �} if sR = 2 or r = U , and rI(x, y) ∈ {�, �, �} if sR = 3.

The interpretation function ·I maps an inverse role R to a pair RI = 〈RI
+, R

I
−〉

defined by (r−)I def= 〈(rI+)−1, (rI−)−1〉. It maps a complex concept C to a pair CI =
〈CI

+, C
I
−〉 of subsets of ΔI defined as follows:

�I def= 〈ΔI , ∅〉 ⊥I def= 〈∅, ΔI〉 (¬C)I def= 〈CI
−, C

I
+〉

(C �D)I def= 〈CI
+ ∩DI

+, C
I
− ∪DI

−〉 (C �D)I def= 〈CI
+ ∪DI

+, C
I
− ∩DI

−〉

(∃R.Self)I def=
〈
{x ∈ ΔI | 〈x, x〉 ∈ RI

+}, {x ∈ ΔI | 〈x, x〉 ∈ RI
−}

〉
(≥ nR.C)I def=

〈
{x ∈ ΔI | #{y | 〈x, y〉 ∈ RI

+ and y ∈ CI
+} ≥ n},

{x ∈ ΔI | #{y | 〈x, y〉 ∈ RI
+ and y /∈ CI

−} < n}
〉

(≤ nR.C)I def=
〈
{x ∈ ΔI | #{y | 〈x, y〉 ∈ RI

+ and y /∈ CI
−} ≤ n},

{x ∈ ΔI | #{y | 〈x, y〉 ∈ RI
+ and y ∈ CI

+} > n}
〉
;

if s∀∃ = + then

(∀R.C)I def=
〈
{x ∈ ΔI | ∀y(〈x, y〉 ∈ RI

+ implies y ∈ CI
+)},

{x ∈ ΔI | ∃y(〈x, y〉 ∈ RI
+ and y ∈ CI

−)}
〉

(∃R.C)I def=
〈
{x ∈ ΔI | ∃y(〈x, y〉 ∈ RI

+ and y ∈ CI
+)},

{x ∈ ΔI | ∀y(〈x, y〉 ∈ RI
+ implies y ∈ CI

−)}
〉
;

if s∀∃ = +− then

(∀R.C)I def=
〈
{x ∈ ΔI | ∀y(〈x, y〉 ∈ RI

− or y ∈ CI
+)},

{x ∈ ΔI | ∃y(〈x, y〉 ∈ RI
+ and y ∈ CI

−)}
〉

(∃R.C)I def=
〈
{x ∈ ΔI | ∃y(〈x, y〉 ∈ RI

+ and y ∈ CI
+)},

{x ∈ ΔI | ∀y(〈x, y〉 ∈ RI
− or y ∈ CI

−)}
〉
.

Note that CI is computed in the standard way [8,7,21,11] for the case C is of the
form �, ⊥, ¬D, D � D′, D � D′, ≥ nR.D or ≤ nR.D. When s∀∃ = +, (∀R.C)I

and (∃R.C)I are computed as in [8,7,21,11] and as using semantics A of [19]. When
s∀∃ = +−, (∀R.C)I and (∃R.C)I are computed as using semantics B of [19]. De
Morgans laws hold for our constructors w.r.t. any semantics from S (see [10]).

The following proposition means that: if sC ∈ {2, 3} and sR ∈ {2, 3} then s is a
three-valued semantics; if sC = 2 and sR = 2 then s is a two-valued semantics.

Proposition 4.1. Let s ∈ S be a semantics such that sC ∈ {2, 3} and sR ∈ {2, 3}. Let
I be an s-interpretation, C be a concept, and R be a role. Then CI

+ ∪ CI
− = ΔI and

RI
+ ∪ RI

− = ΔI × ΔI . Furthermore, if sC = 2 and sR = 2 then CI
+ = ΔI \ CI

− and
RI

+ = (ΔI ×ΔI) \RI
−. �

Let s ∈ S, I be an s-interpretation and 〈R, T ,A〉 be a knowledge base. We say that:



716 L.A. Nguyen

– I s-validates a role axiom R1 ◦ . . . ◦Rk � S if RI
1+ ◦ . . . ◦RI

k+ ⊆ SI
+

– I s-validates a role assertion Ref(R) (resp. Irr(R), Sym(R), Tra(R)) if RI
+ is

reflexive (resp. irreflexive, symmetric, transitive)
– I s-validates a role assertion Dis(R,S) if RI

+ and SI
+ are disjoint

– I is an s-model of R, denoted by I |=s R, if it s-validates all axioms of R

– I s-validates C � D, denoted by I |=s C � D, if:

• case sGCI = w : CI
− ∪DI

+ = ΔI

• case sGCI = m : CI
+ ⊆ DI

+
• case sGCI = s : CI

+ ⊆ DI
+ and DI

− ⊆ CI
−

– I is an s-model of a TBox T , denoted by I |=s T , if it s-validates all axioms of T

– I s-satisfies an individual assertion ϕ if I |=s ϕ, where
I |=s a

.=�= b if aI �= bI

I |=s C(a) if aI ∈ CI
+

I |=s R(a, b) if 〈aI , bI〉 ∈ RI
+

I |=s ¬S(a, b) if 〈aI , bI〉 ∈ SI
−

– I is an s-model of A, denoted by I |=s A, if it s-satisfies all assertions of A

– I is an s-model of a knowledge base 〈R, T ,A〉 if it is an s-model of all R, T , A
– I s-satisfies a query ϕ = ϕ1 ∧ . . . ∧ ϕk, denoted by I |=s ϕ, if I |=s ϕi for all

1 ≤ i ≤ k

– ϕ is an s-logical consequence of a knowledge base 〈R, T ,A〉, denoted by
〈R, T ,A〉 |=s ϕ, if every s-model of 〈R, T ,A〉 s-satisfies ϕ.

In [7,8] Ma et al. use non-traditional inclusion axioms C �→ D, C � D and C → D,
which correspond to our inclusion C � D w.r.t. semantics s with sGCI = w, m, s,
respectively.

See [10] for an example demonstrating the usefulness of paraconsistent semantics.

5 The Relationship between the Semantics

The following proposition states that if s ∈ S is a semantics such that sC = 2 and
sR = 2 then s coincides with the traditional semantics.

Proposition 5.1. Let s ∈ S be a semantics such that sC = 2 and sR = 2, let 〈R, T ,A〉
be a knowledge base, and ϕ be a query. Then 〈R, T ,A〉 |=s ϕ iff 〈R, T ,A〉 |= ϕ. �

Proposition 5.2. Let s, s′ ∈ S be semantics such that sR = s′R = 2, sC = s′C, sGCI =
s′GCI, but s∀∃ �= s′∀∃. Then s and s′ are equivalent in the sense that, for every knowledge
base 〈R, T ,A〉 and every query ϕ, 〈R, T ,A〉 |=s ϕ iff 〈R, T ,A〉 |=s′ ϕ. �

Let s, s′ ∈ S. We say that s is weaker than or equal to s′ (and s′ is stronger than or
equal to s) if for any knowledge base KB , Conss(KB) ⊆ Conss′(KB). (Recall that
Conss(KB) stands for the set of s-logical consequences of KB .)
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Define that sC � s′C if s′C ≤ sC, and that sR � s′R if s′R ≤ sR, where ≤ stands for the
usual ordering between natural numbers. Define sGCI � s′GCI according to w � m � s,
where � is transitive. Define that s � s′ if:

sC � s′C, sR � s′R, s∀∃ = s′∀∃, and sGCI � s′GCI; or (1)

sC � s′C, sR = s′R = 2, and sGCI � s′GCI; or (2)

sC = s′C = 2 and sR = s′R = 2. (3)

Theorem 5.3. Let s, s′ ∈ S be semantics such that s � s′. Then s is weaker than or
equal to s′ (i.e., for any knowledge base KB , Conss(KB) ⊆ Conss′(KB)). �

The following corollary follows from the theorem and Proposition 5.1. It states that all
the semantics from S give only correct answers.

Corollary 5.4. Let s ∈ S and let 〈R, T ,A〉 be a knowledge base and ϕ be a query.
Then 〈R, T ,A〉 |=s ϕ implies 〈R, T ,A〉 |= ϕ. �

6 A Translation into the Traditional Semantics

In this section we give a linear translation πs, for s ∈ S with sC ∈ {3, 4}, sR ∈ {2, 4}
and s∀∃ = +, such that, for every knowledge base KB and every query ϕ, KB |=s ϕ
iff πs(KB) |= πs(ϕ). In this section, if not otherwise stated, we assume that s satisfies
the mentioned conditions.

For A ∈ C \N, let A+ and A− be new concept names. For r ∈ R \ {U}, let r+ and
r− be new role names. With respect to the considered semantics s, let C′ = {A+, A− |
A ∈ C \ N} ∪ N, and R′ = R if sR = 2, and R′ = {r+, r− | r ∈ R \ {U}} ∪ {U} if
sR = 4.

We define also two auxiliary translations πs+ and πs−. In the following, if not other-
wise stated, r, R, S, A, C, D, a, b, R, T , A are arbitrary elements of their appropriate
types (according to the used convention) in the language using C and R.

If sR = 2 then:

– πs+(R) def= R and πs(R) def= R
– πs(R(a, b)) def= R(a, b) and πs(¬S(a, b)) def= ¬S(a, b)
– πs+(∃R.Self) def= ∃R.Self and πs−(∃R.Self) def= ¬∃R.Self.

If sR = 4 then:

– πs+(U) def= U

– πs+(r) def= r+ and πs−(r) def= r−, where r �= U

– πs+(r−) def= (r+)− and πs−(r−) def= (r−)−, where r �= U

– for every role axiom ϕ, πs(ϕ) def= ϕ′, where ϕ′ is the role axiom obtained from ϕ
by replacing each role R by πs+(R)

– πs(R) def= {πs(ϕ) | ϕ ∈ R}
– πs(R(a, b)) def= πs+(R)(a, b) and πs(¬S(a, b)) def= πs−(S)(a, b), where R,S �= U

– πs+(∃R.Self) def= ∃πs+(R).Self and πs−(∃R.Self) def= ∃πs−(R).Self.
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πs+(�) def= � πs−(�) def= ⊥
πs+(⊥) def= ⊥ πs−(⊥) def= �

πs+(¬C) def= πs−(C) πs−(¬C) def= πs+(C)

πs+(C � D) def= πs+(C) � πs+(D) πs−(C � D) def= πs−(C) � πs−(D)

πs+(C � D) def= πs+(C) � πs+(D) πs−(C � D) def= πs−(C) � πs−(D)

πs+(∀R.C) def= ∀πs+(R).πs+(C) πs−(∀R.C) def= ∃πs+(R).πs−(C)

πs+(∃R.C) def= ∃πs+(R).πs+(C) πs−(∃R.C) def= ∀πs+(R).πs−(C)

πs+(≥ n R.C) def= ≥ n πs+(R).πs+(C) πs−(≥ (n + 1) R.C) def= ≤ n πs+(R).¬πs−(C)

πs−(≥ 0 R.C) def= ⊥
πs+(≤ n R.C) def= ≤ n πs+(R).¬πs−(C) πs−(≤ n R.C) def= ≥ (n + 1) πs+(R).πs+(C)

Fig. 1. A partial specification of πs+ and πs−

If A is a nominal then πs+(A) def= A and πs−(A) def= ¬A.

If A is a concept name but not a nominal then πs+(A) def= A+ and πs−(A) def= A−.
The translations πs+(C) and πs−(C) for the case C is not of the formA or ∃R.Self

are defined as in Figure 1.
Define πs(C � D) and πs(T ) as follows:

– case sGCI = w : πs(C � D) def= {� � πs−(C) � πs+(D)}
– case sGCI = m : πs(C � D) def= {πs+(C) � πs+(D)}
– case sGCI = s : πs(C � D) def= {πs+(C) � πs+(D), πs−(D) � πs−(C)}
– case sC = 3 : πs(T ) def=

⋃
ϕ∈T πs(ϕ) ∪ {� � A+ �A− | A ∈ C \ N}

– case sC = 4 : πs(T ) def=
⋃

ϕ∈T πs(ϕ).

Define that:

– πs(a
.=�= b) def= a

.=�= b and πs(C(a)) def= πs+(C)(a)
– πs(A) def= {πs(ϕ) | ϕ ∈ A}
– πs(〈R, T ,A〉) def= 〈πs(R), πs(T ), πs(A)〉
– for a query ϕ = ϕ1 ∧ . . . ∧ ϕk, define πs(ϕ) def= πs(ϕ1) ∧ . . . ∧ πs(ϕk).

Note that, if 〈R, T ,A〉 is a knowledge base and ϕ is a query in SROIQ using C and
R, then πs(〈R, T ,A〉) is a knowledge base and πs(ϕ) is a query in SROIQ using C′

and R′, with the property that:

– the length of πs(ϕ) is linear in the length of ϕ
– the size of πs(〈R, T ,A〉) is linear in the size of 〈R, T ,A〉 in the case sC = 4, and

linear in the sizes of 〈R, T ,A〉 and C \ N in the case sC = 3.1

Theorem 6.1. Let s ∈ S be a semantics such that sC ∈ {3, 4}, sR ∈ {2, 4} and
s∀∃ = +. Let 〈R, T ,A〉 be a knowledge base and ϕ be a query in the language using
C and R. Then 〈R, T ,A〉 |=s ϕ iff πs(〈R, T ,A〉) |= πs(ϕ). �

1 Where the notions of length and size are defined as usual.
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To check whether πs(〈R, T ,A〉) |= πs(ϕ) one can use, e.g., the tableau method given
in [4]. We have the following corollary of Theorem 6.1 by taking C = ⊥.

Corollary 6.2. Let s ∈ S be a semantics such that sC ∈ {3, 4}, sR ∈ {2, 4} and
s∀∃ = +, and let 〈R, T ,A〉 be a knowledge base in the language using C and R.
Then 〈R, T ,A〉 is s-satisfiable iff πs(〈R, T ,A〉) is satisfiable (w.r.t. the traditional
semantics). �

7 Conclusions

SROIQ is a powerful DL used as the logical foundation of OWL 2. In this work, we
introduced and studied a number of different paraconsistent semantics for SROIQ in
a uniform way. We gave a translation of the problem of conjunctive query answering
w.r.t. some of the considered paraconsistent semantics into a version that uses the tra-
ditional semantics. This allows to directly use existing tools and reasoners of SROIQ
for paraconsistent reasoning. We also presented a formalization of rough concepts in
SROIQ.

Note that answering queries that contain negative individual assertions of the form
¬S(a, b) using a paraconsistent semantics is first studied in this work. Also note
that only a four-valued paraconsistent semantics has previously been introduced for
SROIQ [7] (without some important features of SROIQ). If s, s′ ∈ S are semantics
such that s � s′ then, by Theorem 5.3, for the conjunctive query answering problem,
KB |=s′ ϕ approximates KB |= ϕ better than KB |=s ϕ does. Our postulate is that,
if s � s′ and KB is s′-satisfiable, then it is better to use s′ than s. In particular, one
should use semantics s with sC = sR = 4 (i.e. four-valued semantics) only when the
considered knowledge base is s′-unsatisfiable in semantics s′ with s′C = 3.
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Abstract. In this paper we present a method for representing the granu-
larity for asymmetric, non-Euclidean relational data. It firstly builds a set
of binary classifications based on the directional similarity from each ob-
ject. After that, the strength of discrimination knowledge is quantified as
the indiscernibility of objects based on the Jaccard similarity coefficients
between the classifications. Fine but weak discrimination knowledge sup-
ported by the small number of binary classifications is more likely to be
coarsened than those supported by the large number of classifications,
and coarsening of discrimination knowledge causes the merging of ob-
jects. Accoding to this feature, we represent the hierarchical structure
of data granules by a dendrogram generated by applying the complete-
linkage hierarchical grouping method to the derived indiscernibility. This
enables users to change the coarseness of discrimination knowledge and
thus to control the size of granules.

1 Introduction

Non-Euclidean relational data play an important role in application areas such
as social sciences, where asymmetric relationships between subjects can be ob-
served and need to be analyzed. Examples include subjectively judged relations
between students and input/output of the persons between countries [1]. Non-
Euclidean relational data involves the following properties: (1) objects are not
represented in a usual feature vector space but their relationships (usually sim-
ilarity or dissimilarity) are measured and stored in a relational data matrix. (2)
The dissimilarity can be non-metric; that means the dissimilarity may not satisfy
the triangular inequality nor symmetry.

Building granules in Non-Euclidean relational data is still a challenging prob-
lem. Since attribute vectors do not exist therein, splitting or merging of blocks
in the attribute space may not be directly applied. Additionally, since dissimilar-
ities are non-metric, the choice of grouping methods is in general much limited
compared to the cases of metric and/or non-relational data. For example, meth-
ods such as k-means may not be directly applied to this type of data as they
assume the existence of data vectors. Conventional hierarchical clusterings are

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 721–729, 2010.
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capable of dealing with relative or subjective measures. However, they involve
other problems such as erosion or expansion of data space by intermediate ob-
jects between large clusters, and in some cases the results may change according
to the order of processing objects [4]. The NERF c-means proposed by Hath-
away et al. [5] is an extension of fuzzy c-means and capable of handling the
non-Euclidean relational data. However, as it is a sort of partitional clustering
method, it is still difficult to examine the structure of the data, namely, the
hierarchy of data groups. Additionally, most of these methods are not designed
to deal with asymmetric dissimilarity.

In this paper we present a method for representing the granularity for asym-
metric, non-Euclidean relational data. It firstly builds a set of binary classi-
fications based on the directional similarity from each object. After that, the
strength of discrimination knowledge is quantified as the indiscernibility of ob-
jects based on the Jaccard similarity coefficients between the classifications. Fine
but weak discrimination knowledge supported by the small number of binary
classifications is more likely to be coarsened than those supported by the large
number of classifications, and coarsening of discrimination knowledge causes
the merging of objects. Accoding to this feature, we represent the hierarchical
structure of data granules by a dendrogram generated by applying the complete-
linkage hierarchical grouping method to the derived indiscernibility. This enables
users to change the coarseness of discrimination knowledge and thus to control
the size of granules.

The remainder of this paper is organized as follows. Section 2 briefly provides
definitions used in this work. Section 3 shows the method in detail with some
examples. Section 4 shows experimental results on a synthetic data, and Section
5 shows conclusions and future work.

2 Preliminaries

This section provides basic definitions about indiscernibility, mostly came from
the literature of Rough Sets [2]. Let U �= φ be a universe of discourse and X
be a subset of U . An equivalence relation R classifies U into a set of subsets
U/R = {X1, X2, ...XN} that satisfies the following conditions: (1) Xi ⊆ U ,
Xi �= φ for any i, (2)Xi ∩Xj = φ for any i, j, i �= j, (3) ∪i=1,2,...N Xi = U . Any
subsetXi is called a category and represents an equivalence class ofR. A category
in R containing an object x ∈ U is denoted by [x]R. Objects xi and xj in U are
indiscernible on R if (xi, xj) ∈ P where P ∈ U/R. For a family of equivalence
relations P ⊆ R, an indiscernibility relation over P is defined as the intersection
of individual relations Q ∈ P.

The Jaccard coefficient J(A,B) between two sets A and B is defined by

J(A,B) =
|A ∩B|
|A ∪B| .
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For two objects xi and xj each of which has p binary attributes, the Jaccard
similarity coefficient J(xi, xj) is defined by

J(xi, xj) =
f11

f01 + f10 + f11

where f11 represents the number of attributes whose values are 1 for both of xi

and xj . Analogously, f01 and f10 are defined as the number of attributes whose
values are (0,1) and (1,0) for xi and xj respectively [3].

3 Method

The proposed method consists of three steps:

1. Assign a binary classification to each object.
2. Compute the Jaccard similarity coefficient for each pair of objects according

to the binary classifications.
3. Construct a dendrogram that represents hierarchy of granules by applying

hierarchical linkage algorithm based on the derived indiscernibility.

3.1 Binary Classifications

Let U = {x1, x2, . . . , xn} be a set of objects we are interested in, and

S =

⎛
⎜⎜⎜⎝

s11 s12 · · · s1n

s21 s22 · · · s2n

...
...

. . .
...

sn1 sn2 · · · snn

⎞
⎟⎟⎟⎠ (1)

be a similarity matrix for objects in U where sij denotes similarity between xi

and xj . Since we deal with non-Euclidean relational data, S can be asymmetric;
hence sij can be �= sji.

To begin with, for each object xi, we consider a binary classification of U based
on si. This binary classification is formalized using an equivalence relation Ri as
follows.

U/Ri = {Pi, U − Pi}, (2)

where
Pi = {xj | sij ≥ Thi}, ∀xj ∈ U. (3)

Thi denotes a threshold value of similarity for xi. Set Pi contains objects that are
indiscernible to xi, and U − Pi contains objects that are discernible to xi. Note
that Pi is determined with respect to the similarity observed from xi, hence,
xj ∈ Pi does not necessarily imply xi ∈ Pj when sij �= sji.
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[Example 1]: Binary Classification
Let us assume U = {x1, x2, x3, x4, x5} and consider an asymmetric, non-
Euclidean dissimilarity matrix shown in Table 1. Suppose we define binary clas-
sifications U/Ri as

U/Ri = {Pi, U − Pi},
Pi = {xj | sij ≥ 0.5}, ∀xj ∈ U. (4)

Then we obtain the following five binary classifications.

U/R1 = {{x1, x2, x3}, {x4, x5}},
U/R2 = {{x1, x2, x3}, {x4, x5}},
U/R3 = {{x2, x3, x4}, {x1, x5}},
U/R4 = {{x1, x2, x3, x4}, {x5}},
U/R5 = {{x4, x5}, {x1, x2, x3}}. (5)

Note that these five classifications are derived independently. Objects such as x1
and x3 are classified as indiscernible in U/R1 and U/R2, but classified as dis-
cernible in U/R3. This reflects asymmetric property of the similarity; since s13 =
0.9, x3 is included in P1, however, since s31 = 0.3, x1 is not include in P3. �

Table 1. An example of asymmetric, non-Euclidean dissimilarity matrix

x1 x2 x3 x4 x5

x1 1.0 0.9 0.9 0.3 0.1
x2 0.8 1.0 0.9 0.4 0.2
x3 0.3 0.9 1.0 0.8 0.2
x4 0.8 0.7 0.8 1.0 0.4
x5 0.3 0.4 0.1 0.9 1.0

3.2 Indiscernibility Based on Jaccard Similarity Coefficient

As described in the previous section, asymmetry of the similarity can cause the
difference of class belongingness of objects over all binary classifications. These
classifications also represent the global similarity between objects because similar
objects are likely to be classified into the same class in most of the classifications.
In other words, when a pair of objects is classified into the same class by most
of the equivalence relations, there are less argument for treating these objects as
indiscernible.

Based on these observations, we propose to quantify the indiscernibility of
objects according to the Jaccard similarity coefficient of the binary classifica-
tions obtained from asymmetric similarity matrix. The key point is that, we
assess the indiscernibility of objects according to the global similarity of local
classifications.
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We firstly introduce a binary classification matrix, C, defined as follows.

C =

⎛
⎜⎜⎜⎝

c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn

⎞
⎟⎟⎟⎠ (6)

where

cij =
{

1 if xi ∈ Pj

0 otherwise (7)

Matrix C can be translated from a binary classification table shown in Table 2.
Each column CRi in C corresponds to the transpose of binary classification U/Ri

such that objects in Pi is represented as value 1.

Table 2. Binary classification table

CR1 CR2 · · · CRn

x1 c11 c12 · · · c1n

x2 c21 c22 · · · c2n

...
...

...
. . .

...
xn cn1 cn2 · · · cnn

Let the i-th raw of C be Ci = {ci1, ci2, . . . , cin}. Then, we define the indis-
cernibility of objects xi and xj as follows.

indis(xi, xj) = J(Ci, Cj) (8)

where J(Ci, Cj) denotes the Jaccard similarity coefficient between two sets Ci

and Cj that contain binary values. According to the definition in Section 2,
the term f11 corresponds to the number of cases that satisfy cik = cjk = 1 for
1 ≤ k ≤ n. It means that f11 quantifies the number of binary classifications
in which xi and xj are positively classified as indiscernible with respect to the
similarity from xk.

[Example 2]: Indiscernibility based on Jaccard Similarity Coefficient
Let us consider the case in Example 1. According to U/R1 = {{x1, x2, x3},
{x4, x5}}, the first column of binary classification table can be written as

CT
R1

= {1 1 1 0 0}.

By applying this from U/R1 to U/R5, we obtain

C =
(
CT

R1
CT

R2
CT

R3
CT

R4
CT

R5

)
=

⎛
⎜⎜⎜⎜⎝

1 1 0 1 0
1 1 1 1 0
1 1 1 1 0
0 0 1 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ (9)
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Table 3. Indiscernibility of objects in Ex-
ample 1

x1 x2 x3 x4 x5

x1 3/3 3/4 3/4 1/5 0/4
x2 4/4 4/4 2/5 0/5
x3 4/4 2/5 0/5
x4 3/3 1/3
x5 1/1

Table 4. Indiscernibility of objects in Ex-
ample 1(recalculated)

x1 x2 x3 x4 x5

x1 1.0 0.75 0.75 0.2 0.0
x2 1.0 1.0 0.4 0.0
x3 1.0 0.4 0.0
x4 1.0 0.33
x5 1.0

The first and second raws of C are C1 = {1, 1, 0, 1, 0} and C2 = {1, 1, 1, 1, 0}
respectively. Therefore, we obtain the indiscernibility of objects x1 and x2 as

indis(x1, x2) = J(C1, C2)

=
3

1 + 0 + 3
=

3
4
. (10)

Similarly, we obtain the indiscernibility for all pairs as shown in Table 3. �

3.3 Hierarchical Representation of Data Granularity

The indiscernibility indis(xi, xj) can be associated with the strength of knowl-
edge for discriminating objects. The larger value of indis(xi, xj) implies that
there are less binary classifications that can discriminate these objects. In con-
trast, the smaller value of it implies that there are more binary classifications
that can discriminate them. If we merge objects with some indis(xi, xj) < 1 as
indiscernible, it means that we disable the ability of knowledge for discriminating
them; in other words, it corresponds to the coarsening of classification knowl-
edge. Knowledge that is supported by a small number of binary classifications
is fine but weak and more likely to be coarsened compared to that supported
by a large number of classifications. And it is a stepwise abstraction process
that goes hierarchically from bottom to top according to the indiscernibility.
Therefore, it is possible to construct a dendrogram that represents the hierar-
chy of indiscernibility by using conventional hierarchical grouping method. By
setting an appropriate threshold on the dendrogram, one can obtain abstracted
granules of objects that meet the given level of indiscernibility. Namely, one can
interactively change the granularity of data. The lowest threshold produces the
finest groups of objects (granules) and the highest threshold produces the coars-
est groups. In order to ensure that all pairs in the group are indiscernible with
respect to the given threshold value of indiscernibility, we use complete-linkage
criterion for hierarchical grouping.

[Example 3]: Hierarchical Representation of Data Granularity
Let us recall the case in Example 2. The matrix of indiscernibility is provided in
Table 3. For easy understandings, we provide in Table 4 recalculated values.

Table 5 and Figure 1 provide the detail of merging process and the dendro-
gram respectively. Since indis(x2, x3) = 1.0, these objects are indiscernible at the
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Table 5. Hierarchical merge process

Step pairs indis clusters
1 x2, x3 1.0 {x1}{x2, x3}{x4}{x5}
2 x1, x2 0.75 {x1, x2, x3}{x4}{x5}
3 x4, x5 0.33 {x1, x2, x3}{x4, x5}
4 x1, x5 0.0 {x1, x2, x3, x4, x5}

1
x

2
x 3x 4

x 5x
1.0

0.75

0.33

0.0

1
x

2
x 3x 4

x 5x
1.0

0.75

0.33

0.0

Fig. 1. Dendrogram for Example 3

lowest level; thus {x1}, {x2, x3}, {x4}, {x5} constitute the finest sets of objects
(granules) next to the independent objects. At indis = 0.75, x1 becomes indis-
cernible with x2. Since x2 and x3 are also indiscernible, {x1, x2, x3}, {x4}, {x5}
constitute an abstracted sets of objects. Similarly, at indis = 0.33, x4 becomes
indiscernible with x5 and {x1, x2, x3}, {x4, x5} constitute the more abstracted
sets of objects. Finally, at indis = 0.0, all objects are considered to be indis-
cernible and the most abstracted set is obtained. The level of abstraction can be
interactively set by changing the threshold value on the dendrogram.

The coarsening is performed based on the complete-linkage criterion. For ex-
ample, on indis = 0.3, all pairs in the groups {x1, x2, x3}, {x4, x5} surely satisfy
indis(xi, xj) > 0.3. �

4 Experimental Results

We applied our method to a synthetic dataset in order to test its basic function-
ality. The dataset contained 19 objects in two-dimensional space as shown in
Figure 2. The dataset was generated by Neyman-Scott method [6] with cluster
number = 3. The label ’cls 1’ to ’cls 3’ shows the original class that each object
belongs to.

The proposed method starts with determining a binary classification, U/Ri,
for each object xi, i = 1, 2, . . . , 19. In order to seclude the inference of meth-
ods/parameters for determining U/Ri, we used the following exact binary clas-
sifications, which were generated based on the class labels of data.

U/Ri = {Pi, U − Pi},
Pi = {xj | c[xi] = c[xj ]}, ∀xj ∈ U. (11)

Then, in order to simulate the non-Euclidean properties, we applied random
disturbance to the exact binary classifications. Taking the randomly disturbed
exact classifications as input, we calculated the indiscernibility and constructed
a dendrogram. Table 6 provides all the disturbed binary classifications (U − Pi

omitted for simplicity. x of xi also omitted in Pi for simplicity).
Using the binary classifications in Table 6, we calculated indiscernibility based

on Jaccard similarity coefficient for each pair of objects. Then we generated the
dendrogram using complete-linkage criterion as shown in Figure 3.
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Fig. 2. 2D plot of the test data
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Fig. 3. Dendrogram for the Test data

At the lowest level of indiscernibility, 13 sets of objects were generated as the
finest granules next to the independent objects because the randomly disturbed
binary classifications were slightly different each other and in ensemble they pro-
vide very fine classification knowledge. However, it meant that the ability for dis-
criminating objects was provided by a small number of binary classifications that
assigned different classes to the objects. In other words, the strength of knowledge
for discriminating objects was relatively weak. Therefore, in general they could be
easily coarsened at the early steps of merging objects with high indiscernibility. In
the dendrogram in Figure 3, we could observe this property around indis = 0.8.
Weak discrimination knowledge was disabled, and most of the objects that had
belonged to the same original class became indiscernible. Around indis = 0.5, ob-
jects were completely classified into the original three classes, based on the strong
classification knowledge inherited from the exact binary classifications.

The above results demonstrated that (1)the proposed method could visualize
the hierarchy of indiscernibility using dendrogram, (2) by changing the threshold

Table 6. Binary classifications for the test data

xi Pi of U/Ri xi Pi of U/Ri

x1 1 2 4 5 6 15 x11 7 8 9 10 11 12 13 14 15 12
x2 1 2 3 4 5 4 x12 7 8 9 10 11 13 14 15
x3 1 2 3 4 5 6 6 x13 7 8 9 10 11 12 13 14 15 6
x4 1 2 3 4 5 6 12 x14 7 8 9 10 12 13 14 15 15
x5 1 2 3 4 5 6 19 x15 7 8 9 10 11 12 13 14 15 6
x6 1 2 3 5 6 14 x16 16 17 18 19
x7 7 8 9 10 11 13 14 15 x17 16 17 18 19
x8 7 9 10 11 12 13 14 15 x18 16 17 18 19
x9 7 8 9 11 12 13 14 15 x19 16 17 18 19
x10 7 8 9 10 11 12 13 14
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level on the dendrogram, users could interactively change the granularity of
objects defined based on the indiscernibility level, and (3) the method could
handle non-Euclidean relational data in which asymmetry and local disturbance
of the triangular inequality could occur.

5 Conclusions

In this paper, we presented a method for representing the granularity of data
that have non-Euclidean relational properties. Asymmetric, relational similarity
is translated into a binary classification for each object, and then the strength of
the discrimination knowledge of binary classifications in ensemble is quantified by
the indiscernibility between objects. Complete-linkage grouping is then applied
based on the indiscernibility to build a dendrogram that represents hierarchy
of granules. Using a simple synthetic dataset, we have demonstrated that the
method could produce granules that meet the user-specified level of granularity,
and could handle asymmetric dissimilarities. It remains as a future work to apply
this method to other real-world data.
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Abstract. In this paper we discuss the importance of information sys-
tems in modeling interactive computations performed on (complex) gran-
ules and propose a formal approach to interactive computations based
on information systems. The basic concepts of information systems and
rough sets are interpreted in the framework of interactive computations.
We also show that information systems can be used for modeling more
advanced forms of interactions such as hierarchical ones. The role of
hierarchical interactions is emphasized in modeling interactive computa-
tions. Some illustrative examples of interactions used in the hierarchical
multimodal classification method as well as in the ACT-R 6.0 system are
reported.

Keywords: interactive computing, interactive systems, multi-agent sys-
tems, rough sets, granular computing, wisdom technology.

1 Introduction

The idea of interactive computing stems from many fields in computer science
such as concurrent processes, non-terminating reactive processes (e.g. operating
systems), distributed systems, distributed nets and objective programing (see
[23], [24], [7]). The interaction paradigm is based on the idea of objects, in Arti-
ficial Intelligence often referred to as agents. Interaction is a form of computing
which is performed by an agent interacting with the environment including possi-
bly other agents. Therefore interactive systems can be composed of many objects.
Every object takes inputs and produces outputs, in addition they can have inter-
nal states and also remember information about previous states. The crucial idea
here is that interactive systems consist of one or many objects interacting with an
environment that they cannot completely control. The main difference between
agents and algorithms is in agents’s flexibility [23,24] - through interaction with
its environment agent can change the algorithms and as a consequence the way

M. Szczuka et al. (Eds.): RSCTC 2010, LNAI 6086, pp. 730–739, 2010.
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that computation is performed by taking into account new inputs coming during
a computational process. Conversely, traditional algorithms are inflexible. Once
computation with a given algorithm begins, it must be completed according to
that algorithm regardless of new inputs that may arrive, possibly essential for
an expected output. The concept of interaction should be clearly distinguished
from those of parallelism (concurrency) and distribution [23]. The crucial point
here is interaction: all algorithmic components of interactive systems, via its
interface, interact with an unpredictive and uncontrolled external environment
making the whole system interactive.

The idea of interactive computing is still in a developing stage and its foun-
dations are not yet clarified. There are at least two main schools of thought, one
pioneered by Peter Wegner [23,24,5] and another by Yuri Gurevich [6,7]. There
is still no consensus between theoreticians on the statement that interactive
systems are more powerful than classical algorithms and cannot be simulated
by Turing machines. However, the idea of interactive computing still seems to
be appealing from a practical point of view: interaction with or harnessing the
external environment is inevitable to capture (and steer) behaviour of systems
acting in the real world [15]. For unpredictive and uncontrolled environments it
is impossible to specify the exact set of input states. In data mining or machine
learning the most common case is when we start searching for patterns or con-
structing concepts on the basis of sample of objects since the whole universe of
objects (data) is not known or it would be impractical to begin with the basis
of a whole object universe.

Interactive systems have huge learning potential and are highly adaptive.
Interacting algorithms can not only learn knowledge from experience (which
is also done by classical non-interacting learning algorithms), they can change
themselves during the learning process in response to experience. This property
creates an open space for a new technology called Wisdom technology (Wis-
tech) [8] and moreover for the case of intelligent agents this technology becomes
inevitable. Intelligent agents make decisions during dynamic interactions within
their environment. To meet this challenge they need to use complex vague con-
cepts. In Wistech, wisdom is a property of algorithms, it is an adaptive abil-
ity of making correct judgments to a satisfactory degree in the face of real-life
constraints (e.g., time constraints) [8]. These decisions are made on the ba-
sis of knowledge possessed by an agent. Thus in Wistech, wisdom is expressed
metaphorically by the so called wisdom equation:

wisdom = knowledge + adaptive judgment + interactions.

Adaptive ability means the ability to improve the judgment process quality tak-
ing into account agent experience. Adaptation to the environment on the basis of
perceived results of interactions and agent knowledge is needed since e.g., agents
make decisions using concepts which are approximated by classification algo-
rithms (classifiers) and these approximation are changed over time as a result of
acting classifiers on variable data or represented knowledge. The wisdom equa-
tion suggests also another interaction of higher order: agents making decisions
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based from ongoing experience, which is particular, apply possessed knowledge,
which is general. Therefore making decisions in itself is a kind of logical inter-
action between general knowledge and particular experience. Vague concepts in
this case help cover the gap between generality and particularity while Wis-
dom technology is required to improve decision making. In the last section we
present ACT-R system taken from artificial intelligence and cognitive science as
an example of a highly interactive complex granule.

2 Elements of Rough Set Analysis of Interactions

In this section we discuss interaction of granules relative to information systems.
Rough sets, introduced by Zdzis�law Pawlak [10,11,12], were intended to analyze
information systems also called information tables. An information system is
a triple A = 〈U,At, {V ala}a∈At〉 where U is a set of objects, At is a set of
attributes, and each V ala is a value domain of an attribute a ∈ At, where
a : U −→ P(V ala) (P(V ala) is a power set of V ala). If a(x) �= ∅ for all x ∈ U
and a ∈ At, then A is total. If card(a(x)) = 1 for every x ∈ U and a ∈ At, then
A is deterministic, otherwise A is indeterministic. It is worthwhile mentioning
that information systems can be treated as a representation of result for agent
interaction with the environment using condition attributes as part of the process
of perception of an object’s environment.

One of the key ideas in rough set theory is that knowledge is based on
the ability to discern objects [11,12,14]. In a given information system A =
〈U,At, {V ala}a∈At〉 this ability is presented by the indiscernibility relation
ind(B), where B ⊆ At [11,14]. In particular, the indiscernibility relation ind(B)
can be interpreted as restricted to B perception history of an agent possessing
a given set of attributes B ⊆ At. Indiscernibility relations play a crucial role in
rough set theory providing a basis for reduction of information (elimination of
attributes) and an approximation of concepts (subsets of the universe of objects).

For dealing with classification problems, decision information systems were
distinguished [11,14]. Decision tables represent the result of agent interaction
from perception using information systems with the human expert defined the
decision attributes. Information systems were also used for representation of con-
current systems [13,17]. In this approach, attributes (columns) represent local
concurrent processes, while objects (rows) represent global states of the system.
A value of an attribute for a given object represents the state of a local pro-
cess. Such representation makes analysis of whole concurrent systems possible.
Interactions in this case are represented by rules over descriptors of information
systems describing conditions of coexistence of local states within global states.
Here decision attributes represent outputs of whole system, in particular, for
actions taken by a system in its environment.

Theoretical implications of cognitive architectures [9,1] coming from cognitive
science (see e.g. [22,20]) for the case of interactive computation, lead us to con-
clude that a given agent (represented by an object in an information system) can
be also a coalition (collection) of interacting agents (granules). An illustrative
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example is presented in Section 4. For this case, components of a granule as sen-
sors or effectors can be viewed as processes interacting within an environment.
A granule can also contain coordinating or controlling components which gov-
ern interactions between other its components or make decisions about actions
in the environment based on these interactions, respectively. These components
can be treated as coordinating or controlling processes respectively and have
to be differentiated from processes responsible for storage of knowledge or in-
formation (memory processes). Therefore, complex granules can also represent
concurrent/parallel systems. In this case, attributes represent also physical as
well as logical sensors and effectors of the granule, i.e., values of attributes rep-
resent the results of interaction between sensors and the physical environment.

The discussion above leads us to conclude that also behaviors of complex
granules can be represented by means of decision information systems since
they can be treated as (incomplete) specifications of concurrent/parallel sys-
tems. Since granule’s effectors likely depend on its sensors as well as on the
internal states, processes responsible for action steering or for sending messages
should be represented by decision attributes divided into two disjoint sets of ac-
tion steering or messages sending attributes respectively. Additionally, sensory
processes (responsible for receiving messages and for perception of other stim-
uli) can be represented by condition attributes divided also into two respective
sets. It should be noted that one can add new attributes created on the basis
of existing ones. Also attribute value domains can include mathematical struc-
tures representing structures of objects (e.g. relational or algebraic structures
see [18,8]). As a result, one can expand the set of attributes within an informa-
tion system representing a complex granule. The new information system (with
new attributes) is the result from interaction of a given information system with
a granule representing a searching strategy for new attributes.

3 Hierarchical Granule Interactions

Granules can be interpreted logically [23,24], when their inputs and outputs are
not physical sensors and effectors. An example of logical granules (objects) can
be taken from a hierarchical approach to multimodal classification [19]. In this
approach data models induced within classifier construction are often collec-
tions of multiple parts such that each piece explains only part of the data [19].
These parts can overlap or may not cover all of the data. To deal with the
problems of overlapping and insufficient coverage, hierarchical or layered con-
struction of a classifier is applied [19]. Instead of searching for a single, optimal
model, a hierarchy of models is constructed under gradually relaxing condi-
tions [19]. Overlapping granules can be understood as a kind of interaction be-
tween granules. Insufficient coverage can be seen as a result of interaction of a
coalition of granules from a given level with its environment. In this approach
a model from a higher level of hierarchy is constructed on the basis of models
from the lower levels. This can be understood as hierarchical interaction between
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granules or coalitions of granules from different levels. With this perspective,
also coalitions consisting of granules from different levels are possible.

A hierarchical modeling of complex patterns (granules) in hierarchical learn-
ing (see e.g., [3,19] can be described using the rough set approach based on
information systems. In such description a construction of every model is de-
scribed/made on the basis of a particular information system; with the result
of construction of an information system from a given level of hierarchical mod-
eling built from information systems from lower levels of its hierarchy. Let us
consider two illustrative examples [18]. For any attribute we consider a rela-
tional structure Ra = (Va, {ri}i∈I). As examples of such structures one can
consider (Va,=), (Va,≤) and (Va,≤,+, ·, 0, 1) taking Va = R, where R is a set
of reals, or (Va, τ), τ is a tolerance relation on Va (i.e. τ is reflexive and sym-
metric). By La we denote a set of formulae interpreted over Ra as subsets of
Va while by ||α||Ra a meaning (interpretation) of a formula α ∈ La. So for
every α ∈ La, ||α||Ra ⊆ Va. In the case of a particular information system
A = 〈U,At, {V ala}a∈At〉, ||α||Ra for a ∈ At, can be used to define semantics of
α over A by taking ||α||A = {x ∈ U : a(x) ∈ ||α||Ra}, where ||α||Ra ⊆ Va.

Relational structures corresponding to attributes can be fused. We present
here an illustrative example from [18]. We assume that Rai = (Vai , rRai

) are
relational structures with the binary relation rRai

for i = 1, · · · , k. Their fusion
is a relational structure over Va1 × · · · × Vak consisting of a relation r ⊆ (Va1 ×
· · · × Vak)

2 such that for any (v1, · · · , vk), (v′1, · · · , v′k) ∈ Va1 × · · · ×Vak we have
(v1, · · · , vk)r(v′1, · · · , v′k) if and only if virRai

v′i for i = 1, · · · , k. Intuitively, a
vector (v1, · · · , vk) represents a set of objects possessing values v1, · · · , vk for
attributes a1, · · · , ak, respectively. Thus some vectors from Va1 × · · · × Vak (not
necessarily all) represent granules consisting of objects (some vectors from Va1 ×
· · · × Vak correspond to the empty set). Therefore a relation r corresponds to a
relation between granules. If rRai

is a tolerance for i = 1, · · · , k, then r is also
tolerance relation.

In hierarchical modeling, object signatures at a given level of hierarchy can
be used for constructing structural objects on the next level of hierarchy. (for
an object object x ∈ U the A-signature of x has the following form InfA(x) =
{(a, a(x)) : a ∈ A} where A ⊆ At). These structural objects are relational
structures in which signatures are linked by relations expressing constraints for
coexistence of signatures in relational structures.

Discovery of relevant attributes on each level of the hierarchy is supported by
domain knowledge provided e.g. by concept ontology together with illustration
of concepts by means of samples of objects taken from this concepts and their
complements [3]. Such application of domain knowledge often taken from human
experts serves as another example of interaction of a system (classifier) with its
environment. Additionally, for the support of relevant attributes, discovery on a
given level as well as on other levels of the hierarchy can be found using different
ontologies. These ontologies can be described by different sets of formulas and
possibly by different logics. Note that in a hierarchical modeling of relevant
complex patterns also top-down interactions of higher levels of hierarchy with
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lower levels should be considered, e.g., if the patterns constructed on higher
levels are not relevant for the target task the top-down interaction should inform
lower levels about necessity of searching for new patterns.

4 Cognitive Architectures

The notion of cognitive architectures was proposed by Allen Newell [9]. Cog-
nitive architecture (CA) is a computational form of unified theory of cognition
(unified in the sense that it should unify psychological, neurobiological as well
as computational aspects of various human cognitive performance and learning).
Newell treats the mind as being the control system that guides the behaving or-
ganism in its complex interactions with the dynamic real world (see [9] p.43).
He postulates that the central assumption of CAs should be that a human is a
symbol/information processing system. Therefore the basic concepts and prin-
ciples of intelligent systems as representation, knowledge, symbols and search
apply to both humans and machines and they are central for CAs [9]. Since
CA is about human cognition, it describes human behaviours, explains them
in information processing terms, predicts and gives prescriptions for control of
human behaviour. Cognitive architecture has three main constraints: it must
be neurogically plausible, has to be a structure supporting mind-like behaviour
(psychological experiments as well as computer simulations), and also take into
account real-time constraint on human cognition [9]. Thus one can note that im-
plemented CAs are real interactive systems. As the first example of CA, Newell
points out the system ACT* proposed by John Anderson [1], and also presents
his own system SOAR [9]. Here, as an example of CA, we present the system
ACT-R (current version ACT-R 6.0), the successor of ACT*, introduced in [2]
and discussed for example in [21].

The central idea of ACT-R (as well as ACT*) is a distinction between declar-
ative and procedural memory. Thus ACT-R has two separate memory struc-
tures, a declarative one processing facts and a procedural one processing rules
(IF-THEN structures also called productions). Memory in ACT*, ACT-R is
goal directed, and as a result ACT-R 6.0 contains intentional module retrieving
goals. ACT-R 6.0 adds two modules responsible for interaction with the external
world; a visual and a manual module. As a consequence, the declarative memory
structure (a production system implementing procedural memory) became one
of the modules while the procedural memory structure became the central unit
within the system. The ACT-R 6.0 system contains one central and four pe-
ripheral components (connected only to the central unit), two internal i.e. that
are not connected directly to, or do not interact with the external environment
(intentional module and declarative memory module) and two external modules,
connected to and interacting with the external world (a visual module for percep-
tion and a manual module for acting in the environment). Procedural memory
is connected to every peripheral module (and joining them together) but it com-
municates with modules through separate buffers. The presence of buffers makes
communication of procedural memory with peripheral modules a more compli-
cated interaction. Each buffer can contain only a piece of information at a given
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moment. This is a constraint on information processing within ACT-R 6.0 and
it represents some human information processing constraint (e.g. visual buffer
represents selectiveness of human visual attention). Every module operates in
a serial manner (e.g. a declarative memory module can retrieve only one item
at a given moment) however modules within the system operate asynchronously
and in parallel. Items retrieved in declarative memory, called chunks, represent
declarative knowledge (propositions about facts). Items retrieved in procedural
memory (productions) represent procedural knowledge (skills). ACT-R 6.0 ar-
chitecture is activation based. Declarative memory has the form of a semantic
web where chunks have different levels of activation which reflect their usage
(chunks frequently used or chunks used recently have greater activation).

For every production rule there is an attached a real value provided by a util-
ity function. Utility is calculated by the system on the basis of cost estimation
(time needed for achieving the goal) and the estimate of achieving that goal
if the production is chosen. ACT-R 6.0 (as its predecessors) is equipped with
learning mechanisms. It has direct declarative learning where new chunks or as-
sociations created by productions have high activation to start with and if they
are chosen frequently they maintain that high activation. New productions can
be created. ACT-R 6.0 employs also learning mechanisms which update activa-
tions of chunks and utilities of productions. The parameters used to calculate
utility based on experience are also constantly updated providing a continuous
tuning effect (values of utilities are greater with use of their productions and
smaller with disuse). Chunks and productions can be selected with some noise,
but an item with the highest activation or utility has the greater probability
of being selected even though other items can be chosen. This may produce
errors but also enables ACT-R to explore evolving knowledge and strategies.
Thus the learning mechanisms and noisy selections allow ACT-R 6.0 to interact
dynamically with an environment, learn from experience and especially to har-
ness the environment in achieving its goals. The ACT-R system can be used in
multiagent simulations for steering the behaviour of a particular agent within
a coalition working together where an ACT-R based agent interacts with other
ACT-R based agents [20,21]. In addition, the ACT-R system is composed from
mutually interacting components. These two things make hierarchical interac-
tions within the ACT-R system possible. Therefore ACT-R can be treated as
an example of a highly interactive complex granule which can be involved in
hierarchical interactions.

5 Interactive Computations

In this section, the global states are defined as pairs (sa(t), se(t)), where sa(t) and
se(t) are states of a given agent a and the environment e at time t, respectively.
We now explain how the transition relation −→ between global states are defined
in the case of interactive computations. In Figure 1, the idea of transition from
the global state (sa(t), se(t)) to the global state (sa(t+Δ), se(t+Δ)) is illustrated,
where Δ is a time necessary for performing the transition, i.e., when (sa(t), se(t))
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−→ (sa(t+Δ), se(t+Δ)) holds. A(t), E(t) denote the set of attributes available
by agent a at the moment of time t and the set of attributes (sensors) used by
environment e at time t, respectively. InfA(t)(sa(t), se(t)) is the signature [14] of
(sa(t), se(t)) relative to the set of attributes A(t) and InfE(t)(sa(t), se(t)) is the
signature of (sa(t), se(t)) relative to the set of attributes E(t). These signatures
are used as arguments of strategies Sel Inta, Sel Inte selecting interactions Ia
and Ie of agent a with the environment and the environment e with the agent a,
respectively. Ia

⊗
Ie denotes the result of the interaction product

⊗
on Ia and

Ie. Note that the agent a can have very incomplete information about Ie as well as
the result Ia

⊗
Ie(sa(t+δ), se(t+δ)) only, where δ denotes the delay necessary for

computing the signatures and selection of interactions (for simplicity of reasoning
we assume that these delays for a and e are the same). Hence, information
perceived by a about sa(t+Δ) and se(t+Δ) can be very incomplete too. Usually,
the agent a can predict only estimations of sa(t+Δ) and se(t+Δ) during planning
selection of the interaction Ia. These predictions can next be compared with the
perception of the global state (sa(t + Δ), se(t + Δ)) by means of attributes
A(t + Δ). Note that Ia

⊗
Ie can change the content of the agent state as well

as the environment state. Assuming that the current set of attributes A(t) is a
part of the agent state sa(t) this set can be changed, for example by adding new
attributes discovered using Ia, for example with the help of hierarchical modeling
discussed previously. Analogously, assuming that the description of the strategy
Sel Inta is stored in the current state of the agent sa(t) this strategy can be
modified as the result of interaction. In this way, sets of attributes as well as
strategies for selecting interactions can be adopted in time.

)( δ+tsa

)(tsa )(tse

)(tAInf )(tEInf

aIntSel _ eIntSel_

)( Δ+tse)( Δ+tsa

ea II ⊗

δdelay δdelay

)( δ+tse)( δ+tsa

)(tsa )(tse

)(tAInf )(tEInf

aIntSel _ eIntSel_

)( Δ+tse)( Δ+tsa

ea II ⊗

δdelay δdelay

)( δ+tse

Fig. 1. Transition from global state (sa(t), se(t)) to global state (sa(t + Δ), se(t + Δ))
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Computations observed by the agent a using the strategy Sel Inta in inter-
action with the environment e can now be defined with a help of the transition
relation −→ defined on global states and signatures of global states relative to
the set of attributes of agent a. More formally, any sequence

sig1, . . . , sign, ... (1)

is a computation observed by a in interaction with e if and only if for some t,Δ
and for any i, sigi is the signature of a global state (sa(t+iΔ), se(t+iΔ)) relative
to the attribute set A(t + iΔ)) available by a at a moment of time t + iΔ and
(sa(t+ iΔ), se(t+ iΔ)) −→ (sa(t+ (i+ 1)Δ), se(t+ (i+ 1)Δ))1.

Let us assume that there is given a quality criterion over a quality measure
defined on computations observed by the agent a and let sig1 be a given signature
(relative to the agent attributes). One of the basic problems for the agent a is
to discover a strategy for selecting interactions (i.e., selection strategy) in such
a way that any computation (e.g., with a given length l) observed by a and
starting from any global state with the signature sig1 and realized using the
discovered selection strategy will satisfy the quality criterion to a satisfactory
degree (e.g., the target goal of computation has been reached or that the quality
of performance of the agent a in computation is satisfactory with respect to the
quality criterion). The hardness of the selection strategy discovery problem by
the agent a is due to the uncertainty about the finally realized interaction, i.e.,
the interaction being the result of the interaction product on interactions selected
by agent a and the environment e. In planning the strategy, the agent a can use
(a partial) information on history of computation stored in the state. One may
treat the problem as searching for the winning strategy in a game between the
agent a and the environment e with a highly unpredictable behavior.

6 Conclusions

This paper presents examples of interactions between different types of granules
derived from information systems together with a proposal of a formal approach
to interactive computations. A new reach class of interactions appears when
we analyze interactions within time (e.g., we take as values of attributes time
series or their parts). This research is aimed in construction of a granule in-
teraction based language for modeling of computations on information granules
of different types. Such computations can result from e.g., searching strategies
for new properties or searching strategies for structures of interactions between
processes discovered in data. This paper presents an introductory step towards
this objective.
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Abstract. Case Based Reasoning(CBR), an artificial intelligence technique,
solves new problem by reusing solutions of previously solved similar cases. In
conventional CBR, cases are represented in terms of structured attribute-value
pairs. Acquisition of cases, either from domain experts or through manually
crafting attribute-value pairs from incident reports, constitutes the main reason
why CBR systems have not been more common in industries. Manual case
generation is a laborious, costlier and time consuming task. Textual CBR (TCBR)
is an emerging line that aims to apply CBR techniques on cases represented
as textual descriptions. Similarity of cases is based on the similarity between
their constituting features. Conventional CBR benefits from employing domain
specific knowledge for similarity assessment. Correspondingly, TCBR needs
to involve higher-order relationships between features, hence domain specific
knowledge. In addition, the term order has also been contended to influence the
similarity assessment. This paper presents an account where features and cases
are represented using a distributed representation paradigm that captures higher-
order relations among features as well as term order information.

1 Introduction

Case-based reasoning (CBR) aims to store experiences, then to remember and reuse
them when solving a similar new problem. A CBR system embeds a case base and a
reasoning engine. Cases are knowledge units comprising at least two parts: a problem
description and a corresponding solution. The reasoning engine conducts a search in
the problem space that, in turn, provides links to the relevant solutions in the problem
solving space. In conventional CBR, typically a frame-based representation language
is used to represent cases making the ontological commitment that the world can be
represented in terms of objects and attributes-value pairs. Acquisition of cases through
manually crafting and structuring the attribute-value pairs constitutes the main reason
why CBR systems have not been more common in industries. Manual case generation
is a daunting and costlier task.
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This paper addresses CBR when both the new problem and past experiences are
in textual format, meaning that the reasoning engine should assess the similarity of
two problem descriptions represented in a natural language, hence textual CBR. Textual
CBR (TCBR) investigates the representation and reasoning methods that will extend the
applicability of CBR to situations where cases are inherently stored in free text format.
More specifically, we investigate how to automatically derive the meaning of features
and cases from an unannotated collection of case reports in free text format, without
resorting to any other ‘structured’ knowledge source such as dictionaries or ontologies.
TCBR is the subfield of CBR that employs CBR on textual cases.

Assessment of similarity between two cases is based on the similarity between the
features that constitute the cases. It is, therefore, of vital importance to identify which
features and what kind of information about them are necessary for a proper similarity
judgment. Presence of lexically identical features in the two cases under scrutiny would
obviously increase similarity of the cases. However, a term may have more then one
sense (i.e., polysemous, e.g., one as a verb an another as noun) and similarity between
two lexically identical features is conditioned on their property of having the same sense
in both cases. On contrary, two lexically different features (i.e., synonymous) may have
the same sense. Yet another situation is that two lexically different features may be
related and their relationship can be explained by a chain of concepts. That is, they may
have a higher-order relation. An effective similarity assessment mechanism is required
to discover such relations. In conventional CBR these relations are captured in form
of a domain specific knowledge base which is typically hand-crafted. CBR approaches
that employ domain knowledge are called ‘knowledge-intensive’ [1] and are reported
to increase the quality of similarity assessment [1,5].

Taken into consideration the complexity of natural languages, TCBR is faced with
the puzzle of making an efficient search in a huge search space and ensuring at the same
time a similarity assessment at a fair depth of the meaning of cases. The TCBR retrieval
mechanism presented in this paper employs a special representation paradigm that is
capable of capturing both feature co-occurence information, latent semantic relations
between features and structural information such as term order. This is managed by
employing random indexing [10,15] which is a distributed representation that reduces
dimensionality implicitly and independently from the case collection/base, and allows
evolution of the meaning of features incrementally.

Next section describes the importance of domain specific knowledge for case
retrieval. Then in section 3, we illustrates random indexing that captures higher
order feature relations. Section 4 describes the holographic reduced representations to
capture feature order relations. Experimental results are discussed in section 5. Finally
conclusion completes the paper.

2 Domain Specific Knowledge

Similarity between two cases is judged on the basis of similarity between the features
that occur in these cases. Similarity between two features, in turn, is measured on the
basis of the frequency of their co-occurrence in same cases. Features co-occurring in
same cases are said to have first-order relations between them. However, first-order
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relationships may not be sufficient for a thorough similarity assessment. A reason is
that natural language is highly redundant and gives room for individual preferences
with respect to word choices; two words may have the same meaning (i.e., synonymous)
which may not be discovered merely by direct co-occurrence information because they
hardly occur in the same incident report.

Similarity assessment is conjectured to involve higher-order relationships, particularly
in models of analogical reasoning [7] and in problem solving in general. Motivated by
these, knowledge-intensive CBR methods highly rely on domain specific knowledge. The
example in Figure 1 illustrates how cases and general domain knowledge are connected.
Note that the example is from conventional CBR where cases are structured as a set of
attribute-value pairs, and the content of cases as well as the domain knowledge (shown
in the upper half of the figure) are constructed by the knowledge engineer. Each type
of link in the domain knowledge also has a weight, again ad hod defined. Similarity was
calculated on the basis of presence or absence of features in a case as well as higher-order
relations among features.

We investigate how higher-order relations can be discovered from textual data and
used in the retrieval stage of TCBR. Features in the new case and a past case may look
dissimilar in the first sight but render to be closely related, upon a deeper look into the
related domain knowledge. For example, in Figure 1, drug abuse and dental surgey do
not occur in the same patient case but both patients had fever which is the source of an
indirect connection between these features. This is a higher-order relation determined
by the path [drug abuse, fever, dental surgey] connecting the two features. The whole

Fig. 1. Knowledge-intensive CBR (from [11])
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story may be that situations of two patients in two cases may be similar in the context
of, for example, endocarditis (an infectious heart disease) because both abuse of drug
(where several addicts may use the same needle) and dental therapy may be sources of
infection. Putting these correlations together, even when they cannot be explained from
a true causal perspective, provide fortunate clues for perception of latent similarities.
The cornerstone of the method lies in its representation model which is described in the
next section.

3 Discovering Higher Order Relations

3.1 Distributed Representation of Meaning: Random Indexing

The vector space model of IR uses a local representation of features where each element
of the vector alone represents the number of occurrences of the feature in a particular
document. Random Indexing(RI), on the contrary, encodes a feature as a ternary vector
with a predetermined length. Hence, each feature is initially encoded as a fixed length
vector consisting of zeros and a small number of randomly distributed 1 and -1s, i.e.,
feature’s index vector. RI is motivated by Johnson-Lindenstrauss Lemma [8] which
asserts that a set of points in a high dimensional vector space can be mapped down into
a reduced dimensional space such that the distance between any two points changes
only insignificantly. Some examples of collections of high dimensional data that require
compression can be found in the fields of audio, video, textual content and genome
sequences. For more details on RI, the reader is referred to [15].

RI is an alternative to latent semantic indexing (LSI) that reduces dimensionality
[4]. TCBR research has appreciated LSI’s ability to discover higher-order distributional
relations [3]. Despite both LSI and RI are capable of reducing dimensions and
discovering higher-order relations, there are important differences between them. The
most fundamental difference is that RI introduces a new representation paradigm for
text representation. This characteristic, in turn, enables an implicit dimensionality
reduction. LSI is known to be computationally expensive because it generates a huge
feature-document matrix first and subsequently reduces the dimension applying single
value decomposition (SVD) on this matrix. In LSI, latent dimensions are computed
whereas in RI they are randomly selected in advance and are nearly orthogonal.
Moreover, LSI is not incremental; it requires the availability of entire case collection
when the process starts. In RI, reduction in dimensionality is done implicitly, by
deciding the length of the representation vector. In addition, RI is incremental in the
sense that meaning of a feature evolves simply by updating the feature’s context vector
when a case comprising that feature arrives at the case base.

3.2 Training of Feature Context Vectors in RI

The features are represented as vectors that accumulate information by training
throughout the case corpus. The amount of information that a feature context vector
represents is proportional to its interactions with other features in the domain/corpus.
At time t = 0 the context vector is equal to the index vector of the feature. When the
whole corpus is scanned, the context vector of the feature will represent what is learned
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about the behavior of the feature. Superposition, i.e., vector addition, is used when
updating the context vector. Adding two vectors x and y, the superposition of these is
vector z where z = x+ y. The cosine similarities between x and z, and between y and
z will be high.

For each occurrence of a given feature in all cases, we focus on a fixed window of
size (2 ∗ k) + 1 centered at the given feature (e.g., [14] suggests 5 as the window size).
Then feature context vector for feature i is computed using the following equation:

Cfeaturei = Cfeaturei +
+k∑

j=−k;j �=0

Ifeature(i+j)× 1
d|j|

(1)

where 1
d|j| is the weight proportion with respect to the size j of the window (d = 2 in

this work).
Let us assume that we have the new case: “The fisherman caught a big salmon today”,

window size k is equal to two, and we are training the feature big. Our windowed
sentence for the feature big looks like this:

The, [fisherman, caught, big, salmon, today].

The feature-context-vectorCbig for big becomes now:

Cbig=Cbig+(0.25 × Ifisherman)+(0.5 × Icaught)+(0.5 × Isalmon)+(0.25 × Itoday)
Meaning of a case is captured in the collective representation of the constituent features.
A case is also represented as a vector of the same length as the feature index and feature
context have, and the case vector is computed as a weighted superposition of context
vectors of features that occur in the case. The case-context-vector, representing the
meaning of case is computed based on the feature-context-vectors of the features that
constitute it. It is simply:

Ccase =
∑
i=1

fi × Cfeaturei (2)

where fi is the number of occurrences of featurei in case.

4 Learning Term Order Information - Holographic Reduced
Representations

It has been contended that merely co-occurence information is not enough to unreveal
similarities. Quoting Firth [6], ”you shall know a word by both the company it
keeps and how it keeps it”. In LSI, structural information (e.g., term order) is not
is captured. The same applies to RI. Similar to learning of semantic behavior, word
order information also can be learned in an unsupervised way, using Holographic
Reduced Representations(HRR) which have been extensively used in image and signal
processing [12]. It was also used in cognitive psychology to model mental lexicon [9]
and analogy-based reasoning.

The representation of features in HRR is the same as in RI while the updating
of feature vectors is different. In addition to superposition, HRR employs another
vector operation, called circular convolution (depicted by �) which is a multiplicative
operation that enables the association (i.e., ‘binding’) of two or more different types
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of information about a feature. In circular convolution the length of the vector after
circular convolution does not change. Circular convolution z = x � y of two vectors x
and y are computed according to the following equation [12]:

zj =
n−1∑
k=0;

xk × yj−k for j = 0 to n− 1 (3)

In this way, the convoluted vector will never increase in size over time, making it ideal
to use in a vector model representation. Circular convolution has two special properties
that are important for the work presented in this paper. First, the convolved vector is
near orthogonal to its component vectors meaning that it is a new vector not similar
to its component vectors. Adding and multiplying vectors capture two different types
of information. When two vectors are convolved, the result is a vector containing a
compressed version of both parent vectors. It is important to note that the product vector
from circular convolution has no similarities to its parent vectors when it comes to
cosine similarity. For example, if we convolve the index vectors of big, Ibig , and of
salmon, Isalmon , we obtain

Vbig,salmon = Ibig � Isalmon and
sim(Vbig,salmon, Ibig) � 0, and sim(Vbig,salmon, Isalmon ) � 0

While superposition of index vectors of these ‘big’ and ‘salmon’ encodes the
information, these two words co-occur in the same context, convolution encodes
that features ‘big’ and ‘salmon’ occur consecutively. The second property of circular
convolution relates to its multiplicative character; it is commutative, which means:

Ibig � Isalmon = Isalmon � Ibig

In other words, we are not capturing the correct order information, only that these
two features are located next to each other. That is, ‘blind venusian’ and ‘venusian
blind’ would be encoded by the same convolved vector. Plate [12] suggests a method to
solve this problem, which Jones and Mewhort [9] applied: It is possible to acquire both
non-commutative and non-associative vectors by using different index vectors when a
feature is located to the left or right of the targeted feature in the sentence. We adopt the
same approach where, in the first place, each feature has two index vectors, one is used
when a feature is located on the left side of the feature that is being trained (ILfeature),
and one for the right side (IRfeature). A placeholder vector Φ is used to represent the
trained feature. Assume that we have the following two sentences: “blind venusian” and
“venusian blind”. and we are training blind in each. Our convolutions will look like this:

“blind venusian” → Φ � IRvenusian , and “venusian blind” → ILvenusian � Φ
The resulting product vectors will have zero similarity (cosine similarity) to each other.

Window of a certain size was used during the training of feature context vectors.
The same window is used for convolution (except we are not weighting the neighboring
features). In order to capture all term order information located in a window, multiple
convolutions are performed, and then the product vectors are added into the feature’s
order vector using superposition. When window size (and sentence) is larger than two
in length, convolution is done in an n−gram fashion. The following example (using
‘fisherman sentence’) demonstrates how n−gram works for training feature ”big”:

[caught, a, big, salmon, today]
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In order to encode all term order information located in this window into big’s order
vector, we have to find all combinations in the sentence that includes the feature big:

[a, big], [ big, salmon] , [caught, a, big] , [a, big, salmon] , [ big, salmon, today] ,
[caught, a, big, salmon] , [a, big, salmon, today] , [caught, a, big, salmon, today]

All together 8 different n-gram vectors are created from the windowed sentence, and all
these vectors are added to big’s order vector:

(ILa � Φ) , (Φ � IRsalmon) , (ILcaught � ILa � Φ) , (ILa Φ � IRsalmon) , (Φ �
IRsalmon � IRtoday) , (ILcaught � ILa � Φ � IRsalmon) , (ILa � Φ IRsalmon �
IRtoday) ) , (ILcaught � ILa � Φ � IRsalmon � IRtoday) )

This is done for all occurrences of big in the entire corpus, and everything is then added
to big’s order vector (i.e., Obig) using superposition. This process is repeated through
the entire case collection.

The case vector is computed according to the following equation:

Ocasej =
∑

i

fi ×Ofeaturei (4)

where Ofeaturei depicts order vector of feature i that occur in the case j.
Similarity between two cases are then found by computing cosine between them.

5 Results and Discussion

In this section, we will compare the results of conventional bag of words with the results
of random indexing and HRR methods. Our evaluation method is similar to the one
given in [13]. To show the effectiveness of retrieved textual cases for the given problem
description, we correlate the retrieved cases with rank aggregated score over two data
sets. We use cosine similarity to measure pairwise similarity between the given new
case and cases in the case base.

5.1 Dataset

In these experiments, we considered two different data sets: Reuters 21578: top
10 classes of Reuters 21578; and TASA: all 9 classes each with 100 documents.
Reuters 21578 newswire data1 is often used in the evaluation of text categorization.
This collection contains 21,578 newswire articles (hence the name) in English. Each
document, in this collection, was tagged by a human indexer with class label(s) that
fell into five categories: TOPICS (119), PLACES (147), PEOPLE (114), ORGS (32),
EXCHANGES (32)[the value inside brackets shows the number of subclasses]. We
have omitted documents that contain empty body text. From this collection, we have
taken top 10 categories, namely acq, uk, japan, canada, west-germany, grain, crude,
earn, usa and money-fx, of Reuters 21578 dataset, each having randomly chosen 100
cases and formed Reuters1000 dataset for our experiments.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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TASA dataset2 consists of unmarked high school level English text. There are
37, 600 text documents arranged in 9 categories: Business, Health, HomeEconomics,
IndustrialArts, LanguageArts, Science, SocialStudies, Miscellaneous and Unspecified.
Due to memory limitations during the training phase of feature context vectors, we
have considered 100 documents from each category and formed TASA900 dataset
for our experiments. During preprocessing, we considered only the text portion of
a document by ignoring all markups, tags and special symbols. Stop words are
removed using the SMART stop words list3. The features are not stemmed in our
experiments.

5.2 Evaluation Methodology

In our experiments, we randomly split the Reuters-21578 dataset into two parts, one
split with 60% for training and another with 40% for testing. Each document is
considered as a case. For each feature, we obtained a feature context vector as described
in section 3.2. We use the following feature vector weighting schemes similar to [2,16]:

Case feature weights(Wci):
wci√∑m
i=1 w

2
ci

(5)

where wci is superposition of feature context vectors, each multiplied with its
frequency, in the case ci. Query(new case) feature weights(Wqi):

wqi√∑m
i=1 w

2
qi

(6)

where wqi is the superposition of feature context vectors, each multiplied with its
frequency, in the query case qi. Similarity between the query (new case) and the case in
the case base is computed by :

sim(qi, ci) =
∑

matching features

Wqi ×Wci (7)

During the training of feature context vectors, the values of the vector increases with
the number of occurrences in the case collection. In such situations, we could apply
vector length normalization. At the same time, any normalization factor has an effect
of decreasing weight of the document features thereby reducing the chances of retrieval
of the document. Therefore, higher the normalization factor for a document, the lower
are the chances of retrieval of that document[16]. Thus, depending upon size of the
data set, suitable normalization factor may be chosen. In this work, we perform vector
normalization using

−→
V norm(ti) = −→

Vti/sum(abs(−→Vti(c))). Applying normalization
at the end is not a fair idea whereas progressive normalization suits as the better
way.

In our experiments, given a new case, we have extracted top cases using bag of
words, random indexing and HRR approaches. Then from the retrieved case list,

2 Owned by Pearson Knowledge Technologies at the University of Colorado.
3 ftp://ftp.cs.cornell.edu/pub/smart/english.stop
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Fig. 2. Effects of rank aggregation of top k best matching cases of Reuters 1000
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Fig. 3. Effects of rank aggregation of top k best matching cases of TASA 900 with TFIDF and RI
methods
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Fig. 4. Effects of rank aggregation of top k best matching cases of TASA 900 with TFIDF and
HRR methods

rank of all k top cases are aggregated with respect to their actual similarity scores
and the results are compared. Figure 2 illustrates TFIDF and RI results for Reuters
1000 dataset while Figure 3 illustrates the similar analysis for TASA 900 dataset. In
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both, it can be seen that RI outperforms TFIDF approach. In Figure 4 we present the
comparison between TFIDF and HRR. We should make it clear that in the experiments,
‘HRR’ is imposed on the TFIDF results, that is, in Figure 4 ‘HRR’ includes the
TFIDF and term order information. It can also be noted that HRR also performs
better then TFIDF meaning that term order information improves the TFIDF results.
However, RI alone seems to better capture the case meanings than TFIDF + order
information does.

6 Conclusion

The paper presented a retrieval account for TCBR. Employing the distributed
representation of Random Indexing, it enabled the dimension reduction in an effective
way, doing it implicitly, not as a separate stage as in LSI. The method takes into
consideration both semantic and structural properties of features. We need to investigate
how the information about the two types of feature behaviors (i.e., discovered by RI and
HRR, respectively) can be combined in a sensible way so that similarity between cases
can be assessed properly. In addition, to explore the effects in depth it is essential to
apply RI and HRR on larger data sets.
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Choroś, Kazimierz 120
Ciucci, Davide 257
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