
Job Shop Scheduling with Setup Times and Maximal
Time-Lags: A Simple Constraint Programming

Approach

Diarmuid Grimes1 and Emmanuel Hebrard1,2

1 Cork Constraint Computation Centre & University College Cork, Ireland
{d.grimes,e.hebrard}@4c.ucc.ie

2 LAAS-CNRS, Toulouse, France
hebrard@laas.fr

Abstract. In previous work we introduced a simple constraint model that com-
bined generic AI strategies and techniques (weighted degree heuristic, geometric
restarts, nogood learning from restarts) with naive propagation for job shop and
open shop scheduling problems. Here, we extend our model to handle two vari-
ants of the job shop scheduling problem: job shop problems with setup times; and
job shop problems with maximal time lags. We also make some important addi-
tions to our original model, including a solution guidance component for search.

We show empirically that our new models often outperform the state of the art
techniques on a number of known benchmarks for these two variants, finding a
number of new best solutions and proving optimality for the first time on some
problems. We provide some insight into the performance of our approach through
analysis of the constraint weighting procedure.

1 Introduction

Scheduling problems have proven fertile research ground for constraint programming
and other combinatorial optimization techniques. There are numerous such problems
occurring in industry, and whilst relatively simple in their formulation - they typically
involve only Sequencing and Resource constraints - they remain extremely challenging
to solve. After such a long period as an active research topic (more than half a century
back to Johnson’s seminal work [18]) it is natural to think that methods specifically
engineered for each class of problems would dominate approaches with a broader spec-
trum. However, it was recently shown [27,15,26] that generic SAT or constraint pro-
gramming models can approach or even outperform state of the art algorithms for open
shop scheduling and job shop scheduling. In particular, in a previous work [15] we intro-
duced a constraint model that advantageously trades inference strength for brute-force
search speed and adaptive learning-based search heuristics combined with randomized
restarts and a form of nogood learning.

Local search algorithms are generally the most efficient approach for solving job
shop scheduling problems. The best algorithms are based on tabu search, e.g. i-TSAB
[21], or use a CP/local search hybrid [29]. Pure CP approaches can also be efficient,
especially when guided by powerful search strategies that can be thought of as meta-
heuristics [4]. The best CP approach uses inference from the Edge-finding algorithm

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 147–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

148 D. Grimes and E. Hebrard

[8,22] and dedicated variable ordering heuristics such as Texture [3]. On the other hand,
we take a minimalistic approach to modelling the problem. In particular, whilst most
algorithms consider resource constraints as global constraints, devising specific algo-
rithms to filter them, we simply decompose them into primitive disjunctive constraints
ensuring that two tasks sharing a resource do not run concurrently. To this naive propa-
gation framework, we combine slightly more sophisticated, although generic heuristics
and restart policies. In this work, we have also incorporated the idea of solution guided
search [4].

We showed recently that this approach can be very effective with respect to the state
of the art. However, it is even more evident on variants of these archetypal problems
where dedicated algorithms cannot be applied in a straightforward manner. In the first
variant, running a task on a machine requires a setup time, dependent on the task itself,
and also on the previous task that ran on the same machine. In the second variant, max-
imum time lags between the starting times of successive tasks of each job are imposed.
In both cases, most approaches decompose the problem into two subproblems, for the
former the traveling salesman problem with time windows [1,2] is used, while the latter
can be decomposed into sequencing and timetabling subproblems [10]. On the other
hand, our approach can be easily adapted to handle these additional constraints. Indeed,
it found a number of new best solutions and proved optimality for the first time on some
instances from a set of known benchmarks.

It may appear surprising that such a method, not reliant on domain specific knowl-
edge, and whose components are known techniques in discrete optimization, could be
so effective. We therefore devised some experiments to better understand how the key
component of our approach, the constraint weighting, affects search on these problems.
These empirical results reveal that although the use of constraint weighting is generally
extremely important to our approach, it is not always so. In particular on no-wait job
shop scheduling problems (i.e. problems with maximal time-lag of 0 between tasks),
where our approach often outperforms the state of the art, the weight even seems to be
detrimental to the algorithm.

In Section 2, we describe our approach. In Section 3, after outlining the experimental
setup, we provide an experimental comparison of our approach with the state-of-the-art
on standard benchmarks for these two problems. Finally we detail the results of our
analysis of the impact of weight learning in these instances in Section 4.

2 A Simple Constraint Programming Approach

In this section we describe the common ground of constraint models we used to model
the variants of JSP tackled in this paper. We shall consider the minimization of the total
makespan (Cmax) as the objective function in all cases.

2.1 Job Shop Scheduling Problem

An n × m job shop problem (JSP) involves a set of nm tasks T = {ti | 1 ≤ i ≤ nm},
partitioned into n jobs J = {Jx | 1 ≤ x ≤ n}, that need to be scheduled on m
machines M = {My | 1 ≤ y ≤ m}. Each job Jx ∈ J is a set of m tasks Jx =

Job Shop Scheduling with Setup Times and Maximal Time-Lags 149

{t(x−1)∗m+y | 1 ≤ y ≤ m}. Conversely, each machine My ∈ M denotes a set of n
tasks (to run on this machine) such that: T = (

⋃
1≤x≤n Jx) = (

⋃
1≤y≤m My).

Each task ti has an associated duration, or processing time, pi. A schedule is a map-
ping of tasks to time points consistent with: sequencing constraints which ensure that
the tasks of each job run in a predefined order; and resource constraints which ensure
that no two tasks run simultaneously on any given machine.

In this paper we consider the standard objective function defined as the minimization
of the makespan Cmax, that is, the total duration to run all tasks. If we identify each
task ti with its start time in the schedule, the job shop scheduling problem (JSP) can
thus be written as follow:

(JSP) minimise Cmax subject to :
Cmax ≥ ti + pi ∀ti ∈ T (2.1)

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (2.2)

ti + pi ≤ tj ∨ tj + pj ≤ ti ∀My ∈ M, ti �= tj ∈ My (2.3)

2.2 Constraint Model

The objective to minimise (total makespan) is represented by a variable Cmax and the
start time of each task ti is represented by a variable ti ∈ [0, . . . , max(Cmax) − pi].
Next, for every pair of tasks ti, tj sharing a machine, we introduce a Boolean variable
bij which represents the relative ordering between ti and tj . A value of 0 for bij means
that task ti precedes task tj , whilst a value of 1 stands for the opposite ordering. The
variables ti, tj and bij are linked by the following constraint:

bij =
{

0 ⇔ ti + pi ≤ tj
1 ⇔ tj + pj ≤ ti

Bounds consistency (BC) is maintained on these constraints. A range support of a con-
straint C(x1, . . . , xk) is an assignment of {x1, . . . , xk} satisfying C, and where the
value assigned to each variable xi is an integer taken in the interval [min(xi)..max(xi)].
A constraint C(x1, . . . , xk) is bounds consistent (BC) iff, for every variable xi in the
scope of C, min(xi) and max(xi) have a range support. Here, the scope of the con-
straint involves three variables, bij , ti and tj , therefore BC can be achieved in constant
time for a single constraint, by applying simple rules. For n jobs and m machines, this
model involves nm(n − 1)/2 Boolean variables and as many ternary disjunctive con-
straints. Using an AC3 type constraint queue, the wort case time complexity for achiev-
ing bounds consistency on the whole network is therefore O(Cmax∗nm(n−1)/2) since
in the worst case bounds can be reduced by one unit at a time. For instance, consider
three tasks ti, tj and tk such that pi = pj = pk = 1 and assume that bij = bjk = 0
(hence ti ≤ tj ≤ tk). Moreover, suppose that the domain of bik is reduced to the value
1, so that the cycle is closed. Since the domains are reduced by a constant amount at
each propagation, the number of iterations necessary to obtain a failure is in O(Cmax).
However, it rarely reaches this bound in practice. Observe, moreover, that artificially
increasing the size of the instance by a fixed amount will not affect the propagation
loop as long as the durations increase proportionally to the horizon.

150 D. Grimes and E. Hebrard

2.3 Search Strategy

We use the model described above in two different ways. Initially the lower bound on
Cmax is set to the duration of the longest job/machine, whilst the upper bound ub is
initialised by a greedy algorithm in one case (Section 3.1), or by simply summing the
durations of every task (Section 3.2). Since this starting upper bound is often very poor,
especially in the latter case, we reduce the gap by performing a dichotomic search.
We repeatedly solve the decision problem with a makespan fixed to ub+lb

2 , updating lb
and ub accordingly, until they have collapsed. Each dichotomic step has a fixed time
cutoff, if the problem is unsolved the lb is updated, although not stored as the best
proven lb. Moreover, we observed that in many cases, the initial upper bound is so
overestimated that it helps to slightly bias the dichotomic pivot toward lower values
until a first solution is found.

If the problem has not been solved to optimality during the dichotomic search, we
perform a branch & bound search with the best makespan from the dichotmic search as
our upper bound, and the best proven lb as our lower bound. Branch & bound search is
performed until either optimality is proven or an overall cutoff is reached.

Branching: Instead of searching by assigning a starting time to a single value on the
left branches, and forbidding this value on the right branches, it is common to branch on
precedences. An unresolved pair of tasks ti, tj is selected and the constraint ti+pi ≤ tj
is posted on the left branch whilst tj + pj ≤ ti is posted on the right branch. In our
model, branching on the Boolean variables precisely simulates this branching strategy
and thus significantly reduces the search space. Indeed, the existence of a partial order-
ing of the tasks (compatible with start times and durations, and such that its projection
on any job or machine is a total order) is equivalent to the existence of a solution. In
other words, if we successfully assign all Boolean variables in our model, the existence
of a solution is guaranteed. Assigning each task variable to its lowest domain value
gives the minimum Cmax for this solution.

Variable Selection: We use the domain/weighted-degree heuristic [5], which chooses
the variable minimising the ratio of current domain size to total weight of its neigh-
boring constraints (initialised to 1). A constraint’s weight is incremented by one each
time the constraint causes a failure during search. It is important to stress that the be-
haviour of this heuristic is dependent on the modelling choices. Indeed, two different,
yet logically equivalent, sets of constraints may distribute the weights differently. In
this model, every constraint involves at most one search variable. Moreover, the relative
light weight of the model allows the search engine to explore many more nodes than
would a method relying on stronger inference, thus learning weights quicker.

However, at the start of the search, this heuristic is completely uninformed since
every Boolean variable has the same domain size and the same degree. We there-
fore use an augmented version of the heuristic, where, instead of the domain size
of bij , we use the domain size of the two associated task variables ti, tj . We denote
dom(ti) = (max(ti) − min(ti) + 1) the domain size of task ti, that is, the residual
time windows of its starting time. Moreover, we denote w(i, j) the number of times
the search failed while propagating the constraint between ti, tj and bij . We choose the
variable minimising the sum of the tasks’ domain size divided by the weighted degree:

Job Shop Scheduling with Setup Times and Maximal Time-Lags 151

dom(ti) + dom(tj)
w(i, j)

(2.4)

Moreover, one can also use the weighted degree associated with the task variables.
Let Γ (tj) denote the set of tasks sharing a resource with tj . We call w(tj) =∑

ti∈Γ (tj)
w(i, j) the sum of the weights of every ternary disjunctive constraint in-

volving tj . Now we can define an alternative variable ordering as follows:

dom(ti) + dom(tj)
w(ti) + w(tj)

(2.5)

We refer to these heuristics as tdom/bweight and tdom/tweight, tdom refers to the
sum of the domain sizes of the tasks associated with the Boolean variable, and bweight
(tweight) refers to the weighted degree of the Boolean (tasks). Ties were broken
randomly.

Value Selection: Our value ordering is based on the solution guided approach (SGM-
PCS) proposed by Beck for JSPs [4]. This approach involves using previous solution(s)
as guidance for the current search, intensifying search around a previous solution in a
similar manner to i-TSAB [21]. In SGMPCS, a set of elite solutions is initially gener-
ated. Then, at the start of each search attempt, a solution is randomly chosen from the
set and is used as a value ordering heuristic for search. When an improving solution
is found, it replaces the solution in the elite set that was used for guidance. The logic
behind this approach is its combination of intensification (through solution guidance)
and diversification (through maintaining a set of diverse solutions).

Interestingly Beck found that the intensification aspect was more important than the
diversification. Indeed, for the JSPs studied, there was little difference in performance
between an elite set of size 1 and larger elite sets (although too large a set did result in
a deterioration in performance). We use an elite set of 1 for our approach, i.e. once an
initial solution has been found this solution is used, and updated, throughout our search.

Furthermore, up until the first solution is found during dichotomic search, we use
a value ordering working on the principle of best promise [11]. The value 0 for bij is
visited first iff the domain reduction directly induced by the corresponding precendence
(ti + pi ≤ tj) is less than that of the opposite precedence (tj + pj ≤ ti).

Restart policy: It has previously been shown that randomization and restarts can greatly
improve systematic search performance on combinatorial problems [12]. We use a ge-
ometric restarting strategy [28] with random tie-breaking. The geometric strategy is of
the form s, sr, sr2, sr3, ... where s is the base and r is the multiplicative factor. In our
experiments the base was 64 failures and the multiplicative factor was 1.3. We also
incorporate the nogood recording from restarts strategy of Lecoutre et al. [19], where
nogoods are generated from the final search state when the cutoff has been reached. To
that effect, we use a global constraint which essentially simulates the unit propagation
procedure of a SAT solver. After every restart, for every minimal subset of decisions
leading to a failure, the clause that prevents exploring the same path on subsequent
restarts is added to the base. This constraint is not weighted when a conflict occurs.

152 D. Grimes and E. Hebrard

3 Experimental Evaluation

We compare our model with state-of-the-art solvers (both systematic and non-
sysytematic) on 2 variants of the JSP, job shop problems with sequence dependent setup
times and job shop problems with time lags. All our experiments were run on an Intel
Xeon 2.66GHz machine with 12GB of ram on Fedora 9. Due to the random compo-
nent of our algorithm, each instance was solved ten times and we report our results in
terms of both best and average makespan found per problem. Each algorithm run on a
problem had an overall time limit of 3600s.

The number of algorithms we need to compare against makes it extremely difficult
to run all experiments on a common setting.1 We therefore decided to compare with
the results taken from their associated papers. Since they were obtained on different
machines with overall cutoffs based on different criteria, a direct comparison of cpu
time is not possible. However, an improvement on the best known makespan is sufficient
to observe that our approach is competitive. Therefore, we focus our analysis of the
results on the objective value (although we do include average cpu time over the 10
runs for problems where we proved optimality).

3.1 Job Shop Scheduling Problem with Sequence Dependent Setup-Times

A job shop problem with sequence-dependent setup times, involves, as in a regular JSP,
m machines and nm tasks, partitioned into n Jobs of m tasks. As for a JSP, the tasks
have to run in a predefined order for every job and two tasks sharing a machine cannot
run concurrently, that is, the starting times of these tasks should be separated by at
least the duration of the first. However, for each machine and each pair of tasks running
on this machine, the machine needs to be setup to accommodate the new task. During
this setup the machine must stand idle. The duration of this operation depends on the
sequence of tasks, that is, for every pair of tasks (ti, tj) running on the same machine
we are given the setup time s(i, j) for tj following ti and the setup time s(j, i) for ti
following tj . The setup times respect the triangular inequality, that is ∀i, j, k s(i, j) +
s(j, k) ≥ s(i, k). The objective is to minimise the makespan. More formally:

(SDST − JSP) minimise Cmax subject to :
Cmax ≥ ti + pi ∀ti ∈ T (3.1)

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (3.2)

ti + pi + si,j,y ≤ tj ∨ tj + pj + sj,i,y ≤ ti ∀My ∈ M, ∀ti �= tj ∈ My (3.3)

State of the art: This problem represents a challenge for CP and systematic approaches
in general, since the inference from the Edge-finding algorithm is seriously weakened
as it cannot easily take into account the setup times. Therefore there are two main
approaches to this problem. The first by Artigues et al. [1] (denoted AF08 in Table 1)
tries to adapt the reasoning for simple unary resources to unary resources with setup
times. The approach relies on solving a TSP with time windows to find the shortest
permutation of tasks, and is therefore computationally expensive.

1 The code may be written for different OS, not publicly available, or not open source.

Job Shop Scheduling with Setup Times and Maximal Time-Lags 153

Table 1. SDST-JSP: Comparison vs state-of-the-art (best & mean Cmax, 10 runs)

Instance
AF08 BSV08 GVV08 GVV09 tdom/bweight
Best Best Best Avg Best Avg Best Avg Time

t2-ps01 798 798 798 798 798 798.0 0.1
t2-ps02 784 784 784 784 784 784.0 0.2
t2-ps03 749 749 749 749 749 749.0 0.2
t2-ps04 730 730 730 730 730 730.0 0.1
t2-ps05 691 693 691 692 691 691.0 0.1
t2-ps06 1009 1018 1026 1026 1009 1009.0 20.3
t2-ps07 970 1003 970 971 970 970.0 46.1
t2-ps08 963 975 963 966 963 963.0 86.1
t2-ps09 1061 1060 1060 1060 1060∗ 1060.0 1025.1
t2-ps10 1018 1018 1018 1018 1018 1018.0 11.0
t2-ps11 1494 1470 1438 1439 1438 1441 1443 1463.6 -
t2-ps12 1381 1305 1269 1291 1269 1277 1269 1322.2 -
t2-ps13 1457 1439 1406 1415 1415 1416 1415 1428.8 -
t2-ps14 1483 1485 1452 1489 1452 1489 1452 1470.5 -
t2-ps15 1661 1527 1485 1502 1485 1496 1486 1495.8 -
t2-pss06 1126 1114∗ 1114.0 600.9
t2-pss07 1075 1070∗ 1070.0 274.1
t2-pss08 1087 1072∗ 1073.0 -
t2-pss09 1181 1161∗ 1161.0 -
t2-pss10 1121 1118∗ 1118.0 47.2
t2-pss11 1442 1412∗ 1425.9 -
t2-pss12 1290 1258 1266 1269 1287.6 -
t2-pss13 1398 1361 1379 1365 1388.0 -
t2-pss14 1453 1452∗ 1453.0 -
t2-pss15 1435 1417∗ 1427.4 -

The second type of approach relies on metaheuristics. Balas et al. [2] proposed com-
bining a shifting bottleneck algorithm with guided local search (denoted BSV08 in Ta-
ble 12), where the problem is also decomposed into a TSP with time windows. Hybrid
genetic algorithms have also been proposed by González et al. for this problem, firstly
a hybrid GA with local search [13] and more recently GA combined with tabu search
[14] (denoted GVV08 and GVV09 resp. in Table 1). For both GA hybrids, the problem
is modeled using the disjunctive graph representation.

Specific Implementation Choices: Our model is basically identical to the generic
scheduling model introduced in Section 2. However, the setup time between two tasks
is added to the duration within the disjunctive constraints. That is, given two tasks ti
and tj sharing a machine, let si,j (resp. sj,i) be the setup time for the transition between
ti and tj (resp. between tj and ti), we replace the usual disjunctive constraint with:

bij =
{

0 ⇔ ti + pi + si,j ≤ tj
1 ⇔ tj + pj + sj,i ≤ ti

Evaluation: Table 1 summarizes the results of the state-of-the-art and our approach on
a set of benchmarks proposed by Brucker and Thiele [7]. The problems are grouped
based on the number of jobs and machines (nxm), *01-05 are of size 10x5, *06-10 are
of size 15x5, while *11-15 are of size 20x5. Each step of the dichotomic search had
a 30 second cutoff, the search heuristic used was tdom/bweight. We use the following

2 Results for t2-pss-*06-11 and 14-15 are from
http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt

http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt

154 D. Grimes and E. Hebrard

notation for Table 1 (we shall reuse it for Tables 3 and 4): underlined values denote the
fact that optimality was proven, bold face values denote the best value achieved by any
method and finally, values∗ marked with a star denote instances where our approach
improved on the best known solution or built the first proof of optimality. We also
include the average time over the 10 runs when optimality was proven (a dash means
optimality wasn’t proven before reaching the 1 hour cutoff).

We report the first proof of optimality for four instances (t2-ps09, t2-pss06,
t2-pss07, t2-pss10) and 8 new upper bounds for t2-pss* instances (however it
should be noted that there is no comparison available for GVV09 on these 8 instances).
In general, our approach is competitive with the state-of-the-art (GVV09) and outper-
forms both dedicated systematic and non-systematic solvers.

3.2 Job Shop Scheduling Problem with Time Lags

An n × m job shop problem with time lags (JTL) involves the same variables and
constraints as a JSP of the same order. However, there is an additional upper bound
on the time lag between every pair of successive tasks in every job. Let li denote the
maximum amount of time allowed between the completion of task ti and the start of
task tj . More formally:

(TL − JSP) minimise Cmax subject to :
Cmax ≥ ti + pi ∀ti ∈ T (3.4)

ti + pi ≤ ti+1 ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (3.5)

ti+1 − (pi + li) ≤ ti ∀Jx ∈ J , ∀ti, ti+1 ∈ Jx (3.6)

ti + pi ≤ tj ∨ tj + pj ≤ ti ∀My ∈ M, ∀ti �= tj ∈ My (3.7)

This type of constraint arises in many situations. For instance, in the steel industry,
the time lag between the heating of a piece of steel and its moulding should be small.
Similarly when scheduling chemical reactions, the reactives often cannot be stored for a
long period of time between two stages of a process to avoid interactions with external
elements. This type of problem has been studied in a number of areas including the steel
and chemical industries [24].

State of the art: Caumond et al. introduced in 2008 a genetic algorithm able to deal
with general time lag constraints [9]. However most of the algorithms introduced in the
literature have been designed for a particular case of this problem: the no-wait job shop.
In this case, the maximum time-lag is null, i.e. each task of a job must start directly after
its preceding task has finished.

For the no-wait job shop problem, the best methods are a tabu search method
by Schuster (TS [25]), another metaheuristic introduced by Framinian and Schuster
(CLM [10]) and a hybrid constructive/tabu search algorithm introduced by Bozėjko
and Makuchowski in 2009 (HTS [6]). We report the best results of each paper. It should
be noted that for HTS, the authors reported two sets of results, the ones we report for
the “hard” instances were “without limit of computation time”.

Job Shop Scheduling with Setup Times and Maximal Time-Lags 155

Table 2. Results summary for JTL- and NW-JSP

(a) JTL-JSP: Cmax & Time

Instance Sets
CLT tdom/bweight

Cmax Time Cmax Time
car[5-8] 0 0,5 7883.25 322.19 7883.25 2.16
car[5-8] 0 1 7731.25 273.75 7731.25 4.16
car[5-8] 0 2 7709.25 297.06 7709.25 6.31
la[06-08] 0 0,5 1173.67 2359.33 980.00 2044.77
la[06-08] 0 1 1055.33 1870.92 905.33 2052.41
la[06-08] 0 2 1064.33 1853.67 904.67 2054.81

(b) NW-JSP: Summary of APRD per problem
set

Instance
TS HTS CLM CLT tdom/ tdom

twdeg
ft -8.75 -10.58 -10.58 -9.79

abz -20.77 -25.58 -25.89 -25.1
orb 2.42 0.77 1.44 0.00 0.00

la01-10 4.43 1.77 3.31 4.53 0.00 0.00
la11-20 9.52 -5.40 5.14 29.14 -6.32 -6.36
la21-30 -33.93 -39.96 -34.62 -39.85 -39.04
la31-40 -36.69 -42.39 -36.87 -41.65 -40.36

swv01-10 -34.41 -37.22 -34.39 -36.88 -35.33
swv11-20 -40.62 -42.25 -39.17 -33.87

yn -34.87 -41.84 -38.78 -39.03

Specific Implementation Choices: The constraint to represent time lags between two
tasks of a job are simple precedences in our model. For instance, a time lag li between
ti and ti+1, will be represented by the following constraint: ti+1 − (pi + li) ≤ ti.

Although our generic model was relatively efficient on these problems, we made a
simple improvement for the no-wait class based on the following observation: if no
delay is allowed between any two consecutive tasks of a job, then the start time of every
task is functionally dependent on the start time of any other task in the job. The tasks
of each job can thus be viewed as one block. In other words we really need only one
task in our model to represent all the tasks of a job. We therefore use only n variables
standing for the jobs: {Jx | 1 ≤ x ≤ n}.

Let hi be the total duration of the tasks coming before task ti in its job. That is, if job
J = {t1, . . . , tm}, we have: hi =

∑
k<i pk. For every pair of tasks ti ∈ Jx, tj ∈ Jy

sharing a machine, we use the same Boolean variables to represent disjuncts as in the
original model, however linked by the following constraints:

bij =
{

0 ⇔ Jx + hi + pi − hj ≤ Jy

1 ⇔ Jy + hj + pj − hi ≤ Jx

Notice that while the variables and constants are different, these are still exactly the
same ternary disjuncts used in the original model.

The no-wait job shop scheduling problem can therefore be reformulated as follows,
where the variables J1, . . . , Jn represent the start time of the jobs, Jx(i) stands for the
job of task ti, and f(i, j) = hi + pi − hj .

(NW − JSP) minimise Cmax subject to :

Cmax ≥ Jx +
∑

ti∈Jx

pi ∀Jx ∈ J (3.8)

Jx(i) + f(i, j) ≤ Jx(j) ∨ Jx(j) + f(j, i) ≤ Jx(i) ∀My ∈ M, ti, tj ∈ My (3.9)

Evaluation: On general JTL problems, it is difficult to find comparable results in the
literature. To the best of our knowledge, the only one available is the genetic algorithm
by Caumond et al. [9] that we shall denote CLT. In Table 2a, we report the results from

156 D. Grimes and E. Hebrard

our model on the instances used in that paper, where instances are grouped based on
type (car (4 instances) / la (3 instances)) and maximum time lag (0.5 / 1 / 2).

For the no-wait job shop problem, we first present our results in terms of each solver’s
average percentage relative deviation (PRD) from the reference values given in [6] per
problem set in Table 2b. The PRD is given by the following formula:

PRD = ((CAlg − CRef)/CRef) ∗ 100 (3.10)

where CAlg is the best makespan found by the algorithm and CRef is the reference
makespan for the instance given in [6]. There are 82 instances overall.

Interestingly, the search heuristic tdom/tweight performed much better with our no-
wait model than tdom/bweight, thus we report the results for this heuristic. This was
somewhat surprising because this heuristic is less discriminatory as the task weights
for a Boolean are the weights of the two jobs, which will be the same for all Booleans
between these two jobs. Further investigation revealed that ignoring the weight yielded
better results on a number of problems. Thus we also include the heuristic tdom.

Our approach was better than the local search approaches on the smaller problem
sets, and remained competitive on the larger problem sets. In Table 3 we provide results
for the instances regarded as easy in [6], these had been proven optimal by Mascis [20].

Table 3. NW-JSP: Comparison vs state-of-the-art on easy instances (best & mean Cmax, 10
runs).

Instance
Size Ref TS HTS CLM CLT tdom/tweight tdom
nxm Best Best Best Best Best Avg Time Best Avg Time

ft06 6x6 73 73 73 73 73 73 0.01 73 73 0.02
ft10 10x10 1607 1620 1607 1619 1607 1607 4.08 1607 1607 2.49
abz5 2150 2233 2182 2150 2150 9.28 2150 2150 8.87
abz6 1718 1758 1760 1718 1718 1.25 1718 1718 0.71
orb01 1615 1663 1615 1646 1615 1615 1.65 1615 1615 1.45
orb02 1485 1555 1518 1518 1485 1485 1.16 1485 1485 1.12
orb03 1599 1603 1599 1603 1599 1599 4.22 1599 1599 3.10
orb04 1653 1653 1653 1653 1653 1653 1.56 1653 1653 1.11
orb05 1365 1415 1367 1371 1365 1365 3.91 1365 1365 4.43
orb06 1555 1555 1557 1555 1555 1555 0.31 1555 1555 0.26
orb07 689 706 717 706 689 689 6.10 689 689 3.34
orb08 1319 1319 1319 1319 1319 1319 2.22 1319 1319 2.12
orb09 1445 1535 1449 1515 1445 1445 1.02 1445 1445 0.68
orb10 1557 1618 1571 1592 1557 1557 4.55 1557 1557 4.78
la01 10x5 971 1043 975 1031 975 971 971 0.13 971 971 0.11
la02 937 990 975 937 937 937 937 0.24 937 937 0.19
la03 820 832 820 832 820 820 820 0.14 820 820 0.15
la04 887 889 889 889 911 887 887 0.28 887 887 0.17
la05 777 817 777 797 818 777 777 0.30 777 777 0.22
la06 15x5 1248 1299 1248 1256 1305 1248 1248 115.19 1248 1248 81.70
la07 1172 1227 1172 1253 1282 1172 1172 66.96 1172 1172 57.30
la08 1244 1305 1298 1307 1312 1244 1244 50.35 1244 1244 38.63
la09 1358 1450 1415 1451 1547 1358 1358 181.55 1358 1358 102.10
la10 1287 1338 1345 1328 1333 1287 1287 54.14 1287 1287 30.78
la16 10x10 1575 1637 1575 1637 1833 1575 1575 2.09 1575 1575 1.37
la17 1371 1430 1384 1389 1591 1371 1371 2.34 1371 1371 1.70
la18 1417 1555 1417 1555 1790 1417 1417 1.38 1417 1417 1.31
la19 1482 1610 1491 1572 1831 1482 1482 3.14 1482 1482 3.08
la20 1526 1705 1526 1580 1828 1526 1526 0.70 1526 1526 0.66

Job Shop Scheduling with Setup Times and Maximal Time-Lags 157

Table 4. NW-JSP: Improvement on hard instances (best & mean Cmax, 10 runs)

Instance
Size Ref TS HTS CLM tdom/tweight tdom
nxm Best Best Best Best Avg Time Best Avg Time

swv06 20x15 3291 3502 3290 3291 3278∗ 3378.0 - 3391 3500.4 -
la11 20x5 2821 1737 1621 1714 1619∗ 1646.9 - 1622 1632.2 -
la12 2434 1550 1434 1507 1414 1432.7 - 1414∗ 1414.0 2892.37
la14 2662 1771 1610 1773 1578∗ 1628.5 - 1578∗ 1611.1 -
la15 2765 1808 1686 1771 1679∗ 1693.2 - 1681 1691.9 -
la21 15x10 2092 2242 2030 2149 2030 2030.0 - 2030∗ 2030.0 579.69
la22 1928 2008 1852 1979 1852 1854.3 - 1852 1852.0 1013.45
la23 2038 2093 2021 2038 2021 2033.2 - 2021 2021.0 1160.13
la24 2061 2061 1972 2133 1972 1982.7 - 1972 1972.0 1128.55
la25 20x10 2034 2072 1906 2050 1906 1906.0 1336.92 1906 1906.0 218.60
la27 2933 2968 2675 2933 2671∗ 2750.3 - 2675 2743.0 -
la36 15x15 2810 2993 2685 2810 2685 2715.5 - 2685 2685.0 1530.39
la37 3044 3171 2831 3161 2937 2974.0 - 2831 2930.4 -
la38 2726 2734 2525 2726 2525 2556.9 - 2525 2525.0 2898.77
la39 2752 2804 2687 2784 2660∗ 2686.0 - 2660∗ 2662.7 3564.28
la40 2838 2977 2580 2880 2564∗ 2660.8 - 2564∗ 2591.9 2879.08

We proved optimality on all these instances, in under 10s for most cases. It is of interest
to note that tdom was nearly always quicker than tdom/tweight at proving optimality.
In Table 4, we report results for the “hard” instances where our approach found an
improving solution, and the first proofs of optimality for 10 (la12, la21-25, la36 and
la38-40) of the 53 open problems.

4 Weight Learning Analysis

We have previously shown that the weighted degree is a key element of our approach
[16]. In particular the gap in performance between tdom/bwdeg and tdom was quite
large for open shop scheduling problems. Here we try to give a more precise charac-
terization of the importance of learning weights, by gradually reducing the influence
of these weights in the variable selection heuristic. We observe that the impact of the
weights is very much problem-dependent. It is extremely important for job shop with
setup times model and for the standard model for job shop with time lags. However, for
the specific model for no-wait job shop problems, it can be detrimental in some cases.

4.1 Evaluation of Weighted Degree

In order to evaluate the effect of weight learning on search, we devised the following
variable ordering heuristic, that we denote tdom/(K + bweight), and that selects first
the variable bij minimising the value of:

dom(ti) + dom(tj)
w(i, j) + K

(4.1)

Observe that when K = 0, this heuristic is equivalent to tdom/(bweight), whereas,
when K tends toward infinity, the weights become insignificant in the variable selection.
For K = ∞ the next variable is selected with respect to tdom only.

158 D. Grimes and E. Hebrard

We can therefore tune the impact of the weights in the variable choice, by setting the
constant K . As K increases, the role of the weights is increasingly restricted to a tie
breaker. We selected a subset of instances small enough to be solved by tdom/(∞ +
bweight). For the selected subset of small instances, we ran each version of the heuristic
ten times with different random seeds. We report the average cpu time across the ten
runs in Table 5. When the run went over a one hour time cutoff, we report the deviation
to the optimal solution (in percentage) instead.

Table 5. Weight evaluation: cpu-time or deviation to the optimal for increasing values of K

Instance
tdom/(K + bweight)

K = 0 K = 10 K = 100 K = 1000 K = 10000 K = 100000 K = ∞
t2-ps07 26.55 23.33 26.67 41.60 77.27 403.90 +12.9%
t2-ps08 41.08 35.85 93.60 128.96 194.96 665.28 +9.8%
t2-ps09 971.83 956.63 948.28 957.85 1164.94 1649.19 +8.8%
t2-ps10 13.04 13.95 13.63 19.44 100.25 422.24 +15.7%
la07 0 3 +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +5.8%
la08 0 3 15.63 12.45 23.03 30.22 117.50 391.99 3098.87
la09 0 3 1.61 0.51 1.44 10.16 129.62 169.02 2115.98
la10 0 3 3.42 2.25 0.41 0.69 1.39 3.44 39.66
la07 0 0 1751.16 549.58 392.71 151.70 66.18 49.67 57.28
la08 0 0 2231.18 575.44 309.04 113.95 42.04 35.74 38.63
la09 0 0 2402.76 1291.29 691.96 407.68 147.73 89.28 102.03
la10 0 0 3274.86 833.28 214.51 53.75 26.85 26.51 30.82

For job shop with setup times, the best compromise is for K = 10. For very large
values of K , the domain size of the tasks takes complete precedence on the weights, and
the performance degrades. However, as long as the weights are present in the selection
process, even simply as tie breaker, the cpu time stays within one order of magnitude
from the best value for K . On the other hand, when the weights are completely ignored,
the algorithm is not able to solve any of the instances. Indeed the gap to optimality is
quite large, around 9% to 15%.

For job shop with time lags, the situation is a little bit different. As in the previous
case, the best compromise is for K = 10 and the performance degrades slowly when K
increases. However, even when the weights are completely ignored, the gap stays within
a few orders of magnitude from the best case. Finally, for the no-wait job shop, we
observe that the opposite is true. Rather than increasing with K , the cpu time actually
decreases when K grows.

One important feature of a heuristic is its capacity to focus the search on a small
subset of variables that would constitute a backdoor of the problem. It is therefore inter-
esting to find out if there is a correlation between a high level of inequality in the weight
distribution and the capacity to find small backdoors. We used the Gini coefficient to
characterize the weight distribution. The Gini coefficient is a metric of inequality, used
for instance to analyse distribution of wealth in social science.

The Gini coefficient is based on the Lorenz curve, mapping the cumulative pro-
portion of income y of a fraction x of the poorest population. When the distribution
is perfectly fair, the Lorenz curve is y = x. The Gini coefficient is the ratio of the
area lying between the Lorenz curve and x = y, over the total area below x = y.

Job Shop Scheduling with Setup Times and Maximal Time-Lags 159

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

G
in

i c
oe

ffi
ci

en
t

Searched nodes (normalised)

job shop with setup times
random csp

pigeon holes

Fig. 1. Weight distribution bias: Gini coefficient
over the (normalised) number of searched nodes

We consider only search trees for unsat-
isfiable instances. In an ideal situation,
when the search converges immediately
toward a given set of variables from
which a short proof of unsatisfiability can
be extracted, the Gini coefficient of the
weight distribution typically increases
rapidly and monotonically. In Figure 1
we plot the Gini coefficient of the proofs
for the instance t2-ps07; for an in-
stance of random CSP with 100 vari-
ables, a domain size of 15, 250 binary
constraints of tightness 0.53 uniformly
distributed; and a pigeon holes instance.
After each geometric restart, the Gini coefficient is computed and plotted against the
current number of explored nodes. We observe that the weight distribution is quickly
and significantly biased on the job shop instance. On the other hand, there is much
less discrimination on the random CSP instance, where constraints are uniformly dis-
tributed, and almost no discrimination at all on the pigeon hole problem. We were inter-
ested in checking if one could predict, from the fairness of the weight distribution, how
beneficial the weighted degree heuristic is for the considered problem. However, when
comparing two proofs that required a comparably large amount of search, but for which
we showed that, in one case the weights are beneficial, and in the other case detrimental,
it is in fact extremely difficult to differentiate the evolution of the coefficient. It took 11
million nodes to prove that Cmax = 1357 is unsatisfiable for la09 0 0 and 24 million
nodes to prove that Cmax = 1059 is unsatisfiable for t2-ps09. It is clear from the
results in Table 5 however, that the weights helped in the latter case, whereas they did
not in the former case. We report two statistics collected during search showing some
clear differences: the ratio of (Boolean) variables that are selected at a choice point up
to each depth in the search tree, over the total number of (Boolean) variables; the ratio

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

R
at

io
s

Search depth

searched vars t2-ps09
choice pts t2-ps09

searched vars la09_0_0
choice pts la09_0_0

(a) Search statistics

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1000 10000 100000 1e+06 1e+07 1e+08

G
in

i c
oe

ffi
ci

en
t

Searched nodes

t2-ps09
la09_0_0

(b) Evolution of the Gini coef

Fig. 2. Search tree and weight distribution for t2-ps09 and la09 0 0

160 D. Grimes and E. Hebrard

of the number of choice points, that is nodes of the search tree, at each depth, over the
total number of explored nodes.

Clearly for t2-ps09, where the weights are useful, the search is more focused on
lower depth, and on a smaller ratio of variables. Indeed, the cumulative ratio of searched
variables tops at 0.3 (See Figure 2a). On the other hand, for la09 0 0, even very deep
in the tree, new choice points are opened (the ratio of choice points is more spread
out), and they involve a large proportion of new variables (the cumulative number of
searched variables increases almost linearly up to 0.6). The evolution of the Gini coef-
ficient during search is, however, very similar in both cases (See Figure 2b).

One possibility is that the build up of contention is more important for the no wait
problems due to the stronger propagation between tasks of the one job. Preliminary
results suggest that initially both tdom and tdom/bweight repeatedly select Booleans
between the same pair of jobs, once a pair has been selected. The heuristics diverge
when search backs up from deep in search, tdom will still often choose Booleans from
the same pair of jobs as the variable above the choice point, while the weights learnt
deep in search may result in the heuristics that use bweight and tweight choosing
variables associated with a different pair of jobs. Obviously, this effect will be stronger
for bweight as the weights are associated with individual Booelans.

5 Conclusions

We have shown how our constraint model can be easily extended to handle two variants
of the job shop scheduling problem. In both cases we found our approach to be compet-
itive with the state-of-the-art, most notably in proving optimality on some of the open
problems of both problem types.

Whereas it appeared to uniformly improve search efficiency for standard job shop
and open shop scheduling problems, our analysis of constraint weighting revealed that
it can actually be detrimental for some variants of these problems.

References

1. Artigues, C., Feillet, D.: A branch and bound method for the job-shop problem with
sequence-dependent setup times. Annals OR 159(1), 135–159 (2008)

2. Balas, E., Simonetti, N., Vazacopoulos, A.: Job shop scheduling with setup times, deadlines
and precedence constraints. J. of Scheduling 11(4), 253–262 (2008)

3. Beck, J.C., Davenport, A.J., Sitarski, E.M., Fox, M.S.: Texture-Based Heuristics for Schedul-
ing Revisited. In: AAAI 1997, pp. 241–248 (1997)

4. Christopher Beck, J.: Solution-Guided Multi-Point Constructive Search for Job Shop
Scheduling. Journal of Artificial Intelligence Research 29, 49–77 (2007)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by Weighting
Constraints. In: ECAI 2004, pp. 482–486 (2004)

6. Bozejko, W., Makuchowski, M.: A fast hybrid tabu search algorithm for the no-wait job shop
problem. Computers & Industrial Engineering 56(4), 1502–1509 (2009)

7. Brucker, P., Thiele, O.: A branch and bound method for the general- shop problem with
sequence-dependent setup times. Operation Research Spektrum 18, 145–161 (1996)

Job Shop Scheduling with Setup Times and Maximal Time-Lags 161

8. Carlier, J., Pinson, E.: An Algorithm for Solving the Job-shop Problem. Management Sci-
ence 35(2), 164–176 (1989)

9. Caumond, A., Lacomme, P., Tchernev, N.: A memetic algorithm for the job-shop with time-
lags. Computers & OR 35(7), 2331–2356 (2008)

10. Framinan, J.M., Schuster, C.J.: An enhanced timetabling procedure for the no-wait job shop
problem: a complete local search approach. Computers & OR 33, 1200–1213 (2006)

11. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems. In: Proc.
Tenth European Conference on Artificial Intelligence, ECAI 1992, pp. 31–35 (1992)

12. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization.
In: AAAI 1998, pp. 431–437 (1998)

13. González, M.A., Vela, C.R., Varela, R.: A new hybrid genetic algorithm for the job shop
scheduling problem with setup times. In: ICAPS, pp. 116–123. AAAI, Menlo Park (2008)

14. González, M.A., Vela, C.R., Varela, R.: Genetic algorithm combined with tabu search for the
job shop scheduling problem with setup times. In: Mira, J., Ferrández, J.M., Álvarez, J.R.,
de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5601, pp. 265–274. Springer,
Heidelberg (2009)

15. Grimes, D., Hebrard, E., Malapert, A.: Closing the Open Shop: Contradicting Conventional
Wisdom. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 400–408. Springer, Heidelberg
(2009)

16. Grimes, D., Hebrard, E., Malapert, A.: Closing the Open Shop: Contradicting Conventional
Wisdom on Disjunctive Temporal Problems. In: 14th ERCIM International Workshop on
Constraint Solving and Constraint Logic Programming, CSCLP 2009 (2009)

17. Hodson, A., Muhlemann, A.P., Price, D.H.R.: A microcomputer based solution to a practi-
cal scheduling problem. The Journal of the Operational Research Society 36(10), 903–914
(1985)

18. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly 1(1), 61–68 (1954)

19. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood Recording from Restarts. In: IJCAI
2007, pp. 131–136 (2007)

20. Mascis, A., Pacciarelli, D.: Job-shop scheduling with blocking and no-wait constraints. Eu-
ropean Journal of Operational Research 143(3), 498–517 (2002)

21. Nowicki, E., Smutnicki, C.: An Advanced Tabu Search Algorithm for the Job Shop Problem.
Journal of Scheduling 8(2), 145–159 (2005)

22. Nuijten, W.: Time and Resource Constraint Scheduling: A Constraint Satisfaction Approach.
PhD thesis, Eindhoven University of Technology (1994)

23. Raaymakers, W.H.M., Hoogeveen, J.A.: Scheduling multipurpose batch process industries
with no-wait restrictions by simulated annealing. European Journal of Operational Re-
search 126(1), 131–151 (2000)

24. Rajendran, C.: A no-wait flowshop scheduling heuristic to minimize makespan. The Journal
of the Operational Research Society 45(4), 472–478 (1994)

25. Schuster, C.J.: No-wait job shop scheduling: Tabu search and complexity of problems. Math.
Meth. Oper. Res. 63, 473–491 (2006)

26. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.: Why cumulative decomposition is not as
bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–761. Springer,
Heidelberg (2009)

27. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer, Heidelberg (2006)

28. Walsh, T.: Search in a Small World. In: IJCAI 1999, pp. 1172–1177 (1999)
29. Watson, J.-P., Beck, J.C.: A Hybrid Constraint Programming / Local Search Approach to

the Job-Shop Scheduling Problem. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS,
vol. 5015, pp. 263–277. Springer, Heidelberg (2008)

	Job Shop Scheduling with Setup Times and Maximal Time-Lags: A Simple Constraint Programming Approach
	Introduction
	A Simple Constraint Programming Approach
	Job Shop Scheduling Problem
	Constraint Model
	Search Strategy

	Experimental Evaluation
	Job Shop Scheduling Problem with Sequence Dependent Setup-Times
	Job Shop Scheduling Problem with Time Lags

	Weight Learning Analysis
	Evaluation of Weighted Degree

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

